-Wpointer-sign: char -> gdb_byte.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void cleanup_sigint_signal_handler (void *dummy);
91 static void initialize_sigint_signal_handler (void);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void handle_remote_sigint (int);
97 static void handle_remote_sigint_twice (int);
98 static void async_remote_interrupt (gdb_client_data);
99 void async_remote_interrupt_twice (gdb_client_data);
100
101 static void remote_files_info (struct target_ops *ignore);
102
103 static void remote_prepare_to_store (struct regcache *regcache);
104
105 static void remote_open (char *name, int from_tty);
106
107 static void extended_remote_open (char *name, int from_tty);
108
109 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
110
111 static void remote_close (void);
112
113 static void remote_mourn (struct target_ops *ops);
114
115 static void extended_remote_restart (void);
116
117 static void extended_remote_mourn (struct target_ops *);
118
119 static void remote_mourn_1 (struct target_ops *);
120
121 static void remote_send (char **buf, long *sizeof_buf_p);
122
123 static int readchar (int timeout);
124
125 static void remote_serial_write (const char *str, int len);
126
127 static void remote_kill (struct target_ops *ops);
128
129 static int tohex (int nib);
130
131 static int remote_can_async_p (void);
132
133 static int remote_is_async_p (void);
134
135 static void remote_async (void (*callback) (enum inferior_event_type event_type,
136 void *context), void *context);
137
138 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
139
140 static void remote_interrupt (int signo);
141
142 static void remote_interrupt_twice (int signo);
143
144 static void interrupt_query (void);
145
146 static void set_general_thread (struct ptid ptid);
147 static void set_continue_thread (struct ptid ptid);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (ptid_t currthread);
186
187 static int fromhex (int a);
188
189 static int putpkt_binary (char *buf, int cnt);
190
191 static void check_binary_download (CORE_ADDR addr);
192
193 struct packet_config;
194
195 static void show_packet_config_cmd (struct packet_config *config);
196
197 static void update_packet_config (struct packet_config *config);
198
199 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
200 struct cmd_list_element *c);
201
202 static void show_remote_protocol_packet_cmd (struct ui_file *file,
203 int from_tty,
204 struct cmd_list_element *c,
205 const char *value);
206
207 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
208 static ptid_t read_ptid (char *buf, char **obuf);
209
210 static void remote_set_permissions (void);
211
212 struct remote_state;
213 static int remote_get_trace_status (struct trace_status *ts);
214
215 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
216
217 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
218
219 static void remote_query_supported (void);
220
221 static void remote_check_symbols (struct objfile *objfile);
222
223 void _initialize_remote (void);
224
225 struct stop_reply;
226 static void stop_reply_xfree (struct stop_reply *);
227 static void remote_parse_stop_reply (char *, struct stop_reply *);
228 static void push_stop_reply (struct stop_reply *);
229 static void discard_pending_stop_replies (struct inferior *);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233
234 static void remote_terminal_ours (void);
235
236 static int remote_read_description_p (struct target_ops *target);
237
238 static void remote_console_output (char *msg);
239
240 static int remote_supports_cond_breakpoints (void);
241
242 static int remote_can_run_breakpoint_commands (void);
243
244 /* For "remote". */
245
246 static struct cmd_list_element *remote_cmdlist;
247
248 /* For "set remote" and "show remote". */
249
250 static struct cmd_list_element *remote_set_cmdlist;
251 static struct cmd_list_element *remote_show_cmdlist;
252
253 /* Description of the remote protocol state for the currently
254 connected target. This is per-target state, and independent of the
255 selected architecture. */
256
257 struct remote_state
258 {
259 /* A buffer to use for incoming packets, and its current size. The
260 buffer is grown dynamically for larger incoming packets.
261 Outgoing packets may also be constructed in this buffer.
262 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
263 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
264 packets. */
265 char *buf;
266 long buf_size;
267
268 /* True if we're going through initial connection setup (finding out
269 about the remote side's threads, relocating symbols, etc.). */
270 int starting_up;
271
272 /* If we negotiated packet size explicitly (and thus can bypass
273 heuristics for the largest packet size that will not overflow
274 a buffer in the stub), this will be set to that packet size.
275 Otherwise zero, meaning to use the guessed size. */
276 long explicit_packet_size;
277
278 /* remote_wait is normally called when the target is running and
279 waits for a stop reply packet. But sometimes we need to call it
280 when the target is already stopped. We can send a "?" packet
281 and have remote_wait read the response. Or, if we already have
282 the response, we can stash it in BUF and tell remote_wait to
283 skip calling getpkt. This flag is set when BUF contains a
284 stop reply packet and the target is not waiting. */
285 int cached_wait_status;
286
287 /* True, if in no ack mode. That is, neither GDB nor the stub will
288 expect acks from each other. The connection is assumed to be
289 reliable. */
290 int noack_mode;
291
292 /* True if we're connected in extended remote mode. */
293 int extended;
294
295 /* True if the stub reported support for multi-process
296 extensions. */
297 int multi_process_aware;
298
299 /* True if we resumed the target and we're waiting for the target to
300 stop. In the mean time, we can't start another command/query.
301 The remote server wouldn't be ready to process it, so we'd
302 timeout waiting for a reply that would never come and eventually
303 we'd close the connection. This can happen in asynchronous mode
304 because we allow GDB commands while the target is running. */
305 int waiting_for_stop_reply;
306
307 /* True if the stub reports support for non-stop mode. */
308 int non_stop_aware;
309
310 /* True if the stub reports support for vCont;t. */
311 int support_vCont_t;
312
313 /* True if the stub reports support for conditional tracepoints. */
314 int cond_tracepoints;
315
316 /* True if the stub reports support for target-side breakpoint
317 conditions. */
318 int cond_breakpoints;
319
320 /* True if the stub reports support for target-side breakpoint
321 commands. */
322 int breakpoint_commands;
323
324 /* True if the stub reports support for fast tracepoints. */
325 int fast_tracepoints;
326
327 /* True if the stub reports support for static tracepoints. */
328 int static_tracepoints;
329
330 /* True if the stub reports support for installing tracepoint while
331 tracing. */
332 int install_in_trace;
333
334 /* True if the stub can continue running a trace while GDB is
335 disconnected. */
336 int disconnected_tracing;
337
338 /* True if the stub reports support for enabling and disabling
339 tracepoints while a trace experiment is running. */
340 int enable_disable_tracepoints;
341
342 /* True if the stub can collect strings using tracenz bytecode. */
343 int string_tracing;
344
345 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
346 responded to that. */
347 int ctrlc_pending_p;
348 };
349
350 /* Private data that we'll store in (struct thread_info)->private. */
351 struct private_thread_info
352 {
353 char *extra;
354 int core;
355 };
356
357 static void
358 free_private_thread_info (struct private_thread_info *info)
359 {
360 xfree (info->extra);
361 xfree (info);
362 }
363
364 /* Returns true if the multi-process extensions are in effect. */
365 static int
366 remote_multi_process_p (struct remote_state *rs)
367 {
368 return rs->multi_process_aware;
369 }
370
371 /* This data could be associated with a target, but we do not always
372 have access to the current target when we need it, so for now it is
373 static. This will be fine for as long as only one target is in use
374 at a time. */
375 static struct remote_state remote_state;
376
377 static struct remote_state *
378 get_remote_state_raw (void)
379 {
380 return &remote_state;
381 }
382
383 /* Description of the remote protocol for a given architecture. */
384
385 struct packet_reg
386 {
387 long offset; /* Offset into G packet. */
388 long regnum; /* GDB's internal register number. */
389 LONGEST pnum; /* Remote protocol register number. */
390 int in_g_packet; /* Always part of G packet. */
391 /* long size in bytes; == register_size (target_gdbarch (), regnum);
392 at present. */
393 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
394 at present. */
395 };
396
397 struct remote_arch_state
398 {
399 /* Description of the remote protocol registers. */
400 long sizeof_g_packet;
401
402 /* Description of the remote protocol registers indexed by REGNUM
403 (making an array gdbarch_num_regs in size). */
404 struct packet_reg *regs;
405
406 /* This is the size (in chars) of the first response to the ``g''
407 packet. It is used as a heuristic when determining the maximum
408 size of memory-read and memory-write packets. A target will
409 typically only reserve a buffer large enough to hold the ``g''
410 packet. The size does not include packet overhead (headers and
411 trailers). */
412 long actual_register_packet_size;
413
414 /* This is the maximum size (in chars) of a non read/write packet.
415 It is also used as a cap on the size of read/write packets. */
416 long remote_packet_size;
417 };
418
419 long sizeof_pkt = 2000;
420
421 /* Utility: generate error from an incoming stub packet. */
422 static void
423 trace_error (char *buf)
424 {
425 if (*buf++ != 'E')
426 return; /* not an error msg */
427 switch (*buf)
428 {
429 case '1': /* malformed packet error */
430 if (*++buf == '0') /* general case: */
431 error (_("remote.c: error in outgoing packet."));
432 else
433 error (_("remote.c: error in outgoing packet at field #%ld."),
434 strtol (buf, NULL, 16));
435 default:
436 error (_("Target returns error code '%s'."), buf);
437 }
438 }
439
440 /* Utility: wait for reply from stub, while accepting "O" packets. */
441 static char *
442 remote_get_noisy_reply (char **buf_p,
443 long *sizeof_buf)
444 {
445 do /* Loop on reply from remote stub. */
446 {
447 char *buf;
448
449 QUIT; /* Allow user to bail out with ^C. */
450 getpkt (buf_p, sizeof_buf, 0);
451 buf = *buf_p;
452 if (buf[0] == 'E')
453 trace_error (buf);
454 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
455 {
456 ULONGEST ul;
457 CORE_ADDR from, to, org_to;
458 char *p, *pp;
459 int adjusted_size = 0;
460 volatile struct gdb_exception ex;
461
462 p = buf + strlen ("qRelocInsn:");
463 pp = unpack_varlen_hex (p, &ul);
464 if (*pp != ';')
465 error (_("invalid qRelocInsn packet: %s"), buf);
466 from = ul;
467
468 p = pp + 1;
469 unpack_varlen_hex (p, &ul);
470 to = ul;
471
472 org_to = to;
473
474 TRY_CATCH (ex, RETURN_MASK_ALL)
475 {
476 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
477 }
478 if (ex.reason >= 0)
479 {
480 adjusted_size = to - org_to;
481
482 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
483 putpkt (buf);
484 }
485 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
486 {
487 /* Propagate memory errors silently back to the target.
488 The stub may have limited the range of addresses we
489 can write to, for example. */
490 putpkt ("E01");
491 }
492 else
493 {
494 /* Something unexpectedly bad happened. Be verbose so
495 we can tell what, and propagate the error back to the
496 stub, so it doesn't get stuck waiting for a
497 response. */
498 exception_fprintf (gdb_stderr, ex,
499 _("warning: relocating instruction: "));
500 putpkt ("E01");
501 }
502 }
503 else if (buf[0] == 'O' && buf[1] != 'K')
504 remote_console_output (buf + 1); /* 'O' message from stub */
505 else
506 return buf; /* Here's the actual reply. */
507 }
508 while (1);
509 }
510
511 /* Handle for retreving the remote protocol data from gdbarch. */
512 static struct gdbarch_data *remote_gdbarch_data_handle;
513
514 static struct remote_arch_state *
515 get_remote_arch_state (void)
516 {
517 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
518 }
519
520 /* Fetch the global remote target state. */
521
522 static struct remote_state *
523 get_remote_state (void)
524 {
525 /* Make sure that the remote architecture state has been
526 initialized, because doing so might reallocate rs->buf. Any
527 function which calls getpkt also needs to be mindful of changes
528 to rs->buf, but this call limits the number of places which run
529 into trouble. */
530 get_remote_arch_state ();
531
532 return get_remote_state_raw ();
533 }
534
535 static int
536 compare_pnums (const void *lhs_, const void *rhs_)
537 {
538 const struct packet_reg * const *lhs = lhs_;
539 const struct packet_reg * const *rhs = rhs_;
540
541 if ((*lhs)->pnum < (*rhs)->pnum)
542 return -1;
543 else if ((*lhs)->pnum == (*rhs)->pnum)
544 return 0;
545 else
546 return 1;
547 }
548
549 static int
550 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
551 {
552 int regnum, num_remote_regs, offset;
553 struct packet_reg **remote_regs;
554
555 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
556 {
557 struct packet_reg *r = &regs[regnum];
558
559 if (register_size (gdbarch, regnum) == 0)
560 /* Do not try to fetch zero-sized (placeholder) registers. */
561 r->pnum = -1;
562 else
563 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
564
565 r->regnum = regnum;
566 }
567
568 /* Define the g/G packet format as the contents of each register
569 with a remote protocol number, in order of ascending protocol
570 number. */
571
572 remote_regs = alloca (gdbarch_num_regs (gdbarch)
573 * sizeof (struct packet_reg *));
574 for (num_remote_regs = 0, regnum = 0;
575 regnum < gdbarch_num_regs (gdbarch);
576 regnum++)
577 if (regs[regnum].pnum != -1)
578 remote_regs[num_remote_regs++] = &regs[regnum];
579
580 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
581 compare_pnums);
582
583 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
584 {
585 remote_regs[regnum]->in_g_packet = 1;
586 remote_regs[regnum]->offset = offset;
587 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
588 }
589
590 return offset;
591 }
592
593 /* Given the architecture described by GDBARCH, return the remote
594 protocol register's number and the register's offset in the g/G
595 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
596 If the target does not have a mapping for REGNUM, return false,
597 otherwise, return true. */
598
599 int
600 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
601 int *pnum, int *poffset)
602 {
603 int sizeof_g_packet;
604 struct packet_reg *regs;
605 struct cleanup *old_chain;
606
607 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
608
609 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
610 old_chain = make_cleanup (xfree, regs);
611
612 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
613
614 *pnum = regs[regnum].pnum;
615 *poffset = regs[regnum].offset;
616
617 do_cleanups (old_chain);
618
619 return *pnum != -1;
620 }
621
622 static void *
623 init_remote_state (struct gdbarch *gdbarch)
624 {
625 struct remote_state *rs = get_remote_state_raw ();
626 struct remote_arch_state *rsa;
627
628 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
629
630 /* Use the architecture to build a regnum<->pnum table, which will be
631 1:1 unless a feature set specifies otherwise. */
632 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
633 gdbarch_num_regs (gdbarch),
634 struct packet_reg);
635
636 /* Record the maximum possible size of the g packet - it may turn out
637 to be smaller. */
638 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
639
640 /* Default maximum number of characters in a packet body. Many
641 remote stubs have a hardwired buffer size of 400 bytes
642 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
643 as the maximum packet-size to ensure that the packet and an extra
644 NUL character can always fit in the buffer. This stops GDB
645 trashing stubs that try to squeeze an extra NUL into what is
646 already a full buffer (As of 1999-12-04 that was most stubs). */
647 rsa->remote_packet_size = 400 - 1;
648
649 /* This one is filled in when a ``g'' packet is received. */
650 rsa->actual_register_packet_size = 0;
651
652 /* Should rsa->sizeof_g_packet needs more space than the
653 default, adjust the size accordingly. Remember that each byte is
654 encoded as two characters. 32 is the overhead for the packet
655 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
656 (``$NN:G...#NN'') is a better guess, the below has been padded a
657 little. */
658 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
659 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
660
661 /* Make sure that the packet buffer is plenty big enough for
662 this architecture. */
663 if (rs->buf_size < rsa->remote_packet_size)
664 {
665 rs->buf_size = 2 * rsa->remote_packet_size;
666 rs->buf = xrealloc (rs->buf, rs->buf_size);
667 }
668
669 return rsa;
670 }
671
672 /* Return the current allowed size of a remote packet. This is
673 inferred from the current architecture, and should be used to
674 limit the length of outgoing packets. */
675 static long
676 get_remote_packet_size (void)
677 {
678 struct remote_state *rs = get_remote_state ();
679 struct remote_arch_state *rsa = get_remote_arch_state ();
680
681 if (rs->explicit_packet_size)
682 return rs->explicit_packet_size;
683
684 return rsa->remote_packet_size;
685 }
686
687 static struct packet_reg *
688 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
689 {
690 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
691 return NULL;
692 else
693 {
694 struct packet_reg *r = &rsa->regs[regnum];
695
696 gdb_assert (r->regnum == regnum);
697 return r;
698 }
699 }
700
701 static struct packet_reg *
702 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
703 {
704 int i;
705
706 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
707 {
708 struct packet_reg *r = &rsa->regs[i];
709
710 if (r->pnum == pnum)
711 return r;
712 }
713 return NULL;
714 }
715
716 /* FIXME: graces/2002-08-08: These variables should eventually be
717 bound to an instance of the target object (as in gdbarch-tdep()),
718 when such a thing exists. */
719
720 /* This is set to the data address of the access causing the target
721 to stop for a watchpoint. */
722 static CORE_ADDR remote_watch_data_address;
723
724 /* This is non-zero if target stopped for a watchpoint. */
725 static int remote_stopped_by_watchpoint_p;
726
727 static struct target_ops remote_ops;
728
729 static struct target_ops extended_remote_ops;
730
731 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
732 ``forever'' still use the normal timeout mechanism. This is
733 currently used by the ASYNC code to guarentee that target reads
734 during the initial connect always time-out. Once getpkt has been
735 modified to return a timeout indication and, in turn
736 remote_wait()/wait_for_inferior() have gained a timeout parameter
737 this can go away. */
738 static int wait_forever_enabled_p = 1;
739
740 /* Allow the user to specify what sequence to send to the remote
741 when he requests a program interruption: Although ^C is usually
742 what remote systems expect (this is the default, here), it is
743 sometimes preferable to send a break. On other systems such
744 as the Linux kernel, a break followed by g, which is Magic SysRq g
745 is required in order to interrupt the execution. */
746 const char interrupt_sequence_control_c[] = "Ctrl-C";
747 const char interrupt_sequence_break[] = "BREAK";
748 const char interrupt_sequence_break_g[] = "BREAK-g";
749 static const char *const interrupt_sequence_modes[] =
750 {
751 interrupt_sequence_control_c,
752 interrupt_sequence_break,
753 interrupt_sequence_break_g,
754 NULL
755 };
756 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
757
758 static void
759 show_interrupt_sequence (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 if (interrupt_sequence_mode == interrupt_sequence_control_c)
764 fprintf_filtered (file,
765 _("Send the ASCII ETX character (Ctrl-c) "
766 "to the remote target to interrupt the "
767 "execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break)
769 fprintf_filtered (file,
770 _("send a break signal to the remote target "
771 "to interrupt the execution of the program.\n"));
772 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
773 fprintf_filtered (file,
774 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
775 "the remote target to interrupt the execution "
776 "of Linux kernel.\n"));
777 else
778 internal_error (__FILE__, __LINE__,
779 _("Invalid value for interrupt_sequence_mode: %s."),
780 interrupt_sequence_mode);
781 }
782
783 /* This boolean variable specifies whether interrupt_sequence is sent
784 to the remote target when gdb connects to it.
785 This is mostly needed when you debug the Linux kernel: The Linux kernel
786 expects BREAK g which is Magic SysRq g for connecting gdb. */
787 static int interrupt_on_connect = 0;
788
789 /* This variable is used to implement the "set/show remotebreak" commands.
790 Since these commands are now deprecated in favor of "set/show remote
791 interrupt-sequence", it no longer has any effect on the code. */
792 static int remote_break;
793
794 static void
795 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
796 {
797 if (remote_break)
798 interrupt_sequence_mode = interrupt_sequence_break;
799 else
800 interrupt_sequence_mode = interrupt_sequence_control_c;
801 }
802
803 static void
804 show_remotebreak (struct ui_file *file, int from_tty,
805 struct cmd_list_element *c,
806 const char *value)
807 {
808 }
809
810 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
811 remote_open knows that we don't have a file open when the program
812 starts. */
813 static struct serial *remote_desc = NULL;
814
815 /* This variable sets the number of bits in an address that are to be
816 sent in a memory ("M" or "m") packet. Normally, after stripping
817 leading zeros, the entire address would be sent. This variable
818 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
819 initial implementation of remote.c restricted the address sent in
820 memory packets to ``host::sizeof long'' bytes - (typically 32
821 bits). Consequently, for 64 bit targets, the upper 32 bits of an
822 address was never sent. Since fixing this bug may cause a break in
823 some remote targets this variable is principly provided to
824 facilitate backward compatibility. */
825
826 static unsigned int remote_address_size;
827
828 /* Temporary to track who currently owns the terminal. See
829 remote_terminal_* for more details. */
830
831 static int remote_async_terminal_ours_p;
832
833 /* The executable file to use for "run" on the remote side. */
834
835 static char *remote_exec_file = "";
836
837 \f
838 /* User configurable variables for the number of characters in a
839 memory read/write packet. MIN (rsa->remote_packet_size,
840 rsa->sizeof_g_packet) is the default. Some targets need smaller
841 values (fifo overruns, et.al.) and some users need larger values
842 (speed up transfers). The variables ``preferred_*'' (the user
843 request), ``current_*'' (what was actually set) and ``forced_*''
844 (Positive - a soft limit, negative - a hard limit). */
845
846 struct memory_packet_config
847 {
848 char *name;
849 long size;
850 int fixed_p;
851 };
852
853 /* Compute the current size of a read/write packet. Since this makes
854 use of ``actual_register_packet_size'' the computation is dynamic. */
855
856 static long
857 get_memory_packet_size (struct memory_packet_config *config)
858 {
859 struct remote_state *rs = get_remote_state ();
860 struct remote_arch_state *rsa = get_remote_arch_state ();
861
862 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
863 law?) that some hosts don't cope very well with large alloca()
864 calls. Eventually the alloca() code will be replaced by calls to
865 xmalloc() and make_cleanups() allowing this restriction to either
866 be lifted or removed. */
867 #ifndef MAX_REMOTE_PACKET_SIZE
868 #define MAX_REMOTE_PACKET_SIZE 16384
869 #endif
870 /* NOTE: 20 ensures we can write at least one byte. */
871 #ifndef MIN_REMOTE_PACKET_SIZE
872 #define MIN_REMOTE_PACKET_SIZE 20
873 #endif
874 long what_they_get;
875 if (config->fixed_p)
876 {
877 if (config->size <= 0)
878 what_they_get = MAX_REMOTE_PACKET_SIZE;
879 else
880 what_they_get = config->size;
881 }
882 else
883 {
884 what_they_get = get_remote_packet_size ();
885 /* Limit the packet to the size specified by the user. */
886 if (config->size > 0
887 && what_they_get > config->size)
888 what_they_get = config->size;
889
890 /* Limit it to the size of the targets ``g'' response unless we have
891 permission from the stub to use a larger packet size. */
892 if (rs->explicit_packet_size == 0
893 && rsa->actual_register_packet_size > 0
894 && what_they_get > rsa->actual_register_packet_size)
895 what_they_get = rsa->actual_register_packet_size;
896 }
897 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
898 what_they_get = MAX_REMOTE_PACKET_SIZE;
899 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
900 what_they_get = MIN_REMOTE_PACKET_SIZE;
901
902 /* Make sure there is room in the global buffer for this packet
903 (including its trailing NUL byte). */
904 if (rs->buf_size < what_they_get + 1)
905 {
906 rs->buf_size = 2 * what_they_get;
907 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
908 }
909
910 return what_they_get;
911 }
912
913 /* Update the size of a read/write packet. If they user wants
914 something really big then do a sanity check. */
915
916 static void
917 set_memory_packet_size (char *args, struct memory_packet_config *config)
918 {
919 int fixed_p = config->fixed_p;
920 long size = config->size;
921
922 if (args == NULL)
923 error (_("Argument required (integer, `fixed' or `limited')."));
924 else if (strcmp (args, "hard") == 0
925 || strcmp (args, "fixed") == 0)
926 fixed_p = 1;
927 else if (strcmp (args, "soft") == 0
928 || strcmp (args, "limit") == 0)
929 fixed_p = 0;
930 else
931 {
932 char *end;
933
934 size = strtoul (args, &end, 0);
935 if (args == end)
936 error (_("Invalid %s (bad syntax)."), config->name);
937 #if 0
938 /* Instead of explicitly capping the size of a packet to
939 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
940 instead allowed to set the size to something arbitrarily
941 large. */
942 if (size > MAX_REMOTE_PACKET_SIZE)
943 error (_("Invalid %s (too large)."), config->name);
944 #endif
945 }
946 /* Extra checks? */
947 if (fixed_p && !config->fixed_p)
948 {
949 if (! query (_("The target may not be able to correctly handle a %s\n"
950 "of %ld bytes. Change the packet size? "),
951 config->name, size))
952 error (_("Packet size not changed."));
953 }
954 /* Update the config. */
955 config->fixed_p = fixed_p;
956 config->size = size;
957 }
958
959 static void
960 show_memory_packet_size (struct memory_packet_config *config)
961 {
962 printf_filtered (_("The %s is %ld. "), config->name, config->size);
963 if (config->fixed_p)
964 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
965 get_memory_packet_size (config));
966 else
967 printf_filtered (_("Packets are limited to %ld bytes.\n"),
968 get_memory_packet_size (config));
969 }
970
971 static struct memory_packet_config memory_write_packet_config =
972 {
973 "memory-write-packet-size",
974 };
975
976 static void
977 set_memory_write_packet_size (char *args, int from_tty)
978 {
979 set_memory_packet_size (args, &memory_write_packet_config);
980 }
981
982 static void
983 show_memory_write_packet_size (char *args, int from_tty)
984 {
985 show_memory_packet_size (&memory_write_packet_config);
986 }
987
988 static long
989 get_memory_write_packet_size (void)
990 {
991 return get_memory_packet_size (&memory_write_packet_config);
992 }
993
994 static struct memory_packet_config memory_read_packet_config =
995 {
996 "memory-read-packet-size",
997 };
998
999 static void
1000 set_memory_read_packet_size (char *args, int from_tty)
1001 {
1002 set_memory_packet_size (args, &memory_read_packet_config);
1003 }
1004
1005 static void
1006 show_memory_read_packet_size (char *args, int from_tty)
1007 {
1008 show_memory_packet_size (&memory_read_packet_config);
1009 }
1010
1011 static long
1012 get_memory_read_packet_size (void)
1013 {
1014 long size = get_memory_packet_size (&memory_read_packet_config);
1015
1016 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1017 extra buffer size argument before the memory read size can be
1018 increased beyond this. */
1019 if (size > get_remote_packet_size ())
1020 size = get_remote_packet_size ();
1021 return size;
1022 }
1023
1024 \f
1025 /* Generic configuration support for packets the stub optionally
1026 supports. Allows the user to specify the use of the packet as well
1027 as allowing GDB to auto-detect support in the remote stub. */
1028
1029 enum packet_support
1030 {
1031 PACKET_SUPPORT_UNKNOWN = 0,
1032 PACKET_ENABLE,
1033 PACKET_DISABLE
1034 };
1035
1036 struct packet_config
1037 {
1038 const char *name;
1039 const char *title;
1040 enum auto_boolean detect;
1041 enum packet_support support;
1042 };
1043
1044 /* Analyze a packet's return value and update the packet config
1045 accordingly. */
1046
1047 enum packet_result
1048 {
1049 PACKET_ERROR,
1050 PACKET_OK,
1051 PACKET_UNKNOWN
1052 };
1053
1054 static void
1055 update_packet_config (struct packet_config *config)
1056 {
1057 switch (config->detect)
1058 {
1059 case AUTO_BOOLEAN_TRUE:
1060 config->support = PACKET_ENABLE;
1061 break;
1062 case AUTO_BOOLEAN_FALSE:
1063 config->support = PACKET_DISABLE;
1064 break;
1065 case AUTO_BOOLEAN_AUTO:
1066 config->support = PACKET_SUPPORT_UNKNOWN;
1067 break;
1068 }
1069 }
1070
1071 static void
1072 show_packet_config_cmd (struct packet_config *config)
1073 {
1074 char *support = "internal-error";
1075
1076 switch (config->support)
1077 {
1078 case PACKET_ENABLE:
1079 support = "enabled";
1080 break;
1081 case PACKET_DISABLE:
1082 support = "disabled";
1083 break;
1084 case PACKET_SUPPORT_UNKNOWN:
1085 support = "unknown";
1086 break;
1087 }
1088 switch (config->detect)
1089 {
1090 case AUTO_BOOLEAN_AUTO:
1091 printf_filtered (_("Support for the `%s' packet "
1092 "is auto-detected, currently %s.\n"),
1093 config->name, support);
1094 break;
1095 case AUTO_BOOLEAN_TRUE:
1096 case AUTO_BOOLEAN_FALSE:
1097 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1098 config->name, support);
1099 break;
1100 }
1101 }
1102
1103 static void
1104 add_packet_config_cmd (struct packet_config *config, const char *name,
1105 const char *title, int legacy)
1106 {
1107 char *set_doc;
1108 char *show_doc;
1109 char *cmd_name;
1110
1111 config->name = name;
1112 config->title = title;
1113 config->detect = AUTO_BOOLEAN_AUTO;
1114 config->support = PACKET_SUPPORT_UNKNOWN;
1115 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1116 name, title);
1117 show_doc = xstrprintf ("Show current use of remote "
1118 "protocol `%s' (%s) packet",
1119 name, title);
1120 /* set/show TITLE-packet {auto,on,off} */
1121 cmd_name = xstrprintf ("%s-packet", title);
1122 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1123 &config->detect, set_doc,
1124 show_doc, NULL, /* help_doc */
1125 set_remote_protocol_packet_cmd,
1126 show_remote_protocol_packet_cmd,
1127 &remote_set_cmdlist, &remote_show_cmdlist);
1128 /* The command code copies the documentation strings. */
1129 xfree (set_doc);
1130 xfree (show_doc);
1131 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1132 if (legacy)
1133 {
1134 char *legacy_name;
1135
1136 legacy_name = xstrprintf ("%s-packet", name);
1137 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1138 &remote_set_cmdlist);
1139 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1140 &remote_show_cmdlist);
1141 }
1142 }
1143
1144 static enum packet_result
1145 packet_check_result (const char *buf)
1146 {
1147 if (buf[0] != '\0')
1148 {
1149 /* The stub recognized the packet request. Check that the
1150 operation succeeded. */
1151 if (buf[0] == 'E'
1152 && isxdigit (buf[1]) && isxdigit (buf[2])
1153 && buf[3] == '\0')
1154 /* "Enn" - definitly an error. */
1155 return PACKET_ERROR;
1156
1157 /* Always treat "E." as an error. This will be used for
1158 more verbose error messages, such as E.memtypes. */
1159 if (buf[0] == 'E' && buf[1] == '.')
1160 return PACKET_ERROR;
1161
1162 /* The packet may or may not be OK. Just assume it is. */
1163 return PACKET_OK;
1164 }
1165 else
1166 /* The stub does not support the packet. */
1167 return PACKET_UNKNOWN;
1168 }
1169
1170 static enum packet_result
1171 packet_ok (const char *buf, struct packet_config *config)
1172 {
1173 enum packet_result result;
1174
1175 result = packet_check_result (buf);
1176 switch (result)
1177 {
1178 case PACKET_OK:
1179 case PACKET_ERROR:
1180 /* The stub recognized the packet request. */
1181 switch (config->support)
1182 {
1183 case PACKET_SUPPORT_UNKNOWN:
1184 if (remote_debug)
1185 fprintf_unfiltered (gdb_stdlog,
1186 "Packet %s (%s) is supported\n",
1187 config->name, config->title);
1188 config->support = PACKET_ENABLE;
1189 break;
1190 case PACKET_DISABLE:
1191 internal_error (__FILE__, __LINE__,
1192 _("packet_ok: attempt to use a disabled packet"));
1193 break;
1194 case PACKET_ENABLE:
1195 break;
1196 }
1197 break;
1198 case PACKET_UNKNOWN:
1199 /* The stub does not support the packet. */
1200 switch (config->support)
1201 {
1202 case PACKET_ENABLE:
1203 if (config->detect == AUTO_BOOLEAN_AUTO)
1204 /* If the stub previously indicated that the packet was
1205 supported then there is a protocol error.. */
1206 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1207 config->name, config->title);
1208 else
1209 /* The user set it wrong. */
1210 error (_("Enabled packet %s (%s) not recognized by stub"),
1211 config->name, config->title);
1212 break;
1213 case PACKET_SUPPORT_UNKNOWN:
1214 if (remote_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Packet %s (%s) is NOT supported\n",
1217 config->name, config->title);
1218 config->support = PACKET_DISABLE;
1219 break;
1220 case PACKET_DISABLE:
1221 break;
1222 }
1223 break;
1224 }
1225
1226 return result;
1227 }
1228
1229 enum {
1230 PACKET_vCont = 0,
1231 PACKET_X,
1232 PACKET_qSymbol,
1233 PACKET_P,
1234 PACKET_p,
1235 PACKET_Z0,
1236 PACKET_Z1,
1237 PACKET_Z2,
1238 PACKET_Z3,
1239 PACKET_Z4,
1240 PACKET_vFile_open,
1241 PACKET_vFile_pread,
1242 PACKET_vFile_pwrite,
1243 PACKET_vFile_close,
1244 PACKET_vFile_unlink,
1245 PACKET_vFile_readlink,
1246 PACKET_qXfer_auxv,
1247 PACKET_qXfer_features,
1248 PACKET_qXfer_libraries,
1249 PACKET_qXfer_libraries_svr4,
1250 PACKET_qXfer_memory_map,
1251 PACKET_qXfer_spu_read,
1252 PACKET_qXfer_spu_write,
1253 PACKET_qXfer_osdata,
1254 PACKET_qXfer_threads,
1255 PACKET_qXfer_statictrace_read,
1256 PACKET_qXfer_traceframe_info,
1257 PACKET_qXfer_uib,
1258 PACKET_qGetTIBAddr,
1259 PACKET_qGetTLSAddr,
1260 PACKET_qSupported,
1261 PACKET_qTStatus,
1262 PACKET_QPassSignals,
1263 PACKET_QProgramSignals,
1264 PACKET_qSearch_memory,
1265 PACKET_vAttach,
1266 PACKET_vRun,
1267 PACKET_QStartNoAckMode,
1268 PACKET_vKill,
1269 PACKET_qXfer_siginfo_read,
1270 PACKET_qXfer_siginfo_write,
1271 PACKET_qAttached,
1272 PACKET_ConditionalTracepoints,
1273 PACKET_ConditionalBreakpoints,
1274 PACKET_BreakpointCommands,
1275 PACKET_FastTracepoints,
1276 PACKET_StaticTracepoints,
1277 PACKET_InstallInTrace,
1278 PACKET_bc,
1279 PACKET_bs,
1280 PACKET_TracepointSource,
1281 PACKET_QAllow,
1282 PACKET_qXfer_fdpic,
1283 PACKET_QDisableRandomization,
1284 PACKET_QAgent,
1285 PACKET_QTBuffer_size,
1286 PACKET_Qbtrace_off,
1287 PACKET_Qbtrace_bts,
1288 PACKET_qXfer_btrace,
1289 PACKET_MAX
1290 };
1291
1292 static struct packet_config remote_protocol_packets[PACKET_MAX];
1293
1294 static void
1295 set_remote_protocol_packet_cmd (char *args, int from_tty,
1296 struct cmd_list_element *c)
1297 {
1298 struct packet_config *packet;
1299
1300 for (packet = remote_protocol_packets;
1301 packet < &remote_protocol_packets[PACKET_MAX];
1302 packet++)
1303 {
1304 if (&packet->detect == c->var)
1305 {
1306 update_packet_config (packet);
1307 return;
1308 }
1309 }
1310 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1311 c->name);
1312 }
1313
1314 static void
1315 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1316 struct cmd_list_element *c,
1317 const char *value)
1318 {
1319 struct packet_config *packet;
1320
1321 for (packet = remote_protocol_packets;
1322 packet < &remote_protocol_packets[PACKET_MAX];
1323 packet++)
1324 {
1325 if (&packet->detect == c->var)
1326 {
1327 show_packet_config_cmd (packet);
1328 return;
1329 }
1330 }
1331 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1332 c->name);
1333 }
1334
1335 /* Should we try one of the 'Z' requests? */
1336
1337 enum Z_packet_type
1338 {
1339 Z_PACKET_SOFTWARE_BP,
1340 Z_PACKET_HARDWARE_BP,
1341 Z_PACKET_WRITE_WP,
1342 Z_PACKET_READ_WP,
1343 Z_PACKET_ACCESS_WP,
1344 NR_Z_PACKET_TYPES
1345 };
1346
1347 /* For compatibility with older distributions. Provide a ``set remote
1348 Z-packet ...'' command that updates all the Z packet types. */
1349
1350 static enum auto_boolean remote_Z_packet_detect;
1351
1352 static void
1353 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1354 struct cmd_list_element *c)
1355 {
1356 int i;
1357
1358 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1359 {
1360 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1361 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1362 }
1363 }
1364
1365 static void
1366 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1367 struct cmd_list_element *c,
1368 const char *value)
1369 {
1370 int i;
1371
1372 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1373 {
1374 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1375 }
1376 }
1377
1378 /* Should we try the 'ThreadInfo' query packet?
1379
1380 This variable (NOT available to the user: auto-detect only!)
1381 determines whether GDB will use the new, simpler "ThreadInfo"
1382 query or the older, more complex syntax for thread queries.
1383 This is an auto-detect variable (set to true at each connect,
1384 and set to false when the target fails to recognize it). */
1385
1386 static int use_threadinfo_query;
1387 static int use_threadextra_query;
1388
1389 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1390 static struct async_signal_handler *sigint_remote_twice_token;
1391 static struct async_signal_handler *sigint_remote_token;
1392
1393 \f
1394 /* Asynchronous signal handle registered as event loop source for
1395 when we have pending events ready to be passed to the core. */
1396
1397 static struct async_event_handler *remote_async_inferior_event_token;
1398
1399 \f
1400
1401 static ptid_t magic_null_ptid;
1402 static ptid_t not_sent_ptid;
1403 static ptid_t any_thread_ptid;
1404
1405 /* These are the threads which we last sent to the remote system. The
1406 TID member will be -1 for all or -2 for not sent yet. */
1407
1408 static ptid_t general_thread;
1409 static ptid_t continue_thread;
1410
1411 /* This is the traceframe which we last selected on the remote system.
1412 It will be -1 if no traceframe is selected. */
1413 static int remote_traceframe_number = -1;
1414
1415 /* Find out if the stub attached to PID (and hence GDB should offer to
1416 detach instead of killing it when bailing out). */
1417
1418 static int
1419 remote_query_attached (int pid)
1420 {
1421 struct remote_state *rs = get_remote_state ();
1422 size_t size = get_remote_packet_size ();
1423
1424 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1425 return 0;
1426
1427 if (remote_multi_process_p (rs))
1428 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1429 else
1430 xsnprintf (rs->buf, size, "qAttached");
1431
1432 putpkt (rs->buf);
1433 getpkt (&rs->buf, &rs->buf_size, 0);
1434
1435 switch (packet_ok (rs->buf,
1436 &remote_protocol_packets[PACKET_qAttached]))
1437 {
1438 case PACKET_OK:
1439 if (strcmp (rs->buf, "1") == 0)
1440 return 1;
1441 break;
1442 case PACKET_ERROR:
1443 warning (_("Remote failure reply: %s"), rs->buf);
1444 break;
1445 case PACKET_UNKNOWN:
1446 break;
1447 }
1448
1449 return 0;
1450 }
1451
1452 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1453 has been invented by GDB, instead of reported by the target. Since
1454 we can be connected to a remote system before before knowing about
1455 any inferior, mark the target with execution when we find the first
1456 inferior. If ATTACHED is 1, then we had just attached to this
1457 inferior. If it is 0, then we just created this inferior. If it
1458 is -1, then try querying the remote stub to find out if it had
1459 attached to the inferior or not. */
1460
1461 static struct inferior *
1462 remote_add_inferior (int fake_pid_p, int pid, int attached)
1463 {
1464 struct inferior *inf;
1465
1466 /* Check whether this process we're learning about is to be
1467 considered attached, or if is to be considered to have been
1468 spawned by the stub. */
1469 if (attached == -1)
1470 attached = remote_query_attached (pid);
1471
1472 if (gdbarch_has_global_solist (target_gdbarch ()))
1473 {
1474 /* If the target shares code across all inferiors, then every
1475 attach adds a new inferior. */
1476 inf = add_inferior (pid);
1477
1478 /* ... and every inferior is bound to the same program space.
1479 However, each inferior may still have its own address
1480 space. */
1481 inf->aspace = maybe_new_address_space ();
1482 inf->pspace = current_program_space;
1483 }
1484 else
1485 {
1486 /* In the traditional debugging scenario, there's a 1-1 match
1487 between program/address spaces. We simply bind the inferior
1488 to the program space's address space. */
1489 inf = current_inferior ();
1490 inferior_appeared (inf, pid);
1491 }
1492
1493 inf->attach_flag = attached;
1494 inf->fake_pid_p = fake_pid_p;
1495
1496 return inf;
1497 }
1498
1499 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1500 according to RUNNING. */
1501
1502 static void
1503 remote_add_thread (ptid_t ptid, int running)
1504 {
1505 add_thread (ptid);
1506
1507 set_executing (ptid, running);
1508 set_running (ptid, running);
1509 }
1510
1511 /* Come here when we learn about a thread id from the remote target.
1512 It may be the first time we hear about such thread, so take the
1513 opportunity to add it to GDB's thread list. In case this is the
1514 first time we're noticing its corresponding inferior, add it to
1515 GDB's inferior list as well. */
1516
1517 static void
1518 remote_notice_new_inferior (ptid_t currthread, int running)
1519 {
1520 /* If this is a new thread, add it to GDB's thread list.
1521 If we leave it up to WFI to do this, bad things will happen. */
1522
1523 if (in_thread_list (currthread) && is_exited (currthread))
1524 {
1525 /* We're seeing an event on a thread id we knew had exited.
