Async mode fixes.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static struct target_ops extended_async_remote_ops;
485
486 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
487 ``forever'' still use the normal timeout mechanism. This is
488 currently used by the ASYNC code to guarentee that target reads
489 during the initial connect always time-out. Once getpkt has been
490 modified to return a timeout indication and, in turn
491 remote_wait()/wait_for_inferior() have gained a timeout parameter
492 this can go away. */
493 static int wait_forever_enabled_p = 1;
494
495
496 /* This variable chooses whether to send a ^C or a break when the user
497 requests program interruption. Although ^C is usually what remote
498 systems expect, and that is the default here, sometimes a break is
499 preferable instead. */
500
501 static int remote_break;
502
503 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
504 remote_open knows that we don't have a file open when the program
505 starts. */
506 static struct serial *remote_desc = NULL;
507
508 /* This variable sets the number of bits in an address that are to be
509 sent in a memory ("M" or "m") packet. Normally, after stripping
510 leading zeros, the entire address would be sent. This variable
511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
512 initial implementation of remote.c restricted the address sent in
513 memory packets to ``host::sizeof long'' bytes - (typically 32
514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
515 address was never sent. Since fixing this bug may cause a break in
516 some remote targets this variable is principly provided to
517 facilitate backward compatibility. */
518
519 static int remote_address_size;
520
521 /* Tempoary to track who currently owns the terminal. See
522 target_async_terminal_* for more details. */
523
524 static int remote_async_terminal_ours_p;
525
526 /* The executable file to use for "run" on the remote side. */
527
528 static char *remote_exec_file = "";
529
530 \f
531 /* User configurable variables for the number of characters in a
532 memory read/write packet. MIN (rsa->remote_packet_size,
533 rsa->sizeof_g_packet) is the default. Some targets need smaller
534 values (fifo overruns, et.al.) and some users need larger values
535 (speed up transfers). The variables ``preferred_*'' (the user
536 request), ``current_*'' (what was actually set) and ``forced_*''
537 (Positive - a soft limit, negative - a hard limit). */
538
539 struct memory_packet_config
540 {
541 char *name;
542 long size;
543 int fixed_p;
544 };
545
546 /* Compute the current size of a read/write packet. Since this makes
547 use of ``actual_register_packet_size'' the computation is dynamic. */
548
549 static long
550 get_memory_packet_size (struct memory_packet_config *config)
551 {
552 struct remote_state *rs = get_remote_state ();
553 struct remote_arch_state *rsa = get_remote_arch_state ();
554
555 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
556 law?) that some hosts don't cope very well with large alloca()
557 calls. Eventually the alloca() code will be replaced by calls to
558 xmalloc() and make_cleanups() allowing this restriction to either
559 be lifted or removed. */
560 #ifndef MAX_REMOTE_PACKET_SIZE
561 #define MAX_REMOTE_PACKET_SIZE 16384
562 #endif
563 /* NOTE: 20 ensures we can write at least one byte. */
564 #ifndef MIN_REMOTE_PACKET_SIZE
565 #define MIN_REMOTE_PACKET_SIZE 20
566 #endif
567 long what_they_get;
568 if (config->fixed_p)
569 {
570 if (config->size <= 0)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 else
573 what_they_get = config->size;
574 }
575 else
576 {
577 what_they_get = get_remote_packet_size ();
578 /* Limit the packet to the size specified by the user. */
579 if (config->size > 0
580 && what_they_get > config->size)
581 what_they_get = config->size;
582
583 /* Limit it to the size of the targets ``g'' response unless we have
584 permission from the stub to use a larger packet size. */
585 if (rs->explicit_packet_size == 0
586 && rsa->actual_register_packet_size > 0
587 && what_they_get > rsa->actual_register_packet_size)
588 what_they_get = rsa->actual_register_packet_size;
589 }
590 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
591 what_they_get = MAX_REMOTE_PACKET_SIZE;
592 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
593 what_they_get = MIN_REMOTE_PACKET_SIZE;
594
595 /* Make sure there is room in the global buffer for this packet
596 (including its trailing NUL byte). */
597 if (rs->buf_size < what_they_get + 1)
598 {
599 rs->buf_size = 2 * what_they_get;
600 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
601 }
602
603 return what_they_get;
604 }
605
606 /* Update the size of a read/write packet. If they user wants
607 something really big then do a sanity check. */
608
609 static void
610 set_memory_packet_size (char *args, struct memory_packet_config *config)
611 {
612 int fixed_p = config->fixed_p;
613 long size = config->size;
614 if (args == NULL)
615 error (_("Argument required (integer, `fixed' or `limited')."));
616 else if (strcmp (args, "hard") == 0
617 || strcmp (args, "fixed") == 0)
618 fixed_p = 1;
619 else if (strcmp (args, "soft") == 0
620 || strcmp (args, "limit") == 0)
621 fixed_p = 0;
622 else
623 {
624 char *end;
625 size = strtoul (args, &end, 0);
626 if (args == end)
627 error (_("Invalid %s (bad syntax)."), config->name);
628 #if 0
629 /* Instead of explicitly capping the size of a packet to
630 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
631 instead allowed to set the size to something arbitrarily
632 large. */
633 if (size > MAX_REMOTE_PACKET_SIZE)
634 error (_("Invalid %s (too large)."), config->name);
635 #endif
636 }
637 /* Extra checks? */
638 if (fixed_p && !config->fixed_p)
639 {
640 if (! query (_("The target may not be able to correctly handle a %s\n"
641 "of %ld bytes. Change the packet size? "),
642 config->name, size))
643 error (_("Packet size not changed."));
644 }
645 /* Update the config. */
646 config->fixed_p = fixed_p;
647 config->size = size;
648 }
649
650 static void
651 show_memory_packet_size (struct memory_packet_config *config)
652 {
653 printf_filtered (_("The %s is %ld. "), config->name, config->size);
654 if (config->fixed_p)
655 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
656 get_memory_packet_size (config));
657 else
658 printf_filtered (_("Packets are limited to %ld bytes.\n"),
659 get_memory_packet_size (config));
660 }
661
662 static struct memory_packet_config memory_write_packet_config =
663 {
664 "memory-write-packet-size",
665 };
666
667 static void
668 set_memory_write_packet_size (char *args, int from_tty)
669 {
670 set_memory_packet_size (args, &memory_write_packet_config);
671 }
672
673 static void
674 show_memory_write_packet_size (char *args, int from_tty)
675 {
676 show_memory_packet_size (&memory_write_packet_config);
677 }
678
679 static long
680 get_memory_write_packet_size (void)
681 {
682 return get_memory_packet_size (&memory_write_packet_config);
683 }
684
685 static struct memory_packet_config memory_read_packet_config =
686 {
687 "memory-read-packet-size",
688 };
689
690 static void
691 set_memory_read_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_read_packet_config);
694 }
695
696 static void
697 show_memory_read_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_read_packet_config);
700 }
701
702 static long
703 get_memory_read_packet_size (void)
704 {
705 long size = get_memory_packet_size (&memory_read_packet_config);
706 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
707 extra buffer size argument before the memory read size can be
708 increased beyond this. */
709 if (size > get_remote_packet_size ())
710 size = get_remote_packet_size ();
711 return size;
712 }
713
714 \f
715 /* Generic configuration support for packets the stub optionally
716 supports. Allows the user to specify the use of the packet as well
717 as allowing GDB to auto-detect support in the remote stub. */
718
719 enum packet_support
720 {
721 PACKET_SUPPORT_UNKNOWN = 0,
722 PACKET_ENABLE,
723 PACKET_DISABLE
724 };
725
726 struct packet_config
727 {
728 const char *name;
729 const char *title;
730 enum auto_boolean detect;
731 enum packet_support support;
732 };
733
734 /* Analyze a packet's return value and update the packet config
735 accordingly. */
736
737 enum packet_result
738 {
739 PACKET_ERROR,
740 PACKET_OK,
741 PACKET_UNKNOWN
742 };
743
744 static void
745 update_packet_config (struct packet_config *config)
746 {
747 switch (config->detect)
748 {
749 case AUTO_BOOLEAN_TRUE:
750 config->support = PACKET_ENABLE;
751 break;
752 case AUTO_BOOLEAN_FALSE:
753 config->support = PACKET_DISABLE;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 config->support = PACKET_SUPPORT_UNKNOWN;
757 break;
758 }
759 }
760
761 static void
762 show_packet_config_cmd (struct packet_config *config)
763 {
764 char *support = "internal-error";
765 switch (config->support)
766 {
767 case PACKET_ENABLE:
768 support = "enabled";
769 break;
770 case PACKET_DISABLE:
771 support = "disabled";
772 break;
773 case PACKET_SUPPORT_UNKNOWN:
774 support = "unknown";
775 break;
776 }
777 switch (config->detect)
778 {
779 case AUTO_BOOLEAN_AUTO:
780 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
781 config->name, support);
782 break;
783 case AUTO_BOOLEAN_TRUE:
784 case AUTO_BOOLEAN_FALSE:
785 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
786 config->name, support);
787 break;
788 }
789 }
790
791 static void
792 add_packet_config_cmd (struct packet_config *config, const char *name,
793 const char *title, int legacy)
794 {
795 char *set_doc;
796 char *show_doc;
797 char *cmd_name;
798
799 config->name = name;
800 config->title = title;
801 config->detect = AUTO_BOOLEAN_AUTO;
802 config->support = PACKET_SUPPORT_UNKNOWN;
803 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
804 name, title);
805 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
806 name, title);
807 /* set/show TITLE-packet {auto,on,off} */
808 cmd_name = xstrprintf ("%s-packet", title);
809 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
810 &config->detect, set_doc, show_doc, NULL, /* help_doc */
811 set_remote_protocol_packet_cmd,
812 show_remote_protocol_packet_cmd,
813 &remote_set_cmdlist, &remote_show_cmdlist);
814 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
815 if (legacy)
816 {
817 char *legacy_name;
818 legacy_name = xstrprintf ("%s-packet", name);
819 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
820 &remote_set_cmdlist);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_show_cmdlist);
823 }
824 }
825
826 static enum packet_result
827 packet_check_result (const char *buf)
828 {
829 if (buf[0] != '\0')
830 {
831 /* The stub recognized the packet request. Check that the
832 operation succeeded. */
833 if (buf[0] == 'E'
834 && isxdigit (buf[1]) && isxdigit (buf[2])
835 && buf[3] == '\0')
836 /* "Enn" - definitly an error. */
837 return PACKET_ERROR;
838
839 /* Always treat "E." as an error. This will be used for
840 more verbose error messages, such as E.memtypes. */
841 if (buf[0] == 'E' && buf[1] == '.')
842 return PACKET_ERROR;
843
844 /* The packet may or may not be OK. Just assume it is. */
845 return PACKET_OK;
846 }
847 else
848 /* The stub does not support the packet. */
849 return PACKET_UNKNOWN;
850 }
851
852 static enum packet_result
853 packet_ok (const char *buf, struct packet_config *config)
854 {
855 enum packet_result result;
856
857 result = packet_check_result (buf);
858 switch (result)
859 {
860 case PACKET_OK:
861 case PACKET_ERROR:
862 /* The stub recognized the packet request. */
863 switch (config->support)
864 {
865 case PACKET_SUPPORT_UNKNOWN:
866 if (remote_debug)
867 fprintf_unfiltered (gdb_stdlog,
868 "Packet %s (%s) is supported\n",
869 config->name, config->title);
870 config->support = PACKET_ENABLE;
871 break;
872 case PACKET_DISABLE:
873 internal_error (__FILE__, __LINE__,
874 _("packet_ok: attempt to use a disabled packet"));
875 break;
876 case PACKET_ENABLE:
877 break;
878 }
879 break;
880 case PACKET_UNKNOWN:
881 /* The stub does not support the packet. */
882 switch (config->support)
883 {
884 case PACKET_ENABLE:
885 if (config->detect == AUTO_BOOLEAN_AUTO)
886 /* If the stub previously indicated that the packet was
887 supported then there is a protocol error.. */
888 error (_("Protocol error: %s (%s) conflicting enabled responses."),
889 config->name, config->title);
890 else
891 /* The user set it wrong. */
892 error (_("Enabled packet %s (%s) not recognized by stub"),
893 config->name, config->title);
894 break;
895 case PACKET_SUPPORT_UNKNOWN:
896 if (remote_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "Packet %s (%s) is NOT supported\n",
899 config->name, config->title);
900 config->support = PACKET_DISABLE;
901 break;
902 case PACKET_DISABLE:
903 break;
904 }
905 break;
906 }
907
908 return result;
909 }
910
911 enum {
912 PACKET_vCont = 0,
913 PACKET_X,
914 PACKET_qSymbol,
915 PACKET_P,
916 PACKET_p,
917 PACKET_Z0,
918 PACKET_Z1,
919 PACKET_Z2,
920 PACKET_Z3,
921 PACKET_Z4,
922 PACKET_vFile_open,
923 PACKET_vFile_pread,
924 PACKET_vFile_pwrite,
925 PACKET_vFile_close,
926 PACKET_vFile_unlink,
927 PACKET_qXfer_auxv,
928 PACKET_qXfer_features,
929 PACKET_qXfer_libraries,
930 PACKET_qXfer_memory_map,
931 PACKET_qXfer_spu_read,
932 PACKET_qXfer_spu_write,
933 PACKET_qGetTLSAddr,
934 PACKET_qSupported,
935 PACKET_QPassSignals,
936 PACKET_vAttach,
937 PACKET_vRun,
938 PACKET_MAX
939 };
940
941 static struct packet_config remote_protocol_packets[PACKET_MAX];
942
943 static void
944 set_remote_protocol_packet_cmd (char *args, int from_tty,
945 struct cmd_list_element *c)
946 {
947 struct packet_config *packet;
948
949 for (packet = remote_protocol_packets;
950 packet < &remote_protocol_packets[PACKET_MAX];
951 packet++)
952 {
953 if (&packet->detect == c->var)
954 {
955 update_packet_config (packet);
956 return;
957 }
958 }
959 internal_error (__FILE__, __LINE__, "Could not find config for %s",
960 c->name);
961 }
962
963 static void
964 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
965 struct cmd_list_element *c,
966 const char *value)
967 {
968 struct packet_config *packet;
969
970 for (packet = remote_protocol_packets;
971 packet < &remote_protocol_packets[PACKET_MAX];
972 packet++)
973 {
974 if (&packet->detect == c->var)
975 {
976 show_packet_config_cmd (packet);
977 return;
978 }
979 }
980 internal_error (__FILE__, __LINE__, "Could not find config for %s",
981 c->name);
982 }
983
984 /* Should we try one of the 'Z' requests? */
985
986 enum Z_packet_type
987 {
988 Z_PACKET_SOFTWARE_BP,
989 Z_PACKET_HARDWARE_BP,
990 Z_PACKET_WRITE_WP,
991 Z_PACKET_READ_WP,
992 Z_PACKET_ACCESS_WP,
993 NR_Z_PACKET_TYPES
994 };
995
996 /* For compatibility with older distributions. Provide a ``set remote
997 Z-packet ...'' command that updates all the Z packet types. */
998
999 static enum auto_boolean remote_Z_packet_detect;
1000
1001 static void
1002 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 int i;
1006 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1007 {
1008 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1009 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1010 }
1011 }
1012
1013 static void
1014 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value)
1017 {
1018 int i;
1019 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1020 {
1021 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1022 }
1023 }
1024
1025 /* Should we try the 'ThreadInfo' query packet?
1026
1027 This variable (NOT available to the user: auto-detect only!)
1028 determines whether GDB will use the new, simpler "ThreadInfo"
1029 query or the older, more complex syntax for thread queries.
1030 This is an auto-detect variable (set to true at each connect,
1031 and set to false when the target fails to recognize it). */
1032
1033 static int use_threadinfo_query;
1034 static int use_threadextra_query;
1035
1036 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1037 static struct async_signal_handler *sigint_remote_twice_token;
1038 static struct async_signal_handler *sigint_remote_token;
1039
1040 \f
1041
1042
1043 /* These are the threads which we last sent to the remote system.
1044 -1 for all or -2 for not sent yet. */
1045 static int general_thread;
1046 static int continue_thread;
1047
1048 /* Call this function as a result of
1049 1) A halt indication (T packet) containing a thread id
1050 2) A direct query of currthread
1051 3) Successful execution of set thread
1052 */
1053
1054 static void
1055 record_currthread (int currthread)
1056 {
1057 general_thread = currthread;
1058
1059 /* If this is a new thread, add it to GDB's thread list.
1060 If we leave it up to WFI to do this, bad things will happen. */
1061 if (!in_thread_list (pid_to_ptid (currthread)))
1062 add_thread (pid_to_ptid (currthread));
1063 }
1064
1065 static char *last_pass_packet;
1066
1067 /* If 'QPassSignals' is supported, tell the remote stub what signals
1068 it can simply pass through to the inferior without reporting. */
1069
1070 static void
1071 remote_pass_signals (void)
1072 {
1073 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1074 {
1075 char *pass_packet, *p;
1076 int numsigs = (int) TARGET_SIGNAL_LAST;
1077 int count = 0, i;
1078
1079 gdb_assert (numsigs < 256);
1080 for (i = 0; i < numsigs; i++)
1081 {
1082 if (signal_stop_state (i) == 0
1083 && signal_print_state (i) == 0
1084 && signal_pass_state (i) == 1)
1085 count++;
1086 }
1087 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1088 strcpy (pass_packet, "QPassSignals:");
1089 p = pass_packet + strlen (pass_packet);
1090 for (i = 0; i < numsigs; i++)
1091 {
1092 if (signal_stop_state (i) == 0
1093 && signal_print_state (i) == 0
1094 && signal_pass_state (i) == 1)
1095 {
1096 if (i >= 16)
1097 *p++ = tohex (i >> 4);
1098 *p++ = tohex (i & 15);
1099 if (count)
1100 *p++ = ';';
1101 else
1102 break;
1103 count--;
1104 }
1105 }
1106 *p = 0;
1107 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1108 {
1109 struct remote_state *rs = get_remote_state ();
1110 char *buf = rs->buf;
1111
1112 putpkt (pass_packet);
1113 getpkt (&rs->buf, &rs->buf_size, 0);
1114 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1115 if (last_pass_packet)
1116 xfree (last_pass_packet);
1117 last_pass_packet = pass_packet;
1118 }
1119 else
1120 xfree (pass_packet);
1121 }
1122 }
1123
1124 #define MAGIC_NULL_PID 42000
1125
1126 static void
1127 set_thread (int th, int gen)
1128 {
1129 struct remote_state *rs = get_remote_state ();
1130 char *buf = rs->buf;
1131 int state = gen ? general_thread : continue_thread;
1132
1133 if (state == th)
1134 return;
1135
1136 buf[0] = 'H';
1137 buf[1] = gen ? 'g' : 'c';
1138 if (th == MAGIC_NULL_PID)
1139 {
1140 buf[2] = '0';
1141 buf[3] = '\0';
1142 }
1143 else if (th < 0)
1144 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1145 else
1146 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1147 putpkt (buf);
1148 getpkt (&rs->buf, &rs->buf_size, 0);
1149 if (gen)
1150 general_thread = th;
1151 else
1152 continue_thread = th;
1153 }
1154 \f
1155 /* Return nonzero if the thread TH is still alive on the remote system. */
1156
1157 static int
1158 remote_thread_alive (ptid_t ptid)
1159 {
1160 struct remote_state *rs = get_remote_state ();
1161 int tid = PIDGET (ptid);
1162
1163 if (tid < 0)
1164 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1165 else
1166 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1167 putpkt (rs->buf);
1168 getpkt (&rs->buf, &rs->buf_size, 0);
1169 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1170 }
1171
1172 /* About these extended threadlist and threadinfo packets. They are
1173 variable length packets but, the fields within them are often fixed
1174 length. They are redundent enough to send over UDP as is the
1175 remote protocol in general. There is a matching unit test module
1176 in libstub. */
1177
1178 #define OPAQUETHREADBYTES 8
1179
1180 /* a 64 bit opaque identifier */
1181 typedef unsigned char threadref[OPAQUETHREADBYTES];
1182
1183 /* WARNING: This threadref data structure comes from the remote O.S.,
1184 libstub protocol encoding, and remote.c. it is not particularly
1185 changable. */
1186
1187 /* Right now, the internal structure is int. We want it to be bigger.
1188 Plan to fix this.
1189 */
1190
1191 typedef int gdb_threadref; /* Internal GDB thread reference. */
1192
1193 /* gdb_ext_thread_info is an internal GDB data structure which is
1194 equivalent to the reply of the remote threadinfo packet. */
1195
1196 struct gdb_ext_thread_info
1197 {
1198 threadref threadid; /* External form of thread reference. */
1199 int active; /* Has state interesting to GDB?
1200 regs, stack. */
1201 char display[256]; /* Brief state display, name,
1202 blocked/suspended. */
1203 char shortname[32]; /* To be used to name threads. */
1204 char more_display[256]; /* Long info, statistics, queue depth,
1205 whatever. */
1206 };
1207
1208 /* The volume of remote transfers can be limited by submitting
1209 a mask containing bits specifying the desired information.
1210 Use a union of these values as the 'selection' parameter to
1211 get_thread_info. FIXME: Make these TAG names more thread specific.
