cddb6172cc5ba7f4fdb0b05ff0632210053f852d
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (PTR);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
98 static void remote_async_open_1 (char *, int, struct target_ops *,
99 int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (int regno);
104
105 static void remote_mourn (void);
106 static void remote_async_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void extended_remote_create_inferior (char *, char *, char **);
113 static void extended_remote_async_create_inferior (char *, char *, char **);
114
115 static void remote_mourn_1 (struct target_ops *);
116
117 static void remote_send (char *buf, long sizeof_buf);
118
119 static int readchar (int timeout);
120
121 static ptid_t remote_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123 static ptid_t remote_async_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125
126 static void remote_kill (void);
127 static void remote_async_kill (void);
128
129 static int tohex (int nib);
130
131 static void remote_detach (char *args, int from_tty);
132 static void remote_async_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static long read_frame (char *buf, long sizeof_buf);
147
148 static int remote_insert_breakpoint (CORE_ADDR, char *);
149
150 static int remote_remove_breakpoint (CORE_ADDR, char *);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void init_remote_cisco_ops (void);
159
160 static struct target_ops remote_cisco_ops;
161
162 static void remote_stop (void);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int remote_query (int /*char */ , char *, char *, int *);
169
170 static int hexnumstr (char *, ULONGEST);
171
172 static int hexnumnstr (char *, ULONGEST, int);
173
174 static CORE_ADDR remote_address_masked (CORE_ADDR);
175
176 static void print_packet (char *);
177
178 static unsigned long crc32 (unsigned char *, int, unsigned int);
179
180 static void compare_sections_command (char *, int);
181
182 static void packet_command (char *, int);
183
184 static int stub_unpack_int (char *buff, int fieldlength);
185
186 static ptid_t remote_current_thread (ptid_t oldptid);
187
188 static void remote_find_new_threads (void);
189
190 static void record_currthread (int currthread);
191
192 static int fromhex (int a);
193
194 static int hex2bin (const char *hex, char *bin, int count);
195
196 static int bin2hex (const char *bin, char *hex, int count);
197
198 static int putpkt_binary (char *buf, int cnt);
199
200 static void check_binary_download (CORE_ADDR addr);
201
202 struct packet_config;
203
204 static void show_packet_config_cmd (struct packet_config *config);
205
206 static void update_packet_config (struct packet_config *config);
207
208 /* Define the target subroutine names */
209
210 void open_remote_target (char *, int, struct target_ops *, int);
211
212 void _initialize_remote (void);
213
214 /* Description of the remote protocol. Strictly speeking, when the
215 target is open()ed, remote.c should create a per-target description
216 of the remote protocol using that target's architecture.
217 Unfortunatly, the target stack doesn't include local state. For
218 the moment keep the information in the target's architecture
219 object. Sigh.. */
220
221 struct packet_reg
222 {
223 long offset; /* Offset into G packet. */
224 long regnum; /* GDB's internal register number. */
225 LONGEST pnum; /* Remote protocol register number. */
226 int in_g_packet; /* Always part of G packet. */
227 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
228 /* char *name; == REGISTER_NAME (regnum); at present. */
229 };
230
231 struct remote_state
232 {
233 /* Description of the remote protocol registers. */
234 long sizeof_g_packet;
235
236 /* Description of the remote protocol registers indexed by REGNUM
237 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
238 struct packet_reg *regs;
239
240 /* This is the size (in chars) of the first response to the ``g''
241 packet. It is used as a heuristic when determining the maximum
242 size of memory-read and memory-write packets. A target will
243 typically only reserve a buffer large enough to hold the ``g''
244 packet. The size does not include packet overhead (headers and
245 trailers). */
246 long actual_register_packet_size;
247
248 /* This is the maximum size (in chars) of a non read/write packet.
249 It is also used as a cap on the size of read/write packets. */
250 long remote_packet_size;
251 };
252
253 /* Handle for retreving the remote protocol data from gdbarch. */
254 static struct gdbarch_data *remote_gdbarch_data_handle;
255
256 static struct remote_state *
257 get_remote_state ()
258 {
259 return gdbarch_data (remote_gdbarch_data_handle);
260 }
261
262 static void *
263 init_remote_state (struct gdbarch *gdbarch)
264 {
265 int regnum;
266 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
267
268 /* Start out by having the remote protocol mimic the existing
269 behavour - just copy in the description of the register cache. */
270 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
271
272 /* Assume a 1:1 regnum<->pnum table. */
273 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
274 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
275 {
276 struct packet_reg *r = &rs->regs[regnum];
277 r->pnum = regnum;
278 r->regnum = regnum;
279 r->offset = REGISTER_BYTE (regnum);
280 r->in_g_packet = (regnum < NUM_REGS);
281 /* ...size = REGISTER_RAW_SIZE (regnum); */
282 /* ...name = REGISTER_NAME (regnum); */
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* */
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum cmd_auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case CMD_AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case CMD_AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case CMD_AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case CMD_AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case CMD_AUTO_BOOLEAN_TRUE:
640 case CMD_AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 void (*set_func) (char *args, int from_tty,
652 struct cmd_list_element *
653 c),
654 void (*show_func) (char *name,
655 int from_tty),
656 struct cmd_list_element **set_remote_list,
657 struct cmd_list_element **show_remote_list,
658 int legacy)
659 {
660 struct cmd_list_element *set_cmd;
661 struct cmd_list_element *show_cmd;
662 char *set_doc;
663 char *show_doc;
664 char *cmd_name;
665 config->name = name;
666 config->title = title;
667 config->detect = CMD_AUTO_BOOLEAN_AUTO;
668 config->support = PACKET_SUPPORT_UNKNOWN;
669 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
670 name, title);
671 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
672 name, title);
673 /* set/show TITLE-packet {auto,on,off} */
674 xasprintf (&cmd_name, "%s-packet", title);
675 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
676 &config->detect, set_doc,
677 set_remote_list);
678 set_cmd->function.sfunc = set_func;
679 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
680 show_remote_list);
681 /* set/show remote NAME-packet {auto,on,off} -- legacy */
682 if (legacy)
683 {
684 char *legacy_name;
685 xasprintf (&legacy_name, "%s-packet", name);
686 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
687 set_remote_list);
688 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
689 show_remote_list);
690 }
691 }
692
693 static enum packet_result
694 packet_ok (const char *buf, struct packet_config *config)
695 {
696 if (buf[0] != '\0')
697 {
698 /* The stub recognized the packet request. Check that the
699 operation succeeded. */
700 switch (config->support)
701 {
702 case PACKET_SUPPORT_UNKNOWN:
703 if (remote_debug)
704 fprintf_unfiltered (gdb_stdlog,
705 "Packet %s (%s) is supported\n",
706 config->name, config->title);
707 config->support = PACKET_ENABLE;
708 break;
709 case PACKET_DISABLE:
710 internal_error (__FILE__, __LINE__,
711 "packet_ok: attempt to use a disabled packet");
712 break;
713 case PACKET_ENABLE:
714 break;
715 }
716 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
717 /* "OK" - definitly OK. */
718 return PACKET_OK;
719 if (buf[0] == 'E'
720 && isxdigit (buf[1]) && isxdigit (buf[2])
721 && buf[3] == '\0')
722 /* "Enn" - definitly an error. */
723 return PACKET_ERROR;
724 /* The packet may or may not be OK. Just assume it is */
725 return PACKET_OK;
726 }
727 else
728 {
729 /* The stub does not support the packet. */
730 switch (config->support)
731 {
732 case PACKET_ENABLE:
733 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
734 /* If the stub previously indicated that the packet was
735 supported then there is a protocol error.. */
736 error ("Protocol error: %s (%s) conflicting enabled responses.",
737 config->name, config->title);
738 else
739 /* The user set it wrong. */
740 error ("Enabled packet %s (%s) not recognized by stub",
741 config->name, config->title);
742 break;
743 case PACKET_SUPPORT_UNKNOWN:
744 if (remote_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "Packet %s (%s) is NOT supported\n",
747 config->name, config->title);
748 config->support = PACKET_DISABLE;
749 break;
750 case PACKET_DISABLE:
751 break;
752 }
753 return PACKET_UNKNOWN;
754 }
755 }
756
757 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
758 static struct packet_config remote_protocol_qSymbol;
759
760 static void
761 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 update_packet_config (&remote_protocol_qSymbol);
765 }
766
767 static void
768 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
769 {
770 show_packet_config_cmd (&remote_protocol_qSymbol);
771 }
772
773 /* Should we try the 'e' (step over range) request? */
774 static struct packet_config remote_protocol_e;
775
776 static void
777 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
778 struct cmd_list_element *c)
779 {
780 update_packet_config (&remote_protocol_e);
781 }
782
783 static void
784 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
785 {
786 show_packet_config_cmd (&remote_protocol_e);
787 }
788
789
790 /* Should we try the 'E' (step over range / w signal #) request? */
791 static struct packet_config remote_protocol_E;
792
793 static void
794 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
795 struct cmd_list_element *c)
796 {
797 update_packet_config (&remote_protocol_E);
798 }
799
800 static void
801 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
802 {
803 show_packet_config_cmd (&remote_protocol_E);
804 }
805
806
807 /* Should we try the 'P' (set register) request? */
808
809 static struct packet_config remote_protocol_P;
810
811 static void
812 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814 {
815 update_packet_config (&remote_protocol_P);
816 }
817
818 static void
819 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
820 {
821 show_packet_config_cmd (&remote_protocol_P);
822 }
823
824 /* Should we try one of the 'Z' requests? */
825
826 enum Z_packet_type
827 {
828 Z_PACKET_SOFTWARE_BP,
829 Z_PACKET_HARDWARE_BP,
830 Z_PACKET_WRITE_WP,
831 Z_PACKET_READ_WP,
832 Z_PACKET_ACCESS_WP,
833 NR_Z_PACKET_TYPES
834 };
835
836 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
837
838 /* FIXME: Instead of having all these boiler plate functions, the
839 command callback should include a context argument. */
840
841 static void
842 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
843 struct cmd_list_element *c)
844 {
845 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
846 }
847
848 static void
849 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
863 {
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
872 }
873
874 static void
875 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
876 {
877 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
878 }
879
880 static void
881 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
882 struct cmd_list_element *c)
883 {
884 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
885 }
886
887 static void
888 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
889 {
890 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
891 }
892
893 static void
894 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
895 struct cmd_list_element *c)
896 {
897 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
898 }
899
900 static void
901 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
904 }
905
906 /* For compatibility with older distributions. Provide a ``set remote
907 Z-packet ...'' command that updates all the Z packet types. */
908
909 static enum cmd_auto_boolean remote_Z_packet_detect;
910
911 static void
912 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 int i;
916 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
917 {
918 remote_protocol_Z[i].detect = remote_Z_packet_detect;
919 update_packet_config (&remote_protocol_Z[i]);
920 }
921 }
922
923 static void
924 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
925 {
926 int i;
927 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
928 {
929 show_packet_config_cmd (&remote_protocol_Z[i]);
930 }
931 }
932
933 /* Should we try the 'X' (remote binary download) packet?
934
935 This variable (available to the user via "set remote X-packet")
936 dictates whether downloads are sent in binary (via the 'X' packet).
937 We assume that the stub can, and attempt to do it. This will be
938 cleared if the stub does not understand it. This switch is still
939 needed, though in cases when the packet is supported in the stub,
940 but the connection does not allow it (i.e., 7-bit serial connection
941 only). */
942
943 static struct packet_config remote_protocol_binary_download;
944
945 /* Should we try the 'ThreadInfo' query packet?
946
947 This variable (NOT available to the user: auto-detect only!)
948 determines whether GDB will use the new, simpler "ThreadInfo"
949 query or the older, more complex syntax for thread queries.
950 This is an auto-detect variable (set to true at each connect,
951 and set to false when the target fails to recognize it). */
952
953 static int use_threadinfo_query;
954 static int use_threadextra_query;
955
956 static void
957 set_remote_protocol_binary_download_cmd (char *args,
958 int from_tty,
959 struct cmd_list_element *c)
960 {
961 update_packet_config (&remote_protocol_binary_download);
962 }
963
964 static void
965 show_remote_protocol_binary_download_cmd (char *args,
966 int from_tty)
967 {
968 show_packet_config_cmd (&remote_protocol_binary_download);
969 }
970
971
972 /* Tokens for use by the asynchronous signal handlers for SIGINT */
973 PTR sigint_remote_twice_token;
974 PTR sigint_remote_token;
975
976 /* These are pointers to hook functions that may be set in order to
977 modify resume/wait behavior for a particular architecture. */
978
979 void (*target_resume_hook) (void);
980 void (*target_wait_loop_hook) (void);
981 \f
982
983
984 /* These are the threads which we last sent to the remote system.
985 -1 for all or -2 for not sent yet. */
986 static int general_thread;
987 static int continue_thread;
988
989 /* Call this function as a result of
990 1) A halt indication (T packet) containing a thread id
991 2) A direct query of currthread
992 3) Successful execution of set thread
993 */
994
995 static void
996 record_currthread (int currthread)
997 {
998 general_thread = currthread;
999
1000 /* If this is a new thread, add it to GDB's thread list.
1001 If we leave it up to WFI to do this, bad things will happen. */
1002 if (!in_thread_list (pid_to_ptid (currthread)))
1003 {
1004 add_thread (pid_to_ptid (currthread));
1005 ui_out_text (uiout, "[New ");
1006 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1007 ui_out_text (uiout, "]\n");
1008 }
1009 }
1010
1011 #define MAGIC_NULL_PID 42000
1012
1013 static void
1014 set_thread (int th, int gen)
1015 {
1016 struct remote_state *rs = get_remote_state ();
1017 char *buf = alloca (rs->remote_packet_size);
1018 int state = gen ? general_thread : continue_thread;
1019
1020 if (state == th)
1021 return;
1022
1023 buf[0] = 'H';
1024 buf[1] = gen ? 'g' : 'c';
1025 if (th == MAGIC_NULL_PID)
1026 {
1027 buf[2] = '0';
1028 buf[3] = '\0';
1029 }
1030 else if (th < 0)
1031 sprintf (&buf[2], "-%x", -th);
1032 else
1033 sprintf (&buf[2], "%x", th);
1034 putpkt (buf);
1035 getpkt (buf, (rs->remote_packet_size), 0);
1036 if (gen)
1037 general_thread = th;
1038 else
1039 continue_thread = th;
1040 }
1041 \f
1042 /* Return nonzero if the thread TH is still alive on the remote system. */
1043
1044 static int
1045 remote_thread_alive (ptid_t ptid)
1046 {
1047 int tid = PIDGET (ptid);
1048 char buf[16];
1049
1050 if (tid < 0)
1051 sprintf (buf, "T-%08x", -tid);
1052 else
1053 sprintf (buf, "T%08x", tid);
1054 putpkt (buf);
1055 getpkt (buf, sizeof (buf), 0);
1056 return (buf[0] == 'O' && buf[1] == 'K');
1057 }
1058
1059 /* About these extended threadlist and threadinfo packets. They are
1060 variable length packets but, the fields within them are often fixed
1061 length. They are redundent enough to send over UDP as is the
1062 remote protocol in general. There is a matching unit test module
1063 in libstub. */
1064
1065 #define OPAQUETHREADBYTES 8
1066
1067 /* a 64 bit opaque identifier */
1068 typedef unsigned char threadref[OPAQUETHREADBYTES];
1069
1070 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1071 protocol encoding, and remote.c. it is not particularly changable */
1072
1073 /* Right now, the internal structure is int. We want it to be bigger.
1074 Plan to fix this.
1075 */
1076
1077 typedef int gdb_threadref; /* internal GDB thread reference */
1078
1079 /* gdb_ext_thread_info is an internal GDB data structure which is
1080 equivalint to the reply of the remote threadinfo packet */
1081
1082 struct gdb_ext_thread_info
1083 {
1084 threadref threadid; /* External form of thread reference */
1085 int active; /* Has state interesting to GDB? , regs, stack */
1086 char display[256]; /* Brief state display, name, blocked/syspended */
1087 char shortname[32]; /* To be used to name threads */
1088 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1089 };
1090
1091 /* The volume of remote transfers can be limited by submitting
1092 a mask containing bits specifying the desired information.
1093 Use a union of these values as the 'selection' parameter to
1094 get_thread_info. FIXME: Make these TAG names more thread specific.
