*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions. */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_open (char *name, int from_tty);
88 static void remote_async_open (char *name, int from_tty);
89
90 static void extended_remote_open (char *name, int from_tty);
91 static void extended_remote_async_open (char *name, int from_tty);
92
93 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
94 int async_p);
95
96 static void remote_close (int quitting);
97
98 static void remote_store_registers (int regno);
99
100 static void remote_mourn (void);
101 static void remote_async_mourn (void);
102
103 static void extended_remote_restart (void);
104
105 static void extended_remote_mourn (void);
106
107 static void remote_mourn_1 (struct target_ops *);
108
109 static void remote_send (char *buf, long sizeof_buf);
110
111 static int readchar (int timeout);
112
113 static ptid_t remote_wait (ptid_t ptid,
114 struct target_waitstatus *status);
115 static ptid_t remote_async_wait (ptid_t ptid,
116 struct target_waitstatus *status);
117
118 static void remote_kill (void);
119 static void remote_async_kill (void);
120
121 static int tohex (int nib);
122
123 static void remote_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (ptid_t);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, bfd_byte *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, bfd_byte *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void remote_stop (void);
150
151 static int ishex (int ch, int *val);
152
153 static int stubhex (int ch);
154
155 static int hexnumstr (char *, ULONGEST);
156
157 static int hexnumnstr (char *, ULONGEST, int);
158
159 static CORE_ADDR remote_address_masked (CORE_ADDR);
160
161 static void print_packet (char *);
162
163 static unsigned long crc32 (unsigned char *, int, unsigned int);
164
165 static void compare_sections_command (char *, int);
166
167 static void packet_command (char *, int);
168
169 static int stub_unpack_int (char *buff, int fieldlength);
170
171 static ptid_t remote_current_thread (ptid_t oldptid);
172
173 static void remote_find_new_threads (void);
174
175 static void record_currthread (int currthread);
176
177 static int fromhex (int a);
178
179 static int hex2bin (const char *hex, char *bin, int count);
180
181 static int bin2hex (const char *bin, char *hex, int count);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 void _initialize_remote (void);
194
195 /* Description of the remote protocol. Strictly speaking, when the
196 target is open()ed, remote.c should create a per-target description
197 of the remote protocol using that target's architecture.
198 Unfortunately, the target stack doesn't include local state. For
199 the moment keep the information in the target's architecture
200 object. Sigh.. */
201
202 struct packet_reg
203 {
204 long offset; /* Offset into G packet. */
205 long regnum; /* GDB's internal register number. */
206 LONGEST pnum; /* Remote protocol register number. */
207 int in_g_packet; /* Always part of G packet. */
208 /* long size in bytes; == register_size (current_gdbarch, regnum);
209 at present. */
210 /* char *name; == REGISTER_NAME (regnum); at present. */
211 };
212
213 struct remote_state
214 {
215 /* Description of the remote protocol registers. */
216 long sizeof_g_packet;
217
218 /* Description of the remote protocol registers indexed by REGNUM
219 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
220 struct packet_reg *regs;
221
222 /* This is the size (in chars) of the first response to the ``g''
223 packet. It is used as a heuristic when determining the maximum
224 size of memory-read and memory-write packets. A target will
225 typically only reserve a buffer large enough to hold the ``g''
226 packet. The size does not include packet overhead (headers and
227 trailers). */
228 long actual_register_packet_size;
229
230 /* This is the maximum size (in chars) of a non read/write packet.
231 It is also used as a cap on the size of read/write packets. */
232 long remote_packet_size;
233 };
234
235
236 /* Handle for retreving the remote protocol data from gdbarch. */
237 static struct gdbarch_data *remote_gdbarch_data_handle;
238
239 static struct remote_state *
240 get_remote_state (void)
241 {
242 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
243 }
244
245 static void *
246 init_remote_state (struct gdbarch *gdbarch)
247 {
248 int regnum;
249 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
250
251 rs->sizeof_g_packet = 0;
252
253 /* Assume a 1:1 regnum<->pnum table. */
254 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
255 struct packet_reg);
256 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
257 {
258 struct packet_reg *r = &rs->regs[regnum];
259 r->pnum = regnum;
260 r->regnum = regnum;
261 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
262 r->in_g_packet = (regnum < NUM_REGS);
263 /* ...name = REGISTER_NAME (regnum); */
264
265 /* Compute packet size by accumulating the size of all registers. */
266 if (regnum < NUM_REGS)
267 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
268 }
269
270 /* Default maximum number of characters in a packet body. Many
271 remote stubs have a hardwired buffer size of 400 bytes
272 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
273 as the maximum packet-size to ensure that the packet and an extra
274 NUL character can always fit in the buffer. This stops GDB
275 trashing stubs that try to squeeze an extra NUL into what is
276 already a full buffer (As of 1999-12-04 that was most stubs. */
277 rs->remote_packet_size = 400 - 1;
278
279 /* Should rs->sizeof_g_packet needs more space than the
280 default, adjust the size accordingly. Remember that each byte is
281 encoded as two characters. 32 is the overhead for the packet
282 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
283 (``$NN:G...#NN'') is a better guess, the below has been padded a
284 little. */
285 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
286 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
287
288 /* This one is filled in when a ``g'' packet is received. */
289 rs->actual_register_packet_size = 0;
290
291 return rs;
292 }
293
294 static struct packet_reg *
295 packet_reg_from_regnum (struct remote_state *rs, long regnum)
296 {
297 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
298 return NULL;
299 else
300 {
301 struct packet_reg *r = &rs->regs[regnum];
302 gdb_assert (r->regnum == regnum);
303 return r;
304 }
305 }
306
307 static struct packet_reg *
308 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
309 {
310 int i;
311 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
312 {
313 struct packet_reg *r = &rs->regs[i];
314 if (r->pnum == pnum)
315 return r;
316 }
317 return NULL;
318 }
319
320 /* FIXME: graces/2002-08-08: These variables should eventually be
321 bound to an instance of the target object (as in gdbarch-tdep()),
322 when such a thing exists. */
323
324 /* This is set to the data address of the access causing the target
325 to stop for a watchpoint. */
326 static CORE_ADDR remote_watch_data_address;
327
328 /* This is non-zero if taregt stopped for a watchpoint. */
329 static int remote_stopped_by_watchpoint_p;
330
331
332 static struct target_ops remote_ops;
333
334 static struct target_ops extended_remote_ops;
335
336 /* Temporary target ops. Just like the remote_ops and
337 extended_remote_ops, but with asynchronous support. */
338 static struct target_ops remote_async_ops;
339
340 static struct target_ops extended_async_remote_ops;
341
342 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
343 ``forever'' still use the normal timeout mechanism. This is
344 currently used by the ASYNC code to guarentee that target reads
345 during the initial connect always time-out. Once getpkt has been
346 modified to return a timeout indication and, in turn
347 remote_wait()/wait_for_inferior() have gained a timeout parameter
348 this can go away. */
349 static int wait_forever_enabled_p = 1;
350
351
352 /* This variable chooses whether to send a ^C or a break when the user
353 requests program interruption. Although ^C is usually what remote
354 systems expect, and that is the default here, sometimes a break is
355 preferable instead. */
356
357 static int remote_break;
358
359 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
360 remote_open knows that we don't have a file open when the program
361 starts. */
362 static struct serial *remote_desc = NULL;
363
364 /* This variable sets the number of bits in an address that are to be
365 sent in a memory ("M" or "m") packet. Normally, after stripping
366 leading zeros, the entire address would be sent. This variable
367 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
368 initial implementation of remote.c restricted the address sent in
369 memory packets to ``host::sizeof long'' bytes - (typically 32
370 bits). Consequently, for 64 bit targets, the upper 32 bits of an
371 address was never sent. Since fixing this bug may cause a break in
372 some remote targets this variable is principly provided to
373 facilitate backward compatibility. */
374
375 static int remote_address_size;
376
377 /* Tempoary to track who currently owns the terminal. See
378 target_async_terminal_* for more details. */
379
380 static int remote_async_terminal_ours_p;
381
382 \f
383 /* User configurable variables for the number of characters in a
384 memory read/write packet. MIN ((rs->remote_packet_size),
385 rs->sizeof_g_packet) is the default. Some targets need smaller
386 values (fifo overruns, et.al.) and some users need larger values
387 (speed up transfers). The variables ``preferred_*'' (the user
388 request), ``current_*'' (what was actually set) and ``forced_*''
389 (Positive - a soft limit, negative - a hard limit). */
390
391 struct memory_packet_config
392 {
393 char *name;
394 long size;
395 int fixed_p;
396 };
397
398 /* Compute the current size of a read/write packet. Since this makes
399 use of ``actual_register_packet_size'' the computation is dynamic. */
400
401 static long
402 get_memory_packet_size (struct memory_packet_config *config)
403 {
404 struct remote_state *rs = get_remote_state ();
405 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
406 law?) that some hosts don't cope very well with large alloca()
407 calls. Eventually the alloca() code will be replaced by calls to
408 xmalloc() and make_cleanups() allowing this restriction to either
409 be lifted or removed. */
410 #ifndef MAX_REMOTE_PACKET_SIZE
411 #define MAX_REMOTE_PACKET_SIZE 16384
412 #endif
413 /* NOTE: 20 ensures we can write at least one byte. */
414 #ifndef MIN_REMOTE_PACKET_SIZE
415 #define MIN_REMOTE_PACKET_SIZE 20
416 #endif
417 long what_they_get;
418 if (config->fixed_p)
419 {
420 if (config->size <= 0)
421 what_they_get = MAX_REMOTE_PACKET_SIZE;
422 else
423 what_they_get = config->size;
424 }
425 else
426 {
427 what_they_get = (rs->remote_packet_size);
428 /* Limit the packet to the size specified by the user. */
429 if (config->size > 0
430 && what_they_get > config->size)
431 what_they_get = config->size;
432 /* Limit it to the size of the targets ``g'' response. */
433 if ((rs->actual_register_packet_size) > 0
434 && what_they_get > (rs->actual_register_packet_size))
435 what_they_get = (rs->actual_register_packet_size);
436 }
437 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
440 what_they_get = MIN_REMOTE_PACKET_SIZE;
441 return what_they_get;
442 }
443
444 /* Update the size of a read/write packet. If they user wants
445 something really big then do a sanity check. */
446
447 static void
448 set_memory_packet_size (char *args, struct memory_packet_config *config)
449 {
450 int fixed_p = config->fixed_p;
451 long size = config->size;
452 if (args == NULL)
453 error (_("Argument required (integer, `fixed' or `limited')."));
454 else if (strcmp (args, "hard") == 0
455 || strcmp (args, "fixed") == 0)
456 fixed_p = 1;
457 else if (strcmp (args, "soft") == 0
458 || strcmp (args, "limit") == 0)
459 fixed_p = 0;
460 else
461 {
462 char *end;
463 size = strtoul (args, &end, 0);
464 if (args == end)
465 error (_("Invalid %s (bad syntax)."), config->name);
466 #if 0
467 /* Instead of explicitly capping the size of a packet to
468 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
469 instead allowed to set the size to something arbitrarily
470 large. */
471 if (size > MAX_REMOTE_PACKET_SIZE)
472 error (_("Invalid %s (too large)."), config->name);
473 #endif
474 }
475 /* Extra checks? */
476 if (fixed_p && !config->fixed_p)
477 {
478 if (! query (_("The target may not be able to correctly handle a %s\n"
479 "of %ld bytes. Change the packet size? "),
480 config->name, size))
481 error (_("Packet size not changed."));
482 }
483 /* Update the config. */
484 config->fixed_p = fixed_p;
485 config->size = size;
486 }
487
488 static void
489 show_memory_packet_size (struct memory_packet_config *config)
490 {
491 printf_filtered (_("The %s is %ld. "), config->name, config->size);
492 if (config->fixed_p)
493 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
494 get_memory_packet_size (config));
495 else
496 printf_filtered (_("Packets are limited to %ld bytes.\n"),
497 get_memory_packet_size (config));
498 }
499
500 static struct memory_packet_config memory_write_packet_config =
501 {
502 "memory-write-packet-size",
503 };
504
505 static void
506 set_memory_write_packet_size (char *args, int from_tty)
507 {
508 set_memory_packet_size (args, &memory_write_packet_config);
509 }
510
511 static void
512 show_memory_write_packet_size (char *args, int from_tty)
513 {
514 show_memory_packet_size (&memory_write_packet_config);
515 }
516
517 static long
518 get_memory_write_packet_size (void)
519 {
520 return get_memory_packet_size (&memory_write_packet_config);
521 }
522
523 static struct memory_packet_config memory_read_packet_config =
524 {
525 "memory-read-packet-size",
526 };
527
528 static void
529 set_memory_read_packet_size (char *args, int from_tty)
530 {
531 set_memory_packet_size (args, &memory_read_packet_config);
532 }
533
534 static void
535 show_memory_read_packet_size (char *args, int from_tty)
536 {
537 show_memory_packet_size (&memory_read_packet_config);
538 }
539
540 static long
541 get_memory_read_packet_size (void)
542 {
543 struct remote_state *rs = get_remote_state ();
544 long size = get_memory_packet_size (&memory_read_packet_config);
545 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
546 extra buffer size argument before the memory read size can be
547 increased beyond (rs->remote_packet_size). */
548 if (size > (rs->remote_packet_size))
549 size = (rs->remote_packet_size);
550 return size;
551 }
552
553 \f
554 /* Generic configuration support for packets the stub optionally
555 supports. Allows the user to specify the use of the packet as well
556 as allowing GDB to auto-detect support in the remote stub. */
557
558 enum packet_support
559 {
560 PACKET_SUPPORT_UNKNOWN = 0,
561 PACKET_ENABLE,
562 PACKET_DISABLE
563 };
564
565 struct packet_config
566 {
567 char *name;
568 char *title;
569 enum auto_boolean detect;
570 enum packet_support support;
571 };
572
573 /* Analyze a packet's return value and update the packet config
574 accordingly. */
575
576 enum packet_result
577 {
578 PACKET_ERROR,
579 PACKET_OK,
580 PACKET_UNKNOWN
581 };
582
583 static void
584 update_packet_config (struct packet_config *config)
585 {
586 switch (config->detect)
587 {
588 case AUTO_BOOLEAN_TRUE:
589 config->support = PACKET_ENABLE;
590 break;
591 case AUTO_BOOLEAN_FALSE:
592 config->support = PACKET_DISABLE;
593 break;
594 case AUTO_BOOLEAN_AUTO:
595 config->support = PACKET_SUPPORT_UNKNOWN;
596 break;
597 }
598 }
599
600 static void
601 show_packet_config_cmd (struct packet_config *config)
602 {
603 char *support = "internal-error";
604 switch (config->support)
605 {
606 case PACKET_ENABLE:
607 support = "enabled";
608 break;
609 case PACKET_DISABLE:
610 support = "disabled";
611 break;
612 case PACKET_SUPPORT_UNKNOWN:
613 support = "unknown";
614 break;
615 }
616 switch (config->detect)
617 {
618 case AUTO_BOOLEAN_AUTO:
619 printf_filtered (_("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n"),
620 config->name, config->title, support);
621 break;
622 case AUTO_BOOLEAN_TRUE:
623 case AUTO_BOOLEAN_FALSE:
624 printf_filtered (_("Support for remote protocol `%s' (%s) packet is currently %s.\n"),
625 config->name, config->title, support);
626 break;
627 }
628 }
629
630 static void
631 add_packet_config_cmd (struct packet_config *config,
632 char *name,
633 char *title,
634 cmd_sfunc_ftype *set_func,
635 show_value_ftype *show_func,
636 struct cmd_list_element **set_remote_list,
637 struct cmd_list_element **show_remote_list,
638 int legacy)
639 {
640 char *set_doc;
641 char *show_doc;
642 char *cmd_name;
643
644 config->name = name;
645 config->title = title;
646 config->detect = AUTO_BOOLEAN_AUTO;
647 config->support = PACKET_SUPPORT_UNKNOWN;
648 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
649 name, title);
650 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
651 name, title);
652 /* set/show TITLE-packet {auto,on,off} */
653 cmd_name = xstrprintf ("%s-packet", title);
654 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
655 &config->detect, set_doc, show_doc, NULL, /* help_doc */
656 set_func, show_func,
657 set_remote_list, show_remote_list);
658 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
659 if (legacy)
660 {
661 char *legacy_name;
662 legacy_name = xstrprintf ("%s-packet", name);
663 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
664 set_remote_list);
665 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
666 show_remote_list);
667 }
668 }
669
670 static enum packet_result
671 packet_ok (const char *buf, struct packet_config *config)
672 {
673 if (buf[0] != '\0')
674 {
675 /* The stub recognized the packet request. Check that the
676 operation succeeded. */
677 switch (config->support)
678 {
679 case PACKET_SUPPORT_UNKNOWN:
680 if (remote_debug)
681 fprintf_unfiltered (gdb_stdlog,
682 "Packet %s (%s) is supported\n",
683 config->name, config->title);
684 config->support = PACKET_ENABLE;
685 break;
686 case PACKET_DISABLE:
687 internal_error (__FILE__, __LINE__,
688 _("packet_ok: attempt to use a disabled packet"));
689 break;
690 case PACKET_ENABLE:
691 break;
692 }
693 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
694 /* "OK" - definitly OK. */
695 return PACKET_OK;
696 if (buf[0] == 'E'
697 && isxdigit (buf[1]) && isxdigit (buf[2])
698 && buf[3] == '\0')
699 /* "Enn" - definitly an error. */
700 return PACKET_ERROR;
701 /* The packet may or may not be OK. Just assume it is. */
702 return PACKET_OK;
703 }
704 else
705 {
706 /* The stub does not support the packet. */
707 switch (config->support)
708 {
709 case PACKET_ENABLE:
710 if (config->detect == AUTO_BOOLEAN_AUTO)
711 /* If the stub previously indicated that the packet was
712 supported then there is a protocol error.. */
713 error (_("Protocol error: %s (%s) conflicting enabled responses."),
714 config->name, config->title);
715 else
716 /* The user set it wrong. */
717 error (_("Enabled packet %s (%s) not recognized by stub"),
718 config->name, config->title);
719 break;
720 case PACKET_SUPPORT_UNKNOWN:
721 if (remote_debug)
722 fprintf_unfiltered (gdb_stdlog,
723 "Packet %s (%s) is NOT supported\n",
724 config->name, config->title);
725 config->support = PACKET_DISABLE;
726 break;
727 case PACKET_DISABLE:
728 break;
729 }
730 return PACKET_UNKNOWN;
731 }
732 }
733
734 /* Should we try the 'vCont' (descriptive resume) request? */
735 static struct packet_config remote_protocol_vcont;
736
737 static void
738 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
739 struct cmd_list_element *c)
740 {
741 update_packet_config (&remote_protocol_vcont);
742 }
743
744 static void
745 show_remote_protocol_vcont_packet_cmd (struct ui_file *file, int from_tty,
746 struct cmd_list_element *c,
747 const char *value)
748 {
749 show_packet_config_cmd (&remote_protocol_vcont);
750 }
751
752 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
753 static struct packet_config remote_protocol_qSymbol;
754
755 static void
756 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 update_packet_config (&remote_protocol_qSymbol);
760 }
761
762 static void
763 show_remote_protocol_qSymbol_packet_cmd (struct ui_file *file, int from_tty,
764 struct cmd_list_element *c,
765 const char *value)
766 {
767 show_packet_config_cmd (&remote_protocol_qSymbol);
768 }
769
770 /* Should we try the 'P' (set register) request? */
771
772 static struct packet_config remote_protocol_P;
773
774 static void
775 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
776 struct cmd_list_element *c)
777 {
778 update_packet_config (&remote_protocol_P);
779 }
780
781 static void
782 show_remote_protocol_P_packet_cmd (struct ui_file *file, int from_tty,
783 struct cmd_list_element *c,
784 const char *value)
785 {
786 show_packet_config_cmd (&remote_protocol_P);
787 }
788
789 /* Should we try one of the 'Z' requests? */
790
791 enum Z_packet_type
792 {
793 Z_PACKET_SOFTWARE_BP,
794 Z_PACKET_HARDWARE_BP,
795 Z_PACKET_WRITE_WP,
796 Z_PACKET_READ_WP,
797 Z_PACKET_ACCESS_WP,
798 NR_Z_PACKET_TYPES
799 };
800
801 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
802
803 /* FIXME: Instead of having all these boiler plate functions, the
804 command callback should include a context argument. */
805
806 static void
807 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
808 struct cmd_list_element *c)
809 {
810 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
811 }
812
813 static void
814 show_remote_protocol_Z_software_bp_packet_cmd (struct ui_file *file, int from_tty,
815 struct cmd_list_element *c,
816 const char *value)
817 {
818 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
819 }
820
821 static void
822 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
823 struct cmd_list_element *c)
824 {
825 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
826 }
827
828 static void
829 show_remote_protocol_Z_hardware_bp_packet_cmd (struct ui_file *file, int from_tty,
830 struct cmd_list_element *c,
831 const char *value)
832 {
833 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
834 }
835
836 static void
837 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
838 struct cmd_list_element *c)
839 {
840 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
841 }
842
843 static void
844 show_remote_protocol_Z_write_wp_packet_cmd (struct ui_file *file, int from_tty,
845 struct cmd_list_element *c,
846 const char *value)
847 {
848 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
849 }
850
851 static void
852 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
853 struct cmd_list_element *c)
854 {
855 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
856 }
857
858 static void
859 show_remote_protocol_Z_read_wp_packet_cmd (struct ui_file *file, int from_tty,
860 struct cmd_list_element *c,
861 const char *value)
862 {
863 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
864 }
865
866 static void
867 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
868 struct cmd_list_element *c)
869 {
870 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
871 }
872
873 static void
874 show_remote_protocol_Z_access_wp_packet_cmd (struct ui_file *file, int from_tty,
875 struct cmd_list_element *c,
876 const char *value)
877 {
878 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
879 }
880
881 /* For compatibility with older distributions. Provide a ``set remote
882 Z-packet ...'' command that updates all the Z packet types. */
883
884 static enum auto_boolean remote_Z_packet_detect;
885
886 static void
887 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
888 struct cmd_list_element *c)
889 {
890 int i;
891 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
892 {
893 remote_protocol_Z[i].detect = remote_Z_packet_detect;
894 update_packet_config (&remote_protocol_Z[i]);
895 }
896 }
897
898 static void
899 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
900 struct cmd_list_element *c,
901 const char *value)
902 {
903 int i;
904 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
905 {
906 show_packet_config_cmd (&remote_protocol_Z[i]);
907 }
908 }
909
910 /* Should we try the 'X' (remote binary download) packet?