1526 This has to be a new thread reusing the old id. Add it. */
1527 remote_add_thread (currthread, running);
1528 return;
1529 }
1530
1531 if (!in_thread_list (currthread))
1532 {
1533 struct inferior *inf = NULL;
1534 int pid = ptid_get_pid (currthread);
1535
1536 if (ptid_is_pid (inferior_ptid)
1537 && pid == ptid_get_pid (inferior_ptid))
1538 {
1539 /* inferior_ptid has no thread member yet. This can happen
1540 with the vAttach -> remote_wait,"TAAthread:" path if the
1541 stub doesn't support qC. This is the first stop reported
1542 after an attach, so this is the main thread. Update the
1543 ptid in the thread list. */
1544 if (in_thread_list (pid_to_ptid (pid)))
1545 thread_change_ptid (inferior_ptid, currthread);
1546 else
1547 {
1548 remote_add_thread (currthread, running);
1549 inferior_ptid = currthread;
1550 }
1551 return;
1552 }
1553
1554 if (ptid_equal (magic_null_ptid, inferior_ptid))
1555 {
1556 /* inferior_ptid is not set yet. This can happen with the
1557 vRun -> remote_wait,"TAAthread:" path if the stub
1558 doesn't support qC. This is the first stop reported
1559 after an attach, so this is the main thread. Update the
1560 ptid in the thread list. */
1561 thread_change_ptid (inferior_ptid, currthread);
1562 return;
1563 }
1564
1565 /* When connecting to a target remote, or to a target
1566 extended-remote which already was debugging an inferior, we
1567 may not know about it yet. Add it before adding its child
1568 thread, so notifications are emitted in a sensible order. */
1569 if (!in_inferior_list (ptid_get_pid (currthread)))
1570 {
1571 struct remote_state *rs = get_remote_state ();
1572 int fake_pid_p = !remote_multi_process_p (rs);
1573
1574 inf = remote_add_inferior (fake_pid_p,
1575 ptid_get_pid (currthread), -1);
1576 }
1577
1578 /* This is really a new thread. Add it. */
1579 remote_add_thread (currthread, running);
1580
1581 /* If we found a new inferior, let the common code do whatever
1582 it needs to with it (e.g., read shared libraries, insert
1583 breakpoints). */
1584 if (inf != NULL)
1585 notice_new_inferior (currthread, running, 0);
1586 }
1587 }
1588
1589 /* Return the private thread data, creating it if necessary. */
1590
1591 static struct private_thread_info *
1592 demand_private_info (ptid_t ptid)
1593 {
1594 struct thread_info *info = find_thread_ptid (ptid);
1595
1596 gdb_assert (info);
1597
1598 if (!info->private)
1599 {
1600 info->private = xmalloc (sizeof (*(info->private)));
1601 info->private_dtor = free_private_thread_info;
1602 info->private->core = -1;
1603 info->private->extra = 0;
1604 }
1605
1606 return info->private;
1607 }
1608
1609 /* Call this function as a result of
1610 1) A halt indication (T packet) containing a thread id
1611 2) A direct query of currthread
1612 3) Successful execution of set thread */
1613
1614 static void
1615 record_currthread (ptid_t currthread)
1616 {
1617 general_thread = currthread;
1618 }
1619
1620 static char *last_pass_packet;
1621
1622 /* If 'QPassSignals' is supported, tell the remote stub what signals
1623 it can simply pass through to the inferior without reporting. */
1624
1625 static void
1626 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1627 {
1628 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1629 {
1630 char *pass_packet, *p;
1631 int count = 0, i;
1632
1633 gdb_assert (numsigs < 256);
1634 for (i = 0; i < numsigs; i++)
1635 {
1636 if (pass_signals[i])
1637 count++;
1638 }
1639 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1640 strcpy (pass_packet, "QPassSignals:");
1641 p = pass_packet + strlen (pass_packet);
1642 for (i = 0; i < numsigs; i++)
1643 {
1644 if (pass_signals[i])
1645 {
1646 if (i >= 16)
1647 *p++ = tohex (i >> 4);
1648 *p++ = tohex (i & 15);
1649 if (count)
1650 *p++ = ';';
1651 else
1652 break;
1653 count--;
1654 }
1655 }
1656 *p = 0;
1657 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1658 {
1659 struct remote_state *rs = get_remote_state ();
1660 char *buf = rs->buf;
1661
1662 putpkt (pass_packet);
1663 getpkt (&rs->buf, &rs->buf_size, 0);
1664 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1665 if (last_pass_packet)
1666 xfree (last_pass_packet);
1667 last_pass_packet = pass_packet;
1668 }
1669 else
1670 xfree (pass_packet);
1671 }
1672 }
1673
1674 /* The last QProgramSignals packet sent to the target. We bypass
1675 sending a new program signals list down to the target if the new
1676 packet is exactly the same as the last we sent. IOW, we only let
1677 the target know about program signals list changes. */
1678
1679 static char *last_program_signals_packet;
1680
1681 /* If 'QProgramSignals' is supported, tell the remote stub what
1682 signals it should pass through to the inferior when detaching. */
1683
1684 static void
1685 remote_program_signals (int numsigs, unsigned char *signals)
1686 {
1687 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1688 {
1689 char *packet, *p;
1690 int count = 0, i;
1691
1692 gdb_assert (numsigs < 256);
1693 for (i = 0; i < numsigs; i++)
1694 {
1695 if (signals[i])
1696 count++;
1697 }
1698 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1699 strcpy (packet, "QProgramSignals:");
1700 p = packet + strlen (packet);
1701 for (i = 0; i < numsigs; i++)
1702 {
1703 if (signal_pass_state (i))
1704 {
1705 if (i >= 16)
1706 *p++ = tohex (i >> 4);
1707 *p++ = tohex (i & 15);
1708 if (count)
1709 *p++ = ';';
1710 else
1711 break;
1712 count--;
1713 }
1714 }
1715 *p = 0;
1716 if (!last_program_signals_packet
1717 || strcmp (last_program_signals_packet, packet) != 0)
1718 {
1719 struct remote_state *rs = get_remote_state ();
1720 char *buf = rs->buf;
1721
1722 putpkt (packet);
1723 getpkt (&rs->buf, &rs->buf_size, 0);
1724 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1725 xfree (last_program_signals_packet);
1726 last_program_signals_packet = packet;
1727 }
1728 else
1729 xfree (packet);
1730 }
1731 }
1732
1733 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1734 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1735 thread. If GEN is set, set the general thread, if not, then set
1736 the step/continue thread. */
1737 static void
1738 set_thread (struct ptid ptid, int gen)
1739 {
1740 struct remote_state *rs = get_remote_state ();
1741 ptid_t state = gen ? general_thread : continue_thread;
1742 char *buf = rs->buf;
1743 char *endbuf = rs->buf + get_remote_packet_size ();
1744
1745 if (ptid_equal (state, ptid))
1746 return;
1747
1748 *buf++ = 'H';
1749 *buf++ = gen ? 'g' : 'c';
1750 if (ptid_equal (ptid, magic_null_ptid))
1751 xsnprintf (buf, endbuf - buf, "0");
1752 else if (ptid_equal (ptid, any_thread_ptid))
1753 xsnprintf (buf, endbuf - buf, "0");
1754 else if (ptid_equal (ptid, minus_one_ptid))
1755 xsnprintf (buf, endbuf - buf, "-1");
1756 else
1757 write_ptid (buf, endbuf, ptid);
1758 putpkt (rs->buf);
1759 getpkt (&rs->buf, &rs->buf_size, 0);
1760 if (gen)
1761 general_thread = ptid;
1762 else
1763 continue_thread = ptid;
1764 }
1765
1766 static void
1767 set_general_thread (struct ptid ptid)
1768 {
1769 set_thread (ptid, 1);
1770 }
1771
1772 static void
1773 set_continue_thread (struct ptid ptid)
1774 {
1775 set_thread (ptid, 0);
1776 }
1777
1778 /* Change the remote current process. Which thread within the process
1779 ends up selected isn't important, as long as it is the same process
1780 as what INFERIOR_PTID points to.
1781
1782 This comes from that fact that there is no explicit notion of
1783 "selected process" in the protocol. The selected process for
1784 general operations is the process the selected general thread
1785 belongs to. */
1786
1787 static void
1788 set_general_process (void)
1789 {
1790 struct remote_state *rs = get_remote_state ();
1791
1792 /* If the remote can't handle multiple processes, don't bother. */
1793 if (!rs->extended || !remote_multi_process_p (rs))
1794 return;
1795
1796 /* We only need to change the remote current thread if it's pointing
1797 at some other process. */
1798 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1799 set_general_thread (inferior_ptid);
1800 }
1801
1802 \f
1803 /* Return nonzero if the thread PTID is still alive on the remote
1804 system. */
1805
1806 static int
1807 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1808 {
1809 struct remote_state *rs = get_remote_state ();
1810 char *p, *endp;
1811
1812 if (ptid_equal (ptid, magic_null_ptid))
1813 /* The main thread is always alive. */
1814 return 1;
1815
1816 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1817 /* The main thread is always alive. This can happen after a
1818 vAttach, if the remote side doesn't support
1819 multi-threading. */
1820 return 1;
1821
1822 p = rs->buf;
1823 endp = rs->buf + get_remote_packet_size ();
1824
1825 *p++ = 'T';
1826 write_ptid (p, endp, ptid);
1827
1828 putpkt (rs->buf);
1829 getpkt (&rs->buf, &rs->buf_size, 0);
1830 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1831 }
1832
1833 /* About these extended threadlist and threadinfo packets. They are
1834 variable length packets but, the fields within them are often fixed
1835 length. They are redundent enough to send over UDP as is the
1836 remote protocol in general. There is a matching unit test module
1837 in libstub. */
1838
1839 #define OPAQUETHREADBYTES 8
1840
1841 /* a 64 bit opaque identifier */
1842 typedef unsigned char threadref[OPAQUETHREADBYTES];
1843
1844 /* WARNING: This threadref data structure comes from the remote O.S.,
1845 libstub protocol encoding, and remote.c. It is not particularly
1846 changable. */
1847
1848 /* Right now, the internal structure is int. We want it to be bigger.
1849 Plan to fix this. */
1850
1851 typedef int gdb_threadref; /* Internal GDB thread reference. */
1852
1853 /* gdb_ext_thread_info is an internal GDB data structure which is
1854 equivalent to the reply of the remote threadinfo packet. */
1855
1856 struct gdb_ext_thread_info
1857 {
1858 threadref threadid; /* External form of thread reference. */
1859 int active; /* Has state interesting to GDB?
1860 regs, stack. */
1861 char display[256]; /* Brief state display, name,
1862 blocked/suspended. */
1863 char shortname[32]; /* To be used to name threads. */
1864 char more_display[256]; /* Long info, statistics, queue depth,
1865 whatever. */
1866 };
1867
1868 /* The volume of remote transfers can be limited by submitting
1869 a mask containing bits specifying the desired information.
1870 Use a union of these values as the 'selection' parameter to
1871 get_thread_info. FIXME: Make these TAG names more thread specific. */
1872
1873 #define TAG_THREADID 1
1874 #define TAG_EXISTS 2
1875 #define TAG_DISPLAY 4
1876 #define TAG_THREADNAME 8
1877 #define TAG_MOREDISPLAY 16
1878
1879 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1880
1881 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1882
1883 static char *unpack_nibble (char *buf, int *val);
1884
1885 static char *pack_nibble (char *buf, int nibble);
1886
1887 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1888
1889 static char *unpack_byte (char *buf, int *value);
1890
1891 static char *pack_int (char *buf, int value);
1892
1893 static char *unpack_int (char *buf, int *value);
1894
1895 static char *unpack_string (char *src, char *dest, int length);
1896
1897 static char *pack_threadid (char *pkt, threadref *id);
1898
1899 static char *unpack_threadid (char *inbuf, threadref *id);
1900
1901 void int_to_threadref (threadref *id, int value);
1902
1903 static int threadref_to_int (threadref *ref);
1904
1905 static void copy_threadref (threadref *dest, threadref *src);
1906
1907 static int threadmatch (threadref *dest, threadref *src);
1908
1909 static char *pack_threadinfo_request (char *pkt, int mode,
1910 threadref *id);
1911
1912 static int remote_unpack_thread_info_response (char *pkt,
1913 threadref *expectedref,
1914 struct gdb_ext_thread_info
1915 *info);
1916
1917
1918 static int remote_get_threadinfo (threadref *threadid,
1919 int fieldset, /*TAG mask */
1920 struct gdb_ext_thread_info *info);
1921
1922 static char *pack_threadlist_request (char *pkt, int startflag,
1923 int threadcount,
1924 threadref *nextthread);
1925
1926 static int parse_threadlist_response (char *pkt,
1927 int result_limit,
1928 threadref *original_echo,
1929 threadref *resultlist,
1930 int *doneflag);
1931
1932 static int remote_get_threadlist (int startflag,
1933 threadref *nextthread,
1934 int result_limit,
1935 int *done,
1936 int *result_count,
1937 threadref *threadlist);
1938
1939 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1940
1941 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1942 void *context, int looplimit);
1943
1944 static int remote_newthread_step (threadref *ref, void *context);
1945
1946
1947 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1948 buffer we're allowed to write to. Returns
1949 BUF+CHARACTERS_WRITTEN. */
1950
1951 static char *
1952 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1953 {
1954 int pid, tid;
1955 struct remote_state *rs = get_remote_state ();
1956
1957 if (remote_multi_process_p (rs))
1958 {
1959 pid = ptid_get_pid (ptid);
1960 if (pid < 0)
1961 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1962 else
1963 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1964 }
1965 tid = ptid_get_tid (ptid);
1966 if (tid < 0)
1967 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1968 else
1969 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1970
1971 return buf;
1972 }
1973
1974 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1975 passed the last parsed char. Returns null_ptid on error. */
1976
1977 static ptid_t
1978 read_ptid (char *buf, char **obuf)
1979 {
1980 char *p = buf;
1981 char *pp;
1982 ULONGEST pid = 0, tid = 0;
1983
1984 if (*p == 'p')
1985 {
1986 /* Multi-process ptid. */
1987 pp = unpack_varlen_hex (p + 1, &pid);
1988 if (*pp != '.')
1989 error (_("invalid remote ptid: %s"), p);
1990
1991 p = pp;
1992 pp = unpack_varlen_hex (p + 1, &tid);
1993 if (obuf)
1994 *obuf = pp;
1995 return ptid_build (pid, 0, tid);
1996 }
1997
1998 /* No multi-process. Just a tid. */
1999 pp = unpack_varlen_hex (p, &tid);
2000
2001 /* Since the stub is not sending a process id, then default to
2002 what's in inferior_ptid, unless it's null at this point. If so,
2003 then since there's no way to know the pid of the reported
2004 threads, use the magic number. */
2005 if (ptid_equal (inferior_ptid, null_ptid))
2006 pid = ptid_get_pid (magic_null_ptid);
2007 else
2008 pid = ptid_get_pid (inferior_ptid);
2009
2010 if (obuf)
2011 *obuf = pp;
2012 return ptid_build (pid, 0, tid);
2013 }
2014
2015 /* Encode 64 bits in 16 chars of hex. */
2016
2017 static const char hexchars[] = "0123456789abcdef";
2018
2019 static int
2020 ishex (int ch, int *val)
2021 {
2022 if ((ch >= 'a') && (ch <= 'f'))
2023 {
2024 *val = ch - 'a' + 10;
2025 return 1;
2026 }
2027 if ((ch >= 'A') && (ch <= 'F'))
2028 {
2029 *val = ch - 'A' + 10;
2030 return 1;
2031 }
2032 if ((ch >= '0') && (ch <= '9'))
2033 {
2034 *val = ch - '0';
2035 return 1;
2036 }
2037 return 0;
2038 }
2039
2040 static int
2041 stubhex (int ch)
2042 {
2043 if (ch >= 'a' && ch <= 'f')
2044 return ch - 'a' + 10;
2045 if (ch >= '0' && ch <= '9')
2046 return ch - '0';
2047 if (ch >= 'A' && ch <= 'F')
2048 return ch - 'A' + 10;
2049 return -1;
2050 }
2051
2052 static int
2053 stub_unpack_int (char *buff, int fieldlength)
2054 {
2055 int nibble;
2056 int retval = 0;
2057
2058 while (fieldlength)
2059 {
2060 nibble = stubhex (*buff++);
2061 retval |= nibble;
2062 fieldlength--;
2063 if (fieldlength)
2064 retval = retval << 4;
2065 }
2066 return retval;
2067 }
2068
2069 char *
2070 unpack_varlen_hex (char *buff, /* packet to parse */
2071 ULONGEST *result)
2072 {
2073 int nibble;
2074 ULONGEST retval = 0;
2075
2076 while (ishex (*buff, &nibble))
2077 {
2078 buff++;
2079 retval = retval << 4;
2080 retval |= nibble & 0x0f;
2081 }
2082 *result = retval;
2083 return buff;
2084 }
2085
2086 static char *
2087 unpack_nibble (char *buf, int *val)
2088 {
2089 *val = fromhex (*buf++);
2090 return buf;
2091 }
2092
2093 static char *
2094 pack_nibble (char *buf, int nibble)
2095 {
2096 *buf++ = hexchars[(nibble & 0x0f)];
2097 return buf;
2098 }
2099
2100 static char *
2101 pack_hex_byte (char *pkt, int byte)
2102 {
2103 *pkt++ = hexchars[(byte >> 4) & 0xf];
2104 *pkt++ = hexchars[(byte & 0xf)];
2105 return pkt;
2106 }
2107
2108 static char *
2109 unpack_byte (char *buf, int *value)
2110 {
2111 *value = stub_unpack_int (buf, 2);
2112 return buf + 2;
2113 }
2114
2115 static char *
2116 pack_int (char *buf, int value)
2117 {
2118 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2119 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2120 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2121 buf = pack_hex_byte (buf, (value & 0xff));
2122 return buf;
2123 }
2124
2125 static char *
2126 unpack_int (char *buf, int *value)
2127 {
2128 *value = stub_unpack_int (buf, 8);
2129 return buf + 8;
2130 }
2131
2132 #if 0 /* Currently unused, uncomment when needed. */
2133 static char *pack_string (char *pkt, char *string);
2134
2135 static char *
2136 pack_string (char *pkt, char *string)
2137 {
2138 char ch;
2139 int len;
2140
2141 len = strlen (string);
2142 if (len > 200)
2143 len = 200; /* Bigger than most GDB packets, junk??? */
2144 pkt = pack_hex_byte (pkt, len);
2145 while (len-- > 0)
2146 {
2147 ch = *string++;
2148 if ((ch == '\0') || (ch == '#'))
2149 ch = '*'; /* Protect encapsulation. */
2150 *pkt++ = ch;
2151 }
2152 return pkt;
2153 }
2154 #endif /* 0 (unused) */
2155
2156 static char *
2157 unpack_string (char *src, char *dest, int length)
2158 {
2159 while (length--)
2160 *dest++ = *src++;
2161 *dest = '\0';
2162 return src;
2163 }
2164
2165 static char *
2166 pack_threadid (char *pkt, threadref *id)
2167 {
2168 char *limit;
2169 unsigned char *altid;
2170
2171 altid = (unsigned char *) id;
2172 limit = pkt + BUF_THREAD_ID_SIZE;
2173 while (pkt < limit)
2174 pkt = pack_hex_byte (pkt, *altid++);
2175 return pkt;
2176 }
2177
2178
2179 static char *
2180 unpack_threadid (char *inbuf, threadref *id)
2181 {
2182 char *altref;
2183 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2184 int x, y;
2185
2186 altref = (char *) id;
2187
2188 while (inbuf < limit)
2189 {
2190 x = stubhex (*inbuf++);
2191 y = stubhex (*inbuf++);
2192 *altref++ = (x << 4) | y;
2193 }
2194 return inbuf;
2195 }
2196
2197 /* Externally, threadrefs are 64 bits but internally, they are still
2198 ints. This is due to a mismatch of specifications. We would like
2199 to use 64bit thread references internally. This is an adapter
2200 function. */
2201
2202 void
2203 int_to_threadref (threadref *id, int value)
2204 {
2205 unsigned char *scan;
2206
2207 scan = (unsigned char *) id;
2208 {
2209 int i = 4;
2210 while (i--)
2211 *scan++ = 0;
2212 }
2213 *scan++ = (value >> 24) & 0xff;
2214 *scan++ = (value >> 16) & 0xff;
2215 *scan++ = (value >> 8) & 0xff;
2216 *scan++ = (value & 0xff);
2217 }
2218
2219 static int
2220 threadref_to_int (threadref *ref)
2221 {
2222 int i, value = 0;
2223 unsigned char *scan;
2224
2225 scan = *ref;
2226 scan += 4;
2227 i = 4;
2228 while (i-- > 0)
2229 value = (value << 8) | ((*scan++) & 0xff);
2230 return value;
2231 }
2232
2233 static void
2234 copy_threadref (threadref *dest, threadref *src)
2235 {
2236 int i;
2237 unsigned char *csrc, *cdest;
2238
2239 csrc = (unsigned char *) src;
2240 cdest = (unsigned char *) dest;
2241 i = 8;
2242 while (i--)
2243 *cdest++ = *csrc++;
2244 }
2245
2246 static int
2247 threadmatch (threadref *dest, threadref *src)
2248 {
2249 /* Things are broken right now, so just assume we got a match. */
2250 #if 0
2251 unsigned char *srcp, *destp;
2252 int i, result;
2253 srcp = (char *) src;
2254 destp = (char *) dest;
2255
2256 result = 1;
2257 while (i-- > 0)
2258 result &= (*srcp++ == *destp++) ? 1 : 0;
2259 return result;
2260 #endif
2261 return 1;
2262 }
2263
2264 /*
2265 threadid:1, # always request threadid
2266 context_exists:2,
2267 display:4,
2268 unique_name:8,
2269 more_display:16
2270 */
2271
2272 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2273
2274 static char *
2275 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2276 {
2277 *pkt++ = 'q'; /* Info Query */
2278 *pkt++ = 'P'; /* process or thread info */
2279 pkt = pack_int (pkt, mode); /* mode */
2280 pkt = pack_threadid (pkt, id); /* threadid */
2281 *pkt = '\0'; /* terminate */
2282 return pkt;
2283 }
2284
2285 /* These values tag the fields in a thread info response packet. */
2286 /* Tagging the fields allows us to request specific fields and to
2287 add more fields as time goes by. */
2288
2289 #define TAG_THREADID 1 /* Echo the thread identifier. */
2290 #define TAG_EXISTS 2 /* Is this process defined enough to
2291 fetch registers and its stack? */
2292 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2293 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2294 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2295 the process. */
2296
2297 static int
2298 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2299 struct gdb_ext_thread_info *info)
2300 {
2301 struct remote_state *rs = get_remote_state ();
2302 int mask, length;
2303 int tag;
2304 threadref ref;
2305 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2306 int retval = 1;
2307
2308 /* info->threadid = 0; FIXME: implement zero_threadref. */
2309 info->active = 0;
2310 info->display[0] = '\0';
2311 info->shortname[0] = '\0';
2312 info->more_display[0] = '\0';
2313
2314 /* Assume the characters indicating the packet type have been
2315 stripped. */
2316 pkt = unpack_int (pkt, &mask); /* arg mask */
2317 pkt = unpack_threadid (pkt, &ref);
2318
2319 if (mask == 0)
2320 warning (_("Incomplete response to threadinfo request."));
2321 if (!threadmatch (&ref, expectedref))
2322 { /* This is an answer to a different request. */
2323 warning (_("ERROR RMT Thread info mismatch."));
2324 return 0;
2325 }
2326 copy_threadref (&info->threadid, &ref);
2327
2328 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2329
2330 /* Packets are terminated with nulls. */
2331 while ((pkt < limit) && mask && *pkt)
2332 {
2333 pkt = unpack_int (pkt, &tag); /* tag */
2334 pkt = unpack_byte (pkt, &length); /* length */
2335 if (!(tag & mask)) /* Tags out of synch with mask. */
2336 {
2337 warning (_("ERROR RMT: threadinfo tag mismatch."));
2338 retval = 0;
2339 break;
2340 }
2341 if (tag == TAG_THREADID)
2342 {
2343 if (length != 16)
2344 {
2345 warning (_("ERROR RMT: length of threadid is not 16."));
2346 retval = 0;
2347 break;
2348 }
2349 pkt = unpack_threadid (pkt, &ref);
2350 mask = mask & ~TAG_THREADID;
2351 continue;
2352 }
2353 if (tag == TAG_EXISTS)
2354 {
2355 info->active = stub_unpack_int (pkt, length);
2356 pkt += length;
2357 mask = mask & ~(TAG_EXISTS);
2358 if (length > 8)
2359 {
2360 warning (_("ERROR RMT: 'exists' length too long."));
2361 retval = 0;
2362 break;
2363 }
2364 continue;
2365 }
2366 if (tag == TAG_THREADNAME)
2367 {
2368 pkt = unpack_string (pkt, &info->shortname[0], length);
2369 mask = mask & ~TAG_THREADNAME;
2370 continue;
2371 }
2372 if (tag == TAG_DISPLAY)
2373 {
2374 pkt = unpack_string (pkt, &info->display[0], length);
2375 mask = mask & ~TAG_DISPLAY;
2376 continue;
2377 }
2378 if (tag == TAG_MOREDISPLAY)
2379 {
2380 pkt = unpack_string (pkt, &info->more_display[0], length);
2381 mask = mask & ~TAG_MOREDISPLAY;
2382 continue;
2383 }
2384 warning (_("ERROR RMT: unknown thread info tag."));
2385 break; /* Not a tag we know about. */
2386 }
2387 return retval;
2388 }
2389
2390 static int
2391 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2392 struct gdb_ext_thread_info *info)
2393 {
2394 struct remote_state *rs = get_remote_state ();
2395 int result;
2396
2397 pack_threadinfo_request (rs->buf, fieldset, threadid);
2398 putpkt (rs->buf);
2399 getpkt (&rs->buf, &rs->buf_size, 0);
2400
2401 if (rs->buf[0] == '\0')
2402 return 0;
2403
2404 result = remote_unpack_thread_info_response (rs->buf + 2,
2405 threadid, info);
2406 return result;
2407 }
2408
2409 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2410
2411 static char *
2412 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2413 threadref *nextthread)
2414 {
2415 *pkt++ = 'q'; /* info query packet */
2416 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2417 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2418 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2419 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2420 *pkt = '\0';
2421 return pkt;
2422 }
2423
2424 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2425
2426 static int
2427 parse_threadlist_response (char *pkt, int result_limit,
2428 threadref *original_echo, threadref *resultlist,
2429 int *doneflag)
2430 {
2431 struct remote_state *rs = get_remote_state ();
2432 char *limit;
2433 int count, resultcount, done;
2434
2435 resultcount = 0;
2436 /* Assume the 'q' and 'M chars have been stripped. */
2437 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2438 /* done parse past here */
2439 pkt = unpack_byte (pkt, &count); /* count field */
2440 pkt = unpack_nibble (pkt, &done);
2441 /* The first threadid is the argument threadid. */
2442 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2443 while ((count-- > 0) && (pkt < limit))
2444 {
2445 pkt = unpack_threadid (pkt, resultlist++);
2446 if (resultcount++ >= result_limit)
2447 break;
2448 }
2449 if (doneflag)
2450 *doneflag = done;
2451 return resultcount;
2452 }
2453
2454 static int
2455 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2456 int *done, int *result_count, threadref *threadlist)
2457 {
2458 struct remote_state *rs = get_remote_state ();
2459 static threadref echo_nextthread;
2460 int result = 1;
2461
2462 /* Trancate result limit to be smaller than the packet size. */
2463 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2464 >= get_remote_packet_size ())
2465 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2466
2467 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2468 putpkt (rs->buf);
2469 getpkt (&rs->buf, &rs->buf_size, 0);
2470
2471 if (*rs->buf == '\0')
2472 return 0;
2473 else
2474 *result_count =
2475 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2476 threadlist, done);
2477
2478 if (!threadmatch (&echo_nextthread, nextthread))
2479 {
2480 /* FIXME: This is a good reason to drop the packet. */
2481 /* Possably, there is a duplicate response. */
2482 /* Possabilities :
2483 retransmit immediatly - race conditions
2484 retransmit after timeout - yes
2485 exit
2486 wait for packet, then exit
2487 */
2488 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2489 return 0; /* I choose simply exiting. */
2490 }
2491 if (*result_count <= 0)
2492 {
2493 if (*done != 1)
2494 {
2495 warning (_("RMT ERROR : failed to get remote thread list."));
2496 result = 0;
2497 }
2498 return result; /* break; */
2499 }
2500 if (*result_count > result_limit)
2501 {
2502 *result_count = 0;
2503 warning (_("RMT ERROR: threadlist response longer than requested."));
2504 return 0;
2505 }
2506 return result;
2507 }
2508
2509 /* This is the interface between remote and threads, remotes upper
2510 interface. */
2511
2512 /* remote_find_new_threads retrieves the thread list and for each
2513 thread in the list, looks up the thread in GDB's internal list,
2514 adding the thread if it does not already exist. This involves
2515 getting partial thread lists from the remote target so, polling the
2516 quit_flag is required. */
2517
2518
2519 /* About this many threadisds fit in a packet. */
2520
2521 #define MAXTHREADLISTRESULTS 32
2522
2523 static int
2524 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2525 int looplimit)
2526 {
2527 int done, i, result_count;
2528 int startflag = 1;
2529 int result = 1;
2530 int loopcount = 0;
2531 static threadref nextthread;
2532 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2533
2534 done = 0;
2535 while (!done)
2536 {
2537 if (loopcount++ > looplimit)
2538 {
2539 result = 0;
2540 warning (_("Remote fetch threadlist -infinite loop-."));
2541 break;
2542 }
2543 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2544 &done, &result_count, resultthreadlist))
2545 {
2546 result = 0;
2547 break;
2548 }
2549 /* Clear for later iterations. */
2550 startflag = 0;
2551 /* Setup to resume next batch of thread references, set nextthread. */
2552 if (result_count >= 1)
2553 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2554 i = 0;
2555 while (result_count--)
2556 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2557 break;
2558 }
2559 return result;
2560 }
2561
2562 static int
2563 remote_newthread_step (threadref *ref, void *context)
2564 {
2565 int pid = ptid_get_pid (inferior_ptid);
2566 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2567
2568 if (!in_thread_list (ptid))
2569 add_thread (ptid);
2570 return 1; /* continue iterator */
2571 }
2572
2573 #define CRAZY_MAX_THREADS 1000
2574
2575 static ptid_t
2576 remote_current_thread (ptid_t oldpid)
2577 {
2578 struct remote_state *rs = get_remote_state ();
2579
2580 putpkt ("qC");
2581 getpkt (&rs->buf, &rs->buf_size, 0);
2582 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2583 return read_ptid (&rs->buf[2], NULL);
2584 else
2585 return oldpid;
2586 }
2587
2588 /* Find new threads for info threads command.
2589 * Original version, using John Metzler's thread protocol.
2590 */
2591
2592 static void
2593 remote_find_new_threads (void)
2594 {
2595 remote_threadlist_iterator (remote_newthread_step, 0,
2596 CRAZY_MAX_THREADS);
2597 }
2598
2599 #if defined(HAVE_LIBEXPAT)
2600
2601 typedef struct thread_item
2602 {
2603 ptid_t ptid;
2604 char *extra;
2605 int core;
2606 } thread_item_t;
2607 DEF_VEC_O(thread_item_t);
2608
2609 struct threads_parsing_context
2610 {
2611 VEC (thread_item_t) *items;
2612 };
2613
2614 static void
2615 start_thread (struct gdb_xml_parser *parser,
2616 const struct gdb_xml_element *element,
2617 void *user_data, VEC(gdb_xml_value_s) *attributes)
2618 {
2619 struct threads_parsing_context *data = user_data;
2620
2621 struct thread_item item;
2622 char *id;
2623 struct gdb_xml_value *attr;
2624
2625 id = xml_find_attribute (attributes, "id")->value;
2626 item.ptid = read_ptid (id, NULL);
2627
2628 attr = xml_find_attribute (attributes, "core");
2629 if (attr != NULL)
2630 item.core = *(ULONGEST *) attr->value;
2631 else
2632 item.core = -1;
2633
2634 item.extra = 0;
2635
2636 VEC_safe_push (thread_item_t, data->items, &item);
2637 }
2638
2639 static void
2640 end_thread (struct gdb_xml_parser *parser,
2641 const struct gdb_xml_element *element,
2642 void *user_data, const char *body_text)
2643 {
2644 struct threads_parsing_context *data = user_data;
2645
2646 if (body_text && *body_text)
2647 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2648 }
2649
2650 const struct gdb_xml_attribute thread_attributes[] = {
2651 { "id", GDB_XML_AF_NONE, NULL, NULL },
2652 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2653 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2654 };
2655
2656 const struct gdb_xml_element thread_children[] = {
2657 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2658 };
2659
2660 const struct gdb_xml_element threads_children[] = {
2661 { "thread", thread_attributes, thread_children,
2662 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2663 start_thread, end_thread },
2664 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2665 };
2666
2667 const struct gdb_xml_element threads_elements[] = {
2668 { "threads", NULL, threads_children,
2669 GDB_XML_EF_NONE, NULL, NULL },
2670 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2671 };
2672
2673 /* Discard the contents of the constructed thread info context. */
2674
2675 static void
2676 clear_threads_parsing_context (void *p)
2677 {
2678 struct threads_parsing_context *context = p;
2679 int i;
2680 struct thread_item *item;
2681
2682 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2683 xfree (item->extra);
2684
2685 VEC_free (thread_item_t, context->items);
2686 }
2687
2688 #endif
2689
2690 /*
2691 * Find all threads for info threads command.
2692 * Uses new thread protocol contributed by Cisco.
2693 * Falls back and attempts to use the older method (above)
2694 * if the target doesn't respond to the new method.
2695 */
2696
2697 static void
2698 remote_threads_info (struct target_ops *ops)
2699 {
2700 struct remote_state *rs = get_remote_state ();
2701 char *bufp;
2702 ptid_t new_thread;
2703
2704 if (remote_desc == 0) /* paranoia */
2705 error (_("Command can only be used when connected to the remote target."));
2706
2707 #if defined(HAVE_LIBEXPAT)
2708 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2709 {
2710 char *xml = target_read_stralloc (&current_target,
2711 TARGET_OBJECT_THREADS, NULL);
2712
2713 struct cleanup *back_to = make_cleanup (xfree, xml);
2714
2715 if (xml && *xml)
2716 {
2717 struct threads_parsing_context context;
2718
2719 context.items = NULL;
2720 make_cleanup (clear_threads_parsing_context, &context);
2721
2722 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2723 threads_elements, xml, &context) == 0)
2724 {
2725 int i;
2726 struct thread_item *item;
2727
2728 for (i = 0;
2729 VEC_iterate (thread_item_t, context.items, i, item);
2730 ++i)
2731 {
2732 if (!ptid_equal (item->ptid, null_ptid))
2733 {
2734 struct private_thread_info *info;
2735 /* In non-stop mode, we assume new found threads
2736 are running until proven otherwise with a
2737 stop reply. In all-stop, we can only get
2738 here if all threads are stopped. */
2739 int running = non_stop ? 1 : 0;
2740
2741 remote_notice_new_inferior (item->ptid, running);
2742
2743 info = demand_private_info (item->ptid);
2744 info->core = item->core;
2745 info->extra = item->extra;
2746 item->extra = NULL;
2747 }
2748 }
2749 }
2750 }
2751
2752 do_cleanups (back_to);
2753 return;
2754 }
2755 #endif
2756
2757 if (use_threadinfo_query)
2758 {
2759 putpkt ("qfThreadInfo");
2760 getpkt (&rs->buf, &rs->buf_size, 0);
2761 bufp = rs->buf;
2762 if (bufp[0] != '\0') /* q packet recognized */
2763 {
2764 struct cleanup *old_chain;
2765 char *saved_reply;
2766
2767 /* remote_notice_new_inferior (in the loop below) may make
2768 new RSP calls, which clobber rs->buf. Work with a
2769 copy. */
2770 bufp = saved_reply = xstrdup (rs->buf);
2771 old_chain = make_cleanup (free_current_contents, &saved_reply);
2772
2773 while (*bufp++ == 'm') /* reply contains one or more TID */
2774 {
2775 do
2776 {
2777 new_thread = read_ptid (bufp, &bufp);
2778 if (!ptid_equal (new_thread, null_ptid))
2779 {
2780 /* In non-stop mode, we assume new found threads
2781 are running until proven otherwise with a
2782 stop reply. In all-stop, we can only get
2783 here if all threads are stopped. */
2784 int running = non_stop ? 1 : 0;
2785
2786 remote_notice_new_inferior (new_thread, running);
2787 }
2788 }
2789 while (*bufp++ == ','); /* comma-separated list */
2790 free_current_contents (&saved_reply);
2791 putpkt ("qsThreadInfo");
2792 getpkt (&rs->buf, &rs->buf_size, 0);
2793 bufp = saved_reply = xstrdup (rs->buf);
2794 }
2795 do_cleanups (old_chain);
2796 return; /* done */
2797 }
2798 }
2799
2800 /* Only qfThreadInfo is supported in non-stop mode. */
2801 if (non_stop)
2802 return;
2803
2804 /* Else fall back to old method based on jmetzler protocol. */
2805 use_threadinfo_query = 0;
2806 remote_find_new_threads ();
2807 return;
2808 }
2809
2810 /*
2811 * Collect a descriptive string about the given thread.
2812 * The target may say anything it wants to about the thread
2813 * (typically info about its blocked / runnable state, name, etc.).
2814 * This string will appear in the info threads display.
2815 *
2816 * Optional: targets are not required to implement this function.
2817 */
2818
2819 static char *
2820 remote_threads_extra_info (struct thread_info *tp)
2821 {
2822 struct remote_state *rs = get_remote_state ();
2823 int result;
2824 int set;
2825 threadref id;
2826 struct gdb_ext_thread_info threadinfo;
2827 static char display_buf[100]; /* arbitrary... */
2828 int n = 0; /* position in display_buf */
2829
2830 if (remote_desc == 0) /* paranoia */
2831 internal_error (__FILE__, __LINE__,
2832 _("remote_threads_extra_info"));
2833
2834 if (ptid_equal (tp->ptid, magic_null_ptid)
2835 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2836 /* This is the main thread which was added by GDB. The remote
2837 server doesn't know about it. */
2838 return NULL;
2839
2840 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2841 {
2842 struct thread_info *info = find_thread_ptid (tp->ptid);
2843
2844 if (info && info->private)
2845 return info->private->extra;
2846 else
2847 return NULL;
2848 }
2849
2850 if (use_threadextra_query)
2851 {
2852 char *b = rs->buf;
2853 char *endb = rs->buf + get_remote_packet_size ();
2854
2855 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2856 b += strlen (b);
2857 write_ptid (b, endb, tp->ptid);
2858
2859 putpkt (rs->buf);
2860 getpkt (&rs->buf, &rs->buf_size, 0);
2861 if (rs->buf[0] != 0)
2862 {
2863 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2864 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2865 display_buf [result] = '\0';
2866 return display_buf;
2867 }
2868 }
2869
2870 /* If the above query fails, fall back to the old method. */
2871 use_threadextra_query = 0;
2872 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2873 | TAG_MOREDISPLAY | TAG_DISPLAY;
2874 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2875 if (remote_get_threadinfo (&id, set, &threadinfo))
2876 if (threadinfo.active)
2877 {
2878 if (*threadinfo.shortname)
2879 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2880 " Name: %s,", threadinfo.shortname);
2881 if (*threadinfo.display)
2882 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2883 " State: %s,", threadinfo.display);
2884 if (*threadinfo.more_display)
2885 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2886 " Priority: %s", threadinfo.more_display);
2887
2888 if (n > 0)
2889 {
2890 /* For purely cosmetic reasons, clear up trailing commas. */
2891 if (',' == display_buf[n-1])
2892 display_buf[n-1] = ' ';
2893 return display_buf;
2894 }
2895 }
2896 return NULL;
2897 }
2898 \f
2899
2900 static int
2901 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2902 struct static_tracepoint_marker *marker)
2903 {
2904 struct remote_state *rs = get_remote_state ();
2905 char *p = rs->buf;
2906
2907 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2908 p += strlen (p);
2909 p += hexnumstr (p, addr);
2910 putpkt (rs->buf);
2911 getpkt (&rs->buf, &rs->buf_size, 0);
2912 p = rs->buf;
2913
2914 if (*p == 'E')
2915 error (_("Remote failure reply: %s"), p);
2916
2917 if (*p++ == 'm')
2918 {
2919 parse_static_tracepoint_marker_definition (p, &p, marker);
2920 return 1;
2921 }
2922
2923 return 0;
2924 }
2925
2926 static VEC(static_tracepoint_marker_p) *
2927 remote_static_tracepoint_markers_by_strid (const char *strid)
2928 {
2929 struct remote_state *rs = get_remote_state ();
2930 VEC(static_tracepoint_marker_p) *markers = NULL;
2931 struct static_tracepoint_marker *marker = NULL;
2932 struct cleanup *old_chain;
2933 char *p;
2934
2935 /* Ask for a first packet of static tracepoint marker
2936 definition. */
2937 putpkt ("qTfSTM");
2938 getpkt (&rs->buf, &rs->buf_size, 0);
2939 p = rs->buf;
2940 if (*p == 'E')
2941 error (_("Remote failure reply: %s"), p);
2942
2943 old_chain = make_cleanup (free_current_marker, &marker);
2944
2945 while (*p++ == 'm')
2946 {
2947 if (marker == NULL)
2948 marker = XCNEW (struct static_tracepoint_marker);
2949
2950 do
2951 {
2952 parse_static_tracepoint_marker_definition (p, &p, marker);
2953
2954 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2955 {
2956 VEC_safe_push (static_tracepoint_marker_p,
2957 markers, marker);
2958 marker = NULL;
2959 }
2960 else
2961 {
2962 release_static_tracepoint_marker (marker);
2963 memset (marker, 0, sizeof (*marker));
2964 }
2965 }
2966 while (*p++ == ','); /* comma-separated list */
2967 /* Ask for another packet of static tracepoint definition. */
2968 putpkt ("qTsSTM");
2969 getpkt (&rs->buf, &rs->buf_size, 0);
2970 p = rs->buf;
2971 }
2972
2973 do_cleanups (old_chain);
2974 return markers;
2975 }
2976
2977 \f
2978 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2979
2980 static ptid_t
2981 remote_get_ada_task_ptid (long lwp, long thread)
2982 {
2983 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2984 }
2985 \f
2986
2987 /* Restart the remote side; this is an extended protocol operation. */
2988
2989 static void
2990 extended_remote_restart (void)
2991 {
2992 struct remote_state *rs = get_remote_state ();
2993
2994 /* Send the restart command; for reasons I don't understand the
2995 remote side really expects a number after the "R". */
2996 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2997 putpkt (rs->buf);
2998
2999 remote_fileio_reset ();
3000 }
3001 \f
3002 /* Clean up connection to a remote debugger. */
3003
3004 static void
3005 remote_close (void)
3006 {
3007 if (remote_desc == NULL)
3008 return; /* already closed */
3009
3010 /* Make sure we leave stdin registered in the event loop, and we
3011 don't leave the async SIGINT signal handler installed. */
3012 remote_terminal_ours ();
3013
3014 serial_close (remote_desc);
3015 remote_desc = NULL;
3016
3017 /* We don't have a connection to the remote stub anymore. Get rid
3018 of all the inferiors and their threads we were controlling.
3019 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3020 will be unable to find the thread corresponding to (pid, 0, 0). */
3021 inferior_ptid = null_ptid;
3022 discard_all_inferiors ();
3023
3024 /* Stop replies may from inferiors which are still unknown to GDB.
