* dw2-ref-missing-frame.S, dw2-ref-missing-frame.exp: New files.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static int remote_async_mask_value = 1;
485
486 static struct target_ops extended_async_remote_ops;
487
488 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
489 ``forever'' still use the normal timeout mechanism. This is
490 currently used by the ASYNC code to guarentee that target reads
491 during the initial connect always time-out. Once getpkt has been
492 modified to return a timeout indication and, in turn
493 remote_wait()/wait_for_inferior() have gained a timeout parameter
494 this can go away. */
495 static int wait_forever_enabled_p = 1;
496
497
498 /* This variable chooses whether to send a ^C or a break when the user
499 requests program interruption. Although ^C is usually what remote
500 systems expect, and that is the default here, sometimes a break is
501 preferable instead. */
502
503 static int remote_break;
504
505 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
506 remote_open knows that we don't have a file open when the program
507 starts. */
508 static struct serial *remote_desc = NULL;
509
510 /* This variable sets the number of bits in an address that are to be
511 sent in a memory ("M" or "m") packet. Normally, after stripping
512 leading zeros, the entire address would be sent. This variable
513 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
514 initial implementation of remote.c restricted the address sent in
515 memory packets to ``host::sizeof long'' bytes - (typically 32
516 bits). Consequently, for 64 bit targets, the upper 32 bits of an
517 address was never sent. Since fixing this bug may cause a break in
518 some remote targets this variable is principly provided to
519 facilitate backward compatibility. */
520
521 static int remote_address_size;
522
523 /* Tempoary to track who currently owns the terminal. See
524 target_async_terminal_* for more details. */
525
526 static int remote_async_terminal_ours_p;
527
528 /* The executable file to use for "run" on the remote side. */
529
530 static char *remote_exec_file = "";
531
532 \f
533 /* User configurable variables for the number of characters in a
534 memory read/write packet. MIN (rsa->remote_packet_size,
535 rsa->sizeof_g_packet) is the default. Some targets need smaller
536 values (fifo overruns, et.al.) and some users need larger values
537 (speed up transfers). The variables ``preferred_*'' (the user
538 request), ``current_*'' (what was actually set) and ``forced_*''
539 (Positive - a soft limit, negative - a hard limit). */
540
541 struct memory_packet_config
542 {
543 char *name;
544 long size;
545 int fixed_p;
546 };
547
548 /* Compute the current size of a read/write packet. Since this makes
549 use of ``actual_register_packet_size'' the computation is dynamic. */
550
551 static long
552 get_memory_packet_size (struct memory_packet_config *config)
553 {
554 struct remote_state *rs = get_remote_state ();
555 struct remote_arch_state *rsa = get_remote_arch_state ();
556
557 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
558 law?) that some hosts don't cope very well with large alloca()
559 calls. Eventually the alloca() code will be replaced by calls to
560 xmalloc() and make_cleanups() allowing this restriction to either
561 be lifted or removed. */
562 #ifndef MAX_REMOTE_PACKET_SIZE
563 #define MAX_REMOTE_PACKET_SIZE 16384
564 #endif
565 /* NOTE: 20 ensures we can write at least one byte. */
566 #ifndef MIN_REMOTE_PACKET_SIZE
567 #define MIN_REMOTE_PACKET_SIZE 20
568 #endif
569 long what_they_get;
570 if (config->fixed_p)
571 {
572 if (config->size <= 0)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 else
575 what_they_get = config->size;
576 }
577 else
578 {
579 what_they_get = get_remote_packet_size ();
580 /* Limit the packet to the size specified by the user. */
581 if (config->size > 0
582 && what_they_get > config->size)
583 what_they_get = config->size;
584
585 /* Limit it to the size of the targets ``g'' response unless we have
586 permission from the stub to use a larger packet size. */
587 if (rs->explicit_packet_size == 0
588 && rsa->actual_register_packet_size > 0
589 && what_they_get > rsa->actual_register_packet_size)
590 what_they_get = rsa->actual_register_packet_size;
591 }
592 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
593 what_they_get = MAX_REMOTE_PACKET_SIZE;
594 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
595 what_they_get = MIN_REMOTE_PACKET_SIZE;
596
597 /* Make sure there is room in the global buffer for this packet
598 (including its trailing NUL byte). */
599 if (rs->buf_size < what_they_get + 1)
600 {
601 rs->buf_size = 2 * what_they_get;
602 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
603 }
604
605 return what_they_get;
606 }
607
608 /* Update the size of a read/write packet. If they user wants
609 something really big then do a sanity check. */
610
611 static void
612 set_memory_packet_size (char *args, struct memory_packet_config *config)
613 {
614 int fixed_p = config->fixed_p;
615 long size = config->size;
616 if (args == NULL)
617 error (_("Argument required (integer, `fixed' or `limited')."));
618 else if (strcmp (args, "hard") == 0
619 || strcmp (args, "fixed") == 0)
620 fixed_p = 1;
621 else if (strcmp (args, "soft") == 0
622 || strcmp (args, "limit") == 0)
623 fixed_p = 0;
624 else
625 {
626 char *end;
627 size = strtoul (args, &end, 0);
628 if (args == end)
629 error (_("Invalid %s (bad syntax)."), config->name);
630 #if 0
631 /* Instead of explicitly capping the size of a packet to
632 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
633 instead allowed to set the size to something arbitrarily
634 large. */
635 if (size > MAX_REMOTE_PACKET_SIZE)
636 error (_("Invalid %s (too large)."), config->name);
637 #endif
638 }
639 /* Extra checks? */
640 if (fixed_p && !config->fixed_p)
641 {
642 if (! query (_("The target may not be able to correctly handle a %s\n"
643 "of %ld bytes. Change the packet size? "),
644 config->name, size))
645 error (_("Packet size not changed."));
646 }
647 /* Update the config. */
648 config->fixed_p = fixed_p;
649 config->size = size;
650 }
651
652 static void
653 show_memory_packet_size (struct memory_packet_config *config)
654 {
655 printf_filtered (_("The %s is %ld. "), config->name, config->size);
656 if (config->fixed_p)
657 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
658 get_memory_packet_size (config));
659 else
660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
661 get_memory_packet_size (config));
662 }
663
664 static struct memory_packet_config memory_write_packet_config =
665 {
666 "memory-write-packet-size",
667 };
668
669 static void
670 set_memory_write_packet_size (char *args, int from_tty)
671 {
672 set_memory_packet_size (args, &memory_write_packet_config);
673 }
674
675 static void
676 show_memory_write_packet_size (char *args, int from_tty)
677 {
678 show_memory_packet_size (&memory_write_packet_config);
679 }
680
681 static long
682 get_memory_write_packet_size (void)
683 {
684 return get_memory_packet_size (&memory_write_packet_config);
685 }
686
687 static struct memory_packet_config memory_read_packet_config =
688 {
689 "memory-read-packet-size",
690 };
691
692 static void
693 set_memory_read_packet_size (char *args, int from_tty)
694 {
695 set_memory_packet_size (args, &memory_read_packet_config);
696 }
697
698 static void
699 show_memory_read_packet_size (char *args, int from_tty)
700 {
701 show_memory_packet_size (&memory_read_packet_config);
702 }
703
704 static long
705 get_memory_read_packet_size (void)
706 {
707 long size = get_memory_packet_size (&memory_read_packet_config);
708 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
709 extra buffer size argument before the memory read size can be
710 increased beyond this. */
711 if (size > get_remote_packet_size ())
712 size = get_remote_packet_size ();
713 return size;
714 }
715
716 \f
717 /* Generic configuration support for packets the stub optionally
718 supports. Allows the user to specify the use of the packet as well
719 as allowing GDB to auto-detect support in the remote stub. */
720
721 enum packet_support
722 {
723 PACKET_SUPPORT_UNKNOWN = 0,
724 PACKET_ENABLE,
725 PACKET_DISABLE
726 };
727
728 struct packet_config
729 {
730 const char *name;
731 const char *title;
732 enum auto_boolean detect;
733 enum packet_support support;
734 };
735
736 /* Analyze a packet's return value and update the packet config
737 accordingly. */
738
739 enum packet_result
740 {
741 PACKET_ERROR,
742 PACKET_OK,
743 PACKET_UNKNOWN
744 };
745
746 static void
747 update_packet_config (struct packet_config *config)
748 {
749 switch (config->detect)
750 {
751 case AUTO_BOOLEAN_TRUE:
752 config->support = PACKET_ENABLE;
753 break;
754 case AUTO_BOOLEAN_FALSE:
755 config->support = PACKET_DISABLE;
756 break;
757 case AUTO_BOOLEAN_AUTO:
758 config->support = PACKET_SUPPORT_UNKNOWN;
759 break;
760 }
761 }
762
763 static void
764 show_packet_config_cmd (struct packet_config *config)
765 {
766 char *support = "internal-error";
767 switch (config->support)
768 {
769 case PACKET_ENABLE:
770 support = "enabled";
771 break;
772 case PACKET_DISABLE:
773 support = "disabled";
774 break;
775 case PACKET_SUPPORT_UNKNOWN:
776 support = "unknown";
777 break;
778 }
779 switch (config->detect)
780 {
781 case AUTO_BOOLEAN_AUTO:
782 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
783 config->name, support);
784 break;
785 case AUTO_BOOLEAN_TRUE:
786 case AUTO_BOOLEAN_FALSE:
787 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
788 config->name, support);
789 break;
790 }
791 }
792
793 static void
794 add_packet_config_cmd (struct packet_config *config, const char *name,
795 const char *title, int legacy)
796 {
797 char *set_doc;
798 char *show_doc;
799 char *cmd_name;
800
801 config->name = name;
802 config->title = title;
803 config->detect = AUTO_BOOLEAN_AUTO;
804 config->support = PACKET_SUPPORT_UNKNOWN;
805 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
806 name, title);
807 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
808 name, title);
809 /* set/show TITLE-packet {auto,on,off} */
810 cmd_name = xstrprintf ("%s-packet", title);
811 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
812 &config->detect, set_doc, show_doc, NULL, /* help_doc */
813 set_remote_protocol_packet_cmd,
814 show_remote_protocol_packet_cmd,
815 &remote_set_cmdlist, &remote_show_cmdlist);
816 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
817 if (legacy)
818 {
819 char *legacy_name;
820 legacy_name = xstrprintf ("%s-packet", name);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_set_cmdlist);
823 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
824 &remote_show_cmdlist);
825 }
826 }
827
828 static enum packet_result
829 packet_check_result (const char *buf)
830 {
831 if (buf[0] != '\0')
832 {
833 /* The stub recognized the packet request. Check that the
834 operation succeeded. */
835 if (buf[0] == 'E'
836 && isxdigit (buf[1]) && isxdigit (buf[2])
837 && buf[3] == '\0')
838 /* "Enn" - definitly an error. */
839 return PACKET_ERROR;
840
841 /* Always treat "E." as an error. This will be used for
842 more verbose error messages, such as E.memtypes. */
843 if (buf[0] == 'E' && buf[1] == '.')
844 return PACKET_ERROR;
845
846 /* The packet may or may not be OK. Just assume it is. */
847 return PACKET_OK;
848 }
849 else
850 /* The stub does not support the packet. */
851 return PACKET_UNKNOWN;
852 }
853
854 static enum packet_result
855 packet_ok (const char *buf, struct packet_config *config)
856 {
857 enum packet_result result;
858
859 result = packet_check_result (buf);
860 switch (result)
861 {
862 case PACKET_OK:
863 case PACKET_ERROR:
864 /* The stub recognized the packet request. */
865 switch (config->support)
866 {
867 case PACKET_SUPPORT_UNKNOWN:
868 if (remote_debug)
869 fprintf_unfiltered (gdb_stdlog,
870 "Packet %s (%s) is supported\n",
871 config->name, config->title);
872 config->support = PACKET_ENABLE;
873 break;
874 case PACKET_DISABLE:
875 internal_error (__FILE__, __LINE__,
876 _("packet_ok: attempt to use a disabled packet"));
877 break;
878 case PACKET_ENABLE:
879 break;
880 }
881 break;
882 case PACKET_UNKNOWN:
883 /* The stub does not support the packet. */
884 switch (config->support)
885 {
886 case PACKET_ENABLE:
887 if (config->detect == AUTO_BOOLEAN_AUTO)
888 /* If the stub previously indicated that the packet was
889 supported then there is a protocol error.. */
890 error (_("Protocol error: %s (%s) conflicting enabled responses."),
891 config->name, config->title);
892 else
893 /* The user set it wrong. */
894 error (_("Enabled packet %s (%s) not recognized by stub"),
895 config->name, config->title);
896 break;
897 case PACKET_SUPPORT_UNKNOWN:
898 if (remote_debug)
899 fprintf_unfiltered (gdb_stdlog,
900 "Packet %s (%s) is NOT supported\n",
901 config->name, config->title);
902 config->support = PACKET_DISABLE;
903 break;
904 case PACKET_DISABLE:
905 break;
906 }
907 break;
908 }
909
910 return result;
911 }
912
913 enum {
914 PACKET_vCont = 0,
915 PACKET_X,
916 PACKET_qSymbol,
917 PACKET_P,
918 PACKET_p,
919 PACKET_Z0,
920 PACKET_Z1,
921 PACKET_Z2,
922 PACKET_Z3,
923 PACKET_Z4,
924 PACKET_vFile_open,
925 PACKET_vFile_pread,
926 PACKET_vFile_pwrite,
927 PACKET_vFile_close,
928 PACKET_vFile_unlink,
929 PACKET_qXfer_auxv,
930 PACKET_qXfer_features,
931 PACKET_qXfer_libraries,
932 PACKET_qXfer_memory_map,
933 PACKET_qXfer_spu_read,
934 PACKET_qXfer_spu_write,
935 PACKET_qGetTLSAddr,
936 PACKET_qSupported,
937 PACKET_QPassSignals,
938 PACKET_qSearch_memory,
939 PACKET_vAttach,
940 PACKET_vRun,
941 PACKET_MAX
942 };
943
944 static struct packet_config remote_protocol_packets[PACKET_MAX];
945
946 static void
947 set_remote_protocol_packet_cmd (char *args, int from_tty,
948 struct cmd_list_element *c)
949 {
950 struct packet_config *packet;
951
952 for (packet = remote_protocol_packets;
953 packet < &remote_protocol_packets[PACKET_MAX];
954 packet++)
955 {
956 if (&packet->detect == c->var)
957 {
958 update_packet_config (packet);
959 return;
960 }
961 }
962 internal_error (__FILE__, __LINE__, "Could not find config for %s",
963 c->name);
964 }
965
966 static void
967 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
968 struct cmd_list_element *c,
969 const char *value)
970 {
971 struct packet_config *packet;
972
973 for (packet = remote_protocol_packets;
974 packet < &remote_protocol_packets[PACKET_MAX];
975 packet++)
976 {
977 if (&packet->detect == c->var)
978 {
979 show_packet_config_cmd (packet);
980 return;
981 }
982 }
983 internal_error (__FILE__, __LINE__, "Could not find config for %s",
984 c->name);
985 }
986
987 /* Should we try one of the 'Z' requests? */
988
989 enum Z_packet_type
990 {
991 Z_PACKET_SOFTWARE_BP,
992 Z_PACKET_HARDWARE_BP,
993 Z_PACKET_WRITE_WP,
994 Z_PACKET_READ_WP,
995 Z_PACKET_ACCESS_WP,
996 NR_Z_PACKET_TYPES
997 };
998
999 /* For compatibility with older distributions. Provide a ``set remote
1000 Z-packet ...'' command that updates all the Z packet types. */
1001
1002 static enum auto_boolean remote_Z_packet_detect;
1003
1004 static void
1005 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1006 struct cmd_list_element *c)
1007 {
1008 int i;
1009 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1010 {
1011 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1012 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1013 }
1014 }
1015
1016 static void
1017 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1018 struct cmd_list_element *c,
1019 const char *value)
1020 {
1021 int i;
1022 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1023 {
1024 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1025 }
1026 }
1027
1028 /* Should we try the 'ThreadInfo' query packet?
1029
1030 This variable (NOT available to the user: auto-detect only!)
1031 determines whether GDB will use the new, simpler "ThreadInfo"
1032 query or the older, more complex syntax for thread queries.
1033 This is an auto-detect variable (set to true at each connect,
1034 and set to false when the target fails to recognize it). */
1035
1036 static int use_threadinfo_query;
1037 static int use_threadextra_query;
1038
1039 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1040 static struct async_signal_handler *sigint_remote_twice_token;
1041 static struct async_signal_handler *sigint_remote_token;
1042
1043 \f
1044
1045
1046 /* These are the threads which we last sent to the remote system.
1047 -1 for all or -2 for not sent yet. */
1048 static int general_thread;
1049 static int continue_thread;
1050
1051 /* Call this function as a result of
1052 1) A halt indication (T packet) containing a thread id
1053 2) A direct query of currthread
1054 3) Successful execution of set thread
1055 */
1056
1057 static void
1058 record_currthread (int currthread)
1059 {
1060 general_thread = currthread;
1061
1062 /* If this is a new thread, add it to GDB's thread list.
1063 If we leave it up to WFI to do this, bad things will happen. */
1064 if (!in_thread_list (pid_to_ptid (currthread)))
1065 add_thread (pid_to_ptid (currthread));
1066 }
1067
1068 static char *last_pass_packet;
1069
1070 /* If 'QPassSignals' is supported, tell the remote stub what signals
1071 it can simply pass through to the inferior without reporting. */
1072
1073 static void
1074 remote_pass_signals (void)
1075 {
1076 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1077 {
1078 char *pass_packet, *p;
1079 int numsigs = (int) TARGET_SIGNAL_LAST;
1080 int count = 0, i;
1081
1082 gdb_assert (numsigs < 256);
1083 for (i = 0; i < numsigs; i++)
1084 {
1085 if (signal_stop_state (i) == 0
1086 && signal_print_state (i) == 0
1087 && signal_pass_state (i) == 1)
1088 count++;
1089 }
1090 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1091 strcpy (pass_packet, "QPassSignals:");
1092 p = pass_packet + strlen (pass_packet);
1093 for (i = 0; i < numsigs; i++)
1094 {
1095 if (signal_stop_state (i) == 0
1096 && signal_print_state (i) == 0
1097 && signal_pass_state (i) == 1)
1098 {
1099 if (i >= 16)
1100 *p++ = tohex (i >> 4);
1101 *p++ = tohex (i & 15);
1102 if (count)
1103 *p++ = ';';
1104 else
1105 break;
1106 count--;
1107 }
1108 }
1109 *p = 0;
1110 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1111 {
1112 struct remote_state *rs = get_remote_state ();
1113 char *buf = rs->buf;
1114
1115 putpkt (pass_packet);
1116 getpkt (&rs->buf, &rs->buf_size, 0);
1117 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1118 if (last_pass_packet)
1119 xfree (last_pass_packet);
1120 last_pass_packet = pass_packet;
1121 }
1122 else
1123 xfree (pass_packet);
1124 }
1125 }
1126
1127 #define MAGIC_NULL_PID 42000
1128
1129 static void
1130 set_thread (int th, int gen)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133 char *buf = rs->buf;
1134 int state = gen ? general_thread : continue_thread;
1135
1136 if (state == th)
1137 return;
1138
1139 buf[0] = 'H';
1140 buf[1] = gen ? 'g' : 'c';
1141 if (th == MAGIC_NULL_PID)
1142 {
1143 buf[2] = '0';
1144 buf[3] = '\0';
1145 }
1146 else if (th < 0)
1147 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1148 else
1149 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1150 putpkt (buf);
1151 getpkt (&rs->buf, &rs->buf_size, 0);
1152 if (gen)
1153 general_thread = th;
1154 else
1155 continue_thread = th;
1156 }
1157 \f
1158 /* Return nonzero if the thread TH is still alive on the remote system. */
1159
1160 static int
1161 remote_thread_alive (ptid_t ptid)
1162 {
1163 struct remote_state *rs = get_remote_state ();
1164 int tid = PIDGET (ptid);
1165
1166 if (tid < 0)
1167 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1168 else
1169 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1170 putpkt (rs->buf);
1171 getpkt (&rs->buf, &rs->buf_size, 0);
1172 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1173 }
1174
1175 /* About these extended threadlist and threadinfo packets. They are
1176 variable length packets but, the fields within them are often fixed
1177 length. They are redundent enough to send over UDP as is the
1178 remote protocol in general. There is a matching unit test module
1179 in libstub. */
1180
1181 #define OPAQUETHREADBYTES 8
1182
1183 /* a 64 bit opaque identifier */
1184 typedef unsigned char threadref[OPAQUETHREADBYTES];
1185
1186 /* WARNING: This threadref data structure comes from the remote O.S.,
1187 libstub protocol encoding, and remote.c. it is not particularly
1188 changable. */
1189
1190 /* Right now, the internal structure is int. We want it to be bigger.
1191 Plan to fix this.
1192 */
1193
1194 typedef int gdb_threadref; /* Internal GDB thread reference. */
1195
1196 /* gdb_ext_thread_info is an internal GDB data structure which is
1197 equivalent to the reply of the remote threadinfo packet. */
1198
1199 struct gdb_ext_thread_info
1200 {
1201 threadref threadid; /* External form of thread reference. */
1202 int active; /* Has state interesting to GDB?
1203 regs, stack. */
1204 char display[256]; /* Brief state display, name,
1205 blocked/suspended. */
1206 char shortname[32]; /* To be used to name threads. */
1207 char more_display[256]; /* Long info, statistics, queue depth,
1208 whatever. */
1209 };
1210
1211 /* The volume of remote transfers can be limited by submitting
1212 a mask containing bits specifying the desired information.
1213 Use a union of these values as the 'selection' parameter to
1214 get_thread_info. FIXME: Make these TAG names more thread specific.