911
912 This variable (available to the user via "set remote X-packet")
913 dictates whether downloads are sent in binary (via the 'X' packet).
914 We assume that the stub can, and attempt to do it. This will be
915 cleared if the stub does not understand it. This switch is still
916 needed, though in cases when the packet is supported in the stub,
917 but the connection does not allow it (i.e., 7-bit serial connection
918 only). */
919
920 static struct packet_config remote_protocol_binary_download;
921
922 /* Should we try the 'ThreadInfo' query packet?
923
924 This variable (NOT available to the user: auto-detect only!)
925 determines whether GDB will use the new, simpler "ThreadInfo"
926 query or the older, more complex syntax for thread queries.
927 This is an auto-detect variable (set to true at each connect,
928 and set to false when the target fails to recognize it). */
929
930 static int use_threadinfo_query;
931 static int use_threadextra_query;
932
933 static void
934 set_remote_protocol_binary_download_cmd (char *args,
935 int from_tty,
936 struct cmd_list_element *c)
937 {
938 update_packet_config (&remote_protocol_binary_download);
939 }
940
941 static void
942 show_remote_protocol_binary_download_cmd (struct ui_file *file, int from_tty,
943 struct cmd_list_element *c,
944 const char *value)
945 {
946 show_packet_config_cmd (&remote_protocol_binary_download);
947 }
948
949 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
950 static struct packet_config remote_protocol_qPart_auxv;
951
952 static void
953 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
954 struct cmd_list_element *c)
955 {
956 update_packet_config (&remote_protocol_qPart_auxv);
957 }
958
959 static void
960 show_remote_protocol_qPart_auxv_packet_cmd (struct ui_file *file, int from_tty,
961 struct cmd_list_element *c,
962 const char *value)
963 {
964 show_packet_config_cmd (&remote_protocol_qPart_auxv);
965 }
966
967 /* Should we try the 'qGetTLSAddr' (Get Thread Local Storage Address) request? */
968 static struct packet_config remote_protocol_qGetTLSAddr;
969
970 static void
971 set_remote_protocol_qGetTLSAddr_packet_cmd (char *args, int from_tty,
972 struct cmd_list_element *c)
973 {
974 update_packet_config (&remote_protocol_qGetTLSAddr);
975 }
976
977 static void
978 show_remote_protocol_qGetTLSAddr_packet_cmd (struct ui_file *file, int from_tty,
979 struct cmd_list_element *c,
980 const char *value)
981 {
982 show_packet_config_cmd (&remote_protocol_qGetTLSAddr);
983 }
984
985 static struct packet_config remote_protocol_p;
986
987 static void
988 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
989 struct cmd_list_element *c)
990 {
991 update_packet_config (&remote_protocol_p);
992 }
993
994 static void
995 show_remote_protocol_p_packet_cmd (struct ui_file *file, int from_tty,
996 struct cmd_list_element *c,
997 const char *value)
998 {
999 show_packet_config_cmd (&remote_protocol_p);
1000 }
1001
1002
1003
1004 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1005 static void *sigint_remote_twice_token;
1006 static void *sigint_remote_token;
1007
1008 /* These are pointers to hook functions that may be set in order to
1009 modify resume/wait behavior for a particular architecture. */
1010
1011 void (*deprecated_target_resume_hook) (void);
1012 void (*deprecated_target_wait_loop_hook) (void);
1013 \f
1014
1015
1016 /* These are the threads which we last sent to the remote system.
1017 -1 for all or -2 for not sent yet. */
1018 static int general_thread;
1019 static int continue_thread;
1020
1021 /* Call this function as a result of
1022 1) A halt indication (T packet) containing a thread id
1023 2) A direct query of currthread
1024 3) Successful execution of set thread
1025 */
1026
1027 static void
1028 record_currthread (int currthread)
1029 {
1030 general_thread = currthread;
1031
1032 /* If this is a new thread, add it to GDB's thread list.
1033 If we leave it up to WFI to do this, bad things will happen. */
1034 if (!in_thread_list (pid_to_ptid (currthread)))
1035 {
1036 add_thread (pid_to_ptid (currthread));
1037 ui_out_text (uiout, "[New ");
1038 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1039 ui_out_text (uiout, "]\n");
1040 }
1041 }
1042
1043 #define MAGIC_NULL_PID 42000
1044
1045 static void
1046 set_thread (int th, int gen)
1047 {
1048 struct remote_state *rs = get_remote_state ();
1049 char *buf = alloca (rs->remote_packet_size);
1050 int state = gen ? general_thread : continue_thread;
1051
1052 if (state == th)
1053 return;
1054
1055 buf[0] = 'H';
1056 buf[1] = gen ? 'g' : 'c';
1057 if (th == MAGIC_NULL_PID)
1058 {
1059 buf[2] = '0';
1060 buf[3] = '\0';
1061 }
1062 else if (th < 0)
1063 sprintf (&buf[2], "-%x", -th);
1064 else
1065 sprintf (&buf[2], "%x", th);
1066 putpkt (buf);
1067 getpkt (buf, (rs->remote_packet_size), 0);
1068 if (gen)
1069 general_thread = th;
1070 else
1071 continue_thread = th;
1072 }
1073 \f
1074 /* Return nonzero if the thread TH is still alive on the remote system. */
1075
1076 static int
1077 remote_thread_alive (ptid_t ptid)
1078 {
1079 int tid = PIDGET (ptid);
1080 char buf[16];
1081
1082 if (tid < 0)
1083 sprintf (buf, "T-%08x", -tid);
1084 else
1085 sprintf (buf, "T%08x", tid);
1086 putpkt (buf);
1087 getpkt (buf, sizeof (buf), 0);
1088 return (buf[0] == 'O' && buf[1] == 'K');
1089 }
1090
1091 /* About these extended threadlist and threadinfo packets. They are
1092 variable length packets but, the fields within them are often fixed
1093 length. They are redundent enough to send over UDP as is the
1094 remote protocol in general. There is a matching unit test module
1095 in libstub. */
1096
1097 #define OPAQUETHREADBYTES 8
1098
1099 /* a 64 bit opaque identifier */
1100 typedef unsigned char threadref[OPAQUETHREADBYTES];
1101
1102 /* WARNING: This threadref data structure comes from the remote O.S.,
1103 libstub protocol encoding, and remote.c. it is not particularly
1104 changable. */
1105
1106 /* Right now, the internal structure is int. We want it to be bigger.
1107 Plan to fix this.
1108 */
1109
1110 typedef int gdb_threadref; /* Internal GDB thread reference. */
1111
1112 /* gdb_ext_thread_info is an internal GDB data structure which is
1113 equivalint to the reply of the remote threadinfo packet. */
1114
1115 struct gdb_ext_thread_info
1116 {
1117 threadref threadid; /* External form of thread reference. */
1118 int active; /* Has state interesting to GDB?
1119 regs, stack. */
1120 char display[256]; /* Brief state display, name,
1121 blocked/syspended. */
1122 char shortname[32]; /* To be used to name threads. */
1123 char more_display[256]; /* Long info, statistics, queue depth,
1124 whatever. */
1125 };
1126
1127 /* The volume of remote transfers can be limited by submitting
1128 a mask containing bits specifying the desired information.
1129 Use a union of these values as the 'selection' parameter to
1130 get_thread_info. FIXME: Make these TAG names more thread specific.
1131 */
1132
1133 #define TAG_THREADID 1
1134 #define TAG_EXISTS 2
1135 #define TAG_DISPLAY 4
1136 #define TAG_THREADNAME 8
1137 #define TAG_MOREDISPLAY 16
1138
1139 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1140
1141 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1142
1143 static char *unpack_nibble (char *buf, int *val);
1144
1145 static char *pack_nibble (char *buf, int nibble);
1146
1147 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1148
1149 static char *unpack_byte (char *buf, int *value);
1150
1151 static char *pack_int (char *buf, int value);
1152
1153 static char *unpack_int (char *buf, int *value);
1154
1155 static char *unpack_string (char *src, char *dest, int length);
1156
1157 static char *pack_threadid (char *pkt, threadref *id);
1158
1159 static char *unpack_threadid (char *inbuf, threadref *id);
1160
1161 void int_to_threadref (threadref *id, int value);
1162
1163 static int threadref_to_int (threadref *ref);
1164
1165 static void copy_threadref (threadref *dest, threadref *src);
1166
1167 static int threadmatch (threadref *dest, threadref *src);
1168
1169 static char *pack_threadinfo_request (char *pkt, int mode,
1170 threadref *id);
1171
1172 static int remote_unpack_thread_info_response (char *pkt,
1173 threadref *expectedref,
1174 struct gdb_ext_thread_info
1175 *info);
1176
1177
1178 static int remote_get_threadinfo (threadref *threadid,
1179 int fieldset, /*TAG mask */
1180 struct gdb_ext_thread_info *info);
1181
1182 static char *pack_threadlist_request (char *pkt, int startflag,
1183 int threadcount,
1184 threadref *nextthread);
1185
1186 static int parse_threadlist_response (char *pkt,
1187 int result_limit,
1188 threadref *original_echo,
1189 threadref *resultlist,
1190 int *doneflag);
1191
1192 static int remote_get_threadlist (int startflag,
1193 threadref *nextthread,
1194 int result_limit,
1195 int *done,
1196 int *result_count,
1197 threadref *threadlist);
1198
1199 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1200
1201 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1202 void *context, int looplimit);
1203
1204 static int remote_newthread_step (threadref *ref, void *context);
1205
1206 /* Encode 64 bits in 16 chars of hex. */
1207
1208 static const char hexchars[] = "0123456789abcdef";
1209
1210 static int
1211 ishex (int ch, int *val)
1212 {
1213 if ((ch >= 'a') && (ch <= 'f'))
1214 {
1215 *val = ch - 'a' + 10;
1216 return 1;
1217 }
1218 if ((ch >= 'A') && (ch <= 'F'))
1219 {
1220 *val = ch - 'A' + 10;
1221 return 1;
1222 }
1223 if ((ch >= '0') && (ch <= '9'))
1224 {
1225 *val = ch - '0';
1226 return 1;
1227 }
1228 return 0;
1229 }
1230
1231 static int
1232 stubhex (int ch)
1233 {
1234 if (ch >= 'a' && ch <= 'f')
1235 return ch - 'a' + 10;
1236 if (ch >= '0' && ch <= '9')
1237 return ch - '0';
1238 if (ch >= 'A' && ch <= 'F')
1239 return ch - 'A' + 10;
1240 return -1;
1241 }
1242
1243 static int
1244 stub_unpack_int (char *buff, int fieldlength)
1245 {
1246 int nibble;
1247 int retval = 0;
1248
1249 while (fieldlength)
1250 {
1251 nibble = stubhex (*buff++);
1252 retval |= nibble;
1253 fieldlength--;
1254 if (fieldlength)
1255 retval = retval << 4;
1256 }
1257 return retval;
1258 }
1259
1260 char *
1261 unpack_varlen_hex (char *buff, /* packet to parse */
1262 ULONGEST *result)
1263 {
1264 int nibble;
1265 int retval = 0;
1266
1267 while (ishex (*buff, &nibble))
1268 {
1269 buff++;
1270 retval = retval << 4;
1271 retval |= nibble & 0x0f;
1272 }
1273 *result = retval;
1274 return buff;
1275 }
1276
1277 static char *
1278 unpack_nibble (char *buf, int *val)
1279 {
1280 ishex (*buf++, val);
1281 return buf;
1282 }
1283
1284 static char *
1285 pack_nibble (char *buf, int nibble)
1286 {
1287 *buf++ = hexchars[(nibble & 0x0f)];
1288 return buf;
1289 }
1290
1291 static char *
1292 pack_hex_byte (char *pkt, int byte)
1293 {
1294 *pkt++ = hexchars[(byte >> 4) & 0xf];
1295 *pkt++ = hexchars[(byte & 0xf)];
1296 return pkt;
1297 }
1298
1299 static char *
1300 unpack_byte (char *buf, int *value)
1301 {
1302 *value = stub_unpack_int (buf, 2);
1303 return buf + 2;
1304 }
1305
1306 static char *
1307 pack_int (char *buf, int value)
1308 {
1309 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1310 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1311 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1312 buf = pack_hex_byte (buf, (value & 0xff));
1313 return buf;
1314 }
1315
1316 static char *
1317 unpack_int (char *buf, int *value)
1318 {
1319 *value = stub_unpack_int (buf, 8);
1320 return buf + 8;
1321 }
1322
1323 #if 0 /* Currently unused, uncomment when needed. */
1324 static char *pack_string (char *pkt, char *string);
1325
1326 static char *
1327 pack_string (char *pkt, char *string)
1328 {
1329 char ch;
1330 int len;
1331
1332 len = strlen (string);
1333 if (len > 200)
1334 len = 200; /* Bigger than most GDB packets, junk??? */
1335 pkt = pack_hex_byte (pkt, len);
1336 while (len-- > 0)
1337 {
1338 ch = *string++;
1339 if ((ch == '\0') || (ch == '#'))
1340 ch = '*'; /* Protect encapsulation. */
1341 *pkt++ = ch;
1342 }
1343 return pkt;
1344 }
1345 #endif /* 0 (unused) */
1346
1347 static char *
1348 unpack_string (char *src, char *dest, int length)
1349 {
1350 while (length--)
1351 *dest++ = *src++;
1352 *dest = '\0';
1353 return src;
1354 }
1355
1356 static char *
1357 pack_threadid (char *pkt, threadref *id)
1358 {
1359 char *limit;
1360 unsigned char *altid;
1361
1362 altid = (unsigned char *) id;
1363 limit = pkt + BUF_THREAD_ID_SIZE;
1364 while (pkt < limit)
1365 pkt = pack_hex_byte (pkt, *altid++);
1366 return pkt;
1367 }
1368
1369
1370 static char *
1371 unpack_threadid (char *inbuf, threadref *id)
1372 {
1373 char *altref;
1374 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1375 int x, y;
1376
1377 altref = (char *) id;
1378
1379 while (inbuf < limit)
1380 {
1381 x = stubhex (*inbuf++);
1382 y = stubhex (*inbuf++);
1383 *altref++ = (x << 4) | y;
1384 }
1385 return inbuf;
1386 }
1387
1388 /* Externally, threadrefs are 64 bits but internally, they are still
1389 ints. This is due to a mismatch of specifications. We would like
1390 to use 64bit thread references internally. This is an adapter
1391 function. */
1392
1393 void
1394 int_to_threadref (threadref *id, int value)
1395 {
1396 unsigned char *scan;
1397
1398 scan = (unsigned char *) id;
1399 {
1400 int i = 4;
1401 while (i--)
1402 *scan++ = 0;
1403 }
1404 *scan++ = (value >> 24) & 0xff;
1405 *scan++ = (value >> 16) & 0xff;
1406 *scan++ = (value >> 8) & 0xff;
1407 *scan++ = (value & 0xff);
1408 }
1409
1410 static int
1411 threadref_to_int (threadref *ref)
1412 {
1413 int i, value = 0;
1414 unsigned char *scan;
1415
1416 scan = (char *) ref;
1417 scan += 4;
1418 i = 4;
1419 while (i-- > 0)
1420 value = (value << 8) | ((*scan++) & 0xff);
1421 return value;
1422 }
1423
1424 static void
1425 copy_threadref (threadref *dest, threadref *src)
1426 {
1427 int i;
1428 unsigned char *csrc, *cdest;
1429
1430 csrc = (unsigned char *) src;
1431 cdest = (unsigned char *) dest;
1432 i = 8;
1433 while (i--)
1434 *cdest++ = *csrc++;
1435 }
1436
1437 static int
1438 threadmatch (threadref *dest, threadref *src)
1439 {
1440 /* Things are broken right now, so just assume we got a match. */
1441 #if 0
1442 unsigned char *srcp, *destp;
1443 int i, result;
1444 srcp = (char *) src;
1445 destp = (char *) dest;
1446
1447 result = 1;
1448 while (i-- > 0)
1449 result &= (*srcp++ == *destp++) ? 1 : 0;
1450 return result;
1451 #endif
1452 return 1;
1453 }
1454
1455 /*
1456 threadid:1, # always request threadid
1457 context_exists:2,
1458 display:4,
1459 unique_name:8,
1460 more_display:16
1461 */
1462
1463 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1464
1465 static char *
1466 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1467 {
1468 *pkt++ = 'q'; /* Info Query */
1469 *pkt++ = 'P'; /* process or thread info */
1470 pkt = pack_int (pkt, mode); /* mode */
1471 pkt = pack_threadid (pkt, id); /* threadid */
1472 *pkt = '\0'; /* terminate */
1473 return pkt;
1474 }
1475
1476 /* These values tag the fields in a thread info response packet. */
1477 /* Tagging the fields allows us to request specific fields and to
1478 add more fields as time goes by. */
1479
1480 #define TAG_THREADID 1 /* Echo the thread identifier. */
1481 #define TAG_EXISTS 2 /* Is this process defined enough to
1482 fetch registers and its stack? */
1483 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1484 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1485 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1486 the process. */
1487
1488 static int
1489 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1490 struct gdb_ext_thread_info *info)
1491 {
1492 struct remote_state *rs = get_remote_state ();
1493 int mask, length;
1494 unsigned int tag;
1495 threadref ref;
1496 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1497 int retval = 1;
1498
1499 /* info->threadid = 0; FIXME: implement zero_threadref. */
1500 info->active = 0;
1501 info->display[0] = '\0';
1502 info->shortname[0] = '\0';
1503 info->more_display[0] = '\0';
1504
1505 /* Assume the characters indicating the packet type have been
1506 stripped. */
1507 pkt = unpack_int (pkt, &mask); /* arg mask */
1508 pkt = unpack_threadid (pkt, &ref);
1509
1510 if (mask == 0)
1511 warning (_("Incomplete response to threadinfo request."));
1512 if (!threadmatch (&ref, expectedref))
1513 { /* This is an answer to a different request. */
1514 warning (_("ERROR RMT Thread info mismatch."));
1515 return 0;
1516 }
1517 copy_threadref (&info->threadid, &ref);
1518
1519 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1520
1521 /* Packets are terminated with nulls. */
1522 while ((pkt < limit) && mask && *pkt)
1523 {
1524 pkt = unpack_int (pkt, &tag); /* tag */
1525 pkt = unpack_byte (pkt, &length); /* length */
1526 if (!(tag & mask)) /* Tags out of synch with mask. */
1527 {
1528 warning (_("ERROR RMT: threadinfo tag mismatch."));
1529 retval = 0;
1530 break;
1531 }
1532 if (tag == TAG_THREADID)
1533 {
1534 if (length != 16)
1535 {
1536 warning (_("ERROR RMT: length of threadid is not 16."));
1537 retval = 0;
1538 break;
1539 }
1540 pkt = unpack_threadid (pkt, &ref);
1541 mask = mask & ~TAG_THREADID;
1542 continue;
1543 }
1544 if (tag == TAG_EXISTS)
1545 {
1546 info->active = stub_unpack_int (pkt, length);
1547 pkt += length;
1548 mask = mask & ~(TAG_EXISTS);
1549 if (length > 8)
1550 {
1551 warning (_("ERROR RMT: 'exists' length too long."));
1552 retval = 0;
1553 break;
1554 }
1555 continue;
1556 }
1557 if (tag == TAG_THREADNAME)
1558 {
1559 pkt = unpack_string (pkt, &info->shortname[0], length);
1560 mask = mask & ~TAG_THREADNAME;
1561 continue;
1562 }
1563 if (tag == TAG_DISPLAY)
1564 {
1565 pkt = unpack_string (pkt, &info->display[0], length);
1566 mask = mask & ~TAG_DISPLAY;
1567 continue;
1568 }
1569 if (tag == TAG_MOREDISPLAY)
1570 {
1571 pkt = unpack_string (pkt, &info->more_display[0], length);
1572 mask = mask & ~TAG_MOREDISPLAY;
1573 continue;
1574 }
1575 warning (_("ERROR RMT: unknown thread info tag."));
1576 break; /* Not a tag we know about. */
1577 }
1578 return retval;
1579 }
1580
1581 static int
1582 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1583 struct gdb_ext_thread_info *info)
1584 {
1585 struct remote_state *rs = get_remote_state ();
1586 int result;
1587 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1588
1589 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1590 putpkt (threadinfo_pkt);
1591 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1592 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1593 threadid, info);
1594 return result;
1595 }
1596
1597 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1598
1599 static char *
1600 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1601 threadref *nextthread)
1602 {
1603 *pkt++ = 'q'; /* info query packet */
1604 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1605 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1606 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1607 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1608 *pkt = '\0';
1609 return pkt;
1610 }
1611
1612 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1613
1614 static int
1615 parse_threadlist_response (char *pkt, int result_limit,
1616 threadref *original_echo, threadref *resultlist,
1617 int *doneflag)
1618 {
1619 struct remote_state *rs = get_remote_state ();
1620 char *limit;
1621 int count, resultcount, done;
1622
1623 resultcount = 0;
1624 /* Assume the 'q' and 'M chars have been stripped. */
1625 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE);
1626 /* done parse past here */
1627 pkt = unpack_byte (pkt, &count); /* count field */
1628 pkt = unpack_nibble (pkt, &done);
1629 /* The first threadid is the argument threadid. */
1630 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1631 while ((count-- > 0) && (pkt < limit))
1632 {
1633 pkt = unpack_threadid (pkt, resultlist++);
1634 if (resultcount++ >= result_limit)
1635 break;
1636 }
1637 if (doneflag)
1638 *doneflag = done;
1639 return resultcount;
1640 }
1641
1642 static int
1643 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1644 int *done, int *result_count, threadref *threadlist)
1645 {
1646 struct remote_state *rs = get_remote_state ();
1647 static threadref echo_nextthread;
1648 char *threadlist_packet = alloca (rs->remote_packet_size);
1649 char *t_response = alloca (rs->remote_packet_size);
1650 int result = 1;
1651
1652 /* Trancate result limit to be smaller than the packet size. */
1653 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1654 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1655
1656 pack_threadlist_request (threadlist_packet,
1657 startflag, result_limit, nextthread);
1658 putpkt (threadlist_packet);
1659 getpkt (t_response, (rs->remote_packet_size), 0);
1660
1661 *result_count =
1662 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1663 threadlist, done);
1664
1665 if (!threadmatch (&echo_nextthread, nextthread))
1666 {
1667 /* FIXME: This is a good reason to drop the packet. */
1668 /* Possably, there is a duplicate response. */
1669 /* Possabilities :
1670 retransmit immediatly - race conditions
1671 retransmit after timeout - yes
1672 exit
1673 wait for packet, then exit
1674 */
1675 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1676 return 0; /* I choose simply exiting. */
1677 }
1678 if (*result_count <= 0)
1679 {
1680 if (*done != 1)
1681 {
1682 warning (_("RMT ERROR : failed to get remote thread list."));
1683 result = 0;
1684 }
1685 return result; /* break; */
1686 }
1687 if (*result_count > result_limit)
1688 {
1689 *result_count = 0;
1690 warning (_("RMT ERROR: threadlist response longer than requested."));
1691 return 0;
1692 }
1693 return result;
1694 }
1695
1696 /* This is the interface between remote and threads, remotes upper
1697 interface. */
1698
1699 /* remote_find_new_threads retrieves the thread list and for each
1700 thread in the list, looks up the thread in GDB's internal list,
1701 ading the thread if it does not already exist. This involves
1702 getting partial thread lists from the remote target so, polling the
1703 quit_flag is required. */
1704
1705
1706 /* About this many threadisds fit in a packet. */
1707
1708 #define MAXTHREADLISTRESULTS 32
1709
1710 static int
1711 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1712 int looplimit)
1713 {
1714 int done, i, result_count;
1715 int startflag = 1;
1716 int result = 1;
1717 int loopcount = 0;
1718 static threadref nextthread;
1719 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1720
1721 done = 0;
1722 while (!done)
1723 {
1724 if (loopcount++ > looplimit)
1725 {
1726 result = 0;
1727 warning (_("Remote fetch threadlist -infinite loop-."));
1728 break;
1729 }
1730 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1731 &done, &result_count, resultthreadlist))
1732 {
1733 result = 0;
1734 break;
1735 }
1736 /* Clear for later iterations. */
1737 startflag = 0;
1738 /* Setup to resume next batch of thread references, set nextthread. */
1739 if (result_count >= 1)
1740 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1741 i = 0;
1742 while (result_count--)
1743 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1744 break;
1745 }
1746 return result;
1747 }
1748
1749 static int
1750 remote_newthread_step (threadref *ref, void *context)
1751 {
1752 ptid_t ptid;
1753
1754 ptid = pid_to_ptid (threadref_to_int (ref));
1755
1756 if (!in_thread_list (ptid))
1757 add_thread (ptid);
1758 return 1; /* continue iterator */
1759 }
1760
1761 #define CRAZY_MAX_THREADS 1000
1762
1763 static ptid_t
1764 remote_current_thread (ptid_t oldpid)
1765 {
1766 struct remote_state *rs = get_remote_state ();
1767 char *buf = alloca (rs->remote_packet_size);
1768
1769 putpkt ("qC");
1770 getpkt (buf, (rs->remote_packet_size), 0);
1771 if (buf[0] == 'Q' && buf[1] == 'C')
1772 /* Use strtoul here, so we'll correctly parse values whose highest
1773 bit is set. The protocol carries them as a simple series of
1774 hex digits; in the absence of a sign, strtol will see such
1775 values as positive numbers out of range for signed 'long', and
1776 return LONG_MAX to indicate an overflow. */
1777 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1778 else
1779 return oldpid;
1780 }
1781
1782 /* Find new threads for info threads command.