1095 */
1096
1097 #define TAG_THREADID 1
1098 #define TAG_EXISTS 2
1099 #define TAG_DISPLAY 4
1100 #define TAG_THREADNAME 8
1101 #define TAG_MOREDISPLAY 16
1102
1103 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1104
1105 char *unpack_varlen_hex (char *buff, int *result);
1106
1107 static char *unpack_nibble (char *buf, int *val);
1108
1109 static char *pack_nibble (char *buf, int nibble);
1110
1111 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1112
1113 static char *unpack_byte (char *buf, int *value);
1114
1115 static char *pack_int (char *buf, int value);
1116
1117 static char *unpack_int (char *buf, int *value);
1118
1119 static char *unpack_string (char *src, char *dest, int length);
1120
1121 static char *pack_threadid (char *pkt, threadref * id);
1122
1123 static char *unpack_threadid (char *inbuf, threadref * id);
1124
1125 void int_to_threadref (threadref * id, int value);
1126
1127 static int threadref_to_int (threadref * ref);
1128
1129 static void copy_threadref (threadref * dest, threadref * src);
1130
1131 static int threadmatch (threadref * dest, threadref * src);
1132
1133 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1134
1135 static int remote_unpack_thread_info_response (char *pkt,
1136 threadref * expectedref,
1137 struct gdb_ext_thread_info
1138 *info);
1139
1140
1141 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1142 struct gdb_ext_thread_info *info);
1143
1144 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1145 int selection,
1146 struct gdb_ext_thread_info *info);
1147
1148 static char *pack_threadlist_request (char *pkt, int startflag,
1149 int threadcount,
1150 threadref * nextthread);
1151
1152 static int parse_threadlist_response (char *pkt,
1153 int result_limit,
1154 threadref * original_echo,
1155 threadref * resultlist, int *doneflag);
1156
1157 static int remote_get_threadlist (int startflag,
1158 threadref * nextthread,
1159 int result_limit,
1160 int *done,
1161 int *result_count, threadref * threadlist);
1162
1163 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1164
1165 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1166 void *context, int looplimit);
1167
1168 static int remote_newthread_step (threadref * ref, void *context);
1169
1170 /* encode 64 bits in 16 chars of hex */
1171
1172 static const char hexchars[] = "0123456789abcdef";
1173
1174 static int
1175 ishex (int ch, int *val)
1176 {
1177 if ((ch >= 'a') && (ch <= 'f'))
1178 {
1179 *val = ch - 'a' + 10;
1180 return 1;
1181 }
1182 if ((ch >= 'A') && (ch <= 'F'))
1183 {
1184 *val = ch - 'A' + 10;
1185 return 1;
1186 }
1187 if ((ch >= '0') && (ch <= '9'))
1188 {
1189 *val = ch - '0';
1190 return 1;
1191 }
1192 return 0;
1193 }
1194
1195 static int
1196 stubhex (int ch)
1197 {
1198 if (ch >= 'a' && ch <= 'f')
1199 return ch - 'a' + 10;
1200 if (ch >= '0' && ch <= '9')
1201 return ch - '0';
1202 if (ch >= 'A' && ch <= 'F')
1203 return ch - 'A' + 10;
1204 return -1;
1205 }
1206
1207 static int
1208 stub_unpack_int (char *buff, int fieldlength)
1209 {
1210 int nibble;
1211 int retval = 0;
1212
1213 while (fieldlength)
1214 {
1215 nibble = stubhex (*buff++);
1216 retval |= nibble;
1217 fieldlength--;
1218 if (fieldlength)
1219 retval = retval << 4;
1220 }
1221 return retval;
1222 }
1223
1224 char *
1225 unpack_varlen_hex (char *buff, /* packet to parse */
1226 int *result)
1227 {
1228 int nibble;
1229 int retval = 0;
1230
1231 while (ishex (*buff, &nibble))
1232 {
1233 buff++;
1234 retval = retval << 4;
1235 retval |= nibble & 0x0f;
1236 }
1237 *result = retval;
1238 return buff;
1239 }
1240
1241 static char *
1242 unpack_nibble (char *buf, int *val)
1243 {
1244 ishex (*buf++, val);
1245 return buf;
1246 }
1247
1248 static char *
1249 pack_nibble (char *buf, int nibble)
1250 {
1251 *buf++ = hexchars[(nibble & 0x0f)];
1252 return buf;
1253 }
1254
1255 static char *
1256 pack_hex_byte (char *pkt, int byte)
1257 {
1258 *pkt++ = hexchars[(byte >> 4) & 0xf];
1259 *pkt++ = hexchars[(byte & 0xf)];
1260 return pkt;
1261 }
1262
1263 static char *
1264 unpack_byte (char *buf, int *value)
1265 {
1266 *value = stub_unpack_int (buf, 2);
1267 return buf + 2;
1268 }
1269
1270 static char *
1271 pack_int (char *buf, int value)
1272 {
1273 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1274 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1275 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1276 buf = pack_hex_byte (buf, (value & 0xff));
1277 return buf;
1278 }
1279
1280 static char *
1281 unpack_int (char *buf, int *value)
1282 {
1283 *value = stub_unpack_int (buf, 8);
1284 return buf + 8;
1285 }
1286
1287 #if 0 /* currently unused, uncomment when needed */
1288 static char *pack_string (char *pkt, char *string);
1289
1290 static char *
1291 pack_string (char *pkt, char *string)
1292 {
1293 char ch;
1294 int len;
1295
1296 len = strlen (string);
1297 if (len > 200)
1298 len = 200; /* Bigger than most GDB packets, junk??? */
1299 pkt = pack_hex_byte (pkt, len);
1300 while (len-- > 0)
1301 {
1302 ch = *string++;
1303 if ((ch == '\0') || (ch == '#'))
1304 ch = '*'; /* Protect encapsulation */
1305 *pkt++ = ch;
1306 }
1307 return pkt;
1308 }
1309 #endif /* 0 (unused) */
1310
1311 static char *
1312 unpack_string (char *src, char *dest, int length)
1313 {
1314 while (length--)
1315 *dest++ = *src++;
1316 *dest = '\0';
1317 return src;
1318 }
1319
1320 static char *
1321 pack_threadid (char *pkt, threadref *id)
1322 {
1323 char *limit;
1324 unsigned char *altid;
1325
1326 altid = (unsigned char *) id;
1327 limit = pkt + BUF_THREAD_ID_SIZE;
1328 while (pkt < limit)
1329 pkt = pack_hex_byte (pkt, *altid++);
1330 return pkt;
1331 }
1332
1333
1334 static char *
1335 unpack_threadid (char *inbuf, threadref *id)
1336 {
1337 char *altref;
1338 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1339 int x, y;
1340
1341 altref = (char *) id;
1342
1343 while (inbuf < limit)
1344 {
1345 x = stubhex (*inbuf++);
1346 y = stubhex (*inbuf++);
1347 *altref++ = (x << 4) | y;
1348 }
1349 return inbuf;
1350 }
1351
1352 /* Externally, threadrefs are 64 bits but internally, they are still
1353 ints. This is due to a mismatch of specifications. We would like
1354 to use 64bit thread references internally. This is an adapter
1355 function. */
1356
1357 void
1358 int_to_threadref (threadref *id, int value)
1359 {
1360 unsigned char *scan;
1361
1362 scan = (unsigned char *) id;
1363 {
1364 int i = 4;
1365 while (i--)
1366 *scan++ = 0;
1367 }
1368 *scan++ = (value >> 24) & 0xff;
1369 *scan++ = (value >> 16) & 0xff;
1370 *scan++ = (value >> 8) & 0xff;
1371 *scan++ = (value & 0xff);
1372 }
1373
1374 static int
1375 threadref_to_int (threadref *ref)
1376 {
1377 int i, value = 0;
1378 unsigned char *scan;
1379
1380 scan = (char *) ref;
1381 scan += 4;
1382 i = 4;
1383 while (i-- > 0)
1384 value = (value << 8) | ((*scan++) & 0xff);
1385 return value;
1386 }
1387
1388 static void
1389 copy_threadref (threadref *dest, threadref *src)
1390 {
1391 int i;
1392 unsigned char *csrc, *cdest;
1393
1394 csrc = (unsigned char *) src;
1395 cdest = (unsigned char *) dest;
1396 i = 8;
1397 while (i--)
1398 *cdest++ = *csrc++;
1399 }
1400
1401 static int
1402 threadmatch (threadref *dest, threadref *src)
1403 {
1404 /* things are broken right now, so just assume we got a match */
1405 #if 0
1406 unsigned char *srcp, *destp;
1407 int i, result;
1408 srcp = (char *) src;
1409 destp = (char *) dest;
1410
1411 result = 1;
1412 while (i-- > 0)
1413 result &= (*srcp++ == *destp++) ? 1 : 0;
1414 return result;
1415 #endif
1416 return 1;
1417 }
1418
1419 /*
1420 threadid:1, # always request threadid
1421 context_exists:2,
1422 display:4,
1423 unique_name:8,
1424 more_display:16
1425 */
1426
1427 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1428
1429 static char *
1430 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1431 {
1432 *pkt++ = 'q'; /* Info Query */
1433 *pkt++ = 'P'; /* process or thread info */
1434 pkt = pack_int (pkt, mode); /* mode */
1435 pkt = pack_threadid (pkt, id); /* threadid */
1436 *pkt = '\0'; /* terminate */
1437 return pkt;
1438 }
1439
1440 /* These values tag the fields in a thread info response packet */
1441 /* Tagging the fields allows us to request specific fields and to
1442 add more fields as time goes by */
1443
1444 #define TAG_THREADID 1 /* Echo the thread identifier */
1445 #define TAG_EXISTS 2 /* Is this process defined enough to
1446 fetch registers and its stack */
1447 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1448 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1449 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1450 the process */
1451
1452 static int
1453 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1454 struct gdb_ext_thread_info *info)
1455 {
1456 struct remote_state *rs = get_remote_state ();
1457 int mask, length;
1458 unsigned int tag;
1459 threadref ref;
1460 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1461 int retval = 1;
1462
1463 /* info->threadid = 0; FIXME: implement zero_threadref */
1464 info->active = 0;
1465 info->display[0] = '\0';
1466 info->shortname[0] = '\0';
1467 info->more_display[0] = '\0';
1468
1469 /* Assume the characters indicating the packet type have been stripped */
1470 pkt = unpack_int (pkt, &mask); /* arg mask */
1471 pkt = unpack_threadid (pkt, &ref);
1472
1473 if (mask == 0)
1474 warning ("Incomplete response to threadinfo request\n");
1475 if (!threadmatch (&ref, expectedref))
1476 { /* This is an answer to a different request */
1477 warning ("ERROR RMT Thread info mismatch\n");
1478 return 0;
1479 }
1480 copy_threadref (&info->threadid, &ref);
1481
1482 /* Loop on tagged fields , try to bail if somthing goes wrong */
1483
1484 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1485 {
1486 pkt = unpack_int (pkt, &tag); /* tag */
1487 pkt = unpack_byte (pkt, &length); /* length */
1488 if (!(tag & mask)) /* tags out of synch with mask */
1489 {
1490 warning ("ERROR RMT: threadinfo tag mismatch\n");
1491 retval = 0;
1492 break;
1493 }
1494 if (tag == TAG_THREADID)
1495 {
1496 if (length != 16)
1497 {
1498 warning ("ERROR RMT: length of threadid is not 16\n");
1499 retval = 0;
1500 break;
1501 }
1502 pkt = unpack_threadid (pkt, &ref);
1503 mask = mask & ~TAG_THREADID;
1504 continue;
1505 }
1506 if (tag == TAG_EXISTS)
1507 {
1508 info->active = stub_unpack_int (pkt, length);
1509 pkt += length;
1510 mask = mask & ~(TAG_EXISTS);
1511 if (length > 8)
1512 {
1513 warning ("ERROR RMT: 'exists' length too long\n");
1514 retval = 0;
1515 break;
1516 }
1517 continue;
1518 }
1519 if (tag == TAG_THREADNAME)
1520 {
1521 pkt = unpack_string (pkt, &info->shortname[0], length);
1522 mask = mask & ~TAG_THREADNAME;
1523 continue;
1524 }
1525 if (tag == TAG_DISPLAY)
1526 {
1527 pkt = unpack_string (pkt, &info->display[0], length);
1528 mask = mask & ~TAG_DISPLAY;
1529 continue;
1530 }
1531 if (tag == TAG_MOREDISPLAY)
1532 {
1533 pkt = unpack_string (pkt, &info->more_display[0], length);
1534 mask = mask & ~TAG_MOREDISPLAY;
1535 continue;
1536 }
1537 warning ("ERROR RMT: unknown thread info tag\n");
1538 break; /* Not a tag we know about */
1539 }
1540 return retval;
1541 }
1542
1543 static int
1544 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1545 struct gdb_ext_thread_info *info)
1546 {
1547 struct remote_state *rs = get_remote_state ();
1548 int result;
1549 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1550
1551 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1552 putpkt (threadinfo_pkt);
1553 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1554 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1555 info);
1556 return result;
1557 }
1558
1559 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1560 representation of a threadid. */
1561
1562 static int
1563 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1564 struct gdb_ext_thread_info *info)
1565 {
1566 threadref lclref;
1567
1568 int_to_threadref (&lclref, *ref);
1569 return remote_get_threadinfo (&lclref, selection, info);
1570 }
1571
1572 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1573
1574 static char *
1575 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1576 threadref *nextthread)
1577 {
1578 *pkt++ = 'q'; /* info query packet */
1579 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1580 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1581 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1582 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1583 *pkt = '\0';
1584 return pkt;
1585 }
1586
1587 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1588
1589 static int
1590 parse_threadlist_response (char *pkt, int result_limit,
1591 threadref *original_echo, threadref *resultlist,
1592 int *doneflag)
1593 {
1594 struct remote_state *rs = get_remote_state ();
1595 char *limit;
1596 int count, resultcount, done;
1597
1598 resultcount = 0;
1599 /* Assume the 'q' and 'M chars have been stripped. */
1600 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1601 pkt = unpack_byte (pkt, &count); /* count field */
1602 pkt = unpack_nibble (pkt, &done);
1603 /* The first threadid is the argument threadid. */
1604 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1605 while ((count-- > 0) && (pkt < limit))
1606 {
1607 pkt = unpack_threadid (pkt, resultlist++);
1608 if (resultcount++ >= result_limit)
1609 break;
1610 }
1611 if (doneflag)
1612 *doneflag = done;
1613 return resultcount;
1614 }
1615
1616 static int
1617 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1618 int *done, int *result_count, threadref *threadlist)
1619 {
1620 struct remote_state *rs = get_remote_state ();
1621 static threadref echo_nextthread;
1622 char *threadlist_packet = alloca (rs->remote_packet_size);
1623 char *t_response = alloca (rs->remote_packet_size);
1624 int result = 1;
1625
1626 /* Trancate result limit to be smaller than the packet size */
1627 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1628 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1629
1630 pack_threadlist_request (threadlist_packet,
1631 startflag, result_limit, nextthread);
1632 putpkt (threadlist_packet);
1633 getpkt (t_response, (rs->remote_packet_size), 0);
1634
1635 *result_count =
1636 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1637 threadlist, done);
1638
1639 if (!threadmatch (&echo_nextthread, nextthread))
1640 {
1641 /* FIXME: This is a good reason to drop the packet */
1642 /* Possably, there is a duplicate response */
1643 /* Possabilities :
1644 retransmit immediatly - race conditions
1645 retransmit after timeout - yes
1646 exit
1647 wait for packet, then exit
1648 */
1649 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1650 return 0; /* I choose simply exiting */
1651 }
1652 if (*result_count <= 0)
1653 {
1654 if (*done != 1)
1655 {
1656 warning ("RMT ERROR : failed to get remote thread list\n");
1657 result = 0;
1658 }
1659 return result; /* break; */
1660 }
1661 if (*result_count > result_limit)
1662 {
1663 *result_count = 0;
1664 warning ("RMT ERROR: threadlist response longer than requested\n");
1665 return 0;
1666 }
1667 return result;
1668 }
1669
1670 /* This is the interface between remote and threads, remotes upper interface */
1671
1672 /* remote_find_new_threads retrieves the thread list and for each
1673 thread in the list, looks up the thread in GDB's internal list,
1674 ading the thread if it does not already exist. This involves
1675 getting partial thread lists from the remote target so, polling the
1676 quit_flag is required. */
1677
1678
1679 /* About this many threadisds fit in a packet. */
1680
1681 #define MAXTHREADLISTRESULTS 32
1682
1683 static int
1684 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1685 int looplimit)
1686 {
1687 int done, i, result_count;
1688 int startflag = 1;
1689 int result = 1;
1690 int loopcount = 0;
1691 static threadref nextthread;
1692 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1693
1694 done = 0;
1695 while (!done)
1696 {
1697 if (loopcount++ > looplimit)
1698 {
1699 result = 0;
1700 warning ("Remote fetch threadlist -infinite loop-\n");
1701 break;
1702 }
1703 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1704 &done, &result_count, resultthreadlist))
1705 {
1706 result = 0;
1707 break;
1708 }
1709 /* clear for later iterations */
1710 startflag = 0;
1711 /* Setup to resume next batch of thread references, set nextthread. */
1712 if (result_count >= 1)
1713 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1714 i = 0;
1715 while (result_count--)
1716 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1717 break;
1718 }
1719 return result;
1720 }
1721
1722 static int
1723 remote_newthread_step (threadref *ref, void *context)
1724 {
1725 ptid_t ptid;
1726
1727 ptid = pid_to_ptid (threadref_to_int (ref));
1728
1729 if (!in_thread_list (ptid))
1730 add_thread (ptid);
1731 return 1; /* continue iterator */
1732 }
1733
1734 #define CRAZY_MAX_THREADS 1000
1735
1736 static ptid_t
1737 remote_current_thread (ptid_t oldpid)
1738 {
1739 struct remote_state *rs = get_remote_state ();
1740 char *buf = alloca (rs->remote_packet_size);
1741
1742 putpkt ("qC");
1743 getpkt (buf, (rs->remote_packet_size), 0);
1744 if (buf[0] == 'Q' && buf[1] == 'C')
1745 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1746 else
1747 return oldpid;
1748 }
1749
1750 /* Find new threads for info threads command.
1751 * Original version, using John Metzler's thread protocol.
1752 */
1753
1754 static void
1755 remote_find_new_threads (void)
1756 {
1757 remote_threadlist_iterator (remote_newthread_step, 0,
1758 CRAZY_MAX_THREADS);
1759 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1760 inferior_ptid = remote_current_thread (inferior_ptid);
1761 }
1762
1763 /*
1764 * Find all threads for info threads command.
1765 * Uses new thread protocol contributed by Cisco.
1766 * Falls back and attempts to use the older method (above)
1767 * if the target doesn't respond to the new method.
1768 */
1769
1770 static void
1771 remote_threads_info (void)
1772 {
1773 struct remote_state *rs = get_remote_state ();
1774 char *buf = alloca (rs->remote_packet_size);
1775 char *bufp;
1776 int tid;
1777
1778 if (remote_desc == 0) /* paranoia */
1779 error ("Command can only be used when connected to the remote target.");
1780
1781 if (use_threadinfo_query)
1782 {
1783 putpkt ("qfThreadInfo");
1784 bufp = buf;
1785 getpkt (bufp, (rs->remote_packet_size), 0);
1786 if (bufp[0] != '\0') /* q packet recognized */
1787 {
1788 while (*bufp++ == 'm') /* reply contains one or more TID */
1789 {
1790 do
1791 {
1792 tid = strtol (bufp, &bufp, 16);
1793 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1794 add_thread (pid_to_ptid (tid));
1795 }
1796 while (*bufp++ == ','); /* comma-separated list */
1797 putpkt ("qsThreadInfo");
1798 bufp = buf;
1799 getpkt (bufp, (rs->remote_packet_size), 0);
1800 }
1801 return; /* done */
1802 }
1803 }
1804
1805 /* Else fall back to old method based on jmetzler protocol. */
1806 use_threadinfo_query = 0;
1807 remote_find_new_threads ();
1808 return;
1809 }
1810
1811 /*
1812 * Collect a descriptive string about the given thread.
1813 * The target may say anything it wants to about the thread
1814 * (typically info about its blocked / runnable state, name, etc.).
1815 * This string will appear in the info threads display.
1816 *
1817 * Optional: targets are not required to implement this function.
1818 */
1819
1820 static char *
1821 remote_threads_extra_info (struct thread_info *tp)
1822 {
1823 struct remote_state *rs = get_remote_state ();
1824 int result;
1825 int set;
1826 threadref id;
1827 struct gdb_ext_thread_info threadinfo;
1828 static char display_buf[100]; /* arbitrary... */
1829 char *bufp = alloca (rs->remote_packet_size);
1830 int n = 0; /* position in display_buf */
1831
1832 if (remote_desc == 0) /* paranoia */
1833 internal_error (__FILE__, __LINE__,
1834 "remote_threads_extra_info");
1835
1836 if (use_threadextra_query)
1837 {
1838 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1839 putpkt (bufp);
1840 getpkt (bufp, (rs->remote_packet_size), 0);
1841 if (bufp[0] != 0)
1842 {
1843 n = min (strlen (bufp) / 2, sizeof (display_buf));
1844 result = hex2bin (bufp, display_buf, n);
1845 display_buf [result] = '\0';
1846 return display_buf;
1847 }
1848 }
1849
1850 /* If the above query fails, fall back to the old method. */
1851 use_threadextra_query = 0;
1852 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1853 | TAG_MOREDISPLAY | TAG_DISPLAY;
1854 int_to_threadref (&id, PIDGET (tp->ptid));
1855 if (remote_get_threadinfo (&id, set, &threadinfo))
1856 if (threadinfo.active)
1857 {
1858 if (*threadinfo.shortname)
1859 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1860 if (*threadinfo.display)
1861 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1862 if (*threadinfo.more_display)
1863 n += sprintf(&display_buf[n], " Priority: %s",
1864 threadinfo.more_display);
1865
1866 if (n > 0)
1867 {
1868 /* for purely cosmetic reasons, clear up trailing commas */
1869 if (',' == display_buf[n-1])
1870 display_buf[n-1] = ' ';
1871 return display_buf;
1872 }
1873 }
1874 return NULL;
1875 }
1876
1877 \f
1878
1879 /* Restart the remote side; this is an extended protocol operation. */
1880
1881 static void
1882 extended_remote_restart (void)
1883 {
1884 struct remote_state *rs = get_remote_state ();
1885 char *buf = alloca (rs->remote_packet_size);
1886
1887 /* Send the restart command; for reasons I don't understand the
1888 remote side really expects a number after the "R". */
1889 buf[0] = 'R';
1890 sprintf (&buf[1], "%x", 0);
1891 putpkt (buf);
1892
1893 /* Now query for status so this looks just like we restarted
1894 gdbserver from scratch. */
1895 putpkt ("?");
1896 getpkt (buf, (rs->remote_packet_size), 0);
1897 }
1898 \f
1899 /* Clean up connection to a remote debugger. */
1900
1901 /* ARGSUSED */
1902 static void
1903 remote_close (int quitting)
1904 {
1905 if (remote_desc)
1906 serial_close (remote_desc);
1907 remote_desc = NULL;
1908 }
1909
1910 /* Query the remote side for the text, data and bss offsets. */
1911
1912 static void
1913 get_offsets (void)
1914 {
1915 struct remote_state *rs = get_remote_state ();
1916 char *buf = alloca (rs->remote_packet_size);
1917 char *ptr;
1918 int lose;
1919 CORE_ADDR text_addr, data_addr, bss_addr;
1920 struct section_offsets *offs;
1921
1922 putpkt ("qOffsets");
1923
1924 getpkt (buf, (rs->remote_packet_size), 0);
1925
1926 if (buf[0] == '\000')
1927 return; /* Return silently. Stub doesn't support
1928 this command. */
1929 if (buf[0] == 'E')
1930 {
1931 warning ("Remote failure reply: %s", buf);
1932 return;
1933 }
1934
1935 /* Pick up each field in turn. This used to be done with scanf, but
1936 scanf will make trouble if CORE_ADDR size doesn't match
1937 conversion directives correctly. The following code will work
1938 with any size of CORE_ADDR. */
1939 text_addr = data_addr = bss_addr = 0;
1940 ptr = buf;
1941 lose = 0;
1942
1943 if (strncmp (ptr, "Text=", 5) == 0)
1944 {
1945 ptr += 5;
1946 /* Don't use strtol, could lose on big values. */
1947 while (*ptr && *ptr != ';')
1948 text_addr = (text_addr << 4) + fromhex (*ptr++);
1949 }
1950 else
1951 lose = 1;
1952
1953 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1954 {
1955 ptr += 6;
1956 while (*ptr && *ptr != ';')
1957 data_addr = (data_addr << 4) + fromhex (*ptr++);
1958 }
1959 else
1960 lose = 1;
1961
1962 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1963 {
1964 ptr += 5;
1965 while (*ptr && *ptr != ';')
1966 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1967 }
1968 else
1969 lose = 1;
1970
1971 if (lose)
1972 error ("Malformed response to offset query, %s", buf);
1973
1974 if (symfile_objfile == NULL)
1975 return;
1976
1977 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1978 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1979
1980 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1981
1982 /* This is a temporary kludge to force data and bss to use the same offsets
1983 because that's what nlmconv does now. The real solution requires changes
1984 to the stub and remote.c that I don't have time to do right now. */
1985
1986 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1987 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1988
1989 objfile_relocate (symfile_objfile, offs);
1990 }
1991
1992 /*
1993 * Cisco version of section offsets:
1994 *
1995 * Instead of having GDB query the target for the section offsets,
1996 * Cisco lets the target volunteer the information! It's also in
1997 * a different format, so here are the functions that will decode
1998 * a section offset packet from a Cisco target.