1215 */
1216
1217 #define TAG_THREADID 1
1218 #define TAG_EXISTS 2
1219 #define TAG_DISPLAY 4
1220 #define TAG_THREADNAME 8
1221 #define TAG_MOREDISPLAY 16
1222
1223 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1224
1225 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1226
1227 static char *unpack_nibble (char *buf, int *val);
1228
1229 static char *pack_nibble (char *buf, int nibble);
1230
1231 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1232
1233 static char *unpack_byte (char *buf, int *value);
1234
1235 static char *pack_int (char *buf, int value);
1236
1237 static char *unpack_int (char *buf, int *value);
1238
1239 static char *unpack_string (char *src, char *dest, int length);
1240
1241 static char *pack_threadid (char *pkt, threadref *id);
1242
1243 static char *unpack_threadid (char *inbuf, threadref *id);
1244
1245 void int_to_threadref (threadref *id, int value);
1246
1247 static int threadref_to_int (threadref *ref);
1248
1249 static void copy_threadref (threadref *dest, threadref *src);
1250
1251 static int threadmatch (threadref *dest, threadref *src);
1252
1253 static char *pack_threadinfo_request (char *pkt, int mode,
1254 threadref *id);
1255
1256 static int remote_unpack_thread_info_response (char *pkt,
1257 threadref *expectedref,
1258 struct gdb_ext_thread_info
1259 *info);
1260
1261
1262 static int remote_get_threadinfo (threadref *threadid,
1263 int fieldset, /*TAG mask */
1264 struct gdb_ext_thread_info *info);
1265
1266 static char *pack_threadlist_request (char *pkt, int startflag,
1267 int threadcount,
1268 threadref *nextthread);
1269
1270 static int parse_threadlist_response (char *pkt,
1271 int result_limit,
1272 threadref *original_echo,
1273 threadref *resultlist,
1274 int *doneflag);
1275
1276 static int remote_get_threadlist (int startflag,
1277 threadref *nextthread,
1278 int result_limit,
1279 int *done,
1280 int *result_count,
1281 threadref *threadlist);
1282
1283 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1284
1285 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1286 void *context, int looplimit);
1287
1288 static int remote_newthread_step (threadref *ref, void *context);
1289
1290 /* Encode 64 bits in 16 chars of hex. */
1291
1292 static const char hexchars[] = "0123456789abcdef";
1293
1294 static int
1295 ishex (int ch, int *val)
1296 {
1297 if ((ch >= 'a') && (ch <= 'f'))
1298 {
1299 *val = ch - 'a' + 10;
1300 return 1;
1301 }
1302 if ((ch >= 'A') && (ch <= 'F'))
1303 {
1304 *val = ch - 'A' + 10;
1305 return 1;
1306 }
1307 if ((ch >= '0') && (ch <= '9'))
1308 {
1309 *val = ch - '0';
1310 return 1;
1311 }
1312 return 0;
1313 }
1314
1315 static int
1316 stubhex (int ch)
1317 {
1318 if (ch >= 'a' && ch <= 'f')
1319 return ch - 'a' + 10;
1320 if (ch >= '0' && ch <= '9')
1321 return ch - '0';
1322 if (ch >= 'A' && ch <= 'F')
1323 return ch - 'A' + 10;
1324 return -1;
1325 }
1326
1327 static int
1328 stub_unpack_int (char *buff, int fieldlength)
1329 {
1330 int nibble;
1331 int retval = 0;
1332
1333 while (fieldlength)
1334 {
1335 nibble = stubhex (*buff++);
1336 retval |= nibble;
1337 fieldlength--;
1338 if (fieldlength)
1339 retval = retval << 4;
1340 }
1341 return retval;
1342 }
1343
1344 char *
1345 unpack_varlen_hex (char *buff, /* packet to parse */
1346 ULONGEST *result)
1347 {
1348 int nibble;
1349 ULONGEST retval = 0;
1350
1351 while (ishex (*buff, &nibble))
1352 {
1353 buff++;
1354 retval = retval << 4;
1355 retval |= nibble & 0x0f;
1356 }
1357 *result = retval;
1358 return buff;
1359 }
1360
1361 static char *
1362 unpack_nibble (char *buf, int *val)
1363 {
1364 *val = fromhex (*buf++);
1365 return buf;
1366 }
1367
1368 static char *
1369 pack_nibble (char *buf, int nibble)
1370 {
1371 *buf++ = hexchars[(nibble & 0x0f)];
1372 return buf;
1373 }
1374
1375 static char *
1376 pack_hex_byte (char *pkt, int byte)
1377 {
1378 *pkt++ = hexchars[(byte >> 4) & 0xf];
1379 *pkt++ = hexchars[(byte & 0xf)];
1380 return pkt;
1381 }
1382
1383 static char *
1384 unpack_byte (char *buf, int *value)
1385 {
1386 *value = stub_unpack_int (buf, 2);
1387 return buf + 2;
1388 }
1389
1390 static char *
1391 pack_int (char *buf, int value)
1392 {
1393 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1394 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1395 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1396 buf = pack_hex_byte (buf, (value & 0xff));
1397 return buf;
1398 }
1399
1400 static char *
1401 unpack_int (char *buf, int *value)
1402 {
1403 *value = stub_unpack_int (buf, 8);
1404 return buf + 8;
1405 }
1406
1407 #if 0 /* Currently unused, uncomment when needed. */
1408 static char *pack_string (char *pkt, char *string);
1409
1410 static char *
1411 pack_string (char *pkt, char *string)
1412 {
1413 char ch;
1414 int len;
1415
1416 len = strlen (string);
1417 if (len > 200)
1418 len = 200; /* Bigger than most GDB packets, junk??? */
1419 pkt = pack_hex_byte (pkt, len);
1420 while (len-- > 0)
1421 {
1422 ch = *string++;
1423 if ((ch == '\0') || (ch == '#'))
1424 ch = '*'; /* Protect encapsulation. */
1425 *pkt++ = ch;
1426 }
1427 return pkt;
1428 }
1429 #endif /* 0 (unused) */
1430
1431 static char *
1432 unpack_string (char *src, char *dest, int length)
1433 {
1434 while (length--)
1435 *dest++ = *src++;
1436 *dest = '\0';
1437 return src;
1438 }
1439
1440 static char *
1441 pack_threadid (char *pkt, threadref *id)
1442 {
1443 char *limit;
1444 unsigned char *altid;
1445
1446 altid = (unsigned char *) id;
1447 limit = pkt + BUF_THREAD_ID_SIZE;
1448 while (pkt < limit)
1449 pkt = pack_hex_byte (pkt, *altid++);
1450 return pkt;
1451 }
1452
1453
1454 static char *
1455 unpack_threadid (char *inbuf, threadref *id)
1456 {
1457 char *altref;
1458 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1459 int x, y;
1460
1461 altref = (char *) id;
1462
1463 while (inbuf < limit)
1464 {
1465 x = stubhex (*inbuf++);
1466 y = stubhex (*inbuf++);
1467 *altref++ = (x << 4) | y;
1468 }
1469 return inbuf;
1470 }
1471
1472 /* Externally, threadrefs are 64 bits but internally, they are still
1473 ints. This is due to a mismatch of specifications. We would like
1474 to use 64bit thread references internally. This is an adapter
1475 function. */
1476
1477 void
1478 int_to_threadref (threadref *id, int value)
1479 {
1480 unsigned char *scan;
1481
1482 scan = (unsigned char *) id;
1483 {
1484 int i = 4;
1485 while (i--)
1486 *scan++ = 0;
1487 }
1488 *scan++ = (value >> 24) & 0xff;
1489 *scan++ = (value >> 16) & 0xff;
1490 *scan++ = (value >> 8) & 0xff;
1491 *scan++ = (value & 0xff);
1492 }
1493
1494 static int
1495 threadref_to_int (threadref *ref)
1496 {
1497 int i, value = 0;
1498 unsigned char *scan;
1499
1500 scan = *ref;
1501 scan += 4;
1502 i = 4;
1503 while (i-- > 0)
1504 value = (value << 8) | ((*scan++) & 0xff);
1505 return value;
1506 }
1507
1508 static void
1509 copy_threadref (threadref *dest, threadref *src)
1510 {
1511 int i;
1512 unsigned char *csrc, *cdest;
1513
1514 csrc = (unsigned char *) src;
1515 cdest = (unsigned char *) dest;
1516 i = 8;
1517 while (i--)
1518 *cdest++ = *csrc++;
1519 }
1520
1521 static int
1522 threadmatch (threadref *dest, threadref *src)
1523 {
1524 /* Things are broken right now, so just assume we got a match. */
1525 #if 0
1526 unsigned char *srcp, *destp;
1527 int i, result;
1528 srcp = (char *) src;
1529 destp = (char *) dest;
1530
1531 result = 1;
1532 while (i-- > 0)
1533 result &= (*srcp++ == *destp++) ? 1 : 0;
1534 return result;
1535 #endif
1536 return 1;
1537 }
1538
1539 /*
1540 threadid:1, # always request threadid
1541 context_exists:2,
1542 display:4,
1543 unique_name:8,
1544 more_display:16
1545 */
1546
1547 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1548
1549 static char *
1550 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1551 {
1552 *pkt++ = 'q'; /* Info Query */
1553 *pkt++ = 'P'; /* process or thread info */
1554 pkt = pack_int (pkt, mode); /* mode */
1555 pkt = pack_threadid (pkt, id); /* threadid */
1556 *pkt = '\0'; /* terminate */
1557 return pkt;
1558 }
1559
1560 /* These values tag the fields in a thread info response packet. */
1561 /* Tagging the fields allows us to request specific fields and to
1562 add more fields as time goes by. */
1563
1564 #define TAG_THREADID 1 /* Echo the thread identifier. */
1565 #define TAG_EXISTS 2 /* Is this process defined enough to
1566 fetch registers and its stack? */
1567 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1568 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1569 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1570 the process. */
1571
1572 static int
1573 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1574 struct gdb_ext_thread_info *info)
1575 {
1576 struct remote_state *rs = get_remote_state ();
1577 int mask, length;
1578 int tag;
1579 threadref ref;
1580 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1581 int retval = 1;
1582
1583 /* info->threadid = 0; FIXME: implement zero_threadref. */
1584 info->active = 0;
1585 info->display[0] = '\0';
1586 info->shortname[0] = '\0';
1587 info->more_display[0] = '\0';
1588
1589 /* Assume the characters indicating the packet type have been
1590 stripped. */
1591 pkt = unpack_int (pkt, &mask); /* arg mask */
1592 pkt = unpack_threadid (pkt, &ref);
1593
1594 if (mask == 0)
1595 warning (_("Incomplete response to threadinfo request."));
1596 if (!threadmatch (&ref, expectedref))
1597 { /* This is an answer to a different request. */
1598 warning (_("ERROR RMT Thread info mismatch."));
1599 return 0;
1600 }
1601 copy_threadref (&info->threadid, &ref);
1602
1603 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1604
1605 /* Packets are terminated with nulls. */
1606 while ((pkt < limit) && mask && *pkt)
1607 {
1608 pkt = unpack_int (pkt, &tag); /* tag */
1609 pkt = unpack_byte (pkt, &length); /* length */
1610 if (!(tag & mask)) /* Tags out of synch with mask. */
1611 {
1612 warning (_("ERROR RMT: threadinfo tag mismatch."));
1613 retval = 0;
1614 break;
1615 }
1616 if (tag == TAG_THREADID)
1617 {
1618 if (length != 16)
1619 {
1620 warning (_("ERROR RMT: length of threadid is not 16."));
1621 retval = 0;
1622 break;
1623 }
1624 pkt = unpack_threadid (pkt, &ref);
1625 mask = mask & ~TAG_THREADID;
1626 continue;
1627 }
1628 if (tag == TAG_EXISTS)
1629 {
1630 info->active = stub_unpack_int (pkt, length);
1631 pkt += length;
1632 mask = mask & ~(TAG_EXISTS);
1633 if (length > 8)
1634 {
1635 warning (_("ERROR RMT: 'exists' length too long."));
1636 retval = 0;
1637 break;
1638 }
1639 continue;
1640 }
1641 if (tag == TAG_THREADNAME)
1642 {
1643 pkt = unpack_string (pkt, &info->shortname[0], length);
1644 mask = mask & ~TAG_THREADNAME;
1645 continue;
1646 }
1647 if (tag == TAG_DISPLAY)
1648 {
1649 pkt = unpack_string (pkt, &info->display[0], length);
1650 mask = mask & ~TAG_DISPLAY;
1651 continue;
1652 }
1653 if (tag == TAG_MOREDISPLAY)
1654 {
1655 pkt = unpack_string (pkt, &info->more_display[0], length);
1656 mask = mask & ~TAG_MOREDISPLAY;
1657 continue;
1658 }
1659 warning (_("ERROR RMT: unknown thread info tag."));
1660 break; /* Not a tag we know about. */
1661 }
1662 return retval;
1663 }
1664
1665 static int
1666 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1667 struct gdb_ext_thread_info *info)
1668 {
1669 struct remote_state *rs = get_remote_state ();
1670 int result;
1671
1672 pack_threadinfo_request (rs->buf, fieldset, threadid);
1673 putpkt (rs->buf);
1674 getpkt (&rs->buf, &rs->buf_size, 0);
1675 result = remote_unpack_thread_info_response (rs->buf + 2,
1676 threadid, info);
1677 return result;
1678 }
1679
1680 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1681
1682 static char *
1683 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1684 threadref *nextthread)
1685 {
1686 *pkt++ = 'q'; /* info query packet */
1687 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1688 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1689 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1690 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1691 *pkt = '\0';
1692 return pkt;
1693 }
1694
1695 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1696
1697 static int
1698 parse_threadlist_response (char *pkt, int result_limit,
1699 threadref *original_echo, threadref *resultlist,
1700 int *doneflag)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703 char *limit;
1704 int count, resultcount, done;
1705
1706 resultcount = 0;
1707 /* Assume the 'q' and 'M chars have been stripped. */
1708 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1709 /* done parse past here */
1710 pkt = unpack_byte (pkt, &count); /* count field */
1711 pkt = unpack_nibble (pkt, &done);
1712 /* The first threadid is the argument threadid. */
1713 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1714 while ((count-- > 0) && (pkt < limit))
1715 {
1716 pkt = unpack_threadid (pkt, resultlist++);
1717 if (resultcount++ >= result_limit)
1718 break;
1719 }
1720 if (doneflag)
1721 *doneflag = done;
1722 return resultcount;
1723 }
1724
1725 static int
1726 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1727 int *done, int *result_count, threadref *threadlist)
1728 {
1729 struct remote_state *rs = get_remote_state ();
1730 static threadref echo_nextthread;
1731 int result = 1;
1732
1733 /* Trancate result limit to be smaller than the packet size. */
1734 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1735 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1736
1737 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1738 putpkt (rs->buf);
1739 getpkt (&rs->buf, &rs->buf_size, 0);
1740
1741 if (*rs->buf == '\0')
1742 *result_count = 0;
1743 else
1744 *result_count =
1745 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1746 threadlist, done);
1747
1748 if (!threadmatch (&echo_nextthread, nextthread))
1749 {
1750 /* FIXME: This is a good reason to drop the packet. */
1751 /* Possably, there is a duplicate response. */
1752 /* Possabilities :
1753 retransmit immediatly - race conditions
1754 retransmit after timeout - yes
1755 exit
1756 wait for packet, then exit
1757 */
1758 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1759 return 0; /* I choose simply exiting. */
1760 }
1761 if (*result_count <= 0)
1762 {
1763 if (*done != 1)
1764 {
1765 warning (_("RMT ERROR : failed to get remote thread list."));
1766 result = 0;
1767 }
1768 return result; /* break; */
1769 }
1770 if (*result_count > result_limit)
1771 {
1772 *result_count = 0;
1773 warning (_("RMT ERROR: threadlist response longer than requested."));
1774 return 0;
1775 }
1776 return result;
1777 }
1778
1779 /* This is the interface between remote and threads, remotes upper
1780 interface. */
1781
1782 /* remote_find_new_threads retrieves the thread list and for each
1783 thread in the list, looks up the thread in GDB's internal list,
1784 ading the thread if it does not already exist. This involves
1785 getting partial thread lists from the remote target so, polling the
1786 quit_flag is required. */
1787
1788
1789 /* About this many threadisds fit in a packet. */
1790
1791 #define MAXTHREADLISTRESULTS 32
1792
1793 static int
1794 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1795 int looplimit)
1796 {
1797 int done, i, result_count;
1798 int startflag = 1;
1799 int result = 1;
1800 int loopcount = 0;
1801 static threadref nextthread;
1802 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1803
1804 done = 0;
1805 while (!done)
1806 {
1807 if (loopcount++ > looplimit)
1808 {
1809 result = 0;
1810 warning (_("Remote fetch threadlist -infinite loop-."));
1811 break;
1812 }
1813 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1814 &done, &result_count, resultthreadlist))
1815 {
1816 result = 0;
1817 break;
1818 }
1819 /* Clear for later iterations. */
1820 startflag = 0;
1821 /* Setup to resume next batch of thread references, set nextthread. */
1822 if (result_count >= 1)
1823 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1824 i = 0;
1825 while (result_count--)
1826 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1827 break;
1828 }
1829 return result;
1830 }
1831
1832 static int
1833 remote_newthread_step (threadref *ref, void *context)
1834 {
1835 ptid_t ptid;
1836
1837 ptid = pid_to_ptid (threadref_to_int (ref));
1838
1839 if (!in_thread_list (ptid))
1840 add_thread (ptid);
1841 return 1; /* continue iterator */
1842 }
1843
1844 #define CRAZY_MAX_THREADS 1000
1845
1846 static ptid_t
1847 remote_current_thread (ptid_t oldpid)
1848 {
1849 struct remote_state *rs = get_remote_state ();
1850
1851 putpkt ("qC");
1852 getpkt (&rs->buf, &rs->buf_size, 0);
1853 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1854 /* Use strtoul here, so we'll correctly parse values whose highest
1855 bit is set. The protocol carries them as a simple series of
1856 hex digits; in the absence of a sign, strtol will see such
1857 values as positive numbers out of range for signed 'long', and
1858 return LONG_MAX to indicate an overflow. */
1859 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1860 else
1861 return oldpid;
1862 }
1863
1864 /* Find new threads for info threads command.
1865 * Original version, using John Metzler's thread protocol.
1866 */
1867
1868 static void
1869 remote_find_new_threads (void)
1870 {
1871 remote_threadlist_iterator (remote_newthread_step, 0,
1872 CRAZY_MAX_THREADS);
1873 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1874 inferior_ptid = remote_current_thread (inferior_ptid);
1875 }
1876
1877 /*
1878 * Find all threads for info threads command.
1879 * Uses new thread protocol contributed by Cisco.
1880 * Falls back and attempts to use the older method (above)
1881 * if the target doesn't respond to the new method.
1882 */
1883
1884 static void
1885 remote_threads_info (void)
1886 {
1887 struct remote_state *rs = get_remote_state ();
1888 char *bufp;
1889 int tid;
1890
1891 if (remote_desc == 0) /* paranoia */
1892 error (_("Command can only be used when connected to the remote target."));
1893
1894 if (use_threadinfo_query)
1895 {
1896 putpkt ("qfThreadInfo");
1897 getpkt (&rs->buf, &rs->buf_size, 0);
1898 bufp = rs->buf;
1899 if (bufp[0] != '\0') /* q packet recognized */
1900 {
1901 while (*bufp++ == 'm') /* reply contains one or more TID */
1902 {
1903 do
1904 {
1905 /* Use strtoul here, so we'll correctly parse values
1906 whose highest bit is set. The protocol carries
1907 them as a simple series of hex digits; in the
1908 absence of a sign, strtol will see such values as
1909 positive numbers out of range for signed 'long',
1910 and return LONG_MAX to indicate an overflow. */
1911 tid = strtoul (bufp, &bufp, 16);
1912 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1913 add_thread (pid_to_ptid (tid));
1914 }
1915 while (*bufp++ == ','); /* comma-separated list */
1916 putpkt ("qsThreadInfo");
1917 getpkt (&rs->buf, &rs->buf_size, 0);
1918 bufp = rs->buf;
1919 }
1920 return; /* done */
1921 }
1922 }
1923
1924 /* Else fall back to old method based on jmetzler protocol. */
1925 use_threadinfo_query = 0;
1926 remote_find_new_threads ();
1927 return;
1928 }
1929
1930 /*
1931 * Collect a descriptive string about the given thread.
1932 * The target may say anything it wants to about the thread
1933 * (typically info about its blocked / runnable state, name, etc.).
1934 * This string will appear in the info threads display.
1935 *
1936 * Optional: targets are not required to implement this function.
1937 */
1938
1939 static char *
1940 remote_threads_extra_info (struct thread_info *tp)
1941 {
1942 struct remote_state *rs = get_remote_state ();
1943 int result;
1944 int set;
1945 threadref id;
1946 struct gdb_ext_thread_info threadinfo;
1947 static char display_buf[100]; /* arbitrary... */
1948 int n = 0; /* position in display_buf */
1949
1950 if (remote_desc == 0) /* paranoia */
1951 internal_error (__FILE__, __LINE__,
1952 _("remote_threads_extra_info"));
1953
1954 if (use_threadextra_query)
1955 {
1956 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1957 PIDGET (tp->ptid));
1958 putpkt (rs->buf);
1959 getpkt (&rs->buf, &rs->buf_size, 0);
1960 if (rs->buf[0] != 0)
1961 {
1962 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1963 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1964 display_buf [result] = '\0';
1965 return display_buf;
1966 }
1967 }
1968
1969 /* If the above query fails, fall back to the old method. */
1970 use_threadextra_query = 0;
1971 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1972 | TAG_MOREDISPLAY | TAG_DISPLAY;
1973 int_to_threadref (&id, PIDGET (tp->ptid));
1974 if (remote_get_threadinfo (&id, set, &threadinfo))
1975 if (threadinfo.active)
1976 {
1977 if (*threadinfo.shortname)
1978 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1979 " Name: %s,", threadinfo.shortname);
1980 if (*threadinfo.display)
1981 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1982 " State: %s,", threadinfo.display);
1983 if (*threadinfo.more_display)
1984 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1985 " Priority: %s", threadinfo.more_display);
1986
1987 if (n > 0)
1988 {
1989 /* For purely cosmetic reasons, clear up trailing commas. */
1990 if (',' == display_buf[n-1])
1991 display_buf[n-1] = ' ';
1992 return display_buf;
1993 }
1994 }
1995 return NULL;
1996 }
1997 \f
1998
1999 /* Restart the remote side; this is an extended protocol operation. */
2000
2001 static void
2002 extended_remote_restart (void)
2003 {
2004 struct remote_state *rs = get_remote_state ();
2005
2006 /* Send the restart command; for reasons I don't understand the
2007 remote side really expects a number after the "R". */
2008 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2009 putpkt (rs->buf);
2010
2011 remote_fileio_reset ();
2012 }
2013 \f
2014 /* Clean up connection to a remote debugger. */
2015
2016 static void
2017 remote_close (int quitting)
2018 {
2019 if (remote_desc)
2020 serial_close (remote_desc);
2021 remote_desc = NULL;
2022 }
2023
2024 /* Query the remote side for the text, data and bss offsets. */
2025
2026 static void
2027 get_offsets (void)
2028 {
2029 struct remote_state *rs = get_remote_state ();
2030 char *buf;
2031 char *ptr;
2032 int lose, num_segments = 0, do_sections, do_segments;
2033 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2034 struct section_offsets *offs;
2035 struct symfile_segment_data *data;
2036
2037 if (symfile_objfile == NULL)
2038 return;
2039
2040 putpkt ("qOffsets");
2041 getpkt (&rs->buf, &rs->buf_size, 0);
2042 buf = rs->buf;
2043
2044 if (buf[0] == '\000')
2045 return; /* Return silently. Stub doesn't support
2046 this command. */
2047 if (buf[0] == 'E')
2048 {
2049 warning (_("Remote failure reply: %s"), buf);
2050 return;
2051 }
2052
2053 /* Pick up each field in turn. This used to be done with scanf, but
2054 scanf will make trouble if CORE_ADDR size doesn't match
2055 conversion directives correctly. The following code will work
2056 with any size of CORE_ADDR. */
2057 text_addr = data_addr = bss_addr = 0;
2058 ptr = buf;
2059 lose = 0;
2060
2061 if (strncmp (ptr, "Text=", 5) == 0)
2062 {
2063 ptr += 5;
2064 /* Don't use strtol, could lose on big values. */
2065 while (*ptr && *ptr != ';')
2066 text_addr = (text_addr << 4) + fromhex (*ptr++);
2067
2068 if (strncmp (ptr, ";Data=", 6) == 0)
2069 {
2070 ptr += 6;
2071 while (*ptr && *ptr != ';')
2072 data_addr = (data_addr << 4) + fromhex (*ptr++);
2073 }
2074 else
2075 lose = 1;
2076
2077 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2078 {
2079 ptr += 5;
2080 while (*ptr && *ptr != ';')
2081 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2082
2083 if (bss_addr != data_addr)
2084 warning (_("Target reported unsupported offsets: %s"), buf);
2085 }
2086 else
2087 lose = 1;
2088 }
2089 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2090 {
2091 ptr += 8;
2092 /* Don't use strtol, could lose on big values. */
2093 while (*ptr && *ptr != ';')
2094 text_addr = (text_addr << 4) + fromhex (*ptr++);
2095 num_segments = 1;
2096
2097 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2098 {
2099 ptr += 9;
2100 while (*ptr && *ptr != ';')
2101 data_addr = (data_addr << 4) + fromhex (*ptr++);
2102 num_segments++;
2103 }
2104 }
2105 else
2106 lose = 1;
2107
2108 if (lose)
2109 error (_("Malformed response to offset query, %s"), buf);
2110 else if (*ptr != '\0')
2111 warning (_("Target reported unsupported offsets: %s"), buf);
2112
2113 offs = ((struct section_offsets *)
2114 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2115 memcpy (offs, symfile_objfile->section_offsets,
2116 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2117
2118 data = get_symfile_segment_data (symfile_objfile->obfd);
2119 do_segments = (data != NULL);
2120 do_sections = num_segments == 0;
2121
2122 if (num_segments > 0)
2123 {
2124 segments[0] = text_addr;
2125 segments[1] = data_addr;
2126 }
2127 /* If we have two segments, we can still try to relocate everything
2128 by assuming that the .text and .data offsets apply to the whole
2129 text and data segments. Convert the offsets given in the packet
2130 to base addresses for symfile_map_offsets_to_segments. */
2131 else if (data && data->num_segments == 2)
2132 {
2133 segments[0] = data->segment_bases[0] + text_addr;
2134 segments[1] = data->segment_bases[1] + data_addr;
2135 num_segments = 2;
2136 }
2137 /* If the object file has only one segment, assume that it is text
2138 rather than data; main programs with no writable data are rare,
2139 but programs with no code are useless. Of course the code might
2140 have ended up in the data segment... to detect that we would need
2141 the permissions here. */
2142 else if (data && data->num_segments == 1)
2143 {
2144 segments[0] = data->segment_bases[0] + text_addr;
2145 num_segments = 1;
2146 }
2147 /* There's no way to relocate by segment. */
2148 else
2149 do_segments = 0;
2150
2151 if (do_segments)
2152 {
2153 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2154 offs, num_segments, segments);
2155
2156 if (ret == 0 && !do_sections)
2157 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2158
2159 if (ret > 0)
2160 do_sections = 0;
2161 }
2162
2163 if (data)
2164 free_symfile_segment_data (data);
2165
2166 if (do_sections)
2167 {
2168 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2169
2170 /* This is a temporary kludge to force data and bss to use the same offsets
2171 because that's what nlmconv does now. The real solution requires changes
2172 to the stub and remote.c that I don't have time to do right now. */
2173
2174 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2175 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2176 }
2177
2178 objfile_relocate (symfile_objfile, offs);
2179 }
2180
2181 /* Stub for catch_exception. */
2182
2183 struct start_remote_args
2184 {
2185 int from_tty;
2186
2187 /* The current target. */
2188 struct target_ops *target;
2189
2190 /* Non-zero if this is an extended-remote target. */
2191 int extended_p;
2192 };
2193
2194 static void
2195 remote_start_remote (struct ui_out *uiout, void *opaque)
2196 {
2197 struct remote_state *rs = get_remote_state ();
2198 struct start_remote_args *args = opaque;
2199 char *wait_status = NULL;
2200
2201 immediate_quit++; /* Allow user to interrupt it. */
2202
2203 /* Ack any packet which the remote side has already sent. */
2204 serial_write (remote_desc, "+", 1);
2205
2206 /* Check whether the target is running now. */
2207 putpkt ("?");
2208 getpkt (&rs->buf, &rs->buf_size, 0);
2209
2210 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2211 {
2212 if (args->extended_p)
2213 {
2214 /* We're connected, but not running. Drop out before we
2215 call start_remote. */
2216 target_mark_exited (args->target);
2217 return;
2218 }
2219 else
2220 error (_("The target is not running (try extended-remote?)"));
2221 }
2222 else
2223 {
2224 if (args->extended_p)
2225 target_mark_running (args->target);
2226
2227 /* Save the reply for later. */
2228 wait_status = alloca (strlen (rs->buf) + 1);
2229 strcpy (wait_status, rs->buf);
2230 }
2231
2232 /* Let the stub know that we want it to return the thread. */
2233 set_thread (-1, 0);
2234
2235 /* Without this, some commands which require an active target
2236 (such as kill) won't work. This variable serves (at least)
2237 double duty as both the pid of the target process (if it has
2238 such), and as a flag indicating that a target is active.
2239 These functions should be split out into seperate variables,
2240 especially since GDB will someday have a notion of debugging
2241 several processes. */
2242 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2243
2244 /* Now, if we have thread information, update inferior_ptid. */
2245 inferior_ptid = remote_current_thread (inferior_ptid);
2246
2247 get_offsets (); /* Get text, data & bss offsets. */
2248
2249 /* Use the previously fetched status. */
2250 gdb_assert (wait_status != NULL);
2251 strcpy (rs->buf, wait_status);
2252 rs->cached_wait_status = 1;
2253
2254 immediate_quit--;
2255 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2256 }
2257
2258 /* Open a connection to a remote debugger.
2259 NAME is the filename used for communication. */
2260
2261 static void
2262 remote_open (char *name, int from_tty)
2263 {
2264 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2265 }
2266
2267 /* Just like remote_open, but with asynchronous support. */
2268 static void
2269 remote_async_open (char *name, int from_tty)
2270 {
2271 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2272 }
2273
2274 /* Open a connection to a remote debugger using the extended
2275 remote gdb protocol. NAME is the filename used for communication. */
2276
2277 static void
2278 extended_remote_open (char *name, int from_tty)
2279 {
2280 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2281 0 /* async_p */);
2282 }
2283
2284 /* Just like extended_remote_open, but with asynchronous support. */
2285 static void
2286 extended_remote_async_open (char *name, int from_tty)
2287 {
2288 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2289 1 /*extended_p */, 1 /* async_p */);
2290 }
2291
2292 /* Generic code for opening a connection to a remote target. */
2293
2294 static void
2295 init_all_packet_configs (void)
2296 {
2297 int i;
2298 for (i = 0; i < PACKET_MAX; i++)
2299 update_packet_config (&remote_protocol_packets[i]);
2300 }
2301
2302 /* Symbol look-up. */
2303
2304 static void
2305 remote_check_symbols (struct objfile *objfile)
2306 {
2307 struct remote_state *rs = get_remote_state ();
2308 char *msg, *reply, *tmp;
2309 struct minimal_symbol *sym;
2310 int end;
2311
2312 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2313 return;
2314
2315 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2316 because we need both at the same time. */
2317 msg = alloca (get_remote_packet_size ());
2318
2319 /* Invite target to request symbol lookups. */
2320
2321 putpkt ("qSymbol::");
2322 getpkt (&rs->buf, &rs->buf_size, 0);
2323 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2324 reply = rs->buf;
2325
2326 while (strncmp (reply, "qSymbol:", 8) == 0)
2327 {
2328 tmp = &reply[8];
2329 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2330 msg[end] = '\0';
2331 sym = lookup_minimal_symbol (msg, NULL, NULL);
2332 if (sym == NULL)
2333 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2334 else
2335 {
2336 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2337
2338 /* If this is a function address, return the start of code
2339 instead of any data function descriptor. */
2340 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2341 sym_addr,
2342 &current_target);
2343
2344 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2345 paddr_nz (sym_addr), &reply[8]);
2346 }
2347
2348 putpkt (msg);
2349 getpkt (&rs->buf, &rs->buf_size, 0);
2350 reply = rs->buf;
2351 }
2352 }
2353
2354 static struct serial *
2355 remote_serial_open (char *name)
2356 {
2357 static int udp_warning = 0;
2358
2359 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2360 of in ser-tcp.c, because it is the remote protocol assuming that the
2361 serial connection is reliable and not the serial connection promising
2362 to be. */
2363 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2364 {
2365 warning (_("\
2366 The remote protocol may be unreliable over UDP.\n\
2367 Some events may be lost, rendering further debugging impossible."));
2368 udp_warning = 1;
2369 }
2370
2371 return serial_open (name);
2372 }
2373
2374 /* This type describes each known response to the qSupported
2375 packet. */
2376 struct protocol_feature
2377 {
2378 /* The name of this protocol feature. */
2379 const char *name;
2380
2381 /* The default for this protocol feature. */
2382 enum packet_support default_support;
2383
2384 /* The function to call when this feature is reported, or after
2385 qSupported processing if the feature is not supported.