3025 We are closing the remote target, so we should discard
3026 everything, including the stop replies from GDB-unknown
3027 inferiors. */
3028 discard_pending_stop_replies (NULL);
3029
3030 if (remote_async_inferior_event_token)
3031 delete_async_event_handler (&remote_async_inferior_event_token);
3032
3033 remote_notif_unregister_async_event_handler ();
3034 }
3035
3036 /* Query the remote side for the text, data and bss offsets. */
3037
3038 static void
3039 get_offsets (void)
3040 {
3041 struct remote_state *rs = get_remote_state ();
3042 char *buf;
3043 char *ptr;
3044 int lose, num_segments = 0, do_sections, do_segments;
3045 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3046 struct section_offsets *offs;
3047 struct symfile_segment_data *data;
3048
3049 if (symfile_objfile == NULL)
3050 return;
3051
3052 putpkt ("qOffsets");
3053 getpkt (&rs->buf, &rs->buf_size, 0);
3054 buf = rs->buf;
3055
3056 if (buf[0] == '\000')
3057 return; /* Return silently. Stub doesn't support
3058 this command. */
3059 if (buf[0] == 'E')
3060 {
3061 warning (_("Remote failure reply: %s"), buf);
3062 return;
3063 }
3064
3065 /* Pick up each field in turn. This used to be done with scanf, but
3066 scanf will make trouble if CORE_ADDR size doesn't match
3067 conversion directives correctly. The following code will work
3068 with any size of CORE_ADDR. */
3069 text_addr = data_addr = bss_addr = 0;
3070 ptr = buf;
3071 lose = 0;
3072
3073 if (strncmp (ptr, "Text=", 5) == 0)
3074 {
3075 ptr += 5;
3076 /* Don't use strtol, could lose on big values. */
3077 while (*ptr && *ptr != ';')
3078 text_addr = (text_addr << 4) + fromhex (*ptr++);
3079
3080 if (strncmp (ptr, ";Data=", 6) == 0)
3081 {
3082 ptr += 6;
3083 while (*ptr && *ptr != ';')
3084 data_addr = (data_addr << 4) + fromhex (*ptr++);
3085 }
3086 else
3087 lose = 1;
3088
3089 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3090 {
3091 ptr += 5;
3092 while (*ptr && *ptr != ';')
3093 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3094
3095 if (bss_addr != data_addr)
3096 warning (_("Target reported unsupported offsets: %s"), buf);
3097 }
3098 else
3099 lose = 1;
3100 }
3101 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3102 {
3103 ptr += 8;
3104 /* Don't use strtol, could lose on big values. */
3105 while (*ptr && *ptr != ';')
3106 text_addr = (text_addr << 4) + fromhex (*ptr++);
3107 num_segments = 1;
3108
3109 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3110 {
3111 ptr += 9;
3112 while (*ptr && *ptr != ';')
3113 data_addr = (data_addr << 4) + fromhex (*ptr++);
3114 num_segments++;
3115 }
3116 }
3117 else
3118 lose = 1;
3119
3120 if (lose)
3121 error (_("Malformed response to offset query, %s"), buf);
3122 else if (*ptr != '\0')
3123 warning (_("Target reported unsupported offsets: %s"), buf);
3124
3125 offs = ((struct section_offsets *)
3126 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3127 memcpy (offs, symfile_objfile->section_offsets,
3128 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3129
3130 data = get_symfile_segment_data (symfile_objfile->obfd);
3131 do_segments = (data != NULL);
3132 do_sections = num_segments == 0;
3133
3134 if (num_segments > 0)
3135 {
3136 segments[0] = text_addr;
3137 segments[1] = data_addr;
3138 }
3139 /* If we have two segments, we can still try to relocate everything
3140 by assuming that the .text and .data offsets apply to the whole
3141 text and data segments. Convert the offsets given in the packet
3142 to base addresses for symfile_map_offsets_to_segments. */
3143 else if (data && data->num_segments == 2)
3144 {
3145 segments[0] = data->segment_bases[0] + text_addr;
3146 segments[1] = data->segment_bases[1] + data_addr;
3147 num_segments = 2;
3148 }
3149 /* If the object file has only one segment, assume that it is text
3150 rather than data; main programs with no writable data are rare,
3151 but programs with no code are useless. Of course the code might
3152 have ended up in the data segment... to detect that we would need
3153 the permissions here. */
3154 else if (data && data->num_segments == 1)
3155 {
3156 segments[0] = data->segment_bases[0] + text_addr;
3157 num_segments = 1;
3158 }
3159 /* There's no way to relocate by segment. */
3160 else
3161 do_segments = 0;
3162
3163 if (do_segments)
3164 {
3165 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3166 offs, num_segments, segments);
3167
3168 if (ret == 0 && !do_sections)
3169 error (_("Can not handle qOffsets TextSeg "
3170 "response with this symbol file"));
3171
3172 if (ret > 0)
3173 do_sections = 0;
3174 }
3175
3176 if (data)
3177 free_symfile_segment_data (data);
3178
3179 if (do_sections)
3180 {
3181 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3182
3183 /* This is a temporary kludge to force data and bss to use the
3184 same offsets because that's what nlmconv does now. The real
3185 solution requires changes to the stub and remote.c that I
3186 don't have time to do right now. */
3187
3188 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3189 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3190 }
3191
3192 objfile_relocate (symfile_objfile, offs);
3193 }
3194
3195 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3196 threads we know are stopped already. This is used during the
3197 initial remote connection in non-stop mode --- threads that are
3198 reported as already being stopped are left stopped. */
3199
3200 static int
3201 set_stop_requested_callback (struct thread_info *thread, void *data)
3202 {
3203 /* If we have a stop reply for this thread, it must be stopped. */
3204 if (peek_stop_reply (thread->ptid))
3205 set_stop_requested (thread->ptid, 1);
3206
3207 return 0;
3208 }
3209
3210 /* Send interrupt_sequence to remote target. */
3211 static void
3212 send_interrupt_sequence (void)
3213 {
3214 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3215 remote_serial_write ("\x03", 1);
3216 else if (interrupt_sequence_mode == interrupt_sequence_break)
3217 serial_send_break (remote_desc);
3218 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3219 {
3220 serial_send_break (remote_desc);
3221 remote_serial_write ("g", 1);
3222 }
3223 else
3224 internal_error (__FILE__, __LINE__,
3225 _("Invalid value for interrupt_sequence_mode: %s."),
3226 interrupt_sequence_mode);
3227 }
3228
3229
3230 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3231 and extract the PTID. Returns NULL_PTID if not found. */
3232
3233 static ptid_t
3234 stop_reply_extract_thread (char *stop_reply)
3235 {
3236 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3237 {
3238 char *p;
3239
3240 /* Txx r:val ; r:val (...) */
3241 p = &stop_reply[3];
3242
3243 /* Look for "register" named "thread". */
3244 while (*p != '\0')
3245 {
3246 char *p1;
3247
3248 p1 = strchr (p, ':');
3249 if (p1 == NULL)
3250 return null_ptid;
3251
3252 if (strncmp (p, "thread", p1 - p) == 0)
3253 return read_ptid (++p1, &p);
3254
3255 p1 = strchr (p, ';');
3256 if (p1 == NULL)
3257 return null_ptid;
3258 p1++;
3259
3260 p = p1;
3261 }
3262 }
3263
3264 return null_ptid;
3265 }
3266
3267 /* Query the remote target for which is the current thread/process,
3268 add it to our tables, and update INFERIOR_PTID. The caller is
3269 responsible for setting the state such that the remote end is ready
3270 to return the current thread.
3271
3272 This function is called after handling the '?' or 'vRun' packets,
3273 whose response is a stop reply from which we can also try
3274 extracting the thread. If the target doesn't support the explicit
3275 qC query, we infer the current thread from that stop reply, passed
3276 in in WAIT_STATUS, which may be NULL. */
3277
3278 static void
3279 add_current_inferior_and_thread (char *wait_status)
3280 {
3281 struct remote_state *rs = get_remote_state ();
3282 int fake_pid_p = 0;
3283 ptid_t ptid = null_ptid;
3284
3285 inferior_ptid = null_ptid;
3286
3287 /* Now, if we have thread information, update inferior_ptid. First
3288 if we have a stop reply handy, maybe it's a T stop reply with a
3289 "thread" register we can extract the current thread from. If
3290 not, ask the remote which is the current thread, with qC. The
3291 former method avoids a roundtrip. Note we don't use
3292 remote_parse_stop_reply as that makes use of the target
3293 architecture, which we haven't yet fully determined at this
3294 point. */
3295 if (wait_status != NULL)
3296 ptid = stop_reply_extract_thread (wait_status);
3297 if (ptid_equal (ptid, null_ptid))
3298 ptid = remote_current_thread (inferior_ptid);
3299
3300 if (!ptid_equal (ptid, null_ptid))
3301 {
3302 if (!remote_multi_process_p (rs))
3303 fake_pid_p = 1;
3304
3305 inferior_ptid = ptid;
3306 }
3307 else
3308 {
3309 /* Without this, some commands which require an active target
3310 (such as kill) won't work. This variable serves (at least)
3311 double duty as both the pid of the target process (if it has
3312 such), and as a flag indicating that a target is active. */
3313 inferior_ptid = magic_null_ptid;
3314 fake_pid_p = 1;
3315 }
3316
3317 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3318
3319 /* Add the main thread. */
3320 add_thread_silent (inferior_ptid);
3321 }
3322
3323 static void
3324 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3325 {
3326 struct remote_state *rs = get_remote_state ();
3327 struct packet_config *noack_config;
3328 char *wait_status = NULL;
3329
3330 immediate_quit++; /* Allow user to interrupt it. */
3331 QUIT;
3332
3333 if (interrupt_on_connect)
3334 send_interrupt_sequence ();
3335
3336 /* Ack any packet which the remote side has already sent. */
3337 serial_write (remote_desc, "+", 1);
3338
3339 /* Signal other parts that we're going through the initial setup,
3340 and so things may not be stable yet. */
3341 rs->starting_up = 1;
3342
3343 /* The first packet we send to the target is the optional "supported
3344 packets" request. If the target can answer this, it will tell us
3345 which later probes to skip. */
3346 remote_query_supported ();
3347
3348 /* If the stub wants to get a QAllow, compose one and send it. */
3349 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3350 remote_set_permissions ();
3351
3352 /* Next, we possibly activate noack mode.
3353
3354 If the QStartNoAckMode packet configuration is set to AUTO,
3355 enable noack mode if the stub reported a wish for it with
3356 qSupported.
3357
3358 If set to TRUE, then enable noack mode even if the stub didn't
3359 report it in qSupported. If the stub doesn't reply OK, the
3360 session ends with an error.
3361
3362 If FALSE, then don't activate noack mode, regardless of what the
3363 stub claimed should be the default with qSupported. */
3364
3365 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3366
3367 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3368 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3369 && noack_config->support == PACKET_ENABLE))
3370 {
3371 putpkt ("QStartNoAckMode");
3372 getpkt (&rs->buf, &rs->buf_size, 0);
3373 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3374 rs->noack_mode = 1;
3375 }
3376
3377 if (extended_p)
3378 {
3379 /* Tell the remote that we are using the extended protocol. */
3380 putpkt ("!");
3381 getpkt (&rs->buf, &rs->buf_size, 0);
3382 }
3383
3384 /* Let the target know which signals it is allowed to pass down to
3385 the program. */
3386 update_signals_program_target ();
3387
3388 /* Next, if the target can specify a description, read it. We do
3389 this before anything involving memory or registers. */
3390 target_find_description ();
3391
3392 /* Next, now that we know something about the target, update the
3393 address spaces in the program spaces. */
3394 update_address_spaces ();
3395
3396 /* On OSs where the list of libraries is global to all
3397 processes, we fetch them early. */
3398 if (gdbarch_has_global_solist (target_gdbarch ()))
3399 solib_add (NULL, from_tty, target, auto_solib_add);
3400
3401 if (non_stop)
3402 {
3403 if (!rs->non_stop_aware)
3404 error (_("Non-stop mode requested, but remote "
3405 "does not support non-stop"));
3406
3407 putpkt ("QNonStop:1");
3408 getpkt (&rs->buf, &rs->buf_size, 0);
3409
3410 if (strcmp (rs->buf, "OK") != 0)
3411 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3412
3413 /* Find about threads and processes the stub is already
3414 controlling. We default to adding them in the running state.
3415 The '?' query below will then tell us about which threads are
3416 stopped. */
3417 remote_threads_info (target);
3418 }
3419 else if (rs->non_stop_aware)
3420 {
3421 /* Don't assume that the stub can operate in all-stop mode.
3422 Request it explicitly. */
3423 putpkt ("QNonStop:0");
3424 getpkt (&rs->buf, &rs->buf_size, 0);
3425
3426 if (strcmp (rs->buf, "OK") != 0)
3427 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3428 }
3429
3430 /* Check whether the target is running now. */
3431 putpkt ("?");
3432 getpkt (&rs->buf, &rs->buf_size, 0);
3433
3434 if (!non_stop)
3435 {
3436 ptid_t ptid;
3437 int fake_pid_p = 0;
3438 struct inferior *inf;
3439
3440 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3441 {
3442 if (!extended_p)
3443 error (_("The target is not running (try extended-remote?)"));
3444
3445 /* We're connected, but not running. Drop out before we
3446 call start_remote. */
3447 rs->starting_up = 0;
3448 return;
3449 }
3450 else
3451 {
3452 /* Save the reply for later. */
3453 wait_status = alloca (strlen (rs->buf) + 1);
3454 strcpy (wait_status, rs->buf);
3455 }
3456
3457 /* Let the stub know that we want it to return the thread. */
3458 set_continue_thread (minus_one_ptid);
3459
3460 add_current_inferior_and_thread (wait_status);
3461
3462 /* init_wait_for_inferior should be called before get_offsets in order
3463 to manage `inserted' flag in bp loc in a correct state.
3464 breakpoint_init_inferior, called from init_wait_for_inferior, set
3465 `inserted' flag to 0, while before breakpoint_re_set, called from
3466 start_remote, set `inserted' flag to 1. In the initialization of
3467 inferior, breakpoint_init_inferior should be called first, and then
3468 breakpoint_re_set can be called. If this order is broken, state of
3469 `inserted' flag is wrong, and cause some problems on breakpoint
3470 manipulation. */
3471 init_wait_for_inferior ();
3472
3473 get_offsets (); /* Get text, data & bss offsets. */
3474
3475 /* If we could not find a description using qXfer, and we know
3476 how to do it some other way, try again. This is not
3477 supported for non-stop; it could be, but it is tricky if
3478 there are no stopped threads when we connect. */
3479 if (remote_read_description_p (target)
3480 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3481 {
3482 target_clear_description ();
3483 target_find_description ();
3484 }
3485
3486 /* Use the previously fetched status. */
3487 gdb_assert (wait_status != NULL);
3488 strcpy (rs->buf, wait_status);
3489 rs->cached_wait_status = 1;
3490
3491 immediate_quit--;
3492 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3493 }
3494 else
3495 {
3496 /* Clear WFI global state. Do this before finding about new
3497 threads and inferiors, and setting the current inferior.
3498 Otherwise we would clear the proceed status of the current
3499 inferior when we want its stop_soon state to be preserved
3500 (see notice_new_inferior). */
3501 init_wait_for_inferior ();
3502
3503 /* In non-stop, we will either get an "OK", meaning that there
3504 are no stopped threads at this time; or, a regular stop
3505 reply. In the latter case, there may be more than one thread
3506 stopped --- we pull them all out using the vStopped
3507 mechanism. */
3508 if (strcmp (rs->buf, "OK") != 0)
3509 {
3510 struct notif_client *notif = &notif_client_stop;
3511
3512 /* remote_notif_get_pending_replies acks this one, and gets
3513 the rest out. */
3514 notif_client_stop.pending_event
3515 = remote_notif_parse (notif, rs->buf);
3516 remote_notif_get_pending_events (notif);
3517
3518 /* Make sure that threads that were stopped remain
3519 stopped. */
3520 iterate_over_threads (set_stop_requested_callback, NULL);
3521 }
3522
3523 if (target_can_async_p ())
3524 target_async (inferior_event_handler, 0);
3525
3526 if (thread_count () == 0)
3527 {
3528 if (!extended_p)
3529 error (_("The target is not running (try extended-remote?)"));
3530
3531 /* We're connected, but not running. Drop out before we
3532 call start_remote. */
3533 rs->starting_up = 0;
3534 return;
3535 }
3536
3537 /* Let the stub know that we want it to return the thread. */
3538
3539 /* Force the stub to choose a thread. */
3540 set_general_thread (null_ptid);
3541
3542 /* Query it. */
3543 inferior_ptid = remote_current_thread (minus_one_ptid);
3544 if (ptid_equal (inferior_ptid, minus_one_ptid))
3545 error (_("remote didn't report the current thread in non-stop mode"));
3546
3547 get_offsets (); /* Get text, data & bss offsets. */
3548
3549 /* In non-stop mode, any cached wait status will be stored in
3550 the stop reply queue. */
3551 gdb_assert (wait_status == NULL);
3552
3553 /* Report all signals during attach/startup. */
3554 remote_pass_signals (0, NULL);
3555 }
3556
3557 /* If we connected to a live target, do some additional setup. */
3558 if (target_has_execution)
3559 {
3560 if (exec_bfd) /* No use without an exec file. */
3561 remote_check_symbols (symfile_objfile);
3562 }
3563
3564 /* Possibly the target has been engaged in a trace run started
3565 previously; find out where things are at. */
3566 if (remote_get_trace_status (current_trace_status ()) != -1)
3567 {
3568 struct uploaded_tp *uploaded_tps = NULL;
3569 struct uploaded_tsv *uploaded_tsvs = NULL;
3570
3571 if (current_trace_status ()->running)
3572 printf_filtered (_("Trace is already running on the target.\n"));
3573
3574 /* Get trace state variables first, they may be checked when
3575 parsing uploaded commands. */
3576
3577 remote_upload_trace_state_variables (&uploaded_tsvs);
3578
3579 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3580
3581 remote_upload_tracepoints (&uploaded_tps);
3582
3583 merge_uploaded_tracepoints (&uploaded_tps);
3584 }
3585
3586 /* The thread and inferior lists are now synchronized with the
3587 target, our symbols have been relocated, and we're merged the
3588 target's tracepoints with ours. We're done with basic start
3589 up. */
3590 rs->starting_up = 0;
3591
3592 /* If breakpoints are global, insert them now. */
3593 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3594 && breakpoints_always_inserted_mode ())
3595 insert_breakpoints ();
3596 }
3597
3598 /* Open a connection to a remote debugger.
3599 NAME is the filename used for communication. */
3600
3601 static void
3602 remote_open (char *name, int from_tty)
3603 {
3604 remote_open_1 (name, from_tty, &remote_ops, 0);
3605 }
3606
3607 /* Open a connection to a remote debugger using the extended
3608 remote gdb protocol. NAME is the filename used for communication. */
3609
3610 static void
3611 extended_remote_open (char *name, int from_tty)
3612 {
3613 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3614 }
3615
3616 /* Generic code for opening a connection to a remote target. */
3617
3618 static void
3619 init_all_packet_configs (void)
3620 {
3621 int i;
3622
3623 for (i = 0; i < PACKET_MAX; i++)
3624 update_packet_config (&remote_protocol_packets[i]);
3625 }
3626
3627 /* Symbol look-up. */
3628
3629 static void
3630 remote_check_symbols (struct objfile *objfile)
3631 {
3632 struct remote_state *rs = get_remote_state ();
3633 char *msg, *reply, *tmp;
3634 struct minimal_symbol *sym;
3635 int end;
3636
3637 /* The remote side has no concept of inferiors that aren't running
3638 yet, it only knows about running processes. If we're connected
3639 but our current inferior is not running, we should not invite the
3640 remote target to request symbol lookups related to its
3641 (unrelated) current process. */
3642 if (!target_has_execution)
3643 return;
3644
3645 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3646 return;
3647
3648 /* Make sure the remote is pointing at the right process. Note
3649 there's no way to select "no process". */
3650 set_general_process ();
3651
3652 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3653 because we need both at the same time. */
3654 msg = alloca (get_remote_packet_size ());
3655
3656 /* Invite target to request symbol lookups. */
3657
3658 putpkt ("qSymbol::");
3659 getpkt (&rs->buf, &rs->buf_size, 0);
3660 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3661 reply = rs->buf;
3662
3663 while (strncmp (reply, "qSymbol:", 8) == 0)
3664 {
3665 tmp = &reply[8];
3666 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3667 msg[end] = '\0';
3668 sym = lookup_minimal_symbol (msg, NULL, NULL);
3669 if (sym == NULL)
3670 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3671 else
3672 {
3673 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3674 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3675
3676 /* If this is a function address, return the start of code
3677 instead of any data function descriptor. */
3678 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3679 sym_addr,
3680 &current_target);
3681
3682 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3683 phex_nz (sym_addr, addr_size), &reply[8]);
3684 }
3685
3686 putpkt (msg);
3687 getpkt (&rs->buf, &rs->buf_size, 0);
3688 reply = rs->buf;
3689 }
3690 }
3691
3692 static struct serial *
3693 remote_serial_open (char *name)
3694 {
3695 static int udp_warning = 0;
3696
3697 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3698 of in ser-tcp.c, because it is the remote protocol assuming that the
3699 serial connection is reliable and not the serial connection promising
3700 to be. */
3701 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3702 {
3703 warning (_("The remote protocol may be unreliable over UDP.\n"
3704 "Some events may be lost, rendering further debugging "
3705 "impossible."));
3706 udp_warning = 1;
3707 }
3708
3709 return serial_open (name);
3710 }
3711
3712 /* Inform the target of our permission settings. The permission flags
3713 work without this, but if the target knows the settings, it can do
3714 a couple things. First, it can add its own check, to catch cases
3715 that somehow manage to get by the permissions checks in target
3716 methods. Second, if the target is wired to disallow particular
3717 settings (for instance, a system in the field that is not set up to
3718 be able to stop at a breakpoint), it can object to any unavailable
3719 permissions. */
3720
3721 void
3722 remote_set_permissions (void)
3723 {
3724 struct remote_state *rs = get_remote_state ();
3725
3726 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3727 "WriteReg:%x;WriteMem:%x;"
3728 "InsertBreak:%x;InsertTrace:%x;"
3729 "InsertFastTrace:%x;Stop:%x",
3730 may_write_registers, may_write_memory,
3731 may_insert_breakpoints, may_insert_tracepoints,
3732 may_insert_fast_tracepoints, may_stop);
3733 putpkt (rs->buf);
3734 getpkt (&rs->buf, &rs->buf_size, 0);
3735
3736 /* If the target didn't like the packet, warn the user. Do not try
3737 to undo the user's settings, that would just be maddening. */
3738 if (strcmp (rs->buf, "OK") != 0)
3739 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3740 }
3741
3742 /* This type describes each known response to the qSupported
3743 packet. */
3744 struct protocol_feature
3745 {
3746 /* The name of this protocol feature. */
3747 const char *name;
3748
3749 /* The default for this protocol feature. */
3750 enum packet_support default_support;
3751
3752 /* The function to call when this feature is reported, or after
3753 qSupported processing if the feature is not supported.
3754 The first argument points to this structure. The second
3755 argument indicates whether the packet requested support be
3756 enabled, disabled, or probed (or the default, if this function
3757 is being called at the end of processing and this feature was
3758 not reported). The third argument may be NULL; if not NULL, it
3759 is a NUL-terminated string taken from the packet following
3760 this feature's name and an equals sign. */
3761 void (*func) (const struct protocol_feature *, enum packet_support,
3762 const char *);
3763
3764 /* The corresponding packet for this feature. Only used if
3765 FUNC is remote_supported_packet. */
3766 int packet;
3767 };
3768
3769 static void
3770 remote_supported_packet (const struct protocol_feature *feature,
3771 enum packet_support support,
3772 const char *argument)
3773 {
3774 if (argument)
3775 {
3776 warning (_("Remote qSupported response supplied an unexpected value for"
3777 " \"%s\"."), feature->name);
3778 return;
3779 }
3780
3781 if (remote_protocol_packets[feature->packet].support
3782 == PACKET_SUPPORT_UNKNOWN)
3783 remote_protocol_packets[feature->packet].support = support;
3784 }
3785
3786 static void
3787 remote_packet_size (const struct protocol_feature *feature,
3788 enum packet_support support, const char *value)
3789 {
3790 struct remote_state *rs = get_remote_state ();
3791
3792 int packet_size;
3793 char *value_end;
3794
3795 if (support != PACKET_ENABLE)
3796 return;
3797
3798 if (value == NULL || *value == '\0')
3799 {
3800 warning (_("Remote target reported \"%s\" without a size."),
3801 feature->name);
3802 return;
3803 }
3804
3805 errno = 0;
3806 packet_size = strtol (value, &value_end, 16);
3807 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3808 {
3809 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3810 feature->name, value);
3811 return;
3812 }
3813
3814 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3815 {
3816 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3817 packet_size, MAX_REMOTE_PACKET_SIZE);
3818 packet_size = MAX_REMOTE_PACKET_SIZE;
3819 }
3820
3821 /* Record the new maximum packet size. */
3822 rs->explicit_packet_size = packet_size;
3823 }
3824
3825 static void
3826 remote_multi_process_feature (const struct protocol_feature *feature,
3827 enum packet_support support, const char *value)
3828 {
3829 struct remote_state *rs = get_remote_state ();
3830
3831 rs->multi_process_aware = (support == PACKET_ENABLE);
3832 }
3833
3834 static void
3835 remote_non_stop_feature (const struct protocol_feature *feature,
3836 enum packet_support support, const char *value)
3837 {
3838 struct remote_state *rs = get_remote_state ();
3839
3840 rs->non_stop_aware = (support == PACKET_ENABLE);
3841 }
3842
3843 static void
3844 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3845 enum packet_support support,
3846 const char *value)
3847 {
3848 struct remote_state *rs = get_remote_state ();
3849
3850 rs->cond_tracepoints = (support == PACKET_ENABLE);
3851 }
3852
3853 static void
3854 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3855 enum packet_support support,
3856 const char *value)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859
3860 rs->cond_breakpoints = (support == PACKET_ENABLE);
3861 }
3862
3863 static void
3864 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3865 enum packet_support support,
3866 const char *value)
3867 {
3868 struct remote_state *rs = get_remote_state ();
3869
3870 rs->breakpoint_commands = (support == PACKET_ENABLE);
3871 }
3872
3873 static void
3874 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3875 enum packet_support support,
3876 const char *value)
3877 {
3878 struct remote_state *rs = get_remote_state ();
3879
3880 rs->fast_tracepoints = (support == PACKET_ENABLE);
3881 }
3882
3883 static void
3884 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3885 enum packet_support support,
3886 const char *value)
3887 {
3888 struct remote_state *rs = get_remote_state ();
3889
3890 rs->static_tracepoints = (support == PACKET_ENABLE);
3891 }
3892
3893 static void
3894 remote_install_in_trace_feature (const struct protocol_feature *feature,
3895 enum packet_support support,
3896 const char *value)
3897 {
3898 struct remote_state *rs = get_remote_state ();
3899
3900 rs->install_in_trace = (support == PACKET_ENABLE);
3901 }
3902
3903 static void
3904 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3905 enum packet_support support,
3906 const char *value)
3907 {
3908 struct remote_state *rs = get_remote_state ();
3909
3910 rs->disconnected_tracing = (support == PACKET_ENABLE);
3911 }
3912
3913 static void
3914 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3915 enum packet_support support,
3916 const char *value)
3917 {
3918 struct remote_state *rs = get_remote_state ();
3919
3920 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3921 }
3922
3923 static void
3924 remote_string_tracing_feature (const struct protocol_feature *feature,
3925 enum packet_support support,
3926 const char *value)
3927 {
3928 struct remote_state *rs = get_remote_state ();
3929
3930 rs->string_tracing = (support == PACKET_ENABLE);
3931 }
3932
3933 static struct protocol_feature remote_protocol_features[] = {
3934 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3935 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3936 PACKET_qXfer_auxv },
3937 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3938 PACKET_qXfer_features },
3939 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3940 PACKET_qXfer_libraries },
3941 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3942 PACKET_qXfer_libraries_svr4 },
3943 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3944 PACKET_qXfer_memory_map },
3945 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3946 PACKET_qXfer_spu_read },
3947 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3948 PACKET_qXfer_spu_write },
3949 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3950 PACKET_qXfer_osdata },
3951 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3952 PACKET_qXfer_threads },
3953 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3954 PACKET_qXfer_traceframe_info },
3955 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3956 PACKET_QPassSignals },
3957 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3958 PACKET_QProgramSignals },
3959 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3960 PACKET_QStartNoAckMode },
3961 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3962 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3963 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3964 PACKET_qXfer_siginfo_read },
3965 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3966 PACKET_qXfer_siginfo_write },
3967 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3968 PACKET_ConditionalTracepoints },
3969 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3970 PACKET_ConditionalBreakpoints },
3971 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3972 PACKET_BreakpointCommands },
3973 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3974 PACKET_FastTracepoints },
3975 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3976 PACKET_StaticTracepoints },
3977 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3978 PACKET_InstallInTrace},
3979 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3980 -1 },
3981 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3982 PACKET_bc },
3983 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3984 PACKET_bs },
3985 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3986 PACKET_TracepointSource },
3987 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3988 PACKET_QAllow },
3989 { "EnableDisableTracepoints", PACKET_DISABLE,
3990 remote_enable_disable_tracepoint_feature, -1 },
3991 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3992 PACKET_qXfer_fdpic },
3993 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3994 PACKET_qXfer_uib },
3995 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3996 PACKET_QDisableRandomization },
3997 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3998 { "QTBuffer:size", PACKET_DISABLE,
3999 remote_supported_packet, PACKET_QTBuffer_size},
4000 { "tracenz", PACKET_DISABLE,
4001 remote_string_tracing_feature, -1 },
4002 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4003 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4004 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4005 PACKET_qXfer_btrace }
4006 };
4007
4008 static char *remote_support_xml;
4009
4010 /* Register string appended to "xmlRegisters=" in qSupported query. */
4011
4012 void
4013 register_remote_support_xml (const char *xml)
4014 {
4015 #if defined(HAVE_LIBEXPAT)
4016 if (remote_support_xml == NULL)
4017 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4018 else
4019 {
4020 char *copy = xstrdup (remote_support_xml + 13);
4021 char *p = strtok (copy, ",");
4022
4023 do
4024 {
4025 if (strcmp (p, xml) == 0)
4026 {
4027 /* already there */
4028 xfree (copy);
4029 return;
4030 }
4031 }
4032 while ((p = strtok (NULL, ",")) != NULL);
4033 xfree (copy);
4034
4035 remote_support_xml = reconcat (remote_support_xml,
4036 remote_support_xml, ",", xml,
4037 (char *) NULL);
4038 }
4039 #endif
4040 }
4041
4042 static char *
4043 remote_query_supported_append (char *msg, const char *append)
4044 {
4045 if (msg)
4046 return reconcat (msg, msg, ";", append, (char *) NULL);
4047 else
4048 return xstrdup (append);
4049 }
4050
4051 static void
4052 remote_query_supported (void)
4053 {
4054 struct remote_state *rs = get_remote_state ();
4055 char *next;
4056 int i;
4057 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4058
4059 /* The packet support flags are handled differently for this packet
4060 than for most others. We treat an error, a disabled packet, and
4061 an empty response identically: any features which must be reported
4062 to be used will be automatically disabled. An empty buffer
4063 accomplishes this, since that is also the representation for a list
4064 containing no features. */
4065
4066 rs->buf[0] = 0;
4067 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4068 {
4069 char *q = NULL;
4070 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4071
4072 q = remote_query_supported_append (q, "multiprocess+");
4073
4074 if (remote_support_xml)
4075 q = remote_query_supported_append (q, remote_support_xml);
4076
4077 q = remote_query_supported_append (q, "qRelocInsn+");
4078
4079 q = reconcat (q, "qSupported:", q, (char *) NULL);
4080 putpkt (q);
4081
4082 do_cleanups (old_chain);
4083
4084 getpkt (&rs->buf, &rs->buf_size, 0);
4085
4086 /* If an error occured, warn, but do not return - just reset the
4087 buffer to empty and go on to disable features. */
4088 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4089 == PACKET_ERROR)
4090 {
4091 warning (_("Remote failure reply: %s"), rs->buf);
4092 rs->buf[0] = 0;
4093 }
4094 }
4095
4096 memset (seen, 0, sizeof (seen));
4097
4098 next = rs->buf;
4099 while (*next)
4100 {
4101 enum packet_support is_supported;
4102 char *p, *end, *name_end, *value;
4103
4104 /* First separate out this item from the rest of the packet. If
4105 there's another item after this, we overwrite the separator
4106 (terminated strings are much easier to work with). */
4107 p = next;
4108 end = strchr (p, ';');
4109 if (end == NULL)
4110 {
4111 end = p + strlen (p);
4112 next = end;
4113 }
4114 else
4115 {
4116 *end = '\0';
4117 next = end + 1;
4118
4119 if (end == p)
4120 {
4121 warning (_("empty item in \"qSupported\" response"));
4122 continue;
4123 }
4124 }
4125
4126 name_end = strchr (p, '=');
4127 if (name_end)
4128 {
4129 /* This is a name=value entry. */
4130 is_supported = PACKET_ENABLE;
4131 value = name_end + 1;
4132 *name_end = '\0';
4133 }
4134 else
4135 {
4136 value = NULL;
4137 switch (end[-1])
4138 {
4139 case '+':
4140 is_supported = PACKET_ENABLE;
4141 break;
4142
4143 case '-':
4144 is_supported = PACKET_DISABLE;
4145 break;
4146
4147 case '?':
4148 is_supported = PACKET_SUPPORT_UNKNOWN;
4149 break;
4150
4151 default:
4152 warning (_("unrecognized item \"%s\" "
4153 "in \"qSupported\" response"), p);
4154 continue;
4155 }
4156 end[-1] = '\0';
4157 }
4158
4159 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4160 if (strcmp (remote_protocol_features[i].name, p) == 0)
4161 {
4162 const struct protocol_feature *feature;
4163
4164 seen[i] = 1;
4165 feature = &remote_protocol_features[i];
4166 feature->func (feature, is_supported, value);
4167 break;
4168 }
4169 }
4170
4171 /* If we increased the packet size, make sure to increase the global
4172 buffer size also. We delay this until after parsing the entire
4173 qSupported packet, because this is the same buffer we were
4174 parsing. */
4175 if (rs->buf_size < rs->explicit_packet_size)
4176 {
4177 rs->buf_size = rs->explicit_packet_size;
4178 rs->buf = xrealloc (rs->buf, rs->buf_size);
4179 }
4180
4181 /* Handle the defaults for unmentioned features. */
4182 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4183 if (!seen[i])
4184 {
4185 const struct protocol_feature *feature;
4186
4187 feature = &remote_protocol_features[i];
4188 feature->func (feature, feature->default_support, NULL);
4189 }
4190 }
4191
4192 /* Remove any of the remote.c targets from target stack. Upper targets depend
4193 on it so remove them first. */
4194
4195 static void
4196 remote_unpush_target (void)
4197 {
4198 pop_all_targets_above (process_stratum - 1);
4199 }
4200
4201 static void
4202 remote_open_1 (char *name, int from_tty,
4203 struct target_ops *target, int extended_p)
4204 {
4205 struct remote_state *rs = get_remote_state ();
4206
4207 if (name == 0)
4208 error (_("To open a remote debug connection, you need to specify what\n"
4209 "serial device is attached to the remote system\n"
4210 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4211
4212 /* See FIXME above. */
4213 if (!target_async_permitted)
4214 wait_forever_enabled_p = 1;
4215
4216 /* If we're connected to a running target, target_preopen will kill it.
4217 Ask this question first, before target_preopen has a chance to kill
4218 anything. */
4219 if (remote_desc != NULL && !have_inferiors ())
4220 {
4221 if (from_tty
4222 && !query (_("Already connected to a remote target. Disconnect? ")))
4223 error (_("Still connected."));
4224 }
4225
4226 /* Here the possibly existing remote target gets unpushed. */
4227 target_preopen (from_tty);
4228
4229 /* Make sure we send the passed signals list the next time we resume. */
4230 xfree (last_pass_packet);
4231 last_pass_packet = NULL;
4232
4233 /* Make sure we send the program signals list the next time we
4234 resume. */
4235 xfree (last_program_signals_packet);
4236 last_program_signals_packet = NULL;
4237
4238 remote_fileio_reset ();
4239 reopen_exec_file ();
4240 reread_symbols ();
4241
4242 remote_desc = remote_serial_open (name);
4243 if (!remote_desc)
4244 perror_with_name (name);
4245
4246 if (baud_rate != -1)
4247 {
4248 if (serial_setbaudrate (remote_desc, baud_rate))
4249 {
4250 /* The requested speed could not be set. Error out to
4251 top level after closing remote_desc. Take care to
4252 set remote_desc to NULL to avoid closing remote_desc
4253 more than once. */
4254 serial_close (remote_desc);
4255 remote_desc = NULL;
4256 perror_with_name (name);
4257 }
4258 }
4259
4260 serial_raw (remote_desc);
4261
4262 /* If there is something sitting in the buffer we might take it as a
4263 response to a command, which would be bad. */
4264 serial_flush_input (remote_desc);
4265
4266 if (from_tty)
4267 {
4268 puts_filtered ("Remote debugging using ");
4269 puts_filtered (name);
4270 puts_filtered ("\n");
4271 }
4272 push_target (target); /* Switch to using remote target now. */
4273
4274 /* Register extra event sources in the event loop. */
4275 remote_async_inferior_event_token
4276 = create_async_event_handler (remote_async_inferior_event_handler,
4277 NULL);
4278 remote_notif_register_async_event_handler ();
4279
4280 /* Reset the target state; these things will be queried either by
4281 remote_query_supported or as they are needed. */
4282 init_all_packet_configs ();
4283 rs->cached_wait_status = 0;
4284 rs->explicit_packet_size = 0;
4285 rs->noack_mode = 0;
4286 rs->multi_process_aware = 0;
4287 rs->extended = extended_p;
4288 rs->non_stop_aware = 0;
4289 rs->waiting_for_stop_reply = 0;
4290 rs->ctrlc_pending_p = 0;
4291
4292 general_thread = not_sent_ptid;
4293 continue_thread = not_sent_ptid;
4294 remote_traceframe_number = -1;
4295
4296 /* Probe for ability to use "ThreadInfo" query, as required. */
4297 use_threadinfo_query = 1;
4298 use_threadextra_query = 1;
4299
4300 if (target_async_permitted)
4301 {
4302 /* With this target we start out by owning the terminal. */
4303 remote_async_terminal_ours_p = 1;
4304
4305 /* FIXME: cagney/1999-09-23: During the initial connection it is
4306 assumed that the target is already ready and able to respond to
4307 requests. Unfortunately remote_start_remote() eventually calls
4308 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4309 around this. Eventually a mechanism that allows
4310 wait_for_inferior() to expect/get timeouts will be
4311 implemented. */
4312 wait_forever_enabled_p = 0;
4313 }
4314
4315 /* First delete any symbols previously loaded from shared libraries. */
4316 no_shared_libraries (NULL, 0);
4317
4318 /* Start afresh. */
4319 init_thread_list ();
4320
4321 /* Start the remote connection. If error() or QUIT, discard this
4322 target (we'd otherwise be in an inconsistent state) and then
4323 propogate the error on up the exception chain. This ensures that
4324 the caller doesn't stumble along blindly assuming that the
4325 function succeeded. The CLI doesn't have this problem but other
4326 UI's, such as MI do.
4327
4328 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4329 this function should return an error indication letting the
4330 caller restore the previous state. Unfortunately the command
4331 ``target remote'' is directly wired to this function making that
4332 impossible. On a positive note, the CLI side of this problem has
4333 been fixed - the function set_cmd_context() makes it possible for
4334 all the ``target ....'' commands to share a common callback
4335 function. See cli-dump.c. */
4336 {
4337 volatile struct gdb_exception ex;
4338
4339 TRY_CATCH (ex, RETURN_MASK_ALL)
4340 {
4341 remote_start_remote (from_tty, target, extended_p);
4342 }
4343 if (ex.reason < 0)
4344 {
4345 /* Pop the partially set up target - unless something else did
4346 already before throwing the exception. */
4347 if (remote_desc != NULL)
4348 remote_unpush_target ();
4349 if (target_async_permitted)
4350 wait_forever_enabled_p = 1;
4351 throw_exception (ex);
4352 }
4353 }
4354
4355 if (target_async_permitted)
4356 wait_forever_enabled_p = 1;
4357 }
4358
4359 /* This takes a program previously attached to and detaches it. After
4360 this is done, GDB can be used to debug some other program. We
4361 better not have left any breakpoints in the target program or it'll
4362 die when it hits one. */
4363
4364 static void
4365 remote_detach_1 (char *args, int from_tty, int extended)
4366 {
4367 int pid = ptid_get_pid (inferior_ptid);
4368 struct remote_state *rs = get_remote_state ();
4369
4370 if (args)
4371 error (_("Argument given to \"detach\" when remotely debugging."));
4372
4373 if (!target_has_execution)
4374 error (_("No process to detach from."));
4375
4376 if (from_tty)
4377 {
4378 char *exec_file = get_exec_file (0);
4379 if (exec_file == NULL)
4380 exec_file = "";
4381 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4382 target_pid_to_str (pid_to_ptid (pid)));
4383 gdb_flush (gdb_stdout);
4384 }
4385
4386 /* Tell the remote target to detach. */
4387 if (remote_multi_process_p (rs))
4388 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4389 else
4390 strcpy (rs->buf, "D");
4391
4392 putpkt (rs->buf);
4393 getpkt (&rs->buf, &rs->buf_size, 0);
4394
4395 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4396 ;
4397 else if (rs->buf[0] == '\0')
4398 error (_("Remote doesn't know how to detach"));
4399 else
4400 error (_("Can't detach process."));
4401
4402 if (from_tty && !extended)
4403 puts_filtered (_("Ending remote debugging.\n"));
4404
4405 target_mourn_inferior ();
4406 }
4407
4408 static void
4409 remote_detach (struct target_ops *ops, char *args, int from_tty)
4410 {
4411 remote_detach_1 (args, from_tty, 0);
4412 }
4413
4414 static void
4415 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4416 {
4417 remote_detach_1 (args, from_tty, 1);
4418 }
4419
4420 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4421
4422 static void
4423 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4424 {
4425 if (args)
4426 error (_("Argument given to \"disconnect\" when remotely debugging."));
4427
4428 /* Make sure we unpush even the extended remote targets; mourn
4429 won't do it. So call remote_mourn_1 directly instead of
4430 target_mourn_inferior. */
4431 remote_mourn_1 (target);
4432
4433 if (from_tty)
4434 puts_filtered ("Ending remote debugging.\n");
4435 }
4436
4437 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4438 be chatty about it. */
4439
4440 static void
4441 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4442 {
4443 struct remote_state *rs = get_remote_state ();
4444 int pid;
4445 char *wait_status = NULL;
4446
4447 pid = parse_pid_to_attach (args);
4448
4449 /* Remote PID can be freely equal to getpid, do not check it here the same
4450 way as in other targets. */
4451
4452 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4453 error (_("This target does not support attaching to a process"));
4454
4455 if (from_tty)
4456 {
4457 char *exec_file = get_exec_file (0);
4458
4459 if (exec_file)
4460 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4461 target_pid_to_str (pid_to_ptid (pid)));
4462 else
4463 printf_unfiltered (_("Attaching to %s\n"),
4464 target_pid_to_str (pid_to_ptid (pid)));
4465
4466 gdb_flush (gdb_stdout);
4467 }
4468
4469 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4470 putpkt (rs->buf);
4471 getpkt (&rs->buf, &rs->buf_size, 0);
4472
4473 if (packet_ok (rs->buf,
4474 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4475 {
4476 if (!non_stop)
4477 {
4478 /* Save the reply for later. */
4479 wait_status = alloca (strlen (rs->buf) + 1);
4480 strcpy (wait_status, rs->buf);
4481 }
4482 else if (strcmp (rs->buf, "OK") != 0)
4483 error (_("Attaching to %s failed with: %s"),
4484 target_pid_to_str (pid_to_ptid (pid)),
4485 rs->buf);
4486 }
4487 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4488 error (_("This target does not support attaching to a process"));
4489 else
4490 error (_("Attaching to %s failed"),
4491 target_pid_to_str (pid_to_ptid (pid)));
4492
4493 set_current_inferior (remote_add_inferior (0, pid, 1));
4494
4495 inferior_ptid = pid_to_ptid (pid);
4496
4497 if (non_stop)
4498 {
4499 struct thread_info *thread;
4500
4501 /* Get list of threads. */
4502 remote_threads_info (target);
4503
4504 thread = first_thread_of_process (pid);
4505 if (thread)
4506 inferior_ptid = thread->ptid;
4507 else
4508 inferior_ptid = pid_to_ptid (pid);
4509
4510 /* Invalidate our notion of the remote current thread. */
4511 record_currthread (minus_one_ptid);
4512 }
4513 else
4514 {
4515 /* Now, if we have thread information, update inferior_ptid. */
4516 inferior_ptid = remote_current_thread (inferior_ptid);
4517
4518 /* Add the main thread to the thread list. */
4519 add_thread_silent (inferior_ptid);
4520 }
4521
4522 /* Next, if the target can specify a description, read it. We do
4523 this before anything involving memory or registers. */
4524 target_find_description ();
4525
4526 if (!non_stop)
4527 {
4528 /* Use the previously fetched status. */
4529 gdb_assert (wait_status != NULL);
4530
4531 if (target_can_async_p ())
4532 {
4533 struct notif_event *reply
4534 = remote_notif_parse (&notif_client_stop, wait_status);
4535
4536 push_stop_reply ((struct stop_reply *) reply);
4537
4538 target_async (inferior_event_handler, 0);
4539 }
4540 else
4541 {
4542 gdb_assert (wait_status != NULL);
4543 strcpy (rs->buf, wait_status);
4544 rs->cached_wait_status = 1;
4545 }
4546 }
4547 else
4548 gdb_assert (wait_status == NULL);
4549 }
4550
4551 static void
4552 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4553 {
4554 extended_remote_attach_1 (ops, args, from_tty);
4555 }
4556
4557 /* Convert hex digit A to a number. */
4558
4559 static int
4560 fromhex (int a)
4561 {
4562 if (a >= '0' && a <= '9')
4563 return a - '0';
4564 else if (a >= 'a' && a <= 'f')
4565 return a - 'a' + 10;
4566 else if (a >= 'A' && a <= 'F')
4567 return a - 'A' + 10;
4568 else
4569 error (_("Reply contains invalid hex digit %d"), a);
4570 }
4571
4572 int
4573 hex2bin (const char *hex, gdb_byte *bin, int count)
4574 {
4575 int i;
4576
4577 for (i = 0; i < count; i++)
4578 {
4579 if (hex[0] == 0 || hex[1] == 0)
4580 {
4581 /* Hex string is short, or of uneven length.