1212 */
1213
1214 #define TAG_THREADID 1
1215 #define TAG_EXISTS 2
1216 #define TAG_DISPLAY 4
1217 #define TAG_THREADNAME 8
1218 #define TAG_MOREDISPLAY 16
1219
1220 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1221
1222 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1223
1224 static char *unpack_nibble (char *buf, int *val);
1225
1226 static char *pack_nibble (char *buf, int nibble);
1227
1228 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1229
1230 static char *unpack_byte (char *buf, int *value);
1231
1232 static char *pack_int (char *buf, int value);
1233
1234 static char *unpack_int (char *buf, int *value);
1235
1236 static char *unpack_string (char *src, char *dest, int length);
1237
1238 static char *pack_threadid (char *pkt, threadref *id);
1239
1240 static char *unpack_threadid (char *inbuf, threadref *id);
1241
1242 void int_to_threadref (threadref *id, int value);
1243
1244 static int threadref_to_int (threadref *ref);
1245
1246 static void copy_threadref (threadref *dest, threadref *src);
1247
1248 static int threadmatch (threadref *dest, threadref *src);
1249
1250 static char *pack_threadinfo_request (char *pkt, int mode,
1251 threadref *id);
1252
1253 static int remote_unpack_thread_info_response (char *pkt,
1254 threadref *expectedref,
1255 struct gdb_ext_thread_info
1256 *info);
1257
1258
1259 static int remote_get_threadinfo (threadref *threadid,
1260 int fieldset, /*TAG mask */
1261 struct gdb_ext_thread_info *info);
1262
1263 static char *pack_threadlist_request (char *pkt, int startflag,
1264 int threadcount,
1265 threadref *nextthread);
1266
1267 static int parse_threadlist_response (char *pkt,
1268 int result_limit,
1269 threadref *original_echo,
1270 threadref *resultlist,
1271 int *doneflag);
1272
1273 static int remote_get_threadlist (int startflag,
1274 threadref *nextthread,
1275 int result_limit,
1276 int *done,
1277 int *result_count,
1278 threadref *threadlist);
1279
1280 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1281
1282 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1283 void *context, int looplimit);
1284
1285 static int remote_newthread_step (threadref *ref, void *context);
1286
1287 /* Encode 64 bits in 16 chars of hex. */
1288
1289 static const char hexchars[] = "0123456789abcdef";
1290
1291 static int
1292 ishex (int ch, int *val)
1293 {
1294 if ((ch >= 'a') && (ch <= 'f'))
1295 {
1296 *val = ch - 'a' + 10;
1297 return 1;
1298 }
1299 if ((ch >= 'A') && (ch <= 'F'))
1300 {
1301 *val = ch - 'A' + 10;
1302 return 1;
1303 }
1304 if ((ch >= '0') && (ch <= '9'))
1305 {
1306 *val = ch - '0';
1307 return 1;
1308 }
1309 return 0;
1310 }
1311
1312 static int
1313 stubhex (int ch)
1314 {
1315 if (ch >= 'a' && ch <= 'f')
1316 return ch - 'a' + 10;
1317 if (ch >= '0' && ch <= '9')
1318 return ch - '0';
1319 if (ch >= 'A' && ch <= 'F')
1320 return ch - 'A' + 10;
1321 return -1;
1322 }
1323
1324 static int
1325 stub_unpack_int (char *buff, int fieldlength)
1326 {
1327 int nibble;
1328 int retval = 0;
1329
1330 while (fieldlength)
1331 {
1332 nibble = stubhex (*buff++);
1333 retval |= nibble;
1334 fieldlength--;
1335 if (fieldlength)
1336 retval = retval << 4;
1337 }
1338 return retval;
1339 }
1340
1341 char *
1342 unpack_varlen_hex (char *buff, /* packet to parse */
1343 ULONGEST *result)
1344 {
1345 int nibble;
1346 ULONGEST retval = 0;
1347
1348 while (ishex (*buff, &nibble))
1349 {
1350 buff++;
1351 retval = retval << 4;
1352 retval |= nibble & 0x0f;
1353 }
1354 *result = retval;
1355 return buff;
1356 }
1357
1358 static char *
1359 unpack_nibble (char *buf, int *val)
1360 {
1361 *val = fromhex (*buf++);
1362 return buf;
1363 }
1364
1365 static char *
1366 pack_nibble (char *buf, int nibble)
1367 {
1368 *buf++ = hexchars[(nibble & 0x0f)];
1369 return buf;
1370 }
1371
1372 static char *
1373 pack_hex_byte (char *pkt, int byte)
1374 {
1375 *pkt++ = hexchars[(byte >> 4) & 0xf];
1376 *pkt++ = hexchars[(byte & 0xf)];
1377 return pkt;
1378 }
1379
1380 static char *
1381 unpack_byte (char *buf, int *value)
1382 {
1383 *value = stub_unpack_int (buf, 2);
1384 return buf + 2;
1385 }
1386
1387 static char *
1388 pack_int (char *buf, int value)
1389 {
1390 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1391 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1392 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1393 buf = pack_hex_byte (buf, (value & 0xff));
1394 return buf;
1395 }
1396
1397 static char *
1398 unpack_int (char *buf, int *value)
1399 {
1400 *value = stub_unpack_int (buf, 8);
1401 return buf + 8;
1402 }
1403
1404 #if 0 /* Currently unused, uncomment when needed. */
1405 static char *pack_string (char *pkt, char *string);
1406
1407 static char *
1408 pack_string (char *pkt, char *string)
1409 {
1410 char ch;
1411 int len;
1412
1413 len = strlen (string);
1414 if (len > 200)
1415 len = 200; /* Bigger than most GDB packets, junk??? */
1416 pkt = pack_hex_byte (pkt, len);
1417 while (len-- > 0)
1418 {
1419 ch = *string++;
1420 if ((ch == '\0') || (ch == '#'))
1421 ch = '*'; /* Protect encapsulation. */
1422 *pkt++ = ch;
1423 }
1424 return pkt;
1425 }
1426 #endif /* 0 (unused) */
1427
1428 static char *
1429 unpack_string (char *src, char *dest, int length)
1430 {
1431 while (length--)
1432 *dest++ = *src++;
1433 *dest = '\0';
1434 return src;
1435 }
1436
1437 static char *
1438 pack_threadid (char *pkt, threadref *id)
1439 {
1440 char *limit;
1441 unsigned char *altid;
1442
1443 altid = (unsigned char *) id;
1444 limit = pkt + BUF_THREAD_ID_SIZE;
1445 while (pkt < limit)
1446 pkt = pack_hex_byte (pkt, *altid++);
1447 return pkt;
1448 }
1449
1450
1451 static char *
1452 unpack_threadid (char *inbuf, threadref *id)
1453 {
1454 char *altref;
1455 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1456 int x, y;
1457
1458 altref = (char *) id;
1459
1460 while (inbuf < limit)
1461 {
1462 x = stubhex (*inbuf++);
1463 y = stubhex (*inbuf++);
1464 *altref++ = (x << 4) | y;
1465 }
1466 return inbuf;
1467 }
1468
1469 /* Externally, threadrefs are 64 bits but internally, they are still
1470 ints. This is due to a mismatch of specifications. We would like
1471 to use 64bit thread references internally. This is an adapter
1472 function. */
1473
1474 void
1475 int_to_threadref (threadref *id, int value)
1476 {
1477 unsigned char *scan;
1478
1479 scan = (unsigned char *) id;
1480 {
1481 int i = 4;
1482 while (i--)
1483 *scan++ = 0;
1484 }
1485 *scan++ = (value >> 24) & 0xff;
1486 *scan++ = (value >> 16) & 0xff;
1487 *scan++ = (value >> 8) & 0xff;
1488 *scan++ = (value & 0xff);
1489 }
1490
1491 static int
1492 threadref_to_int (threadref *ref)
1493 {
1494 int i, value = 0;
1495 unsigned char *scan;
1496
1497 scan = *ref;
1498 scan += 4;
1499 i = 4;
1500 while (i-- > 0)
1501 value = (value << 8) | ((*scan++) & 0xff);
1502 return value;
1503 }
1504
1505 static void
1506 copy_threadref (threadref *dest, threadref *src)
1507 {
1508 int i;
1509 unsigned char *csrc, *cdest;
1510
1511 csrc = (unsigned char *) src;
1512 cdest = (unsigned char *) dest;
1513 i = 8;
1514 while (i--)
1515 *cdest++ = *csrc++;
1516 }
1517
1518 static int
1519 threadmatch (threadref *dest, threadref *src)
1520 {
1521 /* Things are broken right now, so just assume we got a match. */
1522 #if 0
1523 unsigned char *srcp, *destp;
1524 int i, result;
1525 srcp = (char *) src;
1526 destp = (char *) dest;
1527
1528 result = 1;
1529 while (i-- > 0)
1530 result &= (*srcp++ == *destp++) ? 1 : 0;
1531 return result;
1532 #endif
1533 return 1;
1534 }
1535
1536 /*
1537 threadid:1, # always request threadid
1538 context_exists:2,
1539 display:4,
1540 unique_name:8,
1541 more_display:16
1542 */
1543
1544 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1545
1546 static char *
1547 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1548 {
1549 *pkt++ = 'q'; /* Info Query */
1550 *pkt++ = 'P'; /* process or thread info */
1551 pkt = pack_int (pkt, mode); /* mode */
1552 pkt = pack_threadid (pkt, id); /* threadid */
1553 *pkt = '\0'; /* terminate */
1554 return pkt;
1555 }
1556
1557 /* These values tag the fields in a thread info response packet. */
1558 /* Tagging the fields allows us to request specific fields and to
1559 add more fields as time goes by. */
1560
1561 #define TAG_THREADID 1 /* Echo the thread identifier. */
1562 #define TAG_EXISTS 2 /* Is this process defined enough to
1563 fetch registers and its stack? */
1564 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1565 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1566 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1567 the process. */
1568
1569 static int
1570 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1571 struct gdb_ext_thread_info *info)
1572 {
1573 struct remote_state *rs = get_remote_state ();
1574 int mask, length;
1575 int tag;
1576 threadref ref;
1577 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1578 int retval = 1;
1579
1580 /* info->threadid = 0; FIXME: implement zero_threadref. */
1581 info->active = 0;
1582 info->display[0] = '\0';
1583 info->shortname[0] = '\0';
1584 info->more_display[0] = '\0';
1585
1586 /* Assume the characters indicating the packet type have been
1587 stripped. */
1588 pkt = unpack_int (pkt, &mask); /* arg mask */
1589 pkt = unpack_threadid (pkt, &ref);
1590
1591 if (mask == 0)
1592 warning (_("Incomplete response to threadinfo request."));
1593 if (!threadmatch (&ref, expectedref))
1594 { /* This is an answer to a different request. */
1595 warning (_("ERROR RMT Thread info mismatch."));
1596 return 0;
1597 }
1598 copy_threadref (&info->threadid, &ref);
1599
1600 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1601
1602 /* Packets are terminated with nulls. */
1603 while ((pkt < limit) && mask && *pkt)
1604 {
1605 pkt = unpack_int (pkt, &tag); /* tag */
1606 pkt = unpack_byte (pkt, &length); /* length */
1607 if (!(tag & mask)) /* Tags out of synch with mask. */
1608 {
1609 warning (_("ERROR RMT: threadinfo tag mismatch."));
1610 retval = 0;
1611 break;
1612 }
1613 if (tag == TAG_THREADID)
1614 {
1615 if (length != 16)
1616 {
1617 warning (_("ERROR RMT: length of threadid is not 16."));
1618 retval = 0;
1619 break;
1620 }
1621 pkt = unpack_threadid (pkt, &ref);
1622 mask = mask & ~TAG_THREADID;
1623 continue;
1624 }
1625 if (tag == TAG_EXISTS)
1626 {
1627 info->active = stub_unpack_int (pkt, length);
1628 pkt += length;
1629 mask = mask & ~(TAG_EXISTS);
1630 if (length > 8)
1631 {
1632 warning (_("ERROR RMT: 'exists' length too long."));
1633 retval = 0;
1634 break;
1635 }
1636 continue;
1637 }
1638 if (tag == TAG_THREADNAME)
1639 {
1640 pkt = unpack_string (pkt, &info->shortname[0], length);
1641 mask = mask & ~TAG_THREADNAME;
1642 continue;
1643 }
1644 if (tag == TAG_DISPLAY)
1645 {
1646 pkt = unpack_string (pkt, &info->display[0], length);
1647 mask = mask & ~TAG_DISPLAY;
1648 continue;
1649 }
1650 if (tag == TAG_MOREDISPLAY)
1651 {
1652 pkt = unpack_string (pkt, &info->more_display[0], length);
1653 mask = mask & ~TAG_MOREDISPLAY;
1654 continue;
1655 }
1656 warning (_("ERROR RMT: unknown thread info tag."));
1657 break; /* Not a tag we know about. */
1658 }
1659 return retval;
1660 }
1661
1662 static int
1663 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1664 struct gdb_ext_thread_info *info)
1665 {
1666 struct remote_state *rs = get_remote_state ();
1667 int result;
1668
1669 pack_threadinfo_request (rs->buf, fieldset, threadid);
1670 putpkt (rs->buf);
1671 getpkt (&rs->buf, &rs->buf_size, 0);
1672 result = remote_unpack_thread_info_response (rs->buf + 2,
1673 threadid, info);
1674 return result;
1675 }
1676
1677 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1678
1679 static char *
1680 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1681 threadref *nextthread)
1682 {
1683 *pkt++ = 'q'; /* info query packet */
1684 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1685 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1686 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1687 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1688 *pkt = '\0';
1689 return pkt;
1690 }
1691
1692 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1693
1694 static int
1695 parse_threadlist_response (char *pkt, int result_limit,
1696 threadref *original_echo, threadref *resultlist,
1697 int *doneflag)
1698 {
1699 struct remote_state *rs = get_remote_state ();
1700 char *limit;
1701 int count, resultcount, done;
1702
1703 resultcount = 0;
1704 /* Assume the 'q' and 'M chars have been stripped. */
1705 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1706 /* done parse past here */
1707 pkt = unpack_byte (pkt, &count); /* count field */
1708 pkt = unpack_nibble (pkt, &done);
1709 /* The first threadid is the argument threadid. */
1710 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1711 while ((count-- > 0) && (pkt < limit))
1712 {
1713 pkt = unpack_threadid (pkt, resultlist++);
1714 if (resultcount++ >= result_limit)
1715 break;
1716 }
1717 if (doneflag)
1718 *doneflag = done;
1719 return resultcount;
1720 }
1721
1722 static int
1723 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1724 int *done, int *result_count, threadref *threadlist)
1725 {
1726 struct remote_state *rs = get_remote_state ();
1727 static threadref echo_nextthread;
1728 int result = 1;
1729
1730 /* Trancate result limit to be smaller than the packet size. */
1731 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1732 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1733
1734 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1735 putpkt (rs->buf);
1736 getpkt (&rs->buf, &rs->buf_size, 0);
1737
1738 if (*rs->buf == '\0')
1739 *result_count = 0;
1740 else
1741 *result_count =
1742 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1743 threadlist, done);
1744
1745 if (!threadmatch (&echo_nextthread, nextthread))
1746 {
1747 /* FIXME: This is a good reason to drop the packet. */
1748 /* Possably, there is a duplicate response. */
1749 /* Possabilities :
1750 retransmit immediatly - race conditions
1751 retransmit after timeout - yes
1752 exit
1753 wait for packet, then exit
1754 */
1755 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1756 return 0; /* I choose simply exiting. */
1757 }
1758 if (*result_count <= 0)
1759 {
1760 if (*done != 1)
1761 {
1762 warning (_("RMT ERROR : failed to get remote thread list."));
1763 result = 0;
1764 }
1765 return result; /* break; */
1766 }
1767 if (*result_count > result_limit)
1768 {
1769 *result_count = 0;
1770 warning (_("RMT ERROR: threadlist response longer than requested."));
1771 return 0;
1772 }
1773 return result;
1774 }
1775
1776 /* This is the interface between remote and threads, remotes upper
1777 interface. */
1778
1779 /* remote_find_new_threads retrieves the thread list and for each
1780 thread in the list, looks up the thread in GDB's internal list,
1781 ading the thread if it does not already exist. This involves
1782 getting partial thread lists from the remote target so, polling the
1783 quit_flag is required. */
1784
1785
1786 /* About this many threadisds fit in a packet. */
1787
1788 #define MAXTHREADLISTRESULTS 32
1789
1790 static int
1791 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1792 int looplimit)
1793 {
1794 int done, i, result_count;
1795 int startflag = 1;
1796 int result = 1;
1797 int loopcount = 0;
1798 static threadref nextthread;
1799 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1800
1801 done = 0;
1802 while (!done)
1803 {
1804 if (loopcount++ > looplimit)
1805 {
1806 result = 0;
1807 warning (_("Remote fetch threadlist -infinite loop-."));
1808 break;
1809 }
1810 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1811 &done, &result_count, resultthreadlist))
1812 {
1813 result = 0;
1814 break;
1815 }
1816 /* Clear for later iterations. */
1817 startflag = 0;
1818 /* Setup to resume next batch of thread references, set nextthread. */
1819 if (result_count >= 1)
1820 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1821 i = 0;
1822 while (result_count--)
1823 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1824 break;
1825 }
1826 return result;
1827 }
1828
1829 static int
1830 remote_newthread_step (threadref *ref, void *context)
1831 {
1832 ptid_t ptid;
1833
1834 ptid = pid_to_ptid (threadref_to_int (ref));
1835
1836 if (!in_thread_list (ptid))
1837 add_thread (ptid);
1838 return 1; /* continue iterator */
1839 }
1840
1841 #define CRAZY_MAX_THREADS 1000
1842
1843 static ptid_t
1844 remote_current_thread (ptid_t oldpid)
1845 {
1846 struct remote_state *rs = get_remote_state ();
1847
1848 putpkt ("qC");
1849 getpkt (&rs->buf, &rs->buf_size, 0);
1850 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1851 /* Use strtoul here, so we'll correctly parse values whose highest
1852 bit is set. The protocol carries them as a simple series of
1853 hex digits; in the absence of a sign, strtol will see such
1854 values as positive numbers out of range for signed 'long', and
1855 return LONG_MAX to indicate an overflow. */
1856 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1857 else
1858 return oldpid;
1859 }
1860
1861 /* Find new threads for info threads command.
1862 * Original version, using John Metzler's thread protocol.
1863 */
1864
1865 static void
1866 remote_find_new_threads (void)
1867 {
1868 remote_threadlist_iterator (remote_newthread_step, 0,
1869 CRAZY_MAX_THREADS);
1870 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1871 inferior_ptid = remote_current_thread (inferior_ptid);
1872 }
1873
1874 /*
1875 * Find all threads for info threads command.
1876 * Uses new thread protocol contributed by Cisco.
1877 * Falls back and attempts to use the older method (above)
1878 * if the target doesn't respond to the new method.
1879 */
1880
1881 static void
1882 remote_threads_info (void)
1883 {
1884 struct remote_state *rs = get_remote_state ();
1885 char *bufp;
1886 int tid;
1887
1888 if (remote_desc == 0) /* paranoia */
1889 error (_("Command can only be used when connected to the remote target."));
1890
1891 if (use_threadinfo_query)
1892 {
1893 putpkt ("qfThreadInfo");
1894 getpkt (&rs->buf, &rs->buf_size, 0);
1895 bufp = rs->buf;
1896 if (bufp[0] != '\0') /* q packet recognized */
1897 {
1898 while (*bufp++ == 'm') /* reply contains one or more TID */
1899 {
1900 do
1901 {
1902 /* Use strtoul here, so we'll correctly parse values
1903 whose highest bit is set. The protocol carries
1904 them as a simple series of hex digits; in the
1905 absence of a sign, strtol will see such values as
1906 positive numbers out of range for signed 'long',
1907 and return LONG_MAX to indicate an overflow. */
1908 tid = strtoul (bufp, &bufp, 16);
1909 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1910 add_thread (pid_to_ptid (tid));
1911 }
1912 while (*bufp++ == ','); /* comma-separated list */
1913 putpkt ("qsThreadInfo");
1914 getpkt (&rs->buf, &rs->buf_size, 0);
1915 bufp = rs->buf;
1916 }
1917 return; /* done */
1918 }
1919 }
1920
1921 /* Else fall back to old method based on jmetzler protocol. */
1922 use_threadinfo_query = 0;
1923 remote_find_new_threads ();
1924 return;
1925 }
1926
1927 /*
1928 * Collect a descriptive string about the given thread.
1929 * The target may say anything it wants to about the thread
1930 * (typically info about its blocked / runnable state, name, etc.).
1931 * This string will appear in the info threads display.
1932 *
1933 * Optional: targets are not required to implement this function.
1934 */
1935
1936 static char *
1937 remote_threads_extra_info (struct thread_info *tp)
1938 {
1939 struct remote_state *rs = get_remote_state ();
1940 int result;
1941 int set;
1942 threadref id;
1943 struct gdb_ext_thread_info threadinfo;
1944 static char display_buf[100]; /* arbitrary... */
1945 int n = 0; /* position in display_buf */
1946
1947 if (remote_desc == 0) /* paranoia */
1948 internal_error (__FILE__, __LINE__,
1949 _("remote_threads_extra_info"));
1950
1951 if (use_threadextra_query)
1952 {
1953 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1954 PIDGET (tp->ptid));
1955 putpkt (rs->buf);
1956 getpkt (&rs->buf, &rs->buf_size, 0);
1957 if (rs->buf[0] != 0)
1958 {
1959 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1960 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1961 display_buf [result] = '\0';
1962 return display_buf;
1963 }
1964 }
1965
1966 /* If the above query fails, fall back to the old method. */
1967 use_threadextra_query = 0;
1968 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1969 | TAG_MOREDISPLAY | TAG_DISPLAY;
1970 int_to_threadref (&id, PIDGET (tp->ptid));
1971 if (remote_get_threadinfo (&id, set, &threadinfo))
1972 if (threadinfo.active)
1973 {
1974 if (*threadinfo.shortname)
1975 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1976 " Name: %s,", threadinfo.shortname);
1977 if (*threadinfo.display)
1978 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1979 " State: %s,", threadinfo.display);
1980 if (*threadinfo.more_display)
1981 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1982 " Priority: %s", threadinfo.more_display);
1983
1984 if (n > 0)
1985 {
1986 /* For purely cosmetic reasons, clear up trailing commas. */
1987 if (',' == display_buf[n-1])
1988 display_buf[n-1] = ' ';
1989 return display_buf;
1990 }
1991 }
1992 return NULL;
1993 }
1994 \f
1995
1996 /* Restart the remote side; this is an extended protocol operation. */
1997
1998 static void
1999 extended_remote_restart (void)
2000 {
2001 struct remote_state *rs = get_remote_state ();
2002
2003 /* Send the restart command; for reasons I don't understand the
2004 remote side really expects a number after the "R". */
2005 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2006 putpkt (rs->buf);
2007
2008 remote_fileio_reset ();
2009 }
2010 \f
2011 /* Clean up connection to a remote debugger. */
2012
2013 static void
2014 remote_close (int quitting)
2015 {
2016 if (remote_desc)
2017 serial_close (remote_desc);
2018 remote_desc = NULL;
2019 }
2020
2021 /* Query the remote side for the text, data and bss offsets. */
2022
2023 static void
2024 get_offsets (void)
2025 {
2026 struct remote_state *rs = get_remote_state ();
2027 char *buf;
2028 char *ptr;
2029 int lose, num_segments = 0, do_sections, do_segments;
2030 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2031 struct section_offsets *offs;
2032 struct symfile_segment_data *data;
2033
2034 if (symfile_objfile == NULL)
2035 return;
2036
2037 putpkt ("qOffsets");
2038 getpkt (&rs->buf, &rs->buf_size, 0);
2039 buf = rs->buf;
2040
2041 if (buf[0] == '\000')
2042 return; /* Return silently. Stub doesn't support
2043 this command. */
2044 if (buf[0] == 'E')
2045 {
2046 warning (_("Remote failure reply: %s"), buf);
2047 return;
2048 }
2049
2050 /* Pick up each field in turn. This used to be done with scanf, but
2051 scanf will make trouble if CORE_ADDR size doesn't match
2052 conversion directives correctly. The following code will work
2053 with any size of CORE_ADDR. */
2054 text_addr = data_addr = bss_addr = 0;
2055 ptr = buf;
2056 lose = 0;
2057
2058 if (strncmp (ptr, "Text=", 5) == 0)
2059 {
2060 ptr += 5;
2061 /* Don't use strtol, could lose on big values. */
2062 while (*ptr && *ptr != ';')
2063 text_addr = (text_addr << 4) + fromhex (*ptr++);
2064
2065 if (strncmp (ptr, ";Data=", 6) == 0)
2066 {
2067 ptr += 6;
2068 while (*ptr && *ptr != ';')
2069 data_addr = (data_addr << 4) + fromhex (*ptr++);
2070 }
2071 else
2072 lose = 1;
2073
2074 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2075 {
2076 ptr += 5;
2077 while (*ptr && *ptr != ';')
2078 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2079
2080 if (bss_addr != data_addr)
2081 warning (_("Target reported unsupported offsets: %s"), buf);
2082 }
2083 else
2084 lose = 1;
2085 }
2086 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2087 {
2088 ptr += 8;
2089 /* Don't use strtol, could lose on big values. */
2090 while (*ptr && *ptr != ';')
2091 text_addr = (text_addr << 4) + fromhex (*ptr++);
2092 num_segments = 1;
2093
2094 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2095 {
2096 ptr += 9;
2097 while (*ptr && *ptr != ';')
2098 data_addr = (data_addr << 4) + fromhex (*ptr++);
2099 num_segments++;
2100 }
2101 }
2102 else
2103 lose = 1;
2104
2105 if (lose)
2106 error (_("Malformed response to offset query, %s"), buf);
2107 else if (*ptr != '\0')
2108 warning (_("Target reported unsupported offsets: %s"), buf);
2109
2110 offs = ((struct section_offsets *)
2111 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2112 memcpy (offs, symfile_objfile->section_offsets,
2113 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2114
2115 data = get_symfile_segment_data (symfile_objfile->obfd);
2116 do_segments = (data != NULL);
2117 do_sections = num_segments == 0;
2118
2119 if (num_segments > 0)
2120 {
2121 segments[0] = text_addr;
2122 segments[1] = data_addr;
2123 }
2124 /* If we have two segments, we can still try to relocate everything
2125 by assuming that the .text and .data offsets apply to the whole
2126 text and data segments. Convert the offsets given in the packet
2127 to base addresses for symfile_map_offsets_to_segments. */
2128 else if (data && data->num_segments == 2)
2129 {
2130 segments[0] = data->segment_bases[0] + text_addr;
2131 segments[1] = data->segment_bases[1] + data_addr;
2132 num_segments = 2;
2133 }
2134 /* There's no way to relocate by segment. */
2135 else
2136 do_segments = 0;
2137
2138 if (do_segments)
2139 {
2140 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2141 offs, num_segments, segments);
2142
2143 if (ret == 0 && !do_sections)
2144 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2145
2146 if (ret > 0)
2147 do_sections = 0;
2148 }
2149
2150 if (data)
2151 free_symfile_segment_data (data);
2152
2153 if (do_sections)
2154 {
2155 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2156
2157 /* This is a temporary kludge to force data and bss to use the same offsets
2158 because that's what nlmconv does now. The real solution requires changes
2159 to the stub and remote.c that I don't have time to do right now. */
2160
2161 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2162 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2163 }
2164
2165 objfile_relocate (symfile_objfile, offs);
2166 }
2167
2168 /* Stub for catch_exception. */
2169
2170 struct start_remote_args
2171 {
2172 int from_tty;
2173
2174 /* The current target. */
2175 struct target_ops *target;
2176
2177 /* Non-zero if this is an extended-remote target. */
2178 int extended_p;
2179 };
2180
2181 static void
2182 remote_start_remote (struct ui_out *uiout, void *opaque)
2183 {
2184 struct remote_state *rs = get_remote_state ();
2185 struct start_remote_args *args = opaque;
2186 char *wait_status = NULL;
2187
2188 immediate_quit++; /* Allow user to interrupt it. */
2189
2190 /* Ack any packet which the remote side has already sent. */
2191 serial_write (remote_desc, "+", 1);
2192
2193 /* Check whether the target is running now. */
2194 putpkt ("?");
2195 getpkt (&rs->buf, &rs->buf_size, 0);
2196
2197 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2198 {
2199 if (args->extended_p)
2200 {
2201 /* We're connected, but not running. Drop out before we
2202 call start_remote. */
2203 target_mark_exited (args->target);
2204 return;
2205 }
2206 else
2207 error (_("The target is not running (try extended-remote?)"));
2208 }
2209 else
2210 {
2211 if (args->extended_p)
2212 target_mark_running (args->target);
2213
2214 /* Save the reply for later. */
2215 wait_status = alloca (strlen (rs->buf) + 1);
2216 strcpy (wait_status, rs->buf);
2217 }
2218
2219 /* Let the stub know that we want it to return the thread. */
2220 set_thread (-1, 0);
2221
2222 /* Without this, some commands which require an active target
2223 (such as kill) won't work. This variable serves (at least)
2224 double duty as both the pid of the target process (if it has
2225 such), and as a flag indicating that a target is active.
2226 These functions should be split out into seperate variables,
2227 especially since GDB will someday have a notion of debugging
2228 several processes. */
2229 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2230
2231 /* Now, if we have thread information, update inferior_ptid. */
2232 inferior_ptid = remote_current_thread (inferior_ptid);
2233
2234 get_offsets (); /* Get text, data & bss offsets. */
2235
2236 /* Use the previously fetched status. */
2237 gdb_assert (wait_status != NULL);
2238 strcpy (rs->buf, wait_status);
2239 rs->cached_wait_status = 1;
2240
2241 immediate_quit--;
2242 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2243 }
2244
2245 /* Open a connection to a remote debugger.
2246 NAME is the filename used for communication. */
2247
2248 static void
2249 remote_open (char *name, int from_tty)
2250 {
2251 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2252 }
2253
2254 /* Just like remote_open, but with asynchronous support. */
2255 static void
2256 remote_async_open (char *name, int from_tty)
2257 {
2258 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2259 }
2260
2261 /* Open a connection to a remote debugger using the extended
2262 remote gdb protocol. NAME is the filename used for communication. */
2263
2264 static void
2265 extended_remote_open (char *name, int from_tty)
2266 {
2267 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2268 0 /* async_p */);
2269 }
2270
2271 /* Just like extended_remote_open, but with asynchronous support. */
2272 static void
2273 extended_remote_async_open (char *name, int from_tty)
2274 {
2275 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2276 1 /*extended_p */, 1 /* async_p */);
2277 }
2278
2279 /* Generic code for opening a connection to a remote target. */
2280
2281 static void
2282 init_all_packet_configs (void)
2283 {
2284 int i;
2285 for (i = 0; i < PACKET_MAX; i++)
2286 update_packet_config (&remote_protocol_packets[i]);
2287 }
2288
2289 /* Symbol look-up. */
2290
2291 static void
2292 remote_check_symbols (struct objfile *objfile)
2293 {
2294 struct remote_state *rs = get_remote_state ();
2295 char *msg, *reply, *tmp;
2296 struct minimal_symbol *sym;
2297 int end;
2298
2299 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2300 return;
2301
2302 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2303 because we need both at the same time. */
2304 msg = alloca (get_remote_packet_size ());
2305
2306 /* Invite target to request symbol lookups. */
2307
2308 putpkt ("qSymbol::");
2309 getpkt (&rs->buf, &rs->buf_size, 0);
2310 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2311 reply = rs->buf;
2312
2313 while (strncmp (reply, "qSymbol:", 8) == 0)
2314 {
2315 tmp = &reply[8];
2316 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2317 msg[end] = '\0';
2318 sym = lookup_minimal_symbol (msg, NULL, NULL);
2319 if (sym == NULL)
2320 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2321 else
2322 {
2323 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2324
2325 /* If this is a function address, return the start of code
2326 instead of any data function descriptor. */
2327 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2328 sym_addr,
2329 &current_target);
2330
2331 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2332 paddr_nz (sym_addr), &reply[8]);
2333 }
2334
2335 putpkt (msg);
2336 getpkt (&rs->buf, &rs->buf_size, 0);
2337 reply = rs->buf;
2338 }
2339 }
2340
2341 static struct serial *
2342 remote_serial_open (char *name)
2343 {
2344 static int udp_warning = 0;
2345
2346 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2347 of in ser-tcp.c, because it is the remote protocol assuming that the
2348 serial connection is reliable and not the serial connection promising
2349 to be. */
2350 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2351 {
2352 warning (_("\
2353 The remote protocol may be unreliable over UDP.\n\
2354 Some events may be lost, rendering further debugging impossible."));
2355 udp_warning = 1;
2356 }
2357
2358 return serial_open (name);
2359 }
2360
2361 /* This type describes each known response to the qSupported
2362 packet. */
2363 struct protocol_feature
2364 {
2365 /* The name of this protocol feature. */
2366 const char *name;
2367
2368 /* The default for this protocol feature. */
2369 enum packet_support default_support;
2370
2371 /* The function to call when this feature is reported, or after
2372 qSupported processing if the feature is not supported.