2386 The first argument points to this structure. The second
2387 argument indicates whether the packet requested support be
2388 enabled, disabled, or probed (or the default, if this function
2389 is being called at the end of processing and this feature was
2390 not reported). The third argument may be NULL; if not NULL, it
2391 is a NUL-terminated string taken from the packet following
2392 this feature's name and an equals sign. */
2393 void (*func) (const struct protocol_feature *, enum packet_support,
2394 const char *);
2395
2396 /* The corresponding packet for this feature. Only used if
2397 FUNC is remote_supported_packet. */
2398 int packet;
2399 };
2400
2401 static void
2402 remote_supported_packet (const struct protocol_feature *feature,
2403 enum packet_support support,
2404 const char *argument)
2405 {
2406 if (argument)
2407 {
2408 warning (_("Remote qSupported response supplied an unexpected value for"
2409 " \"%s\"."), feature->name);
2410 return;
2411 }
2412
2413 if (remote_protocol_packets[feature->packet].support
2414 == PACKET_SUPPORT_UNKNOWN)
2415 remote_protocol_packets[feature->packet].support = support;
2416 }
2417
2418 static void
2419 remote_packet_size (const struct protocol_feature *feature,
2420 enum packet_support support, const char *value)
2421 {
2422 struct remote_state *rs = get_remote_state ();
2423
2424 int packet_size;
2425 char *value_end;
2426
2427 if (support != PACKET_ENABLE)
2428 return;
2429
2430 if (value == NULL || *value == '\0')
2431 {
2432 warning (_("Remote target reported \"%s\" without a size."),
2433 feature->name);
2434 return;
2435 }
2436
2437 errno = 0;
2438 packet_size = strtol (value, &value_end, 16);
2439 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2440 {
2441 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2442 feature->name, value);
2443 return;
2444 }
2445
2446 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2447 {
2448 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2449 packet_size, MAX_REMOTE_PACKET_SIZE);
2450 packet_size = MAX_REMOTE_PACKET_SIZE;
2451 }
2452
2453 /* Record the new maximum packet size. */
2454 rs->explicit_packet_size = packet_size;
2455 }
2456
2457 static struct protocol_feature remote_protocol_features[] = {
2458 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2459 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2460 PACKET_qXfer_auxv },
2461 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2462 PACKET_qXfer_features },
2463 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2464 PACKET_qXfer_libraries },
2465 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2466 PACKET_qXfer_memory_map },
2467 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2468 PACKET_qXfer_spu_read },
2469 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2470 PACKET_qXfer_spu_write },
2471 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2472 PACKET_QPassSignals },
2473 };
2474
2475 static void
2476 remote_query_supported (void)
2477 {
2478 struct remote_state *rs = get_remote_state ();
2479 char *next;
2480 int i;
2481 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2482
2483 /* The packet support flags are handled differently for this packet
2484 than for most others. We treat an error, a disabled packet, and
2485 an empty response identically: any features which must be reported
2486 to be used will be automatically disabled. An empty buffer
2487 accomplishes this, since that is also the representation for a list
2488 containing no features. */
2489
2490 rs->buf[0] = 0;
2491 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2492 {
2493 putpkt ("qSupported");
2494 getpkt (&rs->buf, &rs->buf_size, 0);
2495
2496 /* If an error occured, warn, but do not return - just reset the
2497 buffer to empty and go on to disable features. */
2498 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2499 == PACKET_ERROR)
2500 {
2501 warning (_("Remote failure reply: %s"), rs->buf);
2502 rs->buf[0] = 0;
2503 }
2504 }
2505
2506 memset (seen, 0, sizeof (seen));
2507
2508 next = rs->buf;
2509 while (*next)
2510 {
2511 enum packet_support is_supported;
2512 char *p, *end, *name_end, *value;
2513
2514 /* First separate out this item from the rest of the packet. If
2515 there's another item after this, we overwrite the separator
2516 (terminated strings are much easier to work with). */
2517 p = next;
2518 end = strchr (p, ';');
2519 if (end == NULL)
2520 {
2521 end = p + strlen (p);
2522 next = end;
2523 }
2524 else
2525 {
2526 *end = '\0';
2527 next = end + 1;
2528
2529 if (end == p)
2530 {
2531 warning (_("empty item in \"qSupported\" response"));
2532 continue;
2533 }
2534 }
2535
2536 name_end = strchr (p, '=');
2537 if (name_end)
2538 {
2539 /* This is a name=value entry. */
2540 is_supported = PACKET_ENABLE;
2541 value = name_end + 1;
2542 *name_end = '\0';
2543 }
2544 else
2545 {
2546 value = NULL;
2547 switch (end[-1])
2548 {
2549 case '+':
2550 is_supported = PACKET_ENABLE;
2551 break;
2552
2553 case '-':
2554 is_supported = PACKET_DISABLE;
2555 break;
2556
2557 case '?':
2558 is_supported = PACKET_SUPPORT_UNKNOWN;
2559 break;
2560
2561 default:
2562 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2563 continue;
2564 }
2565 end[-1] = '\0';
2566 }
2567
2568 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2569 if (strcmp (remote_protocol_features[i].name, p) == 0)
2570 {
2571 const struct protocol_feature *feature;
2572
2573 seen[i] = 1;
2574 feature = &remote_protocol_features[i];
2575 feature->func (feature, is_supported, value);
2576 break;
2577 }
2578 }
2579
2580 /* If we increased the packet size, make sure to increase the global
2581 buffer size also. We delay this until after parsing the entire
2582 qSupported packet, because this is the same buffer we were
2583 parsing. */
2584 if (rs->buf_size < rs->explicit_packet_size)
2585 {
2586 rs->buf_size = rs->explicit_packet_size;
2587 rs->buf = xrealloc (rs->buf, rs->buf_size);
2588 }
2589
2590 /* Handle the defaults for unmentioned features. */
2591 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2592 if (!seen[i])
2593 {
2594 const struct protocol_feature *feature;
2595
2596 feature = &remote_protocol_features[i];
2597 feature->func (feature, feature->default_support, NULL);
2598 }
2599 }
2600
2601
2602 static void
2603 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2604 int extended_p, int async_p)
2605 {
2606 struct remote_state *rs = get_remote_state ();
2607 if (name == 0)
2608 error (_("To open a remote debug connection, you need to specify what\n"
2609 "serial device is attached to the remote system\n"
2610 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2611
2612 /* See FIXME above. */
2613 if (!async_p)
2614 wait_forever_enabled_p = 1;
2615
2616 /* If we're connected to a running target, target_preopen will kill it.
2617 But if we're connected to a target system with no running process,
2618 then we will still be connected when it returns. Ask this question
2619 first, before target_preopen has a chance to kill anything. */
2620 if (remote_desc != NULL && !target_has_execution)
2621 {
2622 if (!from_tty
2623 || query (_("Already connected to a remote target. Disconnect? ")))
2624 pop_target ();
2625 else
2626 error (_("Still connected."));
2627 }
2628
2629 target_preopen (from_tty);
2630
2631 unpush_target (target);
2632
2633 /* This time without a query. If we were connected to an
2634 extended-remote target and target_preopen killed the running
2635 process, we may still be connected. If we are starting "target
2636 remote" now, the extended-remote target will not have been
2637 removed by unpush_target. */
2638 if (remote_desc != NULL && !target_has_execution)
2639 pop_target ();
2640
2641 /* Make sure we send the passed signals list the next time we resume. */
2642 xfree (last_pass_packet);
2643 last_pass_packet = NULL;
2644
2645 remote_fileio_reset ();
2646 reopen_exec_file ();
2647 reread_symbols ();
2648
2649 remote_desc = remote_serial_open (name);
2650 if (!remote_desc)
2651 perror_with_name (name);
2652
2653 if (baud_rate != -1)
2654 {
2655 if (serial_setbaudrate (remote_desc, baud_rate))
2656 {
2657 /* The requested speed could not be set. Error out to
2658 top level after closing remote_desc. Take care to
2659 set remote_desc to NULL to avoid closing remote_desc
2660 more than once. */
2661 serial_close (remote_desc);
2662 remote_desc = NULL;
2663 perror_with_name (name);
2664 }
2665 }
2666
2667 serial_raw (remote_desc);
2668
2669 /* If there is something sitting in the buffer we might take it as a
2670 response to a command, which would be bad. */
2671 serial_flush_input (remote_desc);
2672
2673 if (from_tty)
2674 {
2675 puts_filtered ("Remote debugging using ");
2676 puts_filtered (name);
2677 puts_filtered ("\n");
2678 }
2679 push_target (target); /* Switch to using remote target now. */
2680
2681 /* Assume that the target is running, unless we learn otherwise. */
2682 target_mark_running (target);
2683
2684 /* Reset the target state; these things will be queried either by
2685 remote_query_supported or as they are needed. */
2686 init_all_packet_configs ();
2687 rs->explicit_packet_size = 0;
2688
2689 general_thread = -2;
2690 continue_thread = -2;
2691
2692 /* Probe for ability to use "ThreadInfo" query, as required. */
2693 use_threadinfo_query = 1;
2694 use_threadextra_query = 1;
2695
2696 /* The first packet we send to the target is the optional "supported
2697 packets" request. If the target can answer this, it will tell us
2698 which later probes to skip. */
2699 remote_query_supported ();
2700
2701 /* Next, if the target can specify a description, read it. We do
2702 this before anything involving memory or registers. */
2703 target_find_description ();
2704
2705 if (async_p)
2706 {
2707 /* With this target we start out by owning the terminal. */
2708 remote_async_terminal_ours_p = 1;
2709
2710 /* FIXME: cagney/1999-09-23: During the initial connection it is
2711 assumed that the target is already ready and able to respond to
2712 requests. Unfortunately remote_start_remote() eventually calls
2713 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2714 around this. Eventually a mechanism that allows
2715 wait_for_inferior() to expect/get timeouts will be
2716 implemented. */
2717 wait_forever_enabled_p = 0;
2718 }
2719
2720 /* First delete any symbols previously loaded from shared libraries. */
2721 no_shared_libraries (NULL, 0);
2722
2723 /* Start the remote connection. If error() or QUIT, discard this
2724 target (we'd otherwise be in an inconsistent state) and then
2725 propogate the error on up the exception chain. This ensures that
2726 the caller doesn't stumble along blindly assuming that the
2727 function succeeded. The CLI doesn't have this problem but other
2728 UI's, such as MI do.
2729
2730 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2731 this function should return an error indication letting the
2732 caller restore the previous state. Unfortunately the command
2733 ``target remote'' is directly wired to this function making that
2734 impossible. On a positive note, the CLI side of this problem has
2735 been fixed - the function set_cmd_context() makes it possible for
2736 all the ``target ....'' commands to share a common callback
2737 function. See cli-dump.c. */
2738 {
2739 struct gdb_exception ex;
2740 struct start_remote_args args;
2741
2742 args.from_tty = from_tty;
2743 args.target = target;
2744 args.extended_p = extended_p;
2745
2746 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2747 if (ex.reason < 0)
2748 {
2749 pop_target ();
2750 if (async_p)
2751 wait_forever_enabled_p = 1;
2752 throw_exception (ex);
2753 }
2754 }
2755
2756 if (async_p)
2757 wait_forever_enabled_p = 1;
2758
2759 if (extended_p)
2760 {
2761 /* Tell the remote that we are using the extended protocol. */
2762 putpkt ("!");
2763 getpkt (&rs->buf, &rs->buf_size, 0);
2764 }
2765
2766 /* If we connected to a live target, do some additional setup. */
2767 if (target_has_execution)
2768 {
2769 if (exec_bfd) /* No use without an exec file. */
2770 remote_check_symbols (symfile_objfile);
2771 }
2772 }
2773
2774 /* This takes a program previously attached to and detaches it. After
2775 this is done, GDB can be used to debug some other program. We
2776 better not have left any breakpoints in the target program or it'll
2777 die when it hits one. */
2778
2779 static void
2780 remote_detach_1 (char *args, int from_tty, int extended)
2781 {
2782 struct remote_state *rs = get_remote_state ();
2783
2784 if (args)
2785 error (_("Argument given to \"detach\" when remotely debugging."));
2786
2787 if (!target_has_execution)
2788 error (_("No process to detach from."));
2789
2790 /* Tell the remote target to detach. */
2791 strcpy (rs->buf, "D");
2792 putpkt (rs->buf);
2793 getpkt (&rs->buf, &rs->buf_size, 0);
2794
2795 if (rs->buf[0] == 'E')
2796 error (_("Can't detach process."));
2797
2798 /* Unregister the file descriptor from the event loop. */
2799 if (target_is_async_p ())
2800 serial_async (remote_desc, NULL, 0);
2801
2802 target_mourn_inferior ();
2803 if (from_tty)
2804 {
2805 if (extended)
2806 puts_filtered ("Detached from remote process.\n");
2807 else
2808 puts_filtered ("Ending remote debugging.\n");
2809 }
2810 }
2811
2812 static void
2813 remote_detach (char *args, int from_tty)
2814 {
2815 remote_detach_1 (args, from_tty, 0);
2816 }
2817
2818 static void
2819 extended_remote_detach (char *args, int from_tty)
2820 {
2821 remote_detach_1 (args, from_tty, 1);
2822 }
2823
2824 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2825
2826 static void
2827 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2828 {
2829 if (args)
2830 error (_("Argument given to \"disconnect\" when remotely debugging."));
2831
2832 /* Unregister the file descriptor from the event loop. */
2833 if (target_is_async_p ())
2834 serial_async (remote_desc, NULL, 0);
2835
2836 /* Make sure we unpush even the extended remote targets; mourn
2837 won't do it. So call remote_mourn_1 directly instead of
2838 target_mourn_inferior. */
2839 remote_mourn_1 (target);
2840
2841 if (from_tty)
2842 puts_filtered ("Ending remote debugging.\n");
2843 }
2844
2845 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2846 be chatty about it. */
2847
2848 static void
2849 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2850 {
2851 struct remote_state *rs = get_remote_state ();
2852 int pid;
2853 char *dummy;
2854 char *wait_status = NULL;
2855
2856 if (!args)
2857 error_no_arg (_("process-id to attach"));
2858
2859 dummy = args;
2860 pid = strtol (args, &dummy, 0);
2861 /* Some targets don't set errno on errors, grrr! */
2862 if (pid == 0 && args == dummy)
2863 error (_("Illegal process-id: %s."), args);
2864
2865 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2866 error (_("This target does not support attaching to a process"));
2867
2868 sprintf (rs->buf, "vAttach;%x", pid);
2869 putpkt (rs->buf);
2870 getpkt (&rs->buf, &rs->buf_size, 0);
2871
2872 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2873 {
2874 if (from_tty)
2875 printf_unfiltered (_("Attached to %s\n"),
2876 target_pid_to_str (pid_to_ptid (pid)));
2877
2878 /* Save the reply for later. */
2879 wait_status = alloca (strlen (rs->buf) + 1);
2880 strcpy (wait_status, rs->buf);
2881 }
2882 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2883 error (_("This target does not support attaching to a process"));
2884 else
2885 error (_("Attaching to %s failed"),
2886 target_pid_to_str (pid_to_ptid (pid)));
2887
2888 target_mark_running (target);
2889 inferior_ptid = pid_to_ptid (pid);
2890 attach_flag = 1;
2891
2892 /* Next, if the target can specify a description, read it. We do
2893 this before anything involving memory or registers. */
2894 target_find_description ();
2895
2896 /* Use the previously fetched status. */
2897 gdb_assert (wait_status != NULL);
2898 strcpy (rs->buf, wait_status);
2899 rs->cached_wait_status = 1;
2900 }
2901
2902 static void
2903 extended_remote_attach (char *args, int from_tty)
2904 {
2905 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2906 }
2907
2908 static void
2909 extended_async_remote_attach (char *args, int from_tty)
2910 {
2911 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2912 }
2913
2914 /* Convert hex digit A to a number. */
2915
2916 static int
2917 fromhex (int a)
2918 {
2919 if (a >= '0' && a <= '9')
2920 return a - '0';
2921 else if (a >= 'a' && a <= 'f')
2922 return a - 'a' + 10;
2923 else if (a >= 'A' && a <= 'F')
2924 return a - 'A' + 10;
2925 else
2926 error (_("Reply contains invalid hex digit %d"), a);
2927 }
2928
2929 static int
2930 hex2bin (const char *hex, gdb_byte *bin, int count)
2931 {
2932 int i;
2933
2934 for (i = 0; i < count; i++)
2935 {
2936 if (hex[0] == 0 || hex[1] == 0)
2937 {
2938 /* Hex string is short, or of uneven length.
2939 Return the count that has been converted so far. */
2940 return i;
2941 }
2942 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2943 hex += 2;
2944 }
2945 return i;
2946 }
2947
2948 /* Convert number NIB to a hex digit. */
2949
2950 static int
2951 tohex (int nib)
2952 {
2953 if (nib < 10)
2954 return '0' + nib;
2955 else
2956 return 'a' + nib - 10;
2957 }
2958
2959 static int
2960 bin2hex (const gdb_byte *bin, char *hex, int count)
2961 {
2962 int i;
2963 /* May use a length, or a nul-terminated string as input. */
2964 if (count == 0)
2965 count = strlen ((char *) bin);
2966
2967 for (i = 0; i < count; i++)
2968 {
2969 *hex++ = tohex ((*bin >> 4) & 0xf);
2970 *hex++ = tohex (*bin++ & 0xf);
2971 }
2972 *hex = 0;
2973 return i;
2974 }
2975 \f
2976 /* Check for the availability of vCont. This function should also check
2977 the response. */
2978
2979 static void
2980 remote_vcont_probe (struct remote_state *rs)
2981 {
2982 char *buf;
2983
2984 strcpy (rs->buf, "vCont?");
2985 putpkt (rs->buf);
2986 getpkt (&rs->buf, &rs->buf_size, 0);
2987 buf = rs->buf;
2988
2989 /* Make sure that the features we assume are supported. */
2990 if (strncmp (buf, "vCont", 5) == 0)
2991 {
2992 char *p = &buf[5];
2993 int support_s, support_S, support_c, support_C;
2994
2995 support_s = 0;
2996 support_S = 0;
2997 support_c = 0;
2998 support_C = 0;
2999 while (p && *p == ';')
3000 {
3001 p++;
3002 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3003 support_s = 1;
3004 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3005 support_S = 1;
3006 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3007 support_c = 1;
3008 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3009 support_C = 1;
3010
3011 p = strchr (p, ';');
3012 }
3013
3014 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3015 BUF will make packet_ok disable the packet. */
3016 if (!support_s || !support_S || !support_c || !support_C)
3017 buf[0] = 0;
3018 }
3019
3020 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3021 }
3022
3023 /* Resume the remote inferior by using a "vCont" packet. The thread
3024 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3025 resumed thread should be single-stepped and/or signalled. If PTID's
3026 PID is -1, then all threads are resumed; the thread to be stepped and/or
3027 signalled is given in the global INFERIOR_PTID. This function returns
3028 non-zero iff it resumes the inferior.
3029
3030 This function issues a strict subset of all possible vCont commands at the
3031 moment. */
3032
3033 static int
3034 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3035 {
3036 struct remote_state *rs = get_remote_state ();
3037 int pid = PIDGET (ptid);
3038 char *outbuf;
3039 struct cleanup *old_cleanup;
3040
3041 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3042 remote_vcont_probe (rs);
3043
3044 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3045 return 0;
3046
3047 /* If we could generate a wider range of packets, we'd have to worry
3048 about overflowing BUF. Should there be a generic
3049 "multi-part-packet" packet? */
3050
3051 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3052 {
3053 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3054 don't have any PID numbers the inferior will understand. Make sure
3055 to only send forms that do not specify a PID. */
3056 if (step && siggnal != TARGET_SIGNAL_0)
3057 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3058 else if (step)
3059 outbuf = xstrprintf ("vCont;s");
3060 else if (siggnal != TARGET_SIGNAL_0)
3061 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3062 else
3063 outbuf = xstrprintf ("vCont;c");
3064 }
3065 else if (pid == -1)
3066 {
3067 /* Resume all threads, with preference for INFERIOR_PTID. */
3068 if (step && siggnal != TARGET_SIGNAL_0)
3069 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3070 PIDGET (inferior_ptid));
3071 else if (step)
3072 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3073 else if (siggnal != TARGET_SIGNAL_0)
3074 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3075 PIDGET (inferior_ptid));
3076 else
3077 outbuf = xstrprintf ("vCont;c");
3078 }
3079 else
3080 {
3081 /* Scheduler locking; resume only PTID. */
3082 if (step && siggnal != TARGET_SIGNAL_0)
3083 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3084 else if (step)
3085 outbuf = xstrprintf ("vCont;s:%x", pid);
3086 else if (siggnal != TARGET_SIGNAL_0)
3087 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3088 else
3089 outbuf = xstrprintf ("vCont;c:%x", pid);
3090 }
3091
3092 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3093 old_cleanup = make_cleanup (xfree, outbuf);
3094
3095 putpkt (outbuf);
3096
3097 do_cleanups (old_cleanup);
3098
3099 return 1;
3100 }
3101
3102 /* Tell the remote machine to resume. */
3103
3104 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3105
3106 static int last_sent_step;
3107
3108 static void
3109 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3110 {
3111 struct remote_state *rs = get_remote_state ();
3112 char *buf;
3113 int pid = PIDGET (ptid);
3114
3115 last_sent_signal = siggnal;
3116 last_sent_step = step;
3117
3118 /* Update the inferior on signals to silently pass, if they've changed. */
3119 remote_pass_signals ();
3120
3121 /* The vCont packet doesn't need to specify threads via Hc. */
3122 if (remote_vcont_resume (ptid, step, siggnal))
3123 return;
3124
3125 /* All other supported resume packets do use Hc, so call set_thread. */
3126 if (pid == -1)
3127 set_thread (0, 0); /* Run any thread. */
3128 else
3129 set_thread (pid, 0); /* Run this thread. */
3130
3131 buf = rs->buf;
3132 if (siggnal != TARGET_SIGNAL_0)
3133 {
3134 buf[0] = step ? 'S' : 'C';
3135 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3136 buf[2] = tohex (((int) siggnal) & 0xf);
3137 buf[3] = '\0';
3138 }
3139 else
3140 strcpy (buf, step ? "s" : "c");
3141
3142 putpkt (buf);
3143 }
3144
3145 /* Same as remote_resume, but with async support. */
3146 static void
3147 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3148 {
3149 remote_resume (ptid, step, siggnal);
3150
3151 /* We are about to start executing the inferior, let's register it
3152 with the event loop. NOTE: this is the one place where all the
3153 execution commands end up. We could alternatively do this in each
3154 of the execution commands in infcmd.c. */
3155 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3156 into infcmd.c in order to allow inferior function calls to work
3157 NOT asynchronously. */
3158 if (target_can_async_p ())
3159 target_async (inferior_event_handler, 0);
3160 /* Tell the world that the target is now executing. */
3161 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3162 this? Instead, should the client of target just assume (for
3163 async targets) that the target is going to start executing? Is
3164 this information already found in the continuation block? */
3165 if (target_is_async_p ())
3166 target_executing = 1;
3167 }
3168 \f
3169
3170 /* Set up the signal handler for SIGINT, while the target is
3171 executing, ovewriting the 'regular' SIGINT signal handler. */
3172 static void
3173 initialize_sigint_signal_handler (void)
3174 {
3175 signal (SIGINT, handle_remote_sigint);
3176 }
3177
3178 /* Signal handler for SIGINT, while the target is executing. */
3179 static void
3180 handle_remote_sigint (int sig)
3181 {
3182 signal (sig, handle_remote_sigint_twice);
3183 mark_async_signal_handler_wrapper (sigint_remote_token);
3184 }
3185
3186 /* Signal handler for SIGINT, installed after SIGINT has already been
3187 sent once. It will take effect the second time that the user sends
3188 a ^C. */
3189 static void
3190 handle_remote_sigint_twice (int sig)
3191 {
3192 signal (sig, handle_remote_sigint);
3193 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3194 }
3195
3196 /* Perform the real interruption of the target execution, in response
3197 to a ^C. */
3198 static void
3199 async_remote_interrupt (gdb_client_data arg)
3200 {
3201 if (remote_debug)
3202 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3203
3204 target_stop ();
3205 }
3206
3207 /* Perform interrupt, if the first attempt did not succeed. Just give
3208 up on the target alltogether. */
3209 void
3210 async_remote_interrupt_twice (gdb_client_data arg)
3211 {
3212 if (remote_debug)
3213 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3214
3215 interrupt_query ();
3216 }
3217
3218 /* Reinstall the usual SIGINT handlers, after the target has
3219 stopped. */
3220 static void
3221 cleanup_sigint_signal_handler (void *dummy)
3222 {
3223 signal (SIGINT, handle_sigint);
3224 }
3225
3226 /* Send ^C to target to halt it. Target will respond, and send us a
3227 packet. */
3228 static void (*ofunc) (int);
3229
3230 /* The command line interface's stop routine. This function is installed
3231 as a signal handler for SIGINT. The first time a user requests a
3232 stop, we call remote_stop to send a break or ^C. If there is no
3233 response from the target (it didn't stop when the user requested it),
3234 we ask the user if he'd like to detach from the target. */
3235 static void
3236 remote_interrupt (int signo)
3237 {
3238 /* If this doesn't work, try more severe steps. */
3239 signal (signo, remote_interrupt_twice);
3240
3241 gdb_call_async_signal_handler (sigint_remote_token, 1);
3242 }
3243
3244 /* The user typed ^C twice. */
3245
3246 static void
3247 remote_interrupt_twice (int signo)
3248 {
3249 signal (signo, ofunc);
3250 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3251 signal (signo, remote_interrupt);
3252 }
3253
3254 /* This is the generic stop called via the target vector. When a target
3255 interrupt is requested, either by the command line or the GUI, we
3256 will eventually end up here. */
3257 static void
3258 remote_stop (void)
3259 {
3260 /* Send a break or a ^C, depending on user preference. */
3261 if (remote_debug)
3262 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3263
3264 if (remote_break)
3265 serial_send_break (remote_desc);
3266 else
3267 serial_write (remote_desc, "\003", 1);
3268 }
3269
3270 /* Ask the user what to do when an interrupt is received. */
3271
3272 static void
3273 interrupt_query (void)
3274 {
3275 target_terminal_ours ();
3276
3277 if (query ("Interrupted while waiting for the program.\n\
3278 Give up (and stop debugging it)? "))
3279 {
3280 target_mourn_inferior ();
3281 signal (SIGINT, handle_sigint);
3282 deprecated_throw_reason (RETURN_QUIT);
3283 }
3284
3285 target_terminal_inferior ();
3286 }
3287
3288 /* Enable/disable target terminal ownership. Most targets can use
3289 terminal groups to control terminal ownership. Remote targets are
3290 different in that explicit transfer of ownership to/from GDB/target
3291 is required. */
3292
3293 static void
3294 remote_async_terminal_inferior (void)
3295 {
3296 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3297 sync_execution here. This function should only be called when
3298 GDB is resuming the inferior in the forground. A background
3299 resume (``run&'') should leave GDB in control of the terminal and
3300 consequently should not call this code. */
3301 if (!sync_execution)
3302 return;
3303 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3304 calls target_terminal_*() idenpotent. The event-loop GDB talking
3305 to an asynchronous target with a synchronous command calls this
3306 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3307 stops trying to transfer the terminal to the target when it
3308 shouldn't this guard can go away. */
3309 if (!remote_async_terminal_ours_p)
3310 return;
3311 delete_file_handler (input_fd);
3312 remote_async_terminal_ours_p = 0;
3313 initialize_sigint_signal_handler ();
3314 /* NOTE: At this point we could also register our selves as the
3315 recipient of all input. Any characters typed could then be
3316 passed on down to the target. */
3317 }
3318
3319 static void
3320 remote_async_terminal_ours (void)
3321 {
3322 /* See FIXME in remote_async_terminal_inferior. */
3323 if (!sync_execution)
3324 return;
3325 /* See FIXME in remote_async_terminal_inferior. */
3326 if (remote_async_terminal_ours_p)
3327 return;
3328 cleanup_sigint_signal_handler (NULL);
3329 add_file_handler (input_fd, stdin_event_handler, 0);
3330 remote_async_terminal_ours_p = 1;
3331 }
3332
3333 /* If nonzero, ignore the next kill. */
3334
3335 int kill_kludge;
3336
3337 void
3338 remote_console_output (char *msg)
3339 {
3340 char *p;
3341
3342 for (p = msg; p[0] && p[1]; p += 2)
3343 {
3344 char tb[2];
3345 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3346 tb[0] = c;
3347 tb[1] = 0;
3348 fputs_unfiltered (tb, gdb_stdtarg);
3349 }
3350 gdb_flush (gdb_stdtarg);
3351 }
3352
3353 /* Wait until the remote machine stops, then return,
3354 storing status in STATUS just as `wait' would.