4582 Return the count that has been converted so far. */
4583 return i;
4584 }
4585 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4586 hex += 2;
4587 }
4588 return i;
4589 }
4590
4591 /* Convert number NIB to a hex digit. */
4592
4593 static int
4594 tohex (int nib)
4595 {
4596 if (nib < 10)
4597 return '0' + nib;
4598 else
4599 return 'a' + nib - 10;
4600 }
4601
4602 int
4603 bin2hex (const gdb_byte *bin, char *hex, int count)
4604 {
4605 int i;
4606
4607 /* May use a length, or a nul-terminated string as input. */
4608 if (count == 0)
4609 count = strlen ((char *) bin);
4610
4611 for (i = 0; i < count; i++)
4612 {
4613 *hex++ = tohex ((*bin >> 4) & 0xf);
4614 *hex++ = tohex (*bin++ & 0xf);
4615 }
4616 *hex = 0;
4617 return i;
4618 }
4619 \f
4620 /* Check for the availability of vCont. This function should also check
4621 the response. */
4622
4623 static void
4624 remote_vcont_probe (struct remote_state *rs)
4625 {
4626 char *buf;
4627
4628 strcpy (rs->buf, "vCont?");
4629 putpkt (rs->buf);
4630 getpkt (&rs->buf, &rs->buf_size, 0);
4631 buf = rs->buf;
4632
4633 /* Make sure that the features we assume are supported. */
4634 if (strncmp (buf, "vCont", 5) == 0)
4635 {
4636 char *p = &buf[5];
4637 int support_s, support_S, support_c, support_C;
4638
4639 support_s = 0;
4640 support_S = 0;
4641 support_c = 0;
4642 support_C = 0;
4643 rs->support_vCont_t = 0;
4644 while (p && *p == ';')
4645 {
4646 p++;
4647 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4648 support_s = 1;
4649 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4650 support_S = 1;
4651 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4652 support_c = 1;
4653 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4654 support_C = 1;
4655 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4656 rs->support_vCont_t = 1;
4657
4658 p = strchr (p, ';');
4659 }
4660
4661 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4662 BUF will make packet_ok disable the packet. */
4663 if (!support_s || !support_S || !support_c || !support_C)
4664 buf[0] = 0;
4665 }
4666
4667 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4668 }
4669
4670 /* Helper function for building "vCont" resumptions. Write a
4671 resumption to P. ENDP points to one-passed-the-end of the buffer
4672 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4673 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4674 resumed thread should be single-stepped and/or signalled. If PTID
4675 equals minus_one_ptid, then all threads are resumed; if PTID
4676 represents a process, then all threads of the process are resumed;
4677 the thread to be stepped and/or signalled is given in the global
4678 INFERIOR_PTID. */
4679
4680 static char *
4681 append_resumption (char *p, char *endp,
4682 ptid_t ptid, int step, enum gdb_signal siggnal)
4683 {
4684 struct remote_state *rs = get_remote_state ();
4685
4686 if (step && siggnal != GDB_SIGNAL_0)
4687 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4688 else if (step)
4689 p += xsnprintf (p, endp - p, ";s");
4690 else if (siggnal != GDB_SIGNAL_0)
4691 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4692 else
4693 p += xsnprintf (p, endp - p, ";c");
4694
4695 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4696 {
4697 ptid_t nptid;
4698
4699 /* All (-1) threads of process. */
4700 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4701
4702 p += xsnprintf (p, endp - p, ":");
4703 p = write_ptid (p, endp, nptid);
4704 }
4705 else if (!ptid_equal (ptid, minus_one_ptid))
4706 {
4707 p += xsnprintf (p, endp - p, ":");
4708 p = write_ptid (p, endp, ptid);
4709 }
4710
4711 return p;
4712 }
4713
4714 /* Append a vCont continue-with-signal action for threads that have a
4715 non-zero stop signal. */
4716
4717 static char *
4718 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4719 {
4720 struct thread_info *thread;
4721
4722 ALL_THREADS (thread)
4723 if (ptid_match (thread->ptid, ptid)
4724 && !ptid_equal (inferior_ptid, thread->ptid)
4725 && thread->suspend.stop_signal != GDB_SIGNAL_0
4726 && signal_pass_state (thread->suspend.stop_signal))
4727 {
4728 p = append_resumption (p, endp, thread->ptid,
4729 0, thread->suspend.stop_signal);
4730 thread->suspend.stop_signal = GDB_SIGNAL_0;
4731 }
4732
4733 return p;
4734 }
4735
4736 /* Resume the remote inferior by using a "vCont" packet. The thread
4737 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4738 resumed thread should be single-stepped and/or signalled. If PTID
4739 equals minus_one_ptid, then all threads are resumed; the thread to
4740 be stepped and/or signalled is given in the global INFERIOR_PTID.
4741 This function returns non-zero iff it resumes the inferior.
4742
4743 This function issues a strict subset of all possible vCont commands at the
4744 moment. */
4745
4746 static int
4747 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750 char *p;
4751 char *endp;
4752
4753 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4754 remote_vcont_probe (rs);
4755
4756 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4757 return 0;
4758
4759 p = rs->buf;
4760 endp = rs->buf + get_remote_packet_size ();
4761
4762 /* If we could generate a wider range of packets, we'd have to worry
4763 about overflowing BUF. Should there be a generic
4764 "multi-part-packet" packet? */
4765
4766 p += xsnprintf (p, endp - p, "vCont");
4767
4768 if (ptid_equal (ptid, magic_null_ptid))
4769 {
4770 /* MAGIC_NULL_PTID means that we don't have any active threads,
4771 so we don't have any TID numbers the inferior will
4772 understand. Make sure to only send forms that do not specify
4773 a TID. */
4774 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4775 }
4776 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4777 {
4778 /* Resume all threads (of all processes, or of a single
4779 process), with preference for INFERIOR_PTID. This assumes
4780 inferior_ptid belongs to the set of all threads we are about
4781 to resume. */
4782 if (step || siggnal != GDB_SIGNAL_0)
4783 {
4784 /* Step inferior_ptid, with or without signal. */
4785 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4786 }
4787
4788 /* Also pass down any pending signaled resumption for other
4789 threads not the current. */
4790 p = append_pending_thread_resumptions (p, endp, ptid);
4791
4792 /* And continue others without a signal. */
4793 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4794 }
4795 else
4796 {
4797 /* Scheduler locking; resume only PTID. */
4798 append_resumption (p, endp, ptid, step, siggnal);
4799 }
4800
4801 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4802 putpkt (rs->buf);
4803
4804 if (non_stop)
4805 {
4806 /* In non-stop, the stub replies to vCont with "OK". The stop
4807 reply will be reported asynchronously by means of a `%Stop'
4808 notification. */
4809 getpkt (&rs->buf, &rs->buf_size, 0);
4810 if (strcmp (rs->buf, "OK") != 0)
4811 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4812 }
4813
4814 return 1;
4815 }
4816
4817 /* Tell the remote machine to resume. */
4818
4819 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4820
4821 static int last_sent_step;
4822
4823 static void
4824 remote_resume (struct target_ops *ops,
4825 ptid_t ptid, int step, enum gdb_signal siggnal)
4826 {
4827 struct remote_state *rs = get_remote_state ();
4828 char *buf;
4829
4830 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4831 (explained in remote-notif.c:handle_notification) so
4832 remote_notif_process is not called. We need find a place where
4833 it is safe to start a 'vNotif' sequence. It is good to do it
4834 before resuming inferior, because inferior was stopped and no RSP
4835 traffic at that moment. */
4836 if (!non_stop)
4837 remote_notif_process (&notif_client_stop);
4838
4839 last_sent_signal = siggnal;
4840 last_sent_step = step;
4841
4842 /* The vCont packet doesn't need to specify threads via Hc. */
4843 /* No reverse support (yet) for vCont. */
4844 if (execution_direction != EXEC_REVERSE)
4845 if (remote_vcont_resume (ptid, step, siggnal))
4846 goto done;
4847
4848 /* All other supported resume packets do use Hc, so set the continue
4849 thread. */
4850 if (ptid_equal (ptid, minus_one_ptid))
4851 set_continue_thread (any_thread_ptid);
4852 else
4853 set_continue_thread (ptid);
4854
4855 buf = rs->buf;
4856 if (execution_direction == EXEC_REVERSE)
4857 {
4858 /* We don't pass signals to the target in reverse exec mode. */
4859 if (info_verbose && siggnal != GDB_SIGNAL_0)
4860 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4861 siggnal);
4862
4863 if (step
4864 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4865 error (_("Remote reverse-step not supported."));
4866 if (!step
4867 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4868 error (_("Remote reverse-continue not supported."));
4869
4870 strcpy (buf, step ? "bs" : "bc");
4871 }
4872 else if (siggnal != GDB_SIGNAL_0)
4873 {
4874 buf[0] = step ? 'S' : 'C';
4875 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4876 buf[2] = tohex (((int) siggnal) & 0xf);
4877 buf[3] = '\0';
4878 }
4879 else
4880 strcpy (buf, step ? "s" : "c");
4881
4882 putpkt (buf);
4883
4884 done:
4885 /* We are about to start executing the inferior, let's register it
4886 with the event loop. NOTE: this is the one place where all the
4887 execution commands end up. We could alternatively do this in each
4888 of the execution commands in infcmd.c. */
4889 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4890 into infcmd.c in order to allow inferior function calls to work
4891 NOT asynchronously. */
4892 if (target_can_async_p ())
4893 target_async (inferior_event_handler, 0);
4894
4895 /* We've just told the target to resume. The remote server will
4896 wait for the inferior to stop, and then send a stop reply. In
4897 the mean time, we can't start another command/query ourselves
4898 because the stub wouldn't be ready to process it. This applies
4899 only to the base all-stop protocol, however. In non-stop (which
4900 only supports vCont), the stub replies with an "OK", and is
4901 immediate able to process further serial input. */
4902 if (!non_stop)
4903 rs->waiting_for_stop_reply = 1;
4904 }
4905 \f
4906
4907 /* Set up the signal handler for SIGINT, while the target is
4908 executing, ovewriting the 'regular' SIGINT signal handler. */
4909 static void
4910 initialize_sigint_signal_handler (void)
4911 {
4912 signal (SIGINT, handle_remote_sigint);
4913 }
4914
4915 /* Signal handler for SIGINT, while the target is executing. */
4916 static void
4917 handle_remote_sigint (int sig)
4918 {
4919 signal (sig, handle_remote_sigint_twice);
4920 mark_async_signal_handler (sigint_remote_token);
4921 }
4922
4923 /* Signal handler for SIGINT, installed after SIGINT has already been
4924 sent once. It will take effect the second time that the user sends
4925 a ^C. */
4926 static void
4927 handle_remote_sigint_twice (int sig)
4928 {
4929 signal (sig, handle_remote_sigint);
4930 mark_async_signal_handler (sigint_remote_twice_token);
4931 }
4932
4933 /* Perform the real interruption of the target execution, in response
4934 to a ^C. */
4935 static void
4936 async_remote_interrupt (gdb_client_data arg)
4937 {
4938 if (remote_debug)
4939 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4940
4941 target_stop (inferior_ptid);
4942 }
4943
4944 /* Perform interrupt, if the first attempt did not succeed. Just give
4945 up on the target alltogether. */
4946 void
4947 async_remote_interrupt_twice (gdb_client_data arg)
4948 {
4949 if (remote_debug)
4950 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4951
4952 interrupt_query ();
4953 }
4954
4955 /* Reinstall the usual SIGINT handlers, after the target has
4956 stopped. */
4957 static void
4958 cleanup_sigint_signal_handler (void *dummy)
4959 {
4960 signal (SIGINT, handle_sigint);
4961 }
4962
4963 /* Send ^C to target to halt it. Target will respond, and send us a
4964 packet. */
4965 static void (*ofunc) (int);
4966
4967 /* The command line interface's stop routine. This function is installed
4968 as a signal handler for SIGINT. The first time a user requests a
4969 stop, we call remote_stop to send a break or ^C. If there is no
4970 response from the target (it didn't stop when the user requested it),
4971 we ask the user if he'd like to detach from the target. */
4972 static void
4973 remote_interrupt (int signo)
4974 {
4975 /* If this doesn't work, try more severe steps. */
4976 signal (signo, remote_interrupt_twice);
4977
4978 gdb_call_async_signal_handler (sigint_remote_token, 1);
4979 }
4980
4981 /* The user typed ^C twice. */
4982
4983 static void
4984 remote_interrupt_twice (int signo)
4985 {
4986 signal (signo, ofunc);
4987 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4988 signal (signo, remote_interrupt);
4989 }
4990
4991 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4992 thread, all threads of a remote process, or all threads of all
4993 processes. */
4994
4995 static void
4996 remote_stop_ns (ptid_t ptid)
4997 {
4998 struct remote_state *rs = get_remote_state ();
4999 char *p = rs->buf;
5000 char *endp = rs->buf + get_remote_packet_size ();
5001
5002 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5003 remote_vcont_probe (rs);
5004
5005 if (!rs->support_vCont_t)
5006 error (_("Remote server does not support stopping threads"));
5007
5008 if (ptid_equal (ptid, minus_one_ptid)
5009 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5010 p += xsnprintf (p, endp - p, "vCont;t");
5011 else
5012 {
5013 ptid_t nptid;
5014
5015 p += xsnprintf (p, endp - p, "vCont;t:");
5016
5017 if (ptid_is_pid (ptid))
5018 /* All (-1) threads of process. */
5019 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5020 else
5021 {
5022 /* Small optimization: if we already have a stop reply for
5023 this thread, no use in telling the stub we want this
5024 stopped. */
5025 if (peek_stop_reply (ptid))
5026 return;
5027
5028 nptid = ptid;
5029 }
5030
5031 write_ptid (p, endp, nptid);
5032 }
5033
5034 /* In non-stop, we get an immediate OK reply. The stop reply will
5035 come in asynchronously by notification. */
5036 putpkt (rs->buf);
5037 getpkt (&rs->buf, &rs->buf_size, 0);
5038 if (strcmp (rs->buf, "OK") != 0)
5039 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5040 }
5041
5042 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5043 remote target. It is undefined which thread of which process
5044 reports the stop. */
5045
5046 static void
5047 remote_stop_as (ptid_t ptid)
5048 {
5049 struct remote_state *rs = get_remote_state ();
5050
5051 rs->ctrlc_pending_p = 1;
5052
5053 /* If the inferior is stopped already, but the core didn't know
5054 about it yet, just ignore the request. The cached wait status
5055 will be collected in remote_wait. */
5056 if (rs->cached_wait_status)
5057 return;
5058
5059 /* Send interrupt_sequence to remote target. */
5060 send_interrupt_sequence ();
5061 }
5062
5063 /* This is the generic stop called via the target vector. When a target
5064 interrupt is requested, either by the command line or the GUI, we
5065 will eventually end up here. */
5066
5067 static void
5068 remote_stop (ptid_t ptid)
5069 {
5070 if (remote_debug)
5071 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5072
5073 if (non_stop)
5074 remote_stop_ns (ptid);
5075 else
5076 remote_stop_as (ptid);
5077 }
5078
5079 /* Ask the user what to do when an interrupt is received. */
5080
5081 static void
5082 interrupt_query (void)
5083 {
5084 target_terminal_ours ();
5085
5086 if (target_can_async_p ())
5087 {
5088 signal (SIGINT, handle_sigint);
5089 deprecated_throw_reason (RETURN_QUIT);
5090 }
5091 else
5092 {
5093 if (query (_("Interrupted while waiting for the program.\n\
5094 Give up (and stop debugging it)? ")))
5095 {
5096 remote_unpush_target ();
5097 deprecated_throw_reason (RETURN_QUIT);
5098 }
5099 }
5100
5101 target_terminal_inferior ();
5102 }
5103
5104 /* Enable/disable target terminal ownership. Most targets can use
5105 terminal groups to control terminal ownership. Remote targets are
5106 different in that explicit transfer of ownership to/from GDB/target
5107 is required. */
5108
5109 static void
5110 remote_terminal_inferior (void)
5111 {
5112 if (!target_async_permitted)
5113 /* Nothing to do. */
5114 return;
5115
5116 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5117 idempotent. The event-loop GDB talking to an asynchronous target
5118 with a synchronous command calls this function from both
5119 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5120 transfer the terminal to the target when it shouldn't this guard
5121 can go away. */
5122 if (!remote_async_terminal_ours_p)
5123 return;
5124 delete_file_handler (input_fd);
5125 remote_async_terminal_ours_p = 0;
5126 initialize_sigint_signal_handler ();
5127 /* NOTE: At this point we could also register our selves as the
5128 recipient of all input. Any characters typed could then be
5129 passed on down to the target. */
5130 }
5131
5132 static void
5133 remote_terminal_ours (void)
5134 {
5135 if (!target_async_permitted)
5136 /* Nothing to do. */
5137 return;
5138
5139 /* See FIXME in remote_terminal_inferior. */
5140 if (remote_async_terminal_ours_p)
5141 return;
5142 cleanup_sigint_signal_handler (NULL);
5143 add_file_handler (input_fd, stdin_event_handler, 0);
5144 remote_async_terminal_ours_p = 1;
5145 }
5146
5147 static void
5148 remote_console_output (char *msg)
5149 {
5150 char *p;
5151
5152 for (p = msg; p[0] && p[1]; p += 2)
5153 {
5154 char tb[2];
5155 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5156
5157 tb[0] = c;
5158 tb[1] = 0;
5159 fputs_unfiltered (tb, gdb_stdtarg);
5160 }
5161 gdb_flush (gdb_stdtarg);
5162 }
5163
5164 typedef struct cached_reg
5165 {
5166 int num;
5167 gdb_byte data[MAX_REGISTER_SIZE];
5168 } cached_reg_t;
5169
5170 DEF_VEC_O(cached_reg_t);
5171
5172 typedef struct stop_reply
5173 {
5174 struct notif_event base;
5175
5176 /* The identifier of the thread about this event */
5177 ptid_t ptid;
5178
5179 struct target_waitstatus ws;
5180
5181 /* Expedited registers. This makes remote debugging a bit more
5182 efficient for those targets that provide critical registers as
5183 part of their normal status mechanism (as another roundtrip to
5184 fetch them is avoided). */
5185 VEC(cached_reg_t) *regcache;
5186
5187 int stopped_by_watchpoint_p;
5188 CORE_ADDR watch_data_address;
5189
5190 int solibs_changed;
5191 int replay_event;
5192
5193 int core;
5194 } *stop_reply_p;
5195
5196 DECLARE_QUEUE_P (stop_reply_p);
5197 DEFINE_QUEUE_P (stop_reply_p);
5198 /* The list of already fetched and acknowledged stop events. This
5199 queue is used for notification Stop, and other notifications
5200 don't need queue for their events, because the notification events
5201 of Stop can't be consumed immediately, so that events should be
5202 queued first, and be consumed by remote_wait_{ns,as} one per
5203 time. Other notifications can consume their events immediately,
5204 so queue is not needed for them. */
5205 static QUEUE (stop_reply_p) *stop_reply_queue;
5206
5207 static void
5208 stop_reply_xfree (struct stop_reply *r)
5209 {
5210 if (r != NULL)
5211 {
5212 VEC_free (cached_reg_t, r->regcache);
5213 xfree (r);
5214 }
5215 }
5216
5217 static void
5218 remote_notif_stop_parse (struct notif_client *self, char *buf,
5219 struct notif_event *event)
5220 {
5221 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5222 }
5223
5224 static void
5225 remote_notif_stop_ack (struct notif_client *self, char *buf,
5226 struct notif_event *event)
5227 {
5228 struct stop_reply *stop_reply = (struct stop_reply *) event;
5229
5230 /* acknowledge */
5231 putpkt ((char *) self->ack_command);
5232
5233 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5234 /* We got an unknown stop reply. */
5235 error (_("Unknown stop reply"));
5236
5237 push_stop_reply (stop_reply);
5238 }
5239
5240 static int
5241 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5242 {
5243 /* We can't get pending events in remote_notif_process for
5244 notification stop, and we have to do this in remote_wait_ns
5245 instead. If we fetch all queued events from stub, remote stub
5246 may exit and we have no chance to process them back in
5247 remote_wait_ns. */
5248 mark_async_event_handler (remote_async_inferior_event_token);
5249 return 0;
5250 }
5251
5252 static void
5253 stop_reply_dtr (struct notif_event *event)
5254 {
5255 struct stop_reply *r = (struct stop_reply *) event;
5256
5257 VEC_free (cached_reg_t, r->regcache);
5258 }
5259
5260 static struct notif_event *
5261 remote_notif_stop_alloc_reply (void)
5262 {
5263 struct notif_event *r
5264 = (struct notif_event *) XMALLOC (struct stop_reply);
5265
5266 r->dtr = stop_reply_dtr;
5267
5268 return r;
5269 }
5270
5271 /* A client of notification Stop. */
5272
5273 struct notif_client notif_client_stop =
5274 {
5275 "Stop",
5276 "vStopped",
5277 remote_notif_stop_parse,
5278 remote_notif_stop_ack,
5279 remote_notif_stop_can_get_pending_events,
5280 remote_notif_stop_alloc_reply,
5281 NULL,
5282 };
5283
5284 /* A parameter to pass data in and out. */
5285
5286 struct queue_iter_param
5287 {
5288 void *input;
5289 struct stop_reply *output;
5290 };
5291
5292 /* Remove all queue elements meet the condition it checks. */
5293
5294 static int
5295 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5296 QUEUE_ITER (stop_reply_p) *iter,
5297 stop_reply_p event,
5298 void *data)
5299 {
5300 struct queue_iter_param *param = data;
5301 struct inferior *inf = param->input;
5302
5303 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5304 {
5305 stop_reply_xfree (event);
5306 QUEUE_remove_elem (stop_reply_p, q, iter);
5307 }
5308
5309 return 1;
5310 }
5311
5312 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5313 discard everything. */
5314
5315 static void
5316 discard_pending_stop_replies (struct inferior *inf)
5317 {
5318 int i;
5319 struct queue_iter_param param;
5320 struct stop_reply *reply
5321 = (struct stop_reply *) notif_client_stop.pending_event;
5322
5323 /* Discard the in-flight notification. */
5324 if (reply != NULL
5325 && (inf == NULL
5326 || ptid_get_pid (reply->ptid) == inf->pid))
5327 {
5328 stop_reply_xfree (reply);
5329 notif_client_stop.pending_event = NULL;
5330 }
5331
5332 param.input = inf;
5333 param.output = NULL;
5334 /* Discard the stop replies we have already pulled with
5335 vStopped. */
5336 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5337 remote_notif_remove_all, &param);
5338 }
5339
5340 /* A parameter to pass data in and out. */
5341
5342 static int
5343 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5344 QUEUE_ITER (stop_reply_p) *iter,
5345 stop_reply_p event,
5346 void *data)
5347 {
5348 struct queue_iter_param *param = data;
5349 ptid_t *ptid = param->input;
5350
5351 if (ptid_match (event->ptid, *ptid))
5352 {
5353 param->output = event;
5354 QUEUE_remove_elem (stop_reply_p, q, iter);
5355 return 0;
5356 }
5357
5358 return 1;
5359 }
5360
5361 /* Remove the first reply in 'stop_reply_queue' which matches
5362 PTID. */
5363
5364 static struct stop_reply *
5365 remote_notif_remove_queued_reply (ptid_t ptid)
5366 {
5367 struct queue_iter_param param;
5368
5369 param.input = &ptid;
5370 param.output = NULL;
5371
5372 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5373 remote_notif_remove_once_on_match, &param);
5374 if (notif_debug)
5375 fprintf_unfiltered (gdb_stdlog,
5376 "notif: discard queued event: 'Stop' in %s\n",
5377 target_pid_to_str (ptid));
5378
5379 return param.output;
5380 }
5381
5382 /* Look for a queued stop reply belonging to PTID. If one is found,
5383 remove it from the queue, and return it. Returns NULL if none is
5384 found. If there are still queued events left to process, tell the
5385 event loop to get back to target_wait soon. */
5386
5387 static struct stop_reply *
5388 queued_stop_reply (ptid_t ptid)
5389 {
5390 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5391
5392 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5393 /* There's still at least an event left. */
5394 mark_async_event_handler (remote_async_inferior_event_token);
5395
5396 return r;
5397 }
5398
5399 /* Push a fully parsed stop reply in the stop reply queue. Since we
5400 know that we now have at least one queued event left to pass to the
5401 core side, tell the event loop to get back to target_wait soon. */
5402
5403 static void
5404 push_stop_reply (struct stop_reply *new_event)
5405 {
5406 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5407
5408 if (notif_debug)
5409 fprintf_unfiltered (gdb_stdlog,
5410 "notif: push 'Stop' %s to queue %d\n",
5411 target_pid_to_str (new_event->ptid),
5412 QUEUE_length (stop_reply_p,
5413 stop_reply_queue));
5414
5415 mark_async_event_handler (remote_async_inferior_event_token);
5416 }
5417
5418 static int
5419 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5420 QUEUE_ITER (stop_reply_p) *iter,
5421 struct stop_reply *event,
5422 void *data)
5423 {
5424 ptid_t *ptid = data;
5425
5426 return !(ptid_equal (*ptid, event->ptid)
5427 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5428 }
5429
5430 /* Returns true if we have a stop reply for PTID. */
5431
5432 static int
5433 peek_stop_reply (ptid_t ptid)
5434 {
5435 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5436 stop_reply_match_ptid_and_ws, &ptid);
5437 }
5438
5439 /* Parse the stop reply in BUF. Either the function succeeds, and the
5440 result is stored in EVENT, or throws an error. */
5441
5442 static void
5443 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5444 {
5445 struct remote_arch_state *rsa = get_remote_arch_state ();
5446 ULONGEST addr;
5447 char *p;
5448
5449 event->ptid = null_ptid;
5450 event->ws.kind = TARGET_WAITKIND_IGNORE;
5451 event->ws.value.integer = 0;
5452 event->solibs_changed = 0;
5453 event->replay_event = 0;
5454 event->stopped_by_watchpoint_p = 0;
5455 event->regcache = NULL;
5456 event->core = -1;
5457
5458 switch (buf[0])
5459 {
5460 case 'T': /* Status with PC, SP, FP, ... */
5461 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5462 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5463 ss = signal number
5464 n... = register number
5465 r... = register contents
5466 */
5467
5468 p = &buf[3]; /* after Txx */
5469 while (*p)
5470 {
5471 char *p1;
5472 char *p_temp;
5473 int fieldsize;
5474 LONGEST pnum = 0;
5475
5476 /* If the packet contains a register number, save it in
5477 pnum and set p1 to point to the character following it.
5478 Otherwise p1 points to p. */
5479
5480 /* If this packet is an awatch packet, don't parse the 'a'
5481 as a register number. */
5482
5483 if (strncmp (p, "awatch", strlen("awatch")) != 0
5484 && strncmp (p, "core", strlen ("core") != 0))
5485 {
5486 /* Read the ``P'' register number. */
5487 pnum = strtol (p, &p_temp, 16);
5488 p1 = p_temp;
5489 }
5490 else
5491 p1 = p;
5492
5493 if (p1 == p) /* No register number present here. */
5494 {
5495 p1 = strchr (p, ':');
5496 if (p1 == NULL)
5497 error (_("Malformed packet(a) (missing colon): %s\n\
5498 Packet: '%s'\n"),
5499 p, buf);
5500 if (strncmp (p, "thread", p1 - p) == 0)
5501 event->ptid = read_ptid (++p1, &p);
5502 else if ((strncmp (p, "watch", p1 - p) == 0)
5503 || (strncmp (p, "rwatch", p1 - p) == 0)
5504 || (strncmp (p, "awatch", p1 - p) == 0))
5505 {
5506 event->stopped_by_watchpoint_p = 1;
5507 p = unpack_varlen_hex (++p1, &addr);
5508 event->watch_data_address = (CORE_ADDR) addr;
5509 }
5510 else if (strncmp (p, "library", p1 - p) == 0)
5511 {
5512 p1++;
5513 p_temp = p1;
5514 while (*p_temp && *p_temp != ';')
5515 p_temp++;
5516
5517 event->solibs_changed = 1;
5518 p = p_temp;
5519 }
5520 else if (strncmp (p, "replaylog", p1 - p) == 0)
5521 {
5522 /* NO_HISTORY event.
5523 p1 will indicate "begin" or "end", but
5524 it makes no difference for now, so ignore it. */
5525 event->replay_event = 1;
5526 p_temp = strchr (p1 + 1, ';');
5527 if (p_temp)
5528 p = p_temp;
5529 }
5530 else if (strncmp (p, "core", p1 - p) == 0)
5531 {
5532 ULONGEST c;
5533
5534 p = unpack_varlen_hex (++p1, &c);
5535 event->core = c;
5536 }
5537 else
5538 {
5539 /* Silently skip unknown optional info. */
5540 p_temp = strchr (p1 + 1, ';');
5541 if (p_temp)
5542 p = p_temp;
5543 }
5544 }
5545 else
5546 {
5547 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5548 cached_reg_t cached_reg;
5549
5550 p = p1;
5551
5552 if (*p != ':')
5553 error (_("Malformed packet(b) (missing colon): %s\n\
5554 Packet: '%s'\n"),
5555 p, buf);
5556 ++p;
5557
5558 if (reg == NULL)
5559 error (_("Remote sent bad register number %s: %s\n\
5560 Packet: '%s'\n"),
5561 hex_string (pnum), p, buf);
5562
5563 cached_reg.num = reg->regnum;
5564
5565 fieldsize = hex2bin (p, cached_reg.data,
5566 register_size (target_gdbarch (),
5567 reg->regnum));
5568 p += 2 * fieldsize;
5569 if (fieldsize < register_size (target_gdbarch (),
5570 reg->regnum))
5571 warning (_("Remote reply is too short: %s"), buf);
5572
5573 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5574 }
5575
5576 if (*p != ';')
5577 error (_("Remote register badly formatted: %s\nhere: %s"),
5578 buf, p);
5579 ++p;
5580 }
5581 /* fall through */
5582 case 'S': /* Old style status, just signal only. */
5583 if (event->solibs_changed)
5584 event->ws.kind = TARGET_WAITKIND_LOADED;
5585 else if (event->replay_event)
5586 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5587 else
5588 {
5589 event->ws.kind = TARGET_WAITKIND_STOPPED;
5590 event->ws.value.sig = (enum gdb_signal)
5591 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5592 }
5593 break;
5594 case 'W': /* Target exited. */
5595 case 'X':
5596 {
5597 char *p;
5598 int pid;
5599 ULONGEST value;
5600
5601 /* GDB used to accept only 2 hex chars here. Stubs should
5602 only send more if they detect GDB supports multi-process
5603 support. */
5604 p = unpack_varlen_hex (&buf[1], &value);
5605
5606 if (buf[0] == 'W')
5607 {
5608 /* The remote process exited. */
5609 event->ws.kind = TARGET_WAITKIND_EXITED;
5610 event->ws.value.integer = value;
5611 }
5612 else
5613 {
5614 /* The remote process exited with a signal. */
5615 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5616 event->ws.value.sig = (enum gdb_signal) value;
5617 }
5618
5619 /* If no process is specified, assume inferior_ptid. */
5620 pid = ptid_get_pid (inferior_ptid);
5621 if (*p == '\0')
5622 ;
5623 else if (*p == ';')
5624 {
5625 p++;
5626
5627 if (p == '\0')
5628 ;
5629 else if (strncmp (p,
5630 "process:", sizeof ("process:") - 1) == 0)
5631 {
5632 ULONGEST upid;
5633
5634 p += sizeof ("process:") - 1;
5635 unpack_varlen_hex (p, &upid);
5636 pid = upid;
5637 }
5638 else
5639 error (_("unknown stop reply packet: %s"), buf);
5640 }
5641 else
5642 error (_("unknown stop reply packet: %s"), buf);
5643 event->ptid = pid_to_ptid (pid);
5644 }
5645 break;
5646 }
5647
5648 if (non_stop && ptid_equal (event->ptid, null_ptid))
5649 error (_("No process or thread specified in stop reply: %s"), buf);
5650 }
5651
5652 /* When the stub wants to tell GDB about a new notification reply, it
5653 sends a notification (%Stop, for example). Those can come it at
5654 any time, hence, we have to make sure that any pending
5655 putpkt/getpkt sequence we're making is finished, before querying
5656 the stub for more events with the corresponding ack command
5657 (vStopped, for example). E.g., if we started a vStopped sequence
5658 immediately upon receiving the notification, something like this
5659 could happen:
5660
5661 1.1) --> Hg 1
5662 1.2) <-- OK
5663 1.3) --> g
5664 1.4) <-- %Stop
5665 1.5) --> vStopped
5666 1.6) <-- (registers reply to step #1.3)
5667
5668 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5669 query.
5670
5671 To solve this, whenever we parse a %Stop notification successfully,
5672 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5673 doing whatever we were doing:
5674
5675 2.1) --> Hg 1
5676 2.2) <-- OK
5677 2.3) --> g
5678 2.4) <-- %Stop
5679 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5680 2.5) <-- (registers reply to step #2.3)
5681
5682 Eventualy after step #2.5, we return to the event loop, which
5683 notices there's an event on the
5684 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5685 associated callback --- the function below. At this point, we're
5686 always safe to start a vStopped sequence. :
5687
5688 2.6) --> vStopped
5689 2.7) <-- T05 thread:2
5690 2.8) --> vStopped
5691 2.9) --> OK
5692 */
5693
5694 void
5695 remote_notif_get_pending_events (struct notif_client *nc)
5696 {
5697 struct remote_state *rs = get_remote_state ();
5698
5699 if (nc->pending_event)
5700 {
5701 if (notif_debug)
5702 fprintf_unfiltered (gdb_stdlog,
5703 "notif: process: '%s' ack pending event\n",
5704 nc->name);
5705
5706 /* acknowledge */
5707 nc->ack (nc, rs->buf, nc->pending_event);
5708 nc->pending_event = NULL;
5709
5710 while (1)
5711 {
5712 getpkt (&rs->buf, &rs->buf_size, 0);
5713 if (strcmp (rs->buf, "OK") == 0)
5714 break;
5715 else
5716 remote_notif_ack (nc, rs->buf);
5717 }
5718 }
5719 else
5720 {
5721 if (notif_debug)
5722 fprintf_unfiltered (gdb_stdlog,
5723 "notif: process: '%s' no pending reply\n",
5724 nc->name);
5725 }
5726 }
5727
5728 /* Called when it is decided that STOP_REPLY holds the info of the
5729 event that is to be returned to the core. This function always
5730 destroys STOP_REPLY. */
5731
5732 static ptid_t
5733 process_stop_reply (struct stop_reply *stop_reply,
5734 struct target_waitstatus *status)
5735 {
5736 ptid_t ptid;
5737
5738 *status = stop_reply->ws;
5739 ptid = stop_reply->ptid;
5740
5741 /* If no thread/process was reported by the stub, assume the current
5742 inferior. */
5743 if (ptid_equal (ptid, null_ptid))
5744 ptid = inferior_ptid;
5745
5746 if (status->kind != TARGET_WAITKIND_EXITED
5747 && status->kind != TARGET_WAITKIND_SIGNALLED)
5748 {
5749 /* Expedited registers. */
5750 if (stop_reply->regcache)
5751 {
5752 struct regcache *regcache
5753 = get_thread_arch_regcache (ptid, target_gdbarch ());
5754 cached_reg_t *reg;
5755 int ix;
5756
5757 for (ix = 0;
5758 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5759 ix++)
5760 regcache_raw_supply (regcache, reg->num, reg->data);
5761 VEC_free (cached_reg_t, stop_reply->regcache);
5762 }
5763
5764 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5765 remote_watch_data_address = stop_reply->watch_data_address;
5766
5767 remote_notice_new_inferior (ptid, 0);
5768 demand_private_info (ptid)->core = stop_reply->core;
5769 }
5770
5771 stop_reply_xfree (stop_reply);
5772 return ptid;
5773 }
5774
5775 /* The non-stop mode version of target_wait. */
5776
5777 static ptid_t
5778 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5779 {
5780 struct remote_state *rs = get_remote_state ();
5781 struct stop_reply *stop_reply;
5782 int ret;
5783 int is_notif = 0;
5784
5785 /* If in non-stop mode, get out of getpkt even if a
5786 notification is received. */
5787
5788 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5789 0 /* forever */, &is_notif);
5790 while (1)
5791 {
5792 if (ret != -1 && !is_notif)
5793 switch (rs->buf[0])
5794 {
5795 case 'E': /* Error of some sort. */
5796 /* We're out of sync with the target now. Did it continue
5797 or not? We can't tell which thread it was in non-stop,
5798 so just ignore this. */
5799 warning (_("Remote failure reply: %s"), rs->buf);
5800 break;
5801 case 'O': /* Console output. */
5802 remote_console_output (rs->buf + 1);
5803 break;
5804 default:
5805 warning (_("Invalid remote reply: %s"), rs->buf);
5806 break;
5807 }
5808
5809 /* Acknowledge a pending stop reply that may have arrived in the
5810 mean time. */
5811 if (notif_client_stop.pending_event != NULL)
5812 remote_notif_get_pending_events (&notif_client_stop);
5813
5814 /* If indeed we noticed a stop reply, we're done. */
5815 stop_reply = queued_stop_reply (ptid);
5816 if (stop_reply != NULL)
5817 return process_stop_reply (stop_reply, status);
5818
5819 /* Still no event. If we're just polling for an event, then
5820 return to the event loop. */
5821 if (options & TARGET_WNOHANG)
5822 {
5823 status->kind = TARGET_WAITKIND_IGNORE;
5824 return minus_one_ptid;
5825 }
5826
5827 /* Otherwise do a blocking wait. */
5828 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5829 1 /* forever */, &is_notif);
5830 }
5831 }
5832
5833 /* Wait until the remote machine stops, then return, storing status in
5834 STATUS just as `wait' would. */
5835
5836 static ptid_t
5837 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5838 {
5839 struct remote_state *rs = get_remote_state ();
5840 ptid_t event_ptid = null_ptid;
5841 char *buf;
5842 struct stop_reply *stop_reply;
5843
5844 again:
5845
5846 status->kind = TARGET_WAITKIND_IGNORE;
5847 status->value.integer = 0;
5848
5849 stop_reply = queued_stop_reply (ptid);
5850 if (stop_reply != NULL)
5851 return process_stop_reply (stop_reply, status);
5852
5853 if (rs->cached_wait_status)
5854 /* Use the cached wait status, but only once. */
5855 rs->cached_wait_status = 0;
5856 else
5857 {
5858 int ret;
5859 int is_notif;
5860
5861 if (!target_is_async_p ())
5862 {
5863 ofunc = signal (SIGINT, remote_interrupt);
5864 /* If the user hit C-c before this packet, or between packets,
5865 pretend that it was hit right here. */
5866 if (check_quit_flag ())
5867 {
5868 clear_quit_flag ();
5869 remote_interrupt (SIGINT);
5870 }
5871 }
5872
5873 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5874 _never_ wait for ever -> test on target_is_async_p().
