Rename a private data member in tui_source_window
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 std::string pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
489 override;
490
491 void stop (ptid_t) override;
492
493 void interrupt () override;
494
495 void pass_ctrlc () override;
496
497 enum target_xfer_status xfer_partial (enum target_object object,
498 const char *annex,
499 gdb_byte *readbuf,
500 const gdb_byte *writebuf,
501 ULONGEST offset, ULONGEST len,
502 ULONGEST *xfered_len) override;
503
504 ULONGEST get_memory_xfer_limit () override;
505
506 void rcmd (const char *command, struct ui_file *output) override;
507
508 char *pid_to_exec_file (int pid) override;
509
510 void log_command (const char *cmd) override
511 {
512 serial_log_command (this, cmd);
513 }
514
515 CORE_ADDR get_thread_local_address (ptid_t ptid,
516 CORE_ADDR load_module_addr,
517 CORE_ADDR offset) override;
518
519 bool can_execute_reverse () override;
520
521 std::vector<mem_region> memory_map () override;
522
523 void flash_erase (ULONGEST address, LONGEST length) override;
524
525 void flash_done () override;
526
527 const struct target_desc *read_description () override;
528
529 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
530 const gdb_byte *pattern, ULONGEST pattern_len,
531 CORE_ADDR *found_addrp) override;
532
533 bool can_async_p () override;
534
535 bool is_async_p () override;
536
537 void async (int) override;
538
539 void thread_events (int) override;
540
541 int can_do_single_step () override;
542
543 void terminal_inferior () override;
544
545 void terminal_ours () override;
546
547 bool supports_non_stop () override;
548
549 bool supports_multi_process () override;
550
551 bool supports_disable_randomization () override;
552
553 bool filesystem_is_local () override;
554
555
556 int fileio_open (struct inferior *inf, const char *filename,
557 int flags, int mode, int warn_if_slow,
558 int *target_errno) override;
559
560 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_pread (int fd, gdb_byte *read_buf, int len,
564 ULONGEST offset, int *target_errno) override;
565
566 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
567
568 int fileio_close (int fd, int *target_errno) override;
569
570 int fileio_unlink (struct inferior *inf,
571 const char *filename,
572 int *target_errno) override;
573
574 gdb::optional<std::string>
575 fileio_readlink (struct inferior *inf,
576 const char *filename,
577 int *target_errno) override;
578
579 bool supports_enable_disable_tracepoint () override;
580
581 bool supports_string_tracing () override;
582
583 bool supports_evaluation_of_breakpoint_conditions () override;
584
585 bool can_run_breakpoint_commands () override;
586
587 void trace_init () override;
588
589 void download_tracepoint (struct bp_location *location) override;
590
591 bool can_download_tracepoint () override;
592
593 void download_trace_state_variable (const trace_state_variable &tsv) override;
594
595 void enable_tracepoint (struct bp_location *location) override;
596
597 void disable_tracepoint (struct bp_location *location) override;
598
599 void trace_set_readonly_regions () override;
600
601 void trace_start () override;
602
603 int get_trace_status (struct trace_status *ts) override;
604
605 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
606 override;
607
608 void trace_stop () override;
609
610 int trace_find (enum trace_find_type type, int num,
611 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
612
613 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
614
615 int save_trace_data (const char *filename) override;
616
617 int upload_tracepoints (struct uploaded_tp **utpp) override;
618
619 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
620
621 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
622
623 int get_min_fast_tracepoint_insn_len () override;
624
625 void set_disconnected_tracing (int val) override;
626
627 void set_circular_trace_buffer (int val) override;
628
629 void set_trace_buffer_size (LONGEST val) override;
630
631 bool set_trace_notes (const char *user, const char *notes,
632 const char *stopnotes) override;
633
634 int core_of_thread (ptid_t ptid) override;
635
636 int verify_memory (const gdb_byte *data,
637 CORE_ADDR memaddr, ULONGEST size) override;
638
639
640 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
641
642 void set_permissions () override;
643
644 bool static_tracepoint_marker_at (CORE_ADDR,
645 struct static_tracepoint_marker *marker)
646 override;
647
648 std::vector<static_tracepoint_marker>
649 static_tracepoint_markers_by_strid (const char *id) override;
650
651 traceframe_info_up traceframe_info () override;
652
653 bool use_agent (bool use) override;
654 bool can_use_agent () override;
655
656 struct btrace_target_info *enable_btrace (ptid_t ptid,
657 const struct btrace_config *conf) override;
658
659 void disable_btrace (struct btrace_target_info *tinfo) override;
660
661 void teardown_btrace (struct btrace_target_info *tinfo) override;
662
663 enum btrace_error read_btrace (struct btrace_data *data,
664 struct btrace_target_info *btinfo,
665 enum btrace_read_type type) override;
666
667 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
668 bool augmented_libraries_svr4_read () override;
669 int follow_fork (int, int) override;
670 void follow_exec (struct inferior *, const char *) override;
671 int insert_fork_catchpoint (int) override;
672 int remove_fork_catchpoint (int) override;
673 int insert_vfork_catchpoint (int) override;
674 int remove_vfork_catchpoint (int) override;
675 int insert_exec_catchpoint (int) override;
676 int remove_exec_catchpoint (int) override;
677 enum exec_direction_kind execution_direction () override;
678
679 public: /* Remote specific methods. */
680
681 void remote_download_command_source (int num, ULONGEST addr,
682 struct command_line *cmds);
683
684 void remote_file_put (const char *local_file, const char *remote_file,
685 int from_tty);
686 void remote_file_get (const char *remote_file, const char *local_file,
687 int from_tty);
688 void remote_file_delete (const char *remote_file, int from_tty);
689
690 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
691 ULONGEST offset, int *remote_errno);
692 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
693 ULONGEST offset, int *remote_errno);
694 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
695 ULONGEST offset, int *remote_errno);
696
697 int remote_hostio_send_command (int command_bytes, int which_packet,
698 int *remote_errno, char **attachment,
699 int *attachment_len);
700 int remote_hostio_set_filesystem (struct inferior *inf,
701 int *remote_errno);
702 /* We should get rid of this and use fileio_open directly. */
703 int remote_hostio_open (struct inferior *inf, const char *filename,
704 int flags, int mode, int warn_if_slow,
705 int *remote_errno);
706 int remote_hostio_close (int fd, int *remote_errno);
707
708 int remote_hostio_unlink (inferior *inf, const char *filename,
709 int *remote_errno);
710
711 struct remote_state *get_remote_state ();
712
713 long get_remote_packet_size (void);
714 long get_memory_packet_size (struct memory_packet_config *config);
715
716 long get_memory_write_packet_size ();
717 long get_memory_read_packet_size ();
718
719 char *append_pending_thread_resumptions (char *p, char *endp,
720 ptid_t ptid);
721 static void open_1 (const char *name, int from_tty, int extended_p);
722 void start_remote (int from_tty, int extended_p);
723 void remote_detach_1 (struct inferior *inf, int from_tty);
724
725 char *append_resumption (char *p, char *endp,
726 ptid_t ptid, int step, gdb_signal siggnal);
727 int remote_resume_with_vcont (ptid_t ptid, int step,
728 gdb_signal siggnal);
729
730 void add_current_inferior_and_thread (char *wait_status);
731
732 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
733 int options);
734 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
735 int options);
736
737 ptid_t process_stop_reply (struct stop_reply *stop_reply,
738 target_waitstatus *status);
739
740 void remote_notice_new_inferior (ptid_t currthread, int executing);
741
742 void process_initial_stop_replies (int from_tty);
743
744 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
745
746 void btrace_sync_conf (const btrace_config *conf);
747
748 void remote_btrace_maybe_reopen ();
749
750 void remove_new_fork_children (threads_listing_context *context);
751 void kill_new_fork_children (int pid);
752 void discard_pending_stop_replies (struct inferior *inf);
753 int stop_reply_queue_length ();
754
755 void check_pending_events_prevent_wildcard_vcont
756 (int *may_global_wildcard_vcont);
757
758 void discard_pending_stop_replies_in_queue ();
759 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
760 struct stop_reply *queued_stop_reply (ptid_t ptid);
761 int peek_stop_reply (ptid_t ptid);
762 void remote_parse_stop_reply (const char *buf, stop_reply *event);
763
764 void remote_stop_ns (ptid_t ptid);
765 void remote_interrupt_as ();
766 void remote_interrupt_ns ();
767
768 char *remote_get_noisy_reply ();
769 int remote_query_attached (int pid);
770 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
771 int try_open_exec);
772
773 ptid_t remote_current_thread (ptid_t oldpid);
774 ptid_t get_current_thread (char *wait_status);
775
776 void set_thread (ptid_t ptid, int gen);
777 void set_general_thread (ptid_t ptid);
778 void set_continue_thread (ptid_t ptid);
779 void set_general_process ();
780
781 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
782
783 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
784 gdb_ext_thread_info *info);
785 int remote_get_threadinfo (threadref *threadid, int fieldset,
786 gdb_ext_thread_info *info);
787
788 int parse_threadlist_response (char *pkt, int result_limit,
789 threadref *original_echo,
790 threadref *resultlist,
791 int *doneflag);
792 int remote_get_threadlist (int startflag, threadref *nextthread,
793 int result_limit, int *done, int *result_count,
794 threadref *threadlist);
795
796 int remote_threadlist_iterator (rmt_thread_action stepfunction,
797 void *context, int looplimit);
798
799 int remote_get_threads_with_ql (threads_listing_context *context);
800 int remote_get_threads_with_qxfer (threads_listing_context *context);
801 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
802
803 void extended_remote_restart ();
804
805 void get_offsets ();
806
807 void remote_check_symbols ();
808
809 void remote_supported_packet (const struct protocol_feature *feature,
810 enum packet_support support,
811 const char *argument);
812
813 void remote_query_supported ();
814
815 void remote_packet_size (const protocol_feature *feature,
816 packet_support support, const char *value);
817
818 void remote_serial_quit_handler ();
819
820 void remote_detach_pid (int pid);
821
822 void remote_vcont_probe ();
823
824 void remote_resume_with_hc (ptid_t ptid, int step,
825 gdb_signal siggnal);
826
827 void send_interrupt_sequence ();
828 void interrupt_query ();
829
830 void remote_notif_get_pending_events (notif_client *nc);
831
832 int fetch_register_using_p (struct regcache *regcache,
833 packet_reg *reg);
834 int send_g_packet ();
835 void process_g_packet (struct regcache *regcache);
836 void fetch_registers_using_g (struct regcache *regcache);
837 int store_register_using_P (const struct regcache *regcache,
838 packet_reg *reg);
839 void store_registers_using_G (const struct regcache *regcache);
840
841 void set_remote_traceframe ();
842
843 void check_binary_download (CORE_ADDR addr);
844
845 target_xfer_status remote_write_bytes_aux (const char *header,
846 CORE_ADDR memaddr,
847 const gdb_byte *myaddr,
848 ULONGEST len_units,
849 int unit_size,
850 ULONGEST *xfered_len_units,
851 char packet_format,
852 int use_length);
853
854 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
855 const gdb_byte *myaddr, ULONGEST len,
856 int unit_size, ULONGEST *xfered_len);
857
858 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
859 ULONGEST len_units,
860 int unit_size, ULONGEST *xfered_len_units);
861
862 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
863 ULONGEST memaddr,
864 ULONGEST len,
865 int unit_size,
866 ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
869 gdb_byte *myaddr, ULONGEST len,
870 int unit_size,
871 ULONGEST *xfered_len);
872
873 packet_result remote_send_printf (const char *format, ...)
874 ATTRIBUTE_PRINTF (2, 3);
875
876 target_xfer_status remote_flash_write (ULONGEST address,
877 ULONGEST length, ULONGEST *xfered_len,
878 const gdb_byte *data);
879
880 int readchar (int timeout);
881
882 void remote_serial_write (const char *str, int len);
883
884 int putpkt (const char *buf);
885 int putpkt_binary (const char *buf, int cnt);
886
887 int putpkt (const gdb::char_vector &buf)
888 {
889 return putpkt (buf.data ());
890 }
891
892 void skip_frame ();
893 long read_frame (gdb::char_vector *buf_p);
894 void getpkt (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
896 int expecting_notif, int *is_notif);
897 int getpkt_sane (gdb::char_vector *buf, int forever);
898 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
899 int *is_notif);
900 int remote_vkill (int pid);
901 void remote_kill_k ();
902
903 void extended_remote_disable_randomization (int val);
904 int extended_remote_run (const std::string &args);
905
906 void send_environment_packet (const char *action,
907 const char *packet,
908 const char *value);
909
910 void extended_remote_environment_support ();
911 void extended_remote_set_inferior_cwd ();
912
913 target_xfer_status remote_write_qxfer (const char *object_name,
914 const char *annex,
915 const gdb_byte *writebuf,
916 ULONGEST offset, LONGEST len,
917 ULONGEST *xfered_len,
918 struct packet_config *packet);
919
920 target_xfer_status remote_read_qxfer (const char *object_name,
921 const char *annex,
922 gdb_byte *readbuf, ULONGEST offset,
923 LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 void push_stop_reply (struct stop_reply *new_event);
928
929 bool vcont_r_supported ();
930
931 void packet_command (const char *args, int from_tty);
932
933 private: /* data fields */
934
935 /* The remote state. Don't reference this directly. Use the
936 get_remote_state method instead. */
937 remote_state m_remote_state;
938 };
939
940 static const target_info extended_remote_target_info = {
941 "extended-remote",
942 N_("Extended remote serial target in gdb-specific protocol"),
943 remote_doc
944 };
945
946 /* Set up the extended remote target by extending the standard remote
947 target and adding to it. */
948
949 class extended_remote_target final : public remote_target
950 {
951 public:
952 const target_info &info () const override
953 { return extended_remote_target_info; }
954
955 /* Open an extended-remote connection. */
956 static void open (const char *, int);
957
958 bool can_create_inferior () override { return true; }
959 void create_inferior (const char *, const std::string &,
960 char **, int) override;
961
962 void detach (inferior *, int) override;
963
964 bool can_attach () override { return true; }
965 void attach (const char *, int) override;
966
967 void post_attach (int) override;
968 bool supports_disable_randomization () override;
969 };
970
971 /* Per-program-space data key. */
972 static const struct program_space_key<char, gdb::xfree_deleter<char>>
973 remote_pspace_data;
974
975 /* The variable registered as the control variable used by the
976 remote exec-file commands. While the remote exec-file setting is
977 per-program-space, the set/show machinery uses this as the
978 location of the remote exec-file value. */
979 static char *remote_exec_file_var;
980
981 /* The size to align memory write packets, when practical. The protocol
982 does not guarantee any alignment, and gdb will generate short
983 writes and unaligned writes, but even as a best-effort attempt this
984 can improve bulk transfers. For instance, if a write is misaligned
985 relative to the target's data bus, the stub may need to make an extra
986 round trip fetching data from the target. This doesn't make a
987 huge difference, but it's easy to do, so we try to be helpful.
988
989 The alignment chosen is arbitrary; usually data bus width is
990 important here, not the possibly larger cache line size. */
991 enum { REMOTE_ALIGN_WRITES = 16 };
992
993 /* Prototypes for local functions. */
994
995 static int hexnumlen (ULONGEST num);
996
997 static int stubhex (int ch);
998
999 static int hexnumstr (char *, ULONGEST);
1000
1001 static int hexnumnstr (char *, ULONGEST, int);
1002
1003 static CORE_ADDR remote_address_masked (CORE_ADDR);
1004
1005 static void print_packet (const char *);
1006
1007 static int stub_unpack_int (char *buff, int fieldlength);
1008
1009 struct packet_config;
1010
1011 static void show_packet_config_cmd (struct packet_config *config);
1012
1013 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1014 int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value);
1017
1018 static ptid_t read_ptid (const char *buf, const char **obuf);
1019
1020 static void remote_async_inferior_event_handler (gdb_client_data);
1021
1022 static bool remote_read_description_p (struct target_ops *target);
1023
1024 static void remote_console_output (const char *msg);
1025
1026 static void remote_btrace_reset (remote_state *rs);
1027
1028 static void remote_unpush_and_throw (void);
1029
1030 /* For "remote". */
1031
1032 static struct cmd_list_element *remote_cmdlist;
1033
1034 /* For "set remote" and "show remote". */
1035
1036 static struct cmd_list_element *remote_set_cmdlist;
1037 static struct cmd_list_element *remote_show_cmdlist;
1038
1039 /* Controls whether GDB is willing to use range stepping. */
1040
1041 static bool use_range_stepping = true;
1042
1043 /* The max number of chars in debug output. The rest of chars are
1044 omitted. */
1045
1046 #define REMOTE_DEBUG_MAX_CHAR 512
1047
1048 /* Private data that we'll store in (struct thread_info)->priv. */
1049 struct remote_thread_info : public private_thread_info
1050 {
1051 std::string extra;
1052 std::string name;
1053 int core = -1;
1054
1055 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1056 sequence of bytes. */
1057 gdb::byte_vector thread_handle;
1058
1059 /* Whether the target stopped for a breakpoint/watchpoint. */
1060 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1061
1062 /* This is set to the data address of the access causing the target
1063 to stop for a watchpoint. */
1064 CORE_ADDR watch_data_address = 0;
1065
1066 /* Fields used by the vCont action coalescing implemented in
1067 remote_resume / remote_commit_resume. remote_resume stores each
1068 thread's last resume request in these fields, so that a later
1069 remote_commit_resume knows which is the proper action for this
1070 thread to include in the vCont packet. */
1071
1072 /* True if the last target_resume call for this thread was a step
1073 request, false if a continue request. */
1074 int last_resume_step = 0;
1075
1076 /* The signal specified in the last target_resume call for this
1077 thread. */
1078 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1079
1080 /* Whether this thread was already vCont-resumed on the remote
1081 side. */
1082 int vcont_resumed = 0;
1083 };
1084
1085 remote_state::remote_state ()
1086 : buf (400)
1087 {
1088 }
1089
1090 remote_state::~remote_state ()
1091 {
1092 xfree (this->last_pass_packet);
1093 xfree (this->last_program_signals_packet);
1094 xfree (this->finished_object);
1095 xfree (this->finished_annex);
1096 }
1097
1098 /* Utility: generate error from an incoming stub packet. */
1099 static void
1100 trace_error (char *buf)
1101 {
1102 if (*buf++ != 'E')
1103 return; /* not an error msg */
1104 switch (*buf)
1105 {
1106 case '1': /* malformed packet error */
1107 if (*++buf == '0') /* general case: */
1108 error (_("remote.c: error in outgoing packet."));
1109 else
1110 error (_("remote.c: error in outgoing packet at field #%ld."),
1111 strtol (buf, NULL, 16));
1112 default:
1113 error (_("Target returns error code '%s'."), buf);
1114 }
1115 }
1116
1117 /* Utility: wait for reply from stub, while accepting "O" packets. */
1118
1119 char *
1120 remote_target::remote_get_noisy_reply ()
1121 {
1122 struct remote_state *rs = get_remote_state ();
1123
1124 do /* Loop on reply from remote stub. */
1125 {
1126 char *buf;
1127
1128 QUIT; /* Allow user to bail out with ^C. */
1129 getpkt (&rs->buf, 0);
1130 buf = rs->buf.data ();
1131 if (buf[0] == 'E')
1132 trace_error (buf);
1133 else if (startswith (buf, "qRelocInsn:"))
1134 {
1135 ULONGEST ul;
1136 CORE_ADDR from, to, org_to;
1137 const char *p, *pp;
1138 int adjusted_size = 0;
1139 int relocated = 0;
1140
1141 p = buf + strlen ("qRelocInsn:");
1142 pp = unpack_varlen_hex (p, &ul);
1143 if (*pp != ';')
1144 error (_("invalid qRelocInsn packet: %s"), buf);
1145 from = ul;
1146
1147 p = pp + 1;
1148 unpack_varlen_hex (p, &ul);
1149 to = ul;
1150
1151 org_to = to;
1152
1153 try
1154 {
1155 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1156 relocated = 1;
1157 }
1158 catch (const gdb_exception &ex)
1159 {
1160 if (ex.error == MEMORY_ERROR)
1161 {
1162 /* Propagate memory errors silently back to the
1163 target. The stub may have limited the range of
1164 addresses we can write to, for example. */
1165 }
1166 else
1167 {
1168 /* Something unexpectedly bad happened. Be verbose
1169 so we can tell what, and propagate the error back
1170 to the stub, so it doesn't get stuck waiting for
1171 a response. */
1172 exception_fprintf (gdb_stderr, ex,
1173 _("warning: relocating instruction: "));
1174 }
1175 putpkt ("E01");
1176 }
1177
1178 if (relocated)
1179 {
1180 adjusted_size = to - org_to;
1181
1182 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1183 putpkt (buf);
1184 }
1185 }
1186 else if (buf[0] == 'O' && buf[1] != 'K')
1187 remote_console_output (buf + 1); /* 'O' message from stub */
1188 else
1189 return buf; /* Here's the actual reply. */
1190 }
1191 while (1);
1192 }
1193
1194 struct remote_arch_state *
1195 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1196 {
1197 remote_arch_state *rsa;
1198
1199 auto it = this->m_arch_states.find (gdbarch);
1200 if (it == this->m_arch_states.end ())
1201 {
1202 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1203 std::forward_as_tuple (gdbarch),
1204 std::forward_as_tuple (gdbarch));
1205 rsa = &p.first->second;
1206
1207 /* Make sure that the packet buffer is plenty big enough for
1208 this architecture. */
1209 if (this->buf.size () < rsa->remote_packet_size)
1210 this->buf.resize (2 * rsa->remote_packet_size);
1211 }
1212 else
1213 rsa = &it->second;
1214
1215 return rsa;
1216 }
1217
1218 /* Fetch the global remote target state. */
1219
1220 remote_state *
1221 remote_target::get_remote_state ()
1222 {
1223 /* Make sure that the remote architecture state has been
1224 initialized, because doing so might reallocate rs->buf. Any
1225 function which calls getpkt also needs to be mindful of changes
1226 to rs->buf, but this call limits the number of places which run
1227 into trouble. */
1228 m_remote_state.get_remote_arch_state (target_gdbarch ());
1229
1230 return &m_remote_state;
1231 }
1232
1233 /* Fetch the remote exec-file from the current program space. */
1234
1235 static const char *
1236 get_remote_exec_file (void)
1237 {
1238 char *remote_exec_file;
1239
1240 remote_exec_file = remote_pspace_data.get (current_program_space);
1241 if (remote_exec_file == NULL)
1242 return "";
1243
1244 return remote_exec_file;
1245 }
1246
1247 /* Set the remote exec file for PSPACE. */
1248
1249 static void
1250 set_pspace_remote_exec_file (struct program_space *pspace,
1251 const char *remote_exec_file)
1252 {
1253 char *old_file = remote_pspace_data.get (pspace);
1254
1255 xfree (old_file);
1256 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1257 }
1258
1259 /* The "set/show remote exec-file" set command hook. */
1260
1261 static void
1262 set_remote_exec_file (const char *ignored, int from_tty,
1263 struct cmd_list_element *c)
1264 {
1265 gdb_assert (remote_exec_file_var != NULL);
1266 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1267 }
1268
1269 /* The "set/show remote exec-file" show command hook. */
1270
1271 static void
1272 show_remote_exec_file (struct ui_file *file, int from_tty,
1273 struct cmd_list_element *cmd, const char *value)
1274 {
1275 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1276 }
1277
1278 static int
1279 compare_pnums (const void *lhs_, const void *rhs_)
1280 {
1281 const struct packet_reg * const *lhs
1282 = (const struct packet_reg * const *) lhs_;
1283 const struct packet_reg * const *rhs
1284 = (const struct packet_reg * const *) rhs_;
1285
1286 if ((*lhs)->pnum < (*rhs)->pnum)
1287 return -1;
1288 else if ((*lhs)->pnum == (*rhs)->pnum)
1289 return 0;
1290 else
1291 return 1;
1292 }
1293
1294 static int
1295 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1296 {
1297 int regnum, num_remote_regs, offset;
1298 struct packet_reg **remote_regs;
1299
1300 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1301 {
1302 struct packet_reg *r = &regs[regnum];
1303
1304 if (register_size (gdbarch, regnum) == 0)
1305 /* Do not try to fetch zero-sized (placeholder) registers. */
1306 r->pnum = -1;
1307 else
1308 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1309
1310 r->regnum = regnum;
1311 }
1312
1313 /* Define the g/G packet format as the contents of each register
1314 with a remote protocol number, in order of ascending protocol
1315 number. */
1316
1317 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1318 for (num_remote_regs = 0, regnum = 0;
1319 regnum < gdbarch_num_regs (gdbarch);
1320 regnum++)
1321 if (regs[regnum].pnum != -1)
1322 remote_regs[num_remote_regs++] = &regs[regnum];
1323
1324 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1325 compare_pnums);
1326
1327 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1328 {
1329 remote_regs[regnum]->in_g_packet = 1;
1330 remote_regs[regnum]->offset = offset;
1331 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1332 }
1333
1334 return offset;
1335 }
1336
1337 /* Given the architecture described by GDBARCH, return the remote
1338 protocol register's number and the register's offset in the g/G
1339 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1340 If the target does not have a mapping for REGNUM, return false,
1341 otherwise, return true. */
1342
1343 int
1344 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1345 int *pnum, int *poffset)
1346 {
1347 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1348
1349 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1350
1351 map_regcache_remote_table (gdbarch, regs.data ());
1352
1353 *pnum = regs[regnum].pnum;
1354 *poffset = regs[regnum].offset;
1355
1356 return *pnum != -1;
1357 }
1358
1359 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1360 {
1361 /* Use the architecture to build a regnum<->pnum table, which will be
1362 1:1 unless a feature set specifies otherwise. */
1363 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1364
1365 /* Record the maximum possible size of the g packet - it may turn out
1366 to be smaller. */
1367 this->sizeof_g_packet
1368 = map_regcache_remote_table (gdbarch, this->regs.get ());
1369
1370 /* Default maximum number of characters in a packet body. Many
1371 remote stubs have a hardwired buffer size of 400 bytes
1372 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1373 as the maximum packet-size to ensure that the packet and an extra
1374 NUL character can always fit in the buffer. This stops GDB
1375 trashing stubs that try to squeeze an extra NUL into what is
1376 already a full buffer (As of 1999-12-04 that was most stubs). */
1377 this->remote_packet_size = 400 - 1;
1378
1379 /* This one is filled in when a ``g'' packet is received. */
1380 this->actual_register_packet_size = 0;
1381
1382 /* Should rsa->sizeof_g_packet needs more space than the
1383 default, adjust the size accordingly. Remember that each byte is
1384 encoded as two characters. 32 is the overhead for the packet
1385 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1386 (``$NN:G...#NN'') is a better guess, the below has been padded a
1387 little. */
1388 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1389 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1390 }
1391
1392 /* Get a pointer to the current remote target. If not connected to a
1393 remote target, return NULL. */
1394
1395 static remote_target *
1396 get_current_remote_target ()
1397 {
1398 target_ops *proc_target = find_target_at (process_stratum);
1399 return dynamic_cast<remote_target *> (proc_target);
1400 }
1401
1402 /* Return the current allowed size of a remote packet. This is
1403 inferred from the current architecture, and should be used to
1404 limit the length of outgoing packets. */
1405 long
1406 remote_target::get_remote_packet_size ()
1407 {
1408 struct remote_state *rs = get_remote_state ();
1409 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1410
1411 if (rs->explicit_packet_size)
1412 return rs->explicit_packet_size;
1413
1414 return rsa->remote_packet_size;
1415 }
1416
1417 static struct packet_reg *
1418 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1419 long regnum)
1420 {
1421 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1422 return NULL;
1423 else
1424 {
1425 struct packet_reg *r = &rsa->regs[regnum];
1426
1427 gdb_assert (r->regnum == regnum);
1428 return r;
1429 }
1430 }
1431
1432 static struct packet_reg *
1433 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1434 LONGEST pnum)
1435 {
1436 int i;
1437
1438 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1439 {
1440 struct packet_reg *r = &rsa->regs[i];
1441
1442 if (r->pnum == pnum)
1443 return r;
1444 }
1445 return NULL;
1446 }
1447
1448 /* Allow the user to specify what sequence to send to the remote
1449 when he requests a program interruption: Although ^C is usually
1450 what remote systems expect (this is the default, here), it is
1451 sometimes preferable to send a break. On other systems such
1452 as the Linux kernel, a break followed by g, which is Magic SysRq g
1453 is required in order to interrupt the execution. */
1454 const char interrupt_sequence_control_c[] = "Ctrl-C";
1455 const char interrupt_sequence_break[] = "BREAK";
1456 const char interrupt_sequence_break_g[] = "BREAK-g";
1457 static const char *const interrupt_sequence_modes[] =
1458 {
1459 interrupt_sequence_control_c,
1460 interrupt_sequence_break,
1461 interrupt_sequence_break_g,
1462 NULL
1463 };
1464 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1465
1466 static void
1467 show_interrupt_sequence (struct ui_file *file, int from_tty,
1468 struct cmd_list_element *c,
1469 const char *value)
1470 {
1471 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1472 fprintf_filtered (file,
1473 _("Send the ASCII ETX character (Ctrl-c) "
1474 "to the remote target to interrupt the "
1475 "execution of the program.\n"));
1476 else if (interrupt_sequence_mode == interrupt_sequence_break)
1477 fprintf_filtered (file,
1478 _("send a break signal to the remote target "
1479 "to interrupt the execution of the program.\n"));
1480 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1481 fprintf_filtered (file,
1482 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1483 "the remote target to interrupt the execution "
1484 "of Linux kernel.\n"));
1485 else
1486 internal_error (__FILE__, __LINE__,
1487 _("Invalid value for interrupt_sequence_mode: %s."),
1488 interrupt_sequence_mode);
1489 }
1490
1491 /* This boolean variable specifies whether interrupt_sequence is sent
1492 to the remote target when gdb connects to it.
1493 This is mostly needed when you debug the Linux kernel: The Linux kernel
1494 expects BREAK g which is Magic SysRq g for connecting gdb. */
1495 static bool interrupt_on_connect = false;
1496
1497 /* This variable is used to implement the "set/show remotebreak" commands.
1498 Since these commands are now deprecated in favor of "set/show remote
1499 interrupt-sequence", it no longer has any effect on the code. */
1500 static bool remote_break;
1501
1502 static void
1503 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1504 {
1505 if (remote_break)
1506 interrupt_sequence_mode = interrupt_sequence_break;
1507 else
1508 interrupt_sequence_mode = interrupt_sequence_control_c;
1509 }
1510
1511 static void
1512 show_remotebreak (struct ui_file *file, int from_tty,
1513 struct cmd_list_element *c,
1514 const char *value)
1515 {
1516 }
1517
1518 /* This variable sets the number of bits in an address that are to be
1519 sent in a memory ("M" or "m") packet. Normally, after stripping
1520 leading zeros, the entire address would be sent. This variable
1521 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1522 initial implementation of remote.c restricted the address sent in
1523 memory packets to ``host::sizeof long'' bytes - (typically 32
1524 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1525 address was never sent. Since fixing this bug may cause a break in
1526 some remote targets this variable is principly provided to
1527 facilitate backward compatibility. */
1528
1529 static unsigned int remote_address_size;
1530
1531 \f
1532 /* User configurable variables for the number of characters in a
1533 memory read/write packet. MIN (rsa->remote_packet_size,
1534 rsa->sizeof_g_packet) is the default. Some targets need smaller
1535 values (fifo overruns, et.al.) and some users need larger values
1536 (speed up transfers). The variables ``preferred_*'' (the user
1537 request), ``current_*'' (what was actually set) and ``forced_*''
1538 (Positive - a soft limit, negative - a hard limit). */
1539
1540 struct memory_packet_config
1541 {
1542 const char *name;
1543 long size;
1544 int fixed_p;
1545 };
1546
1547 /* The default max memory-write-packet-size, when the setting is
1548 "fixed". The 16k is historical. (It came from older GDB's using
1549 alloca for buffers and the knowledge (folklore?) that some hosts
1550 don't cope very well with large alloca calls.) */
1551 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1552
1553 /* The minimum remote packet size for memory transfers. Ensures we
1554 can write at least one byte. */
1555 #define MIN_MEMORY_PACKET_SIZE 20
1556
1557 /* Get the memory packet size, assuming it is fixed. */
1558
1559 static long
1560 get_fixed_memory_packet_size (struct memory_packet_config *config)
1561 {
1562 gdb_assert (config->fixed_p);
1563
1564 if (config->size <= 0)
1565 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1566 else
1567 return config->size;
1568 }
1569
1570 /* Compute the current size of a read/write packet. Since this makes
1571 use of ``actual_register_packet_size'' the computation is dynamic. */
1572
1573 long
1574 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1575 {
1576 struct remote_state *rs = get_remote_state ();
1577 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1578
1579 long what_they_get;
1580 if (config->fixed_p)
1581 what_they_get = get_fixed_memory_packet_size (config);
1582 else
1583 {
1584 what_they_get = get_remote_packet_size ();
1585 /* Limit the packet to the size specified by the user. */
1586 if (config->size > 0
1587 && what_they_get > config->size)
1588 what_they_get = config->size;
1589
1590 /* Limit it to the size of the targets ``g'' response unless we have
1591 permission from the stub to use a larger packet size. */
1592 if (rs->explicit_packet_size == 0
1593 && rsa->actual_register_packet_size > 0
1594 && what_they_get > rsa->actual_register_packet_size)
1595 what_they_get = rsa->actual_register_packet_size;
1596 }
1597 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1598 what_they_get = MIN_MEMORY_PACKET_SIZE;
1599
1600 /* Make sure there is room in the global buffer for this packet
1601 (including its trailing NUL byte). */
1602 if (rs->buf.size () < what_they_get + 1)
1603 rs->buf.resize (2 * what_they_get);
1604
1605 return what_they_get;
1606 }
1607
1608 /* Update the size of a read/write packet. If they user wants
1609 something really big then do a sanity check. */
1610
1611 static void
1612 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1613 {
1614 int fixed_p = config->fixed_p;
1615 long size = config->size;
1616
1617 if (args == NULL)
1618 error (_("Argument required (integer, `fixed' or `limited')."));
1619 else if (strcmp (args, "hard") == 0
1620 || strcmp (args, "fixed") == 0)
1621 fixed_p = 1;
1622 else if (strcmp (args, "soft") == 0
1623 || strcmp (args, "limit") == 0)
1624 fixed_p = 0;
1625 else
1626 {
1627 char *end;
1628
1629 size = strtoul (args, &end, 0);
1630 if (args == end)
1631 error (_("Invalid %s (bad syntax)."), config->name);
1632
1633 /* Instead of explicitly capping the size of a packet to or
1634 disallowing it, the user is allowed to set the size to
1635 something arbitrarily large. */
1636 }
1637
1638 /* Extra checks? */
1639 if (fixed_p && !config->fixed_p)
1640 {
1641 /* So that the query shows the correct value. */
1642 long query_size = (size <= 0
1643 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1644 : size);
1645
1646 if (! query (_("The target may not be able to correctly handle a %s\n"
1647 "of %ld bytes. Change the packet size? "),
1648 config->name, query_size))
1649 error (_("Packet size not changed."));
1650 }
1651 /* Update the config. */
1652 config->fixed_p = fixed_p;
1653 config->size = size;
1654 }
1655
1656 static void
1657 show_memory_packet_size (struct memory_packet_config *config)
1658 {
1659 if (config->size == 0)
1660 printf_filtered (_("The %s is 0 (default). "), config->name);
1661 else
1662 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1663 if (config->fixed_p)
1664 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1665 get_fixed_memory_packet_size (config));
1666 else
1667 {
1668 remote_target *remote = get_current_remote_target ();
1669
1670 if (remote != NULL)
1671 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1672 remote->get_memory_packet_size (config));
1673 else
1674 puts_filtered ("The actual limit will be further reduced "
1675 "dependent on the target.\n");
1676 }
1677 }
1678
1679 static struct memory_packet_config memory_write_packet_config =
1680 {
1681 "memory-write-packet-size",
1682 };
1683
1684 static void
1685 set_memory_write_packet_size (const char *args, int from_tty)
1686 {
1687 set_memory_packet_size (args, &memory_write_packet_config);
1688 }
1689
1690 static void
1691 show_memory_write_packet_size (const char *args, int from_tty)
1692 {
1693 show_memory_packet_size (&memory_write_packet_config);
1694 }
1695
1696 /* Show the number of hardware watchpoints that can be used. */
1697
1698 static void
1699 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum number of target hardware "
1704 "watchpoints is %s.\n"), value);
1705 }
1706
1707 /* Show the length limit (in bytes) for hardware watchpoints. */
1708
1709 static void
1710 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1715 "hardware watchpoint is %s.\n"), value);
1716 }
1717
1718 /* Show the number of hardware breakpoints that can be used. */
1719
1720 static void
1721 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1722 struct cmd_list_element *c,
1723 const char *value)
1724 {
1725 fprintf_filtered (file, _("The maximum number of target hardware "
1726 "breakpoints is %s.\n"), value);
1727 }
1728
1729 long
1730 remote_target::get_memory_write_packet_size ()
1731 {
1732 return get_memory_packet_size (&memory_write_packet_config);
1733 }
1734
1735 static struct memory_packet_config memory_read_packet_config =
1736 {
1737 "memory-read-packet-size",
1738 };
1739
1740 static void
1741 set_memory_read_packet_size (const char *args, int from_tty)
1742 {
1743 set_memory_packet_size (args, &memory_read_packet_config);
1744 }
1745
1746 static void
1747 show_memory_read_packet_size (const char *args, int from_tty)
1748 {
1749 show_memory_packet_size (&memory_read_packet_config);
1750 }
1751
1752 long
1753 remote_target::get_memory_read_packet_size ()
1754 {
1755 long size = get_memory_packet_size (&memory_read_packet_config);
1756
1757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1758 extra buffer size argument before the memory read size can be
1759 increased beyond this. */
1760 if (size > get_remote_packet_size ())
1761 size = get_remote_packet_size ();
1762 return size;
1763 }
1764
1765 \f
1766
1767 struct packet_config
1768 {
1769 const char *name;
1770 const char *title;
1771
1772 /* If auto, GDB auto-detects support for this packet or feature,
1773 either through qSupported, or by trying the packet and looking
1774 at the response. If true, GDB assumes the target supports this
1775 packet. If false, the packet is disabled. Configs that don't
1776 have an associated command always have this set to auto. */
1777 enum auto_boolean detect;
1778
1779 /* Does the target support this packet? */
1780 enum packet_support support;
1781 };
1782
1783 static enum packet_support packet_config_support (struct packet_config *config);
1784 static enum packet_support packet_support (int packet);
1785
1786 static void
1787 show_packet_config_cmd (struct packet_config *config)
1788 {
1789 const char *support = "internal-error";
1790
1791 switch (packet_config_support (config))
1792 {
1793 case PACKET_ENABLE:
1794 support = "enabled";
1795 break;
1796 case PACKET_DISABLE:
1797 support = "disabled";
1798 break;
1799 case PACKET_SUPPORT_UNKNOWN:
1800 support = "unknown";
1801 break;
1802 }
1803 switch (config->detect)
1804 {
1805 case AUTO_BOOLEAN_AUTO:
1806 printf_filtered (_("Support for the `%s' packet "
1807 "is auto-detected, currently %s.\n"),
1808 config->name, support);
1809 break;
1810 case AUTO_BOOLEAN_TRUE:
1811 case AUTO_BOOLEAN_FALSE:
1812 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1813 config->name, support);
1814 break;
1815 }
1816 }
1817
1818 static void
1819 add_packet_config_cmd (struct packet_config *config, const char *name,
1820 const char *title, int legacy)
1821 {
1822 char *set_doc;
1823 char *show_doc;
1824 char *cmd_name;
1825
1826 config->name = name;
1827 config->title = title;
1828 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1829 name, title);
1830 show_doc = xstrprintf ("Show current use of remote "
1831 "protocol `%s' (%s) packet.",
1832 name, title);
1833 /* set/show TITLE-packet {auto,on,off} */
1834 cmd_name = xstrprintf ("%s-packet", title);
1835 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1836 &config->detect, set_doc,
1837 show_doc, NULL, /* help_doc */
1838 NULL,
1839 show_remote_protocol_packet_cmd,
1840 &remote_set_cmdlist, &remote_show_cmdlist);
1841 /* The command code copies the documentation strings. */
1842 xfree (set_doc);
1843 xfree (show_doc);
1844 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1845 if (legacy)
1846 {
1847 char *legacy_name;
1848
1849 legacy_name = xstrprintf ("%s-packet", name);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_set_cmdlist);
1852 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1853 &remote_show_cmdlist);
1854 }
1855 }
1856
1857 static enum packet_result
1858 packet_check_result (const char *buf)
1859 {
1860 if (buf[0] != '\0')
1861 {
1862 /* The stub recognized the packet request. Check that the
1863 operation succeeded. */
1864 if (buf[0] == 'E'
1865 && isxdigit (buf[1]) && isxdigit (buf[2])
1866 && buf[3] == '\0')
1867 /* "Enn" - definitly an error. */
1868 return PACKET_ERROR;
1869
1870 /* Always treat "E." as an error. This will be used for
1871 more verbose error messages, such as E.memtypes. */
1872 if (buf[0] == 'E' && buf[1] == '.')
1873 return PACKET_ERROR;
1874
1875 /* The packet may or may not be OK. Just assume it is. */
1876 return PACKET_OK;
1877 }
1878 else
1879 /* The stub does not support the packet. */
1880 return PACKET_UNKNOWN;
1881 }
1882
1883 static enum packet_result
1884 packet_check_result (const gdb::char_vector &buf)
1885 {
1886 return packet_check_result (buf.data ());
1887 }
1888
1889 static enum packet_result
1890 packet_ok (const char *buf, struct packet_config *config)
1891 {
1892 enum packet_result result;
1893
1894 if (config->detect != AUTO_BOOLEAN_TRUE
1895 && config->support == PACKET_DISABLE)
1896 internal_error (__FILE__, __LINE__,
1897 _("packet_ok: attempt to use a disabled packet"));
1898
1899 result = packet_check_result (buf);
1900 switch (result)
1901 {
1902 case PACKET_OK:
1903 case PACKET_ERROR:
1904 /* The stub recognized the packet request. */
1905 if (config->support == PACKET_SUPPORT_UNKNOWN)
1906 {
1907 if (remote_debug)
1908 fprintf_unfiltered (gdb_stdlog,
1909 "Packet %s (%s) is supported\n",
1910 config->name, config->title);
1911 config->support = PACKET_ENABLE;
1912 }
1913 break;
1914 case PACKET_UNKNOWN:
1915 /* The stub does not support the packet. */
1916 if (config->detect == AUTO_BOOLEAN_AUTO
1917 && config->support == PACKET_ENABLE)
1918 {
1919 /* If the stub previously indicated that the packet was
1920 supported then there is a protocol error. */
1921 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1922 config->name, config->title);
1923 }
1924 else if (config->detect == AUTO_BOOLEAN_TRUE)
1925 {
1926 /* The user set it wrong. */
1927 error (_("Enabled packet %s (%s) not recognized by stub"),
1928 config->name, config->title);
1929 }
1930
1931 if (remote_debug)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "Packet %s (%s) is NOT supported\n",
1934 config->name, config->title);
1935 config->support = PACKET_DISABLE;
1936 break;
1937 }
1938
1939 return result;
1940 }
1941
1942 static enum packet_result
1943 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1944 {
1945 return packet_ok (buf.data (), config);
1946 }
1947
1948 enum {
1949 PACKET_vCont = 0,
1950 PACKET_X,
1951 PACKET_qSymbol,
1952 PACKET_P,
1953 PACKET_p,
1954 PACKET_Z0,
1955 PACKET_Z1,
1956 PACKET_Z2,
1957 PACKET_Z3,
1958 PACKET_Z4,
1959 PACKET_vFile_setfs,
1960 PACKET_vFile_open,
1961 PACKET_vFile_pread,
1962 PACKET_vFile_pwrite,
1963 PACKET_vFile_close,
1964 PACKET_vFile_unlink,
1965 PACKET_vFile_readlink,
1966 PACKET_vFile_fstat,
1967 PACKET_qXfer_auxv,
1968 PACKET_qXfer_features,
1969 PACKET_qXfer_exec_file,
1970 PACKET_qXfer_libraries,
1971 PACKET_qXfer_libraries_svr4,
1972 PACKET_qXfer_memory_map,
1973 PACKET_qXfer_spu_read,
1974 PACKET_qXfer_spu_write,
1975 PACKET_qXfer_osdata,
1976 PACKET_qXfer_threads,
1977 PACKET_qXfer_statictrace_read,
1978 PACKET_qXfer_traceframe_info,
1979 PACKET_qXfer_uib,
1980 PACKET_qGetTIBAddr,
1981 PACKET_qGetTLSAddr,
1982 PACKET_qSupported,
1983 PACKET_qTStatus,
1984 PACKET_QPassSignals,
1985 PACKET_QCatchSyscalls,
1986 PACKET_QProgramSignals,
1987 PACKET_QSetWorkingDir,
1988 PACKET_QStartupWithShell,
1989 PACKET_QEnvironmentHexEncoded,
1990 PACKET_QEnvironmentReset,
1991 PACKET_QEnvironmentUnset,
1992 PACKET_qCRC,
1993 PACKET_qSearch_memory,
1994 PACKET_vAttach,
1995 PACKET_vRun,
1996 PACKET_QStartNoAckMode,
1997 PACKET_vKill,
1998 PACKET_qXfer_siginfo_read,
1999 PACKET_qXfer_siginfo_write,
2000 PACKET_qAttached,
2001
2002 /* Support for conditional tracepoints. */
2003 PACKET_ConditionalTracepoints,
2004
2005 /* Support for target-side breakpoint conditions. */
2006 PACKET_ConditionalBreakpoints,
2007
2008 /* Support for target-side breakpoint commands. */
2009 PACKET_BreakpointCommands,
2010
2011 /* Support for fast tracepoints. */
2012 PACKET_FastTracepoints,
2013
2014 /* Support for static tracepoints. */
2015 PACKET_StaticTracepoints,
2016
2017 /* Support for installing tracepoints while a trace experiment is
2018 running. */
2019 PACKET_InstallInTrace,
2020
2021 PACKET_bc,
2022 PACKET_bs,
2023 PACKET_TracepointSource,
2024 PACKET_QAllow,
2025 PACKET_qXfer_fdpic,
2026 PACKET_QDisableRandomization,
2027 PACKET_QAgent,
2028 PACKET_QTBuffer_size,
2029 PACKET_Qbtrace_off,
2030 PACKET_Qbtrace_bts,
2031 PACKET_Qbtrace_pt,
2032 PACKET_qXfer_btrace,
2033
2034 /* Support for the QNonStop packet. */
2035 PACKET_QNonStop,
2036
2037 /* Support for the QThreadEvents packet. */
2038 PACKET_QThreadEvents,
2039
2040 /* Support for multi-process extensions. */
2041 PACKET_multiprocess_feature,
2042
2043 /* Support for enabling and disabling tracepoints while a trace
2044 experiment is running. */
2045 PACKET_EnableDisableTracepoints_feature,
2046
2047 /* Support for collecting strings using the tracenz bytecode. */
2048 PACKET_tracenz_feature,
2049
2050 /* Support for continuing to run a trace experiment while GDB is
2051 disconnected. */
2052 PACKET_DisconnectedTracing_feature,
2053
2054 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2055 PACKET_augmented_libraries_svr4_read_feature,
2056
2057 /* Support for the qXfer:btrace-conf:read packet. */
2058 PACKET_qXfer_btrace_conf,
2059
2060 /* Support for the Qbtrace-conf:bts:size packet. */
2061 PACKET_Qbtrace_conf_bts_size,
2062
2063 /* Support for swbreak+ feature. */
2064 PACKET_swbreak_feature,
2065
2066 /* Support for hwbreak+ feature. */
2067 PACKET_hwbreak_feature,
2068
2069 /* Support for fork events. */
2070 PACKET_fork_event_feature,
2071
2072 /* Support for vfork events. */
2073 PACKET_vfork_event_feature,
2074
2075 /* Support for the Qbtrace-conf:pt:size packet. */
2076 PACKET_Qbtrace_conf_pt_size,
2077
2078 /* Support for exec events. */
2079 PACKET_exec_event_feature,
2080
2081 /* Support for query supported vCont actions. */
2082 PACKET_vContSupported,
2083
2084 /* Support remote CTRL-C. */
2085 PACKET_vCtrlC,
2086
2087 /* Support TARGET_WAITKIND_NO_RESUMED. */
2088 PACKET_no_resumed,
2089
2090 PACKET_MAX
2091 };
2092
2093 static struct packet_config remote_protocol_packets[PACKET_MAX];
2094
2095 /* Returns the packet's corresponding "set remote foo-packet" command
2096 state. See struct packet_config for more details. */
2097
2098 static enum auto_boolean
2099 packet_set_cmd_state (int packet)
2100 {
2101 return remote_protocol_packets[packet].detect;
2102 }
2103
2104 /* Returns whether a given packet or feature is supported. This takes
2105 into account the state of the corresponding "set remote foo-packet"
2106 command, which may be used to bypass auto-detection. */
2107
2108 static enum packet_support
2109 packet_config_support (struct packet_config *config)
2110 {
2111 switch (config->detect)
2112 {
2113 case AUTO_BOOLEAN_TRUE:
2114 return PACKET_ENABLE;
2115 case AUTO_BOOLEAN_FALSE:
2116 return PACKET_DISABLE;
2117 case AUTO_BOOLEAN_AUTO:
2118 return config->support;
2119 default:
2120 gdb_assert_not_reached (_("bad switch"));
2121 }
2122 }
2123
2124 /* Same as packet_config_support, but takes the packet's enum value as
2125 argument. */
2126
2127 static enum packet_support
2128 packet_support (int packet)
2129 {
2130 struct packet_config *config = &remote_protocol_packets[packet];
2131
2132 return packet_config_support (config);
2133 }
2134
2135 static void
2136 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2137 struct cmd_list_element *c,
2138 const char *value)
2139 {
2140 struct packet_config *packet;
2141
2142 for (packet = remote_protocol_packets;
2143 packet < &remote_protocol_packets[PACKET_MAX];
2144 packet++)
2145 {
2146 if (&packet->detect == c->var)
2147 {
2148 show_packet_config_cmd (packet);
2149 return;
2150 }
2151 }
2152 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2153 c->name);
2154 }
2155
2156 /* Should we try one of the 'Z' requests? */
2157
2158 enum Z_packet_type
2159 {
2160 Z_PACKET_SOFTWARE_BP,
2161 Z_PACKET_HARDWARE_BP,
2162 Z_PACKET_WRITE_WP,
2163 Z_PACKET_READ_WP,
2164 Z_PACKET_ACCESS_WP,
2165 NR_Z_PACKET_TYPES
2166 };
2167
2168 /* For compatibility with older distributions. Provide a ``set remote
2169 Z-packet ...'' command that updates all the Z packet types. */
2170
2171 static enum auto_boolean remote_Z_packet_detect;
2172
2173 static void
2174 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2175 struct cmd_list_element *c)
2176 {
2177 int i;
2178
2179 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2180 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2181 }
2182
2183 static void
2184 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2185 struct cmd_list_element *c,
2186 const char *value)
2187 {
2188 int i;
2189
2190 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2191 {
2192 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2193 }
2194 }
2195
2196 /* Returns true if the multi-process extensions are in effect. */
2197
2198 static int
2199 remote_multi_process_p (struct remote_state *rs)
2200 {
2201 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2202 }
2203
2204 /* Returns true if fork events are supported. */
2205
2206 static int
2207 remote_fork_event_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if vfork events are supported. */
2213
2214 static int
2215 remote_vfork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if exec events are supported. */
2221
2222 static int
2223 remote_exec_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Insert fork catchpoint target routine. If fork events are enabled
2229 then return success, nothing more to do. */
2230
2231 int
2232 remote_target::insert_fork_catchpoint (int pid)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235
2236 return !remote_fork_event_p (rs);
2237 }
2238
2239 /* Remove fork catchpoint target routine. Nothing to do, just
2240 return success. */
2241
2242 int
2243 remote_target::remove_fork_catchpoint (int pid)
2244 {
2245 return 0;
2246 }
2247
2248 /* Insert vfork catchpoint target routine. If vfork events are enabled
2249 then return success, nothing more to do. */
2250
2251 int
2252 remote_target::insert_vfork_catchpoint (int pid)
2253 {
2254 struct remote_state *rs = get_remote_state ();
2255
2256 return !remote_vfork_event_p (rs);
2257 }
2258
2259 /* Remove vfork catchpoint target routine. Nothing to do, just
2260 return success. */
2261
2262 int
2263 remote_target::remove_vfork_catchpoint (int pid)
2264 {
2265 return 0;
2266 }
2267
2268 /* Insert exec catchpoint target routine. If exec events are
2269 enabled, just return success. */
2270
2271 int
2272 remote_target::insert_exec_catchpoint (int pid)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 return !remote_exec_event_p (rs);
2277 }
2278
2279 /* Remove exec catchpoint target routine. Nothing to do, just
2280 return success. */
2281
2282 int
2283 remote_target::remove_exec_catchpoint (int pid)
2284 {
2285 return 0;
2286 }
2287
2288 \f
2289
2290 /* Take advantage of the fact that the TID field is not used, to tag
2291 special ptids with it set to != 0. */
2292 static const ptid_t magic_null_ptid (42000, -1, 1);
2293 static const ptid_t not_sent_ptid (42000, -2, 1);
2294 static const ptid_t any_thread_ptid (42000, 0, 1);
2295
2296 /* Find out if the stub attached to PID (and hence GDB should offer to
2297 detach instead of killing it when bailing out). */
2298
2299 int
2300 remote_target::remote_query_attached (int pid)
2301 {
2302 struct remote_state *rs = get_remote_state ();
2303 size_t size = get_remote_packet_size ();
2304
2305 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2306 return 0;
2307
2308 if (remote_multi_process_p (rs))
2309 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2310 else
2311 xsnprintf (rs->buf.data (), size, "qAttached");
2312
2313 putpkt (rs->buf);
2314 getpkt (&rs->buf, 0);
2315
2316 switch (packet_ok (rs->buf,
2317 &remote_protocol_packets[PACKET_qAttached]))
2318 {
2319 case PACKET_OK:
2320 if (strcmp (rs->buf.data (), "1") == 0)
2321 return 1;
2322 break;
2323 case PACKET_ERROR:
2324 warning (_("Remote failure reply: %s"), rs->buf.data ());
2325 break;
2326 case PACKET_UNKNOWN:
2327 break;
2328 }
2329
2330 return 0;
2331 }
2332
2333 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2334 has been invented by GDB, instead of reported by the target. Since
2335 we can be connected to a remote system before before knowing about
2336 any inferior, mark the target with execution when we find the first
2337 inferior. If ATTACHED is 1, then we had just attached to this
2338 inferior. If it is 0, then we just created this inferior. If it
2339 is -1, then try querying the remote stub to find out if it had
2340 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2341 attempt to open this inferior's executable as the main executable
2342 if no main executable is open already. */
2343
2344 inferior *
2345 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2346 int try_open_exec)
2347 {
2348 struct inferior *inf;
2349
2350 /* Check whether this process we're learning about is to be
2351 considered attached, or if is to be considered to have been
2352 spawned by the stub. */
2353 if (attached == -1)
2354 attached = remote_query_attached (pid);
2355
2356 if (gdbarch_has_global_solist (target_gdbarch ()))
2357 {
2358 /* If the target shares code across all inferiors, then every
2359 attach adds a new inferior. */
2360 inf = add_inferior (pid);
2361
2362 /* ... and every inferior is bound to the same program space.
