* Makefile.in (SFILES): Add target-memory.c.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void build_remote_gdbarch_data (void);
88
89 static void remote_files_info (struct target_ops *ignore);
90
91 static void remote_prepare_to_store (void);
92
93 static void remote_fetch_registers (int regno);
94
95 static void remote_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_async_resume (ptid_t ptid, int step,
98 enum target_signal siggnal);
99 static void remote_open (char *name, int from_tty);
100 static void remote_async_open (char *name, int from_tty);
101
102 static void extended_remote_open (char *name, int from_tty);
103 static void extended_remote_async_open (char *name, int from_tty);
104
105 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
106 int async_p);
107
108 static void remote_close (int quitting);
109
110 static void remote_store_registers (int regno);
111
112 static void remote_mourn (void);
113 static void remote_async_mourn (void);
114
115 static void extended_remote_restart (void);
116
117 static void extended_remote_mourn (void);
118
119 static void remote_mourn_1 (struct target_ops *);
120
121 static void remote_send (char **buf, long *sizeof_buf_p);
122
123 static int readchar (int timeout);
124
125 static ptid_t remote_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127 static ptid_t remote_async_wait (ptid_t ptid,
128 struct target_waitstatus *status);
129
130 static void remote_kill (void);
131 static void remote_async_kill (void);
132
133 static int tohex (int nib);
134
135 static void remote_detach (char *args, int from_tty);
136
137 static void remote_interrupt (int signo);
138
139 static void remote_interrupt_twice (int signo);
140
141 static void interrupt_query (void);
142
143 static void set_thread (int, int);
144
145 static int remote_thread_alive (ptid_t);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (void);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static unsigned long crc32 (unsigned char *, int, unsigned int);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (int currthread);
186
187 static int fromhex (int a);
188
189 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190
191 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
204 struct cmd_list_element *c);
205
206 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 int from_tty,
208 struct cmd_list_element *c,
209 const char *value);
210
211 void _initialize_remote (void);
212
213 /* For "set remote" and "show remote". */
214
215 static struct cmd_list_element *remote_set_cmdlist;
216 static struct cmd_list_element *remote_show_cmdlist;
217
218 /* Description of the remote protocol state for the currently
219 connected target. This is per-target state, and independent of the
220 selected architecture. */
221
222 struct remote_state
223 {
224 /* A buffer to use for incoming packets, and its current size. The
225 buffer is grown dynamically for larger incoming packets.
226 Outgoing packets may also be constructed in this buffer.
227 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
228 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
229 packets. */
230 char *buf;
231 long buf_size;
232
233 /* If we negotiated packet size explicitly (and thus can bypass
234 heuristics for the largest packet size that will not overflow
235 a buffer in the stub), this will be set to that packet size.
236 Otherwise zero, meaning to use the guessed size. */
237 long explicit_packet_size;
238 };
239
240 /* This data could be associated with a target, but we do not always
241 have access to the current target when we need it, so for now it is
242 static. This will be fine for as long as only one target is in use
243 at a time. */
244 static struct remote_state remote_state;
245
246 static struct remote_state *
247 get_remote_state (void)
248 {
249 return &remote_state;
250 }
251
252 /* Description of the remote protocol for a given architecture. */
253
254 struct packet_reg
255 {
256 long offset; /* Offset into G packet. */
257 long regnum; /* GDB's internal register number. */
258 LONGEST pnum; /* Remote protocol register number. */
259 int in_g_packet; /* Always part of G packet. */
260 /* long size in bytes; == register_size (current_gdbarch, regnum);
261 at present. */
262 /* char *name; == REGISTER_NAME (regnum); at present. */
263 };
264
265 struct remote_arch_state
266 {
267 /* Description of the remote protocol registers. */
268 long sizeof_g_packet;
269
270 /* Description of the remote protocol registers indexed by REGNUM
271 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
272 struct packet_reg *regs;
273
274 /* This is the size (in chars) of the first response to the ``g''
275 packet. It is used as a heuristic when determining the maximum
276 size of memory-read and memory-write packets. A target will
277 typically only reserve a buffer large enough to hold the ``g''
278 packet. The size does not include packet overhead (headers and
279 trailers). */
280 long actual_register_packet_size;
281
282 /* This is the maximum size (in chars) of a non read/write packet.
283 It is also used as a cap on the size of read/write packets. */
284 long remote_packet_size;
285 };
286
287
288 /* Handle for retreving the remote protocol data from gdbarch. */
289 static struct gdbarch_data *remote_gdbarch_data_handle;
290
291 static struct remote_arch_state *
292 get_remote_arch_state (void)
293 {
294 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
295 }
296
297 static void *
298 init_remote_state (struct gdbarch *gdbarch)
299 {
300 int regnum;
301 struct remote_state *rs = get_remote_state ();
302 struct remote_arch_state *rsa;
303
304 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
305
306 rsa->sizeof_g_packet = 0;
307
308 /* Assume a 1:1 regnum<->pnum table. */
309 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
310 struct packet_reg);
311 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
312 {
313 struct packet_reg *r = &rsa->regs[regnum];
314 r->pnum = regnum;
315 r->regnum = regnum;
316 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
317 r->in_g_packet = (regnum < NUM_REGS);
318 /* ...name = REGISTER_NAME (regnum); */
319
320 /* Compute packet size by accumulating the size of all registers. */
321 if (regnum < NUM_REGS)
322 rsa->sizeof_g_packet += register_size (current_gdbarch, regnum);
323 }
324
325 /* Default maximum number of characters in a packet body. Many
326 remote stubs have a hardwired buffer size of 400 bytes
327 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
328 as the maximum packet-size to ensure that the packet and an extra
329 NUL character can always fit in the buffer. This stops GDB
330 trashing stubs that try to squeeze an extra NUL into what is
331 already a full buffer (As of 1999-12-04 that was most stubs). */
332 rsa->remote_packet_size = 400 - 1;
333
334 /* This one is filled in when a ``g'' packet is received. */
335 rsa->actual_register_packet_size = 0;
336
337 /* Should rsa->sizeof_g_packet needs more space than the
338 default, adjust the size accordingly. Remember that each byte is
339 encoded as two characters. 32 is the overhead for the packet
340 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
341 (``$NN:G...#NN'') is a better guess, the below has been padded a
342 little. */
343 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
344 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
345
346 /* Make sure that the packet buffer is plenty big enough for
347 this architecture. */
348 if (rs->buf_size < rsa->remote_packet_size)
349 {
350 rs->buf_size = 2 * rsa->remote_packet_size;
351 rs->buf = xrealloc (rs->buf, rs->buf_size);
352 }
353
354 return rsa;
355 }
356
357 /* Return the current allowed size of a remote packet. This is
358 inferred from the current architecture, and should be used to
359 limit the length of outgoing packets. */
360 static long
361 get_remote_packet_size (void)
362 {
363 struct remote_state *rs = get_remote_state ();
364 struct remote_arch_state *rsa = get_remote_arch_state ();
365
366 if (rs->explicit_packet_size)
367 return rs->explicit_packet_size;
368
369 return rsa->remote_packet_size;
370 }
371
372 static struct packet_reg *
373 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
374 {
375 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
376 return NULL;
377 else
378 {
379 struct packet_reg *r = &rsa->regs[regnum];
380 gdb_assert (r->regnum == regnum);
381 return r;
382 }
383 }
384
385 static struct packet_reg *
386 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
387 {
388 int i;
389 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
390 {
391 struct packet_reg *r = &rsa->regs[i];
392 if (r->pnum == pnum)
393 return r;
394 }
395 return NULL;
396 }
397
398 /* FIXME: graces/2002-08-08: These variables should eventually be
399 bound to an instance of the target object (as in gdbarch-tdep()),
400 when such a thing exists. */
401
402 /* This is set to the data address of the access causing the target
403 to stop for a watchpoint. */
404 static CORE_ADDR remote_watch_data_address;
405
406 /* This is non-zero if target stopped for a watchpoint. */
407 static int remote_stopped_by_watchpoint_p;
408
409 static struct target_ops remote_ops;
410
411 static struct target_ops extended_remote_ops;
412
413 /* Temporary target ops. Just like the remote_ops and
414 extended_remote_ops, but with asynchronous support. */
415 static struct target_ops remote_async_ops;
416
417 static struct target_ops extended_async_remote_ops;
418
419 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
420 ``forever'' still use the normal timeout mechanism. This is
421 currently used by the ASYNC code to guarentee that target reads
422 during the initial connect always time-out. Once getpkt has been
423 modified to return a timeout indication and, in turn
424 remote_wait()/wait_for_inferior() have gained a timeout parameter
425 this can go away. */
426 static int wait_forever_enabled_p = 1;
427
428
429 /* This variable chooses whether to send a ^C or a break when the user
430 requests program interruption. Although ^C is usually what remote
431 systems expect, and that is the default here, sometimes a break is
432 preferable instead. */
433
434 static int remote_break;
435
436 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
437 remote_open knows that we don't have a file open when the program
438 starts. */
439 static struct serial *remote_desc = NULL;
440
441 /* This variable sets the number of bits in an address that are to be
442 sent in a memory ("M" or "m") packet. Normally, after stripping
443 leading zeros, the entire address would be sent. This variable
444 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
445 initial implementation of remote.c restricted the address sent in
446 memory packets to ``host::sizeof long'' bytes - (typically 32
447 bits). Consequently, for 64 bit targets, the upper 32 bits of an
448 address was never sent. Since fixing this bug may cause a break in
449 some remote targets this variable is principly provided to
450 facilitate backward compatibility. */
451
452 static int remote_address_size;
453
454 /* Tempoary to track who currently owns the terminal. See
455 target_async_terminal_* for more details. */
456
457 static int remote_async_terminal_ours_p;
458
459 \f
460 /* User configurable variables for the number of characters in a
461 memory read/write packet. MIN (rsa->remote_packet_size,
462 rsa->sizeof_g_packet) is the default. Some targets need smaller
463 values (fifo overruns, et.al.) and some users need larger values
464 (speed up transfers). The variables ``preferred_*'' (the user
465 request), ``current_*'' (what was actually set) and ``forced_*''
466 (Positive - a soft limit, negative - a hard limit). */
467
468 struct memory_packet_config
469 {
470 char *name;
471 long size;
472 int fixed_p;
473 };
474
475 /* Compute the current size of a read/write packet. Since this makes
476 use of ``actual_register_packet_size'' the computation is dynamic. */
477
478 static long
479 get_memory_packet_size (struct memory_packet_config *config)
480 {
481 struct remote_state *rs = get_remote_state ();
482 struct remote_arch_state *rsa = get_remote_arch_state ();
483
484 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
485 law?) that some hosts don't cope very well with large alloca()
486 calls. Eventually the alloca() code will be replaced by calls to