1783 * Original version, using John Metzler's thread protocol.
1784 */
1785
1786 static void
1787 remote_find_new_threads (void)
1788 {
1789 remote_threadlist_iterator (remote_newthread_step, 0,
1790 CRAZY_MAX_THREADS);
1791 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1792 inferior_ptid = remote_current_thread (inferior_ptid);
1793 }
1794
1795 /*
1796 * Find all threads for info threads command.
1797 * Uses new thread protocol contributed by Cisco.
1798 * Falls back and attempts to use the older method (above)
1799 * if the target doesn't respond to the new method.
1800 */
1801
1802 static void
1803 remote_threads_info (void)
1804 {
1805 struct remote_state *rs = get_remote_state ();
1806 char *buf = alloca (rs->remote_packet_size);
1807 char *bufp;
1808 int tid;
1809
1810 if (remote_desc == 0) /* paranoia */
1811 error (_("Command can only be used when connected to the remote target."));
1812
1813 if (use_threadinfo_query)
1814 {
1815 putpkt ("qfThreadInfo");
1816 bufp = buf;
1817 getpkt (bufp, (rs->remote_packet_size), 0);
1818 if (bufp[0] != '\0') /* q packet recognized */
1819 {
1820 while (*bufp++ == 'm') /* reply contains one or more TID */
1821 {
1822 do
1823 {
1824 /* Use strtoul here, so we'll correctly parse values
1825 whose highest bit is set. The protocol carries
1826 them as a simple series of hex digits; in the
1827 absence of a sign, strtol will see such values as
1828 positive numbers out of range for signed 'long',
1829 and return LONG_MAX to indicate an overflow. */
1830 tid = strtoul (bufp, &bufp, 16);
1831 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1832 add_thread (pid_to_ptid (tid));
1833 }
1834 while (*bufp++ == ','); /* comma-separated list */
1835 putpkt ("qsThreadInfo");
1836 bufp = buf;
1837 getpkt (bufp, (rs->remote_packet_size), 0);
1838 }
1839 return; /* done */
1840 }
1841 }
1842
1843 /* Else fall back to old method based on jmetzler protocol. */
1844 use_threadinfo_query = 0;
1845 remote_find_new_threads ();
1846 return;
1847 }
1848
1849 /*
1850 * Collect a descriptive string about the given thread.
1851 * The target may say anything it wants to about the thread
1852 * (typically info about its blocked / runnable state, name, etc.).
1853 * This string will appear in the info threads display.
1854 *
1855 * Optional: targets are not required to implement this function.
1856 */
1857
1858 static char *
1859 remote_threads_extra_info (struct thread_info *tp)
1860 {
1861 struct remote_state *rs = get_remote_state ();
1862 int result;
1863 int set;
1864 threadref id;
1865 struct gdb_ext_thread_info threadinfo;
1866 static char display_buf[100]; /* arbitrary... */
1867 char *bufp = alloca (rs->remote_packet_size);
1868 int n = 0; /* position in display_buf */
1869
1870 if (remote_desc == 0) /* paranoia */
1871 internal_error (__FILE__, __LINE__,
1872 _("remote_threads_extra_info"));
1873
1874 if (use_threadextra_query)
1875 {
1876 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1877 putpkt (bufp);
1878 getpkt (bufp, (rs->remote_packet_size), 0);
1879 if (bufp[0] != 0)
1880 {
1881 n = min (strlen (bufp) / 2, sizeof (display_buf));
1882 result = hex2bin (bufp, display_buf, n);
1883 display_buf [result] = '\0';
1884 return display_buf;
1885 }
1886 }
1887
1888 /* If the above query fails, fall back to the old method. */
1889 use_threadextra_query = 0;
1890 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1891 | TAG_MOREDISPLAY | TAG_DISPLAY;
1892 int_to_threadref (&id, PIDGET (tp->ptid));
1893 if (remote_get_threadinfo (&id, set, &threadinfo))
1894 if (threadinfo.active)
1895 {
1896 if (*threadinfo.shortname)
1897 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1898 if (*threadinfo.display)
1899 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1900 if (*threadinfo.more_display)
1901 n += sprintf(&display_buf[n], " Priority: %s",
1902 threadinfo.more_display);
1903
1904 if (n > 0)
1905 {
1906 /* For purely cosmetic reasons, clear up trailing commas. */
1907 if (',' == display_buf[n-1])
1908 display_buf[n-1] = ' ';
1909 return display_buf;
1910 }
1911 }
1912 return NULL;
1913 }
1914
1915 \f
1916
1917 /* Restart the remote side; this is an extended protocol operation. */
1918
1919 static void
1920 extended_remote_restart (void)
1921 {
1922 struct remote_state *rs = get_remote_state ();
1923 char *buf = alloca (rs->remote_packet_size);
1924
1925 /* Send the restart command; for reasons I don't understand the
1926 remote side really expects a number after the "R". */
1927 buf[0] = 'R';
1928 sprintf (&buf[1], "%x", 0);
1929 putpkt (buf);
1930
1931 /* Now query for status so this looks just like we restarted
1932 gdbserver from scratch. */
1933 putpkt ("?");
1934 getpkt (buf, (rs->remote_packet_size), 0);
1935 }
1936 \f
1937 /* Clean up connection to a remote debugger. */
1938
1939 static void
1940 remote_close (int quitting)
1941 {
1942 if (remote_desc)
1943 serial_close (remote_desc);
1944 remote_desc = NULL;
1945 }
1946
1947 /* Query the remote side for the text, data and bss offsets. */
1948
1949 static void
1950 get_offsets (void)
1951 {
1952 struct remote_state *rs = get_remote_state ();
1953 char *buf = alloca (rs->remote_packet_size);
1954 char *ptr;
1955 int lose;
1956 CORE_ADDR text_addr, data_addr, bss_addr;
1957 struct section_offsets *offs;
1958
1959 putpkt ("qOffsets");
1960
1961 getpkt (buf, (rs->remote_packet_size), 0);
1962
1963 if (buf[0] == '\000')
1964 return; /* Return silently. Stub doesn't support
1965 this command. */
1966 if (buf[0] == 'E')
1967 {
1968 warning (_("Remote failure reply: %s"), buf);
1969 return;
1970 }
1971
1972 /* Pick up each field in turn. This used to be done with scanf, but
1973 scanf will make trouble if CORE_ADDR size doesn't match
1974 conversion directives correctly. The following code will work
1975 with any size of CORE_ADDR. */
1976 text_addr = data_addr = bss_addr = 0;
1977 ptr = buf;
1978 lose = 0;
1979
1980 if (strncmp (ptr, "Text=", 5) == 0)
1981 {
1982 ptr += 5;
1983 /* Don't use strtol, could lose on big values. */
1984 while (*ptr && *ptr != ';')
1985 text_addr = (text_addr << 4) + fromhex (*ptr++);
1986 }
1987 else
1988 lose = 1;
1989
1990 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1991 {
1992 ptr += 6;
1993 while (*ptr && *ptr != ';')
1994 data_addr = (data_addr << 4) + fromhex (*ptr++);
1995 }
1996 else
1997 lose = 1;
1998
1999 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2000 {
2001 ptr += 5;
2002 while (*ptr && *ptr != ';')
2003 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2004 }
2005 else
2006 lose = 1;
2007
2008 if (lose)
2009 error (_("Malformed response to offset query, %s"), buf);
2010
2011 if (symfile_objfile == NULL)
2012 return;
2013
2014 offs = ((struct section_offsets *)
2015 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2016 memcpy (offs, symfile_objfile->section_offsets,
2017 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2018
2019 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2020
2021 /* This is a temporary kludge to force data and bss to use the same offsets
2022 because that's what nlmconv does now. The real solution requires changes
2023 to the stub and remote.c that I don't have time to do right now. */
2024
2025 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2026 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2027
2028 objfile_relocate (symfile_objfile, offs);
2029 }
2030
2031 /* Stub for catch_errors. */
2032
2033 static int
2034 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2035 {
2036 start_remote (); /* Initialize gdb process mechanisms. */
2037 /* NOTE: Return something >=0. A -ve value is reserved for
2038 catch_exceptions. */
2039 return 1;
2040 }
2041
2042 static void
2043 remote_start_remote (struct ui_out *uiout, void *dummy)
2044 {
2045 immediate_quit++; /* Allow user to interrupt it. */
2046
2047 /* Ack any packet which the remote side has already sent. */
2048 serial_write (remote_desc, "+", 1);
2049
2050 /* Let the stub know that we want it to return the thread. */
2051 set_thread (-1, 0);
2052
2053 inferior_ptid = remote_current_thread (inferior_ptid);
2054
2055 get_offsets (); /* Get text, data & bss offsets. */
2056
2057 putpkt ("?"); /* Initiate a query from remote machine. */
2058 immediate_quit--;
2059
2060 remote_start_remote_dummy (uiout, dummy);
2061 }
2062
2063 /* Open a connection to a remote debugger.
2064 NAME is the filename used for communication. */
2065
2066 static void
2067 remote_open (char *name, int from_tty)
2068 {
2069 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2070 }
2071
2072 /* Just like remote_open, but with asynchronous support. */
2073 static void
2074 remote_async_open (char *name, int from_tty)
2075 {
2076 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2077 }
2078
2079 /* Open a connection to a remote debugger using the extended
2080 remote gdb protocol. NAME is the filename used for communication. */
2081
2082 static void
2083 extended_remote_open (char *name, int from_tty)
2084 {
2085 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2086 0 /* async_p */);
2087 }
2088
2089 /* Just like extended_remote_open, but with asynchronous support. */
2090 static void
2091 extended_remote_async_open (char *name, int from_tty)
2092 {
2093 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2094 1 /*extended_p */, 1 /* async_p */);
2095 }
2096
2097 /* Generic code for opening a connection to a remote target. */
2098
2099 static void
2100 init_all_packet_configs (void)
2101 {
2102 int i;
2103 update_packet_config (&remote_protocol_P);
2104 update_packet_config (&remote_protocol_p);
2105 update_packet_config (&remote_protocol_qSymbol);
2106 update_packet_config (&remote_protocol_vcont);
2107 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2108 update_packet_config (&remote_protocol_Z[i]);
2109 /* Force remote_write_bytes to check whether target supports binary
2110 downloading. */
2111 update_packet_config (&remote_protocol_binary_download);
2112 update_packet_config (&remote_protocol_qPart_auxv);
2113 update_packet_config (&remote_protocol_qGetTLSAddr);
2114 }
2115
2116 /* Symbol look-up. */
2117
2118 static void
2119 remote_check_symbols (struct objfile *objfile)
2120 {
2121 struct remote_state *rs = get_remote_state ();
2122 char *msg, *reply, *tmp;
2123 struct minimal_symbol *sym;
2124 int end;
2125
2126 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2127 return;
2128
2129 msg = alloca (rs->remote_packet_size);
2130 reply = alloca (rs->remote_packet_size);
2131
2132 /* Invite target to request symbol lookups. */
2133
2134 putpkt ("qSymbol::");
2135 getpkt (reply, (rs->remote_packet_size), 0);
2136 packet_ok (reply, &remote_protocol_qSymbol);
2137
2138 while (strncmp (reply, "qSymbol:", 8) == 0)
2139 {
2140 tmp = &reply[8];
2141 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2142 msg[end] = '\0';
2143 sym = lookup_minimal_symbol (msg, NULL, NULL);
2144 if (sym == NULL)
2145 sprintf (msg, "qSymbol::%s", &reply[8]);
2146 else
2147 sprintf (msg, "qSymbol:%s:%s",
2148 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2149 &reply[8]);
2150 putpkt (msg);
2151 getpkt (reply, (rs->remote_packet_size), 0);
2152 }
2153 }
2154
2155 static struct serial *
2156 remote_serial_open (char *name)
2157 {
2158 static int udp_warning = 0;
2159
2160 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2161 of in ser-tcp.c, because it is the remote protocol assuming that the
2162 serial connection is reliable and not the serial connection promising
2163 to be. */
2164 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2165 {
2166 warning (_("\
2167 The remote protocol may be unreliable over UDP.\n\
2168 Some events may be lost, rendering further debugging impossible."));
2169 udp_warning = 1;
2170 }
2171
2172 return serial_open (name);
2173 }
2174
2175 static void
2176 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2177 int extended_p, int async_p)
2178 {
2179 struct remote_state *rs = get_remote_state ();
2180 if (name == 0)
2181 error (_("To open a remote debug connection, you need to specify what\n"
2182 "serial device is attached to the remote system\n"
2183 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2184
2185 /* See FIXME above. */
2186 if (!async_p)
2187 wait_forever_enabled_p = 1;
2188
2189 reopen_exec_file ();
2190 reread_symbols ();
2191
2192 target_preopen (from_tty);
2193
2194 unpush_target (target);
2195
2196 remote_desc = remote_serial_open (name);
2197 if (!remote_desc)
2198 perror_with_name (name);
2199
2200 if (baud_rate != -1)
2201 {
2202 if (serial_setbaudrate (remote_desc, baud_rate))
2203 {
2204 /* The requested speed could not be set. Error out to
2205 top level after closing remote_desc. Take care to
2206 set remote_desc to NULL to avoid closing remote_desc
2207 more than once. */
2208 serial_close (remote_desc);
2209 remote_desc = NULL;
2210 perror_with_name (name);
2211 }
2212 }
2213
2214 serial_raw (remote_desc);
2215
2216 /* If there is something sitting in the buffer we might take it as a
2217 response to a command, which would be bad. */
2218 serial_flush_input (remote_desc);
2219
2220 if (from_tty)
2221 {
2222 puts_filtered ("Remote debugging using ");
2223 puts_filtered (name);
2224 puts_filtered ("\n");
2225 }
2226 push_target (target); /* Switch to using remote target now. */
2227
2228 init_all_packet_configs ();
2229
2230 general_thread = -2;
2231 continue_thread = -2;
2232
2233 /* Probe for ability to use "ThreadInfo" query, as required. */
2234 use_threadinfo_query = 1;
2235 use_threadextra_query = 1;
2236
2237 /* Without this, some commands which require an active target (such
2238 as kill) won't work. This variable serves (at least) double duty
2239 as both the pid of the target process (if it has such), and as a
2240 flag indicating that a target is active. These functions should
2241 be split out into seperate variables, especially since GDB will
2242 someday have a notion of debugging several processes. */
2243
2244 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2245
2246 if (async_p)
2247 {
2248 /* With this target we start out by owning the terminal. */
2249 remote_async_terminal_ours_p = 1;
2250
2251 /* FIXME: cagney/1999-09-23: During the initial connection it is
2252 assumed that the target is already ready and able to respond to
2253 requests. Unfortunately remote_start_remote() eventually calls
2254 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2255 around this. Eventually a mechanism that allows
2256 wait_for_inferior() to expect/get timeouts will be
2257 implemented. */
2258 wait_forever_enabled_p = 0;
2259 }
2260
2261 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2262 /* First delete any symbols previously loaded from shared libraries. */
2263 no_shared_libraries (NULL, 0);
2264 #endif
2265
2266 /* Start the remote connection. If error() or QUIT, discard this
2267 target (we'd otherwise be in an inconsistent state) and then
2268 propogate the error on up the exception chain. This ensures that
2269 the caller doesn't stumble along blindly assuming that the
2270 function succeeded. The CLI doesn't have this problem but other
2271 UI's, such as MI do.
2272
2273 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2274 this function should return an error indication letting the
2275 caller restore the previous state. Unfortunately the command
2276 ``target remote'' is directly wired to this function making that
2277 impossible. On a positive note, the CLI side of this problem has
2278 been fixed - the function set_cmd_context() makes it possible for
2279 all the ``target ....'' commands to share a common callback
2280 function. See cli-dump.c. */
2281 {
2282 struct gdb_exception ex
2283 = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2284 if (ex.reason < 0)
2285 {
2286 pop_target ();
2287 if (async_p)
2288 wait_forever_enabled_p = 1;
2289 throw_exception (ex);
2290 }
2291 }
2292
2293 if (async_p)
2294 wait_forever_enabled_p = 1;
2295
2296 if (extended_p)
2297 {
2298 /* Tell the remote that we are using the extended protocol. */
2299 char *buf = alloca (rs->remote_packet_size);
2300 putpkt ("!");
2301 getpkt (buf, (rs->remote_packet_size), 0);
2302 }
2303 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2304 /* FIXME: need a master target_open vector from which all
2305 remote_opens can be called, so that stuff like this can
2306 go there. Failing that, the following code must be copied
2307 to the open function for any remote target that wants to
2308 support svr4 shared libraries. */
2309
2310 /* Set up to detect and load shared libraries. */
2311 if (exec_bfd) /* No use without an exec file. */
2312 {
2313 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2314 remote_check_symbols (symfile_objfile);
2315 }
2316 #endif
2317
2318 observer_notify_inferior_created (&current_target, from_tty);
2319 }
2320
2321 /* This takes a program previously attached to and detaches it. After
2322 this is done, GDB can be used to debug some other program. We
2323 better not have left any breakpoints in the target program or it'll
2324 die when it hits one. */
2325
2326 static void
2327 remote_detach (char *args, int from_tty)
2328 {
2329 struct remote_state *rs = get_remote_state ();
2330 char *buf = alloca (rs->remote_packet_size);
2331
2332 if (args)
2333 error (_("Argument given to \"detach\" when remotely debugging."));
2334
2335 /* Tell the remote target to detach. */
2336 strcpy (buf, "D");
2337 remote_send (buf, (rs->remote_packet_size));
2338
2339 /* Unregister the file descriptor from the event loop. */
2340 if (target_is_async_p ())
2341 serial_async (remote_desc, NULL, 0);
2342
2343 target_mourn_inferior ();
2344 if (from_tty)
2345 puts_filtered ("Ending remote debugging.\n");
2346 }
2347
2348 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2349
2350 static void
2351 remote_disconnect (char *args, int from_tty)
2352 {
2353 if (args)
2354 error (_("Argument given to \"detach\" when remotely debugging."));
2355
2356 /* Unregister the file descriptor from the event loop. */
2357 if (target_is_async_p ())
2358 serial_async (remote_desc, NULL, 0);
2359
2360 target_mourn_inferior ();
2361 if (from_tty)
2362 puts_filtered ("Ending remote debugging.\n");
2363 }
2364
2365 /* Convert hex digit A to a number. */
2366
2367 static int
2368 fromhex (int a)
2369 {
2370 if (a >= '0' && a <= '9')
2371 return a - '0';
2372 else if (a >= 'a' && a <= 'f')
2373 return a - 'a' + 10;
2374 else if (a >= 'A' && a <= 'F')
2375 return a - 'A' + 10;
2376 else
2377 error (_("Reply contains invalid hex digit %d"), a);
2378 }
2379
2380 static int
2381 hex2bin (const char *hex, char *bin, int count)
2382 {
2383 int i;
2384
2385 for (i = 0; i < count; i++)
2386 {
2387 if (hex[0] == 0 || hex[1] == 0)
2388 {
2389 /* Hex string is short, or of uneven length.
