gdb: bool-ify follow_fork
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281 /* Whether vCont support was probed already. This is a workaround
282 until packet_support is per-connection. */
283 bool supports_vCont_probed;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 std::vector<stop_reply_up> stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public process_stratum_target
401 {
402 public:
403 remote_target () = default;
404 ~remote_target () override;
405
406 const target_info &info () const override
407 { return remote_target_info; }
408
409 const char *connection_string () override;
410
411 thread_control_capabilities get_thread_control_capabilities () override
412 { return tc_schedlock; }
413
414 /* Open a remote connection. */
415 static void open (const char *, int);
416
417 void close () override;
418
419 void detach (inferior *, int) override;
420 void disconnect (const char *, int) override;
421
422 void commit_resume () override;
423 void resume (ptid_t, int, enum gdb_signal) override;
424 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
425
426 void fetch_registers (struct regcache *, int) override;
427 void store_registers (struct regcache *, int) override;
428 void prepare_to_store (struct regcache *) override;
429
430 void files_info () override;
431
432 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
433
434 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
435 enum remove_bp_reason) override;
436
437
438 bool stopped_by_sw_breakpoint () override;
439 bool supports_stopped_by_sw_breakpoint () override;
440
441 bool stopped_by_hw_breakpoint () override;
442
443 bool supports_stopped_by_hw_breakpoint () override;
444
445 bool stopped_by_watchpoint () override;
446
447 bool stopped_data_address (CORE_ADDR *) override;
448
449 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
450
451 int can_use_hw_breakpoint (enum bptype, int, int) override;
452
453 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
454
455 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
458
459 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
460 struct expression *) override;
461
462 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
463 struct expression *) override;
464
465 void kill () override;
466
467 void load (const char *, int) override;
468
469 void mourn_inferior () override;
470
471 void pass_signals (gdb::array_view<const unsigned char>) override;
472
473 int set_syscall_catchpoint (int, bool, int,
474 gdb::array_view<const int>) override;
475
476 void program_signals (gdb::array_view<const unsigned char>) override;
477
478 bool thread_alive (ptid_t ptid) override;
479
480 const char *thread_name (struct thread_info *) override;
481
482 void update_thread_list () override;
483
484 std::string pid_to_str (ptid_t) override;
485
486 const char *extra_thread_info (struct thread_info *) override;
487
488 ptid_t get_ada_task_ptid (long lwp, long thread) override;
489
490 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
491 int handle_len,
492 inferior *inf) override;
493
494 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
495 override;
496
497 void stop (ptid_t) override;
498
499 void interrupt () override;
500
501 void pass_ctrlc () override;
502
503 enum target_xfer_status xfer_partial (enum target_object object,
504 const char *annex,
505 gdb_byte *readbuf,
506 const gdb_byte *writebuf,
507 ULONGEST offset, ULONGEST len,
508 ULONGEST *xfered_len) override;
509
510 ULONGEST get_memory_xfer_limit () override;
511
512 void rcmd (const char *command, struct ui_file *output) override;
513
514 char *pid_to_exec_file (int pid) override;
515
516 void log_command (const char *cmd) override
517 {
518 serial_log_command (this, cmd);
519 }
520
521 CORE_ADDR get_thread_local_address (ptid_t ptid,
522 CORE_ADDR load_module_addr,
523 CORE_ADDR offset) override;
524
525 bool can_execute_reverse () override;
526
527 std::vector<mem_region> memory_map () override;
528
529 void flash_erase (ULONGEST address, LONGEST length) override;
530
531 void flash_done () override;
532
533 const struct target_desc *read_description () override;
534
535 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
536 const gdb_byte *pattern, ULONGEST pattern_len,
537 CORE_ADDR *found_addrp) override;
538
539 bool can_async_p () override;
540
541 bool is_async_p () override;
542
543 void async (int) override;
544
545 int async_wait_fd () override;
546
547 void thread_events (int) override;
548
549 int can_do_single_step () override;
550
551 void terminal_inferior () override;
552
553 void terminal_ours () override;
554
555 bool supports_non_stop () override;
556
557 bool supports_multi_process () override;
558
559 bool supports_disable_randomization () override;
560
561 bool filesystem_is_local () override;
562
563
564 int fileio_open (struct inferior *inf, const char *filename,
565 int flags, int mode, int warn_if_slow,
566 int *target_errno) override;
567
568 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
569 ULONGEST offset, int *target_errno) override;
570
571 int fileio_pread (int fd, gdb_byte *read_buf, int len,
572 ULONGEST offset, int *target_errno) override;
573
574 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
575
576 int fileio_close (int fd, int *target_errno) override;
577
578 int fileio_unlink (struct inferior *inf,
579 const char *filename,
580 int *target_errno) override;
581
582 gdb::optional<std::string>
583 fileio_readlink (struct inferior *inf,
584 const char *filename,
585 int *target_errno) override;
586
587 bool supports_enable_disable_tracepoint () override;
588
589 bool supports_string_tracing () override;
590
591 bool supports_evaluation_of_breakpoint_conditions () override;
592
593 bool can_run_breakpoint_commands () override;
594
595 void trace_init () override;
596
597 void download_tracepoint (struct bp_location *location) override;
598
599 bool can_download_tracepoint () override;
600
601 void download_trace_state_variable (const trace_state_variable &tsv) override;
602
603 void enable_tracepoint (struct bp_location *location) override;
604
605 void disable_tracepoint (struct bp_location *location) override;
606
607 void trace_set_readonly_regions () override;
608
609 void trace_start () override;
610
611 int get_trace_status (struct trace_status *ts) override;
612
613 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
614 override;
615
616 void trace_stop () override;
617
618 int trace_find (enum trace_find_type type, int num,
619 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
620
621 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
622
623 int save_trace_data (const char *filename) override;
624
625 int upload_tracepoints (struct uploaded_tp **utpp) override;
626
627 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
628
629 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
630
631 int get_min_fast_tracepoint_insn_len () override;
632
633 void set_disconnected_tracing (int val) override;
634
635 void set_circular_trace_buffer (int val) override;
636
637 void set_trace_buffer_size (LONGEST val) override;
638
639 bool set_trace_notes (const char *user, const char *notes,
640 const char *stopnotes) override;
641
642 int core_of_thread (ptid_t ptid) override;
643
644 int verify_memory (const gdb_byte *data,
645 CORE_ADDR memaddr, ULONGEST size) override;
646
647
648 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
649
650 void set_permissions () override;
651
652 bool static_tracepoint_marker_at (CORE_ADDR,
653 struct static_tracepoint_marker *marker)
654 override;
655
656 std::vector<static_tracepoint_marker>
657 static_tracepoint_markers_by_strid (const char *id) override;
658
659 traceframe_info_up traceframe_info () override;
660
661 bool use_agent (bool use) override;
662 bool can_use_agent () override;
663
664 struct btrace_target_info *enable_btrace (ptid_t ptid,
665 const struct btrace_config *conf) override;
666
667 void disable_btrace (struct btrace_target_info *tinfo) override;
668
669 void teardown_btrace (struct btrace_target_info *tinfo) override;
670
671 enum btrace_error read_btrace (struct btrace_data *data,
672 struct btrace_target_info *btinfo,
673 enum btrace_read_type type) override;
674
675 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
676 bool augmented_libraries_svr4_read () override;
677 bool follow_fork (bool, bool) override;
678 void follow_exec (struct inferior *, const char *) override;
679 int insert_fork_catchpoint (int) override;
680 int remove_fork_catchpoint (int) override;
681 int insert_vfork_catchpoint (int) override;
682 int remove_vfork_catchpoint (int) override;
683 int insert_exec_catchpoint (int) override;
684 int remove_exec_catchpoint (int) override;
685 enum exec_direction_kind execution_direction () override;
686
687 public: /* Remote specific methods. */
688
689 void remote_download_command_source (int num, ULONGEST addr,
690 struct command_line *cmds);
691
692 void remote_file_put (const char *local_file, const char *remote_file,
693 int from_tty);
694 void remote_file_get (const char *remote_file, const char *local_file,
695 int from_tty);
696 void remote_file_delete (const char *remote_file, int from_tty);
697
698 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
699 ULONGEST offset, int *remote_errno);
700 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
703 ULONGEST offset, int *remote_errno);
704
705 int remote_hostio_send_command (int command_bytes, int which_packet,
706 int *remote_errno, char **attachment,
707 int *attachment_len);
708 int remote_hostio_set_filesystem (struct inferior *inf,
709 int *remote_errno);
710 /* We should get rid of this and use fileio_open directly. */
711 int remote_hostio_open (struct inferior *inf, const char *filename,
712 int flags, int mode, int warn_if_slow,
713 int *remote_errno);
714 int remote_hostio_close (int fd, int *remote_errno);
715
716 int remote_hostio_unlink (inferior *inf, const char *filename,
717 int *remote_errno);
718
719 struct remote_state *get_remote_state ();
720
721 long get_remote_packet_size (void);
722 long get_memory_packet_size (struct memory_packet_config *config);
723
724 long get_memory_write_packet_size ();
725 long get_memory_read_packet_size ();
726
727 char *append_pending_thread_resumptions (char *p, char *endp,
728 ptid_t ptid);
729 static void open_1 (const char *name, int from_tty, int extended_p);
730 void start_remote (int from_tty, int extended_p);
731 void remote_detach_1 (struct inferior *inf, int from_tty);
732
733 char *append_resumption (char *p, char *endp,
734 ptid_t ptid, int step, gdb_signal siggnal);
735 int remote_resume_with_vcont (ptid_t ptid, int step,
736 gdb_signal siggnal);
737
738 void add_current_inferior_and_thread (char *wait_status);
739
740 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
741 int options);
742 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
743 int options);
744
745 ptid_t process_stop_reply (struct stop_reply *stop_reply,
746 target_waitstatus *status);
747
748 void remote_notice_new_inferior (ptid_t currthread, int executing);
749
750 void process_initial_stop_replies (int from_tty);
751
752 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
753
754 void btrace_sync_conf (const btrace_config *conf);
755
756 void remote_btrace_maybe_reopen ();
757
758 void remove_new_fork_children (threads_listing_context *context);
759 void kill_new_fork_children (int pid);
760 void discard_pending_stop_replies (struct inferior *inf);
761 int stop_reply_queue_length ();
762
763 void check_pending_events_prevent_wildcard_vcont
764 (int *may_global_wildcard_vcont);
765
766 void discard_pending_stop_replies_in_queue ();
767 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
768 struct stop_reply *queued_stop_reply (ptid_t ptid);
769 int peek_stop_reply (ptid_t ptid);
770 void remote_parse_stop_reply (const char *buf, stop_reply *event);
771
772 void remote_stop_ns (ptid_t ptid);
773 void remote_interrupt_as ();
774 void remote_interrupt_ns ();
775
776 char *remote_get_noisy_reply ();
777 int remote_query_attached (int pid);
778 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
779 int try_open_exec);
780
781 ptid_t remote_current_thread (ptid_t oldpid);
782 ptid_t get_current_thread (char *wait_status);
783
784 void set_thread (ptid_t ptid, int gen);
785 void set_general_thread (ptid_t ptid);
786 void set_continue_thread (ptid_t ptid);
787 void set_general_process ();
788
789 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
790
791 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
792 gdb_ext_thread_info *info);
793 int remote_get_threadinfo (threadref *threadid, int fieldset,
794 gdb_ext_thread_info *info);
795
796 int parse_threadlist_response (char *pkt, int result_limit,
797 threadref *original_echo,
798 threadref *resultlist,
799 int *doneflag);
800 int remote_get_threadlist (int startflag, threadref *nextthread,
801 int result_limit, int *done, int *result_count,
802 threadref *threadlist);
803
804 int remote_threadlist_iterator (rmt_thread_action stepfunction,
805 void *context, int looplimit);
806
807 int remote_get_threads_with_ql (threads_listing_context *context);
808 int remote_get_threads_with_qxfer (threads_listing_context *context);
809 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
810
811 void extended_remote_restart ();
812
813 void get_offsets ();
814
815 void remote_check_symbols ();
816
817 void remote_supported_packet (const struct protocol_feature *feature,
818 enum packet_support support,
819 const char *argument);
820
821 void remote_query_supported ();
822
823 void remote_packet_size (const protocol_feature *feature,
824 packet_support support, const char *value);
825
826 void remote_serial_quit_handler ();
827
828 void remote_detach_pid (int pid);
829
830 void remote_vcont_probe ();
831
832 void remote_resume_with_hc (ptid_t ptid, int step,
833 gdb_signal siggnal);
834
835 void send_interrupt_sequence ();
836 void interrupt_query ();
837
838 void remote_notif_get_pending_events (notif_client *nc);
839
840 int fetch_register_using_p (struct regcache *regcache,
841 packet_reg *reg);
842 int send_g_packet ();
843 void process_g_packet (struct regcache *regcache);
844 void fetch_registers_using_g (struct regcache *regcache);
845 int store_register_using_P (const struct regcache *regcache,
846 packet_reg *reg);
847 void store_registers_using_G (const struct regcache *regcache);
848
849 void set_remote_traceframe ();
850
851 void check_binary_download (CORE_ADDR addr);
852
853 target_xfer_status remote_write_bytes_aux (const char *header,
854 CORE_ADDR memaddr,
855 const gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size,
858 ULONGEST *xfered_len_units,
859 char packet_format,
860 int use_length);
861
862 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
863 const gdb_byte *myaddr, ULONGEST len,
864 int unit_size, ULONGEST *xfered_len);
865
866 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
867 ULONGEST len_units,
868 int unit_size, ULONGEST *xfered_len_units);
869
870 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
871 ULONGEST memaddr,
872 ULONGEST len,
873 int unit_size,
874 ULONGEST *xfered_len);
875
876 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
877 gdb_byte *myaddr, ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 packet_result remote_send_printf (const char *format, ...)
882 ATTRIBUTE_PRINTF (2, 3);
883
884 target_xfer_status remote_flash_write (ULONGEST address,
885 ULONGEST length, ULONGEST *xfered_len,
886 const gdb_byte *data);
887
888 int readchar (int timeout);
889
890 void remote_serial_write (const char *str, int len);
891
892 int putpkt (const char *buf);
893 int putpkt_binary (const char *buf, int cnt);
894
895 int putpkt (const gdb::char_vector &buf)
896 {
897 return putpkt (buf.data ());
898 }
899
900 void skip_frame ();
901 long read_frame (gdb::char_vector *buf_p);
902 void getpkt (gdb::char_vector *buf, int forever);
903 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
904 int expecting_notif, int *is_notif);
905 int getpkt_sane (gdb::char_vector *buf, int forever);
906 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
907 int *is_notif);
908 int remote_vkill (int pid);
909 void remote_kill_k ();
910
911 void extended_remote_disable_randomization (int val);
912 int extended_remote_run (const std::string &args);
913
914 void send_environment_packet (const char *action,
915 const char *packet,
916 const char *value);
917
918 void extended_remote_environment_support ();
919 void extended_remote_set_inferior_cwd ();
920
921 target_xfer_status remote_write_qxfer (const char *object_name,
922 const char *annex,
923 const gdb_byte *writebuf,
924 ULONGEST offset, LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 target_xfer_status remote_read_qxfer (const char *object_name,
929 const char *annex,
930 gdb_byte *readbuf, ULONGEST offset,
931 LONGEST len,
932 ULONGEST *xfered_len,
933 struct packet_config *packet);
934
935 void push_stop_reply (struct stop_reply *new_event);
936
937 bool vcont_r_supported ();
938
939 void packet_command (const char *args, int from_tty);
940
941 private: /* data fields */
942
943 /* The remote state. Don't reference this directly. Use the
944 get_remote_state method instead. */
945 remote_state m_remote_state;
946 };
947
948 static const target_info extended_remote_target_info = {
949 "extended-remote",
950 N_("Extended remote serial target in gdb-specific protocol"),
951 remote_doc
952 };
953
954 /* Set up the extended remote target by extending the standard remote
955 target and adding to it. */
956
957 class extended_remote_target final : public remote_target
958 {
959 public:
960 const target_info &info () const override
961 { return extended_remote_target_info; }
962
963 /* Open an extended-remote connection. */
964 static void open (const char *, int);
965
966 bool can_create_inferior () override { return true; }
967 void create_inferior (const char *, const std::string &,
968 char **, int) override;
969
970 void detach (inferior *, int) override;
971
972 bool can_attach () override { return true; }
973 void attach (const char *, int) override;
974
975 void post_attach (int) override;
976 bool supports_disable_randomization () override;
977 };
978
979 /* Per-program-space data key. */
980 static const struct program_space_key<char, gdb::xfree_deleter<char>>
981 remote_pspace_data;
982
983 /* The variable registered as the control variable used by the
984 remote exec-file commands. While the remote exec-file setting is
985 per-program-space, the set/show machinery uses this as the
986 location of the remote exec-file value. */
987 static char *remote_exec_file_var;
988
989 /* The size to align memory write packets, when practical. The protocol
990 does not guarantee any alignment, and gdb will generate short
991 writes and unaligned writes, but even as a best-effort attempt this
992 can improve bulk transfers. For instance, if a write is misaligned
993 relative to the target's data bus, the stub may need to make an extra
994 round trip fetching data from the target. This doesn't make a
995 huge difference, but it's easy to do, so we try to be helpful.
996
997 The alignment chosen is arbitrary; usually data bus width is
998 important here, not the possibly larger cache line size. */
999 enum { REMOTE_ALIGN_WRITES = 16 };
1000
1001 /* Prototypes for local functions. */
1002
1003 static int hexnumlen (ULONGEST num);
1004
1005 static int stubhex (int ch);
1006
1007 static int hexnumstr (char *, ULONGEST);
1008
1009 static int hexnumnstr (char *, ULONGEST, int);
1010
1011 static CORE_ADDR remote_address_masked (CORE_ADDR);
1012
1013 static void print_packet (const char *);
1014
1015 static int stub_unpack_int (char *buff, int fieldlength);
1016
1017 struct packet_config;
1018
1019 static void show_packet_config_cmd (struct packet_config *config);
1020
1021 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1022 int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value);
1025
1026 static ptid_t read_ptid (const char *buf, const char **obuf);
1027
1028 static void remote_async_inferior_event_handler (gdb_client_data);
1029
1030 static bool remote_read_description_p (struct target_ops *target);
1031
1032 static void remote_console_output (const char *msg);
1033
1034 static void remote_btrace_reset (remote_state *rs);
1035
1036 static void remote_unpush_and_throw (remote_target *target);
1037
1038 /* For "remote". */
1039
1040 static struct cmd_list_element *remote_cmdlist;
1041
1042 /* For "set remote" and "show remote". */
1043
1044 static struct cmd_list_element *remote_set_cmdlist;
1045 static struct cmd_list_element *remote_show_cmdlist;
1046
1047 /* Controls whether GDB is willing to use range stepping. */
1048
1049 static bool use_range_stepping = true;
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 : buf (400)
1090 {
1091 }
1092
1093 remote_state::~remote_state ()
1094 {
1095 xfree (this->last_pass_packet);
1096 xfree (this->last_program_signals_packet);
1097 xfree (this->finished_object);
1098 xfree (this->finished_annex);
1099 }
1100
1101 /* Utility: generate error from an incoming stub packet. */
1102 static void
1103 trace_error (char *buf)
1104 {
1105 if (*buf++ != 'E')
1106 return; /* not an error msg */
1107 switch (*buf)
1108 {
1109 case '1': /* malformed packet error */
1110 if (*++buf == '0') /* general case: */
1111 error (_("remote.c: error in outgoing packet."));
1112 else
1113 error (_("remote.c: error in outgoing packet at field #%ld."),
1114 strtol (buf, NULL, 16));
1115 default:
1116 error (_("Target returns error code '%s'."), buf);
1117 }
1118 }
1119
1120 /* Utility: wait for reply from stub, while accepting "O" packets. */
1121
1122 char *
1123 remote_target::remote_get_noisy_reply ()
1124 {
1125 struct remote_state *rs = get_remote_state ();
1126
1127 do /* Loop on reply from remote stub. */
1128 {
1129 char *buf;
1130
1131 QUIT; /* Allow user to bail out with ^C. */
1132 getpkt (&rs->buf, 0);
1133 buf = rs->buf.data ();
1134 if (buf[0] == 'E')
1135 trace_error (buf);
1136 else if (startswith (buf, "qRelocInsn:"))
1137 {
1138 ULONGEST ul;
1139 CORE_ADDR from, to, org_to;
1140 const char *p, *pp;
1141 int adjusted_size = 0;
1142 int relocated = 0;
1143
1144 p = buf + strlen ("qRelocInsn:");
1145 pp = unpack_varlen_hex (p, &ul);
1146 if (*pp != ';')
1147 error (_("invalid qRelocInsn packet: %s"), buf);
1148 from = ul;
1149
1150 p = pp + 1;
1151 unpack_varlen_hex (p, &ul);
1152 to = ul;
1153
1154 org_to = to;
1155
1156 try
1157 {
1158 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1159 relocated = 1;
1160 }
1161 catch (const gdb_exception &ex)
1162 {
1163 if (ex.error == MEMORY_ERROR)
1164 {
1165 /* Propagate memory errors silently back to the
1166 target. The stub may have limited the range of
1167 addresses we can write to, for example. */
1168 }
1169 else
1170 {
1171 /* Something unexpectedly bad happened. Be verbose
1172 so we can tell what, and propagate the error back
1173 to the stub, so it doesn't get stuck waiting for
1174 a response. */
1175 exception_fprintf (gdb_stderr, ex,
1176 _("warning: relocating instruction: "));
1177 }
1178 putpkt ("E01");
1179 }
1180
1181 if (relocated)
1182 {
1183 adjusted_size = to - org_to;
1184
1185 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1186 putpkt (buf);
1187 }
1188 }
1189 else if (buf[0] == 'O' && buf[1] != 'K')
1190 remote_console_output (buf + 1); /* 'O' message from stub */
1191 else
1192 return buf; /* Here's the actual reply. */
1193 }
1194 while (1);
1195 }
1196
1197 struct remote_arch_state *
1198 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1199 {
1200 remote_arch_state *rsa;
1201
1202 auto it = this->m_arch_states.find (gdbarch);
1203 if (it == this->m_arch_states.end ())
1204 {
1205 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1206 std::forward_as_tuple (gdbarch),
1207 std::forward_as_tuple (gdbarch));
1208 rsa = &p.first->second;
1209
1210 /* Make sure that the packet buffer is plenty big enough for
1211 this architecture. */
1212 if (this->buf.size () < rsa->remote_packet_size)
1213 this->buf.resize (2 * rsa->remote_packet_size);
1214 }
1215 else
1216 rsa = &it->second;
1217
1218 return rsa;
1219 }
1220
1221 /* Fetch the global remote target state. */
1222
1223 remote_state *
1224 remote_target::get_remote_state ()
1225 {
1226 /* Make sure that the remote architecture state has been
1227 initialized, because doing so might reallocate rs->buf. Any
1228 function which calls getpkt also needs to be mindful of changes
1229 to rs->buf, but this call limits the number of places which run
1230 into trouble. */
1231 m_remote_state.get_remote_arch_state (target_gdbarch ());
1232
1233 return &m_remote_state;
1234 }
1235
1236 /* Fetch the remote exec-file from the current program space. */
1237
1238 static const char *
1239 get_remote_exec_file (void)
1240 {
1241 char *remote_exec_file;
1242
1243 remote_exec_file = remote_pspace_data.get (current_program_space);
1244 if (remote_exec_file == NULL)
1245 return "";
1246
1247 return remote_exec_file;
1248 }
1249
1250 /* Set the remote exec file for PSPACE. */
1251
1252 static void
1253 set_pspace_remote_exec_file (struct program_space *pspace,
1254 const char *remote_exec_file)
1255 {
1256 char *old_file = remote_pspace_data.get (pspace);
1257
1258 xfree (old_file);
1259 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1260 }
1261
1262 /* The "set/show remote exec-file" set command hook. */
1263
1264 static void
1265 set_remote_exec_file (const char *ignored, int from_tty,
1266 struct cmd_list_element *c)
1267 {
1268 gdb_assert (remote_exec_file_var != NULL);
1269 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1270 }
1271
1272 /* The "set/show remote exec-file" show command hook. */
1273
1274 static void
1275 show_remote_exec_file (struct ui_file *file, int from_tty,
1276 struct cmd_list_element *cmd, const char *value)
1277 {
1278 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1279 }
1280
1281 static int
1282 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1283 {
1284 int regnum, num_remote_regs, offset;
1285 struct packet_reg **remote_regs;
1286
1287 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1288 {
1289 struct packet_reg *r = &regs[regnum];
1290
1291 if (register_size (gdbarch, regnum) == 0)
1292 /* Do not try to fetch zero-sized (placeholder) registers. */
1293 r->pnum = -1;
1294 else
1295 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1296
1297 r->regnum = regnum;
1298 }
1299
1300 /* Define the g/G packet format as the contents of each register
1301 with a remote protocol number, in order of ascending protocol
1302 number. */
1303
1304 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1305 for (num_remote_regs = 0, regnum = 0;
1306 regnum < gdbarch_num_regs (gdbarch);
1307 regnum++)
1308 if (regs[regnum].pnum != -1)
1309 remote_regs[num_remote_regs++] = &regs[regnum];
1310
1311 std::sort (remote_regs, remote_regs + num_remote_regs,
1312 [] (const packet_reg *a, const packet_reg *b)
1313 { return a->pnum < b->pnum; });
1314
1315 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1316 {
1317 remote_regs[regnum]->in_g_packet = 1;
1318 remote_regs[regnum]->offset = offset;
1319 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1320 }
1321
1322 return offset;
1323 }
1324
1325 /* Given the architecture described by GDBARCH, return the remote
1326 protocol register's number and the register's offset in the g/G
1327 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1328 If the target does not have a mapping for REGNUM, return false,
1329 otherwise, return true. */
1330
1331 int
1332 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1333 int *pnum, int *poffset)
1334 {
1335 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1336
1337 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1338
1339 map_regcache_remote_table (gdbarch, regs.data ());
1340
1341 *pnum = regs[regnum].pnum;
1342 *poffset = regs[regnum].offset;
1343
1344 return *pnum != -1;
1345 }
1346
1347 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1348 {
1349 /* Use the architecture to build a regnum<->pnum table, which will be
1350 1:1 unless a feature set specifies otherwise. */
1351 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1352
1353 /* Record the maximum possible size of the g packet - it may turn out
1354 to be smaller. */
1355 this->sizeof_g_packet
1356 = map_regcache_remote_table (gdbarch, this->regs.get ());
1357
1358 /* Default maximum number of characters in a packet body. Many
1359 remote stubs have a hardwired buffer size of 400 bytes
1360 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1361 as the maximum packet-size to ensure that the packet and an extra
1362 NUL character can always fit in the buffer. This stops GDB
1363 trashing stubs that try to squeeze an extra NUL into what is
1364 already a full buffer (As of 1999-12-04 that was most stubs). */
1365 this->remote_packet_size = 400 - 1;
1366
1367 /* This one is filled in when a ``g'' packet is received. */
1368 this->actual_register_packet_size = 0;
1369
1370 /* Should rsa->sizeof_g_packet needs more space than the
1371 default, adjust the size accordingly. Remember that each byte is
1372 encoded as two characters. 32 is the overhead for the packet
1373 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1374 (``$NN:G...#NN'') is a better guess, the below has been padded a
1375 little. */
1376 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1377 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1378 }
1379
1380 /* Get a pointer to the current remote target. If not connected to a
1381 remote target, return NULL. */
1382
1383 static remote_target *
1384 get_current_remote_target ()
1385 {
1386 target_ops *proc_target = current_inferior ()->process_target ();
1387 return dynamic_cast<remote_target *> (proc_target);
1388 }
1389
1390 /* Return the current allowed size of a remote packet. This is
1391 inferred from the current architecture, and should be used to
1392 limit the length of outgoing packets. */
1393 long
1394 remote_target::get_remote_packet_size ()
1395 {
1396 struct remote_state *rs = get_remote_state ();
1397 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1398
1399 if (rs->explicit_packet_size)
1400 return rs->explicit_packet_size;
1401
1402 return rsa->remote_packet_size;
1403 }
1404
1405 static struct packet_reg *
1406 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1407 long regnum)
1408 {
1409 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1410 return NULL;
1411 else
1412 {
1413 struct packet_reg *r = &rsa->regs[regnum];
1414
1415 gdb_assert (r->regnum == regnum);
1416 return r;
1417 }
1418 }
1419
1420 static struct packet_reg *
1421 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1422 LONGEST pnum)
1423 {
1424 int i;
1425
1426 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1427 {
1428 struct packet_reg *r = &rsa->regs[i];
1429
1430 if (r->pnum == pnum)
1431 return r;
1432 }
1433 return NULL;
1434 }
1435
1436 /* Allow the user to specify what sequence to send to the remote
1437 when he requests a program interruption: Although ^C is usually
1438 what remote systems expect (this is the default, here), it is
1439 sometimes preferable to send a break. On other systems such
1440 as the Linux kernel, a break followed by g, which is Magic SysRq g
1441 is required in order to interrupt the execution. */
1442 const char interrupt_sequence_control_c[] = "Ctrl-C";
1443 const char interrupt_sequence_break[] = "BREAK";
1444 const char interrupt_sequence_break_g[] = "BREAK-g";
1445 static const char *const interrupt_sequence_modes[] =
1446 {
1447 interrupt_sequence_control_c,
1448 interrupt_sequence_break,
1449 interrupt_sequence_break_g,
1450 NULL
1451 };
1452 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1453
1454 static void
1455 show_interrupt_sequence (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c,
1457 const char *value)
1458 {
1459 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1460 fprintf_filtered (file,
1461 _("Send the ASCII ETX character (Ctrl-c) "
1462 "to the remote target to interrupt the "
1463 "execution of the program.\n"));
1464 else if (interrupt_sequence_mode == interrupt_sequence_break)
1465 fprintf_filtered (file,
1466 _("send a break signal to the remote target "
1467 "to interrupt the execution of the program.\n"));
1468 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1469 fprintf_filtered (file,
1470 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1471 "the remote target to interrupt the execution "
1472 "of Linux kernel.\n"));
1473 else
1474 internal_error (__FILE__, __LINE__,
1475 _("Invalid value for interrupt_sequence_mode: %s."),
1476 interrupt_sequence_mode);
1477 }
1478
1479 /* This boolean variable specifies whether interrupt_sequence is sent
1480 to the remote target when gdb connects to it.
1481 This is mostly needed when you debug the Linux kernel: The Linux kernel
1482 expects BREAK g which is Magic SysRq g for connecting gdb. */
1483 static bool interrupt_on_connect = false;
1484
1485 /* This variable is used to implement the "set/show remotebreak" commands.
1486 Since these commands are now deprecated in favor of "set/show remote
1487 interrupt-sequence", it no longer has any effect on the code. */
1488 static bool remote_break;
1489
1490 static void
1491 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1492 {
1493 if (remote_break)
1494 interrupt_sequence_mode = interrupt_sequence_break;
1495 else
1496 interrupt_sequence_mode = interrupt_sequence_control_c;
1497 }
1498
1499 static void
1500 show_remotebreak (struct ui_file *file, int from_tty,
1501 struct cmd_list_element *c,
1502 const char *value)
1503 {
1504 }
1505
1506 /* This variable sets the number of bits in an address that are to be
1507 sent in a memory ("M" or "m") packet. Normally, after stripping
1508 leading zeros, the entire address would be sent. This variable
1509 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1510 initial implementation of remote.c restricted the address sent in
1511 memory packets to ``host::sizeof long'' bytes - (typically 32
1512 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1513 address was never sent. Since fixing this bug may cause a break in
1514 some remote targets this variable is principally provided to
1515 facilitate backward compatibility. */
1516
1517 static unsigned int remote_address_size;
1518
1519 \f
1520 /* User configurable variables for the number of characters in a
1521 memory read/write packet. MIN (rsa->remote_packet_size,
1522 rsa->sizeof_g_packet) is the default. Some targets need smaller
1523 values (fifo overruns, et.al.) and some users need larger values
1524 (speed up transfers). The variables ``preferred_*'' (the user
1525 request), ``current_*'' (what was actually set) and ``forced_*''
1526 (Positive - a soft limit, negative - a hard limit). */
1527
1528 struct memory_packet_config
1529 {
1530 const char *name;
1531 long size;
1532 int fixed_p;
1533 };
1534
1535 /* The default max memory-write-packet-size, when the setting is
1536 "fixed". The 16k is historical. (It came from older GDB's using
1537 alloca for buffers and the knowledge (folklore?) that some hosts
1538 don't cope very well with large alloca calls.) */
1539 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1540
1541 /* The minimum remote packet size for memory transfers. Ensures we
1542 can write at least one byte. */
1543 #define MIN_MEMORY_PACKET_SIZE 20
1544
1545 /* Get the memory packet size, assuming it is fixed. */
1546
1547 static long
1548 get_fixed_memory_packet_size (struct memory_packet_config *config)
1549 {
1550 gdb_assert (config->fixed_p);
1551
1552 if (config->size <= 0)
1553 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1554 else
1555 return config->size;
1556 }
1557
1558 /* Compute the current size of a read/write packet. Since this makes
1559 use of ``actual_register_packet_size'' the computation is dynamic. */
1560
1561 long
1562 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1563 {
1564 struct remote_state *rs = get_remote_state ();
1565 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1566
1567 long what_they_get;
1568 if (config->fixed_p)
1569 what_they_get = get_fixed_memory_packet_size (config);
1570 else
1571 {
1572 what_they_get = get_remote_packet_size ();
1573 /* Limit the packet to the size specified by the user. */
1574 if (config->size > 0
1575 && what_they_get > config->size)
1576 what_they_get = config->size;
1577
1578 /* Limit it to the size of the targets ``g'' response unless we have
1579 permission from the stub to use a larger packet size. */
1580 if (rs->explicit_packet_size == 0
1581 && rsa->actual_register_packet_size > 0
1582 && what_they_get > rsa->actual_register_packet_size)
1583 what_they_get = rsa->actual_register_packet_size;
1584 }
1585 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1586 what_they_get = MIN_MEMORY_PACKET_SIZE;
1587
1588 /* Make sure there is room in the global buffer for this packet
1589 (including its trailing NUL byte). */
1590 if (rs->buf.size () < what_they_get + 1)
1591 rs->buf.resize (2 * what_they_get);
1592
1593 return what_they_get;
1594 }
1595
1596 /* Update the size of a read/write packet. If they user wants
1597 something really big then do a sanity check. */
1598
1599 static void
1600 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1601 {
1602 int fixed_p = config->fixed_p;
1603 long size = config->size;
1604
1605 if (args == NULL)
1606 error (_("Argument required (integer, `fixed' or `limited')."));
1607 else if (strcmp (args, "hard") == 0
1608 || strcmp (args, "fixed") == 0)
1609 fixed_p = 1;
1610 else if (strcmp (args, "soft") == 0
1611 || strcmp (args, "limit") == 0)
1612 fixed_p = 0;
1613 else
1614 {
1615 char *end;
1616
1617 size = strtoul (args, &end, 0);
1618 if (args == end)
1619 error (_("Invalid %s (bad syntax)."), config->name);
1620
1621 /* Instead of explicitly capping the size of a packet to or
1622 disallowing it, the user is allowed to set the size to
1623 something arbitrarily large. */
1624 }
1625
1626 /* Extra checks? */
1627 if (fixed_p && !config->fixed_p)
1628 {
1629 /* So that the query shows the correct value. */
1630 long query_size = (size <= 0
1631 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1632 : size);
1633
1634 if (! query (_("The target may not be able to correctly handle a %s\n"
1635 "of %ld bytes. Change the packet size? "),
1636 config->name, query_size))
1637 error (_("Packet size not changed."));
1638 }
1639 /* Update the config. */
1640 config->fixed_p = fixed_p;
1641 config->size = size;
1642 }
1643
1644 static void
1645 show_memory_packet_size (struct memory_packet_config *config)
1646 {
1647 if (config->size == 0)
1648 printf_filtered (_("The %s is 0 (default). "), config->name);
1649 else
1650 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1651 if (config->fixed_p)
1652 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1653 get_fixed_memory_packet_size (config));
1654 else
1655 {
1656 remote_target *remote = get_current_remote_target ();
1657
1658 if (remote != NULL)
1659 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1660 remote->get_memory_packet_size (config));
1661 else
1662 puts_filtered ("The actual limit will be further reduced "
1663 "dependent on the target.\n");
1664 }
1665 }
1666
1667 /* FIXME: needs to be per-remote-target. */
1668 static struct memory_packet_config memory_write_packet_config =
1669 {
1670 "memory-write-packet-size",
1671 };
1672
1673 static void
1674 set_memory_write_packet_size (const char *args, int from_tty)
1675 {
1676 set_memory_packet_size (args, &memory_write_packet_config);
1677 }
1678
1679 static void
1680 show_memory_write_packet_size (const char *args, int from_tty)
1681 {
1682 show_memory_packet_size (&memory_write_packet_config);
1683 }
1684
1685 /* Show the number of hardware watchpoints that can be used. */
1686
1687 static void
1688 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1689 struct cmd_list_element *c,
1690 const char *value)
1691 {
1692 fprintf_filtered (file, _("The maximum number of target hardware "
1693 "watchpoints is %s.\n"), value);
1694 }
1695
1696 /* Show the length limit (in bytes) for hardware watchpoints. */
1697
1698 static void
1699 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1704 "hardware watchpoint is %s.\n"), value);
1705 }
1706
1707 /* Show the number of hardware breakpoints that can be used. */
1708
1709 static void
1710 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum number of target hardware "
1715 "breakpoints is %s.\n"), value);
1716 }
1717
1718 /* Controls the maximum number of characters to display in the debug output
1719 for each remote packet. The remaining characters are omitted. */
1720
1721 static int remote_packet_max_chars = 512;
1722
1723 /* Show the maximum number of characters to display for each remote packet
1724 when remote debugging is enabled. */
1725
1726 static void
1727 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1728 struct cmd_list_element *c,
1729 const char *value)
1730 {
1731 fprintf_filtered (file, _("Number of remote packet characters to "
1732 "display is %s.\n"), value);
1733 }
1734
1735 long
1736 remote_target::get_memory_write_packet_size ()
1737 {
1738 return get_memory_packet_size (&memory_write_packet_config);
1739 }
1740
1741 /* FIXME: needs to be per-remote-target. */
1742 static struct memory_packet_config memory_read_packet_config =
1743 {
1744 "memory-read-packet-size",
1745 };
1746
1747 static void
1748 set_memory_read_packet_size (const char *args, int from_tty)
1749 {
1750 set_memory_packet_size (args, &memory_read_packet_config);
1751 }
1752
1753 static void
1754 show_memory_read_packet_size (const char *args, int from_tty)
1755 {
1756 show_memory_packet_size (&memory_read_packet_config);
1757 }
1758
1759 long
1760 remote_target::get_memory_read_packet_size ()
1761 {
1762 long size = get_memory_packet_size (&memory_read_packet_config);
1763
1764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1765 extra buffer size argument before the memory read size can be
1766 increased beyond this. */
1767 if (size > get_remote_packet_size ())
1768 size = get_remote_packet_size ();
1769 return size;
1770 }
1771
1772 \f
1773
1774 struct packet_config
1775 {
1776 const char *name;
1777 const char *title;
1778
1779 /* If auto, GDB auto-detects support for this packet or feature,
1780 either through qSupported, or by trying the packet and looking
1781 at the response. If true, GDB assumes the target supports this
1782 packet. If false, the packet is disabled. Configs that don't
1783 have an associated command always have this set to auto. */
1784 enum auto_boolean detect;
1785
1786 /* Does the target support this packet? */
1787 enum packet_support support;
1788 };
1789
1790 static enum packet_support packet_config_support (struct packet_config *config);
1791 static enum packet_support packet_support (int packet);
1792
1793 static void
1794 show_packet_config_cmd (struct packet_config *config)
1795 {
1796 const char *support = "internal-error";
1797
1798 switch (packet_config_support (config))
1799 {
1800 case PACKET_ENABLE:
1801 support = "enabled";
1802 break;
1803 case PACKET_DISABLE:
1804 support = "disabled";
1805 break;
1806 case PACKET_SUPPORT_UNKNOWN:
1807 support = "unknown";
1808 break;
1809 }
1810 switch (config->detect)
1811 {
1812 case AUTO_BOOLEAN_AUTO:
1813 printf_filtered (_("Support for the `%s' packet "
1814 "is auto-detected, currently %s.\n"),
1815 config->name, support);
1816 break;
1817 case AUTO_BOOLEAN_TRUE:
1818 case AUTO_BOOLEAN_FALSE:
1819 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1820 config->name, support);
1821 break;
1822 }
1823 }
1824
1825 static void
1826 add_packet_config_cmd (struct packet_config *config, const char *name,
1827 const char *title, int legacy)
1828 {
1829 char *set_doc;
1830 char *show_doc;
1831 char *cmd_name;
1832
1833 config->name = name;
1834 config->title = title;
1835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1836 name, title);
1837 show_doc = xstrprintf ("Show current use of remote "
1838 "protocol `%s' (%s) packet.",
1839 name, title);
1840 /* set/show TITLE-packet {auto,on,off} */
1841 cmd_name = xstrprintf ("%s-packet", title);
1842 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1843 &config->detect, set_doc,
1844 show_doc, NULL, /* help_doc */
1845 NULL,
1846 show_remote_protocol_packet_cmd,
1847 &remote_set_cmdlist, &remote_show_cmdlist);
1848 /* The command code copies the documentation strings. */
1849 xfree (set_doc);
1850 xfree (show_doc);
1851 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1852 if (legacy)
1853 {
1854 char *legacy_name;
1855
1856 legacy_name = xstrprintf ("%s-packet", name);
1857 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1858 &remote_set_cmdlist);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_show_cmdlist);
1861 }
1862 }
1863
1864 static enum packet_result
1865 packet_check_result (const char *buf)
1866 {
1867 if (buf[0] != '\0')
1868 {
1869 /* The stub recognized the packet request. Check that the
1870 operation succeeded. */
1871 if (buf[0] == 'E'
1872 && isxdigit (buf[1]) && isxdigit (buf[2])
1873 && buf[3] == '\0')
1874 /* "Enn" - definitely an error. */
1875 return PACKET_ERROR;
1876
1877 /* Always treat "E." as an error. This will be used for
1878 more verbose error messages, such as E.memtypes. */
1879 if (buf[0] == 'E' && buf[1] == '.')
1880 return PACKET_ERROR;
1881
1882 /* The packet may or may not be OK. Just assume it is. */
1883 return PACKET_OK;
1884 }
1885 else
1886 /* The stub does not support the packet. */
1887 return PACKET_UNKNOWN;
1888 }
1889
1890 static enum packet_result
1891 packet_check_result (const gdb::char_vector &buf)
1892 {
1893 return packet_check_result (buf.data ());
1894 }
1895
1896 static enum packet_result
1897 packet_ok (const char *buf, struct packet_config *config)
1898 {
1899 enum packet_result result;
1900
1901 if (config->detect != AUTO_BOOLEAN_TRUE
1902 && config->support == PACKET_DISABLE)
1903 internal_error (__FILE__, __LINE__,
1904 _("packet_ok: attempt to use a disabled packet"));
1905
1906 result = packet_check_result (buf);
1907 switch (result)
1908 {
1909 case PACKET_OK:
1910 case PACKET_ERROR:
1911 /* The stub recognized the packet request. */
1912 if (config->support == PACKET_SUPPORT_UNKNOWN)
1913 {
1914 if (remote_debug)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "Packet %s (%s) is supported\n",
1917 config->name, config->title);
1918 config->support = PACKET_ENABLE;
1919 }
1920 break;
1921 case PACKET_UNKNOWN:
1922 /* The stub does not support the packet. */
1923 if (config->detect == AUTO_BOOLEAN_AUTO
1924 && config->support == PACKET_ENABLE)
1925 {
1926 /* If the stub previously indicated that the packet was
1927 supported then there is a protocol error. */
1928 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1929 config->name, config->title);
1930 }
1931 else if (config->detect == AUTO_BOOLEAN_TRUE)
1932 {
1933 /* The user set it wrong. */
1934 error (_("Enabled packet %s (%s) not recognized by stub"),
1935 config->name, config->title);
1936 }
1937
1938 if (remote_debug)
1939 fprintf_unfiltered (gdb_stdlog,
1940 "Packet %s (%s) is NOT supported\n",
1941 config->name, config->title);
1942 config->support = PACKET_DISABLE;
1943 break;
1944 }
1945
1946 return result;
1947 }
1948
1949 static enum packet_result
1950 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1951 {
1952 return packet_ok (buf.data (), config);
1953 }
1954
1955 enum {
1956 PACKET_vCont = 0,
1957 PACKET_X,
1958 PACKET_qSymbol,
1959 PACKET_P,
1960 PACKET_p,
1961 PACKET_Z0,
1962 PACKET_Z1,
1963 PACKET_Z2,
1964 PACKET_Z3,
1965 PACKET_Z4,
1966 PACKET_vFile_setfs,
1967 PACKET_vFile_open,
1968 PACKET_vFile_pread,
1969 PACKET_vFile_pwrite,
1970 PACKET_vFile_close,
1971 PACKET_vFile_unlink,
1972 PACKET_vFile_readlink,
1973 PACKET_vFile_fstat,
1974 PACKET_qXfer_auxv,
1975 PACKET_qXfer_features,
1976 PACKET_qXfer_exec_file,
1977 PACKET_qXfer_libraries,
1978 PACKET_qXfer_libraries_svr4,
1979 PACKET_qXfer_memory_map,
1980 PACKET_qXfer_osdata,
1981 PACKET_qXfer_threads,
1982 PACKET_qXfer_statictrace_read,
1983 PACKET_qXfer_traceframe_info,
1984 PACKET_qXfer_uib,
1985 PACKET_qGetTIBAddr,
1986 PACKET_qGetTLSAddr,
1987 PACKET_qSupported,
1988 PACKET_qTStatus,
1989 PACKET_QPassSignals,
1990 PACKET_QCatchSyscalls,
1991 PACKET_QProgramSignals,
1992 PACKET_QSetWorkingDir,
1993 PACKET_QStartupWithShell,
1994 PACKET_QEnvironmentHexEncoded,
1995 PACKET_QEnvironmentReset,
1996 PACKET_QEnvironmentUnset,
1997 PACKET_qCRC,
1998 PACKET_qSearch_memory,
1999 PACKET_vAttach,
2000 PACKET_vRun,
2001 PACKET_QStartNoAckMode,
2002 PACKET_vKill,
2003 PACKET_qXfer_siginfo_read,
2004 PACKET_qXfer_siginfo_write,
2005 PACKET_qAttached,
2006
2007 /* Support for conditional tracepoints. */
2008 PACKET_ConditionalTracepoints,
2009
2010 /* Support for target-side breakpoint conditions. */
2011 PACKET_ConditionalBreakpoints,
2012
2013 /* Support for target-side breakpoint commands. */
2014 PACKET_BreakpointCommands,
2015
2016 /* Support for fast tracepoints. */
2017 PACKET_FastTracepoints,
2018
2019 /* Support for static tracepoints. */
2020 PACKET_StaticTracepoints,
2021
2022 /* Support for installing tracepoints while a trace experiment is
2023 running. */
2024 PACKET_InstallInTrace,
2025
2026 PACKET_bc,
2027 PACKET_bs,
2028 PACKET_TracepointSource,
2029 PACKET_QAllow,
2030 PACKET_qXfer_fdpic,
2031 PACKET_QDisableRandomization,
2032 PACKET_QAgent,
2033 PACKET_QTBuffer_size,
2034 PACKET_Qbtrace_off,
2035 PACKET_Qbtrace_bts,
2036 PACKET_Qbtrace_pt,
2037 PACKET_qXfer_btrace,
2038
2039 /* Support for the QNonStop packet. */
2040 PACKET_QNonStop,
2041
2042 /* Support for the QThreadEvents packet. */
2043 PACKET_QThreadEvents,
2044
2045 /* Support for multi-process extensions. */
2046 PACKET_multiprocess_feature,
2047
2048 /* Support for enabling and disabling tracepoints while a trace
2049 experiment is running. */
2050 PACKET_EnableDisableTracepoints_feature,
2051
2052 /* Support for collecting strings using the tracenz bytecode. */
2053 PACKET_tracenz_feature,
2054
2055 /* Support for continuing to run a trace experiment while GDB is
2056 disconnected. */
2057 PACKET_DisconnectedTracing_feature,
2058
2059 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2060 PACKET_augmented_libraries_svr4_read_feature,
2061
2062 /* Support for the qXfer:btrace-conf:read packet. */
2063 PACKET_qXfer_btrace_conf,
2064
2065 /* Support for the Qbtrace-conf:bts:size packet. */
2066 PACKET_Qbtrace_conf_bts_size,
2067
2068 /* Support for swbreak+ feature. */
2069 PACKET_swbreak_feature,
2070
2071 /* Support for hwbreak+ feature. */
2072 PACKET_hwbreak_feature,
2073
2074 /* Support for fork events. */
2075 PACKET_fork_event_feature,
2076
2077 /* Support for vfork events. */
2078 PACKET_vfork_event_feature,
2079
2080 /* Support for the Qbtrace-conf:pt:size packet. */
2081 PACKET_Qbtrace_conf_pt_size,
2082
2083 /* Support for exec events. */
2084 PACKET_exec_event_feature,
2085
2086 /* Support for query supported vCont actions. */
2087 PACKET_vContSupported,
2088
2089 /* Support remote CTRL-C. */
2090 PACKET_vCtrlC,
2091
2092 /* Support TARGET_WAITKIND_NO_RESUMED. */
2093 PACKET_no_resumed,
2094
2095 PACKET_MAX
2096 };
2097
2098 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2099 assuming all remote targets are the same server (thus all support
2100 the same packets). */
2101 static struct packet_config remote_protocol_packets[PACKET_MAX];
2102
2103 /* Returns the packet's corresponding "set remote foo-packet" command
2104 state. See struct packet_config for more details. */
2105
2106 static enum auto_boolean
2107 packet_set_cmd_state (int packet)
2108 {
2109 return remote_protocol_packets[packet].detect;
2110 }
2111
2112 /* Returns whether a given packet or feature is supported. This takes
2113 into account the state of the corresponding "set remote foo-packet"
2114 command, which may be used to bypass auto-detection. */
2115
2116 static enum packet_support
2117 packet_config_support (struct packet_config *config)
2118 {
2119 switch (config->detect)
2120 {
2121 case AUTO_BOOLEAN_TRUE:
2122 return PACKET_ENABLE;
2123 case AUTO_BOOLEAN_FALSE:
2124 return PACKET_DISABLE;
2125 case AUTO_BOOLEAN_AUTO:
2126 return config->support;
2127 default:
2128 gdb_assert_not_reached (_("bad switch"));
2129 }
2130 }
2131
2132 /* Same as packet_config_support, but takes the packet's enum value as
2133 argument. */
2134
2135 static enum packet_support
2136 packet_support (int packet)
2137 {
2138 struct packet_config *config = &remote_protocol_packets[packet];
2139
2140 return packet_config_support (config);
2141 }
2142
2143 static void
2144 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2145 struct cmd_list_element *c,
2146 const char *value)
2147 {
2148 struct packet_config *packet;
2149
2150 for (packet = remote_protocol_packets;
2151 packet < &remote_protocol_packets[PACKET_MAX];
2152 packet++)
2153 {
2154 if (&packet->detect == c->var)
2155 {
2156 show_packet_config_cmd (packet);
2157 return;
2158 }
2159 }
2160 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2161 c->name);
2162 }
2163
2164 /* Should we try one of the 'Z' requests? */
2165
2166 enum Z_packet_type
2167 {
2168 Z_PACKET_SOFTWARE_BP,
2169 Z_PACKET_HARDWARE_BP,
2170 Z_PACKET_WRITE_WP,
2171 Z_PACKET_READ_WP,
2172 Z_PACKET_ACCESS_WP,
2173 NR_Z_PACKET_TYPES
2174 };
2175
2176 /* For compatibility with older distributions. Provide a ``set remote
2177 Z-packet ...'' command that updates all the Z packet types. */
2178
2179 static enum auto_boolean remote_Z_packet_detect;
2180
2181 static void
2182 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2183 struct cmd_list_element *c)
2184 {
2185 int i;
2186
2187 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2188 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2189 }
2190
2191 static void
2192 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2193 struct cmd_list_element *c,
2194 const char *value)
2195 {
2196 int i;
2197
2198 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2199 {
2200 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2201 }
2202 }
2203
2204 /* Returns true if the multi-process extensions are in effect. */
2205
2206 static int
2207 remote_multi_process_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if fork events are supported. */
2213
2214 static int
2215 remote_fork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if vfork events are supported. */
2221
2222 static int
2223 remote_vfork_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Returns true if exec events are supported. */
2229
2230 static int
2231 remote_exec_event_p (struct remote_state *rs)
2232 {
2233 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2234 }
2235
2236 /* Insert fork catchpoint target routine. If fork events are enabled
2237 then return success, nothing more to do. */
2238
2239 int
2240 remote_target::insert_fork_catchpoint (int pid)
2241 {
2242 struct remote_state *rs = get_remote_state ();
2243
2244 return !remote_fork_event_p (rs);
2245 }
2246
2247 /* Remove fork catchpoint target routine. Nothing to do, just
2248 return success. */
2249
2250 int
2251 remote_target::remove_fork_catchpoint (int pid)
2252 {
2253 return 0;
2254 }
2255
2256 /* Insert vfork catchpoint target routine. If vfork events are enabled
2257 then return success, nothing more to do. */
2258
2259 int
2260 remote_target::insert_vfork_catchpoint (int pid)
2261 {
2262 struct remote_state *rs = get_remote_state ();
2263
2264 return !remote_vfork_event_p (rs);
2265 }
2266
2267 /* Remove vfork catchpoint target routine. Nothing to do, just
2268 return success. */
2269
2270 int
2271 remote_target::remove_vfork_catchpoint (int pid)
2272 {
2273 return 0;
2274 }
2275
2276 /* Insert exec catchpoint target routine. If exec events are
2277 enabled, just return success. */
2278
2279 int
2280 remote_target::insert_exec_catchpoint (int pid)
2281 {
2282 struct remote_state *rs = get_remote_state ();
2283
2284 return !remote_exec_event_p (rs);
2285 }
2286
2287 /* Remove exec catchpoint target routine. Nothing to do, just
2288 return success. */
2289
2290 int
2291 remote_target::remove_exec_catchpoint (int pid)
2292 {
2293 return 0;
2294 }
2295
2296 \f
2297
2298 /* Take advantage of the fact that the TID field is not used, to tag
2299 special ptids with it set to != 0. */
2300 static const ptid_t magic_null_ptid (42000, -1, 1);
2301 static const ptid_t not_sent_ptid (42000, -2, 1);
2302 static const ptid_t any_thread_ptid (42000, 0, 1);
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382
2383 /* However, if the current inferior is already bound to a
2384 process, find some other empty inferior. */
2385 if (inf->pid != 0)
2386 {
2387 inf = nullptr;
2388 for (inferior *it : all_inferiors ())
2389 if (it->pid == 0)
2390 {
2391 inf = it;
2392 break;
2393 }
2394 }
2395 if (inf == nullptr)
2396 {
2397 /* Since all inferiors were already bound to a process, add
2398 a new inferior. */
2399 inf = add_inferior_with_spaces ();
2400 }
2401 switch_to_inferior_no_thread (inf);
2402 push_target (this);
2403 inferior_appeared (inf, pid);
2404 }
2405
2406 inf->attach_flag = attached;
2407 inf->fake_pid_p = fake_pid_p;
2408
2409 /* If no main executable is currently open then attempt to
2410 open the file that was executed to create this inferior. */
2411 if (try_open_exec && get_exec_file (0) == NULL)
2412 exec_file_locate_attach (pid, 0, 1);
2413
2414 /* Check for exec file mismatch, and let the user solve it. */
2415 validate_exec_file (1);
2416
2417 return inf;
2418 }
2419
2420 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2421 static remote_thread_info *get_remote_thread_info (remote_target *target,
2422 ptid_t ptid);
2423
2424 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2425 according to RUNNING. */
2426
2427 thread_info *
2428 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2429 {
2430 struct remote_state *rs = get_remote_state ();
2431 struct thread_info *thread;
2432
2433 /* GDB historically didn't pull threads in the initial connection
2434 setup. If the remote target doesn't even have a concept of
2435 threads (e.g., a bare-metal target), even if internally we
2436 consider that a single-threaded target, mentioning a new thread
2437 might be confusing to the user. Be silent then, preserving the
2438 age old behavior. */
2439 if (rs->starting_up)
2440 thread = add_thread_silent (this, ptid);
2441 else
2442 thread = add_thread (this, ptid);
2443
2444 get_remote_thread_info (thread)->vcont_resumed = executing;
2445 set_executing (this, ptid, executing);
2446 set_running (this, ptid, running);
2447
2448 return thread;
2449 }
2450
2451 /* Come here when we learn about a thread id from the remote target.