487 xmalloc() and make_cleanups() allowing this restriction to either
488 be lifted or removed. */
489 #ifndef MAX_REMOTE_PACKET_SIZE
490 #define MAX_REMOTE_PACKET_SIZE 16384
491 #endif
492 /* NOTE: 20 ensures we can write at least one byte. */
493 #ifndef MIN_REMOTE_PACKET_SIZE
494 #define MIN_REMOTE_PACKET_SIZE 20
495 #endif
496 long what_they_get;
497 if (config->fixed_p)
498 {
499 if (config->size <= 0)
500 what_they_get = MAX_REMOTE_PACKET_SIZE;
501 else
502 what_they_get = config->size;
503 }
504 else
505 {
506 what_they_get = get_remote_packet_size ();
507 /* Limit the packet to the size specified by the user. */
508 if (config->size > 0
509 && what_they_get > config->size)
510 what_they_get = config->size;
511
512 /* Limit it to the size of the targets ``g'' response unless we have
513 permission from the stub to use a larger packet size. */
514 if (rs->explicit_packet_size == 0
515 && rsa->actual_register_packet_size > 0
516 && what_they_get > rsa->actual_register_packet_size)
517 what_they_get = rsa->actual_register_packet_size;
518 }
519 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
520 what_they_get = MAX_REMOTE_PACKET_SIZE;
521 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
522 what_they_get = MIN_REMOTE_PACKET_SIZE;
523
524 /* Make sure there is room in the global buffer for this packet
525 (including its trailing NUL byte). */
526 if (rs->buf_size < what_they_get + 1)
527 {
528 rs->buf_size = 2 * what_they_get;
529 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
530 }
531
532 return what_they_get;
533 }
534
535 /* Update the size of a read/write packet. If they user wants
536 something really big then do a sanity check. */
537
538 static void
539 set_memory_packet_size (char *args, struct memory_packet_config *config)
540 {
541 int fixed_p = config->fixed_p;
542 long size = config->size;
543 if (args == NULL)
544 error (_("Argument required (integer, `fixed' or `limited')."));
545 else if (strcmp (args, "hard") == 0
546 || strcmp (args, "fixed") == 0)
547 fixed_p = 1;
548 else if (strcmp (args, "soft") == 0
549 || strcmp (args, "limit") == 0)
550 fixed_p = 0;
551 else
552 {
553 char *end;
554 size = strtoul (args, &end, 0);
555 if (args == end)
556 error (_("Invalid %s (bad syntax)."), config->name);
557 #if 0
558 /* Instead of explicitly capping the size of a packet to
559 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
560 instead allowed to set the size to something arbitrarily
561 large. */
562 if (size > MAX_REMOTE_PACKET_SIZE)
563 error (_("Invalid %s (too large)."), config->name);
564 #endif
565 }
566 /* Extra checks? */
567 if (fixed_p && !config->fixed_p)
568 {
569 if (! query (_("The target may not be able to correctly handle a %s\n"
570 "of %ld bytes. Change the packet size? "),
571 config->name, size))
572 error (_("Packet size not changed."));
573 }
574 /* Update the config. */
575 config->fixed_p = fixed_p;
576 config->size = size;
577 }
578
579 static void
580 show_memory_packet_size (struct memory_packet_config *config)
581 {
582 printf_filtered (_("The %s is %ld. "), config->name, config->size);
583 if (config->fixed_p)
584 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
585 get_memory_packet_size (config));
586 else
587 printf_filtered (_("Packets are limited to %ld bytes.\n"),
588 get_memory_packet_size (config));
589 }
590
591 static struct memory_packet_config memory_write_packet_config =
592 {
593 "memory-write-packet-size",
594 };
595
596 static void
597 set_memory_write_packet_size (char *args, int from_tty)
598 {
599 set_memory_packet_size (args, &memory_write_packet_config);
600 }
601
602 static void
603 show_memory_write_packet_size (char *args, int from_tty)
604 {
605 show_memory_packet_size (&memory_write_packet_config);
606 }
607
608 static long
609 get_memory_write_packet_size (void)
610 {
611 return get_memory_packet_size (&memory_write_packet_config);
612 }
613
614 static struct memory_packet_config memory_read_packet_config =
615 {
616 "memory-read-packet-size",
617 };
618
619 static void
620 set_memory_read_packet_size (char *args, int from_tty)
621 {
622 set_memory_packet_size (args, &memory_read_packet_config);
623 }
624
625 static void
626 show_memory_read_packet_size (char *args, int from_tty)
627 {
628 show_memory_packet_size (&memory_read_packet_config);
629 }
630
631 static long
632 get_memory_read_packet_size (void)
633 {
634 long size = get_memory_packet_size (&memory_read_packet_config);
635 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
636 extra buffer size argument before the memory read size can be
637 increased beyond this. */
638 if (size > get_remote_packet_size ())
639 size = get_remote_packet_size ();
640 return size;
641 }
642
643 \f
644 /* Generic configuration support for packets the stub optionally
645 supports. Allows the user to specify the use of the packet as well
646 as allowing GDB to auto-detect support in the remote stub. */
647
648 enum packet_support
649 {
650 PACKET_SUPPORT_UNKNOWN = 0,
651 PACKET_ENABLE,
652 PACKET_DISABLE
653 };
654
655 struct packet_config
656 {
657 const char *name;
658 const char *title;
659 enum auto_boolean detect;
660 enum packet_support support;
661 };
662
663 /* Analyze a packet's return value and update the packet config
664 accordingly. */
665
666 enum packet_result
667 {
668 PACKET_ERROR,
669 PACKET_OK,
670 PACKET_UNKNOWN
671 };
672
673 static void
674 update_packet_config (struct packet_config *config)
675 {
676 switch (config->detect)
677 {
678 case AUTO_BOOLEAN_TRUE:
679 config->support = PACKET_ENABLE;
680 break;
681 case AUTO_BOOLEAN_FALSE:
682 config->support = PACKET_DISABLE;
683 break;
684 case AUTO_BOOLEAN_AUTO:
685 config->support = PACKET_SUPPORT_UNKNOWN;
686 break;
687 }
688 }
689
690 static void
691 show_packet_config_cmd (struct packet_config *config)
692 {
693 char *support = "internal-error";
694 switch (config->support)
695 {
696 case PACKET_ENABLE:
697 support = "enabled";
698 break;
699 case PACKET_DISABLE:
700 support = "disabled";
701 break;
702 case PACKET_SUPPORT_UNKNOWN:
703 support = "unknown";
704 break;
705 }
706 switch (config->detect)
707 {
708 case AUTO_BOOLEAN_AUTO:
709 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
710 config->name, support);
711 break;
712 case AUTO_BOOLEAN_TRUE:
713 case AUTO_BOOLEAN_FALSE:
714 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
715 config->name, support);
716 break;
717 }
718 }
719
720 static void
721 add_packet_config_cmd (struct packet_config *config, const char *name,
722 const char *title, int legacy)
723 {
724 char *set_doc;
725 char *show_doc;
726 char *cmd_name;
727
728 config->name = name;
729 config->title = title;
730 config->detect = AUTO_BOOLEAN_AUTO;
731 config->support = PACKET_SUPPORT_UNKNOWN;
732 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
733 name, title);
734 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
735 name, title);
736 /* set/show TITLE-packet {auto,on,off} */
737 cmd_name = xstrprintf ("%s-packet", title);
738 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
739 &config->detect, set_doc, show_doc, NULL, /* help_doc */
740 set_remote_protocol_packet_cmd,
741 show_remote_protocol_packet_cmd,
742 &remote_set_cmdlist, &remote_show_cmdlist);
743 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
744 if (legacy)
745 {
746 char *legacy_name;
747 legacy_name = xstrprintf ("%s-packet", name);
748 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
749 &remote_set_cmdlist);
750 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
751 &remote_show_cmdlist);
752 }
753 }
754
755 static enum packet_result
756 packet_check_result (const char *buf)
757 {
758 if (buf[0] != '\0')
759 {
760 /* The stub recognized the packet request. Check that the
761 operation succeeded. */
762 if (buf[0] == 'E'
763 && isxdigit (buf[1]) && isxdigit (buf[2])
764 && buf[3] == '\0')
765 /* "Enn" - definitly an error. */
766 return PACKET_ERROR;
767
768 /* Always treat "E." as an error. This will be used for
769 more verbose error messages, such as E.memtypes. */
770 if (buf[0] == 'E' && buf[1] == '.')
771 return PACKET_ERROR;
772
773 /* The packet may or may not be OK. Just assume it is. */
774 return PACKET_OK;
775 }
776 else
777 /* The stub does not support the packet. */
778 return PACKET_UNKNOWN;
779 }
780
781 static enum packet_result
782 packet_ok (const char *buf, struct packet_config *config)
783 {
784 enum packet_result result;
785
786 result = packet_check_result (buf);
787 switch (result)
788 {
789 case PACKET_OK:
790 case PACKET_ERROR:
791 /* The stub recognized the packet request. */
792 switch (config->support)
793 {
794 case PACKET_SUPPORT_UNKNOWN:
795 if (remote_debug)
796 fprintf_unfiltered (gdb_stdlog,
797 "Packet %s (%s) is supported\n",
798 config->name, config->title);
799 config->support = PACKET_ENABLE;
800 break;
801 case PACKET_DISABLE:
802 internal_error (__FILE__, __LINE__,
803 _("packet_ok: attempt to use a disabled packet"));
804 break;
805 case PACKET_ENABLE:
806 break;
807 }
808 break;
809 case PACKET_UNKNOWN:
810 /* The stub does not support the packet. */
811 switch (config->support)
812 {
813 case PACKET_ENABLE:
814 if (config->detect == AUTO_BOOLEAN_AUTO)
815 /* If the stub previously indicated that the packet was
816 supported then there is a protocol error.. */
817 error (_("Protocol error: %s (%s) conflicting enabled responses."),
818 config->name, config->title);
819 else
820 /* The user set it wrong. */
821 error (_("Enabled packet %s (%s) not recognized by stub"),
822 config->name, config->title);
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 if (remote_debug)
826 fprintf_unfiltered (gdb_stdlog,
827 "Packet %s (%s) is NOT supported\n",
828 config->name, config->title);
829 config->support = PACKET_DISABLE;
830 break;
831 case PACKET_DISABLE:
832 break;
833 }
834 break;
835 }
836
837 return result;
838 }
839
840 enum {
841 PACKET_vCont = 0,
842 PACKET_X,
843 PACKET_qSymbol,
844 PACKET_P,
845 PACKET_p,
846 PACKET_Z0,
847 PACKET_Z1,
848 PACKET_Z2,
849 PACKET_Z3,
850 PACKET_Z4,
851 PACKET_qXfer_auxv,
852 PACKET_qXfer_memory_map,
853 PACKET_qGetTLSAddr,
854 PACKET_qSupported,
855 PACKET_MAX
856 };
857
858 static struct packet_config remote_protocol_packets[PACKET_MAX];
859
860 static void
861 set_remote_protocol_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 struct packet_config *packet;
865
866 for (packet = remote_protocol_packets;
867 packet < &remote_protocol_packets[PACKET_MAX];
868 packet++)
869 {
870 if (&packet->detect == c->var)
871 {
872 update_packet_config (packet);
873 return;
874 }
875 }
876 internal_error (__FILE__, __LINE__, "Could not find config for %s",
877 c->name);
878 }
879
880 static void
881 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
882 struct cmd_list_element *c,
883 const char *value)
884 {
885 struct packet_config *packet;
886
887 for (packet = remote_protocol_packets;
888 packet < &remote_protocol_packets[PACKET_MAX];
889 packet++)
890 {
891 if (&packet->detect == c->var)
892 {
893 show_packet_config_cmd (packet);
894 return;
895 }
896 }
897 internal_error (__FILE__, __LINE__, "Could not find config for %s",
898 c->name);
899 }
900
901 /* Should we try one of the 'Z' requests? */
902
903 enum Z_packet_type
904 {
905 Z_PACKET_SOFTWARE_BP,
906 Z_PACKET_HARDWARE_BP,
907 Z_PACKET_WRITE_WP,
908 Z_PACKET_READ_WP,
909 Z_PACKET_ACCESS_WP,
910 NR_Z_PACKET_TYPES
911 };
912
913 /* For compatibility with older distributions. Provide a ``set remote
914 Z-packet ...'' command that updates all the Z packet types. */
915
916 static enum auto_boolean remote_Z_packet_detect;
917
918 static void
919 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 int i;
923 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
924 {
925 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
926 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
927 }
928 }
929
930 static void
931 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
932 struct cmd_list_element *c,
933 const char *value)
934 {
935 int i;
936 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
937 {
938 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
939 }
940 }
941
942 /* Should we try the 'ThreadInfo' query packet?
943
944 This variable (NOT available to the user: auto-detect only!)
945 determines whether GDB will use the new, simpler "ThreadInfo"
946 query or the older, more complex syntax for thread queries.