1999 */
2000
2001 /*
2002 * Function: remote_cisco_section_offsets
2003 *
2004 * Returns: zero for success, non-zero for failure
2005 */
2006
2007 static int
2008 remote_cisco_section_offsets (bfd_vma text_addr,
2009 bfd_vma data_addr,
2010 bfd_vma bss_addr,
2011 bfd_signed_vma *text_offs,
2012 bfd_signed_vma *data_offs,
2013 bfd_signed_vma *bss_offs)
2014 {
2015 bfd_vma text_base, data_base, bss_base;
2016 struct minimal_symbol *start;
2017 asection *sect;
2018 bfd *abfd;
2019 int len;
2020
2021 if (symfile_objfile == NULL)
2022 return -1; /* no can do nothin' */
2023
2024 start = lookup_minimal_symbol ("_start", NULL, NULL);
2025 if (start == NULL)
2026 return -1; /* Can't find "_start" symbol */
2027
2028 data_base = bss_base = 0;
2029 text_base = SYMBOL_VALUE_ADDRESS (start);
2030
2031 abfd = symfile_objfile->obfd;
2032 for (sect = abfd->sections;
2033 sect != 0;
2034 sect = sect->next)
2035 {
2036 const char *p = bfd_get_section_name (abfd, sect);
2037 len = strlen (p);
2038 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2039 if (data_base == 0 ||
2040 data_base > bfd_get_section_vma (abfd, sect))
2041 data_base = bfd_get_section_vma (abfd, sect);
2042 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2043 if (bss_base == 0 ||
2044 bss_base > bfd_get_section_vma (abfd, sect))
2045 bss_base = bfd_get_section_vma (abfd, sect);
2046 }
2047 *text_offs = text_addr - text_base;
2048 *data_offs = data_addr - data_base;
2049 *bss_offs = bss_addr - bss_base;
2050 if (remote_debug)
2051 {
2052 char tmp[128];
2053
2054 sprintf (tmp, "VMA: text = 0x");
2055 sprintf_vma (tmp + strlen (tmp), text_addr);
2056 sprintf (tmp + strlen (tmp), " data = 0x");
2057 sprintf_vma (tmp + strlen (tmp), data_addr);
2058 sprintf (tmp + strlen (tmp), " bss = 0x");
2059 sprintf_vma (tmp + strlen (tmp), bss_addr);
2060 fprintf_filtered (gdb_stdlog, tmp);
2061 fprintf_filtered (gdb_stdlog,
2062 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2063 paddr_nz (*text_offs),
2064 paddr_nz (*data_offs),
2065 paddr_nz (*bss_offs));
2066 }
2067
2068 return 0;
2069 }
2070
2071 /*
2072 * Function: remote_cisco_objfile_relocate
2073 *
2074 * Relocate the symbol file for a remote target.
2075 */
2076
2077 void
2078 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2079 bfd_signed_vma bss_off)
2080 {
2081 struct section_offsets *offs;
2082
2083 if (text_off != 0 || data_off != 0 || bss_off != 0)
2084 {
2085 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2086 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2087 simple canonical representation for this stuff. */
2088
2089 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2090 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2091
2092 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2093 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2094 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2095
2096 /* First call the standard objfile_relocate. */
2097 objfile_relocate (symfile_objfile, offs);
2098
2099 /* Now we need to fix up the section entries already attached to
2100 the exec target. These entries will control memory transfers
2101 from the exec file. */
2102
2103 exec_set_section_offsets (text_off, data_off, bss_off);
2104 }
2105 }
2106
2107 /* Stub for catch_errors. */
2108
2109 static int
2110 remote_start_remote_dummy (void *dummy)
2111 {
2112 start_remote (); /* Initialize gdb process mechanisms */
2113 return 1;
2114 }
2115
2116 static int
2117 remote_start_remote (PTR dummy)
2118 {
2119 immediate_quit++; /* Allow user to interrupt it */
2120
2121 /* Ack any packet which the remote side has already sent. */
2122 serial_write (remote_desc, "+", 1);
2123
2124 /* Let the stub know that we want it to return the thread. */
2125 set_thread (-1, 0);
2126
2127 inferior_ptid = remote_current_thread (inferior_ptid);
2128
2129 get_offsets (); /* Get text, data & bss offsets */
2130
2131 putpkt ("?"); /* initiate a query from remote machine */
2132 immediate_quit--;
2133
2134 return remote_start_remote_dummy (dummy);
2135 }
2136
2137 /* Open a connection to a remote debugger.
2138 NAME is the filename used for communication. */
2139
2140 static void
2141 remote_open (char *name, int from_tty)
2142 {
2143 remote_open_1 (name, from_tty, &remote_ops, 0);
2144 }
2145
2146 /* Just like remote_open, but with asynchronous support. */
2147 static void
2148 remote_async_open (char *name, int from_tty)
2149 {
2150 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2151 }
2152
2153 /* Open a connection to a remote debugger using the extended
2154 remote gdb protocol. NAME is the filename used for communication. */
2155
2156 static void
2157 extended_remote_open (char *name, int from_tty)
2158 {
2159 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2160 }
2161
2162 /* Just like extended_remote_open, but with asynchronous support. */
2163 static void
2164 extended_remote_async_open (char *name, int from_tty)
2165 {
2166 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2167 }
2168
2169 /* Generic code for opening a connection to a remote target. */
2170
2171 static void
2172 init_all_packet_configs (void)
2173 {
2174 int i;
2175 update_packet_config (&remote_protocol_e);
2176 update_packet_config (&remote_protocol_E);
2177 update_packet_config (&remote_protocol_P);
2178 update_packet_config (&remote_protocol_qSymbol);
2179 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2180 update_packet_config (&remote_protocol_Z[i]);
2181 /* Force remote_write_bytes to check whether target supports binary
2182 downloading. */
2183 update_packet_config (&remote_protocol_binary_download);
2184 }
2185
2186 /* Symbol look-up. */
2187
2188 static void
2189 remote_check_symbols (struct objfile *objfile)
2190 {
2191 struct remote_state *rs = get_remote_state ();
2192 char *msg, *reply, *tmp;
2193 struct minimal_symbol *sym;
2194 int end;
2195
2196 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2197 return;
2198
2199 msg = alloca (rs->remote_packet_size);
2200 reply = alloca (rs->remote_packet_size);
2201
2202 /* Invite target to request symbol lookups. */
2203
2204 putpkt ("qSymbol::");
2205 getpkt (reply, (rs->remote_packet_size), 0);
2206 packet_ok (reply, &remote_protocol_qSymbol);
2207
2208 while (strncmp (reply, "qSymbol:", 8) == 0)
2209 {
2210 tmp = &reply[8];
2211 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2212 msg[end] = '\0';
2213 sym = lookup_minimal_symbol (msg, NULL, NULL);
2214 if (sym == NULL)
2215 sprintf (msg, "qSymbol::%s", &reply[8]);
2216 else
2217 sprintf (msg, "qSymbol:%s:%s",
2218 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2219 &reply[8]);
2220 putpkt (msg);
2221 getpkt (reply, (rs->remote_packet_size), 0);
2222 }
2223 }
2224
2225 static void
2226 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2227 int extended_p)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 if (name == 0)
2231 error ("To open a remote debug connection, you need to specify what\n"
2232 "serial device is attached to the remote system\n"
2233 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2234
2235 /* See FIXME above */
2236 wait_forever_enabled_p = 1;
2237
2238 target_preopen (from_tty);
2239
2240 unpush_target (target);
2241
2242 remote_desc = serial_open (name);
2243 if (!remote_desc)
2244 perror_with_name (name);
2245
2246 if (baud_rate != -1)
2247 {
2248 if (serial_setbaudrate (remote_desc, baud_rate))
2249 {
2250 serial_close (remote_desc);
2251 perror_with_name (name);
2252 }
2253 }
2254
2255 serial_raw (remote_desc);
2256
2257 /* If there is something sitting in the buffer we might take it as a
2258 response to a command, which would be bad. */
2259 serial_flush_input (remote_desc);
2260
2261 if (from_tty)
2262 {
2263 puts_filtered ("Remote debugging using ");
2264 puts_filtered (name);
2265 puts_filtered ("\n");
2266 }
2267 push_target (target); /* Switch to using remote target now */
2268
2269 init_all_packet_configs ();
2270
2271 general_thread = -2;
2272 continue_thread = -2;
2273
2274 /* Probe for ability to use "ThreadInfo" query, as required. */
2275 use_threadinfo_query = 1;
2276 use_threadextra_query = 1;
2277
2278 /* Without this, some commands which require an active target (such
2279 as kill) won't work. This variable serves (at least) double duty
2280 as both the pid of the target process (if it has such), and as a
2281 flag indicating that a target is active. These functions should
2282 be split out into seperate variables, especially since GDB will
2283 someday have a notion of debugging several processes. */
2284
2285 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2286 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2287 /* First delete any symbols previously loaded from shared libraries. */
2288 no_shared_libraries (NULL, 0);
2289 #endif
2290
2291 /* Start the remote connection; if error (0), discard this target.
2292 In particular, if the user quits, be sure to discard it
2293 (we'd be in an inconsistent state otherwise). */
2294 if (!catch_errors (remote_start_remote, NULL,
2295 "Couldn't establish connection to remote target\n",
2296 RETURN_MASK_ALL))
2297 {
2298 pop_target ();
2299 return;
2300 }
2301
2302 if (extended_p)
2303 {
2304 /* Tell the remote that we are using the extended protocol. */
2305 char *buf = alloca (rs->remote_packet_size);
2306 putpkt ("!");
2307 getpkt (buf, (rs->remote_packet_size), 0);
2308 }
2309 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2310 /* FIXME: need a master target_open vector from which all
2311 remote_opens can be called, so that stuff like this can
2312 go there. Failing that, the following code must be copied
2313 to the open function for any remote target that wants to
2314 support svr4 shared libraries. */
2315
2316 /* Set up to detect and load shared libraries. */
2317 if (exec_bfd) /* No use without an exec file. */
2318 {
2319 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2320 remote_check_symbols (symfile_objfile);
2321 }
2322 #endif
2323 }
2324
2325 /* Just like remote_open but with asynchronous support. */
2326 static void
2327 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2328 int extended_p)
2329 {
2330 struct remote_state *rs = get_remote_state ();
2331 if (name == 0)
2332 error ("To open a remote debug connection, you need to specify what\n"
2333 "serial device is attached to the remote system\n"
2334 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2335
2336 target_preopen (from_tty);
2337
2338 unpush_target (target);
2339
2340 remote_desc = serial_open (name);
2341 if (!remote_desc)
2342 perror_with_name (name);
2343
2344 if (baud_rate != -1)
2345 {
2346 if (serial_setbaudrate (remote_desc, baud_rate))
2347 {
2348 serial_close (remote_desc);
2349 perror_with_name (name);
2350 }
2351 }
2352
2353 serial_raw (remote_desc);
2354
2355 /* If there is something sitting in the buffer we might take it as a
2356 response to a command, which would be bad. */
2357 serial_flush_input (remote_desc);
2358
2359 if (from_tty)
2360 {
2361 puts_filtered ("Remote debugging using ");
2362 puts_filtered (name);
2363 puts_filtered ("\n");
2364 }
2365
2366 push_target (target); /* Switch to using remote target now */
2367
2368 init_all_packet_configs ();
2369
2370 general_thread = -2;
2371 continue_thread = -2;
2372
2373 /* Probe for ability to use "ThreadInfo" query, as required. */
2374 use_threadinfo_query = 1;
2375 use_threadextra_query = 1;
2376
2377 /* Without this, some commands which require an active target (such
2378 as kill) won't work. This variable serves (at least) double duty
2379 as both the pid of the target process (if it has such), and as a
2380 flag indicating that a target is active. These functions should
2381 be split out into seperate variables, especially since GDB will
2382 someday have a notion of debugging several processes. */
2383 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2384
2385 /* With this target we start out by owning the terminal. */
2386 remote_async_terminal_ours_p = 1;
2387
2388 /* FIXME: cagney/1999-09-23: During the initial connection it is
2389 assumed that the target is already ready and able to respond to
2390 requests. Unfortunately remote_start_remote() eventually calls
2391 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2392 around this. Eventually a mechanism that allows
2393 wait_for_inferior() to expect/get timeouts will be
2394 implemented. */
2395 wait_forever_enabled_p = 0;
2396
2397 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2398 /* First delete any symbols previously loaded from shared libraries. */
2399 no_shared_libraries (NULL, 0);
2400 #endif
2401
2402 /* Start the remote connection; if error (0), discard this target.
2403 In particular, if the user quits, be sure to discard it
2404 (we'd be in an inconsistent state otherwise). */
2405 if (!catch_errors (remote_start_remote, NULL,
2406 "Couldn't establish connection to remote target\n",
2407 RETURN_MASK_ALL))
2408 {
2409 pop_target ();
2410 wait_forever_enabled_p = 1;
2411 return;
2412 }
2413
2414 wait_forever_enabled_p = 1;
2415
2416 if (extended_p)
2417 {
2418 /* Tell the remote that we are using the extended protocol. */
2419 char *buf = alloca (rs->remote_packet_size);
2420 putpkt ("!");
2421 getpkt (buf, (rs->remote_packet_size), 0);
2422 }
2423 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2424 /* FIXME: need a master target_open vector from which all
2425 remote_opens can be called, so that stuff like this can
2426 go there. Failing that, the following code must be copied
2427 to the open function for any remote target that wants to
2428 support svr4 shared libraries. */
2429
2430 /* Set up to detect and load shared libraries. */
2431 if (exec_bfd) /* No use without an exec file. */
2432 {
2433 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2434 remote_check_symbols (symfile_objfile);
2435 }
2436 #endif
2437 }
2438
2439 /* This takes a program previously attached to and detaches it. After
2440 this is done, GDB can be used to debug some other program. We
2441 better not have left any breakpoints in the target program or it'll
2442 die when it hits one. */
2443
2444 static void
2445 remote_detach (char *args, int from_tty)
2446 {
2447 struct remote_state *rs = get_remote_state ();
2448 char *buf = alloca (rs->remote_packet_size);
2449
2450 if (args)
2451 error ("Argument given to \"detach\" when remotely debugging.");
2452
2453 /* Tell the remote target to detach. */
2454 strcpy (buf, "D");
2455 remote_send (buf, (rs->remote_packet_size));
2456
2457 target_mourn_inferior ();
2458 if (from_tty)
2459 puts_filtered ("Ending remote debugging.\n");
2460
2461 }
2462
2463 /* Same as remote_detach, but with async support. */
2464 static void
2465 remote_async_detach (char *args, int from_tty)
2466 {
2467 struct remote_state *rs = get_remote_state ();
2468 char *buf = alloca (rs->remote_packet_size);
2469
2470 if (args)
2471 error ("Argument given to \"detach\" when remotely debugging.");
2472
2473 /* Tell the remote target to detach. */
2474 strcpy (buf, "D");
2475 remote_send (buf, (rs->remote_packet_size));
2476
2477 /* Unregister the file descriptor from the event loop. */
2478 if (target_is_async_p ())
2479 serial_async (remote_desc, NULL, 0);
2480
2481 target_mourn_inferior ();
2482 if (from_tty)
2483 puts_filtered ("Ending remote debugging.\n");
2484 }
2485
2486 /* Convert hex digit A to a number. */
2487
2488 static int
2489 fromhex (int a)
2490 {
2491 if (a >= '0' && a <= '9')
2492 return a - '0';
2493 else if (a >= 'a' && a <= 'f')
2494 return a - 'a' + 10;
2495 else if (a >= 'A' && a <= 'F')
2496 return a - 'A' + 10;
2497 else
2498 error ("Reply contains invalid hex digit %d", a);
2499 }
2500
2501 static int
2502 hex2bin (const char *hex, char *bin, int count)
2503 {
2504 int i;
2505
2506 for (i = 0; i < count; i++)
2507 {
2508 if (hex[0] == 0 || hex[1] == 0)
2509 {
2510 /* Hex string is short, or of uneven length.