5875 However, before we do that we need to ensure that the caller
5876 knows how to take the target into/out of async mode. */
5877 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5878 wait_forever_enabled_p, &is_notif);
5879
5880 /* GDB gets a notification. Return to core as this event is
5881 not interesting. */
5882 if (ret != -1 && is_notif)
5883 return minus_one_ptid;
5884
5885 if (!target_is_async_p ())
5886 signal (SIGINT, ofunc);
5887 }
5888
5889 buf = rs->buf;
5890
5891 remote_stopped_by_watchpoint_p = 0;
5892
5893 /* We got something. */
5894 rs->waiting_for_stop_reply = 0;
5895
5896 /* Assume that the target has acknowledged Ctrl-C unless we receive
5897 an 'F' or 'O' packet. */
5898 if (buf[0] != 'F' && buf[0] != 'O')
5899 rs->ctrlc_pending_p = 0;
5900
5901 switch (buf[0])
5902 {
5903 case 'E': /* Error of some sort. */
5904 /* We're out of sync with the target now. Did it continue or
5905 not? Not is more likely, so report a stop. */
5906 warning (_("Remote failure reply: %s"), buf);
5907 status->kind = TARGET_WAITKIND_STOPPED;
5908 status->value.sig = GDB_SIGNAL_0;
5909 break;
5910 case 'F': /* File-I/O request. */
5911 remote_fileio_request (buf, rs->ctrlc_pending_p);
5912 rs->ctrlc_pending_p = 0;
5913 break;
5914 case 'T': case 'S': case 'X': case 'W':
5915 {
5916 struct stop_reply *stop_reply
5917 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
5918 rs->buf);
5919
5920 event_ptid = process_stop_reply (stop_reply, status);
5921 break;
5922 }
5923 case 'O': /* Console output. */
5924 remote_console_output (buf + 1);
5925
5926 /* The target didn't really stop; keep waiting. */
5927 rs->waiting_for_stop_reply = 1;
5928
5929 break;
5930 case '\0':
5931 if (last_sent_signal != GDB_SIGNAL_0)
5932 {
5933 /* Zero length reply means that we tried 'S' or 'C' and the
5934 remote system doesn't support it. */
5935 target_terminal_ours_for_output ();
5936 printf_filtered
5937 ("Can't send signals to this remote system. %s not sent.\n",
5938 gdb_signal_to_name (last_sent_signal));
5939 last_sent_signal = GDB_SIGNAL_0;
5940 target_terminal_inferior ();
5941
5942 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5943 putpkt ((char *) buf);
5944
5945 /* We just told the target to resume, so a stop reply is in
5946 order. */
5947 rs->waiting_for_stop_reply = 1;
5948 break;
5949 }
5950 /* else fallthrough */
5951 default:
5952 warning (_("Invalid remote reply: %s"), buf);
5953 /* Keep waiting. */
5954 rs->waiting_for_stop_reply = 1;
5955 break;
5956 }
5957
5958 if (status->kind == TARGET_WAITKIND_IGNORE)
5959 {
5960 /* Nothing interesting happened. If we're doing a non-blocking
5961 poll, we're done. Otherwise, go back to waiting. */
5962 if (options & TARGET_WNOHANG)
5963 return minus_one_ptid;
5964 else
5965 goto again;
5966 }
5967 else if (status->kind != TARGET_WAITKIND_EXITED
5968 && status->kind != TARGET_WAITKIND_SIGNALLED)
5969 {
5970 if (!ptid_equal (event_ptid, null_ptid))
5971 record_currthread (event_ptid);
5972 else
5973 event_ptid = inferior_ptid;
5974 }
5975 else
5976 /* A process exit. Invalidate our notion of current thread. */
5977 record_currthread (minus_one_ptid);
5978
5979 return event_ptid;
5980 }
5981
5982 /* Wait until the remote machine stops, then return, storing status in
5983 STATUS just as `wait' would. */
5984
5985 static ptid_t
5986 remote_wait (struct target_ops *ops,
5987 ptid_t ptid, struct target_waitstatus *status, int options)
5988 {
5989 ptid_t event_ptid;
5990
5991 if (non_stop)
5992 event_ptid = remote_wait_ns (ptid, status, options);
5993 else
5994 event_ptid = remote_wait_as (ptid, status, options);
5995
5996 if (target_can_async_p ())
5997 {
5998 /* If there are are events left in the queue tell the event loop
5999 to return here. */
6000 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6001 mark_async_event_handler (remote_async_inferior_event_token);
6002 }
6003
6004 return event_ptid;
6005 }
6006
6007 /* Fetch a single register using a 'p' packet. */
6008
6009 static int
6010 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6011 {
6012 struct remote_state *rs = get_remote_state ();
6013 char *buf, *p;
6014 char regp[MAX_REGISTER_SIZE];
6015 int i;
6016
6017 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6018 return 0;
6019
6020 if (reg->pnum == -1)
6021 return 0;
6022
6023 p = rs->buf;
6024 *p++ = 'p';
6025 p += hexnumstr (p, reg->pnum);
6026 *p++ = '\0';
6027 putpkt (rs->buf);
6028 getpkt (&rs->buf, &rs->buf_size, 0);
6029
6030 buf = rs->buf;
6031
6032 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6033 {
6034 case PACKET_OK:
6035 break;
6036 case PACKET_UNKNOWN:
6037 return 0;
6038 case PACKET_ERROR:
6039 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6040 gdbarch_register_name (get_regcache_arch (regcache),
6041 reg->regnum),
6042 buf);
6043 }
6044
6045 /* If this register is unfetchable, tell the regcache. */
6046 if (buf[0] == 'x')
6047 {
6048 regcache_raw_supply (regcache, reg->regnum, NULL);
6049 return 1;
6050 }
6051
6052 /* Otherwise, parse and supply the value. */
6053 p = buf;
6054 i = 0;
6055 while (p[0] != 0)
6056 {
6057 if (p[1] == 0)
6058 error (_("fetch_register_using_p: early buf termination"));
6059
6060 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6061 p += 2;
6062 }
6063 regcache_raw_supply (regcache, reg->regnum, regp);
6064 return 1;
6065 }
6066
6067 /* Fetch the registers included in the target's 'g' packet. */
6068
6069 static int
6070 send_g_packet (void)
6071 {
6072 struct remote_state *rs = get_remote_state ();
6073 int buf_len;
6074
6075 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6076 remote_send (&rs->buf, &rs->buf_size);
6077
6078 /* We can get out of synch in various cases. If the first character
6079 in the buffer is not a hex character, assume that has happened
6080 and try to fetch another packet to read. */
6081 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6082 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6083 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6084 && rs->buf[0] != 'x') /* New: unavailable register value. */
6085 {
6086 if (remote_debug)
6087 fprintf_unfiltered (gdb_stdlog,
6088 "Bad register packet; fetching a new packet\n");
6089 getpkt (&rs->buf, &rs->buf_size, 0);
6090 }
6091
6092 buf_len = strlen (rs->buf);
6093
6094 /* Sanity check the received packet. */
6095 if (buf_len % 2 != 0)
6096 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6097
6098 return buf_len / 2;
6099 }
6100
6101 static void
6102 process_g_packet (struct regcache *regcache)
6103 {
6104 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6105 struct remote_state *rs = get_remote_state ();
6106 struct remote_arch_state *rsa = get_remote_arch_state ();
6107 int i, buf_len;
6108 char *p;
6109 char *regs;
6110
6111 buf_len = strlen (rs->buf);
6112
6113 /* Further sanity checks, with knowledge of the architecture. */
6114 if (buf_len > 2 * rsa->sizeof_g_packet)
6115 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6116
6117 /* Save the size of the packet sent to us by the target. It is used
6118 as a heuristic when determining the max size of packets that the
6119 target can safely receive. */
6120 if (rsa->actual_register_packet_size == 0)
6121 rsa->actual_register_packet_size = buf_len;
6122
6123 /* If this is smaller than we guessed the 'g' packet would be,
6124 update our records. A 'g' reply that doesn't include a register's
6125 value implies either that the register is not available, or that
6126 the 'p' packet must be used. */
6127 if (buf_len < 2 * rsa->sizeof_g_packet)
6128 {
6129 rsa->sizeof_g_packet = buf_len / 2;
6130
6131 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6132 {
6133 if (rsa->regs[i].pnum == -1)
6134 continue;
6135
6136 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6137 rsa->regs[i].in_g_packet = 0;
6138 else
6139 rsa->regs[i].in_g_packet = 1;
6140 }
6141 }
6142
6143 regs = alloca (rsa->sizeof_g_packet);
6144
6145 /* Unimplemented registers read as all bits zero. */
6146 memset (regs, 0, rsa->sizeof_g_packet);
6147
6148 /* Reply describes registers byte by byte, each byte encoded as two
6149 hex characters. Suck them all up, then supply them to the
6150 register cacheing/storage mechanism. */
6151
6152 p = rs->buf;
6153 for (i = 0; i < rsa->sizeof_g_packet; i++)
6154 {
6155 if (p[0] == 0 || p[1] == 0)
6156 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6157 internal_error (__FILE__, __LINE__,
6158 _("unexpected end of 'g' packet reply"));
6159
6160 if (p[0] == 'x' && p[1] == 'x')
6161 regs[i] = 0; /* 'x' */
6162 else
6163 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6164 p += 2;
6165 }
6166
6167 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6168 {
6169 struct packet_reg *r = &rsa->regs[i];
6170
6171 if (r->in_g_packet)
6172 {
6173 if (r->offset * 2 >= strlen (rs->buf))
6174 /* This shouldn't happen - we adjusted in_g_packet above. */
6175 internal_error (__FILE__, __LINE__,
6176 _("unexpected end of 'g' packet reply"));
6177 else if (rs->buf[r->offset * 2] == 'x')
6178 {
6179 gdb_assert (r->offset * 2 < strlen (rs->buf));
6180 /* The register isn't available, mark it as such (at
6181 the same time setting the value to zero). */
6182 regcache_raw_supply (regcache, r->regnum, NULL);
6183 }
6184 else
6185 regcache_raw_supply (regcache, r->regnum,
6186 regs + r->offset);
6187 }
6188 }
6189 }
6190
6191 static void
6192 fetch_registers_using_g (struct regcache *regcache)
6193 {
6194 send_g_packet ();
6195 process_g_packet (regcache);
6196 }
6197
6198 /* Make the remote selected traceframe match GDB's selected
6199 traceframe. */
6200
6201 static void
6202 set_remote_traceframe (void)
6203 {
6204 int newnum;
6205
6206 if (remote_traceframe_number == get_traceframe_number ())
6207 return;
6208
6209 /* Avoid recursion, remote_trace_find calls us again. */
6210 remote_traceframe_number = get_traceframe_number ();
6211
6212 newnum = target_trace_find (tfind_number,
6213 get_traceframe_number (), 0, 0, NULL);
6214
6215 /* Should not happen. If it does, all bets are off. */
6216 if (newnum != get_traceframe_number ())
6217 warning (_("could not set remote traceframe"));
6218 }
6219
6220 static void
6221 remote_fetch_registers (struct target_ops *ops,
6222 struct regcache *regcache, int regnum)
6223 {
6224 struct remote_arch_state *rsa = get_remote_arch_state ();
6225 int i;
6226
6227 set_remote_traceframe ();
6228 set_general_thread (inferior_ptid);
6229
6230 if (regnum >= 0)
6231 {
6232 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6233
6234 gdb_assert (reg != NULL);
6235
6236 /* If this register might be in the 'g' packet, try that first -
6237 we are likely to read more than one register. If this is the
6238 first 'g' packet, we might be overly optimistic about its
6239 contents, so fall back to 'p'. */
6240 if (reg->in_g_packet)
6241 {
6242 fetch_registers_using_g (regcache);
6243 if (reg->in_g_packet)
6244 return;
6245 }
6246
6247 if (fetch_register_using_p (regcache, reg))
6248 return;
6249
6250 /* This register is not available. */
6251 regcache_raw_supply (regcache, reg->regnum, NULL);
6252
6253 return;
6254 }
6255
6256 fetch_registers_using_g (regcache);
6257
6258 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6259 if (!rsa->regs[i].in_g_packet)
6260 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6261 {
6262 /* This register is not available. */
6263 regcache_raw_supply (regcache, i, NULL);
6264 }
6265 }
6266
6267 /* Prepare to store registers. Since we may send them all (using a
6268 'G' request), we have to read out the ones we don't want to change
6269 first. */
6270
6271 static void
6272 remote_prepare_to_store (struct regcache *regcache)
6273 {
6274 struct remote_arch_state *rsa = get_remote_arch_state ();
6275 int i;
6276 gdb_byte buf[MAX_REGISTER_SIZE];
6277
6278 /* Make sure the entire registers array is valid. */
6279 switch (remote_protocol_packets[PACKET_P].support)
6280 {
6281 case PACKET_DISABLE:
6282 case PACKET_SUPPORT_UNKNOWN:
6283 /* Make sure all the necessary registers are cached. */
6284 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6285 if (rsa->regs[i].in_g_packet)
6286 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6287 break;
6288 case PACKET_ENABLE:
6289 break;
6290 }
6291 }
6292
6293 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6294 packet was not recognized. */
6295
6296 static int
6297 store_register_using_P (const struct regcache *regcache,
6298 struct packet_reg *reg)
6299 {
6300 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6301 struct remote_state *rs = get_remote_state ();
6302 /* Try storing a single register. */
6303 char *buf = rs->buf;
6304 gdb_byte regp[MAX_REGISTER_SIZE];
6305 char *p;
6306
6307 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6308 return 0;
6309
6310 if (reg->pnum == -1)
6311 return 0;
6312
6313 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6314 p = buf + strlen (buf);
6315 regcache_raw_collect (regcache, reg->regnum, regp);
6316 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6317 putpkt (rs->buf);
6318 getpkt (&rs->buf, &rs->buf_size, 0);
6319
6320 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6321 {
6322 case PACKET_OK:
6323 return 1;
6324 case PACKET_ERROR:
6325 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6326 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6327 case PACKET_UNKNOWN:
6328 return 0;
6329 default:
6330 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6331 }
6332 }
6333
6334 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6335 contents of the register cache buffer. FIXME: ignores errors. */
6336
6337 static void
6338 store_registers_using_G (const struct regcache *regcache)
6339 {
6340 struct remote_state *rs = get_remote_state ();
6341 struct remote_arch_state *rsa = get_remote_arch_state ();
6342 gdb_byte *regs;
6343 char *p;
6344
6345 /* Extract all the registers in the regcache copying them into a
6346 local buffer. */
6347 {
6348 int i;
6349
6350 regs = alloca (rsa->sizeof_g_packet);
6351 memset (regs, 0, rsa->sizeof_g_packet);
6352 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6353 {
6354 struct packet_reg *r = &rsa->regs[i];
6355
6356 if (r->in_g_packet)
6357 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6358 }
6359 }
6360
6361 /* Command describes registers byte by byte,
6362 each byte encoded as two hex characters. */
6363 p = rs->buf;
6364 *p++ = 'G';
6365 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6366 updated. */
6367 bin2hex (regs, p, rsa->sizeof_g_packet);
6368 putpkt (rs->buf);
6369 getpkt (&rs->buf, &rs->buf_size, 0);
6370 if (packet_check_result (rs->buf) == PACKET_ERROR)
6371 error (_("Could not write registers; remote failure reply '%s'"),
6372 rs->buf);
6373 }
6374
6375 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6376 of the register cache buffer. FIXME: ignores errors. */
6377
6378 static void
6379 remote_store_registers (struct target_ops *ops,
6380 struct regcache *regcache, int regnum)
6381 {
6382 struct remote_arch_state *rsa = get_remote_arch_state ();
6383 int i;
6384
6385 set_remote_traceframe ();
6386 set_general_thread (inferior_ptid);
6387
6388 if (regnum >= 0)
6389 {
6390 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6391
6392 gdb_assert (reg != NULL);
6393
6394 /* Always prefer to store registers using the 'P' packet if
6395 possible; we often change only a small number of registers.
6396 Sometimes we change a larger number; we'd need help from a
6397 higher layer to know to use 'G'. */
6398 if (store_register_using_P (regcache, reg))
6399 return;
6400
6401 /* For now, don't complain if we have no way to write the
6402 register. GDB loses track of unavailable registers too
6403 easily. Some day, this may be an error. We don't have
6404 any way to read the register, either... */
6405 if (!reg->in_g_packet)
6406 return;
6407
6408 store_registers_using_G (regcache);
6409 return;
6410 }
6411
6412 store_registers_using_G (regcache);
6413
6414 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6415 if (!rsa->regs[i].in_g_packet)
6416 if (!store_register_using_P (regcache, &rsa->regs[i]))
6417 /* See above for why we do not issue an error here. */
6418 continue;
6419 }
6420 \f
6421
6422 /* Return the number of hex digits in num. */
6423
6424 static int
6425 hexnumlen (ULONGEST num)
6426 {
6427 int i;
6428
6429 for (i = 0; num != 0; i++)
6430 num >>= 4;
6431
6432 return max (i, 1);
6433 }
6434
6435 /* Set BUF to the minimum number of hex digits representing NUM. */
6436
6437 static int
6438 hexnumstr (char *buf, ULONGEST num)
6439 {
6440 int len = hexnumlen (num);
6441
6442 return hexnumnstr (buf, num, len);
6443 }
6444
6445
6446 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6447
6448 static int
6449 hexnumnstr (char *buf, ULONGEST num, int width)
6450 {
6451 int i;
6452
6453 buf[width] = '\0';
6454
6455 for (i = width - 1; i >= 0; i--)
6456 {
6457 buf[i] = "0123456789abcdef"[(num & 0xf)];
6458 num >>= 4;
6459 }
6460
6461 return width;
6462 }
6463
6464 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6465
6466 static CORE_ADDR
6467 remote_address_masked (CORE_ADDR addr)
6468 {
6469 unsigned int address_size = remote_address_size;
6470
6471 /* If "remoteaddresssize" was not set, default to target address size. */
6472 if (!address_size)
6473 address_size = gdbarch_addr_bit (target_gdbarch ());
6474
6475 if (address_size > 0
6476 && address_size < (sizeof (ULONGEST) * 8))
6477 {
6478 /* Only create a mask when that mask can safely be constructed
6479 in a ULONGEST variable. */
6480 ULONGEST mask = 1;
6481
6482 mask = (mask << address_size) - 1;
6483 addr &= mask;
6484 }
6485 return addr;
6486 }
6487
6488 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6489 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6490 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6491 (which may be more than *OUT_LEN due to escape characters). The
6492 total number of bytes in the output buffer will be at most
6493 OUT_MAXLEN. */
6494
6495 static int
6496 remote_escape_output (const gdb_byte *buffer, int len,
6497 gdb_byte *out_buf, int *out_len,
6498 int out_maxlen)
6499 {
6500 int input_index, output_index;
6501
6502 output_index = 0;
6503 for (input_index = 0; input_index < len; input_index++)
6504 {
6505 gdb_byte b = buffer[input_index];
6506
6507 if (b == '$' || b == '#' || b == '}')
6508 {
6509 /* These must be escaped. */
6510 if (output_index + 2 > out_maxlen)
6511 break;
6512 out_buf[output_index++] = '}';
6513 out_buf[output_index++] = b ^ 0x20;
6514 }
6515 else
6516 {
6517 if (output_index + 1 > out_maxlen)
6518 break;
6519 out_buf[output_index++] = b;
6520 }
6521 }
6522
6523 *out_len = input_index;
6524 return output_index;
6525 }
6526
6527 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6528 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6529 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6530
6531 This function reverses remote_escape_output. It allows more
6532 escaped characters than that function does, in particular because
6533 '*' must be escaped to avoid the run-length encoding processing
6534 in reading packets. */
6535
6536 static int
6537 remote_unescape_input (const gdb_byte *buffer, int len,
6538 gdb_byte *out_buf, int out_maxlen)
6539 {
6540 int input_index, output_index;
6541 int escaped;
6542
6543 output_index = 0;
6544 escaped = 0;
6545 for (input_index = 0; input_index < len; input_index++)
6546 {
6547 gdb_byte b = buffer[input_index];
6548
6549 if (output_index + 1 > out_maxlen)
6550 {
6551 warning (_("Received too much data from remote target;"
6552 " ignoring overflow."));
6553 return output_index;
6554 }
6555
6556 if (escaped)
6557 {
6558 out_buf[output_index++] = b ^ 0x20;
6559 escaped = 0;
6560 }
6561 else if (b == '}')
6562 escaped = 1;
6563 else
6564 out_buf[output_index++] = b;
6565 }
6566
6567 if (escaped)
6568 error (_("Unmatched escape character in target response."));
6569
6570 return output_index;
6571 }
6572
6573 /* Determine whether the remote target supports binary downloading.
6574 This is accomplished by sending a no-op memory write of zero length
6575 to the target at the specified address. It does not suffice to send
6576 the whole packet, since many stubs strip the eighth bit and
6577 subsequently compute a wrong checksum, which causes real havoc with
6578 remote_write_bytes.
6579
6580 NOTE: This can still lose if the serial line is not eight-bit
6581 clean. In cases like this, the user should clear "remote
6582 X-packet". */
6583
6584 static void
6585 check_binary_download (CORE_ADDR addr)
6586 {
6587 struct remote_state *rs = get_remote_state ();
6588
6589 switch (remote_protocol_packets[PACKET_X].support)
6590 {
6591 case PACKET_DISABLE:
6592 break;
6593 case PACKET_ENABLE:
6594 break;
6595 case PACKET_SUPPORT_UNKNOWN:
6596 {
6597 char *p;
6598
6599 p = rs->buf;
6600 *p++ = 'X';
6601 p += hexnumstr (p, (ULONGEST) addr);
6602 *p++ = ',';
6603 p += hexnumstr (p, (ULONGEST) 0);
6604 *p++ = ':';
6605 *p = '\0';
6606
6607 putpkt_binary (rs->buf, (int) (p - rs->buf));
6608 getpkt (&rs->buf, &rs->buf_size, 0);
6609
6610 if (rs->buf[0] == '\0')
6611 {
6612 if (remote_debug)
6613 fprintf_unfiltered (gdb_stdlog,
6614 "binary downloading NOT "
6615 "supported by target\n");
6616 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6617 }
6618 else
6619 {
6620 if (remote_debug)
6621 fprintf_unfiltered (gdb_stdlog,
6622 "binary downloading supported by target\n");
6623 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6624 }
6625 break;
6626 }
6627 }
6628 }
6629
6630 /* Write memory data directly to the remote machine.
6631 This does not inform the data cache; the data cache uses this.
6632 HEADER is the starting part of the packet.
6633 MEMADDR is the address in the remote memory space.
6634 MYADDR is the address of the buffer in our space.
6635 LEN is the number of bytes.
6636 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6637 should send data as binary ('X'), or hex-encoded ('M').
6638
6639 The function creates packet of the form
6640 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6641
6642 where encoding of <DATA> is termined by PACKET_FORMAT.
6643
6644 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6645 are omitted.
6646
6647 Returns the number of bytes transferred, or 0 (setting errno) for
6648 error. Only transfer a single packet. */
6649
6650 static int
6651 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6652 const gdb_byte *myaddr, ssize_t len,
6653 char packet_format, int use_length)
6654 {
6655 struct remote_state *rs = get_remote_state ();
6656 char *p;
6657 char *plen = NULL;
6658 int plenlen = 0;
6659 int todo;
6660 int nr_bytes;
6661 int payload_size;
6662 int payload_length;
6663 int header_length;
6664
6665 if (packet_format != 'X' && packet_format != 'M')
6666 internal_error (__FILE__, __LINE__,
6667 _("remote_write_bytes_aux: bad packet format"));
6668
6669 if (len <= 0)
6670 return 0;
6671
6672 payload_size = get_memory_write_packet_size ();
6673
6674 /* The packet buffer will be large enough for the payload;
6675 get_memory_packet_size ensures this. */
6676 rs->buf[0] = '\0';
6677
6678 /* Compute the size of the actual payload by subtracting out the
6679 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6680
6681 payload_size -= strlen ("$,:#NN");
6682 if (!use_length)
6683 /* The comma won't be used. */
6684 payload_size += 1;
6685 header_length = strlen (header);
6686 payload_size -= header_length;
6687 payload_size -= hexnumlen (memaddr);
6688
6689 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6690
6691 strcat (rs->buf, header);
6692 p = rs->buf + strlen (header);
6693
6694 /* Compute a best guess of the number of bytes actually transfered. */
6695 if (packet_format == 'X')
6696 {
6697 /* Best guess at number of bytes that will fit. */
6698 todo = min (len, payload_size);
6699 if (use_length)
6700 payload_size -= hexnumlen (todo);
6701 todo = min (todo, payload_size);
6702 }
6703 else
6704 {
6705 /* Num bytes that will fit. */
6706 todo = min (len, payload_size / 2);
6707 if (use_length)
6708 payload_size -= hexnumlen (todo);
6709 todo = min (todo, payload_size / 2);
6710 }
6711
6712 if (todo <= 0)
6713 internal_error (__FILE__, __LINE__,
6714 _("minimum packet size too small to write data"));
6715
6716 /* If we already need another packet, then try to align the end
6717 of this packet to a useful boundary. */
6718 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6719 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6720
6721 /* Append "<memaddr>". */
6722 memaddr = remote_address_masked (memaddr);
6723 p += hexnumstr (p, (ULONGEST) memaddr);
6724
6725 if (use_length)
6726 {
6727 /* Append ",". */
6728 *p++ = ',';
6729
6730 /* Append <len>. Retain the location/size of <len>. It may need to
6731 be adjusted once the packet body has been created. */
6732 plen = p;
6733 plenlen = hexnumstr (p, (ULONGEST) todo);
6734 p += plenlen;
6735 }
6736
6737 /* Append ":". */
6738 *p++ = ':';
6739 *p = '\0';
6740
6741 /* Append the packet body. */
6742 if (packet_format == 'X')
6743 {
6744 /* Binary mode. Send target system values byte by byte, in
6745 increasing byte addresses. Only escape certain critical
6746 characters. */
6747 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6748 payload_size);
6749
6750 /* If not all TODO bytes fit, then we'll need another packet. Make
6751 a second try to keep the end of the packet aligned. Don't do
6752 this if the packet is tiny. */
6753 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6754 {
6755 int new_nr_bytes;
6756
6757 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6758 - memaddr);
6759 if (new_nr_bytes != nr_bytes)
6760 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6761 p, &nr_bytes,
6762 payload_size);
6763 }
6764
6765 p += payload_length;
6766 if (use_length && nr_bytes < todo)
6767 {
6768 /* Escape chars have filled up the buffer prematurely,
6769 and we have actually sent fewer bytes than planned.
6770 Fix-up the length field of the packet. Use the same
6771 number of characters as before. */
6772 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6773 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6774 }
6775 }
6776 else
6777 {
6778 /* Normal mode: Send target system values byte by byte, in
6779 increasing byte addresses. Each byte is encoded as a two hex
6780 value. */
6781 nr_bytes = bin2hex (myaddr, p, todo);
6782 p += 2 * nr_bytes;
6783 }
6784
6785 putpkt_binary (rs->buf, (int) (p - rs->buf));
6786 getpkt (&rs->buf, &rs->buf_size, 0);
6787
6788 if (rs->buf[0] == 'E')
6789 {
6790 /* There is no correspondance between what the remote protocol
6791 uses for errors and errno codes. We would like a cleaner way
6792 of representing errors (big enough to include errno codes,
6793 bfd_error codes, and others). But for now just return EIO. */
6794 errno = EIO;
6795 return 0;
6796 }
6797
6798 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6799 fewer bytes than we'd planned. */
6800 return nr_bytes;
6801 }
6802
6803 /* Write memory data directly to the remote machine.
6804 This does not inform the data cache; the data cache uses this.
6805 MEMADDR is the address in the remote memory space.
6806 MYADDR is the address of the buffer in our space.
6807 LEN is the number of bytes.
6808
6809 Returns number of bytes transferred, or 0 (setting errno) for
6810 error. Only transfer a single packet. */
6811
6812 static int
6813 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6814 {
6815 char *packet_format = 0;
6816
6817 /* Check whether the target supports binary download. */
6818 check_binary_download (memaddr);
6819
6820 switch (remote_protocol_packets[PACKET_X].support)
6821 {
6822 case PACKET_ENABLE:
6823 packet_format = "X";
6824 break;
6825 case PACKET_DISABLE:
6826 packet_format = "M";
6827 break;
6828 case PACKET_SUPPORT_UNKNOWN:
6829 internal_error (__FILE__, __LINE__,
6830 _("remote_write_bytes: bad internal state"));
6831 default:
6832 internal_error (__FILE__, __LINE__, _("bad switch"));
6833 }
6834
6835 return remote_write_bytes_aux (packet_format,
6836 memaddr, myaddr, len, packet_format[0], 1);
6837 }
6838
6839 /* Read memory data directly from the remote machine.
6840 This does not use the data cache; the data cache uses this.
6841 MEMADDR is the address in the remote memory space.
6842 MYADDR is the address of the buffer in our space.
6843 LEN is the number of bytes.
6844
6845 Returns number of bytes transferred, or 0 for error. */
6846
6847 static int
6848 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6849 {
6850 struct remote_state *rs = get_remote_state ();
6851 int max_buf_size; /* Max size of packet output buffer. */
6852 char *p;
6853 int todo;
6854 int i;
6855
6856 if (len <= 0)
6857 return 0;
6858
6859 max_buf_size = get_memory_read_packet_size ();
6860 /* The packet buffer will be large enough for the payload;
6861 get_memory_packet_size ensures this. */
6862
6863 /* Number if bytes that will fit. */
6864 todo = min (len, max_buf_size / 2);
6865
6866 /* Construct "m"<memaddr>","<len>". */
6867 memaddr = remote_address_masked (memaddr);
6868 p = rs->buf;
6869 *p++ = 'm';
6870 p += hexnumstr (p, (ULONGEST) memaddr);
6871 *p++ = ',';
6872 p += hexnumstr (p, (ULONGEST) todo);
6873 *p = '\0';
6874 putpkt (rs->buf);
6875 getpkt (&rs->buf, &rs->buf_size, 0);
6876 if (rs->buf[0] == 'E'
6877 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6878 && rs->buf[3] == '\0')
6879 {
6880 /* There is no correspondance between what the remote protocol
6881 uses for errors and errno codes. We would like a cleaner way
6882 of representing errors (big enough to include errno codes,
6883 bfd_error codes, and others). But for now just return
6884 EIO. */
6885 errno = EIO;
6886 return 0;
6887 }
6888 /* Reply describes memory byte by byte, each byte encoded as two hex
6889 characters. */
6890 p = rs->buf;
6891 i = hex2bin (p, myaddr, todo);
6892 /* Return what we have. Let higher layers handle partial reads. */
6893 return i;
6894 }
6895
6896 \f
6897 /* Read or write LEN bytes from inferior memory at MEMADDR,
6898 transferring to or from debugger address BUFFER. Write to inferior
6899 if SHOULD_WRITE is nonzero. Returns length of data written or
6900 read; 0 for error. TARGET is unused. */
6901
6902 static int
6903 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6904 int should_write, struct mem_attrib *attrib,
6905 struct target_ops *target)
6906 {
6907 int res;
6908
6909 set_remote_traceframe ();
6910 set_general_thread (inferior_ptid);
6911
6912 if (should_write)
6913 res = remote_write_bytes (mem_addr, buffer, mem_len);
6914 else
6915 res = remote_read_bytes (mem_addr, buffer, mem_len);
6916
6917 return res;
6918 }
6919
6920 /* Sends a packet with content determined by the printf format string
6921 FORMAT and the remaining arguments, then gets the reply. Returns
6922 whether the packet was a success, a failure, or unknown. */
6923
6924 static enum packet_result
6925 remote_send_printf (const char *format, ...)
6926 {
6927 struct remote_state *rs = get_remote_state ();
6928 int max_size = get_remote_packet_size ();
6929 va_list ap;
6930
6931 va_start (ap, format);
6932
6933 rs->buf[0] = '\0';
6934 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6935 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6936
6937 if (putpkt (rs->buf) < 0)
6938 error (_("Communication problem with target."));
6939
6940 rs->buf[0] = '\0';
6941 getpkt (&rs->buf, &rs->buf_size, 0);
6942
6943 return packet_check_result (rs->buf);
6944 }
6945
6946 static void
6947 restore_remote_timeout (void *p)
6948 {
6949 int value = *(int *)p;
6950
6951 remote_timeout = value;
6952 }
6953
6954 /* Flash writing can take quite some time. We'll set
6955 effectively infinite timeout for flash operations.
6956 In future, we'll need to decide on a better approach. */
6957 static const int remote_flash_timeout = 1000;
6958
6959 static void
6960 remote_flash_erase (struct target_ops *ops,
6961 ULONGEST address, LONGEST length)
6962 {
6963 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6964 int saved_remote_timeout = remote_timeout;
6965 enum packet_result ret;
6966 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6967 &saved_remote_timeout);
6968
6969 remote_timeout = remote_flash_timeout;
6970
6971 ret = remote_send_printf ("vFlashErase:%s,%s",
6972 phex (address, addr_size),
6973 phex (length, 4));
6974 switch (ret)
6975 {
6976 case PACKET_UNKNOWN:
6977 error (_("Remote target does not support flash erase"));
6978 case PACKET_ERROR:
6979 error (_("Error erasing flash with vFlashErase packet"));
6980 default:
6981 break;
6982 }
6983
6984 do_cleanups (back_to);
6985 }
6986
6987 static LONGEST
6988 remote_flash_write (struct target_ops *ops,
6989 ULONGEST address, LONGEST length,
6990 const gdb_byte *data)
6991 {
6992 int saved_remote_timeout = remote_timeout;
6993 int ret;
6994 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6995 &saved_remote_timeout);
6996
6997 remote_timeout = remote_flash_timeout;
6998 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6999 do_cleanups (back_to);
7000
7001 return ret;
7002 }
7003
7004 static void
7005 remote_flash_done (struct target_ops *ops)
7006 {
7007 int saved_remote_timeout = remote_timeout;
7008 int ret;
7009 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7010 &saved_remote_timeout);
7011
7012 remote_timeout = remote_flash_timeout;
7013 ret = remote_send_printf ("vFlashDone");
7014 do_cleanups (back_to);
7015
7016 switch (ret)
7017 {
7018 case PACKET_UNKNOWN:
7019 error (_("Remote target does not support vFlashDone"));
7020 case PACKET_ERROR:
7021 error (_("Error finishing flash operation"));
7022 default:
7023 break;
7024 }
7025 }
7026
7027 static void
7028 remote_files_info (struct target_ops *ignore)
7029 {
7030 puts_filtered ("Debugging a target over a serial line.\n");
7031 }
7032 \f
7033 /* Stuff for dealing with the packets which are part of this protocol.
7034 See comment at top of file for details. */
7035
7036 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7037 error to higher layers. Called when a serial error is detected.
7038 The exception message is STRING, followed by a colon and a blank,
7039 the system error message for errno at function entry and final dot
7040 for output compatibility with throw_perror_with_name. */
7041
7042 static void
7043 unpush_and_perror (const char *string)
7044 {
7045 int saved_errno = errno;
7046
7047 remote_unpush_target ();
7048 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7049 safe_strerror (saved_errno));
7050 }
7051
7052 /* Read a single character from the remote end. */
7053
7054 static int
7055 readchar (int timeout)
7056 {
7057 int ch;
7058
7059 ch = serial_readchar (remote_desc, timeout);
7060
7061 if (ch >= 0)
7062 return ch;
7063
7064 switch ((enum serial_rc) ch)
7065 {
7066 case SERIAL_EOF:
7067 remote_unpush_target ();
7068 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7069 /* no return */
7070 case SERIAL_ERROR:
7071 unpush_and_perror (_("Remote communication error. "
7072 "Target disconnected."));
7073 /* no return */
7074 case SERIAL_TIMEOUT:
7075 break;
7076 }
7077 return ch;
7078 }
7079
7080 /* Wrapper for serial_write that closes the target and throws if
7081 writing fails. */
7082
7083 static void
7084 remote_serial_write (const char *str, int len)
7085 {
7086 if (serial_write (remote_desc, str, len))
7087 {
7088 unpush_and_perror (_("Remote communication error. "
7089 "Target disconnected."));
7090 }
7091 }
7092
7093 /* Send the command in *BUF to the remote machine, and read the reply
7094 into *BUF. Report an error if we get an error reply. Resize
7095 *BUF using xrealloc if necessary to hold the result, and update
7096 *SIZEOF_BUF. */
7097
7098 static void
7099 remote_send (char **buf,
7100 long *sizeof_buf)
7101 {
7102 putpkt (*buf);
7103 getpkt (buf, sizeof_buf, 0);
7104
7105 if ((*buf)[0] == 'E')
7106 error (_("Remote failure reply: %s"), *buf);
7107 }
7108
7109 /* Return a pointer to an xmalloc'ed string representing an escaped
7110 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7111 etc. The caller is responsible for releasing the returned
7112 memory. */
7113
7114 static char *
7115 escape_buffer (const char *buf, int n)
7116 {
7117 struct cleanup *old_chain;
7118 struct ui_file *stb;
7119 char *str;
7120
7121 stb = mem_fileopen ();
7122 old_chain = make_cleanup_ui_file_delete (stb);
7123
7124 fputstrn_unfiltered (buf, n, 0, stb);
7125 str = ui_file_xstrdup (stb, NULL);
7126 do_cleanups (old_chain);
7127 return str;
7128 }
7129
7130 /* Display a null-terminated packet on stdout, for debugging, using C
7131 string notation. */
7132
7133 static void
7134 print_packet (char *buf)
7135 {
7136 puts_filtered ("\"");
7137 fputstr_filtered (buf, '"', gdb_stdout);
7138 puts_filtered ("\"");
7139 }
7140
7141 int
7142 putpkt (char *buf)
7143 {
7144 return putpkt_binary (buf, strlen (buf));
7145 }
7146
7147 /* Send a packet to the remote machine, with error checking. The data
7148 of the packet is in BUF. The string in BUF can be at most
7149 get_remote_packet_size () - 5 to account for the $, # and checksum,
7150 and for a possible /0 if we are debugging (remote_debug) and want
7151 to print the sent packet as a string. */
7152
7153 static int
7154 putpkt_binary (char *buf, int cnt)
7155 {
7156 struct remote_state *rs = get_remote_state ();
7157 int i;
7158 unsigned char csum = 0;
7159 char *buf2 = alloca (cnt + 6);
7160
7161 int ch;
7162 int tcount = 0;
7163 char *p;
7164 char *message;
7165
7166 /* Catch cases like trying to read memory or listing threads while
7167 we're waiting for a stop reply. The remote server wouldn't be
7168 ready to handle this request, so we'd hang and timeout. We don't
7169 have to worry about this in synchronous mode, because in that
7170 case it's not possible to issue a command while the target is
7171 running. This is not a problem in non-stop mode, because in that
7172 case, the stub is always ready to process serial input. */
7173 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7174 error (_("Cannot execute this command while the target is running."));
7175
7176 /* We're sending out a new packet. Make sure we don't look at a
7177 stale cached response. */
7178 rs->cached_wait_status = 0;
7179
7180 /* Copy the packet into buffer BUF2, encapsulating it
7181 and giving it a checksum. */
7182
7183 p = buf2;
7184 *p++ = '$';
7185
7186 for (i = 0; i < cnt; i++)
7187 {
7188 csum += buf[i];
7189 *p++ = buf[i];
7190 }
7191 *p++ = '#';
7192 *p++ = tohex ((csum >> 4) & 0xf);
7193 *p++ = tohex (csum & 0xf);
7194
7195 /* Send it over and over until we get a positive ack. */
7196
7197 while (1)
7198 {
7199 int started_error_output = 0;
7200
7201 if (remote_debug)
7202 {
7203 struct cleanup *old_chain;
7204 char *str;
7205
7206 *p = '\0';
7207 str = escape_buffer (buf2, p - buf2);
7208 old_chain = make_cleanup (xfree, str);
7209 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7210 gdb_flush (gdb_stdlog);
7211 do_cleanups (old_chain);
7212 }
7213 remote_serial_write (buf2, p - buf2);
7214
7215 /* If this is a no acks version of the remote protocol, send the
7216 packet and move on. */
7217 if (rs->noack_mode)
7218 break;
7219
7220 /* Read until either a timeout occurs (-2) or '+' is read.
7221 Handle any notification that arrives in the mean time. */
7222 while (1)
7223 {
7224 ch = readchar (remote_timeout);
7225
7226 if (remote_debug)
7227 {
7228 switch (ch)
7229 {
7230 case '+':
7231 case '-':
7232 case SERIAL_TIMEOUT:
7233 case '$':
7234 case '%':
7235 if (started_error_output)
7236 {
7237 putchar_unfiltered ('\n');
7238 started_error_output = 0;
7239 }
7240 }
7241 }
7242
7243 switch (ch)
7244 {
7245 case '+':
7246 if (remote_debug)
7247 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7248 return 1;
7249 case '-':
7250 if (remote_debug)
7251 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7252 /* FALLTHROUGH */
7253 case SERIAL_TIMEOUT:
7254 tcount++;
7255 if (tcount > 3)
7256 return 0;
7257 break; /* Retransmit buffer. */
7258 case '$':
7259 {
7260 if (remote_debug)
7261 fprintf_unfiltered (gdb_stdlog,
7262 "Packet instead of Ack, ignoring it\n");
7263 /* It's probably an old response sent because an ACK
7264 was lost. Gobble up the packet and ack it so it
7265 doesn't get retransmitted when we resend this
7266 packet. */
7267 skip_frame ();
7268 remote_serial_write ("+", 1);
7269 continue; /* Now, go look for +. */
7270 }
7271
7272 case '%':
7273 {
7274 int val;
7275
7276 /* If we got a notification, handle it, and go back to looking
7277 for an ack. */
7278 /* We've found the start of a notification. Now
7279 collect the data. */
7280 val = read_frame (&rs->buf, &rs->buf_size);
7281 if (val >= 0)
7282 {
7283 if (remote_debug)
7284 {
7285 struct cleanup *old_chain;
7286 char *str;
7287
7288 str = escape_buffer (rs->buf, val);
7289 old_chain = make_cleanup (xfree, str);
7290 fprintf_unfiltered (gdb_stdlog,
7291 " Notification received: %s\n",
7292 str);
7293 do_cleanups (old_chain);
7294 }
7295 handle_notification (rs->buf);
7296 /* We're in sync now, rewait for the ack. */
7297 tcount = 0;
7298 }
7299 else
7300 {
7301 if (remote_debug)
7302 {
7303 if (!started_error_output)
7304 {
7305 started_error_output = 1;
7306 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7307 }
7308 fputc_unfiltered (ch & 0177, gdb_stdlog);
7309 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7310 }
7311 }
7312 continue;
7313 }
7314 /* fall-through */
7315 default:
7316 if (remote_debug)
7317 {
7318 if (!started_error_output)
7319 {
7320 started_error_output = 1;
7321 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7322 }
7323 fputc_unfiltered (ch & 0177, gdb_stdlog);
7324 }
7325 continue;
7326 }
7327 break; /* Here to retransmit. */
7328 }
7329
7330 #if 0
7331 /* This is wrong. If doing a long backtrace, the user should be
7332 able to get out next time we call QUIT, without anything as
7333 violent as interrupt_query. If we want to provide a way out of
7334 here without getting to the next QUIT, it should be based on
7335 hitting ^C twice as in remote_wait. */
7336 if (quit_flag)
7337 {
7338 quit_flag = 0;
7339 interrupt_query ();
7340 }
7341 #endif
7342 }
7343 return 0;
7344 }
7345
7346 /* Come here after finding the start of a frame when we expected an
7347 ack. Do our best to discard the rest of this packet. */
7348
7349 static void
7350 skip_frame (void)
7351 {
7352 int c;
7353
7354 while (1)
7355 {
7356 c = readchar (remote_timeout);
7357 switch (c)
7358 {
7359 case SERIAL_TIMEOUT:
7360 /* Nothing we can do. */
7361 return;
7362 case '#':
7363 /* Discard the two bytes of checksum and stop. */
7364 c = readchar (remote_timeout);
7365 if (c >= 0)
7366 c = readchar (remote_timeout);
7367
7368 return;
7369 case '*': /* Run length encoding. */
7370 /* Discard the repeat count. */
7371 c = readchar (remote_timeout);
7372 if (c < 0)
7373 return;
7374 break;
7375 default:
7376 /* A regular character. */
7377 break;
7378 }
7379 }
7380 }
7381
7382 /* Come here after finding the start of the frame. Collect the rest
7383 into *BUF, verifying the checksum, length, and handling run-length
7384 compression. NUL terminate the buffer. If there is not enough room,
7385 expand *BUF using xrealloc.
7386
7387 Returns -1 on error, number of characters in buffer (ignoring the
7388 trailing NULL) on success. (could be extended to return one of the
7389 SERIAL status indications). */
7390
7391 static long
7392 read_frame (char **buf_p,
7393 long *sizeof_buf)
7394 {
7395 unsigned char csum;
7396 long bc;
7397 int c;
7398 char *buf = *buf_p;
7399 struct remote_state *rs = get_remote_state ();
7400
7401 csum = 0;
7402 bc = 0;
7403
7404 while (1)
7405 {
7406 c = readchar (remote_timeout);
7407 switch (c)
7408 {
7409 case SERIAL_TIMEOUT:
7410 if (remote_debug)
7411 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7412 return -1;
7413 case '$':
7414 if (remote_debug)
7415 fputs_filtered ("Saw new packet start in middle of old one\n",
7416 gdb_stdlog);
7417 return -1; /* Start a new packet, count retries. */
7418 case '#':
7419 {
7420 unsigned char pktcsum;
7421 int check_0 = 0;
7422 int check_1 = 0;
7423
7424 buf[bc] = '\0';
7425
7426 check_0 = readchar (remote_timeout);
7427 if (check_0 >= 0)
7428 check_1 = readchar (remote_timeout);
7429
7430 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7431 {
7432 if (remote_debug)
7433 fputs_filtered ("Timeout in checksum, retrying\n",
7434 gdb_stdlog);
7435 return -1;
7436 }
7437 else if (check_0 < 0 || check_1 < 0)
7438 {
7439 if (remote_debug)
7440 fputs_filtered ("Communication error in checksum\n",
7441 gdb_stdlog);
7442 return -1;
7443 }
7444
7445 /* Don't recompute the checksum; with no ack packets we
7446 don't have any way to indicate a packet retransmission
7447 is necessary. */
7448 if (rs->noack_mode)
7449 return bc;
7450
7451 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7452 if (csum == pktcsum)
7453 return bc;
7454
7455 if (remote_debug)
7456 {
7457 struct cleanup *old_chain;
7458 char *str;
7459
7460 str = escape_buffer (buf, bc);
7461 old_chain = make_cleanup (xfree, str);
7462 fprintf_unfiltered (gdb_stdlog,
7463 "Bad checksum, sentsum=0x%x, "
7464 "csum=0x%x, buf=%s\n",
7465 pktcsum, csum, str);
7466 do_cleanups (old_chain);
7467 }
7468 /* Number of characters in buffer ignoring trailing
7469 NULL. */
7470 return -1;
7471 }
7472 case '*': /* Run length encoding. */
7473 {
7474 int repeat;
7475
7476 csum += c;
7477 c = readchar (remote_timeout);
7478 csum += c;
7479 repeat = c - ' ' + 3; /* Compute repeat count. */
7480
7481 /* The character before ``*'' is repeated. */
7482
7483 if (repeat > 0 && repeat <= 255 && bc > 0)
7484 {
7485 if (bc + repeat - 1 >= *sizeof_buf - 1)
7486 {
7487 /* Make some more room in the buffer. */
7488 *sizeof_buf += repeat;
7489 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7490 buf = *buf_p;
7491 }
7492
7493 memset (&buf[bc], buf[bc - 1], repeat);
7494 bc += repeat;
7495 continue;
7496 }
7497
7498 buf[bc] = '\0';
7499 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7500 return -1;
7501 }
7502 default:
7503 if (bc >= *sizeof_buf - 1)
7504 {
7505 /* Make some more room in the buffer. */
7506 *sizeof_buf *= 2;
7507 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7508 buf = *buf_p;
7509 }
7510
7511 buf[bc++] = c;
7512 csum += c;
7513 continue;
7514 }
7515 }
7516 }
7517
7518 /* Read a packet from the remote machine, with error checking, and
7519 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7520 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7521 rather than timing out; this is used (in synchronous mode) to wait
7522 for a target that is is executing user code to stop. */
7523 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7524 don't have to change all the calls to getpkt to deal with the
7525 return value, because at the moment I don't know what the right
7526 thing to do it for those. */
7527 void
7528 getpkt (char **buf,
7529 long *sizeof_buf,
7530 int forever)
7531 {
7532 int timed_out;
7533
7534 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7535 }
7536
7537
7538 /* Read a packet from the remote machine, with error checking, and
7539 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7540 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7541 rather than timing out; this is used (in synchronous mode) to wait
7542 for a target that is is executing user code to stop. If FOREVER ==
7543 0, this function is allowed to time out gracefully and return an
7544 indication of this to the caller. Otherwise return the number of
7545 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7546 enough reason to return to the caller. *IS_NOTIF is an output
7547 boolean that indicates whether *BUF holds a notification or not
7548 (a regular packet). */
7549
7550 static int
7551 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7552 int expecting_notif, int *is_notif)
7553 {
7554 struct remote_state *rs = get_remote_state ();
7555 int c;
7556 int tries;
7557 int timeout;
7558 int val = -1;
7559
7560 /* We're reading a new response. Make sure we don't look at a
7561 previously cached response. */
7562 rs->cached_wait_status = 0;
7563
7564 strcpy (*buf, "timeout");
7565
7566 if (forever)
7567 timeout = watchdog > 0 ? watchdog : -1;
7568 else if (expecting_notif)
7569 timeout = 0; /* There should already be a char in the buffer. If
7570 not, bail out. */
7571 else
7572 timeout = remote_timeout;
7573
7574 #define MAX_TRIES 3
7575
7576 /* Process any number of notifications, and then return when
7577 we get a packet. */
7578 for (;;)
7579 {
7580 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7581 times. */
7582 for (tries = 1; tries <= MAX_TRIES; tries++)
7583 {
7584 /* This can loop forever if the remote side sends us
7585 characters continuously, but if it pauses, we'll get
7586 SERIAL_TIMEOUT from readchar because of timeout. Then
7587 we'll count that as a retry.