947 This is an auto-detect variable (set to true at each connect,
948 and set to false when the target fails to recognize it). */
949
950 static int use_threadinfo_query;
951 static int use_threadextra_query;
952
953 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
954 static void *sigint_remote_twice_token;
955 static void *sigint_remote_token;
956
957 /* These are pointers to hook functions that may be set in order to
958 modify resume/wait behavior for a particular architecture. */
959
960 void (*deprecated_target_resume_hook) (void);
961 void (*deprecated_target_wait_loop_hook) (void);
962 \f
963
964
965 /* These are the threads which we last sent to the remote system.
966 -1 for all or -2 for not sent yet. */
967 static int general_thread;
968 static int continue_thread;
969
970 /* Call this function as a result of
971 1) A halt indication (T packet) containing a thread id
972 2) A direct query of currthread
973 3) Successful execution of set thread
974 */
975
976 static void
977 record_currthread (int currthread)
978 {
979 general_thread = currthread;
980
981 /* If this is a new thread, add it to GDB's thread list.
982 If we leave it up to WFI to do this, bad things will happen. */
983 if (!in_thread_list (pid_to_ptid (currthread)))
984 {
985 add_thread (pid_to_ptid (currthread));
986 ui_out_text (uiout, "[New ");
987 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
988 ui_out_text (uiout, "]\n");
989 }
990 }
991
992 #define MAGIC_NULL_PID 42000
993
994 static void
995 set_thread (int th, int gen)
996 {
997 struct remote_state *rs = get_remote_state ();
998 char *buf = rs->buf;
999 int state = gen ? general_thread : continue_thread;
1000
1001 if (state == th)
1002 return;
1003
1004 buf[0] = 'H';
1005 buf[1] = gen ? 'g' : 'c';
1006 if (th == MAGIC_NULL_PID)
1007 {
1008 buf[2] = '0';
1009 buf[3] = '\0';
1010 }
1011 else if (th < 0)
1012 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1013 else
1014 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1015 putpkt (buf);
1016 getpkt (&rs->buf, &rs->buf_size, 0);
1017 if (gen)
1018 general_thread = th;
1019 else
1020 continue_thread = th;
1021 }
1022 \f
1023 /* Return nonzero if the thread TH is still alive on the remote system. */
1024
1025 static int
1026 remote_thread_alive (ptid_t ptid)
1027 {
1028 struct remote_state *rs = get_remote_state ();
1029 int tid = PIDGET (ptid);
1030
1031 if (tid < 0)
1032 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1033 else
1034 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1035 putpkt (rs->buf);
1036 getpkt (&rs->buf, &rs->buf_size, 0);
1037 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1038 }
1039
1040 /* About these extended threadlist and threadinfo packets. They are
1041 variable length packets but, the fields within them are often fixed
1042 length. They are redundent enough to send over UDP as is the
1043 remote protocol in general. There is a matching unit test module
1044 in libstub. */
1045
1046 #define OPAQUETHREADBYTES 8
1047
1048 /* a 64 bit opaque identifier */
1049 typedef unsigned char threadref[OPAQUETHREADBYTES];
1050
1051 /* WARNING: This threadref data structure comes from the remote O.S.,
1052 libstub protocol encoding, and remote.c. it is not particularly
1053 changable. */
1054
1055 /* Right now, the internal structure is int. We want it to be bigger.
1056 Plan to fix this.
1057 */
1058
1059 typedef int gdb_threadref; /* Internal GDB thread reference. */
1060
1061 /* gdb_ext_thread_info is an internal GDB data structure which is
1062 equivalent to the reply of the remote threadinfo packet. */
1063
1064 struct gdb_ext_thread_info
1065 {
1066 threadref threadid; /* External form of thread reference. */
1067 int active; /* Has state interesting to GDB?
1068 regs, stack. */
1069 char display[256]; /* Brief state display, name,
1070 blocked/suspended. */
1071 char shortname[32]; /* To be used to name threads. */
1072 char more_display[256]; /* Long info, statistics, queue depth,
1073 whatever. */
1074 };
1075
1076 /* The volume of remote transfers can be limited by submitting
1077 a mask containing bits specifying the desired information.
1078 Use a union of these values as the 'selection' parameter to
1079 get_thread_info. FIXME: Make these TAG names more thread specific.
1080 */
1081
1082 #define TAG_THREADID 1
1083 #define TAG_EXISTS 2
1084 #define TAG_DISPLAY 4
1085 #define TAG_THREADNAME 8
1086 #define TAG_MOREDISPLAY 16
1087
1088 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1089
1090 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1091
1092 static char *unpack_nibble (char *buf, int *val);
1093
1094 static char *pack_nibble (char *buf, int nibble);
1095
1096 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1097
1098 static char *unpack_byte (char *buf, int *value);
1099
1100 static char *pack_int (char *buf, int value);
1101
1102 static char *unpack_int (char *buf, int *value);
1103
1104 static char *unpack_string (char *src, char *dest, int length);
1105
1106 static char *pack_threadid (char *pkt, threadref *id);
1107
1108 static char *unpack_threadid (char *inbuf, threadref *id);
1109
1110 void int_to_threadref (threadref *id, int value);
1111
1112 static int threadref_to_int (threadref *ref);
1113
1114 static void copy_threadref (threadref *dest, threadref *src);
1115
1116 static int threadmatch (threadref *dest, threadref *src);
1117
1118 static char *pack_threadinfo_request (char *pkt, int mode,
1119 threadref *id);
1120
1121 static int remote_unpack_thread_info_response (char *pkt,
1122 threadref *expectedref,
1123 struct gdb_ext_thread_info
1124 *info);
1125
1126
1127 static int remote_get_threadinfo (threadref *threadid,
1128 int fieldset, /*TAG mask */
1129 struct gdb_ext_thread_info *info);
1130
1131 static char *pack_threadlist_request (char *pkt, int startflag,
1132 int threadcount,
1133 threadref *nextthread);
1134
1135 static int parse_threadlist_response (char *pkt,
1136 int result_limit,
1137 threadref *original_echo,
1138 threadref *resultlist,
1139 int *doneflag);
1140
1141 static int remote_get_threadlist (int startflag,
1142 threadref *nextthread,
1143 int result_limit,
1144 int *done,
1145 int *result_count,
1146 threadref *threadlist);
1147
1148 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1149
1150 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1151 void *context, int looplimit);
1152
1153 static int remote_newthread_step (threadref *ref, void *context);
1154
1155 /* Encode 64 bits in 16 chars of hex. */
1156
1157 static const char hexchars[] = "0123456789abcdef";
1158
1159 static int
1160 ishex (int ch, int *val)
1161 {
1162 if ((ch >= 'a') && (ch <= 'f'))
1163 {
1164 *val = ch - 'a' + 10;
1165 return 1;
1166 }
1167 if ((ch >= 'A') && (ch <= 'F'))
1168 {
1169 *val = ch - 'A' + 10;
1170 return 1;
1171 }
1172 if ((ch >= '0') && (ch <= '9'))
1173 {
1174 *val = ch - '0';
1175 return 1;
1176 }
1177 return 0;
1178 }
1179
1180 static int
1181 stubhex (int ch)
1182 {
1183 if (ch >= 'a' && ch <= 'f')
1184 return ch - 'a' + 10;
1185 if (ch >= '0' && ch <= '9')
1186 return ch - '0';
1187 if (ch >= 'A' && ch <= 'F')
1188 return ch - 'A' + 10;
1189 return -1;
1190 }
1191
1192 static int
1193 stub_unpack_int (char *buff, int fieldlength)
1194 {
1195 int nibble;
1196 int retval = 0;
1197
1198 while (fieldlength)
1199 {
1200 nibble = stubhex (*buff++);
1201 retval |= nibble;
1202 fieldlength--;
1203 if (fieldlength)
1204 retval = retval << 4;
1205 }
1206 return retval;
1207 }
1208
1209 char *
1210 unpack_varlen_hex (char *buff, /* packet to parse */
1211 ULONGEST *result)
1212 {
1213 int nibble;
1214 ULONGEST retval = 0;
1215
1216 while (ishex (*buff, &nibble))
1217 {
1218 buff++;
1219 retval = retval << 4;
1220 retval |= nibble & 0x0f;
1221 }
1222 *result = retval;
1223 return buff;
1224 }
1225
1226 static char *
1227 unpack_nibble (char *buf, int *val)
1228 {
1229 ishex (*buf++, val);
1230 return buf;
1231 }
1232
1233 static char *
1234 pack_nibble (char *buf, int nibble)
1235 {
1236 *buf++ = hexchars[(nibble & 0x0f)];
1237 return buf;
1238 }
1239
1240 static char *
1241 pack_hex_byte (char *pkt, int byte)
1242 {
1243 *pkt++ = hexchars[(byte >> 4) & 0xf];
1244 *pkt++ = hexchars[(byte & 0xf)];
1245 return pkt;
1246 }
1247
1248 static char *
1249 unpack_byte (char *buf, int *value)
1250 {
1251 *value = stub_unpack_int (buf, 2);
1252 return buf + 2;
1253 }
1254
1255 static char *
1256 pack_int (char *buf, int value)
1257 {
1258 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1259 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1260 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1261 buf = pack_hex_byte (buf, (value & 0xff));
1262 return buf;
1263 }
1264
1265 static char *
1266 unpack_int (char *buf, int *value)
1267 {
1268 *value = stub_unpack_int (buf, 8);
1269 return buf + 8;
1270 }
1271
1272 #if 0 /* Currently unused, uncomment when needed. */
1273 static char *pack_string (char *pkt, char *string);
1274
1275 static char *
1276 pack_string (char *pkt, char *string)
1277 {
1278 char ch;
1279 int len;
1280
1281 len = strlen (string);
1282 if (len > 200)
1283 len = 200; /* Bigger than most GDB packets, junk??? */
1284 pkt = pack_hex_byte (pkt, len);
1285 while (len-- > 0)
1286 {
1287 ch = *string++;
1288 if ((ch == '\0') || (ch == '#'))
1289 ch = '*'; /* Protect encapsulation. */
1290 *pkt++ = ch;
1291 }
1292 return pkt;
1293 }
1294 #endif /* 0 (unused) */
1295
1296 static char *
1297 unpack_string (char *src, char *dest, int length)
1298 {
1299 while (length--)
1300 *dest++ = *src++;
1301 *dest = '\0';
1302 return src;
1303 }
1304
1305 static char *
1306 pack_threadid (char *pkt, threadref *id)
1307 {
1308 char *limit;
1309 unsigned char *altid;
1310
1311 altid = (unsigned char *) id;
1312 limit = pkt + BUF_THREAD_ID_SIZE;
1313 while (pkt < limit)
1314 pkt = pack_hex_byte (pkt, *altid++);
1315 return pkt;
1316 }
1317
1318
1319 static char *
1320 unpack_threadid (char *inbuf, threadref *id)
1321 {
1322 char *altref;
1323 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1324 int x, y;
1325
1326 altref = (char *) id;
1327
1328 while (inbuf < limit)
1329 {
1330 x = stubhex (*inbuf++);
1331 y = stubhex (*inbuf++);
1332 *altref++ = (x << 4) | y;
1333 }
1334 return inbuf;
1335 }
1336
1337 /* Externally, threadrefs are 64 bits but internally, they are still
1338 ints. This is due to a mismatch of specifications. We would like
1339 to use 64bit thread references internally. This is an adapter
1340 function. */
1341
1342 void
1343 int_to_threadref (threadref *id, int value)
1344 {
1345 unsigned char *scan;
1346
1347 scan = (unsigned char *) id;
1348 {
1349 int i = 4;
1350 while (i--)
1351 *scan++ = 0;
1352 }
1353 *scan++ = (value >> 24) & 0xff;
1354 *scan++ = (value >> 16) & 0xff;
1355 *scan++ = (value >> 8) & 0xff;
1356 *scan++ = (value & 0xff);
1357 }
1358
1359 static int
1360 threadref_to_int (threadref *ref)
1361 {
1362 int i, value = 0;
1363 unsigned char *scan;
1364