2511 Return the count that has been converted so far. */
2512 return i;
2513 }
2514 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2515 hex += 2;
2516 }
2517 return i;
2518 }
2519
2520 /* Convert number NIB to a hex digit. */
2521
2522 static int
2523 tohex (int nib)
2524 {
2525 if (nib < 10)
2526 return '0' + nib;
2527 else
2528 return 'a' + nib - 10;
2529 }
2530
2531 static int
2532 bin2hex (const char *bin, char *hex, int count)
2533 {
2534 int i;
2535 /* May use a length, or a nul-terminated string as input. */
2536 if (count == 0)
2537 count = strlen (bin);
2538
2539 for (i = 0; i < count; i++)
2540 {
2541 *hex++ = tohex ((*bin >> 4) & 0xf);
2542 *hex++ = tohex (*bin++ & 0xf);
2543 }
2544 *hex = 0;
2545 return i;
2546 }
2547 \f
2548 /* Tell the remote machine to resume. */
2549
2550 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2551
2552 static int last_sent_step;
2553
2554 static void
2555 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2556 {
2557 struct remote_state *rs = get_remote_state ();
2558 char *buf = alloca (rs->remote_packet_size);
2559 int pid = PIDGET (ptid);
2560 char *p;
2561
2562 if (pid == -1)
2563 set_thread (0, 0); /* run any thread */
2564 else
2565 set_thread (pid, 0); /* run this thread */
2566
2567 last_sent_signal = siggnal;
2568 last_sent_step = step;
2569
2570 /* A hook for when we need to do something at the last moment before
2571 resumption. */
2572 if (target_resume_hook)
2573 (*target_resume_hook) ();
2574
2575
2576 /* The s/S/c/C packets do not return status. So if the target does
2577 not support the S or C packets, the debug agent returns an empty
2578 string which is detected in remote_wait(). This protocol defect
2579 is fixed in the e/E packets. */
2580
2581 if (step && step_range_end)
2582 {
2583 /* If the target does not support the 'E' packet, we try the 'S'
2584 packet. Ideally we would fall back to the 'e' packet if that
2585 too is not supported. But that would require another copy of
2586 the code to issue the 'e' packet (and fall back to 's' if not
2587 supported) in remote_wait(). */
2588
2589 if (siggnal != TARGET_SIGNAL_0)
2590 {
2591 if (remote_protocol_E.support != PACKET_DISABLE)
2592 {
2593 p = buf;
2594 *p++ = 'E';
2595 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2596 *p++ = tohex (((int) siggnal) & 0xf);
2597 *p++ = ',';
2598 p += hexnumstr (p, (ULONGEST) step_range_start);
2599 *p++ = ',';
2600 p += hexnumstr (p, (ULONGEST) step_range_end);
2601 *p++ = 0;
2602
2603 putpkt (buf);
2604 getpkt (buf, (rs->remote_packet_size), 0);
2605
2606 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2607 return;
2608 }
2609 }
2610 else
2611 {
2612 if (remote_protocol_e.support != PACKET_DISABLE)
2613 {
2614 p = buf;
2615 *p++ = 'e';
2616 p += hexnumstr (p, (ULONGEST) step_range_start);
2617 *p++ = ',';
2618 p += hexnumstr (p, (ULONGEST) step_range_end);
2619 *p++ = 0;
2620
2621 putpkt (buf);
2622 getpkt (buf, (rs->remote_packet_size), 0);
2623
2624 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2625 return;
2626 }
2627 }
2628 }
2629
2630 if (siggnal != TARGET_SIGNAL_0)
2631 {
2632 buf[0] = step ? 'S' : 'C';
2633 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2634 buf[2] = tohex (((int) siggnal) & 0xf);
2635 buf[3] = '\0';
2636 }
2637 else
2638 strcpy (buf, step ? "s" : "c");
2639
2640 putpkt (buf);
2641 }
2642
2643 /* Same as remote_resume, but with async support. */
2644 static void
2645 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2646 {
2647 struct remote_state *rs = get_remote_state ();
2648 char *buf = alloca (rs->remote_packet_size);
2649 int pid = PIDGET (ptid);
2650 char *p;
2651
2652 if (pid == -1)
2653 set_thread (0, 0); /* run any thread */
2654 else
2655 set_thread (pid, 0); /* run this thread */
2656
2657 last_sent_signal = siggnal;
2658 last_sent_step = step;
2659
2660 /* A hook for when we need to do something at the last moment before
2661 resumption. */
2662 if (target_resume_hook)
2663 (*target_resume_hook) ();
2664
2665 /* The s/S/c/C packets do not return status. So if the target does
2666 not support the S or C packets, the debug agent returns an empty
2667 string which is detected in remote_wait(). This protocol defect
2668 is fixed in the e/E packets. */
2669
2670 if (step && step_range_end)
2671 {
2672 /* If the target does not support the 'E' packet, we try the 'S'
2673 packet. Ideally we would fall back to the 'e' packet if that
2674 too is not supported. But that would require another copy of
2675 the code to issue the 'e' packet (and fall back to 's' if not
2676 supported) in remote_wait(). */
2677
2678 if (siggnal != TARGET_SIGNAL_0)
2679 {
2680 if (remote_protocol_E.support != PACKET_DISABLE)
2681 {
2682 p = buf;
2683 *p++ = 'E';
2684 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2685 *p++ = tohex (((int) siggnal) & 0xf);
2686 *p++ = ',';
2687 p += hexnumstr (p, (ULONGEST) step_range_start);
2688 *p++ = ',';
2689 p += hexnumstr (p, (ULONGEST) step_range_end);
2690 *p++ = 0;
2691
2692 putpkt (buf);
2693 getpkt (buf, (rs->remote_packet_size), 0);
2694
2695 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2696 goto register_event_loop;
2697 }
2698 }
2699 else
2700 {
2701 if (remote_protocol_e.support != PACKET_DISABLE)
2702 {
2703 p = buf;
2704 *p++ = 'e';
2705 p += hexnumstr (p, (ULONGEST) step_range_start);
2706 *p++ = ',';
2707 p += hexnumstr (p, (ULONGEST) step_range_end);
2708 *p++ = 0;
2709
2710 putpkt (buf);
2711 getpkt (buf, (rs->remote_packet_size), 0);
2712
2713 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2714 goto register_event_loop;
2715 }
2716 }
2717 }
2718
2719 if (siggnal != TARGET_SIGNAL_0)
2720 {
2721 buf[0] = step ? 'S' : 'C';
2722 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2723 buf[2] = tohex ((int) siggnal & 0xf);
2724 buf[3] = '\0';
2725 }
2726 else
2727 strcpy (buf, step ? "s" : "c");
2728
2729 putpkt (buf);
2730
2731 register_event_loop:
2732 /* We are about to start executing the inferior, let's register it
2733 with the event loop. NOTE: this is the one place where all the
2734 execution commands end up. We could alternatively do this in each
2735 of the execution commands in infcmd.c.*/
2736 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2737 into infcmd.c in order to allow inferior function calls to work
2738 NOT asynchronously. */
2739 if (event_loop_p && target_can_async_p ())
2740 target_async (inferior_event_handler, 0);
2741 /* Tell the world that the target is now executing. */
2742 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2743 this? Instead, should the client of target just assume (for
2744 async targets) that the target is going to start executing? Is
2745 this information already found in the continuation block? */
2746 if (target_is_async_p ())
2747 target_executing = 1;
2748 }
2749 \f
2750
2751 /* Set up the signal handler for SIGINT, while the target is
2752 executing, ovewriting the 'regular' SIGINT signal handler. */
2753 static void
2754 initialize_sigint_signal_handler (void)
2755 {
2756 sigint_remote_token =
2757 create_async_signal_handler (async_remote_interrupt, NULL);
2758 signal (SIGINT, handle_remote_sigint);
2759 }
2760
2761 /* Signal handler for SIGINT, while the target is executing. */
2762 static void
2763 handle_remote_sigint (int sig)
2764 {
2765 signal (sig, handle_remote_sigint_twice);
2766 sigint_remote_twice_token =
2767 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2768 mark_async_signal_handler_wrapper (sigint_remote_token);
2769 }
2770
2771 /* Signal handler for SIGINT, installed after SIGINT has already been
2772 sent once. It will take effect the second time that the user sends
2773 a ^C. */
2774 static void
2775 handle_remote_sigint_twice (int sig)
2776 {
2777 signal (sig, handle_sigint);
2778 sigint_remote_twice_token =
2779 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2780 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2781 }
2782
2783 /* Perform the real interruption of the target execution, in response
2784 to a ^C. */
2785 static void
2786 async_remote_interrupt (gdb_client_data arg)
2787 {
2788 if (remote_debug)
2789 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2790
2791 target_stop ();
2792 }
2793
2794 /* Perform interrupt, if the first attempt did not succeed. Just give
2795 up on the target alltogether. */
2796 void
2797 async_remote_interrupt_twice (gdb_client_data arg)
2798 {
2799 if (remote_debug)
2800 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2801 /* Do something only if the target was not killed by the previous
2802 cntl-C. */
2803 if (target_executing)
2804 {
2805 interrupt_query ();
2806 signal (SIGINT, handle_remote_sigint);
2807 }
2808 }
2809
2810 /* Reinstall the usual SIGINT handlers, after the target has
2811 stopped. */
2812 static void
2813 cleanup_sigint_signal_handler (void *dummy)
2814 {
2815 signal (SIGINT, handle_sigint);
2816 if (sigint_remote_twice_token)
2817 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2818 if (sigint_remote_token)
2819 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2820 }
2821
2822 /* Send ^C to target to halt it. Target will respond, and send us a
2823 packet. */
2824 static void (*ofunc) (int);
2825
2826 /* The command line interface's stop routine. This function is installed
2827 as a signal handler for SIGINT. The first time a user requests a
2828 stop, we call remote_stop to send a break or ^C. If there is no
2829 response from the target (it didn't stop when the user requested it),
2830 we ask the user if he'd like to detach from the target. */
2831 static void
2832 remote_interrupt (int signo)
2833 {
2834 /* If this doesn't work, try more severe steps. */
2835 signal (signo, remote_interrupt_twice);
2836
2837 if (remote_debug)
2838 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2839
2840 target_stop ();
2841 }
2842
2843 /* The user typed ^C twice. */
2844
2845 static void
2846 remote_interrupt_twice (int signo)
2847 {
2848 signal (signo, ofunc);
2849 interrupt_query ();
2850 signal (signo, remote_interrupt);
2851 }
2852
2853 /* This is the generic stop called via the target vector. When a target
2854 interrupt is requested, either by the command line or the GUI, we
2855 will eventually end up here. */
2856 static void
2857 remote_stop (void)
2858 {
2859 /* Send a break or a ^C, depending on user preference. */
2860 if (remote_debug)
2861 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2862
2863 if (remote_break)
2864 serial_send_break (remote_desc);
2865 else
2866 serial_write (remote_desc, "\003", 1);
2867 }
2868
2869 /* Ask the user what to do when an interrupt is received. */
2870
2871 static void
2872 interrupt_query (void)
2873 {
2874 target_terminal_ours ();
2875
2876 if (query ("Interrupted while waiting for the program.\n\
2877 Give up (and stop debugging it)? "))
2878 {
2879 target_mourn_inferior ();
2880 return_to_top_level (RETURN_QUIT);
2881 }
2882
2883 target_terminal_inferior ();
2884 }
2885
2886 /* Enable/disable target terminal ownership. Most targets can use
2887 terminal groups to control terminal ownership. Remote targets are
2888 different in that explicit transfer of ownership to/from GDB/target
2889 is required. */
2890
2891 static void
2892 remote_async_terminal_inferior (void)
2893 {
2894 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2895 sync_execution here. This function should only be called when
2896 GDB is resuming the inferior in the forground. A background
2897 resume (``run&'') should leave GDB in control of the terminal and
2898 consequently should not call this code. */
2899 if (!sync_execution)
2900 return;
2901 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2902 calls target_terminal_*() idenpotent. The event-loop GDB talking
2903 to an asynchronous target with a synchronous command calls this
2904 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2905 stops trying to transfer the terminal to the target when it
2906 shouldn't this guard can go away. */
2907 if (!remote_async_terminal_ours_p)
2908 return;
2909 delete_file_handler (input_fd);
2910 remote_async_terminal_ours_p = 0;
2911 initialize_sigint_signal_handler ();
2912 /* NOTE: At this point we could also register our selves as the
2913 recipient of all input. Any characters typed could then be
2914 passed on down to the target. */
2915 }
2916
2917 static void
2918 remote_async_terminal_ours (void)
2919 {
2920 /* See FIXME in remote_async_terminal_inferior. */
2921 if (!sync_execution)
2922 return;
2923 /* See FIXME in remote_async_terminal_inferior. */
2924 if (remote_async_terminal_ours_p)
2925 return;
2926 cleanup_sigint_signal_handler (NULL);
2927 add_file_handler (input_fd, stdin_event_handler, 0);
2928 remote_async_terminal_ours_p = 1;
2929 }
2930
2931 /* If nonzero, ignore the next kill. */
2932
2933 int kill_kludge;
2934
2935 void
2936 remote_console_output (char *msg)
2937 {
2938 char *p;
2939
2940 for (p = msg; p[0] && p[1]; p += 2)
2941 {
2942 char tb[2];
2943 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2944 tb[0] = c;
2945 tb[1] = 0;
2946 fputs_unfiltered (tb, gdb_stdtarg);
2947 }
2948 gdb_flush (gdb_stdtarg);
2949 }
2950
2951 /* Wait until the remote machine stops, then return,
2952 storing status in STATUS just as `wait' would.
2953 Returns "pid", which in the case of a multi-threaded
2954 remote OS, is the thread-id. */
2955
2956 static ptid_t
2957 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 unsigned char *buf = alloca (rs->remote_packet_size);
2961 int thread_num = -1;
2962
2963 status->kind = TARGET_WAITKIND_EXITED;
2964 status->value.integer = 0;
2965
2966 while (1)
2967 {
2968 unsigned char *p;
2969
2970 ofunc = signal (SIGINT, remote_interrupt);
2971 getpkt (buf, (rs->remote_packet_size), 1);
2972 signal (SIGINT, ofunc);
2973
2974 /* This is a hook for when we need to do something (perhaps the
2975 collection of trace data) every time the target stops. */
2976 if (target_wait_loop_hook)
2977 (*target_wait_loop_hook) ();
2978
2979 switch (buf[0])
2980 {
2981 case 'E': /* Error of some sort */
2982 warning ("Remote failure reply: %s", buf);
2983 continue;
2984 case 'T': /* Status with PC, SP, FP, ... */
2985 {
2986 int i;
2987 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2988
2989 /* Expedited reply, containing Signal, {regno, reg} repeat */
2990 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2991 ss = signal number
2992 n... = register number
2993 r... = register contents
2994 */
2995 p = &buf[3]; /* after Txx */
2996
2997 while (*p)
2998 {
2999 unsigned char *p1;
3000 char *p_temp;
3001 int fieldsize;
3002
3003 /* Read the ``P'' register number. */
3004 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3005 p1 = (unsigned char *) p_temp;
3006
3007 if (p1 == p) /* No register number present here */
3008 {
3009 p1 = (unsigned char *) strchr ((const char *) p, ':');
3010 if (p1 == NULL)
3011 warning ("Malformed packet(a) (missing colon): %s\n\
3012 Packet: '%s'\n",
3013 p, buf);
3014 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3015 {
3016 p_temp = unpack_varlen_hex (++p1, &thread_num);
3017 record_currthread (thread_num);
3018 p = (unsigned char *) p_temp;
3019 }
3020 }
3021 else
3022 {
3023 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3024 p = p1;
3025
3026 if (*p++ != ':')
3027 warning ("Malformed packet(b) (missing colon): %s\n\
3028 Packet: '%s'\n",
3029 p, buf);
3030
3031 if (reg == NULL)
3032 warning ("Remote sent bad register number %s: %s\n\
3033 Packet: '%s'\n",
3034 phex_nz (pnum, 0), p, buf);
3035
3036 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3037 p += 2 * fieldsize;
3038 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3039 warning ("Remote reply is too short: %s", buf);
3040 supply_register (reg->regnum, regs);
3041 }
3042
3043 if (*p++ != ';')
3044 {
3045 warning ("Remote register badly formatted: %s", buf);
3046 warning (" here: %s", p);
3047 }
3048 }
3049 }
3050 /* fall through */
3051 case 'S': /* Old style status, just signal only */
3052 status->kind = TARGET_WAITKIND_STOPPED;
3053 status->value.sig = (enum target_signal)
3054 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3055
3056 if (buf[3] == 'p')
3057 {
3058 /* Export Cisco kernel mode as a convenience variable
3059 (so that it can be used in the GDB prompt if desired). */
3060
3061 if (cisco_kernel_mode == 1)
3062 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3063 value_from_string ("PDEBUG-"));
3064 cisco_kernel_mode = 0;
3065 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3066 record_currthread (thread_num);
3067 }
3068 else if (buf[3] == 'k')
3069 {
3070 /* Export Cisco kernel mode as a convenience variable
3071 (so that it can be used in the GDB prompt if desired). */
3072
3073 if (cisco_kernel_mode == 1)
3074 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3075 value_from_string ("KDEBUG-"));
3076 cisco_kernel_mode = 1;
3077 }
3078 goto got_status;
3079 case 'N': /* Cisco special: status and offsets */
3080 {
3081 bfd_vma text_addr, data_addr, bss_addr;
3082 bfd_signed_vma text_off, data_off, bss_off;
3083 unsigned char *p1;
3084
3085 status->kind = TARGET_WAITKIND_STOPPED;
3086 status->value.sig = (enum target_signal)
3087 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3088
3089 if (symfile_objfile == NULL)
3090 {
3091 warning ("Relocation packet received with no symbol file. \
3092 Packet Dropped");
3093 goto got_status;
3094 }
3095
3096 /* Relocate object file. Buffer format is NAATT;DD;BB
3097 * where AA is the signal number, TT is the new text
3098 * address, DD * is the new data address, and BB is the
3099 * new bss address. */
3100
3101 p = &buf[3];
3102 text_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p || *p1 != ';')
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105 p = p1 + 1;
3106 data_addr = strtoul (p, (char **) &p1, 16);
3107 if (p1 == p || *p1 != ';')
3108 warning ("Malformed relocation packet: Packet '%s'", buf);
3109 p = p1 + 1;
3110 bss_addr = strtoul (p, (char **) &p1, 16);
3111 if (p1 == p)
3112 warning ("Malformed relocation packet: Packet '%s'", buf);
3113
3114 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3115 &text_off, &data_off, &bss_off)
3116 == 0)
3117 if (text_off != 0 || data_off != 0 || bss_off != 0)
3118 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3119
3120 goto got_status;
3121 }
3122 case 'W': /* Target exited */
3123 {
3124 /* The remote process exited. */
3125 status->kind = TARGET_WAITKIND_EXITED;
3126 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3127 goto got_status;
3128 }
3129 case 'X':
3130 status->kind = TARGET_WAITKIND_SIGNALLED;
3131 status->value.sig = (enum target_signal)
3132 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3133 kill_kludge = 1;
3134
3135 goto got_status;
3136 case 'O': /* Console output */
3137 remote_console_output (buf + 1);
3138 continue;
3139 case '\0':
3140 if (last_sent_signal != TARGET_SIGNAL_0)
3141 {
3142 /* Zero length reply means that we tried 'S' or 'C' and
3143 the remote system doesn't support it. */
3144 target_terminal_ours_for_output ();
3145 printf_filtered
3146 ("Can't send signals to this remote system. %s not sent.\n",
3147 target_signal_to_name (last_sent_signal));
3148 last_sent_signal = TARGET_SIGNAL_0;
3149 target_terminal_inferior ();
3150
3151 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3152 putpkt ((char *) buf);
3153 continue;
3154 }
3155 /* else fallthrough */
3156 default:
3157 warning ("Invalid remote reply: %s", buf);
3158 continue;
3159 }
3160 }
3161 got_status:
3162 if (thread_num != -1)
3163 {
3164 return pid_to_ptid (thread_num);
3165 }
3166 return inferior_ptid;
3167 }
3168
3169 /* Async version of remote_wait. */
3170 static ptid_t
3171 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3172 {
3173 struct remote_state *rs = get_remote_state ();
3174 unsigned char *buf = alloca (rs->remote_packet_size);
3175 int thread_num = -1;
3176
3177 status->kind = TARGET_WAITKIND_EXITED;
3178 status->value.integer = 0;
3179
3180 while (1)
3181 {
3182 unsigned char *p;
3183
3184 if (!target_is_async_p ())
3185 ofunc = signal (SIGINT, remote_interrupt);
3186 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3187 _never_ wait for ever -> test on target_is_async_p().