2390 Return the count that has been converted so far. */
2391 return i;
2392 }
2393 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2394 hex += 2;
2395 }
2396 return i;
2397 }
2398
2399 /* Convert number NIB to a hex digit. */
2400
2401 static int
2402 tohex (int nib)
2403 {
2404 if (nib < 10)
2405 return '0' + nib;
2406 else
2407 return 'a' + nib - 10;
2408 }
2409
2410 static int
2411 bin2hex (const char *bin, char *hex, int count)
2412 {
2413 int i;
2414 /* May use a length, or a nul-terminated string as input. */
2415 if (count == 0)
2416 count = strlen (bin);
2417
2418 for (i = 0; i < count; i++)
2419 {
2420 *hex++ = tohex ((*bin >> 4) & 0xf);
2421 *hex++ = tohex (*bin++ & 0xf);
2422 }
2423 *hex = 0;
2424 return i;
2425 }
2426 \f
2427 /* Check for the availability of vCont. This function should also check
2428 the response. */
2429
2430 static void
2431 remote_vcont_probe (struct remote_state *rs, char *buf)
2432 {
2433 strcpy (buf, "vCont?");
2434 putpkt (buf);
2435 getpkt (buf, rs->remote_packet_size, 0);
2436
2437 /* Make sure that the features we assume are supported. */
2438 if (strncmp (buf, "vCont", 5) == 0)
2439 {
2440 char *p = &buf[5];
2441 int support_s, support_S, support_c, support_C;
2442
2443 support_s = 0;
2444 support_S = 0;
2445 support_c = 0;
2446 support_C = 0;
2447 while (p && *p == ';')
2448 {
2449 p++;
2450 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2451 support_s = 1;
2452 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2453 support_S = 1;
2454 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2455 support_c = 1;
2456 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2457 support_C = 1;
2458
2459 p = strchr (p, ';');
2460 }
2461
2462 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2463 BUF will make packet_ok disable the packet. */
2464 if (!support_s || !support_S || !support_c || !support_C)
2465 buf[0] = 0;
2466 }
2467
2468 packet_ok (buf, &remote_protocol_vcont);
2469 }
2470
2471 /* Resume the remote inferior by using a "vCont" packet. The thread
2472 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2473 resumed thread should be single-stepped and/or signalled. If PTID's
2474 PID is -1, then all threads are resumed; the thread to be stepped and/or
2475 signalled is given in the global INFERIOR_PTID. This function returns
2476 non-zero iff it resumes the inferior.
2477
2478 This function issues a strict subset of all possible vCont commands at the
2479 moment. */
2480
2481 static int
2482 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2483 {
2484 struct remote_state *rs = get_remote_state ();
2485 int pid = PIDGET (ptid);
2486 char *buf = NULL, *outbuf;
2487 struct cleanup *old_cleanup;
2488
2489 buf = xmalloc (rs->remote_packet_size);
2490 old_cleanup = make_cleanup (xfree, buf);
2491
2492 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2493 remote_vcont_probe (rs, buf);
2494
2495 if (remote_protocol_vcont.support == PACKET_DISABLE)
2496 {
2497 do_cleanups (old_cleanup);
2498 return 0;
2499 }
2500
2501 /* If we could generate a wider range of packets, we'd have to worry
2502 about overflowing BUF. Should there be a generic
2503 "multi-part-packet" packet? */
2504
2505 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2506 {
2507 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2508 don't have any PID numbers the inferior will understand. Make sure
2509 to only send forms that do not specify a PID. */
2510 if (step && siggnal != TARGET_SIGNAL_0)
2511 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2512 else if (step)
2513 outbuf = xstrprintf ("vCont;s");
2514 else if (siggnal != TARGET_SIGNAL_0)
2515 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2516 else
2517 outbuf = xstrprintf ("vCont;c");
2518 }
2519 else if (pid == -1)
2520 {
2521 /* Resume all threads, with preference for INFERIOR_PTID. */
2522 if (step && siggnal != TARGET_SIGNAL_0)
2523 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2524 PIDGET (inferior_ptid));
2525 else if (step)
2526 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2527 else if (siggnal != TARGET_SIGNAL_0)
2528 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2529 PIDGET (inferior_ptid));
2530 else
2531 outbuf = xstrprintf ("vCont;c");
2532 }
2533 else
2534 {
2535 /* Scheduler locking; resume only PTID. */
2536 if (step && siggnal != TARGET_SIGNAL_0)
2537 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2538 else if (step)
2539 outbuf = xstrprintf ("vCont;s:%x", pid);
2540 else if (siggnal != TARGET_SIGNAL_0)
2541 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2542 else
2543 outbuf = xstrprintf ("vCont;c:%x", pid);
2544 }
2545
2546 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2547 make_cleanup (xfree, outbuf);
2548
2549 putpkt (outbuf);
2550
2551 do_cleanups (old_cleanup);
2552
2553 return 1;
2554 }
2555
2556 /* Tell the remote machine to resume. */
2557
2558 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2559
2560 static int last_sent_step;
2561
2562 static void
2563 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2564 {
2565 struct remote_state *rs = get_remote_state ();
2566 char *buf = alloca (rs->remote_packet_size);
2567 int pid = PIDGET (ptid);
2568
2569 last_sent_signal = siggnal;
2570 last_sent_step = step;
2571
2572 /* A hook for when we need to do something at the last moment before
2573 resumption. */
2574 if (deprecated_target_resume_hook)
2575 (*deprecated_target_resume_hook) ();
2576
2577 /* The vCont packet doesn't need to specify threads via Hc. */
2578 if (remote_vcont_resume (ptid, step, siggnal))
2579 return;
2580
2581 /* All other supported resume packets do use Hc, so call set_thread. */
2582 if (pid == -1)
2583 set_thread (0, 0); /* Run any thread. */
2584 else
2585 set_thread (pid, 0); /* Run this thread. */
2586
2587 if (siggnal != TARGET_SIGNAL_0)
2588 {
2589 buf[0] = step ? 'S' : 'C';
2590 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2591 buf[2] = tohex (((int) siggnal) & 0xf);
2592 buf[3] = '\0';
2593 }
2594 else
2595 strcpy (buf, step ? "s" : "c");
2596
2597 putpkt (buf);
2598 }
2599
2600 /* Same as remote_resume, but with async support. */
2601 static void
2602 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2603 {
2604 remote_resume (ptid, step, siggnal);
2605
2606 /* We are about to start executing the inferior, let's register it
2607 with the event loop. NOTE: this is the one place where all the
2608 execution commands end up. We could alternatively do this in each
2609 of the execution commands in infcmd.c. */
2610 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2611 into infcmd.c in order to allow inferior function calls to work
2612 NOT asynchronously. */
2613 if (target_can_async_p ())
2614 target_async (inferior_event_handler, 0);
2615 /* Tell the world that the target is now executing. */
2616 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2617 this? Instead, should the client of target just assume (for
2618 async targets) that the target is going to start executing? Is
2619 this information already found in the continuation block? */
2620 if (target_is_async_p ())
2621 target_executing = 1;
2622 }
2623 \f
2624
2625 /* Set up the signal handler for SIGINT, while the target is
2626 executing, ovewriting the 'regular' SIGINT signal handler. */
2627 static void
2628 initialize_sigint_signal_handler (void)
2629 {
2630 sigint_remote_token =
2631 create_async_signal_handler (async_remote_interrupt, NULL);
2632 signal (SIGINT, handle_remote_sigint);
2633 }
2634
2635 /* Signal handler for SIGINT, while the target is executing. */
2636 static void
2637 handle_remote_sigint (int sig)
2638 {
2639 signal (sig, handle_remote_sigint_twice);
2640 sigint_remote_twice_token =
2641 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2642 mark_async_signal_handler_wrapper (sigint_remote_token);
2643 }
2644
2645 /* Signal handler for SIGINT, installed after SIGINT has already been
2646 sent once. It will take effect the second time that the user sends
2647 a ^C. */
2648 static void
2649 handle_remote_sigint_twice (int sig)
2650 {
2651 signal (sig, handle_sigint);
2652 sigint_remote_twice_token =
2653 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2654 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2655 }
2656
2657 /* Perform the real interruption of the target execution, in response
2658 to a ^C. */
2659 static void
2660 async_remote_interrupt (gdb_client_data arg)
2661 {
2662 if (remote_debug)
2663 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2664
2665 target_stop ();
2666 }
2667
2668 /* Perform interrupt, if the first attempt did not succeed. Just give
2669 up on the target alltogether. */
2670 void
2671 async_remote_interrupt_twice (gdb_client_data arg)
2672 {
2673 if (remote_debug)
2674 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2675 /* Do something only if the target was not killed by the previous
2676 cntl-C. */
2677 if (target_executing)
2678 {
2679 interrupt_query ();
2680 signal (SIGINT, handle_remote_sigint);
2681 }
2682 }
2683
2684 /* Reinstall the usual SIGINT handlers, after the target has
2685 stopped. */
2686 static void
2687 cleanup_sigint_signal_handler (void *dummy)
2688 {
2689 signal (SIGINT, handle_sigint);
2690 if (sigint_remote_twice_token)
2691 delete_async_signal_handler ((struct async_signal_handler **)
2692 &sigint_remote_twice_token);
2693 if (sigint_remote_token)
2694 delete_async_signal_handler ((struct async_signal_handler **)
2695 &sigint_remote_token);
2696 }
2697
2698 /* Send ^C to target to halt it. Target will respond, and send us a
2699 packet. */
2700 static void (*ofunc) (int);
2701
2702 /* The command line interface's stop routine. This function is installed
2703 as a signal handler for SIGINT. The first time a user requests a
2704 stop, we call remote_stop to send a break or ^C. If there is no
2705 response from the target (it didn't stop when the user requested it),
2706 we ask the user if he'd like to detach from the target. */
2707 static void
2708 remote_interrupt (int signo)
2709 {
2710 /* If this doesn't work, try more severe steps. */
2711 signal (signo, remote_interrupt_twice);
2712
2713 if (remote_debug)
2714 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2715
2716 target_stop ();
2717 }
2718
2719 /* The user typed ^C twice. */
2720
2721 static void
2722 remote_interrupt_twice (int signo)
2723 {
2724 signal (signo, ofunc);
2725 interrupt_query ();
2726 signal (signo, remote_interrupt);
2727 }
2728
2729 /* This is the generic stop called via the target vector. When a target
2730 interrupt is requested, either by the command line or the GUI, we
2731 will eventually end up here. */
2732 static void
2733 remote_stop (void)
2734 {
2735 /* Send a break or a ^C, depending on user preference. */
2736 if (remote_debug)
2737 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2738
2739 if (remote_break)
2740 serial_send_break (remote_desc);
2741 else
2742 serial_write (remote_desc, "\003", 1);
2743 }
2744
2745 /* Ask the user what to do when an interrupt is received. */
2746
2747 static void
2748 interrupt_query (void)
2749 {
2750 target_terminal_ours ();
2751
2752 if (query ("Interrupted while waiting for the program.\n\
2753 Give up (and stop debugging it)? "))
2754 {
2755 target_mourn_inferior ();
2756 deprecated_throw_reason (RETURN_QUIT);
2757 }
2758
2759 target_terminal_inferior ();
2760 }
2761
2762 /* Enable/disable target terminal ownership. Most targets can use
2763 terminal groups to control terminal ownership. Remote targets are
2764 different in that explicit transfer of ownership to/from GDB/target
2765 is required. */
2766
2767 static void
2768 remote_async_terminal_inferior (void)
2769 {
2770 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2771 sync_execution here. This function should only be called when
2772 GDB is resuming the inferior in the forground. A background
2773 resume (``run&'') should leave GDB in control of the terminal and
2774 consequently should not call this code. */
2775 if (!sync_execution)
2776 return;
2777 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2778 calls target_terminal_*() idenpotent. The event-loop GDB talking
2779 to an asynchronous target with a synchronous command calls this
2780 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2781 stops trying to transfer the terminal to the target when it
2782 shouldn't this guard can go away. */
2783 if (!remote_async_terminal_ours_p)
2784 return;
2785 delete_file_handler (input_fd);
2786 remote_async_terminal_ours_p = 0;
2787 initialize_sigint_signal_handler ();
2788 /* NOTE: At this point we could also register our selves as the
2789 recipient of all input. Any characters typed could then be
2790 passed on down to the target. */
2791 }
2792
2793 static void
2794 remote_async_terminal_ours (void)
2795 {
2796 /* See FIXME in remote_async_terminal_inferior. */
2797 if (!sync_execution)
2798 return;
2799 /* See FIXME in remote_async_terminal_inferior. */
2800 if (remote_async_terminal_ours_p)
2801 return;
2802 cleanup_sigint_signal_handler (NULL);
2803 add_file_handler (input_fd, stdin_event_handler, 0);
2804 remote_async_terminal_ours_p = 1;
2805 }
2806
2807 /* If nonzero, ignore the next kill. */
2808
2809 int kill_kludge;
2810
2811 void
2812 remote_console_output (char *msg)
2813 {
2814 char *p;
2815
2816 for (p = msg; p[0] && p[1]; p += 2)
2817 {
2818 char tb[2];
2819 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2820 tb[0] = c;
2821 tb[1] = 0;
2822 fputs_unfiltered (tb, gdb_stdtarg);
2823 }
2824 gdb_flush (gdb_stdtarg);
2825 }
2826
2827 /* Wait until the remote machine stops, then return,
2828 storing status in STATUS just as `wait' would.
2829 Returns "pid", which in the case of a multi-threaded
2830 remote OS, is the thread-id. */
2831
2832 static ptid_t
2833 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2834 {
2835 struct remote_state *rs = get_remote_state ();
2836 unsigned char *buf = alloca (rs->remote_packet_size);
2837 ULONGEST thread_num = -1;
2838 ULONGEST addr;
2839
2840 status->kind = TARGET_WAITKIND_EXITED;
2841 status->value.integer = 0;
2842
2843 while (1)
2844 {
2845 unsigned char *p;
2846
2847 ofunc = signal (SIGINT, remote_interrupt);
2848 getpkt (buf, (rs->remote_packet_size), 1);
2849 signal (SIGINT, ofunc);
2850
2851 /* This is a hook for when we need to do something (perhaps the
2852 collection of trace data) every time the target stops. */
2853 if (deprecated_target_wait_loop_hook)
2854 (*deprecated_target_wait_loop_hook) ();
2855
2856 remote_stopped_by_watchpoint_p = 0;
2857
2858 switch (buf[0])
2859 {
2860 case 'E': /* Error of some sort. */
2861 warning (_("Remote failure reply: %s"), buf);
2862 continue;
2863 case 'F': /* File-I/O request. */
2864 remote_fileio_request (buf);
2865 continue;
2866 case 'T': /* Status with PC, SP, FP, ... */
2867 {
2868 char regs[MAX_REGISTER_SIZE];
2869
2870 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2871 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2872 ss = signal number
2873 n... = register number
2874 r... = register contents
2875 */
2876 p = &buf[3]; /* after Txx */
2877
2878 while (*p)
2879 {
2880 unsigned char *p1;
2881 char *p_temp;
2882 int fieldsize;
2883 LONGEST pnum = 0;
2884
2885 /* If the packet contains a register number save it in
2886 pnum and set p1 to point to the character following
2887 it. Otherwise p1 points to p. */
2888
2889 /* If this packet is an awatch packet, don't parse the
2890 'a' as a register number. */
2891
2892 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2893 {
2894 /* Read the ``P'' register number. */
2895 pnum = strtol (p, &p_temp, 16);
2896 p1 = (unsigned char *) p_temp;
2897 }
2898 else
2899 p1 = p;
2900
2901 if (p1 == p) /* No register number present here. */
2902 {
2903 p1 = (unsigned char *) strchr (p, ':');
2904 if (p1 == NULL)
2905 warning (_("Malformed packet(a) (missing colon): %s\n\
2906 Packet: '%s'\n"),
2907 p, buf);
2908 if (strncmp (p, "thread", p1 - p) == 0)
2909 {
2910 p_temp = unpack_varlen_hex (++p1, &thread_num);
2911 record_currthread (thread_num);
2912 p = (unsigned char *) p_temp;
2913 }
2914 else if ((strncmp (p, "watch", p1 - p) == 0)
2915 || (strncmp (p, "rwatch", p1 - p) == 0)
2916 || (strncmp (p, "awatch", p1 - p) == 0))
2917 {
2918 remote_stopped_by_watchpoint_p = 1;
2919 p = unpack_varlen_hex (++p1, &addr);
2920 remote_watch_data_address = (CORE_ADDR)addr;
2921 }
2922 else
2923 {
2924 /* Silently skip unknown optional info. */
2925 p_temp = strchr (p1 + 1, ';');
2926 if (p_temp)
2927 p = (unsigned char *) p_temp;
2928 }
2929 }
2930 else
2931 {
2932 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2933 p = p1;
2934
2935 if (*p++ != ':')
2936 error (_("Malformed packet(b) (missing colon): %s\n\
2937 Packet: '%s'\n"),
2938 p, buf);
2939
2940 if (reg == NULL)
2941 error (_("Remote sent bad register number %s: %s\n\
2942 Packet: '%s'\n"),
2943 phex_nz (pnum, 0), p, buf);
2944
2945 fieldsize = hex2bin (p, regs,
2946 register_size (current_gdbarch,
2947 reg->regnum));
2948 p += 2 * fieldsize;
2949 if (fieldsize < register_size (current_gdbarch,
2950 reg->regnum))
2951 warning (_("Remote reply is too short: %s"), buf);
2952 regcache_raw_supply (current_regcache,
2953 reg->regnum, regs);
2954 }
2955
2956 if (*p++ != ';')
2957 error (_("Remote register badly formatted: %s\nhere: %s"),
2958 buf, p);
2959 }
2960 }
2961 /* fall through */
2962 case 'S': /* Old style status, just signal only. */
2963 status->kind = TARGET_WAITKIND_STOPPED;
2964 status->value.sig = (enum target_signal)
2965 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2966
2967 if (buf[3] == 'p')
2968 {
2969 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2970 record_currthread (thread_num);
2971 }
2972 goto got_status;
2973 case 'W': /* Target exited. */
2974 {
2975 /* The remote process exited. */
2976 status->kind = TARGET_WAITKIND_EXITED;
2977 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2978 goto got_status;
2979 }
2980 case 'X':
2981 status->kind = TARGET_WAITKIND_SIGNALLED;
2982 status->value.sig = (enum target_signal)
2983 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2984 kill_kludge = 1;
2985
2986 goto got_status;
2987 case 'O': /* Console output. */
2988 remote_console_output (buf + 1);
2989 continue;
2990 case '\0':
2991 if (last_sent_signal != TARGET_SIGNAL_0)
2992 {
2993 /* Zero length reply means that we tried 'S' or 'C' and
2994 the remote system doesn't support it. */
2995 target_terminal_ours_for_output ();
2996 printf_filtered
2997 ("Can't send signals to this remote system. %s not sent.\n",
2998 target_signal_to_name (last_sent_signal));
2999 last_sent_signal = TARGET_SIGNAL_0;
3000 target_terminal_inferior ();
3001
3002 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3003 putpkt ((char *) buf);
3004 continue;
3005 }
3006 /* else fallthrough */
3007 default:
3008 warning (_("Invalid remote reply: %s"), buf);
3009 continue;
3010 }
3011 }
3012 got_status:
3013 if (thread_num != -1)
3014 {
3015 return pid_to_ptid (thread_num);
3016 }
3017 return inferior_ptid;
3018 }
3019
3020 /* Async version of remote_wait. */
3021 static ptid_t
3022 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3023 {
3024 struct remote_state *rs = get_remote_state ();
3025 unsigned char *buf = alloca (rs->remote_packet_size);
3026 ULONGEST thread_num = -1;
3027 ULONGEST addr;
3028
3029 status->kind = TARGET_WAITKIND_EXITED;
3030 status->value.integer = 0;
3031
3032 remote_stopped_by_watchpoint_p = 0;
3033
3034 while (1)
3035 {
3036 unsigned char *p;
3037
3038 if (!target_is_async_p ())
3039 ofunc = signal (SIGINT, remote_interrupt);
3040 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3041 _never_ wait for ever -> test on target_is_async_p().