1365 scan = *ref;
1366 scan += 4;
1367 i = 4;
1368 while (i-- > 0)
1369 value = (value << 8) | ((*scan++) & 0xff);
1370 return value;
1371 }
1372
1373 static void
1374 copy_threadref (threadref *dest, threadref *src)
1375 {
1376 int i;
1377 unsigned char *csrc, *cdest;
1378
1379 csrc = (unsigned char *) src;
1380 cdest = (unsigned char *) dest;
1381 i = 8;
1382 while (i--)
1383 *cdest++ = *csrc++;
1384 }
1385
1386 static int
1387 threadmatch (threadref *dest, threadref *src)
1388 {
1389 /* Things are broken right now, so just assume we got a match. */
1390 #if 0
1391 unsigned char *srcp, *destp;
1392 int i, result;
1393 srcp = (char *) src;
1394 destp = (char *) dest;
1395
1396 result = 1;
1397 while (i-- > 0)
1398 result &= (*srcp++ == *destp++) ? 1 : 0;
1399 return result;
1400 #endif
1401 return 1;
1402 }
1403
1404 /*
1405 threadid:1, # always request threadid
1406 context_exists:2,
1407 display:4,
1408 unique_name:8,
1409 more_display:16
1410 */
1411
1412 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1413
1414 static char *
1415 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1416 {
1417 *pkt++ = 'q'; /* Info Query */
1418 *pkt++ = 'P'; /* process or thread info */
1419 pkt = pack_int (pkt, mode); /* mode */
1420 pkt = pack_threadid (pkt, id); /* threadid */
1421 *pkt = '\0'; /* terminate */
1422 return pkt;
1423 }
1424
1425 /* These values tag the fields in a thread info response packet. */
1426 /* Tagging the fields allows us to request specific fields and to
1427 add more fields as time goes by. */
1428
1429 #define TAG_THREADID 1 /* Echo the thread identifier. */
1430 #define TAG_EXISTS 2 /* Is this process defined enough to
1431 fetch registers and its stack? */
1432 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1433 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1434 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1435 the process. */
1436
1437 static int
1438 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1439 struct gdb_ext_thread_info *info)
1440 {
1441 struct remote_state *rs = get_remote_state ();
1442 int mask, length;
1443 int tag;
1444 threadref ref;
1445 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1446 int retval = 1;
1447
1448 /* info->threadid = 0; FIXME: implement zero_threadref. */
1449 info->active = 0;
1450 info->display[0] = '\0';
1451 info->shortname[0] = '\0';
1452 info->more_display[0] = '\0';
1453
1454 /* Assume the characters indicating the packet type have been
1455 stripped. */
1456 pkt = unpack_int (pkt, &mask); /* arg mask */
1457 pkt = unpack_threadid (pkt, &ref);
1458
1459 if (mask == 0)
1460 warning (_("Incomplete response to threadinfo request."));
1461 if (!threadmatch (&ref, expectedref))
1462 { /* This is an answer to a different request. */
1463 warning (_("ERROR RMT Thread info mismatch."));
1464 return 0;
1465 }
1466 copy_threadref (&info->threadid, &ref);
1467
1468 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1469
1470 /* Packets are terminated with nulls. */
1471 while ((pkt < limit) && mask && *pkt)
1472 {
1473 pkt = unpack_int (pkt, &tag); /* tag */
1474 pkt = unpack_byte (pkt, &length); /* length */
1475 if (!(tag & mask)) /* Tags out of synch with mask. */
1476 {
1477 warning (_("ERROR RMT: threadinfo tag mismatch."));
1478 retval = 0;
1479 break;
1480 }
1481 if (tag == TAG_THREADID)
1482 {
1483 if (length != 16)
1484 {
1485 warning (_("ERROR RMT: length of threadid is not 16."));
1486 retval = 0;
1487 break;
1488 }
1489 pkt = unpack_threadid (pkt, &ref);
1490 mask = mask & ~TAG_THREADID;
1491 continue;
1492 }
1493 if (tag == TAG_EXISTS)
1494 {
1495 info->active = stub_unpack_int (pkt, length);
1496 pkt += length;
1497 mask = mask & ~(TAG_EXISTS);
1498 if (length > 8)
1499 {
1500 warning (_("ERROR RMT: 'exists' length too long."));
1501 retval = 0;
1502 break;
1503 }
1504 continue;
1505 }
1506 if (tag == TAG_THREADNAME)
1507 {
1508 pkt = unpack_string (pkt, &info->shortname[0], length);
1509 mask = mask & ~TAG_THREADNAME;
1510 continue;
1511 }
1512 if (tag == TAG_DISPLAY)
1513 {
1514 pkt = unpack_string (pkt, &info->display[0], length);
1515 mask = mask & ~TAG_DISPLAY;
1516 continue;
1517 }
1518 if (tag == TAG_MOREDISPLAY)
1519 {
1520 pkt = unpack_string (pkt, &info->more_display[0], length);
1521 mask = mask & ~TAG_MOREDISPLAY;
1522 continue;
1523 }
1524 warning (_("ERROR RMT: unknown thread info tag."));
1525 break; /* Not a tag we know about. */
1526 }
1527 return retval;
1528 }
1529
1530 static int
1531 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1532 struct gdb_ext_thread_info *info)
1533 {
1534 struct remote_state *rs = get_remote_state ();
1535 int result;
1536
1537 pack_threadinfo_request (rs->buf, fieldset, threadid);
1538 putpkt (rs->buf);
1539 getpkt (&rs->buf, &rs->buf_size, 0);
1540 result = remote_unpack_thread_info_response (rs->buf + 2,
1541 threadid, info);
1542 return result;
1543 }
1544
1545 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1546
1547 static char *
1548 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1549 threadref *nextthread)
1550 {
1551 *pkt++ = 'q'; /* info query packet */
1552 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1553 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1554 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1555 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1556 *pkt = '\0';
1557 return pkt;
1558 }
1559
1560 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1561
1562 static int
1563 parse_threadlist_response (char *pkt, int result_limit,
1564 threadref *original_echo, threadref *resultlist,
1565 int *doneflag)
1566 {
1567 struct remote_state *rs = get_remote_state ();
1568 char *limit;
1569 int count, resultcount, done;
1570
1571 resultcount = 0;
1572 /* Assume the 'q' and 'M chars have been stripped. */
1573 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1574 /* done parse past here */
1575 pkt = unpack_byte (pkt, &count); /* count field */
1576 pkt = unpack_nibble (pkt, &done);
1577 /* The first threadid is the argument threadid. */
1578 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1579 while ((count-- > 0) && (pkt < limit))
1580 {
1581 pkt = unpack_threadid (pkt, resultlist++);
1582 if (resultcount++ >= result_limit)
1583 break;
1584 }
1585 if (doneflag)
1586 *doneflag = done;
1587 return resultcount;
1588 }
1589
1590 static int
1591 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1592 int *done, int *result_count, threadref *threadlist)
1593 {
1594 struct remote_state *rs = get_remote_state ();
1595 static threadref echo_nextthread;
1596 int result = 1;
1597
1598 /* Trancate result limit to be smaller than the packet size. */
1599 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1600 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1601
1602 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1603 putpkt (rs->buf);
1604 getpkt (&rs->buf, &rs->buf_size, 0);
1605
1606 *result_count =
1607 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1608 threadlist, done);
1609
1610 if (!threadmatch (&echo_nextthread, nextthread))
1611 {
1612 /* FIXME: This is a good reason to drop the packet. */
1613 /* Possably, there is a duplicate response. */
1614 /* Possabilities :
1615 retransmit immediatly - race conditions
1616 retransmit after timeout - yes
1617 exit
1618 wait for packet, then exit
1619 */
1620 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1621 return 0; /* I choose simply exiting. */
1622 }
1623 if (*result_count <= 0)
1624 {
1625 if (*done != 1)
1626 {
1627 warning (_("RMT ERROR : failed to get remote thread list."));
1628 result = 0;
1629 }
1630 return result; /* break; */
1631 }
1632 if (*result_count > result_limit)
1633 {
1634 *result_count = 0;
1635 warning (_("RMT ERROR: threadlist response longer than requested."));
1636 return 0;
1637 }
1638 return result;
1639 }
1640
1641 /* This is the interface between remote and threads, remotes upper
1642 interface. */
1643
1644 /* remote_find_new_threads retrieves the thread list and for each
1645 thread in the list, looks up the thread in GDB's internal list,
1646 ading the thread if it does not already exist. This involves
1647 getting partial thread lists from the remote target so, polling the
1648 quit_flag is required. */
1649
1650
1651 /* About this many threadisds fit in a packet. */
1652
1653 #define MAXTHREADLISTRESULTS 32
1654
1655 static int
1656 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1657 int looplimit)
1658 {
1659 int done, i, result_count;
1660 int startflag = 1;
1661 int result = 1;
1662 int loopcount = 0;
1663 static threadref nextthread;
1664 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1665
1666 done = 0;
1667 while (!done)
1668 {
1669 if (loopcount++ > looplimit)
1670 {
1671 result = 0;
1672 warning (_("Remote fetch threadlist -infinite loop-."));
1673 break;
1674 }
1675 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1676 &done, &result_count, resultthreadlist))
1677 {
1678 result = 0;
1679 break;
1680 }
1681 /* Clear for later iterations. */
1682 startflag = 0;
1683 /* Setup to resume next batch of thread references, set nextthread. */
1684 if (result_count >= 1)
1685 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1686 i = 0;
1687 while (result_count--)
1688 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1689 break;
1690 }
1691 return result;
1692 }
1693
1694 static int
1695 remote_newthread_step (threadref *ref, void *context)
1696 {
1697 ptid_t ptid;
1698
1699 ptid = pid_to_ptid (threadref_to_int (ref));
1700
1701 if (!in_thread_list (ptid))
1702 add_thread (ptid);
1703 return 1; /* continue iterator */
1704 }
1705
1706 #define CRAZY_MAX_THREADS 1000
1707
1708 static ptid_t
1709 remote_current_thread (ptid_t oldpid)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712
1713 putpkt ("qC");
1714 getpkt (&rs->buf, &rs->buf_size, 0);
1715 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1716 /* Use strtoul here, so we'll correctly parse values whose highest
1717 bit is set. The protocol carries them as a simple series of
1718 hex digits; in the absence of a sign, strtol will see such
1719 values as positive numbers out of range for signed 'long', and
1720 return LONG_MAX to indicate an overflow. */
1721 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1722 else
1723 return oldpid;
1724 }
1725
1726 /* Find new threads for info threads command.
1727 * Original version, using John Metzler's thread protocol.
1728 */
1729
1730 static void
1731 remote_find_new_threads (void)
1732 {
1733 remote_threadlist_iterator (remote_newthread_step, 0,
1734 CRAZY_MAX_THREADS);
1735 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1736 inferior_ptid = remote_current_thread (inferior_ptid);
1737 }
1738
1739 /*
1740 * Find all threads for info threads command.
1741 * Uses new thread protocol contributed by Cisco.
1742 * Falls back and attempts to use the older method (above)
1743 * if the target doesn't respond to the new method.