2452 It may be the first time we hear about such thread, so take the
2453 opportunity to add it to GDB's thread list. In case this is the
2454 first time we're noticing its corresponding inferior, add it to
2455 GDB's inferior list as well. EXECUTING indicates whether the
2456 thread is (internally) executing or stopped. */
2457
2458 void
2459 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2460 {
2461 /* In non-stop mode, we assume new found threads are (externally)
2462 running until proven otherwise with a stop reply. In all-stop,
2463 we can only get here if all threads are stopped. */
2464 int running = target_is_non_stop_p () ? 1 : 0;
2465
2466 /* If this is a new thread, add it to GDB's thread list.
2467 If we leave it up to WFI to do this, bad things will happen. */
2468
2469 thread_info *tp = find_thread_ptid (this, currthread);
2470 if (tp != NULL && tp->state == THREAD_EXITED)
2471 {
2472 /* We're seeing an event on a thread id we knew had exited.
2473 This has to be a new thread reusing the old id. Add it. */
2474 remote_add_thread (currthread, running, executing);
2475 return;
2476 }
2477
2478 if (!in_thread_list (this, currthread))
2479 {
2480 struct inferior *inf = NULL;
2481 int pid = currthread.pid ();
2482
2483 if (inferior_ptid.is_pid ()
2484 && pid == inferior_ptid.pid ())
2485 {
2486 /* inferior_ptid has no thread member yet. This can happen
2487 with the vAttach -> remote_wait,"TAAthread:" path if the
2488 stub doesn't support qC. This is the first stop reported
2489 after an attach, so this is the main thread. Update the
2490 ptid in the thread list. */
2491 if (in_thread_list (this, ptid_t (pid)))
2492 thread_change_ptid (this, inferior_ptid, currthread);
2493 else
2494 {
2495 remote_add_thread (currthread, running, executing);
2496 inferior_ptid = currthread;
2497 }
2498 return;
2499 }
2500
2501 if (magic_null_ptid == inferior_ptid)
2502 {
2503 /* inferior_ptid is not set yet. This can happen with the
2504 vRun -> remote_wait,"TAAthread:" path if the stub
2505 doesn't support qC. This is the first stop reported
2506 after an attach, so this is the main thread. Update the
2507 ptid in the thread list. */
2508 thread_change_ptid (this, inferior_ptid, currthread);
2509 return;
2510 }
2511
2512 /* When connecting to a target remote, or to a target
2513 extended-remote which already was debugging an inferior, we
2514 may not know about it yet. Add it before adding its child
2515 thread, so notifications are emitted in a sensible order. */
2516 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 bool fake_pid_p = !remote_multi_process_p (rs);
2520
2521 inf = remote_add_inferior (fake_pid_p,
2522 currthread.pid (), -1, 1);
2523 }
2524
2525 /* This is really a new thread. Add it. */
2526 thread_info *new_thr
2527 = remote_add_thread (currthread, running, executing);
2528
2529 /* If we found a new inferior, let the common code do whatever
2530 it needs to with it (e.g., read shared libraries, insert
2531 breakpoints), unless we're just setting up an all-stop
2532 connection. */
2533 if (inf != NULL)
2534 {
2535 struct remote_state *rs = get_remote_state ();
2536
2537 if (!rs->starting_up)
2538 notice_new_inferior (new_thr, executing, 0);
2539 }
2540 }
2541 }
2542
2543 /* Return THREAD's private thread data, creating it if necessary. */
2544
2545 static remote_thread_info *
2546 get_remote_thread_info (thread_info *thread)
2547 {
2548 gdb_assert (thread != NULL);
2549
2550 if (thread->priv == NULL)
2551 thread->priv.reset (new remote_thread_info);
2552
2553 return static_cast<remote_thread_info *> (thread->priv.get ());
2554 }
2555
2556 /* Return PTID's private thread data, creating it if necessary. */
2557
2558 static remote_thread_info *
2559 get_remote_thread_info (remote_target *target, ptid_t ptid)
2560 {
2561 thread_info *thr = find_thread_ptid (target, ptid);
2562 return get_remote_thread_info (thr);
2563 }
2564
2565 /* Call this function as a result of
2566 1) A halt indication (T packet) containing a thread id
2567 2) A direct query of currthread
2568 3) Successful execution of set thread */
2569
2570 static void
2571 record_currthread (struct remote_state *rs, ptid_t currthread)
2572 {
2573 rs->general_thread = currthread;
2574 }
2575
2576 /* If 'QPassSignals' is supported, tell the remote stub what signals
2577 it can simply pass through to the inferior without reporting. */
2578
2579 void
2580 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2581 {
2582 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2583 {
2584 char *pass_packet, *p;
2585 int count = 0;
2586 struct remote_state *rs = get_remote_state ();
2587
2588 gdb_assert (pass_signals.size () < 256);
2589 for (size_t i = 0; i < pass_signals.size (); i++)
2590 {
2591 if (pass_signals[i])
2592 count++;
2593 }
2594 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2595 strcpy (pass_packet, "QPassSignals:");
2596 p = pass_packet + strlen (pass_packet);
2597 for (size_t i = 0; i < pass_signals.size (); i++)
2598 {
2599 if (pass_signals[i])
2600 {
2601 if (i >= 16)
2602 *p++ = tohex (i >> 4);
2603 *p++ = tohex (i & 15);
2604 if (count)
2605 *p++ = ';';
2606 else
2607 break;
2608 count--;
2609 }
2610 }
2611 *p = 0;
2612 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2613 {
2614 putpkt (pass_packet);
2615 getpkt (&rs->buf, 0);
2616 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2617 if (rs->last_pass_packet)
2618 xfree (rs->last_pass_packet);
2619 rs->last_pass_packet = pass_packet;
2620 }
2621 else
2622 xfree (pass_packet);
2623 }
2624 }
2625
2626 /* If 'QCatchSyscalls' is supported, tell the remote stub
2627 to report syscalls to GDB. */
2628
2629 int
2630 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2631 gdb::array_view<const int> syscall_counts)
2632 {
2633 const char *catch_packet;
2634 enum packet_result result;
2635 int n_sysno = 0;
2636
2637 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2638 {
2639 /* Not supported. */
2640 return 1;
2641 }
2642
2643 if (needed && any_count == 0)
2644 {
2645 /* Count how many syscalls are to be caught. */
2646 for (size_t i = 0; i < syscall_counts.size (); i++)
2647 {
2648 if (syscall_counts[i] != 0)
2649 n_sysno++;
2650 }
2651 }
2652
2653 if (remote_debug)
2654 {
2655 fprintf_unfiltered (gdb_stdlog,
2656 "remote_set_syscall_catchpoint "
2657 "pid %d needed %d any_count %d n_sysno %d\n",
2658 pid, needed, any_count, n_sysno);
2659 }
2660
2661 std::string built_packet;
2662 if (needed)
2663 {
2664 /* Prepare a packet with the sysno list, assuming max 8+1
2665 characters for a sysno. If the resulting packet size is too
2666 big, fallback on the non-selective packet. */
2667 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2668 built_packet.reserve (maxpktsz);
2669 built_packet = "QCatchSyscalls:1";
2670 if (any_count == 0)
2671 {
2672 /* Add in each syscall to be caught. */
2673 for (size_t i = 0; i < syscall_counts.size (); i++)
2674 {
2675 if (syscall_counts[i] != 0)
2676 string_appendf (built_packet, ";%zx", i);
2677 }
2678 }
2679 if (built_packet.size () > get_remote_packet_size ())
2680 {
2681 /* catch_packet too big. Fallback to less efficient
2682 non selective mode, with GDB doing the filtering. */
2683 catch_packet = "QCatchSyscalls:1";
2684 }
2685 else
2686 catch_packet = built_packet.c_str ();
2687 }
2688 else
2689 catch_packet = "QCatchSyscalls:0";
2690
2691 struct remote_state *rs = get_remote_state ();
2692
2693 putpkt (catch_packet);
2694 getpkt (&rs->buf, 0);
2695 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2696 if (result == PACKET_OK)
2697 return 0;
2698 else
2699 return -1;
2700 }
2701
2702 /* If 'QProgramSignals' is supported, tell the remote stub what
2703 signals it should pass through to the inferior when detaching. */
2704
2705 void
2706 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2707 {
2708 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2709 {
2710 char *packet, *p;
2711 int count = 0;
2712 struct remote_state *rs = get_remote_state ();
2713
2714 gdb_assert (signals.size () < 256);
2715 for (size_t i = 0; i < signals.size (); i++)
2716 {
2717 if (signals[i])
2718 count++;
2719 }
2720 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2721 strcpy (packet, "QProgramSignals:");
2722 p = packet + strlen (packet);
2723 for (size_t i = 0; i < signals.size (); i++)
2724 {
2725 if (signal_pass_state (i))
2726 {
2727 if (i >= 16)
2728 *p++ = tohex (i >> 4);
2729 *p++ = tohex (i & 15);
2730 if (count)
2731 *p++ = ';';
2732 else
2733 break;
2734 count--;
2735 }
2736 }
2737 *p = 0;
2738 if (!rs->last_program_signals_packet
2739 || strcmp (rs->last_program_signals_packet, packet) != 0)
2740 {
2741 putpkt (packet);
2742 getpkt (&rs->buf, 0);
2743 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2744 xfree (rs->last_program_signals_packet);
2745 rs->last_program_signals_packet = packet;
2746 }
2747 else
2748 xfree (packet);
2749 }
2750 }
2751
2752 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2753 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2754 thread. If GEN is set, set the general thread, if not, then set
2755 the step/continue thread. */
2756 void
2757 remote_target::set_thread (ptid_t ptid, int gen)
2758 {
2759 struct remote_state *rs = get_remote_state ();
2760 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2761 char *buf = rs->buf.data ();
2762 char *endbuf = buf + get_remote_packet_size ();
2763
2764 if (state == ptid)
2765 return;
2766
2767 *buf++ = 'H';
2768 *buf++ = gen ? 'g' : 'c';
2769 if (ptid == magic_null_ptid)
2770 xsnprintf (buf, endbuf - buf, "0");
2771 else if (ptid == any_thread_ptid)
2772 xsnprintf (buf, endbuf - buf, "0");
2773 else if (ptid == minus_one_ptid)
2774 xsnprintf (buf, endbuf - buf, "-1");
2775 else
2776 write_ptid (buf, endbuf, ptid);
2777 putpkt (rs->buf);
2778 getpkt (&rs->buf, 0);
2779 if (gen)
2780 rs->general_thread = ptid;
2781 else
2782 rs->continue_thread = ptid;
2783 }
2784
2785 void
2786 remote_target::set_general_thread (ptid_t ptid)
2787 {
2788 set_thread (ptid, 1);
2789 }
2790
2791 void
2792 remote_target::set_continue_thread (ptid_t ptid)
2793 {
2794 set_thread (ptid, 0);
2795 }
2796
2797 /* Change the remote current process. Which thread within the process
2798 ends up selected isn't important, as long as it is the same process
2799 as what INFERIOR_PTID points to.
2800
2801 This comes from that fact that there is no explicit notion of
2802 "selected process" in the protocol. The selected process for
2803 general operations is the process the selected general thread
2804 belongs to. */
2805
2806 void
2807 remote_target::set_general_process ()
2808 {
2809 struct remote_state *rs = get_remote_state ();
2810
2811 /* If the remote can't handle multiple processes, don't bother. */
2812 if (!remote_multi_process_p (rs))
2813 return;
2814
2815 /* We only need to change the remote current thread if it's pointing
2816 at some other process. */
2817 if (rs->general_thread.pid () != inferior_ptid.pid ())
2818 set_general_thread (inferior_ptid);
2819 }
2820
2821 \f
2822 /* Return nonzero if this is the main thread that we made up ourselves
2823 to model non-threaded targets as single-threaded. */
2824
2825 static int
2826 remote_thread_always_alive (ptid_t ptid)
2827 {
2828 if (ptid == magic_null_ptid)
2829 /* The main thread is always alive. */
2830 return 1;
2831
2832 if (ptid.pid () != 0 && ptid.lwp () == 0)
2833 /* The main thread is always alive. This can happen after a
2834 vAttach, if the remote side doesn't support
2835 multi-threading. */
2836 return 1;
2837
2838 return 0;
2839 }
2840
2841 /* Return nonzero if the thread PTID is still alive on the remote
2842 system. */
2843
2844 bool
2845 remote_target::thread_alive (ptid_t ptid)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 char *p, *endp;
2849
2850 /* Check if this is a thread that we made up ourselves to model
2851 non-threaded targets as single-threaded. */
2852 if (remote_thread_always_alive (ptid))
2853 return 1;
2854
2855 p = rs->buf.data ();
2856 endp = p + get_remote_packet_size ();
2857
2858 *p++ = 'T';
2859 write_ptid (p, endp, ptid);
2860
2861 putpkt (rs->buf);
2862 getpkt (&rs->buf, 0);
2863 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2864 }
2865
2866 /* Return a pointer to a thread name if we know it and NULL otherwise.
2867 The thread_info object owns the memory for the name. */
2868
2869 const char *
2870 remote_target::thread_name (struct thread_info *info)
2871 {
2872 if (info->priv != NULL)
2873 {
2874 const std::string &name = get_remote_thread_info (info)->name;
2875 return !name.empty () ? name.c_str () : NULL;
2876 }
2877
2878 return NULL;
2879 }
2880
2881 /* About these extended threadlist and threadinfo packets. They are
2882 variable length packets but, the fields within them are often fixed
2883 length. They are redundant enough to send over UDP as is the
2884 remote protocol in general. There is a matching unit test module
2885 in libstub. */
2886
2887 /* WARNING: This threadref data structure comes from the remote O.S.,
2888 libstub protocol encoding, and remote.c. It is not particularly
2889 changable. */
2890
2891 /* Right now, the internal structure is int. We want it to be bigger.
2892 Plan to fix this. */
2893
2894 typedef int gdb_threadref; /* Internal GDB thread reference. */
2895
2896 /* gdb_ext_thread_info is an internal GDB data structure which is
2897 equivalent to the reply of the remote threadinfo packet. */
2898
2899 struct gdb_ext_thread_info
2900 {
2901 threadref threadid; /* External form of thread reference. */
2902 int active; /* Has state interesting to GDB?
2903 regs, stack. */
2904 char display[256]; /* Brief state display, name,
2905 blocked/suspended. */
2906 char shortname[32]; /* To be used to name threads. */
2907 char more_display[256]; /* Long info, statistics, queue depth,
2908 whatever. */
2909 };
2910
2911 /* The volume of remote transfers can be limited by submitting
2912 a mask containing bits specifying the desired information.
2913 Use a union of these values as the 'selection' parameter to
2914 get_thread_info. FIXME: Make these TAG names more thread specific. */
2915
2916 #define TAG_THREADID 1
2917 #define TAG_EXISTS 2
2918 #define TAG_DISPLAY 4
2919 #define TAG_THREADNAME 8
2920 #define TAG_MOREDISPLAY 16
2921
2922 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2923
2924 static char *unpack_nibble (char *buf, int *val);
2925
2926 static char *unpack_byte (char *buf, int *value);
2927
2928 static char *pack_int (char *buf, int value);
2929
2930 static char *unpack_int (char *buf, int *value);
2931
2932 static char *unpack_string (char *src, char *dest, int length);
2933
2934 static char *pack_threadid (char *pkt, threadref *id);
2935
2936 static char *unpack_threadid (char *inbuf, threadref *id);
2937
2938 void int_to_threadref (threadref *id, int value);
2939
2940 static int threadref_to_int (threadref *ref);
2941
2942 static void copy_threadref (threadref *dest, threadref *src);
2943
2944 static int threadmatch (threadref *dest, threadref *src);
2945
2946 static char *pack_threadinfo_request (char *pkt, int mode,
2947 threadref *id);
2948
2949 static char *pack_threadlist_request (char *pkt, int startflag,
2950 int threadcount,
2951 threadref *nextthread);
2952
2953 static int remote_newthread_step (threadref *ref, void *context);
2954
2955
2956 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2957 buffer we're allowed to write to. Returns
2958 BUF+CHARACTERS_WRITTEN. */
2959
2960 char *
2961 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2962 {
2963 int pid, tid;
2964 struct remote_state *rs = get_remote_state ();
2965
2966 if (remote_multi_process_p (rs))
2967 {
2968 pid = ptid.pid ();
2969 if (pid < 0)
2970 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2971 else
2972 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2973 }
2974 tid = ptid.lwp ();
2975 if (tid < 0)
2976 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2977 else
2978 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2979
2980 return buf;
2981 }
2982
2983 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2984 last parsed char. Returns null_ptid if no thread id is found, and
2985 throws an error if the thread id has an invalid format. */
2986
2987 static ptid_t
2988 read_ptid (const char *buf, const char **obuf)
2989 {
2990 const char *p = buf;
2991 const char *pp;
2992 ULONGEST pid = 0, tid = 0;
2993
2994 if (*p == 'p')
2995 {
2996 /* Multi-process ptid. */
2997 pp = unpack_varlen_hex (p + 1, &pid);
2998 if (*pp != '.')
2999 error (_("invalid remote ptid: %s"), p);
3000
3001 p = pp;
3002 pp = unpack_varlen_hex (p + 1, &tid);
3003 if (obuf)
3004 *obuf = pp;
3005 return ptid_t (pid, tid, 0);
3006 }
3007
3008 /* No multi-process. Just a tid. */
3009 pp = unpack_varlen_hex (p, &tid);
3010
3011 /* Return null_ptid when no thread id is found. */
3012 if (p == pp)
3013 {
3014 if (obuf)
3015 *obuf = pp;
3016 return null_ptid;
3017 }
3018
3019 /* Since the stub is not sending a process id, then default to
3020 what's in inferior_ptid, unless it's null at this point. If so,
3021 then since there's no way to know the pid of the reported
3022 threads, use the magic number. */
3023 if (inferior_ptid == null_ptid)
3024 pid = magic_null_ptid.pid ();
3025 else
3026 pid = inferior_ptid.pid ();
3027
3028 if (obuf)
3029 *obuf = pp;
3030 return ptid_t (pid, tid, 0);
3031 }
3032
3033 static int
3034 stubhex (int ch)
3035 {
3036 if (ch >= 'a' && ch <= 'f')
3037 return ch - 'a' + 10;
3038 if (ch >= '0' && ch <= '9')
3039 return ch - '0';
3040 if (ch >= 'A' && ch <= 'F')
3041 return ch - 'A' + 10;
3042 return -1;
3043 }
3044
3045 static int
3046 stub_unpack_int (char *buff, int fieldlength)
3047 {
3048 int nibble;
3049 int retval = 0;
3050
3051 while (fieldlength)
3052 {
3053 nibble = stubhex (*buff++);
3054 retval |= nibble;
3055 fieldlength--;
3056 if (fieldlength)
3057 retval = retval << 4;
3058 }
3059 return retval;
3060 }
3061
3062 static char *
3063 unpack_nibble (char *buf, int *val)
3064 {
3065 *val = fromhex (*buf++);
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_byte (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 2);
3073 return buf + 2;
3074 }
3075
3076 static char *
3077 pack_int (char *buf, int value)
3078 {
3079 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3080 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3082 buf = pack_hex_byte (buf, (value & 0xff));
3083 return buf;
3084 }
3085
3086 static char *
3087 unpack_int (char *buf, int *value)
3088 {
3089 *value = stub_unpack_int (buf, 8);
3090 return buf + 8;
3091 }
3092
3093 #if 0 /* Currently unused, uncomment when needed. */
3094 static char *pack_string (char *pkt, char *string);
3095
3096 static char *
3097 pack_string (char *pkt, char *string)
3098 {
3099 char ch;
3100 int len;
3101
3102 len = strlen (string);
3103 if (len > 200)
3104 len = 200; /* Bigger than most GDB packets, junk??? */
3105 pkt = pack_hex_byte (pkt, len);
3106 while (len-- > 0)
3107 {
3108 ch = *string++;
3109 if ((ch == '\0') || (ch == '#'))
3110 ch = '*'; /* Protect encapsulation. */
3111 *pkt++ = ch;
3112 }
3113 return pkt;
3114 }
3115 #endif /* 0 (unused) */
3116
3117 static char *
3118 unpack_string (char *src, char *dest, int length)
3119 {
3120 while (length--)
3121 *dest++ = *src++;
3122 *dest = '\0';
3123 return src;
3124 }
3125
3126 static char *
3127 pack_threadid (char *pkt, threadref *id)
3128 {
3129 char *limit;
3130 unsigned char *altid;
3131
3132 altid = (unsigned char *) id;
3133 limit = pkt + BUF_THREAD_ID_SIZE;
3134 while (pkt < limit)
3135 pkt = pack_hex_byte (pkt, *altid++);
3136 return pkt;
3137 }
3138
3139
3140 static char *
3141 unpack_threadid (char *inbuf, threadref *id)
3142 {
3143 char *altref;
3144 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3145 int x, y;
3146
3147 altref = (char *) id;
3148
3149 while (inbuf < limit)
3150 {
3151 x = stubhex (*inbuf++);
3152 y = stubhex (*inbuf++);
3153 *altref++ = (x << 4) | y;
3154 }
3155 return inbuf;
3156 }
3157
3158 /* Externally, threadrefs are 64 bits but internally, they are still
3159 ints. This is due to a mismatch of specifications. We would like
3160 to use 64bit thread references internally. This is an adapter
3161 function. */
3162
3163 void
3164 int_to_threadref (threadref *id, int value)
3165 {
3166 unsigned char *scan;
3167
3168 scan = (unsigned char *) id;
3169 {
3170 int i = 4;
3171 while (i--)
3172 *scan++ = 0;
3173 }
3174 *scan++ = (value >> 24) & 0xff;
3175 *scan++ = (value >> 16) & 0xff;
3176 *scan++ = (value >> 8) & 0xff;
3177 *scan++ = (value & 0xff);
3178 }
3179
3180 static int
3181 threadref_to_int (threadref *ref)
3182 {
3183 int i, value = 0;
3184 unsigned char *scan;
3185
3186 scan = *ref;
3187 scan += 4;
3188 i = 4;
3189 while (i-- > 0)
3190 value = (value << 8) | ((*scan++) & 0xff);
3191 return value;
3192 }
3193
3194 static void
3195 copy_threadref (threadref *dest, threadref *src)
3196 {
3197 int i;
3198 unsigned char *csrc, *cdest;
3199
3200 csrc = (unsigned char *) src;
3201 cdest = (unsigned char *) dest;
3202 i = 8;
3203 while (i--)
3204 *cdest++ = *csrc++;
3205 }
3206
3207 static int
3208 threadmatch (threadref *dest, threadref *src)
3209 {
3210 /* Things are broken right now, so just assume we got a match. */
3211 #if 0
3212 unsigned char *srcp, *destp;
3213 int i, result;
3214 srcp = (char *) src;
3215 destp = (char *) dest;
3216
3217 result = 1;
3218 while (i-- > 0)
3219 result &= (*srcp++ == *destp++) ? 1 : 0;
3220 return result;
3221 #endif
3222 return 1;
3223 }
3224
3225 /*
3226 threadid:1, # always request threadid
3227 context_exists:2,
3228 display:4,
3229 unique_name:8,
3230 more_display:16
3231 */
3232
3233 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3234
3235 static char *
3236 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3237 {
3238 *pkt++ = 'q'; /* Info Query */
3239 *pkt++ = 'P'; /* process or thread info */
3240 pkt = pack_int (pkt, mode); /* mode */
3241 pkt = pack_threadid (pkt, id); /* threadid */
3242 *pkt = '\0'; /* terminate */
3243 return pkt;
3244 }
3245
3246 /* These values tag the fields in a thread info response packet. */
3247 /* Tagging the fields allows us to request specific fields and to
3248 add more fields as time goes by. */
3249
3250 #define TAG_THREADID 1 /* Echo the thread identifier. */
3251 #define TAG_EXISTS 2 /* Is this process defined enough to
3252 fetch registers and its stack? */
3253 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3254 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3255 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3256 the process. */
3257
3258 int
3259 remote_target::remote_unpack_thread_info_response (char *pkt,
3260 threadref *expectedref,
3261 gdb_ext_thread_info *info)
3262 {
3263 struct remote_state *rs = get_remote_state ();
3264 int mask, length;
3265 int tag;
3266 threadref ref;
3267 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3268 int retval = 1;
3269
3270 /* info->threadid = 0; FIXME: implement zero_threadref. */
3271 info->active = 0;
3272 info->display[0] = '\0';
3273 info->shortname[0] = '\0';
3274 info->more_display[0] = '\0';
3275
3276 /* Assume the characters indicating the packet type have been
3277 stripped. */
3278 pkt = unpack_int (pkt, &mask); /* arg mask */
3279 pkt = unpack_threadid (pkt, &ref);
3280
3281 if (mask == 0)
3282 warning (_("Incomplete response to threadinfo request."));
3283 if (!threadmatch (&ref, expectedref))
3284 { /* This is an answer to a different request. */
3285 warning (_("ERROR RMT Thread info mismatch."));
3286 return 0;
3287 }
3288 copy_threadref (&info->threadid, &ref);
3289
3290 /* Loop on tagged fields , try to bail if something goes wrong. */
3291
3292 /* Packets are terminated with nulls. */
3293 while ((pkt < limit) && mask && *pkt)
3294 {
3295 pkt = unpack_int (pkt, &tag); /* tag */
3296 pkt = unpack_byte (pkt, &length); /* length */
3297 if (!(tag & mask)) /* Tags out of synch with mask. */
3298 {
3299 warning (_("ERROR RMT: threadinfo tag mismatch."));
3300 retval = 0;
3301 break;
3302 }
3303 if (tag == TAG_THREADID)
3304 {
3305 if (length != 16)
3306 {
3307 warning (_("ERROR RMT: length of threadid is not 16."));
3308 retval = 0;
3309 break;
3310 }
3311 pkt = unpack_threadid (pkt, &ref);
3312 mask = mask & ~TAG_THREADID;
3313 continue;
3314 }
3315 if (tag == TAG_EXISTS)
3316 {
3317 info->active = stub_unpack_int (pkt, length);
3318 pkt += length;
3319 mask = mask & ~(TAG_EXISTS);
3320 if (length > 8)
3321 {
3322 warning (_("ERROR RMT: 'exists' length too long."));
3323 retval = 0;
3324 break;
3325 }
3326 continue;
3327 }
3328 if (tag == TAG_THREADNAME)
3329 {
3330 pkt = unpack_string (pkt, &info->shortname[0], length);
3331 mask = mask & ~TAG_THREADNAME;
3332 continue;
3333 }
3334 if (tag == TAG_DISPLAY)
3335 {
3336 pkt = unpack_string (pkt, &info->display[0], length);
3337 mask = mask & ~TAG_DISPLAY;
3338 continue;
3339 }
3340 if (tag == TAG_MOREDISPLAY)
3341 {
3342 pkt = unpack_string (pkt, &info->more_display[0], length);
3343 mask = mask & ~TAG_MOREDISPLAY;
3344 continue;
3345 }
3346 warning (_("ERROR RMT: unknown thread info tag."));
3347 break; /* Not a tag we know about. */
3348 }
3349 return retval;
3350 }
3351
3352 int
3353 remote_target::remote_get_threadinfo (threadref *threadid,
3354 int fieldset,
3355 gdb_ext_thread_info *info)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 int result;
3359
3360 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3361 putpkt (rs->buf);
3362 getpkt (&rs->buf, 0);
3363
3364 if (rs->buf[0] == '\0')
3365 return 0;
3366
3367 result = remote_unpack_thread_info_response (&rs->buf[2],
3368 threadid, info);
3369 return result;
3370 }
3371
3372 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3373
3374 static char *
3375 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3376 threadref *nextthread)
3377 {
3378 *pkt++ = 'q'; /* info query packet */
3379 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3380 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3381 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3382 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3383 *pkt = '\0';
3384 return pkt;
3385 }
3386
3387 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3388
3389 int
3390 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3391 threadref *original_echo,
3392 threadref *resultlist,
3393 int *doneflag)
3394 {
3395 struct remote_state *rs = get_remote_state ();
3396 char *limit;
3397 int count, resultcount, done;
3398
3399 resultcount = 0;
3400 /* Assume the 'q' and 'M chars have been stripped. */
3401 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3402 /* done parse past here */
3403 pkt = unpack_byte (pkt, &count); /* count field */
3404 pkt = unpack_nibble (pkt, &done);
3405 /* The first threadid is the argument threadid. */
3406 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3407 while ((count-- > 0) && (pkt < limit))
3408 {
3409 pkt = unpack_threadid (pkt, resultlist++);
3410 if (resultcount++ >= result_limit)
3411 break;
3412 }
3413 if (doneflag)
3414 *doneflag = done;
3415 return resultcount;
3416 }
3417
3418 /* Fetch the next batch of threads from the remote. Returns -1 if the
3419 qL packet is not supported, 0 on error and 1 on success. */
3420
3421 int
3422 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3423 int result_limit, int *done, int *result_count,
3424 threadref *threadlist)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 int result = 1;
3428
3429 /* Truncate result limit to be smaller than the packet size. */
3430 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3431 >= get_remote_packet_size ())
3432 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3433
3434 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3435 nextthread);
3436 putpkt (rs->buf);
3437 getpkt (&rs->buf, 0);
3438 if (rs->buf[0] == '\0')
3439 {
3440 /* Packet not supported. */
3441 return -1;
3442 }
3443
3444 *result_count =
3445 parse_threadlist_response (&rs->buf[2], result_limit,
3446 &rs->echo_nextthread, threadlist, done);
3447
3448 if (!threadmatch (&rs->echo_nextthread, nextthread))
3449 {
3450 /* FIXME: This is a good reason to drop the packet. */
3451 /* Possibly, there is a duplicate response. */
3452 /* Possibilities :
3453 retransmit immediatly - race conditions
3454 retransmit after timeout - yes
3455 exit
3456 wait for packet, then exit
3457 */
3458 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3459 return 0; /* I choose simply exiting. */
3460 }
3461 if (*result_count <= 0)
3462 {
3463 if (*done != 1)
3464 {
3465 warning (_("RMT ERROR : failed to get remote thread list."));
3466 result = 0;
3467 }
3468 return result; /* break; */
3469 }
3470 if (*result_count > result_limit)
3471 {
3472 *result_count = 0;
3473 warning (_("RMT ERROR: threadlist response longer than requested."));
3474 return 0;
3475 }
3476 return result;
3477 }
3478
3479 /* Fetch the list of remote threads, with the qL packet, and call
3480 STEPFUNCTION for each thread found. Stops iterating and returns 1
3481 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3482 STEPFUNCTION returns false. If the packet is not supported,
3483 returns -1. */
3484
3485 int
3486 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3487 void *context, int looplimit)
3488 {
3489 struct remote_state *rs = get_remote_state ();
3490 int done, i, result_count;
3491 int startflag = 1;
3492 int result = 1;
3493 int loopcount = 0;
3494
3495 done = 0;
3496 while (!done)
3497 {
3498 if (loopcount++ > looplimit)
3499 {
3500 result = 0;
3501 warning (_("Remote fetch threadlist -infinite loop-."));
3502 break;
3503 }
3504 result = remote_get_threadlist (startflag, &rs->nextthread,
3505 MAXTHREADLISTRESULTS,
3506 &done, &result_count,
3507 rs->resultthreadlist);
3508 if (result <= 0)
3509 break;
3510 /* Clear for later iterations. */
3511 startflag = 0;
3512 /* Setup to resume next batch of thread references, set nextthread. */
3513 if (result_count >= 1)
3514 copy_threadref (&rs->nextthread,
3515 &rs->resultthreadlist[result_count - 1]);
3516 i = 0;
3517 while (result_count--)
3518 {
3519 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3520 {
3521 result = 0;
3522 break;
3523 }
3524 }
3525 }
3526 return result;
3527 }
3528
3529 /* A thread found on the remote target. */
3530
3531 struct thread_item
3532 {
3533 explicit thread_item (ptid_t ptid_)
3534 : ptid (ptid_)
3535 {}
3536
3537 thread_item (thread_item &&other) = default;
3538 thread_item &operator= (thread_item &&other) = default;
3539
3540 DISABLE_COPY_AND_ASSIGN (thread_item);
3541
3542 /* The thread's PTID. */
3543 ptid_t ptid;
3544
3545 /* The thread's extra info. */
3546 std::string extra;
3547
3548 /* The thread's name. */
3549 std::string name;
3550
3551 /* The core the thread was running on. -1 if not known. */
3552 int core = -1;
3553
3554 /* The thread handle associated with the thread. */
3555 gdb::byte_vector thread_handle;
3556 };
3557
3558 /* Context passed around to the various methods listing remote
3559 threads. As new threads are found, they're added to the ITEMS
3560 vector. */
3561
3562 struct threads_listing_context
3563 {
3564 /* Return true if this object contains an entry for a thread with ptid
3565 PTID. */
3566
3567 bool contains_thread (ptid_t ptid) const
3568 {
3569 auto match_ptid = [&] (const thread_item &item)
3570 {
3571 return item.ptid == ptid;
3572 };
3573
3574 auto it = std::find_if (this->items.begin (),
3575 this->items.end (),
3576 match_ptid);
3577
3578 return it != this->items.end ();
3579 }
3580
3581 /* Remove the thread with ptid PTID. */
3582
3583 void remove_thread (ptid_t ptid)
3584 {
3585 auto match_ptid = [&] (const thread_item &item)
3586 {
3587 return item.ptid == ptid;
3588 };
3589
3590 auto it = std::remove_if (this->items.begin (),
3591 this->items.end (),
3592 match_ptid);
3593
3594 if (it != this->items.end ())
3595 this->items.erase (it);
3596 }
3597
3598 /* The threads found on the remote target. */
3599 std::vector<thread_item> items;
3600 };
3601
3602 static int
3603 remote_newthread_step (threadref *ref, void *data)
3604 {
3605 struct threads_listing_context *context
3606 = (struct threads_listing_context *) data;
3607 int pid = inferior_ptid.pid ();
3608 int lwp = threadref_to_int (ref);
3609 ptid_t ptid (pid, lwp);
3610
3611 context->items.emplace_back (ptid);
3612
3613 return 1; /* continue iterator */
3614 }
3615
3616 #define CRAZY_MAX_THREADS 1000
3617
3618 ptid_t
3619 remote_target::remote_current_thread (ptid_t oldpid)
3620 {
3621 struct remote_state *rs = get_remote_state ();
3622
3623 putpkt ("qC");
3624 getpkt (&rs->buf, 0);
3625 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3626 {
3627 const char *obuf;
3628 ptid_t result;
3629
3630 result = read_ptid (&rs->buf[2], &obuf);
3631 if (*obuf != '\0' && remote_debug)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "warning: garbage in qC reply\n");
3634
3635 return result;
3636 }
3637 else
3638 return oldpid;
3639 }
3640
3641 /* List remote threads using the deprecated qL packet. */
3642
3643 int
3644 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3645 {
3646 if (remote_threadlist_iterator (remote_newthread_step, context,
3647 CRAZY_MAX_THREADS) >= 0)
3648 return 1;
3649
3650 return 0;
3651 }
3652
3653 #if defined(HAVE_LIBEXPAT)
3654
3655 static void
3656 start_thread (struct gdb_xml_parser *parser,
3657 const struct gdb_xml_element *element,
3658 void *user_data,
3659 std::vector<gdb_xml_value> &attributes)
3660 {
3661 struct threads_listing_context *data
3662 = (struct threads_listing_context *) user_data;
3663 struct gdb_xml_value *attr;
3664
3665 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3666 ptid_t ptid = read_ptid (id, NULL);
3667
3668 data->items.emplace_back (ptid);
3669 thread_item &item = data->items.back ();
3670
3671 attr = xml_find_attribute (attributes, "core");
3672 if (attr != NULL)
3673 item.core = *(ULONGEST *) attr->value.get ();
3674
3675 attr = xml_find_attribute (attributes, "name");
3676 if (attr != NULL)
3677 item.name = (const char *) attr->value.get ();
3678
3679 attr = xml_find_attribute (attributes, "handle");
3680 if (attr != NULL)
3681 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3682 }
3683
3684 static void
3685 end_thread (struct gdb_xml_parser *parser,
3686 const struct gdb_xml_element *element,
3687 void *user_data, const char *body_text)
3688 {
3689 struct threads_listing_context *data
3690 = (struct threads_listing_context *) user_data;
3691
3692 if (body_text != NULL && *body_text != '\0')
3693 data->items.back ().extra = body_text;
3694 }
3695
3696 const struct gdb_xml_attribute thread_attributes[] = {
3697 { "id", GDB_XML_AF_NONE, NULL, NULL },
3698 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3699 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3700 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3702 };
3703
3704 const struct gdb_xml_element thread_children[] = {
3705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3706 };
3707
3708 const struct gdb_xml_element threads_children[] = {
3709 { "thread", thread_attributes, thread_children,
3710 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3711 start_thread, end_thread },
3712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3713 };
3714
3715 const struct gdb_xml_element threads_elements[] = {
3716 { "threads", NULL, threads_children,
3717 GDB_XML_EF_NONE, NULL, NULL },
3718 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3719 };
3720
3721 #endif
3722
3723 /* List remote threads using qXfer:threads:read. */
3724
3725 int
3726 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3727 {
3728 #if defined(HAVE_LIBEXPAT)
3729 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3730 {
3731 gdb::optional<gdb::char_vector> xml
3732 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3733
3734 if (xml && (*xml)[0] != '\0')
3735 {
3736 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3737 threads_elements, xml->data (), context);
3738 }
3739
3740 return 1;
3741 }
3742 #endif
3743
3744 return 0;
3745 }
3746
3747 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3748
3749 int
3750 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3751 {
3752 struct remote_state *rs = get_remote_state ();
3753
3754 if (rs->use_threadinfo_query)
3755 {
3756 const char *bufp;
3757
3758 putpkt ("qfThreadInfo");
3759 getpkt (&rs->buf, 0);
3760 bufp = rs->buf.data ();
3761 if (bufp[0] != '\0') /* q packet recognized */
3762 {
3763 while (*bufp++ == 'm') /* reply contains one or more TID */
3764 {
3765 do
3766 {
3767 ptid_t ptid = read_ptid (bufp, &bufp);
3768 context->items.emplace_back (ptid);
3769 }
3770 while (*bufp++ == ','); /* comma-separated list */
3771 putpkt ("qsThreadInfo");
3772 getpkt (&rs->buf, 0);
3773 bufp = rs->buf.data ();
3774 }
3775 return 1;
3776 }
3777 else
3778 {
3779 /* Packet not recognized. */
3780 rs->use_threadinfo_query = 0;
3781 }
3782 }
3783
3784 return 0;
3785 }
3786
3787 /* Implement the to_update_thread_list function for the remote
3788 targets. */
3789
3790 void
3791 remote_target::update_thread_list ()
3792 {
3793 struct threads_listing_context context;
3794 int got_list = 0;
3795
3796 /* We have a few different mechanisms to fetch the thread list. Try
3797 them all, starting with the most preferred one first, falling
3798 back to older methods. */
3799 if (remote_get_threads_with_qxfer (&context)
3800 || remote_get_threads_with_qthreadinfo (&context)
3801 || remote_get_threads_with_ql (&context))
3802 {
3803 got_list = 1;
3804
3805 if (context.items.empty ()
3806 && remote_thread_always_alive (inferior_ptid))
3807 {
3808 /* Some targets don't really support threads, but still
3809 reply an (empty) thread list in response to the thread
3810 listing packets, instead of replying "packet not
3811 supported". Exit early so we don't delete the main
3812 thread. */
3813 return;
3814 }
3815
3816 /* CONTEXT now holds the current thread list on the remote
3817 target end. Delete GDB-side threads no longer found on the
3818 target. */
3819 for (thread_info *tp : all_threads_safe ())
3820 {
3821 if (tp->inf->process_target () != this)
3822 continue;
3823
3824 if (!context.contains_thread (tp->ptid))
3825 {
3826 /* Not found. */
3827 delete_thread (tp);
3828 }
3829 }
3830
3831 /* Remove any unreported fork child threads from CONTEXT so
3832 that we don't interfere with follow fork, which is where
3833 creation of such threads is handled. */
3834 remove_new_fork_children (&context);
3835
3836 /* And now add threads we don't know about yet to our list. */
3837 for (thread_item &item : context.items)
3838 {
3839 if (item.ptid != null_ptid)
3840 {
3841 /* In non-stop mode, we assume new found threads are
3842 executing until proven otherwise with a stop reply.
3843 In all-stop, we can only get here if all threads are
3844 stopped. */
3845 int executing = target_is_non_stop_p () ? 1 : 0;
3846
3847 remote_notice_new_inferior (item.ptid, executing);
3848
3849 thread_info *tp = find_thread_ptid (this, item.ptid);
3850 remote_thread_info *info = get_remote_thread_info (tp);
3851 info->core = item.core;
3852 info->extra = std::move (item.extra);
3853 info->name = std::move (item.name);
3854 info->thread_handle = std::move (item.thread_handle);
3855 }
3856 }
3857 }
3858
3859 if (!got_list)
3860 {
3861 /* If no thread listing method is supported, then query whether
3862 each known thread is alive, one by one, with the T packet.
3863 If the target doesn't support threads at all, then this is a
3864 no-op. See remote_thread_alive. */
3865 prune_threads ();
3866 }
3867 }
3868
3869 /*
3870 * Collect a descriptive string about the given thread.
3871 * The target may say anything it wants to about the thread
3872 * (typically info about its blocked / runnable state, name, etc.).
3873 * This string will appear in the info threads display.
3874 *
3875 * Optional: targets are not required to implement this function.
3876 */
3877
3878 const char *
3879 remote_target::extra_thread_info (thread_info *tp)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882 int set;
3883 threadref id;
3884 struct gdb_ext_thread_info threadinfo;
3885
3886 if (rs->remote_desc == 0) /* paranoia */
3887 internal_error (__FILE__, __LINE__,
3888 _("remote_threads_extra_info"));
3889
3890 if (tp->ptid == magic_null_ptid
3891 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3892 /* This is the main thread which was added by GDB. The remote
3893 server doesn't know about it. */
3894 return NULL;
3895
3896 std::string &extra = get_remote_thread_info (tp)->extra;
3897
3898 /* If already have cached info, use it. */
3899 if (!extra.empty ())
3900 return extra.c_str ();
3901
3902 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3903 {
3904 /* If we're using qXfer:threads:read, then the extra info is
3905 included in the XML. So if we didn't have anything cached,
3906 it's because there's really no extra info. */
3907 return NULL;
3908 }
3909
3910 if (rs->use_threadextra_query)
3911 {
3912 char *b = rs->buf.data ();
3913 char *endb = b + get_remote_packet_size ();
3914
3915 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3916 b += strlen (b);
3917 write_ptid (b, endb, tp->ptid);
3918
3919 putpkt (rs->buf);
3920 getpkt (&rs->buf, 0);
3921 if (rs->buf[0] != 0)
3922 {
3923 extra.resize (strlen (rs->buf.data ()) / 2);
3924 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3925 return extra.c_str ();
3926 }
3927 }
3928
3929 /* If the above query fails, fall back to the old method. */
3930 rs->use_threadextra_query = 0;
3931 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3932 | TAG_MOREDISPLAY | TAG_DISPLAY;
3933 int_to_threadref (&id, tp->ptid.lwp ());
3934 if (remote_get_threadinfo (&id, set, &threadinfo))
3935 if (threadinfo.active)
3936 {
3937 if (*threadinfo.shortname)
3938 string_appendf (extra, " Name: %s", threadinfo.shortname);
3939 if (*threadinfo.display)
3940 {
3941 if (!extra.empty ())
3942 extra += ',';
3943 string_appendf (extra, " State: %s", threadinfo.display);
3944 }
3945 if (*threadinfo.more_display)
3946 {
3947 if (!extra.empty ())
3948 extra += ',';
3949 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3950 }
3951 return extra.c_str ();
3952 }
3953 return NULL;
3954 }
3955 \f
3956
3957 bool
3958 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3959 struct static_tracepoint_marker *marker)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962 char *p = rs->buf.data ();
3963
3964 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3965 p += strlen (p);
3966 p += hexnumstr (p, addr);
3967 putpkt (rs->buf);
3968 getpkt (&rs->buf, 0);
3969 p = rs->buf.data ();
3970
3971 if (*p == 'E')
3972 error (_("Remote failure reply: %s"), p);
3973
3974 if (*p++ == 'm')
3975 {
3976 parse_static_tracepoint_marker_definition (p, NULL, marker);
3977 return true;
3978 }
3979
3980 return false;
3981 }
3982
3983 std::vector<static_tracepoint_marker>
3984 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3985 {
3986 struct remote_state *rs = get_remote_state ();
3987 std::vector<static_tracepoint_marker> markers;
3988 const char *p;
3989 static_tracepoint_marker marker;
3990
3991 /* Ask for a first packet of static tracepoint marker
3992 definition. */
3993 putpkt ("qTfSTM");
3994 getpkt (&rs->buf, 0);
3995 p = rs->buf.data ();
3996 if (*p == 'E')
3997 error (_("Remote failure reply: %s"), p);
3998
3999 while (*p++ == 'm')
4000 {
4001 do
4002 {
4003 parse_static_tracepoint_marker_definition (p, &p, &marker);
4004
4005 if (strid == NULL || marker.str_id == strid)
4006 markers.push_back (std::move (marker));
4007 }
4008 while (*p++ == ','); /* comma-separated list */
4009 /* Ask for another packet of static tracepoint definition. */
4010 putpkt ("qTsSTM");
4011 getpkt (&rs->buf, 0);
4012 p = rs->buf.data ();
4013 }
4014
4015 return markers;
4016 }
4017
4018 \f
4019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4020
4021 ptid_t
4022 remote_target::get_ada_task_ptid (long lwp, long thread)
4023 {
4024 return ptid_t (inferior_ptid.pid (), lwp, 0);
4025 }
4026 \f
4027
4028 /* Restart the remote side; this is an extended protocol operation. */
4029
4030 void
4031 remote_target::extended_remote_restart ()
4032 {
4033 struct remote_state *rs = get_remote_state ();
4034
4035 /* Send the restart command; for reasons I don't understand the
4036 remote side really expects a number after the "R". */
4037 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4038 putpkt (rs->buf);
4039
4040 remote_fileio_reset ();
4041 }
4042 \f
4043 /* Clean up connection to a remote debugger. */
4044
4045 void
4046 remote_target::close ()
4047 {
4048 /* Make sure we leave stdin registered in the event loop. */
4049 terminal_ours ();
4050
4051 trace_reset_local_state ();
4052
4053 delete this;
4054 }
4055
4056 remote_target::~remote_target ()
4057 {
4058 struct remote_state *rs = get_remote_state ();
4059
4060 /* Check for NULL because we may get here with a partially
4061 constructed target/connection. */
4062 if (rs->remote_desc == nullptr)
4063 return;
4064
4065 serial_close (rs->remote_desc);
4066
4067 /* We are destroying the remote target, so we should discard
4068 everything of this target. */
4069 discard_pending_stop_replies_in_queue ();
4070
4071 if (rs->remote_async_inferior_event_token)
4072 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4073
4074 delete rs->notif_state;
4075 }
4076
4077 /* Query the remote side for the text, data and bss offsets. */
4078
4079 void
4080 remote_target::get_offsets ()
4081 {
4082 struct remote_state *rs = get_remote_state ();
4083 char *buf;
4084 char *ptr;
4085 int lose, num_segments = 0, do_sections, do_segments;
4086 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4087 struct symfile_segment_data *data;
4088
4089 if (symfile_objfile == NULL)
4090 return;
4091
4092 putpkt ("qOffsets");
4093 getpkt (&rs->buf, 0);
4094 buf = rs->buf.data ();
4095
4096 if (buf[0] == '\000')
4097 return; /* Return silently. Stub doesn't support
4098 this command. */
4099 if (buf[0] == 'E')
4100 {
4101 warning (_("Remote failure reply: %s"), buf);
4102 return;
4103 }
4104
4105 /* Pick up each field in turn. This used to be done with scanf, but
4106 scanf will make trouble if CORE_ADDR size doesn't match
4107 conversion directives correctly. The following code will work
4108 with any size of CORE_ADDR. */
4109 text_addr = data_addr = bss_addr = 0;
4110 ptr = buf;
4111 lose = 0;
4112
4113 if (startswith (ptr, "Text="))
4114 {
4115 ptr += 5;
4116 /* Don't use strtol, could lose on big values. */
4117 while (*ptr && *ptr != ';')
4118 text_addr = (text_addr << 4) + fromhex (*ptr++);
4119
4120 if (startswith (ptr, ";Data="))
4121 {
4122 ptr += 6;
4123 while (*ptr && *ptr != ';')
4124 data_addr = (data_addr << 4) + fromhex (*ptr++);
4125 }
4126 else
4127 lose = 1;
4128
4129 if (!lose && startswith (ptr, ";Bss="))
4130 {
4131 ptr += 5;
4132 while (*ptr && *ptr != ';')
4133 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4134
4135 if (bss_addr != data_addr)
4136 warning (_("Target reported unsupported offsets: %s"), buf);
4137 }
4138 else
4139 lose = 1;
4140 }
4141 else if (startswith (ptr, "TextSeg="))
4142 {
4143 ptr += 8;
4144 /* Don't use strtol, could lose on big values. */
4145 while (*ptr && *ptr != ';')
4146 text_addr = (text_addr << 4) + fromhex (*ptr++);
4147 num_segments = 1;
4148
4149 if (startswith (ptr, ";DataSeg="))
4150 {
4151 ptr += 9;
4152 while (*ptr && *ptr != ';')
4153 data_addr = (data_addr << 4) + fromhex (*ptr++);
4154 num_segments++;
4155 }
4156 }
4157 else
4158 lose = 1;
4159
4160 if (lose)
4161 error (_("Malformed response to offset query, %s"), buf);
4162 else if (*ptr != '\0')
4163 warning (_("Target reported unsupported offsets: %s"), buf);
4164
4165 section_offsets offs = symfile_objfile->section_offsets;
4166
4167 data = get_symfile_segment_data (symfile_objfile->obfd);
4168 do_segments = (data != NULL);
4169 do_sections = num_segments == 0;
4170
4171 if (num_segments > 0)
4172 {
4173 segments[0] = text_addr;
4174 segments[1] = data_addr;
4175 }
4176 /* If we have two segments, we can still try to relocate everything
4177 by assuming that the .text and .data offsets apply to the whole
4178 text and data segments. Convert the offsets given in the packet
4179 to base addresses for symfile_map_offsets_to_segments. */
4180 else if (data && data->num_segments == 2)
4181 {
4182 segments[0] = data->segment_bases[0] + text_addr;
4183 segments[1] = data->segment_bases[1] + data_addr;
4184 num_segments = 2;
4185 }
4186 /* If the object file has only one segment, assume that it is text
4187 rather than data; main programs with no writable data are rare,
4188 but programs with no code are useless. Of course the code might
4189 have ended up in the data segment... to detect that we would need
4190 the permissions here. */
4191 else if (data && data->num_segments == 1)
4192 {
4193 segments[0] = data->segment_bases[0] + text_addr;
4194 num_segments = 1;
4195 }
4196 /* There's no way to relocate by segment. */
4197 else
4198 do_segments = 0;
4199
4200 if (do_segments)
4201 {
4202 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4203 offs, num_segments, segments);
4204
4205 if (ret == 0 && !do_sections)
4206 error (_("Can not handle qOffsets TextSeg "
4207 "response with this symbol file"));
4208
4209 if (ret > 0)
4210 do_sections = 0;
4211 }
4212
4213 if (data)
4214 free_symfile_segment_data (data);
4215
4216 if (do_sections)
4217 {
4218 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4219
4220 /* This is a temporary kludge to force data and bss to use the
4221 same offsets because that's what nlmconv does now. The real
4222 solution requires changes to the stub and remote.c that I
4223 don't have time to do right now. */
4224
4225 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4226 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4227 }
4228
4229 objfile_relocate (symfile_objfile, offs);
4230 }
4231
4232 /* Send interrupt_sequence to remote target. */
4233
4234 void
4235 remote_target::send_interrupt_sequence ()
4236 {
4237 struct remote_state *rs = get_remote_state ();
4238
4239 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4240 remote_serial_write ("\x03", 1);
4241 else if (interrupt_sequence_mode == interrupt_sequence_break)
4242 serial_send_break (rs->remote_desc);
4243 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4244 {
4245 serial_send_break (rs->remote_desc);
4246 remote_serial_write ("g", 1);
4247 }
4248 else
4249 internal_error (__FILE__, __LINE__,
4250 _("Invalid value for interrupt_sequence_mode: %s."),
4251 interrupt_sequence_mode);
4252 }
4253
4254
4255 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4256 and extract the PTID. Returns NULL_PTID if not found. */
4257
4258 static ptid_t
4259 stop_reply_extract_thread (char *stop_reply)
4260 {
4261 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4262 {
4263 const char *p;
4264
4265 /* Txx r:val ; r:val (...) */
4266 p = &stop_reply[3];
4267
4268 /* Look for "register" named "thread". */
4269 while (*p != '\0')
4270 {
4271 const char *p1;
4272
4273 p1 = strchr (p, ':');
4274 if (p1 == NULL)
4275 return null_ptid;
4276
4277 if (strncmp (p, "thread", p1 - p) == 0)
4278 return read_ptid (++p1, &p);
4279
4280 p1 = strchr (p, ';');
4281 if (p1 == NULL)
4282 return null_ptid;
4283 p1++;
4284
4285 p = p1;
4286 }
4287 }
4288
4289 return null_ptid;
4290 }
4291
4292 /* Determine the remote side's current thread. If we have a stop
4293 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4294 "thread" register we can extract the current thread from. If not,
4295 ask the remote which is the current thread with qC. The former
4296 method avoids a roundtrip. */
4297
4298 ptid_t
4299 remote_target::get_current_thread (char *wait_status)
4300 {
4301 ptid_t ptid = null_ptid;
4302
4303 /* Note we don't use remote_parse_stop_reply as that makes use of
4304 the target architecture, which we haven't yet fully determined at
4305 this point. */
4306 if (wait_status != NULL)
4307 ptid = stop_reply_extract_thread (wait_status);
4308 if (ptid == null_ptid)
4309 ptid = remote_current_thread (inferior_ptid);
4310
4311 return ptid;
4312 }
4313
4314 /* Query the remote target for which is the current thread/process,
4315 add it to our tables, and update INFERIOR_PTID. The caller is
4316 responsible for setting the state such that the remote end is ready
4317 to return the current thread.