3042 However, before we do that we need to ensure that the caller
3043 knows how to take the target into/out of async mode. */
3044 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3045 if (!target_is_async_p ())
3046 signal (SIGINT, ofunc);
3047
3048 /* This is a hook for when we need to do something (perhaps the
3049 collection of trace data) every time the target stops. */
3050 if (deprecated_target_wait_loop_hook)
3051 (*deprecated_target_wait_loop_hook) ();
3052
3053 switch (buf[0])
3054 {
3055 case 'E': /* Error of some sort. */
3056 warning (_("Remote failure reply: %s"), buf);
3057 continue;
3058 case 'F': /* File-I/O request. */
3059 remote_fileio_request (buf);
3060 continue;
3061 case 'T': /* Status with PC, SP, FP, ... */
3062 {
3063 char regs[MAX_REGISTER_SIZE];
3064
3065 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3066 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3067 ss = signal number
3068 n... = register number
3069 r... = register contents
3070 */
3071 p = &buf[3]; /* after Txx */
3072
3073 while (*p)
3074 {
3075 unsigned char *p1;
3076 char *p_temp;
3077 int fieldsize;
3078 long pnum = 0;
3079
3080 /* If the packet contains a register number, save it
3081 in pnum and set p1 to point to the character
3082 following it. Otherwise p1 points to p. */
3083
3084 /* If this packet is an awatch packet, don't parse the 'a'
3085 as a register number. */
3086
3087 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3088 {
3089 /* Read the register number. */
3090 pnum = strtol (p, &p_temp, 16);
3091 p1 = (unsigned char *) p_temp;
3092 }
3093 else
3094 p1 = p;
3095
3096 if (p1 == p) /* No register number present here. */
3097 {
3098 p1 = (unsigned char *) strchr (p, ':');
3099 if (p1 == NULL)
3100 error (_("Malformed packet(a) (missing colon): %s\n\
3101 Packet: '%s'\n"),
3102 p, buf);
3103 if (strncmp (p, "thread", p1 - p) == 0)
3104 {
3105 p_temp = unpack_varlen_hex (++p1, &thread_num);
3106 record_currthread (thread_num);
3107 p = (unsigned char *) p_temp;
3108 }
3109 else if ((strncmp (p, "watch", p1 - p) == 0)
3110 || (strncmp (p, "rwatch", p1 - p) == 0)
3111 || (strncmp (p, "awatch", p1 - p) == 0))
3112 {
3113 remote_stopped_by_watchpoint_p = 1;
3114 p = unpack_varlen_hex (++p1, &addr);
3115 remote_watch_data_address = (CORE_ADDR)addr;
3116 }
3117 else
3118 {
3119 /* Silently skip unknown optional info. */
3120 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3121 if (p_temp)
3122 p = p_temp;
3123 }
3124 }
3125
3126 else
3127 {
3128 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3129 p = p1;
3130 if (*p++ != ':')
3131 error (_("Malformed packet(b) (missing colon): %s\n\
3132 Packet: '%s'\n"),
3133 p, buf);
3134
3135 if (reg == NULL)
3136 error (_("Remote sent bad register number %ld: %s\n\
3137 Packet: '%s'\n"),
3138 pnum, p, buf);
3139
3140 fieldsize = hex2bin (p, regs,
3141 register_size (current_gdbarch,
3142 reg->regnum));
3143 p += 2 * fieldsize;
3144 if (fieldsize < register_size (current_gdbarch,
3145 reg->regnum))
3146 warning (_("Remote reply is too short: %s"), buf);
3147 regcache_raw_supply (current_regcache, reg->regnum, regs);
3148 }
3149
3150 if (*p++ != ';')
3151 error (_("Remote register badly formatted: %s\nhere: %s"),
3152 buf, p);
3153 }
3154 }
3155 /* fall through */
3156 case 'S': /* Old style status, just signal only. */
3157 status->kind = TARGET_WAITKIND_STOPPED;
3158 status->value.sig = (enum target_signal)
3159 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3160
3161 if (buf[3] == 'p')
3162 {
3163 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3164 record_currthread (thread_num);
3165 }
3166 goto got_status;
3167 case 'W': /* Target exited. */
3168 {
3169 /* The remote process exited. */
3170 status->kind = TARGET_WAITKIND_EXITED;
3171 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3172 goto got_status;
3173 }
3174 case 'X':
3175 status->kind = TARGET_WAITKIND_SIGNALLED;
3176 status->value.sig = (enum target_signal)
3177 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3178 kill_kludge = 1;
3179
3180 goto got_status;
3181 case 'O': /* Console output. */
3182 remote_console_output (buf + 1);
3183 /* Return immediately to the event loop. The event loop will
3184 still be waiting on the inferior afterwards. */
3185 status->kind = TARGET_WAITKIND_IGNORE;
3186 goto got_status;
3187 case '\0':
3188 if (last_sent_signal != TARGET_SIGNAL_0)
3189 {
3190 /* Zero length reply means that we tried 'S' or 'C' and
3191 the remote system doesn't support it. */
3192 target_terminal_ours_for_output ();
3193 printf_filtered
3194 ("Can't send signals to this remote system. %s not sent.\n",
3195 target_signal_to_name (last_sent_signal));
3196 last_sent_signal = TARGET_SIGNAL_0;
3197 target_terminal_inferior ();
3198
3199 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3200 putpkt ((char *) buf);
3201 continue;
3202 }
3203 /* else fallthrough */
3204 default:
3205 warning (_("Invalid remote reply: %s"), buf);
3206 continue;
3207 }
3208 }
3209 got_status:
3210 if (thread_num != -1)
3211 {
3212 return pid_to_ptid (thread_num);
3213 }
3214 return inferior_ptid;
3215 }
3216
3217 /* Number of bytes of registers this stub implements. */
3218
3219 static int register_bytes_found;
3220
3221 /* Read the remote registers into the block REGS. */
3222 /* Currently we just read all the registers, so we don't use regnum. */
3223
3224 static int
3225 fetch_register_using_p (int regnum)
3226 {
3227 struct remote_state *rs = get_remote_state ();
3228 char *buf = alloca (rs->remote_packet_size), *p;
3229 char regp[MAX_REGISTER_SIZE];
3230 int i;
3231
3232 p = buf;
3233 *p++ = 'p';
3234 p += hexnumstr (p, regnum);
3235 *p++ = '\0';
3236 remote_send (buf, rs->remote_packet_size);
3237
3238 /* If the stub didn't recognize the packet, or if we got an error,
3239 tell our caller. */
3240 if (buf[0] == '\0' || buf[0] == 'E')
3241 return 0;
3242
3243 /* If this register is unfetchable, tell the regcache. */
3244 if (buf[0] == 'x')
3245 {
3246 regcache_raw_supply (current_regcache, regnum, NULL);
3247 set_register_cached (regnum, -1);
3248 return 1;
3249 }
3250
3251 /* Otherwise, parse and supply the value. */
3252 p = buf;
3253 i = 0;
3254 while (p[0] != 0)
3255 {
3256 if (p[1] == 0)
3257 {
3258 error (_("fetch_register_using_p: early buf termination"));
3259 return 0;
3260 }
3261
3262 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3263 p += 2;
3264 }
3265 regcache_raw_supply (current_regcache, regnum, regp);
3266 return 1;
3267 }
3268
3269 static void
3270 remote_fetch_registers (int regnum)
3271 {
3272 struct remote_state *rs = get_remote_state ();
3273 char *buf = alloca (rs->remote_packet_size);
3274 int i;
3275 char *p;
3276 char *regs = alloca (rs->sizeof_g_packet);
3277
3278 set_thread (PIDGET (inferior_ptid), 1);
3279
3280 if (regnum >= 0)
3281 {
3282 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3283 gdb_assert (reg != NULL);
3284 if (!reg->in_g_packet)
3285 internal_error (__FILE__, __LINE__,
3286 _("Attempt to fetch a non G-packet register when this "
3287 "remote.c does not support the p-packet."));
3288 }
3289 switch (remote_protocol_p.support)
3290 {
3291 case PACKET_DISABLE:
3292 break;
3293 case PACKET_ENABLE:
3294 if (fetch_register_using_p (regnum))
3295 return;
3296 else
3297 error (_("Protocol error: p packet not recognized by stub"));
3298 case PACKET_SUPPORT_UNKNOWN:
3299 if (fetch_register_using_p (regnum))
3300 {
3301 /* The stub recognized the 'p' packet. Remember this. */
3302 remote_protocol_p.support = PACKET_ENABLE;
3303 return;
3304 }
3305 else
3306 {
3307 /* The stub does not support the 'P' packet. Use 'G'
3308 instead, and don't try using 'P' in the future (it
3309 will just waste our time). */
3310 remote_protocol_p.support = PACKET_DISABLE;
3311 break;
3312 }
3313 }
3314
3315 sprintf (buf, "g");
3316 remote_send (buf, (rs->remote_packet_size));
3317
3318 /* Save the size of the packet sent to us by the target. Its used
3319 as a heuristic when determining the max size of packets that the
3320 target can safely receive. */
3321 if ((rs->actual_register_packet_size) == 0)
3322 (rs->actual_register_packet_size) = strlen (buf);
3323
3324 /* Unimplemented registers read as all bits zero. */
3325 memset (regs, 0, rs->sizeof_g_packet);
3326
3327 /* We can get out of synch in various cases. If the first character
3328 in the buffer is not a hex character, assume that has happened
3329 and try to fetch another packet to read. */
3330 while ((buf[0] < '0' || buf[0] > '9')
3331 && (buf[0] < 'A' || buf[0] > 'F')
3332 && (buf[0] < 'a' || buf[0] > 'f')
3333 && buf[0] != 'x') /* New: unavailable register value. */
3334 {
3335 if (remote_debug)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "Bad register packet; fetching a new packet\n");
3338 getpkt (buf, (rs->remote_packet_size), 0);
3339 }
3340
3341 /* Reply describes registers byte by byte, each byte encoded as two
3342 hex characters. Suck them all up, then supply them to the
3343 register cacheing/storage mechanism. */
3344
3345 p = buf;
3346 for (i = 0; i < rs->sizeof_g_packet; i++)
3347 {
3348 if (p[0] == 0)
3349 break;
3350 if (p[1] == 0)
3351 {
3352 warning (_("Remote reply is of odd length: %s"), buf);
3353 /* Don't change register_bytes_found in this case, and don't
3354 print a second warning. */
3355 goto supply_them;
3356 }
3357 if (p[0] == 'x' && p[1] == 'x')
3358 regs[i] = 0; /* 'x' */
3359 else
3360 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3361 p += 2;
3362 }
3363
3364 if (i != register_bytes_found)
3365 {
3366 register_bytes_found = i;
3367 if (REGISTER_BYTES_OK_P ()
3368 && !REGISTER_BYTES_OK (i))
3369 warning (_("Remote reply is too short: %s"), buf);
3370 }
3371
3372 supply_them:
3373 {
3374 int i;
3375 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3376 {
3377 struct packet_reg *r = &rs->regs[i];
3378 if (r->in_g_packet)
3379 {
3380 if (r->offset * 2 >= strlen (buf))
3381 /* A short packet that didn't include the register's
3382 value, this implies that the register is zero (and
3383 not that the register is unavailable). Supply that
3384 zero value. */
3385 regcache_raw_supply (current_regcache, r->regnum, NULL);
3386 else if (buf[r->offset * 2] == 'x')
3387 {
3388 gdb_assert (r->offset * 2 < strlen (buf));
3389 /* The register isn't available, mark it as such (at
3390 the same time setting the value to zero). */
3391 regcache_raw_supply (current_regcache, r->regnum, NULL);
3392 set_register_cached (i, -1);
3393 }
3394 else
3395 regcache_raw_supply (current_regcache, r->regnum,
3396 regs + r->offset);
3397 }
3398 }
3399 }
3400 }
3401
3402 /* Prepare to store registers. Since we may send them all (using a
3403 'G' request), we have to read out the ones we don't want to change
3404 first. */
3405
3406 static void
3407 remote_prepare_to_store (void)
3408 {
3409 struct remote_state *rs = get_remote_state ();
3410 int i;
3411 char buf[MAX_REGISTER_SIZE];
3412
3413 /* Make sure the entire registers array is valid. */
3414 switch (remote_protocol_P.support)
3415 {
3416 case PACKET_DISABLE:
3417 case PACKET_SUPPORT_UNKNOWN:
3418 /* Make sure all the necessary registers are cached. */
3419 for (i = 0; i < NUM_REGS; i++)
3420 if (rs->regs[i].in_g_packet)
3421 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3422 break;
3423 case PACKET_ENABLE:
3424 break;
3425 }
3426 }
3427
3428 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3429 packet was not recognized. */
3430
3431 static int
3432 store_register_using_P (int regnum)
3433 {
3434 struct remote_state *rs = get_remote_state ();
3435 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3436 /* Try storing a single register. */
3437 char *buf = alloca (rs->remote_packet_size);
3438 char regp[MAX_REGISTER_SIZE];
3439 char *p;
3440
3441 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3442 p = buf + strlen (buf);
3443 regcache_raw_collect (current_regcache, reg->regnum, regp);
3444 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3445 remote_send (buf, rs->remote_packet_size);
3446
3447 return buf[0] != '\0';
3448 }
3449
3450
3451 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3452 contents of the register cache buffer. FIXME: ignores errors. */
3453
3454 static void
3455 remote_store_registers (int regnum)
3456 {
3457 struct remote_state *rs = get_remote_state ();
3458 char *buf;
3459 char *regs;
3460 char *p;
3461
3462 set_thread (PIDGET (inferior_ptid), 1);
3463
3464 if (regnum >= 0)
3465 {
3466 switch (remote_protocol_P.support)
3467 {
3468 case PACKET_DISABLE:
3469 break;
3470 case PACKET_ENABLE:
3471 if (store_register_using_P (regnum))
3472 return;
3473 else
3474 error (_("Protocol error: P packet not recognized by stub"));
3475 case PACKET_SUPPORT_UNKNOWN:
3476 if (store_register_using_P (regnum))
3477 {
3478 /* The stub recognized the 'P' packet. Remember this. */
3479 remote_protocol_P.support = PACKET_ENABLE;
3480 return;
3481 }
3482 else
3483 {
3484 /* The stub does not support the 'P' packet. Use 'G'
3485 instead, and don't try using 'P' in the future (it
3486 will just waste our time). */
3487 remote_protocol_P.support = PACKET_DISABLE;
3488 break;
3489 }
3490 }
3491 }
3492
3493 /* Extract all the registers in the regcache copying them into a
3494 local buffer. */
3495 {
3496 int i;
3497 regs = alloca (rs->sizeof_g_packet);
3498 memset (regs, 0, rs->sizeof_g_packet);
3499 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3500 {
3501 struct packet_reg *r = &rs->regs[i];
3502 if (r->in_g_packet)
3503 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3504 }
3505 }
3506
3507 /* Command describes registers byte by byte,
3508 each byte encoded as two hex characters. */
3509 buf = alloca (rs->remote_packet_size);
3510 p = buf;
3511 *p++ = 'G';
3512 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3513 bin2hex (regs, p, register_bytes_found);
3514 remote_send (buf, (rs->remote_packet_size));
3515 }
3516 \f
3517
3518 /* Return the number of hex digits in num. */
3519
3520 static int
3521 hexnumlen (ULONGEST num)
3522 {
3523 int i;
3524
3525 for (i = 0; num != 0; i++)
3526 num >>= 4;
3527
3528 return max (i, 1);
3529 }
3530
3531 /* Set BUF to the minimum number of hex digits representing NUM. */
3532
3533 static int
3534 hexnumstr (char *buf, ULONGEST num)
3535 {
3536 int len = hexnumlen (num);
3537 return hexnumnstr (buf, num, len);
3538 }
3539
3540
3541 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3542
3543 static int
3544 hexnumnstr (char *buf, ULONGEST num, int width)
3545 {
3546 int i;
3547
3548 buf[width] = '\0';
3549
3550 for (i = width - 1; i >= 0; i--)
3551 {
3552 buf[i] = "0123456789abcdef"[(num & 0xf)];
3553 num >>= 4;
3554 }
3555
3556 return width;
3557 }
3558
3559 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3560
3561 static CORE_ADDR
3562 remote_address_masked (CORE_ADDR addr)
3563 {
3564 if (remote_address_size > 0
3565 && remote_address_size < (sizeof (ULONGEST) * 8))
3566 {
3567 /* Only create a mask when that mask can safely be constructed
3568 in a ULONGEST variable. */
3569 ULONGEST mask = 1;
3570 mask = (mask << remote_address_size) - 1;
3571 addr &= mask;
3572 }
3573 return addr;
3574 }
3575
3576 /* Determine whether the remote target supports binary downloading.
3577 This is accomplished by sending a no-op memory write of zero length
3578 to the target at the specified address. It does not suffice to send
3579 the whole packet, since many stubs strip the eighth bit and
3580 subsequently compute a wrong checksum, which causes real havoc with
3581 remote_write_bytes.
3582
3583 NOTE: This can still lose if the serial line is not eight-bit
3584 clean. In cases like this, the user should clear "remote
3585 X-packet". */
3586
3587 static void
3588 check_binary_download (CORE_ADDR addr)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591 switch (remote_protocol_binary_download.support)
3592 {
3593 case PACKET_DISABLE:
3594 break;
3595 case PACKET_ENABLE:
3596 break;
3597 case PACKET_SUPPORT_UNKNOWN:
3598 {
3599 char *buf = alloca (rs->remote_packet_size);
3600 char *p;
3601
3602 p = buf;
3603 *p++ = 'X';
3604 p += hexnumstr (p, (ULONGEST) addr);
3605 *p++ = ',';
3606 p += hexnumstr (p, (ULONGEST) 0);
3607 *p++ = ':';
3608 *p = '\0';
3609
3610 putpkt_binary (buf, (int) (p - buf));
3611 getpkt (buf, (rs->remote_packet_size), 0);
3612
3613 if (buf[0] == '\0')
3614 {
3615 if (remote_debug)
3616 fprintf_unfiltered (gdb_stdlog,
3617 "binary downloading NOT suppported by target\n");
3618 remote_protocol_binary_download.support = PACKET_DISABLE;
3619 }
3620 else
3621 {
3622 if (remote_debug)
3623 fprintf_unfiltered (gdb_stdlog,
3624 "binary downloading suppported by target\n");
3625 remote_protocol_binary_download.support = PACKET_ENABLE;
3626 }
3627 break;
3628 }
3629 }
3630 }
3631
3632 /* Write memory data directly to the remote machine.
3633 This does not inform the data cache; the data cache uses this.
3634 MEMADDR is the address in the remote memory space.
3635 MYADDR is the address of the buffer in our space.
3636 LEN is the number of bytes.
3637
3638 Returns number of bytes transferred, or 0 (setting errno) for
3639 error. Only transfer a single packet. */
3640
3641 int
3642 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3643 {
3644 unsigned char *buf;
3645 unsigned char *p;
3646 unsigned char *plen;
3647 long sizeof_buf;
3648 int plenlen;
3649 int todo;
3650 int nr_bytes;
3651 int payload_size;
3652 unsigned char *payload_start;
3653
3654 /* Verify that the target can support a binary download. */
3655 check_binary_download (memaddr);
3656
3657 payload_size = get_memory_write_packet_size ();
3658
3659 /* Compute the size, and then allocate space for the largest
3660 possible packet. Include space for an extra trailing NUL. */
3661 sizeof_buf = payload_size + 1;
3662 buf = alloca (sizeof_buf);
3663
3664 /* Compute the size of the actual payload by subtracting out the
3665 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3666 */
3667 payload_size -= strlen ("$M,:#NN");
3668 payload_size -= hexnumlen (memaddr);
3669
3670 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3671
3672 /* Append "[XM]". Compute a best guess of the number of bytes
3673 actually transfered. */
3674 p = buf;
3675 switch (remote_protocol_binary_download.support)
3676 {
3677 case PACKET_ENABLE:
3678 *p++ = 'X';
3679 /* Best guess at number of bytes that will fit. */
3680 todo = min (len, payload_size);
3681 payload_size -= hexnumlen (todo);
3682 todo = min (todo, payload_size);
3683 break;
3684 case PACKET_DISABLE:
3685 *p++ = 'M';
3686 /* Num bytes that will fit. */
3687 todo = min (len, payload_size / 2);
3688 payload_size -= hexnumlen (todo);
3689 todo = min (todo, payload_size / 2);
3690 break;
3691 case PACKET_SUPPORT_UNKNOWN:
3692 internal_error (__FILE__, __LINE__,
3693 _("remote_write_bytes: bad internal state"));
3694 default:
3695 internal_error (__FILE__, __LINE__, _("bad switch"));
3696 }
3697 if (todo <= 0)
3698 internal_error (__FILE__, __LINE__,
3699 _("minumum packet size too small to write data"));
3700
3701 /* Append "<memaddr>". */
3702 memaddr = remote_address_masked (memaddr);
3703 p += hexnumstr (p, (ULONGEST) memaddr);
3704
3705 /* Append ",". */
3706 *p++ = ',';
3707
3708 /* Append <len>. Retain the location/size of <len>. It may need to
3709 be adjusted once the packet body has been created. */
3710 plen = p;
3711 plenlen = hexnumstr (p, (ULONGEST) todo);
3712 p += plenlen;
3713
3714 /* Append ":". */
3715 *p++ = ':';
3716 *p = '\0';
3717
3718 /* Append the packet body. */
3719 payload_start = p;
3720 switch (remote_protocol_binary_download.support)
3721 {
3722 case PACKET_ENABLE:
3723 /* Binary mode. Send target system values byte by byte, in
3724 increasing byte addresses. Only escape certain critical
3725 characters. */
3726 for (nr_bytes = 0;
3727 (nr_bytes < todo) && (p - payload_start) < payload_size;
3728 nr_bytes++)
3729 {
3730 switch (myaddr[nr_bytes] & 0xff)
3731 {
3732 case '$':
3733 case '#':
3734 case 0x7d:
3735 /* These must be escaped. */
3736 *p++ = 0x7d;
3737 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3738 break;
3739 default:
3740 *p++ = myaddr[nr_bytes] & 0xff;
3741 break;
3742 }
3743 }
3744 if (nr_bytes < todo)
3745 {
3746 /* Escape chars have filled up the buffer prematurely,
3747 and we have actually sent fewer bytes than planned.