3188 However, before we do that we need to ensure that the caller
3189 knows how to take the target into/out of async mode. */
3190 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3191 if (!target_is_async_p ())
3192 signal (SIGINT, ofunc);
3193
3194 /* This is a hook for when we need to do something (perhaps the
3195 collection of trace data) every time the target stops. */
3196 if (target_wait_loop_hook)
3197 (*target_wait_loop_hook) ();
3198
3199 switch (buf[0])
3200 {
3201 case 'E': /* Error of some sort */
3202 warning ("Remote failure reply: %s", buf);
3203 continue;
3204 case 'T': /* Status with PC, SP, FP, ... */
3205 {
3206 int i;
3207 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3208
3209 /* Expedited reply, containing Signal, {regno, reg} repeat */
3210 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3211 ss = signal number
3212 n... = register number
3213 r... = register contents
3214 */
3215 p = &buf[3]; /* after Txx */
3216
3217 while (*p)
3218 {
3219 unsigned char *p1;
3220 char *p_temp;
3221 int fieldsize;
3222
3223 /* Read the register number */
3224 long pnum = strtol ((const char *) p, &p_temp, 16);
3225 p1 = (unsigned char *) p_temp;
3226
3227 if (p1 == p) /* No register number present here */
3228 {
3229 p1 = (unsigned char *) strchr ((const char *) p, ':');
3230 if (p1 == NULL)
3231 warning ("Malformed packet(a) (missing colon): %s\n\
3232 Packet: '%s'\n",
3233 p, buf);
3234 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3235 {
3236 p_temp = unpack_varlen_hex (++p1, &thread_num);
3237 record_currthread (thread_num);
3238 p = (unsigned char *) p_temp;
3239 }
3240 }
3241 else
3242 {
3243 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3244 p = p1;
3245 if (*p++ != ':')
3246 warning ("Malformed packet(b) (missing colon): %s\n\
3247 Packet: '%s'\n",
3248 p, buf);
3249
3250 if (reg == NULL)
3251 warning ("Remote sent bad register number %ld: %s\n\
3252 Packet: '%s'\n",
3253 pnum, p, buf);
3254
3255 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3256 p += 2 * fieldsize;
3257 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3258 warning ("Remote reply is too short: %s", buf);
3259 supply_register (reg->regnum, regs);
3260 }
3261
3262 if (*p++ != ';')
3263 {
3264 warning ("Remote register badly formatted: %s", buf);
3265 warning (" here: %s", p);
3266 }
3267 }
3268 }
3269 /* fall through */
3270 case 'S': /* Old style status, just signal only */
3271 status->kind = TARGET_WAITKIND_STOPPED;
3272 status->value.sig = (enum target_signal)
3273 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3274
3275 if (buf[3] == 'p')
3276 {
3277 /* Export Cisco kernel mode as a convenience variable
3278 (so that it can be used in the GDB prompt if desired). */
3279
3280 if (cisco_kernel_mode == 1)
3281 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3282 value_from_string ("PDEBUG-"));
3283 cisco_kernel_mode = 0;
3284 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3285 record_currthread (thread_num);
3286 }
3287 else if (buf[3] == 'k')
3288 {
3289 /* Export Cisco kernel mode as a convenience variable
3290 (so that it can be used in the GDB prompt if desired). */
3291
3292 if (cisco_kernel_mode == 1)
3293 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3294 value_from_string ("KDEBUG-"));
3295 cisco_kernel_mode = 1;
3296 }
3297 goto got_status;
3298 case 'N': /* Cisco special: status and offsets */
3299 {
3300 bfd_vma text_addr, data_addr, bss_addr;
3301 bfd_signed_vma text_off, data_off, bss_off;
3302 unsigned char *p1;
3303
3304 status->kind = TARGET_WAITKIND_STOPPED;
3305 status->value.sig = (enum target_signal)
3306 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3307
3308 if (symfile_objfile == NULL)
3309 {
3310 warning ("Relocation packet recieved with no symbol file. \
3311 Packet Dropped");
3312 goto got_status;
3313 }
3314
3315 /* Relocate object file. Buffer format is NAATT;DD;BB
3316 * where AA is the signal number, TT is the new text
3317 * address, DD * is the new data address, and BB is the
3318 * new bss address. */
3319
3320 p = &buf[3];
3321 text_addr = strtoul (p, (char **) &p1, 16);
3322 if (p1 == p || *p1 != ';')
3323 warning ("Malformed relocation packet: Packet '%s'", buf);
3324 p = p1 + 1;
3325 data_addr = strtoul (p, (char **) &p1, 16);
3326 if (p1 == p || *p1 != ';')
3327 warning ("Malformed relocation packet: Packet '%s'", buf);
3328 p = p1 + 1;
3329 bss_addr = strtoul (p, (char **) &p1, 16);
3330 if (p1 == p)
3331 warning ("Malformed relocation packet: Packet '%s'", buf);
3332
3333 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3334 &text_off, &data_off, &bss_off)
3335 == 0)
3336 if (text_off != 0 || data_off != 0 || bss_off != 0)
3337 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3338
3339 goto got_status;
3340 }
3341 case 'W': /* Target exited */
3342 {
3343 /* The remote process exited. */
3344 status->kind = TARGET_WAITKIND_EXITED;
3345 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3346 goto got_status;
3347 }
3348 case 'X':
3349 status->kind = TARGET_WAITKIND_SIGNALLED;
3350 status->value.sig = (enum target_signal)
3351 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3352 kill_kludge = 1;
3353
3354 goto got_status;
3355 case 'O': /* Console output */
3356 remote_console_output (buf + 1);
3357 /* Return immediately to the event loop. The event loop will
3358 still be waiting on the inferior afterwards. */
3359 status->kind = TARGET_WAITKIND_IGNORE;
3360 goto got_status;
3361 case '\0':
3362 if (last_sent_signal != TARGET_SIGNAL_0)
3363 {
3364 /* Zero length reply means that we tried 'S' or 'C' and
3365 the remote system doesn't support it. */
3366 target_terminal_ours_for_output ();
3367 printf_filtered
3368 ("Can't send signals to this remote system. %s not sent.\n",
3369 target_signal_to_name (last_sent_signal));
3370 last_sent_signal = TARGET_SIGNAL_0;
3371 target_terminal_inferior ();
3372
3373 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3374 putpkt ((char *) buf);
3375 continue;
3376 }
3377 /* else fallthrough */
3378 default:
3379 warning ("Invalid remote reply: %s", buf);
3380 continue;
3381 }
3382 }
3383 got_status:
3384 if (thread_num != -1)
3385 {
3386 return pid_to_ptid (thread_num);
3387 }
3388 return inferior_ptid;
3389 }
3390
3391 /* Number of bytes of registers this stub implements. */
3392
3393 static int register_bytes_found;
3394
3395 /* Read the remote registers into the block REGS. */
3396 /* Currently we just read all the registers, so we don't use regnum. */
3397
3398 /* ARGSUSED */
3399 static void
3400 remote_fetch_registers (int regnum)
3401 {
3402 struct remote_state *rs = get_remote_state ();
3403 char *buf = alloca (rs->remote_packet_size);
3404 int i;
3405 char *p;
3406 char *regs = alloca (rs->sizeof_g_packet);
3407
3408 set_thread (PIDGET (inferior_ptid), 1);
3409
3410 if (regnum >= 0)
3411 {
3412 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3413 gdb_assert (reg != NULL);
3414 if (!reg->in_g_packet)
3415 internal_error (__FILE__, __LINE__,
3416 "Attempt to fetch a non G-packet register when this "
3417 "remote.c does not support the p-packet.");
3418 }
3419
3420 sprintf (buf, "g");
3421 remote_send (buf, (rs->remote_packet_size));
3422
3423 /* Save the size of the packet sent to us by the target. Its used
3424 as a heuristic when determining the max size of packets that the
3425 target can safely receive. */
3426 if ((rs->actual_register_packet_size) == 0)
3427 (rs->actual_register_packet_size) = strlen (buf);
3428
3429 /* Unimplemented registers read as all bits zero. */
3430 memset (regs, 0, rs->sizeof_g_packet);
3431
3432 /* We can get out of synch in various cases. If the first character
3433 in the buffer is not a hex character, assume that has happened
3434 and try to fetch another packet to read. */
3435 while ((buf[0] < '0' || buf[0] > '9')
3436 && (buf[0] < 'a' || buf[0] > 'f')
3437 && buf[0] != 'x') /* New: unavailable register value */
3438 {
3439 if (remote_debug)
3440 fprintf_unfiltered (gdb_stdlog,
3441 "Bad register packet; fetching a new packet\n");
3442 getpkt (buf, (rs->remote_packet_size), 0);
3443 }
3444
3445 /* Reply describes registers byte by byte, each byte encoded as two
3446 hex characters. Suck them all up, then supply them to the
3447 register cacheing/storage mechanism. */
3448
3449 p = buf;
3450 for (i = 0; i < rs->sizeof_g_packet; i++)
3451 {
3452 if (p[0] == 0)
3453 break;
3454 if (p[1] == 0)
3455 {
3456 warning ("Remote reply is of odd length: %s", buf);
3457 /* Don't change register_bytes_found in this case, and don't
3458 print a second warning. */
3459 goto supply_them;
3460 }
3461 if (p[0] == 'x' && p[1] == 'x')
3462 regs[i] = 0; /* 'x' */
3463 else
3464 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3465 p += 2;
3466 }
3467
3468 if (i != register_bytes_found)
3469 {
3470 register_bytes_found = i;
3471 if (REGISTER_BYTES_OK_P ()
3472 && !REGISTER_BYTES_OK (i))
3473 warning ("Remote reply is too short: %s", buf);
3474 }
3475
3476 supply_them:
3477 {
3478 int i;
3479 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3480 {
3481 struct packet_reg *r = &rs->regs[i];
3482 if (r->in_g_packet)
3483 {
3484 supply_register (r->regnum, regs + r->offset);
3485 if (buf[r->offset * 2] == 'x')
3486 set_register_cached (i, -1);
3487 }
3488 }
3489 }
3490 }
3491
3492 /* Prepare to store registers. Since we may send them all (using a
3493 'G' request), we have to read out the ones we don't want to change
3494 first. */
3495
3496 static void
3497 remote_prepare_to_store (void)
3498 {
3499 /* Make sure the entire registers array is valid. */
3500 switch (remote_protocol_P.support)
3501 {
3502 case PACKET_DISABLE:
3503 case PACKET_SUPPORT_UNKNOWN:
3504 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3505 forcing the register cache to read its and not the target
3506 registers. */
3507 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3508 break;
3509 case PACKET_ENABLE:
3510 break;
3511 }
3512 }
3513
3514 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3515 packet was not recognized. */
3516
3517 static int
3518 store_register_using_P (int regnum)
3519 {
3520 struct remote_state *rs = get_remote_state ();
3521 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3522 /* Try storing a single register. */
3523 char *buf = alloca (rs->remote_packet_size);
3524 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3525 char *p;
3526 int i;
3527
3528 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3529 p = buf + strlen (buf);
3530 regcache_collect (reg->regnum, regp);
3531 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3532 remote_send (buf, rs->remote_packet_size);
3533
3534 return buf[0] != '\0';
3535 }
3536
3537
3538 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3539 of the register cache buffer. FIXME: ignores errors. */
3540
3541 static void
3542 remote_store_registers (int regnum)
3543 {
3544 struct remote_state *rs = get_remote_state ();
3545 char *buf;
3546 char *regs;
3547 int i;
3548 char *p;
3549
3550 set_thread (PIDGET (inferior_ptid), 1);
3551
3552 if (regnum >= 0)
3553 {
3554 switch (remote_protocol_P.support)
3555 {
3556 case PACKET_DISABLE:
3557 break;
3558 case PACKET_ENABLE:
3559 if (store_register_using_P (regnum))
3560 return;
3561 else
3562 error ("Protocol error: P packet not recognized by stub");
3563 case PACKET_SUPPORT_UNKNOWN:
3564 if (store_register_using_P (regnum))
3565 {
3566 /* The stub recognized the 'P' packet. Remember this. */
3567 remote_protocol_P.support = PACKET_ENABLE;
3568 return;
3569 }
3570 else
3571 {
3572 /* The stub does not support the 'P' packet. Use 'G'
3573 instead, and don't try using 'P' in the future (it
3574 will just waste our time). */
3575 remote_protocol_P.support = PACKET_DISABLE;
3576 break;
3577 }
3578 }
3579 }
3580
3581 /* Extract all the registers in the regcache copying them into a
3582 local buffer. */
3583 {
3584 int i;
3585 regs = alloca (rs->sizeof_g_packet);
3586 memset (regs, rs->sizeof_g_packet, 0);
3587 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3588 {
3589 struct packet_reg *r = &rs->regs[i];
3590 if (r->in_g_packet)
3591 regcache_collect (r->regnum, regs + r->offset);
3592 }
3593 }
3594
3595 /* Command describes registers byte by byte,
3596 each byte encoded as two hex characters. */
3597 buf = alloca (rs->remote_packet_size);
3598 p = buf;
3599 *p++ = 'G';
3600 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3601 bin2hex (regs, p, register_bytes_found);
3602 remote_send (buf, (rs->remote_packet_size));
3603 }
3604 \f
3605
3606 /* Return the number of hex digits in num. */
3607
3608 static int
3609 hexnumlen (ULONGEST num)
3610 {
3611 int i;
3612
3613 for (i = 0; num != 0; i++)
3614 num >>= 4;
3615
3616 return max (i, 1);
3617 }
3618
3619 /* Set BUF to the minimum number of hex digits representing NUM. */
3620
3621 static int
3622 hexnumstr (char *buf, ULONGEST num)
3623 {
3624 int len = hexnumlen (num);
3625 return hexnumnstr (buf, num, len);
3626 }
3627
3628
3629 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3630
3631 static int
3632 hexnumnstr (char *buf, ULONGEST num, int width)
3633 {
3634 int i;
3635
3636 buf[width] = '\0';
3637
3638 for (i = width - 1; i >= 0; i--)
3639 {
3640 buf[i] = "0123456789abcdef"[(num & 0xf)];
3641 num >>= 4;
3642 }
3643
3644 return width;
3645 }
3646
3647 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3648
3649 static CORE_ADDR
3650 remote_address_masked (CORE_ADDR addr)
3651 {
3652 if (remote_address_size > 0
3653 && remote_address_size < (sizeof (ULONGEST) * 8))
3654 {
3655 /* Only create a mask when that mask can safely be constructed
3656 in a ULONGEST variable. */
3657 ULONGEST mask = 1;
3658 mask = (mask << remote_address_size) - 1;
3659 addr &= mask;
3660 }
3661 return addr;
3662 }
3663
3664 /* Determine whether the remote target supports binary downloading.
3665 This is accomplished by sending a no-op memory write of zero length
3666 to the target at the specified address. It does not suffice to send
3667 the whole packet, since many stubs strip the eighth bit and subsequently
3668 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3669
3670 NOTE: This can still lose if the serial line is not eight-bit
3671 clean. In cases like this, the user should clear "remote
3672 X-packet". */
3673
3674 static void
3675 check_binary_download (CORE_ADDR addr)
3676 {
3677 struct remote_state *rs = get_remote_state ();
3678 switch (remote_protocol_binary_download.support)
3679 {
3680 case PACKET_DISABLE:
3681 break;
3682 case PACKET_ENABLE:
3683 break;
3684 case PACKET_SUPPORT_UNKNOWN:
3685 {
3686 char *buf = alloca (rs->remote_packet_size);
3687 char *p;
3688
3689 p = buf;
3690 *p++ = 'X';
3691 p += hexnumstr (p, (ULONGEST) addr);
3692 *p++ = ',';
3693 p += hexnumstr (p, (ULONGEST) 0);
3694 *p++ = ':';
3695 *p = '\0';
3696
3697 putpkt_binary (buf, (int) (p - buf));
3698 getpkt (buf, (rs->remote_packet_size), 0);
3699
3700 if (buf[0] == '\0')
3701 {
3702 if (remote_debug)
3703 fprintf_unfiltered (gdb_stdlog,
3704 "binary downloading NOT suppported by target\n");
3705 remote_protocol_binary_download.support = PACKET_DISABLE;
3706 }
3707 else
3708 {
3709 if (remote_debug)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "binary downloading suppported by target\n");
3712 remote_protocol_binary_download.support = PACKET_ENABLE;
3713 }
3714 break;
3715 }
3716 }
3717 }
3718
3719 /* Write memory data directly to the remote machine.
3720 This does not inform the data cache; the data cache uses this.
3721 MEMADDR is the address in the remote memory space.
3722 MYADDR is the address of the buffer in our space.
3723 LEN is the number of bytes.
3724
3725 Returns number of bytes transferred, or 0 (setting errno) for
3726 error. Only transfer a single packet. */
3727
3728 static int
3729 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3730 {
3731 unsigned char *buf;
3732 int max_buf_size; /* Max size of packet output buffer */
3733 unsigned char *p;
3734 unsigned char *plen;
3735 long sizeof_buf;
3736 int plenlen;
3737 int todo;
3738 int nr_bytes;
3739
3740 /* Verify that the target can support a binary download */
3741 check_binary_download (memaddr);
3742
3743 /* Determine the max packet size. */
3744 max_buf_size = get_memory_write_packet_size ();
3745 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3746 buf = alloca (sizeof_buf);
3747
3748 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3749 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3750
3751 /* construct "M"<memaddr>","<len>":" */
3752 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3753 p = buf;
3754
3755 /* Append [XM]. Compute a best guess of the number of bytes
3756 actually transfered. */
3757 switch (remote_protocol_binary_download.support)
3758 {
3759 case PACKET_ENABLE:
3760 *p++ = 'X';
3761 /* Best guess at number of bytes that will fit. */
3762 todo = min (len, max_buf_size);
3763 break;
3764 case PACKET_DISABLE:
3765 *p++ = 'M';
3766 /* num bytes that will fit */
3767 todo = min (len, max_buf_size / 2);
3768 break;
3769 case PACKET_SUPPORT_UNKNOWN:
3770 internal_error (__FILE__, __LINE__,
3771 "remote_write_bytes: bad internal state");
3772 default:
3773 internal_error (__FILE__, __LINE__, "bad switch");
3774 }
3775
3776 /* Append <memaddr> */
3777 memaddr = remote_address_masked (memaddr);
3778 p += hexnumstr (p, (ULONGEST) memaddr);
3779 *p++ = ',';
3780
3781 /* Append <len>. Retain the location/size of <len>. It may
3782 need to be adjusted once the packet body has been created. */
3783 plen = p;
3784 plenlen = hexnumstr (p, (ULONGEST) todo);
3785 p += plenlen;
3786 *p++ = ':';
3787 *p = '\0';
3788
3789 /* Append the packet body. */
3790 switch (remote_protocol_binary_download.support)
3791 {
3792 case PACKET_ENABLE:
3793 /* Binary mode. Send target system values byte by byte, in
3794 increasing byte addresses. Only escape certain critical
3795 characters. */
3796 for (nr_bytes = 0;
3797 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3798 nr_bytes++)
3799 {
3800 switch (myaddr[nr_bytes] & 0xff)
3801 {
3802 case '$':
3803 case '#':
3804 case 0x7d:
3805 /* These must be escaped */
3806 *p++ = 0x7d;
3807 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3808 break;
3809 default:
3810 *p++ = myaddr[nr_bytes] & 0xff;
3811 break;
3812 }
3813 }
3814 if (nr_bytes < todo)
3815 {
3816 /* Escape chars have filled up the buffer prematurely,
3817 and we have actually sent fewer bytes than planned.
3818 Fix-up the length field of the packet. Use the same
3819 number of characters as before. */
3820
3821 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3822 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3823 }
3824 break;
3825 case PACKET_DISABLE:
3826 /* Normal mode: Send target system values byte by byte, in
3827 increasing byte addresses. Each byte is encoded as a two hex
3828 value. */
3829 nr_bytes = bin2hex (myaddr, p, todo);
3830 p += 2 * nr_bytes;
3831 break;
3832 case PACKET_SUPPORT_UNKNOWN:
3833 internal_error (__FILE__, __LINE__,
3834 "remote_write_bytes: bad internal state");
3835 default:
3836 internal_error (__FILE__, __LINE__, "bad switch");
3837 }
3838
3839 putpkt_binary (buf, (int) (p - buf));
3840 getpkt (buf, sizeof_buf, 0);
3841
3842 if (buf[0] == 'E')
3843 {
3844 /* There is no correspondance between what the remote protocol
3845 uses for errors and errno codes. We would like a cleaner way
3846 of representing errors (big enough to include errno codes,
3847 bfd_error codes, and others). But for now just return EIO. */
3848 errno = EIO;
3849 return 0;
3850 }
3851
3852 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3853 bytes than we'd planned. */
3854 return nr_bytes;
3855 }
3856
3857 /* Read memory data directly from the remote machine.
3858 This does not use the data cache; the data cache uses this.
3859 MEMADDR is the address in the remote memory space.
3860 MYADDR is the address of the buffer in our space.
3861 LEN is the number of bytes.
3862
3863 Returns number of bytes transferred, or 0 for error. */
3864
3865 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3866 remote targets) shouldn't attempt to read the entire buffer.
3867 Instead it should read a single packet worth of data and then
3868 return the byte size of that packet to the caller. The caller (its
3869 caller and its callers caller ;-) already contains code for
3870 handling partial reads. */
3871
3872 static int
3873 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3874 {
3875 char *buf;
3876 int max_buf_size; /* Max size of packet output buffer */
3877 long sizeof_buf;
3878 int origlen;
3879
3880 /* Create a buffer big enough for this packet. */
3881 max_buf_size = get_memory_read_packet_size ();
3882 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3883 buf = alloca (sizeof_buf);
3884
3885 origlen = len;
3886 while (len > 0)
3887 {
3888 char *p;
3889 int todo;
3890 int i;
3891
3892 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3893
3894 /* construct "m"<memaddr>","<len>" */
3895 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3896 memaddr = remote_address_masked (memaddr);
3897 p = buf;
3898 *p++ = 'm';
3899 p += hexnumstr (p, (ULONGEST) memaddr);
3900 *p++ = ',';
3901 p += hexnumstr (p, (ULONGEST) todo);
3902 *p = '\0';
3903
3904 putpkt (buf);
3905 getpkt (buf, sizeof_buf, 0);
3906
3907 if (buf[0] == 'E')
3908 {
3909 /* There is no correspondance between what the remote protocol uses
3910 for errors and errno codes. We would like a cleaner way of
3911 representing errors (big enough to include errno codes, bfd_error
3912 codes, and others). But for now just return EIO. */
3913 errno = EIO;
3914 return 0;
3915 }
3916
3917 /* Reply describes memory byte by byte,
3918 each byte encoded as two hex characters. */
3919
3920 p = buf;
3921 if ((i = hex2bin (p, myaddr, todo)) < todo)
3922 {
3923 /* Reply is short. This means that we were able to read
3924 only part of what we wanted to. */
3925 return i + (origlen - len);
3926 }
3927 myaddr += todo;
3928 memaddr += todo;
3929 len -= todo;
3930 }
3931 return origlen;
3932 }
3933 \f
3934 /* Read or write LEN bytes from inferior memory at MEMADDR,
3935 transferring to or from debugger address BUFFER. Write to inferior if
3936 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3937 for error. TARGET is unused. */
3938
3939 /* ARGSUSED */
3940 static int
3941 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3942 int should_write,
3943 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3944 struct target_ops *target)
3945 {
3946 CORE_ADDR targ_addr;
3947 int targ_len;
3948 int res;
3949
3950 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3951 if (targ_len <= 0)
3952 return 0;
3953
3954 if (should_write)
3955 res = remote_write_bytes (targ_addr, buffer, targ_len);
3956 else
3957 res = remote_read_bytes (targ_addr, buffer, targ_len);
3958
3959 return res;
3960 }
3961
3962
3963 #if 0
3964 /* Enable after 4.12. */
3965
3966 void
3967 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3968 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3969 CORE_ADDR *addr_found, char *data_found)
3970 {
3971 if (increment == -4 && len == 4)
3972 {
3973 long mask_long, data_long;
3974 long data_found_long;
3975 CORE_ADDR addr_we_found;
3976 char *buf = alloca (rs->remote_packet_size);
3977 long returned_long[2];
3978 char *p;
3979
3980 mask_long = extract_unsigned_integer (mask, len);
3981 data_long = extract_unsigned_integer (data, len);
3982 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3983 putpkt (buf);
3984 getpkt (buf, (rs->remote_packet_size), 0);
3985 if (buf[0] == '\0')
3986 {
3987 /* The stub doesn't support the 't' request. We might want to
3988 remember this fact, but on the other hand the stub could be
3989 switched on us. Maybe we should remember it only until
3990 the next "target remote". */
3991 generic_search (len, data, mask, startaddr, increment, lorange,
3992 hirange, addr_found, data_found);
3993 return;
3994 }
3995
3996 if (buf[0] == 'E')
3997 /* There is no correspondance between what the remote protocol uses
3998 for errors and errno codes. We would like a cleaner way of
3999 representing errors (big enough to include errno codes, bfd_error
4000 codes, and others). But for now just use EIO. */
4001 memory_error (EIO, startaddr);
4002 p = buf;
4003 addr_we_found = 0;
4004 while (*p != '\0' && *p != ',')
4005 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4006 if (*p == '\0')
4007 error ("Protocol error: short return for search");
4008
4009 data_found_long = 0;
4010 while (*p != '\0' && *p != ',')
4011 data_found_long = (data_found_long << 4) + fromhex (*p++);
4012 /* Ignore anything after this comma, for future extensions. */
4013
4014 if (addr_we_found < lorange || addr_we_found >= hirange)
4015 {
4016 *addr_found = 0;
4017 return;
4018 }
4019
4020 *addr_found = addr_we_found;
4021 *data_found = store_unsigned_integer (data_we_found, len);
4022 return;
4023 }
4024 generic_search (len, data, mask, startaddr, increment, lorange,
4025 hirange, addr_found, data_found);
4026 }
4027 #endif /* 0 */
4028 \f
4029 static void
4030 remote_files_info (struct target_ops *ignore)
4031 {
4032 puts_filtered ("Debugging a target over a serial line.\n");
4033 }
4034 \f
4035 /* Stuff for dealing with the packets which are part of this protocol.