4318
4319 This function is called after handling the '?' or 'vRun' packets,
4320 whose response is a stop reply from which we can also try
4321 extracting the thread. If the target doesn't support the explicit
4322 qC query, we infer the current thread from that stop reply, passed
4323 in in WAIT_STATUS, which may be NULL. */
4324
4325 void
4326 remote_target::add_current_inferior_and_thread (char *wait_status)
4327 {
4328 struct remote_state *rs = get_remote_state ();
4329 bool fake_pid_p = false;
4330
4331 inferior_ptid = null_ptid;
4332
4333 /* Now, if we have thread information, update inferior_ptid. */
4334 ptid_t curr_ptid = get_current_thread (wait_status);
4335
4336 if (curr_ptid != null_ptid)
4337 {
4338 if (!remote_multi_process_p (rs))
4339 fake_pid_p = true;
4340 }
4341 else
4342 {
4343 /* Without this, some commands which require an active target
4344 (such as kill) won't work. This variable serves (at least)
4345 double duty as both the pid of the target process (if it has
4346 such), and as a flag indicating that a target is active. */
4347 curr_ptid = magic_null_ptid;
4348 fake_pid_p = true;
4349 }
4350
4351 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4352
4353 /* Add the main thread and switch to it. Don't try reading
4354 registers yet, since we haven't fetched the target description
4355 yet. */
4356 thread_info *tp = add_thread_silent (this, curr_ptid);
4357 switch_to_thread_no_regs (tp);
4358 }
4359
4360 /* Print info about a thread that was found already stopped on
4361 connection. */
4362
4363 static void
4364 print_one_stopped_thread (struct thread_info *thread)
4365 {
4366 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4367
4368 switch_to_thread (thread);
4369 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4370 set_current_sal_from_frame (get_current_frame ());
4371
4372 thread->suspend.waitstatus_pending_p = 0;
4373
4374 if (ws->kind == TARGET_WAITKIND_STOPPED)
4375 {
4376 enum gdb_signal sig = ws->value.sig;
4377
4378 if (signal_print_state (sig))
4379 gdb::observers::signal_received.notify (sig);
4380 }
4381 gdb::observers::normal_stop.notify (NULL, 1);
4382 }
4383
4384 /* Process all initial stop replies the remote side sent in response
4385 to the ? packet. These indicate threads that were already stopped
4386 on initial connection. We mark these threads as stopped and print
4387 their current frame before giving the user the prompt. */
4388
4389 void
4390 remote_target::process_initial_stop_replies (int from_tty)
4391 {
4392 int pending_stop_replies = stop_reply_queue_length ();
4393 struct thread_info *selected = NULL;
4394 struct thread_info *lowest_stopped = NULL;
4395 struct thread_info *first = NULL;
4396
4397 /* Consume the initial pending events. */
4398 while (pending_stop_replies-- > 0)
4399 {
4400 ptid_t waiton_ptid = minus_one_ptid;
4401 ptid_t event_ptid;
4402 struct target_waitstatus ws;
4403 int ignore_event = 0;
4404
4405 memset (&ws, 0, sizeof (ws));
4406 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4407 if (remote_debug)
4408 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4409
4410 switch (ws.kind)
4411 {
4412 case TARGET_WAITKIND_IGNORE:
4413 case TARGET_WAITKIND_NO_RESUMED:
4414 case TARGET_WAITKIND_SIGNALLED:
4415 case TARGET_WAITKIND_EXITED:
4416 /* We shouldn't see these, but if we do, just ignore. */
4417 if (remote_debug)
4418 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4419 ignore_event = 1;
4420 break;
4421
4422 case TARGET_WAITKIND_EXECD:
4423 xfree (ws.value.execd_pathname);
4424 break;
4425 default:
4426 break;
4427 }
4428
4429 if (ignore_event)
4430 continue;
4431
4432 thread_info *evthread = find_thread_ptid (this, event_ptid);
4433
4434 if (ws.kind == TARGET_WAITKIND_STOPPED)
4435 {
4436 enum gdb_signal sig = ws.value.sig;
4437
4438 /* Stubs traditionally report SIGTRAP as initial signal,
4439 instead of signal 0. Suppress it. */
4440 if (sig == GDB_SIGNAL_TRAP)
4441 sig = GDB_SIGNAL_0;
4442 evthread->suspend.stop_signal = sig;
4443 ws.value.sig = sig;
4444 }
4445
4446 evthread->suspend.waitstatus = ws;
4447
4448 if (ws.kind != TARGET_WAITKIND_STOPPED
4449 || ws.value.sig != GDB_SIGNAL_0)
4450 evthread->suspend.waitstatus_pending_p = 1;
4451
4452 set_executing (this, event_ptid, false);
4453 set_running (this, event_ptid, false);
4454 get_remote_thread_info (evthread)->vcont_resumed = 0;
4455 }
4456
4457 /* "Notice" the new inferiors before anything related to
4458 registers/memory. */
4459 for (inferior *inf : all_non_exited_inferiors (this))
4460 {
4461 inf->needs_setup = 1;
4462
4463 if (non_stop)
4464 {
4465 thread_info *thread = any_live_thread_of_inferior (inf);
4466 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4467 from_tty);
4468 }
4469 }
4470
4471 /* If all-stop on top of non-stop, pause all threads. Note this
4472 records the threads' stop pc, so must be done after "noticing"
4473 the inferiors. */
4474 if (!non_stop)
4475 {
4476 stop_all_threads ();
4477
4478 /* If all threads of an inferior were already stopped, we
4479 haven't setup the inferior yet. */
4480 for (inferior *inf : all_non_exited_inferiors (this))
4481 {
4482 if (inf->needs_setup)
4483 {
4484 thread_info *thread = any_live_thread_of_inferior (inf);
4485 switch_to_thread_no_regs (thread);
4486 setup_inferior (0);
4487 }
4488 }
4489 }
4490
4491 /* Now go over all threads that are stopped, and print their current
4492 frame. If all-stop, then if there's a signalled thread, pick
4493 that as current. */
4494 for (thread_info *thread : all_non_exited_threads (this))
4495 {
4496 if (first == NULL)
4497 first = thread;
4498
4499 if (!non_stop)
4500 thread->set_running (false);
4501 else if (thread->state != THREAD_STOPPED)
4502 continue;
4503
4504 if (selected == NULL
4505 && thread->suspend.waitstatus_pending_p)
4506 selected = thread;
4507
4508 if (lowest_stopped == NULL
4509 || thread->inf->num < lowest_stopped->inf->num
4510 || thread->per_inf_num < lowest_stopped->per_inf_num)
4511 lowest_stopped = thread;
4512
4513 if (non_stop)
4514 print_one_stopped_thread (thread);
4515 }
4516
4517 /* In all-stop, we only print the status of one thread, and leave
4518 others with their status pending. */
4519 if (!non_stop)
4520 {
4521 thread_info *thread = selected;
4522 if (thread == NULL)
4523 thread = lowest_stopped;
4524 if (thread == NULL)
4525 thread = first;
4526
4527 print_one_stopped_thread (thread);
4528 }
4529
4530 /* For "info program". */
4531 thread_info *thread = inferior_thread ();
4532 if (thread->state == THREAD_STOPPED)
4533 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4534 }
4535
4536 /* Start the remote connection and sync state. */
4537
4538 void
4539 remote_target::start_remote (int from_tty, int extended_p)
4540 {
4541 struct remote_state *rs = get_remote_state ();
4542 struct packet_config *noack_config;
4543 char *wait_status = NULL;
4544
4545 /* Signal other parts that we're going through the initial setup,
4546 and so things may not be stable yet. E.g., we don't try to
4547 install tracepoints until we've relocated symbols. Also, a
4548 Ctrl-C before we're connected and synced up can't interrupt the
4549 target. Instead, it offers to drop the (potentially wedged)
4550 connection. */
4551 rs->starting_up = 1;
4552
4553 QUIT;
4554
4555 if (interrupt_on_connect)
4556 send_interrupt_sequence ();
4557
4558 /* Ack any packet which the remote side has already sent. */
4559 remote_serial_write ("+", 1);
4560
4561 /* The first packet we send to the target is the optional "supported
4562 packets" request. If the target can answer this, it will tell us
4563 which later probes to skip. */
4564 remote_query_supported ();
4565
4566 /* If the stub wants to get a QAllow, compose one and send it. */
4567 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4568 set_permissions ();
4569
4570 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4571 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4572 as a reply to known packet. For packet "vFile:setfs:" it is an
4573 invalid reply and GDB would return error in
4574 remote_hostio_set_filesystem, making remote files access impossible.
4575 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4576 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4577 {
4578 const char v_mustreplyempty[] = "vMustReplyEmpty";
4579
4580 putpkt (v_mustreplyempty);
4581 getpkt (&rs->buf, 0);
4582 if (strcmp (rs->buf.data (), "OK") == 0)
4583 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4584 else if (strcmp (rs->buf.data (), "") != 0)
4585 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4586 rs->buf.data ());
4587 }
4588
4589 /* Next, we possibly activate noack mode.
4590
4591 If the QStartNoAckMode packet configuration is set to AUTO,
4592 enable noack mode if the stub reported a wish for it with
4593 qSupported.
4594
4595 If set to TRUE, then enable noack mode even if the stub didn't
4596 report it in qSupported. If the stub doesn't reply OK, the
4597 session ends with an error.
4598
4599 If FALSE, then don't activate noack mode, regardless of what the
4600 stub claimed should be the default with qSupported. */
4601
4602 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4603 if (packet_config_support (noack_config) != PACKET_DISABLE)
4604 {
4605 putpkt ("QStartNoAckMode");
4606 getpkt (&rs->buf, 0);
4607 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4608 rs->noack_mode = 1;
4609 }
4610
4611 if (extended_p)
4612 {
4613 /* Tell the remote that we are using the extended protocol. */
4614 putpkt ("!");
4615 getpkt (&rs->buf, 0);
4616 }
4617
4618 /* Let the target know which signals it is allowed to pass down to
4619 the program. */
4620 update_signals_program_target ();
4621
4622 /* Next, if the target can specify a description, read it. We do
4623 this before anything involving memory or registers. */
4624 target_find_description ();
4625
4626 /* Next, now that we know something about the target, update the
4627 address spaces in the program spaces. */
4628 update_address_spaces ();
4629
4630 /* On OSs where the list of libraries is global to all
4631 processes, we fetch them early. */
4632 if (gdbarch_has_global_solist (target_gdbarch ()))
4633 solib_add (NULL, from_tty, auto_solib_add);
4634
4635 if (target_is_non_stop_p ())
4636 {
4637 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4638 error (_("Non-stop mode requested, but remote "
4639 "does not support non-stop"));
4640
4641 putpkt ("QNonStop:1");
4642 getpkt (&rs->buf, 0);
4643
4644 if (strcmp (rs->buf.data (), "OK") != 0)
4645 error (_("Remote refused setting non-stop mode with: %s"),
4646 rs->buf.data ());
4647
4648 /* Find about threads and processes the stub is already
4649 controlling. We default to adding them in the running state.
4650 The '?' query below will then tell us about which threads are
4651 stopped. */
4652 this->update_thread_list ();
4653 }
4654 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4655 {
4656 /* Don't assume that the stub can operate in all-stop mode.
4657 Request it explicitly. */
4658 putpkt ("QNonStop:0");
4659 getpkt (&rs->buf, 0);
4660
4661 if (strcmp (rs->buf.data (), "OK") != 0)
4662 error (_("Remote refused setting all-stop mode with: %s"),
4663 rs->buf.data ());
4664 }
4665
4666 /* Upload TSVs regardless of whether the target is running or not. The
4667 remote stub, such as GDBserver, may have some predefined or builtin
4668 TSVs, even if the target is not running. */
4669 if (get_trace_status (current_trace_status ()) != -1)
4670 {
4671 struct uploaded_tsv *uploaded_tsvs = NULL;
4672
4673 upload_trace_state_variables (&uploaded_tsvs);
4674 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4675 }
4676
4677 /* Check whether the target is running now. */
4678 putpkt ("?");
4679 getpkt (&rs->buf, 0);
4680
4681 if (!target_is_non_stop_p ())
4682 {
4683 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4684 {
4685 if (!extended_p)
4686 error (_("The target is not running (try extended-remote?)"));
4687
4688 /* We're connected, but not running. Drop out before we
4689 call start_remote. */
4690 rs->starting_up = 0;
4691 return;
4692 }
4693 else
4694 {
4695 /* Save the reply for later. */
4696 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4697 strcpy (wait_status, rs->buf.data ());
4698 }
4699
4700 /* Fetch thread list. */
4701 target_update_thread_list ();
4702
4703 /* Let the stub know that we want it to return the thread. */
4704 set_continue_thread (minus_one_ptid);
4705
4706 if (thread_count (this) == 0)
4707 {
4708 /* Target has no concept of threads at all. GDB treats
4709 non-threaded target as single-threaded; add a main
4710 thread. */
4711 add_current_inferior_and_thread (wait_status);
4712 }
4713 else
4714 {
4715 /* We have thread information; select the thread the target
4716 says should be current. If we're reconnecting to a
4717 multi-threaded program, this will ideally be the thread
4718 that last reported an event before GDB disconnected. */
4719 ptid_t curr_thread = get_current_thread (wait_status);
4720 if (curr_thread == null_ptid)
4721 {
4722 /* Odd... The target was able to list threads, but not
4723 tell us which thread was current (no "thread"
4724 register in T stop reply?). Just pick the first
4725 thread in the thread list then. */
4726
4727 if (remote_debug)
4728 fprintf_unfiltered (gdb_stdlog,
4729 "warning: couldn't determine remote "
4730 "current thread; picking first in list.\n");
4731
4732 for (thread_info *tp : all_non_exited_threads (this,
4733 minus_one_ptid))
4734 {
4735 switch_to_thread (tp);
4736 break;
4737 }
4738 }
4739 else
4740 switch_to_thread (find_thread_ptid (this, curr_thread));
4741 }
4742
4743 /* init_wait_for_inferior should be called before get_offsets in order
4744 to manage `inserted' flag in bp loc in a correct state.
4745 breakpoint_init_inferior, called from init_wait_for_inferior, set
4746 `inserted' flag to 0, while before breakpoint_re_set, called from
4747 start_remote, set `inserted' flag to 1. In the initialization of
4748 inferior, breakpoint_init_inferior should be called first, and then
4749 breakpoint_re_set can be called. If this order is broken, state of
4750 `inserted' flag is wrong, and cause some problems on breakpoint
4751 manipulation. */
4752 init_wait_for_inferior ();
4753
4754 get_offsets (); /* Get text, data & bss offsets. */
4755
4756 /* If we could not find a description using qXfer, and we know
4757 how to do it some other way, try again. This is not
4758 supported for non-stop; it could be, but it is tricky if
4759 there are no stopped threads when we connect. */
4760 if (remote_read_description_p (this)
4761 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4762 {
4763 target_clear_description ();
4764 target_find_description ();
4765 }
4766
4767 /* Use the previously fetched status. */
4768 gdb_assert (wait_status != NULL);
4769 strcpy (rs->buf.data (), wait_status);
4770 rs->cached_wait_status = 1;
4771
4772 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4773 }
4774 else
4775 {
4776 /* Clear WFI global state. Do this before finding about new
4777 threads and inferiors, and setting the current inferior.
4778 Otherwise we would clear the proceed status of the current
4779 inferior when we want its stop_soon state to be preserved
4780 (see notice_new_inferior). */
4781 init_wait_for_inferior ();
4782
4783 /* In non-stop, we will either get an "OK", meaning that there
4784 are no stopped threads at this time; or, a regular stop
4785 reply. In the latter case, there may be more than one thread
4786 stopped --- we pull them all out using the vStopped
4787 mechanism. */
4788 if (strcmp (rs->buf.data (), "OK") != 0)
4789 {
4790 struct notif_client *notif = &notif_client_stop;
4791
4792 /* remote_notif_get_pending_replies acks this one, and gets
4793 the rest out. */
4794 rs->notif_state->pending_event[notif_client_stop.id]
4795 = remote_notif_parse (this, notif, rs->buf.data ());
4796 remote_notif_get_pending_events (notif);
4797 }
4798
4799 if (thread_count (this) == 0)
4800 {
4801 if (!extended_p)
4802 error (_("The target is not running (try extended-remote?)"));
4803
4804 /* We're connected, but not running. Drop out before we
4805 call start_remote. */
4806 rs->starting_up = 0;
4807 return;
4808 }
4809
4810 /* In non-stop mode, any cached wait status will be stored in
4811 the stop reply queue. */
4812 gdb_assert (wait_status == NULL);
4813
4814 /* Report all signals during attach/startup. */
4815 pass_signals ({});
4816
4817 /* If there are already stopped threads, mark them stopped and
4818 report their stops before giving the prompt to the user. */
4819 process_initial_stop_replies (from_tty);
4820
4821 if (target_can_async_p ())
4822 target_async (1);
4823 }
4824
4825 /* If we connected to a live target, do some additional setup. */
4826 if (target_has_execution)
4827 {
4828 if (symfile_objfile) /* No use without a symbol-file. */
4829 remote_check_symbols ();
4830 }
4831
4832 /* Possibly the target has been engaged in a trace run started
4833 previously; find out where things are at. */
4834 if (get_trace_status (current_trace_status ()) != -1)
4835 {
4836 struct uploaded_tp *uploaded_tps = NULL;
4837
4838 if (current_trace_status ()->running)
4839 printf_filtered (_("Trace is already running on the target.\n"));
4840
4841 upload_tracepoints (&uploaded_tps);
4842
4843 merge_uploaded_tracepoints (&uploaded_tps);
4844 }
4845
4846 /* Possibly the target has been engaged in a btrace record started
4847 previously; find out where things are at. */
4848 remote_btrace_maybe_reopen ();
4849
4850 /* The thread and inferior lists are now synchronized with the
4851 target, our symbols have been relocated, and we're merged the
4852 target's tracepoints with ours. We're done with basic start
4853 up. */
4854 rs->starting_up = 0;
4855
4856 /* Maybe breakpoints are global and need to be inserted now. */
4857 if (breakpoints_should_be_inserted_now ())
4858 insert_breakpoints ();
4859 }
4860
4861 const char *
4862 remote_target::connection_string ()
4863 {
4864 remote_state *rs = get_remote_state ();
4865
4866 if (rs->remote_desc->name != NULL)
4867 return rs->remote_desc->name;
4868 else
4869 return NULL;
4870 }
4871
4872 /* Open a connection to a remote debugger.
4873 NAME is the filename used for communication. */
4874
4875 void
4876 remote_target::open (const char *name, int from_tty)
4877 {
4878 open_1 (name, from_tty, 0);
4879 }
4880
4881 /* Open a connection to a remote debugger using the extended
4882 remote gdb protocol. NAME is the filename used for communication. */
4883
4884 void
4885 extended_remote_target::open (const char *name, int from_tty)
4886 {
4887 open_1 (name, from_tty, 1 /*extended_p */);
4888 }
4889
4890 /* Reset all packets back to "unknown support". Called when opening a
4891 new connection to a remote target. */
4892
4893 static void
4894 reset_all_packet_configs_support (void)
4895 {
4896 int i;
4897
4898 for (i = 0; i < PACKET_MAX; i++)
4899 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4900 }
4901
4902 /* Initialize all packet configs. */
4903
4904 static void
4905 init_all_packet_configs (void)
4906 {
4907 int i;
4908
4909 for (i = 0; i < PACKET_MAX; i++)
4910 {
4911 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4912 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4913 }
4914 }
4915
4916 /* Symbol look-up. */
4917
4918 void
4919 remote_target::remote_check_symbols ()
4920 {
4921 char *tmp;
4922 int end;
4923
4924 /* The remote side has no concept of inferiors that aren't running
4925 yet, it only knows about running processes. If we're connected
4926 but our current inferior is not running, we should not invite the
4927 remote target to request symbol lookups related to its
4928 (unrelated) current process. */
4929 if (!target_has_execution)
4930 return;
4931
4932 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4933 return;
4934
4935 /* Make sure the remote is pointing at the right process. Note
4936 there's no way to select "no process". */
4937 set_general_process ();
4938
4939 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4940 because we need both at the same time. */
4941 gdb::char_vector msg (get_remote_packet_size ());
4942 gdb::char_vector reply (get_remote_packet_size ());
4943
4944 /* Invite target to request symbol lookups. */
4945
4946 putpkt ("qSymbol::");
4947 getpkt (&reply, 0);
4948 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4949
4950 while (startswith (reply.data (), "qSymbol:"))
4951 {
4952 struct bound_minimal_symbol sym;
4953
4954 tmp = &reply[8];
4955 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4956 strlen (tmp) / 2);
4957 msg[end] = '\0';
4958 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4959 if (sym.minsym == NULL)
4960 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4961 &reply[8]);
4962 else
4963 {
4964 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4965 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4966
4967 /* If this is a function address, return the start of code
4968 instead of any data function descriptor. */
4969 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4970 sym_addr,
4971 current_top_target ());
4972
4973 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4974 phex_nz (sym_addr, addr_size), &reply[8]);
4975 }
4976
4977 putpkt (msg.data ());
4978 getpkt (&reply, 0);
4979 }
4980 }
4981
4982 static struct serial *
4983 remote_serial_open (const char *name)
4984 {
4985 static int udp_warning = 0;
4986
4987 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4988 of in ser-tcp.c, because it is the remote protocol assuming that the
4989 serial connection is reliable and not the serial connection promising
4990 to be. */
4991 if (!udp_warning && startswith (name, "udp:"))
4992 {
4993 warning (_("The remote protocol may be unreliable over UDP.\n"
4994 "Some events may be lost, rendering further debugging "
4995 "impossible."));
4996 udp_warning = 1;
4997 }
4998
4999 return serial_open (name);
5000 }
5001
5002 /* Inform the target of our permission settings. The permission flags
5003 work without this, but if the target knows the settings, it can do
5004 a couple things. First, it can add its own check, to catch cases
5005 that somehow manage to get by the permissions checks in target
5006 methods. Second, if the target is wired to disallow particular
5007 settings (for instance, a system in the field that is not set up to
5008 be able to stop at a breakpoint), it can object to any unavailable
5009 permissions. */
5010
5011 void
5012 remote_target::set_permissions ()
5013 {
5014 struct remote_state *rs = get_remote_state ();
5015
5016 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5017 "WriteReg:%x;WriteMem:%x;"
5018 "InsertBreak:%x;InsertTrace:%x;"
5019 "InsertFastTrace:%x;Stop:%x",
5020 may_write_registers, may_write_memory,
5021 may_insert_breakpoints, may_insert_tracepoints,
5022 may_insert_fast_tracepoints, may_stop);
5023 putpkt (rs->buf);
5024 getpkt (&rs->buf, 0);
5025
5026 /* If the target didn't like the packet, warn the user. Do not try
5027 to undo the user's settings, that would just be maddening. */
5028 if (strcmp (rs->buf.data (), "OK") != 0)
5029 warning (_("Remote refused setting permissions with: %s"),
5030 rs->buf.data ());
5031 }
5032
5033 /* This type describes each known response to the qSupported
5034 packet. */
5035 struct protocol_feature
5036 {
5037 /* The name of this protocol feature. */
5038 const char *name;
5039
5040 /* The default for this protocol feature. */
5041 enum packet_support default_support;
5042
5043 /* The function to call when this feature is reported, or after
5044 qSupported processing if the feature is not supported.
5045 The first argument points to this structure. The second
5046 argument indicates whether the packet requested support be
5047 enabled, disabled, or probed (or the default, if this function
5048 is being called at the end of processing and this feature was
5049 not reported). The third argument may be NULL; if not NULL, it
5050 is a NUL-terminated string taken from the packet following
5051 this feature's name and an equals sign. */
5052 void (*func) (remote_target *remote, const struct protocol_feature *,
5053 enum packet_support, const char *);
5054
5055 /* The corresponding packet for this feature. Only used if
5056 FUNC is remote_supported_packet. */
5057 int packet;
5058 };
5059
5060 static void
5061 remote_supported_packet (remote_target *remote,
5062 const struct protocol_feature *feature,
5063 enum packet_support support,
5064 const char *argument)
5065 {
5066 if (argument)
5067 {
5068 warning (_("Remote qSupported response supplied an unexpected value for"
5069 " \"%s\"."), feature->name);
5070 return;
5071 }
5072
5073 remote_protocol_packets[feature->packet].support = support;
5074 }
5075
5076 void
5077 remote_target::remote_packet_size (const protocol_feature *feature,
5078 enum packet_support support, const char *value)
5079 {
5080 struct remote_state *rs = get_remote_state ();
5081
5082 int packet_size;
5083 char *value_end;
5084
5085 if (support != PACKET_ENABLE)
5086 return;
5087
5088 if (value == NULL || *value == '\0')
5089 {
5090 warning (_("Remote target reported \"%s\" without a size."),
5091 feature->name);
5092 return;
5093 }
5094
5095 errno = 0;
5096 packet_size = strtol (value, &value_end, 16);
5097 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5098 {
5099 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5100 feature->name, value);
5101 return;
5102 }
5103
5104 /* Record the new maximum packet size. */
5105 rs->explicit_packet_size = packet_size;
5106 }
5107
5108 static void
5109 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5110 enum packet_support support, const char *value)
5111 {
5112 remote->remote_packet_size (feature, support, value);
5113 }
5114
5115 static const struct protocol_feature remote_protocol_features[] = {
5116 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5117 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_auxv },
5119 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_exec_file },
5121 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_features },
5123 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_qXfer_libraries },
5125 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_libraries_svr4 },
5127 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5128 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5129 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_qXfer_memory_map },
5131 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_osdata },
5133 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_threads },
5135 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_traceframe_info },
5137 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QPassSignals },
5139 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_QCatchSyscalls },
5141 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QProgramSignals },
5143 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QSetWorkingDir },
5145 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_QStartupWithShell },
5147 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_QEnvironmentHexEncoded },
5149 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QEnvironmentReset },
5151 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_QEnvironmentUnset },
5153 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_QStartNoAckMode },
5155 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_multiprocess_feature },
5157 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5158 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_qXfer_siginfo_read },
5160 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_siginfo_write },
5162 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_ConditionalTracepoints },
5164 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_ConditionalBreakpoints },
5166 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_BreakpointCommands },
5168 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_FastTracepoints },
5170 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_StaticTracepoints },
5172 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_InstallInTrace},
5174 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_DisconnectedTracing_feature },
5176 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_bc },
5178 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_bs },
5180 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_TracepointSource },
5182 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_QAllow },
5184 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_EnableDisableTracepoints_feature },
5186 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_qXfer_fdpic },
5188 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_qXfer_uib },
5190 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_QDisableRandomization },
5192 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5193 { "QTBuffer:size", PACKET_DISABLE,
5194 remote_supported_packet, PACKET_QTBuffer_size},
5195 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5196 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5197 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5198 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5199 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_qXfer_btrace },
5201 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_qXfer_btrace_conf },
5203 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_Qbtrace_conf_bts_size },
5205 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5206 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5207 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5208 PACKET_fork_event_feature },
5209 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5210 PACKET_vfork_event_feature },
5211 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5212 PACKET_exec_event_feature },
5213 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5214 PACKET_Qbtrace_conf_pt_size },
5215 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5216 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5217 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5218 };
5219
5220 static char *remote_support_xml;
5221
5222 /* Register string appended to "xmlRegisters=" in qSupported query. */
5223
5224 void
5225 register_remote_support_xml (const char *xml)
5226 {
5227 #if defined(HAVE_LIBEXPAT)
5228 if (remote_support_xml == NULL)
5229 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5230 else
5231 {
5232 char *copy = xstrdup (remote_support_xml + 13);
5233 char *saveptr;
5234 char *p = strtok_r (copy, ",", &saveptr);
5235
5236 do
5237 {
5238 if (strcmp (p, xml) == 0)
5239 {
5240 /* already there */
5241 xfree (copy);
5242 return;
5243 }
5244 }
5245 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5246 xfree (copy);
5247
5248 remote_support_xml = reconcat (remote_support_xml,
5249 remote_support_xml, ",", xml,
5250 (char *) NULL);
5251 }
5252 #endif
5253 }
5254
5255 static void
5256 remote_query_supported_append (std::string *msg, const char *append)
5257 {
5258 if (!msg->empty ())
5259 msg->append (";");
5260 msg->append (append);
5261 }
5262
5263 void
5264 remote_target::remote_query_supported ()
5265 {
5266 struct remote_state *rs = get_remote_state ();
5267 char *next;
5268 int i;
5269 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5270
5271 /* The packet support flags are handled differently for this packet
5272 than for most others. We treat an error, a disabled packet, and
5273 an empty response identically: any features which must be reported
5274 to be used will be automatically disabled. An empty buffer
5275 accomplishes this, since that is also the representation for a list
5276 containing no features. */
5277
5278 rs->buf[0] = 0;
5279 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5280 {
5281 std::string q;
5282
5283 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5284 remote_query_supported_append (&q, "multiprocess+");
5285
5286 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5287 remote_query_supported_append (&q, "swbreak+");
5288 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5289 remote_query_supported_append (&q, "hwbreak+");
5290
5291 remote_query_supported_append (&q, "qRelocInsn+");
5292
5293 if (packet_set_cmd_state (PACKET_fork_event_feature)
5294 != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "fork-events+");
5296 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5297 != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "vfork-events+");
5299 if (packet_set_cmd_state (PACKET_exec_event_feature)
5300 != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "exec-events+");
5302
5303 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "vContSupported+");
5305
5306 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "QThreadEvents+");
5308
5309 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5310 remote_query_supported_append (&q, "no-resumed+");
5311
5312 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5313 the qSupported:xmlRegisters=i386 handling. */
5314 if (remote_support_xml != NULL
5315 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5316 remote_query_supported_append (&q, remote_support_xml);
5317
5318 q = "qSupported:" + q;
5319 putpkt (q.c_str ());
5320
5321 getpkt (&rs->buf, 0);
5322
5323 /* If an error occured, warn, but do not return - just reset the
5324 buffer to empty and go on to disable features. */
5325 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5326 == PACKET_ERROR)
5327 {
5328 warning (_("Remote failure reply: %s"), rs->buf.data ());
5329 rs->buf[0] = 0;
5330 }
5331 }
5332
5333 memset (seen, 0, sizeof (seen));
5334
5335 next = rs->buf.data ();
5336 while (*next)
5337 {
5338 enum packet_support is_supported;
5339 char *p, *end, *name_end, *value;
5340
5341 /* First separate out this item from the rest of the packet. If
5342 there's another item after this, we overwrite the separator
5343 (terminated strings are much easier to work with). */
5344 p = next;
5345 end = strchr (p, ';');
5346 if (end == NULL)
5347 {
5348 end = p + strlen (p);
5349 next = end;
5350 }
5351 else
5352 {
5353 *end = '\0';
5354 next = end + 1;
5355
5356 if (end == p)
5357 {
5358 warning (_("empty item in \"qSupported\" response"));
5359 continue;
5360 }
5361 }
5362
5363 name_end = strchr (p, '=');
5364 if (name_end)
5365 {
5366 /* This is a name=value entry. */
5367 is_supported = PACKET_ENABLE;
5368 value = name_end + 1;
5369 *name_end = '\0';
5370 }
5371 else
5372 {
5373 value = NULL;
5374 switch (end[-1])
5375 {
5376 case '+':
5377 is_supported = PACKET_ENABLE;
5378 break;
5379
5380 case '-':
5381 is_supported = PACKET_DISABLE;
5382 break;
5383
5384 case '?':
5385 is_supported = PACKET_SUPPORT_UNKNOWN;
5386 break;
5387
5388 default:
5389 warning (_("unrecognized item \"%s\" "
5390 "in \"qSupported\" response"), p);
5391 continue;
5392 }
5393 end[-1] = '\0';
5394 }
5395
5396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5397 if (strcmp (remote_protocol_features[i].name, p) == 0)
5398 {
5399 const struct protocol_feature *feature;
5400
5401 seen[i] = 1;
5402 feature = &remote_protocol_features[i];
5403 feature->func (this, feature, is_supported, value);
5404 break;
5405 }
5406 }
5407
5408 /* If we increased the packet size, make sure to increase the global
5409 buffer size also. We delay this until after parsing the entire
5410 qSupported packet, because this is the same buffer we were
5411 parsing. */
5412 if (rs->buf.size () < rs->explicit_packet_size)
5413 rs->buf.resize (rs->explicit_packet_size);
5414
5415 /* Handle the defaults for unmentioned features. */
5416 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5417 if (!seen[i])
5418 {
5419 const struct protocol_feature *feature;
5420
5421 feature = &remote_protocol_features[i];
5422 feature->func (this, feature, feature->default_support, NULL);
5423 }
5424 }
5425
5426 /* Serial QUIT handler for the remote serial descriptor.
5427
5428 Defers handling a Ctrl-C until we're done with the current
5429 command/response packet sequence, unless:
5430
5431 - We're setting up the connection. Don't send a remote interrupt
5432 request, as we're not fully synced yet. Quit immediately
5433 instead.
5434
5435 - The target has been resumed in the foreground
5436 (target_terminal::is_ours is false) with a synchronous resume
5437 packet, and we're blocked waiting for the stop reply, thus a
5438 Ctrl-C should be immediately sent to the target.
5439
5440 - We get a second Ctrl-C while still within the same serial read or
5441 write. In that case the serial is seemingly wedged --- offer to
5442 quit/disconnect.
5443
5444 - We see a second Ctrl-C without target response, after having
5445 previously interrupted the target. In that case the target/stub
5446 is probably wedged --- offer to quit/disconnect.
5447 */
5448
5449 void
5450 remote_target::remote_serial_quit_handler ()
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (check_quit_flag ())
5455 {
5456 /* If we're starting up, we're not fully synced yet. Quit
5457 immediately. */
5458 if (rs->starting_up)
5459 quit ();
5460 else if (rs->got_ctrlc_during_io)
5461 {
5462 if (query (_("The target is not responding to GDB commands.\n"
5463 "Stop debugging it? ")))
5464 remote_unpush_and_throw (this);
5465 }
5466 /* If ^C has already been sent once, offer to disconnect. */
5467 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5468 interrupt_query ();
5469 /* All-stop protocol, and blocked waiting for stop reply. Send
5470 an interrupt request. */
5471 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5472 target_interrupt ();
5473 else
5474 rs->got_ctrlc_during_io = 1;
5475 }
5476 }
5477
5478 /* The remote_target that is current while the quit handler is
5479 overridden with remote_serial_quit_handler. */
5480 static remote_target *curr_quit_handler_target;
5481
5482 static void
5483 remote_serial_quit_handler ()
5484 {
5485 curr_quit_handler_target->remote_serial_quit_handler ();
5486 }
5487
5488 /* Remove the remote target from the target stack of each inferior
5489 that is using it. Upper targets depend on it so remove them
5490 first. */
5491
5492 static void
5493 remote_unpush_target (remote_target *target)
5494 {
5495 /* We have to unpush the target from all inferiors, even those that
5496 aren't running. */
5497 scoped_restore_current_inferior restore_current_inferior;
5498
5499 for (inferior *inf : all_inferiors (target))
5500 {
5501 switch_to_inferior_no_thread (inf);
5502 pop_all_targets_at_and_above (process_stratum);
5503 generic_mourn_inferior ();
5504 }
5505 }
5506
5507 static void
5508 remote_unpush_and_throw (remote_target *target)
5509 {
5510 remote_unpush_target (target);
5511 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5512 }
5513
5514 void
5515 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5516 {
5517 remote_target *curr_remote = get_current_remote_target ();
5518
5519 if (name == 0)
5520 error (_("To open a remote debug connection, you need to specify what\n"
5521 "serial device is attached to the remote system\n"
5522 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5523
5524 /* If we're connected to a running target, target_preopen will kill it.
5525 Ask this question first, before target_preopen has a chance to kill
5526 anything. */
5527 if (curr_remote != NULL && !target_has_execution)
5528 {
5529 if (from_tty
5530 && !query (_("Already connected to a remote target. Disconnect? ")))
5531 error (_("Still connected."));
5532 }
5533
5534 /* Here the possibly existing remote target gets unpushed. */
5535 target_preopen (from_tty);
5536
5537 remote_fileio_reset ();
5538 reopen_exec_file ();
5539 reread_symbols ();
5540
5541 remote_target *remote
5542 = (extended_p ? new extended_remote_target () : new remote_target ());
5543 target_ops_up target_holder (remote);
5544
5545 remote_state *rs = remote->get_remote_state ();
5546
5547 /* See FIXME above. */
5548 if (!target_async_permitted)
5549 rs->wait_forever_enabled_p = 1;
5550
5551 rs->remote_desc = remote_serial_open (name);
5552 if (!rs->remote_desc)
5553 perror_with_name (name);
5554
5555 if (baud_rate != -1)
5556 {
5557 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5558 {
5559 /* The requested speed could not be set. Error out to
5560 top level after closing remote_desc. Take care to
5561 set remote_desc to NULL to avoid closing remote_desc
5562 more than once. */
5563 serial_close (rs->remote_desc);
5564 rs->remote_desc = NULL;
5565 perror_with_name (name);
5566 }
5567 }
5568
5569 serial_setparity (rs->remote_desc, serial_parity);
5570 serial_raw (rs->remote_desc);
5571
5572 /* If there is something sitting in the buffer we might take it as a
5573 response to a command, which would be bad. */
5574 serial_flush_input (rs->remote_desc);
5575
5576 if (from_tty)
5577 {
5578 puts_filtered ("Remote debugging using ");
5579 puts_filtered (name);
5580 puts_filtered ("\n");
5581 }
5582
5583 /* Switch to using the remote target now. */
5584 push_target (std::move (target_holder));
5585
5586 /* Register extra event sources in the event loop. */
5587 rs->remote_async_inferior_event_token
5588 = create_async_event_handler (remote_async_inferior_event_handler,
5589 remote);
5590 rs->notif_state = remote_notif_state_allocate (remote);
5591
5592 /* Reset the target state; these things will be queried either by
5593 remote_query_supported or as they are needed. */
5594 reset_all_packet_configs_support ();
5595 rs->cached_wait_status = 0;
5596 rs->explicit_packet_size = 0;
5597 rs->noack_mode = 0;
5598 rs->extended = extended_p;
5599 rs->waiting_for_stop_reply = 0;
5600 rs->ctrlc_pending_p = 0;
5601 rs->got_ctrlc_during_io = 0;
5602
5603 rs->general_thread = not_sent_ptid;
5604 rs->continue_thread = not_sent_ptid;
5605 rs->remote_traceframe_number = -1;
5606
5607 rs->last_resume_exec_dir = EXEC_FORWARD;
5608
5609 /* Probe for ability to use "ThreadInfo" query, as required. */
5610 rs->use_threadinfo_query = 1;
5611 rs->use_threadextra_query = 1;
5612
5613 rs->readahead_cache.invalidate ();
5614
5615 if (target_async_permitted)
5616 {
5617 /* FIXME: cagney/1999-09-23: During the initial connection it is
5618 assumed that the target is already ready and able to respond to
5619 requests. Unfortunately remote_start_remote() eventually calls
5620 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5621 around this. Eventually a mechanism that allows
5622 wait_for_inferior() to expect/get timeouts will be
5623 implemented. */
5624 rs->wait_forever_enabled_p = 0;
5625 }
5626
5627 /* First delete any symbols previously loaded from shared libraries. */
5628 no_shared_libraries (NULL, 0);
5629
5630 /* Start the remote connection. If error() or QUIT, discard this
5631 target (we'd otherwise be in an inconsistent state) and then
5632 propogate the error on up the exception chain. This ensures that
5633 the caller doesn't stumble along blindly assuming that the
5634 function succeeded. The CLI doesn't have this problem but other
5635 UI's, such as MI do.
5636
5637 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5638 this function should return an error indication letting the
5639 caller restore the previous state. Unfortunately the command
5640 ``target remote'' is directly wired to this function making that
5641 impossible. On a positive note, the CLI side of this problem has
5642 been fixed - the function set_cmd_context() makes it possible for
5643 all the ``target ....'' commands to share a common callback
5644 function. See cli-dump.c. */
5645 {
5646
5647 try
5648 {
5649 remote->start_remote (from_tty, extended_p);
5650 }
5651 catch (const gdb_exception &ex)
5652 {
5653 /* Pop the partially set up target - unless something else did
5654 already before throwing the exception. */
5655 if (ex.error != TARGET_CLOSE_ERROR)
5656 remote_unpush_target (remote);
5657 throw;
5658 }
5659 }
5660
5661 remote_btrace_reset (rs);
5662
5663 if (target_async_permitted)
5664 rs->wait_forever_enabled_p = 1;
5665 }
5666
5667 /* Detach the specified process. */
5668
5669 void
5670 remote_target::remote_detach_pid (int pid)
5671 {
5672 struct remote_state *rs = get_remote_state ();
5673
5674 /* This should not be necessary, but the handling for D;PID in
5675 GDBserver versions prior to 8.2 incorrectly assumes that the
5676 selected process points to the same process we're detaching,
5677 leading to misbehavior (and possibly GDBserver crashing) when it
5678 does not. Since it's easy and cheap, work around it by forcing
5679 GDBserver to select GDB's current process. */
5680 set_general_process ();
5681
5682 if (remote_multi_process_p (rs))
5683 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5684 else
5685 strcpy (rs->buf.data (), "D");
5686
5687 putpkt (rs->buf);
5688 getpkt (&rs->buf, 0);
5689
5690 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5691 ;
5692 else if (rs->buf[0] == '\0')
5693 error (_("Remote doesn't know how to detach"));
5694 else
5695 error (_("Can't detach process."));
5696 }
5697
5698 /* This detaches a program to which we previously attached, using
5699 inferior_ptid to identify the process. After this is done, GDB
5700 can be used to debug some other program. We better not have left
5701 any breakpoints in the target program or it'll die when it hits
5702 one. */
5703
5704 void
5705 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5706 {
5707 int pid = inferior_ptid.pid ();
5708 struct remote_state *rs = get_remote_state ();
5709 int is_fork_parent;
5710
5711 if (!target_has_execution)
5712 error (_("No process to detach from."));
5713
5714 target_announce_detach (from_tty);
5715
5716 /* Tell the remote target to detach. */
5717 remote_detach_pid (pid);
5718
5719 /* Exit only if this is the only active inferior. */
5720 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5721 puts_filtered (_("Ending remote debugging.\n"));
5722
5723 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5724
5725 /* Check to see if we are detaching a fork parent. Note that if we
5726 are detaching a fork child, tp == NULL. */
5727 is_fork_parent = (tp != NULL
5728 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5729
5730 /* If doing detach-on-fork, we don't mourn, because that will delete
5731 breakpoints that should be available for the followed inferior. */
5732 if (!is_fork_parent)
5733 {
5734 /* Save the pid as a string before mourning, since that will
5735 unpush the remote target, and we need the string after. */
5736 std::string infpid = target_pid_to_str (ptid_t (pid));
5737
5738 target_mourn_inferior (inferior_ptid);
5739 if (print_inferior_events)
5740 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5741 inf->num, infpid.c_str ());
5742 }
5743 else
5744 {
5745 inferior_ptid = null_ptid;
5746 detach_inferior (current_inferior ());
5747 }
5748 }
5749
5750 void
5751 remote_target::detach (inferior *inf, int from_tty)
5752 {
5753 remote_detach_1 (inf, from_tty);
5754 }
5755
5756 void
5757 extended_remote_target::detach (inferior *inf, int from_tty)
5758 {
5759 remote_detach_1 (inf, from_tty);
5760 }
5761
5762 /* Target follow-fork function for remote targets. On entry, and
5763 at return, the current inferior is the fork parent.