2373 The first argument points to this structure. The second
2374 argument indicates whether the packet requested support be
2375 enabled, disabled, or probed (or the default, if this function
2376 is being called at the end of processing and this feature was
2377 not reported). The third argument may be NULL; if not NULL, it
2378 is a NUL-terminated string taken from the packet following
2379 this feature's name and an equals sign. */
2380 void (*func) (const struct protocol_feature *, enum packet_support,
2381 const char *);
2382
2383 /* The corresponding packet for this feature. Only used if
2384 FUNC is remote_supported_packet. */
2385 int packet;
2386 };
2387
2388 static void
2389 remote_supported_packet (const struct protocol_feature *feature,
2390 enum packet_support support,
2391 const char *argument)
2392 {
2393 if (argument)
2394 {
2395 warning (_("Remote qSupported response supplied an unexpected value for"
2396 " \"%s\"."), feature->name);
2397 return;
2398 }
2399
2400 if (remote_protocol_packets[feature->packet].support
2401 == PACKET_SUPPORT_UNKNOWN)
2402 remote_protocol_packets[feature->packet].support = support;
2403 }
2404
2405 static void
2406 remote_packet_size (const struct protocol_feature *feature,
2407 enum packet_support support, const char *value)
2408 {
2409 struct remote_state *rs = get_remote_state ();
2410
2411 int packet_size;
2412 char *value_end;
2413
2414 if (support != PACKET_ENABLE)
2415 return;
2416
2417 if (value == NULL || *value == '\0')
2418 {
2419 warning (_("Remote target reported \"%s\" without a size."),
2420 feature->name);
2421 return;
2422 }
2423
2424 errno = 0;
2425 packet_size = strtol (value, &value_end, 16);
2426 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2427 {
2428 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2429 feature->name, value);
2430 return;
2431 }
2432
2433 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2434 {
2435 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2436 packet_size, MAX_REMOTE_PACKET_SIZE);
2437 packet_size = MAX_REMOTE_PACKET_SIZE;
2438 }
2439
2440 /* Record the new maximum packet size. */
2441 rs->explicit_packet_size = packet_size;
2442 }
2443
2444 static struct protocol_feature remote_protocol_features[] = {
2445 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2446 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2447 PACKET_qXfer_auxv },
2448 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2449 PACKET_qXfer_features },
2450 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2451 PACKET_qXfer_libraries },
2452 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2453 PACKET_qXfer_memory_map },
2454 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2455 PACKET_qXfer_spu_read },
2456 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2457 PACKET_qXfer_spu_write },
2458 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2459 PACKET_QPassSignals },
2460 };
2461
2462 static void
2463 remote_query_supported (void)
2464 {
2465 struct remote_state *rs = get_remote_state ();
2466 char *next;
2467 int i;
2468 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2469
2470 /* The packet support flags are handled differently for this packet
2471 than for most others. We treat an error, a disabled packet, and
2472 an empty response identically: any features which must be reported
2473 to be used will be automatically disabled. An empty buffer
2474 accomplishes this, since that is also the representation for a list
2475 containing no features. */
2476
2477 rs->buf[0] = 0;
2478 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2479 {
2480 putpkt ("qSupported");
2481 getpkt (&rs->buf, &rs->buf_size, 0);
2482
2483 /* If an error occured, warn, but do not return - just reset the
2484 buffer to empty and go on to disable features. */
2485 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2486 == PACKET_ERROR)
2487 {
2488 warning (_("Remote failure reply: %s"), rs->buf);
2489 rs->buf[0] = 0;
2490 }
2491 }
2492
2493 memset (seen, 0, sizeof (seen));
2494
2495 next = rs->buf;
2496 while (*next)
2497 {
2498 enum packet_support is_supported;
2499 char *p, *end, *name_end, *value;
2500
2501 /* First separate out this item from the rest of the packet. If
2502 there's another item after this, we overwrite the separator
2503 (terminated strings are much easier to work with). */
2504 p = next;
2505 end = strchr (p, ';');
2506 if (end == NULL)
2507 {
2508 end = p + strlen (p);
2509 next = end;
2510 }
2511 else
2512 {
2513 *end = '\0';
2514 next = end + 1;
2515
2516 if (end == p)
2517 {
2518 warning (_("empty item in \"qSupported\" response"));
2519 continue;
2520 }
2521 }
2522
2523 name_end = strchr (p, '=');
2524 if (name_end)
2525 {
2526 /* This is a name=value entry. */
2527 is_supported = PACKET_ENABLE;
2528 value = name_end + 1;
2529 *name_end = '\0';
2530 }
2531 else
2532 {
2533 value = NULL;
2534 switch (end[-1])
2535 {
2536 case '+':
2537 is_supported = PACKET_ENABLE;
2538 break;
2539
2540 case '-':
2541 is_supported = PACKET_DISABLE;
2542 break;
2543
2544 case '?':
2545 is_supported = PACKET_SUPPORT_UNKNOWN;
2546 break;
2547
2548 default:
2549 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2550 continue;
2551 }
2552 end[-1] = '\0';
2553 }
2554
2555 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2556 if (strcmp (remote_protocol_features[i].name, p) == 0)
2557 {
2558 const struct protocol_feature *feature;
2559
2560 seen[i] = 1;
2561 feature = &remote_protocol_features[i];
2562 feature->func (feature, is_supported, value);
2563 break;
2564 }
2565 }
2566
2567 /* If we increased the packet size, make sure to increase the global
2568 buffer size also. We delay this until after parsing the entire
2569 qSupported packet, because this is the same buffer we were
2570 parsing. */
2571 if (rs->buf_size < rs->explicit_packet_size)
2572 {
2573 rs->buf_size = rs->explicit_packet_size;
2574 rs->buf = xrealloc (rs->buf, rs->buf_size);
2575 }
2576
2577 /* Handle the defaults for unmentioned features. */
2578 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2579 if (!seen[i])
2580 {
2581 const struct protocol_feature *feature;
2582
2583 feature = &remote_protocol_features[i];
2584 feature->func (feature, feature->default_support, NULL);
2585 }
2586 }
2587
2588
2589 static void
2590 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2591 int extended_p, int async_p)
2592 {
2593 struct remote_state *rs = get_remote_state ();
2594 if (name == 0)
2595 error (_("To open a remote debug connection, you need to specify what\n"
2596 "serial device is attached to the remote system\n"
2597 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2598
2599 /* See FIXME above. */
2600 if (!async_p)
2601 wait_forever_enabled_p = 1;
2602
2603 /* If we're connected to a running target, target_preopen will kill it.
2604 But if we're connected to a target system with no running process,
2605 then we will still be connected when it returns. Ask this question
2606 first, before target_preopen has a chance to kill anything. */
2607 if (remote_desc != NULL && !target_has_execution)
2608 {
2609 if (!from_tty
2610 || query (_("Already connected to a remote target. Disconnect? ")))
2611 pop_target ();
2612 else
2613 error (_("Still connected."));
2614 }
2615
2616 target_preopen (from_tty);
2617
2618 unpush_target (target);
2619
2620 /* This time without a query. If we were connected to an
2621 extended-remote target and target_preopen killed the running
2622 process, we may still be connected. If we are starting "target
2623 remote" now, the extended-remote target will not have been
2624 removed by unpush_target. */
2625 if (remote_desc != NULL && !target_has_execution)
2626 pop_target ();
2627
2628 /* Make sure we send the passed signals list the next time we resume. */
2629 xfree (last_pass_packet);
2630 last_pass_packet = NULL;
2631
2632 remote_fileio_reset ();
2633 reopen_exec_file ();
2634 reread_symbols ();
2635
2636 remote_desc = remote_serial_open (name);
2637 if (!remote_desc)
2638 perror_with_name (name);
2639
2640 if (baud_rate != -1)
2641 {
2642 if (serial_setbaudrate (remote_desc, baud_rate))
2643 {
2644 /* The requested speed could not be set. Error out to
2645 top level after closing remote_desc. Take care to
2646 set remote_desc to NULL to avoid closing remote_desc
2647 more than once. */
2648 serial_close (remote_desc);
2649 remote_desc = NULL;
2650 perror_with_name (name);
2651 }
2652 }
2653
2654 serial_raw (remote_desc);
2655
2656 /* If there is something sitting in the buffer we might take it as a
2657 response to a command, which would be bad. */
2658 serial_flush_input (remote_desc);
2659
2660 if (from_tty)
2661 {
2662 puts_filtered ("Remote debugging using ");
2663 puts_filtered (name);
2664 puts_filtered ("\n");
2665 }
2666 push_target (target); /* Switch to using remote target now. */
2667
2668 /* Assume that the target is running, unless we learn otherwise. */
2669 target_mark_running (target);
2670
2671 /* Reset the target state; these things will be queried either by
2672 remote_query_supported or as they are needed. */
2673 init_all_packet_configs ();
2674 rs->explicit_packet_size = 0;
2675
2676 general_thread = -2;
2677 continue_thread = -2;
2678
2679 /* Probe for ability to use "ThreadInfo" query, as required. */
2680 use_threadinfo_query = 1;
2681 use_threadextra_query = 1;
2682
2683 /* The first packet we send to the target is the optional "supported
2684 packets" request. If the target can answer this, it will tell us
2685 which later probes to skip. */
2686 remote_query_supported ();
2687
2688 /* Next, if the target can specify a description, read it. We do
2689 this before anything involving memory or registers. */
2690 target_find_description ();
2691
2692 if (async_p)
2693 {
2694 /* With this target we start out by owning the terminal. */
2695 remote_async_terminal_ours_p = 1;
2696
2697 /* FIXME: cagney/1999-09-23: During the initial connection it is
2698 assumed that the target is already ready and able to respond to
2699 requests. Unfortunately remote_start_remote() eventually calls
2700 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2701 around this. Eventually a mechanism that allows
2702 wait_for_inferior() to expect/get timeouts will be
2703 implemented. */
2704 wait_forever_enabled_p = 0;
2705 }
2706
2707 /* First delete any symbols previously loaded from shared libraries. */
2708 no_shared_libraries (NULL, 0);
2709
2710 /* Start the remote connection. If error() or QUIT, discard this
2711 target (we'd otherwise be in an inconsistent state) and then
2712 propogate the error on up the exception chain. This ensures that
2713 the caller doesn't stumble along blindly assuming that the
2714 function succeeded. The CLI doesn't have this problem but other
2715 UI's, such as MI do.
2716
2717 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2718 this function should return an error indication letting the
2719 caller restore the previous state. Unfortunately the command
2720 ``target remote'' is directly wired to this function making that
2721 impossible. On a positive note, the CLI side of this problem has
2722 been fixed - the function set_cmd_context() makes it possible for
2723 all the ``target ....'' commands to share a common callback
2724 function. See cli-dump.c. */
2725 {
2726 struct gdb_exception ex;
2727 struct start_remote_args args;
2728
2729 args.from_tty = from_tty;
2730 args.target = target;
2731 args.extended_p = extended_p;
2732
2733 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2734 if (ex.reason < 0)
2735 {
2736 pop_target ();
2737 if (async_p)
2738 wait_forever_enabled_p = 1;
2739 throw_exception (ex);
2740 }
2741 }
2742
2743 if (async_p)
2744 wait_forever_enabled_p = 1;
2745
2746 if (extended_p)
2747 {
2748 /* Tell the remote that we are using the extended protocol. */
2749 putpkt ("!");
2750 getpkt (&rs->buf, &rs->buf_size, 0);
2751 }
2752
2753 /* If we connected to a live target, do some additional setup. */
2754 if (target_has_execution)
2755 {
2756 if (exec_bfd) /* No use without an exec file. */
2757 remote_check_symbols (symfile_objfile);
2758 }
2759 }
2760
2761 /* This takes a program previously attached to and detaches it. After
2762 this is done, GDB can be used to debug some other program. We
2763 better not have left any breakpoints in the target program or it'll
2764 die when it hits one. */
2765
2766 static void
2767 remote_detach_1 (char *args, int from_tty, int extended)
2768 {
2769 struct remote_state *rs = get_remote_state ();
2770
2771 if (args)
2772 error (_("Argument given to \"detach\" when remotely debugging."));
2773
2774 if (!target_has_execution)
2775 error (_("No process to detach from."));
2776
2777 /* Tell the remote target to detach. */
2778 strcpy (rs->buf, "D");
2779 putpkt (rs->buf);
2780 getpkt (&rs->buf, &rs->buf_size, 0);
2781
2782 if (rs->buf[0] == 'E')
2783 error (_("Can't detach process."));
2784
2785 /* Unregister the file descriptor from the event loop. */
2786 if (target_is_async_p ())
2787 serial_async (remote_desc, NULL, 0);
2788
2789 target_mourn_inferior ();
2790 if (from_tty)
2791 {
2792 if (extended)
2793 puts_filtered ("Detached from remote process.\n");
2794 else
2795 puts_filtered ("Ending remote debugging.\n");
2796 }
2797 }
2798
2799 static void
2800 remote_detach (char *args, int from_tty)
2801 {
2802 remote_detach_1 (args, from_tty, 0);
2803 }
2804
2805 static void
2806 extended_remote_detach (char *args, int from_tty)
2807 {
2808 remote_detach_1 (args, from_tty, 1);
2809 }
2810
2811 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2812
2813 static void
2814 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2815 {
2816 if (args)
2817 error (_("Argument given to \"disconnect\" when remotely debugging."));
2818
2819 /* Unregister the file descriptor from the event loop. */
2820 if (target_is_async_p ())
2821 serial_async (remote_desc, NULL, 0);
2822
2823 /* Make sure we unpush even the extended remote targets; mourn
2824 won't do it. So call remote_mourn_1 directly instead of
2825 target_mourn_inferior. */
2826 remote_mourn_1 (target);
2827
2828 if (from_tty)
2829 puts_filtered ("Ending remote debugging.\n");
2830 }
2831
2832 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2833 be chatty about it. */
2834
2835 static void
2836 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2837 {
2838 struct remote_state *rs = get_remote_state ();
2839 int pid;
2840 char *dummy;
2841
2842 if (!args)
2843 error_no_arg (_("process-id to attach"));
2844
2845 dummy = args;
2846 pid = strtol (args, &dummy, 0);
2847 /* Some targets don't set errno on errors, grrr! */
2848 if (pid == 0 && args == dummy)
2849 error (_("Illegal process-id: %s."), args);
2850
2851 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2852 error (_("This target does not support attaching to a process"));
2853
2854 sprintf (rs->buf, "vAttach;%x", pid);
2855 putpkt (rs->buf);
2856 getpkt (&rs->buf, &rs->buf_size, 0);
2857
2858 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2859 {
2860 if (from_tty)
2861 printf_unfiltered (_("Attached to %s\n"),
2862 target_pid_to_str (pid_to_ptid (pid)));
2863
2864 /* We have a wait response; reuse it. */
2865 rs->cached_wait_status = 1;
2866 }
2867 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2868 error (_("This target does not support attaching to a process"));
2869 else
2870 error (_("Attaching to %s failed"),
2871 target_pid_to_str (pid_to_ptid (pid)));
2872
2873 target_mark_running (target);
2874 inferior_ptid = pid_to_ptid (pid);
2875 attach_flag = 1;
2876 }
2877
2878 static void
2879 extended_remote_attach (char *args, int from_tty)
2880 {
2881 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2882 }
2883
2884 static void
2885 extended_async_remote_attach (char *args, int from_tty)
2886 {
2887 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2888 }
2889
2890 /* Convert hex digit A to a number. */
2891
2892 static int
2893 fromhex (int a)
2894 {
2895 if (a >= '0' && a <= '9')
2896 return a - '0';
2897 else if (a >= 'a' && a <= 'f')
2898 return a - 'a' + 10;
2899 else if (a >= 'A' && a <= 'F')
2900 return a - 'A' + 10;
2901 else
2902 error (_("Reply contains invalid hex digit %d"), a);
2903 }
2904
2905 static int
2906 hex2bin (const char *hex, gdb_byte *bin, int count)
2907 {
2908 int i;
2909
2910 for (i = 0; i < count; i++)
2911 {
2912 if (hex[0] == 0 || hex[1] == 0)
2913 {
2914 /* Hex string is short, or of uneven length.
2915 Return the count that has been converted so far. */
2916 return i;
2917 }
2918 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2919 hex += 2;
2920 }
2921 return i;
2922 }
2923
2924 /* Convert number NIB to a hex digit. */
2925
2926 static int
2927 tohex (int nib)
2928 {
2929 if (nib < 10)
2930 return '0' + nib;
2931 else
2932 return 'a' + nib - 10;
2933 }
2934
2935 static int
2936 bin2hex (const gdb_byte *bin, char *hex, int count)
2937 {
2938 int i;
2939 /* May use a length, or a nul-terminated string as input. */
2940 if (count == 0)
2941 count = strlen ((char *) bin);
2942
2943 for (i = 0; i < count; i++)
2944 {
2945 *hex++ = tohex ((*bin >> 4) & 0xf);
2946 *hex++ = tohex (*bin++ & 0xf);
2947 }
2948 *hex = 0;
2949 return i;
2950 }
2951 \f
2952 /* Check for the availability of vCont. This function should also check
2953 the response. */
2954
2955 static void
2956 remote_vcont_probe (struct remote_state *rs)
2957 {
2958 char *buf;
2959
2960 strcpy (rs->buf, "vCont?");
2961 putpkt (rs->buf);
2962 getpkt (&rs->buf, &rs->buf_size, 0);
2963 buf = rs->buf;
2964
2965 /* Make sure that the features we assume are supported. */
2966 if (strncmp (buf, "vCont", 5) == 0)
2967 {
2968 char *p = &buf[5];
2969 int support_s, support_S, support_c, support_C;
2970
2971 support_s = 0;
2972 support_S = 0;
2973 support_c = 0;
2974 support_C = 0;
2975 while (p && *p == ';')
2976 {
2977 p++;
2978 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2979 support_s = 1;
2980 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2981 support_S = 1;
2982 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2983 support_c = 1;
2984 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2985 support_C = 1;
2986
2987 p = strchr (p, ';');
2988 }
2989
2990 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2991 BUF will make packet_ok disable the packet. */
2992 if (!support_s || !support_S || !support_c || !support_C)
2993 buf[0] = 0;
2994 }
2995
2996 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2997 }
2998
2999 /* Resume the remote inferior by using a "vCont" packet. The thread
3000 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3001 resumed thread should be single-stepped and/or signalled. If PTID's
3002 PID is -1, then all threads are resumed; the thread to be stepped and/or
3003 signalled is given in the global INFERIOR_PTID. This function returns
3004 non-zero iff it resumes the inferior.
3005
3006 This function issues a strict subset of all possible vCont commands at the
3007 moment. */
3008
3009 static int
3010 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3011 {
3012 struct remote_state *rs = get_remote_state ();
3013 int pid = PIDGET (ptid);
3014 char *outbuf;
3015 struct cleanup *old_cleanup;
3016
3017 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3018 remote_vcont_probe (rs);
3019
3020 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3021 return 0;
3022
3023 /* If we could generate a wider range of packets, we'd have to worry
3024 about overflowing BUF. Should there be a generic
3025 "multi-part-packet" packet? */
3026
3027 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3028 {
3029 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3030 don't have any PID numbers the inferior will understand. Make sure
3031 to only send forms that do not specify a PID. */
3032 if (step && siggnal != TARGET_SIGNAL_0)
3033 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3034 else if (step)
3035 outbuf = xstrprintf ("vCont;s");
3036 else if (siggnal != TARGET_SIGNAL_0)
3037 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3038 else
3039 outbuf = xstrprintf ("vCont;c");
3040 }
3041 else if (pid == -1)
3042 {
3043 /* Resume all threads, with preference for INFERIOR_PTID. */
3044 if (step && siggnal != TARGET_SIGNAL_0)
3045 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3046 PIDGET (inferior_ptid));
3047 else if (step)
3048 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3049 else if (siggnal != TARGET_SIGNAL_0)
3050 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3051 PIDGET (inferior_ptid));
3052 else
3053 outbuf = xstrprintf ("vCont;c");
3054 }
3055 else
3056 {
3057 /* Scheduler locking; resume only PTID. */
3058 if (step && siggnal != TARGET_SIGNAL_0)
3059 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3060 else if (step)
3061 outbuf = xstrprintf ("vCont;s:%x", pid);
3062 else if (siggnal != TARGET_SIGNAL_0)
3063 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3064 else
3065 outbuf = xstrprintf ("vCont;c:%x", pid);
3066 }
3067
3068 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3069 old_cleanup = make_cleanup (xfree, outbuf);
3070
3071 putpkt (outbuf);
3072
3073 do_cleanups (old_cleanup);
3074
3075 return 1;
3076 }
3077
3078 /* Tell the remote machine to resume. */
3079
3080 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3081
3082 static int last_sent_step;
3083
3084 static void
3085 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3086 {
3087 struct remote_state *rs = get_remote_state ();
3088 char *buf;
3089 int pid = PIDGET (ptid);
3090
3091 last_sent_signal = siggnal;
3092 last_sent_step = step;
3093
3094 /* Update the inferior on signals to silently pass, if they've changed. */
3095 remote_pass_signals ();
3096
3097 /* The vCont packet doesn't need to specify threads via Hc. */
3098 if (remote_vcont_resume (ptid, step, siggnal))
3099 return;
3100
3101 /* All other supported resume packets do use Hc, so call set_thread. */
3102 if (pid == -1)
3103 set_thread (0, 0); /* Run any thread. */
3104 else
3105 set_thread (pid, 0); /* Run this thread. */
3106
3107 buf = rs->buf;
3108 if (siggnal != TARGET_SIGNAL_0)
3109 {
3110 buf[0] = step ? 'S' : 'C';
3111 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3112 buf[2] = tohex (((int) siggnal) & 0xf);
3113 buf[3] = '\0';
3114 }
3115 else
3116 strcpy (buf, step ? "s" : "c");
3117
3118 putpkt (buf);
3119 }
3120
3121 /* Same as remote_resume, but with async support. */
3122 static void
3123 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3124 {
3125 remote_resume (ptid, step, siggnal);
3126
3127 /* We are about to start executing the inferior, let's register it
3128 with the event loop. NOTE: this is the one place where all the
3129 execution commands end up. We could alternatively do this in each
3130 of the execution commands in infcmd.c. */
3131 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3132 into infcmd.c in order to allow inferior function calls to work
3133 NOT asynchronously. */
3134 if (target_can_async_p ())
3135 target_async (inferior_event_handler, 0);
3136 /* Tell the world that the target is now executing. */
3137 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3138 this? Instead, should the client of target just assume (for
3139 async targets) that the target is going to start executing? Is
3140 this information already found in the continuation block? */
3141 if (target_is_async_p ())
3142 target_executing = 1;
3143 }
3144 \f
3145
3146 /* Set up the signal handler for SIGINT, while the target is
3147 executing, ovewriting the 'regular' SIGINT signal handler. */
3148 static void
3149 initialize_sigint_signal_handler (void)
3150 {
3151 signal (SIGINT, handle_remote_sigint);
3152 }
3153
3154 /* Signal handler for SIGINT, while the target is executing. */
3155 static void
3156 handle_remote_sigint (int sig)
3157 {
3158 signal (sig, handle_remote_sigint_twice);
3159 mark_async_signal_handler_wrapper (sigint_remote_token);
3160 }
3161
3162 /* Signal handler for SIGINT, installed after SIGINT has already been
3163 sent once. It will take effect the second time that the user sends
3164 a ^C. */
3165 static void
3166 handle_remote_sigint_twice (int sig)
3167 {
3168 signal (sig, handle_remote_sigint);
3169 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3170 }
3171
3172 /* Perform the real interruption of the target execution, in response
3173 to a ^C. */
3174 static void
3175 async_remote_interrupt (gdb_client_data arg)
3176 {
3177 if (remote_debug)
3178 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3179
3180 target_stop ();
3181 }
3182
3183 /* Perform interrupt, if the first attempt did not succeed. Just give
3184 up on the target alltogether. */
3185 void
3186 async_remote_interrupt_twice (gdb_client_data arg)
3187 {
3188 if (remote_debug)
3189 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3190
3191 interrupt_query ();
3192 }
3193
3194 /* Reinstall the usual SIGINT handlers, after the target has
3195 stopped. */
3196 static void
3197 cleanup_sigint_signal_handler (void *dummy)
3198 {
3199 signal (SIGINT, handle_sigint);
3200 }
3201
3202 /* Send ^C to target to halt it. Target will respond, and send us a
3203 packet. */
3204 static void (*ofunc) (int);
3205
3206 /* The command line interface's stop routine. This function is installed
3207 as a signal handler for SIGINT. The first time a user requests a
3208 stop, we call remote_stop to send a break or ^C. If there is no
3209 response from the target (it didn't stop when the user requested it),
3210 we ask the user if he'd like to detach from the target. */
3211 static void
3212 remote_interrupt (int signo)
3213 {
3214 /* If this doesn't work, try more severe steps. */
3215 signal (signo, remote_interrupt_twice);
3216
3217 gdb_call_async_signal_handler (sigint_remote_token, 1);
3218 }
3219
3220 /* The user typed ^C twice. */
3221
3222 static void
3223 remote_interrupt_twice (int signo)
3224 {
3225 signal (signo, ofunc);
3226 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3227 signal (signo, remote_interrupt);
3228 }
3229
3230 /* This is the generic stop called via the target vector. When a target
3231 interrupt is requested, either by the command line or the GUI, we
3232 will eventually end up here. */
3233 static void
3234 remote_stop (void)
3235 {
3236 /* Send a break or a ^C, depending on user preference. */
3237 if (remote_debug)
3238 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3239
3240 if (remote_break)
3241 serial_send_break (remote_desc);
3242 else
3243 serial_write (remote_desc, "\003", 1);
3244 }
3245
3246 /* Ask the user what to do when an interrupt is received. */
3247
3248 static void
3249 interrupt_query (void)
3250 {
3251 target_terminal_ours ();
3252
3253 if (query ("Interrupted while waiting for the program.\n\
3254 Give up (and stop debugging it)? "))
3255 {
3256 target_mourn_inferior ();
3257 signal (SIGINT, handle_sigint);
3258 deprecated_throw_reason (RETURN_QUIT);
3259 }
3260
3261 target_terminal_inferior ();
3262 }
3263
3264 /* Enable/disable target terminal ownership. Most targets can use
3265 terminal groups to control terminal ownership. Remote targets are
3266 different in that explicit transfer of ownership to/from GDB/target
3267 is required. */
3268
3269 static void
3270 remote_async_terminal_inferior (void)
3271 {
3272 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3273 sync_execution here. This function should only be called when
3274 GDB is resuming the inferior in the forground. A background
3275 resume (``run&'') should leave GDB in control of the terminal and
3276 consequently should not call this code. */
3277 if (!sync_execution)
3278 return;
3279 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3280 calls target_terminal_*() idenpotent. The event-loop GDB talking
3281 to an asynchronous target with a synchronous command calls this
3282 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3283 stops trying to transfer the terminal to the target when it
3284 shouldn't this guard can go away. */
3285 if (!remote_async_terminal_ours_p)
3286 return;
3287 delete_file_handler (input_fd);
3288 remote_async_terminal_ours_p = 0;
3289 initialize_sigint_signal_handler ();
3290 /* NOTE: At this point we could also register our selves as the
3291 recipient of all input. Any characters typed could then be
3292 passed on down to the target. */
3293 }
3294
3295 static void
3296 remote_async_terminal_ours (void)
3297 {
3298 /* See FIXME in remote_async_terminal_inferior. */
3299 if (!sync_execution)
3300 return;
3301 /* See FIXME in remote_async_terminal_inferior. */
3302 if (remote_async_terminal_ours_p)
3303 return;
3304 cleanup_sigint_signal_handler (NULL);
3305 add_file_handler (input_fd, stdin_event_handler, 0);
3306 remote_async_terminal_ours_p = 1;
3307 }
3308
3309 /* If nonzero, ignore the next kill. */
3310
3311 int kill_kludge;
3312
3313 void
3314 remote_console_output (char *msg)
3315 {
3316 char *p;
3317
3318 for (p = msg; p[0] && p[1]; p += 2)
3319 {
3320 char tb[2];
3321 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3322 tb[0] = c;
3323 tb[1] = 0;
3324 fputs_unfiltered (tb, gdb_stdtarg);
3325 }
3326 gdb_flush (gdb_stdtarg);
3327 }
3328
3329 /* Wait until the remote machine stops, then return,
3330 storing status in STATUS just as `wait' would.