4036 See comment at top of file for details. */
4037
4038 /* Read a single character from the remote end, masking it down to 7 bits. */
4039
4040 static int
4041 readchar (int timeout)
4042 {
4043 int ch;
4044
4045 ch = serial_readchar (remote_desc, timeout);
4046
4047 if (ch >= 0)
4048 return (ch & 0x7f);
4049
4050 switch ((enum serial_rc) ch)
4051 {
4052 case SERIAL_EOF:
4053 target_mourn_inferior ();
4054 error ("Remote connection closed");
4055 /* no return */
4056 case SERIAL_ERROR:
4057 perror_with_name ("Remote communication error");
4058 /* no return */
4059 case SERIAL_TIMEOUT:
4060 break;
4061 }
4062 return ch;
4063 }
4064
4065 /* Send the command in BUF to the remote machine, and read the reply
4066 into BUF. Report an error if we get an error reply. */
4067
4068 static void
4069 remote_send (char *buf,
4070 long sizeof_buf)
4071 {
4072 putpkt (buf);
4073 getpkt (buf, sizeof_buf, 0);
4074
4075 if (buf[0] == 'E')
4076 error ("Remote failure reply: %s", buf);
4077 }
4078
4079 /* Display a null-terminated packet on stdout, for debugging, using C
4080 string notation. */
4081
4082 static void
4083 print_packet (char *buf)
4084 {
4085 puts_filtered ("\"");
4086 fputstr_filtered (buf, '"', gdb_stdout);
4087 puts_filtered ("\"");
4088 }
4089
4090 int
4091 putpkt (char *buf)
4092 {
4093 return putpkt_binary (buf, strlen (buf));
4094 }
4095
4096 /* Send a packet to the remote machine, with error checking. The data
4097 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4098 to account for the $, # and checksum, and for a possible /0 if we are
4099 debugging (remote_debug) and want to print the sent packet as a string */
4100
4101 static int
4102 putpkt_binary (char *buf, int cnt)
4103 {
4104 struct remote_state *rs = get_remote_state ();
4105 int i;
4106 unsigned char csum = 0;
4107 char *buf2 = alloca (cnt + 6);
4108 long sizeof_junkbuf = (rs->remote_packet_size);
4109 char *junkbuf = alloca (sizeof_junkbuf);
4110
4111 int ch;
4112 int tcount = 0;
4113 char *p;
4114
4115 /* Copy the packet into buffer BUF2, encapsulating it
4116 and giving it a checksum. */
4117
4118 p = buf2;
4119 *p++ = '$';
4120
4121 for (i = 0; i < cnt; i++)
4122 {
4123 csum += buf[i];
4124 *p++ = buf[i];
4125 }
4126 *p++ = '#';
4127 *p++ = tohex ((csum >> 4) & 0xf);
4128 *p++ = tohex (csum & 0xf);
4129
4130 /* Send it over and over until we get a positive ack. */
4131
4132 while (1)
4133 {
4134 int started_error_output = 0;
4135
4136 if (remote_debug)
4137 {
4138 *p = '\0';
4139 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4140 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4141 fprintf_unfiltered (gdb_stdlog, "...");
4142 gdb_flush (gdb_stdlog);
4143 }
4144 if (serial_write (remote_desc, buf2, p - buf2))
4145 perror_with_name ("putpkt: write failed");
4146
4147 /* read until either a timeout occurs (-2) or '+' is read */
4148 while (1)
4149 {
4150 ch = readchar (remote_timeout);
4151
4152 if (remote_debug)
4153 {
4154 switch (ch)
4155 {
4156 case '+':
4157 case '-':
4158 case SERIAL_TIMEOUT:
4159 case '$':
4160 if (started_error_output)
4161 {
4162 putchar_unfiltered ('\n');
4163 started_error_output = 0;
4164 }
4165 }
4166 }
4167
4168 switch (ch)
4169 {
4170 case '+':
4171 if (remote_debug)
4172 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4173 return 1;
4174 case '-':
4175 if (remote_debug)
4176 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4177 case SERIAL_TIMEOUT:
4178 tcount++;
4179 if (tcount > 3)
4180 return 0;
4181 break; /* Retransmit buffer */
4182 case '$':
4183 {
4184 if (remote_debug)
4185 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4186 /* It's probably an old response, and we're out of sync.
4187 Just gobble up the packet and ignore it. */
4188 read_frame (junkbuf, sizeof_junkbuf);
4189 continue; /* Now, go look for + */
4190 }
4191 default:
4192 if (remote_debug)
4193 {
4194 if (!started_error_output)
4195 {
4196 started_error_output = 1;
4197 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4198 }
4199 fputc_unfiltered (ch & 0177, gdb_stdlog);
4200 }
4201 continue;
4202 }
4203 break; /* Here to retransmit */
4204 }
4205
4206 #if 0
4207 /* This is wrong. If doing a long backtrace, the user should be
4208 able to get out next time we call QUIT, without anything as
4209 violent as interrupt_query. If we want to provide a way out of
4210 here without getting to the next QUIT, it should be based on
4211 hitting ^C twice as in remote_wait. */
4212 if (quit_flag)
4213 {
4214 quit_flag = 0;
4215 interrupt_query ();
4216 }
4217 #endif
4218 }
4219 }
4220
4221 static int remote_cisco_mode;
4222
4223 /* Come here after finding the start of the frame. Collect the rest
4224 into BUF, verifying the checksum, length, and handling run-length
4225 compression. No more than sizeof_buf-1 characters are read so that
4226 the buffer can be NUL terminated.
4227
4228 Returns -1 on error, number of characters in buffer (ignoring the
4229 trailing NULL) on success. (could be extended to return one of the
4230 SERIAL status indications). */
4231
4232 static long
4233 read_frame (char *buf,
4234 long sizeof_buf)
4235 {
4236 unsigned char csum;
4237 long bc;
4238 int c;
4239
4240 csum = 0;
4241 bc = 0;
4242
4243 while (1)
4244 {
4245 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4246 c = readchar (remote_timeout);
4247 switch (c)
4248 {
4249 case SERIAL_TIMEOUT:
4250 if (remote_debug)
4251 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4252 return -1;
4253 case '$':
4254 if (remote_debug)
4255 fputs_filtered ("Saw new packet start in middle of old one\n",
4256 gdb_stdlog);
4257 return -1; /* Start a new packet, count retries */
4258 case '#':
4259 {
4260 unsigned char pktcsum;
4261 int check_0 = 0;
4262 int check_1 = 0;
4263
4264 buf[bc] = '\0';
4265
4266 check_0 = readchar (remote_timeout);
4267 if (check_0 >= 0)
4268 check_1 = readchar (remote_timeout);
4269
4270 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4271 {
4272 if (remote_debug)
4273 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4274 return -1;
4275 }
4276 else if (check_0 < 0 || check_1 < 0)
4277 {
4278 if (remote_debug)
4279 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4280 return -1;
4281 }
4282
4283 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4284 if (csum == pktcsum)
4285 return bc;
4286
4287 if (remote_debug)
4288 {
4289 fprintf_filtered (gdb_stdlog,
4290 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4291 pktcsum, csum);
4292 fputs_filtered (buf, gdb_stdlog);
4293 fputs_filtered ("\n", gdb_stdlog);
4294 }
4295 /* Number of characters in buffer ignoring trailing
4296 NUL. */
4297 return -1;
4298 }
4299 case '*': /* Run length encoding */
4300 {
4301 int repeat;
4302 csum += c;
4303
4304 if (remote_cisco_mode == 0)
4305 {
4306 c = readchar (remote_timeout);
4307 csum += c;
4308 repeat = c - ' ' + 3; /* Compute repeat count */
4309 }
4310 else
4311 {
4312 /* Cisco's run-length encoding variant uses two
4313 hex chars to represent the repeat count. */
4314
4315 c = readchar (remote_timeout);
4316 csum += c;
4317 repeat = fromhex (c) << 4;
4318 c = readchar (remote_timeout);
4319 csum += c;
4320 repeat += fromhex (c);
4321 }
4322
4323 /* The character before ``*'' is repeated. */
4324
4325 if (repeat > 0 && repeat <= 255
4326 && bc > 0
4327 && bc + repeat - 1 < sizeof_buf - 1)
4328 {
4329 memset (&buf[bc], buf[bc - 1], repeat);
4330 bc += repeat;
4331 continue;
4332 }
4333
4334 buf[bc] = '\0';
4335 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4336 puts_filtered (buf);
4337 puts_filtered ("\n");
4338 return -1;
4339 }
4340 default:
4341 if (bc < sizeof_buf - 1)
4342 {
4343 buf[bc++] = c;
4344 csum += c;
4345 continue;
4346 }
4347
4348 buf[bc] = '\0';
4349 puts_filtered ("Remote packet too long: ");
4350 puts_filtered (buf);
4351 puts_filtered ("\n");
4352
4353 return -1;
4354 }
4355 }
4356 }
4357
4358 /* Read a packet from the remote machine, with error checking, and
4359 store it in BUF. If FOREVER, wait forever rather than timing out;
4360 this is used (in synchronous mode) to wait for a target that is is
4361 executing user code to stop. */
4362 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4363 don't have to change all the calls to getpkt to deal with the
4364 return value, because at the moment I don't know what the right
4365 thing to do it for those. */
4366 void
4367 getpkt (char *buf,
4368 long sizeof_buf,
4369 int forever)
4370 {
4371 int timed_out;
4372
4373 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4374 }
4375
4376
4377 /* Read a packet from the remote machine, with error checking, and
4378 store it in BUF. If FOREVER, wait forever rather than timing out;
4379 this is used (in synchronous mode) to wait for a target that is is
4380 executing user code to stop. If FOREVER == 0, this function is
4381 allowed to time out gracefully and return an indication of this to
4382 the caller. */
4383 static int
4384 getpkt_sane (char *buf,
4385 long sizeof_buf,
4386 int forever)
4387 {
4388 int c;
4389 int tries;
4390 int timeout;
4391 int val;
4392
4393 strcpy (buf, "timeout");
4394
4395 if (forever)
4396 {
4397 timeout = watchdog > 0 ? watchdog : -1;
4398 }
4399
4400 else
4401 timeout = remote_timeout;
4402
4403 #define MAX_TRIES 3
4404
4405 for (tries = 1; tries <= MAX_TRIES; tries++)
4406 {
4407 /* This can loop forever if the remote side sends us characters
4408 continuously, but if it pauses, we'll get a zero from readchar
4409 because of timeout. Then we'll count that as a retry. */
4410
4411 /* Note that we will only wait forever prior to the start of a packet.
4412 After that, we expect characters to arrive at a brisk pace. They
4413 should show up within remote_timeout intervals. */
4414
4415 do
4416 {
4417 c = readchar (timeout);
4418
4419 if (c == SERIAL_TIMEOUT)
4420 {
4421 if (forever) /* Watchdog went off? Kill the target. */
4422 {
4423 QUIT;
4424 target_mourn_inferior ();
4425 error ("Watchdog has expired. Target detached.\n");
4426 }
4427 if (remote_debug)
4428 fputs_filtered ("Timed out.\n", gdb_stdlog);
4429 goto retry;
4430 }
4431 }
4432 while (c != '$');
4433
4434 /* We've found the start of a packet, now collect the data. */
4435
4436 val = read_frame (buf, sizeof_buf);
4437
4438 if (val >= 0)
4439 {
4440 if (remote_debug)
4441 {
4442 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4443 fputstr_unfiltered (buf, 0, gdb_stdlog);
4444 fprintf_unfiltered (gdb_stdlog, "\n");
4445 }
4446 serial_write (remote_desc, "+", 1);
4447 return 0;
4448 }
4449
4450 /* Try the whole thing again. */
4451 retry:
4452 serial_write (remote_desc, "-", 1);
4453 }
4454
4455 /* We have tried hard enough, and just can't receive the packet. Give up. */
4456
4457 printf_unfiltered ("Ignoring packet error, continuing...\n");
4458 serial_write (remote_desc, "+", 1);
4459 return 1;
4460 }
4461 \f
4462 static void
4463 remote_kill (void)
4464 {
4465 /* For some mysterious reason, wait_for_inferior calls kill instead of
4466 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4467 if (kill_kludge)
4468 {
4469 kill_kludge = 0;
4470 target_mourn_inferior ();
4471 return;
4472 }
4473
4474 /* Use catch_errors so the user can quit from gdb even when we aren't on
4475 speaking terms with the remote system. */
4476 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4477
4478 /* Don't wait for it to die. I'm not really sure it matters whether
4479 we do or not. For the existing stubs, kill is a noop. */
4480 target_mourn_inferior ();
4481 }
4482
4483 /* Async version of remote_kill. */
4484 static void
4485 remote_async_kill (void)
4486 {
4487 /* Unregister the file descriptor from the event loop. */
4488 if (target_is_async_p ())
4489 serial_async (remote_desc, NULL, 0);
4490
4491 /* For some mysterious reason, wait_for_inferior calls kill instead of
4492 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4493 if (kill_kludge)
4494 {
4495 kill_kludge = 0;
4496 target_mourn_inferior ();
4497 return;
4498 }
4499
4500 /* Use catch_errors so the user can quit from gdb even when we aren't on
4501 speaking terms with the remote system. */
4502 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4503
4504 /* Don't wait for it to die. I'm not really sure it matters whether
4505 we do or not. For the existing stubs, kill is a noop. */
4506 target_mourn_inferior ();
4507 }
4508
4509 static void
4510 remote_mourn (void)
4511 {
4512 remote_mourn_1 (&remote_ops);
4513 }
4514
4515 static void
4516 remote_async_mourn (void)
4517 {
4518 remote_mourn_1 (&remote_async_ops);
4519 }
4520
4521 static void
4522 extended_remote_mourn (void)
4523 {
4524 /* We do _not_ want to mourn the target like this; this will
4525 remove the extended remote target from the target stack,
4526 and the next time the user says "run" it'll fail.
4527
4528 FIXME: What is the right thing to do here? */
4529 #if 0
4530 remote_mourn_1 (&extended_remote_ops);
4531 #endif
4532 }
4533
4534 /* Worker function for remote_mourn. */
4535 static void
4536 remote_mourn_1 (struct target_ops *target)
4537 {
4538 unpush_target (target);
4539 generic_mourn_inferior ();
4540 }
4541
4542 /* In the extended protocol we want to be able to do things like
4543 "run" and have them basically work as expected. So we need
4544 a special create_inferior function.
4545
4546 FIXME: One day add support for changing the exec file
4547 we're debugging, arguments and an environment. */
4548
4549 static void
4550 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4551 {
4552 /* Rip out the breakpoints; we'll reinsert them after restarting
4553 the remote server. */
4554 remove_breakpoints ();
4555
4556 /* Now restart the remote server. */
4557 extended_remote_restart ();
4558
4559 /* Now put the breakpoints back in. This way we're safe if the
4560 restart function works via a unix fork on the remote side. */
4561 insert_breakpoints ();
4562
4563 /* Clean up from the last time we were running. */
4564 clear_proceed_status ();
4565
4566 /* Let the remote process run. */
4567 proceed (-1, TARGET_SIGNAL_0, 0);
4568 }
4569
4570 /* Async version of extended_remote_create_inferior. */
4571 static void
4572 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4573 {
4574 /* Rip out the breakpoints; we'll reinsert them after restarting
4575 the remote server. */
4576 remove_breakpoints ();
4577
4578 /* If running asynchronously, register the target file descriptor
4579 with the event loop. */
4580 if (event_loop_p && target_can_async_p ())
4581 target_async (inferior_event_handler, 0);
4582
4583 /* Now restart the remote server. */
4584 extended_remote_restart ();
4585
4586 /* Now put the breakpoints back in. This way we're safe if the
4587 restart function works via a unix fork on the remote side. */
4588 insert_breakpoints ();
4589
4590 /* Clean up from the last time we were running. */
4591 clear_proceed_status ();
4592
4593 /* Let the remote process run. */
4594 proceed (-1, TARGET_SIGNAL_0, 0);
4595 }
4596 \f
4597
4598 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4599 than other targets; in those use REMOTE_BREAKPOINT instead of just
4600 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4601 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4602 the standard routines that are in mem-break.c. */
4603
4604 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4605 the choice of breakpoint instruction affects target program design and
4606 vice versa, and by making it user-tweakable, the special code here
4607 goes away and we need fewer special GDB configurations. */
4608
4609 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4610 #define REMOTE_BREAKPOINT
4611 #endif
4612
4613 #ifdef REMOTE_BREAKPOINT
4614
4615 /* If the target isn't bi-endian, just pretend it is. */
4616 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4617 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4618 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4619 #endif
4620
4621 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4622 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4623
4624 #endif /* REMOTE_BREAKPOINT */
4625
4626 /* Insert a breakpoint on targets that don't have any better breakpoint
4627 support. We read the contents of the target location and stash it,
4628 then overwrite it with a breakpoint instruction. ADDR is the target
4629 location in the target machine. CONTENTS_CACHE is a pointer to
4630 memory allocated for saving the target contents. It is guaranteed
4631 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4632 is accomplished via BREAKPOINT_MAX). */
4633
4634 static int
4635 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4636 {
4637 struct remote_state *rs = get_remote_state ();
4638 #ifdef REMOTE_BREAKPOINT
4639 int val;
4640 #endif
4641 int bp_size;
4642
4643 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4644 If it succeeds, then set the support to PACKET_ENABLE. If it
4645 fails, and the user has explicitly requested the Z support then
4646 report an error, otherwise, mark it disabled and go on. */
4647
4648 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4649 {
4650 char *buf = alloca (rs->remote_packet_size);
4651 char *p = buf;
4652
4653 addr = remote_address_masked (addr);
4654 *(p++) = 'Z';
4655 *(p++) = '0';
4656 *(p++) = ',';
4657 p += hexnumstr (p, (ULONGEST) addr);
4658 BREAKPOINT_FROM_PC (&addr, &bp_size);
4659 sprintf (p, ",%d", bp_size);
4660
4661 putpkt (buf);
4662 getpkt (buf, (rs->remote_packet_size), 0);
4663
4664 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4665 {
4666 case PACKET_ERROR:
4667 return -1;
4668 case PACKET_OK:
4669 return 0;
4670 case PACKET_UNKNOWN:
4671 break;
4672 }
4673 }
4674
4675 #ifdef REMOTE_BREAKPOINT
4676 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4677
4678 if (val == 0)
4679 {
4680 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4681 val = target_write_memory (addr, (char *) big_break_insn,
4682 sizeof big_break_insn);
4683 else
4684 val = target_write_memory (addr, (char *) little_break_insn,
4685 sizeof little_break_insn);
4686 }
4687
4688 return val;
4689 #else
4690 return memory_insert_breakpoint (addr, contents_cache);
4691 #endif /* REMOTE_BREAKPOINT */
4692 }
4693
4694 static int
4695 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4696 {
4697 struct remote_state *rs = get_remote_state ();
4698 int bp_size;
4699
4700 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4701 {
4702 char *buf = alloca (rs->remote_packet_size);
4703 char *p = buf;
4704
4705 *(p++) = 'z';
4706 *(p++) = '0';
4707 *(p++) = ',';
4708
4709 addr = remote_address_masked (addr);
4710 p += hexnumstr (p, (ULONGEST) addr);
4711 BREAKPOINT_FROM_PC (&addr, &bp_size);
4712 sprintf (p, ",%d", bp_size);
4713
4714 putpkt (buf);
4715 getpkt (buf, (rs->remote_packet_size), 0);
4716
4717 return (buf[0] == 'E');
4718 }
4719
4720 #ifdef REMOTE_BREAKPOINT
4721 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4722 #else
4723 return memory_remove_breakpoint (addr, contents_cache);
4724 #endif /* REMOTE_BREAKPOINT */
4725 }
4726
4727 static int
4728 watchpoint_to_Z_packet (int type)
4729 {
4730 switch (type)
4731 {
4732 case hw_write:
4733 return 2;
4734 break;
4735 case hw_read:
4736 return 3;
4737 break;
4738 case hw_access:
4739 return 4;
4740 break;
4741 default:
4742 internal_error (__FILE__, __LINE__,
4743 "hw_bp_to_z: bad watchpoint type %d", type);
4744 }
4745 }
4746
4747 /* FIXME: This function should be static and a member of the remote
4748 target vector. */
4749
4750 int
4751 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4752 {
4753 struct remote_state *rs = get_remote_state ();
4754 char *buf = alloca (rs->remote_packet_size);
4755 char *p;
4756 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4757
4758 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4759 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4760 remote_protocol_Z[packet].name,
4761 remote_protocol_Z[packet].title);
4762
4763 sprintf (buf, "Z%x,", packet);
4764 p = strchr (buf, '\0');
4765 addr = remote_address_masked (addr);
4766 p += hexnumstr (p, (ULONGEST) addr);
4767 sprintf (p, ",%x", len);
4768
4769 putpkt (buf);
4770 getpkt (buf, (rs->remote_packet_size), 0);
4771
4772 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4773 {
4774 case PACKET_ERROR:
4775 case PACKET_UNKNOWN:
4776 return -1;
4777 case PACKET_OK:
4778 return 0;
4779 }
4780 internal_error (__FILE__, __LINE__,
4781 "remote_insert_watchpoint: reached end of function");
4782 }
4783
4784 /* FIXME: This function should be static and a member of the remote
4785 target vector. */
4786
4787 int
4788 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4789 {
4790 struct remote_state *rs = get_remote_state ();
4791 char *buf = alloca (rs->remote_packet_size);
4792 char *p;
4793 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4794
4795 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4796 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4797 remote_protocol_Z[packet].name,
4798 remote_protocol_Z[packet].title);
4799
4800 sprintf (buf, "z%x,", packet);
4801 p = strchr (buf, '\0');
4802 addr = remote_address_masked (addr);
4803 p += hexnumstr (p, (ULONGEST) addr);
4804 sprintf (p, ",%x", len);
4805 putpkt (buf);
4806 getpkt (buf, (rs->remote_packet_size), 0);
4807
4808 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4809 {
4810 case PACKET_ERROR:
4811 case PACKET_UNKNOWN:
4812 return -1;
4813 case PACKET_OK:
4814 return 0;
4815 }
4816 internal_error (__FILE__, __LINE__,
4817 "remote_remove_watchpoint: reached end of function");
4818 }
4819
4820 /* FIXME: This function should be static and a member of the remote
4821 target vector. */
4822
4823 int
4824 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4825 {
4826 struct remote_state *rs = get_remote_state ();
4827 char *buf = alloca (rs->remote_packet_size);
4828 char *p = buf;
4829
4830 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4831 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4832 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4833 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4834
4835 *(p++) = 'Z';
4836 *(p++) = '1';
4837 *(p++) = ',';
4838
4839 addr = remote_address_masked (addr);
4840 p += hexnumstr (p, (ULONGEST) addr);
4841 sprintf (p, ",%x", len);
4842
4843 putpkt (buf);
4844 getpkt (buf, (rs->remote_packet_size), 0);
4845
4846 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4847 {
4848 case PACKET_ERROR:
4849 case PACKET_UNKNOWN:
4850 return -1;
4851 case PACKET_OK:
4852 return 0;
4853 }
4854 internal_error (__FILE__, __LINE__,
4855 "remote_remove_watchpoint: reached end of function");
4856 }
4857
4858 /* FIXME: This function should be static and a member of the remote
4859 target vector. */
4860
4861 int
4862 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4863 {
4864 struct remote_state *rs = get_remote_state ();
4865 char *buf = alloca (rs->remote_packet_size);
4866 char *p = buf;
4867
4868 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4869 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4870 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4871 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4872
4873 *(p++) = 'z';
4874 *(p++) = '1';
4875 *(p++) = ',';
4876
4877 addr = remote_address_masked (addr);
4878 p += hexnumstr (p, (ULONGEST) addr);
4879 sprintf (p, ",%x", len);
4880
4881 putpkt(buf);
4882 getpkt (buf, (rs->remote_packet_size), 0);
4883
4884 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4885 {
4886 case PACKET_ERROR:
4887 case PACKET_UNKNOWN:
4888 return -1;
4889 case PACKET_OK:
4890 return 0;
4891 }
4892 internal_error (__FILE__, __LINE__,
4893 "remote_remove_watchpoint: reached end of function");
4894 }
4895
4896 /* Some targets are only capable of doing downloads, and afterwards
4897 they switch to the remote serial protocol. This function provides
4898 a clean way to get from the download target to the remote target.