1744 */
1745
1746 static void
1747 remote_threads_info (void)
1748 {
1749 struct remote_state *rs = get_remote_state ();
1750 char *bufp;
1751 int tid;
1752
1753 if (remote_desc == 0) /* paranoia */
1754 error (_("Command can only be used when connected to the remote target."));
1755
1756 if (use_threadinfo_query)
1757 {
1758 putpkt ("qfThreadInfo");
1759 getpkt (&rs->buf, &rs->buf_size, 0);
1760 bufp = rs->buf;
1761 if (bufp[0] != '\0') /* q packet recognized */
1762 {
1763 while (*bufp++ == 'm') /* reply contains one or more TID */
1764 {
1765 do
1766 {
1767 /* Use strtoul here, so we'll correctly parse values
1768 whose highest bit is set. The protocol carries
1769 them as a simple series of hex digits; in the
1770 absence of a sign, strtol will see such values as
1771 positive numbers out of range for signed 'long',
1772 and return LONG_MAX to indicate an overflow. */
1773 tid = strtoul (bufp, &bufp, 16);
1774 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1775 add_thread (pid_to_ptid (tid));
1776 }
1777 while (*bufp++ == ','); /* comma-separated list */
1778 putpkt ("qsThreadInfo");
1779 getpkt (&rs->buf, &rs->buf_size, 0);
1780 bufp = rs->buf;
1781 }
1782 return; /* done */
1783 }
1784 }
1785
1786 /* Else fall back to old method based on jmetzler protocol. */
1787 use_threadinfo_query = 0;
1788 remote_find_new_threads ();
1789 return;
1790 }
1791
1792 /*
1793 * Collect a descriptive string about the given thread.
1794 * The target may say anything it wants to about the thread
1795 * (typically info about its blocked / runnable state, name, etc.).
1796 * This string will appear in the info threads display.
1797 *
1798 * Optional: targets are not required to implement this function.
1799 */
1800
1801 static char *
1802 remote_threads_extra_info (struct thread_info *tp)
1803 {
1804 struct remote_state *rs = get_remote_state ();
1805 int result;
1806 int set;
1807 threadref id;
1808 struct gdb_ext_thread_info threadinfo;
1809 static char display_buf[100]; /* arbitrary... */
1810 int n = 0; /* position in display_buf */
1811
1812 if (remote_desc == 0) /* paranoia */
1813 internal_error (__FILE__, __LINE__,
1814 _("remote_threads_extra_info"));
1815
1816 if (use_threadextra_query)
1817 {
1818 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1819 PIDGET (tp->ptid));
1820 putpkt (rs->buf);
1821 getpkt (&rs->buf, &rs->buf_size, 0);
1822 if (rs->buf[0] != 0)
1823 {
1824 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1825 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1826 display_buf [result] = '\0';
1827 return display_buf;
1828 }
1829 }
1830
1831 /* If the above query fails, fall back to the old method. */
1832 use_threadextra_query = 0;
1833 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1834 | TAG_MOREDISPLAY | TAG_DISPLAY;
1835 int_to_threadref (&id, PIDGET (tp->ptid));
1836 if (remote_get_threadinfo (&id, set, &threadinfo))
1837 if (threadinfo.active)
1838 {
1839 if (*threadinfo.shortname)
1840 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1841 " Name: %s,", threadinfo.shortname);
1842 if (*threadinfo.display)
1843 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1844 " State: %s,", threadinfo.display);
1845 if (*threadinfo.more_display)
1846 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1847 " Priority: %s", threadinfo.more_display);
1848
1849 if (n > 0)
1850 {
1851 /* For purely cosmetic reasons, clear up trailing commas. */
1852 if (',' == display_buf[n-1])
1853 display_buf[n-1] = ' ';
1854 return display_buf;
1855 }
1856 }
1857 return NULL;
1858 }
1859 \f
1860
1861 /* Restart the remote side; this is an extended protocol operation. */
1862
1863 static void
1864 extended_remote_restart (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867
1868 /* Send the restart command; for reasons I don't understand the
1869 remote side really expects a number after the "R". */
1870 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1871 putpkt (rs->buf);
1872
1873 remote_fileio_reset ();
1874
1875 /* Now query for status so this looks just like we restarted
1876 gdbserver from scratch. */
1877 putpkt ("?");
1878 getpkt (&rs->buf, &rs->buf_size, 0);
1879 }
1880 \f
1881 /* Clean up connection to a remote debugger. */
1882
1883 static void
1884 remote_close (int quitting)
1885 {
1886 if (remote_desc)
1887 serial_close (remote_desc);
1888 remote_desc = NULL;
1889 }
1890
1891 /* Query the remote side for the text, data and bss offsets. */
1892
1893 static void
1894 get_offsets (void)
1895 {
1896 struct remote_state *rs = get_remote_state ();
1897 char *buf;
1898 char *ptr;
1899 int lose;
1900 CORE_ADDR text_addr, data_addr, bss_addr;
1901 struct section_offsets *offs;
1902
1903 putpkt ("qOffsets");
1904 getpkt (&rs->buf, &rs->buf_size, 0);
1905 buf = rs->buf;
1906
1907 if (buf[0] == '\000')
1908 return; /* Return silently. Stub doesn't support
1909 this command. */
1910 if (buf[0] == 'E')
1911 {
1912 warning (_("Remote failure reply: %s"), buf);
1913 return;
1914 }
1915
1916 /* Pick up each field in turn. This used to be done with scanf, but
1917 scanf will make trouble if CORE_ADDR size doesn't match
1918 conversion directives correctly. The following code will work
1919 with any size of CORE_ADDR. */
1920 text_addr = data_addr = bss_addr = 0;
1921 ptr = buf;
1922 lose = 0;
1923
1924 if (strncmp (ptr, "Text=", 5) == 0)
1925 {
1926 ptr += 5;
1927 /* Don't use strtol, could lose on big values. */
1928 while (*ptr && *ptr != ';')
1929 text_addr = (text_addr << 4) + fromhex (*ptr++);
1930 }
1931 else
1932 lose = 1;
1933
1934 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1935 {
1936 ptr += 6;
1937 while (*ptr && *ptr != ';')
1938 data_addr = (data_addr << 4) + fromhex (*ptr++);
1939 }
1940 else
1941 lose = 1;
1942
1943 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1944 {
1945 ptr += 5;
1946 while (*ptr && *ptr != ';')
1947 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1948 }
1949 else
1950 lose = 1;
1951
1952 if (lose)
1953 error (_("Malformed response to offset query, %s"), buf);
1954
1955 if (symfile_objfile == NULL)
1956 return;
1957
1958 offs = ((struct section_offsets *)
1959 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1960 memcpy (offs, symfile_objfile->section_offsets,
1961 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1962
1963 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1964
1965 /* This is a temporary kludge to force data and bss to use the same offsets
1966 because that's what nlmconv does now. The real solution requires changes
1967 to the stub and remote.c that I don't have time to do right now. */
1968
1969 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1970 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1971
1972 objfile_relocate (symfile_objfile, offs);
1973 }
1974
1975 /* Stub for catch_errors. */
1976
1977 static int
1978 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1979 {
1980 start_remote (); /* Initialize gdb process mechanisms. */
1981 /* NOTE: Return something >=0. A -ve value is reserved for
1982 catch_exceptions. */
1983 return 1;
1984 }
1985
1986 static void
1987 remote_start_remote (struct ui_out *uiout, void *dummy)
1988 {
1989 immediate_quit++; /* Allow user to interrupt it. */
1990
1991 /* Ack any packet which the remote side has already sent. */
1992 serial_write (remote_desc, "+", 1);
1993
1994 /* Let the stub know that we want it to return the thread. */
1995 set_thread (-1, 0);
1996
1997 inferior_ptid = remote_current_thread (inferior_ptid);
1998
1999 get_offsets (); /* Get text, data & bss offsets. */
2000
2001 putpkt ("?"); /* Initiate a query from remote machine. */
2002 immediate_quit--;
2003
2004 remote_start_remote_dummy (uiout, dummy);
2005 }
2006
2007 /* Open a connection to a remote debugger.
2008 NAME is the filename used for communication. */
2009
2010 static void
2011 remote_open (char *name, int from_tty)
2012 {
2013 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2014 }
2015
2016 /* Just like remote_open, but with asynchronous support. */
2017 static void
2018 remote_async_open (char *name, int from_tty)
2019 {
2020 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2021 }
2022
2023 /* Open a connection to a remote debugger using the extended
2024 remote gdb protocol. NAME is the filename used for communication. */
2025
2026 static void
2027 extended_remote_open (char *name, int from_tty)
2028 {
2029 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2030 0 /* async_p */);
2031 }
2032
2033 /* Just like extended_remote_open, but with asynchronous support. */
2034 static void
2035 extended_remote_async_open (char *name, int from_tty)
2036 {
2037 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2038 1 /*extended_p */, 1 /* async_p */);
2039 }
2040
2041 /* Generic code for opening a connection to a remote target. */
2042
2043 static void
2044 init_all_packet_configs (void)
2045 {
2046 int i;
2047 for (i = 0; i < PACKET_MAX; i++)
2048 update_packet_config (&remote_protocol_packets[i]);
2049 }
2050
2051 /* Symbol look-up. */
2052
2053 static void
2054 remote_check_symbols (struct objfile *objfile)
2055 {
2056 struct remote_state *rs = get_remote_state ();
2057 char *msg, *reply, *tmp;
2058 struct minimal_symbol *sym;
2059 int end;
2060
2061 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2062 return;
2063
2064 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2065 because we need both at the same time. */
2066 msg = alloca (get_remote_packet_size ());
2067
2068 /* Invite target to request symbol lookups. */
2069
2070 putpkt ("qSymbol::");
2071 getpkt (&rs->buf, &rs->buf_size, 0);
2072 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2073 reply = rs->buf;
2074
2075 while (strncmp (reply, "qSymbol:", 8) == 0)
2076 {
2077 tmp = &reply[8];
2078 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2079 msg[end] = '\0';
2080 sym = lookup_minimal_symbol (msg, NULL, NULL);
2081 if (sym == NULL)
2082 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2083 else
2084 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2085 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2086 &reply[8]);
2087 putpkt (msg);
2088 getpkt (&rs->buf, &rs->buf_size, 0);
2089 reply = rs->buf;
2090 }
2091 }
2092
2093 static struct serial *
2094 remote_serial_open (char *name)
2095 {
2096 static int udp_warning = 0;
2097
2098 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2099 of in ser-tcp.c, because it is the remote protocol assuming that the
2100 serial connection is reliable and not the serial connection promising
2101 to be. */
2102 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2103 {
2104 warning (_("\
2105 The remote protocol may be unreliable over UDP.\n\
2106 Some events may be lost, rendering further debugging impossible."));
2107 udp_warning = 1;
2108 }
2109
2110 return serial_open (name);
2111 }
2112
2113 /* This type describes each known response to the qSupported
2114 packet. */
2115 struct protocol_feature
2116 {
2117 /* The name of this protocol feature. */
2118 const char *name;
2119
2120 /* The default for this protocol feature. */
2121 enum packet_support default_support;
2122
2123 /* The function to call when this feature is reported, or after
2124 qSupported processing if the feature is not supported.