3355 Returns "pid", which in the case of a multi-threaded
3356 remote OS, is the thread-id. */
3357
3358 static ptid_t
3359 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3360 {
3361 struct remote_state *rs = get_remote_state ();
3362 struct remote_arch_state *rsa = get_remote_arch_state ();
3363 ULONGEST thread_num = -1;
3364 ULONGEST addr;
3365 int solibs_changed = 0;
3366
3367 status->kind = TARGET_WAITKIND_EXITED;
3368 status->value.integer = 0;
3369
3370 while (1)
3371 {
3372 char *buf, *p;
3373
3374 if (rs->cached_wait_status)
3375 /* Use the cached wait status, but only once. */
3376 rs->cached_wait_status = 0;
3377 else
3378 {
3379 ofunc = signal (SIGINT, remote_interrupt);
3380 /* If the user hit C-c before this packet, or between packets,
3381 pretend that it was hit right here. */
3382 if (quit_flag)
3383 {
3384 quit_flag = 0;
3385 remote_interrupt (SIGINT);
3386 }
3387 getpkt (&rs->buf, &rs->buf_size, 1);
3388 signal (SIGINT, ofunc);
3389 }
3390
3391 buf = rs->buf;
3392
3393 remote_stopped_by_watchpoint_p = 0;
3394
3395 switch (buf[0])
3396 {
3397 case 'E': /* Error of some sort. */
3398 /* We're out of sync with the target now. Did it continue or not?
3399 Not is more likely, so report a stop. */
3400 warning (_("Remote failure reply: %s"), buf);
3401 status->kind = TARGET_WAITKIND_STOPPED;
3402 status->value.sig = TARGET_SIGNAL_0;
3403 goto got_status;
3404 case 'F': /* File-I/O request. */
3405 remote_fileio_request (buf);
3406 continue;
3407 case 'T': /* Status with PC, SP, FP, ... */
3408 {
3409 gdb_byte regs[MAX_REGISTER_SIZE];
3410
3411 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3412 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3413 ss = signal number
3414 n... = register number
3415 r... = register contents
3416 */
3417 p = &buf[3]; /* after Txx */
3418
3419 while (*p)
3420 {
3421 char *p1;
3422 char *p_temp;
3423 int fieldsize;
3424 LONGEST pnum = 0;
3425
3426 /* If the packet contains a register number save it in
3427 pnum and set p1 to point to the character following
3428 it. Otherwise p1 points to p. */
3429
3430 /* If this packet is an awatch packet, don't parse the
3431 'a' as a register number. */
3432
3433 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3434 {
3435 /* Read the ``P'' register number. */
3436 pnum = strtol (p, &p_temp, 16);
3437 p1 = p_temp;
3438 }
3439 else
3440 p1 = p;
3441
3442 if (p1 == p) /* No register number present here. */
3443 {
3444 p1 = strchr (p, ':');
3445 if (p1 == NULL)
3446 error (_("Malformed packet(a) (missing colon): %s\n\
3447 Packet: '%s'\n"),
3448 p, buf);
3449 if (strncmp (p, "thread", p1 - p) == 0)
3450 {
3451 p_temp = unpack_varlen_hex (++p1, &thread_num);
3452 record_currthread (thread_num);
3453 p = p_temp;
3454 }
3455 else if ((strncmp (p, "watch", p1 - p) == 0)
3456 || (strncmp (p, "rwatch", p1 - p) == 0)
3457 || (strncmp (p, "awatch", p1 - p) == 0))
3458 {
3459 remote_stopped_by_watchpoint_p = 1;
3460 p = unpack_varlen_hex (++p1, &addr);
3461 remote_watch_data_address = (CORE_ADDR)addr;
3462 }
3463 else if (strncmp (p, "library", p1 - p) == 0)
3464 {
3465 p1++;
3466 p_temp = p1;
3467 while (*p_temp && *p_temp != ';')
3468 p_temp++;
3469
3470 solibs_changed = 1;
3471 p = p_temp;
3472 }
3473 else
3474 {
3475 /* Silently skip unknown optional info. */
3476 p_temp = strchr (p1 + 1, ';');
3477 if (p_temp)
3478 p = p_temp;
3479 }
3480 }
3481 else
3482 {
3483 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3484 p = p1;
3485
3486 if (*p++ != ':')
3487 error (_("Malformed packet(b) (missing colon): %s\n\
3488 Packet: '%s'\n"),
3489 p, buf);
3490
3491 if (reg == NULL)
3492 error (_("Remote sent bad register number %s: %s\n\
3493 Packet: '%s'\n"),
3494 phex_nz (pnum, 0), p, buf);
3495
3496 fieldsize = hex2bin (p, regs,
3497 register_size (current_gdbarch,
3498 reg->regnum));
3499 p += 2 * fieldsize;
3500 if (fieldsize < register_size (current_gdbarch,
3501 reg->regnum))
3502 warning (_("Remote reply is too short: %s"), buf);
3503 regcache_raw_supply (get_current_regcache (),
3504 reg->regnum, regs);
3505 }
3506
3507 if (*p++ != ';')
3508 error (_("Remote register badly formatted: %s\nhere: %s"),
3509 buf, p);
3510 }
3511 }
3512 /* fall through */
3513 case 'S': /* Old style status, just signal only. */
3514 if (solibs_changed)
3515 status->kind = TARGET_WAITKIND_LOADED;
3516 else
3517 {
3518 status->kind = TARGET_WAITKIND_STOPPED;
3519 status->value.sig = (enum target_signal)
3520 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3521 }
3522
3523 if (buf[3] == 'p')
3524 {
3525 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3526 record_currthread (thread_num);
3527 }
3528 goto got_status;
3529 case 'W': /* Target exited. */
3530 {
3531 /* The remote process exited. */
3532 status->kind = TARGET_WAITKIND_EXITED;
3533 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3534 goto got_status;
3535 }
3536 case 'X':
3537 status->kind = TARGET_WAITKIND_SIGNALLED;
3538 status->value.sig = (enum target_signal)
3539 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3540 kill_kludge = 1;
3541
3542 goto got_status;
3543 case 'O': /* Console output. */
3544 remote_console_output (buf + 1);
3545 continue;
3546 case '\0':
3547 if (last_sent_signal != TARGET_SIGNAL_0)
3548 {
3549 /* Zero length reply means that we tried 'S' or 'C' and
3550 the remote system doesn't support it. */
3551 target_terminal_ours_for_output ();
3552 printf_filtered
3553 ("Can't send signals to this remote system. %s not sent.\n",
3554 target_signal_to_name (last_sent_signal));
3555 last_sent_signal = TARGET_SIGNAL_0;
3556 target_terminal_inferior ();
3557
3558 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3559 putpkt ((char *) buf);
3560 continue;
3561 }
3562 /* else fallthrough */
3563 default:
3564 warning (_("Invalid remote reply: %s"), buf);
3565 continue;
3566 }
3567 }
3568 got_status:
3569 if (thread_num != -1)
3570 {
3571 return pid_to_ptid (thread_num);
3572 }
3573 return inferior_ptid;
3574 }
3575
3576 /* Async version of remote_wait. */
3577 static ptid_t
3578 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3579 {
3580 struct remote_state *rs = get_remote_state ();
3581 struct remote_arch_state *rsa = get_remote_arch_state ();
3582 ULONGEST thread_num = -1;
3583 ULONGEST addr;
3584 int solibs_changed = 0;
3585
3586 status->kind = TARGET_WAITKIND_EXITED;
3587 status->value.integer = 0;
3588
3589 remote_stopped_by_watchpoint_p = 0;
3590
3591 while (1)
3592 {
3593 char *buf, *p;
3594
3595 if (rs->cached_wait_status)
3596 /* Use the cached wait status, but only once. */
3597 rs->cached_wait_status = 0;
3598 else
3599 {
3600 if (!target_is_async_p ())
3601 {
3602 ofunc = signal (SIGINT, remote_interrupt);
3603 /* If the user hit C-c before this packet, or between packets,
3604 pretend that it was hit right here. */
3605 if (quit_flag)
3606 {
3607 quit_flag = 0;
3608 remote_interrupt (SIGINT);
3609 }
3610 }
3611 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3612 _never_ wait for ever -> test on target_is_async_p().
3613 However, before we do that we need to ensure that the caller
3614 knows how to take the target into/out of async mode. */
3615 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3616 if (!target_is_async_p ())
3617 signal (SIGINT, ofunc);
3618 }
3619
3620 buf = rs->buf;
3621
3622 switch (buf[0])
3623 {
3624 case 'E': /* Error of some sort. */
3625 /* We're out of sync with the target now. Did it continue or not?
3626 Not is more likely, so report a stop. */
3627 warning (_("Remote failure reply: %s"), buf);
3628 status->kind = TARGET_WAITKIND_STOPPED;
3629 status->value.sig = TARGET_SIGNAL_0;
3630 goto got_status;
3631 case 'F': /* File-I/O request. */
3632 remote_fileio_request (buf);
3633 continue;
3634 case 'T': /* Status with PC, SP, FP, ... */
3635 {
3636 gdb_byte regs[MAX_REGISTER_SIZE];
3637
3638 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3639 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3640 ss = signal number
3641 n... = register number
3642 r... = register contents
3643 */
3644 p = &buf[3]; /* after Txx */
3645
3646 while (*p)
3647 {
3648 char *p1;
3649 char *p_temp;
3650 int fieldsize;
3651 long pnum = 0;
3652
3653 /* If the packet contains a register number, save it
3654 in pnum and set p1 to point to the character
3655 following it. Otherwise p1 points to p. */
3656
3657 /* If this packet is an awatch packet, don't parse the 'a'
3658 as a register number. */
3659
3660 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3661 {
3662 /* Read the register number. */
3663 pnum = strtol (p, &p_temp, 16);
3664 p1 = p_temp;
3665 }
3666 else
3667 p1 = p;
3668
3669 if (p1 == p) /* No register number present here. */
3670 {
3671 p1 = strchr (p, ':');
3672 if (p1 == NULL)
3673 error (_("Malformed packet(a) (missing colon): %s\n\
3674 Packet: '%s'\n"),
3675 p, buf);
3676 if (strncmp (p, "thread", p1 - p) == 0)
3677 {
3678 p_temp = unpack_varlen_hex (++p1, &thread_num);
3679 record_currthread (thread_num);
3680 p = p_temp;
3681 }
3682 else if ((strncmp (p, "watch", p1 - p) == 0)
3683 || (strncmp (p, "rwatch", p1 - p) == 0)
3684 || (strncmp (p, "awatch", p1 - p) == 0))
3685 {
3686 remote_stopped_by_watchpoint_p = 1;
3687 p = unpack_varlen_hex (++p1, &addr);
3688 remote_watch_data_address = (CORE_ADDR)addr;
3689 }
3690 else if (strncmp (p, "library", p1 - p) == 0)
3691 {
3692 p1++;
3693 p_temp = p1;
3694 while (*p_temp && *p_temp != ';')
3695 p_temp++;
3696
3697 solibs_changed = 1;
3698 p = p_temp;
3699 }
3700 else
3701 {
3702 /* Silently skip unknown optional info. */
3703 p_temp = strchr (p1 + 1, ';');
3704 if (p_temp)
3705 p = p_temp;
3706 }
3707 }
3708
3709 else
3710 {
3711 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3712 p = p1;
3713 if (*p++ != ':')
3714 error (_("Malformed packet(b) (missing colon): %s\n\
3715 Packet: '%s'\n"),
3716 p, buf);
3717
3718 if (reg == NULL)
3719 error (_("Remote sent bad register number %ld: %s\n\
3720 Packet: '%s'\n"),
3721 pnum, p, buf);
3722
3723 fieldsize = hex2bin (p, regs,
3724 register_size (current_gdbarch,
3725 reg->regnum));
3726 p += 2 * fieldsize;
3727 if (fieldsize < register_size (current_gdbarch,
3728 reg->regnum))
3729 warning (_("Remote reply is too short: %s"), buf);
3730 regcache_raw_supply (get_current_regcache (),
3731 reg->regnum, regs);
3732 }
3733
3734 if (*p++ != ';')
3735 error (_("Remote register badly formatted: %s\nhere: %s"),
3736 buf, p);
3737 }
3738 }
3739 /* fall through */
3740 case 'S': /* Old style status, just signal only. */
3741 if (solibs_changed)
3742 status->kind = TARGET_WAITKIND_LOADED;
3743 else
3744 {
3745 status->kind = TARGET_WAITKIND_STOPPED;
3746 status->value.sig = (enum target_signal)
3747 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3748 }
3749
3750 if (buf[3] == 'p')
3751 {
3752 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3753 record_currthread (thread_num);
3754 }
3755 goto got_status;
3756 case 'W': /* Target exited. */
3757 {
3758 /* The remote process exited. */
3759 status->kind = TARGET_WAITKIND_EXITED;
3760 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3761 goto got_status;
3762 }
3763 case 'X':
3764 status->kind = TARGET_WAITKIND_SIGNALLED;
3765 status->value.sig = (enum target_signal)
3766 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3767 kill_kludge = 1;
3768
3769 goto got_status;
3770 case 'O': /* Console output. */
3771 remote_console_output (buf + 1);
3772 /* Return immediately to the event loop. The event loop will
3773 still be waiting on the inferior afterwards. */
3774 status->kind = TARGET_WAITKIND_IGNORE;
3775 goto got_status;
3776 case '\0':
3777 if (last_sent_signal != TARGET_SIGNAL_0)
3778 {
3779 /* Zero length reply means that we tried 'S' or 'C' and
3780 the remote system doesn't support it. */
3781 target_terminal_ours_for_output ();
3782 printf_filtered
3783 ("Can't send signals to this remote system. %s not sent.\n",
3784 target_signal_to_name (last_sent_signal));
3785 last_sent_signal = TARGET_SIGNAL_0;
3786 target_terminal_inferior ();
3787
3788 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3789 putpkt ((char *) buf);
3790 continue;
3791 }
3792 /* else fallthrough */
3793 default:
3794 warning (_("Invalid remote reply: %s"), buf);
3795 continue;
3796 }
3797 }
3798 got_status:
3799 if (thread_num != -1)
3800 {
3801 return pid_to_ptid (thread_num);
3802 }
3803 return inferior_ptid;
3804 }
3805
3806 /* Fetch a single register using a 'p' packet. */
3807
3808 static int
3809 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3810 {
3811 struct remote_state *rs = get_remote_state ();
3812 char *buf, *p;
3813 char regp[MAX_REGISTER_SIZE];
3814 int i;
3815
3816 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3817 return 0;
3818
3819 if (reg->pnum == -1)
3820 return 0;
3821
3822 p = rs->buf;
3823 *p++ = 'p';
3824 p += hexnumstr (p, reg->pnum);
3825 *p++ = '\0';
3826 remote_send (&rs->buf, &rs->buf_size);
3827
3828 buf = rs->buf;
3829
3830 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3831 {
3832 case PACKET_OK:
3833 break;
3834 case PACKET_UNKNOWN:
3835 return 0;
3836 case PACKET_ERROR:
3837 error (_("Could not fetch register \"%s\""),
3838 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3839 }
3840
3841 /* If this register is unfetchable, tell the regcache. */
3842 if (buf[0] == 'x')
3843 {
3844 regcache_raw_supply (regcache, reg->regnum, NULL);
3845 return 1;
3846 }
3847
3848 /* Otherwise, parse and supply the value. */
3849 p = buf;
3850 i = 0;
3851 while (p[0] != 0)
3852 {
3853 if (p[1] == 0)
3854 error (_("fetch_register_using_p: early buf termination"));
3855
3856 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3857 p += 2;
3858 }
3859 regcache_raw_supply (regcache, reg->regnum, regp);
3860 return 1;
3861 }
3862
3863 /* Fetch the registers included in the target's 'g' packet. */
3864
3865 static int
3866 send_g_packet (void)
3867 {
3868 struct remote_state *rs = get_remote_state ();
3869 int i, buf_len;
3870 char *p;
3871 char *regs;
3872
3873 sprintf (rs->buf, "g");
3874 remote_send (&rs->buf, &rs->buf_size);
3875
3876 /* We can get out of synch in various cases. If the first character
3877 in the buffer is not a hex character, assume that has happened
3878 and try to fetch another packet to read. */
3879 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3880 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3881 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3882 && rs->buf[0] != 'x') /* New: unavailable register value. */
3883 {
3884 if (remote_debug)
3885 fprintf_unfiltered (gdb_stdlog,
3886 "Bad register packet; fetching a new packet\n");
3887 getpkt (&rs->buf, &rs->buf_size, 0);
3888 }
3889
3890 buf_len = strlen (rs->buf);
3891
3892 /* Sanity check the received packet. */
3893 if (buf_len % 2 != 0)
3894 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3895
3896 return buf_len / 2;
3897 }
3898
3899 static void
3900 process_g_packet (struct regcache *regcache)
3901 {
3902 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3903 struct remote_state *rs = get_remote_state ();
3904 struct remote_arch_state *rsa = get_remote_arch_state ();
3905 int i, buf_len;
3906 char *p;
3907 char *regs;
3908
3909 buf_len = strlen (rs->buf);
3910
3911 /* Further sanity checks, with knowledge of the architecture. */
3912 if (buf_len > 2 * rsa->sizeof_g_packet)
3913 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3914
3915 /* Save the size of the packet sent to us by the target. It is used
3916 as a heuristic when determining the max size of packets that the
3917 target can safely receive. */
3918 if (rsa->actual_register_packet_size == 0)
3919 rsa->actual_register_packet_size = buf_len;
3920
3921 /* If this is smaller than we guessed the 'g' packet would be,
3922 update our records. A 'g' reply that doesn't include a register's
3923 value implies either that the register is not available, or that
3924 the 'p' packet must be used. */
3925 if (buf_len < 2 * rsa->sizeof_g_packet)
3926 {
3927 rsa->sizeof_g_packet = buf_len / 2;
3928
3929 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3930 {
3931 if (rsa->regs[i].pnum == -1)
3932 continue;
3933
3934 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3935 rsa->regs[i].in_g_packet = 0;
3936 else
3937 rsa->regs[i].in_g_packet = 1;
3938 }
3939 }
3940
3941 regs = alloca (rsa->sizeof_g_packet);
3942
3943 /* Unimplemented registers read as all bits zero. */
3944 memset (regs, 0, rsa->sizeof_g_packet);
3945
3946 /* Reply describes registers byte by byte, each byte encoded as two
3947 hex characters. Suck them all up, then supply them to the
3948 register cacheing/storage mechanism. */
3949
3950 p = rs->buf;
3951 for (i = 0; i < rsa->sizeof_g_packet; i++)
3952 {
3953 if (p[0] == 0 || p[1] == 0)
3954 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3955 internal_error (__FILE__, __LINE__,
3956 "unexpected end of 'g' packet reply");
3957
3958 if (p[0] == 'x' && p[1] == 'x')
3959 regs[i] = 0; /* 'x' */
3960 else
3961 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3962 p += 2;
3963 }
3964
3965 {
3966 int i;
3967 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3968 {
3969 struct packet_reg *r = &rsa->regs[i];
3970 if (r->in_g_packet)
3971 {
3972 if (r->offset * 2 >= strlen (rs->buf))
3973 /* This shouldn't happen - we adjusted in_g_packet above. */
3974 internal_error (__FILE__, __LINE__,
3975 "unexpected end of 'g' packet reply");
3976 else if (rs->buf[r->offset * 2] == 'x')
3977 {
3978 gdb_assert (r->offset * 2 < strlen (rs->buf));
3979 /* The register isn't available, mark it as such (at
3980 the same time setting the value to zero). */
3981 regcache_raw_supply (regcache, r->regnum, NULL);
3982 }
3983 else
3984 regcache_raw_supply (regcache, r->regnum,
3985 regs + r->offset);
3986 }
3987 }
3988 }
3989 }
3990
3991 static void
3992 fetch_registers_using_g (struct regcache *regcache)
3993 {
3994 send_g_packet ();
3995 process_g_packet (regcache);
3996 }
3997
3998 static void
3999 remote_fetch_registers (struct regcache *regcache, int regnum)
4000 {
4001 struct remote_state *rs = get_remote_state ();
4002 struct remote_arch_state *rsa = get_remote_arch_state ();
4003 int i;
4004
4005 set_thread (PIDGET (inferior_ptid), 1);
4006
4007 if (regnum >= 0)
4008 {
4009 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4010 gdb_assert (reg != NULL);
4011
4012 /* If this register might be in the 'g' packet, try that first -
4013 we are likely to read more than one register. If this is the
4014 first 'g' packet, we might be overly optimistic about its
4015 contents, so fall back to 'p'. */
4016 if (reg->in_g_packet)
4017 {
4018 fetch_registers_using_g (regcache);
4019 if (reg->in_g_packet)
4020 return;
4021 }
4022
4023 if (fetch_register_using_p (regcache, reg))
4024 return;
4025
4026 /* This register is not available. */
4027 regcache_raw_supply (regcache, reg->regnum, NULL);
4028
4029 return;
4030 }
4031
4032 fetch_registers_using_g (regcache);
4033
4034 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4035 if (!rsa->regs[i].in_g_packet)
4036 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4037 {
4038 /* This register is not available. */
4039 regcache_raw_supply (regcache, i, NULL);
4040 }
4041 }
4042
4043 /* Prepare to store registers. Since we may send them all (using a
4044 'G' request), we have to read out the ones we don't want to change
4045 first. */
4046
4047 static void
4048 remote_prepare_to_store (struct regcache *regcache)
4049 {
4050 struct remote_arch_state *rsa = get_remote_arch_state ();
4051 int i;
4052 gdb_byte buf[MAX_REGISTER_SIZE];
4053
4054 /* Make sure the entire registers array is valid. */
4055 switch (remote_protocol_packets[PACKET_P].support)
4056 {
4057 case PACKET_DISABLE:
4058 case PACKET_SUPPORT_UNKNOWN:
4059 /* Make sure all the necessary registers are cached. */
4060 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4061 if (rsa->regs[i].in_g_packet)
4062 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4063 break;
4064 case PACKET_ENABLE:
4065 break;
4066 }
4067 }
4068
4069 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4070 packet was not recognized. */
4071
4072 static int
4073 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4074 {
4075 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4076 struct remote_state *rs = get_remote_state ();
4077 struct remote_arch_state *rsa = get_remote_arch_state ();
4078 /* Try storing a single register. */
4079 char *buf = rs->buf;
4080 gdb_byte regp[MAX_REGISTER_SIZE];
4081 char *p;
4082
4083 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4084 return 0;
4085
4086 if (reg->pnum == -1)
4087 return 0;
4088
4089 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4090 p = buf + strlen (buf);
4091 regcache_raw_collect (regcache, reg->regnum, regp);
4092 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4093 remote_send (&rs->buf, &rs->buf_size);
4094
4095 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4096 {
4097 case PACKET_OK:
4098 return 1;
4099 case PACKET_ERROR:
4100 error (_("Could not write register \"%s\""),
4101 gdbarch_register_name (gdbarch, reg->regnum));
4102 case PACKET_UNKNOWN:
4103 return 0;
4104 default:
4105 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4106 }
4107 }
4108
4109 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4110 contents of the register cache buffer. FIXME: ignores errors. */
4111
4112 static void
4113 store_registers_using_G (const struct regcache *regcache)
4114 {
4115 struct remote_state *rs = get_remote_state ();
4116 struct remote_arch_state *rsa = get_remote_arch_state ();
4117 gdb_byte *regs;
4118 char *p;
4119
4120 /* Extract all the registers in the regcache copying them into a
4121 local buffer. */
4122 {
4123 int i;
4124 regs = alloca (rsa->sizeof_g_packet);
4125 memset (regs, 0, rsa->sizeof_g_packet);
4126 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4127 {
4128 struct packet_reg *r = &rsa->regs[i];
4129 if (r->in_g_packet)
4130 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4131 }
4132 }
4133
4134 /* Command describes registers byte by byte,
4135 each byte encoded as two hex characters. */
4136 p = rs->buf;
4137 *p++ = 'G';
4138 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4139 updated. */
4140 bin2hex (regs, p, rsa->sizeof_g_packet);
4141 remote_send (&rs->buf, &rs->buf_size);
4142 }
4143
4144 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4145 of the register cache buffer. FIXME: ignores errors. */
4146
4147 static void
4148 remote_store_registers (struct regcache *regcache, int regnum)
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151 struct remote_arch_state *rsa = get_remote_arch_state ();
4152 int i;
4153
4154 set_thread (PIDGET (inferior_ptid), 1);
4155
4156 if (regnum >= 0)
4157 {
4158 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4159 gdb_assert (reg != NULL);
4160
4161 /* Always prefer to store registers using the 'P' packet if
4162 possible; we often change only a small number of registers.