4899 It's basically just a wrapper so that we don't have to expose any
4900 of the internal workings of remote.c.
4901
4902 Prior to calling this routine, you should shutdown the current
4903 target code, else you will get the "A program is being debugged
4904 already..." message. Usually a call to pop_target() suffices. */
4905
4906 void
4907 push_remote_target (char *name, int from_tty)
4908 {
4909 printf_filtered ("Switching to remote protocol\n");
4910 remote_open (name, from_tty);
4911 }
4912
4913 /* Other targets want to use the entire remote serial module but with
4914 certain remote_ops overridden. */
4915
4916 void
4917 open_remote_target (char *name, int from_tty, struct target_ops *target,
4918 int extended_p)
4919 {
4920 printf_filtered ("Selecting the %sremote protocol\n",
4921 (extended_p ? "extended-" : ""));
4922 remote_open_1 (name, from_tty, target, extended_p);
4923 }
4924
4925 /* Table used by the crc32 function to calcuate the checksum. */
4926
4927 static unsigned long crc32_table[256] =
4928 {0, 0};
4929
4930 static unsigned long
4931 crc32 (unsigned char *buf, int len, unsigned int crc)
4932 {
4933 if (!crc32_table[1])
4934 {
4935 /* Initialize the CRC table and the decoding table. */
4936 int i, j;
4937 unsigned int c;
4938
4939 for (i = 0; i < 256; i++)
4940 {
4941 for (c = i << 24, j = 8; j > 0; --j)
4942 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4943 crc32_table[i] = c;
4944 }
4945 }
4946
4947 while (len--)
4948 {
4949 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4950 buf++;
4951 }
4952 return crc;
4953 }
4954
4955 /* compare-sections command
4956
4957 With no arguments, compares each loadable section in the exec bfd
4958 with the same memory range on the target, and reports mismatches.
4959 Useful for verifying the image on the target against the exec file.
4960 Depends on the target understanding the new "qCRC:" request. */
4961
4962 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4963 target method (target verify memory) and generic version of the
4964 actual command. This will allow other high-level code (especially
4965 generic_load()) to make use of this target functionality. */
4966
4967 static void
4968 compare_sections_command (char *args, int from_tty)
4969 {
4970 struct remote_state *rs = get_remote_state ();
4971 asection *s;
4972 unsigned long host_crc, target_crc;
4973 extern bfd *exec_bfd;
4974 struct cleanup *old_chain;
4975 char *tmp;
4976 char *sectdata;
4977 const char *sectname;
4978 char *buf = alloca (rs->remote_packet_size);
4979 bfd_size_type size;
4980 bfd_vma lma;
4981 int matched = 0;
4982 int mismatched = 0;
4983
4984 if (!exec_bfd)
4985 error ("command cannot be used without an exec file");
4986 if (!current_target.to_shortname ||
4987 strcmp (current_target.to_shortname, "remote") != 0)
4988 error ("command can only be used with remote target");
4989
4990 for (s = exec_bfd->sections; s; s = s->next)
4991 {
4992 if (!(s->flags & SEC_LOAD))
4993 continue; /* skip non-loadable section */
4994
4995 size = bfd_get_section_size_before_reloc (s);
4996 if (size == 0)
4997 continue; /* skip zero-length section */
4998
4999 sectname = bfd_get_section_name (exec_bfd, s);
5000 if (args && strcmp (args, sectname) != 0)
5001 continue; /* not the section selected by user */
5002
5003 matched = 1; /* do this section */
5004 lma = s->lma;
5005 /* FIXME: assumes lma can fit into long */
5006 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5007 putpkt (buf);
5008
5009 /* be clever; compute the host_crc before waiting for target reply */
5010 sectdata = xmalloc (size);
5011 old_chain = make_cleanup (xfree, sectdata);
5012 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5013 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5014
5015 getpkt (buf, (rs->remote_packet_size), 0);
5016 if (buf[0] == 'E')
5017 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
5018 sectname, lma, lma + size);
5019 if (buf[0] != 'C')
5020 error ("remote target does not support this operation");
5021
5022 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5023 target_crc = target_crc * 16 + fromhex (*tmp);
5024
5025 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5026 sectname, paddr (lma), paddr (lma + size));
5027 if (host_crc == target_crc)
5028 printf_filtered ("matched.\n");
5029 else
5030 {
5031 printf_filtered ("MIS-MATCHED!\n");
5032 mismatched++;
5033 }
5034
5035 do_cleanups (old_chain);
5036 }
5037 if (mismatched > 0)
5038 warning ("One or more sections of the remote executable does not match\n\
5039 the loaded file\n");
5040 if (args && !matched)
5041 printf_filtered ("No loaded section named '%s'.\n", args);
5042 }
5043
5044 static int
5045 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5046 {
5047 struct remote_state *rs = get_remote_state ();
5048 int i;
5049 char *buf2 = alloca (rs->remote_packet_size);
5050 char *p2 = &buf2[0];
5051
5052 if (!bufsiz)
5053 error ("null pointer to remote bufer size specified");
5054
5055 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5056 the caller know and return what the minimum size is */
5057 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5058 if (*bufsiz < (rs->remote_packet_size))
5059 {
5060 *bufsiz = (rs->remote_packet_size);
5061 return -1;
5062 }
5063
5064 /* except for querying the minimum buffer size, target must be open */
5065 if (!remote_desc)
5066 error ("remote query is only available after target open");
5067
5068 /* we only take uppercase letters as query types, at least for now */
5069 if ((query_type < 'A') || (query_type > 'Z'))
5070 error ("invalid remote query type");
5071
5072 if (!buf)
5073 error ("null remote query specified");
5074
5075 if (!outbuf)
5076 error ("remote query requires a buffer to receive data");
5077
5078 outbuf[0] = '\0';
5079
5080 *p2++ = 'q';
5081 *p2++ = query_type;
5082
5083 /* we used one buffer char for the remote protocol q command and another
5084 for the query type. As the remote protocol encapsulation uses 4 chars
5085 plus one extra in case we are debugging (remote_debug),
5086 we have PBUFZIZ - 7 left to pack the query string */
5087 i = 0;
5088 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5089 {
5090 /* bad caller may have sent forbidden characters */
5091 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5092 error ("illegal characters in query string");
5093
5094 *p2++ = buf[i];
5095 i++;
5096 }
5097 *p2 = buf[i];
5098
5099 if (buf[i])
5100 error ("query larger than available buffer");
5101
5102 i = putpkt (buf2);
5103 if (i < 0)
5104 return i;
5105
5106 getpkt (outbuf, *bufsiz, 0);
5107
5108 return 0;
5109 }
5110
5111 static void
5112 remote_rcmd (char *command,
5113 struct ui_file *outbuf)
5114 {
5115 struct remote_state *rs = get_remote_state ();
5116 int i;
5117 char *buf = alloca (rs->remote_packet_size);
5118 char *p = buf;
5119
5120 if (!remote_desc)
5121 error ("remote rcmd is only available after target open");
5122
5123 /* Send a NULL command across as an empty command */
5124 if (command == NULL)
5125 command = "";
5126
5127 /* The query prefix */
5128 strcpy (buf, "qRcmd,");
5129 p = strchr (buf, '\0');
5130
5131 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5132 error ("\"monitor\" command ``%s'' is too long\n", command);
5133
5134 /* Encode the actual command */
5135 bin2hex (command, p, 0);
5136
5137 if (putpkt (buf) < 0)
5138 error ("Communication problem with target\n");
5139
5140 /* get/display the response */
5141 while (1)
5142 {
5143 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5144 buf[0] = '\0';
5145 getpkt (buf, (rs->remote_packet_size), 0);
5146 if (buf[0] == '\0')
5147 error ("Target does not support this command\n");
5148 if (buf[0] == 'O' && buf[1] != 'K')
5149 {
5150 remote_console_output (buf + 1); /* 'O' message from stub */
5151 continue;
5152 }
5153 if (strcmp (buf, "OK") == 0)
5154 break;
5155 if (strlen (buf) == 3 && buf[0] == 'E'
5156 && isdigit (buf[1]) && isdigit (buf[2]))
5157 {
5158 error ("Protocol error with Rcmd");
5159 }
5160 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5161 {
5162 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5163 fputc_unfiltered (c, outbuf);
5164 }
5165 break;
5166 }
5167 }
5168
5169 static void
5170 packet_command (char *args, int from_tty)
5171 {
5172 struct remote_state *rs = get_remote_state ();
5173 char *buf = alloca (rs->remote_packet_size);
5174
5175 if (!remote_desc)
5176 error ("command can only be used with remote target");
5177
5178 if (!args)
5179 error ("remote-packet command requires packet text as argument");
5180
5181 puts_filtered ("sending: ");
5182 print_packet (args);
5183 puts_filtered ("\n");
5184 putpkt (args);
5185
5186 getpkt (buf, (rs->remote_packet_size), 0);
5187 puts_filtered ("received: ");
5188 print_packet (buf);
5189 puts_filtered ("\n");
5190 }
5191
5192 #if 0
5193 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5194
5195 static void display_thread_info (struct gdb_ext_thread_info *info);
5196
5197 static void threadset_test_cmd (char *cmd, int tty);
5198
5199 static void threadalive_test (char *cmd, int tty);
5200
5201 static void threadlist_test_cmd (char *cmd, int tty);
5202
5203 int get_and_display_threadinfo (threadref * ref);
5204
5205 static void threadinfo_test_cmd (char *cmd, int tty);
5206
5207 static int thread_display_step (threadref * ref, void *context);
5208
5209 static void threadlist_update_test_cmd (char *cmd, int tty);
5210
5211 static void init_remote_threadtests (void);
5212
5213 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5214
5215 static void
5216 threadset_test_cmd (char *cmd, int tty)
5217 {
5218 int sample_thread = SAMPLE_THREAD;
5219
5220 printf_filtered ("Remote threadset test\n");
5221 set_thread (sample_thread, 1);
5222 }
5223
5224
5225 static void
5226 threadalive_test (char *cmd, int tty)
5227 {
5228 int sample_thread = SAMPLE_THREAD;
5229
5230 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5231 printf_filtered ("PASS: Thread alive test\n");
5232 else
5233 printf_filtered ("FAIL: Thread alive test\n");
5234 }
5235
5236 void output_threadid (char *title, threadref * ref);
5237
5238 void
5239 output_threadid (char *title, threadref *ref)
5240 {
5241 char hexid[20];
5242
5243 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5244 hexid[16] = 0;
5245 printf_filtered ("%s %s\n", title, (&hexid[0]));
5246 }
5247
5248 static void
5249 threadlist_test_cmd (char *cmd, int tty)
5250 {
5251 int startflag = 1;
5252 threadref nextthread;
5253 int done, result_count;
5254 threadref threadlist[3];
5255
5256 printf_filtered ("Remote Threadlist test\n");
5257 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5258 &result_count, &threadlist[0]))
5259 printf_filtered ("FAIL: threadlist test\n");
5260 else
5261 {
5262 threadref *scan = threadlist;
5263 threadref *limit = scan + result_count;
5264
5265 while (scan < limit)
5266 output_threadid (" thread ", scan++);
5267 }
5268 }
5269
5270 void
5271 display_thread_info (struct gdb_ext_thread_info *info)
5272 {
5273 output_threadid ("Threadid: ", &info->threadid);
5274 printf_filtered ("Name: %s\n ", info->shortname);
5275 printf_filtered ("State: %s\n", info->display);
5276 printf_filtered ("other: %s\n\n", info->more_display);
5277 }
5278
5279 int
5280 get_and_display_threadinfo (threadref *ref)
5281 {
5282 int result;
5283 int set;
5284 struct gdb_ext_thread_info threadinfo;
5285
5286 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5287 | TAG_MOREDISPLAY | TAG_DISPLAY;
5288 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5289 display_thread_info (&threadinfo);
5290 return result;
5291 }
5292
5293 static void
5294 threadinfo_test_cmd (char *cmd, int tty)
5295 {
5296 int athread = SAMPLE_THREAD;
5297 threadref thread;
5298 int set;
5299
5300 int_to_threadref (&thread, athread);
5301 printf_filtered ("Remote Threadinfo test\n");
5302 if (!get_and_display_threadinfo (&thread))
5303 printf_filtered ("FAIL cannot get thread info\n");
5304 }
5305
5306 static int
5307 thread_display_step (threadref *ref, void *context)
5308 {
5309 /* output_threadid(" threadstep ",ref); *//* simple test */
5310 return get_and_display_threadinfo (ref);
5311 }
5312
5313 static void
5314 threadlist_update_test_cmd (char *cmd, int tty)
5315 {
5316 printf_filtered ("Remote Threadlist update test\n");
5317 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5318 }
5319
5320 static void
5321 init_remote_threadtests (void)
5322 {
5323 add_com ("tlist", class_obscure, threadlist_test_cmd,
5324 "Fetch and print the remote list of thread identifiers, one pkt only");
5325 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5326 "Fetch and display info about one thread");
5327 add_com ("tset", class_obscure, threadset_test_cmd,
5328 "Test setting to a different thread");
5329 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5330 "Iterate through updating all remote thread info");
5331 add_com ("talive", class_obscure, threadalive_test,
5332 " Remote thread alive test ");
5333 }
5334
5335 #endif /* 0 */
5336
5337 /* Convert a thread ID to a string. Returns the string in a static
5338 buffer. */
5339
5340 static char *
5341 remote_pid_to_str (ptid_t ptid)
5342 {
5343 static char buf[30];
5344
5345 sprintf (buf, "Thread %d", PIDGET (ptid));
5346 return buf;
5347 }
5348
5349 static void
5350 init_remote_ops (void)
5351 {
5352 remote_ops.to_shortname = "remote";
5353 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5354 remote_ops.to_doc =
5355 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5356 Specify the serial device it is connected to\n\
5357 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5358 remote_ops.to_open = remote_open;
5359 remote_ops.to_close = remote_close;
5360 remote_ops.to_detach = remote_detach;
5361 remote_ops.to_resume = remote_resume;
5362 remote_ops.to_wait = remote_wait;
5363 remote_ops.to_fetch_registers = remote_fetch_registers;
5364 remote_ops.to_store_registers = remote_store_registers;
5365 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5366 remote_ops.to_xfer_memory = remote_xfer_memory;
5367 remote_ops.to_files_info = remote_files_info;
5368 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5369 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5370 remote_ops.to_kill = remote_kill;
5371 remote_ops.to_load = generic_load;
5372 remote_ops.to_mourn_inferior = remote_mourn;
5373 remote_ops.to_thread_alive = remote_thread_alive;
5374 remote_ops.to_find_new_threads = remote_threads_info;
5375 remote_ops.to_pid_to_str = remote_pid_to_str;
5376 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5377 remote_ops.to_stop = remote_stop;
5378 remote_ops.to_query = remote_query;
5379 remote_ops.to_rcmd = remote_rcmd;
5380 remote_ops.to_stratum = process_stratum;
5381 remote_ops.to_has_all_memory = 1;
5382 remote_ops.to_has_memory = 1;
5383 remote_ops.to_has_stack = 1;
5384 remote_ops.to_has_registers = 1;
5385 remote_ops.to_has_execution = 1;
5386 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5387 remote_ops.to_magic = OPS_MAGIC;
5388 }
5389
5390 /* Set up the extended remote vector by making a copy of the standard
5391 remote vector and adding to it. */
5392
5393 static void
5394 init_extended_remote_ops (void)
5395 {
5396 extended_remote_ops = remote_ops;
5397
5398 extended_remote_ops.to_shortname = "extended-remote";
5399 extended_remote_ops.to_longname =
5400 "Extended remote serial target in gdb-specific protocol";
5401 extended_remote_ops.to_doc =
5402 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5403 Specify the serial device it is connected to (e.g. /dev/ttya).",
5404 extended_remote_ops.to_open = extended_remote_open;
5405 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5406 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5407 }
5408
5409 /*
5410 * Command: info remote-process
5411 *
5412 * This implements Cisco's version of the "info proc" command.
5413 *
5414 * This query allows the target stub to return an arbitrary string
5415 * (or strings) giving arbitrary information about the target process.
5416 * This is optional; the target stub isn't required to implement it.
5417 *
5418 * Syntax: qfProcessInfo request first string
5419 * qsProcessInfo request subsequent string
5420 * reply: 'O'<hex-encoded-string>
5421 * 'l' last reply (empty)
5422 */
5423
5424 static void
5425 remote_info_process (char *args, int from_tty)
5426 {
5427 struct remote_state *rs = get_remote_state ();
5428 char *buf = alloca (rs->remote_packet_size);
5429
5430 if (remote_desc == 0)
5431 error ("Command can only be used when connected to the remote target.");
5432
5433 putpkt ("qfProcessInfo");
5434 getpkt (buf, (rs->remote_packet_size), 0);
5435 if (buf[0] == 0)
5436 return; /* Silently: target does not support this feature. */
5437
5438 if (buf[0] == 'E')
5439 error ("info proc: target error.");
5440
5441 while (buf[0] == 'O') /* Capitol-O packet */
5442 {
5443 remote_console_output (&buf[1]);
5444 putpkt ("qsProcessInfo");
5445 getpkt (buf, (rs->remote_packet_size), 0);
5446 }
5447 }
5448
5449 /*
5450 * Target Cisco
5451 */
5452
5453 static void
5454 remote_cisco_open (char *name, int from_tty)
5455 {
5456 if (name == 0)
5457 error ("To open a remote debug connection, you need to specify what \n"
5458 "device is attached to the remote system (e.g. host:port).");
5459
5460 /* See FIXME above */
5461 wait_forever_enabled_p = 1;
5462
5463 target_preopen (from_tty);
5464
5465 unpush_target (&remote_cisco_ops);
5466
5467 remote_desc = serial_open (name);
5468 if (!remote_desc)
5469 perror_with_name (name);
5470
5471 /*
5472 * If a baud rate was specified on the gdb command line it will
5473 * be greater than the initial value of -1. If it is, use it otherwise
5474 * default to 9600
5475 */
5476
5477 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5478 if (serial_setbaudrate (remote_desc, baud_rate))
5479 {
5480 serial_close (remote_desc);
5481 perror_with_name (name);
5482 }
5483
5484 serial_raw (remote_desc);
5485
5486 /* If there is something sitting in the buffer we might take it as a
5487 response to a command, which would be bad. */
5488 serial_flush_input (remote_desc);
5489
5490 if (from_tty)
5491 {
5492 puts_filtered ("Remote debugging using ");
5493 puts_filtered (name);
5494 puts_filtered ("\n");
5495 }
5496
5497 remote_cisco_mode = 1;
5498
5499 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5500
5501 init_all_packet_configs ();
5502
5503 general_thread = -2;
5504 continue_thread = -2;
5505
5506 /* Probe for ability to use "ThreadInfo" query, as required. */
5507 use_threadinfo_query = 1;
5508 use_threadextra_query = 1;
5509
5510 /* Without this, some commands which require an active target (such
5511 as kill) won't work. This variable serves (at least) double duty
5512 as both the pid of the target process (if it has such), and as a
5513 flag indicating that a target is active. These functions should
5514 be split out into seperate variables, especially since GDB will
5515 someday have a notion of debugging several processes. */
5516 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5517
5518 /* Start the remote connection; if error (0), discard this target. */
5519
5520 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5521 "Couldn't establish connection to remote target\n",
5522 RETURN_MASK_ALL))
5523 {
5524 pop_target ();
5525 return;
5526 }
5527 }
5528
5529 static void
5530 remote_cisco_close (int quitting)
5531 {
5532 remote_cisco_mode = 0;
5533 remote_close (quitting);
5534 }
5535
5536 static void
5537 remote_cisco_mourn (void)
5538 {
5539 remote_mourn_1 (&remote_cisco_ops);
5540 }
5541
5542 enum
5543 {
5544 READ_MORE,
5545 FATAL_ERROR,
5546 ENTER_DEBUG,
5547 DISCONNECT_TELNET
5548 }
5549 minitelnet_return;
5550
5551 /* Shared between readsocket() and readtty(). The size is arbitrary,
5552 however all targets are known to support a 400 character packet. */
5553 static char tty_input[400];
5554
5555 static int escape_count;
5556 static int echo_check;
5557 extern int quit_flag;
5558
5559 static int
5560 readsocket (void)
5561 {
5562 int data;
5563
5564 /* Loop until the socket doesn't have any more data */
5565
5566 while ((data = readchar (0)) >= 0)
5567 {
5568 /* Check for the escape sequence */
5569 if (data == '|')
5570 {
5571 /* If this is the fourth escape, get out */
5572 if (++escape_count == 4)
5573 {
5574 return ENTER_DEBUG;
5575 }
5576 else
5577 { /* This is a '|', but not the fourth in a row.