5764
5765 Note that although this is currently only used for extended-remote,
5766 it is named remote_follow_fork in anticipation of using it for the
5767 remote target as well. */
5768
5769 bool
5770 remote_target::follow_fork (bool follow_child, bool detach_fork)
5771 {
5772 struct remote_state *rs = get_remote_state ();
5773 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5774
5775 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5776 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5777 {
5778 /* When following the parent and detaching the child, we detach
5779 the child here. For the case of following the child and
5780 detaching the parent, the detach is done in the target-
5781 independent follow fork code in infrun.c. We can't use
5782 target_detach when detaching an unfollowed child because
5783 the client side doesn't know anything about the child. */
5784 if (detach_fork && !follow_child)
5785 {
5786 /* Detach the fork child. */
5787 ptid_t child_ptid;
5788 pid_t child_pid;
5789
5790 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5791 child_pid = child_ptid.pid ();
5792
5793 remote_detach_pid (child_pid);
5794 }
5795 }
5796
5797 return false;
5798 }
5799
5800 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5801 in the program space of the new inferior. On entry and at return the
5802 current inferior is the exec'ing inferior. INF is the new exec'd
5803 inferior, which may be the same as the exec'ing inferior unless
5804 follow-exec-mode is "new". */
5805
5806 void
5807 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5808 {
5809 /* We know that this is a target file name, so if it has the "target:"
5810 prefix we strip it off before saving it in the program space. */
5811 if (is_target_filename (execd_pathname))
5812 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5813
5814 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5815 }
5816
5817 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5818
5819 void
5820 remote_target::disconnect (const char *args, int from_tty)
5821 {
5822 if (args)
5823 error (_("Argument given to \"disconnect\" when remotely debugging."));
5824
5825 /* Make sure we unpush even the extended remote targets. Calling
5826 target_mourn_inferior won't unpush, and
5827 remote_target::mourn_inferior won't unpush if there is more than
5828 one inferior left. */
5829 remote_unpush_target (this);
5830
5831 if (from_tty)
5832 puts_filtered ("Ending remote debugging.\n");
5833 }
5834
5835 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5836 be chatty about it. */
5837
5838 void
5839 extended_remote_target::attach (const char *args, int from_tty)
5840 {
5841 struct remote_state *rs = get_remote_state ();
5842 int pid;
5843 char *wait_status = NULL;
5844
5845 pid = parse_pid_to_attach (args);
5846
5847 /* Remote PID can be freely equal to getpid, do not check it here the same
5848 way as in other targets. */
5849
5850 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5851 error (_("This target does not support attaching to a process"));
5852
5853 if (from_tty)
5854 {
5855 const char *exec_file = get_exec_file (0);
5856
5857 if (exec_file)
5858 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5859 target_pid_to_str (ptid_t (pid)).c_str ());
5860 else
5861 printf_unfiltered (_("Attaching to %s\n"),
5862 target_pid_to_str (ptid_t (pid)).c_str ());
5863 }
5864
5865 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5866 putpkt (rs->buf);
5867 getpkt (&rs->buf, 0);
5868
5869 switch (packet_ok (rs->buf,
5870 &remote_protocol_packets[PACKET_vAttach]))
5871 {
5872 case PACKET_OK:
5873 if (!target_is_non_stop_p ())
5874 {
5875 /* Save the reply for later. */
5876 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5877 strcpy (wait_status, rs->buf.data ());
5878 }
5879 else if (strcmp (rs->buf.data (), "OK") != 0)
5880 error (_("Attaching to %s failed with: %s"),
5881 target_pid_to_str (ptid_t (pid)).c_str (),
5882 rs->buf.data ());
5883 break;
5884 case PACKET_UNKNOWN:
5885 error (_("This target does not support attaching to a process"));
5886 default:
5887 error (_("Attaching to %s failed"),
5888 target_pid_to_str (ptid_t (pid)).c_str ());
5889 }
5890
5891 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5892
5893 inferior_ptid = ptid_t (pid);
5894
5895 if (target_is_non_stop_p ())
5896 {
5897 struct thread_info *thread;
5898
5899 /* Get list of threads. */
5900 update_thread_list ();
5901
5902 thread = first_thread_of_inferior (current_inferior ());
5903 if (thread)
5904 inferior_ptid = thread->ptid;
5905 else
5906 inferior_ptid = ptid_t (pid);
5907
5908 /* Invalidate our notion of the remote current thread. */
5909 record_currthread (rs, minus_one_ptid);
5910 }
5911 else
5912 {
5913 /* Now, if we have thread information, update inferior_ptid. */
5914 inferior_ptid = remote_current_thread (inferior_ptid);
5915
5916 /* Add the main thread to the thread list. */
5917 thread_info *thr = add_thread_silent (this, inferior_ptid);
5918 /* Don't consider the thread stopped until we've processed the
5919 saved stop reply. */
5920 set_executing (this, thr->ptid, true);
5921 }
5922
5923 /* Next, if the target can specify a description, read it. We do
5924 this before anything involving memory or registers. */
5925 target_find_description ();
5926
5927 if (!target_is_non_stop_p ())
5928 {
5929 /* Use the previously fetched status. */
5930 gdb_assert (wait_status != NULL);
5931
5932 if (target_can_async_p ())
5933 {
5934 struct notif_event *reply
5935 = remote_notif_parse (this, &notif_client_stop, wait_status);
5936
5937 push_stop_reply ((struct stop_reply *) reply);
5938
5939 target_async (1);
5940 }
5941 else
5942 {
5943 gdb_assert (wait_status != NULL);
5944 strcpy (rs->buf.data (), wait_status);
5945 rs->cached_wait_status = 1;
5946 }
5947 }
5948 else
5949 gdb_assert (wait_status == NULL);
5950 }
5951
5952 /* Implementation of the to_post_attach method. */
5953
5954 void
5955 extended_remote_target::post_attach (int pid)
5956 {
5957 /* Get text, data & bss offsets. */
5958 get_offsets ();
5959
5960 /* In certain cases GDB might not have had the chance to start
5961 symbol lookup up until now. This could happen if the debugged
5962 binary is not using shared libraries, the vsyscall page is not
5963 present (on Linux) and the binary itself hadn't changed since the
5964 debugging process was started. */
5965 if (symfile_objfile != NULL)
5966 remote_check_symbols();
5967 }
5968
5969 \f
5970 /* Check for the availability of vCont. This function should also check
5971 the response. */
5972
5973 void
5974 remote_target::remote_vcont_probe ()
5975 {
5976 remote_state *rs = get_remote_state ();
5977 char *buf;
5978
5979 strcpy (rs->buf.data (), "vCont?");
5980 putpkt (rs->buf);
5981 getpkt (&rs->buf, 0);
5982 buf = rs->buf.data ();
5983
5984 /* Make sure that the features we assume are supported. */
5985 if (startswith (buf, "vCont"))
5986 {
5987 char *p = &buf[5];
5988 int support_c, support_C;
5989
5990 rs->supports_vCont.s = 0;
5991 rs->supports_vCont.S = 0;
5992 support_c = 0;
5993 support_C = 0;
5994 rs->supports_vCont.t = 0;
5995 rs->supports_vCont.r = 0;
5996 while (p && *p == ';')
5997 {
5998 p++;
5999 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6000 rs->supports_vCont.s = 1;
6001 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6002 rs->supports_vCont.S = 1;
6003 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6004 support_c = 1;
6005 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6006 support_C = 1;
6007 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6008 rs->supports_vCont.t = 1;
6009 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6010 rs->supports_vCont.r = 1;
6011
6012 p = strchr (p, ';');
6013 }
6014
6015 /* If c, and C are not all supported, we can't use vCont. Clearing
6016 BUF will make packet_ok disable the packet. */
6017 if (!support_c || !support_C)
6018 buf[0] = 0;
6019 }
6020
6021 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6022 rs->supports_vCont_probed = true;
6023 }
6024
6025 /* Helper function for building "vCont" resumptions. Write a
6026 resumption to P. ENDP points to one-passed-the-end of the buffer
6027 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6028 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6029 resumed thread should be single-stepped and/or signalled. If PTID
6030 equals minus_one_ptid, then all threads are resumed; if PTID
6031 represents a process, then all threads of the process are resumed;
6032 the thread to be stepped and/or signalled is given in the global
6033 INFERIOR_PTID. */
6034
6035 char *
6036 remote_target::append_resumption (char *p, char *endp,
6037 ptid_t ptid, int step, gdb_signal siggnal)
6038 {
6039 struct remote_state *rs = get_remote_state ();
6040
6041 if (step && siggnal != GDB_SIGNAL_0)
6042 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6043 else if (step
6044 /* GDB is willing to range step. */
6045 && use_range_stepping
6046 /* Target supports range stepping. */
6047 && rs->supports_vCont.r
6048 /* We don't currently support range stepping multiple
6049 threads with a wildcard (though the protocol allows it,
6050 so stubs shouldn't make an active effort to forbid
6051 it). */
6052 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6053 {
6054 struct thread_info *tp;
6055
6056 if (ptid == minus_one_ptid)
6057 {
6058 /* If we don't know about the target thread's tid, then
6059 we're resuming magic_null_ptid (see caller). */
6060 tp = find_thread_ptid (this, magic_null_ptid);
6061 }
6062 else
6063 tp = find_thread_ptid (this, ptid);
6064 gdb_assert (tp != NULL);
6065
6066 if (tp->control.may_range_step)
6067 {
6068 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6069
6070 p += xsnprintf (p, endp - p, ";r%s,%s",
6071 phex_nz (tp->control.step_range_start,
6072 addr_size),
6073 phex_nz (tp->control.step_range_end,
6074 addr_size));
6075 }
6076 else
6077 p += xsnprintf (p, endp - p, ";s");
6078 }
6079 else if (step)
6080 p += xsnprintf (p, endp - p, ";s");
6081 else if (siggnal != GDB_SIGNAL_0)
6082 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6083 else
6084 p += xsnprintf (p, endp - p, ";c");
6085
6086 if (remote_multi_process_p (rs) && ptid.is_pid ())
6087 {
6088 ptid_t nptid;
6089
6090 /* All (-1) threads of process. */
6091 nptid = ptid_t (ptid.pid (), -1, 0);
6092
6093 p += xsnprintf (p, endp - p, ":");
6094 p = write_ptid (p, endp, nptid);
6095 }
6096 else if (ptid != minus_one_ptid)
6097 {
6098 p += xsnprintf (p, endp - p, ":");
6099 p = write_ptid (p, endp, ptid);
6100 }
6101
6102 return p;
6103 }
6104
6105 /* Clear the thread's private info on resume. */
6106
6107 static void
6108 resume_clear_thread_private_info (struct thread_info *thread)
6109 {
6110 if (thread->priv != NULL)
6111 {
6112 remote_thread_info *priv = get_remote_thread_info (thread);
6113
6114 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6115 priv->watch_data_address = 0;
6116 }
6117 }
6118
6119 /* Append a vCont continue-with-signal action for threads that have a
6120 non-zero stop signal. */
6121
6122 char *
6123 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6124 ptid_t ptid)
6125 {
6126 for (thread_info *thread : all_non_exited_threads (this, ptid))
6127 if (inferior_ptid != thread->ptid
6128 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6129 {
6130 p = append_resumption (p, endp, thread->ptid,
6131 0, thread->suspend.stop_signal);
6132 thread->suspend.stop_signal = GDB_SIGNAL_0;
6133 resume_clear_thread_private_info (thread);
6134 }
6135
6136 return p;
6137 }
6138
6139 /* Set the target running, using the packets that use Hc
6140 (c/s/C/S). */
6141
6142 void
6143 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6144 gdb_signal siggnal)
6145 {
6146 struct remote_state *rs = get_remote_state ();
6147 char *buf;
6148
6149 rs->last_sent_signal = siggnal;
6150 rs->last_sent_step = step;
6151
6152 /* The c/s/C/S resume packets use Hc, so set the continue
6153 thread. */
6154 if (ptid == minus_one_ptid)
6155 set_continue_thread (any_thread_ptid);
6156 else
6157 set_continue_thread (ptid);
6158
6159 for (thread_info *thread : all_non_exited_threads (this))
6160 resume_clear_thread_private_info (thread);
6161
6162 buf = rs->buf.data ();
6163 if (::execution_direction == EXEC_REVERSE)
6164 {
6165 /* We don't pass signals to the target in reverse exec mode. */
6166 if (info_verbose && siggnal != GDB_SIGNAL_0)
6167 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6168 siggnal);
6169
6170 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6171 error (_("Remote reverse-step not supported."));
6172 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6173 error (_("Remote reverse-continue not supported."));
6174
6175 strcpy (buf, step ? "bs" : "bc");
6176 }
6177 else if (siggnal != GDB_SIGNAL_0)
6178 {
6179 buf[0] = step ? 'S' : 'C';
6180 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6181 buf[2] = tohex (((int) siggnal) & 0xf);
6182 buf[3] = '\0';
6183 }
6184 else
6185 strcpy (buf, step ? "s" : "c");
6186
6187 putpkt (buf);
6188 }
6189
6190 /* Resume the remote inferior by using a "vCont" packet. The thread
6191 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6192 resumed thread should be single-stepped and/or signalled. If PTID
6193 equals minus_one_ptid, then all threads are resumed; the thread to
6194 be stepped and/or signalled is given in the global INFERIOR_PTID.
6195 This function returns non-zero iff it resumes the inferior.
6196
6197 This function issues a strict subset of all possible vCont commands
6198 at the moment. */
6199
6200 int
6201 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6202 enum gdb_signal siggnal)
6203 {
6204 struct remote_state *rs = get_remote_state ();
6205 char *p;
6206 char *endp;
6207
6208 /* No reverse execution actions defined for vCont. */
6209 if (::execution_direction == EXEC_REVERSE)
6210 return 0;
6211
6212 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6213 remote_vcont_probe ();
6214
6215 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6216 return 0;
6217
6218 p = rs->buf.data ();
6219 endp = p + get_remote_packet_size ();
6220
6221 /* If we could generate a wider range of packets, we'd have to worry
6222 about overflowing BUF. Should there be a generic
6223 "multi-part-packet" packet? */
6224
6225 p += xsnprintf (p, endp - p, "vCont");
6226
6227 if (ptid == magic_null_ptid)
6228 {
6229 /* MAGIC_NULL_PTID means that we don't have any active threads,
6230 so we don't have any TID numbers the inferior will
6231 understand. Make sure to only send forms that do not specify
6232 a TID. */
6233 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6234 }
6235 else if (ptid == minus_one_ptid || ptid.is_pid ())
6236 {
6237 /* Resume all threads (of all processes, or of a single
6238 process), with preference for INFERIOR_PTID. This assumes
6239 inferior_ptid belongs to the set of all threads we are about
6240 to resume. */
6241 if (step || siggnal != GDB_SIGNAL_0)
6242 {
6243 /* Step inferior_ptid, with or without signal. */
6244 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6245 }
6246
6247 /* Also pass down any pending signaled resumption for other
6248 threads not the current. */
6249 p = append_pending_thread_resumptions (p, endp, ptid);
6250
6251 /* And continue others without a signal. */
6252 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6253 }
6254 else
6255 {
6256 /* Scheduler locking; resume only PTID. */
6257 append_resumption (p, endp, ptid, step, siggnal);
6258 }
6259
6260 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6261 putpkt (rs->buf);
6262
6263 if (target_is_non_stop_p ())
6264 {
6265 /* In non-stop, the stub replies to vCont with "OK". The stop
6266 reply will be reported asynchronously by means of a `%Stop'
6267 notification. */
6268 getpkt (&rs->buf, 0);
6269 if (strcmp (rs->buf.data (), "OK") != 0)
6270 error (_("Unexpected vCont reply in non-stop mode: %s"),
6271 rs->buf.data ());
6272 }
6273
6274 return 1;
6275 }
6276
6277 /* Tell the remote machine to resume. */
6278
6279 void
6280 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6281 {
6282 struct remote_state *rs = get_remote_state ();
6283
6284 /* When connected in non-stop mode, the core resumes threads
6285 individually. Resuming remote threads directly in target_resume
6286 would thus result in sending one packet per thread. Instead, to
6287 minimize roundtrip latency, here we just store the resume
6288 request; the actual remote resumption will be done in
6289 target_commit_resume / remote_commit_resume, where we'll be able
6290 to do vCont action coalescing. */
6291 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6292 {
6293 remote_thread_info *remote_thr;
6294
6295 if (minus_one_ptid == ptid || ptid.is_pid ())
6296 remote_thr = get_remote_thread_info (this, inferior_ptid);
6297 else
6298 remote_thr = get_remote_thread_info (this, ptid);
6299
6300 remote_thr->last_resume_step = step;
6301 remote_thr->last_resume_sig = siggnal;
6302 return;
6303 }
6304
6305 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6306 (explained in remote-notif.c:handle_notification) so
6307 remote_notif_process is not called. We need find a place where
6308 it is safe to start a 'vNotif' sequence. It is good to do it
6309 before resuming inferior, because inferior was stopped and no RSP
6310 traffic at that moment. */
6311 if (!target_is_non_stop_p ())
6312 remote_notif_process (rs->notif_state, &notif_client_stop);
6313
6314 rs->last_resume_exec_dir = ::execution_direction;
6315
6316 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6317 if (!remote_resume_with_vcont (ptid, step, siggnal))
6318 remote_resume_with_hc (ptid, step, siggnal);
6319
6320 /* We are about to start executing the inferior, let's register it
6321 with the event loop. NOTE: this is the one place where all the
6322 execution commands end up. We could alternatively do this in each
6323 of the execution commands in infcmd.c. */
6324 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6325 into infcmd.c in order to allow inferior function calls to work
6326 NOT asynchronously. */
6327 if (target_can_async_p ())
6328 target_async (1);
6329
6330 /* We've just told the target to resume. The remote server will
6331 wait for the inferior to stop, and then send a stop reply. In
6332 the mean time, we can't start another command/query ourselves
6333 because the stub wouldn't be ready to process it. This applies
6334 only to the base all-stop protocol, however. In non-stop (which
6335 only supports vCont), the stub replies with an "OK", and is
6336 immediate able to process further serial input. */
6337 if (!target_is_non_stop_p ())
6338 rs->waiting_for_stop_reply = 1;
6339 }
6340
6341 static int is_pending_fork_parent_thread (struct thread_info *thread);
6342
6343 /* Private per-inferior info for target remote processes. */
6344
6345 struct remote_inferior : public private_inferior
6346 {
6347 /* Whether we can send a wildcard vCont for this process. */
6348 bool may_wildcard_vcont = true;
6349 };
6350
6351 /* Get the remote private inferior data associated to INF. */
6352
6353 static remote_inferior *
6354 get_remote_inferior (inferior *inf)
6355 {
6356 if (inf->priv == NULL)
6357 inf->priv.reset (new remote_inferior);
6358
6359 return static_cast<remote_inferior *> (inf->priv.get ());
6360 }
6361
6362 /* Class used to track the construction of a vCont packet in the
6363 outgoing packet buffer. This is used to send multiple vCont
6364 packets if we have more actions than would fit a single packet. */
6365
6366 class vcont_builder
6367 {
6368 public:
6369 explicit vcont_builder (remote_target *remote)
6370 : m_remote (remote)
6371 {
6372 restart ();
6373 }
6374
6375 void flush ();
6376 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6377
6378 private:
6379 void restart ();
6380
6381 /* The remote target. */
6382 remote_target *m_remote;
6383
6384 /* Pointer to the first action. P points here if no action has been
6385 appended yet. */
6386 char *m_first_action;
6387
6388 /* Where the next action will be appended. */
6389 char *m_p;
6390
6391 /* The end of the buffer. Must never write past this. */
6392 char *m_endp;
6393 };
6394
6395 /* Prepare the outgoing buffer for a new vCont packet. */
6396
6397 void
6398 vcont_builder::restart ()
6399 {
6400 struct remote_state *rs = m_remote->get_remote_state ();
6401
6402 m_p = rs->buf.data ();
6403 m_endp = m_p + m_remote->get_remote_packet_size ();
6404 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6405 m_first_action = m_p;
6406 }
6407
6408 /* If the vCont packet being built has any action, send it to the
6409 remote end. */
6410
6411 void
6412 vcont_builder::flush ()
6413 {
6414 struct remote_state *rs;
6415
6416 if (m_p == m_first_action)
6417 return;
6418
6419 rs = m_remote->get_remote_state ();
6420 m_remote->putpkt (rs->buf);
6421 m_remote->getpkt (&rs->buf, 0);
6422 if (strcmp (rs->buf.data (), "OK") != 0)
6423 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6424 }
6425
6426 /* The largest action is range-stepping, with its two addresses. This
6427 is more than sufficient. If a new, bigger action is created, it'll
6428 quickly trigger a failed assertion in append_resumption (and we'll
6429 just bump this). */
6430 #define MAX_ACTION_SIZE 200
6431
6432 /* Append a new vCont action in the outgoing packet being built. If
6433 the action doesn't fit the packet along with previous actions, push
6434 what we've got so far to the remote end and start over a new vCont
6435 packet (with the new action). */
6436
6437 void
6438 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6439 {
6440 char buf[MAX_ACTION_SIZE + 1];
6441
6442 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6443 ptid, step, siggnal);
6444
6445 /* Check whether this new action would fit in the vCont packet along
6446 with previous actions. If not, send what we've got so far and
6447 start a new vCont packet. */
6448 size_t rsize = endp - buf;
6449 if (rsize > m_endp - m_p)
6450 {
6451 flush ();
6452 restart ();
6453
6454 /* Should now fit. */
6455 gdb_assert (rsize <= m_endp - m_p);
6456 }
6457
6458 memcpy (m_p, buf, rsize);
6459 m_p += rsize;
6460 *m_p = '\0';
6461 }
6462
6463 /* to_commit_resume implementation. */
6464
6465 void
6466 remote_target::commit_resume ()
6467 {
6468 int any_process_wildcard;
6469 int may_global_wildcard_vcont;
6470
6471 /* If connected in all-stop mode, we'd send the remote resume
6472 request directly from remote_resume. Likewise if
6473 reverse-debugging, as there are no defined vCont actions for
6474 reverse execution. */
6475 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6476 return;
6477
6478 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6479 instead of resuming all threads of each process individually.
6480 However, if any thread of a process must remain halted, we can't
6481 send wildcard resumes and must send one action per thread.
6482
6483 Care must be taken to not resume threads/processes the server
6484 side already told us are stopped, but the core doesn't know about
6485 yet, because the events are still in the vStopped notification
6486 queue. For example:
6487
6488 #1 => vCont s:p1.1;c
6489 #2 <= OK
6490 #3 <= %Stopped T05 p1.1
6491 #4 => vStopped
6492 #5 <= T05 p1.2
6493 #6 => vStopped
6494 #7 <= OK
6495 #8 (infrun handles the stop for p1.1 and continues stepping)
6496 #9 => vCont s:p1.1;c
6497
6498 The last vCont above would resume thread p1.2 by mistake, because
6499 the server has no idea that the event for p1.2 had not been
6500 handled yet.
6501
6502 The server side must similarly ignore resume actions for the
6503 thread that has a pending %Stopped notification (and any other
6504 threads with events pending), until GDB acks the notification
6505 with vStopped. Otherwise, e.g., the following case is
6506 mishandled:
6507
6508 #1 => g (or any other packet)
6509 #2 <= [registers]
6510 #3 <= %Stopped T05 p1.2
6511 #4 => vCont s:p1.1;c
6512 #5 <= OK
6513
6514 Above, the server must not resume thread p1.2. GDB can't know
6515 that p1.2 stopped until it acks the %Stopped notification, and
6516 since from GDB's perspective all threads should be running, it
6517 sends a "c" action.
6518
6519 Finally, special care must also be given to handling fork/vfork
6520 events. A (v)fork event actually tells us that two processes
6521 stopped -- the parent and the child. Until we follow the fork,
6522 we must not resume the child. Therefore, if we have a pending
6523 fork follow, we must not send a global wildcard resume action
6524 (vCont;c). We can still send process-wide wildcards though. */
6525
6526 /* Start by assuming a global wildcard (vCont;c) is possible. */
6527 may_global_wildcard_vcont = 1;
6528
6529 /* And assume every process is individually wildcard-able too. */
6530 for (inferior *inf : all_non_exited_inferiors (this))
6531 {
6532 remote_inferior *priv = get_remote_inferior (inf);
6533
6534 priv->may_wildcard_vcont = true;
6535 }
6536
6537 /* Check for any pending events (not reported or processed yet) and
6538 disable process and global wildcard resumes appropriately. */
6539 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6540
6541 for (thread_info *tp : all_non_exited_threads (this))
6542 {
6543 /* If a thread of a process is not meant to be resumed, then we
6544 can't wildcard that process. */
6545 if (!tp->executing)
6546 {
6547 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6548
6549 /* And if we can't wildcard a process, we can't wildcard
6550 everything either. */
6551 may_global_wildcard_vcont = 0;
6552 continue;
6553 }
6554
6555 /* If a thread is the parent of an unfollowed fork, then we
6556 can't do a global wildcard, as that would resume the fork
6557 child. */
6558 if (is_pending_fork_parent_thread (tp))
6559 may_global_wildcard_vcont = 0;
6560 }
6561
6562 /* Now let's build the vCont packet(s). Actions must be appended
6563 from narrower to wider scopes (thread -> process -> global). If
6564 we end up with too many actions for a single packet vcont_builder
6565 flushes the current vCont packet to the remote side and starts a
6566 new one. */
6567 struct vcont_builder vcont_builder (this);
6568
6569 /* Threads first. */
6570 for (thread_info *tp : all_non_exited_threads (this))
6571 {
6572 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6573
6574 if (!tp->executing || remote_thr->vcont_resumed)
6575 continue;
6576
6577 gdb_assert (!thread_is_in_step_over_chain (tp));
6578
6579 if (!remote_thr->last_resume_step
6580 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6581 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6582 {
6583 /* We'll send a wildcard resume instead. */
6584 remote_thr->vcont_resumed = 1;
6585 continue;
6586 }
6587
6588 vcont_builder.push_action (tp->ptid,
6589 remote_thr->last_resume_step,
6590 remote_thr->last_resume_sig);
6591 remote_thr->vcont_resumed = 1;
6592 }
6593
6594 /* Now check whether we can send any process-wide wildcard. This is
6595 to avoid sending a global wildcard in the case nothing is
6596 supposed to be resumed. */
6597 any_process_wildcard = 0;
6598
6599 for (inferior *inf : all_non_exited_inferiors (this))
6600 {
6601 if (get_remote_inferior (inf)->may_wildcard_vcont)
6602 {
6603 any_process_wildcard = 1;
6604 break;
6605 }
6606 }
6607
6608 if (any_process_wildcard)
6609 {
6610 /* If all processes are wildcard-able, then send a single "c"
6611 action, otherwise, send an "all (-1) threads of process"
6612 continue action for each running process, if any. */
6613 if (may_global_wildcard_vcont)
6614 {
6615 vcont_builder.push_action (minus_one_ptid,
6616 false, GDB_SIGNAL_0);
6617 }
6618 else
6619 {
6620 for (inferior *inf : all_non_exited_inferiors (this))
6621 {
6622 if (get_remote_inferior (inf)->may_wildcard_vcont)
6623 {
6624 vcont_builder.push_action (ptid_t (inf->pid),
6625 false, GDB_SIGNAL_0);
6626 }
6627 }
6628 }
6629 }
6630
6631 vcont_builder.flush ();
6632 }
6633
6634 \f
6635
6636 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6637 thread, all threads of a remote process, or all threads of all
6638 processes. */
6639
6640 void
6641 remote_target::remote_stop_ns (ptid_t ptid)
6642 {
6643 struct remote_state *rs = get_remote_state ();
6644 char *p = rs->buf.data ();
6645 char *endp = p + get_remote_packet_size ();
6646
6647 /* FIXME: This supports_vCont_probed check is a workaround until
6648 packet_support is per-connection. */
6649 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6650 || !rs->supports_vCont_probed)
6651 remote_vcont_probe ();
6652
6653 if (!rs->supports_vCont.t)
6654 error (_("Remote server does not support stopping threads"));
6655
6656 if (ptid == minus_one_ptid
6657 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6658 p += xsnprintf (p, endp - p, "vCont;t");
6659 else
6660 {
6661 ptid_t nptid;
6662
6663 p += xsnprintf (p, endp - p, "vCont;t:");
6664
6665 if (ptid.is_pid ())
6666 /* All (-1) threads of process. */
6667 nptid = ptid_t (ptid.pid (), -1, 0);
6668 else
6669 {
6670 /* Small optimization: if we already have a stop reply for
6671 this thread, no use in telling the stub we want this
6672 stopped. */
6673 if (peek_stop_reply (ptid))
6674 return;
6675
6676 nptid = ptid;
6677 }
6678
6679 write_ptid (p, endp, nptid);
6680 }
6681
6682 /* In non-stop, we get an immediate OK reply. The stop reply will
6683 come in asynchronously by notification. */
6684 putpkt (rs->buf);
6685 getpkt (&rs->buf, 0);
6686 if (strcmp (rs->buf.data (), "OK") != 0)
6687 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6688 rs->buf.data ());
6689 }
6690
6691 /* All-stop version of target_interrupt. Sends a break or a ^C to
6692 interrupt the remote target. It is undefined which thread of which
6693 process reports the interrupt. */
6694
6695 void
6696 remote_target::remote_interrupt_as ()
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699
6700 rs->ctrlc_pending_p = 1;
6701
6702 /* If the inferior is stopped already, but the core didn't know
6703 about it yet, just ignore the request. The cached wait status
6704 will be collected in remote_wait. */
6705 if (rs->cached_wait_status)
6706 return;
6707
6708 /* Send interrupt_sequence to remote target. */
6709 send_interrupt_sequence ();
6710 }
6711
6712 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6713 the remote target. It is undefined which thread of which process
6714 reports the interrupt. Throws an error if the packet is not
6715 supported by the server. */
6716
6717 void
6718 remote_target::remote_interrupt_ns ()
6719 {
6720 struct remote_state *rs = get_remote_state ();
6721 char *p = rs->buf.data ();
6722 char *endp = p + get_remote_packet_size ();
6723
6724 xsnprintf (p, endp - p, "vCtrlC");
6725
6726 /* In non-stop, we get an immediate OK reply. The stop reply will
6727 come in asynchronously by notification. */
6728 putpkt (rs->buf);
6729 getpkt (&rs->buf, 0);
6730
6731 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6732 {
6733 case PACKET_OK:
6734 break;
6735 case PACKET_UNKNOWN:
6736 error (_("No support for interrupting the remote target."));
6737 case PACKET_ERROR:
6738 error (_("Interrupting target failed: %s"), rs->buf.data ());
6739 }
6740 }
6741
6742 /* Implement the to_stop function for the remote targets. */
6743
6744 void
6745 remote_target::stop (ptid_t ptid)
6746 {
6747 if (remote_debug)
6748 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6749
6750 if (target_is_non_stop_p ())
6751 remote_stop_ns (ptid);
6752 else
6753 {
6754 /* We don't currently have a way to transparently pause the
6755 remote target in all-stop mode. Interrupt it instead. */
6756 remote_interrupt_as ();
6757 }
6758 }
6759
6760 /* Implement the to_interrupt function for the remote targets. */
6761
6762 void
6763 remote_target::interrupt ()
6764 {
6765 if (remote_debug)
6766 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6767
6768 if (target_is_non_stop_p ())
6769 remote_interrupt_ns ();
6770 else
6771 remote_interrupt_as ();
6772 }
6773
6774 /* Implement the to_pass_ctrlc function for the remote targets. */
6775
6776 void
6777 remote_target::pass_ctrlc ()
6778 {
6779 struct remote_state *rs = get_remote_state ();
6780
6781 if (remote_debug)
6782 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6783
6784 /* If we're starting up, we're not fully synced yet. Quit
6785 immediately. */
6786 if (rs->starting_up)
6787 quit ();
6788 /* If ^C has already been sent once, offer to disconnect. */
6789 else if (rs->ctrlc_pending_p)
6790 interrupt_query ();
6791 else
6792 target_interrupt ();
6793 }
6794
6795 /* Ask the user what to do when an interrupt is received. */
6796
6797 void
6798 remote_target::interrupt_query ()
6799 {
6800 struct remote_state *rs = get_remote_state ();
6801
6802 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6803 {
6804 if (query (_("The target is not responding to interrupt requests.\n"
6805 "Stop debugging it? ")))
6806 {
6807 remote_unpush_target (this);
6808 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6809 }
6810 }
6811 else
6812 {
6813 if (query (_("Interrupted while waiting for the program.\n"
6814 "Give up waiting? ")))
6815 quit ();
6816 }
6817 }
6818
6819 /* Enable/disable target terminal ownership. Most targets can use
6820 terminal groups to control terminal ownership. Remote targets are
6821 different in that explicit transfer of ownership to/from GDB/target
6822 is required. */
6823
6824 void
6825 remote_target::terminal_inferior ()
6826 {
6827 /* NOTE: At this point we could also register our selves as the
6828 recipient of all input. Any characters typed could then be
6829 passed on down to the target. */
6830 }
6831
6832 void
6833 remote_target::terminal_ours ()
6834 {
6835 }
6836
6837 static void
6838 remote_console_output (const char *msg)
6839 {
6840 const char *p;
6841
6842 for (p = msg; p[0] && p[1]; p += 2)
6843 {
6844 char tb[2];
6845 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6846
6847 tb[0] = c;
6848 tb[1] = 0;
6849 gdb_stdtarg->puts (tb);
6850 }
6851 gdb_stdtarg->flush ();
6852 }
6853
6854 struct stop_reply : public notif_event
6855 {
6856 ~stop_reply ();
6857
6858 /* The identifier of the thread about this event */
6859 ptid_t ptid;
6860
6861 /* The remote state this event is associated with. When the remote
6862 connection, represented by a remote_state object, is closed,
6863 all the associated stop_reply events should be released. */
6864 struct remote_state *rs;
6865
6866 struct target_waitstatus ws;
6867
6868 /* The architecture associated with the expedited registers. */
6869 gdbarch *arch;
6870
6871 /* Expedited registers. This makes remote debugging a bit more
6872 efficient for those targets that provide critical registers as
6873 part of their normal status mechanism (as another roundtrip to
6874 fetch them is avoided). */
6875 std::vector<cached_reg_t> regcache;
6876
6877 enum target_stop_reason stop_reason;
6878
6879 CORE_ADDR watch_data_address;
6880
6881 int core;
6882 };
6883
6884 /* Return the length of the stop reply queue. */
6885
6886 int
6887 remote_target::stop_reply_queue_length ()
6888 {
6889 remote_state *rs = get_remote_state ();
6890 return rs->stop_reply_queue.size ();
6891 }
6892
6893 static void
6894 remote_notif_stop_parse (remote_target *remote,
6895 struct notif_client *self, const char *buf,
6896 struct notif_event *event)
6897 {
6898 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6899 }
6900
6901 static void
6902 remote_notif_stop_ack (remote_target *remote,
6903 struct notif_client *self, const char *buf,
6904 struct notif_event *event)
6905 {
6906 struct stop_reply *stop_reply = (struct stop_reply *) event;
6907
6908 /* acknowledge */
6909 putpkt (remote, self->ack_command);
6910
6911 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6912 {
6913 /* We got an unknown stop reply. */
6914 error (_("Unknown stop reply"));
6915 }
6916
6917 remote->push_stop_reply (stop_reply);
6918 }
6919
6920 static int
6921 remote_notif_stop_can_get_pending_events (remote_target *remote,
6922 struct notif_client *self)
6923 {
6924 /* We can't get pending events in remote_notif_process for
6925 notification stop, and we have to do this in remote_wait_ns
6926 instead. If we fetch all queued events from stub, remote stub
6927 may exit and we have no chance to process them back in
6928 remote_wait_ns. */
6929 remote_state *rs = remote->get_remote_state ();
6930 mark_async_event_handler (rs->remote_async_inferior_event_token);
6931 return 0;
6932 }
6933
6934 stop_reply::~stop_reply ()
6935 {
6936 for (cached_reg_t &reg : regcache)
6937 xfree (reg.data);
6938 }
6939
6940 static notif_event_up
6941 remote_notif_stop_alloc_reply ()
6942 {
6943 return notif_event_up (new struct stop_reply ());
6944 }
6945
6946 /* A client of notification Stop. */
6947
6948 struct notif_client notif_client_stop =
6949 {
6950 "Stop",
6951 "vStopped",
6952 remote_notif_stop_parse,
6953 remote_notif_stop_ack,
6954 remote_notif_stop_can_get_pending_events,
6955 remote_notif_stop_alloc_reply,
6956 REMOTE_NOTIF_STOP,
6957 };
6958
6959 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6960 the pid of the process that owns the threads we want to check, or
6961 -1 if we want to check all threads. */
6962
6963 static int
6964 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6965 ptid_t thread_ptid)
6966 {
6967 if (ws->kind == TARGET_WAITKIND_FORKED
6968 || ws->kind == TARGET_WAITKIND_VFORKED)
6969 {
6970 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6971 return 1;
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Return the thread's pending status used to determine whether the
6978 thread is a fork parent stopped at a fork event. */
6979
6980 static struct target_waitstatus *
6981 thread_pending_fork_status (struct thread_info *thread)
6982 {
6983 if (thread->suspend.waitstatus_pending_p)
6984 return &thread->suspend.waitstatus;
6985 else
6986 return &thread->pending_follow;
6987 }
6988
6989 /* Determine if THREAD is a pending fork parent thread. */
6990
6991 static int
6992 is_pending_fork_parent_thread (struct thread_info *thread)
6993 {
6994 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6995 int pid = -1;
6996
6997 return is_pending_fork_parent (ws, pid, thread->ptid);
6998 }
6999
7000 /* If CONTEXT contains any fork child threads that have not been
7001 reported yet, remove them from the CONTEXT list. If such a
7002 thread exists it is because we are stopped at a fork catchpoint
7003 and have not yet called follow_fork, which will set up the
7004 host-side data structures for the new process. */
7005
7006 void
7007 remote_target::remove_new_fork_children (threads_listing_context *context)
7008 {
7009 int pid = -1;
7010 struct notif_client *notif = &notif_client_stop;
7011
7012 /* For any threads stopped at a fork event, remove the corresponding
7013 fork child threads from the CONTEXT list. */
7014 for (thread_info *thread : all_non_exited_threads (this))
7015 {
7016 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7017
7018 if (is_pending_fork_parent (ws, pid, thread->ptid))
7019 context->remove_thread (ws->value.related_pid);
7020 }
7021
7022 /* Check for any pending fork events (not reported or processed yet)
7023 in process PID and remove those fork child threads from the
7024 CONTEXT list as well. */
7025 remote_notif_get_pending_events (notif);
7026 for (auto &event : get_remote_state ()->stop_reply_queue)
7027 if (event->ws.kind == TARGET_WAITKIND_FORKED
7028 || event->ws.kind == TARGET_WAITKIND_VFORKED
7029 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7030 context->remove_thread (event->ws.value.related_pid);
7031 }
7032
7033 /* Check whether any event pending in the vStopped queue would prevent
7034 a global or process wildcard vCont action. Clear
7035 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7036 and clear the event inferior's may_wildcard_vcont flag if we can't
7037 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7038
7039 void
7040 remote_target::check_pending_events_prevent_wildcard_vcont
7041 (int *may_global_wildcard)
7042 {
7043 struct notif_client *notif = &notif_client_stop;
7044
7045 remote_notif_get_pending_events (notif);
7046 for (auto &event : get_remote_state ()->stop_reply_queue)
7047 {
7048 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7049 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7050 continue;
7051
7052 if (event->ws.kind == TARGET_WAITKIND_FORKED
7053 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7054 *may_global_wildcard = 0;
7055
7056 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7057
7058 /* This may be the first time we heard about this process.
7059 Regardless, we must not do a global wildcard resume, otherwise
7060 we'd resume this process too. */
7061 *may_global_wildcard = 0;
7062 if (inf != NULL)
7063 get_remote_inferior (inf)->may_wildcard_vcont = false;
7064 }
7065 }
7066
7067 /* Discard all pending stop replies of inferior INF. */
7068
7069 void
7070 remote_target::discard_pending_stop_replies (struct inferior *inf)
7071 {
7072 struct stop_reply *reply;
7073 struct remote_state *rs = get_remote_state ();
7074 struct remote_notif_state *rns = rs->notif_state;
7075
7076 /* This function can be notified when an inferior exists. When the
7077 target is not remote, the notification state is NULL. */
7078 if (rs->remote_desc == NULL)
7079 return;
7080
7081 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7082
7083 /* Discard the in-flight notification. */
7084 if (reply != NULL && reply->ptid.pid () == inf->pid)
7085 {
7086 delete reply;
7087 rns->pending_event[notif_client_stop.id] = NULL;
7088 }
7089
7090 /* Discard the stop replies we have already pulled with
7091 vStopped. */
7092 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7093 rs->stop_reply_queue.end (),
7094 [=] (const stop_reply_up &event)
7095 {
7096 return event->ptid.pid () == inf->pid;
7097 });
7098 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7099 }
7100
7101 /* Discard the stop replies for RS in stop_reply_queue. */
7102
7103 void
7104 remote_target::discard_pending_stop_replies_in_queue ()
7105 {
7106 remote_state *rs = get_remote_state ();
7107
7108 /* Discard the stop replies we have already pulled with
7109 vStopped. */
7110 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7111 rs->stop_reply_queue.end (),
7112 [=] (const stop_reply_up &event)
7113 {
7114 return event->rs == rs;
7115 });
7116 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7117 }
7118
7119 /* Remove the first reply in 'stop_reply_queue' which matches
7120 PTID. */
7121
7122 struct stop_reply *
7123 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7124 {
7125 remote_state *rs = get_remote_state ();
7126
7127 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7128 rs->stop_reply_queue.end (),
7129 [=] (const stop_reply_up &event)
7130 {
7131 return event->ptid.matches (ptid);
7132 });
7133 struct stop_reply *result;
7134 if (iter == rs->stop_reply_queue.end ())
7135 result = nullptr;
7136 else
7137 {
7138 result = iter->release ();
7139 rs->stop_reply_queue.erase (iter);
7140 }
7141
7142 if (notif_debug)
7143 fprintf_unfiltered (gdb_stdlog,
7144 "notif: discard queued event: 'Stop' in %s\n",
7145 target_pid_to_str (ptid).c_str ());
7146
7147 return result;
7148 }
7149
7150 /* Look for a queued stop reply belonging to PTID. If one is found,
7151 remove it from the queue, and return it. Returns NULL if none is
7152 found. If there are still queued events left to process, tell the
7153 event loop to get back to target_wait soon. */
7154
7155 struct stop_reply *
7156 remote_target::queued_stop_reply (ptid_t ptid)
7157 {
7158 remote_state *rs = get_remote_state ();
7159 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7160
7161 if (!rs->stop_reply_queue.empty ())
7162 {
7163 /* There's still at least an event left. */
7164 mark_async_event_handler (rs->remote_async_inferior_event_token);
7165 }
7166
7167 return r;
7168 }
7169
7170 /* Push a fully parsed stop reply in the stop reply queue. Since we
7171 know that we now have at least one queued event left to pass to the
7172 core side, tell the event loop to get back to target_wait soon. */
7173
7174 void
7175 remote_target::push_stop_reply (struct stop_reply *new_event)
7176 {
7177 remote_state *rs = get_remote_state ();
7178 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7179
7180 if (notif_debug)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "notif: push 'Stop' %s to queue %d\n",
7183 target_pid_to_str (new_event->ptid).c_str (),
7184 int (rs->stop_reply_queue.size ()));
7185
7186 mark_async_event_handler (rs->remote_async_inferior_event_token);
7187 }
7188
7189 /* Returns true if we have a stop reply for PTID. */
7190
7191 int
7192 remote_target::peek_stop_reply (ptid_t ptid)
7193 {
7194 remote_state *rs = get_remote_state ();
7195 for (auto &event : rs->stop_reply_queue)
7196 if (ptid == event->ptid
7197 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7198 return 1;
7199 return 0;
7200 }
7201
7202 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7203 starting with P and ending with PEND matches PREFIX. */
7204
7205 static int
7206 strprefix (const char *p, const char *pend, const char *prefix)
7207 {
7208 for ( ; p < pend; p++, prefix++)
7209 if (*p != *prefix)
7210 return 0;
7211 return *prefix == '\0';
7212 }
7213
7214 /* Parse the stop reply in BUF. Either the function succeeds, and the
7215 result is stored in EVENT, or throws an error. */
7216
7217 void
7218 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7219 {
7220 remote_arch_state *rsa = NULL;
7221 ULONGEST addr;
7222 const char *p;
7223 int skipregs = 0;
7224
7225 event->ptid = null_ptid;
7226 event->rs = get_remote_state ();
7227 event->ws.kind = TARGET_WAITKIND_IGNORE;
7228 event->ws.value.integer = 0;
7229 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7230 event->regcache.clear ();
7231 event->core = -1;
7232
7233 switch (buf[0])
7234 {
7235 case 'T': /* Status with PC, SP, FP, ... */
7236 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7237 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7238 ss = signal number
7239 n... = register number
7240 r... = register contents
7241 */
7242
7243 p = &buf[3]; /* after Txx */
7244 while (*p)
7245 {
7246 const char *p1;
7247 int fieldsize;
7248
7249 p1 = strchr (p, ':');
7250 if (p1 == NULL)
7251 error (_("Malformed packet(a) (missing colon): %s\n\
7252 Packet: '%s'\n"),
7253 p, buf);
7254 if (p == p1)
7255 error (_("Malformed packet(a) (missing register number): %s\n\
7256 Packet: '%s'\n"),
7257 p, buf);
7258
7259 /* Some "registers" are actually extended stop information.
7260 Note if you're adding a new entry here: GDB 7.9 and
7261 earlier assume that all register "numbers" that start
7262 with an hex digit are real register numbers. Make sure
7263 the server only sends such a packet if it knows the
7264 client understands it. */
7265
7266 if (strprefix (p, p1, "thread"))
7267 event->ptid = read_ptid (++p1, &p);
7268 else if (strprefix (p, p1, "syscall_entry"))
7269 {
7270 ULONGEST sysno;
7271
7272 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7273 p = unpack_varlen_hex (++p1, &sysno);
7274 event->ws.value.syscall_number = (int) sysno;
7275 }
7276 else if (strprefix (p, p1, "syscall_return"))
7277 {
7278 ULONGEST sysno;
7279
7280 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7281 p = unpack_varlen_hex (++p1, &sysno);
7282 event->ws.value.syscall_number = (int) sysno;
7283 }
7284 else if (strprefix (p, p1, "watch")
7285 || strprefix (p, p1, "rwatch")
7286 || strprefix (p, p1, "awatch"))
7287 {
7288 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7289 p = unpack_varlen_hex (++p1, &addr);
7290 event->watch_data_address = (CORE_ADDR) addr;
7291 }
7292 else if (strprefix (p, p1, "swbreak"))
7293 {
7294 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7295
7296 /* Make sure the stub doesn't forget to indicate support
7297 with qSupported. */
7298 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7299 error (_("Unexpected swbreak stop reason"));
7300
7301 /* The value part is documented as "must be empty",
7302 though we ignore it, in case we ever decide to make
7303 use of it in a backward compatible way. */
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "hwbreak"))
7307 {
7308 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7309
7310 /* Make sure the stub doesn't forget to indicate support
7311 with qSupported. */
7312 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7313 error (_("Unexpected hwbreak stop reason"));
7314
7315 /* See above. */
7316 p = strchrnul (p1 + 1, ';');
7317 }
7318 else if (strprefix (p, p1, "library"))
7319 {
7320 event->ws.kind = TARGET_WAITKIND_LOADED;
7321 p = strchrnul (p1 + 1, ';');
7322 }
7323 else if (strprefix (p, p1, "replaylog"))
7324 {
7325 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7326 /* p1 will indicate "begin" or "end", but it makes
7327 no difference for now, so ignore it. */
7328 p = strchrnul (p1 + 1, ';');
7329 }
7330 else if (strprefix (p, p1, "core"))
7331 {
7332 ULONGEST c;
7333
7334 p = unpack_varlen_hex (++p1, &c);
7335 event->core = c;
7336 }
7337 else if (strprefix (p, p1, "fork"))
7338 {
7339 event->ws.value.related_pid = read_ptid (++p1, &p);
7340 event->ws.kind = TARGET_WAITKIND_FORKED;
7341 }
7342 else if (strprefix (p, p1, "vfork"))
7343 {
7344 event->ws.value.related_pid = read_ptid (++p1, &p);
7345 event->ws.kind = TARGET_WAITKIND_VFORKED;
7346 }
7347 else if (strprefix (p, p1, "vforkdone"))
7348 {
7349 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7350 p = strchrnul (p1 + 1, ';');
7351 }
7352 else if (strprefix (p, p1, "exec"))
7353 {
7354 ULONGEST ignored;
7355 int pathlen;
7356
7357 /* Determine the length of the execd pathname. */
7358 p = unpack_varlen_hex (++p1, &ignored);
7359 pathlen = (p - p1) / 2;
7360
7361 /* Save the pathname for event reporting and for
7362 the next run command. */
7363 gdb::unique_xmalloc_ptr<char[]> pathname
7364 ((char *) xmalloc (pathlen + 1));
7365 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7366 pathname[pathlen] = '\0';
7367
7368 /* This is freed during event handling. */
7369 event->ws.value.execd_pathname = pathname.release ();
7370 event->ws.kind = TARGET_WAITKIND_EXECD;
7371
7372 /* Skip the registers included in this packet, since
7373 they may be for an architecture different from the
7374 one used by the original program. */
7375 skipregs = 1;
7376 }
7377 else if (strprefix (p, p1, "create"))
7378 {
7379 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7380 p = strchrnul (p1 + 1, ';');
7381 }
7382 else
7383 {
7384 ULONGEST pnum;
7385 const char *p_temp;
7386
7387 if (skipregs)
7388 {
7389 p = strchrnul (p1 + 1, ';');
7390 p++;
7391 continue;
7392 }
7393
7394 /* Maybe a real ``P'' register number. */
7395 p_temp = unpack_varlen_hex (p, &pnum);
7396 /* If the first invalid character is the colon, we got a
7397 register number. Otherwise, it's an unknown stop
7398 reason. */
7399 if (p_temp == p1)
7400 {
7401 /* If we haven't parsed the event's thread yet, find
7402 it now, in order to find the architecture of the
7403 reported expedited registers. */
7404 if (event->ptid == null_ptid)
7405 {
7406 /* If there is no thread-id information then leave
7407 the event->ptid as null_ptid. Later in
7408 process_stop_reply we will pick a suitable
7409 thread. */
7410 const char *thr = strstr (p1 + 1, ";thread:");
7411 if (thr != NULL)
7412 event->ptid = read_ptid (thr + strlen (";thread:"),
7413 NULL);
7414 }
7415
7416 if (rsa == NULL)
7417 {
7418 inferior *inf
7419 = (event->ptid == null_ptid
7420 ? NULL
7421 : find_inferior_ptid (this, event->ptid));
7422 /* If this is the first time we learn anything
7423 about this process, skip the registers
7424 included in this packet, since we don't yet
7425 know which architecture to use to parse them.
7426 We'll determine the architecture later when
7427 we process the stop reply and retrieve the
7428 target description, via
7429 remote_notice_new_inferior ->
7430 post_create_inferior. */
7431 if (inf == NULL)
7432 {
7433 p = strchrnul (p1 + 1, ';');
7434 p++;
7435 continue;
7436 }
7437
7438 event->arch = inf->gdbarch;
7439 rsa = event->rs->get_remote_arch_state (event->arch);
7440 }
7441
7442 packet_reg *reg
7443 = packet_reg_from_pnum (event->arch, rsa, pnum);
7444 cached_reg_t cached_reg;
7445
7446 if (reg == NULL)
7447 error (_("Remote sent bad register number %s: %s\n\
7448 Packet: '%s'\n"),
7449 hex_string (pnum), p, buf);
7450
7451 cached_reg.num = reg->regnum;
7452 cached_reg.data = (gdb_byte *)
7453 xmalloc (register_size (event->arch, reg->regnum));
7454
7455 p = p1 + 1;
7456 fieldsize = hex2bin (p, cached_reg.data,
7457 register_size (event->arch, reg->regnum));
7458 p += 2 * fieldsize;
7459 if (fieldsize < register_size (event->arch, reg->regnum))
7460 warning (_("Remote reply is too short: %s"), buf);
7461
7462 event->regcache.push_back (cached_reg);
7463 }
7464 else
7465 {
7466 /* Not a number. Silently skip unknown optional
7467 info. */
7468 p = strchrnul (p1 + 1, ';');
7469 }
7470 }
7471
7472 if (*p != ';')
7473 error (_("Remote register badly formatted: %s\nhere: %s"),
7474 buf, p);
7475 ++p;
7476 }
7477
7478 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7479 break;
7480
7481 /* fall through */
7482 case 'S': /* Old style status, just signal only. */
7483 {
7484 int sig;
7485
7486 event->ws.kind = TARGET_WAITKIND_STOPPED;
7487 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7488 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7489 event->ws.value.sig = (enum gdb_signal) sig;
7490 else
7491 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7492 }
7493 break;
7494 case 'w': /* Thread exited. */
7495 {
7496 ULONGEST value;
7497
7498 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7499 p = unpack_varlen_hex (&buf[1], &value);
7500 event->ws.value.integer = value;
7501 if (*p != ';')
7502 error (_("stop reply packet badly formatted: %s"), buf);
7503 event->ptid = read_ptid (++p, NULL);
7504 break;
7505 }
7506 case 'W': /* Target exited. */
7507 case 'X':
7508 {
7509 ULONGEST value;
7510
7511 /* GDB used to accept only 2 hex chars here. Stubs should
7512 only send more if they detect GDB supports multi-process
7513 support. */
7514 p = unpack_varlen_hex (&buf[1], &value);
7515
7516 if (buf[0] == 'W')
7517 {
7518 /* The remote process exited. */
7519 event->ws.kind = TARGET_WAITKIND_EXITED;
7520 event->ws.value.integer = value;
7521 }
7522 else
7523 {
7524 /* The remote process exited with a signal. */
7525 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7526 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7527 event->ws.value.sig = (enum gdb_signal) value;
7528 else
7529 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7530 }
7531
7532 /* If no process is specified, return null_ptid, and let the
7533 caller figure out the right process to use. */
7534 int pid = 0;
7535 if (*p == '\0')
7536 ;
7537 else if (*p == ';')
7538 {
7539 p++;
7540
7541 if (*p == '\0')
7542 ;
7543 else if (startswith (p, "process:"))
7544 {
7545 ULONGEST upid;
7546
7547 p += sizeof ("process:") - 1;
7548 unpack_varlen_hex (p, &upid);
7549 pid = upid;
7550 }
7551 else
7552 error (_("unknown stop reply packet: %s"), buf);
7553 }
7554 else
7555 error (_("unknown stop reply packet: %s"), buf);
7556 event->ptid = ptid_t (pid);
7557 }
7558 break;
7559 case 'N':
7560 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7561 event->ptid = minus_one_ptid;
7562 break;
7563 }
7564
7565 if (target_is_non_stop_p () && event->ptid == null_ptid)
7566 error (_("No process or thread specified in stop reply: %s"), buf);
7567 }
7568
7569 /* When the stub wants to tell GDB about a new notification reply, it
7570 sends a notification (%Stop, for example). Those can come it at
7571 any time, hence, we have to make sure that any pending
7572 putpkt/getpkt sequence we're making is finished, before querying
7573 the stub for more events with the corresponding ack command
7574 (vStopped, for example). E.g., if we started a vStopped sequence
7575 immediately upon receiving the notification, something like this
7576 could happen:
7577
7578 1.1) --> Hg 1
7579 1.2) <-- OK
7580 1.3) --> g
7581 1.4) <-- %Stop
7582 1.5) --> vStopped
7583 1.6) <-- (registers reply to step #1.3)
7584
7585 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7586 query.