4163 Sometimes we change a larger number; we'd need help from a
4164 higher layer to know to use 'G'. */
4165 if (store_register_using_P (regcache, reg))
4166 return;
4167
4168 /* For now, don't complain if we have no way to write the
4169 register. GDB loses track of unavailable registers too
4170 easily. Some day, this may be an error. We don't have
4171 any way to read the register, either... */
4172 if (!reg->in_g_packet)
4173 return;
4174
4175 store_registers_using_G (regcache);
4176 return;
4177 }
4178
4179 store_registers_using_G (regcache);
4180
4181 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4182 if (!rsa->regs[i].in_g_packet)
4183 if (!store_register_using_P (regcache, &rsa->regs[i]))
4184 /* See above for why we do not issue an error here. */
4185 continue;
4186 }
4187 \f
4188
4189 /* Return the number of hex digits in num. */
4190
4191 static int
4192 hexnumlen (ULONGEST num)
4193 {
4194 int i;
4195
4196 for (i = 0; num != 0; i++)
4197 num >>= 4;
4198
4199 return max (i, 1);
4200 }
4201
4202 /* Set BUF to the minimum number of hex digits representing NUM. */
4203
4204 static int
4205 hexnumstr (char *buf, ULONGEST num)
4206 {
4207 int len = hexnumlen (num);
4208 return hexnumnstr (buf, num, len);
4209 }
4210
4211
4212 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4213
4214 static int
4215 hexnumnstr (char *buf, ULONGEST num, int width)
4216 {
4217 int i;
4218
4219 buf[width] = '\0';
4220
4221 for (i = width - 1; i >= 0; i--)
4222 {
4223 buf[i] = "0123456789abcdef"[(num & 0xf)];
4224 num >>= 4;
4225 }
4226
4227 return width;
4228 }
4229
4230 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4231
4232 static CORE_ADDR
4233 remote_address_masked (CORE_ADDR addr)
4234 {
4235 int address_size = remote_address_size;
4236 /* If "remoteaddresssize" was not set, default to target address size. */
4237 if (!address_size)
4238 address_size = gdbarch_addr_bit (current_gdbarch);
4239
4240 if (address_size > 0
4241 && address_size < (sizeof (ULONGEST) * 8))
4242 {
4243 /* Only create a mask when that mask can safely be constructed
4244 in a ULONGEST variable. */
4245 ULONGEST mask = 1;
4246 mask = (mask << address_size) - 1;
4247 addr &= mask;
4248 }
4249 return addr;
4250 }
4251
4252 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4253 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4254 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4255 (which may be more than *OUT_LEN due to escape characters). The
4256 total number of bytes in the output buffer will be at most
4257 OUT_MAXLEN. */
4258
4259 static int
4260 remote_escape_output (const gdb_byte *buffer, int len,
4261 gdb_byte *out_buf, int *out_len,
4262 int out_maxlen)
4263 {
4264 int input_index, output_index;
4265
4266 output_index = 0;
4267 for (input_index = 0; input_index < len; input_index++)
4268 {
4269 gdb_byte b = buffer[input_index];
4270
4271 if (b == '$' || b == '#' || b == '}')
4272 {
4273 /* These must be escaped. */
4274 if (output_index + 2 > out_maxlen)
4275 break;
4276 out_buf[output_index++] = '}';
4277 out_buf[output_index++] = b ^ 0x20;
4278 }
4279 else
4280 {
4281 if (output_index + 1 > out_maxlen)
4282 break;
4283 out_buf[output_index++] = b;
4284 }
4285 }
4286
4287 *out_len = input_index;
4288 return output_index;
4289 }
4290
4291 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4292 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4293 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4294
4295 This function reverses remote_escape_output. It allows more
4296 escaped characters than that function does, in particular because
4297 '*' must be escaped to avoid the run-length encoding processing
4298 in reading packets. */
4299
4300 static int
4301 remote_unescape_input (const gdb_byte *buffer, int len,
4302 gdb_byte *out_buf, int out_maxlen)
4303 {
4304 int input_index, output_index;
4305 int escaped;
4306
4307 output_index = 0;
4308 escaped = 0;
4309 for (input_index = 0; input_index < len; input_index++)
4310 {
4311 gdb_byte b = buffer[input_index];
4312
4313 if (output_index + 1 > out_maxlen)
4314 {
4315 warning (_("Received too much data from remote target;"
4316 " ignoring overflow."));
4317 return output_index;
4318 }
4319
4320 if (escaped)
4321 {
4322 out_buf[output_index++] = b ^ 0x20;
4323 escaped = 0;
4324 }
4325 else if (b == '}')
4326 escaped = 1;
4327 else
4328 out_buf[output_index++] = b;
4329 }
4330
4331 if (escaped)
4332 error (_("Unmatched escape character in target response."));
4333
4334 return output_index;
4335 }
4336
4337 /* Determine whether the remote target supports binary downloading.
4338 This is accomplished by sending a no-op memory write of zero length
4339 to the target at the specified address. It does not suffice to send
4340 the whole packet, since many stubs strip the eighth bit and
4341 subsequently compute a wrong checksum, which causes real havoc with
4342 remote_write_bytes.
4343
4344 NOTE: This can still lose if the serial line is not eight-bit
4345 clean. In cases like this, the user should clear "remote
4346 X-packet". */
4347
4348 static void
4349 check_binary_download (CORE_ADDR addr)
4350 {
4351 struct remote_state *rs = get_remote_state ();
4352
4353 switch (remote_protocol_packets[PACKET_X].support)
4354 {
4355 case PACKET_DISABLE:
4356 break;
4357 case PACKET_ENABLE:
4358 break;
4359 case PACKET_SUPPORT_UNKNOWN:
4360 {
4361 char *p;
4362
4363 p = rs->buf;
4364 *p++ = 'X';
4365 p += hexnumstr (p, (ULONGEST) addr);
4366 *p++ = ',';
4367 p += hexnumstr (p, (ULONGEST) 0);
4368 *p++ = ':';
4369 *p = '\0';
4370
4371 putpkt_binary (rs->buf, (int) (p - rs->buf));
4372 getpkt (&rs->buf, &rs->buf_size, 0);
4373
4374 if (rs->buf[0] == '\0')
4375 {
4376 if (remote_debug)
4377 fprintf_unfiltered (gdb_stdlog,
4378 "binary downloading NOT suppported by target\n");
4379 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4380 }
4381 else
4382 {
4383 if (remote_debug)
4384 fprintf_unfiltered (gdb_stdlog,
4385 "binary downloading suppported by target\n");
4386 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4387 }
4388 break;
4389 }
4390 }
4391 }
4392
4393 /* Write memory data directly to the remote machine.
4394 This does not inform the data cache; the data cache uses this.
4395 HEADER is the starting part of the packet.
4396 MEMADDR is the address in the remote memory space.
4397 MYADDR is the address of the buffer in our space.
4398 LEN is the number of bytes.
4399 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4400 should send data as binary ('X'), or hex-encoded ('M').
4401
4402 The function creates packet of the form
4403 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4404
4405 where encoding of <DATA> is termined by PACKET_FORMAT.
4406
4407 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4408 are omitted.
4409
4410 Returns the number of bytes transferred, or 0 (setting errno) for
4411 error. Only transfer a single packet. */
4412
4413 static int
4414 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4415 const gdb_byte *myaddr, int len,
4416 char packet_format, int use_length)
4417 {
4418 struct remote_state *rs = get_remote_state ();
4419 char *p;
4420 char *plen = NULL;
4421 int plenlen = 0;
4422 int todo;
4423 int nr_bytes;
4424 int payload_size;
4425 int payload_length;
4426 int header_length;
4427
4428 if (packet_format != 'X' && packet_format != 'M')
4429 internal_error (__FILE__, __LINE__,
4430 "remote_write_bytes_aux: bad packet format");
4431
4432 if (len <= 0)
4433 return 0;
4434
4435 payload_size = get_memory_write_packet_size ();
4436
4437 /* The packet buffer will be large enough for the payload;
4438 get_memory_packet_size ensures this. */
4439 rs->buf[0] = '\0';
4440
4441 /* Compute the size of the actual payload by subtracting out the
4442 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4443 */
4444 payload_size -= strlen ("$,:#NN");
4445 if (!use_length)
4446 /* The comma won't be used. */
4447 payload_size += 1;
4448 header_length = strlen (header);
4449 payload_size -= header_length;
4450 payload_size -= hexnumlen (memaddr);
4451
4452 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4453
4454 strcat (rs->buf, header);
4455 p = rs->buf + strlen (header);
4456
4457 /* Compute a best guess of the number of bytes actually transfered. */
4458 if (packet_format == 'X')
4459 {
4460 /* Best guess at number of bytes that will fit. */
4461 todo = min (len, payload_size);
4462 if (use_length)
4463 payload_size -= hexnumlen (todo);
4464 todo = min (todo, payload_size);
4465 }
4466 else
4467 {
4468 /* Num bytes that will fit. */
4469 todo = min (len, payload_size / 2);
4470 if (use_length)
4471 payload_size -= hexnumlen (todo);
4472 todo = min (todo, payload_size / 2);
4473 }
4474
4475 if (todo <= 0)
4476 internal_error (__FILE__, __LINE__,
4477 _("minumum packet size too small to write data"));
4478
4479 /* If we already need another packet, then try to align the end
4480 of this packet to a useful boundary. */
4481 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4482 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4483
4484 /* Append "<memaddr>". */
4485 memaddr = remote_address_masked (memaddr);
4486 p += hexnumstr (p, (ULONGEST) memaddr);
4487
4488 if (use_length)
4489 {
4490 /* Append ",". */
4491 *p++ = ',';
4492
4493 /* Append <len>. Retain the location/size of <len>. It may need to
4494 be adjusted once the packet body has been created. */
4495 plen = p;
4496 plenlen = hexnumstr (p, (ULONGEST) todo);
4497 p += plenlen;
4498 }
4499
4500 /* Append ":". */
4501 *p++ = ':';
4502 *p = '\0';
4503
4504 /* Append the packet body. */
4505 if (packet_format == 'X')
4506 {
4507 /* Binary mode. Send target system values byte by byte, in
4508 increasing byte addresses. Only escape certain critical
4509 characters. */
4510 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4511 payload_size);
4512
4513 /* If not all TODO bytes fit, then we'll need another packet. Make
4514 a second try to keep the end of the packet aligned. Don't do
4515 this if the packet is tiny. */
4516 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4517 {
4518 int new_nr_bytes;
4519
4520 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4521 - memaddr);
4522 if (new_nr_bytes != nr_bytes)
4523 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4524 p, &nr_bytes,
4525 payload_size);
4526 }
4527
4528 p += payload_length;
4529 if (use_length && nr_bytes < todo)
4530 {
4531 /* Escape chars have filled up the buffer prematurely,
4532 and we have actually sent fewer bytes than planned.
4533 Fix-up the length field of the packet. Use the same
4534 number of characters as before. */
4535 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4536 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4537 }
4538 }
4539 else
4540 {
4541 /* Normal mode: Send target system values byte by byte, in
4542 increasing byte addresses. Each byte is encoded as a two hex
4543 value. */
4544 nr_bytes = bin2hex (myaddr, p, todo);
4545 p += 2 * nr_bytes;
4546 }
4547
4548 putpkt_binary (rs->buf, (int) (p - rs->buf));
4549 getpkt (&rs->buf, &rs->buf_size, 0);
4550
4551 if (rs->buf[0] == 'E')
4552 {
4553 /* There is no correspondance between what the remote protocol
4554 uses for errors and errno codes. We would like a cleaner way
4555 of representing errors (big enough to include errno codes,
4556 bfd_error codes, and others). But for now just return EIO. */
4557 errno = EIO;
4558 return 0;
4559 }
4560
4561 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4562 fewer bytes than we'd planned. */
4563 return nr_bytes;
4564 }
4565
4566 /* Write memory data directly to the remote machine.
4567 This does not inform the data cache; the data cache uses this.
4568 MEMADDR is the address in the remote memory space.
4569 MYADDR is the address of the buffer in our space.
4570 LEN is the number of bytes.
4571
4572 Returns number of bytes transferred, or 0 (setting errno) for
4573 error. Only transfer a single packet. */
4574
4575 int
4576 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4577 {
4578 char *packet_format = 0;
4579
4580 /* Check whether the target supports binary download. */
4581 check_binary_download (memaddr);
4582
4583 switch (remote_protocol_packets[PACKET_X].support)
4584 {
4585 case PACKET_ENABLE:
4586 packet_format = "X";
4587 break;
4588 case PACKET_DISABLE:
4589 packet_format = "M";
4590 break;
4591 case PACKET_SUPPORT_UNKNOWN:
4592 internal_error (__FILE__, __LINE__,
4593 _("remote_write_bytes: bad internal state"));
4594 default:
4595 internal_error (__FILE__, __LINE__, _("bad switch"));
4596 }
4597
4598 return remote_write_bytes_aux (packet_format,
4599 memaddr, myaddr, len, packet_format[0], 1);
4600 }
4601
4602 /* Read memory data directly from the remote machine.
4603 This does not use the data cache; the data cache uses this.
4604 MEMADDR is the address in the remote memory space.
4605 MYADDR is the address of the buffer in our space.
4606 LEN is the number of bytes.
4607
4608 Returns number of bytes transferred, or 0 for error. */
4609
4610 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4611 remote targets) shouldn't attempt to read the entire buffer.
4612 Instead it should read a single packet worth of data and then
4613 return the byte size of that packet to the caller. The caller (its
4614 caller and its callers caller ;-) already contains code for
4615 handling partial reads. */
4616
4617 int
4618 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4619 {
4620 struct remote_state *rs = get_remote_state ();
4621 int max_buf_size; /* Max size of packet output buffer. */
4622 int origlen;
4623
4624 if (len <= 0)
4625 return 0;
4626
4627 max_buf_size = get_memory_read_packet_size ();
4628 /* The packet buffer will be large enough for the payload;
4629 get_memory_packet_size ensures this. */
4630
4631 origlen = len;
4632 while (len > 0)
4633 {
4634 char *p;
4635 int todo;
4636 int i;
4637
4638 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4639
4640 /* construct "m"<memaddr>","<len>" */
4641 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4642 memaddr = remote_address_masked (memaddr);
4643 p = rs->buf;
4644 *p++ = 'm';
4645 p += hexnumstr (p, (ULONGEST) memaddr);
4646 *p++ = ',';
4647 p += hexnumstr (p, (ULONGEST) todo);
4648 *p = '\0';
4649
4650 putpkt (rs->buf);
4651 getpkt (&rs->buf, &rs->buf_size, 0);
4652
4653 if (rs->buf[0] == 'E'
4654 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4655 && rs->buf[3] == '\0')
4656 {
4657 /* There is no correspondance between what the remote
4658 protocol uses for errors and errno codes. We would like
4659 a cleaner way of representing errors (big enough to
4660 include errno codes, bfd_error codes, and others). But
4661 for now just return EIO. */
4662 errno = EIO;
4663 return 0;
4664 }
4665
4666 /* Reply describes memory byte by byte,
4667 each byte encoded as two hex characters. */
4668
4669 p = rs->buf;
4670 if ((i = hex2bin (p, myaddr, todo)) < todo)
4671 {
4672 /* Reply is short. This means that we were able to read
4673 only part of what we wanted to. */
4674 return i + (origlen - len);
4675 }
4676 myaddr += todo;
4677 memaddr += todo;
4678 len -= todo;
4679 }
4680 return origlen;
4681 }
4682 \f
4683 /* Read or write LEN bytes from inferior memory at MEMADDR,
4684 transferring to or from debugger address BUFFER. Write to inferior
4685 if SHOULD_WRITE is nonzero. Returns length of data written or
4686 read; 0 for error. TARGET is unused. */
4687
4688 static int
4689 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4690 int should_write, struct mem_attrib *attrib,
4691 struct target_ops *target)
4692 {
4693 int res;
4694
4695 if (should_write)
4696 res = remote_write_bytes (mem_addr, buffer, mem_len);
4697 else
4698 res = remote_read_bytes (mem_addr, buffer, mem_len);
4699
4700 return res;
4701 }
4702
4703 /* Sends a packet with content determined by the printf format string
4704 FORMAT and the remaining arguments, then gets the reply. Returns
4705 whether the packet was a success, a failure, or unknown. */
4706
4707 enum packet_result
4708 remote_send_printf (const char *format, ...)
4709 {
4710 struct remote_state *rs = get_remote_state ();
4711 int max_size = get_remote_packet_size ();
4712
4713 va_list ap;
4714 va_start (ap, format);
4715
4716 rs->buf[0] = '\0';
4717 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4718 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4719
4720 if (putpkt (rs->buf) < 0)
4721 error (_("Communication problem with target."));
4722
4723 rs->buf[0] = '\0';
4724 getpkt (&rs->buf, &rs->buf_size, 0);
4725
4726 return packet_check_result (rs->buf);
4727 }
4728
4729 static void
4730 restore_remote_timeout (void *p)
4731 {
4732 int value = *(int *)p;
4733 remote_timeout = value;
4734 }
4735
4736 /* Flash writing can take quite some time. We'll set
4737 effectively infinite timeout for flash operations.
4738 In future, we'll need to decide on a better approach. */
4739 static const int remote_flash_timeout = 1000;
4740
4741 static void
4742 remote_flash_erase (struct target_ops *ops,
4743 ULONGEST address, LONGEST length)
4744 {
4745 int saved_remote_timeout = remote_timeout;
4746 enum packet_result ret;
4747
4748 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4749 &saved_remote_timeout);
4750 remote_timeout = remote_flash_timeout;
4751
4752 ret = remote_send_printf ("vFlashErase:%s,%s",
4753 paddr (address),
4754 phex (length, 4));
4755 switch (ret)
4756 {
4757 case PACKET_UNKNOWN:
4758 error (_("Remote target does not support flash erase"));
4759 case PACKET_ERROR:
4760 error (_("Error erasing flash with vFlashErase packet"));
4761 default:
4762 break;
4763 }
4764
4765 do_cleanups (back_to);
4766 }
4767
4768 static LONGEST
4769 remote_flash_write (struct target_ops *ops,
4770 ULONGEST address, LONGEST length,
4771 const gdb_byte *data)
4772 {
4773 int saved_remote_timeout = remote_timeout;
4774 int ret;
4775 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4776 &saved_remote_timeout);
4777
4778 remote_timeout = remote_flash_timeout;
4779 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4780 do_cleanups (back_to);
4781
4782 return ret;
4783 }
4784
4785 static void
4786 remote_flash_done (struct target_ops *ops)
4787 {
4788 int saved_remote_timeout = remote_timeout;
4789 int ret;
4790 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4791 &saved_remote_timeout);
4792
4793 remote_timeout = remote_flash_timeout;
4794 ret = remote_send_printf ("vFlashDone");
4795 do_cleanups (back_to);
4796
4797 switch (ret)
4798 {
4799 case PACKET_UNKNOWN:
4800 error (_("Remote target does not support vFlashDone"));
4801 case PACKET_ERROR:
4802 error (_("Error finishing flash operation"));
4803 default:
4804 break;
4805 }
4806 }
4807
4808 static void
4809 remote_files_info (struct target_ops *ignore)
4810 {
4811 puts_filtered ("Debugging a target over a serial line.\n");
4812 }
4813 \f
4814 /* Stuff for dealing with the packets which are part of this protocol.
4815 See comment at top of file for details. */
4816
4817 /* Read a single character from the remote end. */
4818
4819 static int
4820 readchar (int timeout)
4821 {
4822 int ch;
4823
4824 ch = serial_readchar (remote_desc, timeout);
4825
4826 if (ch >= 0)
4827 return ch;
4828
4829 switch ((enum serial_rc) ch)
4830 {
4831 case SERIAL_EOF:
4832 target_mourn_inferior ();
4833 error (_("Remote connection closed"));
4834 /* no return */
4835 case SERIAL_ERROR:
4836 perror_with_name (_("Remote communication error"));
4837 /* no return */
4838 case SERIAL_TIMEOUT:
4839 break;
4840 }
4841 return ch;
4842 }
4843
4844 /* Send the command in *BUF to the remote machine, and read the reply
4845 into *BUF. Report an error if we get an error reply. Resize
4846 *BUF using xrealloc if necessary to hold the result, and update
4847 *SIZEOF_BUF. */
4848
4849 static void
4850 remote_send (char **buf,
4851 long *sizeof_buf)
4852 {
4853 putpkt (*buf);
4854 getpkt (buf, sizeof_buf, 0);
4855
4856 if ((*buf)[0] == 'E')
4857 error (_("Remote failure reply: %s"), *buf);
4858 }
4859
4860 /* Display a null-terminated packet on stdout, for debugging, using C
4861 string notation. */
4862
4863 static void
4864 print_packet (char *buf)
4865 {
4866 puts_filtered ("\"");
4867 fputstr_filtered (buf, '"', gdb_stdout);
4868 puts_filtered ("\"");
4869 }
4870
4871 int
4872 putpkt (char *buf)
4873 {
4874 return putpkt_binary (buf, strlen (buf));
4875 }
4876
4877 /* Send a packet to the remote machine, with error checking. The data
4878 of the packet is in BUF. The string in BUF can be at most
4879 get_remote_packet_size () - 5 to account for the $, # and checksum,
4880 and for a possible /0 if we are debugging (remote_debug) and want
4881 to print the sent packet as a string. */
4882
4883 static int
4884 putpkt_binary (char *buf, int cnt)
4885 {
4886 struct remote_state *rs = get_remote_state ();
4887 int i;
4888 unsigned char csum = 0;
4889 char *buf2 = alloca (cnt + 6);
4890
4891 int ch;
4892 int tcount = 0;
4893 char *p;
4894
4895 /* We're sending out a new packet. Make sure we don't look at a
4896 stale cached response. */
4897 rs->cached_wait_status = 0;
4898
4899 /* Copy the packet into buffer BUF2, encapsulating it
4900 and giving it a checksum. */
4901
4902 p = buf2;
4903 *p++ = '$';
4904
4905 for (i = 0; i < cnt; i++)
4906 {
4907 csum += buf[i];
4908 *p++ = buf[i];
4909 }
4910 *p++ = '#';
4911 *p++ = tohex ((csum >> 4) & 0xf);
4912 *p++ = tohex (csum & 0xf);
4913
4914 /* Send it over and over until we get a positive ack. */
4915
4916 while (1)
4917 {
4918 int started_error_output = 0;
4919
4920 if (remote_debug)
4921 {
4922 *p = '\0';
4923 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4924 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4925 fprintf_unfiltered (gdb_stdlog, "...");
4926 gdb_flush (gdb_stdlog);
4927 }
4928 if (serial_write (remote_desc, buf2, p - buf2))
4929 perror_with_name (_("putpkt: write failed"));
4930
4931 /* Read until either a timeout occurs (-2) or '+' is read. */
4932 while (1)
4933 {
4934 ch = readchar (remote_timeout);
4935
4936 if (remote_debug)
4937 {
4938 switch (ch)
4939 {
4940 case '+':
4941 case '-':
4942 case SERIAL_TIMEOUT:
4943 case '$':
4944 if (started_error_output)
4945 {
4946 putchar_unfiltered ('\n');
4947 started_error_output = 0;
4948 }
4949 }
4950 }
4951
4952 switch (ch)
4953 {
4954 case '+':
4955 if (remote_debug)
4956 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4957 return 1;
4958 case '-':
4959 if (remote_debug)
4960 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4961 case SERIAL_TIMEOUT:
4962 tcount++;
4963 if (tcount > 3)
4964 return 0;
4965 break; /* Retransmit buffer. */
4966 case '$':
4967 {
4968 if (remote_debug)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "Packet instead of Ack, ignoring it\n");
4971 /* It's probably an old response sent because an ACK
4972 was lost. Gobble up the packet and ack it so it
4973 doesn't get retransmitted when we resend this
4974 packet. */
4975 skip_frame ();
4976 serial_write (remote_desc, "+", 1);
4977 continue; /* Now, go look for +. */
4978 }
4979 default:
4980 if (remote_debug)
4981 {
4982 if (!started_error_output)
4983 {
4984 started_error_output = 1;
4985 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4986 }
4987 fputc_unfiltered (ch & 0177, gdb_stdlog);
4988 }
4989 continue;
4990 }
4991 break; /* Here to retransmit. */
4992 }
4993
4994 #if 0
4995 /* This is wrong. If doing a long backtrace, the user should be
4996 able to get out next time we call QUIT, without anything as
4997 violent as interrupt_query. If we want to provide a way out of
4998 here without getting to the next QUIT, it should be based on
4999 hitting ^C twice as in remote_wait. */
5000 if (quit_flag)
5001 {
5002 quit_flag = 0;
5003 interrupt_query ();
5004 }
5005 #endif
5006 }
5007 }
5008
5009 /* Come here after finding the start of a frame when we expected an
5010 ack. Do our best to discard the rest of this packet. */
5011
5012 static void
5013 skip_frame (void)
5014 {
5015 int c;
5016
5017 while (1)
5018 {
5019 c = readchar (remote_timeout);
5020 switch (c)
5021 {
5022 case SERIAL_TIMEOUT:
5023 /* Nothing we can do. */
5024 return;
5025 case '#':
5026 /* Discard the two bytes of checksum and stop. */
5027 c = readchar (remote_timeout);
5028 if (c >= 0)
5029 c = readchar (remote_timeout);
5030
5031 return;
5032 case '*': /* Run length encoding. */
5033 /* Discard the repeat count. */
5034 c = readchar (remote_timeout);
5035 if (c < 0)
5036 return;
5037 break;
5038 default:
5039 /* A regular character. */
5040 break;
5041 }
5042 }
5043 }
5044
5045 /* Come here after finding the start of the frame. Collect the rest
5046 into *BUF, verifying the checksum, length, and handling run-length
5047 compression. NUL terminate the buffer. If there is not enough room,
5048 expand *BUF using xrealloc.