3331 Returns "pid", which in the case of a multi-threaded
3332 remote OS, is the thread-id. */
3333
3334 static ptid_t
3335 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3336 {
3337 struct remote_state *rs = get_remote_state ();
3338 struct remote_arch_state *rsa = get_remote_arch_state ();
3339 ULONGEST thread_num = -1;
3340 ULONGEST addr;
3341 int solibs_changed = 0;
3342
3343 status->kind = TARGET_WAITKIND_EXITED;
3344 status->value.integer = 0;
3345
3346 while (1)
3347 {
3348 char *buf, *p;
3349
3350 if (rs->cached_wait_status)
3351 /* Use the cached wait status, but only once. */
3352 rs->cached_wait_status = 0;
3353 else
3354 {
3355 ofunc = signal (SIGINT, remote_interrupt);
3356 /* If the user hit C-c before this packet, or between packets,
3357 pretend that it was hit right here. */
3358 if (quit_flag)
3359 {
3360 quit_flag = 0;
3361 remote_interrupt (SIGINT);
3362 }
3363 getpkt (&rs->buf, &rs->buf_size, 1);
3364 signal (SIGINT, ofunc);
3365 }
3366
3367 buf = rs->buf;
3368
3369 remote_stopped_by_watchpoint_p = 0;
3370
3371 switch (buf[0])
3372 {
3373 case 'E': /* Error of some sort. */
3374 /* We're out of sync with the target now. Did it continue or not?
3375 Not is more likely, so report a stop. */
3376 warning (_("Remote failure reply: %s"), buf);
3377 status->kind = TARGET_WAITKIND_STOPPED;
3378 status->value.sig = TARGET_SIGNAL_0;
3379 goto got_status;
3380 case 'F': /* File-I/O request. */
3381 remote_fileio_request (buf);
3382 continue;
3383 case 'T': /* Status with PC, SP, FP, ... */
3384 {
3385 gdb_byte regs[MAX_REGISTER_SIZE];
3386
3387 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3388 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3389 ss = signal number
3390 n... = register number
3391 r... = register contents
3392 */
3393 p = &buf[3]; /* after Txx */
3394
3395 while (*p)
3396 {
3397 char *p1;
3398 char *p_temp;
3399 int fieldsize;
3400 LONGEST pnum = 0;
3401
3402 /* If the packet contains a register number save it in
3403 pnum and set p1 to point to the character following
3404 it. Otherwise p1 points to p. */
3405
3406 /* If this packet is an awatch packet, don't parse the
3407 'a' as a register number. */
3408
3409 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3410 {
3411 /* Read the ``P'' register number. */
3412 pnum = strtol (p, &p_temp, 16);
3413 p1 = p_temp;
3414 }
3415 else
3416 p1 = p;
3417
3418 if (p1 == p) /* No register number present here. */
3419 {
3420 p1 = strchr (p, ':');
3421 if (p1 == NULL)
3422 error (_("Malformed packet(a) (missing colon): %s\n\
3423 Packet: '%s'\n"),
3424 p, buf);
3425 if (strncmp (p, "thread", p1 - p) == 0)
3426 {
3427 p_temp = unpack_varlen_hex (++p1, &thread_num);
3428 record_currthread (thread_num);
3429 p = p_temp;
3430 }
3431 else if ((strncmp (p, "watch", p1 - p) == 0)
3432 || (strncmp (p, "rwatch", p1 - p) == 0)
3433 || (strncmp (p, "awatch", p1 - p) == 0))
3434 {
3435 remote_stopped_by_watchpoint_p = 1;
3436 p = unpack_varlen_hex (++p1, &addr);
3437 remote_watch_data_address = (CORE_ADDR)addr;
3438 }
3439 else if (strncmp (p, "library", p1 - p) == 0)
3440 {
3441 p1++;
3442 p_temp = p1;
3443 while (*p_temp && *p_temp != ';')
3444 p_temp++;
3445
3446 solibs_changed = 1;
3447 p = p_temp;
3448 }
3449 else
3450 {
3451 /* Silently skip unknown optional info. */
3452 p_temp = strchr (p1 + 1, ';');
3453 if (p_temp)
3454 p = p_temp;
3455 }
3456 }
3457 else
3458 {
3459 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3460 p = p1;
3461
3462 if (*p++ != ':')
3463 error (_("Malformed packet(b) (missing colon): %s\n\
3464 Packet: '%s'\n"),
3465 p, buf);
3466
3467 if (reg == NULL)
3468 error (_("Remote sent bad register number %s: %s\n\
3469 Packet: '%s'\n"),
3470 phex_nz (pnum, 0), p, buf);
3471
3472 fieldsize = hex2bin (p, regs,
3473 register_size (current_gdbarch,
3474 reg->regnum));
3475 p += 2 * fieldsize;
3476 if (fieldsize < register_size (current_gdbarch,
3477 reg->regnum))
3478 warning (_("Remote reply is too short: %s"), buf);
3479 regcache_raw_supply (get_current_regcache (),
3480 reg->regnum, regs);
3481 }
3482
3483 if (*p++ != ';')
3484 error (_("Remote register badly formatted: %s\nhere: %s"),
3485 buf, p);
3486 }
3487 }
3488 /* fall through */
3489 case 'S': /* Old style status, just signal only. */
3490 if (solibs_changed)
3491 status->kind = TARGET_WAITKIND_LOADED;
3492 else
3493 {
3494 status->kind = TARGET_WAITKIND_STOPPED;
3495 status->value.sig = (enum target_signal)
3496 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3497 }
3498
3499 if (buf[3] == 'p')
3500 {
3501 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3502 record_currthread (thread_num);
3503 }
3504 goto got_status;
3505 case 'W': /* Target exited. */
3506 {
3507 /* The remote process exited. */
3508 status->kind = TARGET_WAITKIND_EXITED;
3509 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3510 goto got_status;
3511 }
3512 case 'X':
3513 status->kind = TARGET_WAITKIND_SIGNALLED;
3514 status->value.sig = (enum target_signal)
3515 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3516 kill_kludge = 1;
3517
3518 goto got_status;
3519 case 'O': /* Console output. */
3520 remote_console_output (buf + 1);
3521 continue;
3522 case '\0':
3523 if (last_sent_signal != TARGET_SIGNAL_0)
3524 {
3525 /* Zero length reply means that we tried 'S' or 'C' and
3526 the remote system doesn't support it. */
3527 target_terminal_ours_for_output ();
3528 printf_filtered
3529 ("Can't send signals to this remote system. %s not sent.\n",
3530 target_signal_to_name (last_sent_signal));
3531 last_sent_signal = TARGET_SIGNAL_0;
3532 target_terminal_inferior ();
3533
3534 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3535 putpkt ((char *) buf);
3536 continue;
3537 }
3538 /* else fallthrough */
3539 default:
3540 warning (_("Invalid remote reply: %s"), buf);
3541 continue;
3542 }
3543 }
3544 got_status:
3545 if (thread_num != -1)
3546 {
3547 return pid_to_ptid (thread_num);
3548 }
3549 return inferior_ptid;
3550 }
3551
3552 /* Async version of remote_wait. */
3553 static ptid_t
3554 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3555 {
3556 struct remote_state *rs = get_remote_state ();
3557 struct remote_arch_state *rsa = get_remote_arch_state ();
3558 ULONGEST thread_num = -1;
3559 ULONGEST addr;
3560 int solibs_changed = 0;
3561
3562 status->kind = TARGET_WAITKIND_EXITED;
3563 status->value.integer = 0;
3564
3565 remote_stopped_by_watchpoint_p = 0;
3566
3567 while (1)
3568 {
3569 char *buf, *p;
3570
3571 if (rs->cached_wait_status)
3572 /* Use the cached wait status, but only once. */
3573 rs->cached_wait_status = 0;
3574 else
3575 {
3576 if (!target_is_async_p ())
3577 {
3578 ofunc = signal (SIGINT, remote_interrupt);
3579 /* If the user hit C-c before this packet, or between packets,
3580 pretend that it was hit right here. */
3581 if (quit_flag)
3582 {
3583 quit_flag = 0;
3584 remote_interrupt (SIGINT);
3585 }
3586 }
3587 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3588 _never_ wait for ever -> test on target_is_async_p().
3589 However, before we do that we need to ensure that the caller
3590 knows how to take the target into/out of async mode. */
3591 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3592 if (!target_is_async_p ())
3593 signal (SIGINT, ofunc);
3594 }
3595
3596 buf = rs->buf;
3597
3598 switch (buf[0])
3599 {
3600 case 'E': /* Error of some sort. */
3601 /* We're out of sync with the target now. Did it continue or not?
3602 Not is more likely, so report a stop. */
3603 warning (_("Remote failure reply: %s"), buf);
3604 status->kind = TARGET_WAITKIND_STOPPED;
3605 status->value.sig = TARGET_SIGNAL_0;
3606 goto got_status;
3607 case 'F': /* File-I/O request. */
3608 remote_fileio_request (buf);
3609 continue;
3610 case 'T': /* Status with PC, SP, FP, ... */
3611 {
3612 gdb_byte regs[MAX_REGISTER_SIZE];
3613
3614 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3615 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3616 ss = signal number
3617 n... = register number
3618 r... = register contents
3619 */
3620 p = &buf[3]; /* after Txx */
3621
3622 while (*p)
3623 {
3624 char *p1;
3625 char *p_temp;
3626 int fieldsize;
3627 long pnum = 0;
3628
3629 /* If the packet contains a register number, save it
3630 in pnum and set p1 to point to the character
3631 following it. Otherwise p1 points to p. */
3632
3633 /* If this packet is an awatch packet, don't parse the 'a'
3634 as a register number. */
3635
3636 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3637 {
3638 /* Read the register number. */
3639 pnum = strtol (p, &p_temp, 16);
3640 p1 = p_temp;
3641 }
3642 else
3643 p1 = p;
3644
3645 if (p1 == p) /* No register number present here. */
3646 {
3647 p1 = strchr (p, ':');
3648 if (p1 == NULL)
3649 error (_("Malformed packet(a) (missing colon): %s\n\
3650 Packet: '%s'\n"),
3651 p, buf);
3652 if (strncmp (p, "thread", p1 - p) == 0)
3653 {
3654 p_temp = unpack_varlen_hex (++p1, &thread_num);
3655 record_currthread (thread_num);
3656 p = p_temp;
3657 }
3658 else if ((strncmp (p, "watch", p1 - p) == 0)
3659 || (strncmp (p, "rwatch", p1 - p) == 0)
3660 || (strncmp (p, "awatch", p1 - p) == 0))
3661 {
3662 remote_stopped_by_watchpoint_p = 1;
3663 p = unpack_varlen_hex (++p1, &addr);
3664 remote_watch_data_address = (CORE_ADDR)addr;
3665 }
3666 else if (strncmp (p, "library", p1 - p) == 0)
3667 {
3668 p1++;
3669 p_temp = p1;
3670 while (*p_temp && *p_temp != ';')
3671 p_temp++;
3672
3673 solibs_changed = 1;
3674 p = p_temp;
3675 }
3676 else
3677 {
3678 /* Silently skip unknown optional info. */
3679 p_temp = strchr (p1 + 1, ';');
3680 if (p_temp)
3681 p = p_temp;
3682 }
3683 }
3684
3685 else
3686 {
3687 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3688 p = p1;
3689 if (*p++ != ':')
3690 error (_("Malformed packet(b) (missing colon): %s\n\
3691 Packet: '%s'\n"),
3692 p, buf);
3693
3694 if (reg == NULL)
3695 error (_("Remote sent bad register number %ld: %s\n\
3696 Packet: '%s'\n"),
3697 pnum, p, buf);
3698
3699 fieldsize = hex2bin (p, regs,
3700 register_size (current_gdbarch,
3701 reg->regnum));
3702 p += 2 * fieldsize;
3703 if (fieldsize < register_size (current_gdbarch,
3704 reg->regnum))
3705 warning (_("Remote reply is too short: %s"), buf);
3706 regcache_raw_supply (get_current_regcache (),
3707 reg->regnum, regs);
3708 }
3709
3710 if (*p++ != ';')
3711 error (_("Remote register badly formatted: %s\nhere: %s"),
3712 buf, p);
3713 }
3714 }
3715 /* fall through */
3716 case 'S': /* Old style status, just signal only. */
3717 if (solibs_changed)
3718 status->kind = TARGET_WAITKIND_LOADED;
3719 else
3720 {
3721 status->kind = TARGET_WAITKIND_STOPPED;
3722 status->value.sig = (enum target_signal)
3723 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3724 }
3725
3726 if (buf[3] == 'p')
3727 {
3728 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3729 record_currthread (thread_num);
3730 }
3731 goto got_status;
3732 case 'W': /* Target exited. */
3733 {
3734 /* The remote process exited. */
3735 status->kind = TARGET_WAITKIND_EXITED;
3736 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3737 goto got_status;
3738 }
3739 case 'X':
3740 status->kind = TARGET_WAITKIND_SIGNALLED;
3741 status->value.sig = (enum target_signal)
3742 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3743 kill_kludge = 1;
3744
3745 goto got_status;
3746 case 'O': /* Console output. */
3747 remote_console_output (buf + 1);
3748 /* Return immediately to the event loop. The event loop will
3749 still be waiting on the inferior afterwards. */
3750 status->kind = TARGET_WAITKIND_IGNORE;
3751 goto got_status;
3752 case '\0':
3753 if (last_sent_signal != TARGET_SIGNAL_0)
3754 {
3755 /* Zero length reply means that we tried 'S' or 'C' and
3756 the remote system doesn't support it. */
3757 target_terminal_ours_for_output ();
3758 printf_filtered
3759 ("Can't send signals to this remote system. %s not sent.\n",
3760 target_signal_to_name (last_sent_signal));
3761 last_sent_signal = TARGET_SIGNAL_0;
3762 target_terminal_inferior ();
3763
3764 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3765 putpkt ((char *) buf);
3766 continue;
3767 }
3768 /* else fallthrough */
3769 default:
3770 warning (_("Invalid remote reply: %s"), buf);
3771 continue;
3772 }
3773 }
3774 got_status:
3775 if (thread_num != -1)
3776 {
3777 return pid_to_ptid (thread_num);
3778 }
3779 return inferior_ptid;
3780 }
3781
3782 /* Fetch a single register using a 'p' packet. */
3783
3784 static int
3785 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3786 {
3787 struct remote_state *rs = get_remote_state ();
3788 char *buf, *p;
3789 char regp[MAX_REGISTER_SIZE];
3790 int i;
3791
3792 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3793 return 0;
3794
3795 if (reg->pnum == -1)
3796 return 0;
3797
3798 p = rs->buf;
3799 *p++ = 'p';
3800 p += hexnumstr (p, reg->pnum);
3801 *p++ = '\0';
3802 remote_send (&rs->buf, &rs->buf_size);
3803
3804 buf = rs->buf;
3805
3806 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3807 {
3808 case PACKET_OK:
3809 break;
3810 case PACKET_UNKNOWN:
3811 return 0;
3812 case PACKET_ERROR:
3813 error (_("Could not fetch register \"%s\""),
3814 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3815 }
3816
3817 /* If this register is unfetchable, tell the regcache. */
3818 if (buf[0] == 'x')
3819 {
3820 regcache_raw_supply (regcache, reg->regnum, NULL);
3821 return 1;
3822 }
3823
3824 /* Otherwise, parse and supply the value. */
3825 p = buf;
3826 i = 0;
3827 while (p[0] != 0)
3828 {
3829 if (p[1] == 0)
3830 error (_("fetch_register_using_p: early buf termination"));
3831
3832 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3833 p += 2;
3834 }
3835 regcache_raw_supply (regcache, reg->regnum, regp);
3836 return 1;
3837 }
3838
3839 /* Fetch the registers included in the target's 'g' packet. */
3840
3841 static int
3842 send_g_packet (void)
3843 {
3844 struct remote_state *rs = get_remote_state ();
3845 int i, buf_len;
3846 char *p;
3847 char *regs;
3848
3849 sprintf (rs->buf, "g");
3850 remote_send (&rs->buf, &rs->buf_size);
3851
3852 /* We can get out of synch in various cases. If the first character
3853 in the buffer is not a hex character, assume that has happened
3854 and try to fetch another packet to read. */
3855 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3856 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3857 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3858 && rs->buf[0] != 'x') /* New: unavailable register value. */
3859 {
3860 if (remote_debug)
3861 fprintf_unfiltered (gdb_stdlog,
3862 "Bad register packet; fetching a new packet\n");
3863 getpkt (&rs->buf, &rs->buf_size, 0);
3864 }
3865
3866 buf_len = strlen (rs->buf);
3867
3868 /* Sanity check the received packet. */
3869 if (buf_len % 2 != 0)
3870 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3871
3872 return buf_len / 2;
3873 }
3874
3875 static void
3876 process_g_packet (struct regcache *regcache)
3877 {
3878 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3879 struct remote_state *rs = get_remote_state ();
3880 struct remote_arch_state *rsa = get_remote_arch_state ();
3881 int i, buf_len;
3882 char *p;
3883 char *regs;
3884
3885 buf_len = strlen (rs->buf);
3886
3887 /* Further sanity checks, with knowledge of the architecture. */
3888 if (buf_len > 2 * rsa->sizeof_g_packet)
3889 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3890
3891 /* Save the size of the packet sent to us by the target. It is used
3892 as a heuristic when determining the max size of packets that the
3893 target can safely receive. */
3894 if (rsa->actual_register_packet_size == 0)
3895 rsa->actual_register_packet_size = buf_len;
3896
3897 /* If this is smaller than we guessed the 'g' packet would be,
3898 update our records. A 'g' reply that doesn't include a register's
3899 value implies either that the register is not available, or that
3900 the 'p' packet must be used. */
3901 if (buf_len < 2 * rsa->sizeof_g_packet)
3902 {
3903 rsa->sizeof_g_packet = buf_len / 2;
3904
3905 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3906 {
3907 if (rsa->regs[i].pnum == -1)
3908 continue;
3909
3910 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3911 rsa->regs[i].in_g_packet = 0;
3912 else
3913 rsa->regs[i].in_g_packet = 1;
3914 }
3915 }
3916
3917 regs = alloca (rsa->sizeof_g_packet);
3918
3919 /* Unimplemented registers read as all bits zero. */
3920 memset (regs, 0, rsa->sizeof_g_packet);
3921
3922 /* Reply describes registers byte by byte, each byte encoded as two
3923 hex characters. Suck them all up, then supply them to the
3924 register cacheing/storage mechanism. */
3925
3926 p = rs->buf;
3927 for (i = 0; i < rsa->sizeof_g_packet; i++)
3928 {
3929 if (p[0] == 0 || p[1] == 0)
3930 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3931 internal_error (__FILE__, __LINE__,
3932 "unexpected end of 'g' packet reply");
3933
3934 if (p[0] == 'x' && p[1] == 'x')
3935 regs[i] = 0; /* 'x' */
3936 else
3937 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3938 p += 2;
3939 }
3940
3941 {
3942 int i;
3943 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3944 {
3945 struct packet_reg *r = &rsa->regs[i];
3946 if (r->in_g_packet)
3947 {
3948 if (r->offset * 2 >= strlen (rs->buf))
3949 /* This shouldn't happen - we adjusted in_g_packet above. */
3950 internal_error (__FILE__, __LINE__,
3951 "unexpected end of 'g' packet reply");
3952 else if (rs->buf[r->offset * 2] == 'x')
3953 {
3954 gdb_assert (r->offset * 2 < strlen (rs->buf));
3955 /* The register isn't available, mark it as such (at
3956 the same time setting the value to zero). */
3957 regcache_raw_supply (regcache, r->regnum, NULL);
3958 }
3959 else
3960 regcache_raw_supply (regcache, r->regnum,
3961 regs + r->offset);
3962 }
3963 }
3964 }
3965 }
3966
3967 static void
3968 fetch_registers_using_g (struct regcache *regcache)
3969 {
3970 send_g_packet ();
3971 process_g_packet (regcache);
3972 }
3973
3974 static void
3975 remote_fetch_registers (struct regcache *regcache, int regnum)
3976 {
3977 struct remote_state *rs = get_remote_state ();
3978 struct remote_arch_state *rsa = get_remote_arch_state ();
3979 int i;
3980
3981 set_thread (PIDGET (inferior_ptid), 1);
3982
3983 if (regnum >= 0)
3984 {
3985 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3986 gdb_assert (reg != NULL);
3987
3988 /* If this register might be in the 'g' packet, try that first -
3989 we are likely to read more than one register. If this is the
3990 first 'g' packet, we might be overly optimistic about its
3991 contents, so fall back to 'p'. */
3992 if (reg->in_g_packet)
3993 {
3994 fetch_registers_using_g (regcache);
3995 if (reg->in_g_packet)
3996 return;
3997 }
3998
3999 if (fetch_register_using_p (regcache, reg))
4000 return;
4001
4002 /* This register is not available. */
4003 regcache_raw_supply (regcache, reg->regnum, NULL);
4004
4005 return;
4006 }
4007
4008 fetch_registers_using_g (regcache);
4009
4010 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4011 if (!rsa->regs[i].in_g_packet)
4012 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4013 {
4014 /* This register is not available. */
4015 regcache_raw_supply (regcache, i, NULL);
4016 }
4017 }
4018
4019 /* Prepare to store registers. Since we may send them all (using a
4020 'G' request), we have to read out the ones we don't want to change
4021 first. */
4022
4023 static void
4024 remote_prepare_to_store (struct regcache *regcache)
4025 {
4026 struct remote_arch_state *rsa = get_remote_arch_state ();
4027 int i;
4028 gdb_byte buf[MAX_REGISTER_SIZE];
4029
4030 /* Make sure the entire registers array is valid. */
4031 switch (remote_protocol_packets[PACKET_P].support)
4032 {
4033 case PACKET_DISABLE:
4034 case PACKET_SUPPORT_UNKNOWN:
4035 /* Make sure all the necessary registers are cached. */
4036 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4037 if (rsa->regs[i].in_g_packet)
4038 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4039 break;
4040 case PACKET_ENABLE:
4041 break;
4042 }
4043 }
4044
4045 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4046 packet was not recognized. */
4047
4048 static int
4049 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4050 {
4051 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4052 struct remote_state *rs = get_remote_state ();
4053 struct remote_arch_state *rsa = get_remote_arch_state ();
4054 /* Try storing a single register. */
4055 char *buf = rs->buf;
4056 gdb_byte regp[MAX_REGISTER_SIZE];
4057 char *p;
4058
4059 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4060 return 0;
4061
4062 if (reg->pnum == -1)
4063 return 0;
4064
4065 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4066 p = buf + strlen (buf);
4067 regcache_raw_collect (regcache, reg->regnum, regp);
4068 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4069 remote_send (&rs->buf, &rs->buf_size);
4070
4071 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4072 {
4073 case PACKET_OK:
4074 return 1;
4075 case PACKET_ERROR:
4076 error (_("Could not write register \"%s\""),
4077 gdbarch_register_name (gdbarch, reg->regnum));
4078 case PACKET_UNKNOWN:
4079 return 0;
4080 default:
4081 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4082 }
4083 }
4084
4085 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4086 contents of the register cache buffer. FIXME: ignores errors. */
4087
4088 static void
4089 store_registers_using_G (const struct regcache *regcache)
4090 {
4091 struct remote_state *rs = get_remote_state ();
4092 struct remote_arch_state *rsa = get_remote_arch_state ();
4093 gdb_byte *regs;
4094 char *p;
4095
4096 /* Extract all the registers in the regcache copying them into a
4097 local buffer. */
4098 {
4099 int i;
4100 regs = alloca (rsa->sizeof_g_packet);
4101 memset (regs, 0, rsa->sizeof_g_packet);
4102 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4103 {
4104 struct packet_reg *r = &rsa->regs[i];
4105 if (r->in_g_packet)
4106 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4107 }
4108 }
4109
4110 /* Command describes registers byte by byte,
4111 each byte encoded as two hex characters. */
4112 p = rs->buf;
4113 *p++ = 'G';
4114 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4115 updated. */
4116 bin2hex (regs, p, rsa->sizeof_g_packet);
4117 remote_send (&rs->buf, &rs->buf_size);
4118 }
4119
4120 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4121 of the register cache buffer. FIXME: ignores errors. */
4122
4123 static void
4124 remote_store_registers (struct regcache *regcache, int regnum)
4125 {
4126 struct remote_state *rs = get_remote_state ();
4127 struct remote_arch_state *rsa = get_remote_arch_state ();
4128 int i;
4129
4130 set_thread (PIDGET (inferior_ptid), 1);
4131
4132 if (regnum >= 0)
4133 {
4134 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4135 gdb_assert (reg != NULL);
4136
4137 /* Always prefer to store registers using the 'P' packet if
4138 possible; we often change only a small number of registers.