3748 Fix-up the length field of the packet. Use the same
3749 number of characters as before. */
3750 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3751 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3752 }
3753 break;
3754 case PACKET_DISABLE:
3755 /* Normal mode: Send target system values byte by byte, in
3756 increasing byte addresses. Each byte is encoded as a two hex
3757 value. */
3758 nr_bytes = bin2hex (myaddr, p, todo);
3759 p += 2 * nr_bytes;
3760 break;
3761 case PACKET_SUPPORT_UNKNOWN:
3762 internal_error (__FILE__, __LINE__,
3763 _("remote_write_bytes: bad internal state"));
3764 default:
3765 internal_error (__FILE__, __LINE__, _("bad switch"));
3766 }
3767
3768 putpkt_binary (buf, (int) (p - buf));
3769 getpkt (buf, sizeof_buf, 0);
3770
3771 if (buf[0] == 'E')
3772 {
3773 /* There is no correspondance between what the remote protocol
3774 uses for errors and errno codes. We would like a cleaner way
3775 of representing errors (big enough to include errno codes,
3776 bfd_error codes, and others). But for now just return EIO. */
3777 errno = EIO;
3778 return 0;
3779 }
3780
3781 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3782 fewer bytes than we'd planned. */
3783 return nr_bytes;
3784 }
3785
3786 /* Read memory data directly from the remote machine.
3787 This does not use the data cache; the data cache uses this.
3788 MEMADDR is the address in the remote memory space.
3789 MYADDR is the address of the buffer in our space.
3790 LEN is the number of bytes.
3791
3792 Returns number of bytes transferred, or 0 for error. */
3793
3794 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3795 remote targets) shouldn't attempt to read the entire buffer.
3796 Instead it should read a single packet worth of data and then
3797 return the byte size of that packet to the caller. The caller (its
3798 caller and its callers caller ;-) already contains code for
3799 handling partial reads. */
3800
3801 int
3802 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3803 {
3804 char *buf;
3805 int max_buf_size; /* Max size of packet output buffer. */
3806 long sizeof_buf;
3807 int origlen;
3808
3809 /* Create a buffer big enough for this packet. */
3810 max_buf_size = get_memory_read_packet_size ();
3811 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3812 buf = alloca (sizeof_buf);
3813
3814 origlen = len;
3815 while (len > 0)
3816 {
3817 char *p;
3818 int todo;
3819 int i;
3820
3821 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3822
3823 /* construct "m"<memaddr>","<len>" */
3824 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3825 memaddr = remote_address_masked (memaddr);
3826 p = buf;
3827 *p++ = 'm';
3828 p += hexnumstr (p, (ULONGEST) memaddr);
3829 *p++ = ',';
3830 p += hexnumstr (p, (ULONGEST) todo);
3831 *p = '\0';
3832
3833 putpkt (buf);
3834 getpkt (buf, sizeof_buf, 0);
3835
3836 if (buf[0] == 'E'
3837 && isxdigit (buf[1]) && isxdigit (buf[2])
3838 && buf[3] == '\0')
3839 {
3840 /* There is no correspondance between what the remote
3841 protocol uses for errors and errno codes. We would like
3842 a cleaner way of representing errors (big enough to
3843 include errno codes, bfd_error codes, and others). But
3844 for now just return EIO. */
3845 errno = EIO;
3846 return 0;
3847 }
3848
3849 /* Reply describes memory byte by byte,
3850 each byte encoded as two hex characters. */
3851
3852 p = buf;
3853 if ((i = hex2bin (p, myaddr, todo)) < todo)
3854 {
3855 /* Reply is short. This means that we were able to read
3856 only part of what we wanted to. */
3857 return i + (origlen - len);
3858 }
3859 myaddr += todo;
3860 memaddr += todo;
3861 len -= todo;
3862 }
3863 return origlen;
3864 }
3865 \f
3866 /* Read or write LEN bytes from inferior memory at MEMADDR,
3867 transferring to or from debugger address BUFFER. Write to inferior
3868 if SHOULD_WRITE is nonzero. Returns length of data written or
3869 read; 0 for error. TARGET is unused. */
3870
3871 static int
3872 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3873 int should_write, struct mem_attrib *attrib,
3874 struct target_ops *target)
3875 {
3876 CORE_ADDR targ_addr;
3877 int targ_len;
3878 int res;
3879
3880 /* Should this be the selected frame? */
3881 gdbarch_remote_translate_xfer_address (current_gdbarch,
3882 current_regcache,
3883 mem_addr, mem_len,
3884 &targ_addr, &targ_len);
3885 if (targ_len <= 0)
3886 return 0;
3887
3888 if (should_write)
3889 res = remote_write_bytes (targ_addr, buffer, targ_len);
3890 else
3891 res = remote_read_bytes (targ_addr, buffer, targ_len);
3892
3893 return res;
3894 }
3895
3896 static void
3897 remote_files_info (struct target_ops *ignore)
3898 {
3899 puts_filtered ("Debugging a target over a serial line.\n");
3900 }
3901 \f
3902 /* Stuff for dealing with the packets which are part of this protocol.
3903 See comment at top of file for details. */
3904
3905 /* Read a single character from the remote end, masking it down to 7
3906 bits. */
3907
3908 static int
3909 readchar (int timeout)
3910 {
3911 int ch;
3912
3913 ch = serial_readchar (remote_desc, timeout);
3914
3915 if (ch >= 0)
3916 return (ch & 0x7f);
3917
3918 switch ((enum serial_rc) ch)
3919 {
3920 case SERIAL_EOF:
3921 target_mourn_inferior ();
3922 error (_("Remote connection closed"));
3923 /* no return */
3924 case SERIAL_ERROR:
3925 perror_with_name (_("Remote communication error"));
3926 /* no return */
3927 case SERIAL_TIMEOUT:
3928 break;
3929 }
3930 return ch;
3931 }
3932
3933 /* Send the command in BUF to the remote machine, and read the reply
3934 into BUF. Report an error if we get an error reply. */
3935
3936 static void
3937 remote_send (char *buf,
3938 long sizeof_buf)
3939 {
3940 putpkt (buf);
3941 getpkt (buf, sizeof_buf, 0);
3942
3943 if (buf[0] == 'E')
3944 error (_("Remote failure reply: %s"), buf);
3945 }
3946
3947 /* Display a null-terminated packet on stdout, for debugging, using C
3948 string notation. */
3949
3950 static void
3951 print_packet (char *buf)
3952 {
3953 puts_filtered ("\"");
3954 fputstr_filtered (buf, '"', gdb_stdout);
3955 puts_filtered ("\"");
3956 }
3957
3958 int
3959 putpkt (char *buf)
3960 {
3961 return putpkt_binary (buf, strlen (buf));
3962 }
3963
3964 /* Send a packet to the remote machine, with error checking. The data
3965 of the packet is in BUF. The string in BUF can be at most
3966 (rs->remote_packet_size) - 5 to account for the $, # and checksum,
3967 and for a possible /0 if we are debugging (remote_debug) and want
3968 to print the sent packet as a string. */
3969
3970 static int
3971 putpkt_binary (char *buf, int cnt)
3972 {
3973 struct remote_state *rs = get_remote_state ();
3974 int i;
3975 unsigned char csum = 0;
3976 char *buf2 = alloca (cnt + 6);
3977 long sizeof_junkbuf = (rs->remote_packet_size);
3978 char *junkbuf = alloca (sizeof_junkbuf);
3979
3980 int ch;
3981 int tcount = 0;
3982 char *p;
3983
3984 /* Copy the packet into buffer BUF2, encapsulating it
3985 and giving it a checksum. */
3986
3987 p = buf2;
3988 *p++ = '$';
3989
3990 for (i = 0; i < cnt; i++)
3991 {
3992 csum += buf[i];
3993 *p++ = buf[i];
3994 }
3995 *p++ = '#';
3996 *p++ = tohex ((csum >> 4) & 0xf);
3997 *p++ = tohex (csum & 0xf);
3998
3999 /* Send it over and over until we get a positive ack. */
4000
4001 while (1)
4002 {
4003 int started_error_output = 0;
4004
4005 if (remote_debug)
4006 {
4007 *p = '\0';
4008 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4009 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4010 fprintf_unfiltered (gdb_stdlog, "...");
4011 gdb_flush (gdb_stdlog);
4012 }
4013 if (serial_write (remote_desc, buf2, p - buf2))
4014 perror_with_name (_("putpkt: write failed"));
4015
4016 /* Read until either a timeout occurs (-2) or '+' is read. */
4017 while (1)
4018 {
4019 ch = readchar (remote_timeout);
4020
4021 if (remote_debug)
4022 {
4023 switch (ch)
4024 {
4025 case '+':
4026 case '-':
4027 case SERIAL_TIMEOUT:
4028 case '$':
4029 if (started_error_output)
4030 {
4031 putchar_unfiltered ('\n');
4032 started_error_output = 0;
4033 }
4034 }
4035 }
4036
4037 switch (ch)
4038 {
4039 case '+':
4040 if (remote_debug)
4041 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4042 return 1;
4043 case '-':
4044 if (remote_debug)
4045 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4046 case SERIAL_TIMEOUT:
4047 tcount++;
4048 if (tcount > 3)
4049 return 0;
4050 break; /* Retransmit buffer. */
4051 case '$':
4052 {
4053 if (remote_debug)
4054 fprintf_unfiltered (gdb_stdlog,
4055 "Packet instead of Ack, ignoring it\n");
4056 /* It's probably an old response sent because an ACK
4057 was lost. Gobble up the packet and ack it so it
4058 doesn't get retransmitted when we resend this
4059 packet. */
4060 read_frame (junkbuf, sizeof_junkbuf);
4061 serial_write (remote_desc, "+", 1);
4062 continue; /* Now, go look for +. */
4063 }
4064 default:
4065 if (remote_debug)
4066 {
4067 if (!started_error_output)
4068 {
4069 started_error_output = 1;
4070 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4071 }
4072 fputc_unfiltered (ch & 0177, gdb_stdlog);
4073 }
4074 continue;
4075 }
4076 break; /* Here to retransmit. */
4077 }
4078
4079 #if 0
4080 /* This is wrong. If doing a long backtrace, the user should be
4081 able to get out next time we call QUIT, without anything as
4082 violent as interrupt_query. If we want to provide a way out of
4083 here without getting to the next QUIT, it should be based on
4084 hitting ^C twice as in remote_wait. */
4085 if (quit_flag)
4086 {
4087 quit_flag = 0;
4088 interrupt_query ();
4089 }
4090 #endif
4091 }
4092 }
4093
4094 /* Come here after finding the start of the frame. Collect the rest
4095 into BUF, verifying the checksum, length, and handling run-length
4096 compression. No more than sizeof_buf-1 characters are read so that
4097 the buffer can be NUL terminated.
4098
4099 Returns -1 on error, number of characters in buffer (ignoring the
4100 trailing NULL) on success. (could be extended to return one of the
4101 SERIAL status indications). */
4102
4103 static long
4104 read_frame (char *buf,
4105 long sizeof_buf)
4106 {
4107 unsigned char csum;
4108 long bc;
4109 int c;
4110
4111 csum = 0;
4112 bc = 0;
4113
4114 while (1)
4115 {
4116 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4117 c = readchar (remote_timeout);
4118 switch (c)
4119 {
4120 case SERIAL_TIMEOUT:
4121 if (remote_debug)
4122 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4123 return -1;
4124 case '$':
4125 if (remote_debug)
4126 fputs_filtered ("Saw new packet start in middle of old one\n",
4127 gdb_stdlog);
4128 return -1; /* Start a new packet, count retries. */
4129 case '#':
4130 {
4131 unsigned char pktcsum;
4132 int check_0 = 0;
4133 int check_1 = 0;
4134
4135 buf[bc] = '\0';
4136
4137 check_0 = readchar (remote_timeout);
4138 if (check_0 >= 0)
4139 check_1 = readchar (remote_timeout);
4140
4141 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4142 {
4143 if (remote_debug)
4144 fputs_filtered ("Timeout in checksum, retrying\n",
4145 gdb_stdlog);
4146 return -1;
4147 }
4148 else if (check_0 < 0 || check_1 < 0)
4149 {
4150 if (remote_debug)
4151 fputs_filtered ("Communication error in checksum\n",
4152 gdb_stdlog);
4153 return -1;
4154 }
4155
4156 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4157 if (csum == pktcsum)
4158 return bc;
4159
4160 if (remote_debug)
4161 {
4162 fprintf_filtered (gdb_stdlog,
4163 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4164 pktcsum, csum);
4165 fputs_filtered (buf, gdb_stdlog);
4166 fputs_filtered ("\n", gdb_stdlog);
4167 }
4168 /* Number of characters in buffer ignoring trailing
4169 NULL. */
4170 return -1;
4171 }
4172 case '*': /* Run length encoding. */
4173 {
4174 int repeat;
4175 csum += c;
4176
4177 c = readchar (remote_timeout);
4178 csum += c;
4179 repeat = c - ' ' + 3; /* Compute repeat count. */
4180
4181 /* The character before ``*'' is repeated. */
4182
4183 if (repeat > 0 && repeat <= 255
4184 && bc > 0
4185 && bc + repeat - 1 < sizeof_buf - 1)
4186 {
4187 memset (&buf[bc], buf[bc - 1], repeat);
4188 bc += repeat;
4189 continue;
4190 }
4191
4192 buf[bc] = '\0';
4193 printf_filtered (_("Repeat count %d too large for buffer: "),
4194 repeat);
4195 puts_filtered (buf);
4196 puts_filtered ("\n");
4197 return -1;
4198 }
4199 default:
4200 if (bc < sizeof_buf - 1)
4201 {
4202 buf[bc++] = c;
4203 csum += c;
4204 continue;
4205 }
4206
4207 buf[bc] = '\0';
4208 puts_filtered ("Remote packet too long: ");
4209 puts_filtered (buf);
4210 puts_filtered ("\n");
4211
4212 return -1;
4213 }
4214 }
4215 }
4216
4217 /* Read a packet from the remote machine, with error checking, and
4218 store it in BUF. If FOREVER, wait forever rather than timing out;
4219 this is used (in synchronous mode) to wait for a target that is is
4220 executing user code to stop. */
4221 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4222 don't have to change all the calls to getpkt to deal with the
4223 return value, because at the moment I don't know what the right
4224 thing to do it for those. */
4225 void
4226 getpkt (char *buf,
4227 long sizeof_buf,
4228 int forever)
4229 {
4230 int timed_out;
4231
4232 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4233 }
4234
4235
4236 /* Read a packet from the remote machine, with error checking, and
4237 store it in BUF. If FOREVER, wait forever rather than timing out;
4238 this is used (in synchronous mode) to wait for a target that is is
4239 executing user code to stop. If FOREVER == 0, this function is
4240 allowed to time out gracefully and return an indication of this to
4241 the caller. */
4242 static int
4243 getpkt_sane (char *buf,
4244 long sizeof_buf,
4245 int forever)
4246 {
4247 int c;
4248 int tries;
4249 int timeout;
4250 int val;
4251
4252 strcpy (buf, "timeout");
4253
4254 if (forever)
4255 {
4256 timeout = watchdog > 0 ? watchdog : -1;
4257 }
4258
4259 else
4260 timeout = remote_timeout;
4261
4262 #define MAX_TRIES 3
4263
4264 for (tries = 1; tries <= MAX_TRIES; tries++)
4265 {
4266 /* This can loop forever if the remote side sends us characters
4267 continuously, but if it pauses, we'll get a zero from
4268 readchar because of timeout. Then we'll count that as a
4269 retry. */
4270
4271 /* Note that we will only wait forever prior to the start of a
4272 packet. After that, we expect characters to arrive at a
4273 brisk pace. They should show up within remote_timeout
4274 intervals. */
4275
4276 do
4277 {
4278 c = readchar (timeout);
4279
4280 if (c == SERIAL_TIMEOUT)
4281 {
4282 if (forever) /* Watchdog went off? Kill the target. */
4283 {
4284 QUIT;
4285 target_mourn_inferior ();
4286 error (_("Watchdog has expired. Target detached."));
4287 }
4288 if (remote_debug)
4289 fputs_filtered ("Timed out.\n", gdb_stdlog);
4290 goto retry;
4291 }
4292 }
4293 while (c != '$');
4294
4295 /* We've found the start of a packet, now collect the data. */
4296
4297 val = read_frame (buf, sizeof_buf);
4298
4299 if (val >= 0)
4300 {
4301 if (remote_debug)
4302 {
4303 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4304 fputstr_unfiltered (buf, 0, gdb_stdlog);
4305 fprintf_unfiltered (gdb_stdlog, "\n");
4306 }
4307 serial_write (remote_desc, "+", 1);
4308 return 0;
4309 }
4310
4311 /* Try the whole thing again. */
4312 retry:
4313 serial_write (remote_desc, "-", 1);
4314 }
4315
4316 /* We have tried hard enough, and just can't receive the packet.
4317 Give up. */
4318
4319 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4320 serial_write (remote_desc, "+", 1);
4321 return 1;
4322 }
4323 \f
4324 static void
4325 remote_kill (void)
4326 {
4327 /* For some mysterious reason, wait_for_inferior calls kill instead of
4328 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4329 if (kill_kludge)
4330 {
4331 kill_kludge = 0;
4332 target_mourn_inferior ();
4333 return;
4334 }
4335
4336 /* Use catch_errors so the user can quit from gdb even when we aren't on
4337 speaking terms with the remote system. */
4338 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4339
4340 /* Don't wait for it to die. I'm not really sure it matters whether
4341 we do or not. For the existing stubs, kill is a noop. */
4342 target_mourn_inferior ();
4343 }
4344
4345 /* Async version of remote_kill. */
4346 static void
4347 remote_async_kill (void)
4348 {
4349 /* Unregister the file descriptor from the event loop. */
4350 if (target_is_async_p ())
4351 serial_async (remote_desc, NULL, 0);
4352
4353 /* For some mysterious reason, wait_for_inferior calls kill instead of
4354 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4355 if (kill_kludge)
4356 {
4357 kill_kludge = 0;
4358 target_mourn_inferior ();
4359 return;
4360 }
4361
4362 /* Use catch_errors so the user can quit from gdb even when we
4363 aren't on speaking terms with the remote system. */
4364 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4365
4366 /* Don't wait for it to die. I'm not really sure it matters whether
4367 we do or not. For the existing stubs, kill is a noop. */
4368 target_mourn_inferior ();
4369 }
4370
4371 static void
4372 remote_mourn (void)
4373 {
4374 remote_mourn_1 (&remote_ops);
4375 }
4376
4377 static void
4378 remote_async_mourn (void)
4379 {
4380 remote_mourn_1 (&remote_async_ops);
4381 }
4382
4383 static void
4384 extended_remote_mourn (void)
4385 {
4386 /* We do _not_ want to mourn the target like this; this will
4387 remove the extended remote target from the target stack,
4388 and the next time the user says "run" it'll fail.
4389
4390 FIXME: What is the right thing to do here? */
4391 #if 0
4392 remote_mourn_1 (&extended_remote_ops);
4393 #endif
4394 }
4395
4396 /* Worker function for remote_mourn. */
4397 static void
4398 remote_mourn_1 (struct target_ops *target)
4399 {
4400 unpush_target (target);
4401 generic_mourn_inferior ();
4402 }
4403
4404 /* In the extended protocol we want to be able to do things like
4405 "run" and have them basically work as expected. So we need
4406 a special create_inferior function.
4407
4408 FIXME: One day add support for changing the exec file
4409 we're debugging, arguments and an environment. */
4410
4411 static void
4412 extended_remote_create_inferior (char *exec_file, char *args,
4413 char **env, int from_tty)
4414 {
4415 /* Rip out the breakpoints; we'll reinsert them after restarting
4416 the remote server. */
4417 remove_breakpoints ();
4418
4419 /* Now restart the remote server. */
4420 extended_remote_restart ();
4421
4422 /* Now put the breakpoints back in. This way we're safe if the
4423 restart function works via a unix fork on the remote side. */
4424 insert_breakpoints ();
4425
4426 /* Clean up from the last time we were running. */
4427 clear_proceed_status ();
4428
4429 /* Let the remote process run. */
4430 proceed (-1, TARGET_SIGNAL_0, 0);
4431 }
4432
4433 /* Async version of extended_remote_create_inferior. */
4434 static void
4435 extended_remote_async_create_inferior (char *exec_file, char *args,
4436 char **env, int from_tty)
4437 {
4438 /* Rip out the breakpoints; we'll reinsert them after restarting
4439 the remote server. */
4440 remove_breakpoints ();
4441
4442 /* If running asynchronously, register the target file descriptor
4443 with the event loop. */
4444 if (target_can_async_p ())
4445 target_async (inferior_event_handler, 0);
4446
4447 /* Now restart the remote server. */
4448 extended_remote_restart ();
4449
4450 /* Now put the breakpoints back in. This way we're safe if the
4451 restart function works via a unix fork on the remote side. */
4452 insert_breakpoints ();
4453
4454 /* Clean up from the last time we were running. */
4455 clear_proceed_status ();
4456
4457 /* Let the remote process run. */
4458 proceed (-1, TARGET_SIGNAL_0, 0);
4459 }
4460 \f
4461
4462 /* On some machines, e.g. 68k, we may use a different breakpoint
4463 instruction than other targets; in those use
4464 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4465 Also, bi-endian targets may define
4466 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4467 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4468 just call the standard routines that are in mem-break.c. */
4469
4470 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4471 target should use an identical BREAKPOINT_FROM_PC. As for native,
4472 the ARCH-OS-tdep.c code can override the default. */
4473
4474 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4475 #define DEPRECATED_REMOTE_BREAKPOINT
4476 #endif
4477
4478 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4479
4480 /* If the target isn't bi-endian, just pretend it is. */
4481 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4482 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4483 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4484 #endif
4485
4486 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4487 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4488
4489 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4490
4491 /* Insert a breakpoint on targets that don't have any better
4492 breakpoint support. We read the contents of the target location
4493 and stash it, then overwrite it with a breakpoint instruction.