2125 The first argument points to this structure. The second
2126 argument indicates whether the packet requested support be
2127 enabled, disabled, or probed (or the default, if this function
2128 is being called at the end of processing and this feature was
2129 not reported). The third argument may be NULL; if not NULL, it
2130 is a NUL-terminated string taken from the packet following
2131 this feature's name and an equals sign. */
2132 void (*func) (const struct protocol_feature *, enum packet_support,
2133 const char *);
2134
2135 /* The corresponding packet for this feature. Only used if
2136 FUNC is remote_supported_packet. */
2137 int packet;
2138 };
2139
2140 static void
2141 remote_supported_packet (const struct protocol_feature *feature,
2142 enum packet_support support,
2143 const char *argument)
2144 {
2145 if (argument)
2146 {
2147 warning (_("Remote qSupported response supplied an unexpected value for"
2148 " \"%s\"."), feature->name);
2149 return;
2150 }
2151
2152 if (remote_protocol_packets[feature->packet].support
2153 == PACKET_SUPPORT_UNKNOWN)
2154 remote_protocol_packets[feature->packet].support = support;
2155 }
2156
2157 static void
2158 remote_packet_size (const struct protocol_feature *feature,
2159 enum packet_support support, const char *value)
2160 {
2161 struct remote_state *rs = get_remote_state ();
2162
2163 int packet_size;
2164 char *value_end;
2165
2166 if (support != PACKET_ENABLE)
2167 return;
2168
2169 if (value == NULL || *value == '\0')
2170 {
2171 warning (_("Remote target reported \"%s\" without a size."),
2172 feature->name);
2173 return;
2174 }
2175
2176 errno = 0;
2177 packet_size = strtol (value, &value_end, 16);
2178 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2179 {
2180 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2181 feature->name, value);
2182 return;
2183 }
2184
2185 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2186 {
2187 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2188 packet_size, MAX_REMOTE_PACKET_SIZE);
2189 packet_size = MAX_REMOTE_PACKET_SIZE;
2190 }
2191
2192 /* Record the new maximum packet size. */
2193 rs->explicit_packet_size = packet_size;
2194 }
2195
2196 static struct protocol_feature remote_protocol_features[] = {
2197 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2198 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2199 PACKET_qXfer_auxv },
2200 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2201 PACKET_qXfer_memory_map }
2202 };
2203
2204 static void
2205 remote_query_supported (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208 char *next;
2209 int i;
2210 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2211
2212 /* The packet support flags are handled differently for this packet
2213 than for most others. We treat an error, a disabled packet, and
2214 an empty response identically: any features which must be reported
2215 to be used will be automatically disabled. An empty buffer
2216 accomplishes this, since that is also the representation for a list
2217 containing no features. */
2218
2219 rs->buf[0] = 0;
2220 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2221 {
2222 putpkt ("qSupported");
2223 getpkt (&rs->buf, &rs->buf_size, 0);
2224
2225 /* If an error occured, warn, but do not return - just reset the
2226 buffer to empty and go on to disable features. */
2227 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2228 == PACKET_ERROR)
2229 {
2230 warning (_("Remote failure reply: %s"), rs->buf);
2231 rs->buf[0] = 0;
2232 }
2233 }
2234
2235 memset (seen, 0, sizeof (seen));
2236
2237 next = rs->buf;
2238 while (*next)
2239 {
2240 enum packet_support is_supported;
2241 char *p, *end, *name_end, *value;
2242
2243 /* First separate out this item from the rest of the packet. If
2244 there's another item after this, we overwrite the separator
2245 (terminated strings are much easier to work with). */
2246 p = next;
2247 end = strchr (p, ';');
2248 if (end == NULL)
2249 {
2250 end = p + strlen (p);
2251 next = end;
2252 }
2253 else
2254 {
2255 if (end == p)
2256 {
2257 warning (_("empty item in \"qSupported\" response"));
2258 continue;
2259 }
2260
2261 *end = '\0';
2262 next = end + 1;
2263 }
2264
2265 name_end = strchr (p, '=');
2266 if (name_end)
2267 {
2268 /* This is a name=value entry. */
2269 is_supported = PACKET_ENABLE;
2270 value = name_end + 1;
2271 *name_end = '\0';
2272 }
2273 else
2274 {
2275 value = NULL;
2276 switch (end[-1])
2277 {
2278 case '+':
2279 is_supported = PACKET_ENABLE;
2280 break;
2281
2282 case '-':
2283 is_supported = PACKET_DISABLE;
2284 break;
2285
2286 case '?':
2287 is_supported = PACKET_SUPPORT_UNKNOWN;
2288 break;
2289
2290 default:
2291 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2292 continue;
2293 }
2294 end[-1] = '\0';
2295 }
2296
2297 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2298 if (strcmp (remote_protocol_features[i].name, p) == 0)
2299 {
2300 const struct protocol_feature *feature;
2301
2302 seen[i] = 1;
2303 feature = &remote_protocol_features[i];
2304 feature->func (feature, is_supported, value);
2305 break;
2306 }
2307 }
2308
2309 /* If we increased the packet size, make sure to increase the global
2310 buffer size also. We delay this until after parsing the entire
2311 qSupported packet, because this is the same buffer we were
2312 parsing. */
2313 if (rs->buf_size < rs->explicit_packet_size)
2314 {
2315 rs->buf_size = rs->explicit_packet_size;
2316 rs->buf = xrealloc (rs->buf, rs->buf_size);
2317 }
2318
2319 /* Handle the defaults for unmentioned features. */
2320 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2321 if (!seen[i])
2322 {
2323 const struct protocol_feature *feature;
2324
2325 feature = &remote_protocol_features[i];
2326 feature->func (feature, feature->default_support, NULL);
2327 }
2328 }
2329
2330
2331 static void
2332 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2333 int extended_p, int async_p)
2334 {
2335 struct remote_state *rs = get_remote_state ();
2336 if (name == 0)
2337 error (_("To open a remote debug connection, you need to specify what\n"
2338 "serial device is attached to the remote system\n"
2339 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2340
2341 /* See FIXME above. */
2342 if (!async_p)
2343 wait_forever_enabled_p = 1;
2344
2345 target_preopen (from_tty);
2346
2347 unpush_target (target);
2348
2349 remote_fileio_reset ();
2350 reopen_exec_file ();
2351 reread_symbols ();
2352
2353 remote_desc = remote_serial_open (name);
2354 if (!remote_desc)
2355 perror_with_name (name);
2356
2357 if (baud_rate != -1)
2358 {
2359 if (serial_setbaudrate (remote_desc, baud_rate))
2360 {
2361 /* The requested speed could not be set. Error out to
2362 top level after closing remote_desc. Take care to
2363 set remote_desc to NULL to avoid closing remote_desc
2364 more than once. */
2365 serial_close (remote_desc);
2366 remote_desc = NULL;
2367 perror_with_name (name);
2368 }
2369 }
2370
2371 serial_raw (remote_desc);
2372
2373 /* If there is something sitting in the buffer we might take it as a
2374 response to a command, which would be bad. */
2375 serial_flush_input (remote_desc);
2376
2377 if (from_tty)
2378 {
2379 puts_filtered ("Remote debugging using ");
2380 puts_filtered (name);
2381 puts_filtered ("\n");
2382 }
2383 push_target (target); /* Switch to using remote target now. */
2384
2385 /* Reset the target state; these things will be queried either by
2386 remote_query_supported or as they are needed. */
2387 init_all_packet_configs ();
2388 rs->explicit_packet_size = 0;
2389
2390 general_thread = -2;
2391 continue_thread = -2;
2392
2393 /* Probe for ability to use "ThreadInfo" query, as required. */
2394 use_threadinfo_query = 1;
2395 use_threadextra_query = 1;
2396
2397 /* The first packet we send to the target is the optional "supported
2398 packets" request. If the target can answer this, it will tell us
2399 which later probes to skip. */
2400 remote_query_supported ();
2401
2402 /* Without this, some commands which require an active target (such
2403 as kill) won't work. This variable serves (at least) double duty
2404 as both the pid of the target process (if it has such), and as a
2405 flag indicating that a target is active. These functions should
2406 be split out into seperate variables, especially since GDB will
2407 someday have a notion of debugging several processes. */
2408
2409 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2410
2411 if (async_p)
2412 {
2413 /* With this target we start out by owning the terminal. */
2414 remote_async_terminal_ours_p = 1;
2415
2416 /* FIXME: cagney/1999-09-23: During the initial connection it is
2417 assumed that the target is already ready and able to respond to
2418 requests. Unfortunately remote_start_remote() eventually calls
2419 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2420 around this. Eventually a mechanism that allows
2421 wait_for_inferior() to expect/get timeouts will be
2422 implemented. */
2423 wait_forever_enabled_p = 0;
2424 }
2425
2426 /* First delete any symbols previously loaded from shared libraries. */
2427 no_shared_libraries (NULL, 0);
2428
2429 /* Start the remote connection. If error() or QUIT, discard this
2430 target (we'd otherwise be in an inconsistent state) and then
2431 propogate the error on up the exception chain. This ensures that
2432 the caller doesn't stumble along blindly assuming that the
2433 function succeeded. The CLI doesn't have this problem but other
2434 UI's, such as MI do.
2435
2436 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2437 this function should return an error indication letting the
2438 caller restore the previous state. Unfortunately the command
2439 ``target remote'' is directly wired to this function making that
2440 impossible. On a positive note, the CLI side of this problem has
2441 been fixed - the function set_cmd_context() makes it possible for
2442 all the ``target ....'' commands to share a common callback
2443 function. See cli-dump.c. */
2444 {
2445 struct gdb_exception ex
2446 = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2447 if (ex.reason < 0)
2448 {
2449 pop_target ();
2450 if (async_p)
2451 wait_forever_enabled_p = 1;
2452 throw_exception (ex);
2453 }
2454 }
2455
2456 if (async_p)
2457 wait_forever_enabled_p = 1;
2458
2459 if (extended_p)
2460 {
2461 /* Tell the remote that we are using the extended protocol. */
2462 putpkt ("!");
2463 getpkt (&rs->buf, &rs->buf_size, 0);
2464 }
2465
2466 post_create_inferior (&current_target, from_tty);
2467
2468 if (exec_bfd) /* No use without an exec file. */
2469 remote_check_symbols (symfile_objfile);
2470 }
2471
2472 /* This takes a program previously attached to and detaches it. After
2473 this is done, GDB can be used to debug some other program. We
2474 better not have left any breakpoints in the target program or it'll
2475 die when it hits one. */
2476
2477 static void
2478 remote_detach (char *args, int from_tty)
2479 {
2480 struct remote_state *rs = get_remote_state ();
2481
2482 if (args)
2483 error (_("Argument given to \"detach\" when remotely debugging."));
2484
2485 /* Tell the remote target to detach. */
2486 strcpy (rs->buf, "D");
2487 remote_send (&rs->buf, &rs->buf_size);
2488
2489 /* Unregister the file descriptor from the event loop. */
2490 if (target_is_async_p ())
2491 serial_async (remote_desc, NULL, 0);
2492
2493 target_mourn_inferior ();
2494 if (from_tty)
2495 puts_filtered ("Ending remote debugging.\n");
2496 }
2497
2498 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2499
2500 static void
2501 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2502 {
2503 if (args)
2504 error (_("Argument given to \"detach\" when remotely debugging."));
2505
2506 /* Unregister the file descriptor from the event loop. */
2507 if (target_is_async_p ())
2508 serial_async (remote_desc, NULL, 0);
2509
2510 target_mourn_inferior ();
2511 if (from_tty)
2512 puts_filtered ("Ending remote debugging.\n");
2513 }
2514
2515 /* Convert hex digit A to a number. */
2516
2517 static int
2518 fromhex (int a)
2519 {
2520 if (a >= '0' && a <= '9')
2521 return a - '0';
2522 else if (a >= 'a' && a <= 'f')
2523 return a - 'a' + 10;
2524 else if (a >= 'A' && a <= 'F')
2525 return a - 'A' + 10;
2526 else
2527 error (_("Reply contains invalid hex digit %d"), a);
2528 }
2529
2530 static int
2531 hex2bin (const char *hex, gdb_byte *bin, int count)
2532 {
2533 int i;
2534
2535 for (i = 0; i < count; i++)
2536 {
2537 if (hex[0] == 0 || hex[1] == 0)
2538 {
2539 /* Hex string is short, or of uneven length.