7588
7589 Note that even when forever is set, we will only wait
7590 forever prior to the start of a packet. After that, we
7591 expect characters to arrive at a brisk pace. They should
7592 show up within remote_timeout intervals. */
7593 do
7594 c = readchar (timeout);
7595 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7596
7597 if (c == SERIAL_TIMEOUT)
7598 {
7599 if (expecting_notif)
7600 return -1; /* Don't complain, it's normal to not get
7601 anything in this case. */
7602
7603 if (forever) /* Watchdog went off? Kill the target. */
7604 {
7605 QUIT;
7606 remote_unpush_target ();
7607 throw_error (TARGET_CLOSE_ERROR,
7608 _("Watchdog timeout has expired. "
7609 "Target detached."));
7610 }
7611 if (remote_debug)
7612 fputs_filtered ("Timed out.\n", gdb_stdlog);
7613 }
7614 else
7615 {
7616 /* We've found the start of a packet or notification.
7617 Now collect the data. */
7618 val = read_frame (buf, sizeof_buf);
7619 if (val >= 0)
7620 break;
7621 }
7622
7623 remote_serial_write ("-", 1);
7624 }
7625
7626 if (tries > MAX_TRIES)
7627 {
7628 /* We have tried hard enough, and just can't receive the
7629 packet/notification. Give up. */
7630 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7631
7632 /* Skip the ack char if we're in no-ack mode. */
7633 if (!rs->noack_mode)
7634 remote_serial_write ("+", 1);
7635 return -1;
7636 }
7637
7638 /* If we got an ordinary packet, return that to our caller. */
7639 if (c == '$')
7640 {
7641 if (remote_debug)
7642 {
7643 struct cleanup *old_chain;
7644 char *str;
7645
7646 str = escape_buffer (*buf, val);
7647 old_chain = make_cleanup (xfree, str);
7648 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7649 do_cleanups (old_chain);
7650 }
7651
7652 /* Skip the ack char if we're in no-ack mode. */
7653 if (!rs->noack_mode)
7654 remote_serial_write ("+", 1);
7655 if (is_notif != NULL)
7656 *is_notif = 0;
7657 return val;
7658 }
7659
7660 /* If we got a notification, handle it, and go back to looking
7661 for a packet. */
7662 else
7663 {
7664 gdb_assert (c == '%');
7665
7666 if (remote_debug)
7667 {
7668 struct cleanup *old_chain;
7669 char *str;
7670
7671 str = escape_buffer (*buf, val);
7672 old_chain = make_cleanup (xfree, str);
7673 fprintf_unfiltered (gdb_stdlog,
7674 " Notification received: %s\n",
7675 str);
7676 do_cleanups (old_chain);
7677 }
7678 if (is_notif != NULL)
7679 *is_notif = 1;
7680
7681 handle_notification (*buf);
7682
7683 /* Notifications require no acknowledgement. */
7684
7685 if (expecting_notif)
7686 return val;
7687 }
7688 }
7689 }
7690
7691 static int
7692 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7693 {
7694 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7695 }
7696
7697 static int
7698 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7699 int *is_notif)
7700 {
7701 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7702 is_notif);
7703 }
7704
7705 \f
7706 /* A helper function that just calls putpkt; for type correctness. */
7707
7708 static int
7709 putpkt_for_catch_errors (void *arg)
7710 {
7711 return putpkt (arg);
7712 }
7713
7714 static void
7715 remote_kill (struct target_ops *ops)
7716 {
7717 /* Use catch_errors so the user can quit from gdb even when we
7718 aren't on speaking terms with the remote system. */
7719 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7720
7721 /* Don't wait for it to die. I'm not really sure it matters whether
7722 we do or not. For the existing stubs, kill is a noop. */
7723 target_mourn_inferior ();
7724 }
7725
7726 static int
7727 remote_vkill (int pid, struct remote_state *rs)
7728 {
7729 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7730 return -1;
7731
7732 /* Tell the remote target to detach. */
7733 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7734 putpkt (rs->buf);
7735 getpkt (&rs->buf, &rs->buf_size, 0);
7736
7737 if (packet_ok (rs->buf,
7738 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7739 return 0;
7740 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7741 return -1;
7742 else
7743 return 1;
7744 }
7745
7746 static void
7747 extended_remote_kill (struct target_ops *ops)
7748 {
7749 int res;
7750 int pid = ptid_get_pid (inferior_ptid);
7751 struct remote_state *rs = get_remote_state ();
7752
7753 res = remote_vkill (pid, rs);
7754 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7755 {
7756 /* Don't try 'k' on a multi-process aware stub -- it has no way
7757 to specify the pid. */
7758
7759 putpkt ("k");
7760 #if 0
7761 getpkt (&rs->buf, &rs->buf_size, 0);
7762 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7763 res = 1;
7764 #else
7765 /* Don't wait for it to die. I'm not really sure it matters whether
7766 we do or not. For the existing stubs, kill is a noop. */
7767 res = 0;
7768 #endif
7769 }
7770
7771 if (res != 0)
7772 error (_("Can't kill process"));
7773
7774 target_mourn_inferior ();
7775 }
7776
7777 static void
7778 remote_mourn (struct target_ops *ops)
7779 {
7780 remote_mourn_1 (ops);
7781 }
7782
7783 /* Worker function for remote_mourn. */
7784 static void
7785 remote_mourn_1 (struct target_ops *target)
7786 {
7787 unpush_target (target);
7788
7789 /* remote_close takes care of doing most of the clean up. */
7790 generic_mourn_inferior ();
7791 }
7792
7793 static void
7794 extended_remote_mourn_1 (struct target_ops *target)
7795 {
7796 struct remote_state *rs = get_remote_state ();
7797
7798 /* In case we got here due to an error, but we're going to stay
7799 connected. */
7800 rs->waiting_for_stop_reply = 0;
7801
7802 /* If the current general thread belonged to the process we just
7803 detached from or has exited, the remote side current general
7804 thread becomes undefined. Considering a case like this:
7805
7806 - We just got here due to a detach.
7807 - The process that we're detaching from happens to immediately
7808 report a global breakpoint being hit in non-stop mode, in the
7809 same thread we had selected before.
7810 - GDB attaches to this process again.
7811 - This event happens to be the next event we handle.
7812
7813 GDB would consider that the current general thread didn't need to
7814 be set on the stub side (with Hg), since for all it knew,
7815 GENERAL_THREAD hadn't changed.
7816
7817 Notice that although in all-stop mode, the remote server always
7818 sets the current thread to the thread reporting the stop event,
7819 that doesn't happen in non-stop mode; in non-stop, the stub *must
7820 not* change the current thread when reporting a breakpoint hit,
7821 due to the decoupling of event reporting and event handling.
7822
7823 To keep things simple, we always invalidate our notion of the
7824 current thread. */
7825 record_currthread (minus_one_ptid);
7826
7827 /* Unlike "target remote", we do not want to unpush the target; then
7828 the next time the user says "run", we won't be connected. */
7829
7830 /* Call common code to mark the inferior as not running. */
7831 generic_mourn_inferior ();
7832
7833 if (!have_inferiors ())
7834 {
7835 if (!remote_multi_process_p (rs))
7836 {
7837 /* Check whether the target is running now - some remote stubs
7838 automatically restart after kill. */
7839 putpkt ("?");
7840 getpkt (&rs->buf, &rs->buf_size, 0);
7841
7842 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7843 {
7844 /* Assume that the target has been restarted. Set
7845 inferior_ptid so that bits of core GDB realizes
7846 there's something here, e.g., so that the user can
7847 say "kill" again. */
7848 inferior_ptid = magic_null_ptid;
7849 }
7850 }
7851 }
7852 }
7853
7854 static void
7855 extended_remote_mourn (struct target_ops *ops)
7856 {
7857 extended_remote_mourn_1 (ops);
7858 }
7859
7860 static int
7861 extended_remote_supports_disable_randomization (void)
7862 {
7863 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7864 == PACKET_ENABLE);
7865 }
7866
7867 static void
7868 extended_remote_disable_randomization (int val)
7869 {
7870 struct remote_state *rs = get_remote_state ();
7871 char *reply;
7872
7873 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7874 val);
7875 putpkt (rs->buf);
7876 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7877 if (*reply == '\0')
7878 error (_("Target does not support QDisableRandomization."));
7879 if (strcmp (reply, "OK") != 0)
7880 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7881 }
7882
7883 static int
7884 extended_remote_run (char *args)
7885 {
7886 struct remote_state *rs = get_remote_state ();
7887 int len;
7888
7889 /* If the user has disabled vRun support, or we have detected that
7890 support is not available, do not try it. */
7891 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7892 return -1;
7893
7894 strcpy (rs->buf, "vRun;");
7895 len = strlen (rs->buf);
7896
7897 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7898 error (_("Remote file name too long for run packet"));
7899 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7900
7901 gdb_assert (args != NULL);
7902 if (*args)
7903 {
7904 struct cleanup *back_to;
7905 int i;
7906 char **argv;
7907
7908 argv = gdb_buildargv (args);
7909 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7910 for (i = 0; argv[i] != NULL; i++)
7911 {
7912 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7913 error (_("Argument list too long for run packet"));
7914 rs->buf[len++] = ';';
7915 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7916 }
7917 do_cleanups (back_to);
7918 }
7919
7920 rs->buf[len++] = '\0';
7921
7922 putpkt (rs->buf);
7923 getpkt (&rs->buf, &rs->buf_size, 0);
7924
7925 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7926 {
7927 /* We have a wait response. All is well. */
7928 return 0;
7929 }
7930 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7931 /* It wasn't disabled before, but it is now. */
7932 return -1;
7933 else
7934 {
7935 if (remote_exec_file[0] == '\0')
7936 error (_("Running the default executable on the remote target failed; "
7937 "try \"set remote exec-file\"?"));
7938 else
7939 error (_("Running \"%s\" on the remote target failed"),
7940 remote_exec_file);
7941 }
7942 }
7943
7944 /* In the extended protocol we want to be able to do things like
7945 "run" and have them basically work as expected. So we need
7946 a special create_inferior function. We support changing the
7947 executable file and the command line arguments, but not the
7948 environment. */
7949
7950 static void
7951 extended_remote_create_inferior_1 (char *exec_file, char *args,
7952 char **env, int from_tty)
7953 {
7954 int run_worked;
7955 char *stop_reply;
7956 struct remote_state *rs = get_remote_state ();
7957
7958 /* If running asynchronously, register the target file descriptor
7959 with the event loop. */
7960 if (target_can_async_p ())
7961 target_async (inferior_event_handler, 0);
7962
7963 /* Disable address space randomization if requested (and supported). */
7964 if (extended_remote_supports_disable_randomization ())
7965 extended_remote_disable_randomization (disable_randomization);
7966
7967 /* Now restart the remote server. */
7968 run_worked = extended_remote_run (args) != -1;
7969 if (!run_worked)
7970 {
7971 /* vRun was not supported. Fail if we need it to do what the
7972 user requested. */
7973 if (remote_exec_file[0])
7974 error (_("Remote target does not support \"set remote exec-file\""));
7975 if (args[0])
7976 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7977
7978 /* Fall back to "R". */
7979 extended_remote_restart ();
7980 }
7981
7982 if (!have_inferiors ())
7983 {
7984 /* Clean up from the last time we ran, before we mark the target
7985 running again. This will mark breakpoints uninserted, and
7986 get_offsets may insert breakpoints. */
7987 init_thread_list ();
7988 init_wait_for_inferior ();
7989 }
7990
7991 /* vRun's success return is a stop reply. */
7992 stop_reply = run_worked ? rs->buf : NULL;
7993 add_current_inferior_and_thread (stop_reply);
7994
7995 /* Get updated offsets, if the stub uses qOffsets. */
7996 get_offsets ();
7997 }
7998
7999 static void
8000 extended_remote_create_inferior (struct target_ops *ops,
8001 char *exec_file, char *args,
8002 char **env, int from_tty)
8003 {
8004 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8005 }
8006 \f
8007
8008 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8009 the list of conditions (in agent expression bytecode format), if any, the
8010 target needs to evaluate. The output is placed into the packet buffer
8011 started from BUF and ended at BUF_END. */
8012
8013 static int
8014 remote_add_target_side_condition (struct gdbarch *gdbarch,
8015 struct bp_target_info *bp_tgt, char *buf,
8016 char *buf_end)
8017 {
8018 struct agent_expr *aexpr = NULL;
8019 int i, ix;
8020 char *pkt;
8021 char *buf_start = buf;
8022
8023 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8024 return 0;
8025
8026 buf += strlen (buf);
8027 xsnprintf (buf, buf_end - buf, "%s", ";");
8028 buf++;
8029
8030 /* Send conditions to the target and free the vector. */
8031 for (ix = 0;
8032 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8033 ix++)
8034 {
8035 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8036 buf += strlen (buf);
8037 for (i = 0; i < aexpr->len; ++i)
8038 buf = pack_hex_byte (buf, aexpr->buf[i]);
8039 *buf = '\0';
8040 }
8041
8042 VEC_free (agent_expr_p, bp_tgt->conditions);
8043 return 0;
8044 }
8045
8046 static void
8047 remote_add_target_side_commands (struct gdbarch *gdbarch,
8048 struct bp_target_info *bp_tgt, char *buf)
8049 {
8050 struct agent_expr *aexpr = NULL;
8051 int i, ix;
8052
8053 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8054 return;
8055
8056 buf += strlen (buf);
8057
8058 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8059 buf += strlen (buf);
8060
8061 /* Concatenate all the agent expressions that are commands into the
8062 cmds parameter. */
8063 for (ix = 0;
8064 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8065 ix++)
8066 {
8067 sprintf (buf, "X%x,", aexpr->len);
8068 buf += strlen (buf);
8069 for (i = 0; i < aexpr->len; ++i)
8070 buf = pack_hex_byte (buf, aexpr->buf[i]);
8071 *buf = '\0';
8072 }
8073
8074 VEC_free (agent_expr_p, bp_tgt->tcommands);
8075 }
8076
8077 /* Insert a breakpoint. On targets that have software breakpoint
8078 support, we ask the remote target to do the work; on targets
8079 which don't, we insert a traditional memory breakpoint. */
8080
8081 static int
8082 remote_insert_breakpoint (struct gdbarch *gdbarch,
8083 struct bp_target_info *bp_tgt)
8084 {
8085 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8086 If it succeeds, then set the support to PACKET_ENABLE. If it
8087 fails, and the user has explicitly requested the Z support then
8088 report an error, otherwise, mark it disabled and go on. */
8089
8090 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8091 {
8092 CORE_ADDR addr = bp_tgt->placed_address;
8093 struct remote_state *rs;
8094 char *p, *endbuf;
8095 int bpsize;
8096 struct condition_list *cond = NULL;
8097
8098 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8099
8100 rs = get_remote_state ();
8101 p = rs->buf;
8102 endbuf = rs->buf + get_remote_packet_size ();
8103
8104 *(p++) = 'Z';
8105 *(p++) = '0';
8106 *(p++) = ',';
8107 addr = (ULONGEST) remote_address_masked (addr);
8108 p += hexnumstr (p, addr);
8109 xsnprintf (p, endbuf - p, ",%d", bpsize);
8110
8111 if (remote_supports_cond_breakpoints ())
8112 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8113
8114 if (remote_can_run_breakpoint_commands ())
8115 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8116
8117 putpkt (rs->buf);
8118 getpkt (&rs->buf, &rs->buf_size, 0);
8119
8120 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8121 {
8122 case PACKET_ERROR:
8123 return -1;
8124 case PACKET_OK:
8125 bp_tgt->placed_address = addr;
8126 bp_tgt->placed_size = bpsize;
8127 return 0;
8128 case PACKET_UNKNOWN:
8129 break;
8130 }
8131 }
8132
8133 return memory_insert_breakpoint (gdbarch, bp_tgt);
8134 }
8135
8136 static int
8137 remote_remove_breakpoint (struct gdbarch *gdbarch,
8138 struct bp_target_info *bp_tgt)
8139 {
8140 CORE_ADDR addr = bp_tgt->placed_address;
8141 struct remote_state *rs = get_remote_state ();
8142
8143 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8144 {
8145 char *p = rs->buf;
8146 char *endbuf = rs->buf + get_remote_packet_size ();
8147
8148 *(p++) = 'z';
8149 *(p++) = '0';
8150 *(p++) = ',';
8151
8152 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8153 p += hexnumstr (p, addr);
8154 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8155
8156 putpkt (rs->buf);
8157 getpkt (&rs->buf, &rs->buf_size, 0);
8158
8159 return (rs->buf[0] == 'E');
8160 }
8161
8162 return memory_remove_breakpoint (gdbarch, bp_tgt);
8163 }
8164
8165 static int
8166 watchpoint_to_Z_packet (int type)
8167 {
8168 switch (type)
8169 {
8170 case hw_write:
8171 return Z_PACKET_WRITE_WP;
8172 break;
8173 case hw_read:
8174 return Z_PACKET_READ_WP;
8175 break;
8176 case hw_access:
8177 return Z_PACKET_ACCESS_WP;
8178 break;
8179 default:
8180 internal_error (__FILE__, __LINE__,
8181 _("hw_bp_to_z: bad watchpoint type %d"), type);
8182 }
8183 }
8184
8185 static int
8186 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8187 struct expression *cond)
8188 {
8189 struct remote_state *rs = get_remote_state ();
8190 char *endbuf = rs->buf + get_remote_packet_size ();
8191 char *p;
8192 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8193
8194 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8195 return 1;
8196
8197 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8198 p = strchr (rs->buf, '\0');
8199 addr = remote_address_masked (addr);
8200 p += hexnumstr (p, (ULONGEST) addr);
8201 xsnprintf (p, endbuf - p, ",%x", len);
8202
8203 putpkt (rs->buf);
8204 getpkt (&rs->buf, &rs->buf_size, 0);
8205
8206 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8207 {
8208 case PACKET_ERROR:
8209 return -1;
8210 case PACKET_UNKNOWN:
8211 return 1;
8212 case PACKET_OK:
8213 return 0;
8214 }
8215 internal_error (__FILE__, __LINE__,
8216 _("remote_insert_watchpoint: reached end of function"));
8217 }
8218
8219 static int
8220 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8221 CORE_ADDR start, int length)
8222 {
8223 CORE_ADDR diff = remote_address_masked (addr - start);
8224
8225 return diff < length;
8226 }
8227
8228
8229 static int
8230 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8231 struct expression *cond)
8232 {
8233 struct remote_state *rs = get_remote_state ();
8234 char *endbuf = rs->buf + get_remote_packet_size ();
8235 char *p;
8236 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8237
8238 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8239 return -1;
8240
8241 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8242 p = strchr (rs->buf, '\0');
8243 addr = remote_address_masked (addr);
8244 p += hexnumstr (p, (ULONGEST) addr);
8245 xsnprintf (p, endbuf - p, ",%x", len);
8246 putpkt (rs->buf);
8247 getpkt (&rs->buf, &rs->buf_size, 0);
8248
8249 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8250 {
8251 case PACKET_ERROR:
8252 case PACKET_UNKNOWN:
8253 return -1;
8254 case PACKET_OK:
8255 return 0;
8256 }
8257 internal_error (__FILE__, __LINE__,
8258 _("remote_remove_watchpoint: reached end of function"));
8259 }
8260
8261
8262 int remote_hw_watchpoint_limit = -1;
8263 int remote_hw_watchpoint_length_limit = -1;
8264 int remote_hw_breakpoint_limit = -1;
8265
8266 static int
8267 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8268 {
8269 if (remote_hw_watchpoint_length_limit == 0)
8270 return 0;
8271 else if (remote_hw_watchpoint_length_limit < 0)
8272 return 1;
8273 else if (len <= remote_hw_watchpoint_length_limit)
8274 return 1;
8275 else
8276 return 0;
8277 }
8278
8279 static int
8280 remote_check_watch_resources (int type, int cnt, int ot)
8281 {
8282 if (type == bp_hardware_breakpoint)
8283 {
8284 if (remote_hw_breakpoint_limit == 0)
8285 return 0;
8286 else if (remote_hw_breakpoint_limit < 0)
8287 return 1;
8288 else if (cnt <= remote_hw_breakpoint_limit)
8289 return 1;
8290 }
8291 else
8292 {
8293 if (remote_hw_watchpoint_limit == 0)
8294 return 0;
8295 else if (remote_hw_watchpoint_limit < 0)
8296 return 1;
8297 else if (ot)
8298 return -1;
8299 else if (cnt <= remote_hw_watchpoint_limit)
8300 return 1;
8301 }
8302 return -1;
8303 }
8304
8305 static int
8306 remote_stopped_by_watchpoint (void)
8307 {
8308 return remote_stopped_by_watchpoint_p;
8309 }
8310
8311 static int
8312 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8313 {
8314 int rc = 0;
8315
8316 if (remote_stopped_by_watchpoint ())
8317 {
8318 *addr_p = remote_watch_data_address;
8319 rc = 1;
8320 }
8321
8322 return rc;
8323 }
8324
8325
8326 static int
8327 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8328 struct bp_target_info *bp_tgt)
8329 {
8330 CORE_ADDR addr;
8331 struct remote_state *rs;
8332 char *p, *endbuf;
8333 char *message;
8334
8335 /* The length field should be set to the size of a breakpoint
8336 instruction, even though we aren't inserting one ourselves. */
8337
8338 gdbarch_remote_breakpoint_from_pc
8339 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8340
8341 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8342 return -1;
8343
8344 rs = get_remote_state ();
8345 p = rs->buf;
8346 endbuf = rs->buf + get_remote_packet_size ();
8347
8348 *(p++) = 'Z';
8349 *(p++) = '1';
8350 *(p++) = ',';
8351
8352 addr = remote_address_masked (bp_tgt->placed_address);
8353 p += hexnumstr (p, (ULONGEST) addr);
8354 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8355
8356 if (remote_supports_cond_breakpoints ())
8357 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8358
8359 if (remote_can_run_breakpoint_commands ())
8360 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8361
8362 putpkt (rs->buf);
8363 getpkt (&rs->buf, &rs->buf_size, 0);
8364
8365 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8366 {
8367 case PACKET_ERROR:
8368 if (rs->buf[1] == '.')
8369 {
8370 message = strchr (rs->buf + 2, '.');
8371 if (message)
8372 error (_("Remote failure reply: %s"), message + 1);
8373 }
8374 return -1;
8375 case PACKET_UNKNOWN:
8376 return -1;
8377 case PACKET_OK:
8378 return 0;
8379 }
8380 internal_error (__FILE__, __LINE__,
8381 _("remote_insert_hw_breakpoint: reached end of function"));
8382 }
8383
8384
8385 static int
8386 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8387 struct bp_target_info *bp_tgt)
8388 {
8389 CORE_ADDR addr;
8390 struct remote_state *rs = get_remote_state ();
8391 char *p = rs->buf;
8392 char *endbuf = rs->buf + get_remote_packet_size ();
8393
8394 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8395 return -1;
8396
8397 *(p++) = 'z';
8398 *(p++) = '1';
8399 *(p++) = ',';
8400
8401 addr = remote_address_masked (bp_tgt->placed_address);
8402 p += hexnumstr (p, (ULONGEST) addr);
8403 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8404
8405 putpkt (rs->buf);
8406 getpkt (&rs->buf, &rs->buf_size, 0);
8407
8408 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8409 {
8410 case PACKET_ERROR:
8411 case PACKET_UNKNOWN:
8412 return -1;
8413 case PACKET_OK:
8414 return 0;
8415 }
8416 internal_error (__FILE__, __LINE__,
8417 _("remote_remove_hw_breakpoint: reached end of function"));
8418 }
8419
8420 /* Table used by the crc32 function to calcuate the checksum. */
8421
8422 static unsigned long crc32_table[256] =
8423 {0, 0};
8424
8425 static unsigned long
8426 crc32 (const unsigned char *buf, int len, unsigned int crc)
8427 {
8428 if (!crc32_table[1])
8429 {
8430 /* Initialize the CRC table and the decoding table. */
8431 int i, j;
8432 unsigned int c;
8433
8434 for (i = 0; i < 256; i++)
8435 {
8436 for (c = i << 24, j = 8; j > 0; --j)
8437 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8438 crc32_table[i] = c;
8439 }
8440 }
8441
8442 while (len--)
8443 {
8444 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8445 buf++;
8446 }
8447 return crc;
8448 }
8449
8450 /* Verify memory using the "qCRC:" request. */
8451
8452 static int
8453 remote_verify_memory (struct target_ops *ops,
8454 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8455 {
8456 struct remote_state *rs = get_remote_state ();
8457 unsigned long host_crc, target_crc;
8458 char *tmp;
8459
8460 /* FIXME: assumes lma can fit into long. */
8461 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8462 (long) lma, (long) size);
8463 putpkt (rs->buf);
8464
8465 /* Be clever; compute the host_crc before waiting for target
8466 reply. */
8467 host_crc = crc32 (data, size, 0xffffffff);
8468
8469 getpkt (&rs->buf, &rs->buf_size, 0);
8470 if (rs->buf[0] == 'E')
8471 return -1;
8472
8473 if (rs->buf[0] != 'C')
8474 error (_("remote target does not support this operation"));
8475
8476 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8477 target_crc = target_crc * 16 + fromhex (*tmp);
8478
8479 return (host_crc == target_crc);
8480 }
8481
8482 /* compare-sections command
8483
8484 With no arguments, compares each loadable section in the exec bfd
8485 with the same memory range on the target, and reports mismatches.
8486 Useful for verifying the image on the target against the exec file. */
8487
8488 static void
8489 compare_sections_command (char *args, int from_tty)
8490 {
8491 asection *s;
8492 struct cleanup *old_chain;
8493 gdb_byte *sectdata;
8494 const char *sectname;
8495 bfd_size_type size;
8496 bfd_vma lma;
8497 int matched = 0;
8498 int mismatched = 0;
8499 int res;
8500
8501 if (!exec_bfd)
8502 error (_("command cannot be used without an exec file"));
8503
8504 for (s = exec_bfd->sections; s; s = s->next)
8505 {
8506 if (!(s->flags & SEC_LOAD))
8507 continue; /* Skip non-loadable section. */
8508
8509 size = bfd_get_section_size (s);
8510 if (size == 0)
8511 continue; /* Skip zero-length section. */
8512
8513 sectname = bfd_get_section_name (exec_bfd, s);
8514 if (args && strcmp (args, sectname) != 0)
8515 continue; /* Not the section selected by user. */
8516
8517 matched = 1; /* Do this section. */
8518 lma = s->lma;
8519
8520 sectdata = xmalloc (size);
8521 old_chain = make_cleanup (xfree, sectdata);
8522 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8523
8524 res = target_verify_memory (sectdata, lma, size);
8525
8526 if (res == -1)
8527 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8528 paddress (target_gdbarch (), lma),
8529 paddress (target_gdbarch (), lma + size));
8530
8531 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8532 paddress (target_gdbarch (), lma),
8533 paddress (target_gdbarch (), lma + size));
8534 if (res)
8535 printf_filtered ("matched.\n");
8536 else
8537 {
8538 printf_filtered ("MIS-MATCHED!\n");
8539 mismatched++;
8540 }
8541
8542 do_cleanups (old_chain);
8543 }
8544 if (mismatched > 0)
8545 warning (_("One or more sections of the remote executable does not match\n\
8546 the loaded file\n"));
8547 if (args && !matched)
8548 printf_filtered (_("No loaded section named '%s'.\n"), args);
8549 }
8550
8551 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8552 into remote target. The number of bytes written to the remote
8553 target is returned, or -1 for error. */
8554
8555 static LONGEST
8556 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8557 const char *annex, const gdb_byte *writebuf,
8558 ULONGEST offset, LONGEST len,
8559 struct packet_config *packet)
8560 {
8561 int i, buf_len;
8562 ULONGEST n;
8563 struct remote_state *rs = get_remote_state ();
8564 int max_size = get_memory_write_packet_size ();
8565
8566 if (packet->support == PACKET_DISABLE)
8567 return -1;
8568
8569 /* Insert header. */
8570 i = snprintf (rs->buf, max_size,
8571 "qXfer:%s:write:%s:%s:",
8572 object_name, annex ? annex : "",
8573 phex_nz (offset, sizeof offset));
8574 max_size -= (i + 1);
8575
8576 /* Escape as much data as fits into rs->buf. */
8577 buf_len = remote_escape_output
8578 (writebuf, len, (rs->buf + i), &max_size, max_size);
8579
8580 if (putpkt_binary (rs->buf, i + buf_len) < 0
8581 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8582 || packet_ok (rs->buf, packet) != PACKET_OK)
8583 return -1;
8584
8585 unpack_varlen_hex (rs->buf, &n);
8586 return n;
8587 }
8588
8589 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8590 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8591 number of bytes read is returned, or 0 for EOF, or -1 for error.
8592 The number of bytes read may be less than LEN without indicating an
8593 EOF. PACKET is checked and updated to indicate whether the remote
8594 target supports this object. */
8595
8596 static LONGEST
8597 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8598 const char *annex,
8599 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8600 struct packet_config *packet)
8601 {
8602 static char *finished_object;
8603 static char *finished_annex;
8604 static ULONGEST finished_offset;
8605
8606 struct remote_state *rs = get_remote_state ();
8607 LONGEST i, n, packet_len;
8608
8609 if (packet->support == PACKET_DISABLE)
8610 return -1;
8611
8612 /* Check whether we've cached an end-of-object packet that matches
8613 this request. */
8614 if (finished_object)
8615 {
8616 if (strcmp (object_name, finished_object) == 0
8617 && strcmp (annex ? annex : "", finished_annex) == 0
8618 && offset == finished_offset)
8619 return 0;
8620
8621 /* Otherwise, we're now reading something different. Discard
8622 the cache. */
8623 xfree (finished_object);
8624 xfree (finished_annex);
8625 finished_object = NULL;
8626 finished_annex = NULL;
8627 }
8628
8629 /* Request only enough to fit in a single packet. The actual data
8630 may not, since we don't know how much of it will need to be escaped;
8631 the target is free to respond with slightly less data. We subtract
8632 five to account for the response type and the protocol frame. */
8633 n = min (get_remote_packet_size () - 5, len);
8634 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8635 object_name, annex ? annex : "",
8636 phex_nz (offset, sizeof offset),
8637 phex_nz (n, sizeof n));
8638 i = putpkt (rs->buf);
8639 if (i < 0)
8640 return -1;
8641
8642 rs->buf[0] = '\0';
8643 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8644 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8645 return -1;
8646
8647 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8648 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8649
8650 /* 'm' means there is (or at least might be) more data after this
8651 batch. That does not make sense unless there's at least one byte
8652 of data in this reply. */
8653 if (rs->buf[0] == 'm' && packet_len == 1)
8654 error (_("Remote qXfer reply contained no data."));
8655
8656 /* Got some data. */
8657 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8658
8659 /* 'l' is an EOF marker, possibly including a final block of data,
8660 or possibly empty. If we have the final block of a non-empty
8661 object, record this fact to bypass a subsequent partial read. */
8662 if (rs->buf[0] == 'l' && offset + i > 0)
8663 {
8664 finished_object = xstrdup (object_name);
8665 finished_annex = xstrdup (annex ? annex : "");
8666 finished_offset = offset + i;
8667 }
8668
8669 return i;
8670 }
8671
8672 static LONGEST
8673 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8674 const char *annex, gdb_byte *readbuf,
8675 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8676 {
8677 struct remote_state *rs;
8678 int i;
8679 char *p2;
8680 char query_type;
8681
8682 set_remote_traceframe ();
8683 set_general_thread (inferior_ptid);
8684
8685 rs = get_remote_state ();
8686
8687 /* Handle memory using the standard memory routines. */
8688 if (object == TARGET_OBJECT_MEMORY)
8689 {
8690 int xfered;
8691
8692 errno = 0;
8693
8694 /* If the remote target is connected but not running, we should
8695 pass this request down to a lower stratum (e.g. the executable
8696 file). */
8697 if (!target_has_execution)
8698 return 0;
8699
8700 if (writebuf != NULL)
8701 xfered = remote_write_bytes (offset, writebuf, len);
8702 else
8703 xfered = remote_read_bytes (offset, readbuf, len);
8704
8705 if (xfered > 0)
8706 return xfered;
8707 else if (xfered == 0 && errno == 0)
8708 return 0;
8709 else
8710 return -1;
8711 }
8712
8713 /* Handle SPU memory using qxfer packets. */
8714 if (object == TARGET_OBJECT_SPU)
8715 {
8716 if (readbuf)
8717 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8718 &remote_protocol_packets
8719 [PACKET_qXfer_spu_read]);
8720 else
8721 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8722 &remote_protocol_packets
8723 [PACKET_qXfer_spu_write]);
8724 }
8725
8726 /* Handle extra signal info using qxfer packets. */
8727 if (object == TARGET_OBJECT_SIGNAL_INFO)
8728 {
8729 if (readbuf)
8730 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8731 &remote_protocol_packets
8732 [PACKET_qXfer_siginfo_read]);
8733 else
8734 return remote_write_qxfer (ops, "siginfo", annex,
8735 writebuf, offset, len,
8736 &remote_protocol_packets
8737 [PACKET_qXfer_siginfo_write]);
8738 }
8739
8740 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8741 {
8742 if (readbuf)
8743 return remote_read_qxfer (ops, "statictrace", annex,
8744 readbuf, offset, len,
8745 &remote_protocol_packets
8746 [PACKET_qXfer_statictrace_read]);
8747 else
8748 return -1;
8749 }
8750
8751 /* Only handle flash writes. */
8752 if (writebuf != NULL)
8753 {
8754 LONGEST xfered;
8755
8756 switch (object)
8757 {
8758 case TARGET_OBJECT_FLASH:
8759 xfered = remote_flash_write (ops, offset, len, writebuf);
8760
8761 if (xfered > 0)
8762 return xfered;
8763 else if (xfered == 0 && errno == 0)
8764 return 0;
8765 else
8766 return -1;
8767
8768 default:
8769 return -1;
8770 }
8771 }
8772
8773 /* Map pre-existing objects onto letters. DO NOT do this for new
8774 objects!!! Instead specify new query packets. */
8775 switch (object)
8776 {
8777 case TARGET_OBJECT_AVR:
8778 query_type = 'R';
8779 break;
8780
8781 case TARGET_OBJECT_AUXV:
8782 gdb_assert (annex == NULL);
8783 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8784 &remote_protocol_packets[PACKET_qXfer_auxv]);
8785
8786 case TARGET_OBJECT_AVAILABLE_FEATURES:
8787 return remote_read_qxfer
8788 (ops, "features", annex, readbuf, offset, len,
8789 &remote_protocol_packets[PACKET_qXfer_features]);
8790
8791 case TARGET_OBJECT_LIBRARIES:
8792 return remote_read_qxfer
8793 (ops, "libraries", annex, readbuf, offset, len,
8794 &remote_protocol_packets[PACKET_qXfer_libraries]);
8795
8796 case TARGET_OBJECT_LIBRARIES_SVR4:
8797 return remote_read_qxfer
8798 (ops, "libraries-svr4", annex, readbuf, offset, len,
8799 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8800
8801 case TARGET_OBJECT_MEMORY_MAP:
8802 gdb_assert (annex == NULL);
8803 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8804 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8805
8806 case TARGET_OBJECT_OSDATA:
8807 /* Should only get here if we're connected. */
8808 gdb_assert (remote_desc);
8809 return remote_read_qxfer
8810 (ops, "osdata", annex, readbuf, offset, len,
8811 &remote_protocol_packets[PACKET_qXfer_osdata]);
8812
8813 case TARGET_OBJECT_THREADS:
8814 gdb_assert (annex == NULL);
8815 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8816 &remote_protocol_packets[PACKET_qXfer_threads]);
8817
8818 case TARGET_OBJECT_TRACEFRAME_INFO:
8819 gdb_assert (annex == NULL);
8820 return remote_read_qxfer
8821 (ops, "traceframe-info", annex, readbuf, offset, len,
8822 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8823
8824 case TARGET_OBJECT_FDPIC:
8825 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8826 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8827
8828 case TARGET_OBJECT_OPENVMS_UIB:
8829 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8830 &remote_protocol_packets[PACKET_qXfer_uib]);
8831
8832 case TARGET_OBJECT_BTRACE:
8833 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8834 &remote_protocol_packets[PACKET_qXfer_btrace]);
8835
8836 default:
8837 return -1;
8838 }
8839
8840 /* Note: a zero OFFSET and LEN can be used to query the minimum
8841 buffer size. */
8842 if (offset == 0 && len == 0)
8843 return (get_remote_packet_size ());
8844 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8845 large enough let the caller deal with it. */
8846 if (len < get_remote_packet_size ())
8847 return -1;
8848 len = get_remote_packet_size ();
8849
8850 /* Except for querying the minimum buffer size, target must be open. */
8851 if (!remote_desc)
8852 error (_("remote query is only available after target open"));
8853
8854 gdb_assert (annex != NULL);
8855 gdb_assert (readbuf != NULL);
8856
8857 p2 = rs->buf;
8858 *p2++ = 'q';
8859 *p2++ = query_type;
8860
8861 /* We used one buffer char for the remote protocol q command and
8862 another for the query type. As the remote protocol encapsulation
8863 uses 4 chars plus one extra in case we are debugging
8864 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8865 string. */
8866 i = 0;
8867 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8868 {
8869 /* Bad caller may have sent forbidden characters. */
8870 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8871 *p2++ = annex[i];
8872 i++;
8873 }
8874 *p2 = '\0';
8875 gdb_assert (annex[i] == '\0');
8876
8877 i = putpkt (rs->buf);
8878 if (i < 0)
8879 return i;
8880
8881 getpkt (&rs->buf, &rs->buf_size, 0);
8882 strcpy ((char *) readbuf, rs->buf);
8883
8884 return strlen ((char *) readbuf);
8885 }
8886
8887 static int
8888 remote_search_memory (struct target_ops* ops,
8889 CORE_ADDR start_addr, ULONGEST search_space_len,
8890 const gdb_byte *pattern, ULONGEST pattern_len,
8891 CORE_ADDR *found_addrp)
8892 {
8893 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8894 struct remote_state *rs = get_remote_state ();
8895 int max_size = get_memory_write_packet_size ();
8896 struct packet_config *packet =
8897 &remote_protocol_packets[PACKET_qSearch_memory];
8898 /* Number of packet bytes used to encode the pattern;
8899 this could be more than PATTERN_LEN due to escape characters. */
8900 int escaped_pattern_len;
8901 /* Amount of pattern that was encodable in the packet. */
8902 int used_pattern_len;
8903 int i;
8904 int found;
8905 ULONGEST found_addr;
8906
8907 /* Don't go to the target if we don't have to.
8908 This is done before checking packet->support to avoid the possibility that
8909 a success for this edge case means the facility works in general. */
8910 if (pattern_len > search_space_len)
8911 return 0;
8912 if (pattern_len == 0)
8913 {
8914 *found_addrp = start_addr;
8915 return 1;
8916 }
8917
8918 /* If we already know the packet isn't supported, fall back to the simple
8919 way of searching memory. */
8920
8921 if (packet->support == PACKET_DISABLE)
8922 {
8923 /* Target doesn't provided special support, fall back and use the
8924 standard support (copy memory and do the search here). */
8925 return simple_search_memory (ops, start_addr, search_space_len,
8926 pattern, pattern_len, found_addrp);
8927 }
8928
8929 /* Insert header. */
8930 i = snprintf (rs->buf, max_size,
8931 "qSearch:memory:%s;%s;",
8932 phex_nz (start_addr, addr_size),
8933 phex_nz (search_space_len, sizeof (search_space_len)));
8934 max_size -= (i + 1);
8935
8936 /* Escape as much data as fits into rs->buf. */
8937 escaped_pattern_len =
8938 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8939 &used_pattern_len, max_size);
8940
8941 /* Bail if the pattern is too large. */
8942 if (used_pattern_len != pattern_len)
8943 error (_("Pattern is too large to transmit to remote target."));
8944
8945 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8946 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8947 || packet_ok (rs->buf, packet) != PACKET_OK)
8948 {
8949 /* The request may not have worked because the command is not
8950 supported. If so, fall back to the simple way. */
8951 if (packet->support == PACKET_DISABLE)
8952 {
8953 return simple_search_memory (ops, start_addr, search_space_len,
8954 pattern, pattern_len, found_addrp);
8955 }
8956 return -1;
8957 }
8958
8959 if (rs->buf[0] == '0')
8960 found = 0;
8961 else if (rs->buf[0] == '1')
8962 {
8963 found = 1;
8964 if (rs->buf[1] != ',')
8965 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8966 unpack_varlen_hex (rs->buf + 2, &found_addr);
8967 *found_addrp = found_addr;
8968 }
8969 else
8970 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8971
8972 return found;
8973 }
8974
8975 static void
8976 remote_rcmd (char *command,
8977 struct ui_file *outbuf)
8978 {
8979 struct remote_state *rs = get_remote_state ();
8980 char *p = rs->buf;
8981
8982 if (!remote_desc)
8983 error (_("remote rcmd is only available after target open"));
8984
8985 /* Send a NULL command across as an empty command. */
8986 if (command == NULL)
8987 command = "";
8988
8989 /* The query prefix. */
8990 strcpy (rs->buf, "qRcmd,");
8991 p = strchr (rs->buf, '\0');
8992
8993 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8994 > get_remote_packet_size ())
8995 error (_("\"monitor\" command ``%s'' is too long."), command);
8996
8997 /* Encode the actual command. */
8998 bin2hex ((gdb_byte *) command, p, 0);
8999
9000 if (putpkt (rs->buf) < 0)
9001 error (_("Communication problem with target."));
9002
9003 /* get/display the response */
9004 while (1)
9005 {
9006 char *buf;
9007
9008 /* XXX - see also remote_get_noisy_reply(). */
9009 QUIT; /* Allow user to bail out with ^C. */
9010 rs->buf[0] = '\0';
9011 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9012 {
9013 /* Timeout. Continue to (try to) read responses.
9014 This is better than stopping with an error, assuming the stub
9015 is still executing the (long) monitor command.