4139 Sometimes we change a larger number; we'd need help from a
4140 higher layer to know to use 'G'. */
4141 if (store_register_using_P (regcache, reg))
4142 return;
4143
4144 /* For now, don't complain if we have no way to write the
4145 register. GDB loses track of unavailable registers too
4146 easily. Some day, this may be an error. We don't have
4147 any way to read the register, either... */
4148 if (!reg->in_g_packet)
4149 return;
4150
4151 store_registers_using_G (regcache);
4152 return;
4153 }
4154
4155 store_registers_using_G (regcache);
4156
4157 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4158 if (!rsa->regs[i].in_g_packet)
4159 if (!store_register_using_P (regcache, &rsa->regs[i]))
4160 /* See above for why we do not issue an error here. */
4161 continue;
4162 }
4163 \f
4164
4165 /* Return the number of hex digits in num. */
4166
4167 static int
4168 hexnumlen (ULONGEST num)
4169 {
4170 int i;
4171
4172 for (i = 0; num != 0; i++)
4173 num >>= 4;
4174
4175 return max (i, 1);
4176 }
4177
4178 /* Set BUF to the minimum number of hex digits representing NUM. */
4179
4180 static int
4181 hexnumstr (char *buf, ULONGEST num)
4182 {
4183 int len = hexnumlen (num);
4184 return hexnumnstr (buf, num, len);
4185 }
4186
4187
4188 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4189
4190 static int
4191 hexnumnstr (char *buf, ULONGEST num, int width)
4192 {
4193 int i;
4194
4195 buf[width] = '\0';
4196
4197 for (i = width - 1; i >= 0; i--)
4198 {
4199 buf[i] = "0123456789abcdef"[(num & 0xf)];
4200 num >>= 4;
4201 }
4202
4203 return width;
4204 }
4205
4206 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4207
4208 static CORE_ADDR
4209 remote_address_masked (CORE_ADDR addr)
4210 {
4211 int address_size = remote_address_size;
4212 /* If "remoteaddresssize" was not set, default to target address size. */
4213 if (!address_size)
4214 address_size = gdbarch_addr_bit (current_gdbarch);
4215
4216 if (address_size > 0
4217 && address_size < (sizeof (ULONGEST) * 8))
4218 {
4219 /* Only create a mask when that mask can safely be constructed
4220 in a ULONGEST variable. */
4221 ULONGEST mask = 1;
4222 mask = (mask << address_size) - 1;
4223 addr &= mask;
4224 }
4225 return addr;
4226 }
4227
4228 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4229 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4230 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4231 (which may be more than *OUT_LEN due to escape characters). The
4232 total number of bytes in the output buffer will be at most
4233 OUT_MAXLEN. */
4234
4235 static int
4236 remote_escape_output (const gdb_byte *buffer, int len,
4237 gdb_byte *out_buf, int *out_len,
4238 int out_maxlen)
4239 {
4240 int input_index, output_index;
4241
4242 output_index = 0;
4243 for (input_index = 0; input_index < len; input_index++)
4244 {
4245 gdb_byte b = buffer[input_index];
4246
4247 if (b == '$' || b == '#' || b == '}')
4248 {
4249 /* These must be escaped. */
4250 if (output_index + 2 > out_maxlen)
4251 break;
4252 out_buf[output_index++] = '}';
4253 out_buf[output_index++] = b ^ 0x20;
4254 }
4255 else
4256 {
4257 if (output_index + 1 > out_maxlen)
4258 break;
4259 out_buf[output_index++] = b;
4260 }
4261 }
4262
4263 *out_len = input_index;
4264 return output_index;
4265 }
4266
4267 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4268 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4269 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4270
4271 This function reverses remote_escape_output. It allows more
4272 escaped characters than that function does, in particular because
4273 '*' must be escaped to avoid the run-length encoding processing
4274 in reading packets. */
4275
4276 static int
4277 remote_unescape_input (const gdb_byte *buffer, int len,
4278 gdb_byte *out_buf, int out_maxlen)
4279 {
4280 int input_index, output_index;
4281 int escaped;
4282
4283 output_index = 0;
4284 escaped = 0;
4285 for (input_index = 0; input_index < len; input_index++)
4286 {
4287 gdb_byte b = buffer[input_index];
4288
4289 if (output_index + 1 > out_maxlen)
4290 {
4291 warning (_("Received too much data from remote target;"
4292 " ignoring overflow."));
4293 return output_index;
4294 }
4295
4296 if (escaped)
4297 {
4298 out_buf[output_index++] = b ^ 0x20;
4299 escaped = 0;
4300 }
4301 else if (b == '}')
4302 escaped = 1;
4303 else
4304 out_buf[output_index++] = b;
4305 }
4306
4307 if (escaped)
4308 error (_("Unmatched escape character in target response."));
4309
4310 return output_index;
4311 }
4312
4313 /* Determine whether the remote target supports binary downloading.
4314 This is accomplished by sending a no-op memory write of zero length
4315 to the target at the specified address. It does not suffice to send
4316 the whole packet, since many stubs strip the eighth bit and
4317 subsequently compute a wrong checksum, which causes real havoc with
4318 remote_write_bytes.
4319
4320 NOTE: This can still lose if the serial line is not eight-bit
4321 clean. In cases like this, the user should clear "remote
4322 X-packet". */
4323
4324 static void
4325 check_binary_download (CORE_ADDR addr)
4326 {
4327 struct remote_state *rs = get_remote_state ();
4328
4329 switch (remote_protocol_packets[PACKET_X].support)
4330 {
4331 case PACKET_DISABLE:
4332 break;
4333 case PACKET_ENABLE:
4334 break;
4335 case PACKET_SUPPORT_UNKNOWN:
4336 {
4337 char *p;
4338
4339 p = rs->buf;
4340 *p++ = 'X';
4341 p += hexnumstr (p, (ULONGEST) addr);
4342 *p++ = ',';
4343 p += hexnumstr (p, (ULONGEST) 0);
4344 *p++ = ':';
4345 *p = '\0';
4346
4347 putpkt_binary (rs->buf, (int) (p - rs->buf));
4348 getpkt (&rs->buf, &rs->buf_size, 0);
4349
4350 if (rs->buf[0] == '\0')
4351 {
4352 if (remote_debug)
4353 fprintf_unfiltered (gdb_stdlog,
4354 "binary downloading NOT suppported by target\n");
4355 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4356 }
4357 else
4358 {
4359 if (remote_debug)
4360 fprintf_unfiltered (gdb_stdlog,
4361 "binary downloading suppported by target\n");
4362 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4363 }
4364 break;
4365 }
4366 }
4367 }
4368
4369 /* Write memory data directly to the remote machine.
4370 This does not inform the data cache; the data cache uses this.
4371 HEADER is the starting part of the packet.
4372 MEMADDR is the address in the remote memory space.
4373 MYADDR is the address of the buffer in our space.
4374 LEN is the number of bytes.
4375 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4376 should send data as binary ('X'), or hex-encoded ('M').
4377
4378 The function creates packet of the form
4379 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4380
4381 where encoding of <DATA> is termined by PACKET_FORMAT.
4382
4383 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4384 are omitted.
4385
4386 Returns the number of bytes transferred, or 0 (setting errno) for
4387 error. Only transfer a single packet. */
4388
4389 static int
4390 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4391 const gdb_byte *myaddr, int len,
4392 char packet_format, int use_length)
4393 {
4394 struct remote_state *rs = get_remote_state ();
4395 char *p;
4396 char *plen = NULL;
4397 int plenlen = 0;
4398 int todo;
4399 int nr_bytes;
4400 int payload_size;
4401 int payload_length;
4402 int header_length;
4403
4404 if (packet_format != 'X' && packet_format != 'M')
4405 internal_error (__FILE__, __LINE__,
4406 "remote_write_bytes_aux: bad packet format");
4407
4408 if (len <= 0)
4409 return 0;
4410
4411 payload_size = get_memory_write_packet_size ();
4412
4413 /* The packet buffer will be large enough for the payload;
4414 get_memory_packet_size ensures this. */
4415 rs->buf[0] = '\0';
4416
4417 /* Compute the size of the actual payload by subtracting out the
4418 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4419 */
4420 payload_size -= strlen ("$,:#NN");
4421 if (!use_length)
4422 /* The comma won't be used. */
4423 payload_size += 1;
4424 header_length = strlen (header);
4425 payload_size -= header_length;
4426 payload_size -= hexnumlen (memaddr);
4427
4428 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4429
4430 strcat (rs->buf, header);
4431 p = rs->buf + strlen (header);
4432
4433 /* Compute a best guess of the number of bytes actually transfered. */
4434 if (packet_format == 'X')
4435 {
4436 /* Best guess at number of bytes that will fit. */
4437 todo = min (len, payload_size);
4438 if (use_length)
4439 payload_size -= hexnumlen (todo);
4440 todo = min (todo, payload_size);
4441 }
4442 else
4443 {
4444 /* Num bytes that will fit. */
4445 todo = min (len, payload_size / 2);
4446 if (use_length)
4447 payload_size -= hexnumlen (todo);
4448 todo = min (todo, payload_size / 2);
4449 }
4450
4451 if (todo <= 0)
4452 internal_error (__FILE__, __LINE__,
4453 _("minumum packet size too small to write data"));
4454
4455 /* If we already need another packet, then try to align the end
4456 of this packet to a useful boundary. */
4457 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4458 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4459
4460 /* Append "<memaddr>". */
4461 memaddr = remote_address_masked (memaddr);
4462 p += hexnumstr (p, (ULONGEST) memaddr);
4463
4464 if (use_length)
4465 {
4466 /* Append ",". */
4467 *p++ = ',';
4468
4469 /* Append <len>. Retain the location/size of <len>. It may need to
4470 be adjusted once the packet body has been created. */
4471 plen = p;
4472 plenlen = hexnumstr (p, (ULONGEST) todo);
4473 p += plenlen;
4474 }
4475
4476 /* Append ":". */
4477 *p++ = ':';
4478 *p = '\0';
4479
4480 /* Append the packet body. */
4481 if (packet_format == 'X')
4482 {
4483 /* Binary mode. Send target system values byte by byte, in
4484 increasing byte addresses. Only escape certain critical
4485 characters. */
4486 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4487 payload_size);
4488
4489 /* If not all TODO bytes fit, then we'll need another packet. Make
4490 a second try to keep the end of the packet aligned. Don't do
4491 this if the packet is tiny. */
4492 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4493 {
4494 int new_nr_bytes;
4495
4496 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4497 - memaddr);
4498 if (new_nr_bytes != nr_bytes)
4499 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4500 p, &nr_bytes,
4501 payload_size);
4502 }
4503
4504 p += payload_length;
4505 if (use_length && nr_bytes < todo)
4506 {
4507 /* Escape chars have filled up the buffer prematurely,
4508 and we have actually sent fewer bytes than planned.
4509 Fix-up the length field of the packet. Use the same
4510 number of characters as before. */
4511 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4512 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4513 }
4514 }
4515 else
4516 {
4517 /* Normal mode: Send target system values byte by byte, in
4518 increasing byte addresses. Each byte is encoded as a two hex
4519 value. */
4520 nr_bytes = bin2hex (myaddr, p, todo);
4521 p += 2 * nr_bytes;
4522 }
4523
4524 putpkt_binary (rs->buf, (int) (p - rs->buf));
4525 getpkt (&rs->buf, &rs->buf_size, 0);
4526
4527 if (rs->buf[0] == 'E')
4528 {
4529 /* There is no correspondance between what the remote protocol
4530 uses for errors and errno codes. We would like a cleaner way
4531 of representing errors (big enough to include errno codes,
4532 bfd_error codes, and others). But for now just return EIO. */
4533 errno = EIO;
4534 return 0;
4535 }
4536
4537 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4538 fewer bytes than we'd planned. */
4539 return nr_bytes;
4540 }
4541
4542 /* Write memory data directly to the remote machine.
4543 This does not inform the data cache; the data cache uses this.
4544 MEMADDR is the address in the remote memory space.
4545 MYADDR is the address of the buffer in our space.
4546 LEN is the number of bytes.
4547
4548 Returns number of bytes transferred, or 0 (setting errno) for
4549 error. Only transfer a single packet. */
4550
4551 int
4552 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4553 {
4554 char *packet_format = 0;
4555
4556 /* Check whether the target supports binary download. */
4557 check_binary_download (memaddr);
4558
4559 switch (remote_protocol_packets[PACKET_X].support)
4560 {
4561 case PACKET_ENABLE:
4562 packet_format = "X";
4563 break;
4564 case PACKET_DISABLE:
4565 packet_format = "M";
4566 break;
4567 case PACKET_SUPPORT_UNKNOWN:
4568 internal_error (__FILE__, __LINE__,
4569 _("remote_write_bytes: bad internal state"));
4570 default:
4571 internal_error (__FILE__, __LINE__, _("bad switch"));
4572 }
4573
4574 return remote_write_bytes_aux (packet_format,
4575 memaddr, myaddr, len, packet_format[0], 1);
4576 }
4577
4578 /* Read memory data directly from the remote machine.
4579 This does not use the data cache; the data cache uses this.
4580 MEMADDR is the address in the remote memory space.
4581 MYADDR is the address of the buffer in our space.
4582 LEN is the number of bytes.
4583
4584 Returns number of bytes transferred, or 0 for error. */
4585
4586 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4587 remote targets) shouldn't attempt to read the entire buffer.
4588 Instead it should read a single packet worth of data and then
4589 return the byte size of that packet to the caller. The caller (its
4590 caller and its callers caller ;-) already contains code for
4591 handling partial reads. */
4592
4593 int
4594 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4595 {
4596 struct remote_state *rs = get_remote_state ();
4597 int max_buf_size; /* Max size of packet output buffer. */
4598 int origlen;
4599
4600 if (len <= 0)
4601 return 0;
4602
4603 max_buf_size = get_memory_read_packet_size ();
4604 /* The packet buffer will be large enough for the payload;
4605 get_memory_packet_size ensures this. */
4606
4607 origlen = len;
4608 while (len > 0)
4609 {
4610 char *p;
4611 int todo;
4612 int i;
4613
4614 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4615
4616 /* construct "m"<memaddr>","<len>" */
4617 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4618 memaddr = remote_address_masked (memaddr);
4619 p = rs->buf;
4620 *p++ = 'm';
4621 p += hexnumstr (p, (ULONGEST) memaddr);
4622 *p++ = ',';
4623 p += hexnumstr (p, (ULONGEST) todo);
4624 *p = '\0';
4625
4626 putpkt (rs->buf);
4627 getpkt (&rs->buf, &rs->buf_size, 0);
4628
4629 if (rs->buf[0] == 'E'
4630 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4631 && rs->buf[3] == '\0')
4632 {
4633 /* There is no correspondance between what the remote
4634 protocol uses for errors and errno codes. We would like
4635 a cleaner way of representing errors (big enough to
4636 include errno codes, bfd_error codes, and others). But
4637 for now just return EIO. */
4638 errno = EIO;
4639 return 0;
4640 }
4641
4642 /* Reply describes memory byte by byte,
4643 each byte encoded as two hex characters. */
4644
4645 p = rs->buf;
4646 if ((i = hex2bin (p, myaddr, todo)) < todo)
4647 {
4648 /* Reply is short. This means that we were able to read
4649 only part of what we wanted to. */
4650 return i + (origlen - len);
4651 }
4652 myaddr += todo;
4653 memaddr += todo;
4654 len -= todo;
4655 }
4656 return origlen;
4657 }
4658 \f
4659 /* Read or write LEN bytes from inferior memory at MEMADDR,
4660 transferring to or from debugger address BUFFER. Write to inferior
4661 if SHOULD_WRITE is nonzero. Returns length of data written or
4662 read; 0 for error. TARGET is unused. */
4663
4664 static int
4665 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4666 int should_write, struct mem_attrib *attrib,
4667 struct target_ops *target)
4668 {
4669 int res;
4670
4671 if (should_write)
4672 res = remote_write_bytes (mem_addr, buffer, mem_len);
4673 else
4674 res = remote_read_bytes (mem_addr, buffer, mem_len);
4675
4676 return res;
4677 }
4678
4679 /* Sends a packet with content determined by the printf format string
4680 FORMAT and the remaining arguments, then gets the reply. Returns
4681 whether the packet was a success, a failure, or unknown. */
4682
4683 enum packet_result
4684 remote_send_printf (const char *format, ...)
4685 {
4686 struct remote_state *rs = get_remote_state ();
4687 int max_size = get_remote_packet_size ();
4688
4689 va_list ap;
4690 va_start (ap, format);
4691
4692 rs->buf[0] = '\0';
4693 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4694 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4695
4696 if (putpkt (rs->buf) < 0)
4697 error (_("Communication problem with target."));
4698
4699 rs->buf[0] = '\0';
4700 getpkt (&rs->buf, &rs->buf_size, 0);
4701
4702 return packet_check_result (rs->buf);
4703 }
4704
4705 static void
4706 restore_remote_timeout (void *p)
4707 {
4708 int value = *(int *)p;
4709 remote_timeout = value;
4710 }
4711
4712 /* Flash writing can take quite some time. We'll set
4713 effectively infinite timeout for flash operations.
4714 In future, we'll need to decide on a better approach. */
4715 static const int remote_flash_timeout = 1000;
4716
4717 static void
4718 remote_flash_erase (struct target_ops *ops,
4719 ULONGEST address, LONGEST length)
4720 {
4721 int saved_remote_timeout = remote_timeout;
4722 enum packet_result ret;
4723
4724 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4725 &saved_remote_timeout);
4726 remote_timeout = remote_flash_timeout;
4727
4728 ret = remote_send_printf ("vFlashErase:%s,%s",
4729 paddr (address),
4730 phex (length, 4));
4731 switch (ret)
4732 {
4733 case PACKET_UNKNOWN:
4734 error (_("Remote target does not support flash erase"));
4735 case PACKET_ERROR:
4736 error (_("Error erasing flash with vFlashErase packet"));
4737 default:
4738 break;
4739 }
4740
4741 do_cleanups (back_to);
4742 }
4743
4744 static LONGEST
4745 remote_flash_write (struct target_ops *ops,
4746 ULONGEST address, LONGEST length,
4747 const gdb_byte *data)
4748 {
4749 int saved_remote_timeout = remote_timeout;
4750 int ret;
4751 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4752 &saved_remote_timeout);
4753
4754 remote_timeout = remote_flash_timeout;
4755 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4756 do_cleanups (back_to);
4757
4758 return ret;
4759 }
4760
4761 static void
4762 remote_flash_done (struct target_ops *ops)
4763 {
4764 int saved_remote_timeout = remote_timeout;
4765 int ret;
4766 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4767 &saved_remote_timeout);
4768
4769 remote_timeout = remote_flash_timeout;
4770 ret = remote_send_printf ("vFlashDone");
4771 do_cleanups (back_to);
4772
4773 switch (ret)
4774 {
4775 case PACKET_UNKNOWN:
4776 error (_("Remote target does not support vFlashDone"));
4777 case PACKET_ERROR:
4778 error (_("Error finishing flash operation"));
4779 default:
4780 break;
4781 }
4782 }
4783
4784 static void
4785 remote_files_info (struct target_ops *ignore)
4786 {
4787 puts_filtered ("Debugging a target over a serial line.\n");
4788 }
4789 \f
4790 /* Stuff for dealing with the packets which are part of this protocol.
4791 See comment at top of file for details. */
4792
4793 /* Read a single character from the remote end. */
4794
4795 static int
4796 readchar (int timeout)
4797 {
4798 int ch;
4799
4800 ch = serial_readchar (remote_desc, timeout);
4801
4802 if (ch >= 0)
4803 return ch;
4804
4805 switch ((enum serial_rc) ch)
4806 {
4807 case SERIAL_EOF:
4808 target_mourn_inferior ();
4809 error (_("Remote connection closed"));
4810 /* no return */
4811 case SERIAL_ERROR:
4812 perror_with_name (_("Remote communication error"));
4813 /* no return */
4814 case SERIAL_TIMEOUT:
4815 break;
4816 }
4817 return ch;
4818 }
4819
4820 /* Send the command in *BUF to the remote machine, and read the reply
4821 into *BUF. Report an error if we get an error reply. Resize
4822 *BUF using xrealloc if necessary to hold the result, and update
4823 *SIZEOF_BUF. */
4824
4825 static void
4826 remote_send (char **buf,
4827 long *sizeof_buf)
4828 {
4829 putpkt (*buf);
4830 getpkt (buf, sizeof_buf, 0);
4831
4832 if ((*buf)[0] == 'E')
4833 error (_("Remote failure reply: %s"), *buf);
4834 }
4835
4836 /* Display a null-terminated packet on stdout, for debugging, using C
4837 string notation. */
4838
4839 static void
4840 print_packet (char *buf)
4841 {
4842 puts_filtered ("\"");
4843 fputstr_filtered (buf, '"', gdb_stdout);
4844 puts_filtered ("\"");
4845 }
4846
4847 int
4848 putpkt (char *buf)
4849 {
4850 return putpkt_binary (buf, strlen (buf));
4851 }
4852
4853 /* Send a packet to the remote machine, with error checking. The data
4854 of the packet is in BUF. The string in BUF can be at most
4855 get_remote_packet_size () - 5 to account for the $, # and checksum,
4856 and for a possible /0 if we are debugging (remote_debug) and want
4857 to print the sent packet as a string. */
4858
4859 static int
4860 putpkt_binary (char *buf, int cnt)
4861 {
4862 struct remote_state *rs = get_remote_state ();
4863 int i;
4864 unsigned char csum = 0;
4865 char *buf2 = alloca (cnt + 6);
4866
4867 int ch;
4868 int tcount = 0;
4869 char *p;
4870
4871 /* We're sending out a new packet. Make sure we don't look at a
4872 stale cached response. */
4873 rs->cached_wait_status = 0;
4874
4875 /* Copy the packet into buffer BUF2, encapsulating it
4876 and giving it a checksum. */
4877
4878 p = buf2;
4879 *p++ = '$';
4880
4881 for (i = 0; i < cnt; i++)
4882 {
4883 csum += buf[i];
4884 *p++ = buf[i];
4885 }
4886 *p++ = '#';
4887 *p++ = tohex ((csum >> 4) & 0xf);
4888 *p++ = tohex (csum & 0xf);
4889
4890 /* Send it over and over until we get a positive ack. */
4891
4892 while (1)
4893 {
4894 int started_error_output = 0;
4895
4896 if (remote_debug)
4897 {
4898 *p = '\0';
4899 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4900 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4901 fprintf_unfiltered (gdb_stdlog, "...");
4902 gdb_flush (gdb_stdlog);
4903 }
4904 if (serial_write (remote_desc, buf2, p - buf2))
4905 perror_with_name (_("putpkt: write failed"));
4906
4907 /* Read until either a timeout occurs (-2) or '+' is read. */
4908 while (1)
4909 {
4910 ch = readchar (remote_timeout);
4911
4912 if (remote_debug)
4913 {
4914 switch (ch)
4915 {
4916 case '+':
4917 case '-':
4918 case SERIAL_TIMEOUT:
4919 case '$':
4920 if (started_error_output)
4921 {
4922 putchar_unfiltered ('\n');
4923 started_error_output = 0;
4924 }
4925 }
4926 }
4927
4928 switch (ch)
4929 {
4930 case '+':
4931 if (remote_debug)
4932 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4933 return 1;
4934 case '-':
4935 if (remote_debug)
4936 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4937 case SERIAL_TIMEOUT:
4938 tcount++;
4939 if (tcount > 3)
4940 return 0;
4941 break; /* Retransmit buffer. */
4942 case '$':
4943 {
4944 if (remote_debug)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "Packet instead of Ack, ignoring it\n");
4947 /* It's probably an old response sent because an ACK
4948 was lost. Gobble up the packet and ack it so it
4949 doesn't get retransmitted when we resend this
4950 packet. */
4951 skip_frame ();
4952 serial_write (remote_desc, "+", 1);
4953 continue; /* Now, go look for +. */
4954 }
4955 default:
4956 if (remote_debug)
4957 {
4958 if (!started_error_output)
4959 {
4960 started_error_output = 1;
4961 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4962 }
4963 fputc_unfiltered (ch & 0177, gdb_stdlog);
4964 }
4965 continue;
4966 }
4967 break; /* Here to retransmit. */
4968 }
4969
4970 #if 0
4971 /* This is wrong. If doing a long backtrace, the user should be
4972 able to get out next time we call QUIT, without anything as
4973 violent as interrupt_query. If we want to provide a way out of
4974 here without getting to the next QUIT, it should be based on
4975 hitting ^C twice as in remote_wait. */
4976 if (quit_flag)
4977 {
4978 quit_flag = 0;
4979 interrupt_query ();
4980 }
4981 #endif
4982 }
4983 }
4984
4985 /* Come here after finding the start of a frame when we expected an
4986 ack. Do our best to discard the rest of this packet. */
4987
4988 static void
4989 skip_frame (void)
4990 {
4991 int c;
4992
4993 while (1)
4994 {
4995 c = readchar (remote_timeout);
4996 switch (c)
4997 {
4998 case SERIAL_TIMEOUT:
4999 /* Nothing we can do. */
5000 return;
5001 case '#':
5002 /* Discard the two bytes of checksum and stop. */
5003 c = readchar (remote_timeout);
5004 if (c >= 0)
5005 c = readchar (remote_timeout);
5006
5007 return;
5008 case '*': /* Run length encoding. */
5009 /* Discard the repeat count. */
5010 c = readchar (remote_timeout);
5011 if (c < 0)
5012 return;
5013 break;
5014 default:
5015 /* A regular character. */
5016 break;
5017 }
5018 }
5019 }
5020
5021 /* Come here after finding the start of the frame. Collect the rest
5022 into *BUF, verifying the checksum, length, and handling run-length
5023 compression. NUL terminate the buffer. If there is not enough room,
5024 expand *BUF using xrealloc.