2363 However, each inferior may still have its own address
2364 space. */
2365 inf->aspace = maybe_new_address_space ();
2366 inf->pspace = current_program_space;
2367 }
2368 else
2369 {
2370 /* In the traditional debugging scenario, there's a 1-1 match
2371 between program/address spaces. We simply bind the inferior
2372 to the program space's address space. */
2373 inf = current_inferior ();
2374 inferior_appeared (inf, pid);
2375 }
2376
2377 inf->attach_flag = attached;
2378 inf->fake_pid_p = fake_pid_p;
2379
2380 /* If no main executable is currently open then attempt to
2381 open the file that was executed to create this inferior. */
2382 if (try_open_exec && get_exec_file (0) == NULL)
2383 exec_file_locate_attach (pid, 0, 1);
2384
2385 return inf;
2386 }
2387
2388 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2389 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2390
2391 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2392 according to RUNNING. */
2393
2394 thread_info *
2395 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2396 {
2397 struct remote_state *rs = get_remote_state ();
2398 struct thread_info *thread;
2399
2400 /* GDB historically didn't pull threads in the initial connection
2401 setup. If the remote target doesn't even have a concept of
2402 threads (e.g., a bare-metal target), even if internally we
2403 consider that a single-threaded target, mentioning a new thread
2404 might be confusing to the user. Be silent then, preserving the
2405 age old behavior. */
2406 if (rs->starting_up)
2407 thread = add_thread_silent (ptid);
2408 else
2409 thread = add_thread (ptid);
2410
2411 get_remote_thread_info (thread)->vcont_resumed = executing;
2412 set_executing (ptid, executing);
2413 set_running (ptid, running);
2414
2415 return thread;
2416 }
2417
2418 /* Come here when we learn about a thread id from the remote target.
2419 It may be the first time we hear about such thread, so take the
2420 opportunity to add it to GDB's thread list. In case this is the
2421 first time we're noticing its corresponding inferior, add it to
2422 GDB's inferior list as well. EXECUTING indicates whether the
2423 thread is (internally) executing or stopped. */
2424
2425 void
2426 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2427 {
2428 /* In non-stop mode, we assume new found threads are (externally)
2429 running until proven otherwise with a stop reply. In all-stop,
2430 we can only get here if all threads are stopped. */
2431 int running = target_is_non_stop_p () ? 1 : 0;
2432
2433 /* If this is a new thread, add it to GDB's thread list.
2434 If we leave it up to WFI to do this, bad things will happen. */
2435
2436 thread_info *tp = find_thread_ptid (currthread);
2437 if (tp != NULL && tp->state == THREAD_EXITED)
2438 {
2439 /* We're seeing an event on a thread id we knew had exited.
2440 This has to be a new thread reusing the old id. Add it. */
2441 remote_add_thread (currthread, running, executing);
2442 return;
2443 }
2444
2445 if (!in_thread_list (currthread))
2446 {
2447 struct inferior *inf = NULL;
2448 int pid = currthread.pid ();
2449
2450 if (inferior_ptid.is_pid ()
2451 && pid == inferior_ptid.pid ())
2452 {
2453 /* inferior_ptid has no thread member yet. This can happen
2454 with the vAttach -> remote_wait,"TAAthread:" path if the
2455 stub doesn't support qC. This is the first stop reported
2456 after an attach, so this is the main thread. Update the
2457 ptid in the thread list. */
2458 if (in_thread_list (ptid_t (pid)))
2459 thread_change_ptid (inferior_ptid, currthread);
2460 else
2461 {
2462 remote_add_thread (currthread, running, executing);
2463 inferior_ptid = currthread;
2464 }
2465 return;
2466 }
2467
2468 if (magic_null_ptid == inferior_ptid)
2469 {
2470 /* inferior_ptid is not set yet. This can happen with the
2471 vRun -> remote_wait,"TAAthread:" path if the stub
2472 doesn't support qC. This is the first stop reported
2473 after an attach, so this is the main thread. Update the
2474 ptid in the thread list. */
2475 thread_change_ptid (inferior_ptid, currthread);
2476 return;
2477 }
2478
2479 /* When connecting to a target remote, or to a target
2480 extended-remote which already was debugging an inferior, we
2481 may not know about it yet. Add it before adding its child
2482 thread, so notifications are emitted in a sensible order. */
2483 if (find_inferior_pid (currthread.pid ()) == NULL)
2484 {
2485 struct remote_state *rs = get_remote_state ();
2486 bool fake_pid_p = !remote_multi_process_p (rs);
2487
2488 inf = remote_add_inferior (fake_pid_p,
2489 currthread.pid (), -1, 1);
2490 }
2491
2492 /* This is really a new thread. Add it. */
2493 thread_info *new_thr
2494 = remote_add_thread (currthread, running, executing);
2495
2496 /* If we found a new inferior, let the common code do whatever
2497 it needs to with it (e.g., read shared libraries, insert
2498 breakpoints), unless we're just setting up an all-stop
2499 connection. */
2500 if (inf != NULL)
2501 {
2502 struct remote_state *rs = get_remote_state ();
2503
2504 if (!rs->starting_up)
2505 notice_new_inferior (new_thr, executing, 0);
2506 }
2507 }
2508 }
2509
2510 /* Return THREAD's private thread data, creating it if necessary. */
2511
2512 static remote_thread_info *
2513 get_remote_thread_info (thread_info *thread)
2514 {
2515 gdb_assert (thread != NULL);
2516
2517 if (thread->priv == NULL)
2518 thread->priv.reset (new remote_thread_info);
2519
2520 return static_cast<remote_thread_info *> (thread->priv.get ());
2521 }
2522
2523 static remote_thread_info *
2524 get_remote_thread_info (ptid_t ptid)
2525 {
2526 thread_info *thr = find_thread_ptid (ptid);
2527 return get_remote_thread_info (thr);
2528 }
2529
2530 /* Call this function as a result of
2531 1) A halt indication (T packet) containing a thread id
2532 2) A direct query of currthread
2533 3) Successful execution of set thread */
2534
2535 static void
2536 record_currthread (struct remote_state *rs, ptid_t currthread)
2537 {
2538 rs->general_thread = currthread;
2539 }
2540
2541 /* If 'QPassSignals' is supported, tell the remote stub what signals
2542 it can simply pass through to the inferior without reporting. */
2543
2544 void
2545 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2546 {
2547 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2548 {
2549 char *pass_packet, *p;
2550 int count = 0;
2551 struct remote_state *rs = get_remote_state ();
2552
2553 gdb_assert (pass_signals.size () < 256);
2554 for (size_t i = 0; i < pass_signals.size (); i++)
2555 {
2556 if (pass_signals[i])
2557 count++;
2558 }
2559 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2560 strcpy (pass_packet, "QPassSignals:");
2561 p = pass_packet + strlen (pass_packet);
2562 for (size_t i = 0; i < pass_signals.size (); i++)
2563 {
2564 if (pass_signals[i])
2565 {
2566 if (i >= 16)
2567 *p++ = tohex (i >> 4);
2568 *p++ = tohex (i & 15);
2569 if (count)
2570 *p++ = ';';
2571 else
2572 break;
2573 count--;
2574 }
2575 }
2576 *p = 0;
2577 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2578 {
2579 putpkt (pass_packet);
2580 getpkt (&rs->buf, 0);
2581 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2582 if (rs->last_pass_packet)
2583 xfree (rs->last_pass_packet);
2584 rs->last_pass_packet = pass_packet;
2585 }
2586 else
2587 xfree (pass_packet);
2588 }
2589 }
2590
2591 /* If 'QCatchSyscalls' is supported, tell the remote stub
2592 to report syscalls to GDB. */
2593
2594 int
2595 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2596 gdb::array_view<const int> syscall_counts)
2597 {
2598 const char *catch_packet;
2599 enum packet_result result;
2600 int n_sysno = 0;
2601
2602 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2603 {
2604 /* Not supported. */
2605 return 1;
2606 }
2607
2608 if (needed && any_count == 0)
2609 {
2610 /* Count how many syscalls are to be caught. */
2611 for (size_t i = 0; i < syscall_counts.size (); i++)
2612 {
2613 if (syscall_counts[i] != 0)
2614 n_sysno++;
2615 }
2616 }
2617
2618 if (remote_debug)
2619 {
2620 fprintf_unfiltered (gdb_stdlog,
2621 "remote_set_syscall_catchpoint "
2622 "pid %d needed %d any_count %d n_sysno %d\n",
2623 pid, needed, any_count, n_sysno);
2624 }
2625
2626 std::string built_packet;
2627 if (needed)
2628 {
2629 /* Prepare a packet with the sysno list, assuming max 8+1
2630 characters for a sysno. If the resulting packet size is too
2631 big, fallback on the non-selective packet. */
2632 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2633 built_packet.reserve (maxpktsz);
2634 built_packet = "QCatchSyscalls:1";
2635 if (any_count == 0)
2636 {
2637 /* Add in each syscall to be caught. */
2638 for (size_t i = 0; i < syscall_counts.size (); i++)
2639 {
2640 if (syscall_counts[i] != 0)
2641 string_appendf (built_packet, ";%zx", i);
2642 }
2643 }
2644 if (built_packet.size () > get_remote_packet_size ())
2645 {
2646 /* catch_packet too big. Fallback to less efficient
2647 non selective mode, with GDB doing the filtering. */
2648 catch_packet = "QCatchSyscalls:1";
2649 }
2650 else
2651 catch_packet = built_packet.c_str ();
2652 }
2653 else
2654 catch_packet = "QCatchSyscalls:0";
2655
2656 struct remote_state *rs = get_remote_state ();
2657
2658 putpkt (catch_packet);
2659 getpkt (&rs->buf, 0);
2660 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2661 if (result == PACKET_OK)
2662 return 0;
2663 else
2664 return -1;
2665 }
2666
2667 /* If 'QProgramSignals' is supported, tell the remote stub what
2668 signals it should pass through to the inferior when detaching. */
2669
2670 void
2671 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2672 {
2673 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2674 {
2675 char *packet, *p;
2676 int count = 0;
2677 struct remote_state *rs = get_remote_state ();
2678
2679 gdb_assert (signals.size () < 256);
2680 for (size_t i = 0; i < signals.size (); i++)
2681 {
2682 if (signals[i])
2683 count++;
2684 }
2685 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2686 strcpy (packet, "QProgramSignals:");
2687 p = packet + strlen (packet);
2688 for (size_t i = 0; i < signals.size (); i++)
2689 {
2690 if (signal_pass_state (i))
2691 {
2692 if (i >= 16)
2693 *p++ = tohex (i >> 4);
2694 *p++ = tohex (i & 15);
2695 if (count)
2696 *p++ = ';';
2697 else
2698 break;
2699 count--;
2700 }
2701 }
2702 *p = 0;
2703 if (!rs->last_program_signals_packet
2704 || strcmp (rs->last_program_signals_packet, packet) != 0)
2705 {
2706 putpkt (packet);
2707 getpkt (&rs->buf, 0);
2708 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2709 xfree (rs->last_program_signals_packet);
2710 rs->last_program_signals_packet = packet;
2711 }
2712 else
2713 xfree (packet);
2714 }
2715 }
2716
2717 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2718 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2719 thread. If GEN is set, set the general thread, if not, then set
2720 the step/continue thread. */
2721 void
2722 remote_target::set_thread (ptid_t ptid, int gen)
2723 {
2724 struct remote_state *rs = get_remote_state ();
2725 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2726 char *buf = rs->buf.data ();
2727 char *endbuf = buf + get_remote_packet_size ();
2728
2729 if (state == ptid)
2730 return;
2731
2732 *buf++ = 'H';
2733 *buf++ = gen ? 'g' : 'c';
2734 if (ptid == magic_null_ptid)
2735 xsnprintf (buf, endbuf - buf, "0");
2736 else if (ptid == any_thread_ptid)
2737 xsnprintf (buf, endbuf - buf, "0");
2738 else if (ptid == minus_one_ptid)
2739 xsnprintf (buf, endbuf - buf, "-1");
2740 else
2741 write_ptid (buf, endbuf, ptid);
2742 putpkt (rs->buf);
2743 getpkt (&rs->buf, 0);
2744 if (gen)
2745 rs->general_thread = ptid;
2746 else
2747 rs->continue_thread = ptid;
2748 }
2749
2750 void
2751 remote_target::set_general_thread (ptid_t ptid)
2752 {
2753 set_thread (ptid, 1);
2754 }
2755
2756 void
2757 remote_target::set_continue_thread (ptid_t ptid)
2758 {
2759 set_thread (ptid, 0);
2760 }
2761
2762 /* Change the remote current process. Which thread within the process
2763 ends up selected isn't important, as long as it is the same process
2764 as what INFERIOR_PTID points to.
2765
2766 This comes from that fact that there is no explicit notion of
2767 "selected process" in the protocol. The selected process for
2768 general operations is the process the selected general thread
2769 belongs to. */
2770
2771 void
2772 remote_target::set_general_process ()
2773 {
2774 struct remote_state *rs = get_remote_state ();
2775
2776 /* If the remote can't handle multiple processes, don't bother. */
2777 if (!remote_multi_process_p (rs))
2778 return;
2779
2780 /* We only need to change the remote current thread if it's pointing
2781 at some other process. */
2782 if (rs->general_thread.pid () != inferior_ptid.pid ())
2783 set_general_thread (inferior_ptid);
2784 }
2785
2786 \f
2787 /* Return nonzero if this is the main thread that we made up ourselves
2788 to model non-threaded targets as single-threaded. */
2789
2790 static int
2791 remote_thread_always_alive (ptid_t ptid)
2792 {
2793 if (ptid == magic_null_ptid)
2794 /* The main thread is always alive. */
2795 return 1;
2796
2797 if (ptid.pid () != 0 && ptid.lwp () == 0)
2798 /* The main thread is always alive. This can happen after a
2799 vAttach, if the remote side doesn't support
2800 multi-threading. */
2801 return 1;
2802
2803 return 0;
2804 }
2805
2806 /* Return nonzero if the thread PTID is still alive on the remote
2807 system. */
2808
2809 bool
2810 remote_target::thread_alive (ptid_t ptid)
2811 {
2812 struct remote_state *rs = get_remote_state ();
2813 char *p, *endp;
2814
2815 /* Check if this is a thread that we made up ourselves to model
2816 non-threaded targets as single-threaded. */
2817 if (remote_thread_always_alive (ptid))
2818 return 1;
2819
2820 p = rs->buf.data ();
2821 endp = p + get_remote_packet_size ();
2822
2823 *p++ = 'T';
2824 write_ptid (p, endp, ptid);
2825
2826 putpkt (rs->buf);
2827 getpkt (&rs->buf, 0);
2828 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2829 }
2830
2831 /* Return a pointer to a thread name if we know it and NULL otherwise.
2832 The thread_info object owns the memory for the name. */
2833
2834 const char *
2835 remote_target::thread_name (struct thread_info *info)
2836 {
2837 if (info->priv != NULL)
2838 {
2839 const std::string &name = get_remote_thread_info (info)->name;
2840 return !name.empty () ? name.c_str () : NULL;
2841 }
2842
2843 return NULL;
2844 }
2845
2846 /* About these extended threadlist and threadinfo packets. They are
2847 variable length packets but, the fields within them are often fixed
2848 length. They are redundent enough to send over UDP as is the
2849 remote protocol in general. There is a matching unit test module
2850 in libstub. */
2851
2852 /* WARNING: This threadref data structure comes from the remote O.S.,
2853 libstub protocol encoding, and remote.c. It is not particularly
2854 changable. */
2855
2856 /* Right now, the internal structure is int. We want it to be bigger.
2857 Plan to fix this. */
2858
2859 typedef int gdb_threadref; /* Internal GDB thread reference. */
2860
2861 /* gdb_ext_thread_info is an internal GDB data structure which is
2862 equivalent to the reply of the remote threadinfo packet. */
2863
2864 struct gdb_ext_thread_info
2865 {
2866 threadref threadid; /* External form of thread reference. */
2867 int active; /* Has state interesting to GDB?
2868 regs, stack. */
2869 char display[256]; /* Brief state display, name,
2870 blocked/suspended. */
2871 char shortname[32]; /* To be used to name threads. */
2872 char more_display[256]; /* Long info, statistics, queue depth,
2873 whatever. */
2874 };
2875
2876 /* The volume of remote transfers can be limited by submitting
2877 a mask containing bits specifying the desired information.
2878 Use a union of these values as the 'selection' parameter to
2879 get_thread_info. FIXME: Make these TAG names more thread specific. */
2880
2881 #define TAG_THREADID 1
2882 #define TAG_EXISTS 2
2883 #define TAG_DISPLAY 4
2884 #define TAG_THREADNAME 8
2885 #define TAG_MOREDISPLAY 16
2886
2887 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2888
2889 static char *unpack_nibble (char *buf, int *val);
2890
2891 static char *unpack_byte (char *buf, int *value);
2892
2893 static char *pack_int (char *buf, int value);
2894
2895 static char *unpack_int (char *buf, int *value);
2896
2897 static char *unpack_string (char *src, char *dest, int length);
2898
2899 static char *pack_threadid (char *pkt, threadref *id);
2900
2901 static char *unpack_threadid (char *inbuf, threadref *id);
2902
2903 void int_to_threadref (threadref *id, int value);
2904
2905 static int threadref_to_int (threadref *ref);
2906
2907 static void copy_threadref (threadref *dest, threadref *src);
2908
2909 static int threadmatch (threadref *dest, threadref *src);
2910
2911 static char *pack_threadinfo_request (char *pkt, int mode,
2912 threadref *id);
2913
2914 static char *pack_threadlist_request (char *pkt, int startflag,
2915 int threadcount,
2916 threadref *nextthread);
2917
2918 static int remote_newthread_step (threadref *ref, void *context);
2919
2920
2921 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2922 buffer we're allowed to write to. Returns
2923 BUF+CHARACTERS_WRITTEN. */
2924
2925 char *
2926 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2927 {
2928 int pid, tid;
2929 struct remote_state *rs = get_remote_state ();
2930
2931 if (remote_multi_process_p (rs))
2932 {
2933 pid = ptid.pid ();
2934 if (pid < 0)
2935 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2936 else
2937 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2938 }
2939 tid = ptid.lwp ();
2940 if (tid < 0)
2941 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2942 else
2943 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2944
2945 return buf;
2946 }
2947
2948 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2949 last parsed char. Returns null_ptid if no thread id is found, and
2950 throws an error if the thread id has an invalid format. */
2951
2952 static ptid_t
2953 read_ptid (const char *buf, const char **obuf)
2954 {
2955 const char *p = buf;
2956 const char *pp;
2957 ULONGEST pid = 0, tid = 0;
2958
2959 if (*p == 'p')
2960 {
2961 /* Multi-process ptid. */
2962 pp = unpack_varlen_hex (p + 1, &pid);
2963 if (*pp != '.')
2964 error (_("invalid remote ptid: %s"), p);
2965
2966 p = pp;
2967 pp = unpack_varlen_hex (p + 1, &tid);
2968 if (obuf)
2969 *obuf = pp;
2970 return ptid_t (pid, tid, 0);
2971 }
2972
2973 /* No multi-process. Just a tid. */
2974 pp = unpack_varlen_hex (p, &tid);
2975
2976 /* Return null_ptid when no thread id is found. */
2977 if (p == pp)
2978 {
2979 if (obuf)
2980 *obuf = pp;
2981 return null_ptid;
2982 }
2983
2984 /* Since the stub is not sending a process id, then default to
2985 what's in inferior_ptid, unless it's null at this point. If so,
2986 then since there's no way to know the pid of the reported
2987 threads, use the magic number. */
2988 if (inferior_ptid == null_ptid)
2989 pid = magic_null_ptid.pid ();
2990 else
2991 pid = inferior_ptid.pid ();
2992
2993 if (obuf)
2994 *obuf = pp;
2995 return ptid_t (pid, tid, 0);
2996 }
2997
2998 static int
2999 stubhex (int ch)
3000 {
3001 if (ch >= 'a' && ch <= 'f')
3002 return ch - 'a' + 10;
3003 if (ch >= '0' && ch <= '9')
3004 return ch - '0';
3005 if (ch >= 'A' && ch <= 'F')
3006 return ch - 'A' + 10;
3007 return -1;
3008 }
3009
3010 static int
3011 stub_unpack_int (char *buff, int fieldlength)
3012 {
3013 int nibble;
3014 int retval = 0;
3015
3016 while (fieldlength)
3017 {
3018 nibble = stubhex (*buff++);
3019 retval |= nibble;
3020 fieldlength--;
3021 if (fieldlength)
3022 retval = retval << 4;
3023 }
3024 return retval;
3025 }
3026
3027 static char *
3028 unpack_nibble (char *buf, int *val)
3029 {
3030 *val = fromhex (*buf++);
3031 return buf;
3032 }
3033
3034 static char *
3035 unpack_byte (char *buf, int *value)
3036 {
3037 *value = stub_unpack_int (buf, 2);
3038 return buf + 2;
3039 }
3040
3041 static char *
3042 pack_int (char *buf, int value)
3043 {
3044 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3045 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3046 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3047 buf = pack_hex_byte (buf, (value & 0xff));
3048 return buf;
3049 }
3050
3051 static char *
3052 unpack_int (char *buf, int *value)
3053 {
3054 *value = stub_unpack_int (buf, 8);
3055 return buf + 8;
3056 }
3057
3058 #if 0 /* Currently unused, uncomment when needed. */
3059 static char *pack_string (char *pkt, char *string);
3060
3061 static char *
3062 pack_string (char *pkt, char *string)
3063 {
3064 char ch;
3065 int len;
3066
3067 len = strlen (string);
3068 if (len > 200)
3069 len = 200; /* Bigger than most GDB packets, junk??? */
3070 pkt = pack_hex_byte (pkt, len);
3071 while (len-- > 0)
3072 {
3073 ch = *string++;
3074 if ((ch == '\0') || (ch == '#'))
3075 ch = '*'; /* Protect encapsulation. */
3076 *pkt++ = ch;
3077 }
3078 return pkt;
3079 }
3080 #endif /* 0 (unused) */
3081
3082 static char *
3083 unpack_string (char *src, char *dest, int length)
3084 {
3085 while (length--)
3086 *dest++ = *src++;
3087 *dest = '\0';
3088 return src;
3089 }
3090
3091 static char *
3092 pack_threadid (char *pkt, threadref *id)
3093 {
3094 char *limit;
3095 unsigned char *altid;
3096
3097 altid = (unsigned char *) id;
3098 limit = pkt + BUF_THREAD_ID_SIZE;
3099 while (pkt < limit)
3100 pkt = pack_hex_byte (pkt, *altid++);
3101 return pkt;
3102 }
3103
3104
3105 static char *
3106 unpack_threadid (char *inbuf, threadref *id)
3107 {
3108 char *altref;
3109 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3110 int x, y;
3111
3112 altref = (char *) id;
3113
3114 while (inbuf < limit)
3115 {
3116 x = stubhex (*inbuf++);
3117 y = stubhex (*inbuf++);
3118 *altref++ = (x << 4) | y;
3119 }
3120 return inbuf;
3121 }
3122
3123 /* Externally, threadrefs are 64 bits but internally, they are still
3124 ints. This is due to a mismatch of specifications. We would like
3125 to use 64bit thread references internally. This is an adapter
3126 function. */
3127
3128 void
3129 int_to_threadref (threadref *id, int value)
3130 {
3131 unsigned char *scan;
3132
3133 scan = (unsigned char *) id;
3134 {
3135 int i = 4;
3136 while (i--)
3137 *scan++ = 0;
3138 }
3139 *scan++ = (value >> 24) & 0xff;
3140 *scan++ = (value >> 16) & 0xff;
3141 *scan++ = (value >> 8) & 0xff;
3142 *scan++ = (value & 0xff);
3143 }
3144
3145 static int
3146 threadref_to_int (threadref *ref)
3147 {
3148 int i, value = 0;
3149 unsigned char *scan;
3150
3151 scan = *ref;
3152 scan += 4;
3153 i = 4;
3154 while (i-- > 0)
3155 value = (value << 8) | ((*scan++) & 0xff);
3156 return value;
3157 }
3158
3159 static void
3160 copy_threadref (threadref *dest, threadref *src)
3161 {
3162 int i;
3163 unsigned char *csrc, *cdest;
3164
3165 csrc = (unsigned char *) src;
3166 cdest = (unsigned char *) dest;
3167 i = 8;
3168 while (i--)
3169 *cdest++ = *csrc++;
3170 }
3171
3172 static int
3173 threadmatch (threadref *dest, threadref *src)
3174 {
3175 /* Things are broken right now, so just assume we got a match. */
3176 #if 0
3177 unsigned char *srcp, *destp;
3178 int i, result;
3179 srcp = (char *) src;
3180 destp = (char *) dest;
3181
3182 result = 1;
3183 while (i-- > 0)
3184 result &= (*srcp++ == *destp++) ? 1 : 0;
3185 return result;
3186 #endif
3187 return 1;
3188 }
3189
3190 /*
3191 threadid:1, # always request threadid
3192 context_exists:2,
3193 display:4,
3194 unique_name:8,
3195 more_display:16
3196 */
3197
3198 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3199
3200 static char *
3201 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3202 {
3203 *pkt++ = 'q'; /* Info Query */
3204 *pkt++ = 'P'; /* process or thread info */
3205 pkt = pack_int (pkt, mode); /* mode */
3206 pkt = pack_threadid (pkt, id); /* threadid */
3207 *pkt = '\0'; /* terminate */
3208 return pkt;
3209 }
3210
3211 /* These values tag the fields in a thread info response packet. */
3212 /* Tagging the fields allows us to request specific fields and to
3213 add more fields as time goes by. */
3214
3215 #define TAG_THREADID 1 /* Echo the thread identifier. */
3216 #define TAG_EXISTS 2 /* Is this process defined enough to
3217 fetch registers and its stack? */
3218 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3219 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3220 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3221 the process. */
3222
3223 int
3224 remote_target::remote_unpack_thread_info_response (char *pkt,
3225 threadref *expectedref,
3226 gdb_ext_thread_info *info)
3227 {
3228 struct remote_state *rs = get_remote_state ();
3229 int mask, length;
3230 int tag;
3231 threadref ref;
3232 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3233 int retval = 1;
3234
3235 /* info->threadid = 0; FIXME: implement zero_threadref. */
3236 info->active = 0;
3237 info->display[0] = '\0';
3238 info->shortname[0] = '\0';
3239 info->more_display[0] = '\0';
3240
3241 /* Assume the characters indicating the packet type have been
3242 stripped. */
3243 pkt = unpack_int (pkt, &mask); /* arg mask */
3244 pkt = unpack_threadid (pkt, &ref);
3245
3246 if (mask == 0)
3247 warning (_("Incomplete response to threadinfo request."));
3248 if (!threadmatch (&ref, expectedref))
3249 { /* This is an answer to a different request. */
3250 warning (_("ERROR RMT Thread info mismatch."));
3251 return 0;
3252 }
3253 copy_threadref (&info->threadid, &ref);
3254
3255 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3256
3257 /* Packets are terminated with nulls. */
3258 while ((pkt < limit) && mask && *pkt)
3259 {
3260 pkt = unpack_int (pkt, &tag); /* tag */
3261 pkt = unpack_byte (pkt, &length); /* length */
3262 if (!(tag & mask)) /* Tags out of synch with mask. */
3263 {
3264 warning (_("ERROR RMT: threadinfo tag mismatch."));
3265 retval = 0;
3266 break;
3267 }
3268 if (tag == TAG_THREADID)
3269 {
3270 if (length != 16)
3271 {
3272 warning (_("ERROR RMT: length of threadid is not 16."));
3273 retval = 0;
3274 break;
3275 }
3276 pkt = unpack_threadid (pkt, &ref);
3277 mask = mask & ~TAG_THREADID;
3278 continue;
3279 }
3280 if (tag == TAG_EXISTS)
3281 {
3282 info->active = stub_unpack_int (pkt, length);
3283 pkt += length;
3284 mask = mask & ~(TAG_EXISTS);
3285 if (length > 8)
3286 {
3287 warning (_("ERROR RMT: 'exists' length too long."));
3288 retval = 0;
3289 break;
3290 }
3291 continue;
3292 }
3293 if (tag == TAG_THREADNAME)
3294 {
3295 pkt = unpack_string (pkt, &info->shortname[0], length);
3296 mask = mask & ~TAG_THREADNAME;
3297 continue;
3298 }
3299 if (tag == TAG_DISPLAY)
3300 {
3301 pkt = unpack_string (pkt, &info->display[0], length);
3302 mask = mask & ~TAG_DISPLAY;
3303 continue;
3304 }
3305 if (tag == TAG_MOREDISPLAY)
3306 {
3307 pkt = unpack_string (pkt, &info->more_display[0], length);
3308 mask = mask & ~TAG_MOREDISPLAY;
3309 continue;
3310 }
3311 warning (_("ERROR RMT: unknown thread info tag."));
3312 break; /* Not a tag we know about. */
3313 }
3314 return retval;
3315 }
3316
3317 int
3318 remote_target::remote_get_threadinfo (threadref *threadid,
3319 int fieldset,
3320 gdb_ext_thread_info *info)
3321 {
3322 struct remote_state *rs = get_remote_state ();
3323 int result;
3324
3325 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3326 putpkt (rs->buf);
3327 getpkt (&rs->buf, 0);
3328
3329 if (rs->buf[0] == '\0')
3330 return 0;
3331
3332 result = remote_unpack_thread_info_response (&rs->buf[2],
3333 threadid, info);
3334 return result;
3335 }
3336
3337 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3338
3339 static char *
3340 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3341 threadref *nextthread)
3342 {
3343 *pkt++ = 'q'; /* info query packet */
3344 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3345 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3346 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3347 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3348 *pkt = '\0';
3349 return pkt;
3350 }
3351
3352 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3353
3354 int
3355 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3356 threadref *original_echo,
3357 threadref *resultlist,
3358 int *doneflag)
3359 {
3360 struct remote_state *rs = get_remote_state ();
3361 char *limit;
3362 int count, resultcount, done;
3363
3364 resultcount = 0;
3365 /* Assume the 'q' and 'M chars have been stripped. */
3366 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3367 /* done parse past here */
3368 pkt = unpack_byte (pkt, &count); /* count field */
3369 pkt = unpack_nibble (pkt, &done);
3370 /* The first threadid is the argument threadid. */
3371 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3372 while ((count-- > 0) && (pkt < limit))
3373 {
3374 pkt = unpack_threadid (pkt, resultlist++);
3375 if (resultcount++ >= result_limit)
3376 break;
3377 }
3378 if (doneflag)
3379 *doneflag = done;
3380 return resultcount;
3381 }
3382
3383 /* Fetch the next batch of threads from the remote. Returns -1 if the
3384 qL packet is not supported, 0 on error and 1 on success. */
3385
3386 int
3387 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3388 int result_limit, int *done, int *result_count,
3389 threadref *threadlist)
3390 {
3391 struct remote_state *rs = get_remote_state ();
3392 int result = 1;
3393
3394 /* Trancate result limit to be smaller than the packet size. */
3395 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3396 >= get_remote_packet_size ())
3397 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3398
3399 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3400 nextthread);
3401 putpkt (rs->buf);
3402 getpkt (&rs->buf, 0);
3403 if (rs->buf[0] == '\0')
3404 {
3405 /* Packet not supported. */
3406 return -1;
3407 }
3408
3409 *result_count =
3410 parse_threadlist_response (&rs->buf[2], result_limit,
3411 &rs->echo_nextthread, threadlist, done);
3412
3413 if (!threadmatch (&rs->echo_nextthread, nextthread))
3414 {
3415 /* FIXME: This is a good reason to drop the packet. */
3416 /* Possably, there is a duplicate response. */
3417 /* Possabilities :
3418 retransmit immediatly - race conditions
3419 retransmit after timeout - yes
3420 exit
3421 wait for packet, then exit
3422 */
3423 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3424 return 0; /* I choose simply exiting. */
3425 }
3426 if (*result_count <= 0)
3427 {
3428 if (*done != 1)
3429 {
3430 warning (_("RMT ERROR : failed to get remote thread list."));
3431 result = 0;
3432 }
3433 return result; /* break; */
3434 }
3435 if (*result_count > result_limit)
3436 {
3437 *result_count = 0;
3438 warning (_("RMT ERROR: threadlist response longer than requested."));
3439 return 0;
3440 }
3441 return result;
3442 }
3443
3444 /* Fetch the list of remote threads, with the qL packet, and call
3445 STEPFUNCTION for each thread found. Stops iterating and returns 1
3446 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3447 STEPFUNCTION returns false. If the packet is not supported,
3448 returns -1. */
3449
3450 int
3451 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3452 void *context, int looplimit)
3453 {
3454 struct remote_state *rs = get_remote_state ();
3455 int done, i, result_count;
3456 int startflag = 1;
3457 int result = 1;
3458 int loopcount = 0;
3459
3460 done = 0;
3461 while (!done)
3462 {
3463 if (loopcount++ > looplimit)
3464 {
3465 result = 0;
3466 warning (_("Remote fetch threadlist -infinite loop-."));
3467 break;
3468 }
3469 result = remote_get_threadlist (startflag, &rs->nextthread,
3470 MAXTHREADLISTRESULTS,
3471 &done, &result_count,
3472 rs->resultthreadlist);
3473 if (result <= 0)
3474 break;
3475 /* Clear for later iterations. */
3476 startflag = 0;
3477 /* Setup to resume next batch of thread references, set nextthread. */
3478 if (result_count >= 1)
3479 copy_threadref (&rs->nextthread,
3480 &rs->resultthreadlist[result_count - 1]);
3481 i = 0;
3482 while (result_count--)
3483 {
3484 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3485 {
3486 result = 0;
3487 break;
3488 }
3489 }
3490 }
3491 return result;
3492 }
3493
3494 /* A thread found on the remote target. */
3495
3496 struct thread_item
3497 {
3498 explicit thread_item (ptid_t ptid_)
3499 : ptid (ptid_)
3500 {}
3501
3502 thread_item (thread_item &&other) = default;
3503 thread_item &operator= (thread_item &&other) = default;
3504
3505 DISABLE_COPY_AND_ASSIGN (thread_item);
3506
3507 /* The thread's PTID. */
3508 ptid_t ptid;
3509
3510 /* The thread's extra info. */
3511 std::string extra;
3512
3513 /* The thread's name. */
3514 std::string name;
3515
3516 /* The core the thread was running on. -1 if not known. */
3517 int core = -1;
3518
3519 /* The thread handle associated with the thread. */
3520 gdb::byte_vector thread_handle;
3521 };
3522
3523 /* Context passed around to the various methods listing remote
3524 threads. As new threads are found, they're added to the ITEMS
3525 vector. */
3526
3527 struct threads_listing_context
3528 {
3529 /* Return true if this object contains an entry for a thread with ptid
3530 PTID. */
3531
3532 bool contains_thread (ptid_t ptid) const
3533 {
3534 auto match_ptid = [&] (const thread_item &item)
3535 {
3536 return item.ptid == ptid;
3537 };
3538
3539 auto it = std::find_if (this->items.begin (),
3540 this->items.end (),
3541 match_ptid);
3542
3543 return it != this->items.end ();
3544 }
3545
3546 /* Remove the thread with ptid PTID. */
3547
3548 void remove_thread (ptid_t ptid)
3549 {
3550 auto match_ptid = [&] (const thread_item &item)
3551 {
3552 return item.ptid == ptid;
3553 };
3554
3555 auto it = std::remove_if (this->items.begin (),
3556 this->items.end (),
3557 match_ptid);
3558
3559 if (it != this->items.end ())
3560 this->items.erase (it);
3561 }
3562
3563 /* The threads found on the remote target. */
3564 std::vector<thread_item> items;
3565 };
3566
3567 static int
3568 remote_newthread_step (threadref *ref, void *data)
3569 {
3570 struct threads_listing_context *context
3571 = (struct threads_listing_context *) data;
3572 int pid = inferior_ptid.pid ();
3573 int lwp = threadref_to_int (ref);
3574 ptid_t ptid (pid, lwp);
3575
3576 context->items.emplace_back (ptid);
3577
3578 return 1; /* continue iterator */
3579 }
3580
3581 #define CRAZY_MAX_THREADS 1000
3582
3583 ptid_t
3584 remote_target::remote_current_thread (ptid_t oldpid)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587
3588 putpkt ("qC");
3589 getpkt (&rs->buf, 0);
3590 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3591 {
3592 const char *obuf;
3593 ptid_t result;
3594
3595 result = read_ptid (&rs->buf[2], &obuf);
3596 if (*obuf != '\0' && remote_debug)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "warning: garbage in qC reply\n");
3599
3600 return result;
3601 }
3602 else
3603 return oldpid;
3604 }
3605
3606 /* List remote threads using the deprecated qL packet. */
3607
3608 int
3609 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3610 {
3611 if (remote_threadlist_iterator (remote_newthread_step, context,
3612 CRAZY_MAX_THREADS) >= 0)
3613 return 1;
3614
3615 return 0;
3616 }
3617
3618 #if defined(HAVE_LIBEXPAT)
3619
3620 static void
3621 start_thread (struct gdb_xml_parser *parser,
3622 const struct gdb_xml_element *element,
3623 void *user_data,
3624 std::vector<gdb_xml_value> &attributes)
3625 {
3626 struct threads_listing_context *data
3627 = (struct threads_listing_context *) user_data;
3628 struct gdb_xml_value *attr;
3629
3630 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3631 ptid_t ptid = read_ptid (id, NULL);
3632
3633 data->items.emplace_back (ptid);
3634 thread_item &item = data->items.back ();
3635
3636 attr = xml_find_attribute (attributes, "core");
3637 if (attr != NULL)
3638 item.core = *(ULONGEST *) attr->value.get ();
3639
3640 attr = xml_find_attribute (attributes, "name");
3641 if (attr != NULL)
3642 item.name = (const char *) attr->value.get ();
3643
3644 attr = xml_find_attribute (attributes, "handle");
3645 if (attr != NULL)
3646 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3647 }
3648
3649 static void
3650 end_thread (struct gdb_xml_parser *parser,
3651 const struct gdb_xml_element *element,
3652 void *user_data, const char *body_text)
3653 {
3654 struct threads_listing_context *data
3655 = (struct threads_listing_context *) user_data;
3656
3657 if (body_text != NULL && *body_text != '\0')
3658 data->items.back ().extra = body_text;
3659 }
3660
3661 const struct gdb_xml_attribute thread_attributes[] = {
3662 { "id", GDB_XML_AF_NONE, NULL, NULL },
3663 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3664 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3665 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3666 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3667 };
3668
3669 const struct gdb_xml_element thread_children[] = {
3670 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3671 };
3672
3673 const struct gdb_xml_element threads_children[] = {
3674 { "thread", thread_attributes, thread_children,
3675 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3676 start_thread, end_thread },
3677 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3678 };
3679
3680 const struct gdb_xml_element threads_elements[] = {
3681 { "threads", NULL, threads_children,
3682 GDB_XML_EF_NONE, NULL, NULL },
3683 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3684 };
3685
3686 #endif
3687
3688 /* List remote threads using qXfer:threads:read. */
3689
3690 int
3691 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3692 {
3693 #if defined(HAVE_LIBEXPAT)
3694 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3695 {
3696 gdb::optional<gdb::char_vector> xml
3697 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3698
3699 if (xml && (*xml)[0] != '\0')
3700 {
3701 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3702 threads_elements, xml->data (), context);
3703 }
3704
3705 return 1;
3706 }
3707 #endif
3708
3709 return 0;
3710 }
3711
3712 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3713
3714 int
3715 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3716 {
3717 struct remote_state *rs = get_remote_state ();
3718
3719 if (rs->use_threadinfo_query)
3720 {
3721 const char *bufp;
3722
3723 putpkt ("qfThreadInfo");
3724 getpkt (&rs->buf, 0);
3725 bufp = rs->buf.data ();
3726 if (bufp[0] != '\0') /* q packet recognized */
3727 {
3728 while (*bufp++ == 'm') /* reply contains one or more TID */
3729 {
3730 do
3731 {
3732 ptid_t ptid = read_ptid (bufp, &bufp);
3733 context->items.emplace_back (ptid);
3734 }
3735 while (*bufp++ == ','); /* comma-separated list */
3736 putpkt ("qsThreadInfo");
3737 getpkt (&rs->buf, 0);
3738 bufp = rs->buf.data ();
3739 }
3740 return 1;
3741 }
3742 else
3743 {
3744 /* Packet not recognized. */
3745 rs->use_threadinfo_query = 0;
3746 }
3747 }
3748
3749 return 0;
3750 }
3751
3752 /* Implement the to_update_thread_list function for the remote
3753 targets. */
3754
3755 void
3756 remote_target::update_thread_list ()
3757 {
3758 struct threads_listing_context context;
3759 int got_list = 0;
3760
3761 /* We have a few different mechanisms to fetch the thread list. Try
3762 them all, starting with the most preferred one first, falling
3763 back to older methods. */
3764 if (remote_get_threads_with_qxfer (&context)
3765 || remote_get_threads_with_qthreadinfo (&context)
3766 || remote_get_threads_with_ql (&context))
3767 {
3768 got_list = 1;
3769
3770 if (context.items.empty ()
3771 && remote_thread_always_alive (inferior_ptid))
3772 {
3773 /* Some targets don't really support threads, but still
3774 reply an (empty) thread list in response to the thread
3775 listing packets, instead of replying "packet not
3776 supported". Exit early so we don't delete the main
3777 thread. */
3778 return;
3779 }
3780
3781 /* CONTEXT now holds the current thread list on the remote
3782 target end. Delete GDB-side threads no longer found on the
3783 target. */
3784 for (thread_info *tp : all_threads_safe ())
3785 {
3786 if (!context.contains_thread (tp->ptid))
3787 {
3788 /* Not found. */
3789 delete_thread (tp);
3790 }
3791 }
3792
3793 /* Remove any unreported fork child threads from CONTEXT so
3794 that we don't interfere with follow fork, which is where
3795 creation of such threads is handled. */
3796 remove_new_fork_children (&context);
3797
3798 /* And now add threads we don't know about yet to our list. */
3799 for (thread_item &item : context.items)
3800 {
3801 if (item.ptid != null_ptid)
3802 {
3803 /* In non-stop mode, we assume new found threads are
3804 executing until proven otherwise with a stop reply.
3805 In all-stop, we can only get here if all threads are
3806 stopped. */
3807 int executing = target_is_non_stop_p () ? 1 : 0;
3808
3809 remote_notice_new_inferior (item.ptid, executing);
3810
3811 thread_info *tp = find_thread_ptid (item.ptid);
3812 remote_thread_info *info = get_remote_thread_info (tp);
3813 info->core = item.core;
3814 info->extra = std::move (item.extra);
3815 info->name = std::move (item.name);
3816 info->thread_handle = std::move (item.thread_handle);
3817 }
3818 }
3819 }
3820
3821 if (!got_list)
3822 {
3823 /* If no thread listing method is supported, then query whether
3824 each known thread is alive, one by one, with the T packet.
3825 If the target doesn't support threads at all, then this is a
3826 no-op. See remote_thread_alive. */
3827 prune_threads ();
3828 }
3829 }
3830
3831 /*
3832 * Collect a descriptive string about the given thread.
3833 * The target may say anything it wants to about the thread
3834 * (typically info about its blocked / runnable state, name, etc.).
3835 * This string will appear in the info threads display.
3836 *
3837 * Optional: targets are not required to implement this function.
3838 */
3839
3840 const char *
3841 remote_target::extra_thread_info (thread_info *tp)
3842 {
3843 struct remote_state *rs = get_remote_state ();
3844 int set;
3845 threadref id;
3846 struct gdb_ext_thread_info threadinfo;
3847
3848 if (rs->remote_desc == 0) /* paranoia */
3849 internal_error (__FILE__, __LINE__,
3850 _("remote_threads_extra_info"));
3851
3852 if (tp->ptid == magic_null_ptid
3853 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3854 /* This is the main thread which was added by GDB. The remote
3855 server doesn't know about it. */
3856 return NULL;
3857
3858 std::string &extra = get_remote_thread_info (tp)->extra;
3859
3860 /* If already have cached info, use it. */
3861 if (!extra.empty ())
3862 return extra.c_str ();
3863
3864 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3865 {
3866 /* If we're using qXfer:threads:read, then the extra info is
3867 included in the XML. So if we didn't have anything cached,
3868 it's because there's really no extra info. */
3869 return NULL;
3870 }
3871
3872 if (rs->use_threadextra_query)
3873 {
3874 char *b = rs->buf.data ();
3875 char *endb = b + get_remote_packet_size ();
3876
3877 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3878 b += strlen (b);
3879 write_ptid (b, endb, tp->ptid);
3880
3881 putpkt (rs->buf);
3882 getpkt (&rs->buf, 0);
3883 if (rs->buf[0] != 0)
3884 {
3885 extra.resize (strlen (rs->buf.data ()) / 2);
3886 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3887 return extra.c_str ();
3888 }
3889 }
3890
3891 /* If the above query fails, fall back to the old method. */
3892 rs->use_threadextra_query = 0;
3893 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3894 | TAG_MOREDISPLAY | TAG_DISPLAY;
3895 int_to_threadref (&id, tp->ptid.lwp ());
3896 if (remote_get_threadinfo (&id, set, &threadinfo))
3897 if (threadinfo.active)
3898 {
3899 if (*threadinfo.shortname)
3900 string_appendf (extra, " Name: %s", threadinfo.shortname);
3901 if (*threadinfo.display)
3902 {
3903 if (!extra.empty ())
3904 extra += ',';
3905 string_appendf (extra, " State: %s", threadinfo.display);
3906 }
3907 if (*threadinfo.more_display)
3908 {
3909 if (!extra.empty ())
3910 extra += ',';
3911 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3912 }
3913 return extra.c_str ();
3914 }
3915 return NULL;
3916 }
3917 \f
3918
3919 bool
3920 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3921 struct static_tracepoint_marker *marker)
3922 {
3923 struct remote_state *rs = get_remote_state ();
3924 char *p = rs->buf.data ();
3925
3926 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3927 p += strlen (p);
3928 p += hexnumstr (p, addr);
3929 putpkt (rs->buf);
3930 getpkt (&rs->buf, 0);
3931 p = rs->buf.data ();
3932
3933 if (*p == 'E')
3934 error (_("Remote failure reply: %s"), p);
3935
3936 if (*p++ == 'm')
3937 {
3938 parse_static_tracepoint_marker_definition (p, NULL, marker);
3939 return true;
3940 }
3941
3942 return false;
3943 }
3944
3945 std::vector<static_tracepoint_marker>
3946 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3947 {
3948 struct remote_state *rs = get_remote_state ();
3949 std::vector<static_tracepoint_marker> markers;
3950 const char *p;
3951 static_tracepoint_marker marker;
3952
3953 /* Ask for a first packet of static tracepoint marker
3954 definition. */
3955 putpkt ("qTfSTM");
3956 getpkt (&rs->buf, 0);
3957 p = rs->buf.data ();
3958 if (*p == 'E')
3959 error (_("Remote failure reply: %s"), p);
3960
3961 while (*p++ == 'm')
3962 {
3963 do
3964 {
3965 parse_static_tracepoint_marker_definition (p, &p, &marker);
3966
3967 if (strid == NULL || marker.str_id == strid)
3968 markers.push_back (std::move (marker));
3969 }
3970 while (*p++ == ','); /* comma-separated list */
3971 /* Ask for another packet of static tracepoint definition. */
3972 putpkt ("qTsSTM");
3973 getpkt (&rs->buf, 0);
3974 p = rs->buf.data ();
3975 }
3976
3977 return markers;
3978 }
3979
3980 \f
3981 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3982
3983 ptid_t
3984 remote_target::get_ada_task_ptid (long lwp, long thread)
3985 {
3986 return ptid_t (inferior_ptid.pid (), lwp, 0);
3987 }
3988 \f
3989
3990 /* Restart the remote side; this is an extended protocol operation. */
3991
3992 void
3993 remote_target::extended_remote_restart ()
3994 {
3995 struct remote_state *rs = get_remote_state ();
3996
3997 /* Send the restart command; for reasons I don't understand the
3998 remote side really expects a number after the "R". */
3999 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4000 putpkt (rs->buf);
4001
4002 remote_fileio_reset ();
4003 }
4004 \f
4005 /* Clean up connection to a remote debugger. */
4006
4007 void
4008 remote_target::close ()
4009 {
4010 /* Make sure we leave stdin registered in the event loop. */
4011 terminal_ours ();
4012
4013 /* We don't have a connection to the remote stub anymore. Get rid
4014 of all the inferiors and their threads we were controlling.