9016 If needed, the user can interrupt gdb using C-c, obtaining
9017 an effect similar to stop on timeout. */
9018 continue;
9019 }
9020 buf = rs->buf;
9021 if (buf[0] == '\0')
9022 error (_("Target does not support this command."));
9023 if (buf[0] == 'O' && buf[1] != 'K')
9024 {
9025 remote_console_output (buf + 1); /* 'O' message from stub. */
9026 continue;
9027 }
9028 if (strcmp (buf, "OK") == 0)
9029 break;
9030 if (strlen (buf) == 3 && buf[0] == 'E'
9031 && isdigit (buf[1]) && isdigit (buf[2]))
9032 {
9033 error (_("Protocol error with Rcmd"));
9034 }
9035 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9036 {
9037 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9038
9039 fputc_unfiltered (c, outbuf);
9040 }
9041 break;
9042 }
9043 }
9044
9045 static VEC(mem_region_s) *
9046 remote_memory_map (struct target_ops *ops)
9047 {
9048 VEC(mem_region_s) *result = NULL;
9049 char *text = target_read_stralloc (&current_target,
9050 TARGET_OBJECT_MEMORY_MAP, NULL);
9051
9052 if (text)
9053 {
9054 struct cleanup *back_to = make_cleanup (xfree, text);
9055
9056 result = parse_memory_map (text);
9057 do_cleanups (back_to);
9058 }
9059
9060 return result;
9061 }
9062
9063 static void
9064 packet_command (char *args, int from_tty)
9065 {
9066 struct remote_state *rs = get_remote_state ();
9067
9068 if (!remote_desc)
9069 error (_("command can only be used with remote target"));
9070
9071 if (!args)
9072 error (_("remote-packet command requires packet text as argument"));
9073
9074 puts_filtered ("sending: ");
9075 print_packet (args);
9076 puts_filtered ("\n");
9077 putpkt (args);
9078
9079 getpkt (&rs->buf, &rs->buf_size, 0);
9080 puts_filtered ("received: ");
9081 print_packet (rs->buf);
9082 puts_filtered ("\n");
9083 }
9084
9085 #if 0
9086 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9087
9088 static void display_thread_info (struct gdb_ext_thread_info *info);
9089
9090 static void threadset_test_cmd (char *cmd, int tty);
9091
9092 static void threadalive_test (char *cmd, int tty);
9093
9094 static void threadlist_test_cmd (char *cmd, int tty);
9095
9096 int get_and_display_threadinfo (threadref *ref);
9097
9098 static void threadinfo_test_cmd (char *cmd, int tty);
9099
9100 static int thread_display_step (threadref *ref, void *context);
9101
9102 static void threadlist_update_test_cmd (char *cmd, int tty);
9103
9104 static void init_remote_threadtests (void);
9105
9106 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9107
9108 static void
9109 threadset_test_cmd (char *cmd, int tty)
9110 {
9111 int sample_thread = SAMPLE_THREAD;
9112
9113 printf_filtered (_("Remote threadset test\n"));
9114 set_general_thread (sample_thread);
9115 }
9116
9117
9118 static void
9119 threadalive_test (char *cmd, int tty)
9120 {
9121 int sample_thread = SAMPLE_THREAD;
9122 int pid = ptid_get_pid (inferior_ptid);
9123 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9124
9125 if (remote_thread_alive (ptid))
9126 printf_filtered ("PASS: Thread alive test\n");
9127 else
9128 printf_filtered ("FAIL: Thread alive test\n");
9129 }
9130
9131 void output_threadid (char *title, threadref *ref);
9132
9133 void
9134 output_threadid (char *title, threadref *ref)
9135 {
9136 char hexid[20];
9137
9138 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9139 hexid[16] = 0;
9140 printf_filtered ("%s %s\n", title, (&hexid[0]));
9141 }
9142
9143 static void
9144 threadlist_test_cmd (char *cmd, int tty)
9145 {
9146 int startflag = 1;
9147 threadref nextthread;
9148 int done, result_count;
9149 threadref threadlist[3];
9150
9151 printf_filtered ("Remote Threadlist test\n");
9152 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9153 &result_count, &threadlist[0]))
9154 printf_filtered ("FAIL: threadlist test\n");
9155 else
9156 {
9157 threadref *scan = threadlist;
9158 threadref *limit = scan + result_count;
9159
9160 while (scan < limit)
9161 output_threadid (" thread ", scan++);
9162 }
9163 }
9164
9165 void
9166 display_thread_info (struct gdb_ext_thread_info *info)
9167 {
9168 output_threadid ("Threadid: ", &info->threadid);
9169 printf_filtered ("Name: %s\n ", info->shortname);
9170 printf_filtered ("State: %s\n", info->display);
9171 printf_filtered ("other: %s\n\n", info->more_display);
9172 }
9173
9174 int
9175 get_and_display_threadinfo (threadref *ref)
9176 {
9177 int result;
9178 int set;
9179 struct gdb_ext_thread_info threadinfo;
9180
9181 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9182 | TAG_MOREDISPLAY | TAG_DISPLAY;
9183 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9184 display_thread_info (&threadinfo);
9185 return result;
9186 }
9187
9188 static void
9189 threadinfo_test_cmd (char *cmd, int tty)
9190 {
9191 int athread = SAMPLE_THREAD;
9192 threadref thread;
9193 int set;
9194
9195 int_to_threadref (&thread, athread);
9196 printf_filtered ("Remote Threadinfo test\n");
9197 if (!get_and_display_threadinfo (&thread))
9198 printf_filtered ("FAIL cannot get thread info\n");
9199 }
9200
9201 static int
9202 thread_display_step (threadref *ref, void *context)
9203 {
9204 /* output_threadid(" threadstep ",ref); *//* simple test */
9205 return get_and_display_threadinfo (ref);
9206 }
9207
9208 static void
9209 threadlist_update_test_cmd (char *cmd, int tty)
9210 {
9211 printf_filtered ("Remote Threadlist update test\n");
9212 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9213 }
9214
9215 static void
9216 init_remote_threadtests (void)
9217 {
9218 add_com ("tlist", class_obscure, threadlist_test_cmd,
9219 _("Fetch and print the remote list of "
9220 "thread identifiers, one pkt only"));
9221 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9222 _("Fetch and display info about one thread"));
9223 add_com ("tset", class_obscure, threadset_test_cmd,
9224 _("Test setting to a different thread"));
9225 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9226 _("Iterate through updating all remote thread info"));
9227 add_com ("talive", class_obscure, threadalive_test,
9228 _(" Remote thread alive test "));
9229 }
9230
9231 #endif /* 0 */
9232
9233 /* Convert a thread ID to a string. Returns the string in a static
9234 buffer. */
9235
9236 static char *
9237 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9238 {
9239 static char buf[64];
9240 struct remote_state *rs = get_remote_state ();
9241
9242 if (ptid_equal (ptid, null_ptid))
9243 return normal_pid_to_str (ptid);
9244 else if (ptid_is_pid (ptid))
9245 {
9246 /* Printing an inferior target id. */
9247
9248 /* When multi-process extensions are off, there's no way in the
9249 remote protocol to know the remote process id, if there's any
9250 at all. There's one exception --- when we're connected with
9251 target extended-remote, and we manually attached to a process
9252 with "attach PID". We don't record anywhere a flag that
9253 allows us to distinguish that case from the case of
9254 connecting with extended-remote and the stub already being
9255 attached to a process, and reporting yes to qAttached, hence
9256 no smart special casing here. */
9257 if (!remote_multi_process_p (rs))
9258 {
9259 xsnprintf (buf, sizeof buf, "Remote target");
9260 return buf;
9261 }
9262
9263 return normal_pid_to_str (ptid);
9264 }
9265 else
9266 {
9267 if (ptid_equal (magic_null_ptid, ptid))
9268 xsnprintf (buf, sizeof buf, "Thread <main>");
9269 else if (rs->extended && remote_multi_process_p (rs))
9270 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9271 ptid_get_pid (ptid), ptid_get_tid (ptid));
9272 else
9273 xsnprintf (buf, sizeof buf, "Thread %ld",
9274 ptid_get_tid (ptid));
9275 return buf;
9276 }
9277 }
9278
9279 /* Get the address of the thread local variable in OBJFILE which is
9280 stored at OFFSET within the thread local storage for thread PTID. */
9281
9282 static CORE_ADDR
9283 remote_get_thread_local_address (struct target_ops *ops,
9284 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9285 {
9286 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9287 {
9288 struct remote_state *rs = get_remote_state ();
9289 char *p = rs->buf;
9290 char *endp = rs->buf + get_remote_packet_size ();
9291 enum packet_result result;
9292
9293 strcpy (p, "qGetTLSAddr:");
9294 p += strlen (p);
9295 p = write_ptid (p, endp, ptid);
9296 *p++ = ',';
9297 p += hexnumstr (p, offset);
9298 *p++ = ',';
9299 p += hexnumstr (p, lm);
9300 *p++ = '\0';
9301
9302 putpkt (rs->buf);
9303 getpkt (&rs->buf, &rs->buf_size, 0);
9304 result = packet_ok (rs->buf,
9305 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9306 if (result == PACKET_OK)
9307 {
9308 ULONGEST result;
9309
9310 unpack_varlen_hex (rs->buf, &result);
9311 return result;
9312 }
9313 else if (result == PACKET_UNKNOWN)
9314 throw_error (TLS_GENERIC_ERROR,
9315 _("Remote target doesn't support qGetTLSAddr packet"));
9316 else
9317 throw_error (TLS_GENERIC_ERROR,
9318 _("Remote target failed to process qGetTLSAddr request"));
9319 }
9320 else
9321 throw_error (TLS_GENERIC_ERROR,
9322 _("TLS not supported or disabled on this target"));
9323 /* Not reached. */
9324 return 0;
9325 }
9326
9327 /* Provide thread local base, i.e. Thread Information Block address.
9328 Returns 1 if ptid is found and thread_local_base is non zero. */
9329
9330 static int
9331 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9332 {
9333 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9334 {
9335 struct remote_state *rs = get_remote_state ();
9336 char *p = rs->buf;
9337 char *endp = rs->buf + get_remote_packet_size ();
9338 enum packet_result result;
9339
9340 strcpy (p, "qGetTIBAddr:");
9341 p += strlen (p);
9342 p = write_ptid (p, endp, ptid);
9343 *p++ = '\0';
9344
9345 putpkt (rs->buf);
9346 getpkt (&rs->buf, &rs->buf_size, 0);
9347 result = packet_ok (rs->buf,
9348 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9349 if (result == PACKET_OK)
9350 {
9351 ULONGEST result;
9352
9353 unpack_varlen_hex (rs->buf, &result);
9354 if (addr)
9355 *addr = (CORE_ADDR) result;
9356 return 1;
9357 }
9358 else if (result == PACKET_UNKNOWN)
9359 error (_("Remote target doesn't support qGetTIBAddr packet"));
9360 else
9361 error (_("Remote target failed to process qGetTIBAddr request"));
9362 }
9363 else
9364 error (_("qGetTIBAddr not supported or disabled on this target"));
9365 /* Not reached. */
9366 return 0;
9367 }
9368
9369 /* Support for inferring a target description based on the current
9370 architecture and the size of a 'g' packet. While the 'g' packet
9371 can have any size (since optional registers can be left off the
9372 end), some sizes are easily recognizable given knowledge of the
9373 approximate architecture. */
9374
9375 struct remote_g_packet_guess
9376 {
9377 int bytes;
9378 const struct target_desc *tdesc;
9379 };
9380 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9381 DEF_VEC_O(remote_g_packet_guess_s);
9382
9383 struct remote_g_packet_data
9384 {
9385 VEC(remote_g_packet_guess_s) *guesses;
9386 };
9387
9388 static struct gdbarch_data *remote_g_packet_data_handle;
9389
9390 static void *
9391 remote_g_packet_data_init (struct obstack *obstack)
9392 {
9393 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9394 }
9395
9396 void
9397 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9398 const struct target_desc *tdesc)
9399 {
9400 struct remote_g_packet_data *data
9401 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9402 struct remote_g_packet_guess new_guess, *guess;
9403 int ix;
9404
9405 gdb_assert (tdesc != NULL);
9406
9407 for (ix = 0;
9408 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9409 ix++)
9410 if (guess->bytes == bytes)
9411 internal_error (__FILE__, __LINE__,
9412 _("Duplicate g packet description added for size %d"),
9413 bytes);
9414
9415 new_guess.bytes = bytes;
9416 new_guess.tdesc = tdesc;
9417 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9418 }
9419
9420 /* Return 1 if remote_read_description would do anything on this target
9421 and architecture, 0 otherwise. */
9422
9423 static int
9424 remote_read_description_p (struct target_ops *target)
9425 {
9426 struct remote_g_packet_data *data
9427 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9428
9429 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9430 return 1;
9431
9432 return 0;
9433 }
9434
9435 static const struct target_desc *
9436 remote_read_description (struct target_ops *target)
9437 {
9438 struct remote_g_packet_data *data
9439 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9440
9441 /* Do not try this during initial connection, when we do not know
9442 whether there is a running but stopped thread. */
9443 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9444 return NULL;
9445
9446 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9447 {
9448 struct remote_g_packet_guess *guess;
9449 int ix;
9450 int bytes = send_g_packet ();
9451
9452 for (ix = 0;
9453 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9454 ix++)
9455 if (guess->bytes == bytes)
9456 return guess->tdesc;
9457
9458 /* We discard the g packet. A minor optimization would be to
9459 hold on to it, and fill the register cache once we have selected
9460 an architecture, but it's too tricky to do safely. */
9461 }
9462
9463 return NULL;
9464 }
9465
9466 /* Remote file transfer support. This is host-initiated I/O, not
9467 target-initiated; for target-initiated, see remote-fileio.c. */
9468
9469 /* If *LEFT is at least the length of STRING, copy STRING to
9470 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9471 decrease *LEFT. Otherwise raise an error. */
9472
9473 static void
9474 remote_buffer_add_string (char **buffer, int *left, char *string)
9475 {
9476 int len = strlen (string);
9477
9478 if (len > *left)
9479 error (_("Packet too long for target."));
9480
9481 memcpy (*buffer, string, len);
9482 *buffer += len;
9483 *left -= len;
9484
9485 /* NUL-terminate the buffer as a convenience, if there is
9486 room. */
9487 if (*left)
9488 **buffer = '\0';
9489 }
9490
9491 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9492 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9493 decrease *LEFT. Otherwise raise an error. */
9494
9495 static void
9496 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9497 int len)
9498 {
9499 if (2 * len > *left)
9500 error (_("Packet too long for target."));
9501
9502 bin2hex (bytes, *buffer, len);
9503 *buffer += 2 * len;
9504 *left -= 2 * len;
9505
9506 /* NUL-terminate the buffer as a convenience, if there is
9507 room. */
9508 if (*left)
9509 **buffer = '\0';
9510 }
9511
9512 /* If *LEFT is large enough, convert VALUE to hex and add it to
9513 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9514 decrease *LEFT. Otherwise raise an error. */
9515
9516 static void
9517 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9518 {
9519 int len = hexnumlen (value);
9520
9521 if (len > *left)
9522 error (_("Packet too long for target."));
9523
9524 hexnumstr (*buffer, value);
9525 *buffer += len;
9526 *left -= len;
9527
9528 /* NUL-terminate the buffer as a convenience, if there is
9529 room. */
9530 if (*left)
9531 **buffer = '\0';
9532 }
9533
9534 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9535 value, *REMOTE_ERRNO to the remote error number or zero if none
9536 was included, and *ATTACHMENT to point to the start of the annex
9537 if any. The length of the packet isn't needed here; there may
9538 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9539
9540 Return 0 if the packet could be parsed, -1 if it could not. If
9541 -1 is returned, the other variables may not be initialized. */
9542
9543 static int
9544 remote_hostio_parse_result (char *buffer, int *retcode,
9545 int *remote_errno, char **attachment)
9546 {
9547 char *p, *p2;
9548
9549 *remote_errno = 0;
9550 *attachment = NULL;
9551
9552 if (buffer[0] != 'F')
9553 return -1;
9554
9555 errno = 0;
9556 *retcode = strtol (&buffer[1], &p, 16);
9557 if (errno != 0 || p == &buffer[1])
9558 return -1;
9559
9560 /* Check for ",errno". */
9561 if (*p == ',')
9562 {
9563 errno = 0;
9564 *remote_errno = strtol (p + 1, &p2, 16);
9565 if (errno != 0 || p + 1 == p2)
9566 return -1;
9567 p = p2;
9568 }
9569
9570 /* Check for ";attachment". If there is no attachment, the
9571 packet should end here. */
9572 if (*p == ';')
9573 {
9574 *attachment = p + 1;
9575 return 0;
9576 }
9577 else if (*p == '\0')
9578 return 0;
9579 else
9580 return -1;
9581 }
9582
9583 /* Send a prepared I/O packet to the target and read its response.
9584 The prepared packet is in the global RS->BUF before this function
9585 is called, and the answer is there when we return.
9586
9587 COMMAND_BYTES is the length of the request to send, which may include
9588 binary data. WHICH_PACKET is the packet configuration to check
9589 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9590 is set to the error number and -1 is returned. Otherwise the value
9591 returned by the function is returned.
9592
9593 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9594 attachment is expected; an error will be reported if there's a
9595 mismatch. If one is found, *ATTACHMENT will be set to point into
9596 the packet buffer and *ATTACHMENT_LEN will be set to the
9597 attachment's length. */
9598
9599 static int
9600 remote_hostio_send_command (int command_bytes, int which_packet,
9601 int *remote_errno, char **attachment,
9602 int *attachment_len)
9603 {
9604 struct remote_state *rs = get_remote_state ();
9605 int ret, bytes_read;
9606 char *attachment_tmp;
9607
9608 if (!remote_desc
9609 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9610 {
9611 *remote_errno = FILEIO_ENOSYS;
9612 return -1;
9613 }
9614
9615 putpkt_binary (rs->buf, command_bytes);
9616 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9617
9618 /* If it timed out, something is wrong. Don't try to parse the
9619 buffer. */
9620 if (bytes_read < 0)
9621 {
9622 *remote_errno = FILEIO_EINVAL;
9623 return -1;
9624 }
9625
9626 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9627 {
9628 case PACKET_ERROR:
9629 *remote_errno = FILEIO_EINVAL;
9630 return -1;
9631 case PACKET_UNKNOWN:
9632 *remote_errno = FILEIO_ENOSYS;
9633 return -1;
9634 case PACKET_OK:
9635 break;
9636 }
9637
9638 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9639 &attachment_tmp))
9640 {
9641 *remote_errno = FILEIO_EINVAL;
9642 return -1;
9643 }
9644
9645 /* Make sure we saw an attachment if and only if we expected one. */
9646 if ((attachment_tmp == NULL && attachment != NULL)
9647 || (attachment_tmp != NULL && attachment == NULL))
9648 {
9649 *remote_errno = FILEIO_EINVAL;
9650 return -1;
9651 }
9652
9653 /* If an attachment was found, it must point into the packet buffer;
9654 work out how many bytes there were. */
9655 if (attachment_tmp != NULL)
9656 {
9657 *attachment = attachment_tmp;
9658 *attachment_len = bytes_read - (*attachment - rs->buf);
9659 }
9660
9661 return ret;
9662 }
9663
9664 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9665 remote file descriptor, or -1 if an error occurs (and set
9666 *REMOTE_ERRNO). */
9667
9668 static int
9669 remote_hostio_open (const char *filename, int flags, int mode,
9670 int *remote_errno)
9671 {
9672 struct remote_state *rs = get_remote_state ();
9673 char *p = rs->buf;
9674 int left = get_remote_packet_size () - 1;
9675
9676 remote_buffer_add_string (&p, &left, "vFile:open:");
9677
9678 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9679 strlen (filename));
9680 remote_buffer_add_string (&p, &left, ",");
9681
9682 remote_buffer_add_int (&p, &left, flags);
9683 remote_buffer_add_string (&p, &left, ",");
9684
9685 remote_buffer_add_int (&p, &left, mode);
9686
9687 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9688 remote_errno, NULL, NULL);
9689 }
9690
9691 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9692 Return the number of bytes written, or -1 if an error occurs (and
9693 set *REMOTE_ERRNO). */
9694
9695 static int
9696 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9697 ULONGEST offset, int *remote_errno)
9698 {
9699 struct remote_state *rs = get_remote_state ();
9700 char *p = rs->buf;
9701 int left = get_remote_packet_size ();
9702 int out_len;
9703
9704 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9705
9706 remote_buffer_add_int (&p, &left, fd);
9707 remote_buffer_add_string (&p, &left, ",");
9708
9709 remote_buffer_add_int (&p, &left, offset);
9710 remote_buffer_add_string (&p, &left, ",");
9711
9712 p += remote_escape_output (write_buf, len, p, &out_len,
9713 get_remote_packet_size () - (p - rs->buf));
9714
9715 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9716 remote_errno, NULL, NULL);
9717 }
9718
9719 /* Read up to LEN bytes FD on the remote target into READ_BUF
9720 Return the number of bytes read, or -1 if an error occurs (and
9721 set *REMOTE_ERRNO). */
9722
9723 static int
9724 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9725 ULONGEST offset, int *remote_errno)
9726 {
9727 struct remote_state *rs = get_remote_state ();
9728 char *p = rs->buf;
9729 char *attachment;
9730 int left = get_remote_packet_size ();
9731 int ret, attachment_len;
9732 int read_len;
9733
9734 remote_buffer_add_string (&p, &left, "vFile:pread:");
9735
9736 remote_buffer_add_int (&p, &left, fd);
9737 remote_buffer_add_string (&p, &left, ",");
9738
9739 remote_buffer_add_int (&p, &left, len);
9740 remote_buffer_add_string (&p, &left, ",");
9741
9742 remote_buffer_add_int (&p, &left, offset);
9743
9744 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9745 remote_errno, &attachment,
9746 &attachment_len);
9747
9748 if (ret < 0)
9749 return ret;
9750
9751 read_len = remote_unescape_input (attachment, attachment_len,
9752 read_buf, len);
9753 if (read_len != ret)
9754 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9755
9756 return ret;
9757 }
9758
9759 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9760 (and set *REMOTE_ERRNO). */
9761
9762 static int
9763 remote_hostio_close (int fd, int *remote_errno)
9764 {
9765 struct remote_state *rs = get_remote_state ();
9766 char *p = rs->buf;
9767 int left = get_remote_packet_size () - 1;
9768
9769 remote_buffer_add_string (&p, &left, "vFile:close:");
9770
9771 remote_buffer_add_int (&p, &left, fd);
9772
9773 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9774 remote_errno, NULL, NULL);
9775 }
9776
9777 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9778 occurs (and set *REMOTE_ERRNO). */
9779
9780 static int
9781 remote_hostio_unlink (const char *filename, int *remote_errno)
9782 {
9783 struct remote_state *rs = get_remote_state ();
9784 char *p = rs->buf;
9785 int left = get_remote_packet_size () - 1;
9786
9787 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9788
9789 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9790 strlen (filename));
9791
9792 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9793 remote_errno, NULL, NULL);
9794 }
9795
9796 /* Read value of symbolic link FILENAME on the remote target. Return
9797 a null-terminated string allocated via xmalloc, or NULL if an error
9798 occurs (and set *REMOTE_ERRNO). */
9799
9800 static char *
9801 remote_hostio_readlink (const char *filename, int *remote_errno)
9802 {
9803 struct remote_state *rs = get_remote_state ();
9804 char *p = rs->buf;
9805 char *attachment;
9806 int left = get_remote_packet_size ();
9807 int len, attachment_len;
9808 int read_len;
9809 char *ret;
9810
9811 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9812
9813 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9814 strlen (filename));
9815
9816 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9817 remote_errno, &attachment,
9818 &attachment_len);
9819
9820 if (len < 0)
9821 return NULL;
9822
9823 ret = xmalloc (len + 1);
9824
9825 read_len = remote_unescape_input (attachment, attachment_len,
9826 ret, len);
9827 if (read_len != len)
9828 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9829
9830 ret[len] = '\0';
9831 return ret;
9832 }
9833
9834 static int
9835 remote_fileio_errno_to_host (int errnum)
9836 {
9837 switch (errnum)
9838 {
9839 case FILEIO_EPERM:
9840 return EPERM;
9841 case FILEIO_ENOENT:
9842 return ENOENT;
9843 case FILEIO_EINTR:
9844 return EINTR;
9845 case FILEIO_EIO:
9846 return EIO;
9847 case FILEIO_EBADF:
9848 return EBADF;
9849 case FILEIO_EACCES:
9850 return EACCES;
9851 case FILEIO_EFAULT:
9852 return EFAULT;
9853 case FILEIO_EBUSY:
9854 return EBUSY;
9855 case FILEIO_EEXIST:
9856 return EEXIST;
9857 case FILEIO_ENODEV:
9858 return ENODEV;
9859 case FILEIO_ENOTDIR:
9860 return ENOTDIR;
9861 case FILEIO_EISDIR:
9862 return EISDIR;
9863 case FILEIO_EINVAL:
9864 return EINVAL;
9865 case FILEIO_ENFILE:
9866 return ENFILE;
9867 case FILEIO_EMFILE:
9868 return EMFILE;
9869 case FILEIO_EFBIG:
9870 return EFBIG;
9871 case FILEIO_ENOSPC:
9872 return ENOSPC;
9873 case FILEIO_ESPIPE:
9874 return ESPIPE;
9875 case FILEIO_EROFS:
9876 return EROFS;
9877 case FILEIO_ENOSYS:
9878 return ENOSYS;
9879 case FILEIO_ENAMETOOLONG:
9880 return ENAMETOOLONG;
9881 }
9882 return -1;
9883 }
9884
9885 static char *
9886 remote_hostio_error (int errnum)
9887 {
9888 int host_error = remote_fileio_errno_to_host (errnum);
9889
9890 if (host_error == -1)
9891 error (_("Unknown remote I/O error %d"), errnum);
9892 else
9893 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9894 }
9895
9896 static void
9897 remote_hostio_close_cleanup (void *opaque)
9898 {
9899 int fd = *(int *) opaque;
9900 int remote_errno;
9901
9902 remote_hostio_close (fd, &remote_errno);
9903 }
9904
9905
9906 static void *
9907 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9908 {
9909 const char *filename = bfd_get_filename (abfd);
9910 int fd, remote_errno;
9911 int *stream;
9912
9913 gdb_assert (remote_filename_p (filename));
9914
9915 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9916 if (fd == -1)
9917 {
9918 errno = remote_fileio_errno_to_host (remote_errno);
9919 bfd_set_error (bfd_error_system_call);
9920 return NULL;
9921 }
9922
9923 stream = xmalloc (sizeof (int));
9924 *stream = fd;
9925 return stream;
9926 }
9927
9928 static int
9929 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9930 {
9931 int fd = *(int *)stream;
9932 int remote_errno;
9933
9934 xfree (stream);
9935
9936 /* Ignore errors on close; these may happen if the remote
9937 connection was already torn down. */
9938 remote_hostio_close (fd, &remote_errno);
9939
9940 /* Zero means success. */
9941 return 0;
9942 }
9943
9944 static file_ptr
9945 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9946 file_ptr nbytes, file_ptr offset)
9947 {
9948 int fd = *(int *)stream;
9949 int remote_errno;
9950 file_ptr pos, bytes;
9951
9952 pos = 0;
9953 while (nbytes > pos)
9954 {
9955 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9956 offset + pos, &remote_errno);
9957 if (bytes == 0)
9958 /* Success, but no bytes, means end-of-file. */
9959 break;
9960 if (bytes == -1)
9961 {
9962 errno = remote_fileio_errno_to_host (remote_errno);
9963 bfd_set_error (bfd_error_system_call);
9964 return -1;
9965 }
9966
9967 pos += bytes;
9968 }
9969
9970 return pos;
9971 }
9972
9973 static int
9974 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9975 {
9976 /* FIXME: We should probably implement remote_hostio_stat. */
9977 sb->st_size = INT_MAX;
9978 return 0;
9979 }
9980
9981 int
9982 remote_filename_p (const char *filename)
9983 {
9984 return strncmp (filename, "remote:", 7) == 0;
9985 }
9986
9987 bfd *
9988 remote_bfd_open (const char *remote_file, const char *target)
9989 {
9990 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9991 remote_bfd_iovec_open, NULL,
9992 remote_bfd_iovec_pread,
9993 remote_bfd_iovec_close,
9994 remote_bfd_iovec_stat);
9995
9996 return abfd;
9997 }
9998
9999 void
10000 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10001 {
10002 struct cleanup *back_to, *close_cleanup;
10003 int retcode, fd, remote_errno, bytes, io_size;
10004 FILE *file;
10005 gdb_byte *buffer;
10006 int bytes_in_buffer;
10007 int saw_eof;
10008 ULONGEST offset;
10009
10010 if (!remote_desc)
10011 error (_("command can only be used with remote target"));
10012
10013 file = fopen (local_file, "rb");
10014 if (file == NULL)
10015 perror_with_name (local_file);
10016 back_to = make_cleanup_fclose (file);
10017
10018 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10019 | FILEIO_O_TRUNC),
10020 0700, &remote_errno);
10021 if (fd == -1)
10022 remote_hostio_error (remote_errno);
10023
10024 /* Send up to this many bytes at once. They won't all fit in the
10025 remote packet limit, so we'll transfer slightly fewer. */
10026 io_size = get_remote_packet_size ();
10027 buffer = xmalloc (io_size);
10028 make_cleanup (xfree, buffer);
10029
10030 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10031
10032 bytes_in_buffer = 0;
10033 saw_eof = 0;
10034 offset = 0;
10035 while (bytes_in_buffer || !saw_eof)
10036 {
10037 if (!saw_eof)
10038 {
10039 bytes = fread (buffer + bytes_in_buffer, 1,
10040 io_size - bytes_in_buffer,
10041 file);
10042 if (bytes == 0)
10043 {
10044 if (ferror (file))
10045 error (_("Error reading %s."), local_file);
10046 else
10047 {
10048 /* EOF. Unless there is something still in the
10049 buffer from the last iteration, we are done. */
10050 saw_eof = 1;
10051 if (bytes_in_buffer == 0)
10052 break;
10053 }
10054 }
10055 }
10056 else
10057 bytes = 0;
10058
10059 bytes += bytes_in_buffer;
10060 bytes_in_buffer = 0;
10061
10062 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10063 offset, &remote_errno);
10064
10065 if (retcode < 0)
10066 remote_hostio_error (remote_errno);
10067 else if (retcode == 0)
10068 error (_("Remote write of %d bytes returned 0!"), bytes);
10069 else if (retcode < bytes)
10070 {
10071 /* Short write. Save the rest of the read data for the next
10072 write. */
10073 bytes_in_buffer = bytes - retcode;
10074 memmove (buffer, buffer + retcode, bytes_in_buffer);
10075 }
10076
10077 offset += retcode;
10078 }
10079
10080 discard_cleanups (close_cleanup);
10081 if (remote_hostio_close (fd, &remote_errno))
10082 remote_hostio_error (remote_errno);
10083
10084 if (from_tty)
10085 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10086 do_cleanups (back_to);
10087 }
10088
10089 void
10090 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10091 {
10092 struct cleanup *back_to, *close_cleanup;
10093 int fd, remote_errno, bytes, io_size;
10094 FILE *file;
10095 gdb_byte *buffer;
10096 ULONGEST offset;
10097
10098 if (!remote_desc)
10099 error (_("command can only be used with remote target"));
10100
10101 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10102 if (fd == -1)
10103 remote_hostio_error (remote_errno);
10104
10105 file = fopen (local_file, "wb");
10106 if (file == NULL)
10107 perror_with_name (local_file);
10108 back_to = make_cleanup_fclose (file);
10109
10110 /* Send up to this many bytes at once. They won't all fit in the
10111 remote packet limit, so we'll transfer slightly fewer. */
10112 io_size = get_remote_packet_size ();
10113 buffer = xmalloc (io_size);
10114 make_cleanup (xfree, buffer);
10115
10116 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10117
10118 offset = 0;
10119 while (1)
10120 {
10121 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10122 if (bytes == 0)
10123 /* Success, but no bytes, means end-of-file. */
10124 break;
10125 if (bytes == -1)
10126 remote_hostio_error (remote_errno);
10127
10128 offset += bytes;
10129
10130 bytes = fwrite (buffer, 1, bytes, file);
10131 if (bytes == 0)
10132 perror_with_name (local_file);
10133 }
10134
10135 discard_cleanups (close_cleanup);
10136 if (remote_hostio_close (fd, &remote_errno))
10137 remote_hostio_error (remote_errno);
10138
10139 if (from_tty)
10140 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10141 do_cleanups (back_to);
10142 }
10143
10144 void
10145 remote_file_delete (const char *remote_file, int from_tty)
10146 {
10147 int retcode, remote_errno;
10148
10149 if (!remote_desc)
10150 error (_("command can only be used with remote target"));
10151
10152 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10153 if (retcode == -1)
10154 remote_hostio_error (remote_errno);
10155
10156 if (from_tty)
10157 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10158 }
10159
10160 static void
10161 remote_put_command (char *args, int from_tty)
10162 {
10163 struct cleanup *back_to;
10164 char **argv;
10165
10166 if (args == NULL)
10167 error_no_arg (_("file to put"));
10168
10169 argv = gdb_buildargv (args);
10170 back_to = make_cleanup_freeargv (argv);
10171 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10172 error (_("Invalid parameters to remote put"));
10173
10174 remote_file_put (argv[0], argv[1], from_tty);
10175
10176 do_cleanups (back_to);
10177 }
10178
10179 static void
10180 remote_get_command (char *args, int from_tty)
10181 {
10182 struct cleanup *back_to;
10183 char **argv;
10184
10185 if (args == NULL)
10186 error_no_arg (_("file to get"));
10187
10188 argv = gdb_buildargv (args);
10189 back_to = make_cleanup_freeargv (argv);
10190 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10191 error (_("Invalid parameters to remote get"));
10192
10193 remote_file_get (argv[0], argv[1], from_tty);
10194
10195 do_cleanups (back_to);
10196 }
10197
10198 static void
10199 remote_delete_command (char *args, int from_tty)
10200 {
10201 struct cleanup *back_to;
10202 char **argv;
10203
10204 if (args == NULL)
10205 error_no_arg (_("file to delete"));
10206
10207 argv = gdb_buildargv (args);
10208 back_to = make_cleanup_freeargv (argv);
10209 if (argv[0] == NULL || argv[1] != NULL)
10210 error (_("Invalid parameters to remote delete"));
10211
10212 remote_file_delete (argv[0], from_tty);
10213
10214 do_cleanups (back_to);
10215 }
10216
10217 static void
10218 remote_command (char *args, int from_tty)
10219 {
10220 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10221 }
10222
10223 static int
10224 remote_can_execute_reverse (void)
10225 {
10226 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10227 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10228 return 1;
10229 else
10230 return 0;
10231 }
10232
10233 static int
10234 remote_supports_non_stop (void)
10235 {
10236 return 1;
10237 }
10238
10239 static int
10240 remote_supports_disable_randomization (void)
10241 {
10242 /* Only supported in extended mode. */
10243 return 0;
10244 }
10245
10246 static int
10247 remote_supports_multi_process (void)
10248 {
10249 struct remote_state *rs = get_remote_state ();
10250
10251 /* Only extended-remote handles being attached to multiple
10252 processes, even though plain remote can use the multi-process
10253 thread id extensions, so that GDB knows the target process's
10254 PID. */
10255 return rs->extended && remote_multi_process_p (rs);
10256 }
10257
10258 static int
10259 remote_supports_cond_tracepoints (void)
10260 {
10261 struct remote_state *rs = get_remote_state ();
10262
10263 return rs->cond_tracepoints;
10264 }
10265
10266 static int
10267 remote_supports_cond_breakpoints (void)
10268 {
10269 struct remote_state *rs = get_remote_state ();
10270
10271 return rs->cond_breakpoints;
10272 }
10273
10274 static int
10275 remote_supports_fast_tracepoints (void)
10276 {
10277 struct remote_state *rs = get_remote_state ();
10278
10279 return rs->fast_tracepoints;
10280 }
10281
10282 static int
10283 remote_supports_static_tracepoints (void)
10284 {
10285 struct remote_state *rs = get_remote_state ();
10286
10287 return rs->static_tracepoints;
10288 }
10289
10290 static int
10291 remote_supports_install_in_trace (void)
10292 {
10293 struct remote_state *rs = get_remote_state ();
10294
10295 return rs->install_in_trace;
10296 }
10297
10298 static int
10299 remote_supports_enable_disable_tracepoint (void)
10300 {
10301 struct remote_state *rs = get_remote_state ();
10302
10303 return rs->enable_disable_tracepoints;
10304 }
10305
10306 static int
10307 remote_supports_string_tracing (void)
10308 {
10309 struct remote_state *rs = get_remote_state ();
10310
10311 return rs->string_tracing;
10312 }
10313
10314 static int
10315 remote_can_run_breakpoint_commands (void)
10316 {
10317 struct remote_state *rs = get_remote_state ();
10318
10319 return rs->breakpoint_commands;
10320 }
10321
10322 static void
10323 remote_trace_init (void)
10324 {
10325 putpkt ("QTinit");
10326 remote_get_noisy_reply (&target_buf, &target_buf_size);
10327 if (strcmp (target_buf, "OK") != 0)
10328 error (_("Target does not support this command."));
10329 }
10330
10331 static void free_actions_list (char **actions_list);
10332 static void free_actions_list_cleanup_wrapper (void *);
10333 static void
10334 free_actions_list_cleanup_wrapper (void *al)
10335 {
10336 free_actions_list (al);
10337 }
10338
10339 static void
10340 free_actions_list (char **actions_list)
10341 {
10342 int ndx;
10343
10344 if (actions_list == 0)
10345 return;
10346
10347 for (ndx = 0; actions_list[ndx]; ndx++)
10348 xfree (actions_list[ndx]);
10349
10350 xfree (actions_list);
10351 }
10352
10353 /* Recursive routine to walk through command list including loops, and
10354 download packets for each command. */
10355
10356 static void
10357 remote_download_command_source (int num, ULONGEST addr,
10358 struct command_line *cmds)
10359 {
10360 struct remote_state *rs = get_remote_state ();
10361 struct command_line *cmd;
10362
10363 for (cmd = cmds; cmd; cmd = cmd->next)
10364 {
10365 QUIT; /* Allow user to bail out with ^C. */
10366 strcpy (rs->buf, "QTDPsrc:");
10367 encode_source_string (num, addr, "cmd", cmd->line,
10368 rs->buf + strlen (rs->buf),
10369 rs->buf_size - strlen (rs->buf));
10370 putpkt (rs->buf);
10371 remote_get_noisy_reply (&target_buf, &target_buf_size);
10372 if (strcmp (target_buf, "OK"))
10373 warning (_("Target does not support source download."));
10374
10375 if (cmd->control_type == while_control
10376 || cmd->control_type == while_stepping_control)
10377 {
10378 remote_download_command_source (num, addr, *cmd->body_list);
10379
10380 QUIT; /* Allow user to bail out with ^C. */
10381 strcpy (rs->buf, "QTDPsrc:");
10382 encode_source_string (num, addr, "cmd", "end",
10383 rs->buf + strlen (rs->buf),
10384 rs->buf_size - strlen (rs->buf));
10385 putpkt (rs->buf);
10386 remote_get_noisy_reply (&target_buf, &target_buf_size);
10387 if (strcmp (target_buf, "OK"))
10388 warning (_("Target does not support source download."));
10389 }
10390 }
10391 }
10392
10393 static void
10394 remote_download_tracepoint (struct bp_location *loc)
10395 {
10396 #define BUF_SIZE 2048
10397
10398 CORE_ADDR tpaddr;
10399 char addrbuf[40];
10400 char buf[BUF_SIZE];
10401 char **tdp_actions;
10402 char **stepping_actions;
10403 int ndx;
10404 struct cleanup *old_chain = NULL;
10405 struct agent_expr *aexpr;
10406 struct cleanup *aexpr_chain = NULL;
10407 char *pkt;
10408 struct breakpoint *b = loc->owner;
10409 struct tracepoint *t = (struct tracepoint *) b;
10410
10411 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10412 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10413 tdp_actions);
10414 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10415 stepping_actions);
10416
10417 tpaddr = loc->address;
10418 sprintf_vma (addrbuf, tpaddr);
10419 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10420 addrbuf, /* address */
10421 (b->enable_state == bp_enabled ? 'E' : 'D'),
10422 t->step_count, t->pass_count);
10423 /* Fast tracepoints are mostly handled by the target, but we can
10424 tell the target how big of an instruction block should be moved
10425 around. */
10426 if (b->type == bp_fast_tracepoint)
10427 {
10428 /* Only test for support at download time; we may not know
10429 target capabilities at definition time. */
10430 if (remote_supports_fast_tracepoints ())
10431 {
10432 int isize;
10433
10434 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10435 tpaddr, &isize, NULL))
10436 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10437 isize);
10438 else
10439 /* If it passed validation at definition but fails now,
10440 something is very wrong. */
10441 internal_error (__FILE__, __LINE__,
10442 _("Fast tracepoint not "
10443 "valid during download"));
10444 }
10445 else
10446 /* Fast tracepoints are functionally identical to regular
10447 tracepoints, so don't take lack of support as a reason to
10448 give up on the trace run. */
10449 warning (_("Target does not support fast tracepoints, "
10450 "downloading %d as regular tracepoint"), b->number);
10451 }
10452 else if (b->type == bp_static_tracepoint)
10453 {
10454 /* Only test for support at download time; we may not know
10455 target capabilities at definition time. */
10456 if (remote_supports_static_tracepoints ())
10457 {
10458 struct static_tracepoint_marker marker;
10459
10460 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10461 strcat (buf, ":S");
10462 else
10463 error (_("Static tracepoint not valid during download"));
10464 }
10465 else
10466 /* Fast tracepoints are functionally identical to regular
10467 tracepoints, so don't take lack of support as a reason
10468 to give up on the trace run. */
10469 error (_("Target does not support static tracepoints"));
10470 }
10471 /* If the tracepoint has a conditional, make it into an agent
10472 expression and append to the definition. */
10473 if (loc->cond)
10474 {
10475 /* Only test support at download time, we may not know target
10476 capabilities at definition time. */
10477 if (remote_supports_cond_tracepoints ())
10478 {
10479 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10480 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10481 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10482 aexpr->len);
10483 pkt = buf + strlen (buf);
10484 for (ndx = 0; ndx < aexpr->len; ++ndx)
10485 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10486 *pkt = '\0';
10487 do_cleanups (aexpr_chain);
10488 }
10489 else
10490 warning (_("Target does not support conditional tracepoints, "
10491 "ignoring tp %d cond"), b->number);
10492 }
10493
10494 if (b->commands || *default_collect)
10495 strcat (buf, "-");
10496 putpkt (buf);
10497 remote_get_noisy_reply (&target_buf, &target_buf_size);
10498 if (strcmp (target_buf, "OK"))
10499 error (_("Target does not support tracepoints."));
10500
10501 /* do_single_steps (t); */
10502 if (tdp_actions)
10503 {
10504 for (ndx = 0; tdp_actions[ndx]; ndx++)
10505 {
10506 QUIT; /* Allow user to bail out with ^C. */
10507 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10508 b->number, addrbuf, /* address */
10509 tdp_actions[ndx],
10510 ((tdp_actions[ndx + 1] || stepping_actions)
10511 ? '-' : 0));
10512 putpkt (buf);
10513 remote_get_noisy_reply (&target_buf,
10514 &target_buf_size);
10515 if (strcmp (target_buf, "OK"))
10516 error (_("Error on target while setting tracepoints."));
10517 }
10518 }
10519 if (stepping_actions)
10520 {
10521 for (ndx = 0; stepping_actions[ndx]; ndx++)
10522 {
10523 QUIT; /* Allow user to bail out with ^C. */
10524 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10525 b->number, addrbuf, /* address */
10526 ((ndx == 0) ? "S" : ""),
10527 stepping_actions[ndx],
10528 (stepping_actions[ndx + 1] ? "-" : ""));
10529 putpkt (buf);
10530 remote_get_noisy_reply (&target_buf,
10531 &target_buf_size);
10532 if (strcmp (target_buf, "OK"))
10533 error (_("Error on target while setting tracepoints."));
10534 }
10535 }
10536
10537 if (remote_protocol_packets[PACKET_TracepointSource].support
10538 == PACKET_ENABLE)
10539 {
10540 if (b->addr_string)
10541 {
10542 strcpy (buf, "QTDPsrc:");
10543 encode_source_string (b->number, loc->address,
10544 "at", b->addr_string, buf + strlen (buf),
10545 2048 - strlen (buf));
10546
10547 putpkt (buf);
10548 remote_get_noisy_reply (&target_buf, &target_buf_size);
10549 if (strcmp (target_buf, "OK"))
10550 warning (_("Target does not support source download."));
10551 }
10552 if (b->cond_string)
10553 {
10554 strcpy (buf, "QTDPsrc:");
10555 encode_source_string (b->number, loc->address,
10556 "cond", b->cond_string, buf + strlen (buf),
10557 2048 - strlen (buf));
10558 putpkt (buf);
10559 remote_get_noisy_reply (&target_buf, &target_buf_size);
10560 if (strcmp (target_buf, "OK"))
10561 warning (_("Target does not support source download."));
10562 }
10563 remote_download_command_source (b->number, loc->address,
10564 breakpoint_commands (b));
10565 }
10566
10567 do_cleanups (old_chain);
10568 }
10569
10570 static int
10571 remote_can_download_tracepoint (void)
10572 {
10573 struct remote_state *rs = get_remote_state ();
10574 struct trace_status *ts;
10575 int status;
10576
10577 /* Don't try to install tracepoints until we've relocated our
10578 symbols, and fetched and merged the target's tracepoint list with
10579 ours. */
10580 if (rs->starting_up)
10581 return 0;
10582
10583 ts = current_trace_status ();
10584 status = remote_get_trace_status (ts);
10585
10586 if (status == -1 || !ts->running_known || !ts->running)
10587 return 0;
10588
10589 /* If we are in a tracing experiment, but remote stub doesn't support
10590 installing tracepoint in trace, we have to return. */
10591 if (!remote_supports_install_in_trace ())
10592 return 0;
10593
10594 return 1;
10595 }
10596
10597
10598 static void
10599 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10600 {
10601 struct remote_state *rs = get_remote_state ();
10602 char *p;
10603
10604 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10605 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10606 tsv->builtin);
10607 p = rs->buf + strlen (rs->buf);
10608 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10609 error (_("Trace state variable name too long for tsv definition packet"));
10610 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10611 *p++ = '\0';
10612 putpkt (rs->buf);
10613 remote_get_noisy_reply (&target_buf, &target_buf_size);
10614 if (*target_buf == '\0')
10615 error (_("Target does not support this command."));
10616 if (strcmp (target_buf, "OK") != 0)
10617 error (_("Error on target while downloading trace state variable."));
10618 }
10619
10620 static void
10621 remote_enable_tracepoint (struct bp_location *location)
10622 {
10623 struct remote_state *rs = get_remote_state ();
10624 char addr_buf[40];
10625
10626 sprintf_vma (addr_buf, location->address);
10627 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10628 location->owner->number, addr_buf);
10629 putpkt (rs->buf);
10630 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10631 if (*rs->buf == '\0')
10632 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10633 if (strcmp (rs->buf, "OK") != 0)
10634 error (_("Error on target while enabling tracepoint."));
10635 }
10636
10637 static void
10638 remote_disable_tracepoint (struct bp_location *location)
10639 {
10640 struct remote_state *rs = get_remote_state ();
10641 char addr_buf[40];
10642
10643 sprintf_vma (addr_buf, location->address);
10644 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10645 location->owner->number, addr_buf);
10646 putpkt (rs->buf);
10647 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10648 if (*rs->buf == '\0')
10649 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10650 if (strcmp (rs->buf, "OK") != 0)
10651 error (_("Error on target while disabling tracepoint."));
10652 }
10653
10654 static void
10655 remote_trace_set_readonly_regions (void)
10656 {
10657 asection *s;
10658 bfd *abfd = NULL;
10659 bfd_size_type size;
10660 bfd_vma vma;
10661 int anysecs = 0;
10662 int offset = 0;
10663
10664 if (!exec_bfd)
10665 return; /* No information to give. */
10666
10667 strcpy (target_buf, "QTro");
10668 for (s = exec_bfd->sections; s; s = s->next)
10669 {
10670 char tmp1[40], tmp2[40];
10671 int sec_length;
10672
10673 if ((s->flags & SEC_LOAD) == 0 ||
10674 /* (s->flags & SEC_CODE) == 0 || */