7587
7588 To solve this, whenever we parse a %Stop notification successfully,
7589 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7590 doing whatever we were doing:
7591
7592 2.1) --> Hg 1
7593 2.2) <-- OK
7594 2.3) --> g
7595 2.4) <-- %Stop
7596 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7597 2.5) <-- (registers reply to step #2.3)
7598
7599 Eventually after step #2.5, we return to the event loop, which
7600 notices there's an event on the
7601 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7602 associated callback --- the function below. At this point, we're
7603 always safe to start a vStopped sequence. :
7604
7605 2.6) --> vStopped
7606 2.7) <-- T05 thread:2
7607 2.8) --> vStopped
7608 2.9) --> OK
7609 */
7610
7611 void
7612 remote_target::remote_notif_get_pending_events (notif_client *nc)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615
7616 if (rs->notif_state->pending_event[nc->id] != NULL)
7617 {
7618 if (notif_debug)
7619 fprintf_unfiltered (gdb_stdlog,
7620 "notif: process: '%s' ack pending event\n",
7621 nc->name);
7622
7623 /* acknowledge */
7624 nc->ack (this, nc, rs->buf.data (),
7625 rs->notif_state->pending_event[nc->id]);
7626 rs->notif_state->pending_event[nc->id] = NULL;
7627
7628 while (1)
7629 {
7630 getpkt (&rs->buf, 0);
7631 if (strcmp (rs->buf.data (), "OK") == 0)
7632 break;
7633 else
7634 remote_notif_ack (this, nc, rs->buf.data ());
7635 }
7636 }
7637 else
7638 {
7639 if (notif_debug)
7640 fprintf_unfiltered (gdb_stdlog,
7641 "notif: process: '%s' no pending reply\n",
7642 nc->name);
7643 }
7644 }
7645
7646 /* Wrapper around remote_target::remote_notif_get_pending_events to
7647 avoid having to export the whole remote_target class. */
7648
7649 void
7650 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7651 {
7652 remote->remote_notif_get_pending_events (nc);
7653 }
7654
7655 /* Called when it is decided that STOP_REPLY holds the info of the
7656 event that is to be returned to the core. This function always
7657 destroys STOP_REPLY. */
7658
7659 ptid_t
7660 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7661 struct target_waitstatus *status)
7662 {
7663 ptid_t ptid;
7664
7665 *status = stop_reply->ws;
7666 ptid = stop_reply->ptid;
7667
7668 /* If no thread/process was reported by the stub then use the first
7669 non-exited thread in the current target. */
7670 if (ptid == null_ptid)
7671 {
7672 /* Some stop events apply to all threads in an inferior, while others
7673 only apply to a single thread. */
7674 bool is_stop_for_all_threads
7675 = (status->kind == TARGET_WAITKIND_EXITED
7676 || status->kind == TARGET_WAITKIND_SIGNALLED);
7677
7678 for (thread_info *thr : all_non_exited_threads (this))
7679 {
7680 if (ptid != null_ptid
7681 && (!is_stop_for_all_threads
7682 || ptid.pid () != thr->ptid.pid ()))
7683 {
7684 static bool warned = false;
7685
7686 if (!warned)
7687 {
7688 /* If you are seeing this warning then the remote target
7689 has stopped without specifying a thread-id, but the
7690 target does have multiple threads (or inferiors), and
7691 so GDB is having to guess which thread stopped.
7692
7693 Examples of what might cause this are the target
7694 sending and 'S' stop packet, or a 'T' stop packet and
7695 not including a thread-id.
7696
7697 Additionally, the target might send a 'W' or 'X
7698 packet without including a process-id, when the target
7699 has multiple running inferiors. */
7700 if (is_stop_for_all_threads)
7701 warning (_("multi-inferior target stopped without "
7702 "sending a process-id, using first "
7703 "non-exited inferior"));
7704 else
7705 warning (_("multi-threaded target stopped without "
7706 "sending a thread-id, using first "
7707 "non-exited thread"));
7708 warned = true;
7709 }
7710 break;
7711 }
7712
7713 /* If this is a stop for all threads then don't use a particular
7714 threads ptid, instead create a new ptid where only the pid
7715 field is set. */
7716 if (is_stop_for_all_threads)
7717 ptid = ptid_t (thr->ptid.pid ());
7718 else
7719 ptid = thr->ptid;
7720 }
7721 gdb_assert (ptid != null_ptid);
7722 }
7723
7724 if (status->kind != TARGET_WAITKIND_EXITED
7725 && status->kind != TARGET_WAITKIND_SIGNALLED
7726 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7727 {
7728 /* Expedited registers. */
7729 if (!stop_reply->regcache.empty ())
7730 {
7731 struct regcache *regcache
7732 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7733
7734 for (cached_reg_t &reg : stop_reply->regcache)
7735 {
7736 regcache->raw_supply (reg.num, reg.data);
7737 xfree (reg.data);
7738 }
7739
7740 stop_reply->regcache.clear ();
7741 }
7742
7743 remote_notice_new_inferior (ptid, 0);
7744 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7745 remote_thr->core = stop_reply->core;
7746 remote_thr->stop_reason = stop_reply->stop_reason;
7747 remote_thr->watch_data_address = stop_reply->watch_data_address;
7748 remote_thr->vcont_resumed = 0;
7749 }
7750
7751 delete stop_reply;
7752 return ptid;
7753 }
7754
7755 /* The non-stop mode version of target_wait. */
7756
7757 ptid_t
7758 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7759 {
7760 struct remote_state *rs = get_remote_state ();
7761 struct stop_reply *stop_reply;
7762 int ret;
7763 int is_notif = 0;
7764
7765 /* If in non-stop mode, get out of getpkt even if a
7766 notification is received. */
7767
7768 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7769 while (1)
7770 {
7771 if (ret != -1 && !is_notif)
7772 switch (rs->buf[0])
7773 {
7774 case 'E': /* Error of some sort. */
7775 /* We're out of sync with the target now. Did it continue
7776 or not? We can't tell which thread it was in non-stop,
7777 so just ignore this. */
7778 warning (_("Remote failure reply: %s"), rs->buf.data ());
7779 break;
7780 case 'O': /* Console output. */
7781 remote_console_output (&rs->buf[1]);
7782 break;
7783 default:
7784 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7785 break;
7786 }
7787
7788 /* Acknowledge a pending stop reply that may have arrived in the
7789 mean time. */
7790 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7791 remote_notif_get_pending_events (&notif_client_stop);
7792
7793 /* If indeed we noticed a stop reply, we're done. */
7794 stop_reply = queued_stop_reply (ptid);
7795 if (stop_reply != NULL)
7796 return process_stop_reply (stop_reply, status);
7797
7798 /* Still no event. If we're just polling for an event, then
7799 return to the event loop. */
7800 if (options & TARGET_WNOHANG)
7801 {
7802 status->kind = TARGET_WAITKIND_IGNORE;
7803 return minus_one_ptid;
7804 }
7805
7806 /* Otherwise do a blocking wait. */
7807 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7808 }
7809 }
7810
7811 /* Return the first resumed thread. */
7812
7813 static ptid_t
7814 first_remote_resumed_thread (remote_target *target)
7815 {
7816 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7817 if (tp->resumed)
7818 return tp->ptid;
7819 return null_ptid;
7820 }
7821
7822 /* Wait until the remote machine stops, then return, storing status in
7823 STATUS just as `wait' would. */
7824
7825 ptid_t
7826 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7827 {
7828 struct remote_state *rs = get_remote_state ();
7829 ptid_t event_ptid = null_ptid;
7830 char *buf;
7831 struct stop_reply *stop_reply;
7832
7833 again:
7834
7835 status->kind = TARGET_WAITKIND_IGNORE;
7836 status->value.integer = 0;
7837
7838 stop_reply = queued_stop_reply (ptid);
7839 if (stop_reply != NULL)
7840 return process_stop_reply (stop_reply, status);
7841
7842 if (rs->cached_wait_status)
7843 /* Use the cached wait status, but only once. */
7844 rs->cached_wait_status = 0;
7845 else
7846 {
7847 int ret;
7848 int is_notif;
7849 int forever = ((options & TARGET_WNOHANG) == 0
7850 && rs->wait_forever_enabled_p);
7851
7852 if (!rs->waiting_for_stop_reply)
7853 {
7854 status->kind = TARGET_WAITKIND_NO_RESUMED;
7855 return minus_one_ptid;
7856 }
7857
7858 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7859 _never_ wait for ever -> test on target_is_async_p().
7860 However, before we do that we need to ensure that the caller
7861 knows how to take the target into/out of async mode. */
7862 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7863
7864 /* GDB gets a notification. Return to core as this event is
7865 not interesting. */
7866 if (ret != -1 && is_notif)
7867 return minus_one_ptid;
7868
7869 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7870 return minus_one_ptid;
7871 }
7872
7873 buf = rs->buf.data ();
7874
7875 /* Assume that the target has acknowledged Ctrl-C unless we receive
7876 an 'F' or 'O' packet. */
7877 if (buf[0] != 'F' && buf[0] != 'O')
7878 rs->ctrlc_pending_p = 0;
7879
7880 switch (buf[0])
7881 {
7882 case 'E': /* Error of some sort. */
7883 /* We're out of sync with the target now. Did it continue or
7884 not? Not is more likely, so report a stop. */
7885 rs->waiting_for_stop_reply = 0;
7886
7887 warning (_("Remote failure reply: %s"), buf);
7888 status->kind = TARGET_WAITKIND_STOPPED;
7889 status->value.sig = GDB_SIGNAL_0;
7890 break;
7891 case 'F': /* File-I/O request. */
7892 /* GDB may access the inferior memory while handling the File-I/O
7893 request, but we don't want GDB accessing memory while waiting
7894 for a stop reply. See the comments in putpkt_binary. Set
7895 waiting_for_stop_reply to 0 temporarily. */
7896 rs->waiting_for_stop_reply = 0;
7897 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7898 rs->ctrlc_pending_p = 0;
7899 /* GDB handled the File-I/O request, and the target is running
7900 again. Keep waiting for events. */
7901 rs->waiting_for_stop_reply = 1;
7902 break;
7903 case 'N': case 'T': case 'S': case 'X': case 'W':
7904 {
7905 /* There is a stop reply to handle. */
7906 rs->waiting_for_stop_reply = 0;
7907
7908 stop_reply
7909 = (struct stop_reply *) remote_notif_parse (this,
7910 &notif_client_stop,
7911 rs->buf.data ());
7912
7913 event_ptid = process_stop_reply (stop_reply, status);
7914 break;
7915 }
7916 case 'O': /* Console output. */
7917 remote_console_output (buf + 1);
7918 break;
7919 case '\0':
7920 if (rs->last_sent_signal != GDB_SIGNAL_0)
7921 {
7922 /* Zero length reply means that we tried 'S' or 'C' and the
7923 remote system doesn't support it. */
7924 target_terminal::ours_for_output ();
7925 printf_filtered
7926 ("Can't send signals to this remote system. %s not sent.\n",
7927 gdb_signal_to_name (rs->last_sent_signal));
7928 rs->last_sent_signal = GDB_SIGNAL_0;
7929 target_terminal::inferior ();
7930
7931 strcpy (buf, rs->last_sent_step ? "s" : "c");
7932 putpkt (buf);
7933 break;
7934 }
7935 /* fallthrough */
7936 default:
7937 warning (_("Invalid remote reply: %s"), buf);
7938 break;
7939 }
7940
7941 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7942 return minus_one_ptid;
7943 else if (status->kind == TARGET_WAITKIND_IGNORE)
7944 {
7945 /* Nothing interesting happened. If we're doing a non-blocking
7946 poll, we're done. Otherwise, go back to waiting. */
7947 if (options & TARGET_WNOHANG)
7948 return minus_one_ptid;
7949 else
7950 goto again;
7951 }
7952 else if (status->kind != TARGET_WAITKIND_EXITED
7953 && status->kind != TARGET_WAITKIND_SIGNALLED)
7954 {
7955 if (event_ptid != null_ptid)
7956 record_currthread (rs, event_ptid);
7957 else
7958 event_ptid = first_remote_resumed_thread (this);
7959 }
7960 else
7961 {
7962 /* A process exit. Invalidate our notion of current thread. */
7963 record_currthread (rs, minus_one_ptid);
7964 /* It's possible that the packet did not include a pid. */
7965 if (event_ptid == null_ptid)
7966 event_ptid = first_remote_resumed_thread (this);
7967 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7968 if (event_ptid == null_ptid)
7969 event_ptid = magic_null_ptid;
7970 }
7971
7972 return event_ptid;
7973 }
7974
7975 /* Wait until the remote machine stops, then return, storing status in
7976 STATUS just as `wait' would. */
7977
7978 ptid_t
7979 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7980 {
7981 ptid_t event_ptid;
7982
7983 if (target_is_non_stop_p ())
7984 event_ptid = wait_ns (ptid, status, options);
7985 else
7986 event_ptid = wait_as (ptid, status, options);
7987
7988 if (target_is_async_p ())
7989 {
7990 remote_state *rs = get_remote_state ();
7991
7992 /* If there are are events left in the queue tell the event loop
7993 to return here. */
7994 if (!rs->stop_reply_queue.empty ())
7995 mark_async_event_handler (rs->remote_async_inferior_event_token);
7996 }
7997
7998 return event_ptid;
7999 }
8000
8001 /* Fetch a single register using a 'p' packet. */
8002
8003 int
8004 remote_target::fetch_register_using_p (struct regcache *regcache,
8005 packet_reg *reg)
8006 {
8007 struct gdbarch *gdbarch = regcache->arch ();
8008 struct remote_state *rs = get_remote_state ();
8009 char *buf, *p;
8010 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8011 int i;
8012
8013 if (packet_support (PACKET_p) == PACKET_DISABLE)
8014 return 0;
8015
8016 if (reg->pnum == -1)
8017 return 0;
8018
8019 p = rs->buf.data ();
8020 *p++ = 'p';
8021 p += hexnumstr (p, reg->pnum);
8022 *p++ = '\0';
8023 putpkt (rs->buf);
8024 getpkt (&rs->buf, 0);
8025
8026 buf = rs->buf.data ();
8027
8028 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8029 {
8030 case PACKET_OK:
8031 break;
8032 case PACKET_UNKNOWN:
8033 return 0;
8034 case PACKET_ERROR:
8035 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8036 gdbarch_register_name (regcache->arch (),
8037 reg->regnum),
8038 buf);
8039 }
8040
8041 /* If this register is unfetchable, tell the regcache. */
8042 if (buf[0] == 'x')
8043 {
8044 regcache->raw_supply (reg->regnum, NULL);
8045 return 1;
8046 }
8047
8048 /* Otherwise, parse and supply the value. */
8049 p = buf;
8050 i = 0;
8051 while (p[0] != 0)
8052 {
8053 if (p[1] == 0)
8054 error (_("fetch_register_using_p: early buf termination"));
8055
8056 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8057 p += 2;
8058 }
8059 regcache->raw_supply (reg->regnum, regp);
8060 return 1;
8061 }
8062
8063 /* Fetch the registers included in the target's 'g' packet. */
8064
8065 int
8066 remote_target::send_g_packet ()
8067 {
8068 struct remote_state *rs = get_remote_state ();
8069 int buf_len;
8070
8071 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8072 putpkt (rs->buf);
8073 getpkt (&rs->buf, 0);
8074 if (packet_check_result (rs->buf) == PACKET_ERROR)
8075 error (_("Could not read registers; remote failure reply '%s'"),
8076 rs->buf.data ());
8077
8078 /* We can get out of synch in various cases. If the first character
8079 in the buffer is not a hex character, assume that has happened
8080 and try to fetch another packet to read. */
8081 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8082 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8083 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8084 && rs->buf[0] != 'x') /* New: unavailable register value. */
8085 {
8086 if (remote_debug)
8087 fprintf_unfiltered (gdb_stdlog,
8088 "Bad register packet; fetching a new packet\n");
8089 getpkt (&rs->buf, 0);
8090 }
8091
8092 buf_len = strlen (rs->buf.data ());
8093
8094 /* Sanity check the received packet. */
8095 if (buf_len % 2 != 0)
8096 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8097
8098 return buf_len / 2;
8099 }
8100
8101 void
8102 remote_target::process_g_packet (struct regcache *regcache)
8103 {
8104 struct gdbarch *gdbarch = regcache->arch ();
8105 struct remote_state *rs = get_remote_state ();
8106 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8107 int i, buf_len;
8108 char *p;
8109 char *regs;
8110
8111 buf_len = strlen (rs->buf.data ());
8112
8113 /* Further sanity checks, with knowledge of the architecture. */
8114 if (buf_len > 2 * rsa->sizeof_g_packet)
8115 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8116 "bytes): %s"),
8117 rsa->sizeof_g_packet, buf_len / 2,
8118 rs->buf.data ());
8119
8120 /* Save the size of the packet sent to us by the target. It is used
8121 as a heuristic when determining the max size of packets that the
8122 target can safely receive. */
8123 if (rsa->actual_register_packet_size == 0)
8124 rsa->actual_register_packet_size = buf_len;
8125
8126 /* If this is smaller than we guessed the 'g' packet would be,
8127 update our records. A 'g' reply that doesn't include a register's
8128 value implies either that the register is not available, or that
8129 the 'p' packet must be used. */
8130 if (buf_len < 2 * rsa->sizeof_g_packet)
8131 {
8132 long sizeof_g_packet = buf_len / 2;
8133
8134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8135 {
8136 long offset = rsa->regs[i].offset;
8137 long reg_size = register_size (gdbarch, i);
8138
8139 if (rsa->regs[i].pnum == -1)
8140 continue;
8141
8142 if (offset >= sizeof_g_packet)
8143 rsa->regs[i].in_g_packet = 0;
8144 else if (offset + reg_size > sizeof_g_packet)
8145 error (_("Truncated register %d in remote 'g' packet"), i);
8146 else
8147 rsa->regs[i].in_g_packet = 1;
8148 }
8149
8150 /* Looks valid enough, we can assume this is the correct length
8151 for a 'g' packet. It's important not to adjust
8152 rsa->sizeof_g_packet if we have truncated registers otherwise
8153 this "if" won't be run the next time the method is called
8154 with a packet of the same size and one of the internal errors
8155 below will trigger instead. */
8156 rsa->sizeof_g_packet = sizeof_g_packet;
8157 }
8158
8159 regs = (char *) alloca (rsa->sizeof_g_packet);
8160
8161 /* Unimplemented registers read as all bits zero. */
8162 memset (regs, 0, rsa->sizeof_g_packet);
8163
8164 /* Reply describes registers byte by byte, each byte encoded as two
8165 hex characters. Suck them all up, then supply them to the
8166 register cacheing/storage mechanism. */
8167
8168 p = rs->buf.data ();
8169 for (i = 0; i < rsa->sizeof_g_packet; i++)
8170 {
8171 if (p[0] == 0 || p[1] == 0)
8172 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8173 internal_error (__FILE__, __LINE__,
8174 _("unexpected end of 'g' packet reply"));
8175
8176 if (p[0] == 'x' && p[1] == 'x')
8177 regs[i] = 0; /* 'x' */
8178 else
8179 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8180 p += 2;
8181 }
8182
8183 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8184 {
8185 struct packet_reg *r = &rsa->regs[i];
8186 long reg_size = register_size (gdbarch, i);
8187
8188 if (r->in_g_packet)
8189 {
8190 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8191 /* This shouldn't happen - we adjusted in_g_packet above. */
8192 internal_error (__FILE__, __LINE__,
8193 _("unexpected end of 'g' packet reply"));
8194 else if (rs->buf[r->offset * 2] == 'x')
8195 {
8196 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8197 /* The register isn't available, mark it as such (at
8198 the same time setting the value to zero). */
8199 regcache->raw_supply (r->regnum, NULL);
8200 }
8201 else
8202 regcache->raw_supply (r->regnum, regs + r->offset);
8203 }
8204 }
8205 }
8206
8207 void
8208 remote_target::fetch_registers_using_g (struct regcache *regcache)
8209 {
8210 send_g_packet ();
8211 process_g_packet (regcache);
8212 }
8213
8214 /* Make the remote selected traceframe match GDB's selected
8215 traceframe. */
8216
8217 void
8218 remote_target::set_remote_traceframe ()
8219 {
8220 int newnum;
8221 struct remote_state *rs = get_remote_state ();
8222
8223 if (rs->remote_traceframe_number == get_traceframe_number ())
8224 return;
8225
8226 /* Avoid recursion, remote_trace_find calls us again. */
8227 rs->remote_traceframe_number = get_traceframe_number ();
8228
8229 newnum = target_trace_find (tfind_number,
8230 get_traceframe_number (), 0, 0, NULL);
8231
8232 /* Should not happen. If it does, all bets are off. */
8233 if (newnum != get_traceframe_number ())
8234 warning (_("could not set remote traceframe"));
8235 }
8236
8237 void
8238 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8239 {
8240 struct gdbarch *gdbarch = regcache->arch ();
8241 struct remote_state *rs = get_remote_state ();
8242 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8243 int i;
8244
8245 set_remote_traceframe ();
8246 set_general_thread (regcache->ptid ());
8247
8248 if (regnum >= 0)
8249 {
8250 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8251
8252 gdb_assert (reg != NULL);
8253
8254 /* If this register might be in the 'g' packet, try that first -
8255 we are likely to read more than one register. If this is the
8256 first 'g' packet, we might be overly optimistic about its
8257 contents, so fall back to 'p'. */
8258 if (reg->in_g_packet)
8259 {
8260 fetch_registers_using_g (regcache);
8261 if (reg->in_g_packet)
8262 return;
8263 }
8264
8265 if (fetch_register_using_p (regcache, reg))
8266 return;
8267
8268 /* This register is not available. */
8269 regcache->raw_supply (reg->regnum, NULL);
8270
8271 return;
8272 }
8273
8274 fetch_registers_using_g (regcache);
8275
8276 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8277 if (!rsa->regs[i].in_g_packet)
8278 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8279 {
8280 /* This register is not available. */
8281 regcache->raw_supply (i, NULL);
8282 }
8283 }
8284
8285 /* Prepare to store registers. Since we may send them all (using a
8286 'G' request), we have to read out the ones we don't want to change
8287 first. */
8288
8289 void
8290 remote_target::prepare_to_store (struct regcache *regcache)
8291 {
8292 struct remote_state *rs = get_remote_state ();
8293 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8294 int i;
8295
8296 /* Make sure the entire registers array is valid. */
8297 switch (packet_support (PACKET_P))
8298 {
8299 case PACKET_DISABLE:
8300 case PACKET_SUPPORT_UNKNOWN:
8301 /* Make sure all the necessary registers are cached. */
8302 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8303 if (rsa->regs[i].in_g_packet)
8304 regcache->raw_update (rsa->regs[i].regnum);
8305 break;
8306 case PACKET_ENABLE:
8307 break;
8308 }
8309 }
8310
8311 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8312 packet was not recognized. */
8313
8314 int
8315 remote_target::store_register_using_P (const struct regcache *regcache,
8316 packet_reg *reg)
8317 {
8318 struct gdbarch *gdbarch = regcache->arch ();
8319 struct remote_state *rs = get_remote_state ();
8320 /* Try storing a single register. */
8321 char *buf = rs->buf.data ();
8322 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8323 char *p;
8324
8325 if (packet_support (PACKET_P) == PACKET_DISABLE)
8326 return 0;
8327
8328 if (reg->pnum == -1)
8329 return 0;
8330
8331 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8332 p = buf + strlen (buf);
8333 regcache->raw_collect (reg->regnum, regp);
8334 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8335 putpkt (rs->buf);
8336 getpkt (&rs->buf, 0);
8337
8338 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8339 {
8340 case PACKET_OK:
8341 return 1;
8342 case PACKET_ERROR:
8343 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8344 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8345 case PACKET_UNKNOWN:
8346 return 0;
8347 default:
8348 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8349 }
8350 }
8351
8352 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8353 contents of the register cache buffer. FIXME: ignores errors. */
8354
8355 void
8356 remote_target::store_registers_using_G (const struct regcache *regcache)
8357 {
8358 struct remote_state *rs = get_remote_state ();
8359 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8360 gdb_byte *regs;
8361 char *p;
8362
8363 /* Extract all the registers in the regcache copying them into a
8364 local buffer. */
8365 {
8366 int i;
8367
8368 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8369 memset (regs, 0, rsa->sizeof_g_packet);
8370 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8371 {
8372 struct packet_reg *r = &rsa->regs[i];
8373
8374 if (r->in_g_packet)
8375 regcache->raw_collect (r->regnum, regs + r->offset);
8376 }
8377 }
8378
8379 /* Command describes registers byte by byte,
8380 each byte encoded as two hex characters. */
8381 p = rs->buf.data ();
8382 *p++ = 'G';
8383 bin2hex (regs, p, rsa->sizeof_g_packet);
8384 putpkt (rs->buf);
8385 getpkt (&rs->buf, 0);
8386 if (packet_check_result (rs->buf) == PACKET_ERROR)
8387 error (_("Could not write registers; remote failure reply '%s'"),
8388 rs->buf.data ());
8389 }
8390
8391 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8392 of the register cache buffer. FIXME: ignores errors. */
8393
8394 void
8395 remote_target::store_registers (struct regcache *regcache, int regnum)
8396 {
8397 struct gdbarch *gdbarch = regcache->arch ();
8398 struct remote_state *rs = get_remote_state ();
8399 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8400 int i;
8401
8402 set_remote_traceframe ();
8403 set_general_thread (regcache->ptid ());
8404
8405 if (regnum >= 0)
8406 {
8407 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8408
8409 gdb_assert (reg != NULL);
8410
8411 /* Always prefer to store registers using the 'P' packet if
8412 possible; we often change only a small number of registers.
8413 Sometimes we change a larger number; we'd need help from a
8414 higher layer to know to use 'G'. */
8415 if (store_register_using_P (regcache, reg))
8416 return;
8417
8418 /* For now, don't complain if we have no way to write the
8419 register. GDB loses track of unavailable registers too
8420 easily. Some day, this may be an error. We don't have
8421 any way to read the register, either... */
8422 if (!reg->in_g_packet)
8423 return;
8424
8425 store_registers_using_G (regcache);
8426 return;
8427 }
8428
8429 store_registers_using_G (regcache);
8430
8431 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8432 if (!rsa->regs[i].in_g_packet)
8433 if (!store_register_using_P (regcache, &rsa->regs[i]))
8434 /* See above for why we do not issue an error here. */
8435 continue;
8436 }
8437 \f
8438
8439 /* Return the number of hex digits in num. */
8440
8441 static int
8442 hexnumlen (ULONGEST num)
8443 {
8444 int i;
8445
8446 for (i = 0; num != 0; i++)
8447 num >>= 4;
8448
8449 return std::max (i, 1);
8450 }
8451
8452 /* Set BUF to the minimum number of hex digits representing NUM. */
8453
8454 static int
8455 hexnumstr (char *buf, ULONGEST num)
8456 {
8457 int len = hexnumlen (num);
8458
8459 return hexnumnstr (buf, num, len);
8460 }
8461
8462
8463 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8464
8465 static int
8466 hexnumnstr (char *buf, ULONGEST num, int width)
8467 {
8468 int i;
8469
8470 buf[width] = '\0';
8471
8472 for (i = width - 1; i >= 0; i--)
8473 {
8474 buf[i] = "0123456789abcdef"[(num & 0xf)];
8475 num >>= 4;
8476 }
8477
8478 return width;
8479 }
8480
8481 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8482
8483 static CORE_ADDR
8484 remote_address_masked (CORE_ADDR addr)
8485 {
8486 unsigned int address_size = remote_address_size;
8487
8488 /* If "remoteaddresssize" was not set, default to target address size. */
8489 if (!address_size)
8490 address_size = gdbarch_addr_bit (target_gdbarch ());
8491
8492 if (address_size > 0
8493 && address_size < (sizeof (ULONGEST) * 8))
8494 {
8495 /* Only create a mask when that mask can safely be constructed
8496 in a ULONGEST variable. */
8497 ULONGEST mask = 1;
8498
8499 mask = (mask << address_size) - 1;
8500 addr &= mask;
8501 }
8502 return addr;
8503 }
8504
8505 /* Determine whether the remote target supports binary downloading.
8506 This is accomplished by sending a no-op memory write of zero length
8507 to the target at the specified address. It does not suffice to send
8508 the whole packet, since many stubs strip the eighth bit and
8509 subsequently compute a wrong checksum, which causes real havoc with
8510 remote_write_bytes.
8511
8512 NOTE: This can still lose if the serial line is not eight-bit
8513 clean. In cases like this, the user should clear "remote
8514 X-packet". */
8515
8516 void
8517 remote_target::check_binary_download (CORE_ADDR addr)
8518 {
8519 struct remote_state *rs = get_remote_state ();
8520
8521 switch (packet_support (PACKET_X))
8522 {
8523 case PACKET_DISABLE:
8524 break;
8525 case PACKET_ENABLE:
8526 break;
8527 case PACKET_SUPPORT_UNKNOWN:
8528 {
8529 char *p;
8530
8531 p = rs->buf.data ();
8532 *p++ = 'X';
8533 p += hexnumstr (p, (ULONGEST) addr);
8534 *p++ = ',';
8535 p += hexnumstr (p, (ULONGEST) 0);
8536 *p++ = ':';
8537 *p = '\0';
8538
8539 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8540 getpkt (&rs->buf, 0);
8541
8542 if (rs->buf[0] == '\0')
8543 {
8544 if (remote_debug)
8545 fprintf_unfiltered (gdb_stdlog,
8546 "binary downloading NOT "
8547 "supported by target\n");
8548 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8549 }
8550 else
8551 {
8552 if (remote_debug)
8553 fprintf_unfiltered (gdb_stdlog,
8554 "binary downloading supported by target\n");
8555 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8556 }
8557 break;
8558 }
8559 }
8560 }
8561
8562 /* Helper function to resize the payload in order to try to get a good
8563 alignment. We try to write an amount of data such that the next write will
8564 start on an address aligned on REMOTE_ALIGN_WRITES. */
8565
8566 static int
8567 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8568 {
8569 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8570 }
8571
8572 /* Write memory data directly to the remote machine.
8573 This does not inform the data cache; the data cache uses this.
8574 HEADER is the starting part of the packet.
8575 MEMADDR is the address in the remote memory space.
8576 MYADDR is the address of the buffer in our space.
8577 LEN_UNITS is the number of addressable units to write.
8578 UNIT_SIZE is the length in bytes of an addressable unit.
8579 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8580 should send data as binary ('X'), or hex-encoded ('M').
8581
8582 The function creates packet of the form
8583 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8584
8585 where encoding of <DATA> is terminated by PACKET_FORMAT.
8586
8587 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8588 are omitted.
8589
8590 Return the transferred status, error or OK (an
8591 'enum target_xfer_status' value). Save the number of addressable units
8592 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8593
8594 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8595 exchange between gdb and the stub could look like (?? in place of the
8596 checksum):
8597
8598 -> $m1000,4#??
8599 <- aaaabbbbccccdddd
8600
8601 -> $M1000,3:eeeeffffeeee#??
8602 <- OK
8603
8604 -> $m1000,4#??
8605 <- eeeeffffeeeedddd */
8606
8607 target_xfer_status
8608 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8609 const gdb_byte *myaddr,
8610 ULONGEST len_units,
8611 int unit_size,
8612 ULONGEST *xfered_len_units,
8613 char packet_format, int use_length)
8614 {
8615 struct remote_state *rs = get_remote_state ();
8616 char *p;
8617 char *plen = NULL;
8618 int plenlen = 0;
8619 int todo_units;
8620 int units_written;
8621 int payload_capacity_bytes;
8622 int payload_length_bytes;
8623
8624 if (packet_format != 'X' && packet_format != 'M')
8625 internal_error (__FILE__, __LINE__,
8626 _("remote_write_bytes_aux: bad packet format"));
8627
8628 if (len_units == 0)
8629 return TARGET_XFER_EOF;
8630
8631 payload_capacity_bytes = get_memory_write_packet_size ();
8632
8633 /* The packet buffer will be large enough for the payload;
8634 get_memory_packet_size ensures this. */
8635 rs->buf[0] = '\0';
8636
8637 /* Compute the size of the actual payload by subtracting out the
8638 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8639
8640 payload_capacity_bytes -= strlen ("$,:#NN");
8641 if (!use_length)
8642 /* The comma won't be used. */
8643 payload_capacity_bytes += 1;
8644 payload_capacity_bytes -= strlen (header);
8645 payload_capacity_bytes -= hexnumlen (memaddr);
8646
8647 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8648
8649 strcat (rs->buf.data (), header);
8650 p = rs->buf.data () + strlen (header);
8651
8652 /* Compute a best guess of the number of bytes actually transfered. */
8653 if (packet_format == 'X')
8654 {
8655 /* Best guess at number of bytes that will fit. */
8656 todo_units = std::min (len_units,
8657 (ULONGEST) payload_capacity_bytes / unit_size);
8658 if (use_length)
8659 payload_capacity_bytes -= hexnumlen (todo_units);
8660 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8661 }
8662 else
8663 {
8664 /* Number of bytes that will fit. */
8665 todo_units
8666 = std::min (len_units,
8667 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8668 if (use_length)
8669 payload_capacity_bytes -= hexnumlen (todo_units);
8670 todo_units = std::min (todo_units,
8671 (payload_capacity_bytes / unit_size) / 2);
8672 }
8673
8674 if (todo_units <= 0)
8675 internal_error (__FILE__, __LINE__,
8676 _("minimum packet size too small to write data"));
8677
8678 /* If we already need another packet, then try to align the end
8679 of this packet to a useful boundary. */
8680 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8681 todo_units = align_for_efficient_write (todo_units, memaddr);
8682
8683 /* Append "<memaddr>". */
8684 memaddr = remote_address_masked (memaddr);
8685 p += hexnumstr (p, (ULONGEST) memaddr);
8686
8687 if (use_length)
8688 {
8689 /* Append ",". */
8690 *p++ = ',';
8691
8692 /* Append the length and retain its location and size. It may need to be
8693 adjusted once the packet body has been created. */
8694 plen = p;
8695 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8696 p += plenlen;
8697 }
8698
8699 /* Append ":". */
8700 *p++ = ':';
8701 *p = '\0';
8702
8703 /* Append the packet body. */
8704 if (packet_format == 'X')
8705 {
8706 /* Binary mode. Send target system values byte by byte, in
8707 increasing byte addresses. Only escape certain critical
8708 characters. */
8709 payload_length_bytes =
8710 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8711 &units_written, payload_capacity_bytes);
8712
8713 /* If not all TODO units fit, then we'll need another packet. Make
8714 a second try to keep the end of the packet aligned. Don't do
8715 this if the packet is tiny. */
8716 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8717 {
8718 int new_todo_units;
8719
8720 new_todo_units = align_for_efficient_write (units_written, memaddr);
8721
8722 if (new_todo_units != units_written)
8723 payload_length_bytes =
8724 remote_escape_output (myaddr, new_todo_units, unit_size,
8725 (gdb_byte *) p, &units_written,
8726 payload_capacity_bytes);
8727 }
8728
8729 p += payload_length_bytes;
8730 if (use_length && units_written < todo_units)
8731 {
8732 /* Escape chars have filled up the buffer prematurely,
8733 and we have actually sent fewer units than planned.
8734 Fix-up the length field of the packet. Use the same
8735 number of characters as before. */
8736 plen += hexnumnstr (plen, (ULONGEST) units_written,
8737 plenlen);
8738 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8739 }
8740 }
8741 else
8742 {
8743 /* Normal mode: Send target system values byte by byte, in
8744 increasing byte addresses. Each byte is encoded as a two hex
8745 value. */
8746 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8747 units_written = todo_units;
8748 }
8749
8750 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8751 getpkt (&rs->buf, 0);
8752
8753 if (rs->buf[0] == 'E')
8754 return TARGET_XFER_E_IO;
8755
8756 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8757 send fewer units than we'd planned. */
8758 *xfered_len_units = (ULONGEST) units_written;
8759 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8760 }
8761
8762 /* Write memory data directly to the remote machine.
8763 This does not inform the data cache; the data cache uses this.
8764 MEMADDR is the address in the remote memory space.
8765 MYADDR is the address of the buffer in our space.
8766 LEN is the number of bytes.
8767
8768 Return the transferred status, error or OK (an
8769 'enum target_xfer_status' value). Save the number of bytes
8770 transferred in *XFERED_LEN. Only transfer a single packet. */
8771
8772 target_xfer_status
8773 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8774 ULONGEST len, int unit_size,
8775 ULONGEST *xfered_len)
8776 {
8777 const char *packet_format = NULL;
8778
8779 /* Check whether the target supports binary download. */
8780 check_binary_download (memaddr);
8781
8782 switch (packet_support (PACKET_X))
8783 {
8784 case PACKET_ENABLE:
8785 packet_format = "X";
8786 break;
8787 case PACKET_DISABLE:
8788 packet_format = "M";
8789 break;
8790 case PACKET_SUPPORT_UNKNOWN:
8791 internal_error (__FILE__, __LINE__,
8792 _("remote_write_bytes: bad internal state"));
8793 default:
8794 internal_error (__FILE__, __LINE__, _("bad switch"));
8795 }
8796
8797 return remote_write_bytes_aux (packet_format,
8798 memaddr, myaddr, len, unit_size, xfered_len,
8799 packet_format[0], 1);
8800 }
8801
8802 /* Read memory data directly from the remote machine.
8803 This does not use the data cache; the data cache uses this.
8804 MEMADDR is the address in the remote memory space.
8805 MYADDR is the address of the buffer in our space.
8806 LEN_UNITS is the number of addressable memory units to read..
8807 UNIT_SIZE is the length in bytes of an addressable unit.
8808
8809 Return the transferred status, error or OK (an
8810 'enum target_xfer_status' value). Save the number of bytes
8811 transferred in *XFERED_LEN_UNITS.
8812
8813 See the comment of remote_write_bytes_aux for an example of
8814 memory read/write exchange between gdb and the stub. */
8815
8816 target_xfer_status
8817 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8818 ULONGEST len_units,
8819 int unit_size, ULONGEST *xfered_len_units)
8820 {
8821 struct remote_state *rs = get_remote_state ();
8822 int buf_size_bytes; /* Max size of packet output buffer. */
8823 char *p;
8824 int todo_units;
8825 int decoded_bytes;
8826
8827 buf_size_bytes = get_memory_read_packet_size ();
8828 /* The packet buffer will be large enough for the payload;
8829 get_memory_packet_size ensures this. */
8830
8831 /* Number of units that will fit. */
8832 todo_units = std::min (len_units,
8833 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8834
8835 /* Construct "m"<memaddr>","<len>". */
8836 memaddr = remote_address_masked (memaddr);
8837 p = rs->buf.data ();
8838 *p++ = 'm';
8839 p += hexnumstr (p, (ULONGEST) memaddr);
8840 *p++ = ',';
8841 p += hexnumstr (p, (ULONGEST) todo_units);
8842 *p = '\0';
8843 putpkt (rs->buf);
8844 getpkt (&rs->buf, 0);
8845 if (rs->buf[0] == 'E'
8846 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8847 && rs->buf[3] == '\0')
8848 return TARGET_XFER_E_IO;
8849 /* Reply describes memory byte by byte, each byte encoded as two hex
8850 characters. */
8851 p = rs->buf.data ();
8852 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8853 /* Return what we have. Let higher layers handle partial reads. */
8854 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8855 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8856 }
8857
8858 /* Using the set of read-only target sections of remote, read live
8859 read-only memory.
8860
8861 For interface/parameters/return description see target.h,
8862 to_xfer_partial. */
8863
8864 target_xfer_status
8865 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8866 ULONGEST memaddr,
8867 ULONGEST len,
8868 int unit_size,
8869 ULONGEST *xfered_len)
8870 {
8871 struct target_section *secp;
8872 struct target_section_table *table;
8873
8874 secp = target_section_by_addr (this, memaddr);
8875 if (secp != NULL
8876 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8877 {
8878 struct target_section *p;
8879 ULONGEST memend = memaddr + len;
8880
8881 table = target_get_section_table (this);
8882
8883 for (p = table->sections; p < table->sections_end; p++)
8884 {
8885 if (memaddr >= p->addr)
8886 {
8887 if (memend <= p->endaddr)
8888 {
8889 /* Entire transfer is within this section. */
8890 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8891 xfered_len);
8892 }
8893 else if (memaddr >= p->endaddr)
8894 {
8895 /* This section ends before the transfer starts. */
8896 continue;
8897 }
8898 else
8899 {
8900 /* This section overlaps the transfer. Just do half. */
8901 len = p->endaddr - memaddr;
8902 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8903 xfered_len);
8904 }
8905 }
8906 }
8907 }
8908
8909 return TARGET_XFER_EOF;
8910 }
8911
8912 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8913 first if the requested memory is unavailable in traceframe.
8914 Otherwise, fall back to remote_read_bytes_1. */
8915
8916 target_xfer_status
8917 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8918 gdb_byte *myaddr, ULONGEST len, int unit_size,
8919 ULONGEST *xfered_len)
8920 {
8921 if (len == 0)
8922 return TARGET_XFER_EOF;
8923
8924 if (get_traceframe_number () != -1)
8925 {
8926 std::vector<mem_range> available;
8927
8928 /* If we fail to get the set of available memory, then the
8929 target does not support querying traceframe info, and so we
8930 attempt reading from the traceframe anyway (assuming the
8931 target implements the old QTro packet then). */
8932 if (traceframe_available_memory (&available, memaddr, len))
8933 {
8934 if (available.empty () || available[0].start != memaddr)
8935 {
8936 enum target_xfer_status res;
8937
8938 /* Don't read into the traceframe's available
8939 memory. */
8940 if (!available.empty ())
8941 {
8942 LONGEST oldlen = len;
8943
8944 len = available[0].start - memaddr;
8945 gdb_assert (len <= oldlen);
8946 }
8947
8948 /* This goes through the topmost target again. */
8949 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8950 len, unit_size, xfered_len);
8951 if (res == TARGET_XFER_OK)
8952 return TARGET_XFER_OK;
8953 else
8954 {
8955 /* No use trying further, we know some memory starting
8956 at MEMADDR isn't available. */
8957 *xfered_len = len;
8958 return (*xfered_len != 0) ?
8959 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8960 }
8961 }
8962
8963 /* Don't try to read more than how much is available, in
8964 case the target implements the deprecated QTro packet to
8965 cater for older GDBs (the target's knowledge of read-only
8966 sections may be outdated by now). */
8967 len = available[0].length;
8968 }
8969 }
8970
8971 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8972 }
8973
8974 \f
8975
8976 /* Sends a packet with content determined by the printf format string
8977 FORMAT and the remaining arguments, then gets the reply. Returns
8978 whether the packet was a success, a failure, or unknown. */
8979
8980 packet_result
8981 remote_target::remote_send_printf (const char *format, ...)
8982 {
8983 struct remote_state *rs = get_remote_state ();
8984 int max_size = get_remote_packet_size ();
8985 va_list ap;
8986
8987 va_start (ap, format);
8988
8989 rs->buf[0] = '\0';
8990 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8991
8992 va_end (ap);
8993
8994 if (size >= max_size)
8995 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8996
8997 if (putpkt (rs->buf) < 0)
8998 error (_("Communication problem with target."));
8999
9000 rs->buf[0] = '\0';
9001 getpkt (&rs->buf, 0);
9002
9003 return packet_check_result (rs->buf);
9004 }
9005
9006 /* Flash writing can take quite some time. We'll set
9007 effectively infinite timeout for flash operations.
9008 In future, we'll need to decide on a better approach. */
9009 static const int remote_flash_timeout = 1000;
9010
9011 void
9012 remote_target::flash_erase (ULONGEST address, LONGEST length)
9013 {
9014 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9015 enum packet_result ret;
9016 scoped_restore restore_timeout
9017 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9018
9019 ret = remote_send_printf ("vFlashErase:%s,%s",
9020 phex (address, addr_size),
9021 phex (length, 4));
9022 switch (ret)
9023 {
9024 case PACKET_UNKNOWN:
9025 error (_("Remote target does not support flash erase"));
9026 case PACKET_ERROR:
9027 error (_("Error erasing flash with vFlashErase packet"));
9028 default:
9029 break;
9030 }
9031 }
9032
9033 target_xfer_status
9034 remote_target::remote_flash_write (ULONGEST address,
9035 ULONGEST length, ULONGEST *xfered_len,
9036 const gdb_byte *data)
9037 {
9038 scoped_restore restore_timeout
9039 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9040 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9041 xfered_len,'X', 0);
9042 }
9043
9044 void
9045 remote_target::flash_done ()
9046 {
9047 int ret;
9048
9049 scoped_restore restore_timeout
9050 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9051
9052 ret = remote_send_printf ("vFlashDone");
9053
9054 switch (ret)
9055 {
9056 case PACKET_UNKNOWN:
9057 error (_("Remote target does not support vFlashDone"));
9058 case PACKET_ERROR:
9059 error (_("Error finishing flash operation"));
9060 default:
9061 break;
9062 }
9063 }
9064
9065 void
9066 remote_target::files_info ()
9067 {
9068 puts_filtered ("Debugging a target over a serial line.\n");
9069 }
9070 \f
9071 /* Stuff for dealing with the packets which are part of this protocol.
9072 See comment at top of file for details. */
9073
9074 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9075 error to higher layers. Called when a serial error is detected.
9076 The exception message is STRING, followed by a colon and a blank,
9077 the system error message for errno at function entry and final dot
9078 for output compatibility with throw_perror_with_name. */
9079
9080 static void
9081 unpush_and_perror (remote_target *target, const char *string)
9082 {
9083 int saved_errno = errno;
9084
9085 remote_unpush_target (target);
9086 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9087 safe_strerror (saved_errno));
9088 }
9089
9090 /* Read a single character from the remote end. The current quit
9091 handler is overridden to avoid quitting in the middle of packet
9092 sequence, as that would break communication with the remote server.
9093 See remote_serial_quit_handler for more detail. */
9094
9095 int
9096 remote_target::readchar (int timeout)
9097 {
9098 int ch;
9099 struct remote_state *rs = get_remote_state ();
9100
9101 {
9102 scoped_restore restore_quit_target
9103 = make_scoped_restore (&curr_quit_handler_target, this);
9104 scoped_restore restore_quit
9105 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9106
9107 rs->got_ctrlc_during_io = 0;
9108
9109 ch = serial_readchar (rs->remote_desc, timeout);
9110
9111 if (rs->got_ctrlc_during_io)
9112 set_quit_flag ();
9113 }
9114
9115 if (ch >= 0)
9116 return ch;
9117
9118 switch ((enum serial_rc) ch)
9119 {
9120 case SERIAL_EOF:
9121 remote_unpush_target (this);
9122 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9123 /* no return */
9124 case SERIAL_ERROR:
9125 unpush_and_perror (this, _("Remote communication error. "
9126 "Target disconnected."));
9127 /* no return */
9128 case SERIAL_TIMEOUT:
9129 break;
9130 }
9131 return ch;
9132 }
9133
9134 /* Wrapper for serial_write that closes the target and throws if
9135 writing fails. The current quit handler is overridden to avoid
9136 quitting in the middle of packet sequence, as that would break
9137 communication with the remote server. See
9138 remote_serial_quit_handler for more detail. */
9139
9140 void
9141 remote_target::remote_serial_write (const char *str, int len)
9142 {
9143 struct remote_state *rs = get_remote_state ();
9144
9145 scoped_restore restore_quit_target
9146 = make_scoped_restore (&curr_quit_handler_target, this);
9147 scoped_restore restore_quit
9148 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9149
9150 rs->got_ctrlc_during_io = 0;
9151
9152 if (serial_write (rs->remote_desc, str, len))
9153 {
9154 unpush_and_perror (this, _("Remote communication error. "
9155 "Target disconnected."));
9156 }
9157
9158 if (rs->got_ctrlc_during_io)
9159 set_quit_flag ();
9160 }
9161
9162 /* Return a string representing an escaped version of BUF, of len N.
9163 E.g. \n is converted to \\n, \t to \\t, etc. */
9164
9165 static std::string
9166 escape_buffer (const char *buf, int n)
9167 {
9168 string_file stb;
9169
9170 stb.putstrn (buf, n, '\\');
9171 return std::move (stb.string ());
9172 }
9173
9174 /* Display a null-terminated packet on stdout, for debugging, using C
9175 string notation. */
9176
9177 static void
9178 print_packet (const char *buf)
9179 {
9180 puts_filtered ("\"");
9181 fputstr_filtered (buf, '"', gdb_stdout);
9182 puts_filtered ("\"");
9183 }
9184
9185 int
9186 remote_target::putpkt (const char *buf)
9187 {
9188 return putpkt_binary (buf, strlen (buf));
9189 }
9190
9191 /* Wrapper around remote_target::putpkt to avoid exporting
9192 remote_target. */
9193
9194 int
9195 putpkt (remote_target *remote, const char *buf)
9196 {
9197 return remote->putpkt (buf);
9198 }
9199
9200 /* Send a packet to the remote machine, with error checking. The data
9201 of the packet is in BUF. The string in BUF can be at most
9202 get_remote_packet_size () - 5 to account for the $, # and checksum,
9203 and for a possible /0 if we are debugging (remote_debug) and want
9204 to print the sent packet as a string. */
9205
9206 int
9207 remote_target::putpkt_binary (const char *buf, int cnt)
9208 {
9209 struct remote_state *rs = get_remote_state ();
9210 int i;
9211 unsigned char csum = 0;
9212 gdb::def_vector<char> data (cnt + 6);
9213 char *buf2 = data.data ();
9214
9215 int ch;
9216 int tcount = 0;
9217 char *p;
9218
9219 /* Catch cases like trying to read memory or listing threads while
9220 we're waiting for a stop reply. The remote server wouldn't be
9221 ready to handle this request, so we'd hang and timeout. We don't
9222 have to worry about this in synchronous mode, because in that
9223 case it's not possible to issue a command while the target is
9224 running. This is not a problem in non-stop mode, because in that
9225 case, the stub is always ready to process serial input. */
9226 if (!target_is_non_stop_p ()
9227 && target_is_async_p ()
9228 && rs->waiting_for_stop_reply)
9229 {
9230 error (_("Cannot execute this command while the target is running.\n"
9231 "Use the \"interrupt\" command to stop the target\n"
9232 "and then try again."));
9233 }
9234
9235 /* We're sending out a new packet. Make sure we don't look at a
9236 stale cached response. */
9237 rs->cached_wait_status = 0;
9238
9239 /* Copy the packet into buffer BUF2, encapsulating it
9240 and giving it a checksum. */
9241
9242 p = buf2;
9243 *p++ = '$';
9244
9245 for (i = 0; i < cnt; i++)
9246 {
9247 csum += buf[i];
9248 *p++ = buf[i];
9249 }
9250 *p++ = '#';
9251 *p++ = tohex ((csum >> 4) & 0xf);
9252 *p++ = tohex (csum & 0xf);
9253
9254 /* Send it over and over until we get a positive ack. */
9255
9256 while (1)
9257 {
9258 int started_error_output = 0;
9259
9260 if (remote_debug)
9261 {
9262 *p = '\0';
9263
9264 int len = (int) (p - buf2);
9265 int max_chars;
9266
9267 if (remote_packet_max_chars < 0)
9268 max_chars = len;
9269 else
9270 max_chars = remote_packet_max_chars;
9271
9272 std::string str
9273 = escape_buffer (buf2, std::min (len, max_chars));
9274
9275 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9276
9277 if (len > max_chars)
9278 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9279 len - max_chars);
9280
9281 fprintf_unfiltered (gdb_stdlog, "...");
9282
9283 gdb_flush (gdb_stdlog);
9284 }
9285 remote_serial_write (buf2, p - buf2);
9286
9287 /* If this is a no acks version of the remote protocol, send the
9288 packet and move on. */
9289 if (rs->noack_mode)
9290 break;
9291
9292 /* Read until either a timeout occurs (-2) or '+' is read.
9293 Handle any notification that arrives in the mean time. */
9294 while (1)
9295 {
9296 ch = readchar (remote_timeout);
9297
9298 if (remote_debug)
9299 {
9300 switch (ch)
9301 {
9302 case '+':
9303 case '-':
9304 case SERIAL_TIMEOUT:
9305 case '$':
9306 case '%':
9307 if (started_error_output)
9308 {
9309 putchar_unfiltered ('\n');
9310 started_error_output = 0;
9311 }
9312 }
9313 }
9314
9315 switch (ch)
9316 {
9317 case '+':
9318 if (remote_debug)
9319 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9320 return 1;
9321 case '-':
9322 if (remote_debug)
9323 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9324 /* FALLTHROUGH */
9325 case SERIAL_TIMEOUT:
9326 tcount++;
9327 if (tcount > 3)
9328 return 0;
9329 break; /* Retransmit buffer. */
9330 case '$':
9331 {
9332 if (remote_debug)
9333 fprintf_unfiltered (gdb_stdlog,
9334 "Packet instead of Ack, ignoring it\n");
9335 /* It's probably an old response sent because an ACK
9336 was lost. Gobble up the packet and ack it so it
9337 doesn't get retransmitted when we resend this
9338 packet. */
9339 skip_frame ();
9340 remote_serial_write ("+", 1);
9341 continue; /* Now, go look for +. */
9342 }
9343
9344 case '%':
9345 {
9346 int val;
9347
9348 /* If we got a notification, handle it, and go back to looking
9349 for an ack. */
9350 /* We've found the start of a notification. Now
9351 collect the data. */
9352 val = read_frame (&rs->buf);
9353 if (val >= 0)
9354 {
9355 if (remote_debug)
9356 {
9357 std::string str = escape_buffer (rs->buf.data (), val);
9358
9359 fprintf_unfiltered (gdb_stdlog,
9360 " Notification received: %s\n",
9361 str.c_str ());
9362 }
9363 handle_notification (rs->notif_state, rs->buf.data ());
9364 /* We're in sync now, rewait for the ack. */
9365 tcount = 0;
9366 }
9367 else
9368 {
9369 if (remote_debug)
9370 {
9371 if (!started_error_output)
9372 {
9373 started_error_output = 1;
9374 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9375 }
9376 fputc_unfiltered (ch & 0177, gdb_stdlog);
9377 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9378 }
9379 }
9380 continue;
9381 }
9382 /* fall-through */
9383 default:
9384 if (remote_debug)
9385 {
9386 if (!started_error_output)
9387 {
9388 started_error_output = 1;
9389 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9390 }
9391 fputc_unfiltered (ch & 0177, gdb_stdlog);
9392 }
9393 continue;
9394 }
9395 break; /* Here to retransmit. */
9396 }
9397
9398 #if 0
9399 /* This is wrong. If doing a long backtrace, the user should be
9400 able to get out next time we call QUIT, without anything as
9401 violent as interrupt_query. If we want to provide a way out of
9402 here without getting to the next QUIT, it should be based on
9403 hitting ^C twice as in remote_wait. */
9404 if (quit_flag)
9405 {
9406 quit_flag = 0;
9407 interrupt_query ();
9408 }
9409 #endif
9410 }
9411
9412 return 0;
9413 }
9414
9415 /* Come here after finding the start of a frame when we expected an
9416 ack. Do our best to discard the rest of this packet. */
9417
9418 void
9419 remote_target::skip_frame ()
9420 {
9421 int c;
9422
9423 while (1)
9424 {
9425 c = readchar (remote_timeout);
9426 switch (c)
9427 {
9428 case SERIAL_TIMEOUT:
9429 /* Nothing we can do. */
9430 return;
9431 case '#':
9432 /* Discard the two bytes of checksum and stop. */
9433 c = readchar (remote_timeout);
9434 if (c >= 0)
9435 c = readchar (remote_timeout);
9436
9437 return;
9438 case '*': /* Run length encoding. */
9439 /* Discard the repeat count. */
9440 c = readchar (remote_timeout);
9441 if (c < 0)
9442 return;
9443 break;
9444 default:
9445 /* A regular character. */
9446 break;
9447 }
9448 }
9449 }
9450
9451 /* Come here after finding the start of the frame. Collect the rest
9452 into *BUF, verifying the checksum, length, and handling run-length
9453 compression. NUL terminate the buffer. If there is not enough room,
9454 expand *BUF.