4015 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4016 will be unable to find the thread corresponding to (pid, 0, 0). */
4017 inferior_ptid = null_ptid;
4018 discard_all_inferiors ();
4019
4020 trace_reset_local_state ();
4021
4022 delete this;
4023 }
4024
4025 remote_target::~remote_target ()
4026 {
4027 struct remote_state *rs = get_remote_state ();
4028
4029 /* Check for NULL because we may get here with a partially
4030 constructed target/connection. */
4031 if (rs->remote_desc == nullptr)
4032 return;
4033
4034 serial_close (rs->remote_desc);
4035
4036 /* We are destroying the remote target, so we should discard
4037 everything of this target. */
4038 discard_pending_stop_replies_in_queue ();
4039
4040 if (rs->remote_async_inferior_event_token)
4041 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4042
4043 delete rs->notif_state;
4044 }
4045
4046 /* Query the remote side for the text, data and bss offsets. */
4047
4048 void
4049 remote_target::get_offsets ()
4050 {
4051 struct remote_state *rs = get_remote_state ();
4052 char *buf;
4053 char *ptr;
4054 int lose, num_segments = 0, do_sections, do_segments;
4055 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4056 struct section_offsets *offs;
4057 struct symfile_segment_data *data;
4058
4059 if (symfile_objfile == NULL)
4060 return;
4061
4062 putpkt ("qOffsets");
4063 getpkt (&rs->buf, 0);
4064 buf = rs->buf.data ();
4065
4066 if (buf[0] == '\000')
4067 return; /* Return silently. Stub doesn't support
4068 this command. */
4069 if (buf[0] == 'E')
4070 {
4071 warning (_("Remote failure reply: %s"), buf);
4072 return;
4073 }
4074
4075 /* Pick up each field in turn. This used to be done with scanf, but
4076 scanf will make trouble if CORE_ADDR size doesn't match
4077 conversion directives correctly. The following code will work
4078 with any size of CORE_ADDR. */
4079 text_addr = data_addr = bss_addr = 0;
4080 ptr = buf;
4081 lose = 0;
4082
4083 if (startswith (ptr, "Text="))
4084 {
4085 ptr += 5;
4086 /* Don't use strtol, could lose on big values. */
4087 while (*ptr && *ptr != ';')
4088 text_addr = (text_addr << 4) + fromhex (*ptr++);
4089
4090 if (startswith (ptr, ";Data="))
4091 {
4092 ptr += 6;
4093 while (*ptr && *ptr != ';')
4094 data_addr = (data_addr << 4) + fromhex (*ptr++);
4095 }
4096 else
4097 lose = 1;
4098
4099 if (!lose && startswith (ptr, ";Bss="))
4100 {
4101 ptr += 5;
4102 while (*ptr && *ptr != ';')
4103 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4104
4105 if (bss_addr != data_addr)
4106 warning (_("Target reported unsupported offsets: %s"), buf);
4107 }
4108 else
4109 lose = 1;
4110 }
4111 else if (startswith (ptr, "TextSeg="))
4112 {
4113 ptr += 8;
4114 /* Don't use strtol, could lose on big values. */
4115 while (*ptr && *ptr != ';')
4116 text_addr = (text_addr << 4) + fromhex (*ptr++);
4117 num_segments = 1;
4118
4119 if (startswith (ptr, ";DataSeg="))
4120 {
4121 ptr += 9;
4122 while (*ptr && *ptr != ';')
4123 data_addr = (data_addr << 4) + fromhex (*ptr++);
4124 num_segments++;
4125 }
4126 }
4127 else
4128 lose = 1;
4129
4130 if (lose)
4131 error (_("Malformed response to offset query, %s"), buf);
4132 else if (*ptr != '\0')
4133 warning (_("Target reported unsupported offsets: %s"), buf);
4134
4135 offs = ((struct section_offsets *)
4136 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4137 memcpy (offs, symfile_objfile->section_offsets,
4138 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4139
4140 data = get_symfile_segment_data (symfile_objfile->obfd);
4141 do_segments = (data != NULL);
4142 do_sections = num_segments == 0;
4143
4144 if (num_segments > 0)
4145 {
4146 segments[0] = text_addr;
4147 segments[1] = data_addr;
4148 }
4149 /* If we have two segments, we can still try to relocate everything
4150 by assuming that the .text and .data offsets apply to the whole
4151 text and data segments. Convert the offsets given in the packet
4152 to base addresses for symfile_map_offsets_to_segments. */
4153 else if (data && data->num_segments == 2)
4154 {
4155 segments[0] = data->segment_bases[0] + text_addr;
4156 segments[1] = data->segment_bases[1] + data_addr;
4157 num_segments = 2;
4158 }
4159 /* If the object file has only one segment, assume that it is text
4160 rather than data; main programs with no writable data are rare,
4161 but programs with no code are useless. Of course the code might
4162 have ended up in the data segment... to detect that we would need
4163 the permissions here. */
4164 else if (data && data->num_segments == 1)
4165 {
4166 segments[0] = data->segment_bases[0] + text_addr;
4167 num_segments = 1;
4168 }
4169 /* There's no way to relocate by segment. */
4170 else
4171 do_segments = 0;
4172
4173 if (do_segments)
4174 {
4175 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4176 offs, num_segments, segments);
4177
4178 if (ret == 0 && !do_sections)
4179 error (_("Can not handle qOffsets TextSeg "
4180 "response with this symbol file"));
4181
4182 if (ret > 0)
4183 do_sections = 0;
4184 }
4185
4186 if (data)
4187 free_symfile_segment_data (data);
4188
4189 if (do_sections)
4190 {
4191 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4192
4193 /* This is a temporary kludge to force data and bss to use the
4194 same offsets because that's what nlmconv does now. The real
4195 solution requires changes to the stub and remote.c that I
4196 don't have time to do right now. */
4197
4198 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4199 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4200 }
4201
4202 objfile_relocate (symfile_objfile, offs);
4203 }
4204
4205 /* Send interrupt_sequence to remote target. */
4206
4207 void
4208 remote_target::send_interrupt_sequence ()
4209 {
4210 struct remote_state *rs = get_remote_state ();
4211
4212 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4213 remote_serial_write ("\x03", 1);
4214 else if (interrupt_sequence_mode == interrupt_sequence_break)
4215 serial_send_break (rs->remote_desc);
4216 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4217 {
4218 serial_send_break (rs->remote_desc);
4219 remote_serial_write ("g", 1);
4220 }
4221 else
4222 internal_error (__FILE__, __LINE__,
4223 _("Invalid value for interrupt_sequence_mode: %s."),
4224 interrupt_sequence_mode);
4225 }
4226
4227
4228 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4229 and extract the PTID. Returns NULL_PTID if not found. */
4230
4231 static ptid_t
4232 stop_reply_extract_thread (char *stop_reply)
4233 {
4234 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4235 {
4236 const char *p;
4237
4238 /* Txx r:val ; r:val (...) */
4239 p = &stop_reply[3];
4240
4241 /* Look for "register" named "thread". */
4242 while (*p != '\0')
4243 {
4244 const char *p1;
4245
4246 p1 = strchr (p, ':');
4247 if (p1 == NULL)
4248 return null_ptid;
4249
4250 if (strncmp (p, "thread", p1 - p) == 0)
4251 return read_ptid (++p1, &p);
4252
4253 p1 = strchr (p, ';');
4254 if (p1 == NULL)
4255 return null_ptid;
4256 p1++;
4257
4258 p = p1;
4259 }
4260 }
4261
4262 return null_ptid;
4263 }
4264
4265 /* Determine the remote side's current thread. If we have a stop
4266 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4267 "thread" register we can extract the current thread from. If not,
4268 ask the remote which is the current thread with qC. The former
4269 method avoids a roundtrip. */
4270
4271 ptid_t
4272 remote_target::get_current_thread (char *wait_status)
4273 {
4274 ptid_t ptid = null_ptid;
4275
4276 /* Note we don't use remote_parse_stop_reply as that makes use of
4277 the target architecture, which we haven't yet fully determined at
4278 this point. */
4279 if (wait_status != NULL)
4280 ptid = stop_reply_extract_thread (wait_status);
4281 if (ptid == null_ptid)
4282 ptid = remote_current_thread (inferior_ptid);
4283
4284 return ptid;
4285 }
4286
4287 /* Query the remote target for which is the current thread/process,
4288 add it to our tables, and update INFERIOR_PTID. The caller is
4289 responsible for setting the state such that the remote end is ready
4290 to return the current thread.
4291
4292 This function is called after handling the '?' or 'vRun' packets,
4293 whose response is a stop reply from which we can also try
4294 extracting the thread. If the target doesn't support the explicit
4295 qC query, we infer the current thread from that stop reply, passed
4296 in in WAIT_STATUS, which may be NULL. */
4297
4298 void
4299 remote_target::add_current_inferior_and_thread (char *wait_status)
4300 {
4301 struct remote_state *rs = get_remote_state ();
4302 bool fake_pid_p = false;
4303
4304 inferior_ptid = null_ptid;
4305
4306 /* Now, if we have thread information, update inferior_ptid. */
4307 ptid_t curr_ptid = get_current_thread (wait_status);
4308
4309 if (curr_ptid != null_ptid)
4310 {
4311 if (!remote_multi_process_p (rs))
4312 fake_pid_p = true;
4313 }
4314 else
4315 {
4316 /* Without this, some commands which require an active target
4317 (such as kill) won't work. This variable serves (at least)
4318 double duty as both the pid of the target process (if it has
4319 such), and as a flag indicating that a target is active. */
4320 curr_ptid = magic_null_ptid;
4321 fake_pid_p = true;
4322 }
4323
4324 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4325
4326 /* Add the main thread and switch to it. Don't try reading
4327 registers yet, since we haven't fetched the target description
4328 yet. */
4329 thread_info *tp = add_thread_silent (curr_ptid);
4330 switch_to_thread_no_regs (tp);
4331 }
4332
4333 /* Print info about a thread that was found already stopped on
4334 connection. */
4335
4336 static void
4337 print_one_stopped_thread (struct thread_info *thread)
4338 {
4339 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4340
4341 switch_to_thread (thread);
4342 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4343 set_current_sal_from_frame (get_current_frame ());
4344
4345 thread->suspend.waitstatus_pending_p = 0;
4346
4347 if (ws->kind == TARGET_WAITKIND_STOPPED)
4348 {
4349 enum gdb_signal sig = ws->value.sig;
4350
4351 if (signal_print_state (sig))
4352 gdb::observers::signal_received.notify (sig);
4353 }
4354 gdb::observers::normal_stop.notify (NULL, 1);
4355 }
4356
4357 /* Process all initial stop replies the remote side sent in response
4358 to the ? packet. These indicate threads that were already stopped
4359 on initial connection. We mark these threads as stopped and print
4360 their current frame before giving the user the prompt. */
4361
4362 void
4363 remote_target::process_initial_stop_replies (int from_tty)
4364 {
4365 int pending_stop_replies = stop_reply_queue_length ();
4366 struct thread_info *selected = NULL;
4367 struct thread_info *lowest_stopped = NULL;
4368 struct thread_info *first = NULL;
4369
4370 /* Consume the initial pending events. */
4371 while (pending_stop_replies-- > 0)
4372 {
4373 ptid_t waiton_ptid = minus_one_ptid;
4374 ptid_t event_ptid;
4375 struct target_waitstatus ws;
4376 int ignore_event = 0;
4377
4378 memset (&ws, 0, sizeof (ws));
4379 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4380 if (remote_debug)
4381 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4382
4383 switch (ws.kind)
4384 {
4385 case TARGET_WAITKIND_IGNORE:
4386 case TARGET_WAITKIND_NO_RESUMED:
4387 case TARGET_WAITKIND_SIGNALLED:
4388 case TARGET_WAITKIND_EXITED:
4389 /* We shouldn't see these, but if we do, just ignore. */
4390 if (remote_debug)
4391 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4392 ignore_event = 1;
4393 break;
4394
4395 case TARGET_WAITKIND_EXECD:
4396 xfree (ws.value.execd_pathname);
4397 break;
4398 default:
4399 break;
4400 }
4401
4402 if (ignore_event)
4403 continue;
4404
4405 struct thread_info *evthread = find_thread_ptid (event_ptid);
4406
4407 if (ws.kind == TARGET_WAITKIND_STOPPED)
4408 {
4409 enum gdb_signal sig = ws.value.sig;
4410
4411 /* Stubs traditionally report SIGTRAP as initial signal,
4412 instead of signal 0. Suppress it. */
4413 if (sig == GDB_SIGNAL_TRAP)
4414 sig = GDB_SIGNAL_0;
4415 evthread->suspend.stop_signal = sig;
4416 ws.value.sig = sig;
4417 }
4418
4419 evthread->suspend.waitstatus = ws;
4420
4421 if (ws.kind != TARGET_WAITKIND_STOPPED
4422 || ws.value.sig != GDB_SIGNAL_0)
4423 evthread->suspend.waitstatus_pending_p = 1;
4424
4425 set_executing (event_ptid, 0);
4426 set_running (event_ptid, 0);
4427 get_remote_thread_info (evthread)->vcont_resumed = 0;
4428 }
4429
4430 /* "Notice" the new inferiors before anything related to
4431 registers/memory. */
4432 for (inferior *inf : all_non_exited_inferiors ())
4433 {
4434 inf->needs_setup = 1;
4435
4436 if (non_stop)
4437 {
4438 thread_info *thread = any_live_thread_of_inferior (inf);
4439 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4440 from_tty);
4441 }
4442 }
4443
4444 /* If all-stop on top of non-stop, pause all threads. Note this
4445 records the threads' stop pc, so must be done after "noticing"
4446 the inferiors. */
4447 if (!non_stop)
4448 {
4449 stop_all_threads ();
4450
4451 /* If all threads of an inferior were already stopped, we
4452 haven't setup the inferior yet. */
4453 for (inferior *inf : all_non_exited_inferiors ())
4454 {
4455 if (inf->needs_setup)
4456 {
4457 thread_info *thread = any_live_thread_of_inferior (inf);
4458 switch_to_thread_no_regs (thread);
4459 setup_inferior (0);
4460 }
4461 }
4462 }
4463
4464 /* Now go over all threads that are stopped, and print their current
4465 frame. If all-stop, then if there's a signalled thread, pick
4466 that as current. */
4467 for (thread_info *thread : all_non_exited_threads ())
4468 {
4469 if (first == NULL)
4470 first = thread;
4471
4472 if (!non_stop)
4473 thread->set_running (false);
4474 else if (thread->state != THREAD_STOPPED)
4475 continue;
4476
4477 if (selected == NULL
4478 && thread->suspend.waitstatus_pending_p)
4479 selected = thread;
4480
4481 if (lowest_stopped == NULL
4482 || thread->inf->num < lowest_stopped->inf->num
4483 || thread->per_inf_num < lowest_stopped->per_inf_num)
4484 lowest_stopped = thread;
4485
4486 if (non_stop)
4487 print_one_stopped_thread (thread);
4488 }
4489
4490 /* In all-stop, we only print the status of one thread, and leave
4491 others with their status pending. */
4492 if (!non_stop)
4493 {
4494 thread_info *thread = selected;
4495 if (thread == NULL)
4496 thread = lowest_stopped;
4497 if (thread == NULL)
4498 thread = first;
4499
4500 print_one_stopped_thread (thread);
4501 }
4502
4503 /* For "info program". */
4504 thread_info *thread = inferior_thread ();
4505 if (thread->state == THREAD_STOPPED)
4506 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4507 }
4508
4509 /* Start the remote connection and sync state. */
4510
4511 void
4512 remote_target::start_remote (int from_tty, int extended_p)
4513 {
4514 struct remote_state *rs = get_remote_state ();
4515 struct packet_config *noack_config;
4516 char *wait_status = NULL;
4517
4518 /* Signal other parts that we're going through the initial setup,
4519 and so things may not be stable yet. E.g., we don't try to
4520 install tracepoints until we've relocated symbols. Also, a
4521 Ctrl-C before we're connected and synced up can't interrupt the
4522 target. Instead, it offers to drop the (potentially wedged)
4523 connection. */
4524 rs->starting_up = 1;
4525
4526 QUIT;
4527
4528 if (interrupt_on_connect)
4529 send_interrupt_sequence ();
4530
4531 /* Ack any packet which the remote side has already sent. */
4532 remote_serial_write ("+", 1);
4533
4534 /* The first packet we send to the target is the optional "supported
4535 packets" request. If the target can answer this, it will tell us
4536 which later probes to skip. */
4537 remote_query_supported ();
4538
4539 /* If the stub wants to get a QAllow, compose one and send it. */
4540 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4541 set_permissions ();
4542
4543 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4544 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4545 as a reply to known packet. For packet "vFile:setfs:" it is an
4546 invalid reply and GDB would return error in
4547 remote_hostio_set_filesystem, making remote files access impossible.
4548 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4549 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4550 {
4551 const char v_mustreplyempty[] = "vMustReplyEmpty";
4552
4553 putpkt (v_mustreplyempty);
4554 getpkt (&rs->buf, 0);
4555 if (strcmp (rs->buf.data (), "OK") == 0)
4556 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4557 else if (strcmp (rs->buf.data (), "") != 0)
4558 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4559 rs->buf.data ());
4560 }
4561
4562 /* Next, we possibly activate noack mode.
4563
4564 If the QStartNoAckMode packet configuration is set to AUTO,
4565 enable noack mode if the stub reported a wish for it with
4566 qSupported.
4567
4568 If set to TRUE, then enable noack mode even if the stub didn't
4569 report it in qSupported. If the stub doesn't reply OK, the
4570 session ends with an error.
4571
4572 If FALSE, then don't activate noack mode, regardless of what the
4573 stub claimed should be the default with qSupported. */
4574
4575 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4576 if (packet_config_support (noack_config) != PACKET_DISABLE)
4577 {
4578 putpkt ("QStartNoAckMode");
4579 getpkt (&rs->buf, 0);
4580 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4581 rs->noack_mode = 1;
4582 }
4583
4584 if (extended_p)
4585 {
4586 /* Tell the remote that we are using the extended protocol. */
4587 putpkt ("!");
4588 getpkt (&rs->buf, 0);
4589 }
4590
4591 /* Let the target know which signals it is allowed to pass down to
4592 the program. */
4593 update_signals_program_target ();
4594
4595 /* Next, if the target can specify a description, read it. We do
4596 this before anything involving memory or registers. */
4597 target_find_description ();
4598
4599 /* Next, now that we know something about the target, update the
4600 address spaces in the program spaces. */
4601 update_address_spaces ();
4602
4603 /* On OSs where the list of libraries is global to all
4604 processes, we fetch them early. */
4605 if (gdbarch_has_global_solist (target_gdbarch ()))
4606 solib_add (NULL, from_tty, auto_solib_add);
4607
4608 if (target_is_non_stop_p ())
4609 {
4610 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4611 error (_("Non-stop mode requested, but remote "
4612 "does not support non-stop"));
4613
4614 putpkt ("QNonStop:1");
4615 getpkt (&rs->buf, 0);
4616
4617 if (strcmp (rs->buf.data (), "OK") != 0)
4618 error (_("Remote refused setting non-stop mode with: %s"),
4619 rs->buf.data ());
4620
4621 /* Find about threads and processes the stub is already
4622 controlling. We default to adding them in the running state.
4623 The '?' query below will then tell us about which threads are
4624 stopped. */
4625 this->update_thread_list ();
4626 }
4627 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4628 {
4629 /* Don't assume that the stub can operate in all-stop mode.
4630 Request it explicitly. */
4631 putpkt ("QNonStop:0");
4632 getpkt (&rs->buf, 0);
4633
4634 if (strcmp (rs->buf.data (), "OK") != 0)
4635 error (_("Remote refused setting all-stop mode with: %s"),
4636 rs->buf.data ());
4637 }
4638
4639 /* Upload TSVs regardless of whether the target is running or not. The
4640 remote stub, such as GDBserver, may have some predefined or builtin
4641 TSVs, even if the target is not running. */
4642 if (get_trace_status (current_trace_status ()) != -1)
4643 {
4644 struct uploaded_tsv *uploaded_tsvs = NULL;
4645
4646 upload_trace_state_variables (&uploaded_tsvs);
4647 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4648 }
4649
4650 /* Check whether the target is running now. */
4651 putpkt ("?");
4652 getpkt (&rs->buf, 0);
4653
4654 if (!target_is_non_stop_p ())
4655 {
4656 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4657 {
4658 if (!extended_p)
4659 error (_("The target is not running (try extended-remote?)"));
4660
4661 /* We're connected, but not running. Drop out before we
4662 call start_remote. */
4663 rs->starting_up = 0;
4664 return;
4665 }
4666 else
4667 {
4668 /* Save the reply for later. */
4669 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4670 strcpy (wait_status, rs->buf.data ());
4671 }
4672
4673 /* Fetch thread list. */
4674 target_update_thread_list ();
4675
4676 /* Let the stub know that we want it to return the thread. */
4677 set_continue_thread (minus_one_ptid);
4678
4679 if (thread_count () == 0)
4680 {
4681 /* Target has no concept of threads at all. GDB treats
4682 non-threaded target as single-threaded; add a main
4683 thread. */
4684 add_current_inferior_and_thread (wait_status);
4685 }
4686 else
4687 {
4688 /* We have thread information; select the thread the target
4689 says should be current. If we're reconnecting to a
4690 multi-threaded program, this will ideally be the thread
4691 that last reported an event before GDB disconnected. */
4692 inferior_ptid = get_current_thread (wait_status);
4693 if (inferior_ptid == null_ptid)
4694 {
4695 /* Odd... The target was able to list threads, but not
4696 tell us which thread was current (no "thread"
4697 register in T stop reply?). Just pick the first
4698 thread in the thread list then. */
4699
4700 if (remote_debug)
4701 fprintf_unfiltered (gdb_stdlog,
4702 "warning: couldn't determine remote "
4703 "current thread; picking first in list.\n");
4704
4705 inferior_ptid = inferior_list->thread_list->ptid;
4706 }
4707 }
4708
4709 /* init_wait_for_inferior should be called before get_offsets in order
4710 to manage `inserted' flag in bp loc in a correct state.
4711 breakpoint_init_inferior, called from init_wait_for_inferior, set
4712 `inserted' flag to 0, while before breakpoint_re_set, called from
4713 start_remote, set `inserted' flag to 1. In the initialization of
4714 inferior, breakpoint_init_inferior should be called first, and then
4715 breakpoint_re_set can be called. If this order is broken, state of
4716 `inserted' flag is wrong, and cause some problems on breakpoint
4717 manipulation. */
4718 init_wait_for_inferior ();
4719
4720 get_offsets (); /* Get text, data & bss offsets. */
4721
4722 /* If we could not find a description using qXfer, and we know
4723 how to do it some other way, try again. This is not
4724 supported for non-stop; it could be, but it is tricky if
4725 there are no stopped threads when we connect. */
4726 if (remote_read_description_p (this)
4727 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4728 {
4729 target_clear_description ();
4730 target_find_description ();
4731 }
4732
4733 /* Use the previously fetched status. */
4734 gdb_assert (wait_status != NULL);
4735 strcpy (rs->buf.data (), wait_status);
4736 rs->cached_wait_status = 1;
4737
4738 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4739 }
4740 else
4741 {
4742 /* Clear WFI global state. Do this before finding about new
4743 threads and inferiors, and setting the current inferior.
4744 Otherwise we would clear the proceed status of the current
4745 inferior when we want its stop_soon state to be preserved
4746 (see notice_new_inferior). */
4747 init_wait_for_inferior ();
4748
4749 /* In non-stop, we will either get an "OK", meaning that there
4750 are no stopped threads at this time; or, a regular stop
4751 reply. In the latter case, there may be more than one thread
4752 stopped --- we pull them all out using the vStopped
4753 mechanism. */
4754 if (strcmp (rs->buf.data (), "OK") != 0)
4755 {
4756 struct notif_client *notif = &notif_client_stop;
4757
4758 /* remote_notif_get_pending_replies acks this one, and gets
4759 the rest out. */
4760 rs->notif_state->pending_event[notif_client_stop.id]
4761 = remote_notif_parse (this, notif, rs->buf.data ());
4762 remote_notif_get_pending_events (notif);
4763 }
4764
4765 if (thread_count () == 0)
4766 {
4767 if (!extended_p)
4768 error (_("The target is not running (try extended-remote?)"));
4769
4770 /* We're connected, but not running. Drop out before we
4771 call start_remote. */
4772 rs->starting_up = 0;
4773 return;
4774 }
4775
4776 /* In non-stop mode, any cached wait status will be stored in
4777 the stop reply queue. */
4778 gdb_assert (wait_status == NULL);
4779
4780 /* Report all signals during attach/startup. */
4781 pass_signals ({});
4782
4783 /* If there are already stopped threads, mark them stopped and
4784 report their stops before giving the prompt to the user. */
4785 process_initial_stop_replies (from_tty);
4786
4787 if (target_can_async_p ())
4788 target_async (1);
4789 }
4790
4791 /* If we connected to a live target, do some additional setup. */
4792 if (target_has_execution)
4793 {
4794 if (symfile_objfile) /* No use without a symbol-file. */
4795 remote_check_symbols ();
4796 }
4797
4798 /* Possibly the target has been engaged in a trace run started
4799 previously; find out where things are at. */
4800 if (get_trace_status (current_trace_status ()) != -1)
4801 {
4802 struct uploaded_tp *uploaded_tps = NULL;
4803
4804 if (current_trace_status ()->running)
4805 printf_filtered (_("Trace is already running on the target.\n"));
4806
4807 upload_tracepoints (&uploaded_tps);
4808
4809 merge_uploaded_tracepoints (&uploaded_tps);
4810 }
4811
4812 /* Possibly the target has been engaged in a btrace record started
4813 previously; find out where things are at. */
4814 remote_btrace_maybe_reopen ();
4815
4816 /* The thread and inferior lists are now synchronized with the
4817 target, our symbols have been relocated, and we're merged the
4818 target's tracepoints with ours. We're done with basic start
4819 up. */
4820 rs->starting_up = 0;
4821
4822 /* Maybe breakpoints are global and need to be inserted now. */
4823 if (breakpoints_should_be_inserted_now ())
4824 insert_breakpoints ();
4825 }
4826
4827 /* Open a connection to a remote debugger.
4828 NAME is the filename used for communication. */
4829
4830 void
4831 remote_target::open (const char *name, int from_tty)
4832 {
4833 open_1 (name, from_tty, 0);
4834 }
4835
4836 /* Open a connection to a remote debugger using the extended
4837 remote gdb protocol. NAME is the filename used for communication. */
4838
4839 void
4840 extended_remote_target::open (const char *name, int from_tty)
4841 {
4842 open_1 (name, from_tty, 1 /*extended_p */);
4843 }
4844
4845 /* Reset all packets back to "unknown support". Called when opening a
4846 new connection to a remote target. */
4847
4848 static void
4849 reset_all_packet_configs_support (void)
4850 {
4851 int i;
4852
4853 for (i = 0; i < PACKET_MAX; i++)
4854 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4855 }
4856
4857 /* Initialize all packet configs. */
4858
4859 static void
4860 init_all_packet_configs (void)
4861 {
4862 int i;
4863
4864 for (i = 0; i < PACKET_MAX; i++)
4865 {
4866 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4867 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4868 }
4869 }
4870
4871 /* Symbol look-up. */
4872
4873 void
4874 remote_target::remote_check_symbols ()
4875 {
4876 char *tmp;
4877 int end;
4878
4879 /* The remote side has no concept of inferiors that aren't running
4880 yet, it only knows about running processes. If we're connected
4881 but our current inferior is not running, we should not invite the
4882 remote target to request symbol lookups related to its
4883 (unrelated) current process. */
4884 if (!target_has_execution)
4885 return;
4886
4887 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4888 return;
4889
4890 /* Make sure the remote is pointing at the right process. Note
4891 there's no way to select "no process". */
4892 set_general_process ();
4893
4894 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4895 because we need both at the same time. */
4896 gdb::char_vector msg (get_remote_packet_size ());
4897 gdb::char_vector reply (get_remote_packet_size ());
4898
4899 /* Invite target to request symbol lookups. */
4900
4901 putpkt ("qSymbol::");
4902 getpkt (&reply, 0);
4903 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4904
4905 while (startswith (reply.data (), "qSymbol:"))
4906 {
4907 struct bound_minimal_symbol sym;
4908
4909 tmp = &reply[8];
4910 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4911 strlen (tmp) / 2);
4912 msg[end] = '\0';
4913 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4914 if (sym.minsym == NULL)
4915 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4916 &reply[8]);
4917 else
4918 {
4919 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4920 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4921
4922 /* If this is a function address, return the start of code
4923 instead of any data function descriptor. */
4924 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4925 sym_addr,
4926 current_top_target ());
4927
4928 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4929 phex_nz (sym_addr, addr_size), &reply[8]);
4930 }
4931
4932 putpkt (msg.data ());
4933 getpkt (&reply, 0);
4934 }
4935 }
4936
4937 static struct serial *
4938 remote_serial_open (const char *name)
4939 {
4940 static int udp_warning = 0;
4941
4942 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4943 of in ser-tcp.c, because it is the remote protocol assuming that the
4944 serial connection is reliable and not the serial connection promising
4945 to be. */
4946 if (!udp_warning && startswith (name, "udp:"))
4947 {
4948 warning (_("The remote protocol may be unreliable over UDP.\n"
4949 "Some events may be lost, rendering further debugging "
4950 "impossible."));
4951 udp_warning = 1;
4952 }
4953
4954 return serial_open (name);
4955 }
4956
4957 /* Inform the target of our permission settings. The permission flags
4958 work without this, but if the target knows the settings, it can do
4959 a couple things. First, it can add its own check, to catch cases
4960 that somehow manage to get by the permissions checks in target
4961 methods. Second, if the target is wired to disallow particular
4962 settings (for instance, a system in the field that is not set up to
4963 be able to stop at a breakpoint), it can object to any unavailable
4964 permissions. */
4965
4966 void
4967 remote_target::set_permissions ()
4968 {
4969 struct remote_state *rs = get_remote_state ();
4970
4971 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4972 "WriteReg:%x;WriteMem:%x;"
4973 "InsertBreak:%x;InsertTrace:%x;"
4974 "InsertFastTrace:%x;Stop:%x",
4975 may_write_registers, may_write_memory,
4976 may_insert_breakpoints, may_insert_tracepoints,
4977 may_insert_fast_tracepoints, may_stop);
4978 putpkt (rs->buf);
4979 getpkt (&rs->buf, 0);
4980
4981 /* If the target didn't like the packet, warn the user. Do not try
4982 to undo the user's settings, that would just be maddening. */
4983 if (strcmp (rs->buf.data (), "OK") != 0)
4984 warning (_("Remote refused setting permissions with: %s"),
4985 rs->buf.data ());
4986 }
4987
4988 /* This type describes each known response to the qSupported
4989 packet. */
4990 struct protocol_feature
4991 {
4992 /* The name of this protocol feature. */
4993 const char *name;
4994
4995 /* The default for this protocol feature. */
4996 enum packet_support default_support;
4997
4998 /* The function to call when this feature is reported, or after
4999 qSupported processing if the feature is not supported.
5000 The first argument points to this structure. The second
5001 argument indicates whether the packet requested support be
5002 enabled, disabled, or probed (or the default, if this function
5003 is being called at the end of processing and this feature was
5004 not reported). The third argument may be NULL; if not NULL, it
5005 is a NUL-terminated string taken from the packet following
5006 this feature's name and an equals sign. */
5007 void (*func) (remote_target *remote, const struct protocol_feature *,
5008 enum packet_support, const char *);
5009
5010 /* The corresponding packet for this feature. Only used if
5011 FUNC is remote_supported_packet. */
5012 int packet;
5013 };
5014
5015 static void
5016 remote_supported_packet (remote_target *remote,
5017 const struct protocol_feature *feature,
5018 enum packet_support support,
5019 const char *argument)
5020 {
5021 if (argument)
5022 {
5023 warning (_("Remote qSupported response supplied an unexpected value for"
5024 " \"%s\"."), feature->name);
5025 return;
5026 }
5027
5028 remote_protocol_packets[feature->packet].support = support;
5029 }
5030
5031 void
5032 remote_target::remote_packet_size (const protocol_feature *feature,
5033 enum packet_support support, const char *value)
5034 {
5035 struct remote_state *rs = get_remote_state ();
5036
5037 int packet_size;
5038 char *value_end;
5039
5040 if (support != PACKET_ENABLE)
5041 return;
5042
5043 if (value == NULL || *value == '\0')
5044 {
5045 warning (_("Remote target reported \"%s\" without a size."),
5046 feature->name);
5047 return;
5048 }
5049
5050 errno = 0;
5051 packet_size = strtol (value, &value_end, 16);
5052 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5053 {
5054 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5055 feature->name, value);
5056 return;
5057 }
5058
5059 /* Record the new maximum packet size. */
5060 rs->explicit_packet_size = packet_size;
5061 }
5062
5063 void
5064 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5065 enum packet_support support, const char *value)
5066 {
5067 remote->remote_packet_size (feature, support, value);
5068 }
5069
5070 static const struct protocol_feature remote_protocol_features[] = {
5071 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5072 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_auxv },
5074 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5075 PACKET_qXfer_exec_file },
5076 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_features },
5078 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_qXfer_libraries },
5080 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_libraries_svr4 },
5082 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5083 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5084 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_memory_map },
5086 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_spu_read },
5088 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_spu_write },
5090 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_osdata },
5092 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_threads },
5094 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_traceframe_info },
5096 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_QPassSignals },
5098 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QCatchSyscalls },
5100 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QProgramSignals },
5102 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_QSetWorkingDir },
5104 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QStartupWithShell },
5106 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QEnvironmentHexEncoded },
5108 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QEnvironmentReset },
5110 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QEnvironmentUnset },
5112 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QStartNoAckMode },
5114 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_multiprocess_feature },
5116 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5117 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_siginfo_read },
5119 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_siginfo_write },
5121 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_ConditionalTracepoints },
5123 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_ConditionalBreakpoints },
5125 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_BreakpointCommands },
5127 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_FastTracepoints },
5129 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_StaticTracepoints },
5131 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_InstallInTrace},
5133 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_DisconnectedTracing_feature },
5135 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_bc },
5137 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_bs },
5139 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_TracepointSource },
5141 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QAllow },
5143 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_EnableDisableTracepoints_feature },
5145 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_qXfer_fdpic },
5147 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_qXfer_uib },
5149 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QDisableRandomization },
5151 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5152 { "QTBuffer:size", PACKET_DISABLE,
5153 remote_supported_packet, PACKET_QTBuffer_size},
5154 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5155 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5156 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5157 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5158 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_qXfer_btrace },
5160 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_btrace_conf },
5162 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_Qbtrace_conf_bts_size },
5164 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5165 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5166 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_fork_event_feature },
5168 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_vfork_event_feature },
5170 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_exec_event_feature },
5172 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_Qbtrace_conf_pt_size },
5174 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5175 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5176 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5177 };
5178
5179 static char *remote_support_xml;
5180
5181 /* Register string appended to "xmlRegisters=" in qSupported query. */
5182
5183 void
5184 register_remote_support_xml (const char *xml)
5185 {
5186 #if defined(HAVE_LIBEXPAT)
5187 if (remote_support_xml == NULL)
5188 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5189 else
5190 {
5191 char *copy = xstrdup (remote_support_xml + 13);
5192 char *p = strtok (copy, ",");
5193
5194 do
5195 {
5196 if (strcmp (p, xml) == 0)
5197 {
5198 /* already there */
5199 xfree (copy);
5200 return;
5201 }
5202 }
5203 while ((p = strtok (NULL, ",")) != NULL);
5204 xfree (copy);
5205
5206 remote_support_xml = reconcat (remote_support_xml,
5207 remote_support_xml, ",", xml,
5208 (char *) NULL);
5209 }
5210 #endif
5211 }
5212
5213 static void
5214 remote_query_supported_append (std::string *msg, const char *append)
5215 {
5216 if (!msg->empty ())
5217 msg->append (";");
5218 msg->append (append);
5219 }
5220
5221 void
5222 remote_target::remote_query_supported ()
5223 {
5224 struct remote_state *rs = get_remote_state ();
5225 char *next;
5226 int i;
5227 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5228
5229 /* The packet support flags are handled differently for this packet
5230 than for most others. We treat an error, a disabled packet, and
5231 an empty response identically: any features which must be reported
5232 to be used will be automatically disabled. An empty buffer
5233 accomplishes this, since that is also the representation for a list
5234 containing no features. */
5235
5236 rs->buf[0] = 0;
5237 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5238 {
5239 std::string q;
5240
5241 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5242 remote_query_supported_append (&q, "multiprocess+");
5243
5244 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5245 remote_query_supported_append (&q, "swbreak+");
5246 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5247 remote_query_supported_append (&q, "hwbreak+");
5248
5249 remote_query_supported_append (&q, "qRelocInsn+");
5250
5251 if (packet_set_cmd_state (PACKET_fork_event_feature)
5252 != AUTO_BOOLEAN_FALSE)
5253 remote_query_supported_append (&q, "fork-events+");
5254 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5255 != AUTO_BOOLEAN_FALSE)
5256 remote_query_supported_append (&q, "vfork-events+");
5257 if (packet_set_cmd_state (PACKET_exec_event_feature)
5258 != AUTO_BOOLEAN_FALSE)
5259 remote_query_supported_append (&q, "exec-events+");
5260
5261 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "vContSupported+");
5263
5264 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "QThreadEvents+");
5266
5267 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "no-resumed+");
5269
5270 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5271 the qSupported:xmlRegisters=i386 handling. */
5272 if (remote_support_xml != NULL
5273 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5274 remote_query_supported_append (&q, remote_support_xml);
5275
5276 q = "qSupported:" + q;
5277 putpkt (q.c_str ());
5278
5279 getpkt (&rs->buf, 0);
5280
5281 /* If an error occured, warn, but do not return - just reset the
5282 buffer to empty and go on to disable features. */
5283 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5284 == PACKET_ERROR)
5285 {
5286 warning (_("Remote failure reply: %s"), rs->buf.data ());
5287 rs->buf[0] = 0;
5288 }
5289 }
5290
5291 memset (seen, 0, sizeof (seen));
5292
5293 next = rs->buf.data ();
5294 while (*next)
5295 {
5296 enum packet_support is_supported;
5297 char *p, *end, *name_end, *value;
5298
5299 /* First separate out this item from the rest of the packet. If
5300 there's another item after this, we overwrite the separator
5301 (terminated strings are much easier to work with). */
5302 p = next;
5303 end = strchr (p, ';');
5304 if (end == NULL)
5305 {
5306 end = p + strlen (p);
5307 next = end;
5308 }
5309 else
5310 {
5311 *end = '\0';
5312 next = end + 1;
5313
5314 if (end == p)
5315 {
5316 warning (_("empty item in \"qSupported\" response"));
5317 continue;
5318 }
5319 }
5320
5321 name_end = strchr (p, '=');
5322 if (name_end)
5323 {
5324 /* This is a name=value entry. */
5325 is_supported = PACKET_ENABLE;
5326 value = name_end + 1;
5327 *name_end = '\0';
5328 }
5329 else
5330 {
5331 value = NULL;
5332 switch (end[-1])
5333 {
5334 case '+':
5335 is_supported = PACKET_ENABLE;
5336 break;
5337
5338 case '-':
5339 is_supported = PACKET_DISABLE;
5340 break;
5341
5342 case '?':
5343 is_supported = PACKET_SUPPORT_UNKNOWN;
5344 break;
5345
5346 default:
5347 warning (_("unrecognized item \"%s\" "
5348 "in \"qSupported\" response"), p);
5349 continue;
5350 }
5351 end[-1] = '\0';
5352 }
5353
5354 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5355 if (strcmp (remote_protocol_features[i].name, p) == 0)
5356 {
5357 const struct protocol_feature *feature;
5358
5359 seen[i] = 1;
5360 feature = &remote_protocol_features[i];
5361 feature->func (this, feature, is_supported, value);
5362 break;
5363 }
5364 }
5365
5366 /* If we increased the packet size, make sure to increase the global
5367 buffer size also. We delay this until after parsing the entire
5368 qSupported packet, because this is the same buffer we were
5369 parsing. */
5370 if (rs->buf.size () < rs->explicit_packet_size)
5371 rs->buf.resize (rs->explicit_packet_size);
5372
5373 /* Handle the defaults for unmentioned features. */
5374 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5375 if (!seen[i])
5376 {
5377 const struct protocol_feature *feature;
5378
5379 feature = &remote_protocol_features[i];
5380 feature->func (this, feature, feature->default_support, NULL);
5381 }
5382 }
5383
5384 /* Serial QUIT handler for the remote serial descriptor.
5385
5386 Defers handling a Ctrl-C until we're done with the current
5387 command/response packet sequence, unless:
5388
5389 - We're setting up the connection. Don't send a remote interrupt
5390 request, as we're not fully synced yet. Quit immediately
5391 instead.
5392
5393 - The target has been resumed in the foreground
5394 (target_terminal::is_ours is false) with a synchronous resume
5395 packet, and we're blocked waiting for the stop reply, thus a
5396 Ctrl-C should be immediately sent to the target.
5397
5398 - We get a second Ctrl-C while still within the same serial read or
5399 write. In that case the serial is seemingly wedged --- offer to
5400 quit/disconnect.
5401
5402 - We see a second Ctrl-C without target response, after having
5403 previously interrupted the target. In that case the target/stub
5404 is probably wedged --- offer to quit/disconnect.
5405 */
5406
5407 void
5408 remote_target::remote_serial_quit_handler ()
5409 {
5410 struct remote_state *rs = get_remote_state ();
5411
5412 if (check_quit_flag ())
5413 {
5414 /* If we're starting up, we're not fully synced yet. Quit
5415 immediately. */
5416 if (rs->starting_up)
5417 quit ();
5418 else if (rs->got_ctrlc_during_io)
5419 {
5420 if (query (_("The target is not responding to GDB commands.\n"
5421 "Stop debugging it? ")))
5422 remote_unpush_and_throw ();
5423 }
5424 /* If ^C has already been sent once, offer to disconnect. */
5425 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5426 interrupt_query ();
5427 /* All-stop protocol, and blocked waiting for stop reply. Send
5428 an interrupt request. */
5429 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5430 target_interrupt ();
5431 else
5432 rs->got_ctrlc_during_io = 1;
5433 }
5434 }
5435
5436 /* The remote_target that is current while the quit handler is
5437 overridden with remote_serial_quit_handler. */
5438 static remote_target *curr_quit_handler_target;
5439
5440 static void
5441 remote_serial_quit_handler ()
5442 {
5443 curr_quit_handler_target->remote_serial_quit_handler ();
5444 }
5445
5446 /* Remove any of the remote.c targets from target stack. Upper targets depend
5447 on it so remove them first. */
5448
5449 static void
5450 remote_unpush_target (void)
5451 {
5452 pop_all_targets_at_and_above (process_stratum);
5453 }
5454
5455 static void
5456 remote_unpush_and_throw (void)
5457 {
5458 remote_unpush_target ();
5459 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5460 }
5461
5462 void
5463 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5464 {
5465 remote_target *curr_remote = get_current_remote_target ();
5466
5467 if (name == 0)
5468 error (_("To open a remote debug connection, you need to specify what\n"
5469 "serial device is attached to the remote system\n"
5470 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5471
5472 /* If we're connected to a running target, target_preopen will kill it.
5473 Ask this question first, before target_preopen has a chance to kill
5474 anything. */
5475 if (curr_remote != NULL && !have_inferiors ())
5476 {
5477 if (from_tty
5478 && !query (_("Already connected to a remote target. Disconnect? ")))
5479 error (_("Still connected."));
5480 }
5481
5482 /* Here the possibly existing remote target gets unpushed. */
5483 target_preopen (from_tty);
5484
5485 remote_fileio_reset ();
5486 reopen_exec_file ();
5487 reread_symbols ();
5488
5489 remote_target *remote
5490 = (extended_p ? new extended_remote_target () : new remote_target ());
5491 target_ops_up target_holder (remote);
5492
5493 remote_state *rs = remote->get_remote_state ();
5494
5495 /* See FIXME above. */
5496 if (!target_async_permitted)
5497 rs->wait_forever_enabled_p = 1;
5498
5499 rs->remote_desc = remote_serial_open (name);
5500 if (!rs->remote_desc)
5501 perror_with_name (name);
5502
5503 if (baud_rate != -1)
5504 {
5505 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5506 {
5507 /* The requested speed could not be set. Error out to
5508 top level after closing remote_desc. Take care to
5509 set remote_desc to NULL to avoid closing remote_desc
5510 more than once. */
5511 serial_close (rs->remote_desc);
5512 rs->remote_desc = NULL;
5513 perror_with_name (name);
5514 }
5515 }
5516
5517 serial_setparity (rs->remote_desc, serial_parity);
5518 serial_raw (rs->remote_desc);
5519
5520 /* If there is something sitting in the buffer we might take it as a
5521 response to a command, which would be bad. */
5522 serial_flush_input (rs->remote_desc);
5523
5524 if (from_tty)
5525 {
5526 puts_filtered ("Remote debugging using ");
5527 puts_filtered (name);
5528 puts_filtered ("\n");
5529 }
5530
5531 /* Switch to using the remote target now. */
5532 push_target (std::move (target_holder));
5533
5534 /* Register extra event sources in the event loop. */
5535 rs->remote_async_inferior_event_token
5536 = create_async_event_handler (remote_async_inferior_event_handler,
5537 remote);
5538 rs->notif_state = remote_notif_state_allocate (remote);
5539
5540 /* Reset the target state; these things will be queried either by
5541 remote_query_supported or as they are needed. */
5542 reset_all_packet_configs_support ();
5543 rs->cached_wait_status = 0;
5544 rs->explicit_packet_size = 0;
5545 rs->noack_mode = 0;
5546 rs->extended = extended_p;
5547 rs->waiting_for_stop_reply = 0;
5548 rs->ctrlc_pending_p = 0;
5549 rs->got_ctrlc_during_io = 0;
5550
5551 rs->general_thread = not_sent_ptid;
5552 rs->continue_thread = not_sent_ptid;
5553 rs->remote_traceframe_number = -1;
5554
5555 rs->last_resume_exec_dir = EXEC_FORWARD;
5556
5557 /* Probe for ability to use "ThreadInfo" query, as required. */
5558 rs->use_threadinfo_query = 1;
5559 rs->use_threadextra_query = 1;
5560
5561 rs->readahead_cache.invalidate ();
5562
5563 if (target_async_permitted)
5564 {
5565 /* FIXME: cagney/1999-09-23: During the initial connection it is
5566 assumed that the target is already ready and able to respond to
5567 requests. Unfortunately remote_start_remote() eventually calls
5568 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5569 around this. Eventually a mechanism that allows
5570 wait_for_inferior() to expect/get timeouts will be
5571 implemented. */
5572 rs->wait_forever_enabled_p = 0;
5573 }
5574
5575 /* First delete any symbols previously loaded from shared libraries. */
5576 no_shared_libraries (NULL, 0);
5577
5578 /* Start the remote connection. If error() or QUIT, discard this
5579 target (we'd otherwise be in an inconsistent state) and then
5580 propogate the error on up the exception chain. This ensures that
5581 the caller doesn't stumble along blindly assuming that the
5582 function succeeded. The CLI doesn't have this problem but other
5583 UI's, such as MI do.
5584
5585 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5586 this function should return an error indication letting the
5587 caller restore the previous state. Unfortunately the command
5588 ``target remote'' is directly wired to this function making that
5589 impossible. On a positive note, the CLI side of this problem has
5590 been fixed - the function set_cmd_context() makes it possible for
5591 all the ``target ....'' commands to share a common callback
5592 function. See cli-dump.c. */
5593 {
5594
5595 try
5596 {
5597 remote->start_remote (from_tty, extended_p);
5598 }
5599 catch (const gdb_exception &ex)
5600 {
5601 /* Pop the partially set up target - unless something else did
5602 already before throwing the exception. */
5603 if (ex.error != TARGET_CLOSE_ERROR)
5604 remote_unpush_target ();
5605 throw;
5606 }
5607 }
5608
5609 remote_btrace_reset (rs);
5610
5611 if (target_async_permitted)
5612 rs->wait_forever_enabled_p = 1;
5613 }
5614
5615 /* Detach the specified process. */
5616
5617 void
5618 remote_target::remote_detach_pid (int pid)
5619 {
5620 struct remote_state *rs = get_remote_state ();
5621
5622 /* This should not be necessary, but the handling for D;PID in
5623 GDBserver versions prior to 8.2 incorrectly assumes that the
5624 selected process points to the same process we're detaching,
5625 leading to misbehavior (and possibly GDBserver crashing) when it
5626 does not. Since it's easy and cheap, work around it by forcing
5627 GDBserver to select GDB's current process. */
5628 set_general_process ();
5629
5630 if (remote_multi_process_p (rs))
5631 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5632 else
5633 strcpy (rs->buf.data (), "D");
5634
5635 putpkt (rs->buf);
5636 getpkt (&rs->buf, 0);
5637
5638 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5639 ;
5640 else if (rs->buf[0] == '\0')
5641 error (_("Remote doesn't know how to detach"));
5642 else
5643 error (_("Can't detach process."));
5644 }
5645
5646 /* This detaches a program to which we previously attached, using
5647 inferior_ptid to identify the process. After this is done, GDB
5648 can be used to debug some other program. We better not have left
5649 any breakpoints in the target program or it'll die when it hits
5650 one. */
5651
5652 void
5653 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5654 {
5655 int pid = inferior_ptid.pid ();
5656 struct remote_state *rs = get_remote_state ();
5657 int is_fork_parent;
5658
5659 if (!target_has_execution)
5660 error (_("No process to detach from."));
5661
5662 target_announce_detach (from_tty);
5663
5664 /* Tell the remote target to detach. */
5665 remote_detach_pid (pid);
5666
5667 /* Exit only if this is the only active inferior. */
5668 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5669 puts_filtered (_("Ending remote debugging.\n"));
5670
5671 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5672
5673 /* Check to see if we are detaching a fork parent. Note that if we
5674 are detaching a fork child, tp == NULL. */
5675 is_fork_parent = (tp != NULL
5676 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5677
5678 /* If doing detach-on-fork, we don't mourn, because that will delete
5679 breakpoints that should be available for the followed inferior. */
5680 if (!is_fork_parent)
5681 {
5682 /* Save the pid as a string before mourning, since that will
5683 unpush the remote target, and we need the string after. */
5684 std::string infpid = target_pid_to_str (ptid_t (pid));
5685
5686 target_mourn_inferior (inferior_ptid);
5687 if (print_inferior_events)
5688 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5689 inf->num, infpid.c_str ());
5690 }
5691 else
5692 {
5693 inferior_ptid = null_ptid;
5694 detach_inferior (current_inferior ());
5695 }
5696 }
5697
5698 void
5699 remote_target::detach (inferior *inf, int from_tty)
5700 {
5701 remote_detach_1 (inf, from_tty);
5702 }
5703
5704 void
5705 extended_remote_target::detach (inferior *inf, int from_tty)
5706 {
5707 remote_detach_1 (inf, from_tty);
5708 }
5709
5710 /* Target follow-fork function for remote targets. On entry, and
5711 at return, the current inferior is the fork parent.