2540 Return the count that has been converted so far. */
2541 return i;
2542 }
2543 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2544 hex += 2;
2545 }
2546 return i;
2547 }
2548
2549 /* Convert number NIB to a hex digit. */
2550
2551 static int
2552 tohex (int nib)
2553 {
2554 if (nib < 10)
2555 return '0' + nib;
2556 else
2557 return 'a' + nib - 10;
2558 }
2559
2560 static int
2561 bin2hex (const gdb_byte *bin, char *hex, int count)
2562 {
2563 int i;
2564 /* May use a length, or a nul-terminated string as input. */
2565 if (count == 0)
2566 count = strlen ((char *) bin);
2567
2568 for (i = 0; i < count; i++)
2569 {
2570 *hex++ = tohex ((*bin >> 4) & 0xf);
2571 *hex++ = tohex (*bin++ & 0xf);
2572 }
2573 *hex = 0;
2574 return i;
2575 }
2576 \f
2577 /* Check for the availability of vCont. This function should also check
2578 the response. */
2579
2580 static void
2581 remote_vcont_probe (struct remote_state *rs)
2582 {
2583 char *buf;
2584
2585 strcpy (rs->buf, "vCont?");
2586 putpkt (rs->buf);
2587 getpkt (&rs->buf, &rs->buf_size, 0);
2588 buf = rs->buf;
2589
2590 /* Make sure that the features we assume are supported. */
2591 if (strncmp (buf, "vCont", 5) == 0)
2592 {
2593 char *p = &buf[5];
2594 int support_s, support_S, support_c, support_C;
2595
2596 support_s = 0;
2597 support_S = 0;
2598 support_c = 0;
2599 support_C = 0;
2600 while (p && *p == ';')
2601 {
2602 p++;
2603 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2604 support_s = 1;
2605 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2606 support_S = 1;
2607 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2608 support_c = 1;
2609 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2610 support_C = 1;
2611
2612 p = strchr (p, ';');
2613 }
2614
2615 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2616 BUF will make packet_ok disable the packet. */
2617 if (!support_s || !support_S || !support_c || !support_C)
2618 buf[0] = 0;
2619 }
2620
2621 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2622 }
2623
2624 /* Resume the remote inferior by using a "vCont" packet. The thread
2625 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2626 resumed thread should be single-stepped and/or signalled. If PTID's
2627 PID is -1, then all threads are resumed; the thread to be stepped and/or
2628 signalled is given in the global INFERIOR_PTID. This function returns
2629 non-zero iff it resumes the inferior.
2630
2631 This function issues a strict subset of all possible vCont commands at the
2632 moment. */
2633
2634 static int
2635 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2636 {
2637 struct remote_state *rs = get_remote_state ();
2638 int pid = PIDGET (ptid);
2639 char *buf = NULL, *outbuf;
2640 struct cleanup *old_cleanup;
2641
2642 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2643 remote_vcont_probe (rs);
2644
2645 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2646 return 0;
2647
2648 /* If we could generate a wider range of packets, we'd have to worry
2649 about overflowing BUF. Should there be a generic
2650 "multi-part-packet" packet? */
2651
2652 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2653 {
2654 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2655 don't have any PID numbers the inferior will understand. Make sure
2656 to only send forms that do not specify a PID. */
2657 if (step && siggnal != TARGET_SIGNAL_0)
2658 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2659 else if (step)
2660 outbuf = xstrprintf ("vCont;s");
2661 else if (siggnal != TARGET_SIGNAL_0)
2662 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2663 else
2664 outbuf = xstrprintf ("vCont;c");
2665 }
2666 else if (pid == -1)
2667 {
2668 /* Resume all threads, with preference for INFERIOR_PTID. */
2669 if (step && siggnal != TARGET_SIGNAL_0)
2670 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2671 PIDGET (inferior_ptid));
2672 else if (step)
2673 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2674 else if (siggnal != TARGET_SIGNAL_0)
2675 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2676 PIDGET (inferior_ptid));
2677 else
2678 outbuf = xstrprintf ("vCont;c");
2679 }
2680 else
2681 {
2682 /* Scheduler locking; resume only PTID. */
2683 if (step && siggnal != TARGET_SIGNAL_0)
2684 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2685 else if (step)
2686 outbuf = xstrprintf ("vCont;s:%x", pid);
2687 else if (siggnal != TARGET_SIGNAL_0)
2688 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2689 else
2690 outbuf = xstrprintf ("vCont;c:%x", pid);
2691 }
2692
2693 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2694 old_cleanup = make_cleanup (xfree, outbuf);
2695
2696 putpkt (outbuf);
2697
2698 do_cleanups (old_cleanup);
2699
2700 return 1;
2701 }
2702
2703 /* Tell the remote machine to resume. */
2704
2705 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2706
2707 static int last_sent_step;
2708
2709 static void
2710 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2711 {
2712 struct remote_state *rs = get_remote_state ();
2713 char *buf;
2714 int pid = PIDGET (ptid);
2715
2716 last_sent_signal = siggnal;
2717 last_sent_step = step;
2718
2719 /* A hook for when we need to do something at the last moment before
2720 resumption. */
2721 if (deprecated_target_resume_hook)
2722 (*deprecated_target_resume_hook) ();
2723
2724 /* The vCont packet doesn't need to specify threads via Hc. */
2725 if (remote_vcont_resume (ptid, step, siggnal))
2726 return;
2727
2728 /* All other supported resume packets do use Hc, so call set_thread. */
2729 if (pid == -1)
2730 set_thread (0, 0); /* Run any thread. */
2731 else
2732 set_thread (pid, 0); /* Run this thread. */
2733
2734 buf = rs->buf;
2735 if (siggnal != TARGET_SIGNAL_0)
2736 {
2737 buf[0] = step ? 'S' : 'C';
2738 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2739 buf[2] = tohex (((int) siggnal) & 0xf);
2740 buf[3] = '\0';
2741 }
2742 else
2743 strcpy (buf, step ? "s" : "c");
2744
2745 putpkt (buf);
2746 }
2747
2748 /* Same as remote_resume, but with async support. */
2749 static void
2750 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2751 {
2752 remote_resume (ptid, step, siggnal);
2753
2754 /* We are about to start executing the inferior, let's register it
2755 with the event loop. NOTE: this is the one place where all the
2756 execution commands end up. We could alternatively do this in each
2757 of the execution commands in infcmd.c. */
2758 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2759 into infcmd.c in order to allow inferior function calls to work
2760 NOT asynchronously. */
2761 if (target_can_async_p ())
2762 target_async (inferior_event_handler, 0);
2763 /* Tell the world that the target is now executing. */
2764 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2765 this? Instead, should the client of target just assume (for
2766 async targets) that the target is going to start executing? Is
2767 this information already found in the continuation block? */
2768 if (target_is_async_p ())
2769 target_executing = 1;
2770 }
2771 \f
2772
2773 /* Set up the signal handler for SIGINT, while the target is
2774 executing, ovewriting the 'regular' SIGINT signal handler. */
2775 static void
2776 initialize_sigint_signal_handler (void)
2777 {
2778 sigint_remote_token =
2779 create_async_signal_handler (async_remote_interrupt, NULL);
2780 signal (SIGINT, handle_remote_sigint);
2781 }
2782
2783 /* Signal handler for SIGINT, while the target is executing. */
2784 static void
2785 handle_remote_sigint (int sig)
2786 {
2787 signal (sig, handle_remote_sigint_twice);
2788 sigint_remote_twice_token =
2789 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2790 mark_async_signal_handler_wrapper (sigint_remote_token);
2791 }
2792
2793 /* Signal handler for SIGINT, installed after SIGINT has already been
2794 sent once. It will take effect the second time that the user sends
2795 a ^C. */
2796 static void
2797 handle_remote_sigint_twice (int sig)
2798 {
2799 signal (sig, handle_sigint);
2800 sigint_remote_twice_token =
2801 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2802 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2803 }
2804
2805 /* Perform the real interruption of the target execution, in response
2806 to a ^C. */
2807 static void
2808 async_remote_interrupt (gdb_client_data arg)
2809 {
2810 if (remote_debug)
2811 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2812
2813 target_stop ();
2814 }
2815
2816 /* Perform interrupt, if the first attempt did not succeed. Just give
2817 up on the target alltogether. */
2818 void
2819 async_remote_interrupt_twice (gdb_client_data arg)
2820 {
2821 if (remote_debug)
2822 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2823 /* Do something only if the target was not killed by the previous
2824 cntl-C. */
2825 if (target_executing)
2826 {
2827 interrupt_query ();
2828 signal (SIGINT, handle_remote_sigint);
2829 }
2830 }
2831
2832 /* Reinstall the usual SIGINT handlers, after the target has
2833 stopped. */
2834 static void
2835 cleanup_sigint_signal_handler (void *dummy)
2836 {
2837 signal (SIGINT, handle_sigint);
2838 if (sigint_remote_twice_token)
2839 delete_async_signal_handler ((struct async_signal_handler **)
2840 &sigint_remote_twice_token);
2841 if (sigint_remote_token)
2842 delete_async_signal_handler ((struct async_signal_handler **)
2843 &sigint_remote_token);
2844 }
2845
2846 /* Send ^C to target to halt it. Target will respond, and send us a
2847 packet. */
2848 static void (*ofunc) (int);
2849
2850 /* The command line interface's stop routine. This function is installed
2851 as a signal handler for SIGINT. The first time a user requests a
2852 stop, we call remote_stop to send a break or ^C. If there is no
2853 response from the target (it didn't stop when the user requested it),
2854 we ask the user if he'd like to detach from the target. */
2855 static void
2856 remote_interrupt (int signo)
2857 {
2858 /* If this doesn't work, try more severe steps. */
2859 signal (signo, remote_interrupt_twice);
2860
2861 if (remote_debug)
2862 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2863
2864 target_stop ();
2865 }
2866
2867 /* The user typed ^C twice. */
2868
2869 static void
2870 remote_interrupt_twice (int signo)
2871 {
2872 signal (signo, ofunc);
2873 interrupt_query ();
2874 signal (signo, remote_interrupt);
2875 }
2876
2877 /* This is the generic stop called via the target vector. When a target
2878 interrupt is requested, either by the command line or the GUI, we
2879 will eventually end up here. */
2880 static void
2881 remote_stop (void)
2882 {
2883 /* Send a break or a ^C, depending on user preference. */
2884 if (remote_debug)
2885 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2886
2887 if (remote_break)
2888 serial_send_break (remote_desc);
2889 else
2890 serial_write (remote_desc, "\003", 1);
2891 }
2892
2893 /* Ask the user what to do when an interrupt is received. */
2894
2895 static void
2896 interrupt_query (void)
2897 {
2898 target_terminal_ours ();
2899
2900 if (query ("Interrupted while waiting for the program.\n\
2901 Give up (and stop debugging it)? "))
2902 {
2903 target_mourn_inferior ();
2904 deprecated_throw_reason (RETURN_QUIT);
2905 }
2906
2907 target_terminal_inferior ();
2908 }
2909
2910 /* Enable/disable target terminal ownership. Most targets can use
2911 terminal groups to control terminal ownership. Remote targets are
2912 different in that explicit transfer of ownership to/from GDB/target
2913 is required. */
2914
2915 static void
2916 remote_async_terminal_inferior (void)
2917 {
2918 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2919 sync_execution here. This function should only be called when
2920 GDB is resuming the inferior in the forground. A background
2921 resume (``run&'') should leave GDB in control of the terminal and
2922 consequently should not call this code. */
2923 if (!sync_execution)
2924 return;
2925 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2926 calls target_terminal_*() idenpotent. The event-loop GDB talking
2927 to an asynchronous target with a synchronous command calls this
2928 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2929 stops trying to transfer the terminal to the target when it
2930 shouldn't this guard can go away. */
2931 if (!remote_async_terminal_ours_p)
2932 return;
2933 delete_file_handler (input_fd);
2934 remote_async_terminal_ours_p = 0;
2935 initialize_sigint_signal_handler ();
2936 /* NOTE: At this point we could also register our selves as the
2937 recipient of all input. Any characters typed could then be
2938 passed on down to the target. */
2939 }
2940
2941 static void
2942 remote_async_terminal_ours (void)
2943 {
2944 /* See FIXME in remote_async_terminal_inferior. */
2945 if (!sync_execution)
2946 return;
2947 /* See FIXME in remote_async_terminal_inferior. */
2948 if (remote_async_terminal_ours_p)
2949 return;
2950 cleanup_sigint_signal_handler (NULL);
2951 add_file_handler (input_fd, stdin_event_handler, 0);
2952 remote_async_terminal_ours_p = 1;
2953 }
2954
2955 /* If nonzero, ignore the next kill. */
2956
2957 int kill_kludge;
2958
2959 void
2960 remote_console_output (char *msg)
2961 {
2962 char *p;
2963
2964 for (p = msg; p[0] && p[1]; p += 2)
2965 {
2966 char tb[2];
2967 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2968 tb[0] = c;
2969 tb[1] = 0;
2970 fputs_unfiltered (tb, gdb_stdtarg);
2971 }
2972 gdb_flush (gdb_stdtarg);
2973 }
2974
2975 /* Wait until the remote machine stops, then return,
2976 storing status in STATUS just as `wait' would.