5025
5026 Returns -1 on error, number of characters in buffer (ignoring the
5027 trailing NULL) on success. (could be extended to return one of the
5028 SERIAL status indications). */
5029
5030 static long
5031 read_frame (char **buf_p,
5032 long *sizeof_buf)
5033 {
5034 unsigned char csum;
5035 long bc;
5036 int c;
5037 char *buf = *buf_p;
5038
5039 csum = 0;
5040 bc = 0;
5041
5042 while (1)
5043 {
5044 c = readchar (remote_timeout);
5045 switch (c)
5046 {
5047 case SERIAL_TIMEOUT:
5048 if (remote_debug)
5049 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5050 return -1;
5051 case '$':
5052 if (remote_debug)
5053 fputs_filtered ("Saw new packet start in middle of old one\n",
5054 gdb_stdlog);
5055 return -1; /* Start a new packet, count retries. */
5056 case '#':
5057 {
5058 unsigned char pktcsum;
5059 int check_0 = 0;
5060 int check_1 = 0;
5061
5062 buf[bc] = '\0';
5063
5064 check_0 = readchar (remote_timeout);
5065 if (check_0 >= 0)
5066 check_1 = readchar (remote_timeout);
5067
5068 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5069 {
5070 if (remote_debug)
5071 fputs_filtered ("Timeout in checksum, retrying\n",
5072 gdb_stdlog);
5073 return -1;
5074 }
5075 else if (check_0 < 0 || check_1 < 0)
5076 {
5077 if (remote_debug)
5078 fputs_filtered ("Communication error in checksum\n",
5079 gdb_stdlog);
5080 return -1;
5081 }
5082
5083 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5084 if (csum == pktcsum)
5085 return bc;
5086
5087 if (remote_debug)
5088 {
5089 fprintf_filtered (gdb_stdlog,
5090 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5091 pktcsum, csum);
5092 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5093 fputs_filtered ("\n", gdb_stdlog);
5094 }
5095 /* Number of characters in buffer ignoring trailing
5096 NULL. */
5097 return -1;
5098 }
5099 case '*': /* Run length encoding. */
5100 {
5101 int repeat;
5102 csum += c;
5103
5104 c = readchar (remote_timeout);
5105 csum += c;
5106 repeat = c - ' ' + 3; /* Compute repeat count. */
5107
5108 /* The character before ``*'' is repeated. */
5109
5110 if (repeat > 0 && repeat <= 255 && bc > 0)
5111 {
5112 if (bc + repeat - 1 >= *sizeof_buf - 1)
5113 {
5114 /* Make some more room in the buffer. */
5115 *sizeof_buf += repeat;
5116 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5117 buf = *buf_p;
5118 }
5119
5120 memset (&buf[bc], buf[bc - 1], repeat);
5121 bc += repeat;
5122 continue;
5123 }
5124
5125 buf[bc] = '\0';
5126 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5127 return -1;
5128 }
5129 default:
5130 if (bc >= *sizeof_buf - 1)
5131 {
5132 /* Make some more room in the buffer. */
5133 *sizeof_buf *= 2;
5134 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5135 buf = *buf_p;
5136 }
5137
5138 buf[bc++] = c;
5139 csum += c;
5140 continue;
5141 }
5142 }
5143 }
5144
5145 /* Read a packet from the remote machine, with error checking, and
5146 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5147 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5148 rather than timing out; this is used (in synchronous mode) to wait
5149 for a target that is is executing user code to stop. */
5150 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5151 don't have to change all the calls to getpkt to deal with the
5152 return value, because at the moment I don't know what the right
5153 thing to do it for those. */
5154 void
5155 getpkt (char **buf,
5156 long *sizeof_buf,
5157 int forever)
5158 {
5159 int timed_out;
5160
5161 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5162 }
5163
5164
5165 /* Read a packet from the remote machine, with error checking, and
5166 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5167 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5168 rather than timing out; this is used (in synchronous mode) to wait
5169 for a target that is is executing user code to stop. If FOREVER ==
5170 0, this function is allowed to time out gracefully and return an
5171 indication of this to the caller. Otherwise return the number
5172 of bytes read. */
5173 static int
5174 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5175 {
5176 struct remote_state *rs = get_remote_state ();
5177 int c;
5178 int tries;
5179 int timeout;
5180 int val;
5181
5182 /* We're reading a new response. Make sure we don't look at a
5183 previously cached response. */
5184 rs->cached_wait_status = 0;
5185
5186 strcpy (*buf, "timeout");
5187
5188 if (forever)
5189 {
5190 timeout = watchdog > 0 ? watchdog : -1;
5191 }
5192
5193 else
5194 timeout = remote_timeout;
5195
5196 #define MAX_TRIES 3
5197
5198 for (tries = 1; tries <= MAX_TRIES; tries++)
5199 {
5200 /* This can loop forever if the remote side sends us characters
5201 continuously, but if it pauses, we'll get a zero from
5202 readchar because of timeout. Then we'll count that as a
5203 retry. */
5204
5205 /* Note that we will only wait forever prior to the start of a
5206 packet. After that, we expect characters to arrive at a
5207 brisk pace. They should show up within remote_timeout
5208 intervals. */
5209
5210 do
5211 {
5212 c = readchar (timeout);
5213
5214 if (c == SERIAL_TIMEOUT)
5215 {
5216 if (forever) /* Watchdog went off? Kill the target. */
5217 {
5218 QUIT;
5219 target_mourn_inferior ();
5220 error (_("Watchdog timeout has expired. Target detached."));
5221 }
5222 if (remote_debug)
5223 fputs_filtered ("Timed out.\n", gdb_stdlog);
5224 goto retry;
5225 }
5226 }
5227 while (c != '$');
5228
5229 /* We've found the start of a packet, now collect the data. */
5230
5231 val = read_frame (buf, sizeof_buf);
5232
5233 if (val >= 0)
5234 {
5235 if (remote_debug)
5236 {
5237 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5238 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5239 fprintf_unfiltered (gdb_stdlog, "\n");
5240 }
5241 serial_write (remote_desc, "+", 1);
5242 return val;
5243 }
5244
5245 /* Try the whole thing again. */
5246 retry:
5247 serial_write (remote_desc, "-", 1);
5248 }
5249
5250 /* We have tried hard enough, and just can't receive the packet.
5251 Give up. */
5252
5253 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5254 serial_write (remote_desc, "+", 1);
5255 return -1;
5256 }
5257 \f
5258 static void
5259 remote_kill (void)
5260 {
5261 /* For some mysterious reason, wait_for_inferior calls kill instead of
5262 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5263 if (kill_kludge)
5264 {
5265 kill_kludge = 0;
5266 target_mourn_inferior ();
5267 return;
5268 }
5269
5270 /* Use catch_errors so the user can quit from gdb even when we aren't on
5271 speaking terms with the remote system. */
5272 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5273
5274 /* Don't wait for it to die. I'm not really sure it matters whether
5275 we do or not. For the existing stubs, kill is a noop. */
5276 target_mourn_inferior ();
5277 }
5278
5279 /* Async version of remote_kill. */
5280 static void
5281 remote_async_kill (void)
5282 {
5283 /* Unregister the file descriptor from the event loop. */
5284 if (target_is_async_p ())
5285 serial_async (remote_desc, NULL, 0);
5286
5287 /* For some mysterious reason, wait_for_inferior calls kill instead of
5288 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5289 if (kill_kludge)
5290 {
5291 kill_kludge = 0;
5292 target_mourn_inferior ();
5293 return;
5294 }
5295
5296 /* Use catch_errors so the user can quit from gdb even when we
5297 aren't on speaking terms with the remote system. */
5298 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5299
5300 /* Don't wait for it to die. I'm not really sure it matters whether
5301 we do or not. For the existing stubs, kill is a noop. */
5302 target_mourn_inferior ();
5303 }
5304
5305 static void
5306 remote_mourn (void)
5307 {
5308 remote_mourn_1 (&remote_ops);
5309 }
5310
5311 static void
5312 remote_async_mourn (void)
5313 {
5314 remote_mourn_1 (&remote_async_ops);
5315 }
5316
5317 /* Worker function for remote_mourn. */
5318 static void
5319 remote_mourn_1 (struct target_ops *target)
5320 {
5321 unpush_target (target);
5322 generic_mourn_inferior ();
5323 }
5324
5325 static void
5326 extended_remote_mourn_1 (struct target_ops *target)
5327 {
5328 struct remote_state *rs = get_remote_state ();
5329
5330 /* Unlike "target remote", we do not want to unpush the target; then
5331 the next time the user says "run", we won't be connected. */
5332
5333 /* Call common code to mark the inferior as not running. */
5334 generic_mourn_inferior ();
5335
5336 /* Check whether the target is running now - some remote stubs
5337 automatically restart after kill. */
5338 putpkt ("?");
5339 getpkt (&rs->buf, &rs->buf_size, 0);
5340
5341 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5342 {
5343 /* Assume that the target has been restarted. Set inferior_ptid
5344 so that bits of core GDB realizes there's something here, e.g.,
5345 so that the user can say "kill" again. */
5346 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5347 }
5348 else
5349 {
5350 /* Mark this (still pushed) target as not executable until we
5351 restart it. */
5352 target_mark_exited (target);
5353 }
5354 }
5355
5356 static void
5357 extended_remote_mourn (void)
5358 {
5359 extended_remote_mourn_1 (&extended_remote_ops);
5360 }
5361
5362 static void
5363 extended_async_remote_mourn (void)
5364 {
5365 extended_remote_mourn_1 (&extended_async_remote_ops);
5366 }
5367
5368 static int
5369 extended_remote_run (char *args)
5370 {
5371 struct remote_state *rs = get_remote_state ();
5372 char *p;
5373 int len;
5374
5375 /* If the user has disabled vRun support, or we have detected that
5376 support is not available, do not try it. */
5377 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5378 return -1;
5379
5380 strcpy (rs->buf, "vRun;");
5381 len = strlen (rs->buf);
5382
5383 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5384 error (_("Remote file name too long for run packet"));
5385 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5386
5387 if (*args)
5388 {
5389 struct cleanup *back_to;
5390 int i;
5391 char **argv;
5392
5393 argv = buildargv (args);
5394 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5395 for (i = 0; argv[i] != NULL; i++)
5396 {
5397 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5398 error (_("Argument list too long for run packet"));
5399 rs->buf[len++] = ';';
5400 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5401 }
5402 do_cleanups (back_to);
5403 }
5404
5405 rs->buf[len++] = '\0';
5406
5407 putpkt (rs->buf);
5408 getpkt (&rs->buf, &rs->buf_size, 0);
5409
5410 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5411 {
5412 /* We have a wait response; we don't need it, though. All is well. */
5413 return 0;
5414 }
5415 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5416 /* It wasn't disabled before, but it is now. */
5417 return -1;
5418 else
5419 {
5420 if (remote_exec_file[0] == '\0')
5421 error (_("Running the default executable on the remote target failed; "
5422 "try \"set remote exec-file\"?"));
5423 else
5424 error (_("Running \"%s\" on the remote target failed"),
5425 remote_exec_file);
5426 }
5427 }
5428
5429 /* In the extended protocol we want to be able to do things like
5430 "run" and have them basically work as expected. So we need
5431 a special create_inferior function. We support changing the
5432 executable file and the command line arguments, but not the
5433 environment. */
5434
5435 static void
5436 extended_remote_create_inferior_1 (char *exec_file, char *args,
5437 char **env, int from_tty,
5438 int async_p)
5439 {
5440 /* If running asynchronously, register the target file descriptor
5441 with the event loop. */
5442 if (async_p && target_can_async_p ())
5443 target_async (inferior_event_handler, 0);
5444
5445 /* Now restart the remote server. */
5446 if (extended_remote_run (args) == -1)
5447 {
5448 /* vRun was not supported. Fail if we need it to do what the
5449 user requested. */
5450 if (remote_exec_file[0])
5451 error (_("Remote target does not support \"set remote exec-file\""));
5452 if (args[0])
5453 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5454
5455 /* Fall back to "R". */
5456 extended_remote_restart ();
5457 }
5458
5459 /* Now mark the inferior as running before we do anything else. */
5460 attach_flag = 0;
5461 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5462 if (async_p)
5463 target_mark_running (&extended_async_remote_ops);
5464 else
5465 target_mark_running (&extended_remote_ops);
5466
5467 /* Get updated offsets, if the stub uses qOffsets. */
5468 get_offsets ();
5469
5470 /* Clean up from the last time we were running. */
5471 init_thread_list ();
5472 init_wait_for_inferior ();
5473 }
5474
5475 static void
5476 extended_remote_create_inferior (char *exec_file, char *args,
5477 char **env, int from_tty)
5478 {
5479 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5480 }
5481
5482 static void
5483 extended_remote_async_create_inferior (char *exec_file, char *args,
5484 char **env, int from_tty)
5485 {
5486 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5487 }
5488 \f
5489
5490 /* Insert a breakpoint. On targets that have software breakpoint
5491 support, we ask the remote target to do the work; on targets
5492 which don't, we insert a traditional memory breakpoint. */
5493
5494 static int
5495 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5496 {
5497 CORE_ADDR addr = bp_tgt->placed_address;
5498 struct remote_state *rs = get_remote_state ();
5499
5500 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5501 If it succeeds, then set the support to PACKET_ENABLE. If it
5502 fails, and the user has explicitly requested the Z support then
5503 report an error, otherwise, mark it disabled and go on. */
5504
5505 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5506 {
5507 char *p = rs->buf;
5508
5509 *(p++) = 'Z';
5510 *(p++) = '0';
5511 *(p++) = ',';
5512 gdbarch_breakpoint_from_pc
5513 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5514 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5515 p += hexnumstr (p, addr);
5516 sprintf (p, ",%d", bp_tgt->placed_size);
5517
5518 putpkt (rs->buf);
5519 getpkt (&rs->buf, &rs->buf_size, 0);
5520
5521 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5522 {
5523 case PACKET_ERROR:
5524 return -1;
5525 case PACKET_OK:
5526 return 0;
5527 case PACKET_UNKNOWN:
5528 break;
5529 }
5530 }
5531
5532 return memory_insert_breakpoint (bp_tgt);
5533 }
5534
5535 static int
5536 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5537 {
5538 CORE_ADDR addr = bp_tgt->placed_address;
5539 struct remote_state *rs = get_remote_state ();
5540 int bp_size;
5541
5542 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5543 {
5544 char *p = rs->buf;
5545
5546 *(p++) = 'z';
5547 *(p++) = '0';
5548 *(p++) = ',';
5549
5550 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5551 p += hexnumstr (p, addr);
5552 sprintf (p, ",%d", bp_tgt->placed_size);
5553
5554 putpkt (rs->buf);
5555 getpkt (&rs->buf, &rs->buf_size, 0);
5556
5557 return (rs->buf[0] == 'E');
5558 }
5559
5560 return memory_remove_breakpoint (bp_tgt);
5561 }
5562
5563 static int
5564 watchpoint_to_Z_packet (int type)
5565 {
5566 switch (type)
5567 {
5568 case hw_write:
5569 return Z_PACKET_WRITE_WP;
5570 break;
5571 case hw_read:
5572 return Z_PACKET_READ_WP;
5573 break;
5574 case hw_access:
5575 return Z_PACKET_ACCESS_WP;
5576 break;
5577 default:
5578 internal_error (__FILE__, __LINE__,
5579 _("hw_bp_to_z: bad watchpoint type %d"), type);
5580 }
5581 }
5582
5583 static int
5584 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587 char *p;
5588 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5589
5590 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5591 return -1;
5592
5593 sprintf (rs->buf, "Z%x,", packet);
5594 p = strchr (rs->buf, '\0');
5595 addr = remote_address_masked (addr);
5596 p += hexnumstr (p, (ULONGEST) addr);
5597 sprintf (p, ",%x", len);
5598
5599 putpkt (rs->buf);
5600 getpkt (&rs->buf, &rs->buf_size, 0);
5601
5602 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5603 {
5604 case PACKET_ERROR:
5605 case PACKET_UNKNOWN:
5606 return -1;
5607 case PACKET_OK:
5608 return 0;
5609 }
5610 internal_error (__FILE__, __LINE__,
5611 _("remote_insert_watchpoint: reached end of function"));
5612 }
5613
5614
5615 static int
5616 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5617 {
5618 struct remote_state *rs = get_remote_state ();
5619 char *p;
5620 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5621
5622 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5623 return -1;
5624
5625 sprintf (rs->buf, "z%x,", packet);
5626 p = strchr (rs->buf, '\0');
5627 addr = remote_address_masked (addr);
5628 p += hexnumstr (p, (ULONGEST) addr);
5629 sprintf (p, ",%x", len);
5630 putpkt (rs->buf);
5631 getpkt (&rs->buf, &rs->buf_size, 0);
5632
5633 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5634 {
5635 case PACKET_ERROR:
5636 case PACKET_UNKNOWN:
5637 return -1;
5638 case PACKET_OK:
5639 return 0;
5640 }
5641 internal_error (__FILE__, __LINE__,
5642 _("remote_remove_watchpoint: reached end of function"));
5643 }
5644
5645
5646 int remote_hw_watchpoint_limit = -1;
5647 int remote_hw_breakpoint_limit = -1;
5648
5649 static int
5650 remote_check_watch_resources (int type, int cnt, int ot)
5651 {
5652 if (type == bp_hardware_breakpoint)
5653 {
5654 if (remote_hw_breakpoint_limit == 0)
5655 return 0;
5656 else if (remote_hw_breakpoint_limit < 0)
5657 return 1;
5658 else if (cnt <= remote_hw_breakpoint_limit)
5659 return 1;
5660 }
5661 else
5662 {
5663 if (remote_hw_watchpoint_limit == 0)
5664 return 0;
5665 else if (remote_hw_watchpoint_limit < 0)
5666 return 1;
5667 else if (ot)
5668 return -1;
5669 else if (cnt <= remote_hw_watchpoint_limit)
5670 return 1;
5671 }
5672 return -1;
5673 }
5674
5675 static int
5676 remote_stopped_by_watchpoint (void)
5677 {
5678 return remote_stopped_by_watchpoint_p;
5679 }
5680
5681 static int
5682 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5683 {
5684 int rc = 0;
5685 if (remote_stopped_by_watchpoint ())
5686 {
5687 *addr_p = remote_watch_data_address;
5688 rc = 1;
5689 }
5690
5691 return rc;
5692 }
5693
5694
5695 static int
5696 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5697 {
5698 CORE_ADDR addr;
5699 struct remote_state *rs = get_remote_state ();
5700 char *p = rs->buf;
5701
5702 /* The length field should be set to the size of a breakpoint
5703 instruction, even though we aren't inserting one ourselves. */
5704
5705 gdbarch_breakpoint_from_pc
5706 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5707
5708 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5709 return -1;
5710
5711 *(p++) = 'Z';
5712 *(p++) = '1';
5713 *(p++) = ',';
5714
5715 addr = remote_address_masked (bp_tgt->placed_address);
5716 p += hexnumstr (p, (ULONGEST) addr);
5717 sprintf (p, ",%x", bp_tgt->placed_size);
5718
5719 putpkt (rs->buf);
5720 getpkt (&rs->buf, &rs->buf_size, 0);
5721
5722 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5723 {
5724 case PACKET_ERROR:
5725 case PACKET_UNKNOWN:
5726 return -1;
5727 case PACKET_OK:
5728 return 0;
5729 }
5730 internal_error (__FILE__, __LINE__,
5731 _("remote_insert_hw_breakpoint: reached end of function"));
5732 }
5733
5734
5735 static int
5736 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5737 {
5738 CORE_ADDR addr;
5739 struct remote_state *rs = get_remote_state ();
5740 char *p = rs->buf;
5741
5742 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5743 return -1;
5744
5745 *(p++) = 'z';
5746 *(p++) = '1';
5747 *(p++) = ',';
5748
5749 addr = remote_address_masked (bp_tgt->placed_address);
5750 p += hexnumstr (p, (ULONGEST) addr);
5751 sprintf (p, ",%x", bp_tgt->placed_size);
5752
5753 putpkt (rs->buf);
5754 getpkt (&rs->buf, &rs->buf_size, 0);
5755
5756 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5757 {
5758 case PACKET_ERROR:
5759 case PACKET_UNKNOWN:
5760 return -1;
5761 case PACKET_OK:
5762 return 0;
5763 }
5764 internal_error (__FILE__, __LINE__,
5765 _("remote_remove_hw_breakpoint: reached end of function"));
5766 }
5767
5768 /* Some targets are only capable of doing downloads, and afterwards
5769 they switch to the remote serial protocol. This function provides
5770 a clean way to get from the download target to the remote target.
5771 It's basically just a wrapper so that we don't have to expose any
5772 of the internal workings of remote.c.
5773
5774 Prior to calling this routine, you should shutdown the current
5775 target code, else you will get the "A program is being debugged
5776 already..." message. Usually a call to pop_target() suffices. */
5777
5778 void
5779 push_remote_target (char *name, int from_tty)
5780 {
5781 printf_filtered (_("Switching to remote protocol\n"));
5782 remote_open (name, from_tty);
5783 }
5784
5785 /* Table used by the crc32 function to calcuate the checksum. */
5786
5787 static unsigned long crc32_table[256] =
5788 {0, 0};
5789
5790 static unsigned long
5791 crc32 (unsigned char *buf, int len, unsigned int crc)
5792 {
5793 if (!crc32_table[1])
5794 {
5795 /* Initialize the CRC table and the decoding table. */
5796 int i, j;
5797 unsigned int c;
5798
5799 for (i = 0; i < 256; i++)
5800 {
5801 for (c = i << 24, j = 8; j > 0; --j)
5802 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5803 crc32_table[i] = c;
5804 }
5805 }
5806
5807 while (len--)
5808 {
5809 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5810 buf++;
5811 }
5812 return crc;
5813 }
5814
5815 /* compare-sections command
5816
5817 With no arguments, compares each loadable section in the exec bfd
5818 with the same memory range on the target, and reports mismatches.
5819 Useful for verifying the image on the target against the exec file.
5820 Depends on the target understanding the new "qCRC:" request. */
5821
5822 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5823 target method (target verify memory) and generic version of the
5824 actual command. This will allow other high-level code (especially
5825 generic_load()) to make use of this target functionality. */
5826
5827 static void
5828 compare_sections_command (char *args, int from_tty)
5829 {
5830 struct remote_state *rs = get_remote_state ();
5831 asection *s;
5832 unsigned long host_crc, target_crc;
5833 extern bfd *exec_bfd;
5834 struct cleanup *old_chain;
5835 char *tmp;
5836 char *sectdata;
5837 const char *sectname;
5838 bfd_size_type size;
5839 bfd_vma lma;
5840 int matched = 0;
5841 int mismatched = 0;
5842
5843 if (!exec_bfd)
5844 error (_("command cannot be used without an exec file"));
5845 if (!current_target.to_shortname ||
5846 strcmp (current_target.to_shortname, "remote") != 0)
5847 error (_("command can only be used with remote target"));
5848
5849 for (s = exec_bfd->sections; s; s = s->next)
5850 {
5851 if (!(s->flags & SEC_LOAD))
5852 continue; /* skip non-loadable section */
5853
5854 size = bfd_get_section_size (s);
5855 if (size == 0)
5856 continue; /* skip zero-length section */
5857
5858 sectname = bfd_get_section_name (exec_bfd, s);
5859 if (args && strcmp (args, sectname) != 0)
5860 continue; /* not the section selected by user */
5861
5862 matched = 1; /* do this section */
5863 lma = s->lma;
5864 /* FIXME: assumes lma can fit into long. */
5865 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5866 (long) lma, (long) size);
5867 putpkt (rs->buf);
5868
5869 /* Be clever; compute the host_crc before waiting for target
5870 reply. */
5871 sectdata = xmalloc (size);
5872 old_chain = make_cleanup (xfree, sectdata);
5873 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5874 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5875
5876 getpkt (&rs->buf, &rs->buf_size, 0);
5877 if (rs->buf[0] == 'E')
5878 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5879 sectname, paddr (lma), paddr (lma + size));
5880 if (rs->buf[0] != 'C')
5881 error (_("remote target does not support this operation"));
5882
5883 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5884 target_crc = target_crc * 16 + fromhex (*tmp);
5885
5886 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5887 sectname, paddr (lma), paddr (lma + size));
5888 if (host_crc == target_crc)
5889 printf_filtered ("matched.\n");
5890 else
5891 {
5892 printf_filtered ("MIS-MATCHED!\n");
5893 mismatched++;
5894 }
5895
5896 do_cleanups (old_chain);
5897 }
5898 if (mismatched > 0)
5899 warning (_("One or more sections of the remote executable does not match\n\
5900 the loaded file\n"));
5901 if (args && !matched)
5902 printf_filtered (_("No loaded section named '%s'.\n"), args);
5903 }
5904
5905 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5906 into remote target. The number of bytes written to the remote
5907 target is returned, or -1 for error. */
5908
5909 static LONGEST
5910 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5911 const char *annex, const gdb_byte *writebuf,
5912 ULONGEST offset, LONGEST len,
5913 struct packet_config *packet)
5914 {
5915 int i, buf_len;
5916 ULONGEST n;
5917 gdb_byte *wbuf;
5918 struct remote_state *rs = get_remote_state ();
5919 int max_size = get_memory_write_packet_size ();
5920
5921 if (packet->support == PACKET_DISABLE)
5922 return -1;
5923
5924 /* Insert header. */
5925 i = snprintf (rs->buf, max_size,
5926 "qXfer:%s:write:%s:%s:",
5927 object_name, annex ? annex : "",
5928 phex_nz (offset, sizeof offset));
5929 max_size -= (i + 1);
5930
5931 /* Escape as much data as fits into rs->buf. */
5932 buf_len = remote_escape_output
5933 (writebuf, len, (rs->buf + i), &max_size, max_size);
5934
5935 if (putpkt_binary (rs->buf, i + buf_len) < 0
5936 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5937 || packet_ok (rs->buf, packet) != PACKET_OK)
5938 return -1;
5939
5940 unpack_varlen_hex (rs->buf, &n);
5941 return n;
5942 }
5943
5944 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5945 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5946 number of bytes read is returned, or 0 for EOF, or -1 for error.