5712
5713 Note that although this is currently only used for extended-remote,
5714 it is named remote_follow_fork in anticipation of using it for the
5715 remote target as well. */
5716
5717 int
5718 remote_target::follow_fork (int follow_child, int detach_fork)
5719 {
5720 struct remote_state *rs = get_remote_state ();
5721 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5722
5723 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5724 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5725 {
5726 /* When following the parent and detaching the child, we detach
5727 the child here. For the case of following the child and
5728 detaching the parent, the detach is done in the target-
5729 independent follow fork code in infrun.c. We can't use
5730 target_detach when detaching an unfollowed child because
5731 the client side doesn't know anything about the child. */
5732 if (detach_fork && !follow_child)
5733 {
5734 /* Detach the fork child. */
5735 ptid_t child_ptid;
5736 pid_t child_pid;
5737
5738 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5739 child_pid = child_ptid.pid ();
5740
5741 remote_detach_pid (child_pid);
5742 }
5743 }
5744 return 0;
5745 }
5746
5747 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5748 in the program space of the new inferior. On entry and at return the
5749 current inferior is the exec'ing inferior. INF is the new exec'd
5750 inferior, which may be the same as the exec'ing inferior unless
5751 follow-exec-mode is "new". */
5752
5753 void
5754 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5755 {
5756 /* We know that this is a target file name, so if it has the "target:"
5757 prefix we strip it off before saving it in the program space. */
5758 if (is_target_filename (execd_pathname))
5759 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5760
5761 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5762 }
5763
5764 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5765
5766 void
5767 remote_target::disconnect (const char *args, int from_tty)
5768 {
5769 if (args)
5770 error (_("Argument given to \"disconnect\" when remotely debugging."));
5771
5772 /* Make sure we unpush even the extended remote targets. Calling
5773 target_mourn_inferior won't unpush, and remote_mourn won't
5774 unpush if there is more than one inferior left. */
5775 unpush_target (this);
5776 generic_mourn_inferior ();
5777
5778 if (from_tty)
5779 puts_filtered ("Ending remote debugging.\n");
5780 }
5781
5782 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5783 be chatty about it. */
5784
5785 void
5786 extended_remote_target::attach (const char *args, int from_tty)
5787 {
5788 struct remote_state *rs = get_remote_state ();
5789 int pid;
5790 char *wait_status = NULL;
5791
5792 pid = parse_pid_to_attach (args);
5793
5794 /* Remote PID can be freely equal to getpid, do not check it here the same
5795 way as in other targets. */
5796
5797 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5798 error (_("This target does not support attaching to a process"));
5799
5800 if (from_tty)
5801 {
5802 char *exec_file = get_exec_file (0);
5803
5804 if (exec_file)
5805 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5806 target_pid_to_str (ptid_t (pid)).c_str ());
5807 else
5808 printf_unfiltered (_("Attaching to %s\n"),
5809 target_pid_to_str (ptid_t (pid)).c_str ());
5810 }
5811
5812 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5813 putpkt (rs->buf);
5814 getpkt (&rs->buf, 0);
5815
5816 switch (packet_ok (rs->buf,
5817 &remote_protocol_packets[PACKET_vAttach]))
5818 {
5819 case PACKET_OK:
5820 if (!target_is_non_stop_p ())
5821 {
5822 /* Save the reply for later. */
5823 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5824 strcpy (wait_status, rs->buf.data ());
5825 }
5826 else if (strcmp (rs->buf.data (), "OK") != 0)
5827 error (_("Attaching to %s failed with: %s"),
5828 target_pid_to_str (ptid_t (pid)).c_str (),
5829 rs->buf.data ());
5830 break;
5831 case PACKET_UNKNOWN:
5832 error (_("This target does not support attaching to a process"));
5833 default:
5834 error (_("Attaching to %s failed"),
5835 target_pid_to_str (ptid_t (pid)).c_str ());
5836 }
5837
5838 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5839
5840 inferior_ptid = ptid_t (pid);
5841
5842 if (target_is_non_stop_p ())
5843 {
5844 struct thread_info *thread;
5845
5846 /* Get list of threads. */
5847 update_thread_list ();
5848
5849 thread = first_thread_of_inferior (current_inferior ());
5850 if (thread)
5851 inferior_ptid = thread->ptid;
5852 else
5853 inferior_ptid = ptid_t (pid);
5854
5855 /* Invalidate our notion of the remote current thread. */
5856 record_currthread (rs, minus_one_ptid);
5857 }
5858 else
5859 {
5860 /* Now, if we have thread information, update inferior_ptid. */
5861 inferior_ptid = remote_current_thread (inferior_ptid);
5862
5863 /* Add the main thread to the thread list. */
5864 thread_info *thr = add_thread_silent (inferior_ptid);
5865 /* Don't consider the thread stopped until we've processed the
5866 saved stop reply. */
5867 set_executing (thr->ptid, true);
5868 }
5869
5870 /* Next, if the target can specify a description, read it. We do
5871 this before anything involving memory or registers. */
5872 target_find_description ();
5873
5874 if (!target_is_non_stop_p ())
5875 {
5876 /* Use the previously fetched status. */
5877 gdb_assert (wait_status != NULL);
5878
5879 if (target_can_async_p ())
5880 {
5881 struct notif_event *reply
5882 = remote_notif_parse (this, &notif_client_stop, wait_status);
5883
5884 push_stop_reply ((struct stop_reply *) reply);
5885
5886 target_async (1);
5887 }
5888 else
5889 {
5890 gdb_assert (wait_status != NULL);
5891 strcpy (rs->buf.data (), wait_status);
5892 rs->cached_wait_status = 1;
5893 }
5894 }
5895 else
5896 gdb_assert (wait_status == NULL);
5897 }
5898
5899 /* Implementation of the to_post_attach method. */
5900
5901 void
5902 extended_remote_target::post_attach (int pid)
5903 {
5904 /* Get text, data & bss offsets. */
5905 get_offsets ();
5906
5907 /* In certain cases GDB might not have had the chance to start
5908 symbol lookup up until now. This could happen if the debugged
5909 binary is not using shared libraries, the vsyscall page is not
5910 present (on Linux) and the binary itself hadn't changed since the
5911 debugging process was started. */
5912 if (symfile_objfile != NULL)
5913 remote_check_symbols();
5914 }
5915
5916 \f
5917 /* Check for the availability of vCont. This function should also check
5918 the response. */
5919
5920 void
5921 remote_target::remote_vcont_probe ()
5922 {
5923 remote_state *rs = get_remote_state ();
5924 char *buf;
5925
5926 strcpy (rs->buf.data (), "vCont?");
5927 putpkt (rs->buf);
5928 getpkt (&rs->buf, 0);
5929 buf = rs->buf.data ();
5930
5931 /* Make sure that the features we assume are supported. */
5932 if (startswith (buf, "vCont"))
5933 {
5934 char *p = &buf[5];
5935 int support_c, support_C;
5936
5937 rs->supports_vCont.s = 0;
5938 rs->supports_vCont.S = 0;
5939 support_c = 0;
5940 support_C = 0;
5941 rs->supports_vCont.t = 0;
5942 rs->supports_vCont.r = 0;
5943 while (p && *p == ';')
5944 {
5945 p++;
5946 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5947 rs->supports_vCont.s = 1;
5948 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5949 rs->supports_vCont.S = 1;
5950 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5951 support_c = 1;
5952 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5953 support_C = 1;
5954 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5955 rs->supports_vCont.t = 1;
5956 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5957 rs->supports_vCont.r = 1;
5958
5959 p = strchr (p, ';');
5960 }
5961
5962 /* If c, and C are not all supported, we can't use vCont. Clearing
5963 BUF will make packet_ok disable the packet. */
5964 if (!support_c || !support_C)
5965 buf[0] = 0;
5966 }
5967
5968 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5969 }
5970
5971 /* Helper function for building "vCont" resumptions. Write a
5972 resumption to P. ENDP points to one-passed-the-end of the buffer
5973 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5974 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5975 resumed thread should be single-stepped and/or signalled. If PTID
5976 equals minus_one_ptid, then all threads are resumed; if PTID
5977 represents a process, then all threads of the process are resumed;
5978 the thread to be stepped and/or signalled is given in the global
5979 INFERIOR_PTID. */
5980
5981 char *
5982 remote_target::append_resumption (char *p, char *endp,
5983 ptid_t ptid, int step, gdb_signal siggnal)
5984 {
5985 struct remote_state *rs = get_remote_state ();
5986
5987 if (step && siggnal != GDB_SIGNAL_0)
5988 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5989 else if (step
5990 /* GDB is willing to range step. */
5991 && use_range_stepping
5992 /* Target supports range stepping. */
5993 && rs->supports_vCont.r
5994 /* We don't currently support range stepping multiple
5995 threads with a wildcard (though the protocol allows it,
5996 so stubs shouldn't make an active effort to forbid
5997 it). */
5998 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5999 {
6000 struct thread_info *tp;
6001
6002 if (ptid == minus_one_ptid)
6003 {
6004 /* If we don't know about the target thread's tid, then
6005 we're resuming magic_null_ptid (see caller). */
6006 tp = find_thread_ptid (magic_null_ptid);
6007 }
6008 else
6009 tp = find_thread_ptid (ptid);
6010 gdb_assert (tp != NULL);
6011
6012 if (tp->control.may_range_step)
6013 {
6014 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6015
6016 p += xsnprintf (p, endp - p, ";r%s,%s",
6017 phex_nz (tp->control.step_range_start,
6018 addr_size),
6019 phex_nz (tp->control.step_range_end,
6020 addr_size));
6021 }
6022 else
6023 p += xsnprintf (p, endp - p, ";s");
6024 }
6025 else if (step)
6026 p += xsnprintf (p, endp - p, ";s");
6027 else if (siggnal != GDB_SIGNAL_0)
6028 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6029 else
6030 p += xsnprintf (p, endp - p, ";c");
6031
6032 if (remote_multi_process_p (rs) && ptid.is_pid ())
6033 {
6034 ptid_t nptid;
6035
6036 /* All (-1) threads of process. */
6037 nptid = ptid_t (ptid.pid (), -1, 0);
6038
6039 p += xsnprintf (p, endp - p, ":");
6040 p = write_ptid (p, endp, nptid);
6041 }
6042 else if (ptid != minus_one_ptid)
6043 {
6044 p += xsnprintf (p, endp - p, ":");
6045 p = write_ptid (p, endp, ptid);
6046 }
6047
6048 return p;
6049 }
6050
6051 /* Clear the thread's private info on resume. */
6052
6053 static void
6054 resume_clear_thread_private_info (struct thread_info *thread)
6055 {
6056 if (thread->priv != NULL)
6057 {
6058 remote_thread_info *priv = get_remote_thread_info (thread);
6059
6060 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6061 priv->watch_data_address = 0;
6062 }
6063 }
6064
6065 /* Append a vCont continue-with-signal action for threads that have a
6066 non-zero stop signal. */
6067
6068 char *
6069 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6070 ptid_t ptid)
6071 {
6072 for (thread_info *thread : all_non_exited_threads (ptid))
6073 if (inferior_ptid != thread->ptid
6074 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6075 {
6076 p = append_resumption (p, endp, thread->ptid,
6077 0, thread->suspend.stop_signal);
6078 thread->suspend.stop_signal = GDB_SIGNAL_0;
6079 resume_clear_thread_private_info (thread);
6080 }
6081
6082 return p;
6083 }
6084
6085 /* Set the target running, using the packets that use Hc
6086 (c/s/C/S). */
6087
6088 void
6089 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6090 gdb_signal siggnal)
6091 {
6092 struct remote_state *rs = get_remote_state ();
6093 char *buf;
6094
6095 rs->last_sent_signal = siggnal;
6096 rs->last_sent_step = step;
6097
6098 /* The c/s/C/S resume packets use Hc, so set the continue
6099 thread. */
6100 if (ptid == minus_one_ptid)
6101 set_continue_thread (any_thread_ptid);
6102 else
6103 set_continue_thread (ptid);
6104
6105 for (thread_info *thread : all_non_exited_threads ())
6106 resume_clear_thread_private_info (thread);
6107
6108 buf = rs->buf.data ();
6109 if (::execution_direction == EXEC_REVERSE)
6110 {
6111 /* We don't pass signals to the target in reverse exec mode. */
6112 if (info_verbose && siggnal != GDB_SIGNAL_0)
6113 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6114 siggnal);
6115
6116 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6117 error (_("Remote reverse-step not supported."));
6118 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6119 error (_("Remote reverse-continue not supported."));
6120
6121 strcpy (buf, step ? "bs" : "bc");
6122 }
6123 else if (siggnal != GDB_SIGNAL_0)
6124 {
6125 buf[0] = step ? 'S' : 'C';
6126 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6127 buf[2] = tohex (((int) siggnal) & 0xf);
6128 buf[3] = '\0';
6129 }
6130 else
6131 strcpy (buf, step ? "s" : "c");
6132
6133 putpkt (buf);
6134 }
6135
6136 /* Resume the remote inferior by using a "vCont" packet. The thread
6137 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6138 resumed thread should be single-stepped and/or signalled. If PTID
6139 equals minus_one_ptid, then all threads are resumed; the thread to
6140 be stepped and/or signalled is given in the global INFERIOR_PTID.
6141 This function returns non-zero iff it resumes the inferior.
6142
6143 This function issues a strict subset of all possible vCont commands
6144 at the moment. */
6145
6146 int
6147 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6148 enum gdb_signal siggnal)
6149 {
6150 struct remote_state *rs = get_remote_state ();
6151 char *p;
6152 char *endp;
6153
6154 /* No reverse execution actions defined for vCont. */
6155 if (::execution_direction == EXEC_REVERSE)
6156 return 0;
6157
6158 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6159 remote_vcont_probe ();
6160
6161 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6162 return 0;
6163
6164 p = rs->buf.data ();
6165 endp = p + get_remote_packet_size ();
6166
6167 /* If we could generate a wider range of packets, we'd have to worry
6168 about overflowing BUF. Should there be a generic
6169 "multi-part-packet" packet? */
6170
6171 p += xsnprintf (p, endp - p, "vCont");
6172
6173 if (ptid == magic_null_ptid)
6174 {
6175 /* MAGIC_NULL_PTID means that we don't have any active threads,
6176 so we don't have any TID numbers the inferior will
6177 understand. Make sure to only send forms that do not specify
6178 a TID. */
6179 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6180 }
6181 else if (ptid == minus_one_ptid || ptid.is_pid ())
6182 {
6183 /* Resume all threads (of all processes, or of a single
6184 process), with preference for INFERIOR_PTID. This assumes
6185 inferior_ptid belongs to the set of all threads we are about
6186 to resume. */
6187 if (step || siggnal != GDB_SIGNAL_0)
6188 {
6189 /* Step inferior_ptid, with or without signal. */
6190 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6191 }
6192
6193 /* Also pass down any pending signaled resumption for other
6194 threads not the current. */
6195 p = append_pending_thread_resumptions (p, endp, ptid);
6196
6197 /* And continue others without a signal. */
6198 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6199 }
6200 else
6201 {
6202 /* Scheduler locking; resume only PTID. */
6203 append_resumption (p, endp, ptid, step, siggnal);
6204 }
6205
6206 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6207 putpkt (rs->buf);
6208
6209 if (target_is_non_stop_p ())
6210 {
6211 /* In non-stop, the stub replies to vCont with "OK". The stop
6212 reply will be reported asynchronously by means of a `%Stop'
6213 notification. */
6214 getpkt (&rs->buf, 0);
6215 if (strcmp (rs->buf.data (), "OK") != 0)
6216 error (_("Unexpected vCont reply in non-stop mode: %s"),
6217 rs->buf.data ());
6218 }
6219
6220 return 1;
6221 }
6222
6223 /* Tell the remote machine to resume. */
6224
6225 void
6226 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6227 {
6228 struct remote_state *rs = get_remote_state ();
6229
6230 /* When connected in non-stop mode, the core resumes threads
6231 individually. Resuming remote threads directly in target_resume
6232 would thus result in sending one packet per thread. Instead, to
6233 minimize roundtrip latency, here we just store the resume
6234 request; the actual remote resumption will be done in
6235 target_commit_resume / remote_commit_resume, where we'll be able
6236 to do vCont action coalescing. */
6237 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6238 {
6239 remote_thread_info *remote_thr;
6240
6241 if (minus_one_ptid == ptid || ptid.is_pid ())
6242 remote_thr = get_remote_thread_info (inferior_ptid);
6243 else
6244 remote_thr = get_remote_thread_info (ptid);
6245
6246 remote_thr->last_resume_step = step;
6247 remote_thr->last_resume_sig = siggnal;
6248 return;
6249 }
6250
6251 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6252 (explained in remote-notif.c:handle_notification) so
6253 remote_notif_process is not called. We need find a place where
6254 it is safe to start a 'vNotif' sequence. It is good to do it
6255 before resuming inferior, because inferior was stopped and no RSP
6256 traffic at that moment. */
6257 if (!target_is_non_stop_p ())
6258 remote_notif_process (rs->notif_state, &notif_client_stop);
6259
6260 rs->last_resume_exec_dir = ::execution_direction;
6261
6262 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6263 if (!remote_resume_with_vcont (ptid, step, siggnal))
6264 remote_resume_with_hc (ptid, step, siggnal);
6265
6266 /* We are about to start executing the inferior, let's register it
6267 with the event loop. NOTE: this is the one place where all the
6268 execution commands end up. We could alternatively do this in each
6269 of the execution commands in infcmd.c. */
6270 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6271 into infcmd.c in order to allow inferior function calls to work
6272 NOT asynchronously. */
6273 if (target_can_async_p ())
6274 target_async (1);
6275
6276 /* We've just told the target to resume. The remote server will
6277 wait for the inferior to stop, and then send a stop reply. In
6278 the mean time, we can't start another command/query ourselves
6279 because the stub wouldn't be ready to process it. This applies
6280 only to the base all-stop protocol, however. In non-stop (which
6281 only supports vCont), the stub replies with an "OK", and is
6282 immediate able to process further serial input. */
6283 if (!target_is_non_stop_p ())
6284 rs->waiting_for_stop_reply = 1;
6285 }
6286
6287 static int is_pending_fork_parent_thread (struct thread_info *thread);
6288
6289 /* Private per-inferior info for target remote processes. */
6290
6291 struct remote_inferior : public private_inferior
6292 {
6293 /* Whether we can send a wildcard vCont for this process. */
6294 bool may_wildcard_vcont = true;
6295 };
6296
6297 /* Get the remote private inferior data associated to INF. */
6298
6299 static remote_inferior *
6300 get_remote_inferior (inferior *inf)
6301 {
6302 if (inf->priv == NULL)
6303 inf->priv.reset (new remote_inferior);
6304
6305 return static_cast<remote_inferior *> (inf->priv.get ());
6306 }
6307
6308 /* Class used to track the construction of a vCont packet in the
6309 outgoing packet buffer. This is used to send multiple vCont
6310 packets if we have more actions than would fit a single packet. */
6311
6312 class vcont_builder
6313 {
6314 public:
6315 explicit vcont_builder (remote_target *remote)
6316 : m_remote (remote)
6317 {
6318 restart ();
6319 }
6320
6321 void flush ();
6322 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6323
6324 private:
6325 void restart ();
6326
6327 /* The remote target. */
6328 remote_target *m_remote;
6329
6330 /* Pointer to the first action. P points here if no action has been
6331 appended yet. */
6332 char *m_first_action;
6333
6334 /* Where the next action will be appended. */
6335 char *m_p;
6336
6337 /* The end of the buffer. Must never write past this. */
6338 char *m_endp;
6339 };
6340
6341 /* Prepare the outgoing buffer for a new vCont packet. */
6342
6343 void
6344 vcont_builder::restart ()
6345 {
6346 struct remote_state *rs = m_remote->get_remote_state ();
6347
6348 m_p = rs->buf.data ();
6349 m_endp = m_p + m_remote->get_remote_packet_size ();
6350 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6351 m_first_action = m_p;
6352 }
6353
6354 /* If the vCont packet being built has any action, send it to the
6355 remote end. */
6356
6357 void
6358 vcont_builder::flush ()
6359 {
6360 struct remote_state *rs;
6361
6362 if (m_p == m_first_action)
6363 return;
6364
6365 rs = m_remote->get_remote_state ();
6366 m_remote->putpkt (rs->buf);
6367 m_remote->getpkt (&rs->buf, 0);
6368 if (strcmp (rs->buf.data (), "OK") != 0)
6369 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6370 }
6371
6372 /* The largest action is range-stepping, with its two addresses. This
6373 is more than sufficient. If a new, bigger action is created, it'll
6374 quickly trigger a failed assertion in append_resumption (and we'll
6375 just bump this). */
6376 #define MAX_ACTION_SIZE 200
6377
6378 /* Append a new vCont action in the outgoing packet being built. If
6379 the action doesn't fit the packet along with previous actions, push
6380 what we've got so far to the remote end and start over a new vCont
6381 packet (with the new action). */
6382
6383 void
6384 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6385 {
6386 char buf[MAX_ACTION_SIZE + 1];
6387
6388 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6389 ptid, step, siggnal);
6390
6391 /* Check whether this new action would fit in the vCont packet along
6392 with previous actions. If not, send what we've got so far and
6393 start a new vCont packet. */
6394 size_t rsize = endp - buf;
6395 if (rsize > m_endp - m_p)
6396 {
6397 flush ();
6398 restart ();
6399
6400 /* Should now fit. */
6401 gdb_assert (rsize <= m_endp - m_p);
6402 }
6403
6404 memcpy (m_p, buf, rsize);
6405 m_p += rsize;
6406 *m_p = '\0';
6407 }
6408
6409 /* to_commit_resume implementation. */
6410
6411 void
6412 remote_target::commit_resume ()
6413 {
6414 int any_process_wildcard;
6415 int may_global_wildcard_vcont;
6416
6417 /* If connected in all-stop mode, we'd send the remote resume
6418 request directly from remote_resume. Likewise if
6419 reverse-debugging, as there are no defined vCont actions for
6420 reverse execution. */
6421 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6422 return;
6423
6424 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6425 instead of resuming all threads of each process individually.
6426 However, if any thread of a process must remain halted, we can't
6427 send wildcard resumes and must send one action per thread.
6428
6429 Care must be taken to not resume threads/processes the server
6430 side already told us are stopped, but the core doesn't know about
6431 yet, because the events are still in the vStopped notification
6432 queue. For example:
6433
6434 #1 => vCont s:p1.1;c
6435 #2 <= OK
6436 #3 <= %Stopped T05 p1.1
6437 #4 => vStopped
6438 #5 <= T05 p1.2
6439 #6 => vStopped
6440 #7 <= OK
6441 #8 (infrun handles the stop for p1.1 and continues stepping)
6442 #9 => vCont s:p1.1;c
6443
6444 The last vCont above would resume thread p1.2 by mistake, because
6445 the server has no idea that the event for p1.2 had not been
6446 handled yet.
6447
6448 The server side must similarly ignore resume actions for the
6449 thread that has a pending %Stopped notification (and any other
6450 threads with events pending), until GDB acks the notification
6451 with vStopped. Otherwise, e.g., the following case is
6452 mishandled:
6453
6454 #1 => g (or any other packet)
6455 #2 <= [registers]
6456 #3 <= %Stopped T05 p1.2
6457 #4 => vCont s:p1.1;c
6458 #5 <= OK
6459
6460 Above, the server must not resume thread p1.2. GDB can't know
6461 that p1.2 stopped until it acks the %Stopped notification, and
6462 since from GDB's perspective all threads should be running, it
6463 sends a "c" action.
6464
6465 Finally, special care must also be given to handling fork/vfork
6466 events. A (v)fork event actually tells us that two processes
6467 stopped -- the parent and the child. Until we follow the fork,
6468 we must not resume the child. Therefore, if we have a pending
6469 fork follow, we must not send a global wildcard resume action
6470 (vCont;c). We can still send process-wide wildcards though. */
6471
6472 /* Start by assuming a global wildcard (vCont;c) is possible. */
6473 may_global_wildcard_vcont = 1;
6474
6475 /* And assume every process is individually wildcard-able too. */
6476 for (inferior *inf : all_non_exited_inferiors ())
6477 {
6478 remote_inferior *priv = get_remote_inferior (inf);
6479
6480 priv->may_wildcard_vcont = true;
6481 }
6482
6483 /* Check for any pending events (not reported or processed yet) and
6484 disable process and global wildcard resumes appropriately. */
6485 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6486
6487 for (thread_info *tp : all_non_exited_threads ())
6488 {
6489 /* If a thread of a process is not meant to be resumed, then we
6490 can't wildcard that process. */
6491 if (!tp->executing)
6492 {
6493 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6494
6495 /* And if we can't wildcard a process, we can't wildcard
6496 everything either. */
6497 may_global_wildcard_vcont = 0;
6498 continue;
6499 }
6500
6501 /* If a thread is the parent of an unfollowed fork, then we
6502 can't do a global wildcard, as that would resume the fork
6503 child. */
6504 if (is_pending_fork_parent_thread (tp))
6505 may_global_wildcard_vcont = 0;
6506 }
6507
6508 /* Now let's build the vCont packet(s). Actions must be appended
6509 from narrower to wider scopes (thread -> process -> global). If
6510 we end up with too many actions for a single packet vcont_builder
6511 flushes the current vCont packet to the remote side and starts a
6512 new one. */
6513 struct vcont_builder vcont_builder (this);
6514
6515 /* Threads first. */
6516 for (thread_info *tp : all_non_exited_threads ())
6517 {
6518 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6519
6520 if (!tp->executing || remote_thr->vcont_resumed)
6521 continue;
6522
6523 gdb_assert (!thread_is_in_step_over_chain (tp));
6524
6525 if (!remote_thr->last_resume_step
6526 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6527 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6528 {
6529 /* We'll send a wildcard resume instead. */
6530 remote_thr->vcont_resumed = 1;
6531 continue;
6532 }
6533
6534 vcont_builder.push_action (tp->ptid,
6535 remote_thr->last_resume_step,
6536 remote_thr->last_resume_sig);
6537 remote_thr->vcont_resumed = 1;
6538 }
6539
6540 /* Now check whether we can send any process-wide wildcard. This is
6541 to avoid sending a global wildcard in the case nothing is
6542 supposed to be resumed. */
6543 any_process_wildcard = 0;
6544
6545 for (inferior *inf : all_non_exited_inferiors ())
6546 {
6547 if (get_remote_inferior (inf)->may_wildcard_vcont)
6548 {
6549 any_process_wildcard = 1;
6550 break;
6551 }
6552 }
6553
6554 if (any_process_wildcard)
6555 {
6556 /* If all processes are wildcard-able, then send a single "c"
6557 action, otherwise, send an "all (-1) threads of process"
6558 continue action for each running process, if any. */
6559 if (may_global_wildcard_vcont)
6560 {
6561 vcont_builder.push_action (minus_one_ptid,
6562 false, GDB_SIGNAL_0);
6563 }
6564 else
6565 {
6566 for (inferior *inf : all_non_exited_inferiors ())
6567 {
6568 if (get_remote_inferior (inf)->may_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (ptid_t (inf->pid),
6571 false, GDB_SIGNAL_0);
6572 }
6573 }
6574 }
6575 }
6576
6577 vcont_builder.flush ();
6578 }
6579
6580 \f
6581
6582 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6583 thread, all threads of a remote process, or all threads of all
6584 processes. */
6585
6586 void
6587 remote_target::remote_stop_ns (ptid_t ptid)
6588 {
6589 struct remote_state *rs = get_remote_state ();
6590 char *p = rs->buf.data ();
6591 char *endp = p + get_remote_packet_size ();
6592
6593 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6594 remote_vcont_probe ();
6595
6596 if (!rs->supports_vCont.t)
6597 error (_("Remote server does not support stopping threads"));
6598
6599 if (ptid == minus_one_ptid
6600 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6601 p += xsnprintf (p, endp - p, "vCont;t");
6602 else
6603 {
6604 ptid_t nptid;
6605
6606 p += xsnprintf (p, endp - p, "vCont;t:");
6607
6608 if (ptid.is_pid ())
6609 /* All (-1) threads of process. */
6610 nptid = ptid_t (ptid.pid (), -1, 0);
6611 else
6612 {
6613 /* Small optimization: if we already have a stop reply for
6614 this thread, no use in telling the stub we want this
6615 stopped. */
6616 if (peek_stop_reply (ptid))
6617 return;
6618
6619 nptid = ptid;
6620 }
6621
6622 write_ptid (p, endp, nptid);
6623 }
6624
6625 /* In non-stop, we get an immediate OK reply. The stop reply will
6626 come in asynchronously by notification. */
6627 putpkt (rs->buf);
6628 getpkt (&rs->buf, 0);
6629 if (strcmp (rs->buf.data (), "OK") != 0)
6630 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6631 rs->buf.data ());
6632 }
6633
6634 /* All-stop version of target_interrupt. Sends a break or a ^C to
6635 interrupt the remote target. It is undefined which thread of which
6636 process reports the interrupt. */
6637
6638 void
6639 remote_target::remote_interrupt_as ()
6640 {
6641 struct remote_state *rs = get_remote_state ();
6642
6643 rs->ctrlc_pending_p = 1;
6644
6645 /* If the inferior is stopped already, but the core didn't know
6646 about it yet, just ignore the request. The cached wait status
6647 will be collected in remote_wait. */
6648 if (rs->cached_wait_status)
6649 return;
6650
6651 /* Send interrupt_sequence to remote target. */
6652 send_interrupt_sequence ();
6653 }
6654
6655 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6656 the remote target. It is undefined which thread of which process
6657 reports the interrupt. Throws an error if the packet is not
6658 supported by the server. */
6659
6660 void
6661 remote_target::remote_interrupt_ns ()
6662 {
6663 struct remote_state *rs = get_remote_state ();
6664 char *p = rs->buf.data ();
6665 char *endp = p + get_remote_packet_size ();
6666
6667 xsnprintf (p, endp - p, "vCtrlC");
6668
6669 /* In non-stop, we get an immediate OK reply. The stop reply will
6670 come in asynchronously by notification. */
6671 putpkt (rs->buf);
6672 getpkt (&rs->buf, 0);
6673
6674 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6675 {
6676 case PACKET_OK:
6677 break;
6678 case PACKET_UNKNOWN:
6679 error (_("No support for interrupting the remote target."));
6680 case PACKET_ERROR:
6681 error (_("Interrupting target failed: %s"), rs->buf.data ());
6682 }
6683 }
6684
6685 /* Implement the to_stop function for the remote targets. */
6686
6687 void
6688 remote_target::stop (ptid_t ptid)
6689 {
6690 if (remote_debug)
6691 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6692
6693 if (target_is_non_stop_p ())
6694 remote_stop_ns (ptid);
6695 else
6696 {
6697 /* We don't currently have a way to transparently pause the
6698 remote target in all-stop mode. Interrupt it instead. */
6699 remote_interrupt_as ();
6700 }
6701 }
6702
6703 /* Implement the to_interrupt function for the remote targets. */
6704
6705 void
6706 remote_target::interrupt ()
6707 {
6708 if (remote_debug)
6709 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6710
6711 if (target_is_non_stop_p ())
6712 remote_interrupt_ns ();
6713 else
6714 remote_interrupt_as ();
6715 }
6716
6717 /* Implement the to_pass_ctrlc function for the remote targets. */
6718
6719 void
6720 remote_target::pass_ctrlc ()
6721 {
6722 struct remote_state *rs = get_remote_state ();
6723
6724 if (remote_debug)
6725 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6726
6727 /* If we're starting up, we're not fully synced yet. Quit
6728 immediately. */
6729 if (rs->starting_up)
6730 quit ();
6731 /* If ^C has already been sent once, offer to disconnect. */
6732 else if (rs->ctrlc_pending_p)
6733 interrupt_query ();
6734 else
6735 target_interrupt ();
6736 }
6737
6738 /* Ask the user what to do when an interrupt is received. */
6739
6740 void
6741 remote_target::interrupt_query ()
6742 {
6743 struct remote_state *rs = get_remote_state ();
6744
6745 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6746 {
6747 if (query (_("The target is not responding to interrupt requests.\n"
6748 "Stop debugging it? ")))
6749 {
6750 remote_unpush_target ();
6751 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6752 }
6753 }
6754 else
6755 {
6756 if (query (_("Interrupted while waiting for the program.\n"
6757 "Give up waiting? ")))
6758 quit ();
6759 }
6760 }
6761
6762 /* Enable/disable target terminal ownership. Most targets can use
6763 terminal groups to control terminal ownership. Remote targets are
6764 different in that explicit transfer of ownership to/from GDB/target
6765 is required. */
6766
6767 void
6768 remote_target::terminal_inferior ()
6769 {
6770 /* NOTE: At this point we could also register our selves as the
6771 recipient of all input. Any characters typed could then be
6772 passed on down to the target. */
6773 }
6774
6775 void
6776 remote_target::terminal_ours ()
6777 {
6778 }
6779
6780 static void
6781 remote_console_output (const char *msg)
6782 {
6783 const char *p;
6784
6785 for (p = msg; p[0] && p[1]; p += 2)
6786 {
6787 char tb[2];
6788 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6789
6790 tb[0] = c;
6791 tb[1] = 0;
6792 fputs_unfiltered (tb, gdb_stdtarg);
6793 }
6794 gdb_flush (gdb_stdtarg);
6795 }
6796
6797 struct stop_reply : public notif_event
6798 {
6799 ~stop_reply ();
6800
6801 /* The identifier of the thread about this event */
6802 ptid_t ptid;
6803
6804 /* The remote state this event is associated with. When the remote
6805 connection, represented by a remote_state object, is closed,
6806 all the associated stop_reply events should be released. */
6807 struct remote_state *rs;
6808
6809 struct target_waitstatus ws;
6810
6811 /* The architecture associated with the expedited registers. */
6812 gdbarch *arch;
6813
6814 /* Expedited registers. This makes remote debugging a bit more
6815 efficient for those targets that provide critical registers as
6816 part of their normal status mechanism (as another roundtrip to
6817 fetch them is avoided). */
6818 std::vector<cached_reg_t> regcache;
6819
6820 enum target_stop_reason stop_reason;
6821
6822 CORE_ADDR watch_data_address;
6823
6824 int core;
6825 };
6826
6827 /* Return the length of the stop reply queue. */
6828
6829 int
6830 remote_target::stop_reply_queue_length ()
6831 {
6832 remote_state *rs = get_remote_state ();
6833 return rs->stop_reply_queue.size ();
6834 }
6835
6836 void
6837 remote_notif_stop_parse (remote_target *remote,
6838 struct notif_client *self, const char *buf,
6839 struct notif_event *event)
6840 {
6841 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6842 }
6843
6844 static void
6845 remote_notif_stop_ack (remote_target *remote,
6846 struct notif_client *self, const char *buf,
6847 struct notif_event *event)
6848 {
6849 struct stop_reply *stop_reply = (struct stop_reply *) event;
6850
6851 /* acknowledge */
6852 putpkt (remote, self->ack_command);
6853
6854 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6855 {
6856 /* We got an unknown stop reply. */
6857 error (_("Unknown stop reply"));
6858 }
6859
6860 remote->push_stop_reply (stop_reply);
6861 }
6862
6863 static int
6864 remote_notif_stop_can_get_pending_events (remote_target *remote,
6865 struct notif_client *self)
6866 {
6867 /* We can't get pending events in remote_notif_process for
6868 notification stop, and we have to do this in remote_wait_ns
6869 instead. If we fetch all queued events from stub, remote stub
6870 may exit and we have no chance to process them back in
6871 remote_wait_ns. */
6872 remote_state *rs = remote->get_remote_state ();
6873 mark_async_event_handler (rs->remote_async_inferior_event_token);
6874 return 0;
6875 }
6876
6877 stop_reply::~stop_reply ()
6878 {
6879 for (cached_reg_t &reg : regcache)
6880 xfree (reg.data);
6881 }
6882
6883 static notif_event_up
6884 remote_notif_stop_alloc_reply ()
6885 {
6886 return notif_event_up (new struct stop_reply ());
6887 }
6888
6889 /* A client of notification Stop. */
6890
6891 struct notif_client notif_client_stop =
6892 {
6893 "Stop",
6894 "vStopped",
6895 remote_notif_stop_parse,
6896 remote_notif_stop_ack,
6897 remote_notif_stop_can_get_pending_events,
6898 remote_notif_stop_alloc_reply,
6899 REMOTE_NOTIF_STOP,
6900 };
6901
6902 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6903 the pid of the process that owns the threads we want to check, or
6904 -1 if we want to check all threads. */
6905
6906 static int
6907 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6908 ptid_t thread_ptid)
6909 {
6910 if (ws->kind == TARGET_WAITKIND_FORKED
6911 || ws->kind == TARGET_WAITKIND_VFORKED)
6912 {
6913 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6914 return 1;
6915 }
6916
6917 return 0;
6918 }
6919
6920 /* Return the thread's pending status used to determine whether the
6921 thread is a fork parent stopped at a fork event. */
6922
6923 static struct target_waitstatus *
6924 thread_pending_fork_status (struct thread_info *thread)
6925 {
6926 if (thread->suspend.waitstatus_pending_p)
6927 return &thread->suspend.waitstatus;
6928 else
6929 return &thread->pending_follow;
6930 }
6931
6932 /* Determine if THREAD is a pending fork parent thread. */
6933
6934 static int
6935 is_pending_fork_parent_thread (struct thread_info *thread)
6936 {
6937 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6938 int pid = -1;
6939
6940 return is_pending_fork_parent (ws, pid, thread->ptid);
6941 }
6942
6943 /* If CONTEXT contains any fork child threads that have not been
6944 reported yet, remove them from the CONTEXT list. If such a
6945 thread exists it is because we are stopped at a fork catchpoint
6946 and have not yet called follow_fork, which will set up the
6947 host-side data structures for the new process. */
6948
6949 void
6950 remote_target::remove_new_fork_children (threads_listing_context *context)
6951 {
6952 int pid = -1;
6953 struct notif_client *notif = &notif_client_stop;
6954
6955 /* For any threads stopped at a fork event, remove the corresponding
6956 fork child threads from the CONTEXT list. */
6957 for (thread_info *thread : all_non_exited_threads ())
6958 {
6959 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6960
6961 if (is_pending_fork_parent (ws, pid, thread->ptid))
6962 context->remove_thread (ws->value.related_pid);
6963 }
6964
6965 /* Check for any pending fork events (not reported or processed yet)
6966 in process PID and remove those fork child threads from the
6967 CONTEXT list as well. */
6968 remote_notif_get_pending_events (notif);
6969 for (auto &event : get_remote_state ()->stop_reply_queue)
6970 if (event->ws.kind == TARGET_WAITKIND_FORKED
6971 || event->ws.kind == TARGET_WAITKIND_VFORKED
6972 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6973 context->remove_thread (event->ws.value.related_pid);
6974 }
6975
6976 /* Check whether any event pending in the vStopped queue would prevent
6977 a global or process wildcard vCont action. Clear
6978 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6979 and clear the event inferior's may_wildcard_vcont flag if we can't
6980 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6981
6982 void
6983 remote_target::check_pending_events_prevent_wildcard_vcont
6984 (int *may_global_wildcard)
6985 {
6986 struct notif_client *notif = &notif_client_stop;
6987
6988 remote_notif_get_pending_events (notif);
6989 for (auto &event : get_remote_state ()->stop_reply_queue)
6990 {
6991 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6992 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6993 continue;
6994
6995 if (event->ws.kind == TARGET_WAITKIND_FORKED
6996 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6997 *may_global_wildcard = 0;
6998
6999 struct inferior *inf = find_inferior_ptid (event->ptid);
7000
7001 /* This may be the first time we heard about this process.
7002 Regardless, we must not do a global wildcard resume, otherwise
7003 we'd resume this process too. */
7004 *may_global_wildcard = 0;
7005 if (inf != NULL)
7006 get_remote_inferior (inf)->may_wildcard_vcont = false;
7007 }
7008 }
7009
7010 /* Discard all pending stop replies of inferior INF. */
7011
7012 void
7013 remote_target::discard_pending_stop_replies (struct inferior *inf)
7014 {
7015 struct stop_reply *reply;
7016 struct remote_state *rs = get_remote_state ();
7017 struct remote_notif_state *rns = rs->notif_state;
7018
7019 /* This function can be notified when an inferior exists. When the
7020 target is not remote, the notification state is NULL. */
7021 if (rs->remote_desc == NULL)
7022 return;
7023
7024 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7025
7026 /* Discard the in-flight notification. */
7027 if (reply != NULL && reply->ptid.pid () == inf->pid)
7028 {
7029 delete reply;
7030 rns->pending_event[notif_client_stop.id] = NULL;
7031 }
7032
7033 /* Discard the stop replies we have already pulled with
7034 vStopped. */
7035 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7036 rs->stop_reply_queue.end (),
7037 [=] (const stop_reply_up &event)
7038 {
7039 return event->ptid.pid () == inf->pid;
7040 });
7041 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7042 }
7043
7044 /* Discard the stop replies for RS in stop_reply_queue. */
7045
7046 void
7047 remote_target::discard_pending_stop_replies_in_queue ()
7048 {
7049 remote_state *rs = get_remote_state ();
7050
7051 /* Discard the stop replies we have already pulled with
7052 vStopped. */
7053 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7054 rs->stop_reply_queue.end (),
7055 [=] (const stop_reply_up &event)
7056 {
7057 return event->rs == rs;
7058 });
7059 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7060 }
7061
7062 /* Remove the first reply in 'stop_reply_queue' which matches
7063 PTID. */
7064
7065 struct stop_reply *
7066 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7067 {
7068 remote_state *rs = get_remote_state ();
7069
7070 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7071 rs->stop_reply_queue.end (),
7072 [=] (const stop_reply_up &event)
7073 {
7074 return event->ptid.matches (ptid);
7075 });
7076 struct stop_reply *result;
7077 if (iter == rs->stop_reply_queue.end ())
7078 result = nullptr;
7079 else
7080 {
7081 result = iter->release ();
7082 rs->stop_reply_queue.erase (iter);
7083 }
7084
7085 if (notif_debug)
7086 fprintf_unfiltered (gdb_stdlog,
7087 "notif: discard queued event: 'Stop' in %s\n",
7088 target_pid_to_str (ptid).c_str ());
7089
7090 return result;
7091 }
7092
7093 /* Look for a queued stop reply belonging to PTID. If one is found,
7094 remove it from the queue, and return it. Returns NULL if none is
7095 found. If there are still queued events left to process, tell the
7096 event loop to get back to target_wait soon. */
7097
7098 struct stop_reply *
7099 remote_target::queued_stop_reply (ptid_t ptid)
7100 {
7101 remote_state *rs = get_remote_state ();
7102 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7103
7104 if (!rs->stop_reply_queue.empty ())
7105 {
7106 /* There's still at least an event left. */
7107 mark_async_event_handler (rs->remote_async_inferior_event_token);
7108 }
7109
7110 return r;
7111 }
7112
7113 /* Push a fully parsed stop reply in the stop reply queue. Since we
7114 know that we now have at least one queued event left to pass to the
7115 core side, tell the event loop to get back to target_wait soon. */
7116
7117 void
7118 remote_target::push_stop_reply (struct stop_reply *new_event)
7119 {
7120 remote_state *rs = get_remote_state ();
7121 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7122
7123 if (notif_debug)
7124 fprintf_unfiltered (gdb_stdlog,
7125 "notif: push 'Stop' %s to queue %d\n",
7126 target_pid_to_str (new_event->ptid).c_str (),
7127 int (rs->stop_reply_queue.size ()));
7128
7129 mark_async_event_handler (rs->remote_async_inferior_event_token);
7130 }
7131
7132 /* Returns true if we have a stop reply for PTID. */
7133
7134 int
7135 remote_target::peek_stop_reply (ptid_t ptid)
7136 {
7137 remote_state *rs = get_remote_state ();
7138 for (auto &event : rs->stop_reply_queue)
7139 if (ptid == event->ptid
7140 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7141 return 1;
7142 return 0;
7143 }
7144
7145 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7146 starting with P and ending with PEND matches PREFIX. */
7147
7148 static int
7149 strprefix (const char *p, const char *pend, const char *prefix)
7150 {
7151 for ( ; p < pend; p++, prefix++)
7152 if (*p != *prefix)
7153 return 0;
7154 return *prefix == '\0';
7155 }
7156
7157 /* Parse the stop reply in BUF. Either the function succeeds, and the
7158 result is stored in EVENT, or throws an error. */
7159
7160 void
7161 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7162 {
7163 remote_arch_state *rsa = NULL;
7164 ULONGEST addr;
7165 const char *p;
7166 int skipregs = 0;
7167
7168 event->ptid = null_ptid;
7169 event->rs = get_remote_state ();
7170 event->ws.kind = TARGET_WAITKIND_IGNORE;
7171 event->ws.value.integer = 0;
7172 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7173 event->regcache.clear ();
7174 event->core = -1;
7175
7176 switch (buf[0])
7177 {
7178 case 'T': /* Status with PC, SP, FP, ... */
7179 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7180 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7181 ss = signal number
7182 n... = register number
7183 r... = register contents
7184 */
7185
7186 p = &buf[3]; /* after Txx */
7187 while (*p)
7188 {
7189 const char *p1;
7190 int fieldsize;
7191
7192 p1 = strchr (p, ':');
7193 if (p1 == NULL)
7194 error (_("Malformed packet(a) (missing colon): %s\n\
7195 Packet: '%s'\n"),
7196 p, buf);
7197 if (p == p1)
7198 error (_("Malformed packet(a) (missing register number): %s\n\
7199 Packet: '%s'\n"),
7200 p, buf);
7201
7202 /* Some "registers" are actually extended stop information.
7203 Note if you're adding a new entry here: GDB 7.9 and
7204 earlier assume that all register "numbers" that start
7205 with an hex digit are real register numbers. Make sure
7206 the server only sends such a packet if it knows the
7207 client understands it. */
7208
7209 if (strprefix (p, p1, "thread"))
7210 event->ptid = read_ptid (++p1, &p);
7211 else if (strprefix (p, p1, "syscall_entry"))
7212 {
7213 ULONGEST sysno;
7214
7215 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7216 p = unpack_varlen_hex (++p1, &sysno);
7217 event->ws.value.syscall_number = (int) sysno;
7218 }
7219 else if (strprefix (p, p1, "syscall_return"))
7220 {
7221 ULONGEST sysno;
7222
7223 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7224 p = unpack_varlen_hex (++p1, &sysno);
7225 event->ws.value.syscall_number = (int) sysno;
7226 }
7227 else if (strprefix (p, p1, "watch")
7228 || strprefix (p, p1, "rwatch")
7229 || strprefix (p, p1, "awatch"))
7230 {
7231 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7232 p = unpack_varlen_hex (++p1, &addr);
7233 event->watch_data_address = (CORE_ADDR) addr;
7234 }
7235 else if (strprefix (p, p1, "swbreak"))
7236 {
7237 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7238
7239 /* Make sure the stub doesn't forget to indicate support
7240 with qSupported. */
7241 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7242 error (_("Unexpected swbreak stop reason"));
7243
7244 /* The value part is documented as "must be empty",
7245 though we ignore it, in case we ever decide to make
7246 use of it in a backward compatible way. */
7247 p = strchrnul (p1 + 1, ';');
7248 }
7249 else if (strprefix (p, p1, "hwbreak"))
7250 {
7251 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7252
7253 /* Make sure the stub doesn't forget to indicate support
7254 with qSupported. */
7255 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7256 error (_("Unexpected hwbreak stop reason"));
7257
7258 /* See above. */
7259 p = strchrnul (p1 + 1, ';');
7260 }
7261 else if (strprefix (p, p1, "library"))
7262 {
7263 event->ws.kind = TARGET_WAITKIND_LOADED;
7264 p = strchrnul (p1 + 1, ';');
7265 }
7266 else if (strprefix (p, p1, "replaylog"))
7267 {
7268 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7269 /* p1 will indicate "begin" or "end", but it makes
7270 no difference for now, so ignore it. */
7271 p = strchrnul (p1 + 1, ';');
7272 }
7273 else if (strprefix (p, p1, "core"))
7274 {
7275 ULONGEST c;
7276
7277 p = unpack_varlen_hex (++p1, &c);
7278 event->core = c;
7279 }
7280 else if (strprefix (p, p1, "fork"))
7281 {
7282 event->ws.value.related_pid = read_ptid (++p1, &p);
7283 event->ws.kind = TARGET_WAITKIND_FORKED;
7284 }
7285 else if (strprefix (p, p1, "vfork"))
7286 {
7287 event->ws.value.related_pid = read_ptid (++p1, &p);
7288 event->ws.kind = TARGET_WAITKIND_VFORKED;
7289 }
7290 else if (strprefix (p, p1, "vforkdone"))
7291 {
7292 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7293 p = strchrnul (p1 + 1, ';');
7294 }
7295 else if (strprefix (p, p1, "exec"))
7296 {
7297 ULONGEST ignored;
7298 int pathlen;
7299
7300 /* Determine the length of the execd pathname. */
7301 p = unpack_varlen_hex (++p1, &ignored);
7302 pathlen = (p - p1) / 2;
7303
7304 /* Save the pathname for event reporting and for
7305 the next run command. */
7306 gdb::unique_xmalloc_ptr<char[]> pathname
7307 ((char *) xmalloc (pathlen + 1));
7308 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7309 pathname[pathlen] = '\0';
7310
7311 /* This is freed during event handling. */
7312 event->ws.value.execd_pathname = pathname.release ();
7313 event->ws.kind = TARGET_WAITKIND_EXECD;
7314
7315 /* Skip the registers included in this packet, since
7316 they may be for an architecture different from the
7317 one used by the original program. */
7318 skipregs = 1;
7319 }
7320 else if (strprefix (p, p1, "create"))
7321 {
7322 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7323 p = strchrnul (p1 + 1, ';');
7324 }
7325 else
7326 {
7327 ULONGEST pnum;
7328 const char *p_temp;
7329
7330 if (skipregs)
7331 {
7332 p = strchrnul (p1 + 1, ';');
7333 p++;
7334 continue;
7335 }
7336
7337 /* Maybe a real ``P'' register number. */
7338 p_temp = unpack_varlen_hex (p, &pnum);
7339 /* If the first invalid character is the colon, we got a
7340 register number. Otherwise, it's an unknown stop
7341 reason. */
7342 if (p_temp == p1)
7343 {
7344 /* If we haven't parsed the event's thread yet, find
7345 it now, in order to find the architecture of the
7346 reported expedited registers. */
7347 if (event->ptid == null_ptid)
7348 {
7349 const char *thr = strstr (p1 + 1, ";thread:");
7350 if (thr != NULL)
7351 event->ptid = read_ptid (thr + strlen (";thread:"),
7352 NULL);
7353 else
7354 {
7355 /* Either the current thread hasn't changed,
7356 or the inferior is not multi-threaded.
7357 The event must be for the thread we last
7358 set as (or learned as being) current. */
7359 event->ptid = event->rs->general_thread;
7360 }
7361 }
7362
7363 if (rsa == NULL)
7364 {
7365 inferior *inf = (event->ptid == null_ptid
7366 ? NULL
7367 : find_inferior_ptid (event->ptid));
7368 /* If this is the first time we learn anything
7369 about this process, skip the registers
7370 included in this packet, since we don't yet
7371 know which architecture to use to parse them.
7372 We'll determine the architecture later when
7373 we process the stop reply and retrieve the
7374 target description, via
7375 remote_notice_new_inferior ->
7376 post_create_inferior. */
7377 if (inf == NULL)
7378 {
7379 p = strchrnul (p1 + 1, ';');
7380 p++;
7381 continue;
7382 }
7383
7384 event->arch = inf->gdbarch;
7385 rsa = event->rs->get_remote_arch_state (event->arch);
7386 }
7387
7388 packet_reg *reg
7389 = packet_reg_from_pnum (event->arch, rsa, pnum);
7390 cached_reg_t cached_reg;
7391
7392 if (reg == NULL)
7393 error (_("Remote sent bad register number %s: %s\n\
7394 Packet: '%s'\n"),
7395 hex_string (pnum), p, buf);
7396
7397 cached_reg.num = reg->regnum;
7398 cached_reg.data = (gdb_byte *)
7399 xmalloc (register_size (event->arch, reg->regnum));
7400
7401 p = p1 + 1;
7402 fieldsize = hex2bin (p, cached_reg.data,
7403 register_size (event->arch, reg->regnum));
7404 p += 2 * fieldsize;
7405 if (fieldsize < register_size (event->arch, reg->regnum))
7406 warning (_("Remote reply is too short: %s"), buf);
7407
7408 event->regcache.push_back (cached_reg);
7409 }
7410 else
7411 {
7412 /* Not a number. Silently skip unknown optional
7413 info. */
7414 p = strchrnul (p1 + 1, ';');
7415 }
7416 }
7417
7418 if (*p != ';')
7419 error (_("Remote register badly formatted: %s\nhere: %s"),
7420 buf, p);
7421 ++p;
7422 }
7423
7424 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7425 break;
7426
7427 /* fall through */
7428 case 'S': /* Old style status, just signal only. */
7429 {
7430 int sig;
7431
7432 event->ws.kind = TARGET_WAITKIND_STOPPED;
7433 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7434 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7435 event->ws.value.sig = (enum gdb_signal) sig;
7436 else
7437 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7438 }
7439 break;
7440 case 'w': /* Thread exited. */
7441 {
7442 ULONGEST value;
7443
7444 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7445 p = unpack_varlen_hex (&buf[1], &value);
7446 event->ws.value.integer = value;
7447 if (*p != ';')
7448 error (_("stop reply packet badly formatted: %s"), buf);
7449 event->ptid = read_ptid (++p, NULL);
7450 break;
7451 }
7452 case 'W': /* Target exited. */
7453 case 'X':
7454 {
7455 int pid;
7456 ULONGEST value;
7457
7458 /* GDB used to accept only 2 hex chars here. Stubs should
7459 only send more if they detect GDB supports multi-process
7460 support. */
7461 p = unpack_varlen_hex (&buf[1], &value);
7462
7463 if (buf[0] == 'W')
7464 {
7465 /* The remote process exited. */
7466 event->ws.kind = TARGET_WAITKIND_EXITED;
7467 event->ws.value.integer = value;
7468 }
7469 else
7470 {
7471 /* The remote process exited with a signal. */
7472 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7473 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7474 event->ws.value.sig = (enum gdb_signal) value;
7475 else
7476 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7477 }
7478
7479 /* If no process is specified, assume inferior_ptid. */
7480 pid = inferior_ptid.pid ();
7481 if (*p == '\0')
7482 ;
7483 else if (*p == ';')
7484 {
7485 p++;
7486
7487 if (*p == '\0')
7488 ;
7489 else if (startswith (p, "process:"))
7490 {
7491 ULONGEST upid;
7492
7493 p += sizeof ("process:") - 1;
7494 unpack_varlen_hex (p, &upid);
7495 pid = upid;
7496 }
7497 else
7498 error (_("unknown stop reply packet: %s"), buf);
7499 }
7500 else
7501 error (_("unknown stop reply packet: %s"), buf);
7502 event->ptid = ptid_t (pid);
7503 }
7504 break;
7505 case 'N':
7506 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7507 event->ptid = minus_one_ptid;
7508 break;
7509 }
7510
7511 if (target_is_non_stop_p () && event->ptid == null_ptid)
7512 error (_("No process or thread specified in stop reply: %s"), buf);
7513 }
7514
7515 /* When the stub wants to tell GDB about a new notification reply, it
7516 sends a notification (%Stop, for example). Those can come it at
7517 any time, hence, we have to make sure that any pending
7518 putpkt/getpkt sequence we're making is finished, before querying
7519 the stub for more events with the corresponding ack command
7520 (vStopped, for example). E.g., if we started a vStopped sequence
7521 immediately upon receiving the notification, something like this
7522 could happen:
7523
7524 1.1) --> Hg 1
7525 1.2) <-- OK
7526 1.3) --> g
7527 1.4) <-- %Stop
7528 1.5) --> vStopped
7529 1.6) <-- (registers reply to step #1.3)
7530
7531 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7532 query.