5049
5050 Returns -1 on error, number of characters in buffer (ignoring the
5051 trailing NULL) on success. (could be extended to return one of the
5052 SERIAL status indications). */
5053
5054 static long
5055 read_frame (char **buf_p,
5056 long *sizeof_buf)
5057 {
5058 unsigned char csum;
5059 long bc;
5060 int c;
5061 char *buf = *buf_p;
5062
5063 csum = 0;
5064 bc = 0;
5065
5066 while (1)
5067 {
5068 c = readchar (remote_timeout);
5069 switch (c)
5070 {
5071 case SERIAL_TIMEOUT:
5072 if (remote_debug)
5073 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5074 return -1;
5075 case '$':
5076 if (remote_debug)
5077 fputs_filtered ("Saw new packet start in middle of old one\n",
5078 gdb_stdlog);
5079 return -1; /* Start a new packet, count retries. */
5080 case '#':
5081 {
5082 unsigned char pktcsum;
5083 int check_0 = 0;
5084 int check_1 = 0;
5085
5086 buf[bc] = '\0';
5087
5088 check_0 = readchar (remote_timeout);
5089 if (check_0 >= 0)
5090 check_1 = readchar (remote_timeout);
5091
5092 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5093 {
5094 if (remote_debug)
5095 fputs_filtered ("Timeout in checksum, retrying\n",
5096 gdb_stdlog);
5097 return -1;
5098 }
5099 else if (check_0 < 0 || check_1 < 0)
5100 {
5101 if (remote_debug)
5102 fputs_filtered ("Communication error in checksum\n",
5103 gdb_stdlog);
5104 return -1;
5105 }
5106
5107 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5108 if (csum == pktcsum)
5109 return bc;
5110
5111 if (remote_debug)
5112 {
5113 fprintf_filtered (gdb_stdlog,
5114 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5115 pktcsum, csum);
5116 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5117 fputs_filtered ("\n", gdb_stdlog);
5118 }
5119 /* Number of characters in buffer ignoring trailing
5120 NULL. */
5121 return -1;
5122 }
5123 case '*': /* Run length encoding. */
5124 {
5125 int repeat;
5126 csum += c;
5127
5128 c = readchar (remote_timeout);
5129 csum += c;
5130 repeat = c - ' ' + 3; /* Compute repeat count. */
5131
5132 /* The character before ``*'' is repeated. */
5133
5134 if (repeat > 0 && repeat <= 255 && bc > 0)
5135 {
5136 if (bc + repeat - 1 >= *sizeof_buf - 1)
5137 {
5138 /* Make some more room in the buffer. */
5139 *sizeof_buf += repeat;
5140 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5141 buf = *buf_p;
5142 }
5143
5144 memset (&buf[bc], buf[bc - 1], repeat);
5145 bc += repeat;
5146 continue;
5147 }
5148
5149 buf[bc] = '\0';
5150 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5151 return -1;
5152 }
5153 default:
5154 if (bc >= *sizeof_buf - 1)
5155 {
5156 /* Make some more room in the buffer. */
5157 *sizeof_buf *= 2;
5158 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5159 buf = *buf_p;
5160 }
5161
5162 buf[bc++] = c;
5163 csum += c;
5164 continue;
5165 }
5166 }
5167 }
5168
5169 /* Read a packet from the remote machine, with error checking, and
5170 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5171 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5172 rather than timing out; this is used (in synchronous mode) to wait
5173 for a target that is is executing user code to stop. */
5174 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5175 don't have to change all the calls to getpkt to deal with the
5176 return value, because at the moment I don't know what the right
5177 thing to do it for those. */
5178 void
5179 getpkt (char **buf,
5180 long *sizeof_buf,
5181 int forever)
5182 {
5183 int timed_out;
5184
5185 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5186 }
5187
5188
5189 /* Read a packet from the remote machine, with error checking, and
5190 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5191 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5192 rather than timing out; this is used (in synchronous mode) to wait
5193 for a target that is is executing user code to stop. If FOREVER ==
5194 0, this function is allowed to time out gracefully and return an
5195 indication of this to the caller. Otherwise return the number
5196 of bytes read. */
5197 static int
5198 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5199 {
5200 struct remote_state *rs = get_remote_state ();
5201 int c;
5202 int tries;
5203 int timeout;
5204 int val;
5205
5206 /* We're reading a new response. Make sure we don't look at a
5207 previously cached response. */
5208 rs->cached_wait_status = 0;
5209
5210 strcpy (*buf, "timeout");
5211
5212 if (forever)
5213 {
5214 timeout = watchdog > 0 ? watchdog : -1;
5215 }
5216
5217 else
5218 timeout = remote_timeout;
5219
5220 #define MAX_TRIES 3
5221
5222 for (tries = 1; tries <= MAX_TRIES; tries++)
5223 {
5224 /* This can loop forever if the remote side sends us characters
5225 continuously, but if it pauses, we'll get a zero from
5226 readchar because of timeout. Then we'll count that as a
5227 retry. */
5228
5229 /* Note that we will only wait forever prior to the start of a
5230 packet. After that, we expect characters to arrive at a
5231 brisk pace. They should show up within remote_timeout
5232 intervals. */
5233
5234 do
5235 {
5236 c = readchar (timeout);
5237
5238 if (c == SERIAL_TIMEOUT)
5239 {
5240 if (forever) /* Watchdog went off? Kill the target. */
5241 {
5242 QUIT;
5243 target_mourn_inferior ();
5244 error (_("Watchdog timeout has expired. Target detached."));
5245 }
5246 if (remote_debug)
5247 fputs_filtered ("Timed out.\n", gdb_stdlog);
5248 goto retry;
5249 }
5250 }
5251 while (c != '$');
5252
5253 /* We've found the start of a packet, now collect the data. */
5254
5255 val = read_frame (buf, sizeof_buf);
5256
5257 if (val >= 0)
5258 {
5259 if (remote_debug)
5260 {
5261 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5262 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5263 fprintf_unfiltered (gdb_stdlog, "\n");
5264 }
5265 serial_write (remote_desc, "+", 1);
5266 return val;
5267 }
5268
5269 /* Try the whole thing again. */
5270 retry:
5271 serial_write (remote_desc, "-", 1);
5272 }
5273
5274 /* We have tried hard enough, and just can't receive the packet.
5275 Give up. */
5276
5277 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5278 serial_write (remote_desc, "+", 1);
5279 return -1;
5280 }
5281 \f
5282 static void
5283 remote_kill (void)
5284 {
5285 /* For some mysterious reason, wait_for_inferior calls kill instead of
5286 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5287 if (kill_kludge)
5288 {
5289 kill_kludge = 0;
5290 target_mourn_inferior ();
5291 return;
5292 }
5293
5294 /* Use catch_errors so the user can quit from gdb even when we aren't on
5295 speaking terms with the remote system. */
5296 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5297
5298 /* Don't wait for it to die. I'm not really sure it matters whether
5299 we do or not. For the existing stubs, kill is a noop. */
5300 target_mourn_inferior ();
5301 }
5302
5303 /* Async version of remote_kill. */
5304 static void
5305 remote_async_kill (void)
5306 {
5307 /* Unregister the file descriptor from the event loop. */
5308 if (target_is_async_p ())
5309 serial_async (remote_desc, NULL, 0);
5310
5311 /* For some mysterious reason, wait_for_inferior calls kill instead of
5312 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5313 if (kill_kludge)
5314 {
5315 kill_kludge = 0;
5316 target_mourn_inferior ();
5317 return;
5318 }
5319
5320 /* Use catch_errors so the user can quit from gdb even when we
5321 aren't on speaking terms with the remote system. */
5322 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5323
5324 /* Don't wait for it to die. I'm not really sure it matters whether
5325 we do or not. For the existing stubs, kill is a noop. */
5326 target_mourn_inferior ();
5327 }
5328
5329 static void
5330 remote_mourn (void)
5331 {
5332 remote_mourn_1 (&remote_ops);
5333 }
5334
5335 static void
5336 remote_async_mourn (void)
5337 {
5338 remote_mourn_1 (&remote_async_ops);
5339 }
5340
5341 /* Worker function for remote_mourn. */
5342 static void
5343 remote_mourn_1 (struct target_ops *target)
5344 {
5345 unpush_target (target);
5346 generic_mourn_inferior ();
5347 }
5348
5349 static void
5350 extended_remote_mourn_1 (struct target_ops *target)
5351 {
5352 struct remote_state *rs = get_remote_state ();
5353
5354 /* Unlike "target remote", we do not want to unpush the target; then
5355 the next time the user says "run", we won't be connected. */
5356
5357 /* Call common code to mark the inferior as not running. */
5358 generic_mourn_inferior ();
5359
5360 /* Check whether the target is running now - some remote stubs
5361 automatically restart after kill. */
5362 putpkt ("?");
5363 getpkt (&rs->buf, &rs->buf_size, 0);
5364
5365 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5366 {
5367 /* Assume that the target has been restarted. Set inferior_ptid
5368 so that bits of core GDB realizes there's something here, e.g.,
5369 so that the user can say "kill" again. */
5370 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5371 }
5372 else
5373 {
5374 /* Mark this (still pushed) target as not executable until we
5375 restart it. */
5376 target_mark_exited (target);
5377 }
5378 }
5379
5380 static void
5381 extended_remote_mourn (void)
5382 {
5383 extended_remote_mourn_1 (&extended_remote_ops);
5384 }
5385
5386 static void
5387 extended_async_remote_mourn (void)
5388 {
5389 extended_remote_mourn_1 (&extended_async_remote_ops);
5390 }
5391
5392 static int
5393 extended_remote_run (char *args)
5394 {
5395 struct remote_state *rs = get_remote_state ();
5396 char *p;
5397 int len;
5398
5399 /* If the user has disabled vRun support, or we have detected that
5400 support is not available, do not try it. */
5401 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5402 return -1;
5403
5404 strcpy (rs->buf, "vRun;");
5405 len = strlen (rs->buf);
5406
5407 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5408 error (_("Remote file name too long for run packet"));
5409 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5410
5411 if (*args)
5412 {
5413 struct cleanup *back_to;
5414 int i;
5415 char **argv;
5416
5417 argv = buildargv (args);
5418 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5419 for (i = 0; argv[i] != NULL; i++)
5420 {
5421 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5422 error (_("Argument list too long for run packet"));
5423 rs->buf[len++] = ';';
5424 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5425 }
5426 do_cleanups (back_to);
5427 }
5428
5429 rs->buf[len++] = '\0';
5430
5431 putpkt (rs->buf);
5432 getpkt (&rs->buf, &rs->buf_size, 0);
5433
5434 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5435 {
5436 /* We have a wait response; we don't need it, though. All is well. */
5437 return 0;
5438 }
5439 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5440 /* It wasn't disabled before, but it is now. */
5441 return -1;
5442 else
5443 {
5444 if (remote_exec_file[0] == '\0')
5445 error (_("Running the default executable on the remote target failed; "
5446 "try \"set remote exec-file\"?"));
5447 else
5448 error (_("Running \"%s\" on the remote target failed"),
5449 remote_exec_file);
5450 }
5451 }
5452
5453 /* In the extended protocol we want to be able to do things like
5454 "run" and have them basically work as expected. So we need
5455 a special create_inferior function. We support changing the
5456 executable file and the command line arguments, but not the
5457 environment. */
5458
5459 static void
5460 extended_remote_create_inferior_1 (char *exec_file, char *args,
5461 char **env, int from_tty,
5462 int async_p)
5463 {
5464 /* If running asynchronously, register the target file descriptor
5465 with the event loop. */
5466 if (async_p && target_can_async_p ())
5467 target_async (inferior_event_handler, 0);
5468
5469 /* Now restart the remote server. */
5470 if (extended_remote_run (args) == -1)
5471 {
5472 /* vRun was not supported. Fail if we need it to do what the
5473 user requested. */
5474 if (remote_exec_file[0])
5475 error (_("Remote target does not support \"set remote exec-file\""));
5476 if (args[0])
5477 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5478
5479 /* Fall back to "R". */
5480 extended_remote_restart ();
5481 }
5482
5483 /* Clean up from the last time we ran, before we mark the target
5484 running again. This will mark breakpoints uninserted, and
5485 get_offsets may insert breakpoints. */
5486 init_thread_list ();
5487 init_wait_for_inferior ();
5488
5489 /* Now mark the inferior as running before we do anything else. */
5490 attach_flag = 0;
5491 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5492 if (async_p)
5493 target_mark_running (&extended_async_remote_ops);
5494 else
5495 target_mark_running (&extended_remote_ops);
5496
5497 /* Get updated offsets, if the stub uses qOffsets. */
5498 get_offsets ();
5499 }
5500
5501 static void
5502 extended_remote_create_inferior (char *exec_file, char *args,
5503 char **env, int from_tty)
5504 {
5505 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5506 }
5507
5508 static void
5509 extended_remote_async_create_inferior (char *exec_file, char *args,
5510 char **env, int from_tty)
5511 {
5512 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5513 }
5514 \f
5515
5516 /* Insert a breakpoint. On targets that have software breakpoint
5517 support, we ask the remote target to do the work; on targets
5518 which don't, we insert a traditional memory breakpoint. */
5519
5520 static int
5521 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5522 {
5523 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5524 If it succeeds, then set the support to PACKET_ENABLE. If it
5525 fails, and the user has explicitly requested the Z support then
5526 report an error, otherwise, mark it disabled and go on. */
5527
5528 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5529 {
5530 CORE_ADDR addr;
5531 struct remote_state *rs;
5532 char *p;
5533
5534 gdbarch_breakpoint_from_pc
5535 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5536
5537 rs = get_remote_state ();
5538 p = rs->buf;
5539
5540 *(p++) = 'Z';
5541 *(p++) = '0';
5542 *(p++) = ',';
5543 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5544 p += hexnumstr (p, addr);
5545 sprintf (p, ",%d", bp_tgt->placed_size);
5546
5547 putpkt (rs->buf);
5548 getpkt (&rs->buf, &rs->buf_size, 0);
5549
5550 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5551 {
5552 case PACKET_ERROR:
5553 return -1;
5554 case PACKET_OK:
5555 return 0;
5556 case PACKET_UNKNOWN:
5557 break;
5558 }
5559 }
5560
5561 return memory_insert_breakpoint (bp_tgt);
5562 }
5563
5564 static int
5565 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5566 {
5567 CORE_ADDR addr = bp_tgt->placed_address;
5568 struct remote_state *rs = get_remote_state ();
5569 int bp_size;
5570
5571 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5572 {
5573 char *p = rs->buf;
5574
5575 *(p++) = 'z';
5576 *(p++) = '0';
5577 *(p++) = ',';
5578
5579 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5580 p += hexnumstr (p, addr);
5581 sprintf (p, ",%d", bp_tgt->placed_size);
5582
5583 putpkt (rs->buf);
5584 getpkt (&rs->buf, &rs->buf_size, 0);
5585
5586 return (rs->buf[0] == 'E');
5587 }
5588
5589 return memory_remove_breakpoint (bp_tgt);
5590 }
5591
5592 static int
5593 watchpoint_to_Z_packet (int type)
5594 {
5595 switch (type)
5596 {
5597 case hw_write:
5598 return Z_PACKET_WRITE_WP;
5599 break;
5600 case hw_read:
5601 return Z_PACKET_READ_WP;
5602 break;
5603 case hw_access:
5604 return Z_PACKET_ACCESS_WP;
5605 break;
5606 default:
5607 internal_error (__FILE__, __LINE__,
5608 _("hw_bp_to_z: bad watchpoint type %d"), type);
5609 }
5610 }
5611
5612 static int
5613 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5614 {
5615 struct remote_state *rs = get_remote_state ();
5616 char *p;
5617 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5618
5619 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5620 return -1;
5621
5622 sprintf (rs->buf, "Z%x,", packet);
5623 p = strchr (rs->buf, '\0');
5624 addr = remote_address_masked (addr);
5625 p += hexnumstr (p, (ULONGEST) addr);
5626 sprintf (p, ",%x", len);
5627
5628 putpkt (rs->buf);
5629 getpkt (&rs->buf, &rs->buf_size, 0);
5630
5631 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5632 {
5633 case PACKET_ERROR:
5634 case PACKET_UNKNOWN:
5635 return -1;
5636 case PACKET_OK:
5637 return 0;
5638 }
5639 internal_error (__FILE__, __LINE__,
5640 _("remote_insert_watchpoint: reached end of function"));
5641 }
5642
5643
5644 static int
5645 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5646 {
5647 struct remote_state *rs = get_remote_state ();
5648 char *p;
5649 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5650
5651 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5652 return -1;
5653
5654 sprintf (rs->buf, "z%x,", packet);
5655 p = strchr (rs->buf, '\0');
5656 addr = remote_address_masked (addr);
5657 p += hexnumstr (p, (ULONGEST) addr);
5658 sprintf (p, ",%x", len);
5659 putpkt (rs->buf);
5660 getpkt (&rs->buf, &rs->buf_size, 0);
5661
5662 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5663 {
5664 case PACKET_ERROR:
5665 case PACKET_UNKNOWN:
5666 return -1;
5667 case PACKET_OK:
5668 return 0;
5669 }
5670 internal_error (__FILE__, __LINE__,
5671 _("remote_remove_watchpoint: reached end of function"));
5672 }
5673
5674
5675 int remote_hw_watchpoint_limit = -1;
5676 int remote_hw_breakpoint_limit = -1;
5677
5678 static int
5679 remote_check_watch_resources (int type, int cnt, int ot)
5680 {
5681 if (type == bp_hardware_breakpoint)
5682 {
5683 if (remote_hw_breakpoint_limit == 0)
5684 return 0;
5685 else if (remote_hw_breakpoint_limit < 0)
5686 return 1;
5687 else if (cnt <= remote_hw_breakpoint_limit)
5688 return 1;
5689 }
5690 else
5691 {
5692 if (remote_hw_watchpoint_limit == 0)
5693 return 0;
5694 else if (remote_hw_watchpoint_limit < 0)
5695 return 1;
5696 else if (ot)
5697 return -1;
5698 else if (cnt <= remote_hw_watchpoint_limit)
5699 return 1;
5700 }
5701 return -1;
5702 }
5703
5704 static int
5705 remote_stopped_by_watchpoint (void)
5706 {
5707 return remote_stopped_by_watchpoint_p;
5708 }
5709
5710 static int
5711 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5712 {
5713 int rc = 0;
5714 if (remote_stopped_by_watchpoint ())
5715 {
5716 *addr_p = remote_watch_data_address;
5717 rc = 1;
5718 }
5719
5720 return rc;
5721 }
5722
5723
5724 static int
5725 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5726 {
5727 CORE_ADDR addr;
5728 struct remote_state *rs;
5729 char *p;
5730
5731 /* The length field should be set to the size of a breakpoint
5732 instruction, even though we aren't inserting one ourselves. */
5733
5734 gdbarch_breakpoint_from_pc
5735 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5736
5737 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5738 return -1;
5739
5740 rs = get_remote_state ();
5741 p = rs->buf;
5742
5743 *(p++) = 'Z';
5744 *(p++) = '1';
5745 *(p++) = ',';
5746
5747 addr = remote_address_masked (bp_tgt->placed_address);
5748 p += hexnumstr (p, (ULONGEST) addr);
5749 sprintf (p, ",%x", bp_tgt->placed_size);
5750
5751 putpkt (rs->buf);
5752 getpkt (&rs->buf, &rs->buf_size, 0);
5753
5754 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5755 {
5756 case PACKET_ERROR:
5757 case PACKET_UNKNOWN:
5758 return -1;
5759 case PACKET_OK:
5760 return 0;
5761 }
5762 internal_error (__FILE__, __LINE__,
5763 _("remote_insert_hw_breakpoint: reached end of function"));
5764 }
5765
5766
5767 static int
5768 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5769 {
5770 CORE_ADDR addr;
5771 struct remote_state *rs = get_remote_state ();
5772 char *p = rs->buf;
5773
5774 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5775 return -1;
5776
5777 *(p++) = 'z';
5778 *(p++) = '1';
5779 *(p++) = ',';
5780
5781 addr = remote_address_masked (bp_tgt->placed_address);
5782 p += hexnumstr (p, (ULONGEST) addr);
5783 sprintf (p, ",%x", bp_tgt->placed_size);
5784
5785 putpkt (rs->buf);
5786 getpkt (&rs->buf, &rs->buf_size, 0);
5787
5788 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5789 {
5790 case PACKET_ERROR:
5791 case PACKET_UNKNOWN:
5792 return -1;
5793 case PACKET_OK:
5794 return 0;
5795 }
5796 internal_error (__FILE__, __LINE__,
5797 _("remote_remove_hw_breakpoint: reached end of function"));
5798 }
5799
5800 /* Some targets are only capable of doing downloads, and afterwards
5801 they switch to the remote serial protocol. This function provides
5802 a clean way to get from the download target to the remote target.
5803 It's basically just a wrapper so that we don't have to expose any
5804 of the internal workings of remote.c.
5805
5806 Prior to calling this routine, you should shutdown the current
5807 target code, else you will get the "A program is being debugged
5808 already..." message. Usually a call to pop_target() suffices. */
5809
5810 void
5811 push_remote_target (char *name, int from_tty)
5812 {
5813 printf_filtered (_("Switching to remote protocol\n"));
5814 remote_open (name, from_tty);
5815 }
5816
5817 /* Table used by the crc32 function to calcuate the checksum. */
5818
5819 static unsigned long crc32_table[256] =
5820 {0, 0};
5821
5822 static unsigned long
5823 crc32 (unsigned char *buf, int len, unsigned int crc)
5824 {
5825 if (!crc32_table[1])
5826 {
5827 /* Initialize the CRC table and the decoding table. */
5828 int i, j;
5829 unsigned int c;
5830
5831 for (i = 0; i < 256; i++)
5832 {
5833 for (c = i << 24, j = 8; j > 0; --j)
5834 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5835 crc32_table[i] = c;
5836 }
5837 }
5838
5839 while (len--)
5840 {
5841 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5842 buf++;
5843 }
5844 return crc;
5845 }
5846
5847 /* compare-sections command
5848
5849 With no arguments, compares each loadable section in the exec bfd
5850 with the same memory range on the target, and reports mismatches.
5851 Useful for verifying the image on the target against the exec file.
5852 Depends on the target understanding the new "qCRC:" request. */
5853
5854 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5855 target method (target verify memory) and generic version of the
5856 actual command. This will allow other high-level code (especially
5857 generic_load()) to make use of this target functionality. */
5858
5859 static void
5860 compare_sections_command (char *args, int from_tty)
5861 {
5862 struct remote_state *rs = get_remote_state ();
5863 asection *s;
5864 unsigned long host_crc, target_crc;
5865 extern bfd *exec_bfd;
5866 struct cleanup *old_chain;
5867 char *tmp;
5868 char *sectdata;
5869 const char *sectname;
5870 bfd_size_type size;
5871 bfd_vma lma;
5872 int matched = 0;
5873 int mismatched = 0;
5874
5875 if (!exec_bfd)
5876 error (_("command cannot be used without an exec file"));
5877 if (!current_target.to_shortname ||
5878 strcmp (current_target.to_shortname, "remote") != 0)
5879 error (_("command can only be used with remote target"));
5880
5881 for (s = exec_bfd->sections; s; s = s->next)
5882 {
5883 if (!(s->flags & SEC_LOAD))
5884 continue; /* skip non-loadable section */
5885
5886 size = bfd_get_section_size (s);
5887 if (size == 0)
5888 continue; /* skip zero-length section */
5889
5890 sectname = bfd_get_section_name (exec_bfd, s);
5891 if (args && strcmp (args, sectname) != 0)
5892 continue; /* not the section selected by user */
5893
5894 matched = 1; /* do this section */
5895 lma = s->lma;
5896 /* FIXME: assumes lma can fit into long. */
5897 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5898 (long) lma, (long) size);
5899 putpkt (rs->buf);
5900
5901 /* Be clever; compute the host_crc before waiting for target
5902 reply. */
5903 sectdata = xmalloc (size);
5904 old_chain = make_cleanup (xfree, sectdata);
5905 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5906 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5907
5908 getpkt (&rs->buf, &rs->buf_size, 0);
5909 if (rs->buf[0] == 'E')
5910 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5911 sectname, paddr (lma), paddr (lma + size));
5912 if (rs->buf[0] != 'C')
5913 error (_("remote target does not support this operation"));
5914
5915 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5916 target_crc = target_crc * 16 + fromhex (*tmp);
5917
5918 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5919 sectname, paddr (lma), paddr (lma + size));
5920 if (host_crc == target_crc)
5921 printf_filtered ("matched.\n");
5922 else
5923 {
5924 printf_filtered ("MIS-MATCHED!\n");
5925 mismatched++;
5926 }
5927
5928 do_cleanups (old_chain);
5929 }
5930 if (mismatched > 0)
5931 warning (_("One or more sections of the remote executable does not match\n\
5932 the loaded file\n"));
5933 if (args && !matched)
5934 printf_filtered (_("No loaded section named '%s'.\n"), args);
5935 }
5936
5937 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5938 into remote target. The number of bytes written to the remote
5939 target is returned, or -1 for error. */
5940
5941 static LONGEST
5942 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5943 const char *annex, const gdb_byte *writebuf,
5944 ULONGEST offset, LONGEST len,
5945 struct packet_config *packet)
5946 {
5947 int i, buf_len;
5948 ULONGEST n;
5949 gdb_byte *wbuf;
5950 struct remote_state *rs = get_remote_state ();
5951 int max_size = get_memory_write_packet_size ();
5952
5953 if (packet->support == PACKET_DISABLE)
5954 return -1;
5955
5956 /* Insert header. */
5957 i = snprintf (rs->buf, max_size,
5958 "qXfer:%s:write:%s:%s:",
5959 object_name, annex ? annex : "",
5960 phex_nz (offset, sizeof offset));
5961 max_size -= (i + 1);
5962
5963 /* Escape as much data as fits into rs->buf. */
5964 buf_len = remote_escape_output
5965 (writebuf, len, (rs->buf + i), &max_size, max_size);
5966
5967 if (putpkt_binary (rs->buf, i + buf_len) < 0
5968 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5969 || packet_ok (rs->buf, packet) != PACKET_OK)
5970 return -1;
5971
5972 unpack_varlen_hex (rs->buf, &n);
5973 return n;
5974 }
5975
5976 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5977 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5978 number of bytes read is returned, or 0 for EOF, or -1 for error.