9455
9456 Returns -1 on error, number of characters in buffer (ignoring the
9457 trailing NULL) on success. (could be extended to return one of the
9458 SERIAL status indications). */
9459
9460 long
9461 remote_target::read_frame (gdb::char_vector *buf_p)
9462 {
9463 unsigned char csum;
9464 long bc;
9465 int c;
9466 char *buf = buf_p->data ();
9467 struct remote_state *rs = get_remote_state ();
9468
9469 csum = 0;
9470 bc = 0;
9471
9472 while (1)
9473 {
9474 c = readchar (remote_timeout);
9475 switch (c)
9476 {
9477 case SERIAL_TIMEOUT:
9478 if (remote_debug)
9479 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9480 return -1;
9481 case '$':
9482 if (remote_debug)
9483 fputs_filtered ("Saw new packet start in middle of old one\n",
9484 gdb_stdlog);
9485 return -1; /* Start a new packet, count retries. */
9486 case '#':
9487 {
9488 unsigned char pktcsum;
9489 int check_0 = 0;
9490 int check_1 = 0;
9491
9492 buf[bc] = '\0';
9493
9494 check_0 = readchar (remote_timeout);
9495 if (check_0 >= 0)
9496 check_1 = readchar (remote_timeout);
9497
9498 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9499 {
9500 if (remote_debug)
9501 fputs_filtered ("Timeout in checksum, retrying\n",
9502 gdb_stdlog);
9503 return -1;
9504 }
9505 else if (check_0 < 0 || check_1 < 0)
9506 {
9507 if (remote_debug)
9508 fputs_filtered ("Communication error in checksum\n",
9509 gdb_stdlog);
9510 return -1;
9511 }
9512
9513 /* Don't recompute the checksum; with no ack packets we
9514 don't have any way to indicate a packet retransmission
9515 is necessary. */
9516 if (rs->noack_mode)
9517 return bc;
9518
9519 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9520 if (csum == pktcsum)
9521 return bc;
9522
9523 if (remote_debug)
9524 {
9525 std::string str = escape_buffer (buf, bc);
9526
9527 fprintf_unfiltered (gdb_stdlog,
9528 "Bad checksum, sentsum=0x%x, "
9529 "csum=0x%x, buf=%s\n",
9530 pktcsum, csum, str.c_str ());
9531 }
9532 /* Number of characters in buffer ignoring trailing
9533 NULL. */
9534 return -1;
9535 }
9536 case '*': /* Run length encoding. */
9537 {
9538 int repeat;
9539
9540 csum += c;
9541 c = readchar (remote_timeout);
9542 csum += c;
9543 repeat = c - ' ' + 3; /* Compute repeat count. */
9544
9545 /* The character before ``*'' is repeated. */
9546
9547 if (repeat > 0 && repeat <= 255 && bc > 0)
9548 {
9549 if (bc + repeat - 1 >= buf_p->size () - 1)
9550 {
9551 /* Make some more room in the buffer. */
9552 buf_p->resize (buf_p->size () + repeat);
9553 buf = buf_p->data ();
9554 }
9555
9556 memset (&buf[bc], buf[bc - 1], repeat);
9557 bc += repeat;
9558 continue;
9559 }
9560
9561 buf[bc] = '\0';
9562 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9563 return -1;
9564 }
9565 default:
9566 if (bc >= buf_p->size () - 1)
9567 {
9568 /* Make some more room in the buffer. */
9569 buf_p->resize (buf_p->size () * 2);
9570 buf = buf_p->data ();
9571 }
9572
9573 buf[bc++] = c;
9574 csum += c;
9575 continue;
9576 }
9577 }
9578 }
9579
9580 /* Set this to the maximum number of seconds to wait instead of waiting forever
9581 in target_wait(). If this timer times out, then it generates an error and
9582 the command is aborted. This replaces most of the need for timeouts in the
9583 GDB test suite, and makes it possible to distinguish between a hung target
9584 and one with slow communications. */
9585
9586 static int watchdog = 0;
9587 static void
9588 show_watchdog (struct ui_file *file, int from_tty,
9589 struct cmd_list_element *c, const char *value)
9590 {
9591 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9592 }
9593
9594 /* Read a packet from the remote machine, with error checking, and
9595 store it in *BUF. Resize *BUF if necessary to hold the result. If
9596 FOREVER, wait forever rather than timing out; this is used (in
9597 synchronous mode) to wait for a target that is is executing user
9598 code to stop. */
9599 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9600 don't have to change all the calls to getpkt to deal with the
9601 return value, because at the moment I don't know what the right
9602 thing to do it for those. */
9603
9604 void
9605 remote_target::getpkt (gdb::char_vector *buf, int forever)
9606 {
9607 getpkt_sane (buf, forever);
9608 }
9609
9610
9611 /* Read a packet from the remote machine, with error checking, and
9612 store it in *BUF. Resize *BUF if necessary to hold the result. If
9613 FOREVER, wait forever rather than timing out; this is used (in
9614 synchronous mode) to wait for a target that is is executing user
9615 code to stop. If FOREVER == 0, this function is allowed to time
9616 out gracefully and return an indication of this to the caller.
9617 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9618 consider receiving a notification enough reason to return to the
9619 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9620 holds a notification or not (a regular packet). */
9621
9622 int
9623 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9624 int forever, int expecting_notif,
9625 int *is_notif)
9626 {
9627 struct remote_state *rs = get_remote_state ();
9628 int c;
9629 int tries;
9630 int timeout;
9631 int val = -1;
9632
9633 /* We're reading a new response. Make sure we don't look at a
9634 previously cached response. */
9635 rs->cached_wait_status = 0;
9636
9637 strcpy (buf->data (), "timeout");
9638
9639 if (forever)
9640 timeout = watchdog > 0 ? watchdog : -1;
9641 else if (expecting_notif)
9642 timeout = 0; /* There should already be a char in the buffer. If
9643 not, bail out. */
9644 else
9645 timeout = remote_timeout;
9646
9647 #define MAX_TRIES 3
9648
9649 /* Process any number of notifications, and then return when
9650 we get a packet. */
9651 for (;;)
9652 {
9653 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9654 times. */
9655 for (tries = 1; tries <= MAX_TRIES; tries++)
9656 {
9657 /* This can loop forever if the remote side sends us
9658 characters continuously, but if it pauses, we'll get
9659 SERIAL_TIMEOUT from readchar because of timeout. Then
9660 we'll count that as a retry.
9661
9662 Note that even when forever is set, we will only wait
9663 forever prior to the start of a packet. After that, we
9664 expect characters to arrive at a brisk pace. They should
9665 show up within remote_timeout intervals. */
9666 do
9667 c = readchar (timeout);
9668 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9669
9670 if (c == SERIAL_TIMEOUT)
9671 {
9672 if (expecting_notif)
9673 return -1; /* Don't complain, it's normal to not get
9674 anything in this case. */
9675
9676 if (forever) /* Watchdog went off? Kill the target. */
9677 {
9678 remote_unpush_target (this);
9679 throw_error (TARGET_CLOSE_ERROR,
9680 _("Watchdog timeout has expired. "
9681 "Target detached."));
9682 }
9683 if (remote_debug)
9684 fputs_filtered ("Timed out.\n", gdb_stdlog);
9685 }
9686 else
9687 {
9688 /* We've found the start of a packet or notification.
9689 Now collect the data. */
9690 val = read_frame (buf);
9691 if (val >= 0)
9692 break;
9693 }
9694
9695 remote_serial_write ("-", 1);
9696 }
9697
9698 if (tries > MAX_TRIES)
9699 {
9700 /* We have tried hard enough, and just can't receive the
9701 packet/notification. Give up. */
9702 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9703
9704 /* Skip the ack char if we're in no-ack mode. */
9705 if (!rs->noack_mode)
9706 remote_serial_write ("+", 1);
9707 return -1;
9708 }
9709
9710 /* If we got an ordinary packet, return that to our caller. */
9711 if (c == '$')
9712 {
9713 if (remote_debug)
9714 {
9715 int max_chars;
9716
9717 if (remote_packet_max_chars < 0)
9718 max_chars = val;
9719 else
9720 max_chars = remote_packet_max_chars;
9721
9722 std::string str
9723 = escape_buffer (buf->data (),
9724 std::min (val, max_chars));
9725
9726 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9727 str.c_str ());
9728
9729 if (val > max_chars)
9730 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9731 val - max_chars);
9732
9733 fprintf_unfiltered (gdb_stdlog, "\n");
9734 }
9735
9736 /* Skip the ack char if we're in no-ack mode. */
9737 if (!rs->noack_mode)
9738 remote_serial_write ("+", 1);
9739 if (is_notif != NULL)
9740 *is_notif = 0;
9741 return val;
9742 }
9743
9744 /* If we got a notification, handle it, and go back to looking
9745 for a packet. */
9746 else
9747 {
9748 gdb_assert (c == '%');
9749
9750 if (remote_debug)
9751 {
9752 std::string str = escape_buffer (buf->data (), val);
9753
9754 fprintf_unfiltered (gdb_stdlog,
9755 " Notification received: %s\n",
9756 str.c_str ());
9757 }
9758 if (is_notif != NULL)
9759 *is_notif = 1;
9760
9761 handle_notification (rs->notif_state, buf->data ());
9762
9763 /* Notifications require no acknowledgement. */
9764
9765 if (expecting_notif)
9766 return val;
9767 }
9768 }
9769 }
9770
9771 int
9772 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9773 {
9774 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9775 }
9776
9777 int
9778 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9779 int *is_notif)
9780 {
9781 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9782 }
9783
9784 /* Kill any new fork children of process PID that haven't been
9785 processed by follow_fork. */
9786
9787 void
9788 remote_target::kill_new_fork_children (int pid)
9789 {
9790 remote_state *rs = get_remote_state ();
9791 struct notif_client *notif = &notif_client_stop;
9792
9793 /* Kill the fork child threads of any threads in process PID
9794 that are stopped at a fork event. */
9795 for (thread_info *thread : all_non_exited_threads (this))
9796 {
9797 struct target_waitstatus *ws = &thread->pending_follow;
9798
9799 if (is_pending_fork_parent (ws, pid, thread->ptid))
9800 {
9801 int child_pid = ws->value.related_pid.pid ();
9802 int res;
9803
9804 res = remote_vkill (child_pid);
9805 if (res != 0)
9806 error (_("Can't kill fork child process %d"), child_pid);
9807 }
9808 }
9809
9810 /* Check for any pending fork events (not reported or processed yet)
9811 in process PID and kill those fork child threads as well. */
9812 remote_notif_get_pending_events (notif);
9813 for (auto &event : rs->stop_reply_queue)
9814 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9815 {
9816 int child_pid = event->ws.value.related_pid.pid ();
9817 int res;
9818
9819 res = remote_vkill (child_pid);
9820 if (res != 0)
9821 error (_("Can't kill fork child process %d"), child_pid);
9822 }
9823 }
9824
9825 \f
9826 /* Target hook to kill the current inferior. */
9827
9828 void
9829 remote_target::kill ()
9830 {
9831 int res = -1;
9832 int pid = inferior_ptid.pid ();
9833 struct remote_state *rs = get_remote_state ();
9834
9835 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9836 {
9837 /* If we're stopped while forking and we haven't followed yet,
9838 kill the child task. We need to do this before killing the
9839 parent task because if this is a vfork then the parent will
9840 be sleeping. */
9841 kill_new_fork_children (pid);
9842
9843 res = remote_vkill (pid);
9844 if (res == 0)
9845 {
9846 target_mourn_inferior (inferior_ptid);
9847 return;
9848 }
9849 }
9850
9851 /* If we are in 'target remote' mode and we are killing the only
9852 inferior, then we will tell gdbserver to exit and unpush the
9853 target. */
9854 if (res == -1 && !remote_multi_process_p (rs)
9855 && number_of_live_inferiors (this) == 1)
9856 {
9857 remote_kill_k ();
9858
9859 /* We've killed the remote end, we get to mourn it. If we are
9860 not in extended mode, mourning the inferior also unpushes
9861 remote_ops from the target stack, which closes the remote
9862 connection. */
9863 target_mourn_inferior (inferior_ptid);
9864
9865 return;
9866 }
9867
9868 error (_("Can't kill process"));
9869 }
9870
9871 /* Send a kill request to the target using the 'vKill' packet. */
9872
9873 int
9874 remote_target::remote_vkill (int pid)
9875 {
9876 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9877 return -1;
9878
9879 remote_state *rs = get_remote_state ();
9880
9881 /* Tell the remote target to detach. */
9882 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9883 putpkt (rs->buf);
9884 getpkt (&rs->buf, 0);
9885
9886 switch (packet_ok (rs->buf,
9887 &remote_protocol_packets[PACKET_vKill]))
9888 {
9889 case PACKET_OK:
9890 return 0;
9891 case PACKET_ERROR:
9892 return 1;
9893 case PACKET_UNKNOWN:
9894 return -1;
9895 default:
9896 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9897 }
9898 }
9899
9900 /* Send a kill request to the target using the 'k' packet. */
9901
9902 void
9903 remote_target::remote_kill_k ()
9904 {
9905 /* Catch errors so the user can quit from gdb even when we
9906 aren't on speaking terms with the remote system. */
9907 try
9908 {
9909 putpkt ("k");
9910 }
9911 catch (const gdb_exception_error &ex)
9912 {
9913 if (ex.error == TARGET_CLOSE_ERROR)
9914 {
9915 /* If we got an (EOF) error that caused the target
9916 to go away, then we're done, that's what we wanted.
9917 "k" is susceptible to cause a premature EOF, given
9918 that the remote server isn't actually required to
9919 reply to "k", and it can happen that it doesn't
9920 even get to reply ACK to the "k". */
9921 return;
9922 }
9923
9924 /* Otherwise, something went wrong. We didn't actually kill
9925 the target. Just propagate the exception, and let the
9926 user or higher layers decide what to do. */
9927 throw;
9928 }
9929 }
9930
9931 void
9932 remote_target::mourn_inferior ()
9933 {
9934 struct remote_state *rs = get_remote_state ();
9935
9936 /* We're no longer interested in notification events of an inferior
9937 that exited or was killed/detached. */
9938 discard_pending_stop_replies (current_inferior ());
9939
9940 /* In 'target remote' mode with one inferior, we close the connection. */
9941 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9942 {
9943 remote_unpush_target (this);
9944 return;
9945 }
9946
9947 /* In case we got here due to an error, but we're going to stay
9948 connected. */
9949 rs->waiting_for_stop_reply = 0;
9950
9951 /* If the current general thread belonged to the process we just
9952 detached from or has exited, the remote side current general
9953 thread becomes undefined. Considering a case like this:
9954
9955 - We just got here due to a detach.
9956 - The process that we're detaching from happens to immediately
9957 report a global breakpoint being hit in non-stop mode, in the
9958 same thread we had selected before.
9959 - GDB attaches to this process again.
9960 - This event happens to be the next event we handle.
9961
9962 GDB would consider that the current general thread didn't need to
9963 be set on the stub side (with Hg), since for all it knew,
9964 GENERAL_THREAD hadn't changed.
9965
9966 Notice that although in all-stop mode, the remote server always
9967 sets the current thread to the thread reporting the stop event,
9968 that doesn't happen in non-stop mode; in non-stop, the stub *must
9969 not* change the current thread when reporting a breakpoint hit,
9970 due to the decoupling of event reporting and event handling.
9971
9972 To keep things simple, we always invalidate our notion of the
9973 current thread. */
9974 record_currthread (rs, minus_one_ptid);
9975
9976 /* Call common code to mark the inferior as not running. */
9977 generic_mourn_inferior ();
9978 }
9979
9980 bool
9981 extended_remote_target::supports_disable_randomization ()
9982 {
9983 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9984 }
9985
9986 void
9987 remote_target::extended_remote_disable_randomization (int val)
9988 {
9989 struct remote_state *rs = get_remote_state ();
9990 char *reply;
9991
9992 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9993 "QDisableRandomization:%x", val);
9994 putpkt (rs->buf);
9995 reply = remote_get_noisy_reply ();
9996 if (*reply == '\0')
9997 error (_("Target does not support QDisableRandomization."));
9998 if (strcmp (reply, "OK") != 0)
9999 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10000 }
10001
10002 int
10003 remote_target::extended_remote_run (const std::string &args)
10004 {
10005 struct remote_state *rs = get_remote_state ();
10006 int len;
10007 const char *remote_exec_file = get_remote_exec_file ();
10008
10009 /* If the user has disabled vRun support, or we have detected that
10010 support is not available, do not try it. */
10011 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10012 return -1;
10013
10014 strcpy (rs->buf.data (), "vRun;");
10015 len = strlen (rs->buf.data ());
10016
10017 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10018 error (_("Remote file name too long for run packet"));
10019 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10020 strlen (remote_exec_file));
10021
10022 if (!args.empty ())
10023 {
10024 int i;
10025
10026 gdb_argv argv (args.c_str ());
10027 for (i = 0; argv[i] != NULL; i++)
10028 {
10029 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10030 error (_("Argument list too long for run packet"));
10031 rs->buf[len++] = ';';
10032 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10033 strlen (argv[i]));
10034 }
10035 }
10036
10037 rs->buf[len++] = '\0';
10038
10039 putpkt (rs->buf);
10040 getpkt (&rs->buf, 0);
10041
10042 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10043 {
10044 case PACKET_OK:
10045 /* We have a wait response. All is well. */
10046 return 0;
10047 case PACKET_UNKNOWN:
10048 return -1;
10049 case PACKET_ERROR:
10050 if (remote_exec_file[0] == '\0')
10051 error (_("Running the default executable on the remote target failed; "
10052 "try \"set remote exec-file\"?"));
10053 else
10054 error (_("Running \"%s\" on the remote target failed"),
10055 remote_exec_file);
10056 default:
10057 gdb_assert_not_reached (_("bad switch"));
10058 }
10059 }
10060
10061 /* Helper function to send set/unset environment packets. ACTION is
10062 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10063 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10064 sent. */
10065
10066 void
10067 remote_target::send_environment_packet (const char *action,
10068 const char *packet,
10069 const char *value)
10070 {
10071 remote_state *rs = get_remote_state ();
10072
10073 /* Convert the environment variable to an hex string, which
10074 is the best format to be transmitted over the wire. */
10075 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10076 strlen (value));
10077
10078 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10079 "%s:%s", packet, encoded_value.c_str ());
10080
10081 putpkt (rs->buf);
10082 getpkt (&rs->buf, 0);
10083 if (strcmp (rs->buf.data (), "OK") != 0)
10084 warning (_("Unable to %s environment variable '%s' on remote."),
10085 action, value);
10086 }
10087
10088 /* Helper function to handle the QEnvironment* packets. */
10089
10090 void
10091 remote_target::extended_remote_environment_support ()
10092 {
10093 remote_state *rs = get_remote_state ();
10094
10095 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10096 {
10097 putpkt ("QEnvironmentReset");
10098 getpkt (&rs->buf, 0);
10099 if (strcmp (rs->buf.data (), "OK") != 0)
10100 warning (_("Unable to reset environment on remote."));
10101 }
10102
10103 gdb_environ *e = &current_inferior ()->environment;
10104
10105 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10106 for (const std::string &el : e->user_set_env ())
10107 send_environment_packet ("set", "QEnvironmentHexEncoded",
10108 el.c_str ());
10109
10110 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10111 for (const std::string &el : e->user_unset_env ())
10112 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10113 }
10114
10115 /* Helper function to set the current working directory for the
10116 inferior in the remote target. */
10117
10118 void
10119 remote_target::extended_remote_set_inferior_cwd ()
10120 {
10121 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10122 {
10123 const char *inferior_cwd = get_inferior_cwd ();
10124 remote_state *rs = get_remote_state ();
10125
10126 if (inferior_cwd != NULL)
10127 {
10128 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10129 strlen (inferior_cwd));
10130
10131 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10132 "QSetWorkingDir:%s", hexpath.c_str ());
10133 }
10134 else
10135 {
10136 /* An empty inferior_cwd means that the user wants us to
10137 reset the remote server's inferior's cwd. */
10138 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10139 "QSetWorkingDir:");
10140 }
10141
10142 putpkt (rs->buf);
10143 getpkt (&rs->buf, 0);
10144 if (packet_ok (rs->buf,
10145 &remote_protocol_packets[PACKET_QSetWorkingDir])
10146 != PACKET_OK)
10147 error (_("\
10148 Remote replied unexpectedly while setting the inferior's working\n\
10149 directory: %s"),
10150 rs->buf.data ());
10151
10152 }
10153 }
10154
10155 /* In the extended protocol we want to be able to do things like
10156 "run" and have them basically work as expected. So we need
10157 a special create_inferior function. We support changing the
10158 executable file and the command line arguments, but not the
10159 environment. */
10160
10161 void
10162 extended_remote_target::create_inferior (const char *exec_file,
10163 const std::string &args,
10164 char **env, int from_tty)
10165 {
10166 int run_worked;
10167 char *stop_reply;
10168 struct remote_state *rs = get_remote_state ();
10169 const char *remote_exec_file = get_remote_exec_file ();
10170
10171 /* If running asynchronously, register the target file descriptor
10172 with the event loop. */
10173 if (target_can_async_p ())
10174 target_async (1);
10175
10176 /* Disable address space randomization if requested (and supported). */
10177 if (supports_disable_randomization ())
10178 extended_remote_disable_randomization (disable_randomization);
10179
10180 /* If startup-with-shell is on, we inform gdbserver to start the
10181 remote inferior using a shell. */
10182 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10183 {
10184 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10185 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10186 putpkt (rs->buf);
10187 getpkt (&rs->buf, 0);
10188 if (strcmp (rs->buf.data (), "OK") != 0)
10189 error (_("\
10190 Remote replied unexpectedly while setting startup-with-shell: %s"),
10191 rs->buf.data ());
10192 }
10193
10194 extended_remote_environment_support ();
10195
10196 extended_remote_set_inferior_cwd ();
10197
10198 /* Now restart the remote server. */
10199 run_worked = extended_remote_run (args) != -1;
10200 if (!run_worked)
10201 {
10202 /* vRun was not supported. Fail if we need it to do what the
10203 user requested. */
10204 if (remote_exec_file[0])
10205 error (_("Remote target does not support \"set remote exec-file\""));
10206 if (!args.empty ())
10207 error (_("Remote target does not support \"set args\" or run ARGS"));
10208
10209 /* Fall back to "R". */
10210 extended_remote_restart ();
10211 }
10212
10213 /* vRun's success return is a stop reply. */
10214 stop_reply = run_worked ? rs->buf.data () : NULL;
10215 add_current_inferior_and_thread (stop_reply);
10216
10217 /* Get updated offsets, if the stub uses qOffsets. */
10218 get_offsets ();
10219 }
10220 \f
10221
10222 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10223 the list of conditions (in agent expression bytecode format), if any, the
10224 target needs to evaluate. The output is placed into the packet buffer
10225 started from BUF and ended at BUF_END. */
10226
10227 static int
10228 remote_add_target_side_condition (struct gdbarch *gdbarch,
10229 struct bp_target_info *bp_tgt, char *buf,
10230 char *buf_end)
10231 {
10232 if (bp_tgt->conditions.empty ())
10233 return 0;
10234
10235 buf += strlen (buf);
10236 xsnprintf (buf, buf_end - buf, "%s", ";");
10237 buf++;
10238
10239 /* Send conditions to the target. */
10240 for (agent_expr *aexpr : bp_tgt->conditions)
10241 {
10242 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10243 buf += strlen (buf);
10244 for (int i = 0; i < aexpr->len; ++i)
10245 buf = pack_hex_byte (buf, aexpr->buf[i]);
10246 *buf = '\0';
10247 }
10248 return 0;
10249 }
10250
10251 static void
10252 remote_add_target_side_commands (struct gdbarch *gdbarch,
10253 struct bp_target_info *bp_tgt, char *buf)
10254 {
10255 if (bp_tgt->tcommands.empty ())
10256 return;
10257
10258 buf += strlen (buf);
10259
10260 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10261 buf += strlen (buf);
10262
10263 /* Concatenate all the agent expressions that are commands into the
10264 cmds parameter. */
10265 for (agent_expr *aexpr : bp_tgt->tcommands)
10266 {
10267 sprintf (buf, "X%x,", aexpr->len);
10268 buf += strlen (buf);
10269 for (int i = 0; i < aexpr->len; ++i)
10270 buf = pack_hex_byte (buf, aexpr->buf[i]);
10271 *buf = '\0';
10272 }
10273 }
10274
10275 /* Insert a breakpoint. On targets that have software breakpoint
10276 support, we ask the remote target to do the work; on targets
10277 which don't, we insert a traditional memory breakpoint. */
10278
10279 int
10280 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10281 struct bp_target_info *bp_tgt)
10282 {
10283 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10284 If it succeeds, then set the support to PACKET_ENABLE. If it
10285 fails, and the user has explicitly requested the Z support then
10286 report an error, otherwise, mark it disabled and go on. */
10287
10288 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10289 {
10290 CORE_ADDR addr = bp_tgt->reqstd_address;
10291 struct remote_state *rs;
10292 char *p, *endbuf;
10293
10294 /* Make sure the remote is pointing at the right process, if
10295 necessary. */
10296 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10297 set_general_process ();
10298
10299 rs = get_remote_state ();
10300 p = rs->buf.data ();
10301 endbuf = p + get_remote_packet_size ();
10302
10303 *(p++) = 'Z';
10304 *(p++) = '0';
10305 *(p++) = ',';
10306 addr = (ULONGEST) remote_address_masked (addr);
10307 p += hexnumstr (p, addr);
10308 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10309
10310 if (supports_evaluation_of_breakpoint_conditions ())
10311 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10312
10313 if (can_run_breakpoint_commands ())
10314 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10315
10316 putpkt (rs->buf);
10317 getpkt (&rs->buf, 0);
10318
10319 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10320 {
10321 case PACKET_ERROR:
10322 return -1;
10323 case PACKET_OK:
10324 return 0;
10325 case PACKET_UNKNOWN:
10326 break;
10327 }
10328 }
10329
10330 /* If this breakpoint has target-side commands but this stub doesn't
10331 support Z0 packets, throw error. */
10332 if (!bp_tgt->tcommands.empty ())
10333 throw_error (NOT_SUPPORTED_ERROR, _("\
10334 Target doesn't support breakpoints that have target side commands."));
10335
10336 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10337 }
10338
10339 int
10340 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10341 struct bp_target_info *bp_tgt,
10342 enum remove_bp_reason reason)
10343 {
10344 CORE_ADDR addr = bp_tgt->placed_address;
10345 struct remote_state *rs = get_remote_state ();
10346
10347 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10348 {
10349 char *p = rs->buf.data ();
10350 char *endbuf = p + get_remote_packet_size ();
10351
10352 /* Make sure the remote is pointing at the right process, if
10353 necessary. */
10354 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10355 set_general_process ();
10356
10357 *(p++) = 'z';
10358 *(p++) = '0';
10359 *(p++) = ',';
10360
10361 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10362 p += hexnumstr (p, addr);
10363 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10364
10365 putpkt (rs->buf);
10366 getpkt (&rs->buf, 0);
10367
10368 return (rs->buf[0] == 'E');
10369 }
10370
10371 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10372 }
10373
10374 static enum Z_packet_type
10375 watchpoint_to_Z_packet (int type)
10376 {
10377 switch (type)
10378 {
10379 case hw_write:
10380 return Z_PACKET_WRITE_WP;
10381 break;
10382 case hw_read:
10383 return Z_PACKET_READ_WP;
10384 break;
10385 case hw_access:
10386 return Z_PACKET_ACCESS_WP;
10387 break;
10388 default:
10389 internal_error (__FILE__, __LINE__,
10390 _("hw_bp_to_z: bad watchpoint type %d"), type);
10391 }
10392 }
10393
10394 int
10395 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10396 enum target_hw_bp_type type, struct expression *cond)
10397 {
10398 struct remote_state *rs = get_remote_state ();
10399 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10400 char *p;
10401 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10402
10403 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10404 return 1;
10405
10406 /* Make sure the remote is pointing at the right process, if
10407 necessary. */
10408 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10409 set_general_process ();
10410
10411 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10412 p = strchr (rs->buf.data (), '\0');
10413 addr = remote_address_masked (addr);
10414 p += hexnumstr (p, (ULONGEST) addr);
10415 xsnprintf (p, endbuf - p, ",%x", len);
10416
10417 putpkt (rs->buf);
10418 getpkt (&rs->buf, 0);
10419
10420 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10421 {
10422 case PACKET_ERROR:
10423 return -1;
10424 case PACKET_UNKNOWN:
10425 return 1;
10426 case PACKET_OK:
10427 return 0;
10428 }
10429 internal_error (__FILE__, __LINE__,
10430 _("remote_insert_watchpoint: reached end of function"));
10431 }
10432
10433 bool
10434 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10435 CORE_ADDR start, int length)
10436 {
10437 CORE_ADDR diff = remote_address_masked (addr - start);
10438
10439 return diff < length;
10440 }
10441
10442
10443 int
10444 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10445 enum target_hw_bp_type type, struct expression *cond)
10446 {
10447 struct remote_state *rs = get_remote_state ();
10448 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10449 char *p;
10450 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10451
10452 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10453 return -1;
10454
10455 /* Make sure the remote is pointing at the right process, if
10456 necessary. */
10457 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10458 set_general_process ();
10459
10460 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10461 p = strchr (rs->buf.data (), '\0');
10462 addr = remote_address_masked (addr);
10463 p += hexnumstr (p, (ULONGEST) addr);
10464 xsnprintf (p, endbuf - p, ",%x", len);
10465 putpkt (rs->buf);
10466 getpkt (&rs->buf, 0);
10467
10468 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10469 {
10470 case PACKET_ERROR:
10471 case PACKET_UNKNOWN:
10472 return -1;
10473 case PACKET_OK:
10474 return 0;
10475 }
10476 internal_error (__FILE__, __LINE__,
10477 _("remote_remove_watchpoint: reached end of function"));
10478 }
10479
10480
10481 static int remote_hw_watchpoint_limit = -1;
10482 static int remote_hw_watchpoint_length_limit = -1;
10483 static int remote_hw_breakpoint_limit = -1;
10484
10485 int
10486 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10487 {
10488 if (remote_hw_watchpoint_length_limit == 0)
10489 return 0;
10490 else if (remote_hw_watchpoint_length_limit < 0)
10491 return 1;
10492 else if (len <= remote_hw_watchpoint_length_limit)
10493 return 1;
10494 else
10495 return 0;
10496 }
10497
10498 int
10499 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10500 {
10501 if (type == bp_hardware_breakpoint)
10502 {
10503 if (remote_hw_breakpoint_limit == 0)
10504 return 0;
10505 else if (remote_hw_breakpoint_limit < 0)
10506 return 1;
10507 else if (cnt <= remote_hw_breakpoint_limit)
10508 return 1;
10509 }
10510 else
10511 {
10512 if (remote_hw_watchpoint_limit == 0)
10513 return 0;
10514 else if (remote_hw_watchpoint_limit < 0)
10515 return 1;
10516 else if (ot)
10517 return -1;
10518 else if (cnt <= remote_hw_watchpoint_limit)
10519 return 1;
10520 }
10521 return -1;
10522 }
10523
10524 /* The to_stopped_by_sw_breakpoint method of target remote. */
10525
10526 bool
10527 remote_target::stopped_by_sw_breakpoint ()
10528 {
10529 struct thread_info *thread = inferior_thread ();
10530
10531 return (thread->priv != NULL
10532 && (get_remote_thread_info (thread)->stop_reason
10533 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10534 }
10535
10536 /* The to_supports_stopped_by_sw_breakpoint method of target
10537 remote. */
10538
10539 bool
10540 remote_target::supports_stopped_by_sw_breakpoint ()
10541 {
10542 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10543 }
10544
10545 /* The to_stopped_by_hw_breakpoint method of target remote. */
10546
10547 bool
10548 remote_target::stopped_by_hw_breakpoint ()
10549 {
10550 struct thread_info *thread = inferior_thread ();
10551
10552 return (thread->priv != NULL
10553 && (get_remote_thread_info (thread)->stop_reason
10554 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10555 }
10556
10557 /* The to_supports_stopped_by_hw_breakpoint method of target
10558 remote. */
10559
10560 bool
10561 remote_target::supports_stopped_by_hw_breakpoint ()
10562 {
10563 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10564 }
10565
10566 bool
10567 remote_target::stopped_by_watchpoint ()
10568 {
10569 struct thread_info *thread = inferior_thread ();
10570
10571 return (thread->priv != NULL
10572 && (get_remote_thread_info (thread)->stop_reason
10573 == TARGET_STOPPED_BY_WATCHPOINT));
10574 }
10575
10576 bool
10577 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10578 {
10579 struct thread_info *thread = inferior_thread ();
10580
10581 if (thread->priv != NULL
10582 && (get_remote_thread_info (thread)->stop_reason
10583 == TARGET_STOPPED_BY_WATCHPOINT))
10584 {
10585 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10586 return true;
10587 }
10588
10589 return false;
10590 }
10591
10592
10593 int
10594 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10595 struct bp_target_info *bp_tgt)
10596 {
10597 CORE_ADDR addr = bp_tgt->reqstd_address;
10598 struct remote_state *rs;
10599 char *p, *endbuf;
10600 char *message;
10601
10602 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10603 return -1;
10604
10605 /* Make sure the remote is pointing at the right process, if
10606 necessary. */
10607 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10608 set_general_process ();
10609
10610 rs = get_remote_state ();
10611 p = rs->buf.data ();
10612 endbuf = p + get_remote_packet_size ();
10613
10614 *(p++) = 'Z';
10615 *(p++) = '1';
10616 *(p++) = ',';
10617
10618 addr = remote_address_masked (addr);
10619 p += hexnumstr (p, (ULONGEST) addr);
10620 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10621
10622 if (supports_evaluation_of_breakpoint_conditions ())
10623 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10624
10625 if (can_run_breakpoint_commands ())
10626 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10627
10628 putpkt (rs->buf);
10629 getpkt (&rs->buf, 0);
10630
10631 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10632 {
10633 case PACKET_ERROR:
10634 if (rs->buf[1] == '.')
10635 {
10636 message = strchr (&rs->buf[2], '.');
10637 if (message)
10638 error (_("Remote failure reply: %s"), message + 1);
10639 }
10640 return -1;
10641 case PACKET_UNKNOWN:
10642 return -1;
10643 case PACKET_OK:
10644 return 0;
10645 }
10646 internal_error (__FILE__, __LINE__,
10647 _("remote_insert_hw_breakpoint: reached end of function"));
10648 }
10649
10650
10651 int
10652 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10653 struct bp_target_info *bp_tgt)
10654 {
10655 CORE_ADDR addr;
10656 struct remote_state *rs = get_remote_state ();
10657 char *p = rs->buf.data ();
10658 char *endbuf = p + get_remote_packet_size ();
10659
10660 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10661 return -1;
10662
10663 /* Make sure the remote is pointing at the right process, if
10664 necessary. */
10665 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10666 set_general_process ();
10667
10668 *(p++) = 'z';
10669 *(p++) = '1';
10670 *(p++) = ',';
10671
10672 addr = remote_address_masked (bp_tgt->placed_address);
10673 p += hexnumstr (p, (ULONGEST) addr);
10674 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10675
10676 putpkt (rs->buf);
10677 getpkt (&rs->buf, 0);
10678
10679 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10680 {
10681 case PACKET_ERROR:
10682 case PACKET_UNKNOWN:
10683 return -1;
10684 case PACKET_OK:
10685 return 0;
10686 }
10687 internal_error (__FILE__, __LINE__,
10688 _("remote_remove_hw_breakpoint: reached end of function"));
10689 }
10690
10691 /* Verify memory using the "qCRC:" request. */
10692
10693 int
10694 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10695 {
10696 struct remote_state *rs = get_remote_state ();
10697 unsigned long host_crc, target_crc;
10698 char *tmp;
10699
10700 /* It doesn't make sense to use qCRC if the remote target is
10701 connected but not running. */
10702 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10703 {
10704 enum packet_result result;
10705
10706 /* Make sure the remote is pointing at the right process. */
10707 set_general_process ();
10708
10709 /* FIXME: assumes lma can fit into long. */
10710 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10711 (long) lma, (long) size);
10712 putpkt (rs->buf);
10713
10714 /* Be clever; compute the host_crc before waiting for target
10715 reply. */
10716 host_crc = xcrc32 (data, size, 0xffffffff);
10717
10718 getpkt (&rs->buf, 0);
10719
10720 result = packet_ok (rs->buf,
10721 &remote_protocol_packets[PACKET_qCRC]);
10722 if (result == PACKET_ERROR)
10723 return -1;
10724 else if (result == PACKET_OK)
10725 {
10726 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10727 target_crc = target_crc * 16 + fromhex (*tmp);
10728
10729 return (host_crc == target_crc);
10730 }
10731 }
10732
10733 return simple_verify_memory (this, data, lma, size);
10734 }
10735
10736 /* compare-sections command
10737
10738 With no arguments, compares each loadable section in the exec bfd
10739 with the same memory range on the target, and reports mismatches.
10740 Useful for verifying the image on the target against the exec file. */
10741
10742 static void
10743 compare_sections_command (const char *args, int from_tty)
10744 {
10745 asection *s;
10746 const char *sectname;
10747 bfd_size_type size;
10748 bfd_vma lma;
10749 int matched = 0;
10750 int mismatched = 0;
10751 int res;
10752 int read_only = 0;
10753
10754 if (!exec_bfd)
10755 error (_("command cannot be used without an exec file"));
10756
10757 if (args != NULL && strcmp (args, "-r") == 0)
10758 {
10759 read_only = 1;
10760 args = NULL;
10761 }
10762
10763 for (s = exec_bfd->sections; s; s = s->next)
10764 {
10765 if (!(s->flags & SEC_LOAD))
10766 continue; /* Skip non-loadable section. */
10767
10768 if (read_only && (s->flags & SEC_READONLY) == 0)
10769 continue; /* Skip writeable sections */
10770
10771 size = bfd_section_size (s);
10772 if (size == 0)
10773 continue; /* Skip zero-length section. */
10774
10775 sectname = bfd_section_name (s);
10776 if (args && strcmp (args, sectname) != 0)
10777 continue; /* Not the section selected by user. */
10778
10779 matched = 1; /* Do this section. */
10780 lma = s->lma;
10781
10782 gdb::byte_vector sectdata (size);
10783 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10784
10785 res = target_verify_memory (sectdata.data (), lma, size);
10786
10787 if (res == -1)
10788 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10789 paddress (target_gdbarch (), lma),
10790 paddress (target_gdbarch (), lma + size));
10791
10792 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10793 paddress (target_gdbarch (), lma),
10794 paddress (target_gdbarch (), lma + size));
10795 if (res)
10796 printf_filtered ("matched.\n");
10797 else
10798 {
10799 printf_filtered ("MIS-MATCHED!\n");
10800 mismatched++;
10801 }
10802 }
10803 if (mismatched > 0)
10804 warning (_("One or more sections of the target image does not match\n\
10805 the loaded file\n"));
10806 if (args && !matched)
10807 printf_filtered (_("No loaded section named '%s'.\n"), args);
10808 }
10809
10810 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10811 into remote target. The number of bytes written to the remote
10812 target is returned, or -1 for error. */
10813
10814 target_xfer_status
10815 remote_target::remote_write_qxfer (const char *object_name,
10816 const char *annex, const gdb_byte *writebuf,
10817 ULONGEST offset, LONGEST len,
10818 ULONGEST *xfered_len,
10819 struct packet_config *packet)
10820 {
10821 int i, buf_len;
10822 ULONGEST n;
10823 struct remote_state *rs = get_remote_state ();
10824 int max_size = get_memory_write_packet_size ();
10825
10826 if (packet_config_support (packet) == PACKET_DISABLE)
10827 return TARGET_XFER_E_IO;
10828
10829 /* Insert header. */
10830 i = snprintf (rs->buf.data (), max_size,
10831 "qXfer:%s:write:%s:%s:",
10832 object_name, annex ? annex : "",
10833 phex_nz (offset, sizeof offset));
10834 max_size -= (i + 1);
10835
10836 /* Escape as much data as fits into rs->buf. */
10837 buf_len = remote_escape_output
10838 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10839
10840 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10841 || getpkt_sane (&rs->buf, 0) < 0
10842 || packet_ok (rs->buf, packet) != PACKET_OK)
10843 return TARGET_XFER_E_IO;
10844
10845 unpack_varlen_hex (rs->buf.data (), &n);
10846
10847 *xfered_len = n;
10848 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10849 }
10850
10851 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10852 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10853 number of bytes read is returned, or 0 for EOF, or -1 for error.
10854 The number of bytes read may be less than LEN without indicating an
10855 EOF. PACKET is checked and updated to indicate whether the remote
10856 target supports this object. */
10857
10858 target_xfer_status
10859 remote_target::remote_read_qxfer (const char *object_name,
10860 const char *annex,
10861 gdb_byte *readbuf, ULONGEST offset,
10862 LONGEST len,
10863 ULONGEST *xfered_len,
10864 struct packet_config *packet)
10865 {
10866 struct remote_state *rs = get_remote_state ();
10867 LONGEST i, n, packet_len;
10868
10869 if (packet_config_support (packet) == PACKET_DISABLE)
10870 return TARGET_XFER_E_IO;
10871
10872 /* Check whether we've cached an end-of-object packet that matches
10873 this request. */
10874 if (rs->finished_object)
10875 {
10876 if (strcmp (object_name, rs->finished_object) == 0
10877 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10878 && offset == rs->finished_offset)
10879 return TARGET_XFER_EOF;
10880
10881
10882 /* Otherwise, we're now reading something different. Discard
10883 the cache. */
10884 xfree (rs->finished_object);
10885 xfree (rs->finished_annex);
10886 rs->finished_object = NULL;
10887 rs->finished_annex = NULL;
10888 }
10889
10890 /* Request only enough to fit in a single packet. The actual data
10891 may not, since we don't know how much of it will need to be escaped;
10892 the target is free to respond with slightly less data. We subtract
10893 five to account for the response type and the protocol frame. */
10894 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10895 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10896 "qXfer:%s:read:%s:%s,%s",
10897 object_name, annex ? annex : "",
10898 phex_nz (offset, sizeof offset),
10899 phex_nz (n, sizeof n));
10900 i = putpkt (rs->buf);
10901 if (i < 0)
10902 return TARGET_XFER_E_IO;
10903
10904 rs->buf[0] = '\0';
10905 packet_len = getpkt_sane (&rs->buf, 0);
10906 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10907 return TARGET_XFER_E_IO;
10908
10909 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10910 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10911
10912 /* 'm' means there is (or at least might be) more data after this
10913 batch. That does not make sense unless there's at least one byte
10914 of data in this reply. */
10915 if (rs->buf[0] == 'm' && packet_len == 1)
10916 error (_("Remote qXfer reply contained no data."));
10917
10918 /* Got some data. */
10919 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10920 packet_len - 1, readbuf, n);
10921
10922 /* 'l' is an EOF marker, possibly including a final block of data,
10923 or possibly empty. If we have the final block of a non-empty
10924 object, record this fact to bypass a subsequent partial read. */
10925 if (rs->buf[0] == 'l' && offset + i > 0)
10926 {
10927 rs->finished_object = xstrdup (object_name);
10928 rs->finished_annex = xstrdup (annex ? annex : "");
10929 rs->finished_offset = offset + i;
10930 }
10931
10932 if (i == 0)
10933 return TARGET_XFER_EOF;
10934 else
10935 {
10936 *xfered_len = i;
10937 return TARGET_XFER_OK;
10938 }
10939 }
10940
10941 enum target_xfer_status
10942 remote_target::xfer_partial (enum target_object object,
10943 const char *annex, gdb_byte *readbuf,
10944 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10945 ULONGEST *xfered_len)
10946 {
10947 struct remote_state *rs;
10948 int i;
10949 char *p2;
10950 char query_type;
10951 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10952
10953 set_remote_traceframe ();
10954 set_general_thread (inferior_ptid);
10955
10956 rs = get_remote_state ();
10957
10958 /* Handle memory using the standard memory routines. */
10959 if (object == TARGET_OBJECT_MEMORY)
10960 {
10961 /* If the remote target is connected but not running, we should
10962 pass this request down to a lower stratum (e.g. the executable
10963 file). */
10964 if (!target_has_execution)
10965 return TARGET_XFER_EOF;
10966
10967 if (writebuf != NULL)
10968 return remote_write_bytes (offset, writebuf, len, unit_size,
10969 xfered_len);
10970 else
10971 return remote_read_bytes (offset, readbuf, len, unit_size,
10972 xfered_len);
10973 }
10974
10975 /* Handle extra signal info using qxfer packets. */
10976 if (object == TARGET_OBJECT_SIGNAL_INFO)
10977 {
10978 if (readbuf)
10979 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10980 xfered_len, &remote_protocol_packets
10981 [PACKET_qXfer_siginfo_read]);
10982 else
10983 return remote_write_qxfer ("siginfo", annex,
10984 writebuf, offset, len, xfered_len,
10985 &remote_protocol_packets
10986 [PACKET_qXfer_siginfo_write]);
10987 }
10988
10989 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10990 {
10991 if (readbuf)
10992 return remote_read_qxfer ("statictrace", annex,
10993 readbuf, offset, len, xfered_len,
10994 &remote_protocol_packets
10995 [PACKET_qXfer_statictrace_read]);
10996 else
10997 return TARGET_XFER_E_IO;
10998 }
10999
11000 /* Only handle flash writes. */
11001 if (writebuf != NULL)
11002 {
11003 switch (object)
11004 {
11005 case TARGET_OBJECT_FLASH:
11006 return remote_flash_write (offset, len, xfered_len,
11007 writebuf);
11008
11009 default:
11010 return TARGET_XFER_E_IO;
11011 }
11012 }
11013
11014 /* Map pre-existing objects onto letters. DO NOT do this for new
11015 objects!!! Instead specify new query packets. */
11016 switch (object)
11017 {
11018 case TARGET_OBJECT_AVR:
11019 query_type = 'R';
11020 break;
11021
11022 case TARGET_OBJECT_AUXV:
11023 gdb_assert (annex == NULL);
11024 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11025 xfered_len,
11026 &remote_protocol_packets[PACKET_qXfer_auxv]);
11027
11028 case TARGET_OBJECT_AVAILABLE_FEATURES:
11029 return remote_read_qxfer
11030 ("features", annex, readbuf, offset, len, xfered_len,
11031 &remote_protocol_packets[PACKET_qXfer_features]);
11032
11033 case TARGET_OBJECT_LIBRARIES:
11034 return remote_read_qxfer
11035 ("libraries", annex, readbuf, offset, len, xfered_len,
11036 &remote_protocol_packets[PACKET_qXfer_libraries]);
11037
11038 case TARGET_OBJECT_LIBRARIES_SVR4:
11039 return remote_read_qxfer
11040 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11041 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11042
11043 case TARGET_OBJECT_MEMORY_MAP:
11044 gdb_assert (annex == NULL);
11045 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11046 xfered_len,
11047 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11048
11049 case TARGET_OBJECT_OSDATA:
11050 /* Should only get here if we're connected. */
11051 gdb_assert (rs->remote_desc);
11052 return remote_read_qxfer
11053 ("osdata", annex, readbuf, offset, len, xfered_len,
11054 &remote_protocol_packets[PACKET_qXfer_osdata]);
11055
11056 case TARGET_OBJECT_THREADS:
11057 gdb_assert (annex == NULL);
11058 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11059 xfered_len,
11060 &remote_protocol_packets[PACKET_qXfer_threads]);
11061
11062 case TARGET_OBJECT_TRACEFRAME_INFO:
11063 gdb_assert (annex == NULL);
11064 return remote_read_qxfer
11065 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11066 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11067
11068 case TARGET_OBJECT_FDPIC:
11069 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11070 xfered_len,
11071 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11072
11073 case TARGET_OBJECT_OPENVMS_UIB:
11074 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11075 xfered_len,
11076 &remote_protocol_packets[PACKET_qXfer_uib]);
11077
11078 case TARGET_OBJECT_BTRACE:
11079 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11080 xfered_len,
11081 &remote_protocol_packets[PACKET_qXfer_btrace]);
11082
11083 case TARGET_OBJECT_BTRACE_CONF:
11084 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11085 len, xfered_len,
11086 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11087
11088 case TARGET_OBJECT_EXEC_FILE:
11089 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11090 len, xfered_len,
11091 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11092
11093 default:
11094 return TARGET_XFER_E_IO;
11095 }
11096
11097 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11098 large enough let the caller deal with it. */
11099 if (len < get_remote_packet_size ())
11100 return TARGET_XFER_E_IO;
11101 len = get_remote_packet_size ();
11102
11103 /* Except for querying the minimum buffer size, target must be open. */
11104 if (!rs->remote_desc)
11105 error (_("remote query is only available after target open"));
11106
11107 gdb_assert (annex != NULL);
11108 gdb_assert (readbuf != NULL);
11109
11110 p2 = rs->buf.data ();
11111 *p2++ = 'q';
11112 *p2++ = query_type;
11113
11114 /* We used one buffer char for the remote protocol q command and
11115 another for the query type. As the remote protocol encapsulation
11116 uses 4 chars plus one extra in case we are debugging
11117 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11118 string. */
11119 i = 0;
11120 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11121 {
11122 /* Bad caller may have sent forbidden characters. */
11123 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11124 *p2++ = annex[i];
11125 i++;
11126 }
11127 *p2 = '\0';
11128 gdb_assert (annex[i] == '\0');
11129
11130 i = putpkt (rs->buf);
11131 if (i < 0)
11132 return TARGET_XFER_E_IO;
11133
11134 getpkt (&rs->buf, 0);
11135 strcpy ((char *) readbuf, rs->buf.data ());
11136
11137 *xfered_len = strlen ((char *) readbuf);
11138 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11139 }
11140
11141 /* Implementation of to_get_memory_xfer_limit. */
11142
11143 ULONGEST
11144 remote_target::get_memory_xfer_limit ()
11145 {
11146 return get_memory_write_packet_size ();
11147 }
11148
11149 int
11150 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11151 const gdb_byte *pattern, ULONGEST pattern_len,
11152 CORE_ADDR *found_addrp)
11153 {
11154 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11155 struct remote_state *rs = get_remote_state ();
11156 int max_size = get_memory_write_packet_size ();
11157 struct packet_config *packet =
11158 &remote_protocol_packets[PACKET_qSearch_memory];
11159 /* Number of packet bytes used to encode the pattern;
11160 this could be more than PATTERN_LEN due to escape characters. */
11161 int escaped_pattern_len;
11162 /* Amount of pattern that was encodable in the packet. */
11163 int used_pattern_len;
11164 int i;
11165 int found;
11166 ULONGEST found_addr;
11167
11168 /* Don't go to the target if we don't have to. This is done before
11169 checking packet_config_support to avoid the possibility that a
11170 success for this edge case means the facility works in
11171 general. */
11172 if (pattern_len > search_space_len)
11173 return 0;
11174 if (pattern_len == 0)
11175 {
11176 *found_addrp = start_addr;
11177 return 1;
11178 }
11179
11180 /* If we already know the packet isn't supported, fall back to the simple
11181 way of searching memory. */
11182
11183 if (packet_config_support (packet) == PACKET_DISABLE)
11184 {
11185 /* Target doesn't provided special support, fall back and use the
11186 standard support (copy memory and do the search here). */
11187 return simple_search_memory (this, start_addr, search_space_len,
11188 pattern, pattern_len, found_addrp);
11189 }
11190
11191 /* Make sure the remote is pointing at the right process. */
11192 set_general_process ();
11193
11194 /* Insert header. */
11195 i = snprintf (rs->buf.data (), max_size,
11196 "qSearch:memory:%s;%s;",
11197 phex_nz (start_addr, addr_size),
11198 phex_nz (search_space_len, sizeof (search_space_len)));
11199 max_size -= (i + 1);
11200
11201 /* Escape as much data as fits into rs->buf. */
11202 escaped_pattern_len =
11203 remote_escape_output (pattern, pattern_len, 1,
11204 (gdb_byte *) rs->buf.data () + i,
11205 &used_pattern_len, max_size);
11206
11207 /* Bail if the pattern is too large. */
11208 if (used_pattern_len != pattern_len)
11209 error (_("Pattern is too large to transmit to remote target."));
11210
11211 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11212 || getpkt_sane (&rs->buf, 0) < 0
11213 || packet_ok (rs->buf, packet) != PACKET_OK)
11214 {
11215 /* The request may not have worked because the command is not
11216 supported. If so, fall back to the simple way. */
11217 if (packet_config_support (packet) == PACKET_DISABLE)
11218 {
11219 return simple_search_memory (this, start_addr, search_space_len,
11220 pattern, pattern_len, found_addrp);
11221 }
11222 return -1;
11223 }
11224
11225 if (rs->buf[0] == '0')
11226 found = 0;
11227 else if (rs->buf[0] == '1')
11228 {
11229 found = 1;
11230 if (rs->buf[1] != ',')
11231 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11232 unpack_varlen_hex (&rs->buf[2], &found_addr);
11233 *found_addrp = found_addr;
11234 }
11235 else
11236 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11237
11238 return found;
11239 }
11240
11241 void
11242 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11243 {
11244 struct remote_state *rs = get_remote_state ();
11245 char *p = rs->buf.data ();
11246
11247 if (!rs->remote_desc)
11248 error (_("remote rcmd is only available after target open"));
11249
11250 /* Send a NULL command across as an empty command. */
11251 if (command == NULL)
11252 command = "";
11253
11254 /* The query prefix. */
11255 strcpy (rs->buf.data (), "qRcmd,");
11256 p = strchr (rs->buf.data (), '\0');
11257
11258 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11259 > get_remote_packet_size ())
11260 error (_("\"monitor\" command ``%s'' is too long."), command);
11261
11262 /* Encode the actual command. */
11263 bin2hex ((const gdb_byte *) command, p, strlen (command));
11264
11265 if (putpkt (rs->buf) < 0)
11266 error (_("Communication problem with target."));
11267
11268 /* get/display the response */
11269 while (1)
11270 {
11271 char *buf;
11272
11273 /* XXX - see also remote_get_noisy_reply(). */
11274 QUIT; /* Allow user to bail out with ^C. */
11275 rs->buf[0] = '\0';
11276 if (getpkt_sane (&rs->buf, 0) == -1)
11277 {
11278 /* Timeout. Continue to (try to) read responses.