5578 Continue without echoing it. If it isn't actually
5579 one of four in a row, it'll be echoed later. */
5580 continue;
5581 }
5582 }
5583 else
5584 /* Not a '|' */
5585 {
5586 /* Ensure any pending '|'s are flushed. */
5587
5588 for (; escape_count > 0; escape_count--)
5589 putchar ('|');
5590 }
5591
5592 if (data == '\r') /* If this is a return character, */
5593 continue; /* - just supress it. */
5594
5595 if (echo_check != -1) /* Check for echo of user input. */
5596 {
5597 if (tty_input[echo_check] == data)
5598 {
5599 gdb_assert (echo_check <= sizeof (tty_input));
5600 echo_check++; /* Character matched user input: */
5601 continue; /* Continue without echoing it. */
5602 }
5603 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5604 { /* End of the line (and of echo checking). */
5605 echo_check = -1; /* No more echo supression */
5606 continue; /* Continue without echoing. */
5607 }
5608 else
5609 { /* Failed check for echo of user input.
5610 We now have some suppressed output to flush! */
5611 int j;
5612
5613 for (j = 0; j < echo_check; j++)
5614 putchar (tty_input[j]);
5615 echo_check = -1;
5616 }
5617 }
5618 putchar (data); /* Default case: output the char. */
5619 }
5620
5621 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5622 return READ_MORE; /* Try to read some more */
5623 else
5624 return FATAL_ERROR; /* Trouble, bail out */
5625 }
5626
5627 static int
5628 readtty (void)
5629 {
5630 int tty_bytecount;
5631
5632 /* First, read a buffer full from the terminal */
5633 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5634 if (tty_bytecount == -1)
5635 {
5636 perror ("readtty: read failed");
5637 return FATAL_ERROR;
5638 }
5639
5640 /* Remove a quoted newline. */
5641 if (tty_input[tty_bytecount - 1] == '\n' &&
5642 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5643 {
5644 tty_input[--tty_bytecount] = 0; /* remove newline */
5645 tty_input[--tty_bytecount] = 0; /* remove backslash */
5646 }
5647
5648 /* Turn trailing newlines into returns */
5649 if (tty_input[tty_bytecount - 1] == '\n')
5650 tty_input[tty_bytecount - 1] = '\r';
5651
5652 /* If the line consists of a ~, enter debugging mode. */
5653 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5654 return ENTER_DEBUG;
5655
5656 /* Make this a zero terminated string and write it out */
5657 tty_input[tty_bytecount] = 0;
5658 if (serial_write (remote_desc, tty_input, tty_bytecount))
5659 {
5660 perror_with_name ("readtty: write failed");
5661 return FATAL_ERROR;
5662 }
5663
5664 return READ_MORE;
5665 }
5666
5667 static int
5668 minitelnet (void)
5669 {
5670 fd_set input; /* file descriptors for select */
5671 int tablesize; /* max number of FDs for select */
5672 int status;
5673 int quit_count = 0;
5674
5675 extern int escape_count; /* global shared by readsocket */
5676 extern int echo_check; /* ditto */
5677
5678 escape_count = 0;
5679 echo_check = -1;
5680
5681 tablesize = 8 * sizeof (input);
5682
5683 for (;;)
5684 {
5685 /* Check for anything from our socket - doesn't block. Note that
5686 this must be done *before* the select as there may be
5687 buffered I/O waiting to be processed. */
5688
5689 if ((status = readsocket ()) == FATAL_ERROR)
5690 {
5691 error ("Debugging terminated by communications error");
5692 }
5693 else if (status != READ_MORE)
5694 {
5695 return (status);
5696 }
5697
5698 fflush (stdout); /* Flush output before blocking */
5699
5700 /* Now block on more socket input or TTY input */
5701
5702 FD_ZERO (&input);
5703 FD_SET (fileno (stdin), &input);
5704 FD_SET (deprecated_serial_fd (remote_desc), &input);
5705
5706 status = select (tablesize, &input, 0, 0, 0);
5707 if ((status == -1) && (errno != EINTR))
5708 {
5709 error ("Communications error on select %d", errno);
5710 }
5711
5712 /* Handle Control-C typed */
5713
5714 if (quit_flag)
5715 {
5716 if ((++quit_count) == 2)
5717 {
5718 if (query ("Interrupt GDB? "))
5719 {
5720 printf_filtered ("Interrupted by user.\n");
5721 return_to_top_level (RETURN_QUIT);
5722 }
5723 quit_count = 0;
5724 }
5725 quit_flag = 0;
5726
5727 if (remote_break)
5728 serial_send_break (remote_desc);
5729 else
5730 serial_write (remote_desc, "\003", 1);
5731
5732 continue;
5733 }
5734
5735 /* Handle console input */
5736
5737 if (FD_ISSET (fileno (stdin), &input))
5738 {
5739 quit_count = 0;
5740 echo_check = 0;
5741 status = readtty ();
5742 if (status == READ_MORE)
5743 continue;
5744
5745 return status; /* telnet session ended */
5746 }
5747 }
5748 }
5749
5750 static ptid_t
5751 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5752 {
5753 if (minitelnet () != ENTER_DEBUG)
5754 {
5755 error ("Debugging session terminated by protocol error");
5756 }
5757 putpkt ("?");
5758 return remote_wait (ptid, status);
5759 }
5760
5761 static void
5762 init_remote_cisco_ops (void)
5763 {
5764 remote_cisco_ops.to_shortname = "cisco";
5765 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5766 remote_cisco_ops.to_doc =
5767 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5768 Specify the serial device it is connected to (e.g. host:2020).";
5769 remote_cisco_ops.to_open = remote_cisco_open;
5770 remote_cisco_ops.to_close = remote_cisco_close;
5771 remote_cisco_ops.to_detach = remote_detach;
5772 remote_cisco_ops.to_resume = remote_resume;
5773 remote_cisco_ops.to_wait = remote_cisco_wait;
5774 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5775 remote_cisco_ops.to_store_registers = remote_store_registers;
5776 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5777 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5778 remote_cisco_ops.to_files_info = remote_files_info;
5779 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5780 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5781 remote_cisco_ops.to_kill = remote_kill;
5782 remote_cisco_ops.to_load = generic_load;
5783 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5784 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5785 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5786 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5787 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5788 remote_cisco_ops.to_stratum = process_stratum;
5789 remote_cisco_ops.to_has_all_memory = 1;
5790 remote_cisco_ops.to_has_memory = 1;
5791 remote_cisco_ops.to_has_stack = 1;
5792 remote_cisco_ops.to_has_registers = 1;
5793 remote_cisco_ops.to_has_execution = 1;
5794 remote_cisco_ops.to_magic = OPS_MAGIC;
5795 }
5796
5797 static int
5798 remote_can_async_p (void)
5799 {
5800 /* We're async whenever the serial device is. */
5801 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5802 }
5803
5804 static int
5805 remote_is_async_p (void)
5806 {
5807 /* We're async whenever the serial device is. */
5808 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5809 }
5810
5811 /* Pass the SERIAL event on and up to the client. One day this code
5812 will be able to delay notifying the client of an event until the
5813 point where an entire packet has been received. */
5814
5815 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5816 static void *async_client_context;
5817 static serial_event_ftype remote_async_serial_handler;
5818
5819 static void
5820 remote_async_serial_handler (struct serial *scb, void *context)
5821 {
5822 /* Don't propogate error information up to the client. Instead let
5823 the client find out about the error by querying the target. */
5824 async_client_callback (INF_REG_EVENT, async_client_context);
5825 }
5826
5827 static void
5828 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5829 {
5830 if (current_target.to_async_mask_value == 0)
5831 internal_error (__FILE__, __LINE__,
5832 "Calling remote_async when async is masked");
5833
5834 if (callback != NULL)
5835 {
5836 serial_async (remote_desc, remote_async_serial_handler, NULL);
5837 async_client_callback = callback;
5838 async_client_context = context;
5839 }
5840 else
5841 serial_async (remote_desc, NULL, NULL);
5842 }
5843
5844 /* Target async and target extended-async.
5845
5846 This are temporary targets, until it is all tested. Eventually
5847 async support will be incorporated int the usual 'remote'
5848 target. */
5849
5850 static void
5851 init_remote_async_ops (void)
5852 {
5853 remote_async_ops.to_shortname = "async";
5854 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5855 remote_async_ops.to_doc =
5856 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5857 Specify the serial device it is connected to (e.g. /dev/ttya).";
5858 remote_async_ops.to_open = remote_async_open;
5859 remote_async_ops.to_close = remote_close;
5860 remote_async_ops.to_detach = remote_async_detach;
5861 remote_async_ops.to_resume = remote_async_resume;
5862 remote_async_ops.to_wait = remote_async_wait;
5863 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5864 remote_async_ops.to_store_registers = remote_store_registers;
5865 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5866 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5867 remote_async_ops.to_files_info = remote_files_info;
5868 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5869 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5870 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5871 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5872 remote_async_ops.to_kill = remote_async_kill;
5873 remote_async_ops.to_load = generic_load;
5874 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5875 remote_async_ops.to_thread_alive = remote_thread_alive;
5876 remote_async_ops.to_find_new_threads = remote_threads_info;
5877 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5878 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5879 remote_async_ops.to_stop = remote_stop;
5880 remote_async_ops.to_query = remote_query;
5881 remote_async_ops.to_rcmd = remote_rcmd;
5882 remote_async_ops.to_stratum = process_stratum;
5883 remote_async_ops.to_has_all_memory = 1;
5884 remote_async_ops.to_has_memory = 1;
5885 remote_async_ops.to_has_stack = 1;
5886 remote_async_ops.to_has_registers = 1;
5887 remote_async_ops.to_has_execution = 1;
5888 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5889 remote_async_ops.to_can_async_p = remote_can_async_p;
5890 remote_async_ops.to_is_async_p = remote_is_async_p;
5891 remote_async_ops.to_async = remote_async;
5892 remote_async_ops.to_async_mask_value = 1;
5893 remote_async_ops.to_magic = OPS_MAGIC;
5894 }
5895
5896 /* Set up the async extended remote vector by making a copy of the standard
5897 remote vector and adding to it. */
5898
5899 static void
5900 init_extended_async_remote_ops (void)
5901 {
5902 extended_async_remote_ops = remote_async_ops;
5903
5904 extended_async_remote_ops.to_shortname = "extended-async";
5905 extended_async_remote_ops.to_longname =
5906 "Extended remote serial target in async gdb-specific protocol";
5907 extended_async_remote_ops.to_doc =
5908 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5909 Specify the serial device it is connected to (e.g. /dev/ttya).",
5910 extended_async_remote_ops.to_open = extended_remote_async_open;
5911 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5912 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5913 }
5914
5915 static void
5916 set_remote_cmd (char *args, int from_tty)
5917 {
5918 }
5919
5920 static void
5921 show_remote_cmd (char *args, int from_tty)
5922 {
5923
5924 show_remote_protocol_Z_packet_cmd (args, from_tty);
5925 show_remote_protocol_e_packet_cmd (args, from_tty);
5926 show_remote_protocol_E_packet_cmd (args, from_tty);
5927 show_remote_protocol_P_packet_cmd (args, from_tty);
5928 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5929 show_remote_protocol_binary_download_cmd (args, from_tty);
5930 }
5931
5932 static void
5933 build_remote_gdbarch_data (void)
5934 {
5935 remote_address_size = TARGET_ADDR_BIT;
5936 }
5937
5938 /* Saved pointer to previous owner of the new_objfile event. */
5939 static void (*remote_new_objfile_chain) (struct objfile *);
5940
5941 /* Function to be called whenever a new objfile (shlib) is detected. */
5942 static void
5943 remote_new_objfile (struct objfile *objfile)
5944 {
5945 if (remote_desc != 0) /* Have a remote connection */
5946 {
5947 remote_check_symbols (objfile);
5948 }
5949 /* Call predecessor on chain, if any. */
5950 if (remote_new_objfile_chain != 0 &&
5951 remote_desc == 0)
5952 remote_new_objfile_chain (objfile);
5953 }
5954
5955 void
5956 _initialize_remote (void)
5957 {
5958 static struct cmd_list_element *remote_set_cmdlist;
5959 static struct cmd_list_element *remote_show_cmdlist;
5960 struct cmd_list_element *tmpcmd;
5961
5962 /* architecture specific data */
5963 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
5964 free_remote_state);
5965
5966 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5967 that the remote protocol has been initialized. */
5968 register_gdbarch_swap (&remote_address_size,
5969 sizeof (&remote_address_size), NULL);
5970 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5971
5972 init_remote_ops ();
5973 add_target (&remote_ops);
5974
5975 init_extended_remote_ops ();
5976 add_target (&extended_remote_ops);
5977
5978 init_remote_async_ops ();
5979 add_target (&remote_async_ops);
5980
5981 init_extended_async_remote_ops ();
5982 add_target (&extended_async_remote_ops);
5983
5984 init_remote_cisco_ops ();
5985 add_target (&remote_cisco_ops);
5986
5987 /* Hook into new objfile notification. */
5988 remote_new_objfile_chain = target_new_objfile_hook;
5989 target_new_objfile_hook = remote_new_objfile;
5990
5991 #if 0
5992 init_remote_threadtests ();
5993 #endif
5994
5995 /* set/show remote ... */
5996
5997 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5998 Remote protocol specific variables\n\
5999 Configure various remote-protocol specific variables such as\n\
6000 the packets being used",
6001 &remote_set_cmdlist, "set remote ",
6002 0/*allow-unknown*/, &setlist);
6003 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6004 Remote protocol specific variables\n\
6005 Configure various remote-protocol specific variables such as\n\
6006 the packets being used",
6007 &remote_show_cmdlist, "show remote ",
6008 0/*allow-unknown*/, &showlist);
6009
6010 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6011 "Compare section data on target to the exec file.\n\
6012 Argument is a single section name (default: all loaded sections).",
6013 &cmdlist);
6014
6015 add_cmd ("packet", class_maintenance, packet_command,
6016 "Send an arbitrary packet to a remote target.\n\
6017 maintenance packet TEXT\n\
6018 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6019 this command sends the string TEXT to the inferior, and displays the\n\
6020 response packet. GDB supplies the initial `$' character, and the\n\
6021 terminating `#' character and checksum.",
6022 &maintenancelist);
6023
6024 add_show_from_set
6025 (add_set_boolean_cmd ("remotebreak", no_class, &remote_break,
6026 "Set whether to send break if interrupted.\n",
6027 &setlist),
6028 &showlist);
6029
6030 /* Install commands for configuring memory read/write packets. */
6031
6032 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6033 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6034 &setlist);
6035 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6036 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6037 &showlist);
6038 add_cmd ("memory-write-packet-size", no_class,
6039 set_memory_write_packet_size,
6040 "Set the maximum number of bytes per memory-write packet.\n"
6041 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6042 "default packet size. The actual limit is further reduced\n"
6043 "dependent on the target. Specify ``fixed'' to disable the\n"
6044 "further restriction and ``limit'' to enable that restriction\n",
6045 &remote_set_cmdlist);
6046 add_cmd ("memory-read-packet-size", no_class,
6047 set_memory_read_packet_size,
6048 "Set the maximum number of bytes per memory-read packet.\n"
6049 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6050 "default packet size. The actual limit is further reduced\n"
6051 "dependent on the target. Specify ``fixed'' to disable the\n"
6052 "further restriction and ``limit'' to enable that restriction\n",
6053 &remote_set_cmdlist);
6054 add_cmd ("memory-write-packet-size", no_class,
6055 show_memory_write_packet_size,
6056 "Show the maximum number of bytes per memory-write packet.\n",
6057 &remote_show_cmdlist);
6058 add_cmd ("memory-read-packet-size", no_class,
6059 show_memory_read_packet_size,
6060 "Show the maximum number of bytes per memory-read packet.\n",
6061 &remote_show_cmdlist);
6062
6063 add_show_from_set
6064 (add_set_cmd ("remoteaddresssize", class_obscure,
6065 var_integer, (char *) &remote_address_size,
6066 "Set the maximum size of the address (in bits) \
6067 in a memory packet.\n",
6068 &setlist),
6069 &showlist);
6070
6071 add_packet_config_cmd (&remote_protocol_binary_download,
6072 "X", "binary-download",
6073 set_remote_protocol_binary_download_cmd,
6074 show_remote_protocol_binary_download_cmd,
6075 &remote_set_cmdlist, &remote_show_cmdlist,
6076 1);
6077 #if 0
6078 /* XXXX - should ``set remotebinarydownload'' be retained for
6079 compatibility. */
6080 add_show_from_set
6081 (add_set_cmd ("remotebinarydownload", no_class,
6082 var_boolean, (char *) &remote_binary_download,
6083 "Set binary downloads.\n", &setlist),
6084 &showlist);
6085 #endif
6086
6087 add_info ("remote-process", remote_info_process,
6088 "Query the remote system for process info.");
6089
6090 add_packet_config_cmd (&remote_protocol_qSymbol,
6091 "qSymbol", "symbol-lookup",
6092 set_remote_protocol_qSymbol_packet_cmd,
6093 show_remote_protocol_qSymbol_packet_cmd,
6094 &remote_set_cmdlist, &remote_show_cmdlist,
6095 0);
6096
6097 add_packet_config_cmd (&remote_protocol_e,
6098 "e", "step-over-range",
6099 set_remote_protocol_e_packet_cmd,
6100 show_remote_protocol_e_packet_cmd,
6101 &remote_set_cmdlist, &remote_show_cmdlist,
6102 0);
6103
6104 add_packet_config_cmd (&remote_protocol_E,
6105 "E", "step-over-range-w-signal",
6106 set_remote_protocol_E_packet_cmd,
6107 show_remote_protocol_E_packet_cmd,
6108 &remote_set_cmdlist, &remote_show_cmdlist,
6109 0);
6110
6111 add_packet_config_cmd (&remote_protocol_P,
6112 "P", "set-register",
6113 set_remote_protocol_P_packet_cmd,
6114 show_remote_protocol_P_packet_cmd,
6115 &remote_set_cmdlist, &remote_show_cmdlist,
6116 1);
6117
6118 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6119 "Z0", "software-breakpoint",
6120 set_remote_protocol_Z_software_bp_packet_cmd,
6121 show_remote_protocol_Z_software_bp_packet_cmd,
6122 &remote_set_cmdlist, &remote_show_cmdlist,
6123 0);
6124
6125 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6126 "Z1", "hardware-breakpoint",
6127 set_remote_protocol_Z_hardware_bp_packet_cmd,
6128 show_remote_protocol_Z_hardware_bp_packet_cmd,
6129 &remote_set_cmdlist, &remote_show_cmdlist,
6130 0);
6131
6132 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6133 "Z2", "write-watchpoint",
6134 set_remote_protocol_Z_write_wp_packet_cmd,
6135 show_remote_protocol_Z_write_wp_packet_cmd,
6136 &remote_set_cmdlist, &remote_show_cmdlist,
6137 0);
6138
6139 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6140 "Z3", "read-watchpoint",
6141 set_remote_protocol_Z_read_wp_packet_cmd,
6142 show_remote_protocol_Z_read_wp_packet_cmd,
6143 &remote_set_cmdlist, &remote_show_cmdlist,
6144 0);
6145
6146 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6147 "Z4", "access-watchpoint",
6148 set_remote_protocol_Z_access_wp_packet_cmd,
6149 show_remote_protocol_Z_access_wp_packet_cmd,
6150 &remote_set_cmdlist, &remote_show_cmdlist,
6151 0);
6152
6153 /* Keep the old ``set remote Z-packet ...'' working. */
6154 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6155 &remote_Z_packet_detect,
6156 "\
6157 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6158 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
6159 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6160 "Show use of remote protocol `Z' packets ",
6161 &remote_show_cmdlist);
6162 }
This page took 0.276275 seconds and 4 git commands to generate.