4494 ADDR is the target location in the target machine. CONTENTS_CACHE
4495 is a pointer to memory allocated for saving the target contents.
4496 It is guaranteed by the caller to be long enough to save the number
4497 of bytes returned by BREAKPOINT_FROM_PC. */
4498
4499 static int
4500 remote_insert_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4501 {
4502 struct remote_state *rs = get_remote_state ();
4503 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4504 int val;
4505 #endif
4506 int bp_size;
4507
4508 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4509 If it succeeds, then set the support to PACKET_ENABLE. If it
4510 fails, and the user has explicitly requested the Z support then
4511 report an error, otherwise, mark it disabled and go on. */
4512
4513 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4514 {
4515 char *buf = alloca (rs->remote_packet_size);
4516 char *p = buf;
4517
4518 addr = remote_address_masked (addr);
4519 *(p++) = 'Z';
4520 *(p++) = '0';
4521 *(p++) = ',';
4522 p += hexnumstr (p, (ULONGEST) addr);
4523 BREAKPOINT_FROM_PC (&addr, &bp_size);
4524 sprintf (p, ",%d", bp_size);
4525
4526 putpkt (buf);
4527 getpkt (buf, (rs->remote_packet_size), 0);
4528
4529 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4530 {
4531 case PACKET_ERROR:
4532 return -1;
4533 case PACKET_OK:
4534 return 0;
4535 case PACKET_UNKNOWN:
4536 break;
4537 }
4538 }
4539
4540 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4541 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4542
4543 if (val == 0)
4544 {
4545 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4546 val = target_write_memory (addr, (char *) big_break_insn,
4547 sizeof big_break_insn);
4548 else
4549 val = target_write_memory (addr, (char *) little_break_insn,
4550 sizeof little_break_insn);
4551 }
4552
4553 return val;
4554 #else
4555 return memory_insert_breakpoint (addr, contents_cache);
4556 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4557 }
4558
4559 static int
4560 remote_remove_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4561 {
4562 struct remote_state *rs = get_remote_state ();
4563 int bp_size;
4564
4565 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4566 {
4567 char *buf = alloca (rs->remote_packet_size);
4568 char *p = buf;
4569
4570 *(p++) = 'z';
4571 *(p++) = '0';
4572 *(p++) = ',';
4573
4574 addr = remote_address_masked (addr);
4575 p += hexnumstr (p, (ULONGEST) addr);
4576 BREAKPOINT_FROM_PC (&addr, &bp_size);
4577 sprintf (p, ",%d", bp_size);
4578
4579 putpkt (buf);
4580 getpkt (buf, (rs->remote_packet_size), 0);
4581
4582 return (buf[0] == 'E');
4583 }
4584
4585 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4586 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4587 #else
4588 return memory_remove_breakpoint (addr, contents_cache);
4589 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4590 }
4591
4592 static int
4593 watchpoint_to_Z_packet (int type)
4594 {
4595 switch (type)
4596 {
4597 case hw_write:
4598 return 2;
4599 break;
4600 case hw_read:
4601 return 3;
4602 break;
4603 case hw_access:
4604 return 4;
4605 break;
4606 default:
4607 internal_error (__FILE__, __LINE__,
4608 _("hw_bp_to_z: bad watchpoint type %d"), type);
4609 }
4610 }
4611
4612 static int
4613 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4614 {
4615 struct remote_state *rs = get_remote_state ();
4616 char *buf = alloca (rs->remote_packet_size);
4617 char *p;
4618 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4619
4620 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4621 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4622 remote_protocol_Z[packet].name,
4623 remote_protocol_Z[packet].title);
4624
4625 sprintf (buf, "Z%x,", packet);
4626 p = strchr (buf, '\0');
4627 addr = remote_address_masked (addr);
4628 p += hexnumstr (p, (ULONGEST) addr);
4629 sprintf (p, ",%x", len);
4630
4631 putpkt (buf);
4632 getpkt (buf, (rs->remote_packet_size), 0);
4633
4634 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4635 {
4636 case PACKET_ERROR:
4637 case PACKET_UNKNOWN:
4638 return -1;
4639 case PACKET_OK:
4640 return 0;
4641 }
4642 internal_error (__FILE__, __LINE__,
4643 _("remote_insert_watchpoint: reached end of function"));
4644 }
4645
4646
4647 static int
4648 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4649 {
4650 struct remote_state *rs = get_remote_state ();
4651 char *buf = alloca (rs->remote_packet_size);
4652 char *p;
4653 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4654
4655 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4656 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4657 remote_protocol_Z[packet].name,
4658 remote_protocol_Z[packet].title);
4659
4660 sprintf (buf, "z%x,", packet);
4661 p = strchr (buf, '\0');
4662 addr = remote_address_masked (addr);
4663 p += hexnumstr (p, (ULONGEST) addr);
4664 sprintf (p, ",%x", len);
4665 putpkt (buf);
4666 getpkt (buf, (rs->remote_packet_size), 0);
4667
4668 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4669 {
4670 case PACKET_ERROR:
4671 case PACKET_UNKNOWN:
4672 return -1;
4673 case PACKET_OK:
4674 return 0;
4675 }
4676 internal_error (__FILE__, __LINE__,
4677 _("remote_remove_watchpoint: reached end of function"));
4678 }
4679
4680
4681 int remote_hw_watchpoint_limit = -1;
4682 int remote_hw_breakpoint_limit = -1;
4683
4684 static int
4685 remote_check_watch_resources (int type, int cnt, int ot)
4686 {
4687 if (type == bp_hardware_breakpoint)
4688 {
4689 if (remote_hw_breakpoint_limit == 0)
4690 return 0;
4691 else if (remote_hw_breakpoint_limit < 0)
4692 return 1;
4693 else if (cnt <= remote_hw_breakpoint_limit)
4694 return 1;
4695 }
4696 else
4697 {
4698 if (remote_hw_watchpoint_limit == 0)
4699 return 0;
4700 else if (remote_hw_watchpoint_limit < 0)
4701 return 1;
4702 else if (ot)
4703 return -1;
4704 else if (cnt <= remote_hw_watchpoint_limit)
4705 return 1;
4706 }
4707 return -1;
4708 }
4709
4710 static int
4711 remote_stopped_by_watchpoint (void)
4712 {
4713 return remote_stopped_by_watchpoint_p;
4714 }
4715
4716 extern int stepped_after_stopped_by_watchpoint;
4717
4718 static int
4719 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4720 {
4721 int rc = 0;
4722 if (remote_stopped_by_watchpoint ()
4723 || stepped_after_stopped_by_watchpoint)
4724 {
4725 *addr_p = remote_watch_data_address;
4726 rc = 1;
4727 }
4728
4729 return rc;
4730 }
4731
4732
4733 static int
4734 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4735 {
4736 int len = 0;
4737 struct remote_state *rs = get_remote_state ();
4738 char *buf = alloca (rs->remote_packet_size);
4739 char *p = buf;
4740
4741 /* The length field should be set to the size of a breakpoint
4742 instruction. */
4743
4744 BREAKPOINT_FROM_PC (&addr, &len);
4745
4746 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4747 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4748 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4749 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4750
4751 *(p++) = 'Z';
4752 *(p++) = '1';
4753 *(p++) = ',';
4754
4755 addr = remote_address_masked (addr);
4756 p += hexnumstr (p, (ULONGEST) addr);
4757 sprintf (p, ",%x", len);
4758
4759 putpkt (buf);
4760 getpkt (buf, (rs->remote_packet_size), 0);
4761
4762 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4763 {
4764 case PACKET_ERROR:
4765 case PACKET_UNKNOWN:
4766 return -1;
4767 case PACKET_OK:
4768 return 0;
4769 }
4770 internal_error (__FILE__, __LINE__,
4771 _("remote_insert_hw_breakpoint: reached end of function"));
4772 }
4773
4774
4775 static int
4776 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4777 {
4778 int len;
4779 struct remote_state *rs = get_remote_state ();
4780 char *buf = alloca (rs->remote_packet_size);
4781 char *p = buf;
4782
4783 /* The length field should be set to the size of a breakpoint
4784 instruction. */
4785
4786 BREAKPOINT_FROM_PC (&addr, &len);
4787
4788 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4789 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4790 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4791 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4792
4793 *(p++) = 'z';
4794 *(p++) = '1';
4795 *(p++) = ',';
4796
4797 addr = remote_address_masked (addr);
4798 p += hexnumstr (p, (ULONGEST) addr);
4799 sprintf (p, ",%x", len);
4800
4801 putpkt(buf);
4802 getpkt (buf, (rs->remote_packet_size), 0);
4803
4804 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4805 {
4806 case PACKET_ERROR:
4807 case PACKET_UNKNOWN:
4808 return -1;
4809 case PACKET_OK:
4810 return 0;
4811 }
4812 internal_error (__FILE__, __LINE__,
4813 _("remote_remove_hw_breakpoint: reached end of function"));
4814 }
4815
4816 /* Some targets are only capable of doing downloads, and afterwards
4817 they switch to the remote serial protocol. This function provides
4818 a clean way to get from the download target to the remote target.
4819 It's basically just a wrapper so that we don't have to expose any
4820 of the internal workings of remote.c.
4821
4822 Prior to calling this routine, you should shutdown the current
4823 target code, else you will get the "A program is being debugged
4824 already..." message. Usually a call to pop_target() suffices. */
4825
4826 void
4827 push_remote_target (char *name, int from_tty)
4828 {
4829 printf_filtered (_("Switching to remote protocol\n"));
4830 remote_open (name, from_tty);
4831 }
4832
4833 /* Table used by the crc32 function to calcuate the checksum. */
4834
4835 static unsigned long crc32_table[256] =
4836 {0, 0};
4837
4838 static unsigned long
4839 crc32 (unsigned char *buf, int len, unsigned int crc)
4840 {
4841 if (!crc32_table[1])
4842 {
4843 /* Initialize the CRC table and the decoding table. */
4844 int i, j;
4845 unsigned int c;
4846
4847 for (i = 0; i < 256; i++)
4848 {
4849 for (c = i << 24, j = 8; j > 0; --j)
4850 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4851 crc32_table[i] = c;
4852 }
4853 }
4854
4855 while (len--)
4856 {
4857 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4858 buf++;
4859 }
4860 return crc;
4861 }
4862
4863 /* compare-sections command
4864
4865 With no arguments, compares each loadable section in the exec bfd
4866 with the same memory range on the target, and reports mismatches.
4867 Useful for verifying the image on the target against the exec file.
4868 Depends on the target understanding the new "qCRC:" request. */
4869
4870 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4871 target method (target verify memory) and generic version of the
4872 actual command. This will allow other high-level code (especially
4873 generic_load()) to make use of this target functionality. */
4874
4875 static void
4876 compare_sections_command (char *args, int from_tty)
4877 {
4878 struct remote_state *rs = get_remote_state ();
4879 asection *s;
4880 unsigned long host_crc, target_crc;
4881 extern bfd *exec_bfd;
4882 struct cleanup *old_chain;
4883 char *tmp;
4884 char *sectdata;
4885 const char *sectname;
4886 char *buf = alloca (rs->remote_packet_size);
4887 bfd_size_type size;
4888 bfd_vma lma;
4889 int matched = 0;
4890 int mismatched = 0;
4891
4892 if (!exec_bfd)
4893 error (_("command cannot be used without an exec file"));
4894 if (!current_target.to_shortname ||
4895 strcmp (current_target.to_shortname, "remote") != 0)
4896 error (_("command can only be used with remote target"));
4897
4898 for (s = exec_bfd->sections; s; s = s->next)
4899 {
4900 if (!(s->flags & SEC_LOAD))
4901 continue; /* skip non-loadable section */
4902
4903 size = bfd_get_section_size (s);
4904 if (size == 0)
4905 continue; /* skip zero-length section */
4906
4907 sectname = bfd_get_section_name (exec_bfd, s);
4908 if (args && strcmp (args, sectname) != 0)
4909 continue; /* not the section selected by user */
4910
4911 matched = 1; /* do this section */
4912 lma = s->lma;
4913 /* FIXME: assumes lma can fit into long. */
4914 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4915 putpkt (buf);
4916
4917 /* Be clever; compute the host_crc before waiting for target
4918 reply. */
4919 sectdata = xmalloc (size);
4920 old_chain = make_cleanup (xfree, sectdata);
4921 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4922 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4923
4924 getpkt (buf, (rs->remote_packet_size), 0);
4925 if (buf[0] == 'E')
4926 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4927 sectname, paddr (lma), paddr (lma + size));
4928 if (buf[0] != 'C')
4929 error (_("remote target does not support this operation"));
4930
4931 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4932 target_crc = target_crc * 16 + fromhex (*tmp);
4933
4934 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4935 sectname, paddr (lma), paddr (lma + size));
4936 if (host_crc == target_crc)
4937 printf_filtered ("matched.\n");
4938 else
4939 {
4940 printf_filtered ("MIS-MATCHED!\n");
4941 mismatched++;
4942 }
4943
4944 do_cleanups (old_chain);
4945 }
4946 if (mismatched > 0)
4947 warning (_("One or more sections of the remote executable does not match\n\
4948 the loaded file\n"));
4949 if (args && !matched)
4950 printf_filtered (_("No loaded section named '%s'.\n"), args);
4951 }
4952
4953 static LONGEST
4954 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4955 const char *annex, void *readbuf, const void *writebuf,
4956 ULONGEST offset, LONGEST len)
4957 {
4958 struct remote_state *rs = get_remote_state ();
4959 int i;
4960 char *buf2 = alloca (rs->remote_packet_size);
4961 char *p2 = &buf2[0];
4962 char query_type;
4963
4964 /* Handle memory using remote_xfer_memory. */
4965 if (object == TARGET_OBJECT_MEMORY)
4966 {
4967 int xfered;
4968 errno = 0;
4969
4970 if (writebuf != NULL)
4971 {
4972 void *buffer = xmalloc (len);
4973 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4974 memcpy (buffer, writebuf, len);
4975 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4976 do_cleanups (cleanup);
4977 }
4978 else
4979 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4980
4981 if (xfered > 0)
4982 return xfered;
4983 else if (xfered == 0 && errno == 0)
4984 return 0;
4985 else
4986 return -1;
4987 }
4988
4989 /* Only handle reads. */
4990 if (writebuf != NULL || readbuf == NULL)
4991 return -1;
4992
4993 /* Map pre-existing objects onto letters. DO NOT do this for new
4994 objects!!! Instead specify new query packets. */
4995 switch (object)
4996 {
4997 case TARGET_OBJECT_KOD:
4998 query_type = 'K';
4999 break;
5000 case TARGET_OBJECT_AVR:
5001 query_type = 'R';
5002 break;
5003
5004 case TARGET_OBJECT_AUXV:
5005 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
5006 {
5007 unsigned int total = 0;
5008 while (len > 0)
5009 {
5010 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
5011 snprintf (buf2, rs->remote_packet_size,
5012 "qPart:auxv:read::%s,%s",
5013 phex_nz (offset, sizeof offset),
5014 phex_nz (n, sizeof n));
5015 i = putpkt (buf2);
5016 if (i < 0)
5017 return total > 0 ? total : i;
5018 buf2[0] = '\0';
5019 getpkt (buf2, rs->remote_packet_size, 0);
5020 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
5021 return total > 0 ? total : -1;
5022 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
5023 break; /* Got EOF indicator. */
5024 /* Got some data. */
5025 i = hex2bin (buf2, readbuf, len);
5026 if (i > 0)
5027 {
5028 readbuf = (void *) ((char *) readbuf + i);
5029 offset += i;
5030 len -= i;
5031 total += i;
5032 }
5033 }
5034 return total;
5035 }
5036 return -1;
5037
5038 default:
5039 return -1;
5040 }
5041
5042 /* Note: a zero OFFSET and LEN can be used to query the minimum
5043 buffer size. */
5044 if (offset == 0 && len == 0)
5045 return (rs->remote_packet_size);
5046 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5047 not large enough let the caller. */
5048 if (len < (rs->remote_packet_size))
5049 return -1;
5050 len = rs->remote_packet_size;
5051
5052 /* Except for querying the minimum buffer size, target must be open. */
5053 if (!remote_desc)
5054 error (_("remote query is only available after target open"));
5055
5056 gdb_assert (annex != NULL);
5057 gdb_assert (readbuf != NULL);
5058
5059 *p2++ = 'q';
5060 *p2++ = query_type;
5061
5062 /* We used one buffer char for the remote protocol q command and
5063 another for the query type. As the remote protocol encapsulation
5064 uses 4 chars plus one extra in case we are debugging
5065 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5066 string. */
5067 i = 0;
5068 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5069 {
5070 /* Bad caller may have sent forbidden characters. */
5071 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5072 *p2++ = annex[i];
5073 i++;
5074 }
5075 *p2 = '\0';
5076 gdb_assert (annex[i] == '\0');
5077
5078 i = putpkt (buf2);
5079 if (i < 0)
5080 return i;
5081
5082 getpkt (readbuf, len, 0);
5083
5084 return strlen (readbuf);
5085 }
5086
5087 static void
5088 remote_rcmd (char *command,
5089 struct ui_file *outbuf)
5090 {
5091 struct remote_state *rs = get_remote_state ();
5092 char *buf = alloca (rs->remote_packet_size);
5093 char *p = buf;
5094
5095 if (!remote_desc)
5096 error (_("remote rcmd is only available after target open"));
5097
5098 /* Send a NULL command across as an empty command. */
5099 if (command == NULL)
5100 command = "";
5101
5102 /* The query prefix. */
5103 strcpy (buf, "qRcmd,");
5104 p = strchr (buf, '\0');
5105
5106 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5107 error (_("\"monitor\" command ``%s'' is too long."), command);
5108
5109 /* Encode the actual command. */
5110 bin2hex (command, p, 0);
5111
5112 if (putpkt (buf) < 0)
5113 error (_("Communication problem with target."));
5114
5115 /* get/display the response */
5116 while (1)
5117 {
5118 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5119 buf[0] = '\0';
5120 getpkt (buf, (rs->remote_packet_size), 0);
5121 if (buf[0] == '\0')
5122 error (_("Target does not support this command."));
5123 if (buf[0] == 'O' && buf[1] != 'K')
5124 {
5125 remote_console_output (buf + 1); /* 'O' message from stub. */
5126 continue;
5127 }
5128 if (strcmp (buf, "OK") == 0)
5129 break;
5130 if (strlen (buf) == 3 && buf[0] == 'E'
5131 && isdigit (buf[1]) && isdigit (buf[2]))
5132 {
5133 error (_("Protocol error with Rcmd"));
5134 }
5135 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5136 {
5137 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5138 fputc_unfiltered (c, outbuf);
5139 }
5140 break;
5141 }
5142 }
5143
5144 static void
5145 packet_command (char *args, int from_tty)
5146 {
5147 struct remote_state *rs = get_remote_state ();
5148 char *buf = alloca (rs->remote_packet_size);
5149
5150 if (!remote_desc)
5151 error (_("command can only be used with remote target"));
5152
5153 if (!args)
5154 error (_("remote-packet command requires packet text as argument"));
5155
5156 puts_filtered ("sending: ");
5157 print_packet (args);
5158 puts_filtered ("\n");
5159 putpkt (args);
5160
5161 getpkt (buf, (rs->remote_packet_size), 0);
5162 puts_filtered ("received: ");
5163 print_packet (buf);
5164 puts_filtered ("\n");
5165 }
5166
5167 #if 0
5168 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5169
5170 static void display_thread_info (struct gdb_ext_thread_info *info);
5171
5172 static void threadset_test_cmd (char *cmd, int tty);
5173
5174 static void threadalive_test (char *cmd, int tty);
5175
5176 static void threadlist_test_cmd (char *cmd, int tty);
5177
5178 int get_and_display_threadinfo (threadref *ref);
5179
5180 static void threadinfo_test_cmd (char *cmd, int tty);
5181
5182 static int thread_display_step (threadref *ref, void *context);
5183
5184 static void threadlist_update_test_cmd (char *cmd, int tty);
5185
5186 static void init_remote_threadtests (void);
5187
5188 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5189
5190 static void
5191 threadset_test_cmd (char *cmd, int tty)
5192 {
5193 int sample_thread = SAMPLE_THREAD;
5194
5195 printf_filtered (_("Remote threadset test\n"));
5196 set_thread (sample_thread, 1);
5197 }
5198
5199
5200 static void
5201 threadalive_test (char *cmd, int tty)
5202 {
5203 int sample_thread = SAMPLE_THREAD;
5204
5205 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5206 printf_filtered ("PASS: Thread alive test\n");
5207 else
5208 printf_filtered ("FAIL: Thread alive test\n");
5209 }
5210
5211 void output_threadid (char *title, threadref *ref);
5212
5213 void
5214 output_threadid (char *title, threadref *ref)
5215 {
5216 char hexid[20];
5217
5218 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5219 hexid[16] = 0;
5220 printf_filtered ("%s %s\n", title, (&hexid[0]));
5221 }
5222
5223 static void
5224 threadlist_test_cmd (char *cmd, int tty)
5225 {
5226 int startflag = 1;
5227 threadref nextthread;
5228 int done, result_count;
5229 threadref threadlist[3];
5230
5231 printf_filtered ("Remote Threadlist test\n");
5232 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5233 &result_count, &threadlist[0]))
5234 printf_filtered ("FAIL: threadlist test\n");
5235 else
5236 {
5237 threadref *scan = threadlist;
5238 threadref *limit = scan + result_count;
5239
5240 while (scan < limit)
5241 output_threadid (" thread ", scan++);
5242 }
5243 }
5244
5245 void
5246 display_thread_info (struct gdb_ext_thread_info *info)
5247 {
5248 output_threadid ("Threadid: ", &info->threadid);
5249 printf_filtered ("Name: %s\n ", info->shortname);
5250 printf_filtered ("State: %s\n", info->display);
5251 printf_filtered ("other: %s\n\n", info->more_display);
5252 }
5253
5254 int
5255 get_and_display_threadinfo (threadref *ref)
5256 {
5257 int result;
5258 int set;
5259 struct gdb_ext_thread_info threadinfo;
5260
5261 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5262 | TAG_MOREDISPLAY | TAG_DISPLAY;
5263 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5264 display_thread_info (&threadinfo);
5265 return result;
5266 }
5267
5268 static void
5269 threadinfo_test_cmd (char *cmd, int tty)
5270 {
5271 int athread = SAMPLE_THREAD;
5272 threadref thread;
5273 int set;