5947 The number of bytes read may be less than LEN without indicating an
5948 EOF. PACKET is checked and updated to indicate whether the remote
5949 target supports this object. */
5950
5951 static LONGEST
5952 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5953 const char *annex,
5954 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5955 struct packet_config *packet)
5956 {
5957 static char *finished_object;
5958 static char *finished_annex;
5959 static ULONGEST finished_offset;
5960
5961 struct remote_state *rs = get_remote_state ();
5962 unsigned int total = 0;
5963 LONGEST i, n, packet_len;
5964
5965 if (packet->support == PACKET_DISABLE)
5966 return -1;
5967
5968 /* Check whether we've cached an end-of-object packet that matches
5969 this request. */
5970 if (finished_object)
5971 {
5972 if (strcmp (object_name, finished_object) == 0
5973 && strcmp (annex ? annex : "", finished_annex) == 0
5974 && offset == finished_offset)
5975 return 0;
5976
5977 /* Otherwise, we're now reading something different. Discard
5978 the cache. */
5979 xfree (finished_object);
5980 xfree (finished_annex);
5981 finished_object = NULL;
5982 finished_annex = NULL;
5983 }
5984
5985 /* Request only enough to fit in a single packet. The actual data
5986 may not, since we don't know how much of it will need to be escaped;
5987 the target is free to respond with slightly less data. We subtract
5988 five to account for the response type and the protocol frame. */
5989 n = min (get_remote_packet_size () - 5, len);
5990 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5991 object_name, annex ? annex : "",
5992 phex_nz (offset, sizeof offset),
5993 phex_nz (n, sizeof n));
5994 i = putpkt (rs->buf);
5995 if (i < 0)
5996 return -1;
5997
5998 rs->buf[0] = '\0';
5999 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6000 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6001 return -1;
6002
6003 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6004 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6005
6006 /* 'm' means there is (or at least might be) more data after this
6007 batch. That does not make sense unless there's at least one byte
6008 of data in this reply. */
6009 if (rs->buf[0] == 'm' && packet_len == 1)
6010 error (_("Remote qXfer reply contained no data."));
6011
6012 /* Got some data. */
6013 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6014
6015 /* 'l' is an EOF marker, possibly including a final block of data,
6016 or possibly empty. If we have the final block of a non-empty
6017 object, record this fact to bypass a subsequent partial read. */
6018 if (rs->buf[0] == 'l' && offset + i > 0)
6019 {
6020 finished_object = xstrdup (object_name);
6021 finished_annex = xstrdup (annex ? annex : "");
6022 finished_offset = offset + i;
6023 }
6024
6025 return i;
6026 }
6027
6028 static LONGEST
6029 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6030 const char *annex, gdb_byte *readbuf,
6031 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6032 {
6033 struct remote_state *rs = get_remote_state ();
6034 int i;
6035 char *p2;
6036 char query_type;
6037
6038 /* Handle memory using the standard memory routines. */
6039 if (object == TARGET_OBJECT_MEMORY)
6040 {
6041 int xfered;
6042 errno = 0;
6043
6044 /* If the remote target is connected but not running, we should
6045 pass this request down to a lower stratum (e.g. the executable
6046 file). */
6047 if (!target_has_execution)
6048 return 0;
6049
6050 if (writebuf != NULL)
6051 xfered = remote_write_bytes (offset, writebuf, len);
6052 else
6053 xfered = remote_read_bytes (offset, readbuf, len);
6054
6055 if (xfered > 0)
6056 return xfered;
6057 else if (xfered == 0 && errno == 0)
6058 return 0;
6059 else
6060 return -1;
6061 }
6062
6063 /* Handle SPU memory using qxfer packets. */
6064 if (object == TARGET_OBJECT_SPU)
6065 {
6066 if (readbuf)
6067 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6068 &remote_protocol_packets
6069 [PACKET_qXfer_spu_read]);
6070 else
6071 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6072 &remote_protocol_packets
6073 [PACKET_qXfer_spu_write]);
6074 }
6075
6076 /* Only handle flash writes. */
6077 if (writebuf != NULL)
6078 {
6079 LONGEST xfered;
6080
6081 switch (object)
6082 {
6083 case TARGET_OBJECT_FLASH:
6084 xfered = remote_flash_write (ops, offset, len, writebuf);
6085
6086 if (xfered > 0)
6087 return xfered;
6088 else if (xfered == 0 && errno == 0)
6089 return 0;
6090 else
6091 return -1;
6092
6093 default:
6094 return -1;
6095 }
6096 }
6097
6098 /* Map pre-existing objects onto letters. DO NOT do this for new
6099 objects!!! Instead specify new query packets. */
6100 switch (object)
6101 {
6102 case TARGET_OBJECT_AVR:
6103 query_type = 'R';
6104 break;
6105
6106 case TARGET_OBJECT_AUXV:
6107 gdb_assert (annex == NULL);
6108 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6109 &remote_protocol_packets[PACKET_qXfer_auxv]);
6110
6111 case TARGET_OBJECT_AVAILABLE_FEATURES:
6112 return remote_read_qxfer
6113 (ops, "features", annex, readbuf, offset, len,
6114 &remote_protocol_packets[PACKET_qXfer_features]);
6115
6116 case TARGET_OBJECT_LIBRARIES:
6117 return remote_read_qxfer
6118 (ops, "libraries", annex, readbuf, offset, len,
6119 &remote_protocol_packets[PACKET_qXfer_libraries]);
6120
6121 case TARGET_OBJECT_MEMORY_MAP:
6122 gdb_assert (annex == NULL);
6123 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6124 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6125
6126 default:
6127 return -1;
6128 }
6129
6130 /* Note: a zero OFFSET and LEN can be used to query the minimum
6131 buffer size. */
6132 if (offset == 0 && len == 0)
6133 return (get_remote_packet_size ());
6134 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6135 large enough let the caller deal with it. */
6136 if (len < get_remote_packet_size ())
6137 return -1;
6138 len = get_remote_packet_size ();
6139
6140 /* Except for querying the minimum buffer size, target must be open. */
6141 if (!remote_desc)
6142 error (_("remote query is only available after target open"));
6143
6144 gdb_assert (annex != NULL);
6145 gdb_assert (readbuf != NULL);
6146
6147 p2 = rs->buf;
6148 *p2++ = 'q';
6149 *p2++ = query_type;
6150
6151 /* We used one buffer char for the remote protocol q command and
6152 another for the query type. As the remote protocol encapsulation
6153 uses 4 chars plus one extra in case we are debugging
6154 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6155 string. */
6156 i = 0;
6157 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6158 {
6159 /* Bad caller may have sent forbidden characters. */
6160 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6161 *p2++ = annex[i];
6162 i++;
6163 }
6164 *p2 = '\0';
6165 gdb_assert (annex[i] == '\0');
6166
6167 i = putpkt (rs->buf);
6168 if (i < 0)
6169 return i;
6170
6171 getpkt (&rs->buf, &rs->buf_size, 0);
6172 strcpy ((char *) readbuf, rs->buf);
6173
6174 return strlen ((char *) readbuf);
6175 }
6176
6177 static void
6178 remote_rcmd (char *command,
6179 struct ui_file *outbuf)
6180 {
6181 struct remote_state *rs = get_remote_state ();
6182 char *p = rs->buf;
6183
6184 if (!remote_desc)
6185 error (_("remote rcmd is only available after target open"));
6186
6187 /* Send a NULL command across as an empty command. */
6188 if (command == NULL)
6189 command = "";
6190
6191 /* The query prefix. */
6192 strcpy (rs->buf, "qRcmd,");
6193 p = strchr (rs->buf, '\0');
6194
6195 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6196 error (_("\"monitor\" command ``%s'' is too long."), command);
6197
6198 /* Encode the actual command. */
6199 bin2hex ((gdb_byte *) command, p, 0);
6200
6201 if (putpkt (rs->buf) < 0)
6202 error (_("Communication problem with target."));
6203
6204 /* get/display the response */
6205 while (1)
6206 {
6207 char *buf;
6208
6209 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6210 rs->buf[0] = '\0';
6211 getpkt (&rs->buf, &rs->buf_size, 0);
6212 buf = rs->buf;
6213 if (buf[0] == '\0')
6214 error (_("Target does not support this command."));
6215 if (buf[0] == 'O' && buf[1] != 'K')
6216 {
6217 remote_console_output (buf + 1); /* 'O' message from stub. */
6218 continue;
6219 }
6220 if (strcmp (buf, "OK") == 0)
6221 break;
6222 if (strlen (buf) == 3 && buf[0] == 'E'
6223 && isdigit (buf[1]) && isdigit (buf[2]))
6224 {
6225 error (_("Protocol error with Rcmd"));
6226 }
6227 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6228 {
6229 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6230 fputc_unfiltered (c, outbuf);
6231 }
6232 break;
6233 }
6234 }
6235
6236 static VEC(mem_region_s) *
6237 remote_memory_map (struct target_ops *ops)
6238 {
6239 VEC(mem_region_s) *result = NULL;
6240 char *text = target_read_stralloc (&current_target,
6241 TARGET_OBJECT_MEMORY_MAP, NULL);
6242
6243 if (text)
6244 {
6245 struct cleanup *back_to = make_cleanup (xfree, text);
6246 result = parse_memory_map (text);
6247 do_cleanups (back_to);
6248 }
6249
6250 return result;
6251 }
6252
6253 static void
6254 packet_command (char *args, int from_tty)
6255 {
6256 struct remote_state *rs = get_remote_state ();
6257
6258 if (!remote_desc)
6259 error (_("command can only be used with remote target"));
6260
6261 if (!args)
6262 error (_("remote-packet command requires packet text as argument"));
6263
6264 puts_filtered ("sending: ");
6265 print_packet (args);
6266 puts_filtered ("\n");
6267 putpkt (args);
6268
6269 getpkt (&rs->buf, &rs->buf_size, 0);
6270 puts_filtered ("received: ");
6271 print_packet (rs->buf);
6272 puts_filtered ("\n");
6273 }
6274
6275 #if 0
6276 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6277
6278 static void display_thread_info (struct gdb_ext_thread_info *info);
6279
6280 static void threadset_test_cmd (char *cmd, int tty);
6281
6282 static void threadalive_test (char *cmd, int tty);
6283
6284 static void threadlist_test_cmd (char *cmd, int tty);
6285
6286 int get_and_display_threadinfo (threadref *ref);
6287
6288 static void threadinfo_test_cmd (char *cmd, int tty);
6289
6290 static int thread_display_step (threadref *ref, void *context);
6291
6292 static void threadlist_update_test_cmd (char *cmd, int tty);
6293
6294 static void init_remote_threadtests (void);
6295
6296 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6297
6298 static void
6299 threadset_test_cmd (char *cmd, int tty)
6300 {
6301 int sample_thread = SAMPLE_THREAD;
6302
6303 printf_filtered (_("Remote threadset test\n"));
6304 set_thread (sample_thread, 1);
6305 }
6306
6307
6308 static void
6309 threadalive_test (char *cmd, int tty)
6310 {
6311 int sample_thread = SAMPLE_THREAD;
6312
6313 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6314 printf_filtered ("PASS: Thread alive test\n");
6315 else
6316 printf_filtered ("FAIL: Thread alive test\n");
6317 }
6318
6319 void output_threadid (char *title, threadref *ref);
6320
6321 void
6322 output_threadid (char *title, threadref *ref)
6323 {
6324 char hexid[20];
6325
6326 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6327 hexid[16] = 0;
6328 printf_filtered ("%s %s\n", title, (&hexid[0]));
6329 }
6330
6331 static void
6332 threadlist_test_cmd (char *cmd, int tty)
6333 {
6334 int startflag = 1;
6335 threadref nextthread;
6336 int done, result_count;
6337 threadref threadlist[3];
6338
6339 printf_filtered ("Remote Threadlist test\n");
6340 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6341 &result_count, &threadlist[0]))
6342 printf_filtered ("FAIL: threadlist test\n");
6343 else
6344 {
6345 threadref *scan = threadlist;
6346 threadref *limit = scan + result_count;
6347
6348 while (scan < limit)
6349 output_threadid (" thread ", scan++);
6350 }
6351 }
6352
6353 void
6354 display_thread_info (struct gdb_ext_thread_info *info)
6355 {
6356 output_threadid ("Threadid: ", &info->threadid);
6357 printf_filtered ("Name: %s\n ", info->shortname);
6358 printf_filtered ("State: %s\n", info->display);
6359 printf_filtered ("other: %s\n\n", info->more_display);
6360 }
6361
6362 int
6363 get_and_display_threadinfo (threadref *ref)
6364 {
6365 int result;
6366 int set;
6367 struct gdb_ext_thread_info threadinfo;
6368
6369 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6370 | TAG_MOREDISPLAY | TAG_DISPLAY;
6371 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6372 display_thread_info (&threadinfo);
6373 return result;
6374 }
6375
6376 static void
6377 threadinfo_test_cmd (char *cmd, int tty)
6378 {
6379 int athread = SAMPLE_THREAD;
6380 threadref thread;
6381 int set;
6382
6383 int_to_threadref (&thread, athread);
6384 printf_filtered ("Remote Threadinfo test\n");
6385 if (!get_and_display_threadinfo (&thread))
6386 printf_filtered ("FAIL cannot get thread info\n");
6387 }
6388
6389 static int
6390 thread_display_step (threadref *ref, void *context)
6391 {
6392 /* output_threadid(" threadstep ",ref); *//* simple test */
6393 return get_and_display_threadinfo (ref);
6394 }
6395
6396 static void
6397 threadlist_update_test_cmd (char *cmd, int tty)
6398 {
6399 printf_filtered ("Remote Threadlist update test\n");
6400 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6401 }
6402
6403 static void
6404 init_remote_threadtests (void)
6405 {
6406 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6407 Fetch and print the remote list of thread identifiers, one pkt only"));
6408 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6409 _("Fetch and display info about one thread"));
6410 add_com ("tset", class_obscure, threadset_test_cmd,
6411 _("Test setting to a different thread"));
6412 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6413 _("Iterate through updating all remote thread info"));
6414 add_com ("talive", class_obscure, threadalive_test,
6415 _(" Remote thread alive test "));
6416 }
6417
6418 #endif /* 0 */
6419
6420 /* Convert a thread ID to a string. Returns the string in a static
6421 buffer. */
6422
6423 static char *
6424 remote_pid_to_str (ptid_t ptid)
6425 {
6426 static char buf[32];
6427
6428 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6429 return buf;
6430 }
6431
6432 /* Get the address of the thread local variable in OBJFILE which is
6433 stored at OFFSET within the thread local storage for thread PTID. */
6434
6435 static CORE_ADDR
6436 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6437 {
6438 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6439 {
6440 struct remote_state *rs = get_remote_state ();
6441 char *p = rs->buf;
6442 enum packet_result result;
6443
6444 strcpy (p, "qGetTLSAddr:");
6445 p += strlen (p);
6446 p += hexnumstr (p, PIDGET (ptid));
6447 *p++ = ',';
6448 p += hexnumstr (p, offset);
6449 *p++ = ',';
6450 p += hexnumstr (p, lm);
6451 *p++ = '\0';
6452
6453 putpkt (rs->buf);
6454 getpkt (&rs->buf, &rs->buf_size, 0);
6455 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6456 if (result == PACKET_OK)
6457 {
6458 ULONGEST result;
6459
6460 unpack_varlen_hex (rs->buf, &result);
6461 return result;
6462 }
6463 else if (result == PACKET_UNKNOWN)
6464 throw_error (TLS_GENERIC_ERROR,
6465 _("Remote target doesn't support qGetTLSAddr packet"));
6466 else
6467 throw_error (TLS_GENERIC_ERROR,
6468 _("Remote target failed to process qGetTLSAddr request"));
6469 }
6470 else
6471 throw_error (TLS_GENERIC_ERROR,
6472 _("TLS not supported or disabled on this target"));
6473 /* Not reached. */
6474 return 0;
6475 }
6476
6477 /* Support for inferring a target description based on the current
6478 architecture and the size of a 'g' packet. While the 'g' packet
6479 can have any size (since optional registers can be left off the
6480 end), some sizes are easily recognizable given knowledge of the
6481 approximate architecture. */
6482
6483 struct remote_g_packet_guess
6484 {
6485 int bytes;
6486 const struct target_desc *tdesc;
6487 };
6488 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6489 DEF_VEC_O(remote_g_packet_guess_s);
6490
6491 struct remote_g_packet_data
6492 {
6493 VEC(remote_g_packet_guess_s) *guesses;
6494 };
6495
6496 static struct gdbarch_data *remote_g_packet_data_handle;
6497
6498 static void *
6499 remote_g_packet_data_init (struct obstack *obstack)
6500 {
6501 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6502 }
6503
6504 void
6505 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6506 const struct target_desc *tdesc)
6507 {
6508 struct remote_g_packet_data *data
6509 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6510 struct remote_g_packet_guess new_guess, *guess;
6511 int ix;
6512
6513 gdb_assert (tdesc != NULL);
6514
6515 for (ix = 0;
6516 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6517 ix++)
6518 if (guess->bytes == bytes)
6519 internal_error (__FILE__, __LINE__,
6520 "Duplicate g packet description added for size %d",
6521 bytes);
6522
6523 new_guess.bytes = bytes;
6524 new_guess.tdesc = tdesc;
6525 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6526 }
6527
6528 static const struct target_desc *
6529 remote_read_description (struct target_ops *target)
6530 {
6531 struct remote_g_packet_data *data
6532 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6533
6534 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6535 {
6536 struct remote_g_packet_guess *guess;
6537 int ix;
6538 int bytes = send_g_packet ();
6539
6540 for (ix = 0;
6541 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6542 ix++)
6543 if (guess->bytes == bytes)
6544 return guess->tdesc;
6545
6546 /* We discard the g packet. A minor optimization would be to
6547 hold on to it, and fill the register cache once we have selected
6548 an architecture, but it's too tricky to do safely. */
6549 }
6550
6551 return NULL;
6552 }
6553
6554 /* Remote file transfer support. This is host-initiated I/O, not
6555 target-initiated; for target-initiated, see remote-fileio.c. */
6556
6557 /* If *LEFT is at least the length of STRING, copy STRING to
6558 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6559 decrease *LEFT. Otherwise raise an error. */
6560
6561 static void
6562 remote_buffer_add_string (char **buffer, int *left, char *string)
6563 {
6564 int len = strlen (string);
6565
6566 if (len > *left)
6567 error (_("Packet too long for target."));
6568
6569 memcpy (*buffer, string, len);
6570 *buffer += len;
6571 *left -= len;
6572
6573 /* NUL-terminate the buffer as a convenience, if there is
6574 room. */
6575 if (*left)
6576 **buffer = '\0';
6577 }
6578
6579 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6580 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6581 decrease *LEFT. Otherwise raise an error. */
6582
6583 static void
6584 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6585 int len)
6586 {
6587 if (2 * len > *left)
6588 error (_("Packet too long for target."));
6589
6590 bin2hex (bytes, *buffer, len);
6591 *buffer += 2 * len;
6592 *left -= 2 * len;
6593
6594 /* NUL-terminate the buffer as a convenience, if there is
6595 room. */
6596 if (*left)
6597 **buffer = '\0';
6598 }
6599
6600 /* If *LEFT is large enough, convert VALUE to hex and add it to
6601 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6602 decrease *LEFT. Otherwise raise an error. */
6603
6604 static void
6605 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6606 {
6607 int len = hexnumlen (value);
6608
6609 if (len > *left)
6610 error (_("Packet too long for target."));
6611
6612 hexnumstr (*buffer, value);
6613 *buffer += len;
6614 *left -= len;
6615
6616 /* NUL-terminate the buffer as a convenience, if there is
6617 room. */
6618 if (*left)
6619 **buffer = '\0';
6620 }
6621
6622 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6623 value, *REMOTE_ERRNO to the remote error number or zero if none
6624 was included, and *ATTACHMENT to point to the start of the annex
6625 if any. The length of the packet isn't needed here; there may
6626 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6627
6628 Return 0 if the packet could be parsed, -1 if it could not. If
6629 -1 is returned, the other variables may not be initialized. */
6630
6631 static int
6632 remote_hostio_parse_result (char *buffer, int *retcode,
6633 int *remote_errno, char **attachment)
6634 {
6635 char *p, *p2;
6636
6637 *remote_errno = 0;
6638 *attachment = NULL;
6639
6640 if (buffer[0] != 'F')
6641 return -1;
6642
6643 errno = 0;
6644 *retcode = strtol (&buffer[1], &p, 16);
6645 if (errno != 0 || p == &buffer[1])
6646 return -1;
6647
6648 /* Check for ",errno". */
6649 if (*p == ',')
6650 {
6651 errno = 0;
6652 *remote_errno = strtol (p + 1, &p2, 16);
6653 if (errno != 0 || p + 1 == p2)
6654 return -1;
6655 p = p2;
6656 }
6657
6658 /* Check for ";attachment". If there is no attachment, the
6659 packet should end here. */
6660 if (*p == ';')
6661 {
6662 *attachment = p + 1;
6663 return 0;
6664 }
6665 else if (*p == '\0')
6666 return 0;
6667 else
6668 return -1;
6669 }
6670
6671 /* Send a prepared I/O packet to the target and read its response.
6672 The prepared packet is in the global RS->BUF before this function
6673 is called, and the answer is there when we return.
6674
6675 COMMAND_BYTES is the length of the request to send, which may include
6676 binary data. WHICH_PACKET is the packet configuration to check
6677 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6678 is set to the error number and -1 is returned. Otherwise the value
6679 returned by the function is returned.