5979 The number of bytes read may be less than LEN without indicating an
5980 EOF. PACKET is checked and updated to indicate whether the remote
5981 target supports this object. */
5982
5983 static LONGEST
5984 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5985 const char *annex,
5986 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5987 struct packet_config *packet)
5988 {
5989 static char *finished_object;
5990 static char *finished_annex;
5991 static ULONGEST finished_offset;
5992
5993 struct remote_state *rs = get_remote_state ();
5994 unsigned int total = 0;
5995 LONGEST i, n, packet_len;
5996
5997 if (packet->support == PACKET_DISABLE)
5998 return -1;
5999
6000 /* Check whether we've cached an end-of-object packet that matches
6001 this request. */
6002 if (finished_object)
6003 {
6004 if (strcmp (object_name, finished_object) == 0
6005 && strcmp (annex ? annex : "", finished_annex) == 0
6006 && offset == finished_offset)
6007 return 0;
6008
6009 /* Otherwise, we're now reading something different. Discard
6010 the cache. */
6011 xfree (finished_object);
6012 xfree (finished_annex);
6013 finished_object = NULL;
6014 finished_annex = NULL;
6015 }
6016
6017 /* Request only enough to fit in a single packet. The actual data
6018 may not, since we don't know how much of it will need to be escaped;
6019 the target is free to respond with slightly less data. We subtract
6020 five to account for the response type and the protocol frame. */
6021 n = min (get_remote_packet_size () - 5, len);
6022 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6023 object_name, annex ? annex : "",
6024 phex_nz (offset, sizeof offset),
6025 phex_nz (n, sizeof n));
6026 i = putpkt (rs->buf);
6027 if (i < 0)
6028 return -1;
6029
6030 rs->buf[0] = '\0';
6031 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6032 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6033 return -1;
6034
6035 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6036 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6037
6038 /* 'm' means there is (or at least might be) more data after this
6039 batch. That does not make sense unless there's at least one byte
6040 of data in this reply. */
6041 if (rs->buf[0] == 'm' && packet_len == 1)
6042 error (_("Remote qXfer reply contained no data."));
6043
6044 /* Got some data. */
6045 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6046
6047 /* 'l' is an EOF marker, possibly including a final block of data,
6048 or possibly empty. If we have the final block of a non-empty
6049 object, record this fact to bypass a subsequent partial read. */
6050 if (rs->buf[0] == 'l' && offset + i > 0)
6051 {
6052 finished_object = xstrdup (object_name);
6053 finished_annex = xstrdup (annex ? annex : "");
6054 finished_offset = offset + i;
6055 }
6056
6057 return i;
6058 }
6059
6060 static LONGEST
6061 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6062 const char *annex, gdb_byte *readbuf,
6063 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6064 {
6065 struct remote_state *rs = get_remote_state ();
6066 int i;
6067 char *p2;
6068 char query_type;
6069
6070 /* Handle memory using the standard memory routines. */
6071 if (object == TARGET_OBJECT_MEMORY)
6072 {
6073 int xfered;
6074 errno = 0;
6075
6076 /* If the remote target is connected but not running, we should
6077 pass this request down to a lower stratum (e.g. the executable
6078 file). */
6079 if (!target_has_execution)
6080 return 0;
6081
6082 if (writebuf != NULL)
6083 xfered = remote_write_bytes (offset, writebuf, len);
6084 else
6085 xfered = remote_read_bytes (offset, readbuf, len);
6086
6087 if (xfered > 0)
6088 return xfered;
6089 else if (xfered == 0 && errno == 0)
6090 return 0;
6091 else
6092 return -1;
6093 }
6094
6095 /* Handle SPU memory using qxfer packets. */
6096 if (object == TARGET_OBJECT_SPU)
6097 {
6098 if (readbuf)
6099 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6100 &remote_protocol_packets
6101 [PACKET_qXfer_spu_read]);
6102 else
6103 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6104 &remote_protocol_packets
6105 [PACKET_qXfer_spu_write]);
6106 }
6107
6108 /* Only handle flash writes. */
6109 if (writebuf != NULL)
6110 {
6111 LONGEST xfered;
6112
6113 switch (object)
6114 {
6115 case TARGET_OBJECT_FLASH:
6116 xfered = remote_flash_write (ops, offset, len, writebuf);
6117
6118 if (xfered > 0)
6119 return xfered;
6120 else if (xfered == 0 && errno == 0)
6121 return 0;
6122 else
6123 return -1;
6124
6125 default:
6126 return -1;
6127 }
6128 }
6129
6130 /* Map pre-existing objects onto letters. DO NOT do this for new
6131 objects!!! Instead specify new query packets. */
6132 switch (object)
6133 {
6134 case TARGET_OBJECT_AVR:
6135 query_type = 'R';
6136 break;
6137
6138 case TARGET_OBJECT_AUXV:
6139 gdb_assert (annex == NULL);
6140 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6141 &remote_protocol_packets[PACKET_qXfer_auxv]);
6142
6143 case TARGET_OBJECT_AVAILABLE_FEATURES:
6144 return remote_read_qxfer
6145 (ops, "features", annex, readbuf, offset, len,
6146 &remote_protocol_packets[PACKET_qXfer_features]);
6147
6148 case TARGET_OBJECT_LIBRARIES:
6149 return remote_read_qxfer
6150 (ops, "libraries", annex, readbuf, offset, len,
6151 &remote_protocol_packets[PACKET_qXfer_libraries]);
6152
6153 case TARGET_OBJECT_MEMORY_MAP:
6154 gdb_assert (annex == NULL);
6155 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6156 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6157
6158 default:
6159 return -1;
6160 }
6161
6162 /* Note: a zero OFFSET and LEN can be used to query the minimum
6163 buffer size. */
6164 if (offset == 0 && len == 0)
6165 return (get_remote_packet_size ());
6166 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6167 large enough let the caller deal with it. */
6168 if (len < get_remote_packet_size ())
6169 return -1;
6170 len = get_remote_packet_size ();
6171
6172 /* Except for querying the minimum buffer size, target must be open. */
6173 if (!remote_desc)
6174 error (_("remote query is only available after target open"));
6175
6176 gdb_assert (annex != NULL);
6177 gdb_assert (readbuf != NULL);
6178
6179 p2 = rs->buf;
6180 *p2++ = 'q';
6181 *p2++ = query_type;
6182
6183 /* We used one buffer char for the remote protocol q command and
6184 another for the query type. As the remote protocol encapsulation
6185 uses 4 chars plus one extra in case we are debugging
6186 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6187 string. */
6188 i = 0;
6189 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6190 {
6191 /* Bad caller may have sent forbidden characters. */
6192 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6193 *p2++ = annex[i];
6194 i++;
6195 }
6196 *p2 = '\0';
6197 gdb_assert (annex[i] == '\0');
6198
6199 i = putpkt (rs->buf);
6200 if (i < 0)
6201 return i;
6202
6203 getpkt (&rs->buf, &rs->buf_size, 0);
6204 strcpy ((char *) readbuf, rs->buf);
6205
6206 return strlen ((char *) readbuf);
6207 }
6208
6209 static int
6210 remote_search_memory (struct target_ops* ops,
6211 CORE_ADDR start_addr, ULONGEST search_space_len,
6212 const gdb_byte *pattern, ULONGEST pattern_len,
6213 CORE_ADDR *found_addrp)
6214 {
6215 struct remote_state *rs = get_remote_state ();
6216 int max_size = get_memory_write_packet_size ();
6217 struct packet_config *packet =
6218 &remote_protocol_packets[PACKET_qSearch_memory];
6219 /* number of packet bytes used to encode the pattern,
6220 this could be more than PATTERN_LEN due to escape characters */
6221 int escaped_pattern_len;
6222 /* amount of pattern that was encodable in the packet */
6223 int used_pattern_len;
6224 int i;
6225 int found;
6226 ULONGEST found_addr;
6227
6228 /* Don't go to the target if we don't have to.
6229 This is done before checking packet->support to avoid the possibility that
6230 a success for this edge case means the facility works in general. */
6231 if (pattern_len > search_space_len)
6232 return 0;
6233 if (pattern_len == 0)
6234 {
6235 *found_addrp = start_addr;
6236 return 1;
6237 }
6238
6239 /* If we already know the packet isn't supported, fall back to the simple
6240 way of searching memory. */
6241
6242 if (packet->support == PACKET_DISABLE)
6243 {
6244 /* Target doesn't provided special support, fall back and use the
6245 standard support (copy memory and do the search here). */
6246 return simple_search_memory (ops, start_addr, search_space_len,
6247 pattern, pattern_len, found_addrp);
6248 }
6249
6250 /* Insert header. */
6251 i = snprintf (rs->buf, max_size,
6252 "qSearch:memory:%s;%s;",
6253 paddr_nz (start_addr),
6254 phex_nz (search_space_len, sizeof (search_space_len)));
6255 max_size -= (i + 1);
6256
6257 /* Escape as much data as fits into rs->buf. */
6258 escaped_pattern_len =
6259 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6260 &used_pattern_len, max_size);
6261
6262 /* Bail if the pattern is too large. */
6263 if (used_pattern_len != pattern_len)
6264 error ("Pattern is too large to transmit to remote target.");
6265
6266 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6267 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6268 || packet_ok (rs->buf, packet) != PACKET_OK)
6269 {
6270 /* The request may not have worked because the command is not
6271 supported. If so, fall back to the simple way. */
6272 if (packet->support == PACKET_DISABLE)
6273 {
6274 return simple_search_memory (ops, start_addr, search_space_len,
6275 pattern, pattern_len, found_addrp);
6276 }
6277 return -1;
6278 }
6279
6280 if (rs->buf[0] == '0')
6281 found = 0;
6282 else if (rs->buf[0] == '1')
6283 {
6284 found = 1;
6285 if (rs->buf[1] != ',')
6286 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6287 unpack_varlen_hex (rs->buf + 2, &found_addr);
6288 *found_addrp = found_addr;
6289 }
6290 else
6291 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6292
6293 return found;
6294 }
6295
6296 static void
6297 remote_rcmd (char *command,
6298 struct ui_file *outbuf)
6299 {
6300 struct remote_state *rs = get_remote_state ();
6301 char *p = rs->buf;
6302
6303 if (!remote_desc)
6304 error (_("remote rcmd is only available after target open"));
6305
6306 /* Send a NULL command across as an empty command. */
6307 if (command == NULL)
6308 command = "";
6309
6310 /* The query prefix. */
6311 strcpy (rs->buf, "qRcmd,");
6312 p = strchr (rs->buf, '\0');
6313
6314 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6315 error (_("\"monitor\" command ``%s'' is too long."), command);
6316
6317 /* Encode the actual command. */
6318 bin2hex ((gdb_byte *) command, p, 0);
6319
6320 if (putpkt (rs->buf) < 0)
6321 error (_("Communication problem with target."));
6322
6323 /* get/display the response */
6324 while (1)
6325 {
6326 char *buf;
6327
6328 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6329 rs->buf[0] = '\0';
6330 getpkt (&rs->buf, &rs->buf_size, 0);
6331 buf = rs->buf;
6332 if (buf[0] == '\0')
6333 error (_("Target does not support this command."));
6334 if (buf[0] == 'O' && buf[1] != 'K')
6335 {
6336 remote_console_output (buf + 1); /* 'O' message from stub. */
6337 continue;
6338 }
6339 if (strcmp (buf, "OK") == 0)
6340 break;
6341 if (strlen (buf) == 3 && buf[0] == 'E'
6342 && isdigit (buf[1]) && isdigit (buf[2]))
6343 {
6344 error (_("Protocol error with Rcmd"));
6345 }
6346 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6347 {
6348 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6349 fputc_unfiltered (c, outbuf);
6350 }
6351 break;
6352 }
6353 }
6354
6355 static VEC(mem_region_s) *
6356 remote_memory_map (struct target_ops *ops)
6357 {
6358 VEC(mem_region_s) *result = NULL;
6359 char *text = target_read_stralloc (&current_target,
6360 TARGET_OBJECT_MEMORY_MAP, NULL);
6361
6362 if (text)
6363 {
6364 struct cleanup *back_to = make_cleanup (xfree, text);
6365 result = parse_memory_map (text);
6366 do_cleanups (back_to);
6367 }
6368
6369 return result;
6370 }
6371
6372 static void
6373 packet_command (char *args, int from_tty)
6374 {
6375 struct remote_state *rs = get_remote_state ();
6376
6377 if (!remote_desc)
6378 error (_("command can only be used with remote target"));
6379
6380 if (!args)
6381 error (_("remote-packet command requires packet text as argument"));
6382
6383 puts_filtered ("sending: ");
6384 print_packet (args);
6385 puts_filtered ("\n");
6386 putpkt (args);
6387
6388 getpkt (&rs->buf, &rs->buf_size, 0);
6389 puts_filtered ("received: ");
6390 print_packet (rs->buf);
6391 puts_filtered ("\n");
6392 }
6393
6394 #if 0
6395 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6396
6397 static void display_thread_info (struct gdb_ext_thread_info *info);
6398
6399 static void threadset_test_cmd (char *cmd, int tty);
6400
6401 static void threadalive_test (char *cmd, int tty);
6402
6403 static void threadlist_test_cmd (char *cmd, int tty);
6404
6405 int get_and_display_threadinfo (threadref *ref);
6406
6407 static void threadinfo_test_cmd (char *cmd, int tty);
6408
6409 static int thread_display_step (threadref *ref, void *context);
6410
6411 static void threadlist_update_test_cmd (char *cmd, int tty);
6412
6413 static void init_remote_threadtests (void);
6414
6415 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6416
6417 static void
6418 threadset_test_cmd (char *cmd, int tty)
6419 {
6420 int sample_thread = SAMPLE_THREAD;
6421
6422 printf_filtered (_("Remote threadset test\n"));
6423 set_thread (sample_thread, 1);
6424 }
6425
6426
6427 static void
6428 threadalive_test (char *cmd, int tty)
6429 {
6430 int sample_thread = SAMPLE_THREAD;
6431
6432 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6433 printf_filtered ("PASS: Thread alive test\n");
6434 else
6435 printf_filtered ("FAIL: Thread alive test\n");
6436 }
6437
6438 void output_threadid (char *title, threadref *ref);
6439
6440 void
6441 output_threadid (char *title, threadref *ref)
6442 {
6443 char hexid[20];
6444
6445 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6446 hexid[16] = 0;
6447 printf_filtered ("%s %s\n", title, (&hexid[0]));
6448 }
6449
6450 static void
6451 threadlist_test_cmd (char *cmd, int tty)
6452 {
6453 int startflag = 1;
6454 threadref nextthread;
6455 int done, result_count;
6456 threadref threadlist[3];
6457
6458 printf_filtered ("Remote Threadlist test\n");
6459 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6460 &result_count, &threadlist[0]))
6461 printf_filtered ("FAIL: threadlist test\n");
6462 else
6463 {
6464 threadref *scan = threadlist;
6465 threadref *limit = scan + result_count;
6466
6467 while (scan < limit)
6468 output_threadid (" thread ", scan++);
6469 }
6470 }
6471
6472 void
6473 display_thread_info (struct gdb_ext_thread_info *info)
6474 {
6475 output_threadid ("Threadid: ", &info->threadid);
6476 printf_filtered ("Name: %s\n ", info->shortname);
6477 printf_filtered ("State: %s\n", info->display);
6478 printf_filtered ("other: %s\n\n", info->more_display);
6479 }
6480
6481 int
6482 get_and_display_threadinfo (threadref *ref)
6483 {
6484 int result;
6485 int set;
6486 struct gdb_ext_thread_info threadinfo;
6487
6488 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6489 | TAG_MOREDISPLAY | TAG_DISPLAY;
6490 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6491 display_thread_info (&threadinfo);
6492 return result;
6493 }
6494
6495 static void
6496 threadinfo_test_cmd (char *cmd, int tty)
6497 {
6498 int athread = SAMPLE_THREAD;
6499 threadref thread;
6500 int set;
6501
6502 int_to_threadref (&thread, athread);
6503 printf_filtered ("Remote Threadinfo test\n");
6504 if (!get_and_display_threadinfo (&thread))
6505 printf_filtered ("FAIL cannot get thread info\n");
6506 }
6507
6508 static int
6509 thread_display_step (threadref *ref, void *context)
6510 {
6511 /* output_threadid(" threadstep ",ref); *//* simple test */
6512 return get_and_display_threadinfo (ref);
6513 }
6514
6515 static void
6516 threadlist_update_test_cmd (char *cmd, int tty)
6517 {
6518 printf_filtered ("Remote Threadlist update test\n");
6519 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6520 }
6521
6522 static void
6523 init_remote_threadtests (void)
6524 {
6525 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6526 Fetch and print the remote list of thread identifiers, one pkt only"));
6527 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6528 _("Fetch and display info about one thread"));
6529 add_com ("tset", class_obscure, threadset_test_cmd,
6530 _("Test setting to a different thread"));
6531 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6532 _("Iterate through updating all remote thread info"));
6533 add_com ("talive", class_obscure, threadalive_test,
6534 _(" Remote thread alive test "));
6535 }
6536
6537 #endif /* 0 */
6538
6539 /* Convert a thread ID to a string. Returns the string in a static
6540 buffer. */
6541
6542 static char *
6543 remote_pid_to_str (ptid_t ptid)
6544 {
6545 static char buf[32];
6546
6547 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6548 return buf;
6549 }
6550
6551 /* Get the address of the thread local variable in OBJFILE which is
6552 stored at OFFSET within the thread local storage for thread PTID. */
6553
6554 static CORE_ADDR
6555 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6556 {
6557 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6558 {
6559 struct remote_state *rs = get_remote_state ();
6560 char *p = rs->buf;
6561 enum packet_result result;
6562
6563 strcpy (p, "qGetTLSAddr:");
6564 p += strlen (p);
6565 p += hexnumstr (p, PIDGET (ptid));
6566 *p++ = ',';
6567 p += hexnumstr (p, offset);
6568 *p++ = ',';
6569 p += hexnumstr (p, lm);
6570 *p++ = '\0';
6571
6572 putpkt (rs->buf);
6573 getpkt (&rs->buf, &rs->buf_size, 0);
6574 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6575 if (result == PACKET_OK)
6576 {
6577 ULONGEST result;
6578
6579 unpack_varlen_hex (rs->buf, &result);
6580 return result;
6581 }
6582 else if (result == PACKET_UNKNOWN)
6583 throw_error (TLS_GENERIC_ERROR,
6584 _("Remote target doesn't support qGetTLSAddr packet"));
6585 else
6586 throw_error (TLS_GENERIC_ERROR,
6587 _("Remote target failed to process qGetTLSAddr request"));
6588 }
6589 else
6590 throw_error (TLS_GENERIC_ERROR,
6591 _("TLS not supported or disabled on this target"));
6592 /* Not reached. */
6593 return 0;
6594 }
6595
6596 /* Support for inferring a target description based on the current
6597 architecture and the size of a 'g' packet. While the 'g' packet
6598 can have any size (since optional registers can be left off the
6599 end), some sizes are easily recognizable given knowledge of the
6600 approximate architecture. */
6601
6602 struct remote_g_packet_guess
6603 {
6604 int bytes;
6605 const struct target_desc *tdesc;
6606 };
6607 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6608 DEF_VEC_O(remote_g_packet_guess_s);
6609
6610 struct remote_g_packet_data
6611 {
6612 VEC(remote_g_packet_guess_s) *guesses;
6613 };
6614
6615 static struct gdbarch_data *remote_g_packet_data_handle;
6616
6617 static void *
6618 remote_g_packet_data_init (struct obstack *obstack)
6619 {
6620 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6621 }
6622
6623 void
6624 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6625 const struct target_desc *tdesc)
6626 {
6627 struct remote_g_packet_data *data
6628 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6629 struct remote_g_packet_guess new_guess, *guess;
6630 int ix;
6631
6632 gdb_assert (tdesc != NULL);
6633
6634 for (ix = 0;
6635 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6636 ix++)
6637 if (guess->bytes == bytes)
6638 internal_error (__FILE__, __LINE__,
6639 "Duplicate g packet description added for size %d",
6640 bytes);
6641
6642 new_guess.bytes = bytes;
6643 new_guess.tdesc = tdesc;
6644 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6645 }
6646
6647 static const struct target_desc *
6648 remote_read_description (struct target_ops *target)
6649 {
6650 struct remote_g_packet_data *data
6651 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6652
6653 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6654 {
6655 struct remote_g_packet_guess *guess;
6656 int ix;
6657 int bytes = send_g_packet ();
6658
6659 for (ix = 0;
6660 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6661 ix++)
6662 if (guess->bytes == bytes)
6663 return guess->tdesc;
6664
6665 /* We discard the g packet. A minor optimization would be to
6666 hold on to it, and fill the register cache once we have selected
6667 an architecture, but it's too tricky to do safely. */
6668 }
6669
6670 return NULL;
6671 }
6672
6673 /* Remote file transfer support. This is host-initiated I/O, not
6674 target-initiated; for target-initiated, see remote-fileio.c. */
6675
6676 /* If *LEFT is at least the length of STRING, copy STRING to
6677 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6678 decrease *LEFT. Otherwise raise an error. */
6679
6680 static void
6681 remote_buffer_add_string (char **buffer, int *left, char *string)
6682 {
6683 int len = strlen (string);
6684
6685 if (len > *left)
6686 error (_("Packet too long for target."));
6687
6688 memcpy (*buffer, string, len);
6689 *buffer += len;
6690 *left -= len;
6691
6692 /* NUL-terminate the buffer as a convenience, if there is
6693 room. */
6694 if (*left)
6695 **buffer = '\0';
6696 }
6697
6698 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6699 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6700 decrease *LEFT. Otherwise raise an error. */
6701
6702 static void
6703 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6704 int len)
6705 {
6706 if (2 * len > *left)
6707 error (_("Packet too long for target."));
6708
6709 bin2hex (bytes, *buffer, len);
6710 *buffer += 2 * len;
6711 *left -= 2 * len;
6712
6713 /* NUL-terminate the buffer as a convenience, if there is
6714 room. */
6715 if (*left)
6716 **buffer = '\0';
6717 }
6718
6719 /* If *LEFT is large enough, convert VALUE to hex and add it to
6720 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6721 decrease *LEFT. Otherwise raise an error. */
6722
6723 static void
6724 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6725 {
6726 int len = hexnumlen (value);
6727
6728 if (len > *left)
6729 error (_("Packet too long for target."));
6730
6731 hexnumstr (*buffer, value);
6732 *buffer += len;
6733 *left -= len;
6734
6735 /* NUL-terminate the buffer as a convenience, if there is
6736 room. */
6737 if (*left)
6738 **buffer = '\0';
6739 }
6740
6741 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6742 value, *REMOTE_ERRNO to the remote error number or zero if none
6743 was included, and *ATTACHMENT to point to the start of the annex
6744 if any. The length of the packet isn't needed here; there may
6745 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6746
6747 Return 0 if the packet could be parsed, -1 if it could not. If
6748 -1 is returned, the other variables may not be initialized. */
6749
6750 static int
6751 remote_hostio_parse_result (char *buffer, int *retcode,
6752 int *remote_errno, char **attachment)
6753 {
6754 char *p, *p2;
6755
6756 *remote_errno = 0;
6757 *attachment = NULL;
6758
6759 if (buffer[0] != 'F')
6760 return -1;
6761
6762 errno = 0;
6763 *retcode = strtol (&buffer[1], &p, 16);
6764 if (errno != 0 || p == &buffer[1])
6765 return -1;
6766
6767 /* Check for ",errno". */
6768 if (*p == ',')
6769 {
6770 errno = 0;
6771 *remote_errno = strtol (p + 1, &p2, 16);
6772 if (errno != 0 || p + 1 == p2)
6773 return -1;
6774 p = p2;
6775 }
6776
6777 /* Check for ";attachment". If there is no attachment, the
6778 packet should end here. */
6779 if (*p == ';')
6780 {
6781 *attachment = p + 1;
6782 return 0;
6783 }
6784 else if (*p == '\0')
6785 return 0;
6786 else
6787 return -1;
6788 }
6789
6790 /* Send a prepared I/O packet to the target and read its response.
6791 The prepared packet is in the global RS->BUF before this function
6792 is called, and the answer is there when we return.
6793
6794 COMMAND_BYTES is the length of the request to send, which may include
6795 binary data. WHICH_PACKET is the packet configuration to check
6796 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6797 is set to the error number and -1 is returned. Otherwise the value
6798 returned by the function is returned.