11279 This is better than stopping with an error, assuming the stub
11280 is still executing the (long) monitor command.
11281 If needed, the user can interrupt gdb using C-c, obtaining
11282 an effect similar to stop on timeout. */
11283 continue;
11284 }
11285 buf = rs->buf.data ();
11286 if (buf[0] == '\0')
11287 error (_("Target does not support this command."));
11288 if (buf[0] == 'O' && buf[1] != 'K')
11289 {
11290 remote_console_output (buf + 1); /* 'O' message from stub. */
11291 continue;
11292 }
11293 if (strcmp (buf, "OK") == 0)
11294 break;
11295 if (strlen (buf) == 3 && buf[0] == 'E'
11296 && isdigit (buf[1]) && isdigit (buf[2]))
11297 {
11298 error (_("Protocol error with Rcmd"));
11299 }
11300 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11301 {
11302 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11303
11304 fputc_unfiltered (c, outbuf);
11305 }
11306 break;
11307 }
11308 }
11309
11310 std::vector<mem_region>
11311 remote_target::memory_map ()
11312 {
11313 std::vector<mem_region> result;
11314 gdb::optional<gdb::char_vector> text
11315 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11316
11317 if (text)
11318 result = parse_memory_map (text->data ());
11319
11320 return result;
11321 }
11322
11323 static void
11324 packet_command (const char *args, int from_tty)
11325 {
11326 remote_target *remote = get_current_remote_target ();
11327
11328 if (remote == nullptr)
11329 error (_("command can only be used with remote target"));
11330
11331 remote->packet_command (args, from_tty);
11332 }
11333
11334 void
11335 remote_target::packet_command (const char *args, int from_tty)
11336 {
11337 if (!args)
11338 error (_("remote-packet command requires packet text as argument"));
11339
11340 puts_filtered ("sending: ");
11341 print_packet (args);
11342 puts_filtered ("\n");
11343 putpkt (args);
11344
11345 remote_state *rs = get_remote_state ();
11346
11347 getpkt (&rs->buf, 0);
11348 puts_filtered ("received: ");
11349 print_packet (rs->buf.data ());
11350 puts_filtered ("\n");
11351 }
11352
11353 #if 0
11354 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11355
11356 static void display_thread_info (struct gdb_ext_thread_info *info);
11357
11358 static void threadset_test_cmd (char *cmd, int tty);
11359
11360 static void threadalive_test (char *cmd, int tty);
11361
11362 static void threadlist_test_cmd (char *cmd, int tty);
11363
11364 int get_and_display_threadinfo (threadref *ref);
11365
11366 static void threadinfo_test_cmd (char *cmd, int tty);
11367
11368 static int thread_display_step (threadref *ref, void *context);
11369
11370 static void threadlist_update_test_cmd (char *cmd, int tty);
11371
11372 static void init_remote_threadtests (void);
11373
11374 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11375
11376 static void
11377 threadset_test_cmd (const char *cmd, int tty)
11378 {
11379 int sample_thread = SAMPLE_THREAD;
11380
11381 printf_filtered (_("Remote threadset test\n"));
11382 set_general_thread (sample_thread);
11383 }
11384
11385
11386 static void
11387 threadalive_test (const char *cmd, int tty)
11388 {
11389 int sample_thread = SAMPLE_THREAD;
11390 int pid = inferior_ptid.pid ();
11391 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11392
11393 if (remote_thread_alive (ptid))
11394 printf_filtered ("PASS: Thread alive test\n");
11395 else
11396 printf_filtered ("FAIL: Thread alive test\n");
11397 }
11398
11399 void output_threadid (char *title, threadref *ref);
11400
11401 void
11402 output_threadid (char *title, threadref *ref)
11403 {
11404 char hexid[20];
11405
11406 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11407 hexid[16] = 0;
11408 printf_filtered ("%s %s\n", title, (&hexid[0]));
11409 }
11410
11411 static void
11412 threadlist_test_cmd (const char *cmd, int tty)
11413 {
11414 int startflag = 1;
11415 threadref nextthread;
11416 int done, result_count;
11417 threadref threadlist[3];
11418
11419 printf_filtered ("Remote Threadlist test\n");
11420 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11421 &result_count, &threadlist[0]))
11422 printf_filtered ("FAIL: threadlist test\n");
11423 else
11424 {
11425 threadref *scan = threadlist;
11426 threadref *limit = scan + result_count;
11427
11428 while (scan < limit)
11429 output_threadid (" thread ", scan++);
11430 }
11431 }
11432
11433 void
11434 display_thread_info (struct gdb_ext_thread_info *info)
11435 {
11436 output_threadid ("Threadid: ", &info->threadid);
11437 printf_filtered ("Name: %s\n ", info->shortname);
11438 printf_filtered ("State: %s\n", info->display);
11439 printf_filtered ("other: %s\n\n", info->more_display);
11440 }
11441
11442 int
11443 get_and_display_threadinfo (threadref *ref)
11444 {
11445 int result;
11446 int set;
11447 struct gdb_ext_thread_info threadinfo;
11448
11449 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11450 | TAG_MOREDISPLAY | TAG_DISPLAY;
11451 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11452 display_thread_info (&threadinfo);
11453 return result;
11454 }
11455
11456 static void
11457 threadinfo_test_cmd (const char *cmd, int tty)
11458 {
11459 int athread = SAMPLE_THREAD;
11460 threadref thread;
11461 int set;
11462
11463 int_to_threadref (&thread, athread);
11464 printf_filtered ("Remote Threadinfo test\n");
11465 if (!get_and_display_threadinfo (&thread))
11466 printf_filtered ("FAIL cannot get thread info\n");
11467 }
11468
11469 static int
11470 thread_display_step (threadref *ref, void *context)
11471 {
11472 /* output_threadid(" threadstep ",ref); *//* simple test */
11473 return get_and_display_threadinfo (ref);
11474 }
11475
11476 static void
11477 threadlist_update_test_cmd (const char *cmd, int tty)
11478 {
11479 printf_filtered ("Remote Threadlist update test\n");
11480 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11481 }
11482
11483 static void
11484 init_remote_threadtests (void)
11485 {
11486 add_com ("tlist", class_obscure, threadlist_test_cmd,
11487 _("Fetch and print the remote list of "
11488 "thread identifiers, one pkt only."));
11489 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11490 _("Fetch and display info about one thread."));
11491 add_com ("tset", class_obscure, threadset_test_cmd,
11492 _("Test setting to a different thread."));
11493 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11494 _("Iterate through updating all remote thread info."));
11495 add_com ("talive", class_obscure, threadalive_test,
11496 _("Remote thread alive test."));
11497 }
11498
11499 #endif /* 0 */
11500
11501 /* Convert a thread ID to a string. */
11502
11503 std::string
11504 remote_target::pid_to_str (ptid_t ptid)
11505 {
11506 struct remote_state *rs = get_remote_state ();
11507
11508 if (ptid == null_ptid)
11509 return normal_pid_to_str (ptid);
11510 else if (ptid.is_pid ())
11511 {
11512 /* Printing an inferior target id. */
11513
11514 /* When multi-process extensions are off, there's no way in the
11515 remote protocol to know the remote process id, if there's any
11516 at all. There's one exception --- when we're connected with
11517 target extended-remote, and we manually attached to a process
11518 with "attach PID". We don't record anywhere a flag that
11519 allows us to distinguish that case from the case of
11520 connecting with extended-remote and the stub already being
11521 attached to a process, and reporting yes to qAttached, hence
11522 no smart special casing here. */
11523 if (!remote_multi_process_p (rs))
11524 return "Remote target";
11525
11526 return normal_pid_to_str (ptid);
11527 }
11528 else
11529 {
11530 if (magic_null_ptid == ptid)
11531 return "Thread <main>";
11532 else if (remote_multi_process_p (rs))
11533 if (ptid.lwp () == 0)
11534 return normal_pid_to_str (ptid);
11535 else
11536 return string_printf ("Thread %d.%ld",
11537 ptid.pid (), ptid.lwp ());
11538 else
11539 return string_printf ("Thread %ld", ptid.lwp ());
11540 }
11541 }
11542
11543 /* Get the address of the thread local variable in OBJFILE which is
11544 stored at OFFSET within the thread local storage for thread PTID. */
11545
11546 CORE_ADDR
11547 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11548 CORE_ADDR offset)
11549 {
11550 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11551 {
11552 struct remote_state *rs = get_remote_state ();
11553 char *p = rs->buf.data ();
11554 char *endp = p + get_remote_packet_size ();
11555 enum packet_result result;
11556
11557 strcpy (p, "qGetTLSAddr:");
11558 p += strlen (p);
11559 p = write_ptid (p, endp, ptid);
11560 *p++ = ',';
11561 p += hexnumstr (p, offset);
11562 *p++ = ',';
11563 p += hexnumstr (p, lm);
11564 *p++ = '\0';
11565
11566 putpkt (rs->buf);
11567 getpkt (&rs->buf, 0);
11568 result = packet_ok (rs->buf,
11569 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11570 if (result == PACKET_OK)
11571 {
11572 ULONGEST addr;
11573
11574 unpack_varlen_hex (rs->buf.data (), &addr);
11575 return addr;
11576 }
11577 else if (result == PACKET_UNKNOWN)
11578 throw_error (TLS_GENERIC_ERROR,
11579 _("Remote target doesn't support qGetTLSAddr packet"));
11580 else
11581 throw_error (TLS_GENERIC_ERROR,
11582 _("Remote target failed to process qGetTLSAddr request"));
11583 }
11584 else
11585 throw_error (TLS_GENERIC_ERROR,
11586 _("TLS not supported or disabled on this target"));
11587 /* Not reached. */
11588 return 0;
11589 }
11590
11591 /* Provide thread local base, i.e. Thread Information Block address.
11592 Returns 1 if ptid is found and thread_local_base is non zero. */
11593
11594 bool
11595 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11596 {
11597 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11598 {
11599 struct remote_state *rs = get_remote_state ();
11600 char *p = rs->buf.data ();
11601 char *endp = p + get_remote_packet_size ();
11602 enum packet_result result;
11603
11604 strcpy (p, "qGetTIBAddr:");
11605 p += strlen (p);
11606 p = write_ptid (p, endp, ptid);
11607 *p++ = '\0';
11608
11609 putpkt (rs->buf);
11610 getpkt (&rs->buf, 0);
11611 result = packet_ok (rs->buf,
11612 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11613 if (result == PACKET_OK)
11614 {
11615 ULONGEST val;
11616 unpack_varlen_hex (rs->buf.data (), &val);
11617 if (addr)
11618 *addr = (CORE_ADDR) val;
11619 return true;
11620 }
11621 else if (result == PACKET_UNKNOWN)
11622 error (_("Remote target doesn't support qGetTIBAddr packet"));
11623 else
11624 error (_("Remote target failed to process qGetTIBAddr request"));
11625 }
11626 else
11627 error (_("qGetTIBAddr not supported or disabled on this target"));
11628 /* Not reached. */
11629 return false;
11630 }
11631
11632 /* Support for inferring a target description based on the current
11633 architecture and the size of a 'g' packet. While the 'g' packet
11634 can have any size (since optional registers can be left off the
11635 end), some sizes are easily recognizable given knowledge of the
11636 approximate architecture. */
11637
11638 struct remote_g_packet_guess
11639 {
11640 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11641 : bytes (bytes_),
11642 tdesc (tdesc_)
11643 {
11644 }
11645
11646 int bytes;
11647 const struct target_desc *tdesc;
11648 };
11649
11650 struct remote_g_packet_data : public allocate_on_obstack
11651 {
11652 std::vector<remote_g_packet_guess> guesses;
11653 };
11654
11655 static struct gdbarch_data *remote_g_packet_data_handle;
11656
11657 static void *
11658 remote_g_packet_data_init (struct obstack *obstack)
11659 {
11660 return new (obstack) remote_g_packet_data;
11661 }
11662
11663 void
11664 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11665 const struct target_desc *tdesc)
11666 {
11667 struct remote_g_packet_data *data
11668 = ((struct remote_g_packet_data *)
11669 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11670
11671 gdb_assert (tdesc != NULL);
11672
11673 for (const remote_g_packet_guess &guess : data->guesses)
11674 if (guess.bytes == bytes)
11675 internal_error (__FILE__, __LINE__,
11676 _("Duplicate g packet description added for size %d"),
11677 bytes);
11678
11679 data->guesses.emplace_back (bytes, tdesc);
11680 }
11681
11682 /* Return true if remote_read_description would do anything on this target
11683 and architecture, false otherwise. */
11684
11685 static bool
11686 remote_read_description_p (struct target_ops *target)
11687 {
11688 struct remote_g_packet_data *data
11689 = ((struct remote_g_packet_data *)
11690 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11691
11692 return !data->guesses.empty ();
11693 }
11694
11695 const struct target_desc *
11696 remote_target::read_description ()
11697 {
11698 struct remote_g_packet_data *data
11699 = ((struct remote_g_packet_data *)
11700 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11701
11702 /* Do not try this during initial connection, when we do not know
11703 whether there is a running but stopped thread. */
11704 if (!target_has_execution || inferior_ptid == null_ptid)
11705 return beneath ()->read_description ();
11706
11707 if (!data->guesses.empty ())
11708 {
11709 int bytes = send_g_packet ();
11710
11711 for (const remote_g_packet_guess &guess : data->guesses)
11712 if (guess.bytes == bytes)
11713 return guess.tdesc;
11714
11715 /* We discard the g packet. A minor optimization would be to
11716 hold on to it, and fill the register cache once we have selected
11717 an architecture, but it's too tricky to do safely. */
11718 }
11719
11720 return beneath ()->read_description ();
11721 }
11722
11723 /* Remote file transfer support. This is host-initiated I/O, not
11724 target-initiated; for target-initiated, see remote-fileio.c. */
11725
11726 /* If *LEFT is at least the length of STRING, copy STRING to
11727 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11728 decrease *LEFT. Otherwise raise an error. */
11729
11730 static void
11731 remote_buffer_add_string (char **buffer, int *left, const char *string)
11732 {
11733 int len = strlen (string);
11734
11735 if (len > *left)
11736 error (_("Packet too long for target."));
11737
11738 memcpy (*buffer, string, len);
11739 *buffer += len;
11740 *left -= len;
11741
11742 /* NUL-terminate the buffer as a convenience, if there is
11743 room. */
11744 if (*left)
11745 **buffer = '\0';
11746 }
11747
11748 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11749 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11750 decrease *LEFT. Otherwise raise an error. */
11751
11752 static void
11753 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11754 int len)
11755 {
11756 if (2 * len > *left)
11757 error (_("Packet too long for target."));
11758
11759 bin2hex (bytes, *buffer, len);
11760 *buffer += 2 * len;
11761 *left -= 2 * len;
11762
11763 /* NUL-terminate the buffer as a convenience, if there is
11764 room. */
11765 if (*left)
11766 **buffer = '\0';
11767 }
11768
11769 /* If *LEFT is large enough, convert VALUE to hex and add it to
11770 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11771 decrease *LEFT. Otherwise raise an error. */
11772
11773 static void
11774 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11775 {
11776 int len = hexnumlen (value);
11777
11778 if (len > *left)
11779 error (_("Packet too long for target."));
11780
11781 hexnumstr (*buffer, value);
11782 *buffer += len;
11783 *left -= len;
11784
11785 /* NUL-terminate the buffer as a convenience, if there is
11786 room. */
11787 if (*left)
11788 **buffer = '\0';
11789 }
11790
11791 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11792 value, *REMOTE_ERRNO to the remote error number or zero if none
11793 was included, and *ATTACHMENT to point to the start of the annex
11794 if any. The length of the packet isn't needed here; there may
11795 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11796
11797 Return 0 if the packet could be parsed, -1 if it could not. If
11798 -1 is returned, the other variables may not be initialized. */
11799
11800 static int
11801 remote_hostio_parse_result (char *buffer, int *retcode,
11802 int *remote_errno, char **attachment)
11803 {
11804 char *p, *p2;
11805
11806 *remote_errno = 0;
11807 *attachment = NULL;
11808
11809 if (buffer[0] != 'F')
11810 return -1;
11811
11812 errno = 0;
11813 *retcode = strtol (&buffer[1], &p, 16);
11814 if (errno != 0 || p == &buffer[1])
11815 return -1;
11816
11817 /* Check for ",errno". */
11818 if (*p == ',')
11819 {
11820 errno = 0;
11821 *remote_errno = strtol (p + 1, &p2, 16);
11822 if (errno != 0 || p + 1 == p2)
11823 return -1;
11824 p = p2;
11825 }
11826
11827 /* Check for ";attachment". If there is no attachment, the
11828 packet should end here. */
11829 if (*p == ';')
11830 {
11831 *attachment = p + 1;
11832 return 0;
11833 }
11834 else if (*p == '\0')
11835 return 0;
11836 else
11837 return -1;
11838 }
11839
11840 /* Send a prepared I/O packet to the target and read its response.
11841 The prepared packet is in the global RS->BUF before this function
11842 is called, and the answer is there when we return.
11843
11844 COMMAND_BYTES is the length of the request to send, which may include
11845 binary data. WHICH_PACKET is the packet configuration to check
11846 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11847 is set to the error number and -1 is returned. Otherwise the value
11848 returned by the function is returned.
11849
11850 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11851 attachment is expected; an error will be reported if there's a
11852 mismatch. If one is found, *ATTACHMENT will be set to point into
11853 the packet buffer and *ATTACHMENT_LEN will be set to the
11854 attachment's length. */
11855
11856 int
11857 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11858 int *remote_errno, char **attachment,
11859 int *attachment_len)
11860 {
11861 struct remote_state *rs = get_remote_state ();
11862 int ret, bytes_read;
11863 char *attachment_tmp;
11864
11865 if (packet_support (which_packet) == PACKET_DISABLE)
11866 {
11867 *remote_errno = FILEIO_ENOSYS;
11868 return -1;
11869 }
11870
11871 putpkt_binary (rs->buf.data (), command_bytes);
11872 bytes_read = getpkt_sane (&rs->buf, 0);
11873
11874 /* If it timed out, something is wrong. Don't try to parse the
11875 buffer. */
11876 if (bytes_read < 0)
11877 {
11878 *remote_errno = FILEIO_EINVAL;
11879 return -1;
11880 }
11881
11882 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11883 {
11884 case PACKET_ERROR:
11885 *remote_errno = FILEIO_EINVAL;
11886 return -1;
11887 case PACKET_UNKNOWN:
11888 *remote_errno = FILEIO_ENOSYS;
11889 return -1;
11890 case PACKET_OK:
11891 break;
11892 }
11893
11894 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11895 &attachment_tmp))
11896 {
11897 *remote_errno = FILEIO_EINVAL;
11898 return -1;
11899 }
11900
11901 /* Make sure we saw an attachment if and only if we expected one. */
11902 if ((attachment_tmp == NULL && attachment != NULL)
11903 || (attachment_tmp != NULL && attachment == NULL))
11904 {
11905 *remote_errno = FILEIO_EINVAL;
11906 return -1;
11907 }
11908
11909 /* If an attachment was found, it must point into the packet buffer;
11910 work out how many bytes there were. */
11911 if (attachment_tmp != NULL)
11912 {
11913 *attachment = attachment_tmp;
11914 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11915 }
11916
11917 return ret;
11918 }
11919
11920 /* See declaration.h. */
11921
11922 void
11923 readahead_cache::invalidate ()
11924 {
11925 this->fd = -1;
11926 }
11927
11928 /* See declaration.h. */
11929
11930 void
11931 readahead_cache::invalidate_fd (int fd)
11932 {
11933 if (this->fd == fd)
11934 this->fd = -1;
11935 }
11936
11937 /* Set the filesystem remote_hostio functions that take FILENAME
11938 arguments will use. Return 0 on success, or -1 if an error
11939 occurs (and set *REMOTE_ERRNO). */
11940
11941 int
11942 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11943 int *remote_errno)
11944 {
11945 struct remote_state *rs = get_remote_state ();
11946 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11947 char *p = rs->buf.data ();
11948 int left = get_remote_packet_size () - 1;
11949 char arg[9];
11950 int ret;
11951
11952 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11953 return 0;
11954
11955 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11956 return 0;
11957
11958 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11959
11960 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11961 remote_buffer_add_string (&p, &left, arg);
11962
11963 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11964 remote_errno, NULL, NULL);
11965
11966 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11967 return 0;
11968
11969 if (ret == 0)
11970 rs->fs_pid = required_pid;
11971
11972 return ret;
11973 }
11974
11975 /* Implementation of to_fileio_open. */
11976
11977 int
11978 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11979 int flags, int mode, int warn_if_slow,
11980 int *remote_errno)
11981 {
11982 struct remote_state *rs = get_remote_state ();
11983 char *p = rs->buf.data ();
11984 int left = get_remote_packet_size () - 1;
11985
11986 if (warn_if_slow)
11987 {
11988 static int warning_issued = 0;
11989
11990 printf_unfiltered (_("Reading %s from remote target...\n"),
11991 filename);
11992
11993 if (!warning_issued)
11994 {
11995 warning (_("File transfers from remote targets can be slow."
11996 " Use \"set sysroot\" to access files locally"
11997 " instead."));
11998 warning_issued = 1;
11999 }
12000 }
12001
12002 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12003 return -1;
12004
12005 remote_buffer_add_string (&p, &left, "vFile:open:");
12006
12007 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12008 strlen (filename));
12009 remote_buffer_add_string (&p, &left, ",");
12010
12011 remote_buffer_add_int (&p, &left, flags);
12012 remote_buffer_add_string (&p, &left, ",");
12013
12014 remote_buffer_add_int (&p, &left, mode);
12015
12016 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12017 remote_errno, NULL, NULL);
12018 }
12019
12020 int
12021 remote_target::fileio_open (struct inferior *inf, const char *filename,
12022 int flags, int mode, int warn_if_slow,
12023 int *remote_errno)
12024 {
12025 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12026 remote_errno);
12027 }
12028
12029 /* Implementation of to_fileio_pwrite. */
12030
12031 int
12032 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12033 ULONGEST offset, int *remote_errno)
12034 {
12035 struct remote_state *rs = get_remote_state ();
12036 char *p = rs->buf.data ();
12037 int left = get_remote_packet_size ();
12038 int out_len;
12039
12040 rs->readahead_cache.invalidate_fd (fd);
12041
12042 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12043
12044 remote_buffer_add_int (&p, &left, fd);
12045 remote_buffer_add_string (&p, &left, ",");
12046
12047 remote_buffer_add_int (&p, &left, offset);
12048 remote_buffer_add_string (&p, &left, ",");
12049
12050 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12051 (get_remote_packet_size ()
12052 - (p - rs->buf.data ())));
12053
12054 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12055 remote_errno, NULL, NULL);
12056 }
12057
12058 int
12059 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12060 ULONGEST offset, int *remote_errno)
12061 {
12062 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12063 }
12064
12065 /* Helper for the implementation of to_fileio_pread. Read the file
12066 from the remote side with vFile:pread. */
12067
12068 int
12069 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12070 ULONGEST offset, int *remote_errno)
12071 {
12072 struct remote_state *rs = get_remote_state ();
12073 char *p = rs->buf.data ();
12074 char *attachment;
12075 int left = get_remote_packet_size ();
12076 int ret, attachment_len;
12077 int read_len;
12078
12079 remote_buffer_add_string (&p, &left, "vFile:pread:");
12080
12081 remote_buffer_add_int (&p, &left, fd);
12082 remote_buffer_add_string (&p, &left, ",");
12083
12084 remote_buffer_add_int (&p, &left, len);
12085 remote_buffer_add_string (&p, &left, ",");
12086
12087 remote_buffer_add_int (&p, &left, offset);
12088
12089 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12090 remote_errno, &attachment,
12091 &attachment_len);
12092
12093 if (ret < 0)
12094 return ret;
12095
12096 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12097 read_buf, len);
12098 if (read_len != ret)
12099 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12100
12101 return ret;
12102 }
12103
12104 /* See declaration.h. */
12105
12106 int
12107 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12108 ULONGEST offset)
12109 {
12110 if (this->fd == fd
12111 && this->offset <= offset
12112 && offset < this->offset + this->bufsize)
12113 {
12114 ULONGEST max = this->offset + this->bufsize;
12115
12116 if (offset + len > max)
12117 len = max - offset;
12118
12119 memcpy (read_buf, this->buf + offset - this->offset, len);
12120 return len;
12121 }
12122
12123 return 0;
12124 }
12125
12126 /* Implementation of to_fileio_pread. */
12127
12128 int
12129 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12130 ULONGEST offset, int *remote_errno)
12131 {
12132 int ret;
12133 struct remote_state *rs = get_remote_state ();
12134 readahead_cache *cache = &rs->readahead_cache;
12135
12136 ret = cache->pread (fd, read_buf, len, offset);
12137 if (ret > 0)
12138 {
12139 cache->hit_count++;
12140
12141 if (remote_debug)
12142 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12143 pulongest (cache->hit_count));
12144 return ret;
12145 }
12146
12147 cache->miss_count++;
12148 if (remote_debug)
12149 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12150 pulongest (cache->miss_count));
12151
12152 cache->fd = fd;
12153 cache->offset = offset;
12154 cache->bufsize = get_remote_packet_size ();
12155 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12156
12157 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12158 cache->offset, remote_errno);
12159 if (ret <= 0)
12160 {
12161 cache->invalidate_fd (fd);
12162 return ret;
12163 }
12164
12165 cache->bufsize = ret;
12166 return cache->pread (fd, read_buf, len, offset);
12167 }
12168
12169 int
12170 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12171 ULONGEST offset, int *remote_errno)
12172 {
12173 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12174 }
12175
12176 /* Implementation of to_fileio_close. */
12177
12178 int
12179 remote_target::remote_hostio_close (int fd, int *remote_errno)
12180 {
12181 struct remote_state *rs = get_remote_state ();
12182 char *p = rs->buf.data ();
12183 int left = get_remote_packet_size () - 1;
12184
12185 rs->readahead_cache.invalidate_fd (fd);
12186
12187 remote_buffer_add_string (&p, &left, "vFile:close:");
12188
12189 remote_buffer_add_int (&p, &left, fd);
12190
12191 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12192 remote_errno, NULL, NULL);
12193 }
12194
12195 int
12196 remote_target::fileio_close (int fd, int *remote_errno)
12197 {
12198 return remote_hostio_close (fd, remote_errno);
12199 }
12200
12201 /* Implementation of to_fileio_unlink. */
12202
12203 int
12204 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12205 int *remote_errno)
12206 {
12207 struct remote_state *rs = get_remote_state ();
12208 char *p = rs->buf.data ();
12209 int left = get_remote_packet_size () - 1;
12210
12211 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12212 return -1;
12213
12214 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12215
12216 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12217 strlen (filename));
12218
12219 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12220 remote_errno, NULL, NULL);
12221 }
12222
12223 int
12224 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12225 int *remote_errno)
12226 {
12227 return remote_hostio_unlink (inf, filename, remote_errno);
12228 }
12229
12230 /* Implementation of to_fileio_readlink. */
12231
12232 gdb::optional<std::string>
12233 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12234 int *remote_errno)
12235 {
12236 struct remote_state *rs = get_remote_state ();
12237 char *p = rs->buf.data ();
12238 char *attachment;
12239 int left = get_remote_packet_size ();
12240 int len, attachment_len;
12241 int read_len;
12242
12243 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12244 return {};
12245
12246 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12247
12248 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12249 strlen (filename));
12250
12251 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12252 remote_errno, &attachment,
12253 &attachment_len);
12254
12255 if (len < 0)
12256 return {};
12257
12258 std::string ret (len, '\0');
12259
12260 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12261 (gdb_byte *) &ret[0], len);
12262 if (read_len != len)
12263 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12264
12265 return ret;
12266 }
12267
12268 /* Implementation of to_fileio_fstat. */
12269
12270 int
12271 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12272 {
12273 struct remote_state *rs = get_remote_state ();
12274 char *p = rs->buf.data ();
12275 int left = get_remote_packet_size ();
12276 int attachment_len, ret;
12277 char *attachment;
12278 struct fio_stat fst;
12279 int read_len;
12280
12281 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12282
12283 remote_buffer_add_int (&p, &left, fd);
12284
12285 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12286 remote_errno, &attachment,
12287 &attachment_len);
12288 if (ret < 0)
12289 {
12290 if (*remote_errno != FILEIO_ENOSYS)
12291 return ret;
12292
12293 /* Strictly we should return -1, ENOSYS here, but when
12294 "set sysroot remote:" was implemented in August 2008
12295 BFD's need for a stat function was sidestepped with
12296 this hack. This was not remedied until March 2015
12297 so we retain the previous behavior to avoid breaking
12298 compatibility.
12299
12300 Note that the memset is a March 2015 addition; older
12301 GDBs set st_size *and nothing else* so the structure
12302 would have garbage in all other fields. This might
12303 break something but retaining the previous behavior
12304 here would be just too wrong. */
12305
12306 memset (st, 0, sizeof (struct stat));
12307 st->st_size = INT_MAX;
12308 return 0;
12309 }
12310
12311 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12312 (gdb_byte *) &fst, sizeof (fst));
12313
12314 if (read_len != ret)
12315 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12316
12317 if (read_len != sizeof (fst))
12318 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12319 read_len, (int) sizeof (fst));
12320
12321 remote_fileio_to_host_stat (&fst, st);
12322
12323 return 0;
12324 }
12325
12326 /* Implementation of to_filesystem_is_local. */
12327
12328 bool
12329 remote_target::filesystem_is_local ()
12330 {
12331 /* Valgrind GDB presents itself as a remote target but works
12332 on the local filesystem: it does not implement remote get
12333 and users are not expected to set a sysroot. To handle
12334 this case we treat the remote filesystem as local if the
12335 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12336 does not support vFile:open. */
12337 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12338 {
12339 enum packet_support ps = packet_support (PACKET_vFile_open);
12340
12341 if (ps == PACKET_SUPPORT_UNKNOWN)
12342 {
12343 int fd, remote_errno;
12344
12345 /* Try opening a file to probe support. The supplied
12346 filename is irrelevant, we only care about whether
12347 the stub recognizes the packet or not. */
12348 fd = remote_hostio_open (NULL, "just probing",
12349 FILEIO_O_RDONLY, 0700, 0,
12350 &remote_errno);
12351
12352 if (fd >= 0)
12353 remote_hostio_close (fd, &remote_errno);
12354
12355 ps = packet_support (PACKET_vFile_open);
12356 }
12357
12358 if (ps == PACKET_DISABLE)
12359 {
12360 static int warning_issued = 0;
12361
12362 if (!warning_issued)
12363 {
12364 warning (_("remote target does not support file"
12365 " transfer, attempting to access files"
12366 " from local filesystem."));
12367 warning_issued = 1;
12368 }
12369
12370 return true;
12371 }
12372 }
12373
12374 return false;
12375 }
12376
12377 static int
12378 remote_fileio_errno_to_host (int errnum)
12379 {
12380 switch (errnum)
12381 {
12382 case FILEIO_EPERM:
12383 return EPERM;
12384 case FILEIO_ENOENT:
12385 return ENOENT;
12386 case FILEIO_EINTR:
12387 return EINTR;
12388 case FILEIO_EIO:
12389 return EIO;
12390 case FILEIO_EBADF:
12391 return EBADF;
12392 case FILEIO_EACCES:
12393 return EACCES;
12394 case FILEIO_EFAULT:
12395 return EFAULT;
12396 case FILEIO_EBUSY:
12397 return EBUSY;
12398 case FILEIO_EEXIST:
12399 return EEXIST;
12400 case FILEIO_ENODEV:
12401 return ENODEV;
12402 case FILEIO_ENOTDIR:
12403 return ENOTDIR;
12404 case FILEIO_EISDIR:
12405 return EISDIR;
12406 case FILEIO_EINVAL:
12407 return EINVAL;
12408 case FILEIO_ENFILE:
12409 return ENFILE;
12410 case FILEIO_EMFILE:
12411 return EMFILE;
12412 case FILEIO_EFBIG:
12413 return EFBIG;
12414 case FILEIO_ENOSPC:
12415 return ENOSPC;
12416 case FILEIO_ESPIPE:
12417 return ESPIPE;
12418 case FILEIO_EROFS:
12419 return EROFS;
12420 case FILEIO_ENOSYS:
12421 return ENOSYS;
12422 case FILEIO_ENAMETOOLONG:
12423 return ENAMETOOLONG;
12424 }
12425 return -1;
12426 }
12427
12428 static char *
12429 remote_hostio_error (int errnum)
12430 {
12431 int host_error = remote_fileio_errno_to_host (errnum);
12432
12433 if (host_error == -1)
12434 error (_("Unknown remote I/O error %d"), errnum);
12435 else
12436 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12437 }
12438
12439 /* A RAII wrapper around a remote file descriptor. */
12440
12441 class scoped_remote_fd
12442 {
12443 public:
12444 scoped_remote_fd (remote_target *remote, int fd)
12445 : m_remote (remote), m_fd (fd)
12446 {
12447 }
12448
12449 ~scoped_remote_fd ()
12450 {
12451 if (m_fd != -1)
12452 {
12453 try
12454 {
12455 int remote_errno;
12456 m_remote->remote_hostio_close (m_fd, &remote_errno);
12457 }
12458 catch (...)
12459 {
12460 /* Swallow exception before it escapes the dtor. If
12461 something goes wrong, likely the connection is gone,
12462 and there's nothing else that can be done. */
12463 }
12464 }
12465 }
12466
12467 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12468
12469 /* Release ownership of the file descriptor, and return it. */
12470 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12471 {
12472 int fd = m_fd;
12473 m_fd = -1;
12474 return fd;
12475 }
12476
12477 /* Return the owned file descriptor. */
12478 int get () const noexcept
12479 {
12480 return m_fd;
12481 }
12482
12483 private:
12484 /* The remote target. */
12485 remote_target *m_remote;
12486
12487 /* The owned remote I/O file descriptor. */
12488 int m_fd;
12489 };
12490
12491 void
12492 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12493 {
12494 remote_target *remote = get_current_remote_target ();
12495
12496 if (remote == nullptr)
12497 error (_("command can only be used with remote target"));
12498
12499 remote->remote_file_put (local_file, remote_file, from_tty);
12500 }
12501
12502 void
12503 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12504 int from_tty)
12505 {
12506 int retcode, remote_errno, bytes, io_size;
12507 int bytes_in_buffer;
12508 int saw_eof;
12509 ULONGEST offset;
12510
12511 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12512 if (file == NULL)
12513 perror_with_name (local_file);
12514
12515 scoped_remote_fd fd
12516 (this, remote_hostio_open (NULL,
12517 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12518 | FILEIO_O_TRUNC),
12519 0700, 0, &remote_errno));
12520 if (fd.get () == -1)
12521 remote_hostio_error (remote_errno);
12522
12523 /* Send up to this many bytes at once. They won't all fit in the
12524 remote packet limit, so we'll transfer slightly fewer. */
12525 io_size = get_remote_packet_size ();
12526 gdb::byte_vector buffer (io_size);
12527
12528 bytes_in_buffer = 0;
12529 saw_eof = 0;
12530 offset = 0;
12531 while (bytes_in_buffer || !saw_eof)
12532 {
12533 if (!saw_eof)
12534 {
12535 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12536 io_size - bytes_in_buffer,
12537 file.get ());
12538 if (bytes == 0)
12539 {
12540 if (ferror (file.get ()))
12541 error (_("Error reading %s."), local_file);
12542 else
12543 {
12544 /* EOF. Unless there is something still in the
12545 buffer from the last iteration, we are done. */
12546 saw_eof = 1;
12547 if (bytes_in_buffer == 0)
12548 break;
12549 }
12550 }
12551 }
12552 else
12553 bytes = 0;
12554
12555 bytes += bytes_in_buffer;
12556 bytes_in_buffer = 0;
12557
12558 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12559 offset, &remote_errno);
12560
12561 if (retcode < 0)
12562 remote_hostio_error (remote_errno);
12563 else if (retcode == 0)
12564 error (_("Remote write of %d bytes returned 0!"), bytes);
12565 else if (retcode < bytes)
12566 {
12567 /* Short write. Save the rest of the read data for the next
12568 write. */
12569 bytes_in_buffer = bytes - retcode;
12570 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12571 }
12572
12573 offset += retcode;
12574 }
12575
12576 if (remote_hostio_close (fd.release (), &remote_errno))
12577 remote_hostio_error (remote_errno);
12578
12579 if (from_tty)
12580 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12581 }
12582
12583 void
12584 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12585 {
12586 remote_target *remote = get_current_remote_target ();
12587
12588 if (remote == nullptr)
12589 error (_("command can only be used with remote target"));
12590
12591 remote->remote_file_get (remote_file, local_file, from_tty);
12592 }
12593
12594 void
12595 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12596 int from_tty)
12597 {
12598 int remote_errno, bytes, io_size;
12599 ULONGEST offset;
12600
12601 scoped_remote_fd fd
12602 (this, remote_hostio_open (NULL,
12603 remote_file, FILEIO_O_RDONLY, 0, 0,
12604 &remote_errno));
12605 if (fd.get () == -1)
12606 remote_hostio_error (remote_errno);
12607
12608 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12609 if (file == NULL)
12610 perror_with_name (local_file);
12611
12612 /* Send up to this many bytes at once. They won't all fit in the
12613 remote packet limit, so we'll transfer slightly fewer. */
12614 io_size = get_remote_packet_size ();
12615 gdb::byte_vector buffer (io_size);
12616
12617 offset = 0;
12618 while (1)
12619 {
12620 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12621 &remote_errno);
12622 if (bytes == 0)
12623 /* Success, but no bytes, means end-of-file. */
12624 break;
12625 if (bytes == -1)
12626 remote_hostio_error (remote_errno);
12627
12628 offset += bytes;
12629
12630 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12631 if (bytes == 0)
12632 perror_with_name (local_file);
12633 }
12634
12635 if (remote_hostio_close (fd.release (), &remote_errno))
12636 remote_hostio_error (remote_errno);
12637
12638 if (from_tty)
12639 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12640 }
12641
12642 void
12643 remote_file_delete (const char *remote_file, int from_tty)
12644 {
12645 remote_target *remote = get_current_remote_target ();
12646
12647 if (remote == nullptr)
12648 error (_("command can only be used with remote target"));
12649
12650 remote->remote_file_delete (remote_file, from_tty);
12651 }
12652
12653 void
12654 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12655 {
12656 int retcode, remote_errno;
12657
12658 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12659 if (retcode == -1)
12660 remote_hostio_error (remote_errno);
12661
12662 if (from_tty)
12663 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12664 }
12665
12666 static void
12667 remote_put_command (const char *args, int from_tty)
12668 {
12669 if (args == NULL)
12670 error_no_arg (_("file to put"));
12671
12672 gdb_argv argv (args);
12673 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12674 error (_("Invalid parameters to remote put"));
12675
12676 remote_file_put (argv[0], argv[1], from_tty);
12677 }
12678
12679 static void
12680 remote_get_command (const char *args, int from_tty)
12681 {
12682 if (args == NULL)
12683 error_no_arg (_("file to get"));
12684
12685 gdb_argv argv (args);
12686 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12687 error (_("Invalid parameters to remote get"));
12688
12689 remote_file_get (argv[0], argv[1], from_tty);
12690 }
12691
12692 static void
12693 remote_delete_command (const char *args, int from_tty)
12694 {
12695 if (args == NULL)
12696 error_no_arg (_("file to delete"));
12697
12698 gdb_argv argv (args);
12699 if (argv[0] == NULL || argv[1] != NULL)
12700 error (_("Invalid parameters to remote delete"));
12701
12702 remote_file_delete (argv[0], from_tty);
12703 }
12704
12705 static void
12706 remote_command (const char *args, int from_tty)
12707 {
12708 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12709 }
12710
12711 bool
12712 remote_target::can_execute_reverse ()
12713 {
12714 if (packet_support (PACKET_bs) == PACKET_ENABLE
12715 || packet_support (PACKET_bc) == PACKET_ENABLE)
12716 return true;
12717 else
12718 return false;
12719 }
12720
12721 bool
12722 remote_target::supports_non_stop ()
12723 {
12724 return true;
12725 }
12726
12727 bool
12728 remote_target::supports_disable_randomization ()
12729 {
12730 /* Only supported in extended mode. */
12731 return false;
12732 }
12733
12734 bool
12735 remote_target::supports_multi_process ()
12736 {
12737 struct remote_state *rs = get_remote_state ();
12738
12739 return remote_multi_process_p (rs);
12740 }
12741
12742 static int
12743 remote_supports_cond_tracepoints ()
12744 {
12745 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12746 }
12747
12748 bool
12749 remote_target::supports_evaluation_of_breakpoint_conditions ()
12750 {
12751 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12752 }
12753
12754 static int
12755 remote_supports_fast_tracepoints ()
12756 {
12757 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12758 }
12759
12760 static int
12761 remote_supports_static_tracepoints ()
12762 {
12763 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12764 }
12765
12766 static int
12767 remote_supports_install_in_trace ()
12768 {
12769 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12770 }
12771
12772 bool
12773 remote_target::supports_enable_disable_tracepoint ()
12774 {
12775 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12776 == PACKET_ENABLE);
12777 }
12778
12779 bool
12780 remote_target::supports_string_tracing ()
12781 {
12782 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12783 }
12784
12785 bool
12786 remote_target::can_run_breakpoint_commands ()
12787 {
12788 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12789 }
12790
12791 void
12792 remote_target::trace_init ()
12793 {
12794 struct remote_state *rs = get_remote_state ();
12795
12796 putpkt ("QTinit");
12797 remote_get_noisy_reply ();
12798 if (strcmp (rs->buf.data (), "OK") != 0)
12799 error (_("Target does not support this command."));
12800 }
12801
12802 /* Recursive routine to walk through command list including loops, and
12803 download packets for each command. */
12804
12805 void
12806 remote_target::remote_download_command_source (int num, ULONGEST addr,
12807 struct command_line *cmds)
12808 {
12809 struct remote_state *rs = get_remote_state ();
12810 struct command_line *cmd;
12811
12812 for (cmd = cmds; cmd; cmd = cmd->next)
12813 {
12814 QUIT; /* Allow user to bail out with ^C. */
12815 strcpy (rs->buf.data (), "QTDPsrc:");
12816 encode_source_string (num, addr, "cmd", cmd->line,
12817 rs->buf.data () + strlen (rs->buf.data ()),
12818 rs->buf.size () - strlen (rs->buf.data ()));
12819 putpkt (rs->buf);
12820 remote_get_noisy_reply ();
12821 if (strcmp (rs->buf.data (), "OK"))
12822 warning (_("Target does not support source download."));
12823
12824 if (cmd->control_type == while_control
12825 || cmd->control_type == while_stepping_control)
12826 {
12827 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12828
12829 QUIT; /* Allow user to bail out with ^C. */
12830 strcpy (rs->buf.data (), "QTDPsrc:");
12831 encode_source_string (num, addr, "cmd", "end",
12832 rs->buf.data () + strlen (rs->buf.data ()),
12833 rs->buf.size () - strlen (rs->buf.data ()));
12834 putpkt (rs->buf);
12835 remote_get_noisy_reply ();
12836 if (strcmp (rs->buf.data (), "OK"))
12837 warning (_("Target does not support source download."));
12838 }
12839 }
12840 }
12841
12842 void
12843 remote_target::download_tracepoint (struct bp_location *loc)
12844 {
12845 CORE_ADDR tpaddr;
12846 char addrbuf[40];
12847 std::vector<std::string> tdp_actions;
12848 std::vector<std::string> stepping_actions;
12849 char *pkt;
12850 struct breakpoint *b = loc->owner;
12851 struct tracepoint *t = (struct tracepoint *) b;
12852 struct remote_state *rs = get_remote_state ();
12853 int ret;
12854 const char *err_msg = _("Tracepoint packet too large for target.");
12855 size_t size_left;
12856
12857 /* We use a buffer other than rs->buf because we'll build strings
12858 across multiple statements, and other statements in between could
12859 modify rs->buf. */
12860 gdb::char_vector buf (get_remote_packet_size ());
12861
12862 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12863
12864 tpaddr = loc->address;
12865 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12866 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12867 b->number, addrbuf, /* address */
12868 (b->enable_state == bp_enabled ? 'E' : 'D'),
12869 t->step_count, t->pass_count);
12870
12871 if (ret < 0 || ret >= buf.size ())
12872 error ("%s", err_msg);
12873
12874 /* Fast tracepoints are mostly handled by the target, but we can
12875 tell the target how big of an instruction block should be moved
12876 around. */
12877 if (b->type == bp_fast_tracepoint)
12878 {
12879 /* Only test for support at download time; we may not know
12880 target capabilities at definition time. */
12881 if (remote_supports_fast_tracepoints ())
12882 {
12883 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12884 NULL))
12885 {
12886 size_left = buf.size () - strlen (buf.data ());
12887 ret = snprintf (buf.data () + strlen (buf.data ()),
12888 size_left, ":F%x",
12889 gdb_insn_length (loc->gdbarch, tpaddr));
12890
12891 if (ret < 0 || ret >= size_left)
12892 error ("%s", err_msg);
12893 }
12894 else
12895 /* If it passed validation at definition but fails now,
12896 something is very wrong. */
12897 internal_error (__FILE__, __LINE__,
12898 _("Fast tracepoint not "
12899 "valid during download"));
12900 }
12901 else
12902 /* Fast tracepoints are functionally identical to regular
12903 tracepoints, so don't take lack of support as a reason to
12904 give up on the trace run. */
12905 warning (_("Target does not support fast tracepoints, "
12906 "downloading %d as regular tracepoint"), b->number);
12907 }
12908 else if (b->type == bp_static_tracepoint)
12909 {
12910 /* Only test for support at download time; we may not know
12911 target capabilities at definition time. */
12912 if (remote_supports_static_tracepoints ())
12913 {
12914 struct static_tracepoint_marker marker;
12915
12916 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12917 {
12918 size_left = buf.size () - strlen (buf.data ());
12919 ret = snprintf (buf.data () + strlen (buf.data ()),
12920 size_left, ":S");
12921
12922 if (ret < 0 || ret >= size_left)
12923 error ("%s", err_msg);
12924 }
12925 else
12926 error (_("Static tracepoint not valid during download"));
12927 }
12928 else
12929 /* Fast tracepoints are functionally identical to regular
12930 tracepoints, so don't take lack of support as a reason
12931 to give up on the trace run. */
12932 error (_("Target does not support static tracepoints"));
12933 }
12934 /* If the tracepoint has a conditional, make it into an agent
12935 expression and append to the definition. */
12936 if (loc->cond)
12937 {
12938 /* Only test support at download time, we may not know target
12939 capabilities at definition time. */
12940 if (remote_supports_cond_tracepoints ())
12941 {
12942 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12943 loc->cond.get ());
12944
12945 size_left = buf.size () - strlen (buf.data ());
12946
12947 ret = snprintf (buf.data () + strlen (buf.data ()),
12948 size_left, ":X%x,", aexpr->len);
12949
12950 if (ret < 0 || ret >= size_left)
12951 error ("%s", err_msg);
12952
12953 size_left = buf.size () - strlen (buf.data ());
12954
12955 /* Two bytes to encode each aexpr byte, plus the terminating
12956 null byte. */
12957 if (aexpr->len * 2 + 1 > size_left)
12958 error ("%s", err_msg);
12959
12960 pkt = buf.data () + strlen (buf.data ());
12961
12962 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12963 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12964 *pkt = '\0';
12965 }
12966 else
12967 warning (_("Target does not support conditional tracepoints, "
12968 "ignoring tp %d cond"), b->number);
12969 }
12970
12971 if (b->commands || *default_collect)
12972 {
12973 size_left = buf.size () - strlen (buf.data ());
12974
12975 ret = snprintf (buf.data () + strlen (buf.data ()),
12976 size_left, "-");
12977
12978 if (ret < 0 || ret >= size_left)
12979 error ("%s", err_msg);
12980 }
12981
12982 putpkt (buf.data ());
12983 remote_get_noisy_reply ();
12984 if (strcmp (rs->buf.data (), "OK"))
12985 error (_("Target does not support tracepoints."));
12986
12987 /* do_single_steps (t); */
12988 for (auto action_it = tdp_actions.begin ();
12989 action_it != tdp_actions.end (); action_it++)
12990 {
12991 QUIT; /* Allow user to bail out with ^C. */
12992
12993 bool has_more = ((action_it + 1) != tdp_actions.end ()
12994 || !stepping_actions.empty ());
12995
12996 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12997 b->number, addrbuf, /* address */
12998 action_it->c_str (),
12999 has_more ? '-' : 0);
13000
13001 if (ret < 0 || ret >= buf.size ())
13002 error ("%s", err_msg);
13003
13004 putpkt (buf.data ());
13005 remote_get_noisy_reply ();
13006 if (strcmp (rs->buf.data (), "OK"))
13007 error (_("Error on target while setting tracepoints."));
13008 }
13009
13010 for (auto action_it = stepping_actions.begin ();
13011 action_it != stepping_actions.end (); action_it++)
13012 {
13013 QUIT; /* Allow user to bail out with ^C. */
13014
13015 bool is_first = action_it == stepping_actions.begin ();
13016 bool has_more = (action_it + 1) != stepping_actions.end ();
13017
13018 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13019 b->number, addrbuf, /* address */
13020 is_first ? "S" : "",
13021 action_it->c_str (),
13022 has_more ? "-" : "");
13023
13024 if (ret < 0 || ret >= buf.size ())
13025 error ("%s", err_msg);
13026
13027 putpkt (buf.data ());
13028 remote_get_noisy_reply ();
13029 if (strcmp (rs->buf.data (), "OK"))
13030 error (_("Error on target while setting tracepoints."));
13031 }
13032
13033 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13034 {
13035 if (b->location != NULL)
13036 {
13037 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13038
13039 if (ret < 0 || ret >= buf.size ())
13040 error ("%s", err_msg);
13041
13042 encode_source_string (b->number, loc->address, "at",
13043 event_location_to_string (b->location.get ()),
13044 buf.data () + strlen (buf.data ()),
13045 buf.size () - strlen (buf.data ()));
13046 putpkt (buf.data ());
13047 remote_get_noisy_reply ();
13048 if (strcmp (rs->buf.data (), "OK"))
13049 warning (_("Target does not support source download."));
13050 }
13051 if (b->cond_string)
13052 {
13053 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13054
13055 if (ret < 0 || ret >= buf.size ())
13056 error ("%s", err_msg);
13057
13058 encode_source_string (b->number, loc->address,
13059 "cond", b->cond_string,
13060 buf.data () + strlen (buf.data ()),
13061 buf.size () - strlen (buf.data ()));
13062 putpkt (buf.data ());
13063 remote_get_noisy_reply ();
13064 if (strcmp (rs->buf.data (), "OK"))
13065 warning (_("Target does not support source download."));
13066 }
13067 remote_download_command_source (b->number, loc->address,
13068 breakpoint_commands (b));
13069 }
13070 }
13071
13072 bool
13073 remote_target::can_download_tracepoint ()
13074 {
13075 struct remote_state *rs = get_remote_state ();
13076 struct trace_status *ts;
13077 int status;
13078
13079 /* Don't try to install tracepoints until we've relocated our
13080 symbols, and fetched and merged the target's tracepoint list with
13081 ours. */
13082 if (rs->starting_up)
13083 return false;
13084
13085 ts = current_trace_status ();
13086 status = get_trace_status (ts);
13087
13088 if (status == -1 || !ts->running_known || !ts->running)
13089 return false;
13090
13091 /* If we are in a tracing experiment, but remote stub doesn't support
13092 installing tracepoint in trace, we have to return. */
13093 if (!remote_supports_install_in_trace ())
13094 return false;
13095
13096 return true;
13097 }
13098
13099
13100 void
13101 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13102 {
13103 struct remote_state *rs = get_remote_state ();
13104 char *p;
13105
13106 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13107 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13108 tsv.builtin);
13109 p = rs->buf.data () + strlen (rs->buf.data ());
13110 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13111 >= get_remote_packet_size ())
13112 error (_("Trace state variable name too long for tsv definition packet"));
13113 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13114 *p++ = '\0';
13115 putpkt (rs->buf);
13116 remote_get_noisy_reply ();
13117 if (rs->buf[0] == '\0')
13118 error (_("Target does not support this command."));
13119 if (strcmp (rs->buf.data (), "OK") != 0)
13120 error (_("Error on target while downloading trace state variable."));
13121 }
13122
13123 void
13124 remote_target::enable_tracepoint (struct bp_location *location)
13125 {
13126 struct remote_state *rs = get_remote_state ();
13127
13128 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13129 location->owner->number,
13130 phex (location->address, sizeof (CORE_ADDR)));
13131 putpkt (rs->buf);
13132 remote_get_noisy_reply ();
13133 if (rs->buf[0] == '\0')
13134 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13135 if (strcmp (rs->buf.data (), "OK") != 0)
13136 error (_("Error on target while enabling tracepoint."));
13137 }
13138
13139 void
13140 remote_target::disable_tracepoint (struct bp_location *location)