10675 (s->flags & SEC_READONLY) == 0)
10676 continue;
10677
10678 anysecs = 1;
10679 vma = bfd_get_section_vma (abfd, s);
10680 size = bfd_get_section_size (s);
10681 sprintf_vma (tmp1, vma);
10682 sprintf_vma (tmp2, vma + size);
10683 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10684 if (offset + sec_length + 1 > target_buf_size)
10685 {
10686 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10687 != PACKET_ENABLE)
10688 warning (_("\
10689 Too many sections for read-only sections definition packet."));
10690 break;
10691 }
10692 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10693 tmp1, tmp2);
10694 offset += sec_length;
10695 }
10696 if (anysecs)
10697 {
10698 putpkt (target_buf);
10699 getpkt (&target_buf, &target_buf_size, 0);
10700 }
10701 }
10702
10703 static void
10704 remote_trace_start (void)
10705 {
10706 putpkt ("QTStart");
10707 remote_get_noisy_reply (&target_buf, &target_buf_size);
10708 if (*target_buf == '\0')
10709 error (_("Target does not support this command."));
10710 if (strcmp (target_buf, "OK") != 0)
10711 error (_("Bogus reply from target: %s"), target_buf);
10712 }
10713
10714 static int
10715 remote_get_trace_status (struct trace_status *ts)
10716 {
10717 /* Initialize it just to avoid a GCC false warning. */
10718 char *p = NULL;
10719 /* FIXME we need to get register block size some other way. */
10720 extern int trace_regblock_size;
10721 volatile struct gdb_exception ex;
10722 enum packet_result result;
10723
10724 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10725 return -1;
10726
10727 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10728
10729 putpkt ("qTStatus");
10730
10731 TRY_CATCH (ex, RETURN_MASK_ERROR)
10732 {
10733 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10734 }
10735 if (ex.reason < 0)
10736 {
10737 if (ex.error != TARGET_CLOSE_ERROR)
10738 {
10739 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10740 return -1;
10741 }
10742 throw_exception (ex);
10743 }
10744
10745 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10746
10747 /* If the remote target doesn't do tracing, flag it. */
10748 if (result == PACKET_UNKNOWN)
10749 return -1;
10750
10751 /* We're working with a live target. */
10752 ts->filename = NULL;
10753
10754 if (*p++ != 'T')
10755 error (_("Bogus trace status reply from target: %s"), target_buf);
10756
10757 /* Function 'parse_trace_status' sets default value of each field of
10758 'ts' at first, so we don't have to do it here. */
10759 parse_trace_status (p, ts);
10760
10761 return ts->running;
10762 }
10763
10764 static void
10765 remote_get_tracepoint_status (struct breakpoint *bp,
10766 struct uploaded_tp *utp)
10767 {
10768 struct remote_state *rs = get_remote_state ();
10769 char *reply;
10770 struct bp_location *loc;
10771 struct tracepoint *tp = (struct tracepoint *) bp;
10772 size_t size = get_remote_packet_size ();
10773
10774 if (tp)
10775 {
10776 tp->base.hit_count = 0;
10777 tp->traceframe_usage = 0;
10778 for (loc = tp->base.loc; loc; loc = loc->next)
10779 {
10780 /* If the tracepoint was never downloaded, don't go asking for
10781 any status. */
10782 if (tp->number_on_target == 0)
10783 continue;
10784 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10785 phex_nz (loc->address, 0));
10786 putpkt (rs->buf);
10787 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10788 if (reply && *reply)
10789 {
10790 if (*reply == 'V')
10791 parse_tracepoint_status (reply + 1, bp, utp);
10792 }
10793 }
10794 }
10795 else if (utp)
10796 {
10797 utp->hit_count = 0;
10798 utp->traceframe_usage = 0;
10799 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10800 phex_nz (utp->addr, 0));
10801 putpkt (rs->buf);
10802 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10803 if (reply && *reply)
10804 {
10805 if (*reply == 'V')
10806 parse_tracepoint_status (reply + 1, bp, utp);
10807 }
10808 }
10809 }
10810
10811 static void
10812 remote_trace_stop (void)
10813 {
10814 putpkt ("QTStop");
10815 remote_get_noisy_reply (&target_buf, &target_buf_size);
10816 if (*target_buf == '\0')
10817 error (_("Target does not support this command."));
10818 if (strcmp (target_buf, "OK") != 0)
10819 error (_("Bogus reply from target: %s"), target_buf);
10820 }
10821
10822 static int
10823 remote_trace_find (enum trace_find_type type, int num,
10824 CORE_ADDR addr1, CORE_ADDR addr2,
10825 int *tpp)
10826 {
10827 struct remote_state *rs = get_remote_state ();
10828 char *endbuf = rs->buf + get_remote_packet_size ();
10829 char *p, *reply;
10830 int target_frameno = -1, target_tracept = -1;
10831
10832 /* Lookups other than by absolute frame number depend on the current
10833 trace selected, so make sure it is correct on the remote end
10834 first. */
10835 if (type != tfind_number)
10836 set_remote_traceframe ();
10837
10838 p = rs->buf;
10839 strcpy (p, "QTFrame:");
10840 p = strchr (p, '\0');
10841 switch (type)
10842 {
10843 case tfind_number:
10844 xsnprintf (p, endbuf - p, "%x", num);
10845 break;
10846 case tfind_pc:
10847 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10848 break;
10849 case tfind_tp:
10850 xsnprintf (p, endbuf - p, "tdp:%x", num);
10851 break;
10852 case tfind_range:
10853 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10854 phex_nz (addr2, 0));
10855 break;
10856 case tfind_outside:
10857 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10858 phex_nz (addr2, 0));
10859 break;
10860 default:
10861 error (_("Unknown trace find type %d"), type);
10862 }
10863
10864 putpkt (rs->buf);
10865 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10866 if (*reply == '\0')
10867 error (_("Target does not support this command."));
10868
10869 while (reply && *reply)
10870 switch (*reply)
10871 {
10872 case 'F':
10873 p = ++reply;
10874 target_frameno = (int) strtol (p, &reply, 16);
10875 if (reply == p)
10876 error (_("Unable to parse trace frame number"));
10877 /* Don't update our remote traceframe number cache on failure
10878 to select a remote traceframe. */
10879 if (target_frameno == -1)
10880 return -1;
10881 break;
10882 case 'T':
10883 p = ++reply;
10884 target_tracept = (int) strtol (p, &reply, 16);
10885 if (reply == p)
10886 error (_("Unable to parse tracepoint number"));
10887 break;
10888 case 'O': /* "OK"? */
10889 if (reply[1] == 'K' && reply[2] == '\0')
10890 reply += 2;
10891 else
10892 error (_("Bogus reply from target: %s"), reply);
10893 break;
10894 default:
10895 error (_("Bogus reply from target: %s"), reply);
10896 }
10897 if (tpp)
10898 *tpp = target_tracept;
10899
10900 remote_traceframe_number = target_frameno;
10901 return target_frameno;
10902 }
10903
10904 static int
10905 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10906 {
10907 struct remote_state *rs = get_remote_state ();
10908 char *reply;
10909 ULONGEST uval;
10910
10911 set_remote_traceframe ();
10912
10913 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10914 putpkt (rs->buf);
10915 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10916 if (reply && *reply)
10917 {
10918 if (*reply == 'V')
10919 {
10920 unpack_varlen_hex (reply + 1, &uval);
10921 *val = (LONGEST) uval;
10922 return 1;
10923 }
10924 }
10925 return 0;
10926 }
10927
10928 static int
10929 remote_save_trace_data (const char *filename)
10930 {
10931 struct remote_state *rs = get_remote_state ();
10932 char *p, *reply;
10933
10934 p = rs->buf;
10935 strcpy (p, "QTSave:");
10936 p += strlen (p);
10937 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10938 error (_("Remote file name too long for trace save packet"));
10939 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10940 *p++ = '\0';
10941 putpkt (rs->buf);
10942 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10943 if (*reply == '\0')
10944 error (_("Target does not support this command."));
10945 if (strcmp (reply, "OK") != 0)
10946 error (_("Bogus reply from target: %s"), reply);
10947 return 0;
10948 }
10949
10950 /* This is basically a memory transfer, but needs to be its own packet
10951 because we don't know how the target actually organizes its trace
10952 memory, plus we want to be able to ask for as much as possible, but
10953 not be unhappy if we don't get as much as we ask for. */
10954
10955 static LONGEST
10956 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10957 {
10958 struct remote_state *rs = get_remote_state ();
10959 char *reply;
10960 char *p;
10961 int rslt;
10962
10963 p = rs->buf;
10964 strcpy (p, "qTBuffer:");
10965 p += strlen (p);
10966 p += hexnumstr (p, offset);
10967 *p++ = ',';
10968 p += hexnumstr (p, len);
10969 *p++ = '\0';
10970
10971 putpkt (rs->buf);
10972 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10973 if (reply && *reply)
10974 {
10975 /* 'l' by itself means we're at the end of the buffer and
10976 there is nothing more to get. */
10977 if (*reply == 'l')
10978 return 0;
10979
10980 /* Convert the reply into binary. Limit the number of bytes to
10981 convert according to our passed-in buffer size, rather than
10982 what was returned in the packet; if the target is
10983 unexpectedly generous and gives us a bigger reply than we
10984 asked for, we don't want to crash. */
10985 rslt = hex2bin (target_buf, buf, len);
10986 return rslt;
10987 }
10988
10989 /* Something went wrong, flag as an error. */
10990 return -1;
10991 }
10992
10993 static void
10994 remote_set_disconnected_tracing (int val)
10995 {
10996 struct remote_state *rs = get_remote_state ();
10997
10998 if (rs->disconnected_tracing)
10999 {
11000 char *reply;
11001
11002 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11003 putpkt (rs->buf);
11004 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11005 if (*reply == '\0')
11006 error (_("Target does not support this command."));
11007 if (strcmp (reply, "OK") != 0)
11008 error (_("Bogus reply from target: %s"), reply);
11009 }
11010 else if (val)
11011 warning (_("Target does not support disconnected tracing."));
11012 }
11013
11014 static int
11015 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11016 {
11017 struct thread_info *info = find_thread_ptid (ptid);
11018
11019 if (info && info->private)
11020 return info->private->core;
11021 return -1;
11022 }
11023
11024 static void
11025 remote_set_circular_trace_buffer (int val)
11026 {
11027 struct remote_state *rs = get_remote_state ();
11028 char *reply;
11029
11030 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11031 putpkt (rs->buf);
11032 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11033 if (*reply == '\0')
11034 error (_("Target does not support this command."));
11035 if (strcmp (reply, "OK") != 0)
11036 error (_("Bogus reply from target: %s"), reply);
11037 }
11038
11039 static struct traceframe_info *
11040 remote_traceframe_info (void)
11041 {
11042 char *text;
11043
11044 text = target_read_stralloc (&current_target,
11045 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11046 if (text != NULL)
11047 {
11048 struct traceframe_info *info;
11049 struct cleanup *back_to = make_cleanup (xfree, text);
11050
11051 info = parse_traceframe_info (text);
11052 do_cleanups (back_to);
11053 return info;
11054 }
11055
11056 return NULL;
11057 }
11058
11059 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11060 instruction on which a fast tracepoint may be placed. Returns -1
11061 if the packet is not supported, and 0 if the minimum instruction
11062 length is unknown. */
11063
11064 static int
11065 remote_get_min_fast_tracepoint_insn_len (void)
11066 {
11067 struct remote_state *rs = get_remote_state ();
11068 char *reply;
11069
11070 /* If we're not debugging a process yet, the IPA can't be
11071 loaded. */
11072 if (!target_has_execution)
11073 return 0;
11074
11075 /* Make sure the remote is pointing at the right process. */
11076 set_general_process ();
11077
11078 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11079 putpkt (rs->buf);
11080 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11081 if (*reply == '\0')
11082 return -1;
11083 else
11084 {
11085 ULONGEST min_insn_len;
11086
11087 unpack_varlen_hex (reply, &min_insn_len);
11088
11089 return (int) min_insn_len;
11090 }
11091 }
11092
11093 static void
11094 remote_set_trace_buffer_size (LONGEST val)
11095 {
11096 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11097 != PACKET_DISABLE)
11098 {
11099 struct remote_state *rs = get_remote_state ();
11100 char *buf = rs->buf;
11101 char *endbuf = rs->buf + get_remote_packet_size ();
11102 enum packet_result result;
11103
11104 gdb_assert (val >= 0 || val == -1);
11105 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11106 /* Send -1 as literal "-1" to avoid host size dependency. */
11107 if (val < 0)
11108 {
11109 *buf++ = '-';
11110 buf += hexnumstr (buf, (ULONGEST) -val);
11111 }
11112 else
11113 buf += hexnumstr (buf, (ULONGEST) val);
11114
11115 putpkt (rs->buf);
11116 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11117 result = packet_ok (rs->buf,
11118 &remote_protocol_packets[PACKET_QTBuffer_size]);
11119
11120 if (result != PACKET_OK)
11121 warning (_("Bogus reply from target: %s"), rs->buf);
11122 }
11123 }
11124
11125 static int
11126 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
11127 {
11128 struct remote_state *rs = get_remote_state ();
11129 char *reply;
11130 char *buf = rs->buf;
11131 char *endbuf = rs->buf + get_remote_packet_size ();
11132 int nbytes;
11133
11134 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11135 if (user)
11136 {
11137 buf += xsnprintf (buf, endbuf - buf, "user:");
11138 nbytes = bin2hex (user, buf, 0);
11139 buf += 2 * nbytes;
11140 *buf++ = ';';
11141 }
11142 if (notes)
11143 {
11144 buf += xsnprintf (buf, endbuf - buf, "notes:");
11145 nbytes = bin2hex (notes, buf, 0);
11146 buf += 2 * nbytes;
11147 *buf++ = ';';
11148 }
11149 if (stop_notes)
11150 {
11151 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11152 nbytes = bin2hex (stop_notes, buf, 0);
11153 buf += 2 * nbytes;
11154 *buf++ = ';';
11155 }
11156 /* Ensure the buffer is terminated. */
11157 *buf = '\0';
11158
11159 putpkt (rs->buf);
11160 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11161 if (*reply == '\0')
11162 return 0;
11163
11164 if (strcmp (reply, "OK") != 0)
11165 error (_("Bogus reply from target: %s"), reply);
11166
11167 return 1;
11168 }
11169
11170 static int
11171 remote_use_agent (int use)
11172 {
11173 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11174 {
11175 struct remote_state *rs = get_remote_state ();
11176
11177 /* If the stub supports QAgent. */
11178 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11179 putpkt (rs->buf);
11180 getpkt (&rs->buf, &rs->buf_size, 0);
11181
11182 if (strcmp (rs->buf, "OK") == 0)
11183 {
11184 use_agent = use;
11185 return 1;
11186 }
11187 }
11188
11189 return 0;
11190 }
11191
11192 static int
11193 remote_can_use_agent (void)
11194 {
11195 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11196 }
11197
11198 struct btrace_target_info
11199 {
11200 /* The ptid of the traced thread. */
11201 ptid_t ptid;
11202 };
11203
11204 /* Check whether the target supports branch tracing. */
11205
11206 static int
11207 remote_supports_btrace (void)
11208 {
11209 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11210 return 0;
11211 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11212 return 0;
11213 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11214 return 0;
11215
11216 return 1;
11217 }
11218
11219 /* Enable branch tracing. */
11220
11221 static struct btrace_target_info *
11222 remote_enable_btrace (ptid_t ptid)
11223 {
11224 struct btrace_target_info *tinfo = NULL;
11225 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11226 struct remote_state *rs = get_remote_state ();
11227 char *buf = rs->buf;
11228 char *endbuf = rs->buf + get_remote_packet_size ();
11229
11230 if (packet->support != PACKET_ENABLE)
11231 error (_("Target does not support branch tracing."));
11232
11233 set_general_thread (ptid);
11234
11235 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11236 putpkt (rs->buf);
11237 getpkt (&rs->buf, &rs->buf_size, 0);
11238
11239 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11240 {
11241 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11242 error (_("Could not enable branch tracing for %s: %s"),
11243 target_pid_to_str (ptid), rs->buf + 2);
11244 else
11245 error (_("Could not enable branch tracing for %s."),
11246 target_pid_to_str (ptid));
11247 }
11248
11249 tinfo = xzalloc (sizeof (*tinfo));
11250 tinfo->ptid = ptid;
11251
11252 return tinfo;
11253 }
11254
11255 /* Disable branch tracing. */
11256
11257 static void
11258 remote_disable_btrace (struct btrace_target_info *tinfo)
11259 {
11260 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11261 struct remote_state *rs = get_remote_state ();
11262 char *buf = rs->buf;
11263 char *endbuf = rs->buf + get_remote_packet_size ();
11264
11265 if (packet->support != PACKET_ENABLE)
11266 error (_("Target does not support branch tracing."));
11267
11268 set_general_thread (tinfo->ptid);
11269
11270 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11271 putpkt (rs->buf);
11272 getpkt (&rs->buf, &rs->buf_size, 0);
11273
11274 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11275 {
11276 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11277 error (_("Could not disable branch tracing for %s: %s"),
11278 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11279 else
11280 error (_("Could not disable branch tracing for %s."),
11281 target_pid_to_str (tinfo->ptid));
11282 }
11283
11284 xfree (tinfo);
11285 }
11286
11287 /* Teardown branch tracing. */
11288
11289 static void
11290 remote_teardown_btrace (struct btrace_target_info *tinfo)
11291 {
11292 /* We must not talk to the target during teardown. */
11293 xfree (tinfo);
11294 }
11295
11296 /* Read the branch trace. */
11297
11298 static VEC (btrace_block_s) *
11299 remote_read_btrace (struct btrace_target_info *tinfo,
11300 enum btrace_read_type type)
11301 {
11302 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11303 struct remote_state *rs = get_remote_state ();
11304 VEC (btrace_block_s) *btrace = NULL;
11305 const char *annex;
11306 char *xml;
11307
11308 if (packet->support != PACKET_ENABLE)
11309 error (_("Target does not support branch tracing."));
11310
11311 #if !defined(HAVE_LIBEXPAT)
11312 error (_("Cannot process branch tracing result. XML parsing not supported."));
11313 #endif
11314
11315 switch (type)
11316 {
11317 case btrace_read_all:
11318 annex = "all";
11319 break;
11320 case btrace_read_new:
11321 annex = "new";
11322 break;
11323 default:
11324 internal_error (__FILE__, __LINE__,
11325 _("Bad branch tracing read type: %u."),
11326 (unsigned int) type);
11327 }
11328
11329 xml = target_read_stralloc (&current_target,
11330 TARGET_OBJECT_BTRACE, annex);
11331 if (xml != NULL)
11332 {
11333 struct cleanup *cleanup = make_cleanup (xfree, xml);
11334
11335 btrace = parse_xml_btrace (xml);
11336 do_cleanups (cleanup);
11337 }
11338
11339 return btrace;
11340 }
11341
11342 static void
11343 init_remote_ops (void)
11344 {
11345 remote_ops.to_shortname = "remote";
11346 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11347 remote_ops.to_doc =
11348 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11349 Specify the serial device it is connected to\n\
11350 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11351 remote_ops.to_open = remote_open;
11352 remote_ops.to_close = remote_close;
11353 remote_ops.to_detach = remote_detach;
11354 remote_ops.to_disconnect = remote_disconnect;
11355 remote_ops.to_resume = remote_resume;
11356 remote_ops.to_wait = remote_wait;
11357 remote_ops.to_fetch_registers = remote_fetch_registers;
11358 remote_ops.to_store_registers = remote_store_registers;
11359 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11360 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11361 remote_ops.to_files_info = remote_files_info;
11362 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11363 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11364 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11365 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11366 remote_ops.to_watchpoint_addr_within_range =
11367 remote_watchpoint_addr_within_range;
11368 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11369 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11370 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11371 remote_ops.to_region_ok_for_hw_watchpoint
11372 = remote_region_ok_for_hw_watchpoint;
11373 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11374 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11375 remote_ops.to_kill = remote_kill;
11376 remote_ops.to_load = generic_load;
11377 remote_ops.to_mourn_inferior = remote_mourn;
11378 remote_ops.to_pass_signals = remote_pass_signals;
11379 remote_ops.to_program_signals = remote_program_signals;
11380 remote_ops.to_thread_alive = remote_thread_alive;
11381 remote_ops.to_find_new_threads = remote_threads_info;
11382 remote_ops.to_pid_to_str = remote_pid_to_str;
11383 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11384 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11385 remote_ops.to_stop = remote_stop;
11386 remote_ops.to_xfer_partial = remote_xfer_partial;
11387 remote_ops.to_rcmd = remote_rcmd;
11388 remote_ops.to_log_command = serial_log_command;
11389 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11390 remote_ops.to_stratum = process_stratum;
11391 remote_ops.to_has_all_memory = default_child_has_all_memory;
11392 remote_ops.to_has_memory = default_child_has_memory;
11393 remote_ops.to_has_stack = default_child_has_stack;
11394 remote_ops.to_has_registers = default_child_has_registers;
11395 remote_ops.to_has_execution = default_child_has_execution;
11396 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11397 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11398 remote_ops.to_magic = OPS_MAGIC;
11399 remote_ops.to_memory_map = remote_memory_map;
11400 remote_ops.to_flash_erase = remote_flash_erase;
11401 remote_ops.to_flash_done = remote_flash_done;
11402 remote_ops.to_read_description = remote_read_description;
11403 remote_ops.to_search_memory = remote_search_memory;
11404 remote_ops.to_can_async_p = remote_can_async_p;
11405 remote_ops.to_is_async_p = remote_is_async_p;
11406 remote_ops.to_async = remote_async;
11407 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11408 remote_ops.to_terminal_ours = remote_terminal_ours;
11409 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11410 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11411 remote_ops.to_supports_disable_randomization
11412 = remote_supports_disable_randomization;
11413 remote_ops.to_fileio_open = remote_hostio_open;
11414 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11415 remote_ops.to_fileio_pread = remote_hostio_pread;
11416 remote_ops.to_fileio_close = remote_hostio_close;
11417 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11418 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11419 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11420 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11421 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11422 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11423 remote_ops.to_trace_init = remote_trace_init;
11424 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11425 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11426 remote_ops.to_download_trace_state_variable
11427 = remote_download_trace_state_variable;
11428 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11429 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11430 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11431 remote_ops.to_trace_start = remote_trace_start;
11432 remote_ops.to_get_trace_status = remote_get_trace_status;
11433 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11434 remote_ops.to_trace_stop = remote_trace_stop;
11435 remote_ops.to_trace_find = remote_trace_find;
11436 remote_ops.to_get_trace_state_variable_value
11437 = remote_get_trace_state_variable_value;
11438 remote_ops.to_save_trace_data = remote_save_trace_data;
11439 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11440 remote_ops.to_upload_trace_state_variables
11441 = remote_upload_trace_state_variables;
11442 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11443 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11444 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11445 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11446 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11447 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11448 remote_ops.to_core_of_thread = remote_core_of_thread;
11449 remote_ops.to_verify_memory = remote_verify_memory;
11450 remote_ops.to_get_tib_address = remote_get_tib_address;
11451 remote_ops.to_set_permissions = remote_set_permissions;
11452 remote_ops.to_static_tracepoint_marker_at
11453 = remote_static_tracepoint_marker_at;
11454 remote_ops.to_static_tracepoint_markers_by_strid
11455 = remote_static_tracepoint_markers_by_strid;
11456 remote_ops.to_traceframe_info = remote_traceframe_info;
11457 remote_ops.to_use_agent = remote_use_agent;
11458 remote_ops.to_can_use_agent = remote_can_use_agent;
11459 remote_ops.to_supports_btrace = remote_supports_btrace;
11460 remote_ops.to_enable_btrace = remote_enable_btrace;
11461 remote_ops.to_disable_btrace = remote_disable_btrace;
11462 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11463 remote_ops.to_read_btrace = remote_read_btrace;
11464 }
11465
11466 /* Set up the extended remote vector by making a copy of the standard
11467 remote vector and adding to it. */
11468
11469 static void
11470 init_extended_remote_ops (void)
11471 {
11472 extended_remote_ops = remote_ops;
11473
11474 extended_remote_ops.to_shortname = "extended-remote";
11475 extended_remote_ops.to_longname =
11476 "Extended remote serial target in gdb-specific protocol";
11477 extended_remote_ops.to_doc =
11478 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11479 Specify the serial device it is connected to (e.g. /dev/ttya).";
11480 extended_remote_ops.to_open = extended_remote_open;
11481 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11482 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11483 extended_remote_ops.to_detach = extended_remote_detach;
11484 extended_remote_ops.to_attach = extended_remote_attach;
11485 extended_remote_ops.to_kill = extended_remote_kill;
11486 extended_remote_ops.to_supports_disable_randomization
11487 = extended_remote_supports_disable_randomization;
11488 }
11489
11490 static int
11491 remote_can_async_p (void)
11492 {
11493 if (!target_async_permitted)
11494 /* We only enable async when the user specifically asks for it. */
11495 return 0;
11496
11497 /* We're async whenever the serial device is. */
11498 return serial_can_async_p (remote_desc);
11499 }
11500
11501 static int
11502 remote_is_async_p (void)
11503 {
11504 if (!target_async_permitted)
11505 /* We only enable async when the user specifically asks for it. */
11506 return 0;
11507
11508 /* We're async whenever the serial device is. */
11509 return serial_is_async_p (remote_desc);
11510 }
11511
11512 /* Pass the SERIAL event on and up to the client. One day this code
11513 will be able to delay notifying the client of an event until the
11514 point where an entire packet has been received. */
11515
11516 static void (*async_client_callback) (enum inferior_event_type event_type,
11517 void *context);
11518 static void *async_client_context;
11519 static serial_event_ftype remote_async_serial_handler;
11520
11521 static void
11522 remote_async_serial_handler (struct serial *scb, void *context)
11523 {
11524 /* Don't propogate error information up to the client. Instead let
11525 the client find out about the error by querying the target. */
11526 async_client_callback (INF_REG_EVENT, async_client_context);
11527 }
11528
11529 static void
11530 remote_async_inferior_event_handler (gdb_client_data data)
11531 {
11532 inferior_event_handler (INF_REG_EVENT, NULL);
11533 }
11534
11535 static void
11536 remote_async (void (*callback) (enum inferior_event_type event_type,
11537 void *context), void *context)
11538 {
11539 if (callback != NULL)
11540 {
11541 serial_async (remote_desc, remote_async_serial_handler, NULL);
11542 async_client_callback = callback;
11543 async_client_context = context;
11544 }
11545 else
11546 serial_async (remote_desc, NULL, NULL);
11547 }
11548
11549 static void
11550 set_remote_cmd (char *args, int from_tty)
11551 {
11552 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11553 }
11554
11555 static void
11556 show_remote_cmd (char *args, int from_tty)
11557 {
11558 /* We can't just use cmd_show_list here, because we want to skip
11559 the redundant "show remote Z-packet" and the legacy aliases. */
11560 struct cleanup *showlist_chain;
11561 struct cmd_list_element *list = remote_show_cmdlist;
11562 struct ui_out *uiout = current_uiout;
11563
11564 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11565 for (; list != NULL; list = list->next)
11566 if (strcmp (list->name, "Z-packet") == 0)
11567 continue;
11568 else if (list->type == not_set_cmd)
11569 /* Alias commands are exactly like the original, except they
11570 don't have the normal type. */
11571 continue;
11572 else
11573 {
11574 struct cleanup *option_chain
11575 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11576
11577 ui_out_field_string (uiout, "name", list->name);
11578 ui_out_text (uiout, ": ");
11579 if (list->type == show_cmd)
11580 do_show_command ((char *) NULL, from_tty, list);
11581 else
11582 cmd_func (list, NULL, from_tty);
11583 /* Close the tuple. */
11584 do_cleanups (option_chain);
11585 }
11586
11587 /* Close the tuple. */
11588 do_cleanups (showlist_chain);
11589 }
11590
11591
11592 /* Function to be called whenever a new objfile (shlib) is detected. */
11593 static void
11594 remote_new_objfile (struct objfile *objfile)
11595 {
11596 if (remote_desc != 0) /* Have a remote connection. */
11597 remote_check_symbols (objfile);
11598 }
11599
11600 /* Pull all the tracepoints defined on the target and create local
11601 data structures representing them. We don't want to create real
11602 tracepoints yet, we don't want to mess up the user's existing
11603 collection. */
11604
11605 static int
11606 remote_upload_tracepoints (struct uploaded_tp **utpp)
11607 {
11608 struct remote_state *rs = get_remote_state ();
11609 char *p;
11610
11611 /* Ask for a first packet of tracepoint definition. */
11612 putpkt ("qTfP");
11613 getpkt (&rs->buf, &rs->buf_size, 0);
11614 p = rs->buf;
11615 while (*p && *p != 'l')
11616 {
11617 parse_tracepoint_definition (p, utpp);
11618 /* Ask for another packet of tracepoint definition. */
11619 putpkt ("qTsP");
11620 getpkt (&rs->buf, &rs->buf_size, 0);
11621 p = rs->buf;
11622 }
11623 return 0;
11624 }
11625
11626 static int
11627 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11628 {
11629 struct remote_state *rs = get_remote_state ();
11630 char *p;
11631
11632 /* Ask for a first packet of variable definition. */
11633 putpkt ("qTfV");
11634 getpkt (&rs->buf, &rs->buf_size, 0);
11635 p = rs->buf;
11636 while (*p && *p != 'l')
11637 {
11638 parse_tsv_definition (p, utsvp);
11639 /* Ask for another packet of variable definition. */
11640 putpkt ("qTsV");
11641 getpkt (&rs->buf, &rs->buf_size, 0);
11642 p = rs->buf;
11643 }
11644 return 0;
11645 }
11646
11647 void
11648 _initialize_remote (void)
11649 {
11650 struct remote_state *rs;
11651 struct cmd_list_element *cmd;
11652 const char *cmd_name;
11653
11654 /* architecture specific data */
11655 remote_gdbarch_data_handle =
11656 gdbarch_data_register_post_init (init_remote_state);
11657 remote_g_packet_data_handle =
11658 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11659
11660 /* Initialize the per-target state. At the moment there is only one
11661 of these, not one per target. Only one target is active at a
11662 time. The default buffer size is unimportant; it will be expanded
11663 whenever a larger buffer is needed. */
11664 rs = get_remote_state_raw ();
11665 rs->buf_size = 400;
11666 rs->buf = xmalloc (rs->buf_size);
11667
11668 init_remote_ops ();
11669 add_target (&remote_ops);
11670
11671 init_extended_remote_ops ();
11672 add_target (&extended_remote_ops);
11673
11674 /* Hook into new objfile notification. */
11675 observer_attach_new_objfile (remote_new_objfile);
11676 /* We're no longer interested in notification events of an inferior
11677 when it exits. */
11678 observer_attach_inferior_exit (discard_pending_stop_replies);
11679
11680 /* Set up signal handlers. */
11681 sigint_remote_token =
11682 create_async_signal_handler (async_remote_interrupt, NULL);
11683 sigint_remote_twice_token =
11684 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11685
11686 #if 0
11687 init_remote_threadtests ();
11688 #endif
11689
11690 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11691 /* set/show remote ... */
11692
11693 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11694 Remote protocol specific variables\n\
11695 Configure various remote-protocol specific variables such as\n\
11696 the packets being used"),
11697 &remote_set_cmdlist, "set remote ",
11698 0 /* allow-unknown */, &setlist);
11699 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11700 Remote protocol specific variables\n\
11701 Configure various remote-protocol specific variables such as\n\
11702 the packets being used"),
11703 &remote_show_cmdlist, "show remote ",
11704 0 /* allow-unknown */, &showlist);
11705
11706 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11707 Compare section data on target to the exec file.\n\
11708 Argument is a single section name (default: all loaded sections)."),
11709 &cmdlist);
11710
11711 add_cmd ("packet", class_maintenance, packet_command, _("\
11712 Send an arbitrary packet to a remote target.\n\
11713 maintenance packet TEXT\n\
11714 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11715 this command sends the string TEXT to the inferior, and displays the\n\
11716 response packet. GDB supplies the initial `$' character, and the\n\
11717 terminating `#' character and checksum."),
11718 &maintenancelist);
11719
11720 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11721 Set whether to send break if interrupted."), _("\
11722 Show whether to send break if interrupted."), _("\
11723 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11724 set_remotebreak, show_remotebreak,
11725 &setlist, &showlist);
11726 cmd_name = "remotebreak";
11727 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11728 deprecate_cmd (cmd, "set remote interrupt-sequence");
11729 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11730 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11731 deprecate_cmd (cmd, "show remote interrupt-sequence");
11732
11733 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11734 interrupt_sequence_modes, &interrupt_sequence_mode,
11735 _("\
11736 Set interrupt sequence to remote target."), _("\
11737 Show interrupt sequence to remote target."), _("\
11738 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11739 NULL, show_interrupt_sequence,
11740 &remote_set_cmdlist,
11741 &remote_show_cmdlist);
11742
11743 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11744 &interrupt_on_connect, _("\
11745 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11746 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11747 If set, interrupt sequence is sent to remote target."),
11748 NULL, NULL,
11749 &remote_set_cmdlist, &remote_show_cmdlist);
11750
11751 /* Install commands for configuring memory read/write packets. */
11752
11753 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11754 Set the maximum number of bytes per memory write packet (deprecated)."),
11755 &setlist);
11756 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11757 Show the maximum number of bytes per memory write packet (deprecated)."),
11758 &showlist);
11759 add_cmd ("memory-write-packet-size", no_class,
11760 set_memory_write_packet_size, _("\
11761 Set the maximum number of bytes per memory-write packet.\n\
11762 Specify the number of bytes in a packet or 0 (zero) for the\n\
11763 default packet size. The actual limit is further reduced\n\
11764 dependent on the target. Specify ``fixed'' to disable the\n\
11765 further restriction and ``limit'' to enable that restriction."),
11766 &remote_set_cmdlist);
11767 add_cmd ("memory-read-packet-size", no_class,
11768 set_memory_read_packet_size, _("\
11769 Set the maximum number of bytes per memory-read packet.\n\
11770 Specify the number of bytes in a packet or 0 (zero) for the\n\
11771 default packet size. The actual limit is further reduced\n\
11772 dependent on the target. Specify ``fixed'' to disable the\n\
11773 further restriction and ``limit'' to enable that restriction."),
11774 &remote_set_cmdlist);
11775 add_cmd ("memory-write-packet-size", no_class,
11776 show_memory_write_packet_size,
11777 _("Show the maximum number of bytes per memory-write packet."),
11778 &remote_show_cmdlist);
11779 add_cmd ("memory-read-packet-size", no_class,
11780 show_memory_read_packet_size,
11781 _("Show the maximum number of bytes per memory-read packet."),
11782 &remote_show_cmdlist);
11783
11784 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11785 &remote_hw_watchpoint_limit, _("\
11786 Set the maximum number of target hardware watchpoints."), _("\
11787 Show the maximum number of target hardware watchpoints."), _("\
11788 Specify a negative limit for unlimited."),
11789 NULL, NULL, /* FIXME: i18n: The maximum
11790 number of target hardware
11791 watchpoints is %s. */
11792 &remote_set_cmdlist, &remote_show_cmdlist);
11793 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11794 &remote_hw_watchpoint_length_limit, _("\
11795 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11796 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11797 Specify a negative limit for unlimited."),
11798 NULL, NULL, /* FIXME: i18n: The maximum
11799 length (in bytes) of a target
11800 hardware watchpoint is %s. */
11801 &remote_set_cmdlist, &remote_show_cmdlist);
11802 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11803 &remote_hw_breakpoint_limit, _("\
11804 Set the maximum number of target hardware breakpoints."), _("\
11805 Show the maximum number of target hardware breakpoints."), _("\
11806 Specify a negative limit for unlimited."),
11807 NULL, NULL, /* FIXME: i18n: The maximum
11808 number of target hardware
11809 breakpoints is %s. */
11810 &remote_set_cmdlist, &remote_show_cmdlist);
11811
11812 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11813 &remote_address_size, _("\
11814 Set the maximum size of the address (in bits) in a memory packet."), _("\
11815 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11816 NULL,
11817 NULL, /* FIXME: i18n: */
11818 &setlist, &showlist);
11819
11820 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11821 "X", "binary-download", 1);
11822
11823 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11824 "vCont", "verbose-resume", 0);
11825
11826 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11827 "QPassSignals", "pass-signals", 0);
11828
11829 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11830 "QProgramSignals", "program-signals", 0);
11831
11832 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11833 "qSymbol", "symbol-lookup", 0);
11834
11835 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11836 "P", "set-register", 1);
11837
11838 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11839 "p", "fetch-register", 1);
11840
11841 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11842 "Z0", "software-breakpoint", 0);
11843
11844 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11845 "Z1", "hardware-breakpoint", 0);
11846
11847 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11848 "Z2", "write-watchpoint", 0);
11849
11850 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11851 "Z3", "read-watchpoint", 0);
11852
11853 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11854 "Z4", "access-watchpoint", 0);
11855
11856 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11857 "qXfer:auxv:read", "read-aux-vector", 0);
11858
11859 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11860 "qXfer:features:read", "target-features", 0);
11861
11862 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11863 "qXfer:libraries:read", "library-info", 0);
11864
11865 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11866 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11867
11868 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11869 "qXfer:memory-map:read", "memory-map", 0);
11870
11871 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11872 "qXfer:spu:read", "read-spu-object", 0);
11873
11874 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11875 "qXfer:spu:write", "write-spu-object", 0);
11876
11877 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11878 "qXfer:osdata:read", "osdata", 0);
11879
11880 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11881 "qXfer:threads:read", "threads", 0);
11882
11883 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11884 "qXfer:siginfo:read", "read-siginfo-object", 0);
11885
11886 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11887 "qXfer:siginfo:write", "write-siginfo-object", 0);
11888
11889 add_packet_config_cmd
11890 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11891 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11892
11893 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11894 "qXfer:uib:read", "unwind-info-block", 0);
11895
11896 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11897 "qGetTLSAddr", "get-thread-local-storage-address",
11898 0);
11899
11900 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11901 "qGetTIBAddr", "get-thread-information-block-address",
11902 0);
11903
11904 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11905 "bc", "reverse-continue", 0);
11906
11907 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11908 "bs", "reverse-step", 0);
11909
11910 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11911 "qSupported", "supported-packets", 0);
11912
11913 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11914 "qSearch:memory", "search-memory", 0);
11915
11916 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
11917 "qTStatus", "trace-status", 0);
11918
11919 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11920 "vFile:open", "hostio-open", 0);
11921
11922 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11923 "vFile:pread", "hostio-pread", 0);
11924
11925 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11926 "vFile:pwrite", "hostio-pwrite", 0);
11927
11928 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11929 "vFile:close", "hostio-close", 0);
11930
11931 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11932 "vFile:unlink", "hostio-unlink", 0);
11933
11934 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11935 "vFile:readlink", "hostio-readlink", 0);
11936
11937 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11938 "vAttach", "attach", 0);
11939
11940 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11941 "vRun", "run", 0);
11942
11943 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11944 "QStartNoAckMode", "noack", 0);
11945
11946 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11947 "vKill", "kill", 0);
11948
11949 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11950 "qAttached", "query-attached", 0);
11951
11952 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11953 "ConditionalTracepoints",
11954 "conditional-tracepoints", 0);
11955
11956 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11957 "ConditionalBreakpoints",
11958 "conditional-breakpoints", 0);
11959
11960 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11961 "BreakpointCommands",
11962 "breakpoint-commands", 0);
11963
11964 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11965 "FastTracepoints", "fast-tracepoints", 0);
11966
11967 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11968 "TracepointSource", "TracepointSource", 0);
11969
11970 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11971 "QAllow", "allow", 0);
11972
11973 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11974 "StaticTracepoints", "static-tracepoints", 0);
11975
11976 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11977 "InstallInTrace", "install-in-trace", 0);
11978
11979 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11980 "qXfer:statictrace:read", "read-sdata-object", 0);
11981
11982 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11983 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11984
11985 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11986 "QDisableRandomization", "disable-randomization", 0);
11987
11988 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11989 "QAgent", "agent", 0);
11990
11991 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
11992 "QTBuffer:size", "trace-buffer-size", 0);
11993
11994 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
11995 "Qbtrace:off", "disable-btrace", 0);
11996
11997 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
11998 "Qbtrace:bts", "enable-btrace", 0);
11999
12000 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12001 "qXfer:btrace", "read-btrace", 0);
12002
12003 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12004 Z sub-packet has its own set and show commands, but users may
12005 have sets to this variable in their .gdbinit files (or in their
12006 documentation). */
12007 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12008 &remote_Z_packet_detect, _("\
12009 Set use of remote protocol `Z' packets"), _("\
12010 Show use of remote protocol `Z' packets "), _("\
12011 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12012 packets."),
12013 set_remote_protocol_Z_packet_cmd,
12014 show_remote_protocol_Z_packet_cmd,
12015 /* FIXME: i18n: Use of remote protocol
12016 `Z' packets is %s. */
12017 &remote_set_cmdlist, &remote_show_cmdlist);
12018
12019 add_prefix_cmd ("remote", class_files, remote_command, _("\
12020 Manipulate files on the remote system\n\
12021 Transfer files to and from the remote target system."),
12022 &remote_cmdlist, "remote ",
12023 0 /* allow-unknown */, &cmdlist);
12024
12025 add_cmd ("put", class_files, remote_put_command,
12026 _("Copy a local file to the remote system."),
12027 &remote_cmdlist);
12028
12029 add_cmd ("get", class_files, remote_get_command,
12030 _("Copy a remote file to the local system."),
12031 &remote_cmdlist);
12032
12033 add_cmd ("delete", class_files, remote_delete_command,
12034 _("Delete a remote file."),
12035 &remote_cmdlist);
12036
12037 remote_exec_file = xstrdup ("");
12038 add_setshow_string_noescape_cmd ("exec-file", class_files,
12039 &remote_exec_file, _("\
12040 Set the remote pathname for \"run\""), _("\
12041 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12042 &remote_set_cmdlist, &remote_show_cmdlist);
12043
12044 /* Eventually initialize fileio. See fileio.c */
12045 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12046
12047 /* Take advantage of the fact that the LWP field is not used, to tag
12048 special ptids with it set to != 0. */
12049 magic_null_ptid = ptid_build (42000, 1, -1);
12050 not_sent_ptid = ptid_build (42000, 1, -2);
12051 any_thread_ptid = ptid_build (42000, 1, 0);
12052
12053 target_buf_size = 2048;
12054 target_buf = xmalloc (target_buf_size);
12055 }
12056
This page took 0.535121 seconds and 4 git commands to generate.