7533
7534 To solve this, whenever we parse a %Stop notification successfully,
7535 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7536 doing whatever we were doing:
7537
7538 2.1) --> Hg 1
7539 2.2) <-- OK
7540 2.3) --> g
7541 2.4) <-- %Stop
7542 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7543 2.5) <-- (registers reply to step #2.3)
7544
7545 Eventualy after step #2.5, we return to the event loop, which
7546 notices there's an event on the
7547 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7548 associated callback --- the function below. At this point, we're
7549 always safe to start a vStopped sequence. :
7550
7551 2.6) --> vStopped
7552 2.7) <-- T05 thread:2
7553 2.8) --> vStopped
7554 2.9) --> OK
7555 */
7556
7557 void
7558 remote_target::remote_notif_get_pending_events (notif_client *nc)
7559 {
7560 struct remote_state *rs = get_remote_state ();
7561
7562 if (rs->notif_state->pending_event[nc->id] != NULL)
7563 {
7564 if (notif_debug)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "notif: process: '%s' ack pending event\n",
7567 nc->name);
7568
7569 /* acknowledge */
7570 nc->ack (this, nc, rs->buf.data (),
7571 rs->notif_state->pending_event[nc->id]);
7572 rs->notif_state->pending_event[nc->id] = NULL;
7573
7574 while (1)
7575 {
7576 getpkt (&rs->buf, 0);
7577 if (strcmp (rs->buf.data (), "OK") == 0)
7578 break;
7579 else
7580 remote_notif_ack (this, nc, rs->buf.data ());
7581 }
7582 }
7583 else
7584 {
7585 if (notif_debug)
7586 fprintf_unfiltered (gdb_stdlog,
7587 "notif: process: '%s' no pending reply\n",
7588 nc->name);
7589 }
7590 }
7591
7592 /* Wrapper around remote_target::remote_notif_get_pending_events to
7593 avoid having to export the whole remote_target class. */
7594
7595 void
7596 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7597 {
7598 remote->remote_notif_get_pending_events (nc);
7599 }
7600
7601 /* Called when it is decided that STOP_REPLY holds the info of the
7602 event that is to be returned to the core. This function always
7603 destroys STOP_REPLY. */
7604
7605 ptid_t
7606 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7607 struct target_waitstatus *status)
7608 {
7609 ptid_t ptid;
7610
7611 *status = stop_reply->ws;
7612 ptid = stop_reply->ptid;
7613
7614 /* If no thread/process was reported by the stub, assume the current
7615 inferior. */
7616 if (ptid == null_ptid)
7617 ptid = inferior_ptid;
7618
7619 if (status->kind != TARGET_WAITKIND_EXITED
7620 && status->kind != TARGET_WAITKIND_SIGNALLED
7621 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7622 {
7623 /* Expedited registers. */
7624 if (!stop_reply->regcache.empty ())
7625 {
7626 struct regcache *regcache
7627 = get_thread_arch_regcache (ptid, stop_reply->arch);
7628
7629 for (cached_reg_t &reg : stop_reply->regcache)
7630 {
7631 regcache->raw_supply (reg.num, reg.data);
7632 xfree (reg.data);
7633 }
7634
7635 stop_reply->regcache.clear ();
7636 }
7637
7638 remote_notice_new_inferior (ptid, 0);
7639 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7640 remote_thr->core = stop_reply->core;
7641 remote_thr->stop_reason = stop_reply->stop_reason;
7642 remote_thr->watch_data_address = stop_reply->watch_data_address;
7643 remote_thr->vcont_resumed = 0;
7644 }
7645
7646 delete stop_reply;
7647 return ptid;
7648 }
7649
7650 /* The non-stop mode version of target_wait. */
7651
7652 ptid_t
7653 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7654 {
7655 struct remote_state *rs = get_remote_state ();
7656 struct stop_reply *stop_reply;
7657 int ret;
7658 int is_notif = 0;
7659
7660 /* If in non-stop mode, get out of getpkt even if a
7661 notification is received. */
7662
7663 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7664 while (1)
7665 {
7666 if (ret != -1 && !is_notif)
7667 switch (rs->buf[0])
7668 {
7669 case 'E': /* Error of some sort. */
7670 /* We're out of sync with the target now. Did it continue
7671 or not? We can't tell which thread it was in non-stop,
7672 so just ignore this. */
7673 warning (_("Remote failure reply: %s"), rs->buf.data ());
7674 break;
7675 case 'O': /* Console output. */
7676 remote_console_output (&rs->buf[1]);
7677 break;
7678 default:
7679 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7680 break;
7681 }
7682
7683 /* Acknowledge a pending stop reply that may have arrived in the
7684 mean time. */
7685 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7686 remote_notif_get_pending_events (&notif_client_stop);
7687
7688 /* If indeed we noticed a stop reply, we're done. */
7689 stop_reply = queued_stop_reply (ptid);
7690 if (stop_reply != NULL)
7691 return process_stop_reply (stop_reply, status);
7692
7693 /* Still no event. If we're just polling for an event, then
7694 return to the event loop. */
7695 if (options & TARGET_WNOHANG)
7696 {
7697 status->kind = TARGET_WAITKIND_IGNORE;
7698 return minus_one_ptid;
7699 }
7700
7701 /* Otherwise do a blocking wait. */
7702 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7703 }
7704 }
7705
7706 /* Wait until the remote machine stops, then return, storing status in
7707 STATUS just as `wait' would. */
7708
7709 ptid_t
7710 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7711 {
7712 struct remote_state *rs = get_remote_state ();
7713 ptid_t event_ptid = null_ptid;
7714 char *buf;
7715 struct stop_reply *stop_reply;
7716
7717 again:
7718
7719 status->kind = TARGET_WAITKIND_IGNORE;
7720 status->value.integer = 0;
7721
7722 stop_reply = queued_stop_reply (ptid);
7723 if (stop_reply != NULL)
7724 return process_stop_reply (stop_reply, status);
7725
7726 if (rs->cached_wait_status)
7727 /* Use the cached wait status, but only once. */
7728 rs->cached_wait_status = 0;
7729 else
7730 {
7731 int ret;
7732 int is_notif;
7733 int forever = ((options & TARGET_WNOHANG) == 0
7734 && rs->wait_forever_enabled_p);
7735
7736 if (!rs->waiting_for_stop_reply)
7737 {
7738 status->kind = TARGET_WAITKIND_NO_RESUMED;
7739 return minus_one_ptid;
7740 }
7741
7742 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7743 _never_ wait for ever -> test on target_is_async_p().
7744 However, before we do that we need to ensure that the caller
7745 knows how to take the target into/out of async mode. */
7746 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7747
7748 /* GDB gets a notification. Return to core as this event is
7749 not interesting. */
7750 if (ret != -1 && is_notif)
7751 return minus_one_ptid;
7752
7753 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7754 return minus_one_ptid;
7755 }
7756
7757 buf = rs->buf.data ();
7758
7759 /* Assume that the target has acknowledged Ctrl-C unless we receive
7760 an 'F' or 'O' packet. */
7761 if (buf[0] != 'F' && buf[0] != 'O')
7762 rs->ctrlc_pending_p = 0;
7763
7764 switch (buf[0])
7765 {
7766 case 'E': /* Error of some sort. */
7767 /* We're out of sync with the target now. Did it continue or
7768 not? Not is more likely, so report a stop. */
7769 rs->waiting_for_stop_reply = 0;
7770
7771 warning (_("Remote failure reply: %s"), buf);
7772 status->kind = TARGET_WAITKIND_STOPPED;
7773 status->value.sig = GDB_SIGNAL_0;
7774 break;
7775 case 'F': /* File-I/O request. */
7776 /* GDB may access the inferior memory while handling the File-I/O
7777 request, but we don't want GDB accessing memory while waiting
7778 for a stop reply. See the comments in putpkt_binary. Set
7779 waiting_for_stop_reply to 0 temporarily. */
7780 rs->waiting_for_stop_reply = 0;
7781 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7782 rs->ctrlc_pending_p = 0;
7783 /* GDB handled the File-I/O request, and the target is running
7784 again. Keep waiting for events. */
7785 rs->waiting_for_stop_reply = 1;
7786 break;
7787 case 'N': case 'T': case 'S': case 'X': case 'W':
7788 {
7789 /* There is a stop reply to handle. */
7790 rs->waiting_for_stop_reply = 0;
7791
7792 stop_reply
7793 = (struct stop_reply *) remote_notif_parse (this,
7794 &notif_client_stop,
7795 rs->buf.data ());
7796
7797 event_ptid = process_stop_reply (stop_reply, status);
7798 break;
7799 }
7800 case 'O': /* Console output. */
7801 remote_console_output (buf + 1);
7802 break;
7803 case '\0':
7804 if (rs->last_sent_signal != GDB_SIGNAL_0)
7805 {
7806 /* Zero length reply means that we tried 'S' or 'C' and the
7807 remote system doesn't support it. */
7808 target_terminal::ours_for_output ();
7809 printf_filtered
7810 ("Can't send signals to this remote system. %s not sent.\n",
7811 gdb_signal_to_name (rs->last_sent_signal));
7812 rs->last_sent_signal = GDB_SIGNAL_0;
7813 target_terminal::inferior ();
7814
7815 strcpy (buf, rs->last_sent_step ? "s" : "c");
7816 putpkt (buf);
7817 break;
7818 }
7819 /* fallthrough */
7820 default:
7821 warning (_("Invalid remote reply: %s"), buf);
7822 break;
7823 }
7824
7825 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7826 return minus_one_ptid;
7827 else if (status->kind == TARGET_WAITKIND_IGNORE)
7828 {
7829 /* Nothing interesting happened. If we're doing a non-blocking
7830 poll, we're done. Otherwise, go back to waiting. */
7831 if (options & TARGET_WNOHANG)
7832 return minus_one_ptid;
7833 else
7834 goto again;
7835 }
7836 else if (status->kind != TARGET_WAITKIND_EXITED
7837 && status->kind != TARGET_WAITKIND_SIGNALLED)
7838 {
7839 if (event_ptid != null_ptid)
7840 record_currthread (rs, event_ptid);
7841 else
7842 event_ptid = inferior_ptid;
7843 }
7844 else
7845 /* A process exit. Invalidate our notion of current thread. */
7846 record_currthread (rs, minus_one_ptid);
7847
7848 return event_ptid;
7849 }
7850
7851 /* Wait until the remote machine stops, then return, storing status in
7852 STATUS just as `wait' would. */
7853
7854 ptid_t
7855 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7856 {
7857 ptid_t event_ptid;
7858
7859 if (target_is_non_stop_p ())
7860 event_ptid = wait_ns (ptid, status, options);
7861 else
7862 event_ptid = wait_as (ptid, status, options);
7863
7864 if (target_is_async_p ())
7865 {
7866 remote_state *rs = get_remote_state ();
7867
7868 /* If there are are events left in the queue tell the event loop
7869 to return here. */
7870 if (!rs->stop_reply_queue.empty ())
7871 mark_async_event_handler (rs->remote_async_inferior_event_token);
7872 }
7873
7874 return event_ptid;
7875 }
7876
7877 /* Fetch a single register using a 'p' packet. */
7878
7879 int
7880 remote_target::fetch_register_using_p (struct regcache *regcache,
7881 packet_reg *reg)
7882 {
7883 struct gdbarch *gdbarch = regcache->arch ();
7884 struct remote_state *rs = get_remote_state ();
7885 char *buf, *p;
7886 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7887 int i;
7888
7889 if (packet_support (PACKET_p) == PACKET_DISABLE)
7890 return 0;
7891
7892 if (reg->pnum == -1)
7893 return 0;
7894
7895 p = rs->buf.data ();
7896 *p++ = 'p';
7897 p += hexnumstr (p, reg->pnum);
7898 *p++ = '\0';
7899 putpkt (rs->buf);
7900 getpkt (&rs->buf, 0);
7901
7902 buf = rs->buf.data ();
7903
7904 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7905 {
7906 case PACKET_OK:
7907 break;
7908 case PACKET_UNKNOWN:
7909 return 0;
7910 case PACKET_ERROR:
7911 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7912 gdbarch_register_name (regcache->arch (),
7913 reg->regnum),
7914 buf);
7915 }
7916
7917 /* If this register is unfetchable, tell the regcache. */
7918 if (buf[0] == 'x')
7919 {
7920 regcache->raw_supply (reg->regnum, NULL);
7921 return 1;
7922 }
7923
7924 /* Otherwise, parse and supply the value. */
7925 p = buf;
7926 i = 0;
7927 while (p[0] != 0)
7928 {
7929 if (p[1] == 0)
7930 error (_("fetch_register_using_p: early buf termination"));
7931
7932 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7933 p += 2;
7934 }
7935 regcache->raw_supply (reg->regnum, regp);
7936 return 1;
7937 }
7938
7939 /* Fetch the registers included in the target's 'g' packet. */
7940
7941 int
7942 remote_target::send_g_packet ()
7943 {
7944 struct remote_state *rs = get_remote_state ();
7945 int buf_len;
7946
7947 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7948 putpkt (rs->buf);
7949 getpkt (&rs->buf, 0);
7950 if (packet_check_result (rs->buf) == PACKET_ERROR)
7951 error (_("Could not read registers; remote failure reply '%s'"),
7952 rs->buf.data ());
7953
7954 /* We can get out of synch in various cases. If the first character
7955 in the buffer is not a hex character, assume that has happened
7956 and try to fetch another packet to read. */
7957 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7958 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7959 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7960 && rs->buf[0] != 'x') /* New: unavailable register value. */
7961 {
7962 if (remote_debug)
7963 fprintf_unfiltered (gdb_stdlog,
7964 "Bad register packet; fetching a new packet\n");
7965 getpkt (&rs->buf, 0);
7966 }
7967
7968 buf_len = strlen (rs->buf.data ());
7969
7970 /* Sanity check the received packet. */
7971 if (buf_len % 2 != 0)
7972 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7973
7974 return buf_len / 2;
7975 }
7976
7977 void
7978 remote_target::process_g_packet (struct regcache *regcache)
7979 {
7980 struct gdbarch *gdbarch = regcache->arch ();
7981 struct remote_state *rs = get_remote_state ();
7982 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7983 int i, buf_len;
7984 char *p;
7985 char *regs;
7986
7987 buf_len = strlen (rs->buf.data ());
7988
7989 /* Further sanity checks, with knowledge of the architecture. */
7990 if (buf_len > 2 * rsa->sizeof_g_packet)
7991 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7992 "bytes): %s"),
7993 rsa->sizeof_g_packet, buf_len / 2,
7994 rs->buf.data ());
7995
7996 /* Save the size of the packet sent to us by the target. It is used
7997 as a heuristic when determining the max size of packets that the
7998 target can safely receive. */
7999 if (rsa->actual_register_packet_size == 0)
8000 rsa->actual_register_packet_size = buf_len;
8001
8002 /* If this is smaller than we guessed the 'g' packet would be,
8003 update our records. A 'g' reply that doesn't include a register's
8004 value implies either that the register is not available, or that
8005 the 'p' packet must be used. */
8006 if (buf_len < 2 * rsa->sizeof_g_packet)
8007 {
8008 long sizeof_g_packet = buf_len / 2;
8009
8010 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8011 {
8012 long offset = rsa->regs[i].offset;
8013 long reg_size = register_size (gdbarch, i);
8014
8015 if (rsa->regs[i].pnum == -1)
8016 continue;
8017
8018 if (offset >= sizeof_g_packet)
8019 rsa->regs[i].in_g_packet = 0;
8020 else if (offset + reg_size > sizeof_g_packet)
8021 error (_("Truncated register %d in remote 'g' packet"), i);
8022 else
8023 rsa->regs[i].in_g_packet = 1;
8024 }
8025
8026 /* Looks valid enough, we can assume this is the correct length
8027 for a 'g' packet. It's important not to adjust
8028 rsa->sizeof_g_packet if we have truncated registers otherwise
8029 this "if" won't be run the next time the method is called
8030 with a packet of the same size and one of the internal errors
8031 below will trigger instead. */
8032 rsa->sizeof_g_packet = sizeof_g_packet;
8033 }
8034
8035 regs = (char *) alloca (rsa->sizeof_g_packet);
8036
8037 /* Unimplemented registers read as all bits zero. */
8038 memset (regs, 0, rsa->sizeof_g_packet);
8039
8040 /* Reply describes registers byte by byte, each byte encoded as two
8041 hex characters. Suck them all up, then supply them to the
8042 register cacheing/storage mechanism. */
8043
8044 p = rs->buf.data ();
8045 for (i = 0; i < rsa->sizeof_g_packet; i++)
8046 {
8047 if (p[0] == 0 || p[1] == 0)
8048 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8049 internal_error (__FILE__, __LINE__,
8050 _("unexpected end of 'g' packet reply"));
8051
8052 if (p[0] == 'x' && p[1] == 'x')
8053 regs[i] = 0; /* 'x' */
8054 else
8055 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8056 p += 2;
8057 }
8058
8059 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8060 {
8061 struct packet_reg *r = &rsa->regs[i];
8062 long reg_size = register_size (gdbarch, i);
8063
8064 if (r->in_g_packet)
8065 {
8066 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8067 /* This shouldn't happen - we adjusted in_g_packet above. */
8068 internal_error (__FILE__, __LINE__,
8069 _("unexpected end of 'g' packet reply"));
8070 else if (rs->buf[r->offset * 2] == 'x')
8071 {
8072 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8073 /* The register isn't available, mark it as such (at
8074 the same time setting the value to zero). */
8075 regcache->raw_supply (r->regnum, NULL);
8076 }
8077 else
8078 regcache->raw_supply (r->regnum, regs + r->offset);
8079 }
8080 }
8081 }
8082
8083 void
8084 remote_target::fetch_registers_using_g (struct regcache *regcache)
8085 {
8086 send_g_packet ();
8087 process_g_packet (regcache);
8088 }
8089
8090 /* Make the remote selected traceframe match GDB's selected
8091 traceframe. */
8092
8093 void
8094 remote_target::set_remote_traceframe ()
8095 {
8096 int newnum;
8097 struct remote_state *rs = get_remote_state ();
8098
8099 if (rs->remote_traceframe_number == get_traceframe_number ())
8100 return;
8101
8102 /* Avoid recursion, remote_trace_find calls us again. */
8103 rs->remote_traceframe_number = get_traceframe_number ();
8104
8105 newnum = target_trace_find (tfind_number,
8106 get_traceframe_number (), 0, 0, NULL);
8107
8108 /* Should not happen. If it does, all bets are off. */
8109 if (newnum != get_traceframe_number ())
8110 warning (_("could not set remote traceframe"));
8111 }
8112
8113 void
8114 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8115 {
8116 struct gdbarch *gdbarch = regcache->arch ();
8117 struct remote_state *rs = get_remote_state ();
8118 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8119 int i;
8120
8121 set_remote_traceframe ();
8122 set_general_thread (regcache->ptid ());
8123
8124 if (regnum >= 0)
8125 {
8126 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8127
8128 gdb_assert (reg != NULL);
8129
8130 /* If this register might be in the 'g' packet, try that first -
8131 we are likely to read more than one register. If this is the
8132 first 'g' packet, we might be overly optimistic about its
8133 contents, so fall back to 'p'. */
8134 if (reg->in_g_packet)
8135 {
8136 fetch_registers_using_g (regcache);
8137 if (reg->in_g_packet)
8138 return;
8139 }
8140
8141 if (fetch_register_using_p (regcache, reg))
8142 return;
8143
8144 /* This register is not available. */
8145 regcache->raw_supply (reg->regnum, NULL);
8146
8147 return;
8148 }
8149
8150 fetch_registers_using_g (regcache);
8151
8152 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8153 if (!rsa->regs[i].in_g_packet)
8154 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8155 {
8156 /* This register is not available. */
8157 regcache->raw_supply (i, NULL);
8158 }
8159 }
8160
8161 /* Prepare to store registers. Since we may send them all (using a
8162 'G' request), we have to read out the ones we don't want to change
8163 first. */
8164
8165 void
8166 remote_target::prepare_to_store (struct regcache *regcache)
8167 {
8168 struct remote_state *rs = get_remote_state ();
8169 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8170 int i;
8171
8172 /* Make sure the entire registers array is valid. */
8173 switch (packet_support (PACKET_P))
8174 {
8175 case PACKET_DISABLE:
8176 case PACKET_SUPPORT_UNKNOWN:
8177 /* Make sure all the necessary registers are cached. */
8178 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8179 if (rsa->regs[i].in_g_packet)
8180 regcache->raw_update (rsa->regs[i].regnum);
8181 break;
8182 case PACKET_ENABLE:
8183 break;
8184 }
8185 }
8186
8187 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8188 packet was not recognized. */
8189
8190 int
8191 remote_target::store_register_using_P (const struct regcache *regcache,
8192 packet_reg *reg)
8193 {
8194 struct gdbarch *gdbarch = regcache->arch ();
8195 struct remote_state *rs = get_remote_state ();
8196 /* Try storing a single register. */
8197 char *buf = rs->buf.data ();
8198 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8199 char *p;
8200
8201 if (packet_support (PACKET_P) == PACKET_DISABLE)
8202 return 0;
8203
8204 if (reg->pnum == -1)
8205 return 0;
8206
8207 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8208 p = buf + strlen (buf);
8209 regcache->raw_collect (reg->regnum, regp);
8210 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8211 putpkt (rs->buf);
8212 getpkt (&rs->buf, 0);
8213
8214 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8215 {
8216 case PACKET_OK:
8217 return 1;
8218 case PACKET_ERROR:
8219 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8220 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8221 case PACKET_UNKNOWN:
8222 return 0;
8223 default:
8224 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8225 }
8226 }
8227
8228 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8229 contents of the register cache buffer. FIXME: ignores errors. */
8230
8231 void
8232 remote_target::store_registers_using_G (const struct regcache *regcache)
8233 {
8234 struct remote_state *rs = get_remote_state ();
8235 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8236 gdb_byte *regs;
8237 char *p;
8238
8239 /* Extract all the registers in the regcache copying them into a
8240 local buffer. */
8241 {
8242 int i;
8243
8244 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8245 memset (regs, 0, rsa->sizeof_g_packet);
8246 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8247 {
8248 struct packet_reg *r = &rsa->regs[i];
8249
8250 if (r->in_g_packet)
8251 regcache->raw_collect (r->regnum, regs + r->offset);
8252 }
8253 }
8254
8255 /* Command describes registers byte by byte,
8256 each byte encoded as two hex characters. */
8257 p = rs->buf.data ();
8258 *p++ = 'G';
8259 bin2hex (regs, p, rsa->sizeof_g_packet);
8260 putpkt (rs->buf);
8261 getpkt (&rs->buf, 0);
8262 if (packet_check_result (rs->buf) == PACKET_ERROR)
8263 error (_("Could not write registers; remote failure reply '%s'"),
8264 rs->buf.data ());
8265 }
8266
8267 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8268 of the register cache buffer. FIXME: ignores errors. */
8269
8270 void
8271 remote_target::store_registers (struct regcache *regcache, int regnum)
8272 {
8273 struct gdbarch *gdbarch = regcache->arch ();
8274 struct remote_state *rs = get_remote_state ();
8275 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8276 int i;
8277
8278 set_remote_traceframe ();
8279 set_general_thread (regcache->ptid ());
8280
8281 if (regnum >= 0)
8282 {
8283 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8284
8285 gdb_assert (reg != NULL);
8286
8287 /* Always prefer to store registers using the 'P' packet if
8288 possible; we often change only a small number of registers.
8289 Sometimes we change a larger number; we'd need help from a
8290 higher layer to know to use 'G'. */
8291 if (store_register_using_P (regcache, reg))
8292 return;
8293
8294 /* For now, don't complain if we have no way to write the
8295 register. GDB loses track of unavailable registers too
8296 easily. Some day, this may be an error. We don't have
8297 any way to read the register, either... */
8298 if (!reg->in_g_packet)
8299 return;
8300
8301 store_registers_using_G (regcache);
8302 return;
8303 }
8304
8305 store_registers_using_G (regcache);
8306
8307 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8308 if (!rsa->regs[i].in_g_packet)
8309 if (!store_register_using_P (regcache, &rsa->regs[i]))
8310 /* See above for why we do not issue an error here. */
8311 continue;
8312 }
8313 \f
8314
8315 /* Return the number of hex digits in num. */
8316
8317 static int
8318 hexnumlen (ULONGEST num)
8319 {
8320 int i;
8321
8322 for (i = 0; num != 0; i++)
8323 num >>= 4;
8324
8325 return std::max (i, 1);
8326 }
8327
8328 /* Set BUF to the minimum number of hex digits representing NUM. */
8329
8330 static int
8331 hexnumstr (char *buf, ULONGEST num)
8332 {
8333 int len = hexnumlen (num);
8334
8335 return hexnumnstr (buf, num, len);
8336 }
8337
8338
8339 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8340
8341 static int
8342 hexnumnstr (char *buf, ULONGEST num, int width)
8343 {
8344 int i;
8345
8346 buf[width] = '\0';
8347
8348 for (i = width - 1; i >= 0; i--)
8349 {
8350 buf[i] = "0123456789abcdef"[(num & 0xf)];
8351 num >>= 4;
8352 }
8353
8354 return width;
8355 }
8356
8357 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8358
8359 static CORE_ADDR
8360 remote_address_masked (CORE_ADDR addr)
8361 {
8362 unsigned int address_size = remote_address_size;
8363
8364 /* If "remoteaddresssize" was not set, default to target address size. */
8365 if (!address_size)
8366 address_size = gdbarch_addr_bit (target_gdbarch ());
8367
8368 if (address_size > 0
8369 && address_size < (sizeof (ULONGEST) * 8))
8370 {
8371 /* Only create a mask when that mask can safely be constructed
8372 in a ULONGEST variable. */
8373 ULONGEST mask = 1;
8374
8375 mask = (mask << address_size) - 1;
8376 addr &= mask;
8377 }
8378 return addr;
8379 }
8380
8381 /* Determine whether the remote target supports binary downloading.
8382 This is accomplished by sending a no-op memory write of zero length
8383 to the target at the specified address. It does not suffice to send
8384 the whole packet, since many stubs strip the eighth bit and
8385 subsequently compute a wrong checksum, which causes real havoc with
8386 remote_write_bytes.
8387
8388 NOTE: This can still lose if the serial line is not eight-bit
8389 clean. In cases like this, the user should clear "remote
8390 X-packet". */
8391
8392 void
8393 remote_target::check_binary_download (CORE_ADDR addr)
8394 {
8395 struct remote_state *rs = get_remote_state ();
8396
8397 switch (packet_support (PACKET_X))
8398 {
8399 case PACKET_DISABLE:
8400 break;
8401 case PACKET_ENABLE:
8402 break;
8403 case PACKET_SUPPORT_UNKNOWN:
8404 {
8405 char *p;
8406
8407 p = rs->buf.data ();
8408 *p++ = 'X';
8409 p += hexnumstr (p, (ULONGEST) addr);
8410 *p++ = ',';
8411 p += hexnumstr (p, (ULONGEST) 0);
8412 *p++ = ':';
8413 *p = '\0';
8414
8415 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8416 getpkt (&rs->buf, 0);
8417
8418 if (rs->buf[0] == '\0')
8419 {
8420 if (remote_debug)
8421 fprintf_unfiltered (gdb_stdlog,
8422 "binary downloading NOT "
8423 "supported by target\n");
8424 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8425 }
8426 else
8427 {
8428 if (remote_debug)
8429 fprintf_unfiltered (gdb_stdlog,
8430 "binary downloading supported by target\n");
8431 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8432 }
8433 break;
8434 }
8435 }
8436 }
8437
8438 /* Helper function to resize the payload in order to try to get a good
8439 alignment. We try to write an amount of data such that the next write will
8440 start on an address aligned on REMOTE_ALIGN_WRITES. */
8441
8442 static int
8443 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8444 {
8445 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8446 }
8447
8448 /* Write memory data directly to the remote machine.
8449 This does not inform the data cache; the data cache uses this.
8450 HEADER is the starting part of the packet.
8451 MEMADDR is the address in the remote memory space.
8452 MYADDR is the address of the buffer in our space.
8453 LEN_UNITS is the number of addressable units to write.
8454 UNIT_SIZE is the length in bytes of an addressable unit.
8455 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8456 should send data as binary ('X'), or hex-encoded ('M').
8457
8458 The function creates packet of the form
8459 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8460
8461 where encoding of <DATA> is terminated by PACKET_FORMAT.
8462
8463 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8464 are omitted.
8465
8466 Return the transferred status, error or OK (an
8467 'enum target_xfer_status' value). Save the number of addressable units
8468 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8469
8470 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8471 exchange between gdb and the stub could look like (?? in place of the
8472 checksum):
8473
8474 -> $m1000,4#??
8475 <- aaaabbbbccccdddd
8476
8477 -> $M1000,3:eeeeffffeeee#??
8478 <- OK
8479
8480 -> $m1000,4#??
8481 <- eeeeffffeeeedddd */
8482
8483 target_xfer_status
8484 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8485 const gdb_byte *myaddr,
8486 ULONGEST len_units,
8487 int unit_size,
8488 ULONGEST *xfered_len_units,
8489 char packet_format, int use_length)
8490 {
8491 struct remote_state *rs = get_remote_state ();
8492 char *p;
8493 char *plen = NULL;
8494 int plenlen = 0;
8495 int todo_units;
8496 int units_written;
8497 int payload_capacity_bytes;
8498 int payload_length_bytes;
8499
8500 if (packet_format != 'X' && packet_format != 'M')
8501 internal_error (__FILE__, __LINE__,
8502 _("remote_write_bytes_aux: bad packet format"));
8503
8504 if (len_units == 0)
8505 return TARGET_XFER_EOF;
8506
8507 payload_capacity_bytes = get_memory_write_packet_size ();
8508
8509 /* The packet buffer will be large enough for the payload;
8510 get_memory_packet_size ensures this. */
8511 rs->buf[0] = '\0';
8512
8513 /* Compute the size of the actual payload by subtracting out the
8514 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8515
8516 payload_capacity_bytes -= strlen ("$,:#NN");
8517 if (!use_length)
8518 /* The comma won't be used. */
8519 payload_capacity_bytes += 1;
8520 payload_capacity_bytes -= strlen (header);
8521 payload_capacity_bytes -= hexnumlen (memaddr);
8522
8523 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8524
8525 strcat (rs->buf.data (), header);
8526 p = rs->buf.data () + strlen (header);
8527
8528 /* Compute a best guess of the number of bytes actually transfered. */
8529 if (packet_format == 'X')
8530 {
8531 /* Best guess at number of bytes that will fit. */
8532 todo_units = std::min (len_units,
8533 (ULONGEST) payload_capacity_bytes / unit_size);
8534 if (use_length)
8535 payload_capacity_bytes -= hexnumlen (todo_units);
8536 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8537 }
8538 else
8539 {
8540 /* Number of bytes that will fit. */
8541 todo_units
8542 = std::min (len_units,
8543 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8544 if (use_length)
8545 payload_capacity_bytes -= hexnumlen (todo_units);
8546 todo_units = std::min (todo_units,
8547 (payload_capacity_bytes / unit_size) / 2);
8548 }
8549
8550 if (todo_units <= 0)
8551 internal_error (__FILE__, __LINE__,
8552 _("minimum packet size too small to write data"));
8553
8554 /* If we already need another packet, then try to align the end
8555 of this packet to a useful boundary. */
8556 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8557 todo_units = align_for_efficient_write (todo_units, memaddr);
8558
8559 /* Append "<memaddr>". */
8560 memaddr = remote_address_masked (memaddr);
8561 p += hexnumstr (p, (ULONGEST) memaddr);
8562
8563 if (use_length)
8564 {
8565 /* Append ",". */
8566 *p++ = ',';
8567
8568 /* Append the length and retain its location and size. It may need to be
8569 adjusted once the packet body has been created. */
8570 plen = p;
8571 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8572 p += plenlen;
8573 }
8574
8575 /* Append ":". */
8576 *p++ = ':';
8577 *p = '\0';
8578
8579 /* Append the packet body. */
8580 if (packet_format == 'X')
8581 {
8582 /* Binary mode. Send target system values byte by byte, in
8583 increasing byte addresses. Only escape certain critical
8584 characters. */
8585 payload_length_bytes =
8586 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8587 &units_written, payload_capacity_bytes);
8588
8589 /* If not all TODO units fit, then we'll need another packet. Make
8590 a second try to keep the end of the packet aligned. Don't do
8591 this if the packet is tiny. */
8592 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8593 {
8594 int new_todo_units;
8595
8596 new_todo_units = align_for_efficient_write (units_written, memaddr);
8597
8598 if (new_todo_units != units_written)
8599 payload_length_bytes =
8600 remote_escape_output (myaddr, new_todo_units, unit_size,
8601 (gdb_byte *) p, &units_written,
8602 payload_capacity_bytes);
8603 }
8604
8605 p += payload_length_bytes;
8606 if (use_length && units_written < todo_units)
8607 {
8608 /* Escape chars have filled up the buffer prematurely,
8609 and we have actually sent fewer units than planned.
8610 Fix-up the length field of the packet. Use the same
8611 number of characters as before. */
8612 plen += hexnumnstr (plen, (ULONGEST) units_written,
8613 plenlen);
8614 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8615 }
8616 }
8617 else
8618 {
8619 /* Normal mode: Send target system values byte by byte, in
8620 increasing byte addresses. Each byte is encoded as a two hex
8621 value. */
8622 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8623 units_written = todo_units;
8624 }
8625
8626 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8627 getpkt (&rs->buf, 0);
8628
8629 if (rs->buf[0] == 'E')
8630 return TARGET_XFER_E_IO;
8631
8632 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8633 send fewer units than we'd planned. */
8634 *xfered_len_units = (ULONGEST) units_written;
8635 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8636 }
8637
8638 /* Write memory data directly to the remote machine.
8639 This does not inform the data cache; the data cache uses this.
8640 MEMADDR is the address in the remote memory space.
8641 MYADDR is the address of the buffer in our space.
8642 LEN is the number of bytes.
8643
8644 Return the transferred status, error or OK (an
8645 'enum target_xfer_status' value). Save the number of bytes
8646 transferred in *XFERED_LEN. Only transfer a single packet. */
8647
8648 target_xfer_status
8649 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8650 ULONGEST len, int unit_size,
8651 ULONGEST *xfered_len)
8652 {
8653 const char *packet_format = NULL;
8654
8655 /* Check whether the target supports binary download. */
8656 check_binary_download (memaddr);
8657
8658 switch (packet_support (PACKET_X))
8659 {
8660 case PACKET_ENABLE:
8661 packet_format = "X";
8662 break;
8663 case PACKET_DISABLE:
8664 packet_format = "M";
8665 break;
8666 case PACKET_SUPPORT_UNKNOWN:
8667 internal_error (__FILE__, __LINE__,
8668 _("remote_write_bytes: bad internal state"));
8669 default:
8670 internal_error (__FILE__, __LINE__, _("bad switch"));
8671 }
8672
8673 return remote_write_bytes_aux (packet_format,
8674 memaddr, myaddr, len, unit_size, xfered_len,
8675 packet_format[0], 1);
8676 }
8677
8678 /* Read memory data directly from the remote machine.
8679 This does not use the data cache; the data cache uses this.
8680 MEMADDR is the address in the remote memory space.
8681 MYADDR is the address of the buffer in our space.
8682 LEN_UNITS is the number of addressable memory units to read..
8683 UNIT_SIZE is the length in bytes of an addressable unit.
8684
8685 Return the transferred status, error or OK (an
8686 'enum target_xfer_status' value). Save the number of bytes
8687 transferred in *XFERED_LEN_UNITS.
8688
8689 See the comment of remote_write_bytes_aux for an example of
8690 memory read/write exchange between gdb and the stub. */
8691
8692 target_xfer_status
8693 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8694 ULONGEST len_units,
8695 int unit_size, ULONGEST *xfered_len_units)
8696 {
8697 struct remote_state *rs = get_remote_state ();
8698 int buf_size_bytes; /* Max size of packet output buffer. */
8699 char *p;
8700 int todo_units;
8701 int decoded_bytes;
8702
8703 buf_size_bytes = get_memory_read_packet_size ();
8704 /* The packet buffer will be large enough for the payload;
8705 get_memory_packet_size ensures this. */
8706
8707 /* Number of units that will fit. */
8708 todo_units = std::min (len_units,
8709 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8710
8711 /* Construct "m"<memaddr>","<len>". */
8712 memaddr = remote_address_masked (memaddr);
8713 p = rs->buf.data ();
8714 *p++ = 'm';
8715 p += hexnumstr (p, (ULONGEST) memaddr);
8716 *p++ = ',';
8717 p += hexnumstr (p, (ULONGEST) todo_units);
8718 *p = '\0';
8719 putpkt (rs->buf);
8720 getpkt (&rs->buf, 0);
8721 if (rs->buf[0] == 'E'
8722 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8723 && rs->buf[3] == '\0')
8724 return TARGET_XFER_E_IO;
8725 /* Reply describes memory byte by byte, each byte encoded as two hex
8726 characters. */
8727 p = rs->buf.data ();
8728 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8729 /* Return what we have. Let higher layers handle partial reads. */
8730 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8731 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8732 }
8733
8734 /* Using the set of read-only target sections of remote, read live
8735 read-only memory.
8736
8737 For interface/parameters/return description see target.h,
8738 to_xfer_partial. */
8739
8740 target_xfer_status
8741 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8742 ULONGEST memaddr,
8743 ULONGEST len,
8744 int unit_size,
8745 ULONGEST *xfered_len)
8746 {
8747 struct target_section *secp;
8748 struct target_section_table *table;
8749
8750 secp = target_section_by_addr (this, memaddr);
8751 if (secp != NULL
8752 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8753 {
8754 struct target_section *p;
8755 ULONGEST memend = memaddr + len;
8756
8757 table = target_get_section_table (this);
8758
8759 for (p = table->sections; p < table->sections_end; p++)
8760 {
8761 if (memaddr >= p->addr)
8762 {
8763 if (memend <= p->endaddr)
8764 {
8765 /* Entire transfer is within this section. */
8766 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8767 xfered_len);
8768 }
8769 else if (memaddr >= p->endaddr)
8770 {
8771 /* This section ends before the transfer starts. */
8772 continue;
8773 }
8774 else
8775 {
8776 /* This section overlaps the transfer. Just do half. */
8777 len = p->endaddr - memaddr;
8778 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8779 xfered_len);
8780 }
8781 }
8782 }
8783 }
8784
8785 return TARGET_XFER_EOF;
8786 }
8787
8788 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8789 first if the requested memory is unavailable in traceframe.
8790 Otherwise, fall back to remote_read_bytes_1. */
8791
8792 target_xfer_status
8793 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8794 gdb_byte *myaddr, ULONGEST len, int unit_size,
8795 ULONGEST *xfered_len)
8796 {
8797 if (len == 0)
8798 return TARGET_XFER_EOF;
8799
8800 if (get_traceframe_number () != -1)
8801 {
8802 std::vector<mem_range> available;
8803
8804 /* If we fail to get the set of available memory, then the
8805 target does not support querying traceframe info, and so we
8806 attempt reading from the traceframe anyway (assuming the
8807 target implements the old QTro packet then). */
8808 if (traceframe_available_memory (&available, memaddr, len))
8809 {
8810 if (available.empty () || available[0].start != memaddr)
8811 {
8812 enum target_xfer_status res;
8813
8814 /* Don't read into the traceframe's available
8815 memory. */
8816 if (!available.empty ())
8817 {
8818 LONGEST oldlen = len;
8819
8820 len = available[0].start - memaddr;
8821 gdb_assert (len <= oldlen);
8822 }
8823
8824 /* This goes through the topmost target again. */
8825 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8826 len, unit_size, xfered_len);
8827 if (res == TARGET_XFER_OK)
8828 return TARGET_XFER_OK;
8829 else
8830 {
8831 /* No use trying further, we know some memory starting
8832 at MEMADDR isn't available. */
8833 *xfered_len = len;
8834 return (*xfered_len != 0) ?
8835 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8836 }
8837 }
8838
8839 /* Don't try to read more than how much is available, in
8840 case the target implements the deprecated QTro packet to
8841 cater for older GDBs (the target's knowledge of read-only
8842 sections may be outdated by now). */
8843 len = available[0].length;
8844 }
8845 }
8846
8847 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8848 }
8849
8850 \f
8851
8852 /* Sends a packet with content determined by the printf format string
8853 FORMAT and the remaining arguments, then gets the reply. Returns
8854 whether the packet was a success, a failure, or unknown. */
8855
8856 packet_result
8857 remote_target::remote_send_printf (const char *format, ...)
8858 {
8859 struct remote_state *rs = get_remote_state ();
8860 int max_size = get_remote_packet_size ();
8861 va_list ap;
8862
8863 va_start (ap, format);
8864
8865 rs->buf[0] = '\0';
8866 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8867
8868 va_end (ap);
8869
8870 if (size >= max_size)
8871 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8872
8873 if (putpkt (rs->buf) < 0)
8874 error (_("Communication problem with target."));
8875
8876 rs->buf[0] = '\0';
8877 getpkt (&rs->buf, 0);
8878
8879 return packet_check_result (rs->buf);
8880 }
8881
8882 /* Flash writing can take quite some time. We'll set
8883 effectively infinite timeout for flash operations.
8884 In future, we'll need to decide on a better approach. */
8885 static const int remote_flash_timeout = 1000;
8886
8887 void
8888 remote_target::flash_erase (ULONGEST address, LONGEST length)
8889 {
8890 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8891 enum packet_result ret;
8892 scoped_restore restore_timeout
8893 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8894
8895 ret = remote_send_printf ("vFlashErase:%s,%s",
8896 phex (address, addr_size),
8897 phex (length, 4));
8898 switch (ret)
8899 {
8900 case PACKET_UNKNOWN:
8901 error (_("Remote target does not support flash erase"));
8902 case PACKET_ERROR:
8903 error (_("Error erasing flash with vFlashErase packet"));
8904 default:
8905 break;
8906 }
8907 }
8908
8909 target_xfer_status
8910 remote_target::remote_flash_write (ULONGEST address,
8911 ULONGEST length, ULONGEST *xfered_len,
8912 const gdb_byte *data)
8913 {
8914 scoped_restore restore_timeout
8915 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8916 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8917 xfered_len,'X', 0);
8918 }
8919
8920 void
8921 remote_target::flash_done ()
8922 {
8923 int ret;
8924
8925 scoped_restore restore_timeout
8926 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8927
8928 ret = remote_send_printf ("vFlashDone");
8929
8930 switch (ret)
8931 {
8932 case PACKET_UNKNOWN:
8933 error (_("Remote target does not support vFlashDone"));
8934 case PACKET_ERROR:
8935 error (_("Error finishing flash operation"));
8936 default:
8937 break;
8938 }
8939 }
8940
8941 void
8942 remote_target::files_info ()
8943 {
8944 puts_filtered ("Debugging a target over a serial line.\n");
8945 }
8946 \f
8947 /* Stuff for dealing with the packets which are part of this protocol.
8948 See comment at top of file for details. */
8949
8950 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8951 error to higher layers. Called when a serial error is detected.
8952 The exception message is STRING, followed by a colon and a blank,
8953 the system error message for errno at function entry and final dot
8954 for output compatibility with throw_perror_with_name. */
8955
8956 static void
8957 unpush_and_perror (const char *string)
8958 {
8959 int saved_errno = errno;
8960
8961 remote_unpush_target ();
8962 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8963 safe_strerror (saved_errno));
8964 }
8965
8966 /* Read a single character from the remote end. The current quit
8967 handler is overridden to avoid quitting in the middle of packet
8968 sequence, as that would break communication with the remote server.
8969 See remote_serial_quit_handler for more detail. */
8970
8971 int
8972 remote_target::readchar (int timeout)
8973 {
8974 int ch;
8975 struct remote_state *rs = get_remote_state ();
8976
8977 {
8978 scoped_restore restore_quit_target
8979 = make_scoped_restore (&curr_quit_handler_target, this);
8980 scoped_restore restore_quit
8981 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8982
8983 rs->got_ctrlc_during_io = 0;
8984
8985 ch = serial_readchar (rs->remote_desc, timeout);
8986
8987 if (rs->got_ctrlc_during_io)
8988 set_quit_flag ();
8989 }
8990
8991 if (ch >= 0)
8992 return ch;
8993
8994 switch ((enum serial_rc) ch)
8995 {
8996 case SERIAL_EOF:
8997 remote_unpush_target ();
8998 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8999 /* no return */
9000 case SERIAL_ERROR:
9001 unpush_and_perror (_("Remote communication error. "
9002 "Target disconnected."));
9003 /* no return */
9004 case SERIAL_TIMEOUT:
9005 break;
9006 }
9007 return ch;
9008 }
9009
9010 /* Wrapper for serial_write that closes the target and throws if
9011 writing fails. The current quit handler is overridden to avoid
9012 quitting in the middle of packet sequence, as that would break
9013 communication with the remote server. See
9014 remote_serial_quit_handler for more detail. */
9015
9016 void
9017 remote_target::remote_serial_write (const char *str, int len)
9018 {
9019 struct remote_state *rs = get_remote_state ();
9020
9021 scoped_restore restore_quit_target
9022 = make_scoped_restore (&curr_quit_handler_target, this);
9023 scoped_restore restore_quit
9024 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9025
9026 rs->got_ctrlc_during_io = 0;
9027
9028 if (serial_write (rs->remote_desc, str, len))
9029 {
9030 unpush_and_perror (_("Remote communication error. "
9031 "Target disconnected."));
9032 }
9033
9034 if (rs->got_ctrlc_during_io)
9035 set_quit_flag ();
9036 }
9037
9038 /* Return a string representing an escaped version of BUF, of len N.
9039 E.g. \n is converted to \\n, \t to \\t, etc. */
9040
9041 static std::string
9042 escape_buffer (const char *buf, int n)
9043 {
9044 string_file stb;
9045
9046 stb.putstrn (buf, n, '\\');
9047 return std::move (stb.string ());
9048 }
9049
9050 /* Display a null-terminated packet on stdout, for debugging, using C
9051 string notation. */
9052
9053 static void
9054 print_packet (const char *buf)
9055 {
9056 puts_filtered ("\"");
9057 fputstr_filtered (buf, '"', gdb_stdout);
9058 puts_filtered ("\"");
9059 }
9060
9061 int
9062 remote_target::putpkt (const char *buf)
9063 {
9064 return putpkt_binary (buf, strlen (buf));
9065 }
9066
9067 /* Wrapper around remote_target::putpkt to avoid exporting
9068 remote_target. */
9069
9070 int
9071 putpkt (remote_target *remote, const char *buf)
9072 {
9073 return remote->putpkt (buf);
9074 }
9075
9076 /* Send a packet to the remote machine, with error checking. The data
9077 of the packet is in BUF. The string in BUF can be at most
9078 get_remote_packet_size () - 5 to account for the $, # and checksum,
9079 and for a possible /0 if we are debugging (remote_debug) and want
9080 to print the sent packet as a string. */
9081
9082 int
9083 remote_target::putpkt_binary (const char *buf, int cnt)
9084 {
9085 struct remote_state *rs = get_remote_state ();
9086 int i;
9087 unsigned char csum = 0;
9088 gdb::def_vector<char> data (cnt + 6);
9089 char *buf2 = data.data ();
9090
9091 int ch;
9092 int tcount = 0;
9093 char *p;
9094
9095 /* Catch cases like trying to read memory or listing threads while
9096 we're waiting for a stop reply. The remote server wouldn't be
9097 ready to handle this request, so we'd hang and timeout. We don't
9098 have to worry about this in synchronous mode, because in that
9099 case it's not possible to issue a command while the target is
9100 running. This is not a problem in non-stop mode, because in that
9101 case, the stub is always ready to process serial input. */
9102 if (!target_is_non_stop_p ()
9103 && target_is_async_p ()
9104 && rs->waiting_for_stop_reply)
9105 {
9106 error (_("Cannot execute this command while the target is running.\n"
9107 "Use the \"interrupt\" command to stop the target\n"
9108 "and then try again."));
9109 }
9110
9111 /* We're sending out a new packet. Make sure we don't look at a
9112 stale cached response. */
9113 rs->cached_wait_status = 0;
9114
9115 /* Copy the packet into buffer BUF2, encapsulating it
9116 and giving it a checksum. */
9117
9118 p = buf2;
9119 *p++ = '$';
9120
9121 for (i = 0; i < cnt; i++)
9122 {
9123 csum += buf[i];
9124 *p++ = buf[i];
9125 }
9126 *p++ = '#';
9127 *p++ = tohex ((csum >> 4) & 0xf);
9128 *p++ = tohex (csum & 0xf);
9129
9130 /* Send it over and over until we get a positive ack. */
9131
9132 while (1)
9133 {
9134 int started_error_output = 0;
9135
9136 if (remote_debug)
9137 {
9138 *p = '\0';
9139
9140 int len = (int) (p - buf2);
9141
9142 std::string str
9143 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9144
9145 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9146
9147 if (len > REMOTE_DEBUG_MAX_CHAR)
9148 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9149 len - REMOTE_DEBUG_MAX_CHAR);
9150
9151 fprintf_unfiltered (gdb_stdlog, "...");
9152
9153 gdb_flush (gdb_stdlog);
9154 }
9155 remote_serial_write (buf2, p - buf2);
9156
9157 /* If this is a no acks version of the remote protocol, send the
9158 packet and move on. */
9159 if (rs->noack_mode)
9160 break;
9161
9162 /* Read until either a timeout occurs (-2) or '+' is read.
9163 Handle any notification that arrives in the mean time. */
9164 while (1)
9165 {
9166 ch = readchar (remote_timeout);
9167
9168 if (remote_debug)
9169 {
9170 switch (ch)
9171 {
9172 case '+':
9173 case '-':
9174 case SERIAL_TIMEOUT:
9175 case '$':
9176 case '%':
9177 if (started_error_output)
9178 {
9179 putchar_unfiltered ('\n');
9180 started_error_output = 0;
9181 }
9182 }
9183 }
9184
9185 switch (ch)
9186 {
9187 case '+':
9188 if (remote_debug)
9189 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9190 return 1;
9191 case '-':
9192 if (remote_debug)
9193 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9194 /* FALLTHROUGH */
9195 case SERIAL_TIMEOUT:
9196 tcount++;
9197 if (tcount > 3)
9198 return 0;
9199 break; /* Retransmit buffer. */
9200 case '$':
9201 {
9202 if (remote_debug)
9203 fprintf_unfiltered (gdb_stdlog,
9204 "Packet instead of Ack, ignoring it\n");
9205 /* It's probably an old response sent because an ACK
9206 was lost. Gobble up the packet and ack it so it
9207 doesn't get retransmitted when we resend this
9208 packet. */
9209 skip_frame ();
9210 remote_serial_write ("+", 1);
9211 continue; /* Now, go look for +. */
9212 }
9213
9214 case '%':
9215 {
9216 int val;
9217
9218 /* If we got a notification, handle it, and go back to looking
9219 for an ack. */
9220 /* We've found the start of a notification. Now
9221 collect the data. */
9222 val = read_frame (&rs->buf);
9223 if (val >= 0)
9224 {
9225 if (remote_debug)
9226 {
9227 std::string str = escape_buffer (rs->buf.data (), val);
9228
9229 fprintf_unfiltered (gdb_stdlog,
9230 " Notification received: %s\n",
9231 str.c_str ());
9232 }
9233 handle_notification (rs->notif_state, rs->buf.data ());
9234 /* We're in sync now, rewait for the ack. */
9235 tcount = 0;
9236 }
9237 else
9238 {
9239 if (remote_debug)
9240 {
9241 if (!started_error_output)
9242 {
9243 started_error_output = 1;
9244 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9245 }
9246 fputc_unfiltered (ch & 0177, gdb_stdlog);
9247 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9248 }
9249 }
9250 continue;
9251 }
9252 /* fall-through */
9253 default:
9254 if (remote_debug)
9255 {
9256 if (!started_error_output)
9257 {
9258 started_error_output = 1;
9259 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9260 }
9261 fputc_unfiltered (ch & 0177, gdb_stdlog);
9262 }
9263 continue;
9264 }
9265 break; /* Here to retransmit. */
9266 }
9267
9268 #if 0
9269 /* This is wrong. If doing a long backtrace, the user should be
9270 able to get out next time we call QUIT, without anything as
9271 violent as interrupt_query. If we want to provide a way out of
9272 here without getting to the next QUIT, it should be based on
9273 hitting ^C twice as in remote_wait. */
9274 if (quit_flag)
9275 {
9276 quit_flag = 0;
9277 interrupt_query ();
9278 }
9279 #endif
9280 }
9281
9282 return 0;
9283 }
9284
9285 /* Come here after finding the start of a frame when we expected an
9286 ack. Do our best to discard the rest of this packet. */
9287
9288 void
9289 remote_target::skip_frame ()
9290 {
9291 int c;
9292
9293 while (1)
9294 {
9295 c = readchar (remote_timeout);
9296 switch (c)
9297 {
9298 case SERIAL_TIMEOUT:
9299 /* Nothing we can do. */
9300 return;
9301 case '#':
9302 /* Discard the two bytes of checksum and stop. */
9303 c = readchar (remote_timeout);
9304 if (c >= 0)
9305 c = readchar (remote_timeout);
9306
9307 return;
9308 case '*': /* Run length encoding. */
9309 /* Discard the repeat count. */
9310 c = readchar (remote_timeout);
9311 if (c < 0)
9312 return;
9313 break;
9314 default:
9315 /* A regular character. */
9316 break;
9317 }
9318 }
9319 }
9320
9321 /* Come here after finding the start of the frame. Collect the rest
9322 into *BUF, verifying the checksum, length, and handling run-length
9323 compression. NUL terminate the buffer. If there is not enough room,
9324 expand *BUF.