6680
6681 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6682 attachment is expected; an error will be reported if there's a
6683 mismatch. If one is found, *ATTACHMENT will be set to point into
6684 the packet buffer and *ATTACHMENT_LEN will be set to the
6685 attachment's length. */
6686
6687 static int
6688 remote_hostio_send_command (int command_bytes, int which_packet,
6689 int *remote_errno, char **attachment,
6690 int *attachment_len)
6691 {
6692 struct remote_state *rs = get_remote_state ();
6693 int ret, bytes_read;
6694 char *attachment_tmp;
6695
6696 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6697 {
6698 *remote_errno = FILEIO_ENOSYS;
6699 return -1;
6700 }
6701
6702 putpkt_binary (rs->buf, command_bytes);
6703 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6704
6705 /* If it timed out, something is wrong. Don't try to parse the
6706 buffer. */
6707 if (bytes_read < 0)
6708 {
6709 *remote_errno = FILEIO_EINVAL;
6710 return -1;
6711 }
6712
6713 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6714 {
6715 case PACKET_ERROR:
6716 *remote_errno = FILEIO_EINVAL;
6717 return -1;
6718 case PACKET_UNKNOWN:
6719 *remote_errno = FILEIO_ENOSYS;
6720 return -1;
6721 case PACKET_OK:
6722 break;
6723 }
6724
6725 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6726 &attachment_tmp))
6727 {
6728 *remote_errno = FILEIO_EINVAL;
6729 return -1;
6730 }
6731
6732 /* Make sure we saw an attachment if and only if we expected one. */
6733 if ((attachment_tmp == NULL && attachment != NULL)
6734 || (attachment_tmp != NULL && attachment == NULL))
6735 {
6736 *remote_errno = FILEIO_EINVAL;
6737 return -1;
6738 }
6739
6740 /* If an attachment was found, it must point into the packet buffer;
6741 work out how many bytes there were. */
6742 if (attachment_tmp != NULL)
6743 {
6744 *attachment = attachment_tmp;
6745 *attachment_len = bytes_read - (*attachment - rs->buf);
6746 }
6747
6748 return ret;
6749 }
6750
6751 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6752 remote file descriptor, or -1 if an error occurs (and set
6753 *REMOTE_ERRNO). */
6754
6755 static int
6756 remote_hostio_open (const char *filename, int flags, int mode,
6757 int *remote_errno)
6758 {
6759 struct remote_state *rs = get_remote_state ();
6760 char *p = rs->buf;
6761 int left = get_remote_packet_size () - 1;
6762
6763 remote_buffer_add_string (&p, &left, "vFile:open:");
6764
6765 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6766 strlen (filename));
6767 remote_buffer_add_string (&p, &left, ",");
6768
6769 remote_buffer_add_int (&p, &left, flags);
6770 remote_buffer_add_string (&p, &left, ",");
6771
6772 remote_buffer_add_int (&p, &left, mode);
6773
6774 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6775 remote_errno, NULL, NULL);
6776 }
6777
6778 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6779 Return the number of bytes written, or -1 if an error occurs (and
6780 set *REMOTE_ERRNO). */
6781
6782 static int
6783 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6784 ULONGEST offset, int *remote_errno)
6785 {
6786 struct remote_state *rs = get_remote_state ();
6787 char *p = rs->buf;
6788 int left = get_remote_packet_size ();
6789 int out_len;
6790
6791 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6792
6793 remote_buffer_add_int (&p, &left, fd);
6794 remote_buffer_add_string (&p, &left, ",");
6795
6796 remote_buffer_add_int (&p, &left, offset);
6797 remote_buffer_add_string (&p, &left, ",");
6798
6799 p += remote_escape_output (write_buf, len, p, &out_len,
6800 get_remote_packet_size () - (p - rs->buf));
6801
6802 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6803 remote_errno, NULL, NULL);
6804 }
6805
6806 /* Read up to LEN bytes FD on the remote target into READ_BUF
6807 Return the number of bytes read, or -1 if an error occurs (and
6808 set *REMOTE_ERRNO). */
6809
6810 static int
6811 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6812 ULONGEST offset, int *remote_errno)
6813 {
6814 struct remote_state *rs = get_remote_state ();
6815 char *p = rs->buf;
6816 char *attachment;
6817 int left = get_remote_packet_size ();
6818 int ret, attachment_len;
6819 int read_len;
6820
6821 remote_buffer_add_string (&p, &left, "vFile:pread:");
6822
6823 remote_buffer_add_int (&p, &left, fd);
6824 remote_buffer_add_string (&p, &left, ",");
6825
6826 remote_buffer_add_int (&p, &left, len);
6827 remote_buffer_add_string (&p, &left, ",");
6828
6829 remote_buffer_add_int (&p, &left, offset);
6830
6831 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6832 remote_errno, &attachment,
6833 &attachment_len);
6834
6835 if (ret < 0)
6836 return ret;
6837
6838 read_len = remote_unescape_input (attachment, attachment_len,
6839 read_buf, len);
6840 if (read_len != ret)
6841 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6842
6843 return ret;
6844 }
6845
6846 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6847 (and set *REMOTE_ERRNO). */
6848
6849 static int
6850 remote_hostio_close (int fd, int *remote_errno)
6851 {
6852 struct remote_state *rs = get_remote_state ();
6853 char *p = rs->buf;
6854 int left = get_remote_packet_size () - 1;
6855
6856 remote_buffer_add_string (&p, &left, "vFile:close:");
6857
6858 remote_buffer_add_int (&p, &left, fd);
6859
6860 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6861 remote_errno, NULL, NULL);
6862 }
6863
6864 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6865 occurs (and set *REMOTE_ERRNO). */
6866
6867 static int
6868 remote_hostio_unlink (const char *filename, int *remote_errno)
6869 {
6870 struct remote_state *rs = get_remote_state ();
6871 char *p = rs->buf;
6872 int left = get_remote_packet_size () - 1;
6873
6874 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6875
6876 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6877 strlen (filename));
6878
6879 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6880 remote_errno, NULL, NULL);
6881 }
6882
6883 static int
6884 remote_fileio_errno_to_host (int errnum)
6885 {
6886 switch (errnum)
6887 {
6888 case FILEIO_EPERM:
6889 return EPERM;
6890 case FILEIO_ENOENT:
6891 return ENOENT;
6892 case FILEIO_EINTR:
6893 return EINTR;
6894 case FILEIO_EIO:
6895 return EIO;
6896 case FILEIO_EBADF:
6897 return EBADF;
6898 case FILEIO_EACCES:
6899 return EACCES;
6900 case FILEIO_EFAULT:
6901 return EFAULT;
6902 case FILEIO_EBUSY:
6903 return EBUSY;
6904 case FILEIO_EEXIST:
6905 return EEXIST;
6906 case FILEIO_ENODEV:
6907 return ENODEV;
6908 case FILEIO_ENOTDIR:
6909 return ENOTDIR;
6910 case FILEIO_EISDIR:
6911 return EISDIR;
6912 case FILEIO_EINVAL:
6913 return EINVAL;
6914 case FILEIO_ENFILE:
6915 return ENFILE;
6916 case FILEIO_EMFILE:
6917 return EMFILE;
6918 case FILEIO_EFBIG:
6919 return EFBIG;
6920 case FILEIO_ENOSPC:
6921 return ENOSPC;
6922 case FILEIO_ESPIPE:
6923 return ESPIPE;
6924 case FILEIO_EROFS:
6925 return EROFS;
6926 case FILEIO_ENOSYS:
6927 return ENOSYS;
6928 case FILEIO_ENAMETOOLONG:
6929 return ENAMETOOLONG;
6930 }
6931 return -1;
6932 }
6933
6934 static char *
6935 remote_hostio_error (int errnum)
6936 {
6937 int host_error = remote_fileio_errno_to_host (errnum);
6938
6939 if (host_error == -1)
6940 error (_("Unknown remote I/O error %d"), errnum);
6941 else
6942 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6943 }
6944
6945 static void
6946 fclose_cleanup (void *file)
6947 {
6948 fclose (file);
6949 }
6950
6951 static void
6952 remote_hostio_close_cleanup (void *opaque)
6953 {
6954 int fd = *(int *) opaque;
6955 int remote_errno;
6956
6957 remote_hostio_close (fd, &remote_errno);
6958 }
6959
6960 void
6961 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6962 {
6963 struct cleanup *back_to, *close_cleanup;
6964 int retcode, fd, remote_errno, bytes, io_size;
6965 FILE *file;
6966 gdb_byte *buffer;
6967 int bytes_in_buffer;
6968 int saw_eof;
6969 ULONGEST offset;
6970
6971 if (!remote_desc)
6972 error (_("command can only be used with remote target"));
6973
6974 file = fopen (local_file, "rb");
6975 if (file == NULL)
6976 perror_with_name (local_file);
6977 back_to = make_cleanup (fclose_cleanup, file);
6978
6979 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6980 | FILEIO_O_TRUNC),
6981 0700, &remote_errno);
6982 if (fd == -1)
6983 remote_hostio_error (remote_errno);
6984
6985 /* Send up to this many bytes at once. They won't all fit in the
6986 remote packet limit, so we'll transfer slightly fewer. */
6987 io_size = get_remote_packet_size ();
6988 buffer = xmalloc (io_size);
6989 make_cleanup (xfree, buffer);
6990
6991 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6992
6993 bytes_in_buffer = 0;
6994 saw_eof = 0;
6995 offset = 0;
6996 while (bytes_in_buffer || !saw_eof)
6997 {
6998 if (!saw_eof)
6999 {
7000 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7001 file);
7002 if (bytes == 0)
7003 {
7004 if (ferror (file))
7005 error (_("Error reading %s."), local_file);
7006 else
7007 {
7008 /* EOF. Unless there is something still in the
7009 buffer from the last iteration, we are done. */
7010 saw_eof = 1;
7011 if (bytes_in_buffer == 0)
7012 break;
7013 }
7014 }
7015 }
7016 else
7017 bytes = 0;
7018
7019 bytes += bytes_in_buffer;
7020 bytes_in_buffer = 0;
7021
7022 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7023
7024 if (retcode < 0)
7025 remote_hostio_error (remote_errno);
7026 else if (retcode == 0)
7027 error (_("Remote write of %d bytes returned 0!"), bytes);
7028 else if (retcode < bytes)
7029 {
7030 /* Short write. Save the rest of the read data for the next
7031 write. */
7032 bytes_in_buffer = bytes - retcode;
7033 memmove (buffer, buffer + retcode, bytes_in_buffer);
7034 }
7035
7036 offset += retcode;
7037 }
7038
7039 discard_cleanups (close_cleanup);
7040 if (remote_hostio_close (fd, &remote_errno))
7041 remote_hostio_error (remote_errno);
7042
7043 if (from_tty)
7044 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7045 do_cleanups (back_to);
7046 }
7047
7048 void
7049 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7050 {
7051 struct cleanup *back_to, *close_cleanup;
7052 int retcode, fd, remote_errno, bytes, io_size;
7053 FILE *file;
7054 gdb_byte *buffer;
7055 ULONGEST offset;
7056
7057 if (!remote_desc)
7058 error (_("command can only be used with remote target"));
7059
7060 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7061 if (fd == -1)
7062 remote_hostio_error (remote_errno);
7063
7064 file = fopen (local_file, "wb");
7065 if (file == NULL)
7066 perror_with_name (local_file);
7067 back_to = make_cleanup (fclose_cleanup, file);
7068
7069 /* Send up to this many bytes at once. They won't all fit in the
7070 remote packet limit, so we'll transfer slightly fewer. */
7071 io_size = get_remote_packet_size ();
7072 buffer = xmalloc (io_size);
7073 make_cleanup (xfree, buffer);
7074
7075 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7076
7077 offset = 0;
7078 while (1)
7079 {
7080 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7081 if (bytes == 0)
7082 /* Success, but no bytes, means end-of-file. */
7083 break;
7084 if (bytes == -1)
7085 remote_hostio_error (remote_errno);
7086
7087 offset += bytes;
7088
7089 bytes = fwrite (buffer, 1, bytes, file);
7090 if (bytes == 0)
7091 perror_with_name (local_file);
7092 }
7093
7094 discard_cleanups (close_cleanup);
7095 if (remote_hostio_close (fd, &remote_errno))
7096 remote_hostio_error (remote_errno);
7097
7098 if (from_tty)
7099 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7100 do_cleanups (back_to);
7101 }
7102
7103 void
7104 remote_file_delete (const char *remote_file, int from_tty)
7105 {
7106 int retcode, remote_errno;
7107
7108 if (!remote_desc)
7109 error (_("command can only be used with remote target"));
7110
7111 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7112 if (retcode == -1)
7113 remote_hostio_error (remote_errno);
7114
7115 if (from_tty)
7116 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7117 }
7118
7119 static void
7120 remote_put_command (char *args, int from_tty)
7121 {
7122 struct cleanup *back_to;
7123 char **argv;
7124
7125 argv = buildargv (args);
7126 if (argv == NULL)
7127 nomem (0);
7128 back_to = make_cleanup_freeargv (argv);
7129 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7130 error (_("Invalid parameters to remote put"));
7131
7132 remote_file_put (argv[0], argv[1], from_tty);
7133
7134 do_cleanups (back_to);
7135 }
7136
7137 static void
7138 remote_get_command (char *args, int from_tty)
7139 {
7140 struct cleanup *back_to;
7141 char **argv;
7142
7143 argv = buildargv (args);
7144 if (argv == NULL)
7145 nomem (0);
7146 back_to = make_cleanup_freeargv (argv);
7147 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7148 error (_("Invalid parameters to remote get"));
7149
7150 remote_file_get (argv[0], argv[1], from_tty);
7151
7152 do_cleanups (back_to);
7153 }
7154
7155 static void
7156 remote_delete_command (char *args, int from_tty)
7157 {
7158 struct cleanup *back_to;
7159 char **argv;
7160
7161 argv = buildargv (args);
7162 if (argv == NULL)
7163 nomem (0);
7164 back_to = make_cleanup_freeargv (argv);
7165 if (argv[0] == NULL || argv[1] != NULL)
7166 error (_("Invalid parameters to remote delete"));
7167
7168 remote_file_delete (argv[0], from_tty);
7169
7170 do_cleanups (back_to);
7171 }
7172
7173 static void
7174 remote_command (char *args, int from_tty)
7175 {
7176 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7177 }
7178
7179 static void
7180 init_remote_ops (void)
7181 {
7182 remote_ops.to_shortname = "remote";
7183 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7184 remote_ops.to_doc =
7185 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7186 Specify the serial device it is connected to\n\
7187 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7188 remote_ops.to_open = remote_open;
7189 remote_ops.to_close = remote_close;
7190 remote_ops.to_detach = remote_detach;
7191 remote_ops.to_disconnect = remote_disconnect;
7192 remote_ops.to_resume = remote_resume;
7193 remote_ops.to_wait = remote_wait;
7194 remote_ops.to_fetch_registers = remote_fetch_registers;
7195 remote_ops.to_store_registers = remote_store_registers;
7196 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7197 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7198 remote_ops.to_files_info = remote_files_info;
7199 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7200 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7201 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7202 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7203 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7204 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7205 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7206 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7207 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7208 remote_ops.to_kill = remote_kill;
7209 remote_ops.to_load = generic_load;
7210 remote_ops.to_mourn_inferior = remote_mourn;
7211 remote_ops.to_thread_alive = remote_thread_alive;
7212 remote_ops.to_find_new_threads = remote_threads_info;
7213 remote_ops.to_pid_to_str = remote_pid_to_str;
7214 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7215 remote_ops.to_stop = remote_stop;
7216 remote_ops.to_xfer_partial = remote_xfer_partial;
7217 remote_ops.to_rcmd = remote_rcmd;
7218 remote_ops.to_log_command = serial_log_command;
7219 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7220 remote_ops.to_stratum = process_stratum;
7221 remote_ops.to_has_all_memory = 1;
7222 remote_ops.to_has_memory = 1;
7223 remote_ops.to_has_stack = 1;
7224 remote_ops.to_has_registers = 1;
7225 remote_ops.to_has_execution = 1;
7226 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7227 remote_ops.to_magic = OPS_MAGIC;
7228 remote_ops.to_memory_map = remote_memory_map;
7229 remote_ops.to_flash_erase = remote_flash_erase;
7230 remote_ops.to_flash_done = remote_flash_done;
7231 remote_ops.to_read_description = remote_read_description;
7232 }
7233
7234 /* Set up the extended remote vector by making a copy of the standard
7235 remote vector and adding to it. */
7236
7237 static void
7238 init_extended_remote_ops (void)
7239 {
7240 extended_remote_ops = remote_ops;
7241
7242 extended_remote_ops.to_shortname = "extended-remote";
7243 extended_remote_ops.to_longname =
7244 "Extended remote serial target in gdb-specific protocol";
7245 extended_remote_ops.to_doc =
7246 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7247 Specify the serial device it is connected to (e.g. /dev/ttya).",
7248 extended_remote_ops.to_open = extended_remote_open;
7249 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7250 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7251 extended_remote_ops.to_detach = extended_remote_detach;
7252 extended_remote_ops.to_attach = extended_remote_attach;
7253 }
7254
7255 static int
7256 remote_can_async_p (void)
7257 {
7258 /* We're async whenever the serial device is. */
7259 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
7260 }
7261
7262 static int
7263 remote_is_async_p (void)
7264 {
7265 /* We're async whenever the serial device is. */
7266 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
7267 }
7268
7269 /* Pass the SERIAL event on and up to the client. One day this code
7270 will be able to delay notifying the client of an event until the
7271 point where an entire packet has been received. */
7272
7273 static void (*async_client_callback) (enum inferior_event_type event_type,
7274 void *context);
7275 static void *async_client_context;
7276 static serial_event_ftype remote_async_serial_handler;
7277
7278 static void
7279 remote_async_serial_handler (struct serial *scb, void *context)
7280 {
7281 /* Don't propogate error information up to the client. Instead let
7282 the client find out about the error by querying the target. */
7283 async_client_callback (INF_REG_EVENT, async_client_context);
7284 }
7285
7286 static void
7287 remote_async (void (*callback) (enum inferior_event_type event_type,
7288 void *context), void *context)
7289 {
7290 if (current_target.to_async_mask_value == 0)
7291 internal_error (__FILE__, __LINE__,
7292 _("Calling remote_async when async is masked"));
7293
7294 if (callback != NULL)
7295 {
7296 serial_async (remote_desc, remote_async_serial_handler, NULL);
7297 async_client_callback = callback;
7298 async_client_context = context;
7299 }
7300 else
7301 serial_async (remote_desc, NULL, NULL);
7302 }
7303
7304 /* Target async and target extended-async.
7305
7306 This are temporary targets, until it is all tested. Eventually
7307 async support will be incorporated int the usual 'remote'
7308 target. */
7309
7310 static void
7311 init_remote_async_ops (void)
7312 {
7313 remote_async_ops.to_shortname = "async";
7314 remote_async_ops.to_longname =
7315 "Remote serial target in async version of the gdb-specific protocol";
7316 remote_async_ops.to_doc =
7317 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7318 Specify the serial device it is connected to (e.g. /dev/ttya).";
7319 remote_async_ops.to_open = remote_async_open;
7320 remote_async_ops.to_close = remote_close;
7321 remote_async_ops.to_detach = remote_detach;
7322 remote_async_ops.to_disconnect = remote_disconnect;
7323 remote_async_ops.to_resume = remote_async_resume;
7324 remote_async_ops.to_wait = remote_async_wait;
7325 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7326 remote_async_ops.to_store_registers = remote_store_registers;
7327 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7328 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7329 remote_async_ops.to_files_info = remote_files_info;
7330 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7331 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7332 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7333 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7334 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7335 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7336 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7337 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7338 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7339 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7340 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7341 remote_async_ops.to_kill = remote_async_kill;
7342 remote_async_ops.to_load = generic_load;
7343 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7344 remote_async_ops.to_thread_alive = remote_thread_alive;
7345 remote_async_ops.to_find_new_threads = remote_threads_info;
7346 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7347 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7348 remote_async_ops.to_stop = remote_stop;
7349 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7350 remote_async_ops.to_rcmd = remote_rcmd;
7351 remote_async_ops.to_get_thread_local_address
7352 = remote_get_thread_local_address;
7353 remote_async_ops.to_stratum = process_stratum;
7354 remote_async_ops.to_has_all_memory = 1;
7355 remote_async_ops.to_has_memory = 1;
7356 remote_async_ops.to_has_stack = 1;
7357 remote_async_ops.to_has_registers = 1;
7358 remote_async_ops.to_has_execution = 1;
7359 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7360 remote_async_ops.to_can_async_p = remote_can_async_p;
7361 remote_async_ops.to_is_async_p = remote_is_async_p;
7362 remote_async_ops.to_async = remote_async;
7363 remote_async_ops.to_async_mask_value = 1;
7364 remote_async_ops.to_magic = OPS_MAGIC;
7365 remote_async_ops.to_memory_map = remote_memory_map;
7366 remote_async_ops.to_flash_erase = remote_flash_erase;
7367 remote_async_ops.to_flash_done = remote_flash_done;
7368 remote_async_ops.to_read_description = remote_read_description;
7369 }
7370
7371 /* Set up the async extended remote vector by making a copy of the standard
7372 remote vector and adding to it. */
7373
7374 static void
7375 init_extended_async_remote_ops (void)
7376 {
7377 extended_async_remote_ops = remote_async_ops;
7378
7379 extended_async_remote_ops.to_shortname = "extended-async";
7380 extended_async_remote_ops.to_longname =
7381 "Extended remote serial target in async gdb-specific protocol";
7382 extended_async_remote_ops.to_doc =
7383 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7384 Specify the serial device it is connected to (e.g. /dev/ttya).",
7385 extended_async_remote_ops.to_open = extended_remote_async_open;
7386 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7387 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7388 extended_async_remote_ops.to_detach = extended_remote_detach;
7389 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7390 }
7391
7392 static void
7393 set_remote_cmd (char *args, int from_tty)
7394 {
7395 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7396 }
7397
7398 static void
7399 show_remote_cmd (char *args, int from_tty)
7400 {
7401 /* We can't just use cmd_show_list here, because we want to skip
7402 the redundant "show remote Z-packet" and the legacy aliases. */
7403 struct cleanup *showlist_chain;
7404 struct cmd_list_element *list = remote_show_cmdlist;
7405
7406 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7407 for (; list != NULL; list = list->next)
7408 if (strcmp (list->name, "Z-packet") == 0)
7409 continue;
7410 else if (list->type == not_set_cmd)
7411 /* Alias commands are exactly like the original, except they
7412 don't have the normal type. */
7413 continue;
7414 else
7415 {
7416 struct cleanup *option_chain
7417 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7418 ui_out_field_string (uiout, "name", list->name);
7419 ui_out_text (uiout, ": ");
7420 if (list->type == show_cmd)
7421 do_setshow_command ((char *) NULL, from_tty, list);
7422 else
7423 cmd_func (list, NULL, from_tty);
7424 /* Close the tuple. */
7425 do_cleanups (option_chain);
7426 }
7427
7428 /* Close the tuple. */
7429 do_cleanups (showlist_chain);
7430 }
7431
7432
7433 /* Function to be called whenever a new objfile (shlib) is detected. */
7434 static void
7435 remote_new_objfile (struct objfile *objfile)
7436 {
7437 if (remote_desc != 0) /* Have a remote connection. */
7438 remote_check_symbols (objfile);
7439 }
7440
7441 void
7442 _initialize_remote (void)
7443 {
7444 struct remote_state *rs;
7445
7446 /* architecture specific data */
7447 remote_gdbarch_data_handle =
7448 gdbarch_data_register_post_init (init_remote_state);
7449 remote_g_packet_data_handle =
7450 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7451
7452 /* Initialize the per-target state. At the moment there is only one
7453 of these, not one per target. Only one target is active at a
7454 time. The default buffer size is unimportant; it will be expanded
7455 whenever a larger buffer is needed. */
7456 rs = get_remote_state_raw ();
7457 rs->buf_size = 400;
7458 rs->buf = xmalloc (rs->buf_size);
7459
7460 init_remote_ops ();
7461 add_target (&remote_ops);
7462
7463 init_extended_remote_ops ();
7464 add_target (&extended_remote_ops);
7465
7466 init_remote_async_ops ();
7467 add_target (&remote_async_ops);
7468
7469 init_extended_async_remote_ops ();
7470 add_target (&extended_async_remote_ops);
7471
7472 /* Hook into new objfile notification. */
7473 observer_attach_new_objfile (remote_new_objfile);
7474
7475 /* Set up signal handlers. */
7476 sigint_remote_token =
7477 create_async_signal_handler (async_remote_interrupt, NULL);
7478 sigint_remote_twice_token =
7479 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7480
7481 #if 0
7482 init_remote_threadtests ();
7483 #endif
7484
7485 /* set/show remote ... */
7486
7487 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7488 Remote protocol specific variables\n\
7489 Configure various remote-protocol specific variables such as\n\
7490 the packets being used"),
7491 &remote_set_cmdlist, "set remote ",
7492 0 /* allow-unknown */, &setlist);
7493 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7494 Remote protocol specific variables\n\
7495 Configure various remote-protocol specific variables such as\n\
7496 the packets being used"),
7497 &remote_show_cmdlist, "show remote ",
7498 0 /* allow-unknown */, &showlist);
7499
7500 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7501 Compare section data on target to the exec file.\n\
7502 Argument is a single section name (default: all loaded sections)."),
7503 &cmdlist);
7504
7505 add_cmd ("packet", class_maintenance, packet_command, _("\
7506 Send an arbitrary packet to a remote target.\n\
7507 maintenance packet TEXT\n\
7508 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7509 this command sends the string TEXT to the inferior, and displays the\n\
7510 response packet. GDB supplies the initial `$' character, and the\n\
7511 terminating `#' character and checksum."),
7512 &maintenancelist);
7513
7514 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7515 Set whether to send break if interrupted."), _("\
7516 Show whether to send break if interrupted."), _("\
7517 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7518 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7519 &setlist, &showlist);
7520
7521 /* Install commands for configuring memory read/write packets. */
7522
7523 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7524 Set the maximum number of bytes per memory write packet (deprecated)."),
7525 &setlist);
7526 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7527 Show the maximum number of bytes per memory write packet (deprecated)."),
7528 &showlist);
7529 add_cmd ("memory-write-packet-size", no_class,
7530 set_memory_write_packet_size, _("\
7531 Set the maximum number of bytes per memory-write packet.\n\
7532 Specify the number of bytes in a packet or 0 (zero) for the\n\
7533 default packet size. The actual limit is further reduced\n\
7534 dependent on the target. Specify ``fixed'' to disable the\n\
7535 further restriction and ``limit'' to enable that restriction."),
7536 &remote_set_cmdlist);
7537 add_cmd ("memory-read-packet-size", no_class,
7538 set_memory_read_packet_size, _("\
7539 Set the maximum number of bytes per memory-read packet.\n\
7540 Specify the number of bytes in a packet or 0 (zero) for the\n\
7541 default packet size. The actual limit is further reduced\n\
7542 dependent on the target. Specify ``fixed'' to disable the\n\
7543 further restriction and ``limit'' to enable that restriction."),
7544 &remote_set_cmdlist);
7545 add_cmd ("memory-write-packet-size", no_class,
7546 show_memory_write_packet_size,
7547 _("Show the maximum number of bytes per memory-write packet."),
7548 &remote_show_cmdlist);
7549 add_cmd ("memory-read-packet-size", no_class,
7550 show_memory_read_packet_size,
7551 _("Show the maximum number of bytes per memory-read packet."),
7552 &remote_show_cmdlist);
7553
7554 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7555 &remote_hw_watchpoint_limit, _("\
7556 Set the maximum number of target hardware watchpoints."), _("\
7557 Show the maximum number of target hardware watchpoints."), _("\
7558 Specify a negative limit for unlimited."),
7559 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7560 &remote_set_cmdlist, &remote_show_cmdlist);
7561 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7562 &remote_hw_breakpoint_limit, _("\
7563 Set the maximum number of target hardware breakpoints."), _("\
7564 Show the maximum number of target hardware breakpoints."), _("\
7565 Specify a negative limit for unlimited."),
7566 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7567 &remote_set_cmdlist, &remote_show_cmdlist);
7568
7569 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7570 &remote_address_size, _("\
7571 Set the maximum size of the address (in bits) in a memory packet."), _("\
7572 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7573 NULL,
7574 NULL, /* FIXME: i18n: */
7575 &setlist, &showlist);
7576
7577 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7578 "X", "binary-download", 1);
7579
7580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7581 "vCont", "verbose-resume", 0);
7582
7583 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7584 "QPassSignals", "pass-signals", 0);
7585
7586 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7587 "qSymbol", "symbol-lookup", 0);
7588
7589 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7590 "P", "set-register", 1);
7591
7592 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7593 "p", "fetch-register", 1);
7594
7595 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7596 "Z0", "software-breakpoint", 0);
7597
7598 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7599 "Z1", "hardware-breakpoint", 0);
7600
7601 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7602 "Z2", "write-watchpoint", 0);
7603
7604 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7605 "Z3", "read-watchpoint", 0);
7606
7607 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7608 "Z4", "access-watchpoint", 0);
7609
7610 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7611 "qXfer:auxv:read", "read-aux-vector", 0);
7612
7613 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7614 "qXfer:features:read", "target-features", 0);
7615
7616 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7617 "qXfer:libraries:read", "library-info", 0);
7618
7619 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7620 "qXfer:memory-map:read", "memory-map", 0);
7621
7622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7623 "qXfer:spu:read", "read-spu-object", 0);
7624
7625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7626 "qXfer:spu:write", "write-spu-object", 0);
7627
7628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7629 "qGetTLSAddr", "get-thread-local-storage-address",
7630 0);
7631
7632 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7633 "qSupported", "supported-packets", 0);
7634
7635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7636 "vFile:open", "hostio-open", 0);
7637
7638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7639 "vFile:pread", "hostio-pread", 0);
7640
7641 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7642 "vFile:pwrite", "hostio-pwrite", 0);
7643
7644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7645 "vFile:close", "hostio-close", 0);
7646
7647 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7648 "vFile:unlink", "hostio-unlink", 0);
7649
7650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7651 "vAttach", "attach", 0);
7652
7653 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7654 "vRun", "run", 0);
7655
7656 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7657 Z sub-packet has its own set and show commands, but users may
7658 have sets to this variable in their .gdbinit files (or in their
7659 documentation). */
7660 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7661 &remote_Z_packet_detect, _("\
7662 Set use of remote protocol `Z' packets"), _("\
7663 Show use of remote protocol `Z' packets "), _("\
7664 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7665 packets."),
7666 set_remote_protocol_Z_packet_cmd,
7667 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7668 &remote_set_cmdlist, &remote_show_cmdlist);
7669
7670 add_prefix_cmd ("remote", class_files, remote_command, _("\
7671 Manipulate files on the remote system\n\
7672 Transfer files to and from the remote target system."),
7673 &remote_cmdlist, "remote ",
7674 0 /* allow-unknown */, &cmdlist);
7675
7676 add_cmd ("put", class_files, remote_put_command,
7677 _("Copy a local file to the remote system."),
7678 &remote_cmdlist);
7679
7680 add_cmd ("get", class_files, remote_get_command,
7681 _("Copy a remote file to the local system."),
7682 &remote_cmdlist);
7683
7684 add_cmd ("delete", class_files, remote_delete_command,
7685 _("Delete a remote file."),
7686 &remote_cmdlist);
7687
7688 remote_exec_file = xstrdup ("");
7689 add_setshow_string_noescape_cmd ("exec-file", class_files,
7690 &remote_exec_file, _("\
7691 Set the remote pathname for \"run\""), _("\
7692 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7693 &remote_set_cmdlist, &remote_show_cmdlist);
7694
7695 /* Eventually initialize fileio. See fileio.c */
7696 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7697 }
This page took 0.197018 seconds and 4 git commands to generate.