6799
6800 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6801 attachment is expected; an error will be reported if there's a
6802 mismatch. If one is found, *ATTACHMENT will be set to point into
6803 the packet buffer and *ATTACHMENT_LEN will be set to the
6804 attachment's length. */
6805
6806 static int
6807 remote_hostio_send_command (int command_bytes, int which_packet,
6808 int *remote_errno, char **attachment,
6809 int *attachment_len)
6810 {
6811 struct remote_state *rs = get_remote_state ();
6812 int ret, bytes_read;
6813 char *attachment_tmp;
6814
6815 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6816 {
6817 *remote_errno = FILEIO_ENOSYS;
6818 return -1;
6819 }
6820
6821 putpkt_binary (rs->buf, command_bytes);
6822 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6823
6824 /* If it timed out, something is wrong. Don't try to parse the
6825 buffer. */
6826 if (bytes_read < 0)
6827 {
6828 *remote_errno = FILEIO_EINVAL;
6829 return -1;
6830 }
6831
6832 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6833 {
6834 case PACKET_ERROR:
6835 *remote_errno = FILEIO_EINVAL;
6836 return -1;
6837 case PACKET_UNKNOWN:
6838 *remote_errno = FILEIO_ENOSYS;
6839 return -1;
6840 case PACKET_OK:
6841 break;
6842 }
6843
6844 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6845 &attachment_tmp))
6846 {
6847 *remote_errno = FILEIO_EINVAL;
6848 return -1;
6849 }
6850
6851 /* Make sure we saw an attachment if and only if we expected one. */
6852 if ((attachment_tmp == NULL && attachment != NULL)
6853 || (attachment_tmp != NULL && attachment == NULL))
6854 {
6855 *remote_errno = FILEIO_EINVAL;
6856 return -1;
6857 }
6858
6859 /* If an attachment was found, it must point into the packet buffer;
6860 work out how many bytes there were. */
6861 if (attachment_tmp != NULL)
6862 {
6863 *attachment = attachment_tmp;
6864 *attachment_len = bytes_read - (*attachment - rs->buf);
6865 }
6866
6867 return ret;
6868 }
6869
6870 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6871 remote file descriptor, or -1 if an error occurs (and set
6872 *REMOTE_ERRNO). */
6873
6874 static int
6875 remote_hostio_open (const char *filename, int flags, int mode,
6876 int *remote_errno)
6877 {
6878 struct remote_state *rs = get_remote_state ();
6879 char *p = rs->buf;
6880 int left = get_remote_packet_size () - 1;
6881
6882 remote_buffer_add_string (&p, &left, "vFile:open:");
6883
6884 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6885 strlen (filename));
6886 remote_buffer_add_string (&p, &left, ",");
6887
6888 remote_buffer_add_int (&p, &left, flags);
6889 remote_buffer_add_string (&p, &left, ",");
6890
6891 remote_buffer_add_int (&p, &left, mode);
6892
6893 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6894 remote_errno, NULL, NULL);
6895 }
6896
6897 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6898 Return the number of bytes written, or -1 if an error occurs (and
6899 set *REMOTE_ERRNO). */
6900
6901 static int
6902 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6903 ULONGEST offset, int *remote_errno)
6904 {
6905 struct remote_state *rs = get_remote_state ();
6906 char *p = rs->buf;
6907 int left = get_remote_packet_size ();
6908 int out_len;
6909
6910 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6911
6912 remote_buffer_add_int (&p, &left, fd);
6913 remote_buffer_add_string (&p, &left, ",");
6914
6915 remote_buffer_add_int (&p, &left, offset);
6916 remote_buffer_add_string (&p, &left, ",");
6917
6918 p += remote_escape_output (write_buf, len, p, &out_len,
6919 get_remote_packet_size () - (p - rs->buf));
6920
6921 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6922 remote_errno, NULL, NULL);
6923 }
6924
6925 /* Read up to LEN bytes FD on the remote target into READ_BUF
6926 Return the number of bytes read, or -1 if an error occurs (and
6927 set *REMOTE_ERRNO). */
6928
6929 static int
6930 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6931 ULONGEST offset, int *remote_errno)
6932 {
6933 struct remote_state *rs = get_remote_state ();
6934 char *p = rs->buf;
6935 char *attachment;
6936 int left = get_remote_packet_size ();
6937 int ret, attachment_len;
6938 int read_len;
6939
6940 remote_buffer_add_string (&p, &left, "vFile:pread:");
6941
6942 remote_buffer_add_int (&p, &left, fd);
6943 remote_buffer_add_string (&p, &left, ",");
6944
6945 remote_buffer_add_int (&p, &left, len);
6946 remote_buffer_add_string (&p, &left, ",");
6947
6948 remote_buffer_add_int (&p, &left, offset);
6949
6950 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6951 remote_errno, &attachment,
6952 &attachment_len);
6953
6954 if (ret < 0)
6955 return ret;
6956
6957 read_len = remote_unescape_input (attachment, attachment_len,
6958 read_buf, len);
6959 if (read_len != ret)
6960 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6961
6962 return ret;
6963 }
6964
6965 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6966 (and set *REMOTE_ERRNO). */
6967
6968 static int
6969 remote_hostio_close (int fd, int *remote_errno)
6970 {
6971 struct remote_state *rs = get_remote_state ();
6972 char *p = rs->buf;
6973 int left = get_remote_packet_size () - 1;
6974
6975 remote_buffer_add_string (&p, &left, "vFile:close:");
6976
6977 remote_buffer_add_int (&p, &left, fd);
6978
6979 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6980 remote_errno, NULL, NULL);
6981 }
6982
6983 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6984 occurs (and set *REMOTE_ERRNO). */
6985
6986 static int
6987 remote_hostio_unlink (const char *filename, int *remote_errno)
6988 {
6989 struct remote_state *rs = get_remote_state ();
6990 char *p = rs->buf;
6991 int left = get_remote_packet_size () - 1;
6992
6993 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6994
6995 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6996 strlen (filename));
6997
6998 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6999 remote_errno, NULL, NULL);
7000 }
7001
7002 static int
7003 remote_fileio_errno_to_host (int errnum)
7004 {
7005 switch (errnum)
7006 {
7007 case FILEIO_EPERM:
7008 return EPERM;
7009 case FILEIO_ENOENT:
7010 return ENOENT;
7011 case FILEIO_EINTR:
7012 return EINTR;
7013 case FILEIO_EIO:
7014 return EIO;
7015 case FILEIO_EBADF:
7016 return EBADF;
7017 case FILEIO_EACCES:
7018 return EACCES;
7019 case FILEIO_EFAULT:
7020 return EFAULT;
7021 case FILEIO_EBUSY:
7022 return EBUSY;
7023 case FILEIO_EEXIST:
7024 return EEXIST;
7025 case FILEIO_ENODEV:
7026 return ENODEV;
7027 case FILEIO_ENOTDIR:
7028 return ENOTDIR;
7029 case FILEIO_EISDIR:
7030 return EISDIR;
7031 case FILEIO_EINVAL:
7032 return EINVAL;
7033 case FILEIO_ENFILE:
7034 return ENFILE;
7035 case FILEIO_EMFILE:
7036 return EMFILE;
7037 case FILEIO_EFBIG:
7038 return EFBIG;
7039 case FILEIO_ENOSPC:
7040 return ENOSPC;
7041 case FILEIO_ESPIPE:
7042 return ESPIPE;
7043 case FILEIO_EROFS:
7044 return EROFS;
7045 case FILEIO_ENOSYS:
7046 return ENOSYS;
7047 case FILEIO_ENAMETOOLONG:
7048 return ENAMETOOLONG;
7049 }
7050 return -1;
7051 }
7052
7053 static char *
7054 remote_hostio_error (int errnum)
7055 {
7056 int host_error = remote_fileio_errno_to_host (errnum);
7057
7058 if (host_error == -1)
7059 error (_("Unknown remote I/O error %d"), errnum);
7060 else
7061 error (_("Remote I/O error: %s"), safe_strerror (host_error));
7062 }
7063
7064 static void
7065 fclose_cleanup (void *file)
7066 {
7067 fclose (file);
7068 }
7069
7070 static void
7071 remote_hostio_close_cleanup (void *opaque)
7072 {
7073 int fd = *(int *) opaque;
7074 int remote_errno;
7075
7076 remote_hostio_close (fd, &remote_errno);
7077 }
7078
7079 void
7080 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
7081 {
7082 struct cleanup *back_to, *close_cleanup;
7083 int retcode, fd, remote_errno, bytes, io_size;
7084 FILE *file;
7085 gdb_byte *buffer;
7086 int bytes_in_buffer;
7087 int saw_eof;
7088 ULONGEST offset;
7089
7090 if (!remote_desc)
7091 error (_("command can only be used with remote target"));
7092
7093 file = fopen (local_file, "rb");
7094 if (file == NULL)
7095 perror_with_name (local_file);
7096 back_to = make_cleanup (fclose_cleanup, file);
7097
7098 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7099 | FILEIO_O_TRUNC),
7100 0700, &remote_errno);
7101 if (fd == -1)
7102 remote_hostio_error (remote_errno);
7103
7104 /* Send up to this many bytes at once. They won't all fit in the
7105 remote packet limit, so we'll transfer slightly fewer. */
7106 io_size = get_remote_packet_size ();
7107 buffer = xmalloc (io_size);
7108 make_cleanup (xfree, buffer);
7109
7110 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7111
7112 bytes_in_buffer = 0;
7113 saw_eof = 0;
7114 offset = 0;
7115 while (bytes_in_buffer || !saw_eof)
7116 {
7117 if (!saw_eof)
7118 {
7119 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7120 file);
7121 if (bytes == 0)
7122 {
7123 if (ferror (file))
7124 error (_("Error reading %s."), local_file);
7125 else
7126 {
7127 /* EOF. Unless there is something still in the
7128 buffer from the last iteration, we are done. */
7129 saw_eof = 1;
7130 if (bytes_in_buffer == 0)
7131 break;
7132 }
7133 }
7134 }
7135 else
7136 bytes = 0;
7137
7138 bytes += bytes_in_buffer;
7139 bytes_in_buffer = 0;
7140
7141 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7142
7143 if (retcode < 0)
7144 remote_hostio_error (remote_errno);
7145 else if (retcode == 0)
7146 error (_("Remote write of %d bytes returned 0!"), bytes);
7147 else if (retcode < bytes)
7148 {
7149 /* Short write. Save the rest of the read data for the next
7150 write. */
7151 bytes_in_buffer = bytes - retcode;
7152 memmove (buffer, buffer + retcode, bytes_in_buffer);
7153 }
7154
7155 offset += retcode;
7156 }
7157
7158 discard_cleanups (close_cleanup);
7159 if (remote_hostio_close (fd, &remote_errno))
7160 remote_hostio_error (remote_errno);
7161
7162 if (from_tty)
7163 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7164 do_cleanups (back_to);
7165 }
7166
7167 void
7168 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7169 {
7170 struct cleanup *back_to, *close_cleanup;
7171 int retcode, fd, remote_errno, bytes, io_size;
7172 FILE *file;
7173 gdb_byte *buffer;
7174 ULONGEST offset;
7175
7176 if (!remote_desc)
7177 error (_("command can only be used with remote target"));
7178
7179 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7180 if (fd == -1)
7181 remote_hostio_error (remote_errno);
7182
7183 file = fopen (local_file, "wb");
7184 if (file == NULL)
7185 perror_with_name (local_file);
7186 back_to = make_cleanup (fclose_cleanup, file);
7187
7188 /* Send up to this many bytes at once. They won't all fit in the
7189 remote packet limit, so we'll transfer slightly fewer. */
7190 io_size = get_remote_packet_size ();
7191 buffer = xmalloc (io_size);
7192 make_cleanup (xfree, buffer);
7193
7194 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7195
7196 offset = 0;
7197 while (1)
7198 {
7199 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7200 if (bytes == 0)
7201 /* Success, but no bytes, means end-of-file. */
7202 break;
7203 if (bytes == -1)
7204 remote_hostio_error (remote_errno);
7205
7206 offset += bytes;
7207
7208 bytes = fwrite (buffer, 1, bytes, file);
7209 if (bytes == 0)
7210 perror_with_name (local_file);
7211 }
7212
7213 discard_cleanups (close_cleanup);
7214 if (remote_hostio_close (fd, &remote_errno))
7215 remote_hostio_error (remote_errno);
7216
7217 if (from_tty)
7218 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7219 do_cleanups (back_to);
7220 }
7221
7222 void
7223 remote_file_delete (const char *remote_file, int from_tty)
7224 {
7225 int retcode, remote_errno;
7226
7227 if (!remote_desc)
7228 error (_("command can only be used with remote target"));
7229
7230 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7231 if (retcode == -1)
7232 remote_hostio_error (remote_errno);
7233
7234 if (from_tty)
7235 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7236 }
7237
7238 static void
7239 remote_put_command (char *args, int from_tty)
7240 {
7241 struct cleanup *back_to;
7242 char **argv;
7243
7244 argv = buildargv (args);
7245 if (argv == NULL)
7246 nomem (0);
7247 back_to = make_cleanup_freeargv (argv);
7248 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7249 error (_("Invalid parameters to remote put"));
7250
7251 remote_file_put (argv[0], argv[1], from_tty);
7252
7253 do_cleanups (back_to);
7254 }
7255
7256 static void
7257 remote_get_command (char *args, int from_tty)
7258 {
7259 struct cleanup *back_to;
7260 char **argv;
7261
7262 argv = buildargv (args);
7263 if (argv == NULL)
7264 nomem (0);
7265 back_to = make_cleanup_freeargv (argv);
7266 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7267 error (_("Invalid parameters to remote get"));
7268
7269 remote_file_get (argv[0], argv[1], from_tty);
7270
7271 do_cleanups (back_to);
7272 }
7273
7274 static void
7275 remote_delete_command (char *args, int from_tty)
7276 {
7277 struct cleanup *back_to;
7278 char **argv;
7279
7280 argv = buildargv (args);
7281 if (argv == NULL)
7282 nomem (0);
7283 back_to = make_cleanup_freeargv (argv);
7284 if (argv[0] == NULL || argv[1] != NULL)
7285 error (_("Invalid parameters to remote delete"));
7286
7287 remote_file_delete (argv[0], from_tty);
7288
7289 do_cleanups (back_to);
7290 }
7291
7292 static void
7293 remote_command (char *args, int from_tty)
7294 {
7295 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7296 }
7297
7298 static int
7299 remote_return_zero (void)
7300 {
7301 return 0;
7302 }
7303
7304 static void
7305 init_remote_ops (void)
7306 {
7307 remote_ops.to_shortname = "remote";
7308 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7309 remote_ops.to_doc =
7310 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7311 Specify the serial device it is connected to\n\
7312 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7313 remote_ops.to_open = remote_open;
7314 remote_ops.to_close = remote_close;
7315 remote_ops.to_detach = remote_detach;
7316 remote_ops.to_disconnect = remote_disconnect;
7317 remote_ops.to_resume = remote_resume;
7318 remote_ops.to_wait = remote_wait;
7319 remote_ops.to_fetch_registers = remote_fetch_registers;
7320 remote_ops.to_store_registers = remote_store_registers;
7321 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7322 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7323 remote_ops.to_files_info = remote_files_info;
7324 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7325 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7326 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7327 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7328 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7329 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7330 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7331 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7332 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7333 remote_ops.to_kill = remote_kill;
7334 remote_ops.to_load = generic_load;
7335 remote_ops.to_mourn_inferior = remote_mourn;
7336 remote_ops.to_thread_alive = remote_thread_alive;
7337 remote_ops.to_find_new_threads = remote_threads_info;
7338 remote_ops.to_pid_to_str = remote_pid_to_str;
7339 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7340 remote_ops.to_stop = remote_stop;
7341 remote_ops.to_xfer_partial = remote_xfer_partial;
7342 remote_ops.to_rcmd = remote_rcmd;
7343 remote_ops.to_log_command = serial_log_command;
7344 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7345 remote_ops.to_stratum = process_stratum;
7346 remote_ops.to_has_all_memory = 1;
7347 remote_ops.to_has_memory = 1;
7348 remote_ops.to_has_stack = 1;
7349 remote_ops.to_has_registers = 1;
7350 remote_ops.to_has_execution = 1;
7351 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7352 remote_ops.to_magic = OPS_MAGIC;
7353 remote_ops.to_memory_map = remote_memory_map;
7354 remote_ops.to_flash_erase = remote_flash_erase;
7355 remote_ops.to_flash_done = remote_flash_done;
7356 remote_ops.to_read_description = remote_read_description;
7357 remote_ops.to_search_memory = remote_search_memory;
7358 remote_ops.to_can_async_p = remote_return_zero;
7359 remote_ops.to_is_async_p = remote_return_zero;
7360 }
7361
7362 /* Set up the extended remote vector by making a copy of the standard
7363 remote vector and adding to it. */
7364
7365 static void
7366 init_extended_remote_ops (void)
7367 {
7368 extended_remote_ops = remote_ops;
7369
7370 extended_remote_ops.to_shortname = "extended-remote";
7371 extended_remote_ops.to_longname =
7372 "Extended remote serial target in gdb-specific protocol";
7373 extended_remote_ops.to_doc =
7374 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7375 Specify the serial device it is connected to (e.g. /dev/ttya).";
7376 extended_remote_ops.to_open = extended_remote_open;
7377 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7378 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7379 extended_remote_ops.to_detach = extended_remote_detach;
7380 extended_remote_ops.to_attach = extended_remote_attach;
7381 }
7382
7383 static int
7384 remote_can_async_p (void)
7385 {
7386 /* We're async whenever the serial device is. */
7387 return remote_async_mask_value && serial_can_async_p (remote_desc);
7388 }
7389
7390 static int
7391 remote_is_async_p (void)
7392 {
7393 /* We're async whenever the serial device is. */
7394 return remote_async_mask_value && serial_is_async_p (remote_desc);
7395 }
7396
7397 /* Pass the SERIAL event on and up to the client. One day this code
7398 will be able to delay notifying the client of an event until the
7399 point where an entire packet has been received. */
7400
7401 static void (*async_client_callback) (enum inferior_event_type event_type,
7402 void *context);
7403 static void *async_client_context;
7404 static serial_event_ftype remote_async_serial_handler;
7405
7406 static void
7407 remote_async_serial_handler (struct serial *scb, void *context)
7408 {
7409 /* Don't propogate error information up to the client. Instead let
7410 the client find out about the error by querying the target. */
7411 async_client_callback (INF_REG_EVENT, async_client_context);
7412 }
7413
7414 static void
7415 remote_async (void (*callback) (enum inferior_event_type event_type,
7416 void *context), void *context)
7417 {
7418 if (remote_async_mask_value == 0)
7419 internal_error (__FILE__, __LINE__,
7420 _("Calling remote_async when async is masked"));
7421
7422 if (callback != NULL)
7423 {
7424 serial_async (remote_desc, remote_async_serial_handler, NULL);
7425 async_client_callback = callback;
7426 async_client_context = context;
7427 }
7428 else
7429 serial_async (remote_desc, NULL, NULL);
7430 }
7431
7432 static int
7433 remote_async_mask (int new_mask)
7434 {
7435 int curr_mask = remote_async_mask_value;
7436 remote_async_mask_value = new_mask;
7437 return curr_mask;
7438 }
7439
7440 /* Target async and target extended-async.
7441
7442 This are temporary targets, until it is all tested. Eventually
7443 async support will be incorporated int the usual 'remote'
7444 target. */
7445
7446 static void
7447 init_remote_async_ops (void)
7448 {
7449 remote_async_ops.to_shortname = "async";
7450 remote_async_ops.to_longname =
7451 "Remote serial target in async version of the gdb-specific protocol";
7452 remote_async_ops.to_doc =
7453 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7454 Specify the serial device it is connected to (e.g. /dev/ttya).";
7455 remote_async_ops.to_open = remote_async_open;
7456 remote_async_ops.to_close = remote_close;
7457 remote_async_ops.to_detach = remote_detach;
7458 remote_async_ops.to_disconnect = remote_disconnect;
7459 remote_async_ops.to_resume = remote_async_resume;
7460 remote_async_ops.to_wait = remote_async_wait;
7461 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7462 remote_async_ops.to_store_registers = remote_store_registers;
7463 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7464 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7465 remote_async_ops.to_files_info = remote_files_info;
7466 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7467 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7468 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7469 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7470 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7471 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7472 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7473 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7474 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7475 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7476 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7477 remote_async_ops.to_kill = remote_async_kill;
7478 remote_async_ops.to_load = generic_load;
7479 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7480 remote_async_ops.to_thread_alive = remote_thread_alive;
7481 remote_async_ops.to_find_new_threads = remote_threads_info;
7482 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7483 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7484 remote_async_ops.to_stop = remote_stop;
7485 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7486 remote_async_ops.to_rcmd = remote_rcmd;
7487 remote_async_ops.to_get_thread_local_address
7488 = remote_get_thread_local_address;
7489 remote_async_ops.to_stratum = process_stratum;
7490 remote_async_ops.to_has_all_memory = 1;
7491 remote_async_ops.to_has_memory = 1;
7492 remote_async_ops.to_has_stack = 1;
7493 remote_async_ops.to_has_registers = 1;
7494 remote_async_ops.to_has_execution = 1;
7495 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7496 remote_async_ops.to_can_async_p = remote_can_async_p;
7497 remote_async_ops.to_is_async_p = remote_is_async_p;
7498 remote_async_ops.to_async = remote_async;
7499 remote_async_ops.to_async_mask = remote_async_mask;
7500 remote_async_ops.to_magic = OPS_MAGIC;
7501 remote_async_ops.to_memory_map = remote_memory_map;
7502 remote_async_ops.to_flash_erase = remote_flash_erase;
7503 remote_async_ops.to_flash_done = remote_flash_done;
7504 remote_async_ops.to_read_description = remote_read_description;
7505 remote_async_ops.to_search_memory = remote_search_memory;
7506 }
7507
7508 /* Set up the async extended remote vector by making a copy of the standard
7509 remote vector and adding to it. */
7510
7511 static void
7512 init_extended_async_remote_ops (void)
7513 {
7514 extended_async_remote_ops = remote_async_ops;
7515
7516 extended_async_remote_ops.to_shortname = "extended-async";
7517 extended_async_remote_ops.to_longname =
7518 "Extended remote serial target in async gdb-specific protocol";
7519 extended_async_remote_ops.to_doc =
7520 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7521 Specify the serial device it is connected to (e.g. /dev/ttya).",
7522 extended_async_remote_ops.to_open = extended_remote_async_open;
7523 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7524 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7525 extended_async_remote_ops.to_detach = extended_remote_detach;
7526 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7527 }
7528
7529 static void
7530 set_remote_cmd (char *args, int from_tty)
7531 {
7532 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7533 }
7534
7535 static void
7536 show_remote_cmd (char *args, int from_tty)
7537 {
7538 /* We can't just use cmd_show_list here, because we want to skip
7539 the redundant "show remote Z-packet" and the legacy aliases. */
7540 struct cleanup *showlist_chain;
7541 struct cmd_list_element *list = remote_show_cmdlist;
7542
7543 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7544 for (; list != NULL; list = list->next)
7545 if (strcmp (list->name, "Z-packet") == 0)
7546 continue;
7547 else if (list->type == not_set_cmd)
7548 /* Alias commands are exactly like the original, except they
7549 don't have the normal type. */
7550 continue;
7551 else
7552 {
7553 struct cleanup *option_chain
7554 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7555 ui_out_field_string (uiout, "name", list->name);
7556 ui_out_text (uiout, ": ");
7557 if (list->type == show_cmd)
7558 do_setshow_command ((char *) NULL, from_tty, list);
7559 else
7560 cmd_func (list, NULL, from_tty);
7561 /* Close the tuple. */
7562 do_cleanups (option_chain);
7563 }
7564
7565 /* Close the tuple. */
7566 do_cleanups (showlist_chain);
7567 }
7568
7569
7570 /* Function to be called whenever a new objfile (shlib) is detected. */
7571 static void
7572 remote_new_objfile (struct objfile *objfile)
7573 {
7574 if (remote_desc != 0) /* Have a remote connection. */
7575 remote_check_symbols (objfile);
7576 }
7577
7578 void
7579 _initialize_remote (void)
7580 {
7581 struct remote_state *rs;
7582
7583 /* architecture specific data */
7584 remote_gdbarch_data_handle =
7585 gdbarch_data_register_post_init (init_remote_state);
7586 remote_g_packet_data_handle =
7587 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7588
7589 /* Initialize the per-target state. At the moment there is only one
7590 of these, not one per target. Only one target is active at a
7591 time. The default buffer size is unimportant; it will be expanded
7592 whenever a larger buffer is needed. */
7593 rs = get_remote_state_raw ();
7594 rs->buf_size = 400;
7595 rs->buf = xmalloc (rs->buf_size);
7596
7597 init_remote_ops ();
7598 add_target (&remote_ops);
7599
7600 init_extended_remote_ops ();
7601 add_target (&extended_remote_ops);
7602
7603 init_remote_async_ops ();
7604 add_target (&remote_async_ops);
7605
7606 init_extended_async_remote_ops ();
7607 add_target (&extended_async_remote_ops);
7608
7609 /* Hook into new objfile notification. */
7610 observer_attach_new_objfile (remote_new_objfile);
7611
7612 /* Set up signal handlers. */
7613 sigint_remote_token =
7614 create_async_signal_handler (async_remote_interrupt, NULL);
7615 sigint_remote_twice_token =
7616 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7617
7618 #if 0
7619 init_remote_threadtests ();
7620 #endif
7621
7622 /* set/show remote ... */
7623
7624 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7625 Remote protocol specific variables\n\
7626 Configure various remote-protocol specific variables such as\n\
7627 the packets being used"),
7628 &remote_set_cmdlist, "set remote ",
7629 0 /* allow-unknown */, &setlist);
7630 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7631 Remote protocol specific variables\n\
7632 Configure various remote-protocol specific variables such as\n\
7633 the packets being used"),
7634 &remote_show_cmdlist, "show remote ",
7635 0 /* allow-unknown */, &showlist);
7636
7637 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7638 Compare section data on target to the exec file.\n\
7639 Argument is a single section name (default: all loaded sections)."),
7640 &cmdlist);
7641
7642 add_cmd ("packet", class_maintenance, packet_command, _("\
7643 Send an arbitrary packet to a remote target.\n\
7644 maintenance packet TEXT\n\
7645 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7646 this command sends the string TEXT to the inferior, and displays the\n\
7647 response packet. GDB supplies the initial `$' character, and the\n\
7648 terminating `#' character and checksum."),
7649 &maintenancelist);
7650
7651 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7652 Set whether to send break if interrupted."), _("\
7653 Show whether to send break if interrupted."), _("\
7654 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7655 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7656 &setlist, &showlist);
7657
7658 /* Install commands for configuring memory read/write packets. */
7659
7660 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7661 Set the maximum number of bytes per memory write packet (deprecated)."),
7662 &setlist);
7663 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7664 Show the maximum number of bytes per memory write packet (deprecated)."),
7665 &showlist);
7666 add_cmd ("memory-write-packet-size", no_class,
7667 set_memory_write_packet_size, _("\
7668 Set the maximum number of bytes per memory-write packet.\n\
7669 Specify the number of bytes in a packet or 0 (zero) for the\n\
7670 default packet size. The actual limit is further reduced\n\
7671 dependent on the target. Specify ``fixed'' to disable the\n\
7672 further restriction and ``limit'' to enable that restriction."),
7673 &remote_set_cmdlist);
7674 add_cmd ("memory-read-packet-size", no_class,
7675 set_memory_read_packet_size, _("\
7676 Set the maximum number of bytes per memory-read packet.\n\
7677 Specify the number of bytes in a packet or 0 (zero) for the\n\
7678 default packet size. The actual limit is further reduced\n\
7679 dependent on the target. Specify ``fixed'' to disable the\n\
7680 further restriction and ``limit'' to enable that restriction."),
7681 &remote_set_cmdlist);
7682 add_cmd ("memory-write-packet-size", no_class,
7683 show_memory_write_packet_size,
7684 _("Show the maximum number of bytes per memory-write packet."),
7685 &remote_show_cmdlist);
7686 add_cmd ("memory-read-packet-size", no_class,
7687 show_memory_read_packet_size,
7688 _("Show the maximum number of bytes per memory-read packet."),
7689 &remote_show_cmdlist);
7690
7691 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7692 &remote_hw_watchpoint_limit, _("\
7693 Set the maximum number of target hardware watchpoints."), _("\
7694 Show the maximum number of target hardware watchpoints."), _("\
7695 Specify a negative limit for unlimited."),
7696 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7697 &remote_set_cmdlist, &remote_show_cmdlist);
7698 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7699 &remote_hw_breakpoint_limit, _("\
7700 Set the maximum number of target hardware breakpoints."), _("\
7701 Show the maximum number of target hardware breakpoints."), _("\
7702 Specify a negative limit for unlimited."),
7703 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7704 &remote_set_cmdlist, &remote_show_cmdlist);
7705
7706 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7707 &remote_address_size, _("\
7708 Set the maximum size of the address (in bits) in a memory packet."), _("\
7709 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7710 NULL,
7711 NULL, /* FIXME: i18n: */
7712 &setlist, &showlist);
7713
7714 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7715 "X", "binary-download", 1);
7716
7717 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7718 "vCont", "verbose-resume", 0);
7719
7720 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7721 "QPassSignals", "pass-signals", 0);
7722
7723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7724 "qSymbol", "symbol-lookup", 0);
7725
7726 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7727 "P", "set-register", 1);
7728
7729 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7730 "p", "fetch-register", 1);
7731
7732 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7733 "Z0", "software-breakpoint", 0);
7734
7735 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7736 "Z1", "hardware-breakpoint", 0);
7737
7738 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7739 "Z2", "write-watchpoint", 0);
7740
7741 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7742 "Z3", "read-watchpoint", 0);
7743
7744 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7745 "Z4", "access-watchpoint", 0);
7746
7747 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7748 "qXfer:auxv:read", "read-aux-vector", 0);
7749
7750 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7751 "qXfer:features:read", "target-features", 0);
7752
7753 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7754 "qXfer:libraries:read", "library-info", 0);
7755
7756 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7757 "qXfer:memory-map:read", "memory-map", 0);
7758
7759 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7760 "qXfer:spu:read", "read-spu-object", 0);
7761
7762 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7763 "qXfer:spu:write", "write-spu-object", 0);
7764
7765 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7766 "qGetTLSAddr", "get-thread-local-storage-address",
7767 0);
7768
7769 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7770 "qSupported", "supported-packets", 0);
7771
7772 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7773 "qSearch:memory", "search-memory", 0);
7774
7775 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7776 "vFile:open", "hostio-open", 0);
7777
7778 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7779 "vFile:pread", "hostio-pread", 0);
7780
7781 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7782 "vFile:pwrite", "hostio-pwrite", 0);
7783
7784 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7785 "vFile:close", "hostio-close", 0);
7786
7787 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7788 "vFile:unlink", "hostio-unlink", 0);
7789
7790 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7791 "vAttach", "attach", 0);
7792
7793 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7794 "vRun", "run", 0);
7795
7796 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7797 Z sub-packet has its own set and show commands, but users may
7798 have sets to this variable in their .gdbinit files (or in their
7799 documentation). */
7800 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7801 &remote_Z_packet_detect, _("\
7802 Set use of remote protocol `Z' packets"), _("\
7803 Show use of remote protocol `Z' packets "), _("\
7804 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7805 packets."),
7806 set_remote_protocol_Z_packet_cmd,
7807 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7808 &remote_set_cmdlist, &remote_show_cmdlist);
7809
7810 add_prefix_cmd ("remote", class_files, remote_command, _("\
7811 Manipulate files on the remote system\n\
7812 Transfer files to and from the remote target system."),
7813 &remote_cmdlist, "remote ",
7814 0 /* allow-unknown */, &cmdlist);
7815
7816 add_cmd ("put", class_files, remote_put_command,
7817 _("Copy a local file to the remote system."),
7818 &remote_cmdlist);
7819
7820 add_cmd ("get", class_files, remote_get_command,
7821 _("Copy a remote file to the local system."),
7822 &remote_cmdlist);
7823
7824 add_cmd ("delete", class_files, remote_delete_command,
7825 _("Delete a remote file."),
7826 &remote_cmdlist);
7827
7828 remote_exec_file = xstrdup ("");
7829 add_setshow_string_noescape_cmd ("exec-file", class_files,
7830 &remote_exec_file, _("\
7831 Set the remote pathname for \"run\""), _("\
7832 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7833 &remote_set_cmdlist, &remote_show_cmdlist);
7834
7835 /* Eventually initialize fileio. See fileio.c */
7836 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7837 }
This page took 0.18802 seconds and 4 git commands to generate.