9325
9326 Returns -1 on error, number of characters in buffer (ignoring the
9327 trailing NULL) on success. (could be extended to return one of the
9328 SERIAL status indications). */
9329
9330 long
9331 remote_target::read_frame (gdb::char_vector *buf_p)
9332 {
9333 unsigned char csum;
9334 long bc;
9335 int c;
9336 char *buf = buf_p->data ();
9337 struct remote_state *rs = get_remote_state ();
9338
9339 csum = 0;
9340 bc = 0;
9341
9342 while (1)
9343 {
9344 c = readchar (remote_timeout);
9345 switch (c)
9346 {
9347 case SERIAL_TIMEOUT:
9348 if (remote_debug)
9349 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9350 return -1;
9351 case '$':
9352 if (remote_debug)
9353 fputs_filtered ("Saw new packet start in middle of old one\n",
9354 gdb_stdlog);
9355 return -1; /* Start a new packet, count retries. */
9356 case '#':
9357 {
9358 unsigned char pktcsum;
9359 int check_0 = 0;
9360 int check_1 = 0;
9361
9362 buf[bc] = '\0';
9363
9364 check_0 = readchar (remote_timeout);
9365 if (check_0 >= 0)
9366 check_1 = readchar (remote_timeout);
9367
9368 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9369 {
9370 if (remote_debug)
9371 fputs_filtered ("Timeout in checksum, retrying\n",
9372 gdb_stdlog);
9373 return -1;
9374 }
9375 else if (check_0 < 0 || check_1 < 0)
9376 {
9377 if (remote_debug)
9378 fputs_filtered ("Communication error in checksum\n",
9379 gdb_stdlog);
9380 return -1;
9381 }
9382
9383 /* Don't recompute the checksum; with no ack packets we
9384 don't have any way to indicate a packet retransmission
9385 is necessary. */
9386 if (rs->noack_mode)
9387 return bc;
9388
9389 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9390 if (csum == pktcsum)
9391 return bc;
9392
9393 if (remote_debug)
9394 {
9395 std::string str = escape_buffer (buf, bc);
9396
9397 fprintf_unfiltered (gdb_stdlog,
9398 "Bad checksum, sentsum=0x%x, "
9399 "csum=0x%x, buf=%s\n",
9400 pktcsum, csum, str.c_str ());
9401 }
9402 /* Number of characters in buffer ignoring trailing
9403 NULL. */
9404 return -1;
9405 }
9406 case '*': /* Run length encoding. */
9407 {
9408 int repeat;
9409
9410 csum += c;
9411 c = readchar (remote_timeout);
9412 csum += c;
9413 repeat = c - ' ' + 3; /* Compute repeat count. */
9414
9415 /* The character before ``*'' is repeated. */
9416
9417 if (repeat > 0 && repeat <= 255 && bc > 0)
9418 {
9419 if (bc + repeat - 1 >= buf_p->size () - 1)
9420 {
9421 /* Make some more room in the buffer. */
9422 buf_p->resize (buf_p->size () + repeat);
9423 buf = buf_p->data ();
9424 }
9425
9426 memset (&buf[bc], buf[bc - 1], repeat);
9427 bc += repeat;
9428 continue;
9429 }
9430
9431 buf[bc] = '\0';
9432 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9433 return -1;
9434 }
9435 default:
9436 if (bc >= buf_p->size () - 1)
9437 {
9438 /* Make some more room in the buffer. */
9439 buf_p->resize (buf_p->size () * 2);
9440 buf = buf_p->data ();
9441 }
9442
9443 buf[bc++] = c;
9444 csum += c;
9445 continue;
9446 }
9447 }
9448 }
9449
9450 /* Set this to the maximum number of seconds to wait instead of waiting forever
9451 in target_wait(). If this timer times out, then it generates an error and
9452 the command is aborted. This replaces most of the need for timeouts in the
9453 GDB test suite, and makes it possible to distinguish between a hung target
9454 and one with slow communications. */
9455
9456 static int watchdog = 0;
9457 static void
9458 show_watchdog (struct ui_file *file, int from_tty,
9459 struct cmd_list_element *c, const char *value)
9460 {
9461 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9462 }
9463
9464 /* Read a packet from the remote machine, with error checking, and
9465 store it in *BUF. Resize *BUF if necessary to hold the result. If
9466 FOREVER, wait forever rather than timing out; this is used (in
9467 synchronous mode) to wait for a target that is is executing user
9468 code to stop. */
9469 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9470 don't have to change all the calls to getpkt to deal with the
9471 return value, because at the moment I don't know what the right
9472 thing to do it for those. */
9473
9474 void
9475 remote_target::getpkt (gdb::char_vector *buf, int forever)
9476 {
9477 getpkt_sane (buf, forever);
9478 }
9479
9480
9481 /* Read a packet from the remote machine, with error checking, and
9482 store it in *BUF. Resize *BUF if necessary to hold the result. If
9483 FOREVER, wait forever rather than timing out; this is used (in
9484 synchronous mode) to wait for a target that is is executing user
9485 code to stop. If FOREVER == 0, this function is allowed to time
9486 out gracefully and return an indication of this to the caller.
9487 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9488 consider receiving a notification enough reason to return to the
9489 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9490 holds a notification or not (a regular packet). */
9491
9492 int
9493 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9494 int forever, int expecting_notif,
9495 int *is_notif)
9496 {
9497 struct remote_state *rs = get_remote_state ();
9498 int c;
9499 int tries;
9500 int timeout;
9501 int val = -1;
9502
9503 /* We're reading a new response. Make sure we don't look at a
9504 previously cached response. */
9505 rs->cached_wait_status = 0;
9506
9507 strcpy (buf->data (), "timeout");
9508
9509 if (forever)
9510 timeout = watchdog > 0 ? watchdog : -1;
9511 else if (expecting_notif)
9512 timeout = 0; /* There should already be a char in the buffer. If
9513 not, bail out. */
9514 else
9515 timeout = remote_timeout;
9516
9517 #define MAX_TRIES 3
9518
9519 /* Process any number of notifications, and then return when
9520 we get a packet. */
9521 for (;;)
9522 {
9523 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9524 times. */
9525 for (tries = 1; tries <= MAX_TRIES; tries++)
9526 {
9527 /* This can loop forever if the remote side sends us
9528 characters continuously, but if it pauses, we'll get
9529 SERIAL_TIMEOUT from readchar because of timeout. Then
9530 we'll count that as a retry.
9531
9532 Note that even when forever is set, we will only wait
9533 forever prior to the start of a packet. After that, we
9534 expect characters to arrive at a brisk pace. They should
9535 show up within remote_timeout intervals. */
9536 do
9537 c = readchar (timeout);
9538 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9539
9540 if (c == SERIAL_TIMEOUT)
9541 {
9542 if (expecting_notif)
9543 return -1; /* Don't complain, it's normal to not get
9544 anything in this case. */
9545
9546 if (forever) /* Watchdog went off? Kill the target. */
9547 {
9548 remote_unpush_target ();
9549 throw_error (TARGET_CLOSE_ERROR,
9550 _("Watchdog timeout has expired. "
9551 "Target detached."));
9552 }
9553 if (remote_debug)
9554 fputs_filtered ("Timed out.\n", gdb_stdlog);
9555 }
9556 else
9557 {
9558 /* We've found the start of a packet or notification.
9559 Now collect the data. */
9560 val = read_frame (buf);
9561 if (val >= 0)
9562 break;
9563 }
9564
9565 remote_serial_write ("-", 1);
9566 }
9567
9568 if (tries > MAX_TRIES)
9569 {
9570 /* We have tried hard enough, and just can't receive the
9571 packet/notification. Give up. */
9572 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9573
9574 /* Skip the ack char if we're in no-ack mode. */
9575 if (!rs->noack_mode)
9576 remote_serial_write ("+", 1);
9577 return -1;
9578 }
9579
9580 /* If we got an ordinary packet, return that to our caller. */
9581 if (c == '$')
9582 {
9583 if (remote_debug)
9584 {
9585 std::string str
9586 = escape_buffer (buf->data (),
9587 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9588
9589 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9590 str.c_str ());
9591
9592 if (val > REMOTE_DEBUG_MAX_CHAR)
9593 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9594 val - REMOTE_DEBUG_MAX_CHAR);
9595
9596 fprintf_unfiltered (gdb_stdlog, "\n");
9597 }
9598
9599 /* Skip the ack char if we're in no-ack mode. */
9600 if (!rs->noack_mode)
9601 remote_serial_write ("+", 1);
9602 if (is_notif != NULL)
9603 *is_notif = 0;
9604 return val;
9605 }
9606
9607 /* If we got a notification, handle it, and go back to looking
9608 for a packet. */
9609 else
9610 {
9611 gdb_assert (c == '%');
9612
9613 if (remote_debug)
9614 {
9615 std::string str = escape_buffer (buf->data (), val);
9616
9617 fprintf_unfiltered (gdb_stdlog,
9618 " Notification received: %s\n",
9619 str.c_str ());
9620 }
9621 if (is_notif != NULL)
9622 *is_notif = 1;
9623
9624 handle_notification (rs->notif_state, buf->data ());
9625
9626 /* Notifications require no acknowledgement. */
9627
9628 if (expecting_notif)
9629 return val;
9630 }
9631 }
9632 }
9633
9634 int
9635 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9636 {
9637 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9638 }
9639
9640 int
9641 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9642 int *is_notif)
9643 {
9644 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9645 }
9646
9647 /* Kill any new fork children of process PID that haven't been
9648 processed by follow_fork. */
9649
9650 void
9651 remote_target::kill_new_fork_children (int pid)
9652 {
9653 remote_state *rs = get_remote_state ();
9654 struct notif_client *notif = &notif_client_stop;
9655
9656 /* Kill the fork child threads of any threads in process PID
9657 that are stopped at a fork event. */
9658 for (thread_info *thread : all_non_exited_threads ())
9659 {
9660 struct target_waitstatus *ws = &thread->pending_follow;
9661
9662 if (is_pending_fork_parent (ws, pid, thread->ptid))
9663 {
9664 int child_pid = ws->value.related_pid.pid ();
9665 int res;
9666
9667 res = remote_vkill (child_pid);
9668 if (res != 0)
9669 error (_("Can't kill fork child process %d"), child_pid);
9670 }
9671 }
9672
9673 /* Check for any pending fork events (not reported or processed yet)
9674 in process PID and kill those fork child threads as well. */
9675 remote_notif_get_pending_events (notif);
9676 for (auto &event : rs->stop_reply_queue)
9677 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9678 {
9679 int child_pid = event->ws.value.related_pid.pid ();
9680 int res;
9681
9682 res = remote_vkill (child_pid);
9683 if (res != 0)
9684 error (_("Can't kill fork child process %d"), child_pid);
9685 }
9686 }
9687
9688 \f
9689 /* Target hook to kill the current inferior. */
9690
9691 void
9692 remote_target::kill ()
9693 {
9694 int res = -1;
9695 int pid = inferior_ptid.pid ();
9696 struct remote_state *rs = get_remote_state ();
9697
9698 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9699 {
9700 /* If we're stopped while forking and we haven't followed yet,
9701 kill the child task. We need to do this before killing the
9702 parent task because if this is a vfork then the parent will
9703 be sleeping. */
9704 kill_new_fork_children (pid);
9705
9706 res = remote_vkill (pid);
9707 if (res == 0)
9708 {
9709 target_mourn_inferior (inferior_ptid);
9710 return;
9711 }
9712 }
9713
9714 /* If we are in 'target remote' mode and we are killing the only
9715 inferior, then we will tell gdbserver to exit and unpush the
9716 target. */
9717 if (res == -1 && !remote_multi_process_p (rs)
9718 && number_of_live_inferiors () == 1)
9719 {
9720 remote_kill_k ();
9721
9722 /* We've killed the remote end, we get to mourn it. If we are
9723 not in extended mode, mourning the inferior also unpushes
9724 remote_ops from the target stack, which closes the remote
9725 connection. */
9726 target_mourn_inferior (inferior_ptid);
9727
9728 return;
9729 }
9730
9731 error (_("Can't kill process"));
9732 }
9733
9734 /* Send a kill request to the target using the 'vKill' packet. */
9735
9736 int
9737 remote_target::remote_vkill (int pid)
9738 {
9739 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9740 return -1;
9741
9742 remote_state *rs = get_remote_state ();
9743
9744 /* Tell the remote target to detach. */
9745 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9746 putpkt (rs->buf);
9747 getpkt (&rs->buf, 0);
9748
9749 switch (packet_ok (rs->buf,
9750 &remote_protocol_packets[PACKET_vKill]))
9751 {
9752 case PACKET_OK:
9753 return 0;
9754 case PACKET_ERROR:
9755 return 1;
9756 case PACKET_UNKNOWN:
9757 return -1;
9758 default:
9759 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9760 }
9761 }
9762
9763 /* Send a kill request to the target using the 'k' packet. */
9764
9765 void
9766 remote_target::remote_kill_k ()
9767 {
9768 /* Catch errors so the user can quit from gdb even when we
9769 aren't on speaking terms with the remote system. */
9770 try
9771 {
9772 putpkt ("k");
9773 }
9774 catch (const gdb_exception_error &ex)
9775 {
9776 if (ex.error == TARGET_CLOSE_ERROR)
9777 {
9778 /* If we got an (EOF) error that caused the target
9779 to go away, then we're done, that's what we wanted.
9780 "k" is susceptible to cause a premature EOF, given
9781 that the remote server isn't actually required to
9782 reply to "k", and it can happen that it doesn't
9783 even get to reply ACK to the "k". */
9784 return;
9785 }
9786
9787 /* Otherwise, something went wrong. We didn't actually kill
9788 the target. Just propagate the exception, and let the
9789 user or higher layers decide what to do. */
9790 throw;
9791 }
9792 }
9793
9794 void
9795 remote_target::mourn_inferior ()
9796 {
9797 struct remote_state *rs = get_remote_state ();
9798
9799 /* We're no longer interested in notification events of an inferior
9800 that exited or was killed/detached. */
9801 discard_pending_stop_replies (current_inferior ());
9802
9803 /* In 'target remote' mode with one inferior, we close the connection. */
9804 if (!rs->extended && number_of_live_inferiors () <= 1)
9805 {
9806 unpush_target (this);
9807
9808 /* remote_close takes care of doing most of the clean up. */
9809 generic_mourn_inferior ();
9810 return;
9811 }
9812
9813 /* In case we got here due to an error, but we're going to stay
9814 connected. */
9815 rs->waiting_for_stop_reply = 0;
9816
9817 /* If the current general thread belonged to the process we just
9818 detached from or has exited, the remote side current general
9819 thread becomes undefined. Considering a case like this:
9820
9821 - We just got here due to a detach.
9822 - The process that we're detaching from happens to immediately
9823 report a global breakpoint being hit in non-stop mode, in the
9824 same thread we had selected before.
9825 - GDB attaches to this process again.
9826 - This event happens to be the next event we handle.
9827
9828 GDB would consider that the current general thread didn't need to
9829 be set on the stub side (with Hg), since for all it knew,
9830 GENERAL_THREAD hadn't changed.
9831
9832 Notice that although in all-stop mode, the remote server always
9833 sets the current thread to the thread reporting the stop event,
9834 that doesn't happen in non-stop mode; in non-stop, the stub *must
9835 not* change the current thread when reporting a breakpoint hit,
9836 due to the decoupling of event reporting and event handling.
9837
9838 To keep things simple, we always invalidate our notion of the
9839 current thread. */
9840 record_currthread (rs, minus_one_ptid);
9841
9842 /* Call common code to mark the inferior as not running. */
9843 generic_mourn_inferior ();
9844
9845 if (!have_inferiors ())
9846 {
9847 if (!remote_multi_process_p (rs))
9848 {
9849 /* Check whether the target is running now - some remote stubs
9850 automatically restart after kill. */
9851 putpkt ("?");
9852 getpkt (&rs->buf, 0);
9853
9854 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9855 {
9856 /* Assume that the target has been restarted. Set
9857 inferior_ptid so that bits of core GDB realizes
9858 there's something here, e.g., so that the user can
9859 say "kill" again. */
9860 inferior_ptid = magic_null_ptid;
9861 }
9862 }
9863 }
9864 }
9865
9866 bool
9867 extended_remote_target::supports_disable_randomization ()
9868 {
9869 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9870 }
9871
9872 void
9873 remote_target::extended_remote_disable_randomization (int val)
9874 {
9875 struct remote_state *rs = get_remote_state ();
9876 char *reply;
9877
9878 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9879 "QDisableRandomization:%x", val);
9880 putpkt (rs->buf);
9881 reply = remote_get_noisy_reply ();
9882 if (*reply == '\0')
9883 error (_("Target does not support QDisableRandomization."));
9884 if (strcmp (reply, "OK") != 0)
9885 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9886 }
9887
9888 int
9889 remote_target::extended_remote_run (const std::string &args)
9890 {
9891 struct remote_state *rs = get_remote_state ();
9892 int len;
9893 const char *remote_exec_file = get_remote_exec_file ();
9894
9895 /* If the user has disabled vRun support, or we have detected that
9896 support is not available, do not try it. */
9897 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9898 return -1;
9899
9900 strcpy (rs->buf.data (), "vRun;");
9901 len = strlen (rs->buf.data ());
9902
9903 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9904 error (_("Remote file name too long for run packet"));
9905 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9906 strlen (remote_exec_file));
9907
9908 if (!args.empty ())
9909 {
9910 int i;
9911
9912 gdb_argv argv (args.c_str ());
9913 for (i = 0; argv[i] != NULL; i++)
9914 {
9915 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9916 error (_("Argument list too long for run packet"));
9917 rs->buf[len++] = ';';
9918 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9919 strlen (argv[i]));
9920 }
9921 }
9922
9923 rs->buf[len++] = '\0';
9924
9925 putpkt (rs->buf);
9926 getpkt (&rs->buf, 0);
9927
9928 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9929 {
9930 case PACKET_OK:
9931 /* We have a wait response. All is well. */
9932 return 0;
9933 case PACKET_UNKNOWN:
9934 return -1;
9935 case PACKET_ERROR:
9936 if (remote_exec_file[0] == '\0')
9937 error (_("Running the default executable on the remote target failed; "
9938 "try \"set remote exec-file\"?"));
9939 else
9940 error (_("Running \"%s\" on the remote target failed"),
9941 remote_exec_file);
9942 default:
9943 gdb_assert_not_reached (_("bad switch"));
9944 }
9945 }
9946
9947 /* Helper function to send set/unset environment packets. ACTION is
9948 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9949 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9950 sent. */
9951
9952 void
9953 remote_target::send_environment_packet (const char *action,
9954 const char *packet,
9955 const char *value)
9956 {
9957 remote_state *rs = get_remote_state ();
9958
9959 /* Convert the environment variable to an hex string, which
9960 is the best format to be transmitted over the wire. */
9961 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9962 strlen (value));
9963
9964 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9965 "%s:%s", packet, encoded_value.c_str ());
9966
9967 putpkt (rs->buf);
9968 getpkt (&rs->buf, 0);
9969 if (strcmp (rs->buf.data (), "OK") != 0)
9970 warning (_("Unable to %s environment variable '%s' on remote."),
9971 action, value);
9972 }
9973
9974 /* Helper function to handle the QEnvironment* packets. */
9975
9976 void
9977 remote_target::extended_remote_environment_support ()
9978 {
9979 remote_state *rs = get_remote_state ();
9980
9981 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9982 {
9983 putpkt ("QEnvironmentReset");
9984 getpkt (&rs->buf, 0);
9985 if (strcmp (rs->buf.data (), "OK") != 0)
9986 warning (_("Unable to reset environment on remote."));
9987 }
9988
9989 gdb_environ *e = &current_inferior ()->environment;
9990
9991 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9992 for (const std::string &el : e->user_set_env ())
9993 send_environment_packet ("set", "QEnvironmentHexEncoded",
9994 el.c_str ());
9995
9996 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9997 for (const std::string &el : e->user_unset_env ())
9998 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9999 }
10000
10001 /* Helper function to set the current working directory for the
10002 inferior in the remote target. */
10003
10004 void
10005 remote_target::extended_remote_set_inferior_cwd ()
10006 {
10007 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10008 {
10009 const char *inferior_cwd = get_inferior_cwd ();
10010 remote_state *rs = get_remote_state ();
10011
10012 if (inferior_cwd != NULL)
10013 {
10014 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10015 strlen (inferior_cwd));
10016
10017 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10018 "QSetWorkingDir:%s", hexpath.c_str ());
10019 }
10020 else
10021 {
10022 /* An empty inferior_cwd means that the user wants us to
10023 reset the remote server's inferior's cwd. */
10024 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10025 "QSetWorkingDir:");
10026 }
10027
10028 putpkt (rs->buf);
10029 getpkt (&rs->buf, 0);
10030 if (packet_ok (rs->buf,
10031 &remote_protocol_packets[PACKET_QSetWorkingDir])
10032 != PACKET_OK)
10033 error (_("\
10034 Remote replied unexpectedly while setting the inferior's working\n\
10035 directory: %s"),
10036 rs->buf.data ());
10037
10038 }
10039 }
10040
10041 /* In the extended protocol we want to be able to do things like
10042 "run" and have them basically work as expected. So we need
10043 a special create_inferior function. We support changing the
10044 executable file and the command line arguments, but not the
10045 environment. */
10046
10047 void
10048 extended_remote_target::create_inferior (const char *exec_file,
10049 const std::string &args,
10050 char **env, int from_tty)
10051 {
10052 int run_worked;
10053 char *stop_reply;
10054 struct remote_state *rs = get_remote_state ();
10055 const char *remote_exec_file = get_remote_exec_file ();
10056
10057 /* If running asynchronously, register the target file descriptor
10058 with the event loop. */
10059 if (target_can_async_p ())
10060 target_async (1);
10061
10062 /* Disable address space randomization if requested (and supported). */
10063 if (supports_disable_randomization ())
10064 extended_remote_disable_randomization (disable_randomization);
10065
10066 /* If startup-with-shell is on, we inform gdbserver to start the
10067 remote inferior using a shell. */
10068 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10069 {
10070 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10071 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10072 putpkt (rs->buf);
10073 getpkt (&rs->buf, 0);
10074 if (strcmp (rs->buf.data (), "OK") != 0)
10075 error (_("\
10076 Remote replied unexpectedly while setting startup-with-shell: %s"),
10077 rs->buf.data ());
10078 }
10079
10080 extended_remote_environment_support ();
10081
10082 extended_remote_set_inferior_cwd ();
10083
10084 /* Now restart the remote server. */
10085 run_worked = extended_remote_run (args) != -1;
10086 if (!run_worked)
10087 {
10088 /* vRun was not supported. Fail if we need it to do what the
10089 user requested. */
10090 if (remote_exec_file[0])
10091 error (_("Remote target does not support \"set remote exec-file\""));
10092 if (!args.empty ())
10093 error (_("Remote target does not support \"set args\" or run ARGS"));
10094
10095 /* Fall back to "R". */
10096 extended_remote_restart ();
10097 }
10098
10099 /* vRun's success return is a stop reply. */
10100 stop_reply = run_worked ? rs->buf.data () : NULL;
10101 add_current_inferior_and_thread (stop_reply);
10102
10103 /* Get updated offsets, if the stub uses qOffsets. */
10104 get_offsets ();
10105 }
10106 \f
10107
10108 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10109 the list of conditions (in agent expression bytecode format), if any, the
10110 target needs to evaluate. The output is placed into the packet buffer
10111 started from BUF and ended at BUF_END. */
10112
10113 static int
10114 remote_add_target_side_condition (struct gdbarch *gdbarch,
10115 struct bp_target_info *bp_tgt, char *buf,
10116 char *buf_end)
10117 {
10118 if (bp_tgt->conditions.empty ())
10119 return 0;
10120
10121 buf += strlen (buf);
10122 xsnprintf (buf, buf_end - buf, "%s", ";");
10123 buf++;
10124
10125 /* Send conditions to the target. */
10126 for (agent_expr *aexpr : bp_tgt->conditions)
10127 {
10128 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10129 buf += strlen (buf);
10130 for (int i = 0; i < aexpr->len; ++i)
10131 buf = pack_hex_byte (buf, aexpr->buf[i]);
10132 *buf = '\0';
10133 }
10134 return 0;
10135 }
10136
10137 static void
10138 remote_add_target_side_commands (struct gdbarch *gdbarch,
10139 struct bp_target_info *bp_tgt, char *buf)
10140 {
10141 if (bp_tgt->tcommands.empty ())
10142 return;
10143
10144 buf += strlen (buf);
10145
10146 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10147 buf += strlen (buf);
10148
10149 /* Concatenate all the agent expressions that are commands into the
10150 cmds parameter. */
10151 for (agent_expr *aexpr : bp_tgt->tcommands)
10152 {
10153 sprintf (buf, "X%x,", aexpr->len);
10154 buf += strlen (buf);
10155 for (int i = 0; i < aexpr->len; ++i)
10156 buf = pack_hex_byte (buf, aexpr->buf[i]);
10157 *buf = '\0';
10158 }
10159 }
10160
10161 /* Insert a breakpoint. On targets that have software breakpoint
10162 support, we ask the remote target to do the work; on targets
10163 which don't, we insert a traditional memory breakpoint. */
10164
10165 int
10166 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10167 struct bp_target_info *bp_tgt)
10168 {
10169 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10170 If it succeeds, then set the support to PACKET_ENABLE. If it
10171 fails, and the user has explicitly requested the Z support then
10172 report an error, otherwise, mark it disabled and go on. */
10173
10174 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10175 {
10176 CORE_ADDR addr = bp_tgt->reqstd_address;
10177 struct remote_state *rs;
10178 char *p, *endbuf;
10179
10180 /* Make sure the remote is pointing at the right process, if
10181 necessary. */
10182 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10183 set_general_process ();
10184
10185 rs = get_remote_state ();
10186 p = rs->buf.data ();
10187 endbuf = p + get_remote_packet_size ();
10188
10189 *(p++) = 'Z';
10190 *(p++) = '0';
10191 *(p++) = ',';
10192 addr = (ULONGEST) remote_address_masked (addr);
10193 p += hexnumstr (p, addr);
10194 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10195
10196 if (supports_evaluation_of_breakpoint_conditions ())
10197 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10198
10199 if (can_run_breakpoint_commands ())
10200 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10201
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, 0);
10204
10205 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10206 {
10207 case PACKET_ERROR:
10208 return -1;
10209 case PACKET_OK:
10210 return 0;
10211 case PACKET_UNKNOWN:
10212 break;
10213 }
10214 }
10215
10216 /* If this breakpoint has target-side commands but this stub doesn't
10217 support Z0 packets, throw error. */
10218 if (!bp_tgt->tcommands.empty ())
10219 throw_error (NOT_SUPPORTED_ERROR, _("\
10220 Target doesn't support breakpoints that have target side commands."));
10221
10222 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10223 }
10224
10225 int
10226 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10227 struct bp_target_info *bp_tgt,
10228 enum remove_bp_reason reason)
10229 {
10230 CORE_ADDR addr = bp_tgt->placed_address;
10231 struct remote_state *rs = get_remote_state ();
10232
10233 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10234 {
10235 char *p = rs->buf.data ();
10236 char *endbuf = p + get_remote_packet_size ();
10237
10238 /* Make sure the remote is pointing at the right process, if
10239 necessary. */
10240 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10241 set_general_process ();
10242
10243 *(p++) = 'z';
10244 *(p++) = '0';
10245 *(p++) = ',';
10246
10247 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10248 p += hexnumstr (p, addr);
10249 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10250
10251 putpkt (rs->buf);
10252 getpkt (&rs->buf, 0);
10253
10254 return (rs->buf[0] == 'E');
10255 }
10256
10257 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10258 }
10259
10260 static enum Z_packet_type
10261 watchpoint_to_Z_packet (int type)
10262 {
10263 switch (type)
10264 {
10265 case hw_write:
10266 return Z_PACKET_WRITE_WP;
10267 break;
10268 case hw_read:
10269 return Z_PACKET_READ_WP;
10270 break;
10271 case hw_access:
10272 return Z_PACKET_ACCESS_WP;
10273 break;
10274 default:
10275 internal_error (__FILE__, __LINE__,
10276 _("hw_bp_to_z: bad watchpoint type %d"), type);
10277 }
10278 }
10279
10280 int
10281 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10282 enum target_hw_bp_type type, struct expression *cond)
10283 {
10284 struct remote_state *rs = get_remote_state ();
10285 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10286 char *p;
10287 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10288
10289 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10290 return 1;
10291
10292 /* Make sure the remote is pointing at the right process, if
10293 necessary. */
10294 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10295 set_general_process ();
10296
10297 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10298 p = strchr (rs->buf.data (), '\0');
10299 addr = remote_address_masked (addr);
10300 p += hexnumstr (p, (ULONGEST) addr);
10301 xsnprintf (p, endbuf - p, ",%x", len);
10302
10303 putpkt (rs->buf);
10304 getpkt (&rs->buf, 0);
10305
10306 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10307 {
10308 case PACKET_ERROR:
10309 return -1;
10310 case PACKET_UNKNOWN:
10311 return 1;
10312 case PACKET_OK:
10313 return 0;
10314 }
10315 internal_error (__FILE__, __LINE__,
10316 _("remote_insert_watchpoint: reached end of function"));
10317 }
10318
10319 bool
10320 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10321 CORE_ADDR start, int length)
10322 {
10323 CORE_ADDR diff = remote_address_masked (addr - start);
10324
10325 return diff < length;
10326 }
10327
10328
10329 int
10330 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10331 enum target_hw_bp_type type, struct expression *cond)
10332 {
10333 struct remote_state *rs = get_remote_state ();
10334 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10335 char *p;
10336 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10337
10338 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10339 return -1;
10340
10341 /* Make sure the remote is pointing at the right process, if
10342 necessary. */
10343 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10344 set_general_process ();
10345
10346 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10347 p = strchr (rs->buf.data (), '\0');
10348 addr = remote_address_masked (addr);
10349 p += hexnumstr (p, (ULONGEST) addr);
10350 xsnprintf (p, endbuf - p, ",%x", len);
10351 putpkt (rs->buf);
10352 getpkt (&rs->buf, 0);
10353
10354 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10355 {
10356 case PACKET_ERROR:
10357 case PACKET_UNKNOWN:
10358 return -1;
10359 case PACKET_OK:
10360 return 0;
10361 }
10362 internal_error (__FILE__, __LINE__,
10363 _("remote_remove_watchpoint: reached end of function"));
10364 }
10365
10366
10367 static int remote_hw_watchpoint_limit = -1;
10368 static int remote_hw_watchpoint_length_limit = -1;
10369 static int remote_hw_breakpoint_limit = -1;
10370
10371 int
10372 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10373 {
10374 if (remote_hw_watchpoint_length_limit == 0)
10375 return 0;
10376 else if (remote_hw_watchpoint_length_limit < 0)
10377 return 1;
10378 else if (len <= remote_hw_watchpoint_length_limit)
10379 return 1;
10380 else
10381 return 0;
10382 }
10383
10384 int
10385 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10386 {
10387 if (type == bp_hardware_breakpoint)
10388 {
10389 if (remote_hw_breakpoint_limit == 0)
10390 return 0;
10391 else if (remote_hw_breakpoint_limit < 0)
10392 return 1;
10393 else if (cnt <= remote_hw_breakpoint_limit)
10394 return 1;
10395 }
10396 else
10397 {
10398 if (remote_hw_watchpoint_limit == 0)
10399 return 0;
10400 else if (remote_hw_watchpoint_limit < 0)
10401 return 1;
10402 else if (ot)
10403 return -1;
10404 else if (cnt <= remote_hw_watchpoint_limit)
10405 return 1;
10406 }
10407 return -1;
10408 }
10409
10410 /* The to_stopped_by_sw_breakpoint method of target remote. */
10411
10412 bool
10413 remote_target::stopped_by_sw_breakpoint ()
10414 {
10415 struct thread_info *thread = inferior_thread ();
10416
10417 return (thread->priv != NULL
10418 && (get_remote_thread_info (thread)->stop_reason
10419 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10420 }
10421
10422 /* The to_supports_stopped_by_sw_breakpoint method of target
10423 remote. */
10424
10425 bool
10426 remote_target::supports_stopped_by_sw_breakpoint ()
10427 {
10428 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10429 }
10430
10431 /* The to_stopped_by_hw_breakpoint method of target remote. */
10432
10433 bool
10434 remote_target::stopped_by_hw_breakpoint ()
10435 {
10436 struct thread_info *thread = inferior_thread ();
10437
10438 return (thread->priv != NULL
10439 && (get_remote_thread_info (thread)->stop_reason
10440 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10441 }
10442
10443 /* The to_supports_stopped_by_hw_breakpoint method of target
10444 remote. */
10445
10446 bool
10447 remote_target::supports_stopped_by_hw_breakpoint ()
10448 {
10449 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10450 }
10451
10452 bool
10453 remote_target::stopped_by_watchpoint ()
10454 {
10455 struct thread_info *thread = inferior_thread ();
10456
10457 return (thread->priv != NULL
10458 && (get_remote_thread_info (thread)->stop_reason
10459 == TARGET_STOPPED_BY_WATCHPOINT));
10460 }
10461
10462 bool
10463 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10464 {
10465 struct thread_info *thread = inferior_thread ();
10466
10467 if (thread->priv != NULL
10468 && (get_remote_thread_info (thread)->stop_reason
10469 == TARGET_STOPPED_BY_WATCHPOINT))
10470 {
10471 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10472 return true;
10473 }
10474
10475 return false;
10476 }
10477
10478
10479 int
10480 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10481 struct bp_target_info *bp_tgt)
10482 {
10483 CORE_ADDR addr = bp_tgt->reqstd_address;
10484 struct remote_state *rs;
10485 char *p, *endbuf;
10486 char *message;
10487
10488 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10489 return -1;
10490
10491 /* Make sure the remote is pointing at the right process, if
10492 necessary. */
10493 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10494 set_general_process ();
10495
10496 rs = get_remote_state ();
10497 p = rs->buf.data ();
10498 endbuf = p + get_remote_packet_size ();
10499
10500 *(p++) = 'Z';
10501 *(p++) = '1';
10502 *(p++) = ',';
10503
10504 addr = remote_address_masked (addr);
10505 p += hexnumstr (p, (ULONGEST) addr);
10506 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10507
10508 if (supports_evaluation_of_breakpoint_conditions ())
10509 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10510
10511 if (can_run_breakpoint_commands ())
10512 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10513
10514 putpkt (rs->buf);
10515 getpkt (&rs->buf, 0);
10516
10517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10518 {
10519 case PACKET_ERROR:
10520 if (rs->buf[1] == '.')
10521 {
10522 message = strchr (&rs->buf[2], '.');
10523 if (message)
10524 error (_("Remote failure reply: %s"), message + 1);
10525 }
10526 return -1;
10527 case PACKET_UNKNOWN:
10528 return -1;
10529 case PACKET_OK:
10530 return 0;
10531 }
10532 internal_error (__FILE__, __LINE__,
10533 _("remote_insert_hw_breakpoint: reached end of function"));
10534 }
10535
10536
10537 int
10538 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10539 struct bp_target_info *bp_tgt)
10540 {
10541 CORE_ADDR addr;
10542 struct remote_state *rs = get_remote_state ();
10543 char *p = rs->buf.data ();
10544 char *endbuf = p + get_remote_packet_size ();
10545
10546 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10547 return -1;
10548
10549 /* Make sure the remote is pointing at the right process, if
10550 necessary. */
10551 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10552 set_general_process ();
10553
10554 *(p++) = 'z';
10555 *(p++) = '1';
10556 *(p++) = ',';
10557
10558 addr = remote_address_masked (bp_tgt->placed_address);
10559 p += hexnumstr (p, (ULONGEST) addr);
10560 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10561
10562 putpkt (rs->buf);
10563 getpkt (&rs->buf, 0);
10564
10565 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10566 {
10567 case PACKET_ERROR:
10568 case PACKET_UNKNOWN:
10569 return -1;
10570 case PACKET_OK:
10571 return 0;
10572 }
10573 internal_error (__FILE__, __LINE__,
10574 _("remote_remove_hw_breakpoint: reached end of function"));
10575 }
10576
10577 /* Verify memory using the "qCRC:" request. */
10578
10579 int
10580 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10581 {
10582 struct remote_state *rs = get_remote_state ();
10583 unsigned long host_crc, target_crc;
10584 char *tmp;
10585
10586 /* It doesn't make sense to use qCRC if the remote target is
10587 connected but not running. */
10588 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10589 {
10590 enum packet_result result;
10591
10592 /* Make sure the remote is pointing at the right process. */
10593 set_general_process ();
10594
10595 /* FIXME: assumes lma can fit into long. */
10596 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10597 (long) lma, (long) size);
10598 putpkt (rs->buf);
10599
10600 /* Be clever; compute the host_crc before waiting for target
10601 reply. */
10602 host_crc = xcrc32 (data, size, 0xffffffff);
10603
10604 getpkt (&rs->buf, 0);
10605
10606 result = packet_ok (rs->buf,
10607 &remote_protocol_packets[PACKET_qCRC]);
10608 if (result == PACKET_ERROR)
10609 return -1;
10610 else if (result == PACKET_OK)
10611 {
10612 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10613 target_crc = target_crc * 16 + fromhex (*tmp);
10614
10615 return (host_crc == target_crc);
10616 }
10617 }
10618
10619 return simple_verify_memory (this, data, lma, size);
10620 }
10621
10622 /* compare-sections command
10623
10624 With no arguments, compares each loadable section in the exec bfd
10625 with the same memory range on the target, and reports mismatches.
10626 Useful for verifying the image on the target against the exec file. */
10627
10628 static void
10629 compare_sections_command (const char *args, int from_tty)
10630 {
10631 asection *s;
10632 const char *sectname;
10633 bfd_size_type size;
10634 bfd_vma lma;
10635 int matched = 0;
10636 int mismatched = 0;
10637 int res;
10638 int read_only = 0;
10639
10640 if (!exec_bfd)
10641 error (_("command cannot be used without an exec file"));
10642
10643 if (args != NULL && strcmp (args, "-r") == 0)
10644 {
10645 read_only = 1;
10646 args = NULL;
10647 }
10648
10649 for (s = exec_bfd->sections; s; s = s->next)
10650 {
10651 if (!(s->flags & SEC_LOAD))
10652 continue; /* Skip non-loadable section. */
10653
10654 if (read_only && (s->flags & SEC_READONLY) == 0)
10655 continue; /* Skip writeable sections */
10656
10657 size = bfd_section_size (s);
10658 if (size == 0)
10659 continue; /* Skip zero-length section. */
10660
10661 sectname = bfd_section_name (s);
10662 if (args && strcmp (args, sectname) != 0)
10663 continue; /* Not the section selected by user. */
10664
10665 matched = 1; /* Do this section. */
10666 lma = s->lma;
10667
10668 gdb::byte_vector sectdata (size);
10669 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10670
10671 res = target_verify_memory (sectdata.data (), lma, size);
10672
10673 if (res == -1)
10674 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10675 paddress (target_gdbarch (), lma),
10676 paddress (target_gdbarch (), lma + size));
10677
10678 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10679 paddress (target_gdbarch (), lma),
10680 paddress (target_gdbarch (), lma + size));
10681 if (res)
10682 printf_filtered ("matched.\n");
10683 else
10684 {
10685 printf_filtered ("MIS-MATCHED!\n");
10686 mismatched++;
10687 }
10688 }
10689 if (mismatched > 0)
10690 warning (_("One or more sections of the target image does not match\n\
10691 the loaded file\n"));
10692 if (args && !matched)
10693 printf_filtered (_("No loaded section named '%s'.\n"), args);
10694 }
10695
10696 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10697 into remote target. The number of bytes written to the remote
10698 target is returned, or -1 for error. */
10699
10700 target_xfer_status
10701 remote_target::remote_write_qxfer (const char *object_name,
10702 const char *annex, const gdb_byte *writebuf,
10703 ULONGEST offset, LONGEST len,
10704 ULONGEST *xfered_len,
10705 struct packet_config *packet)
10706 {
10707 int i, buf_len;
10708 ULONGEST n;
10709 struct remote_state *rs = get_remote_state ();
10710 int max_size = get_memory_write_packet_size ();
10711
10712 if (packet_config_support (packet) == PACKET_DISABLE)
10713 return TARGET_XFER_E_IO;
10714
10715 /* Insert header. */
10716 i = snprintf (rs->buf.data (), max_size,
10717 "qXfer:%s:write:%s:%s:",
10718 object_name, annex ? annex : "",
10719 phex_nz (offset, sizeof offset));
10720 max_size -= (i + 1);
10721
10722 /* Escape as much data as fits into rs->buf. */
10723 buf_len = remote_escape_output
10724 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10725
10726 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10727 || getpkt_sane (&rs->buf, 0) < 0
10728 || packet_ok (rs->buf, packet) != PACKET_OK)
10729 return TARGET_XFER_E_IO;
10730
10731 unpack_varlen_hex (rs->buf.data (), &n);
10732
10733 *xfered_len = n;
10734 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10735 }
10736
10737 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10738 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10739 number of bytes read is returned, or 0 for EOF, or -1 for error.
10740 The number of bytes read may be less than LEN without indicating an
10741 EOF. PACKET is checked and updated to indicate whether the remote
10742 target supports this object. */
10743
10744 target_xfer_status
10745 remote_target::remote_read_qxfer (const char *object_name,
10746 const char *annex,
10747 gdb_byte *readbuf, ULONGEST offset,
10748 LONGEST len,
10749 ULONGEST *xfered_len,
10750 struct packet_config *packet)
10751 {
10752 struct remote_state *rs = get_remote_state ();
10753 LONGEST i, n, packet_len;
10754
10755 if (packet_config_support (packet) == PACKET_DISABLE)
10756 return TARGET_XFER_E_IO;
10757
10758 /* Check whether we've cached an end-of-object packet that matches
10759 this request. */
10760 if (rs->finished_object)
10761 {
10762 if (strcmp (object_name, rs->finished_object) == 0
10763 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10764 && offset == rs->finished_offset)
10765 return TARGET_XFER_EOF;
10766
10767
10768 /* Otherwise, we're now reading something different. Discard
10769 the cache. */
10770 xfree (rs->finished_object);
10771 xfree (rs->finished_annex);
10772 rs->finished_object = NULL;
10773 rs->finished_annex = NULL;
10774 }
10775
10776 /* Request only enough to fit in a single packet. The actual data
10777 may not, since we don't know how much of it will need to be escaped;
10778 the target is free to respond with slightly less data. We subtract
10779 five to account for the response type and the protocol frame. */
10780 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10781 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10782 "qXfer:%s:read:%s:%s,%s",
10783 object_name, annex ? annex : "",
10784 phex_nz (offset, sizeof offset),
10785 phex_nz (n, sizeof n));
10786 i = putpkt (rs->buf);
10787 if (i < 0)
10788 return TARGET_XFER_E_IO;
10789
10790 rs->buf[0] = '\0';
10791 packet_len = getpkt_sane (&rs->buf, 0);
10792 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10793 return TARGET_XFER_E_IO;
10794
10795 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10796 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10797
10798 /* 'm' means there is (or at least might be) more data after this
10799 batch. That does not make sense unless there's at least one byte
10800 of data in this reply. */
10801 if (rs->buf[0] == 'm' && packet_len == 1)
10802 error (_("Remote qXfer reply contained no data."));
10803
10804 /* Got some data. */
10805 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10806 packet_len - 1, readbuf, n);
10807
10808 /* 'l' is an EOF marker, possibly including a final block of data,
10809 or possibly empty. If we have the final block of a non-empty
10810 object, record this fact to bypass a subsequent partial read. */
10811 if (rs->buf[0] == 'l' && offset + i > 0)
10812 {
10813 rs->finished_object = xstrdup (object_name);
10814 rs->finished_annex = xstrdup (annex ? annex : "");
10815 rs->finished_offset = offset + i;
10816 }
10817
10818 if (i == 0)
10819 return TARGET_XFER_EOF;
10820 else
10821 {
10822 *xfered_len = i;
10823 return TARGET_XFER_OK;
10824 }
10825 }
10826
10827 enum target_xfer_status
10828 remote_target::xfer_partial (enum target_object object,
10829 const char *annex, gdb_byte *readbuf,
10830 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10831 ULONGEST *xfered_len)
10832 {
10833 struct remote_state *rs;
10834 int i;
10835 char *p2;
10836 char query_type;
10837 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10838
10839 set_remote_traceframe ();
10840 set_general_thread (inferior_ptid);
10841
10842 rs = get_remote_state ();
10843
10844 /* Handle memory using the standard memory routines. */
10845 if (object == TARGET_OBJECT_MEMORY)
10846 {
10847 /* If the remote target is connected but not running, we should
10848 pass this request down to a lower stratum (e.g. the executable
10849 file). */
10850 if (!target_has_execution)
10851 return TARGET_XFER_EOF;
10852
10853 if (writebuf != NULL)
10854 return remote_write_bytes (offset, writebuf, len, unit_size,
10855 xfered_len);
10856 else
10857 return remote_read_bytes (offset, readbuf, len, unit_size,
10858 xfered_len);
10859 }
10860
10861 /* Handle SPU memory using qxfer packets. */
10862 if (object == TARGET_OBJECT_SPU)
10863 {
10864 if (readbuf)
10865 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10866 xfered_len, &remote_protocol_packets
10867 [PACKET_qXfer_spu_read]);
10868 else
10869 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10870 xfered_len, &remote_protocol_packets
10871 [PACKET_qXfer_spu_write]);
10872 }
10873
10874 /* Handle extra signal info using qxfer packets. */
10875 if (object == TARGET_OBJECT_SIGNAL_INFO)
10876 {
10877 if (readbuf)
10878 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10879 xfered_len, &remote_protocol_packets
10880 [PACKET_qXfer_siginfo_read]);
10881 else
10882 return remote_write_qxfer ("siginfo", annex,
10883 writebuf, offset, len, xfered_len,
10884 &remote_protocol_packets
10885 [PACKET_qXfer_siginfo_write]);
10886 }
10887
10888 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10889 {
10890 if (readbuf)
10891 return remote_read_qxfer ("statictrace", annex,
10892 readbuf, offset, len, xfered_len,
10893 &remote_protocol_packets
10894 [PACKET_qXfer_statictrace_read]);
10895 else
10896 return TARGET_XFER_E_IO;
10897 }
10898
10899 /* Only handle flash writes. */
10900 if (writebuf != NULL)
10901 {
10902 switch (object)
10903 {
10904 case TARGET_OBJECT_FLASH:
10905 return remote_flash_write (offset, len, xfered_len,
10906 writebuf);
10907
10908 default:
10909 return TARGET_XFER_E_IO;
10910 }
10911 }
10912
10913 /* Map pre-existing objects onto letters. DO NOT do this for new
10914 objects!!! Instead specify new query packets. */
10915 switch (object)
10916 {
10917 case TARGET_OBJECT_AVR:
10918 query_type = 'R';
10919 break;
10920
10921 case TARGET_OBJECT_AUXV:
10922 gdb_assert (annex == NULL);
10923 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10924 xfered_len,
10925 &remote_protocol_packets[PACKET_qXfer_auxv]);
10926
10927 case TARGET_OBJECT_AVAILABLE_FEATURES:
10928 return remote_read_qxfer
10929 ("features", annex, readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets[PACKET_qXfer_features]);
10931
10932 case TARGET_OBJECT_LIBRARIES:
10933 return remote_read_qxfer
10934 ("libraries", annex, readbuf, offset, len, xfered_len,
10935 &remote_protocol_packets[PACKET_qXfer_libraries]);
10936
10937 case TARGET_OBJECT_LIBRARIES_SVR4:
10938 return remote_read_qxfer
10939 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10940 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10941
10942 case TARGET_OBJECT_MEMORY_MAP:
10943 gdb_assert (annex == NULL);
10944 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10945 xfered_len,
10946 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10947
10948 case TARGET_OBJECT_OSDATA:
10949 /* Should only get here if we're connected. */
10950 gdb_assert (rs->remote_desc);
10951 return remote_read_qxfer
10952 ("osdata", annex, readbuf, offset, len, xfered_len,
10953 &remote_protocol_packets[PACKET_qXfer_osdata]);
10954
10955 case TARGET_OBJECT_THREADS:
10956 gdb_assert (annex == NULL);
10957 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10958 xfered_len,
10959 &remote_protocol_packets[PACKET_qXfer_threads]);
10960
10961 case TARGET_OBJECT_TRACEFRAME_INFO:
10962 gdb_assert (annex == NULL);
10963 return remote_read_qxfer
10964 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10965 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10966
10967 case TARGET_OBJECT_FDPIC:
10968 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10969 xfered_len,
10970 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10971
10972 case TARGET_OBJECT_OPENVMS_UIB:
10973 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10974 xfered_len,
10975 &remote_protocol_packets[PACKET_qXfer_uib]);
10976
10977 case TARGET_OBJECT_BTRACE:
10978 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10979 xfered_len,
10980 &remote_protocol_packets[PACKET_qXfer_btrace]);
10981
10982 case TARGET_OBJECT_BTRACE_CONF:
10983 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10984 len, xfered_len,
10985 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10986
10987 case TARGET_OBJECT_EXEC_FILE:
10988 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10989 len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10991
10992 default:
10993 return TARGET_XFER_E_IO;
10994 }
10995
10996 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10997 large enough let the caller deal with it. */
10998 if (len < get_remote_packet_size ())
10999 return TARGET_XFER_E_IO;
11000 len = get_remote_packet_size ();
11001
11002 /* Except for querying the minimum buffer size, target must be open. */
11003 if (!rs->remote_desc)
11004 error (_("remote query is only available after target open"));
11005
11006 gdb_assert (annex != NULL);
11007 gdb_assert (readbuf != NULL);
11008
11009 p2 = rs->buf.data ();
11010 *p2++ = 'q';
11011 *p2++ = query_type;
11012
11013 /* We used one buffer char for the remote protocol q command and
11014 another for the query type. As the remote protocol encapsulation
11015 uses 4 chars plus one extra in case we are debugging
11016 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11017 string. */
11018 i = 0;
11019 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11020 {
11021 /* Bad caller may have sent forbidden characters. */
11022 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11023 *p2++ = annex[i];
11024 i++;
11025 }
11026 *p2 = '\0';
11027 gdb_assert (annex[i] == '\0');
11028
11029 i = putpkt (rs->buf);
11030 if (i < 0)
11031 return TARGET_XFER_E_IO;
11032
11033 getpkt (&rs->buf, 0);
11034 strcpy ((char *) readbuf, rs->buf.data ());
11035
11036 *xfered_len = strlen ((char *) readbuf);
11037 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11038 }
11039
11040 /* Implementation of to_get_memory_xfer_limit. */
11041
11042 ULONGEST
11043 remote_target::get_memory_xfer_limit ()
11044 {
11045 return get_memory_write_packet_size ();
11046 }
11047
11048 int
11049 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11050 const gdb_byte *pattern, ULONGEST pattern_len,
11051 CORE_ADDR *found_addrp)
11052 {
11053 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11054 struct remote_state *rs = get_remote_state ();
11055 int max_size = get_memory_write_packet_size ();
11056 struct packet_config *packet =
11057 &remote_protocol_packets[PACKET_qSearch_memory];
11058 /* Number of packet bytes used to encode the pattern;
11059 this could be more than PATTERN_LEN due to escape characters. */
11060 int escaped_pattern_len;
11061 /* Amount of pattern that was encodable in the packet. */
11062 int used_pattern_len;
11063 int i;
11064 int found;
11065 ULONGEST found_addr;
11066
11067 /* Don't go to the target if we don't have to. This is done before
11068 checking packet_config_support to avoid the possibility that a
11069 success for this edge case means the facility works in
11070 general. */
11071 if (pattern_len > search_space_len)
11072 return 0;
11073 if (pattern_len == 0)
11074 {
11075 *found_addrp = start_addr;
11076 return 1;
11077 }
11078
11079 /* If we already know the packet isn't supported, fall back to the simple
11080 way of searching memory. */
11081
11082 if (packet_config_support (packet) == PACKET_DISABLE)
11083 {
11084 /* Target doesn't provided special support, fall back and use the
11085 standard support (copy memory and do the search here). */
11086 return simple_search_memory (this, start_addr, search_space_len,
11087 pattern, pattern_len, found_addrp);
11088 }
11089
11090 /* Make sure the remote is pointing at the right process. */
11091 set_general_process ();
11092
11093 /* Insert header. */
11094 i = snprintf (rs->buf.data (), max_size,
11095 "qSearch:memory:%s;%s;",
11096 phex_nz (start_addr, addr_size),
11097 phex_nz (search_space_len, sizeof (search_space_len)));
11098 max_size -= (i + 1);
11099
11100 /* Escape as much data as fits into rs->buf. */
11101 escaped_pattern_len =
11102 remote_escape_output (pattern, pattern_len, 1,
11103 (gdb_byte *) rs->buf.data () + i,
11104 &used_pattern_len, max_size);
11105
11106 /* Bail if the pattern is too large. */
11107 if (used_pattern_len != pattern_len)
11108 error (_("Pattern is too large to transmit to remote target."));
11109
11110 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11111 || getpkt_sane (&rs->buf, 0) < 0
11112 || packet_ok (rs->buf, packet) != PACKET_OK)
11113 {
11114 /* The request may not have worked because the command is not
11115 supported. If so, fall back to the simple way. */
11116 if (packet_config_support (packet) == PACKET_DISABLE)
11117 {
11118 return simple_search_memory (this, start_addr, search_space_len,
11119 pattern, pattern_len, found_addrp);
11120 }
11121 return -1;
11122 }
11123
11124 if (rs->buf[0] == '0')
11125 found = 0;
11126 else if (rs->buf[0] == '1')
11127 {
11128 found = 1;
11129 if (rs->buf[1] != ',')
11130 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11131 unpack_varlen_hex (&rs->buf[2], &found_addr);
11132 *found_addrp = found_addr;
11133 }
11134 else
11135 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11136
11137 return found;
11138 }
11139
11140 void
11141 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11142 {
11143 struct remote_state *rs = get_remote_state ();
11144 char *p = rs->buf.data ();
11145
11146 if (!rs->remote_desc)
11147 error (_("remote rcmd is only available after target open"));
11148
11149 /* Send a NULL command across as an empty command. */
11150 if (command == NULL)
11151 command = "";
11152
11153 /* The query prefix. */
11154 strcpy (rs->buf.data (), "qRcmd,");
11155 p = strchr (rs->buf.data (), '\0');
11156
11157 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11158 > get_remote_packet_size ())
11159 error (_("\"monitor\" command ``%s'' is too long."), command);
11160
11161 /* Encode the actual command. */
11162 bin2hex ((const gdb_byte *) command, p, strlen (command));
11163
11164 if (putpkt (rs->buf) < 0)
11165 error (_("Communication problem with target."));
11166
11167 /* get/display the response */
11168 while (1)
11169 {
11170 char *buf;
11171
11172 /* XXX - see also remote_get_noisy_reply(). */
11173 QUIT; /* Allow user to bail out with ^C. */
11174 rs->buf[0] = '\0';
11175 if (getpkt_sane (&rs->buf, 0) == -1)
11176 {
11177 /* Timeout. Continue to (try to) read responses.