13141 {
13142 struct remote_state *rs = get_remote_state ();
13143
13144 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13145 location->owner->number,
13146 phex (location->address, sizeof (CORE_ADDR)));
13147 putpkt (rs->buf);
13148 remote_get_noisy_reply ();
13149 if (rs->buf[0] == '\0')
13150 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13151 if (strcmp (rs->buf.data (), "OK") != 0)
13152 error (_("Error on target while disabling tracepoint."));
13153 }
13154
13155 void
13156 remote_target::trace_set_readonly_regions ()
13157 {
13158 asection *s;
13159 bfd_size_type size;
13160 bfd_vma vma;
13161 int anysecs = 0;
13162 int offset = 0;
13163
13164 if (!exec_bfd)
13165 return; /* No information to give. */
13166
13167 struct remote_state *rs = get_remote_state ();
13168
13169 strcpy (rs->buf.data (), "QTro");
13170 offset = strlen (rs->buf.data ());
13171 for (s = exec_bfd->sections; s; s = s->next)
13172 {
13173 char tmp1[40], tmp2[40];
13174 int sec_length;
13175
13176 if ((s->flags & SEC_LOAD) == 0 ||
13177 /* (s->flags & SEC_CODE) == 0 || */
13178 (s->flags & SEC_READONLY) == 0)
13179 continue;
13180
13181 anysecs = 1;
13182 vma = bfd_section_vma (s);
13183 size = bfd_section_size (s);
13184 sprintf_vma (tmp1, vma);
13185 sprintf_vma (tmp2, vma + size);
13186 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13187 if (offset + sec_length + 1 > rs->buf.size ())
13188 {
13189 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13190 warning (_("\
13191 Too many sections for read-only sections definition packet."));
13192 break;
13193 }
13194 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13195 tmp1, tmp2);
13196 offset += sec_length;
13197 }
13198 if (anysecs)
13199 {
13200 putpkt (rs->buf);
13201 getpkt (&rs->buf, 0);
13202 }
13203 }
13204
13205 void
13206 remote_target::trace_start ()
13207 {
13208 struct remote_state *rs = get_remote_state ();
13209
13210 putpkt ("QTStart");
13211 remote_get_noisy_reply ();
13212 if (rs->buf[0] == '\0')
13213 error (_("Target does not support this command."));
13214 if (strcmp (rs->buf.data (), "OK") != 0)
13215 error (_("Bogus reply from target: %s"), rs->buf.data ());
13216 }
13217
13218 int
13219 remote_target::get_trace_status (struct trace_status *ts)
13220 {
13221 /* Initialize it just to avoid a GCC false warning. */
13222 char *p = NULL;
13223 enum packet_result result;
13224 struct remote_state *rs = get_remote_state ();
13225
13226 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13227 return -1;
13228
13229 /* FIXME we need to get register block size some other way. */
13230 trace_regblock_size
13231 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13232
13233 putpkt ("qTStatus");
13234
13235 try
13236 {
13237 p = remote_get_noisy_reply ();
13238 }
13239 catch (const gdb_exception_error &ex)
13240 {
13241 if (ex.error != TARGET_CLOSE_ERROR)
13242 {
13243 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13244 return -1;
13245 }
13246 throw;
13247 }
13248
13249 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13250
13251 /* If the remote target doesn't do tracing, flag it. */
13252 if (result == PACKET_UNKNOWN)
13253 return -1;
13254
13255 /* We're working with a live target. */
13256 ts->filename = NULL;
13257
13258 if (*p++ != 'T')
13259 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13260
13261 /* Function 'parse_trace_status' sets default value of each field of
13262 'ts' at first, so we don't have to do it here. */
13263 parse_trace_status (p, ts);
13264
13265 return ts->running;
13266 }
13267
13268 void
13269 remote_target::get_tracepoint_status (struct breakpoint *bp,
13270 struct uploaded_tp *utp)
13271 {
13272 struct remote_state *rs = get_remote_state ();
13273 char *reply;
13274 struct bp_location *loc;
13275 struct tracepoint *tp = (struct tracepoint *) bp;
13276 size_t size = get_remote_packet_size ();
13277
13278 if (tp)
13279 {
13280 tp->hit_count = 0;
13281 tp->traceframe_usage = 0;
13282 for (loc = tp->loc; loc; loc = loc->next)
13283 {
13284 /* If the tracepoint was never downloaded, don't go asking for
13285 any status. */
13286 if (tp->number_on_target == 0)
13287 continue;
13288 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13289 phex_nz (loc->address, 0));
13290 putpkt (rs->buf);
13291 reply = remote_get_noisy_reply ();
13292 if (reply && *reply)
13293 {
13294 if (*reply == 'V')
13295 parse_tracepoint_status (reply + 1, bp, utp);
13296 }
13297 }
13298 }
13299 else if (utp)
13300 {
13301 utp->hit_count = 0;
13302 utp->traceframe_usage = 0;
13303 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13304 phex_nz (utp->addr, 0));
13305 putpkt (rs->buf);
13306 reply = remote_get_noisy_reply ();
13307 if (reply && *reply)
13308 {
13309 if (*reply == 'V')
13310 parse_tracepoint_status (reply + 1, bp, utp);
13311 }
13312 }
13313 }
13314
13315 void
13316 remote_target::trace_stop ()
13317 {
13318 struct remote_state *rs = get_remote_state ();
13319
13320 putpkt ("QTStop");
13321 remote_get_noisy_reply ();
13322 if (rs->buf[0] == '\0')
13323 error (_("Target does not support this command."));
13324 if (strcmp (rs->buf.data (), "OK") != 0)
13325 error (_("Bogus reply from target: %s"), rs->buf.data ());
13326 }
13327
13328 int
13329 remote_target::trace_find (enum trace_find_type type, int num,
13330 CORE_ADDR addr1, CORE_ADDR addr2,
13331 int *tpp)
13332 {
13333 struct remote_state *rs = get_remote_state ();
13334 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13335 char *p, *reply;
13336 int target_frameno = -1, target_tracept = -1;
13337
13338 /* Lookups other than by absolute frame number depend on the current
13339 trace selected, so make sure it is correct on the remote end
13340 first. */
13341 if (type != tfind_number)
13342 set_remote_traceframe ();
13343
13344 p = rs->buf.data ();
13345 strcpy (p, "QTFrame:");
13346 p = strchr (p, '\0');
13347 switch (type)
13348 {
13349 case tfind_number:
13350 xsnprintf (p, endbuf - p, "%x", num);
13351 break;
13352 case tfind_pc:
13353 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13354 break;
13355 case tfind_tp:
13356 xsnprintf (p, endbuf - p, "tdp:%x", num);
13357 break;
13358 case tfind_range:
13359 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13360 phex_nz (addr2, 0));
13361 break;
13362 case tfind_outside:
13363 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13364 phex_nz (addr2, 0));
13365 break;
13366 default:
13367 error (_("Unknown trace find type %d"), type);
13368 }
13369
13370 putpkt (rs->buf);
13371 reply = remote_get_noisy_reply ();
13372 if (*reply == '\0')
13373 error (_("Target does not support this command."));
13374
13375 while (reply && *reply)
13376 switch (*reply)
13377 {
13378 case 'F':
13379 p = ++reply;
13380 target_frameno = (int) strtol (p, &reply, 16);
13381 if (reply == p)
13382 error (_("Unable to parse trace frame number"));
13383 /* Don't update our remote traceframe number cache on failure
13384 to select a remote traceframe. */
13385 if (target_frameno == -1)
13386 return -1;
13387 break;
13388 case 'T':
13389 p = ++reply;
13390 target_tracept = (int) strtol (p, &reply, 16);
13391 if (reply == p)
13392 error (_("Unable to parse tracepoint number"));
13393 break;
13394 case 'O': /* "OK"? */
13395 if (reply[1] == 'K' && reply[2] == '\0')
13396 reply += 2;
13397 else
13398 error (_("Bogus reply from target: %s"), reply);
13399 break;
13400 default:
13401 error (_("Bogus reply from target: %s"), reply);
13402 }
13403 if (tpp)
13404 *tpp = target_tracept;
13405
13406 rs->remote_traceframe_number = target_frameno;
13407 return target_frameno;
13408 }
13409
13410 bool
13411 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13412 {
13413 struct remote_state *rs = get_remote_state ();
13414 char *reply;
13415 ULONGEST uval;
13416
13417 set_remote_traceframe ();
13418
13419 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13420 putpkt (rs->buf);
13421 reply = remote_get_noisy_reply ();
13422 if (reply && *reply)
13423 {
13424 if (*reply == 'V')
13425 {
13426 unpack_varlen_hex (reply + 1, &uval);
13427 *val = (LONGEST) uval;
13428 return true;
13429 }
13430 }
13431 return false;
13432 }
13433
13434 int
13435 remote_target::save_trace_data (const char *filename)
13436 {
13437 struct remote_state *rs = get_remote_state ();
13438 char *p, *reply;
13439
13440 p = rs->buf.data ();
13441 strcpy (p, "QTSave:");
13442 p += strlen (p);
13443 if ((p - rs->buf.data ()) + strlen (filename) * 2
13444 >= get_remote_packet_size ())
13445 error (_("Remote file name too long for trace save packet"));
13446 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13447 *p++ = '\0';
13448 putpkt (rs->buf);
13449 reply = remote_get_noisy_reply ();
13450 if (*reply == '\0')
13451 error (_("Target does not support this command."));
13452 if (strcmp (reply, "OK") != 0)
13453 error (_("Bogus reply from target: %s"), reply);
13454 return 0;
13455 }
13456
13457 /* This is basically a memory transfer, but needs to be its own packet
13458 because we don't know how the target actually organizes its trace
13459 memory, plus we want to be able to ask for as much as possible, but
13460 not be unhappy if we don't get as much as we ask for. */
13461
13462 LONGEST
13463 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13464 {
13465 struct remote_state *rs = get_remote_state ();
13466 char *reply;
13467 char *p;
13468 int rslt;
13469
13470 p = rs->buf.data ();
13471 strcpy (p, "qTBuffer:");
13472 p += strlen (p);
13473 p += hexnumstr (p, offset);
13474 *p++ = ',';
13475 p += hexnumstr (p, len);
13476 *p++ = '\0';
13477
13478 putpkt (rs->buf);
13479 reply = remote_get_noisy_reply ();
13480 if (reply && *reply)
13481 {
13482 /* 'l' by itself means we're at the end of the buffer and
13483 there is nothing more to get. */
13484 if (*reply == 'l')
13485 return 0;
13486
13487 /* Convert the reply into binary. Limit the number of bytes to
13488 convert according to our passed-in buffer size, rather than
13489 what was returned in the packet; if the target is
13490 unexpectedly generous and gives us a bigger reply than we
13491 asked for, we don't want to crash. */
13492 rslt = hex2bin (reply, buf, len);
13493 return rslt;
13494 }
13495
13496 /* Something went wrong, flag as an error. */
13497 return -1;
13498 }
13499
13500 void
13501 remote_target::set_disconnected_tracing (int val)
13502 {
13503 struct remote_state *rs = get_remote_state ();
13504
13505 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13506 {
13507 char *reply;
13508
13509 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13510 "QTDisconnected:%x", val);
13511 putpkt (rs->buf);
13512 reply = remote_get_noisy_reply ();
13513 if (*reply == '\0')
13514 error (_("Target does not support this command."));
13515 if (strcmp (reply, "OK") != 0)
13516 error (_("Bogus reply from target: %s"), reply);
13517 }
13518 else if (val)
13519 warning (_("Target does not support disconnected tracing."));
13520 }
13521
13522 int
13523 remote_target::core_of_thread (ptid_t ptid)
13524 {
13525 thread_info *info = find_thread_ptid (this, ptid);
13526
13527 if (info != NULL && info->priv != NULL)
13528 return get_remote_thread_info (info)->core;
13529
13530 return -1;
13531 }
13532
13533 void
13534 remote_target::set_circular_trace_buffer (int val)
13535 {
13536 struct remote_state *rs = get_remote_state ();
13537 char *reply;
13538
13539 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13540 "QTBuffer:circular:%x", val);
13541 putpkt (rs->buf);
13542 reply = remote_get_noisy_reply ();
13543 if (*reply == '\0')
13544 error (_("Target does not support this command."));
13545 if (strcmp (reply, "OK") != 0)
13546 error (_("Bogus reply from target: %s"), reply);
13547 }
13548
13549 traceframe_info_up
13550 remote_target::traceframe_info ()
13551 {
13552 gdb::optional<gdb::char_vector> text
13553 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13554 NULL);
13555 if (text)
13556 return parse_traceframe_info (text->data ());
13557
13558 return NULL;
13559 }
13560
13561 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13562 instruction on which a fast tracepoint may be placed. Returns -1
13563 if the packet is not supported, and 0 if the minimum instruction
13564 length is unknown. */
13565
13566 int
13567 remote_target::get_min_fast_tracepoint_insn_len ()
13568 {
13569 struct remote_state *rs = get_remote_state ();
13570 char *reply;
13571
13572 /* If we're not debugging a process yet, the IPA can't be
13573 loaded. */
13574 if (!target_has_execution)
13575 return 0;
13576
13577 /* Make sure the remote is pointing at the right process. */
13578 set_general_process ();
13579
13580 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13581 putpkt (rs->buf);
13582 reply = remote_get_noisy_reply ();
13583 if (*reply == '\0')
13584 return -1;
13585 else
13586 {
13587 ULONGEST min_insn_len;
13588
13589 unpack_varlen_hex (reply, &min_insn_len);
13590
13591 return (int) min_insn_len;
13592 }
13593 }
13594
13595 void
13596 remote_target::set_trace_buffer_size (LONGEST val)
13597 {
13598 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13599 {
13600 struct remote_state *rs = get_remote_state ();
13601 char *buf = rs->buf.data ();
13602 char *endbuf = buf + get_remote_packet_size ();
13603 enum packet_result result;
13604
13605 gdb_assert (val >= 0 || val == -1);
13606 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13607 /* Send -1 as literal "-1" to avoid host size dependency. */
13608 if (val < 0)
13609 {
13610 *buf++ = '-';
13611 buf += hexnumstr (buf, (ULONGEST) -val);
13612 }
13613 else
13614 buf += hexnumstr (buf, (ULONGEST) val);
13615
13616 putpkt (rs->buf);
13617 remote_get_noisy_reply ();
13618 result = packet_ok (rs->buf,
13619 &remote_protocol_packets[PACKET_QTBuffer_size]);
13620
13621 if (result != PACKET_OK)
13622 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13623 }
13624 }
13625
13626 bool
13627 remote_target::set_trace_notes (const char *user, const char *notes,
13628 const char *stop_notes)
13629 {
13630 struct remote_state *rs = get_remote_state ();
13631 char *reply;
13632 char *buf = rs->buf.data ();
13633 char *endbuf = buf + get_remote_packet_size ();
13634 int nbytes;
13635
13636 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13637 if (user)
13638 {
13639 buf += xsnprintf (buf, endbuf - buf, "user:");
13640 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13641 buf += 2 * nbytes;
13642 *buf++ = ';';
13643 }
13644 if (notes)
13645 {
13646 buf += xsnprintf (buf, endbuf - buf, "notes:");
13647 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13648 buf += 2 * nbytes;
13649 *buf++ = ';';
13650 }
13651 if (stop_notes)
13652 {
13653 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13654 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13655 buf += 2 * nbytes;
13656 *buf++ = ';';
13657 }
13658 /* Ensure the buffer is terminated. */
13659 *buf = '\0';
13660
13661 putpkt (rs->buf);
13662 reply = remote_get_noisy_reply ();
13663 if (*reply == '\0')
13664 return false;
13665
13666 if (strcmp (reply, "OK") != 0)
13667 error (_("Bogus reply from target: %s"), reply);
13668
13669 return true;
13670 }
13671
13672 bool
13673 remote_target::use_agent (bool use)
13674 {
13675 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13676 {
13677 struct remote_state *rs = get_remote_state ();
13678
13679 /* If the stub supports QAgent. */
13680 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13681 putpkt (rs->buf);
13682 getpkt (&rs->buf, 0);
13683
13684 if (strcmp (rs->buf.data (), "OK") == 0)
13685 {
13686 ::use_agent = use;
13687 return true;
13688 }
13689 }
13690
13691 return false;
13692 }
13693
13694 bool
13695 remote_target::can_use_agent ()
13696 {
13697 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13698 }
13699
13700 struct btrace_target_info
13701 {
13702 /* The ptid of the traced thread. */
13703 ptid_t ptid;
13704
13705 /* The obtained branch trace configuration. */
13706 struct btrace_config conf;
13707 };
13708
13709 /* Reset our idea of our target's btrace configuration. */
13710
13711 static void
13712 remote_btrace_reset (remote_state *rs)
13713 {
13714 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13715 }
13716
13717 /* Synchronize the configuration with the target. */
13718
13719 void
13720 remote_target::btrace_sync_conf (const btrace_config *conf)
13721 {
13722 struct packet_config *packet;
13723 struct remote_state *rs;
13724 char *buf, *pos, *endbuf;
13725
13726 rs = get_remote_state ();
13727 buf = rs->buf.data ();
13728 endbuf = buf + get_remote_packet_size ();
13729
13730 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13731 if (packet_config_support (packet) == PACKET_ENABLE
13732 && conf->bts.size != rs->btrace_config.bts.size)
13733 {
13734 pos = buf;
13735 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13736 conf->bts.size);
13737
13738 putpkt (buf);
13739 getpkt (&rs->buf, 0);
13740
13741 if (packet_ok (buf, packet) == PACKET_ERROR)
13742 {
13743 if (buf[0] == 'E' && buf[1] == '.')
13744 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13745 else
13746 error (_("Failed to configure the BTS buffer size."));
13747 }
13748
13749 rs->btrace_config.bts.size = conf->bts.size;
13750 }
13751
13752 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13753 if (packet_config_support (packet) == PACKET_ENABLE
13754 && conf->pt.size != rs->btrace_config.pt.size)
13755 {
13756 pos = buf;
13757 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13758 conf->pt.size);
13759
13760 putpkt (buf);
13761 getpkt (&rs->buf, 0);
13762
13763 if (packet_ok (buf, packet) == PACKET_ERROR)
13764 {
13765 if (buf[0] == 'E' && buf[1] == '.')
13766 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13767 else
13768 error (_("Failed to configure the trace buffer size."));
13769 }
13770
13771 rs->btrace_config.pt.size = conf->pt.size;
13772 }
13773 }
13774
13775 /* Read the current thread's btrace configuration from the target and
13776 store it into CONF. */
13777
13778 static void
13779 btrace_read_config (struct btrace_config *conf)
13780 {
13781 gdb::optional<gdb::char_vector> xml
13782 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13783 if (xml)
13784 parse_xml_btrace_conf (conf, xml->data ());
13785 }
13786
13787 /* Maybe reopen target btrace. */
13788
13789 void
13790 remote_target::remote_btrace_maybe_reopen ()
13791 {
13792 struct remote_state *rs = get_remote_state ();
13793 int btrace_target_pushed = 0;
13794 #if !defined (HAVE_LIBIPT)
13795 int warned = 0;
13796 #endif
13797
13798 /* Don't bother walking the entirety of the remote thread list when
13799 we know the feature isn't supported by the remote. */
13800 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13801 return;
13802
13803 scoped_restore_current_thread restore_thread;
13804
13805 for (thread_info *tp : all_non_exited_threads (this))
13806 {
13807 set_general_thread (tp->ptid);
13808
13809 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13810 btrace_read_config (&rs->btrace_config);
13811
13812 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13813 continue;
13814
13815 #if !defined (HAVE_LIBIPT)
13816 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13817 {
13818 if (!warned)
13819 {
13820 warned = 1;
13821 warning (_("Target is recording using Intel Processor Trace "
13822 "but support was disabled at compile time."));
13823 }
13824
13825 continue;
13826 }
13827 #endif /* !defined (HAVE_LIBIPT) */
13828
13829 /* Push target, once, but before anything else happens. This way our
13830 changes to the threads will be cleaned up by unpushing the target
13831 in case btrace_read_config () throws. */
13832 if (!btrace_target_pushed)
13833 {
13834 btrace_target_pushed = 1;
13835 record_btrace_push_target ();
13836 printf_filtered (_("Target is recording using %s.\n"),
13837 btrace_format_string (rs->btrace_config.format));
13838 }
13839
13840 tp->btrace.target = XCNEW (struct btrace_target_info);
13841 tp->btrace.target->ptid = tp->ptid;
13842 tp->btrace.target->conf = rs->btrace_config;
13843 }
13844 }
13845
13846 /* Enable branch tracing. */
13847
13848 struct btrace_target_info *
13849 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13850 {
13851 struct btrace_target_info *tinfo = NULL;
13852 struct packet_config *packet = NULL;
13853 struct remote_state *rs = get_remote_state ();
13854 char *buf = rs->buf.data ();
13855 char *endbuf = buf + get_remote_packet_size ();
13856
13857 switch (conf->format)
13858 {
13859 case BTRACE_FORMAT_BTS:
13860 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13861 break;
13862
13863 case BTRACE_FORMAT_PT:
13864 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13865 break;
13866 }
13867
13868 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13869 error (_("Target does not support branch tracing."));
13870
13871 btrace_sync_conf (conf);
13872
13873 set_general_thread (ptid);
13874
13875 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13876 putpkt (rs->buf);
13877 getpkt (&rs->buf, 0);
13878
13879 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13880 {
13881 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13882 error (_("Could not enable branch tracing for %s: %s"),
13883 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13884 else
13885 error (_("Could not enable branch tracing for %s."),
13886 target_pid_to_str (ptid).c_str ());
13887 }
13888
13889 tinfo = XCNEW (struct btrace_target_info);
13890 tinfo->ptid = ptid;
13891
13892 /* If we fail to read the configuration, we lose some information, but the
13893 tracing itself is not impacted. */
13894 try
13895 {
13896 btrace_read_config (&tinfo->conf);
13897 }
13898 catch (const gdb_exception_error &err)
13899 {
13900 if (err.message != NULL)
13901 warning ("%s", err.what ());
13902 }
13903
13904 return tinfo;
13905 }
13906
13907 /* Disable branch tracing. */
13908
13909 void
13910 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13911 {
13912 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13913 struct remote_state *rs = get_remote_state ();
13914 char *buf = rs->buf.data ();
13915 char *endbuf = buf + get_remote_packet_size ();
13916
13917 if (packet_config_support (packet) != PACKET_ENABLE)
13918 error (_("Target does not support branch tracing."));
13919
13920 set_general_thread (tinfo->ptid);
13921
13922 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13923 putpkt (rs->buf);
13924 getpkt (&rs->buf, 0);
13925
13926 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13927 {
13928 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13929 error (_("Could not disable branch tracing for %s: %s"),
13930 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13931 else
13932 error (_("Could not disable branch tracing for %s."),
13933 target_pid_to_str (tinfo->ptid).c_str ());
13934 }
13935
13936 xfree (tinfo);
13937 }
13938
13939 /* Teardown branch tracing. */
13940
13941 void
13942 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13943 {
13944 /* We must not talk to the target during teardown. */
13945 xfree (tinfo);
13946 }
13947
13948 /* Read the branch trace. */
13949
13950 enum btrace_error
13951 remote_target::read_btrace (struct btrace_data *btrace,
13952 struct btrace_target_info *tinfo,
13953 enum btrace_read_type type)
13954 {
13955 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13956 const char *annex;
13957
13958 if (packet_config_support (packet) != PACKET_ENABLE)
13959 error (_("Target does not support branch tracing."));
13960
13961 #if !defined(HAVE_LIBEXPAT)
13962 error (_("Cannot process branch tracing result. XML parsing not supported."));
13963 #endif
13964
13965 switch (type)
13966 {
13967 case BTRACE_READ_ALL:
13968 annex = "all";
13969 break;
13970 case BTRACE_READ_NEW:
13971 annex = "new";
13972 break;
13973 case BTRACE_READ_DELTA:
13974 annex = "delta";
13975 break;
13976 default:
13977 internal_error (__FILE__, __LINE__,
13978 _("Bad branch tracing read type: %u."),
13979 (unsigned int) type);
13980 }
13981
13982 gdb::optional<gdb::char_vector> xml
13983 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13984 if (!xml)
13985 return BTRACE_ERR_UNKNOWN;
13986
13987 parse_xml_btrace (btrace, xml->data ());
13988
13989 return BTRACE_ERR_NONE;
13990 }
13991
13992 const struct btrace_config *
13993 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13994 {
13995 return &tinfo->conf;
13996 }
13997
13998 bool
13999 remote_target::augmented_libraries_svr4_read ()
14000 {
14001 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14002 == PACKET_ENABLE);
14003 }
14004
14005 /* Implementation of to_load. */
14006
14007 void
14008 remote_target::load (const char *name, int from_tty)
14009 {
14010 generic_load (name, from_tty);
14011 }
14012
14013 /* Accepts an integer PID; returns a string representing a file that
14014 can be opened on the remote side to get the symbols for the child
14015 process. Returns NULL if the operation is not supported. */
14016
14017 char *
14018 remote_target::pid_to_exec_file (int pid)
14019 {
14020 static gdb::optional<gdb::char_vector> filename;
14021 char *annex = NULL;
14022
14023 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14024 return NULL;
14025
14026 inferior *inf = find_inferior_pid (this, pid);
14027 if (inf == NULL)
14028 internal_error (__FILE__, __LINE__,
14029 _("not currently attached to process %d"), pid);
14030
14031 if (!inf->fake_pid_p)
14032 {
14033 const int annex_size = 9;
14034
14035 annex = (char *) alloca (annex_size);
14036 xsnprintf (annex, annex_size, "%x", pid);
14037 }
14038
14039 filename = target_read_stralloc (current_top_target (),
14040 TARGET_OBJECT_EXEC_FILE, annex);
14041
14042 return filename ? filename->data () : nullptr;
14043 }
14044
14045 /* Implement the to_can_do_single_step target_ops method. */
14046
14047 int
14048 remote_target::can_do_single_step ()
14049 {
14050 /* We can only tell whether target supports single step or not by
14051 supported s and S vCont actions if the stub supports vContSupported
14052 feature. If the stub doesn't support vContSupported feature,
14053 we have conservatively to think target doesn't supports single
14054 step. */
14055 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14056 {
14057 struct remote_state *rs = get_remote_state ();
14058
14059 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14060 remote_vcont_probe ();
14061
14062 return rs->supports_vCont.s && rs->supports_vCont.S;
14063 }
14064 else
14065 return 0;
14066 }
14067
14068 /* Implementation of the to_execution_direction method for the remote
14069 target. */
14070
14071 enum exec_direction_kind
14072 remote_target::execution_direction ()
14073 {
14074 struct remote_state *rs = get_remote_state ();
14075
14076 return rs->last_resume_exec_dir;
14077 }
14078
14079 /* Return pointer to the thread_info struct which corresponds to
14080 THREAD_HANDLE (having length HANDLE_LEN). */
14081
14082 thread_info *
14083 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14084 int handle_len,
14085 inferior *inf)
14086 {
14087 for (thread_info *tp : all_non_exited_threads (this))
14088 {
14089 remote_thread_info *priv = get_remote_thread_info (tp);
14090
14091 if (tp->inf == inf && priv != NULL)
14092 {
14093 if (handle_len != priv->thread_handle.size ())
14094 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14095 handle_len, priv->thread_handle.size ());
14096 if (memcmp (thread_handle, priv->thread_handle.data (),
14097 handle_len) == 0)
14098 return tp;
14099 }
14100 }
14101
14102 return NULL;
14103 }
14104
14105 gdb::byte_vector
14106 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14107 {
14108 remote_thread_info *priv = get_remote_thread_info (tp);
14109 return priv->thread_handle;
14110 }
14111
14112 bool
14113 remote_target::can_async_p ()
14114 {
14115 struct remote_state *rs = get_remote_state ();
14116
14117 /* We don't go async if the user has explicitly prevented it with the
14118 "maint set target-async" command. */
14119 if (!target_async_permitted)
14120 return false;
14121
14122 /* We're async whenever the serial device is. */
14123 return serial_can_async_p (rs->remote_desc);
14124 }
14125
14126 bool
14127 remote_target::is_async_p ()
14128 {
14129 struct remote_state *rs = get_remote_state ();
14130
14131 if (!target_async_permitted)
14132 /* We only enable async when the user specifically asks for it. */
14133 return false;
14134
14135 /* We're async whenever the serial device is. */
14136 return serial_is_async_p (rs->remote_desc);
14137 }
14138
14139 /* Pass the SERIAL event on and up to the client. One day this code
14140 will be able to delay notifying the client of an event until the
14141 point where an entire packet has been received. */
14142
14143 static serial_event_ftype remote_async_serial_handler;
14144
14145 static void
14146 remote_async_serial_handler (struct serial *scb, void *context)
14147 {
14148 /* Don't propogate error information up to the client. Instead let
14149 the client find out about the error by querying the target. */
14150 inferior_event_handler (INF_REG_EVENT, NULL);
14151 }
14152
14153 static void
14154 remote_async_inferior_event_handler (gdb_client_data data)
14155 {
14156 inferior_event_handler (INF_REG_EVENT, data);
14157 }
14158
14159 int
14160 remote_target::async_wait_fd ()
14161 {
14162 struct remote_state *rs = get_remote_state ();
14163 return rs->remote_desc->fd;
14164 }
14165
14166 void
14167 remote_target::async (int enable)
14168 {
14169 struct remote_state *rs = get_remote_state ();
14170
14171 if (enable)
14172 {
14173 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14174
14175 /* If there are pending events in the stop reply queue tell the
14176 event loop to process them. */
14177 if (!rs->stop_reply_queue.empty ())
14178 mark_async_event_handler (rs->remote_async_inferior_event_token);
14179 /* For simplicity, below we clear the pending events token
14180 without remembering whether it is marked, so here we always
14181 mark it. If there's actually no pending notification to
14182 process, this ends up being a no-op (other than a spurious
14183 event-loop wakeup). */
14184 if (target_is_non_stop_p ())
14185 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14186 }
14187 else
14188 {
14189 serial_async (rs->remote_desc, NULL, NULL);
14190 /* If the core is disabling async, it doesn't want to be
14191 disturbed with target events. Clear all async event sources
14192 too. */
14193 clear_async_event_handler (rs->remote_async_inferior_event_token);
14194 if (target_is_non_stop_p ())
14195 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14196 }
14197 }
14198
14199 /* Implementation of the to_thread_events method. */
14200
14201 void
14202 remote_target::thread_events (int enable)
14203 {
14204 struct remote_state *rs = get_remote_state ();
14205 size_t size = get_remote_packet_size ();
14206
14207 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14208 return;
14209
14210 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14211 putpkt (rs->buf);
14212 getpkt (&rs->buf, 0);
14213
14214 switch (packet_ok (rs->buf,
14215 &remote_protocol_packets[PACKET_QThreadEvents]))
14216 {
14217 case PACKET_OK:
14218 if (strcmp (rs->buf.data (), "OK") != 0)
14219 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14220 break;
14221 case PACKET_ERROR:
14222 warning (_("Remote failure reply: %s"), rs->buf.data ());
14223 break;
14224 case PACKET_UNKNOWN:
14225 break;
14226 }
14227 }
14228
14229 static void
14230 set_remote_cmd (const char *args, int from_tty)
14231 {
14232 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14233 }
14234
14235 static void
14236 show_remote_cmd (const char *args, int from_tty)
14237 {
14238 /* We can't just use cmd_show_list here, because we want to skip
14239 the redundant "show remote Z-packet" and the legacy aliases. */
14240 struct cmd_list_element *list = remote_show_cmdlist;
14241 struct ui_out *uiout = current_uiout;
14242
14243 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14244 for (; list != NULL; list = list->next)
14245 if (strcmp (list->name, "Z-packet") == 0)
14246 continue;
14247 else if (list->type == not_set_cmd)
14248 /* Alias commands are exactly like the original, except they
14249 don't have the normal type. */
14250 continue;
14251 else
14252 {
14253 ui_out_emit_tuple option_emitter (uiout, "option");
14254
14255 uiout->field_string ("name", list->name);
14256 uiout->text (": ");
14257 if (list->type == show_cmd)
14258 do_show_command (NULL, from_tty, list);
14259 else
14260 cmd_func (list, NULL, from_tty);
14261 }
14262 }
14263
14264
14265 /* Function to be called whenever a new objfile (shlib) is detected. */
14266 static void
14267 remote_new_objfile (struct objfile *objfile)
14268 {
14269 remote_target *remote = get_current_remote_target ();
14270
14271 if (remote != NULL) /* Have a remote connection. */
14272 remote->remote_check_symbols ();
14273 }
14274
14275 /* Pull all the tracepoints defined on the target and create local
14276 data structures representing them. We don't want to create real
14277 tracepoints yet, we don't want to mess up the user's existing
14278 collection. */
14279
14280 int
14281 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14282 {
14283 struct remote_state *rs = get_remote_state ();
14284 char *p;
14285
14286 /* Ask for a first packet of tracepoint definition. */
14287 putpkt ("qTfP");
14288 getpkt (&rs->buf, 0);
14289 p = rs->buf.data ();
14290 while (*p && *p != 'l')
14291 {
14292 parse_tracepoint_definition (p, utpp);
14293 /* Ask for another packet of tracepoint definition. */
14294 putpkt ("qTsP");
14295 getpkt (&rs->buf, 0);
14296 p = rs->buf.data ();
14297 }
14298 return 0;
14299 }
14300
14301 int
14302 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14303 {
14304 struct remote_state *rs = get_remote_state ();
14305 char *p;
14306
14307 /* Ask for a first packet of variable definition. */
14308 putpkt ("qTfV");
14309 getpkt (&rs->buf, 0);
14310 p = rs->buf.data ();
14311 while (*p && *p != 'l')
14312 {
14313 parse_tsv_definition (p, utsvp);
14314 /* Ask for another packet of variable definition. */
14315 putpkt ("qTsV");
14316 getpkt (&rs->buf, 0);
14317 p = rs->buf.data ();
14318 }
14319 return 0;
14320 }
14321
14322 /* The "set/show range-stepping" show hook. */
14323
14324 static void
14325 show_range_stepping (struct ui_file *file, int from_tty,
14326 struct cmd_list_element *c,
14327 const char *value)
14328 {
14329 fprintf_filtered (file,
14330 _("Debugger's willingness to use range stepping "
14331 "is %s.\n"), value);
14332 }
14333
14334 /* Return true if the vCont;r action is supported by the remote
14335 stub. */
14336
14337 bool
14338 remote_target::vcont_r_supported ()
14339 {
14340 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14341 remote_vcont_probe ();
14342
14343 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14344 && get_remote_state ()->supports_vCont.r);
14345 }
14346
14347 /* The "set/show range-stepping" set hook. */
14348
14349 static void
14350 set_range_stepping (const char *ignore_args, int from_tty,
14351 struct cmd_list_element *c)
14352 {
14353 /* When enabling, check whether range stepping is actually supported
14354 by the target, and warn if not. */
14355 if (use_range_stepping)
14356 {
14357 remote_target *remote = get_current_remote_target ();
14358 if (remote == NULL
14359 || !remote->vcont_r_supported ())
14360 warning (_("Range stepping is not supported by the current target"));
14361 }
14362 }
14363
14364 void _initialize_remote ();
14365 void
14366 _initialize_remote ()
14367 {
14368 struct cmd_list_element *cmd;
14369 const char *cmd_name;
14370
14371 /* architecture specific data */
14372 remote_g_packet_data_handle =
14373 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14374
14375 add_target (remote_target_info, remote_target::open);
14376 add_target (extended_remote_target_info, extended_remote_target::open);
14377
14378 /* Hook into new objfile notification. */
14379 gdb::observers::new_objfile.attach (remote_new_objfile);
14380
14381 #if 0
14382 init_remote_threadtests ();
14383 #endif
14384
14385 /* set/show remote ... */
14386
14387 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14388 Remote protocol specific variables.\n\
14389 Configure various remote-protocol specific variables such as\n\
14390 the packets being used."),
14391 &remote_set_cmdlist, "set remote ",
14392 0 /* allow-unknown */, &setlist);
14393 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14394 Remote protocol specific variables.\n\
14395 Configure various remote-protocol specific variables such as\n\
14396 the packets being used."),
14397 &remote_show_cmdlist, "show remote ",
14398 0 /* allow-unknown */, &showlist);
14399
14400 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14401 Compare section data on target to the exec file.\n\
14402 Argument is a single section name (default: all loaded sections).\n\
14403 To compare only read-only loaded sections, specify the -r option."),
14404 &cmdlist);
14405
14406 add_cmd ("packet", class_maintenance, packet_command, _("\
14407 Send an arbitrary packet to a remote target.\n\
14408 maintenance packet TEXT\n\
14409 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14410 this command sends the string TEXT to the inferior, and displays the\n\
14411 response packet. GDB supplies the initial `$' character, and the\n\
14412 terminating `#' character and checksum."),
14413 &maintenancelist);
14414
14415 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14416 Set whether to send break if interrupted."), _("\
14417 Show whether to send break if interrupted."), _("\
14418 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14419 set_remotebreak, show_remotebreak,
14420 &setlist, &showlist);
14421 cmd_name = "remotebreak";
14422 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14423 deprecate_cmd (cmd, "set remote interrupt-sequence");
14424 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14425 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14426 deprecate_cmd (cmd, "show remote interrupt-sequence");
14427
14428 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14429 interrupt_sequence_modes, &interrupt_sequence_mode,
14430 _("\
14431 Set interrupt sequence to remote target."), _("\
14432 Show interrupt sequence to remote target."), _("\
14433 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14434 NULL, show_interrupt_sequence,
14435 &remote_set_cmdlist,
14436 &remote_show_cmdlist);
14437
14438 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14439 &interrupt_on_connect, _("\
14440 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14441 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14442 If set, interrupt sequence is sent to remote target."),
14443 NULL, NULL,
14444 &remote_set_cmdlist, &remote_show_cmdlist);
14445
14446 /* Install commands for configuring memory read/write packets. */
14447
14448 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14449 Set the maximum number of bytes per memory write packet (deprecated)."),
14450 &setlist);
14451 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14452 Show the maximum number of bytes per memory write packet (deprecated)."),
14453 &showlist);
14454 add_cmd ("memory-write-packet-size", no_class,
14455 set_memory_write_packet_size, _("\
14456 Set the maximum number of bytes per memory-write packet.\n\
14457 Specify the number of bytes in a packet or 0 (zero) for the\n\
14458 default packet size. The actual limit is further reduced\n\
14459 dependent on the target. Specify ``fixed'' to disable the\n\
14460 further restriction and ``limit'' to enable that restriction."),
14461 &remote_set_cmdlist);
14462 add_cmd ("memory-read-packet-size", no_class,
14463 set_memory_read_packet_size, _("\
14464 Set the maximum number of bytes per memory-read packet.\n\
14465 Specify the number of bytes in a packet or 0 (zero) for the\n\
14466 default packet size. The actual limit is further reduced\n\
14467 dependent on the target. Specify ``fixed'' to disable the\n\
14468 further restriction and ``limit'' to enable that restriction."),
14469 &remote_set_cmdlist);
14470 add_cmd ("memory-write-packet-size", no_class,
14471 show_memory_write_packet_size,
14472 _("Show the maximum number of bytes per memory-write packet."),
14473 &remote_show_cmdlist);
14474 add_cmd ("memory-read-packet-size", no_class,
14475 show_memory_read_packet_size,
14476 _("Show the maximum number of bytes per memory-read packet."),
14477 &remote_show_cmdlist);
14478
14479 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14480 &remote_hw_watchpoint_limit, _("\
14481 Set the maximum number of target hardware watchpoints."), _("\
14482 Show the maximum number of target hardware watchpoints."), _("\
14483 Specify \"unlimited\" for unlimited hardware watchpoints."),
14484 NULL, show_hardware_watchpoint_limit,
14485 &remote_set_cmdlist,
14486 &remote_show_cmdlist);
14487 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14488 no_class,
14489 &remote_hw_watchpoint_length_limit, _("\
14490 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14491 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14492 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14493 NULL, show_hardware_watchpoint_length_limit,
14494 &remote_set_cmdlist, &remote_show_cmdlist);
14495 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14496 &remote_hw_breakpoint_limit, _("\
14497 Set the maximum number of target hardware breakpoints."), _("\
14498 Show the maximum number of target hardware breakpoints."), _("\
14499 Specify \"unlimited\" for unlimited hardware breakpoints."),
14500 NULL, show_hardware_breakpoint_limit,
14501 &remote_set_cmdlist, &remote_show_cmdlist);
14502
14503 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14504 &remote_address_size, _("\
14505 Set the maximum size of the address (in bits) in a memory packet."), _("\
14506 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14507 NULL,
14508 NULL, /* FIXME: i18n: */
14509 &setlist, &showlist);
14510
14511 init_all_packet_configs ();
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14514 "X", "binary-download", 1);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14517 "vCont", "verbose-resume", 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14520 "QPassSignals", "pass-signals", 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14523 "QCatchSyscalls", "catch-syscalls", 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14526 "QProgramSignals", "program-signals", 0);
14527
14528 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14529 "QSetWorkingDir", "set-working-dir", 0);
14530
14531 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14532 "QStartupWithShell", "startup-with-shell", 0);
14533
14534 add_packet_config_cmd (&remote_protocol_packets
14535 [PACKET_QEnvironmentHexEncoded],
14536 "QEnvironmentHexEncoded", "environment-hex-encoded",
14537 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14540 "QEnvironmentReset", "environment-reset",
14541 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14544 "QEnvironmentUnset", "environment-unset",
14545 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14548 "qSymbol", "symbol-lookup", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14551 "P", "set-register", 1);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14554 "p", "fetch-register", 1);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14557 "Z0", "software-breakpoint", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14560 "Z1", "hardware-breakpoint", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14563 "Z2", "write-watchpoint", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14566 "Z3", "read-watchpoint", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14569 "Z4", "access-watchpoint", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14572 "qXfer:auxv:read", "read-aux-vector", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14575 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14578 "qXfer:features:read", "target-features", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14581 "qXfer:libraries:read", "library-info", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14584 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14587 "qXfer:memory-map:read", "memory-map", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14590 "qXfer:osdata:read", "osdata", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14593 "qXfer:threads:read", "threads", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14596 "qXfer:siginfo:read", "read-siginfo-object", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14599 "qXfer:siginfo:write", "write-siginfo-object", 0);
14600
14601 add_packet_config_cmd
14602 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14603 "qXfer:traceframe-info:read", "traceframe-info", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14606 "qXfer:uib:read", "unwind-info-block", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14609 "qGetTLSAddr", "get-thread-local-storage-address",
14610 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14613 "qGetTIBAddr", "get-thread-information-block-address",
14614 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14617 "bc", "reverse-continue", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14620 "bs", "reverse-step", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14623 "qSupported", "supported-packets", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14626 "qSearch:memory", "search-memory", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14629 "qTStatus", "trace-status", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14632 "vFile:setfs", "hostio-setfs", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14635 "vFile:open", "hostio-open", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14638 "vFile:pread", "hostio-pread", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14641 "vFile:pwrite", "hostio-pwrite", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14644 "vFile:close", "hostio-close", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14647 "vFile:unlink", "hostio-unlink", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14650 "vFile:readlink", "hostio-readlink", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14653 "vFile:fstat", "hostio-fstat", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14656 "vAttach", "attach", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14659 "vRun", "run", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14662 "QStartNoAckMode", "noack", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14665 "vKill", "kill", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14668 "qAttached", "query-attached", 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14671 "ConditionalTracepoints",
14672 "conditional-tracepoints", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14675 "ConditionalBreakpoints",
14676 "conditional-breakpoints", 0);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14679 "BreakpointCommands",
14680 "breakpoint-commands", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14683 "FastTracepoints", "fast-tracepoints", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14686 "TracepointSource", "TracepointSource", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14689 "QAllow", "allow", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14692 "StaticTracepoints", "static-tracepoints", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14695 "InstallInTrace", "install-in-trace", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14698 "qXfer:statictrace:read", "read-sdata-object", 0);
14699
14700 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14701 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14702
14703 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14704 "QDisableRandomization", "disable-randomization", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14707 "QAgent", "agent", 0);
14708
14709 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14710 "QTBuffer:size", "trace-buffer-size", 0);
14711
14712 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14713 "Qbtrace:off", "disable-btrace", 0);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14716 "Qbtrace:bts", "enable-btrace-bts", 0);
14717
14718 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14719 "Qbtrace:pt", "enable-btrace-pt", 0);
14720
14721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14722 "qXfer:btrace", "read-btrace", 0);
14723
14724 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14725 "qXfer:btrace-conf", "read-btrace-conf", 0);
14726
14727 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14728 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14729
14730 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14731 "multiprocess-feature", "multiprocess-feature", 0);
14732
14733 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14734 "swbreak-feature", "swbreak-feature", 0);
14735
14736 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14737 "hwbreak-feature", "hwbreak-feature", 0);
14738
14739 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14740 "fork-event-feature", "fork-event-feature", 0);
14741
14742 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14743 "vfork-event-feature", "vfork-event-feature", 0);
14744
14745 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14746 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14747
14748 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14749 "vContSupported", "verbose-resume-supported", 0);
14750
14751 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14752 "exec-event-feature", "exec-event-feature", 0);
14753
14754 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14755 "vCtrlC", "ctrl-c", 0);
14756
14757 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14758 "QThreadEvents", "thread-events", 0);
14759
14760 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14761 "N stop reply", "no-resumed-stop-reply", 0);
14762
14763 /* Assert that we've registered "set remote foo-packet" commands
14764 for all packet configs. */
14765 {
14766 int i;
14767
14768 for (i = 0; i < PACKET_MAX; i++)
14769 {
14770 /* Ideally all configs would have a command associated. Some
14771 still don't though. */
14772 int excepted;
14773
14774 switch (i)
14775 {
14776 case PACKET_QNonStop:
14777 case PACKET_EnableDisableTracepoints_feature:
14778 case PACKET_tracenz_feature:
14779 case PACKET_DisconnectedTracing_feature:
14780 case PACKET_augmented_libraries_svr4_read_feature:
14781 case PACKET_qCRC:
14782 /* Additions to this list need to be well justified:
14783 pre-existing packets are OK; new packets are not. */
14784 excepted = 1;
14785 break;
14786 default:
14787 excepted = 0;
14788 break;
14789 }
14790
14791 /* This catches both forgetting to add a config command, and
14792 forgetting to remove a packet from the exception list. */
14793 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14794 }
14795 }
14796
14797 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14798 Z sub-packet has its own set and show commands, but users may
14799 have sets to this variable in their .gdbinit files (or in their
14800 documentation). */
14801 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14802 &remote_Z_packet_detect, _("\
14803 Set use of remote protocol `Z' packets."), _("\
14804 Show use of remote protocol `Z' packets."), _("\
14805 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14806 packets."),
14807 set_remote_protocol_Z_packet_cmd,
14808 show_remote_protocol_Z_packet_cmd,
14809 /* FIXME: i18n: Use of remote protocol
14810 `Z' packets is %s. */
14811 &remote_set_cmdlist, &remote_show_cmdlist);
14812
14813 add_prefix_cmd ("remote", class_files, remote_command, _("\
14814 Manipulate files on the remote system.\n\
14815 Transfer files to and from the remote target system."),
14816 &remote_cmdlist, "remote ",
14817 0 /* allow-unknown */, &cmdlist);
14818
14819 add_cmd ("put", class_files, remote_put_command,
14820 _("Copy a local file to the remote system."),
14821 &remote_cmdlist);
14822
14823 add_cmd ("get", class_files, remote_get_command,
14824 _("Copy a remote file to the local system."),
14825 &remote_cmdlist);
14826
14827 add_cmd ("delete", class_files, remote_delete_command,
14828 _("Delete a remote file."),
14829 &remote_cmdlist);
14830
14831 add_setshow_string_noescape_cmd ("exec-file", class_files,
14832 &remote_exec_file_var, _("\
14833 Set the remote pathname for \"run\"."), _("\
14834 Show the remote pathname for \"run\"."), NULL,
14835 set_remote_exec_file,
14836 show_remote_exec_file,
14837 &remote_set_cmdlist,
14838 &remote_show_cmdlist);
14839
14840 add_setshow_boolean_cmd ("range-stepping", class_run,
14841 &use_range_stepping, _("\
14842 Enable or disable range stepping."), _("\
14843 Show whether target-assisted range stepping is enabled."), _("\
14844 If on, and the target supports it, when stepping a source line, GDB\n\
14845 tells the target to step the corresponding range of addresses itself instead\n\
14846 of issuing multiple single-steps. This speeds up source level\n\
14847 stepping. If off, GDB always issues single-steps, even if range\n\
14848 stepping is supported by the target. The default is on."),
14849 set_range_stepping,
14850 show_range_stepping,
14851 &setlist,
14852 &showlist);
14853
14854 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14855 Set watchdog timer."), _("\
14856 Show watchdog timer."), _("\
14857 When non-zero, this timeout is used instead of waiting forever for a target\n\
14858 to finish a low-level step or continue operation. If the specified amount\n\
14859 of time passes without a response from the target, an error occurs."),
14860 NULL,
14861 show_watchdog,
14862 &setlist, &showlist);
14863
14864 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14865 &remote_packet_max_chars, _("\
14866 Set the maximum number of characters to display for each remote packet."), _("\
14867 Show the maximum number of characters to display for each remote packet."), _("\
14868 Specify \"unlimited\" to display all the characters."),
14869 NULL, show_remote_packet_max_chars,
14870 &setdebuglist, &showdebuglist);
14871
14872 /* Eventually initialize fileio. See fileio.c */
14873 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14874 }
This page took 0.378376 seconds and 4 git commands to generate.