5274
5275 int_to_threadref (&thread, athread);
5276 printf_filtered ("Remote Threadinfo test\n");
5277 if (!get_and_display_threadinfo (&thread))
5278 printf_filtered ("FAIL cannot get thread info\n");
5279 }
5280
5281 static int
5282 thread_display_step (threadref *ref, void *context)
5283 {
5284 /* output_threadid(" threadstep ",ref); *//* simple test */
5285 return get_and_display_threadinfo (ref);
5286 }
5287
5288 static void
5289 threadlist_update_test_cmd (char *cmd, int tty)
5290 {
5291 printf_filtered ("Remote Threadlist update test\n");
5292 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5293 }
5294
5295 static void
5296 init_remote_threadtests (void)
5297 {
5298 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5299 Fetch and print the remote list of thread identifiers, one pkt only"));
5300 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5301 _("Fetch and display info about one thread"));
5302 add_com ("tset", class_obscure, threadset_test_cmd,
5303 _("Test setting to a different thread"));
5304 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5305 _("Iterate through updating all remote thread info"));
5306 add_com ("talive", class_obscure, threadalive_test,
5307 _(" Remote thread alive test "));
5308 }
5309
5310 #endif /* 0 */
5311
5312 /* Convert a thread ID to a string. Returns the string in a static
5313 buffer. */
5314
5315 static char *
5316 remote_pid_to_str (ptid_t ptid)
5317 {
5318 static char buf[32];
5319 int size;
5320
5321 size = snprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5322 gdb_assert (size < sizeof buf);
5323 return buf;
5324 }
5325
5326 /* Get the address of the thread local variable in OBJFILE which is
5327 stored at OFFSET within the thread local storage for thread PTID. */
5328
5329 static CORE_ADDR
5330 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5331 {
5332 if (remote_protocol_qGetTLSAddr.support != PACKET_DISABLE)
5333 {
5334 struct remote_state *rs = get_remote_state ();
5335 char *buf = alloca (rs->remote_packet_size);
5336 char *p = buf;
5337 enum packet_result result;
5338
5339 strcpy (p, "qGetTLSAddr:");
5340 p += strlen (p);
5341 p += hexnumstr (p, PIDGET (ptid));
5342 *p++ = ',';
5343 p += hexnumstr (p, offset);
5344 *p++ = ',';
5345 p += hexnumstr (p, lm);
5346 *p++ = '\0';
5347
5348 putpkt (buf);
5349 getpkt (buf, rs->remote_packet_size, 0);
5350 result = packet_ok (buf, &remote_protocol_qGetTLSAddr);
5351 if (result == PACKET_OK)
5352 {
5353 ULONGEST result;
5354
5355 unpack_varlen_hex (buf, &result);
5356 return result;
5357 }
5358 else if (result == PACKET_UNKNOWN)
5359 throw_error (TLS_GENERIC_ERROR,
5360 _("Remote target doesn't support qGetTLSAddr packet"));
5361 else
5362 throw_error (TLS_GENERIC_ERROR,
5363 _("Remote target failed to process qGetTLSAddr request"));
5364 }
5365 else
5366 throw_error (TLS_GENERIC_ERROR,
5367 _("TLS not supported or disabled on this target"));
5368 /* Not reached. */
5369 return 0;
5370 }
5371
5372 static void
5373 init_remote_ops (void)
5374 {
5375 remote_ops.to_shortname = "remote";
5376 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5377 remote_ops.to_doc =
5378 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5379 Specify the serial device it is connected to\n\
5380 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5381 remote_ops.to_open = remote_open;
5382 remote_ops.to_close = remote_close;
5383 remote_ops.to_detach = remote_detach;
5384 remote_ops.to_disconnect = remote_disconnect;
5385 remote_ops.to_resume = remote_resume;
5386 remote_ops.to_wait = remote_wait;
5387 remote_ops.to_fetch_registers = remote_fetch_registers;
5388 remote_ops.to_store_registers = remote_store_registers;
5389 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5390 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5391 remote_ops.to_files_info = remote_files_info;
5392 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5393 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5394 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5395 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5396 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5397 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5398 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5399 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5400 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5401 remote_ops.to_kill = remote_kill;
5402 remote_ops.to_load = generic_load;
5403 remote_ops.to_mourn_inferior = remote_mourn;
5404 remote_ops.to_thread_alive = remote_thread_alive;
5405 remote_ops.to_find_new_threads = remote_threads_info;
5406 remote_ops.to_pid_to_str = remote_pid_to_str;
5407 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5408 remote_ops.to_stop = remote_stop;
5409 remote_ops.to_xfer_partial = remote_xfer_partial;
5410 remote_ops.to_rcmd = remote_rcmd;
5411 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5412 remote_ops.to_stratum = process_stratum;
5413 remote_ops.to_has_all_memory = 1;
5414 remote_ops.to_has_memory = 1;
5415 remote_ops.to_has_stack = 1;
5416 remote_ops.to_has_registers = 1;
5417 remote_ops.to_has_execution = 1;
5418 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5419 remote_ops.to_magic = OPS_MAGIC;
5420 }
5421
5422 /* Set up the extended remote vector by making a copy of the standard
5423 remote vector and adding to it. */
5424
5425 static void
5426 init_extended_remote_ops (void)
5427 {
5428 extended_remote_ops = remote_ops;
5429
5430 extended_remote_ops.to_shortname = "extended-remote";
5431 extended_remote_ops.to_longname =
5432 "Extended remote serial target in gdb-specific protocol";
5433 extended_remote_ops.to_doc =
5434 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5435 Specify the serial device it is connected to (e.g. /dev/ttya).",
5436 extended_remote_ops.to_open = extended_remote_open;
5437 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5438 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5439 }
5440
5441 static int
5442 remote_can_async_p (void)
5443 {
5444 /* We're async whenever the serial device is. */
5445 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5446 }
5447
5448 static int
5449 remote_is_async_p (void)
5450 {
5451 /* We're async whenever the serial device is. */
5452 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5453 }
5454
5455 /* Pass the SERIAL event on and up to the client. One day this code
5456 will be able to delay notifying the client of an event until the
5457 point where an entire packet has been received. */
5458
5459 static void (*async_client_callback) (enum inferior_event_type event_type,
5460 void *context);
5461 static void *async_client_context;
5462 static serial_event_ftype remote_async_serial_handler;
5463
5464 static void
5465 remote_async_serial_handler (struct serial *scb, void *context)
5466 {
5467 /* Don't propogate error information up to the client. Instead let
5468 the client find out about the error by querying the target. */
5469 async_client_callback (INF_REG_EVENT, async_client_context);
5470 }
5471
5472 static void
5473 remote_async (void (*callback) (enum inferior_event_type event_type,
5474 void *context), void *context)
5475 {
5476 if (current_target.to_async_mask_value == 0)
5477 internal_error (__FILE__, __LINE__,
5478 _("Calling remote_async when async is masked"));
5479
5480 if (callback != NULL)
5481 {
5482 serial_async (remote_desc, remote_async_serial_handler, NULL);
5483 async_client_callback = callback;
5484 async_client_context = context;
5485 }
5486 else
5487 serial_async (remote_desc, NULL, NULL);
5488 }
5489
5490 /* Target async and target extended-async.
5491
5492 This are temporary targets, until it is all tested. Eventually
5493 async support will be incorporated int the usual 'remote'
5494 target. */
5495
5496 static void
5497 init_remote_async_ops (void)
5498 {
5499 remote_async_ops.to_shortname = "async";
5500 remote_async_ops.to_longname =
5501 "Remote serial target in async version of the gdb-specific protocol";
5502 remote_async_ops.to_doc =
5503 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5504 Specify the serial device it is connected to (e.g. /dev/ttya).";
5505 remote_async_ops.to_open = remote_async_open;
5506 remote_async_ops.to_close = remote_close;
5507 remote_async_ops.to_detach = remote_detach;
5508 remote_async_ops.to_disconnect = remote_disconnect;
5509 remote_async_ops.to_resume = remote_async_resume;
5510 remote_async_ops.to_wait = remote_async_wait;
5511 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5512 remote_async_ops.to_store_registers = remote_store_registers;
5513 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5514 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5515 remote_async_ops.to_files_info = remote_files_info;
5516 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5517 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5518 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5519 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5520 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5521 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5522 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5523 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5524 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5525 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5526 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5527 remote_async_ops.to_kill = remote_async_kill;
5528 remote_async_ops.to_load = generic_load;
5529 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5530 remote_async_ops.to_thread_alive = remote_thread_alive;
5531 remote_async_ops.to_find_new_threads = remote_threads_info;
5532 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5533 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5534 remote_async_ops.to_stop = remote_stop;
5535 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5536 remote_async_ops.to_rcmd = remote_rcmd;
5537 remote_async_ops.to_stratum = process_stratum;
5538 remote_async_ops.to_has_all_memory = 1;
5539 remote_async_ops.to_has_memory = 1;
5540 remote_async_ops.to_has_stack = 1;
5541 remote_async_ops.to_has_registers = 1;
5542 remote_async_ops.to_has_execution = 1;
5543 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5544 remote_async_ops.to_can_async_p = remote_can_async_p;
5545 remote_async_ops.to_is_async_p = remote_is_async_p;
5546 remote_async_ops.to_async = remote_async;
5547 remote_async_ops.to_async_mask_value = 1;
5548 remote_async_ops.to_magic = OPS_MAGIC;
5549 }
5550
5551 /* Set up the async extended remote vector by making a copy of the standard
5552 remote vector and adding to it. */
5553
5554 static void
5555 init_extended_async_remote_ops (void)
5556 {
5557 extended_async_remote_ops = remote_async_ops;
5558
5559 extended_async_remote_ops.to_shortname = "extended-async";
5560 extended_async_remote_ops.to_longname =
5561 "Extended remote serial target in async gdb-specific protocol";
5562 extended_async_remote_ops.to_doc =
5563 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5564 Specify the serial device it is connected to (e.g. /dev/ttya).",
5565 extended_async_remote_ops.to_open = extended_remote_async_open;
5566 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5567 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5568 }
5569
5570 static void
5571 set_remote_cmd (char *args, int from_tty)
5572 {
5573 }
5574
5575 static void
5576 show_remote_cmd (char *args, int from_tty)
5577 {
5578 /* FIXME: cagney/2002-06-15: This function should iterate over
5579 remote_show_cmdlist for a list of sub commands to show. */
5580 show_remote_protocol_Z_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5581 show_remote_protocol_P_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5582 show_remote_protocol_p_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5583 show_remote_protocol_qSymbol_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5584 show_remote_protocol_vcont_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5585 show_remote_protocol_binary_download_cmd (gdb_stdout, from_tty, NULL, NULL);
5586 show_remote_protocol_qPart_auxv_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5587 show_remote_protocol_qGetTLSAddr_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5588 }
5589
5590 static void
5591 build_remote_gdbarch_data (void)
5592 {
5593 remote_address_size = TARGET_ADDR_BIT;
5594 }
5595
5596 /* Saved pointer to previous owner of the new_objfile event. */
5597 static void (*remote_new_objfile_chain) (struct objfile *);
5598
5599 /* Function to be called whenever a new objfile (shlib) is detected. */
5600 static void
5601 remote_new_objfile (struct objfile *objfile)
5602 {
5603 if (remote_desc != 0) /* Have a remote connection. */
5604 {
5605 remote_check_symbols (objfile);
5606 }
5607 /* Call predecessor on chain, if any. */
5608 if (remote_new_objfile_chain != 0 &&
5609 remote_desc == 0)
5610 remote_new_objfile_chain (objfile);
5611 }
5612
5613 void
5614 _initialize_remote (void)
5615 {
5616 static struct cmd_list_element *remote_set_cmdlist;
5617 static struct cmd_list_element *remote_show_cmdlist;
5618
5619 /* architecture specific data */
5620 remote_gdbarch_data_handle =
5621 gdbarch_data_register_post_init (init_remote_state);
5622
5623 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5624 that the remote protocol has been initialized. */
5625 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5626 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5627
5628 init_remote_ops ();
5629 add_target (&remote_ops);
5630
5631 init_extended_remote_ops ();
5632 add_target (&extended_remote_ops);
5633
5634 init_remote_async_ops ();
5635 add_target (&remote_async_ops);
5636
5637 init_extended_async_remote_ops ();
5638 add_target (&extended_async_remote_ops);
5639
5640 /* Hook into new objfile notification. */
5641 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5642 deprecated_target_new_objfile_hook = remote_new_objfile;
5643
5644 #if 0
5645 init_remote_threadtests ();
5646 #endif
5647
5648 /* set/show remote ... */
5649
5650 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5651 Remote protocol specific variables\n\
5652 Configure various remote-protocol specific variables such as\n\
5653 the packets being used"),
5654 &remote_set_cmdlist, "set remote ",
5655 0 /* allow-unknown */, &setlist);
5656 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5657 Remote protocol specific variables\n\
5658 Configure various remote-protocol specific variables such as\n\
5659 the packets being used"),
5660 &remote_show_cmdlist, "show remote ",
5661 0 /* allow-unknown */, &showlist);
5662
5663 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5664 Compare section data on target to the exec file.\n\
5665 Argument is a single section name (default: all loaded sections)."),
5666 &cmdlist);
5667
5668 add_cmd ("packet", class_maintenance, packet_command, _("\
5669 Send an arbitrary packet to a remote target.\n\
5670 maintenance packet TEXT\n\
5671 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5672 this command sends the string TEXT to the inferior, and displays the\n\
5673 response packet. GDB supplies the initial `$' character, and the\n\
5674 terminating `#' character and checksum."),
5675 &maintenancelist);
5676
5677 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5678 Set whether to send break if interrupted."), _("\
5679 Show whether to send break if interrupted."), _("\
5680 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5681 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5682 &setlist, &showlist);
5683
5684 /* Install commands for configuring memory read/write packets. */
5685
5686 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5687 Set the maximum number of bytes per memory write packet (deprecated)."),
5688 &setlist);
5689 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5690 Show the maximum number of bytes per memory write packet (deprecated)."),
5691 &showlist);
5692 add_cmd ("memory-write-packet-size", no_class,
5693 set_memory_write_packet_size, _("\
5694 Set the maximum number of bytes per memory-write packet.\n\
5695 Specify the number of bytes in a packet or 0 (zero) for the\n\
5696 default packet size. The actual limit is further reduced\n\
5697 dependent on the target. Specify ``fixed'' to disable the\n\
5698 further restriction and ``limit'' to enable that restriction."),
5699 &remote_set_cmdlist);
5700 add_cmd ("memory-read-packet-size", no_class,
5701 set_memory_read_packet_size, _("\
5702 Set the maximum number of bytes per memory-read packet.\n\
5703 Specify the number of bytes in a packet or 0 (zero) for the\n\
5704 default packet size. The actual limit is further reduced\n\
5705 dependent on the target. Specify ``fixed'' to disable the\n\
5706 further restriction and ``limit'' to enable that restriction."),
5707 &remote_set_cmdlist);
5708 add_cmd ("memory-write-packet-size", no_class,
5709 show_memory_write_packet_size,
5710 _("Show the maximum number of bytes per memory-write packet."),
5711 &remote_show_cmdlist);
5712 add_cmd ("memory-read-packet-size", no_class,
5713 show_memory_read_packet_size,
5714 _("Show the maximum number of bytes per memory-read packet."),
5715 &remote_show_cmdlist);
5716
5717 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5718 &remote_hw_watchpoint_limit, _("\
5719 Set the maximum number of target hardware watchpoints."), _("\
5720 Show the maximum number of target hardware watchpoints."), _("\
5721 Specify a negative limit for unlimited."),
5722 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
5723 &remote_set_cmdlist, &remote_show_cmdlist);
5724 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5725 &remote_hw_breakpoint_limit, _("\
5726 Set the maximum number of target hardware breakpoints."), _("\
5727 Show the maximum number of target hardware breakpoints."), _("\
5728 Specify a negative limit for unlimited."),
5729 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
5730 &remote_set_cmdlist, &remote_show_cmdlist);
5731
5732 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
5733 &remote_address_size, _("\
5734 Set the maximum size of the address (in bits) in a memory packet."), _("\
5735 Show the maximum size of the address (in bits) in a memory packet."), NULL,
5736 NULL,
5737 NULL, /* FIXME: i18n: */
5738 &setlist, &showlist);
5739
5740 add_packet_config_cmd (&remote_protocol_binary_download,
5741 "X", "binary-download",
5742 set_remote_protocol_binary_download_cmd,
5743 show_remote_protocol_binary_download_cmd,
5744 &remote_set_cmdlist, &remote_show_cmdlist,
5745 1);
5746
5747 add_packet_config_cmd (&remote_protocol_vcont,
5748 "vCont", "verbose-resume",
5749 set_remote_protocol_vcont_packet_cmd,
5750 show_remote_protocol_vcont_packet_cmd,
5751 &remote_set_cmdlist, &remote_show_cmdlist,
5752 0);
5753
5754 add_packet_config_cmd (&remote_protocol_qSymbol,
5755 "qSymbol", "symbol-lookup",
5756 set_remote_protocol_qSymbol_packet_cmd,
5757 show_remote_protocol_qSymbol_packet_cmd,
5758 &remote_set_cmdlist, &remote_show_cmdlist,
5759 0);
5760
5761 add_packet_config_cmd (&remote_protocol_P,
5762 "P", "set-register",
5763 set_remote_protocol_P_packet_cmd,
5764 show_remote_protocol_P_packet_cmd,
5765 &remote_set_cmdlist, &remote_show_cmdlist,
5766 1);
5767
5768 add_packet_config_cmd (&remote_protocol_p,
5769 "p", "fetch-register",
5770 set_remote_protocol_p_packet_cmd,
5771 show_remote_protocol_p_packet_cmd,
5772 &remote_set_cmdlist, &remote_show_cmdlist,
5773 1);
5774
5775 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5776 "Z0", "software-breakpoint",
5777 set_remote_protocol_Z_software_bp_packet_cmd,
5778 show_remote_protocol_Z_software_bp_packet_cmd,
5779 &remote_set_cmdlist, &remote_show_cmdlist,
5780 0);
5781
5782 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5783 "Z1", "hardware-breakpoint",
5784 set_remote_protocol_Z_hardware_bp_packet_cmd,
5785 show_remote_protocol_Z_hardware_bp_packet_cmd,
5786 &remote_set_cmdlist, &remote_show_cmdlist,
5787 0);
5788
5789 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5790 "Z2", "write-watchpoint",
5791 set_remote_protocol_Z_write_wp_packet_cmd,
5792 show_remote_protocol_Z_write_wp_packet_cmd,
5793 &remote_set_cmdlist, &remote_show_cmdlist,
5794 0);
5795
5796 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5797 "Z3", "read-watchpoint",
5798 set_remote_protocol_Z_read_wp_packet_cmd,
5799 show_remote_protocol_Z_read_wp_packet_cmd,
5800 &remote_set_cmdlist, &remote_show_cmdlist,
5801 0);
5802
5803 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5804 "Z4", "access-watchpoint",
5805 set_remote_protocol_Z_access_wp_packet_cmd,
5806 show_remote_protocol_Z_access_wp_packet_cmd,
5807 &remote_set_cmdlist, &remote_show_cmdlist,
5808 0);
5809
5810 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5811 "qPart_auxv", "read-aux-vector",
5812 set_remote_protocol_qPart_auxv_packet_cmd,
5813 show_remote_protocol_qPart_auxv_packet_cmd,
5814 &remote_set_cmdlist, &remote_show_cmdlist,
5815 0);
5816
5817 add_packet_config_cmd (&remote_protocol_qGetTLSAddr,
5818 "qGetTLSAddr", "get-thread-local-storage-address",
5819 set_remote_protocol_qGetTLSAddr_packet_cmd,
5820 show_remote_protocol_qGetTLSAddr_packet_cmd,
5821 &remote_set_cmdlist, &remote_show_cmdlist,
5822 0);
5823
5824 /* Keep the old ``set remote Z-packet ...'' working. */
5825 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5826 &remote_Z_packet_detect, _("\
5827 Set use of remote protocol `Z' packets"), _("\
5828 Show use of remote protocol `Z' packets "), _("\
5829 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5830 packets."),
5831 set_remote_protocol_Z_packet_cmd,
5832 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
5833 &remote_set_cmdlist, &remote_show_cmdlist);
5834
5835 /* Eventually initialize fileio. See fileio.c */
5836 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5837 }
This page took 0.381814 seconds and 4 git commands to generate.