11178 This is better than stopping with an error, assuming the stub
11179 is still executing the (long) monitor command.
11180 If needed, the user can interrupt gdb using C-c, obtaining
11181 an effect similar to stop on timeout. */
11182 continue;
11183 }
11184 buf = rs->buf.data ();
11185 if (buf[0] == '\0')
11186 error (_("Target does not support this command."));
11187 if (buf[0] == 'O' && buf[1] != 'K')
11188 {
11189 remote_console_output (buf + 1); /* 'O' message from stub. */
11190 continue;
11191 }
11192 if (strcmp (buf, "OK") == 0)
11193 break;
11194 if (strlen (buf) == 3 && buf[0] == 'E'
11195 && isdigit (buf[1]) && isdigit (buf[2]))
11196 {
11197 error (_("Protocol error with Rcmd"));
11198 }
11199 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11200 {
11201 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11202
11203 fputc_unfiltered (c, outbuf);
11204 }
11205 break;
11206 }
11207 }
11208
11209 std::vector<mem_region>
11210 remote_target::memory_map ()
11211 {
11212 std::vector<mem_region> result;
11213 gdb::optional<gdb::char_vector> text
11214 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11215
11216 if (text)
11217 result = parse_memory_map (text->data ());
11218
11219 return result;
11220 }
11221
11222 static void
11223 packet_command (const char *args, int from_tty)
11224 {
11225 remote_target *remote = get_current_remote_target ();
11226
11227 if (remote == nullptr)
11228 error (_("command can only be used with remote target"));
11229
11230 remote->packet_command (args, from_tty);
11231 }
11232
11233 void
11234 remote_target::packet_command (const char *args, int from_tty)
11235 {
11236 if (!args)
11237 error (_("remote-packet command requires packet text as argument"));
11238
11239 puts_filtered ("sending: ");
11240 print_packet (args);
11241 puts_filtered ("\n");
11242 putpkt (args);
11243
11244 remote_state *rs = get_remote_state ();
11245
11246 getpkt (&rs->buf, 0);
11247 puts_filtered ("received: ");
11248 print_packet (rs->buf.data ());
11249 puts_filtered ("\n");
11250 }
11251
11252 #if 0
11253 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11254
11255 static void display_thread_info (struct gdb_ext_thread_info *info);
11256
11257 static void threadset_test_cmd (char *cmd, int tty);
11258
11259 static void threadalive_test (char *cmd, int tty);
11260
11261 static void threadlist_test_cmd (char *cmd, int tty);
11262
11263 int get_and_display_threadinfo (threadref *ref);
11264
11265 static void threadinfo_test_cmd (char *cmd, int tty);
11266
11267 static int thread_display_step (threadref *ref, void *context);
11268
11269 static void threadlist_update_test_cmd (char *cmd, int tty);
11270
11271 static void init_remote_threadtests (void);
11272
11273 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11274
11275 static void
11276 threadset_test_cmd (const char *cmd, int tty)
11277 {
11278 int sample_thread = SAMPLE_THREAD;
11279
11280 printf_filtered (_("Remote threadset test\n"));
11281 set_general_thread (sample_thread);
11282 }
11283
11284
11285 static void
11286 threadalive_test (const char *cmd, int tty)
11287 {
11288 int sample_thread = SAMPLE_THREAD;
11289 int pid = inferior_ptid.pid ();
11290 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11291
11292 if (remote_thread_alive (ptid))
11293 printf_filtered ("PASS: Thread alive test\n");
11294 else
11295 printf_filtered ("FAIL: Thread alive test\n");
11296 }
11297
11298 void output_threadid (char *title, threadref *ref);
11299
11300 void
11301 output_threadid (char *title, threadref *ref)
11302 {
11303 char hexid[20];
11304
11305 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11306 hexid[16] = 0;
11307 printf_filtered ("%s %s\n", title, (&hexid[0]));
11308 }
11309
11310 static void
11311 threadlist_test_cmd (const char *cmd, int tty)
11312 {
11313 int startflag = 1;
11314 threadref nextthread;
11315 int done, result_count;
11316 threadref threadlist[3];
11317
11318 printf_filtered ("Remote Threadlist test\n");
11319 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11320 &result_count, &threadlist[0]))
11321 printf_filtered ("FAIL: threadlist test\n");
11322 else
11323 {
11324 threadref *scan = threadlist;
11325 threadref *limit = scan + result_count;
11326
11327 while (scan < limit)
11328 output_threadid (" thread ", scan++);
11329 }
11330 }
11331
11332 void
11333 display_thread_info (struct gdb_ext_thread_info *info)
11334 {
11335 output_threadid ("Threadid: ", &info->threadid);
11336 printf_filtered ("Name: %s\n ", info->shortname);
11337 printf_filtered ("State: %s\n", info->display);
11338 printf_filtered ("other: %s\n\n", info->more_display);
11339 }
11340
11341 int
11342 get_and_display_threadinfo (threadref *ref)
11343 {
11344 int result;
11345 int set;
11346 struct gdb_ext_thread_info threadinfo;
11347
11348 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11349 | TAG_MOREDISPLAY | TAG_DISPLAY;
11350 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11351 display_thread_info (&threadinfo);
11352 return result;
11353 }
11354
11355 static void
11356 threadinfo_test_cmd (const char *cmd, int tty)
11357 {
11358 int athread = SAMPLE_THREAD;
11359 threadref thread;
11360 int set;
11361
11362 int_to_threadref (&thread, athread);
11363 printf_filtered ("Remote Threadinfo test\n");
11364 if (!get_and_display_threadinfo (&thread))
11365 printf_filtered ("FAIL cannot get thread info\n");
11366 }
11367
11368 static int
11369 thread_display_step (threadref *ref, void *context)
11370 {
11371 /* output_threadid(" threadstep ",ref); *//* simple test */
11372 return get_and_display_threadinfo (ref);
11373 }
11374
11375 static void
11376 threadlist_update_test_cmd (const char *cmd, int tty)
11377 {
11378 printf_filtered ("Remote Threadlist update test\n");
11379 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11380 }
11381
11382 static void
11383 init_remote_threadtests (void)
11384 {
11385 add_com ("tlist", class_obscure, threadlist_test_cmd,
11386 _("Fetch and print the remote list of "
11387 "thread identifiers, one pkt only."));
11388 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11389 _("Fetch and display info about one thread."));
11390 add_com ("tset", class_obscure, threadset_test_cmd,
11391 _("Test setting to a different thread."));
11392 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11393 _("Iterate through updating all remote thread info."));
11394 add_com ("talive", class_obscure, threadalive_test,
11395 _("Remote thread alive test."));
11396 }
11397
11398 #endif /* 0 */
11399
11400 /* Convert a thread ID to a string. */
11401
11402 std::string
11403 remote_target::pid_to_str (ptid_t ptid)
11404 {
11405 struct remote_state *rs = get_remote_state ();
11406
11407 if (ptid == null_ptid)
11408 return normal_pid_to_str (ptid);
11409 else if (ptid.is_pid ())
11410 {
11411 /* Printing an inferior target id. */
11412
11413 /* When multi-process extensions are off, there's no way in the
11414 remote protocol to know the remote process id, if there's any
11415 at all. There's one exception --- when we're connected with
11416 target extended-remote, and we manually attached to a process
11417 with "attach PID". We don't record anywhere a flag that
11418 allows us to distinguish that case from the case of
11419 connecting with extended-remote and the stub already being
11420 attached to a process, and reporting yes to qAttached, hence
11421 no smart special casing here. */
11422 if (!remote_multi_process_p (rs))
11423 return "Remote target";
11424
11425 return normal_pid_to_str (ptid);
11426 }
11427 else
11428 {
11429 if (magic_null_ptid == ptid)
11430 return "Thread <main>";
11431 else if (remote_multi_process_p (rs))
11432 if (ptid.lwp () == 0)
11433 return normal_pid_to_str (ptid);
11434 else
11435 return string_printf ("Thread %d.%ld",
11436 ptid.pid (), ptid.lwp ());
11437 else
11438 return string_printf ("Thread %ld", ptid.lwp ());
11439 }
11440 }
11441
11442 /* Get the address of the thread local variable in OBJFILE which is
11443 stored at OFFSET within the thread local storage for thread PTID. */
11444
11445 CORE_ADDR
11446 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11447 CORE_ADDR offset)
11448 {
11449 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11450 {
11451 struct remote_state *rs = get_remote_state ();
11452 char *p = rs->buf.data ();
11453 char *endp = p + get_remote_packet_size ();
11454 enum packet_result result;
11455
11456 strcpy (p, "qGetTLSAddr:");
11457 p += strlen (p);
11458 p = write_ptid (p, endp, ptid);
11459 *p++ = ',';
11460 p += hexnumstr (p, offset);
11461 *p++ = ',';
11462 p += hexnumstr (p, lm);
11463 *p++ = '\0';
11464
11465 putpkt (rs->buf);
11466 getpkt (&rs->buf, 0);
11467 result = packet_ok (rs->buf,
11468 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11469 if (result == PACKET_OK)
11470 {
11471 ULONGEST addr;
11472
11473 unpack_varlen_hex (rs->buf.data (), &addr);
11474 return addr;
11475 }
11476 else if (result == PACKET_UNKNOWN)
11477 throw_error (TLS_GENERIC_ERROR,
11478 _("Remote target doesn't support qGetTLSAddr packet"));
11479 else
11480 throw_error (TLS_GENERIC_ERROR,
11481 _("Remote target failed to process qGetTLSAddr request"));
11482 }
11483 else
11484 throw_error (TLS_GENERIC_ERROR,
11485 _("TLS not supported or disabled on this target"));
11486 /* Not reached. */
11487 return 0;
11488 }
11489
11490 /* Provide thread local base, i.e. Thread Information Block address.
11491 Returns 1 if ptid is found and thread_local_base is non zero. */
11492
11493 bool
11494 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11495 {
11496 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11497 {
11498 struct remote_state *rs = get_remote_state ();
11499 char *p = rs->buf.data ();
11500 char *endp = p + get_remote_packet_size ();
11501 enum packet_result result;
11502
11503 strcpy (p, "qGetTIBAddr:");
11504 p += strlen (p);
11505 p = write_ptid (p, endp, ptid);
11506 *p++ = '\0';
11507
11508 putpkt (rs->buf);
11509 getpkt (&rs->buf, 0);
11510 result = packet_ok (rs->buf,
11511 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11512 if (result == PACKET_OK)
11513 {
11514 ULONGEST val;
11515 unpack_varlen_hex (rs->buf.data (), &val);
11516 if (addr)
11517 *addr = (CORE_ADDR) val;
11518 return true;
11519 }
11520 else if (result == PACKET_UNKNOWN)
11521 error (_("Remote target doesn't support qGetTIBAddr packet"));
11522 else
11523 error (_("Remote target failed to process qGetTIBAddr request"));
11524 }
11525 else
11526 error (_("qGetTIBAddr not supported or disabled on this target"));
11527 /* Not reached. */
11528 return false;
11529 }
11530
11531 /* Support for inferring a target description based on the current
11532 architecture and the size of a 'g' packet. While the 'g' packet
11533 can have any size (since optional registers can be left off the
11534 end), some sizes are easily recognizable given knowledge of the
11535 approximate architecture. */
11536
11537 struct remote_g_packet_guess
11538 {
11539 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11540 : bytes (bytes_),
11541 tdesc (tdesc_)
11542 {
11543 }
11544
11545 int bytes;
11546 const struct target_desc *tdesc;
11547 };
11548
11549 struct remote_g_packet_data : public allocate_on_obstack
11550 {
11551 std::vector<remote_g_packet_guess> guesses;
11552 };
11553
11554 static struct gdbarch_data *remote_g_packet_data_handle;
11555
11556 static void *
11557 remote_g_packet_data_init (struct obstack *obstack)
11558 {
11559 return new (obstack) remote_g_packet_data;
11560 }
11561
11562 void
11563 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11564 const struct target_desc *tdesc)
11565 {
11566 struct remote_g_packet_data *data
11567 = ((struct remote_g_packet_data *)
11568 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11569
11570 gdb_assert (tdesc != NULL);
11571
11572 for (const remote_g_packet_guess &guess : data->guesses)
11573 if (guess.bytes == bytes)
11574 internal_error (__FILE__, __LINE__,
11575 _("Duplicate g packet description added for size %d"),
11576 bytes);
11577
11578 data->guesses.emplace_back (bytes, tdesc);
11579 }
11580
11581 /* Return true if remote_read_description would do anything on this target
11582 and architecture, false otherwise. */
11583
11584 static bool
11585 remote_read_description_p (struct target_ops *target)
11586 {
11587 struct remote_g_packet_data *data
11588 = ((struct remote_g_packet_data *)
11589 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11590
11591 return !data->guesses.empty ();
11592 }
11593
11594 const struct target_desc *
11595 remote_target::read_description ()
11596 {
11597 struct remote_g_packet_data *data
11598 = ((struct remote_g_packet_data *)
11599 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11600
11601 /* Do not try this during initial connection, when we do not know
11602 whether there is a running but stopped thread. */
11603 if (!target_has_execution || inferior_ptid == null_ptid)
11604 return beneath ()->read_description ();
11605
11606 if (!data->guesses.empty ())
11607 {
11608 int bytes = send_g_packet ();
11609
11610 for (const remote_g_packet_guess &guess : data->guesses)
11611 if (guess.bytes == bytes)
11612 return guess.tdesc;
11613
11614 /* We discard the g packet. A minor optimization would be to
11615 hold on to it, and fill the register cache once we have selected
11616 an architecture, but it's too tricky to do safely. */
11617 }
11618
11619 return beneath ()->read_description ();
11620 }
11621
11622 /* Remote file transfer support. This is host-initiated I/O, not
11623 target-initiated; for target-initiated, see remote-fileio.c. */
11624
11625 /* If *LEFT is at least the length of STRING, copy STRING to
11626 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11627 decrease *LEFT. Otherwise raise an error. */
11628
11629 static void
11630 remote_buffer_add_string (char **buffer, int *left, const char *string)
11631 {
11632 int len = strlen (string);
11633
11634 if (len > *left)
11635 error (_("Packet too long for target."));
11636
11637 memcpy (*buffer, string, len);
11638 *buffer += len;
11639 *left -= len;
11640
11641 /* NUL-terminate the buffer as a convenience, if there is
11642 room. */
11643 if (*left)
11644 **buffer = '\0';
11645 }
11646
11647 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11648 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11649 decrease *LEFT. Otherwise raise an error. */
11650
11651 static void
11652 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11653 int len)
11654 {
11655 if (2 * len > *left)
11656 error (_("Packet too long for target."));
11657
11658 bin2hex (bytes, *buffer, len);
11659 *buffer += 2 * len;
11660 *left -= 2 * len;
11661
11662 /* NUL-terminate the buffer as a convenience, if there is
11663 room. */
11664 if (*left)
11665 **buffer = '\0';
11666 }
11667
11668 /* If *LEFT is large enough, convert VALUE to hex and add it to
11669 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11670 decrease *LEFT. Otherwise raise an error. */
11671
11672 static void
11673 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11674 {
11675 int len = hexnumlen (value);
11676
11677 if (len > *left)
11678 error (_("Packet too long for target."));
11679
11680 hexnumstr (*buffer, value);
11681 *buffer += len;
11682 *left -= len;
11683
11684 /* NUL-terminate the buffer as a convenience, if there is
11685 room. */
11686 if (*left)
11687 **buffer = '\0';
11688 }
11689
11690 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11691 value, *REMOTE_ERRNO to the remote error number or zero if none
11692 was included, and *ATTACHMENT to point to the start of the annex
11693 if any. The length of the packet isn't needed here; there may
11694 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11695
11696 Return 0 if the packet could be parsed, -1 if it could not. If
11697 -1 is returned, the other variables may not be initialized. */
11698
11699 static int
11700 remote_hostio_parse_result (char *buffer, int *retcode,
11701 int *remote_errno, char **attachment)
11702 {
11703 char *p, *p2;
11704
11705 *remote_errno = 0;
11706 *attachment = NULL;
11707
11708 if (buffer[0] != 'F')
11709 return -1;
11710
11711 errno = 0;
11712 *retcode = strtol (&buffer[1], &p, 16);
11713 if (errno != 0 || p == &buffer[1])
11714 return -1;
11715
11716 /* Check for ",errno". */
11717 if (*p == ',')
11718 {
11719 errno = 0;
11720 *remote_errno = strtol (p + 1, &p2, 16);
11721 if (errno != 0 || p + 1 == p2)
11722 return -1;
11723 p = p2;
11724 }
11725
11726 /* Check for ";attachment". If there is no attachment, the
11727 packet should end here. */
11728 if (*p == ';')
11729 {
11730 *attachment = p + 1;
11731 return 0;
11732 }
11733 else if (*p == '\0')
11734 return 0;
11735 else
11736 return -1;
11737 }
11738
11739 /* Send a prepared I/O packet to the target and read its response.
11740 The prepared packet is in the global RS->BUF before this function
11741 is called, and the answer is there when we return.
11742
11743 COMMAND_BYTES is the length of the request to send, which may include
11744 binary data. WHICH_PACKET is the packet configuration to check
11745 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11746 is set to the error number and -1 is returned. Otherwise the value
11747 returned by the function is returned.
11748
11749 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11750 attachment is expected; an error will be reported if there's a
11751 mismatch. If one is found, *ATTACHMENT will be set to point into
11752 the packet buffer and *ATTACHMENT_LEN will be set to the
11753 attachment's length. */
11754
11755 int
11756 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11757 int *remote_errno, char **attachment,
11758 int *attachment_len)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761 int ret, bytes_read;
11762 char *attachment_tmp;
11763
11764 if (packet_support (which_packet) == PACKET_DISABLE)
11765 {
11766 *remote_errno = FILEIO_ENOSYS;
11767 return -1;
11768 }
11769
11770 putpkt_binary (rs->buf.data (), command_bytes);
11771 bytes_read = getpkt_sane (&rs->buf, 0);
11772
11773 /* If it timed out, something is wrong. Don't try to parse the
11774 buffer. */
11775 if (bytes_read < 0)
11776 {
11777 *remote_errno = FILEIO_EINVAL;
11778 return -1;
11779 }
11780
11781 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11782 {
11783 case PACKET_ERROR:
11784 *remote_errno = FILEIO_EINVAL;
11785 return -1;
11786 case PACKET_UNKNOWN:
11787 *remote_errno = FILEIO_ENOSYS;
11788 return -1;
11789 case PACKET_OK:
11790 break;
11791 }
11792
11793 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11794 &attachment_tmp))
11795 {
11796 *remote_errno = FILEIO_EINVAL;
11797 return -1;
11798 }
11799
11800 /* Make sure we saw an attachment if and only if we expected one. */
11801 if ((attachment_tmp == NULL && attachment != NULL)
11802 || (attachment_tmp != NULL && attachment == NULL))
11803 {
11804 *remote_errno = FILEIO_EINVAL;
11805 return -1;
11806 }
11807
11808 /* If an attachment was found, it must point into the packet buffer;
11809 work out how many bytes there were. */
11810 if (attachment_tmp != NULL)
11811 {
11812 *attachment = attachment_tmp;
11813 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11814 }
11815
11816 return ret;
11817 }
11818
11819 /* See declaration.h. */
11820
11821 void
11822 readahead_cache::invalidate ()
11823 {
11824 this->fd = -1;
11825 }
11826
11827 /* See declaration.h. */
11828
11829 void
11830 readahead_cache::invalidate_fd (int fd)
11831 {
11832 if (this->fd == fd)
11833 this->fd = -1;
11834 }
11835
11836 /* Set the filesystem remote_hostio functions that take FILENAME
11837 arguments will use. Return 0 on success, or -1 if an error
11838 occurs (and set *REMOTE_ERRNO). */
11839
11840 int
11841 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11842 int *remote_errno)
11843 {
11844 struct remote_state *rs = get_remote_state ();
11845 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11846 char *p = rs->buf.data ();
11847 int left = get_remote_packet_size () - 1;
11848 char arg[9];
11849 int ret;
11850
11851 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11852 return 0;
11853
11854 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11855 return 0;
11856
11857 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11858
11859 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11860 remote_buffer_add_string (&p, &left, arg);
11861
11862 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11863 remote_errno, NULL, NULL);
11864
11865 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11866 return 0;
11867
11868 if (ret == 0)
11869 rs->fs_pid = required_pid;
11870
11871 return ret;
11872 }
11873
11874 /* Implementation of to_fileio_open. */
11875
11876 int
11877 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11878 int flags, int mode, int warn_if_slow,
11879 int *remote_errno)
11880 {
11881 struct remote_state *rs = get_remote_state ();
11882 char *p = rs->buf.data ();
11883 int left = get_remote_packet_size () - 1;
11884
11885 if (warn_if_slow)
11886 {
11887 static int warning_issued = 0;
11888
11889 printf_unfiltered (_("Reading %s from remote target...\n"),
11890 filename);
11891
11892 if (!warning_issued)
11893 {
11894 warning (_("File transfers from remote targets can be slow."
11895 " Use \"set sysroot\" to access files locally"
11896 " instead."));
11897 warning_issued = 1;
11898 }
11899 }
11900
11901 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11902 return -1;
11903
11904 remote_buffer_add_string (&p, &left, "vFile:open:");
11905
11906 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11907 strlen (filename));
11908 remote_buffer_add_string (&p, &left, ",");
11909
11910 remote_buffer_add_int (&p, &left, flags);
11911 remote_buffer_add_string (&p, &left, ",");
11912
11913 remote_buffer_add_int (&p, &left, mode);
11914
11915 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11916 remote_errno, NULL, NULL);
11917 }
11918
11919 int
11920 remote_target::fileio_open (struct inferior *inf, const char *filename,
11921 int flags, int mode, int warn_if_slow,
11922 int *remote_errno)
11923 {
11924 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11925 remote_errno);
11926 }
11927
11928 /* Implementation of to_fileio_pwrite. */
11929
11930 int
11931 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11932 ULONGEST offset, int *remote_errno)
11933 {
11934 struct remote_state *rs = get_remote_state ();
11935 char *p = rs->buf.data ();
11936 int left = get_remote_packet_size ();
11937 int out_len;
11938
11939 rs->readahead_cache.invalidate_fd (fd);
11940
11941 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11942
11943 remote_buffer_add_int (&p, &left, fd);
11944 remote_buffer_add_string (&p, &left, ",");
11945
11946 remote_buffer_add_int (&p, &left, offset);
11947 remote_buffer_add_string (&p, &left, ",");
11948
11949 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11950 (get_remote_packet_size ()
11951 - (p - rs->buf.data ())));
11952
11953 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11954 remote_errno, NULL, NULL);
11955 }
11956
11957 int
11958 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11959 ULONGEST offset, int *remote_errno)
11960 {
11961 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11962 }
11963
11964 /* Helper for the implementation of to_fileio_pread. Read the file
11965 from the remote side with vFile:pread. */
11966
11967 int
11968 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11969 ULONGEST offset, int *remote_errno)
11970 {
11971 struct remote_state *rs = get_remote_state ();
11972 char *p = rs->buf.data ();
11973 char *attachment;
11974 int left = get_remote_packet_size ();
11975 int ret, attachment_len;
11976 int read_len;
11977
11978 remote_buffer_add_string (&p, &left, "vFile:pread:");
11979
11980 remote_buffer_add_int (&p, &left, fd);
11981 remote_buffer_add_string (&p, &left, ",");
11982
11983 remote_buffer_add_int (&p, &left, len);
11984 remote_buffer_add_string (&p, &left, ",");
11985
11986 remote_buffer_add_int (&p, &left, offset);
11987
11988 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11989 remote_errno, &attachment,
11990 &attachment_len);
11991
11992 if (ret < 0)
11993 return ret;
11994
11995 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11996 read_buf, len);
11997 if (read_len != ret)
11998 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11999
12000 return ret;
12001 }
12002
12003 /* See declaration.h. */
12004
12005 int
12006 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12007 ULONGEST offset)
12008 {
12009 if (this->fd == fd
12010 && this->offset <= offset
12011 && offset < this->offset + this->bufsize)
12012 {
12013 ULONGEST max = this->offset + this->bufsize;
12014
12015 if (offset + len > max)
12016 len = max - offset;
12017
12018 memcpy (read_buf, this->buf + offset - this->offset, len);
12019 return len;
12020 }
12021
12022 return 0;
12023 }
12024
12025 /* Implementation of to_fileio_pread. */
12026
12027 int
12028 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12029 ULONGEST offset, int *remote_errno)
12030 {
12031 int ret;
12032 struct remote_state *rs = get_remote_state ();
12033 readahead_cache *cache = &rs->readahead_cache;
12034
12035 ret = cache->pread (fd, read_buf, len, offset);
12036 if (ret > 0)
12037 {
12038 cache->hit_count++;
12039
12040 if (remote_debug)
12041 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12042 pulongest (cache->hit_count));
12043 return ret;
12044 }
12045
12046 cache->miss_count++;
12047 if (remote_debug)
12048 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12049 pulongest (cache->miss_count));
12050
12051 cache->fd = fd;
12052 cache->offset = offset;
12053 cache->bufsize = get_remote_packet_size ();
12054 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12055
12056 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12057 cache->offset, remote_errno);
12058 if (ret <= 0)
12059 {
12060 cache->invalidate_fd (fd);
12061 return ret;
12062 }
12063
12064 cache->bufsize = ret;
12065 return cache->pread (fd, read_buf, len, offset);
12066 }
12067
12068 int
12069 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12070 ULONGEST offset, int *remote_errno)
12071 {
12072 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12073 }
12074
12075 /* Implementation of to_fileio_close. */
12076
12077 int
12078 remote_target::remote_hostio_close (int fd, int *remote_errno)
12079 {
12080 struct remote_state *rs = get_remote_state ();
12081 char *p = rs->buf.data ();
12082 int left = get_remote_packet_size () - 1;
12083
12084 rs->readahead_cache.invalidate_fd (fd);
12085
12086 remote_buffer_add_string (&p, &left, "vFile:close:");
12087
12088 remote_buffer_add_int (&p, &left, fd);
12089
12090 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12091 remote_errno, NULL, NULL);
12092 }
12093
12094 int
12095 remote_target::fileio_close (int fd, int *remote_errno)
12096 {
12097 return remote_hostio_close (fd, remote_errno);
12098 }
12099
12100 /* Implementation of to_fileio_unlink. */
12101
12102 int
12103 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12104 int *remote_errno)
12105 {
12106 struct remote_state *rs = get_remote_state ();
12107 char *p = rs->buf.data ();
12108 int left = get_remote_packet_size () - 1;
12109
12110 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12111 return -1;
12112
12113 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12114
12115 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12116 strlen (filename));
12117
12118 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12119 remote_errno, NULL, NULL);
12120 }
12121
12122 int
12123 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12124 int *remote_errno)
12125 {
12126 return remote_hostio_unlink (inf, filename, remote_errno);
12127 }
12128
12129 /* Implementation of to_fileio_readlink. */
12130
12131 gdb::optional<std::string>
12132 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12133 int *remote_errno)
12134 {
12135 struct remote_state *rs = get_remote_state ();
12136 char *p = rs->buf.data ();
12137 char *attachment;
12138 int left = get_remote_packet_size ();
12139 int len, attachment_len;
12140 int read_len;
12141
12142 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12143 return {};
12144
12145 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12146
12147 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12148 strlen (filename));
12149
12150 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12151 remote_errno, &attachment,
12152 &attachment_len);
12153
12154 if (len < 0)
12155 return {};
12156
12157 std::string ret (len, '\0');
12158
12159 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12160 (gdb_byte *) &ret[0], len);
12161 if (read_len != len)
12162 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12163
12164 return ret;
12165 }
12166
12167 /* Implementation of to_fileio_fstat. */
12168
12169 int
12170 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173 char *p = rs->buf.data ();
12174 int left = get_remote_packet_size ();
12175 int attachment_len, ret;
12176 char *attachment;
12177 struct fio_stat fst;
12178 int read_len;
12179
12180 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12181
12182 remote_buffer_add_int (&p, &left, fd);
12183
12184 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12185 remote_errno, &attachment,
12186 &attachment_len);
12187 if (ret < 0)
12188 {
12189 if (*remote_errno != FILEIO_ENOSYS)
12190 return ret;
12191
12192 /* Strictly we should return -1, ENOSYS here, but when
12193 "set sysroot remote:" was implemented in August 2008
12194 BFD's need for a stat function was sidestepped with
12195 this hack. This was not remedied until March 2015
12196 so we retain the previous behavior to avoid breaking
12197 compatibility.
12198
12199 Note that the memset is a March 2015 addition; older
12200 GDBs set st_size *and nothing else* so the structure
12201 would have garbage in all other fields. This might
12202 break something but retaining the previous behavior
12203 here would be just too wrong. */
12204
12205 memset (st, 0, sizeof (struct stat));
12206 st->st_size = INT_MAX;
12207 return 0;
12208 }
12209
12210 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12211 (gdb_byte *) &fst, sizeof (fst));
12212
12213 if (read_len != ret)
12214 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12215
12216 if (read_len != sizeof (fst))
12217 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12218 read_len, (int) sizeof (fst));
12219
12220 remote_fileio_to_host_stat (&fst, st);
12221
12222 return 0;
12223 }
12224
12225 /* Implementation of to_filesystem_is_local. */
12226
12227 bool
12228 remote_target::filesystem_is_local ()
12229 {
12230 /* Valgrind GDB presents itself as a remote target but works
12231 on the local filesystem: it does not implement remote get
12232 and users are not expected to set a sysroot. To handle
12233 this case we treat the remote filesystem as local if the
12234 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12235 does not support vFile:open. */
12236 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12237 {
12238 enum packet_support ps = packet_support (PACKET_vFile_open);
12239
12240 if (ps == PACKET_SUPPORT_UNKNOWN)
12241 {
12242 int fd, remote_errno;
12243
12244 /* Try opening a file to probe support. The supplied
12245 filename is irrelevant, we only care about whether
12246 the stub recognizes the packet or not. */
12247 fd = remote_hostio_open (NULL, "just probing",
12248 FILEIO_O_RDONLY, 0700, 0,
12249 &remote_errno);
12250
12251 if (fd >= 0)
12252 remote_hostio_close (fd, &remote_errno);
12253
12254 ps = packet_support (PACKET_vFile_open);
12255 }
12256
12257 if (ps == PACKET_DISABLE)
12258 {
12259 static int warning_issued = 0;
12260
12261 if (!warning_issued)
12262 {
12263 warning (_("remote target does not support file"
12264 " transfer, attempting to access files"
12265 " from local filesystem."));
12266 warning_issued = 1;
12267 }
12268
12269 return true;
12270 }
12271 }
12272
12273 return false;
12274 }
12275
12276 static int
12277 remote_fileio_errno_to_host (int errnum)
12278 {
12279 switch (errnum)
12280 {
12281 case FILEIO_EPERM:
12282 return EPERM;
12283 case FILEIO_ENOENT:
12284 return ENOENT;
12285 case FILEIO_EINTR:
12286 return EINTR;
12287 case FILEIO_EIO:
12288 return EIO;
12289 case FILEIO_EBADF:
12290 return EBADF;
12291 case FILEIO_EACCES:
12292 return EACCES;
12293 case FILEIO_EFAULT:
12294 return EFAULT;
12295 case FILEIO_EBUSY:
12296 return EBUSY;
12297 case FILEIO_EEXIST:
12298 return EEXIST;
12299 case FILEIO_ENODEV:
12300 return ENODEV;
12301 case FILEIO_ENOTDIR:
12302 return ENOTDIR;
12303 case FILEIO_EISDIR:
12304 return EISDIR;
12305 case FILEIO_EINVAL:
12306 return EINVAL;
12307 case FILEIO_ENFILE:
12308 return ENFILE;
12309 case FILEIO_EMFILE:
12310 return EMFILE;
12311 case FILEIO_EFBIG:
12312 return EFBIG;
12313 case FILEIO_ENOSPC:
12314 return ENOSPC;
12315 case FILEIO_ESPIPE:
12316 return ESPIPE;
12317 case FILEIO_EROFS:
12318 return EROFS;
12319 case FILEIO_ENOSYS:
12320 return ENOSYS;
12321 case FILEIO_ENAMETOOLONG:
12322 return ENAMETOOLONG;
12323 }
12324 return -1;
12325 }
12326
12327 static char *
12328 remote_hostio_error (int errnum)
12329 {
12330 int host_error = remote_fileio_errno_to_host (errnum);
12331
12332 if (host_error == -1)
12333 error (_("Unknown remote I/O error %d"), errnum);
12334 else
12335 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12336 }
12337
12338 /* A RAII wrapper around a remote file descriptor. */
12339
12340 class scoped_remote_fd
12341 {
12342 public:
12343 scoped_remote_fd (remote_target *remote, int fd)
12344 : m_remote (remote), m_fd (fd)
12345 {
12346 }
12347
12348 ~scoped_remote_fd ()
12349 {
12350 if (m_fd != -1)
12351 {
12352 try
12353 {
12354 int remote_errno;
12355 m_remote->remote_hostio_close (m_fd, &remote_errno);
12356 }
12357 catch (...)
12358 {
12359 /* Swallow exception before it escapes the dtor. If
12360 something goes wrong, likely the connection is gone,
12361 and there's nothing else that can be done. */
12362 }
12363 }
12364 }
12365
12366 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12367
12368 /* Release ownership of the file descriptor, and return it. */
12369 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12370 {
12371 int fd = m_fd;
12372 m_fd = -1;
12373 return fd;
12374 }
12375
12376 /* Return the owned file descriptor. */
12377 int get () const noexcept
12378 {
12379 return m_fd;
12380 }
12381
12382 private:
12383 /* The remote target. */
12384 remote_target *m_remote;
12385
12386 /* The owned remote I/O file descriptor. */
12387 int m_fd;
12388 };
12389
12390 void
12391 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12392 {
12393 remote_target *remote = get_current_remote_target ();
12394
12395 if (remote == nullptr)
12396 error (_("command can only be used with remote target"));
12397
12398 remote->remote_file_put (local_file, remote_file, from_tty);
12399 }
12400
12401 void
12402 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12403 int from_tty)
12404 {
12405 int retcode, remote_errno, bytes, io_size;
12406 int bytes_in_buffer;
12407 int saw_eof;
12408 ULONGEST offset;
12409
12410 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12411 if (file == NULL)
12412 perror_with_name (local_file);
12413
12414 scoped_remote_fd fd
12415 (this, remote_hostio_open (NULL,
12416 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12417 | FILEIO_O_TRUNC),
12418 0700, 0, &remote_errno));
12419 if (fd.get () == -1)
12420 remote_hostio_error (remote_errno);
12421
12422 /* Send up to this many bytes at once. They won't all fit in the
12423 remote packet limit, so we'll transfer slightly fewer. */
12424 io_size = get_remote_packet_size ();
12425 gdb::byte_vector buffer (io_size);
12426
12427 bytes_in_buffer = 0;
12428 saw_eof = 0;
12429 offset = 0;
12430 while (bytes_in_buffer || !saw_eof)
12431 {
12432 if (!saw_eof)
12433 {
12434 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12435 io_size - bytes_in_buffer,
12436 file.get ());
12437 if (bytes == 0)
12438 {
12439 if (ferror (file.get ()))
12440 error (_("Error reading %s."), local_file);
12441 else
12442 {
12443 /* EOF. Unless there is something still in the
12444 buffer from the last iteration, we are done. */
12445 saw_eof = 1;
12446 if (bytes_in_buffer == 0)
12447 break;
12448 }
12449 }
12450 }
12451 else
12452 bytes = 0;
12453
12454 bytes += bytes_in_buffer;
12455 bytes_in_buffer = 0;
12456
12457 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12458 offset, &remote_errno);
12459
12460 if (retcode < 0)
12461 remote_hostio_error (remote_errno);
12462 else if (retcode == 0)
12463 error (_("Remote write of %d bytes returned 0!"), bytes);
12464 else if (retcode < bytes)
12465 {
12466 /* Short write. Save the rest of the read data for the next
12467 write. */
12468 bytes_in_buffer = bytes - retcode;
12469 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12470 }
12471
12472 offset += retcode;
12473 }
12474
12475 if (remote_hostio_close (fd.release (), &remote_errno))
12476 remote_hostio_error (remote_errno);
12477
12478 if (from_tty)
12479 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12480 }
12481
12482 void
12483 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12484 {
12485 remote_target *remote = get_current_remote_target ();
12486
12487 if (remote == nullptr)
12488 error (_("command can only be used with remote target"));
12489
12490 remote->remote_file_get (remote_file, local_file, from_tty);
12491 }
12492
12493 void
12494 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12495 int from_tty)
12496 {
12497 int remote_errno, bytes, io_size;
12498 ULONGEST offset;
12499
12500 scoped_remote_fd fd
12501 (this, remote_hostio_open (NULL,
12502 remote_file, FILEIO_O_RDONLY, 0, 0,
12503 &remote_errno));
12504 if (fd.get () == -1)
12505 remote_hostio_error (remote_errno);
12506
12507 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12508 if (file == NULL)
12509 perror_with_name (local_file);
12510
12511 /* Send up to this many bytes at once. They won't all fit in the
12512 remote packet limit, so we'll transfer slightly fewer. */
12513 io_size = get_remote_packet_size ();
12514 gdb::byte_vector buffer (io_size);
12515
12516 offset = 0;
12517 while (1)
12518 {
12519 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12520 &remote_errno);
12521 if (bytes == 0)
12522 /* Success, but no bytes, means end-of-file. */
12523 break;
12524 if (bytes == -1)
12525 remote_hostio_error (remote_errno);
12526
12527 offset += bytes;
12528
12529 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12530 if (bytes == 0)
12531 perror_with_name (local_file);
12532 }
12533
12534 if (remote_hostio_close (fd.release (), &remote_errno))
12535 remote_hostio_error (remote_errno);
12536
12537 if (from_tty)
12538 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12539 }
12540
12541 void
12542 remote_file_delete (const char *remote_file, int from_tty)
12543 {
12544 remote_target *remote = get_current_remote_target ();
12545
12546 if (remote == nullptr)
12547 error (_("command can only be used with remote target"));
12548
12549 remote->remote_file_delete (remote_file, from_tty);
12550 }
12551
12552 void
12553 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12554 {
12555 int retcode, remote_errno;
12556
12557 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12558 if (retcode == -1)
12559 remote_hostio_error (remote_errno);
12560
12561 if (from_tty)
12562 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12563 }
12564
12565 static void
12566 remote_put_command (const char *args, int from_tty)
12567 {
12568 if (args == NULL)
12569 error_no_arg (_("file to put"));
12570
12571 gdb_argv argv (args);
12572 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12573 error (_("Invalid parameters to remote put"));
12574
12575 remote_file_put (argv[0], argv[1], from_tty);
12576 }
12577
12578 static void
12579 remote_get_command (const char *args, int from_tty)
12580 {
12581 if (args == NULL)
12582 error_no_arg (_("file to get"));
12583
12584 gdb_argv argv (args);
12585 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12586 error (_("Invalid parameters to remote get"));
12587
12588 remote_file_get (argv[0], argv[1], from_tty);
12589 }
12590
12591 static void
12592 remote_delete_command (const char *args, int from_tty)
12593 {
12594 if (args == NULL)
12595 error_no_arg (_("file to delete"));
12596
12597 gdb_argv argv (args);
12598 if (argv[0] == NULL || argv[1] != NULL)
12599 error (_("Invalid parameters to remote delete"));
12600
12601 remote_file_delete (argv[0], from_tty);
12602 }
12603
12604 static void
12605 remote_command (const char *args, int from_tty)
12606 {
12607 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12608 }
12609
12610 bool
12611 remote_target::can_execute_reverse ()
12612 {
12613 if (packet_support (PACKET_bs) == PACKET_ENABLE
12614 || packet_support (PACKET_bc) == PACKET_ENABLE)
12615 return true;
12616 else
12617 return false;
12618 }
12619
12620 bool
12621 remote_target::supports_non_stop ()
12622 {
12623 return true;
12624 }
12625
12626 bool
12627 remote_target::supports_disable_randomization ()
12628 {
12629 /* Only supported in extended mode. */
12630 return false;
12631 }
12632
12633 bool
12634 remote_target::supports_multi_process ()
12635 {
12636 struct remote_state *rs = get_remote_state ();
12637
12638 return remote_multi_process_p (rs);
12639 }
12640
12641 static int
12642 remote_supports_cond_tracepoints ()
12643 {
12644 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12645 }
12646
12647 bool
12648 remote_target::supports_evaluation_of_breakpoint_conditions ()
12649 {
12650 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12651 }
12652
12653 static int
12654 remote_supports_fast_tracepoints ()
12655 {
12656 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12657 }
12658
12659 static int
12660 remote_supports_static_tracepoints ()
12661 {
12662 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12663 }
12664
12665 static int
12666 remote_supports_install_in_trace ()
12667 {
12668 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12669 }
12670
12671 bool
12672 remote_target::supports_enable_disable_tracepoint ()
12673 {
12674 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12675 == PACKET_ENABLE);
12676 }
12677
12678 bool
12679 remote_target::supports_string_tracing ()
12680 {
12681 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12682 }
12683
12684 bool
12685 remote_target::can_run_breakpoint_commands ()
12686 {
12687 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12688 }
12689
12690 void
12691 remote_target::trace_init ()
12692 {
12693 struct remote_state *rs = get_remote_state ();
12694
12695 putpkt ("QTinit");
12696 remote_get_noisy_reply ();
12697 if (strcmp (rs->buf.data (), "OK") != 0)
12698 error (_("Target does not support this command."));
12699 }
12700
12701 /* Recursive routine to walk through command list including loops, and
12702 download packets for each command. */
12703
12704 void
12705 remote_target::remote_download_command_source (int num, ULONGEST addr,
12706 struct command_line *cmds)
12707 {
12708 struct remote_state *rs = get_remote_state ();
12709 struct command_line *cmd;
12710
12711 for (cmd = cmds; cmd; cmd = cmd->next)
12712 {
12713 QUIT; /* Allow user to bail out with ^C. */
12714 strcpy (rs->buf.data (), "QTDPsrc:");
12715 encode_source_string (num, addr, "cmd", cmd->line,
12716 rs->buf.data () + strlen (rs->buf.data ()),
12717 rs->buf.size () - strlen (rs->buf.data ()));
12718 putpkt (rs->buf);
12719 remote_get_noisy_reply ();
12720 if (strcmp (rs->buf.data (), "OK"))
12721 warning (_("Target does not support source download."));
12722
12723 if (cmd->control_type == while_control
12724 || cmd->control_type == while_stepping_control)
12725 {
12726 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12727
12728 QUIT; /* Allow user to bail out with ^C. */
12729 strcpy (rs->buf.data (), "QTDPsrc:");
12730 encode_source_string (num, addr, "cmd", "end",
12731 rs->buf.data () + strlen (rs->buf.data ()),
12732 rs->buf.size () - strlen (rs->buf.data ()));
12733 putpkt (rs->buf);
12734 remote_get_noisy_reply ();
12735 if (strcmp (rs->buf.data (), "OK"))
12736 warning (_("Target does not support source download."));
12737 }
12738 }
12739 }
12740
12741 void
12742 remote_target::download_tracepoint (struct bp_location *loc)
12743 {
12744 CORE_ADDR tpaddr;
12745 char addrbuf[40];
12746 std::vector<std::string> tdp_actions;
12747 std::vector<std::string> stepping_actions;
12748 char *pkt;
12749 struct breakpoint *b = loc->owner;
12750 struct tracepoint *t = (struct tracepoint *) b;
12751 struct remote_state *rs = get_remote_state ();
12752 int ret;
12753 const char *err_msg = _("Tracepoint packet too large for target.");
12754 size_t size_left;
12755
12756 /* We use a buffer other than rs->buf because we'll build strings
12757 across multiple statements, and other statements in between could
12758 modify rs->buf. */
12759 gdb::char_vector buf (get_remote_packet_size ());
12760
12761 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12762
12763 tpaddr = loc->address;
12764 sprintf_vma (addrbuf, tpaddr);
12765 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12766 b->number, addrbuf, /* address */
12767 (b->enable_state == bp_enabled ? 'E' : 'D'),
12768 t->step_count, t->pass_count);
12769
12770 if (ret < 0 || ret >= buf.size ())
12771 error ("%s", err_msg);
12772
12773 /* Fast tracepoints are mostly handled by the target, but we can
12774 tell the target how big of an instruction block should be moved
12775 around. */
12776 if (b->type == bp_fast_tracepoint)
12777 {
12778 /* Only test for support at download time; we may not know
12779 target capabilities at definition time. */
12780 if (remote_supports_fast_tracepoints ())
12781 {
12782 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12783 NULL))
12784 {
12785 size_left = buf.size () - strlen (buf.data ());
12786 ret = snprintf (buf.data () + strlen (buf.data ()),
12787 size_left, ":F%x",
12788 gdb_insn_length (loc->gdbarch, tpaddr));
12789
12790 if (ret < 0 || ret >= size_left)
12791 error ("%s", err_msg);
12792 }
12793 else
12794 /* If it passed validation at definition but fails now,
12795 something is very wrong. */
12796 internal_error (__FILE__, __LINE__,
12797 _("Fast tracepoint not "
12798 "valid during download"));
12799 }
12800 else
12801 /* Fast tracepoints are functionally identical to regular
12802 tracepoints, so don't take lack of support as a reason to
12803 give up on the trace run. */
12804 warning (_("Target does not support fast tracepoints, "
12805 "downloading %d as regular tracepoint"), b->number);
12806 }
12807 else if (b->type == bp_static_tracepoint)
12808 {
12809 /* Only test for support at download time; we may not know
12810 target capabilities at definition time. */
12811 if (remote_supports_static_tracepoints ())
12812 {
12813 struct static_tracepoint_marker marker;
12814
12815 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12816 {
12817 size_left = buf.size () - strlen (buf.data ());
12818 ret = snprintf (buf.data () + strlen (buf.data ()),
12819 size_left, ":S");
12820
12821 if (ret < 0 || ret >= size_left)
12822 error ("%s", err_msg);
12823 }
12824 else
12825 error (_("Static tracepoint not valid during download"));
12826 }
12827 else
12828 /* Fast tracepoints are functionally identical to regular
12829 tracepoints, so don't take lack of support as a reason
12830 to give up on the trace run. */
12831 error (_("Target does not support static tracepoints"));
12832 }
12833 /* If the tracepoint has a conditional, make it into an agent
12834 expression and append to the definition. */
12835 if (loc->cond)
12836 {
12837 /* Only test support at download time, we may not know target
12838 capabilities at definition time. */
12839 if (remote_supports_cond_tracepoints ())
12840 {
12841 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12842 loc->cond.get ());
12843
12844 size_left = buf.size () - strlen (buf.data ());
12845
12846 ret = snprintf (buf.data () + strlen (buf.data ()),
12847 size_left, ":X%x,", aexpr->len);
12848
12849 if (ret < 0 || ret >= size_left)
12850 error ("%s", err_msg);
12851
12852 size_left = buf.size () - strlen (buf.data ());
12853
12854 /* Two bytes to encode each aexpr byte, plus the terminating
12855 null byte. */
12856 if (aexpr->len * 2 + 1 > size_left)
12857 error ("%s", err_msg);
12858
12859 pkt = buf.data () + strlen (buf.data ());
12860
12861 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12862 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12863 *pkt = '\0';
12864 }
12865 else
12866 warning (_("Target does not support conditional tracepoints, "
12867 "ignoring tp %d cond"), b->number);
12868 }
12869
12870 if (b->commands || *default_collect)
12871 {
12872 size_left = buf.size () - strlen (buf.data ());
12873
12874 ret = snprintf (buf.data () + strlen (buf.data ()),
12875 size_left, "-");
12876
12877 if (ret < 0 || ret >= size_left)
12878 error ("%s", err_msg);
12879 }
12880
12881 putpkt (buf.data ());
12882 remote_get_noisy_reply ();
12883 if (strcmp (rs->buf.data (), "OK"))
12884 error (_("Target does not support tracepoints."));
12885
12886 /* do_single_steps (t); */
12887 for (auto action_it = tdp_actions.begin ();
12888 action_it != tdp_actions.end (); action_it++)
12889 {
12890 QUIT; /* Allow user to bail out with ^C. */
12891
12892 bool has_more = ((action_it + 1) != tdp_actions.end ()
12893 || !stepping_actions.empty ());
12894
12895 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12896 b->number, addrbuf, /* address */
12897 action_it->c_str (),
12898 has_more ? '-' : 0);
12899
12900 if (ret < 0 || ret >= buf.size ())
12901 error ("%s", err_msg);
12902
12903 putpkt (buf.data ());
12904 remote_get_noisy_reply ();
12905 if (strcmp (rs->buf.data (), "OK"))
12906 error (_("Error on target while setting tracepoints."));
12907 }
12908
12909 for (auto action_it = stepping_actions.begin ();
12910 action_it != stepping_actions.end (); action_it++)
12911 {
12912 QUIT; /* Allow user to bail out with ^C. */
12913
12914 bool is_first = action_it == stepping_actions.begin ();
12915 bool has_more = (action_it + 1) != stepping_actions.end ();
12916
12917 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12918 b->number, addrbuf, /* address */
12919 is_first ? "S" : "",
12920 action_it->c_str (),
12921 has_more ? "-" : "");
12922
12923 if (ret < 0 || ret >= buf.size ())
12924 error ("%s", err_msg);
12925
12926 putpkt (buf.data ());
12927 remote_get_noisy_reply ();
12928 if (strcmp (rs->buf.data (), "OK"))
12929 error (_("Error on target while setting tracepoints."));
12930 }
12931
12932 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12933 {
12934 if (b->location != NULL)
12935 {
12936 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12937
12938 if (ret < 0 || ret >= buf.size ())
12939 error ("%s", err_msg);
12940
12941 encode_source_string (b->number, loc->address, "at",
12942 event_location_to_string (b->location.get ()),
12943 buf.data () + strlen (buf.data ()),
12944 buf.size () - strlen (buf.data ()));
12945 putpkt (buf.data ());
12946 remote_get_noisy_reply ();
12947 if (strcmp (rs->buf.data (), "OK"))
12948 warning (_("Target does not support source download."));
12949 }
12950 if (b->cond_string)
12951 {
12952 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12953
12954 if (ret < 0 || ret >= buf.size ())
12955 error ("%s", err_msg);
12956
12957 encode_source_string (b->number, loc->address,
12958 "cond", b->cond_string,
12959 buf.data () + strlen (buf.data ()),
12960 buf.size () - strlen (buf.data ()));
12961 putpkt (buf.data ());
12962 remote_get_noisy_reply ();
12963 if (strcmp (rs->buf.data (), "OK"))
12964 warning (_("Target does not support source download."));
12965 }
12966 remote_download_command_source (b->number, loc->address,
12967 breakpoint_commands (b));
12968 }
12969 }
12970
12971 bool
12972 remote_target::can_download_tracepoint ()
12973 {
12974 struct remote_state *rs = get_remote_state ();
12975 struct trace_status *ts;
12976 int status;
12977
12978 /* Don't try to install tracepoints until we've relocated our
12979 symbols, and fetched and merged the target's tracepoint list with
12980 ours. */
12981 if (rs->starting_up)
12982 return false;
12983
12984 ts = current_trace_status ();
12985 status = get_trace_status (ts);
12986
12987 if (status == -1 || !ts->running_known || !ts->running)
12988 return false;
12989
12990 /* If we are in a tracing experiment, but remote stub doesn't support
12991 installing tracepoint in trace, we have to return. */
12992 if (!remote_supports_install_in_trace ())
12993 return false;
12994
12995 return true;
12996 }
12997
12998
12999 void
13000 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13001 {
13002 struct remote_state *rs = get_remote_state ();
13003 char *p;
13004
13005 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13006 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13007 tsv.builtin);
13008 p = rs->buf.data () + strlen (rs->buf.data ());
13009 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13010 >= get_remote_packet_size ())
13011 error (_("Trace state variable name too long for tsv definition packet"));
13012 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13013 *p++ = '\0';
13014 putpkt (rs->buf);
13015 remote_get_noisy_reply ();
13016 if (rs->buf[0] == '\0')
13017 error (_("Target does not support this command."));
13018 if (strcmp (rs->buf.data (), "OK") != 0)
13019 error (_("Error on target while downloading trace state variable."));
13020 }
13021
13022 void
13023 remote_target::enable_tracepoint (struct bp_location *location)
13024 {
13025 struct remote_state *rs = get_remote_state ();
13026 char addr_buf[40];
13027
13028 sprintf_vma (addr_buf, location->address);
13029 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13030 location->owner->number, addr_buf);
13031 putpkt (rs->buf);
13032 remote_get_noisy_reply ();
13033 if (rs->buf[0] == '\0')
13034 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13035 if (strcmp (rs->buf.data (), "OK") != 0)
13036 error (_("Error on target while enabling tracepoint."));
13037 }
13038
13039 void
13040 remote_target::disable_tracepoint (struct bp_location *location)
13041 {
13042 struct remote_state *rs = get_remote_state ();
13043 char addr_buf[40];
13044
13045 sprintf_vma (addr_buf, location->address);
13046 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13047 location->owner->number, addr_buf);
13048 putpkt (rs->buf);
13049 remote_get_noisy_reply ();
13050 if (rs->buf[0] == '\0')
13051 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13052 if (strcmp (rs->buf.data (), "OK") != 0)
13053 error (_("Error on target while disabling tracepoint."));
13054 }
13055
13056 void
13057 remote_target::trace_set_readonly_regions ()
13058 {
13059 asection *s;
13060 bfd_size_type size;
13061 bfd_vma vma;
13062 int anysecs = 0;
13063 int offset = 0;
13064
13065 if (!exec_bfd)
13066 return; /* No information to give. */
13067
13068 struct remote_state *rs = get_remote_state ();
13069
13070 strcpy (rs->buf.data (), "QTro");
13071 offset = strlen (rs->buf.data ());
13072 for (s = exec_bfd->sections; s; s = s->next)
13073 {
13074 char tmp1[40], tmp2[40];
13075 int sec_length;
13076
13077 if ((s->flags & SEC_LOAD) == 0 ||
13078 /* (s->flags & SEC_CODE) == 0 || */
13079 (s->flags & SEC_READONLY) == 0)
13080 continue;
13081
13082 anysecs = 1;
13083 vma = bfd_section_vma (s);
13084 size = bfd_section_size (s);
13085 sprintf_vma (tmp1, vma);
13086 sprintf_vma (tmp2, vma + size);
13087 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13088 if (offset + sec_length + 1 > rs->buf.size ())
13089 {
13090 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13091 warning (_("\
13092 Too many sections for read-only sections definition packet."));
13093 break;
13094 }
13095 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13096 tmp1, tmp2);
13097 offset += sec_length;
13098 }
13099 if (anysecs)
13100 {
13101 putpkt (rs->buf);
13102 getpkt (&rs->buf, 0);
13103 }
13104 }
13105
13106 void
13107 remote_target::trace_start ()
13108 {
13109 struct remote_state *rs = get_remote_state ();
13110
13111 putpkt ("QTStart");
13112 remote_get_noisy_reply ();
13113 if (rs->buf[0] == '\0')
13114 error (_("Target does not support this command."));
13115 if (strcmp (rs->buf.data (), "OK") != 0)
13116 error (_("Bogus reply from target: %s"), rs->buf.data ());
13117 }
13118
13119 int
13120 remote_target::get_trace_status (struct trace_status *ts)
13121 {
13122 /* Initialize it just to avoid a GCC false warning. */
13123 char *p = NULL;
13124 /* FIXME we need to get register block size some other way. */
13125 extern int trace_regblock_size;
13126 enum packet_result result;
13127 struct remote_state *rs = get_remote_state ();
13128
13129 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13130 return -1;
13131
13132 trace_regblock_size
13133 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13134
13135 putpkt ("qTStatus");
13136
13137 try
13138 {
13139 p = remote_get_noisy_reply ();
13140 }
13141 catch (const gdb_exception_error &ex)
13142 {
13143 if (ex.error != TARGET_CLOSE_ERROR)
13144 {
13145 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13146 return -1;
13147 }
13148 throw;
13149 }
13150
13151 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13152
13153 /* If the remote target doesn't do tracing, flag it. */
13154 if (result == PACKET_UNKNOWN)
13155 return -1;
13156
13157 /* We're working with a live target. */
13158 ts->filename = NULL;
13159
13160 if (*p++ != 'T')
13161 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13162
13163 /* Function 'parse_trace_status' sets default value of each field of
13164 'ts' at first, so we don't have to do it here. */
13165 parse_trace_status (p, ts);
13166
13167 return ts->running;
13168 }
13169
13170 void
13171 remote_target::get_tracepoint_status (struct breakpoint *bp,
13172 struct uploaded_tp *utp)
13173 {
13174 struct remote_state *rs = get_remote_state ();
13175 char *reply;
13176 struct bp_location *loc;
13177 struct tracepoint *tp = (struct tracepoint *) bp;
13178 size_t size = get_remote_packet_size ();
13179
13180 if (tp)
13181 {
13182 tp->hit_count = 0;
13183 tp->traceframe_usage = 0;
13184 for (loc = tp->loc; loc; loc = loc->next)
13185 {
13186 /* If the tracepoint was never downloaded, don't go asking for
13187 any status. */
13188 if (tp->number_on_target == 0)
13189 continue;
13190 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13191 phex_nz (loc->address, 0));
13192 putpkt (rs->buf);
13193 reply = remote_get_noisy_reply ();
13194 if (reply && *reply)
13195 {
13196 if (*reply == 'V')
13197 parse_tracepoint_status (reply + 1, bp, utp);
13198 }
13199 }
13200 }
13201 else if (utp)
13202 {
13203 utp->hit_count = 0;
13204 utp->traceframe_usage = 0;
13205 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13206 phex_nz (utp->addr, 0));
13207 putpkt (rs->buf);
13208 reply = remote_get_noisy_reply ();
13209 if (reply && *reply)
13210 {
13211 if (*reply == 'V')
13212 parse_tracepoint_status (reply + 1, bp, utp);
13213 }
13214 }
13215 }
13216
13217 void
13218 remote_target::trace_stop ()
13219 {
13220 struct remote_state *rs = get_remote_state ();
13221
13222 putpkt ("QTStop");
13223 remote_get_noisy_reply ();
13224 if (rs->buf[0] == '\0')
13225 error (_("Target does not support this command."));
13226 if (strcmp (rs->buf.data (), "OK") != 0)
13227 error (_("Bogus reply from target: %s"), rs->buf.data ());
13228 }
13229
13230 int
13231 remote_target::trace_find (enum trace_find_type type, int num,
13232 CORE_ADDR addr1, CORE_ADDR addr2,
13233 int *tpp)
13234 {
13235 struct remote_state *rs = get_remote_state ();
13236 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13237 char *p, *reply;
13238 int target_frameno = -1, target_tracept = -1;
13239
13240 /* Lookups other than by absolute frame number depend on the current
13241 trace selected, so make sure it is correct on the remote end
13242 first. */
13243 if (type != tfind_number)
13244 set_remote_traceframe ();
13245
13246 p = rs->buf.data ();
13247 strcpy (p, "QTFrame:");
13248 p = strchr (p, '\0');
13249 switch (type)
13250 {
13251 case tfind_number:
13252 xsnprintf (p, endbuf - p, "%x", num);
13253 break;
13254 case tfind_pc:
13255 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13256 break;
13257 case tfind_tp:
13258 xsnprintf (p, endbuf - p, "tdp:%x", num);
13259 break;
13260 case tfind_range:
13261 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13262 phex_nz (addr2, 0));
13263 break;
13264 case tfind_outside:
13265 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13266 phex_nz (addr2, 0));
13267 break;
13268 default:
13269 error (_("Unknown trace find type %d"), type);
13270 }
13271
13272 putpkt (rs->buf);
13273 reply = remote_get_noisy_reply ();
13274 if (*reply == '\0')
13275 error (_("Target does not support this command."));
13276
13277 while (reply && *reply)
13278 switch (*reply)
13279 {
13280 case 'F':
13281 p = ++reply;
13282 target_frameno = (int) strtol (p, &reply, 16);
13283 if (reply == p)
13284 error (_("Unable to parse trace frame number"));
13285 /* Don't update our remote traceframe number cache on failure
13286 to select a remote traceframe. */
13287 if (target_frameno == -1)
13288 return -1;
13289 break;
13290 case 'T':
13291 p = ++reply;
13292 target_tracept = (int) strtol (p, &reply, 16);
13293 if (reply == p)
13294 error (_("Unable to parse tracepoint number"));
13295 break;
13296 case 'O': /* "OK"? */
13297 if (reply[1] == 'K' && reply[2] == '\0')
13298 reply += 2;
13299 else
13300 error (_("Bogus reply from target: %s"), reply);
13301 break;
13302 default:
13303 error (_("Bogus reply from target: %s"), reply);
13304 }
13305 if (tpp)
13306 *tpp = target_tracept;
13307
13308 rs->remote_traceframe_number = target_frameno;
13309 return target_frameno;
13310 }
13311
13312 bool
13313 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13314 {
13315 struct remote_state *rs = get_remote_state ();
13316 char *reply;
13317 ULONGEST uval;
13318
13319 set_remote_traceframe ();
13320
13321 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13322 putpkt (rs->buf);
13323 reply = remote_get_noisy_reply ();
13324 if (reply && *reply)
13325 {
13326 if (*reply == 'V')
13327 {
13328 unpack_varlen_hex (reply + 1, &uval);
13329 *val = (LONGEST) uval;
13330 return true;
13331 }
13332 }
13333 return false;
13334 }
13335
13336 int
13337 remote_target::save_trace_data (const char *filename)
13338 {
13339 struct remote_state *rs = get_remote_state ();
13340 char *p, *reply;
13341
13342 p = rs->buf.data ();
13343 strcpy (p, "QTSave:");
13344 p += strlen (p);
13345 if ((p - rs->buf.data ()) + strlen (filename) * 2
13346 >= get_remote_packet_size ())
13347 error (_("Remote file name too long for trace save packet"));
13348 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13349 *p++ = '\0';
13350 putpkt (rs->buf);
13351 reply = remote_get_noisy_reply ();
13352 if (*reply == '\0')
13353 error (_("Target does not support this command."));
13354 if (strcmp (reply, "OK") != 0)
13355 error (_("Bogus reply from target: %s"), reply);
13356 return 0;
13357 }
13358
13359 /* This is basically a memory transfer, but needs to be its own packet
13360 because we don't know how the target actually organizes its trace
13361 memory, plus we want to be able to ask for as much as possible, but
13362 not be unhappy if we don't get as much as we ask for. */
13363
13364 LONGEST
13365 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13366 {
13367 struct remote_state *rs = get_remote_state ();
13368 char *reply;
13369 char *p;
13370 int rslt;
13371
13372 p = rs->buf.data ();
13373 strcpy (p, "qTBuffer:");
13374 p += strlen (p);
13375 p += hexnumstr (p, offset);
13376 *p++ = ',';
13377 p += hexnumstr (p, len);
13378 *p++ = '\0';
13379
13380 putpkt (rs->buf);
13381 reply = remote_get_noisy_reply ();
13382 if (reply && *reply)
13383 {
13384 /* 'l' by itself means we're at the end of the buffer and
13385 there is nothing more to get. */
13386 if (*reply == 'l')
13387 return 0;
13388
13389 /* Convert the reply into binary. Limit the number of bytes to
13390 convert according to our passed-in buffer size, rather than
13391 what was returned in the packet; if the target is
13392 unexpectedly generous and gives us a bigger reply than we
13393 asked for, we don't want to crash. */
13394 rslt = hex2bin (reply, buf, len);
13395 return rslt;
13396 }
13397
13398 /* Something went wrong, flag as an error. */
13399 return -1;
13400 }
13401
13402 void
13403 remote_target::set_disconnected_tracing (int val)
13404 {
13405 struct remote_state *rs = get_remote_state ();
13406
13407 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13408 {
13409 char *reply;
13410
13411 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13412 "QTDisconnected:%x", val);
13413 putpkt (rs->buf);
13414 reply = remote_get_noisy_reply ();
13415 if (*reply == '\0')
13416 error (_("Target does not support this command."));
13417 if (strcmp (reply, "OK") != 0)
13418 error (_("Bogus reply from target: %s"), reply);
13419 }
13420 else if (val)
13421 warning (_("Target does not support disconnected tracing."));
13422 }
13423
13424 int
13425 remote_target::core_of_thread (ptid_t ptid)
13426 {
13427 struct thread_info *info = find_thread_ptid (ptid);
13428
13429 if (info != NULL && info->priv != NULL)
13430 return get_remote_thread_info (info)->core;
13431
13432 return -1;
13433 }
13434
13435 void
13436 remote_target::set_circular_trace_buffer (int val)
13437 {
13438 struct remote_state *rs = get_remote_state ();
13439 char *reply;
13440
13441 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13442 "QTBuffer:circular:%x", val);
13443 putpkt (rs->buf);
13444 reply = remote_get_noisy_reply ();
13445 if (*reply == '\0')
13446 error (_("Target does not support this command."));
13447 if (strcmp (reply, "OK") != 0)
13448 error (_("Bogus reply from target: %s"), reply);
13449 }
13450
13451 traceframe_info_up
13452 remote_target::traceframe_info ()
13453 {
13454 gdb::optional<gdb::char_vector> text
13455 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13456 NULL);
13457 if (text)
13458 return parse_traceframe_info (text->data ());
13459
13460 return NULL;
13461 }
13462
13463 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13464 instruction on which a fast tracepoint may be placed. Returns -1
13465 if the packet is not supported, and 0 if the minimum instruction
13466 length is unknown. */
13467
13468 int
13469 remote_target::get_min_fast_tracepoint_insn_len ()
13470 {
13471 struct remote_state *rs = get_remote_state ();
13472 char *reply;
13473
13474 /* If we're not debugging a process yet, the IPA can't be
13475 loaded. */
13476 if (!target_has_execution)
13477 return 0;
13478
13479 /* Make sure the remote is pointing at the right process. */
13480 set_general_process ();
13481
13482 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13483 putpkt (rs->buf);
13484 reply = remote_get_noisy_reply ();
13485 if (*reply == '\0')
13486 return -1;
13487 else
13488 {
13489 ULONGEST min_insn_len;
13490
13491 unpack_varlen_hex (reply, &min_insn_len);
13492
13493 return (int) min_insn_len;
13494 }
13495 }
13496
13497 void
13498 remote_target::set_trace_buffer_size (LONGEST val)
13499 {
13500 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13501 {
13502 struct remote_state *rs = get_remote_state ();
13503 char *buf = rs->buf.data ();
13504 char *endbuf = buf + get_remote_packet_size ();
13505 enum packet_result result;
13506
13507 gdb_assert (val >= 0 || val == -1);
13508 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13509 /* Send -1 as literal "-1" to avoid host size dependency. */
13510 if (val < 0)
13511 {
13512 *buf++ = '-';
13513 buf += hexnumstr (buf, (ULONGEST) -val);
13514 }
13515 else
13516 buf += hexnumstr (buf, (ULONGEST) val);
13517
13518 putpkt (rs->buf);
13519 remote_get_noisy_reply ();
13520 result = packet_ok (rs->buf,
13521 &remote_protocol_packets[PACKET_QTBuffer_size]);
13522
13523 if (result != PACKET_OK)
13524 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13525 }
13526 }
13527
13528 bool
13529 remote_target::set_trace_notes (const char *user, const char *notes,
13530 const char *stop_notes)
13531 {
13532 struct remote_state *rs = get_remote_state ();
13533 char *reply;
13534 char *buf = rs->buf.data ();
13535 char *endbuf = buf + get_remote_packet_size ();
13536 int nbytes;
13537
13538 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13539 if (user)
13540 {
13541 buf += xsnprintf (buf, endbuf - buf, "user:");
13542 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13543 buf += 2 * nbytes;
13544 *buf++ = ';';
13545 }
13546 if (notes)
13547 {
13548 buf += xsnprintf (buf, endbuf - buf, "notes:");
13549 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13550 buf += 2 * nbytes;
13551 *buf++ = ';';
13552 }
13553 if (stop_notes)
13554 {
13555 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13556 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13557 buf += 2 * nbytes;
13558 *buf++ = ';';
13559 }
13560 /* Ensure the buffer is terminated. */
13561 *buf = '\0';
13562
13563 putpkt (rs->buf);
13564 reply = remote_get_noisy_reply ();
13565 if (*reply == '\0')
13566 return false;
13567
13568 if (strcmp (reply, "OK") != 0)
13569 error (_("Bogus reply from target: %s"), reply);
13570
13571 return true;
13572 }
13573
13574 bool
13575 remote_target::use_agent (bool use)
13576 {
13577 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13578 {
13579 struct remote_state *rs = get_remote_state ();
13580
13581 /* If the stub supports QAgent. */
13582 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13583 putpkt (rs->buf);
13584 getpkt (&rs->buf, 0);
13585
13586 if (strcmp (rs->buf.data (), "OK") == 0)
13587 {
13588 ::use_agent = use;
13589 return true;
13590 }
13591 }
13592
13593 return false;
13594 }
13595
13596 bool
13597 remote_target::can_use_agent ()
13598 {
13599 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13600 }
13601
13602 struct btrace_target_info
13603 {
13604 /* The ptid of the traced thread. */
13605 ptid_t ptid;
13606
13607 /* The obtained branch trace configuration. */
13608 struct btrace_config conf;
13609 };
13610
13611 /* Reset our idea of our target's btrace configuration. */
13612
13613 static void
13614 remote_btrace_reset (remote_state *rs)
13615 {
13616 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13617 }
13618
13619 /* Synchronize the configuration with the target. */
13620
13621 void
13622 remote_target::btrace_sync_conf (const btrace_config *conf)
13623 {
13624 struct packet_config *packet;
13625 struct remote_state *rs;
13626 char *buf, *pos, *endbuf;
13627
13628 rs = get_remote_state ();
13629 buf = rs->buf.data ();
13630 endbuf = buf + get_remote_packet_size ();
13631
13632 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13633 if (packet_config_support (packet) == PACKET_ENABLE
13634 && conf->bts.size != rs->btrace_config.bts.size)
13635 {
13636 pos = buf;
13637 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13638 conf->bts.size);
13639
13640 putpkt (buf);
13641 getpkt (&rs->buf, 0);
13642
13643 if (packet_ok (buf, packet) == PACKET_ERROR)
13644 {
13645 if (buf[0] == 'E' && buf[1] == '.')
13646 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13647 else
13648 error (_("Failed to configure the BTS buffer size."));
13649 }
13650
13651 rs->btrace_config.bts.size = conf->bts.size;
13652 }
13653
13654 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13655 if (packet_config_support (packet) == PACKET_ENABLE
13656 && conf->pt.size != rs->btrace_config.pt.size)
13657 {
13658 pos = buf;
13659 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13660 conf->pt.size);
13661
13662 putpkt (buf);
13663 getpkt (&rs->buf, 0);
13664
13665 if (packet_ok (buf, packet) == PACKET_ERROR)
13666 {
13667 if (buf[0] == 'E' && buf[1] == '.')
13668 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13669 else
13670 error (_("Failed to configure the trace buffer size."));
13671 }
13672
13673 rs->btrace_config.pt.size = conf->pt.size;
13674 }
13675 }
13676
13677 /* Read the current thread's btrace configuration from the target and
13678 store it into CONF. */
13679
13680 static void
13681 btrace_read_config (struct btrace_config *conf)
13682 {
13683 gdb::optional<gdb::char_vector> xml
13684 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13685 if (xml)
13686 parse_xml_btrace_conf (conf, xml->data ());
13687 }
13688
13689 /* Maybe reopen target btrace. */
13690
13691 void
13692 remote_target::remote_btrace_maybe_reopen ()
13693 {
13694 struct remote_state *rs = get_remote_state ();
13695 int btrace_target_pushed = 0;
13696 #if !defined (HAVE_LIBIPT)
13697 int warned = 0;
13698 #endif
13699
13700 /* Don't bother walking the entirety of the remote thread list when
13701 we know the feature isn't supported by the remote. */
13702 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13703 return;
13704
13705 scoped_restore_current_thread restore_thread;
13706
13707 for (thread_info *tp : all_non_exited_threads ())
13708 {
13709 set_general_thread (tp->ptid);
13710
13711 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13712 btrace_read_config (&rs->btrace_config);
13713
13714 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13715 continue;
13716
13717 #if !defined (HAVE_LIBIPT)
13718 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13719 {
13720 if (!warned)
13721 {
13722 warned = 1;
13723 warning (_("Target is recording using Intel Processor Trace "
13724 "but support was disabled at compile time."));
13725 }
13726
13727 continue;
13728 }
13729 #endif /* !defined (HAVE_LIBIPT) */
13730
13731 /* Push target, once, but before anything else happens. This way our
13732 changes to the threads will be cleaned up by unpushing the target
13733 in case btrace_read_config () throws. */
13734 if (!btrace_target_pushed)
13735 {
13736 btrace_target_pushed = 1;
13737 record_btrace_push_target ();
13738 printf_filtered (_("Target is recording using %s.\n"),
13739 btrace_format_string (rs->btrace_config.format));
13740 }
13741
13742 tp->btrace.target = XCNEW (struct btrace_target_info);
13743 tp->btrace.target->ptid = tp->ptid;
13744 tp->btrace.target->conf = rs->btrace_config;
13745 }
13746 }
13747
13748 /* Enable branch tracing. */
13749
13750 struct btrace_target_info *
13751 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13752 {
13753 struct btrace_target_info *tinfo = NULL;
13754 struct packet_config *packet = NULL;
13755 struct remote_state *rs = get_remote_state ();
13756 char *buf = rs->buf.data ();
13757 char *endbuf = buf + get_remote_packet_size ();
13758
13759 switch (conf->format)
13760 {
13761 case BTRACE_FORMAT_BTS:
13762 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13763 break;
13764
13765 case BTRACE_FORMAT_PT:
13766 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13767 break;
13768 }
13769
13770 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13771 error (_("Target does not support branch tracing."));
13772
13773 btrace_sync_conf (conf);
13774
13775 set_general_thread (ptid);
13776
13777 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13778 putpkt (rs->buf);
13779 getpkt (&rs->buf, 0);
13780
13781 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13782 {
13783 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13784 error (_("Could not enable branch tracing for %s: %s"),
13785 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13786 else
13787 error (_("Could not enable branch tracing for %s."),
13788 target_pid_to_str (ptid).c_str ());
13789 }
13790
13791 tinfo = XCNEW (struct btrace_target_info);
13792 tinfo->ptid = ptid;
13793
13794 /* If we fail to read the configuration, we lose some information, but the
13795 tracing itself is not impacted. */
13796 try
13797 {
13798 btrace_read_config (&tinfo->conf);
13799 }
13800 catch (const gdb_exception_error &err)
13801 {
13802 if (err.message != NULL)
13803 warning ("%s", err.what ());
13804 }
13805
13806 return tinfo;
13807 }
13808
13809 /* Disable branch tracing. */
13810
13811 void
13812 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13813 {
13814 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13815 struct remote_state *rs = get_remote_state ();
13816 char *buf = rs->buf.data ();
13817 char *endbuf = buf + get_remote_packet_size ();
13818
13819 if (packet_config_support (packet) != PACKET_ENABLE)
13820 error (_("Target does not support branch tracing."));
13821
13822 set_general_thread (tinfo->ptid);
13823
13824 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13825 putpkt (rs->buf);
13826 getpkt (&rs->buf, 0);
13827
13828 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13829 {
13830 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13831 error (_("Could not disable branch tracing for %s: %s"),
13832 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13833 else
13834 error (_("Could not disable branch tracing for %s."),
13835 target_pid_to_str (tinfo->ptid).c_str ());
13836 }
13837
13838 xfree (tinfo);
13839 }
13840
13841 /* Teardown branch tracing. */
13842
13843 void
13844 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13845 {
13846 /* We must not talk to the target during teardown. */
13847 xfree (tinfo);
13848 }
13849
13850 /* Read the branch trace. */
13851
13852 enum btrace_error
13853 remote_target::read_btrace (struct btrace_data *btrace,
13854 struct btrace_target_info *tinfo,
13855 enum btrace_read_type type)
13856 {
13857 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13858 const char *annex;
13859
13860 if (packet_config_support (packet) != PACKET_ENABLE)
13861 error (_("Target does not support branch tracing."));
13862
13863 #if !defined(HAVE_LIBEXPAT)
13864 error (_("Cannot process branch tracing result. XML parsing not supported."));
13865 #endif
13866
13867 switch (type)
13868 {
13869 case BTRACE_READ_ALL:
13870 annex = "all";
13871 break;
13872 case BTRACE_READ_NEW:
13873 annex = "new";
13874 break;
13875 case BTRACE_READ_DELTA:
13876 annex = "delta";
13877 break;
13878 default:
13879 internal_error (__FILE__, __LINE__,
13880 _("Bad branch tracing read type: %u."),
13881 (unsigned int) type);
13882 }
13883
13884 gdb::optional<gdb::char_vector> xml
13885 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13886 if (!xml)
13887 return BTRACE_ERR_UNKNOWN;
13888
13889 parse_xml_btrace (btrace, xml->data ());
13890
13891 return BTRACE_ERR_NONE;
13892 }
13893
13894 const struct btrace_config *
13895 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13896 {
13897 return &tinfo->conf;
13898 }
13899
13900 bool
13901 remote_target::augmented_libraries_svr4_read ()
13902 {
13903 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13904 == PACKET_ENABLE);
13905 }
13906
13907 /* Implementation of to_load. */
13908
13909 void
13910 remote_target::load (const char *name, int from_tty)
13911 {
13912 generic_load (name, from_tty);
13913 }
13914
13915 /* Accepts an integer PID; returns a string representing a file that
13916 can be opened on the remote side to get the symbols for the child
13917 process. Returns NULL if the operation is not supported. */
13918
13919 char *
13920 remote_target::pid_to_exec_file (int pid)
13921 {
13922 static gdb::optional<gdb::char_vector> filename;
13923 struct inferior *inf;
13924 char *annex = NULL;
13925
13926 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13927 return NULL;
13928
13929 inf = find_inferior_pid (pid);
13930 if (inf == NULL)
13931 internal_error (__FILE__, __LINE__,
13932 _("not currently attached to process %d"), pid);
13933
13934 if (!inf->fake_pid_p)
13935 {
13936 const int annex_size = 9;
13937
13938 annex = (char *) alloca (annex_size);
13939 xsnprintf (annex, annex_size, "%x", pid);
13940 }
13941
13942 filename = target_read_stralloc (current_top_target (),
13943 TARGET_OBJECT_EXEC_FILE, annex);
13944
13945 return filename ? filename->data () : nullptr;
13946 }
13947
13948 /* Implement the to_can_do_single_step target_ops method. */
13949
13950 int
13951 remote_target::can_do_single_step ()
13952 {
13953 /* We can only tell whether target supports single step or not by
13954 supported s and S vCont actions if the stub supports vContSupported
13955 feature. If the stub doesn't support vContSupported feature,
13956 we have conservatively to think target doesn't supports single
13957 step. */
13958 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13959 {
13960 struct remote_state *rs = get_remote_state ();
13961
13962 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13963 remote_vcont_probe ();
13964
13965 return rs->supports_vCont.s && rs->supports_vCont.S;
13966 }
13967 else
13968 return 0;
13969 }
13970
13971 /* Implementation of the to_execution_direction method for the remote
13972 target. */
13973
13974 enum exec_direction_kind
13975 remote_target::execution_direction ()
13976 {
13977 struct remote_state *rs = get_remote_state ();
13978
13979 return rs->last_resume_exec_dir;
13980 }
13981
13982 /* Return pointer to the thread_info struct which corresponds to
13983 THREAD_HANDLE (having length HANDLE_LEN). */
13984
13985 thread_info *
13986 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13987 int handle_len,
13988 inferior *inf)
13989 {
13990 for (thread_info *tp : all_non_exited_threads ())
13991 {
13992 remote_thread_info *priv = get_remote_thread_info (tp);
13993
13994 if (tp->inf == inf && priv != NULL)
13995 {
13996 if (handle_len != priv->thread_handle.size ())
13997 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13998 handle_len, priv->thread_handle.size ());
13999 if (memcmp (thread_handle, priv->thread_handle.data (),
14000 handle_len) == 0)
14001 return tp;
14002 }
14003 }
14004
14005 return NULL;
14006 }
14007
14008 gdb::byte_vector
14009 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14010 {
14011 remote_thread_info *priv = get_remote_thread_info (tp);
14012 return priv->thread_handle;
14013 }
14014
14015 bool
14016 remote_target::can_async_p ()
14017 {
14018 struct remote_state *rs = get_remote_state ();
14019
14020 /* We don't go async if the user has explicitly prevented it with the
14021 "maint set target-async" command. */
14022 if (!target_async_permitted)
14023 return false;
14024
14025 /* We're async whenever the serial device is. */
14026 return serial_can_async_p (rs->remote_desc);
14027 }
14028
14029 bool
14030 remote_target::is_async_p ()
14031 {
14032 struct remote_state *rs = get_remote_state ();
14033
14034 if (!target_async_permitted)
14035 /* We only enable async when the user specifically asks for it. */
14036 return false;
14037
14038 /* We're async whenever the serial device is. */
14039 return serial_is_async_p (rs->remote_desc);
14040 }
14041
14042 /* Pass the SERIAL event on and up to the client. One day this code
14043 will be able to delay notifying the client of an event until the
14044 point where an entire packet has been received. */
14045
14046 static serial_event_ftype remote_async_serial_handler;
14047
14048 static void
14049 remote_async_serial_handler (struct serial *scb, void *context)
14050 {
14051 /* Don't propogate error information up to the client. Instead let
14052 the client find out about the error by querying the target. */
14053 inferior_event_handler (INF_REG_EVENT, NULL);
14054 }
14055
14056 static void
14057 remote_async_inferior_event_handler (gdb_client_data data)
14058 {
14059 inferior_event_handler (INF_REG_EVENT, data);
14060 }
14061
14062 void
14063 remote_target::async (int enable)
14064 {
14065 struct remote_state *rs = get_remote_state ();
14066
14067 if (enable)
14068 {
14069 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14070
14071 /* If there are pending events in the stop reply queue tell the
14072 event loop to process them. */
14073 if (!rs->stop_reply_queue.empty ())
14074 mark_async_event_handler (rs->remote_async_inferior_event_token);
14075 /* For simplicity, below we clear the pending events token
14076 without remembering whether it is marked, so here we always
14077 mark it. If there's actually no pending notification to
14078 process, this ends up being a no-op (other than a spurious
14079 event-loop wakeup). */
14080 if (target_is_non_stop_p ())
14081 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14082 }
14083 else
14084 {
14085 serial_async (rs->remote_desc, NULL, NULL);
14086 /* If the core is disabling async, it doesn't want to be
14087 disturbed with target events. Clear all async event sources
14088 too. */
14089 clear_async_event_handler (rs->remote_async_inferior_event_token);
14090 if (target_is_non_stop_p ())
14091 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14092 }
14093 }
14094
14095 /* Implementation of the to_thread_events method. */
14096
14097 void
14098 remote_target::thread_events (int enable)
14099 {
14100 struct remote_state *rs = get_remote_state ();
14101 size_t size = get_remote_packet_size ();
14102
14103 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14104 return;
14105
14106 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14107 putpkt (rs->buf);
14108 getpkt (&rs->buf, 0);
14109
14110 switch (packet_ok (rs->buf,
14111 &remote_protocol_packets[PACKET_QThreadEvents]))
14112 {
14113 case PACKET_OK:
14114 if (strcmp (rs->buf.data (), "OK") != 0)
14115 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14116 break;
14117 case PACKET_ERROR:
14118 warning (_("Remote failure reply: %s"), rs->buf.data ());
14119 break;
14120 case PACKET_UNKNOWN:
14121 break;
14122 }
14123 }
14124
14125 static void
14126 set_remote_cmd (const char *args, int from_tty)
14127 {
14128 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14129 }
14130
14131 static void
14132 show_remote_cmd (const char *args, int from_tty)
14133 {
14134 /* We can't just use cmd_show_list here, because we want to skip
14135 the redundant "show remote Z-packet" and the legacy aliases. */
14136 struct cmd_list_element *list = remote_show_cmdlist;
14137 struct ui_out *uiout = current_uiout;
14138
14139 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14140 for (; list != NULL; list = list->next)
14141 if (strcmp (list->name, "Z-packet") == 0)
14142 continue;
14143 else if (list->type == not_set_cmd)
14144 /* Alias commands are exactly like the original, except they
14145 don't have the normal type. */
14146 continue;
14147 else
14148 {
14149 ui_out_emit_tuple option_emitter (uiout, "option");
14150
14151 uiout->field_string ("name", list->name);
14152 uiout->text (": ");
14153 if (list->type == show_cmd)
14154 do_show_command (NULL, from_tty, list);
14155 else
14156 cmd_func (list, NULL, from_tty);
14157 }
14158 }
14159
14160
14161 /* Function to be called whenever a new objfile (shlib) is detected. */
14162 static void
14163 remote_new_objfile (struct objfile *objfile)
14164 {
14165 remote_target *remote = get_current_remote_target ();
14166
14167 if (remote != NULL) /* Have a remote connection. */
14168 remote->remote_check_symbols ();
14169 }
14170
14171 /* Pull all the tracepoints defined on the target and create local
14172 data structures representing them. We don't want to create real
14173 tracepoints yet, we don't want to mess up the user's existing
14174 collection. */
14175
14176 int
14177 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14178 {
14179 struct remote_state *rs = get_remote_state ();
14180 char *p;
14181
14182 /* Ask for a first packet of tracepoint definition. */
14183 putpkt ("qTfP");
14184 getpkt (&rs->buf, 0);
14185 p = rs->buf.data ();
14186 while (*p && *p != 'l')
14187 {
14188 parse_tracepoint_definition (p, utpp);
14189 /* Ask for another packet of tracepoint definition. */
14190 putpkt ("qTsP");
14191 getpkt (&rs->buf, 0);
14192 p = rs->buf.data ();
14193 }
14194 return 0;
14195 }
14196
14197 int
14198 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14199 {
14200 struct remote_state *rs = get_remote_state ();
14201 char *p;
14202
14203 /* Ask for a first packet of variable definition. */
14204 putpkt ("qTfV");
14205 getpkt (&rs->buf, 0);
14206 p = rs->buf.data ();
14207 while (*p && *p != 'l')
14208 {
14209 parse_tsv_definition (p, utsvp);
14210 /* Ask for another packet of variable definition. */
14211 putpkt ("qTsV");
14212 getpkt (&rs->buf, 0);
14213 p = rs->buf.data ();
14214 }
14215 return 0;
14216 }
14217
14218 /* The "set/show range-stepping" show hook. */
14219
14220 static void
14221 show_range_stepping (struct ui_file *file, int from_tty,
14222 struct cmd_list_element *c,
14223 const char *value)
14224 {
14225 fprintf_filtered (file,
14226 _("Debugger's willingness to use range stepping "
14227 "is %s.\n"), value);
14228 }
14229
14230 /* Return true if the vCont;r action is supported by the remote
14231 stub. */
14232
14233 bool
14234 remote_target::vcont_r_supported ()
14235 {
14236 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14237 remote_vcont_probe ();
14238
14239 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14240 && get_remote_state ()->supports_vCont.r);
14241 }
14242
14243 /* The "set/show range-stepping" set hook. */
14244
14245 static void
14246 set_range_stepping (const char *ignore_args, int from_tty,
14247 struct cmd_list_element *c)
14248 {
14249 /* When enabling, check whether range stepping is actually supported
14250 by the target, and warn if not. */
14251 if (use_range_stepping)
14252 {
14253 remote_target *remote = get_current_remote_target ();
14254 if (remote == NULL
14255 || !remote->vcont_r_supported ())
14256 warning (_("Range stepping is not supported by the current target"));
14257 }
14258 }
14259
14260 void
14261 _initialize_remote (void)
14262 {
14263 struct cmd_list_element *cmd;
14264 const char *cmd_name;
14265
14266 /* architecture specific data */
14267 remote_g_packet_data_handle =
14268 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14269
14270 add_target (remote_target_info, remote_target::open);
14271 add_target (extended_remote_target_info, extended_remote_target::open);
14272
14273 /* Hook into new objfile notification. */
14274 gdb::observers::new_objfile.attach (remote_new_objfile);
14275
14276 #if 0
14277 init_remote_threadtests ();
14278 #endif
14279
14280 /* set/show remote ... */
14281
14282 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14283 Remote protocol specific variables.\n\
14284 Configure various remote-protocol specific variables such as\n\
14285 the packets being used."),
14286 &remote_set_cmdlist, "set remote ",
14287 0 /* allow-unknown */, &setlist);
14288 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14289 Remote protocol specific variables.\n\
14290 Configure various remote-protocol specific variables such as\n\
14291 the packets being used."),
14292 &remote_show_cmdlist, "show remote ",
14293 0 /* allow-unknown */, &showlist);
14294
14295 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14296 Compare section data on target to the exec file.\n\
14297 Argument is a single section name (default: all loaded sections).\n\
14298 To compare only read-only loaded sections, specify the -r option."),
14299 &cmdlist);
14300
14301 add_cmd ("packet", class_maintenance, packet_command, _("\
14302 Send an arbitrary packet to a remote target.\n\
14303 maintenance packet TEXT\n\
14304 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14305 this command sends the string TEXT to the inferior, and displays the\n\
14306 response packet. GDB supplies the initial `$' character, and the\n\
14307 terminating `#' character and checksum."),
14308 &maintenancelist);
14309
14310 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14311 Set whether to send break if interrupted."), _("\
14312 Show whether to send break if interrupted."), _("\
14313 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14314 set_remotebreak, show_remotebreak,
14315 &setlist, &showlist);
14316 cmd_name = "remotebreak";
14317 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14318 deprecate_cmd (cmd, "set remote interrupt-sequence");
14319 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14320 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14321 deprecate_cmd (cmd, "show remote interrupt-sequence");
14322
14323 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14324 interrupt_sequence_modes, &interrupt_sequence_mode,
14325 _("\
14326 Set interrupt sequence to remote target."), _("\
14327 Show interrupt sequence to remote target."), _("\
14328 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14329 NULL, show_interrupt_sequence,
14330 &remote_set_cmdlist,
14331 &remote_show_cmdlist);
14332
14333 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14334 &interrupt_on_connect, _("\
14335 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14336 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14337 If set, interrupt sequence is sent to remote target."),
14338 NULL, NULL,
14339 &remote_set_cmdlist, &remote_show_cmdlist);
14340
14341 /* Install commands for configuring memory read/write packets. */
14342
14343 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14344 Set the maximum number of bytes per memory write packet (deprecated)."),
14345 &setlist);
14346 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14347 Show the maximum number of bytes per memory write packet (deprecated)."),
14348 &showlist);
14349 add_cmd ("memory-write-packet-size", no_class,
14350 set_memory_write_packet_size, _("\
14351 Set the maximum number of bytes per memory-write packet.\n\
14352 Specify the number of bytes in a packet or 0 (zero) for the\n\
14353 default packet size. The actual limit is further reduced\n\
14354 dependent on the target. Specify ``fixed'' to disable the\n\
14355 further restriction and ``limit'' to enable that restriction."),
14356 &remote_set_cmdlist);
14357 add_cmd ("memory-read-packet-size", no_class,
14358 set_memory_read_packet_size, _("\
14359 Set the maximum number of bytes per memory-read packet.\n\
14360 Specify the number of bytes in a packet or 0 (zero) for the\n\
14361 default packet size. The actual limit is further reduced\n\
14362 dependent on the target. Specify ``fixed'' to disable the\n\
14363 further restriction and ``limit'' to enable that restriction."),
14364 &remote_set_cmdlist);
14365 add_cmd ("memory-write-packet-size", no_class,
14366 show_memory_write_packet_size,
14367 _("Show the maximum number of bytes per memory-write packet."),
14368 &remote_show_cmdlist);
14369 add_cmd ("memory-read-packet-size", no_class,
14370 show_memory_read_packet_size,
14371 _("Show the maximum number of bytes per memory-read packet."),
14372 &remote_show_cmdlist);
14373
14374 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14375 &remote_hw_watchpoint_limit, _("\
14376 Set the maximum number of target hardware watchpoints."), _("\
14377 Show the maximum number of target hardware watchpoints."), _("\
14378 Specify \"unlimited\" for unlimited hardware watchpoints."),
14379 NULL, show_hardware_watchpoint_limit,
14380 &remote_set_cmdlist,
14381 &remote_show_cmdlist);
14382 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14383 no_class,
14384 &remote_hw_watchpoint_length_limit, _("\
14385 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14386 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14387 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14388 NULL, show_hardware_watchpoint_length_limit,
14389 &remote_set_cmdlist, &remote_show_cmdlist);
14390 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14391 &remote_hw_breakpoint_limit, _("\
14392 Set the maximum number of target hardware breakpoints."), _("\
14393 Show the maximum number of target hardware breakpoints."), _("\
14394 Specify \"unlimited\" for unlimited hardware breakpoints."),
14395 NULL, show_hardware_breakpoint_limit,
14396 &remote_set_cmdlist, &remote_show_cmdlist);
14397
14398 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14399 &remote_address_size, _("\
14400 Set the maximum size of the address (in bits) in a memory packet."), _("\
14401 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14402 NULL,
14403 NULL, /* FIXME: i18n: */
14404 &setlist, &showlist);
14405
14406 init_all_packet_configs ();
14407
14408 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14409 "X", "binary-download", 1);
14410
14411 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14412 "vCont", "verbose-resume", 0);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14415 "QPassSignals", "pass-signals", 0);
14416
14417 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14418 "QCatchSyscalls", "catch-syscalls", 0);
14419
14420 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14421 "QProgramSignals", "program-signals", 0);
14422
14423 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14424 "QSetWorkingDir", "set-working-dir", 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14427 "QStartupWithShell", "startup-with-shell", 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets
14430 [PACKET_QEnvironmentHexEncoded],
14431 "QEnvironmentHexEncoded", "environment-hex-encoded",
14432 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14435 "QEnvironmentReset", "environment-reset",
14436 0);
14437
14438 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14439 "QEnvironmentUnset", "environment-unset",
14440 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14443 "qSymbol", "symbol-lookup", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14446 "P", "set-register", 1);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14449 "p", "fetch-register", 1);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14452 "Z0", "software-breakpoint", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14455 "Z1", "hardware-breakpoint", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14458 "Z2", "write-watchpoint", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14461 "Z3", "read-watchpoint", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14464 "Z4", "access-watchpoint", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14467 "qXfer:auxv:read", "read-aux-vector", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14470 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14473 "qXfer:features:read", "target-features", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14476 "qXfer:libraries:read", "library-info", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14479 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14482 "qXfer:memory-map:read", "memory-map", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14485 "qXfer:spu:read", "read-spu-object", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14488 "qXfer:spu:write", "write-spu-object", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14491 "qXfer:osdata:read", "osdata", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14494 "qXfer:threads:read", "threads", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14497 "qXfer:siginfo:read", "read-siginfo-object", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14500 "qXfer:siginfo:write", "write-siginfo-object", 0);
14501
14502 add_packet_config_cmd
14503 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14504 "qXfer:traceframe-info:read", "traceframe-info", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14507 "qXfer:uib:read", "unwind-info-block", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14510 "qGetTLSAddr", "get-thread-local-storage-address",
14511 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14514 "qGetTIBAddr", "get-thread-information-block-address",
14515 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14518 "bc", "reverse-continue", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14521 "bs", "reverse-step", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14524 "qSupported", "supported-packets", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14527 "qSearch:memory", "search-memory", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14530 "qTStatus", "trace-status", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14533 "vFile:setfs", "hostio-setfs", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14536 "vFile:open", "hostio-open", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14539 "vFile:pread", "hostio-pread", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14542 "vFile:pwrite", "hostio-pwrite", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14545 "vFile:close", "hostio-close", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14548 "vFile:unlink", "hostio-unlink", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14551 "vFile:readlink", "hostio-readlink", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14554 "vFile:fstat", "hostio-fstat", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14557 "vAttach", "attach", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14560 "vRun", "run", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14563 "QStartNoAckMode", "noack", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14566 "vKill", "kill", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14569 "qAttached", "query-attached", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14572 "ConditionalTracepoints",
14573 "conditional-tracepoints", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14576 "ConditionalBreakpoints",
14577 "conditional-breakpoints", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14580 "BreakpointCommands",
14581 "breakpoint-commands", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14584 "FastTracepoints", "fast-tracepoints", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14587 "TracepointSource", "TracepointSource", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14590 "QAllow", "allow", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14593 "StaticTracepoints", "static-tracepoints", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14596 "InstallInTrace", "install-in-trace", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14599 "qXfer:statictrace:read", "read-sdata-object", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14602 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14605 "QDisableRandomization", "disable-randomization", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14608 "QAgent", "agent", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14611 "QTBuffer:size", "trace-buffer-size", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14614 "Qbtrace:off", "disable-btrace", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14617 "Qbtrace:bts", "enable-btrace-bts", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14620 "Qbtrace:pt", "enable-btrace-pt", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14623 "qXfer:btrace", "read-btrace", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14626 "qXfer:btrace-conf", "read-btrace-conf", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14629 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14632 "multiprocess-feature", "multiprocess-feature", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14635 "swbreak-feature", "swbreak-feature", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14638 "hwbreak-feature", "hwbreak-feature", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14641 "fork-event-feature", "fork-event-feature", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14644 "vfork-event-feature", "vfork-event-feature", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14647 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14650 "vContSupported", "verbose-resume-supported", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14653 "exec-event-feature", "exec-event-feature", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14656 "vCtrlC", "ctrl-c", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14659 "QThreadEvents", "thread-events", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14662 "N stop reply", "no-resumed-stop-reply", 0);
14663
14664 /* Assert that we've registered "set remote foo-packet" commands
14665 for all packet configs. */
14666 {
14667 int i;
14668
14669 for (i = 0; i < PACKET_MAX; i++)
14670 {
14671 /* Ideally all configs would have a command associated. Some
14672 still don't though. */
14673 int excepted;
14674
14675 switch (i)
14676 {
14677 case PACKET_QNonStop:
14678 case PACKET_EnableDisableTracepoints_feature:
14679 case PACKET_tracenz_feature:
14680 case PACKET_DisconnectedTracing_feature:
14681 case PACKET_augmented_libraries_svr4_read_feature:
14682 case PACKET_qCRC:
14683 /* Additions to this list need to be well justified:
14684 pre-existing packets are OK; new packets are not. */
14685 excepted = 1;
14686 break;
14687 default:
14688 excepted = 0;
14689 break;
14690 }
14691
14692 /* This catches both forgetting to add a config command, and
14693 forgetting to remove a packet from the exception list. */
14694 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14695 }
14696 }
14697
14698 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14699 Z sub-packet has its own set and show commands, but users may
14700 have sets to this variable in their .gdbinit files (or in their
14701 documentation). */
14702 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14703 &remote_Z_packet_detect, _("\
14704 Set use of remote protocol `Z' packets."), _("\
14705 Show use of remote protocol `Z' packets."), _("\
14706 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14707 packets."),
14708 set_remote_protocol_Z_packet_cmd,
14709 show_remote_protocol_Z_packet_cmd,
14710 /* FIXME: i18n: Use of remote protocol
14711 `Z' packets is %s. */
14712 &remote_set_cmdlist, &remote_show_cmdlist);
14713
14714 add_prefix_cmd ("remote", class_files, remote_command, _("\
14715 Manipulate files on the remote system.\n\
14716 Transfer files to and from the remote target system."),
14717 &remote_cmdlist, "remote ",
14718 0 /* allow-unknown */, &cmdlist);
14719
14720 add_cmd ("put", class_files, remote_put_command,
14721 _("Copy a local file to the remote system."),
14722 &remote_cmdlist);
14723
14724 add_cmd ("get", class_files, remote_get_command,
14725 _("Copy a remote file to the local system."),
14726 &remote_cmdlist);
14727
14728 add_cmd ("delete", class_files, remote_delete_command,
14729 _("Delete a remote file."),
14730 &remote_cmdlist);
14731
14732 add_setshow_string_noescape_cmd ("exec-file", class_files,
14733 &remote_exec_file_var, _("\
14734 Set the remote pathname for \"run\"."), _("\
14735 Show the remote pathname for \"run\"."), NULL,
14736 set_remote_exec_file,
14737 show_remote_exec_file,
14738 &remote_set_cmdlist,
14739 &remote_show_cmdlist);
14740
14741 add_setshow_boolean_cmd ("range-stepping", class_run,
14742 &use_range_stepping, _("\
14743 Enable or disable range stepping."), _("\
14744 Show whether target-assisted range stepping is enabled."), _("\
14745 If on, and the target supports it, when stepping a source line, GDB\n\
14746 tells the target to step the corresponding range of addresses itself instead\n\
14747 of issuing multiple single-steps. This speeds up source level\n\
14748 stepping. If off, GDB always issues single-steps, even if range\n\
14749 stepping is supported by the target. The default is on."),
14750 set_range_stepping,
14751 show_range_stepping,
14752 &setlist,
14753 &showlist);
14754
14755 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14756 Set watchdog timer."), _("\
14757 Show watchdog timer."), _("\
14758 When non-zero, this timeout is used instead of waiting forever for a target\n\
14759 to finish a low-level step or continue operation. If the specified amount\n\
14760 of time passes without a response from the target, an error occurs."),
14761 NULL,
14762 show_watchdog,
14763 &setlist, &showlist);
14764
14765 /* Eventually initialize fileio. See fileio.c */
14766 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14767 }
This page took 0.340195 seconds and 4 git commands to generate.