2977 Returns "pid", which in the case of a multi-threaded
2978 remote OS, is the thread-id. */
2979
2980 static ptid_t
2981 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2982 {
2983 struct remote_state *rs = get_remote_state ();
2984 struct remote_arch_state *rsa = get_remote_arch_state ();
2985 ULONGEST thread_num = -1;
2986 ULONGEST addr;
2987
2988 status->kind = TARGET_WAITKIND_EXITED;
2989 status->value.integer = 0;
2990
2991 while (1)
2992 {
2993 char *buf, *p;
2994
2995 ofunc = signal (SIGINT, remote_interrupt);
2996 getpkt (&rs->buf, &rs->buf_size, 1);
2997 signal (SIGINT, ofunc);
2998
2999 buf = rs->buf;
3000
3001 /* This is a hook for when we need to do something (perhaps the
3002 collection of trace data) every time the target stops. */
3003 if (deprecated_target_wait_loop_hook)
3004 (*deprecated_target_wait_loop_hook) ();
3005
3006 remote_stopped_by_watchpoint_p = 0;
3007
3008 switch (buf[0])
3009 {
3010 case 'E': /* Error of some sort. */
3011 warning (_("Remote failure reply: %s"), buf);
3012 continue;
3013 case 'F': /* File-I/O request. */
3014 remote_fileio_request (buf);
3015 continue;
3016 case 'T': /* Status with PC, SP, FP, ... */
3017 {
3018 gdb_byte regs[MAX_REGISTER_SIZE];
3019
3020 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3021 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3022 ss = signal number
3023 n... = register number
3024 r... = register contents
3025 */
3026 p = &buf[3]; /* after Txx */
3027
3028 while (*p)
3029 {
3030 char *p1;
3031 char *p_temp;
3032 int fieldsize;
3033 LONGEST pnum = 0;
3034
3035 /* If the packet contains a register number save it in
3036 pnum and set p1 to point to the character following
3037 it. Otherwise p1 points to p. */
3038
3039 /* If this packet is an awatch packet, don't parse the
3040 'a' as a register number. */
3041
3042 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3043 {
3044 /* Read the ``P'' register number. */
3045 pnum = strtol (p, &p_temp, 16);
3046 p1 = p_temp;
3047 }
3048 else
3049 p1 = p;
3050
3051 if (p1 == p) /* No register number present here. */
3052 {
3053 p1 = strchr (p, ':');
3054 if (p1 == NULL)
3055 error (_("Malformed packet(a) (missing colon): %s\n\
3056 Packet: '%s'\n"),
3057 p, buf);
3058 if (strncmp (p, "thread", p1 - p) == 0)
3059 {
3060 p_temp = unpack_varlen_hex (++p1, &thread_num);
3061 record_currthread (thread_num);
3062 p = p_temp;
3063 }
3064 else if ((strncmp (p, "watch", p1 - p) == 0)
3065 || (strncmp (p, "rwatch", p1 - p) == 0)
3066 || (strncmp (p, "awatch", p1 - p) == 0))
3067 {
3068 remote_stopped_by_watchpoint_p = 1;
3069 p = unpack_varlen_hex (++p1, &addr);
3070 remote_watch_data_address = (CORE_ADDR)addr;
3071 }
3072 else
3073 {
3074 /* Silently skip unknown optional info. */
3075 p_temp = strchr (p1 + 1, ';');
3076 if (p_temp)
3077 p = p_temp;
3078 }
3079 }
3080 else
3081 {
3082 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3083 p = p1;
3084
3085 if (*p++ != ':')
3086 error (_("Malformed packet(b) (missing colon): %s\n\
3087 Packet: '%s'\n"),
3088 p, buf);
3089
3090 if (reg == NULL)
3091 error (_("Remote sent bad register number %s: %s\n\
3092 Packet: '%s'\n"),
3093 phex_nz (pnum, 0), p, buf);
3094
3095 fieldsize = hex2bin (p, regs,
3096 register_size (current_gdbarch,
3097 reg->regnum));
3098 p += 2 * fieldsize;
3099 if (fieldsize < register_size (current_gdbarch,
3100 reg->regnum))
3101 warning (_("Remote reply is too short: %s"), buf);
3102 regcache_raw_supply (current_regcache,
3103 reg->regnum, regs);
3104 }
3105
3106 if (*p++ != ';')
3107 error (_("Remote register badly formatted: %s\nhere: %s"),
3108 buf, p);
3109 }
3110 }
3111 /* fall through */
3112 case 'S': /* Old style status, just signal only. */
3113 status->kind = TARGET_WAITKIND_STOPPED;
3114 status->value.sig = (enum target_signal)
3115 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3116
3117 if (buf[3] == 'p')
3118 {
3119 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3120 record_currthread (thread_num);
3121 }
3122 goto got_status;
3123 case 'W': /* Target exited. */
3124 {
3125 /* The remote process exited. */
3126 status->kind = TARGET_WAITKIND_EXITED;
3127 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3128 goto got_status;
3129 }
3130 case 'X':
3131 status->kind = TARGET_WAITKIND_SIGNALLED;
3132 status->value.sig = (enum target_signal)
3133 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3134 kill_kludge = 1;
3135
3136 goto got_status;
3137 case 'O': /* Console output. */
3138 remote_console_output (buf + 1);
3139 continue;
3140 case '\0':
3141 if (last_sent_signal != TARGET_SIGNAL_0)
3142 {
3143 /* Zero length reply means that we tried 'S' or 'C' and
3144 the remote system doesn't support it. */
3145 target_terminal_ours_for_output ();
3146 printf_filtered
3147 ("Can't send signals to this remote system. %s not sent.\n",
3148 target_signal_to_name (last_sent_signal));
3149 last_sent_signal = TARGET_SIGNAL_0;
3150 target_terminal_inferior ();
3151
3152 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3153 putpkt ((char *) buf);
3154 continue;
3155 }
3156 /* else fallthrough */
3157 default:
3158 warning (_("Invalid remote reply: %s"), buf);
3159 continue;
3160 }
3161 }
3162 got_status:
3163 if (thread_num != -1)
3164 {
3165 return pid_to_ptid (thread_num);
3166 }
3167 return inferior_ptid;
3168 }
3169
3170 /* Async version of remote_wait. */
3171 static ptid_t
3172 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3173 {
3174 struct remote_state *rs = get_remote_state ();
3175 struct remote_arch_state *rsa = get_remote_arch_state ();
3176 ULONGEST thread_num = -1;
3177 ULONGEST addr;
3178
3179 status->kind = TARGET_WAITKIND_EXITED;
3180 status->value.integer = 0;
3181
3182 remote_stopped_by_watchpoint_p = 0;
3183
3184 while (1)
3185 {
3186 char *buf, *p;
3187
3188 if (!target_is_async_p ())
3189 ofunc = signal (SIGINT, remote_interrupt);
3190 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3191 _never_ wait for ever -> test on target_is_async_p().
3192 However, before we do that we need to ensure that the caller
3193 knows how to take the target into/out of async mode. */
3194 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3195 if (!target_is_async_p ())
3196 signal (SIGINT, ofunc);
3197
3198 buf = rs->buf;
3199
3200 /* This is a hook for when we need to do something (perhaps the
3201 collection of trace data) every time the target stops. */
3202 if (deprecated_target_wait_loop_hook)
3203 (*deprecated_target_wait_loop_hook) ();
3204
3205 switch (buf[0])
3206 {
3207 case 'E': /* Error of some sort. */
3208 warning (_("Remote failure reply: %s"), buf);
3209 continue;
3210 case 'F': /* File-I/O request. */
3211 remote_fileio_request (buf);
3212 continue;
3213 case 'T': /* Status with PC, SP, FP, ... */
3214 {
3215 gdb_byte regs[MAX_REGISTER_SIZE];
3216
3217 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3218 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3219 ss = signal number
3220 n... = register number
3221 r... = register contents
3222 */
3223 p = &buf[3]; /* after Txx */
3224
3225 while (*p)
3226 {
3227 char *p1;
3228 char *p_temp;
3229 int fieldsize;
3230 long pnum = 0;
3231
3232 /* If the packet contains a register number, save it
3233 in pnum and set p1 to point to the character
3234 following it. Otherwise p1 points to p. */
3235
3236 /* If this packet is an awatch packet, don't parse the 'a'
3237 as a register number. */
3238
3239 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3240 {
3241 /* Read the register number. */
3242 pnum = strtol (p, &p_temp, 16);
3243 p1 = p_temp;
3244 }
3245 else
3246 p1 = p;
3247
3248 if (p1 == p) /* No register number present here. */
3249 {
3250 p1 = strchr (p, ':');
3251 if (p1 == NULL)
3252 error (_("Malformed packet(a) (missing colon): %s\n\
3253 Packet: '%s'\n"),
3254 p, buf);
3255 if (strncmp (p, "thread", p1 - p) == 0)
3256 {
3257 p_temp = unpack_varlen_hex (++p1, &thread_num);
3258 record_currthread (thread_num);
3259 p = p_temp;
3260 }
3261 else if ((strncmp (p, "watch", p1 - p) == 0)
3262 || (strncmp (p, "rwatch", p1 - p) == 0)
3263 || (strncmp (p, "awatch", p1 - p) == 0))
3264 {
3265 remote_stopped_by_watchpoint_p = 1;
3266 p = unpack_varlen_hex (++p1, &addr);
3267 remote_watch_data_address = (CORE_ADDR)addr;
3268 }
3269 else
3270 {
3271 /* Silently skip unknown optional info. */
3272 p_temp = strchr (p1 + 1, ';');
3273 if (p_temp)
3274 p = p_temp;
3275 }
3276 }
3277
3278 else
3279 {
3280 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3281 p = p1;
3282 if (*p++ != ':')
3283 error (_("Malformed packet(b) (missing colon): %s\n\
3284 Packet: '%s'\n"),
3285 p, buf);
3286
3287 if (reg == NULL)
3288 error (_("Remote sent bad register number %ld: %s\n\
3289 Packet: '%s'\n"),
3290 pnum, p, buf);
3291
3292 fieldsize = hex2bin (p, regs,
3293 register_size (current_gdbarch,
3294 reg->regnum));
3295 p += 2 * fieldsize;
3296 if (fieldsize < register_size (current_gdbarch,
3297 reg->regnum))
3298 warning (_("Remote reply is too short: %s"), buf);
3299 regcache_raw_supply (current_regcache, reg->regnum, regs);
3300 }
3301
3302 if (*p++ != ';')
3303 error (_("Remote register badly formatted: %s\nhere: %s"),
3304 buf, p);
3305 }
3306 }
3307 /* fall through */
3308 case 'S': /* Old style status, just signal only. */
3309 status->kind = TARGET_WAITKIND_STOPPED;
3310 status->value.sig = (enum target_signal)
3311 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3312
3313 if (buf[3] == 'p')
3314 {
3315 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3316 record_currthread (thread_num);
3317 }
3318 goto got_status;
3319 case 'W': /* Target exited. */
3320 {
3321 /* The remote process exited. */
3322 status->kind = TARGET_WAITKIND_EXITED;
3323 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3324 goto got_status;
3325 }
3326 case 'X':
3327 status->kind = TARGET_WAITKIND_SIGNALLED;
3328 status->value.sig = (enum target_signal)
3329 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3330 kill_kludge = 1;
3331
3332 goto got_status;
3333 case 'O': /* Console output. */
3334 remote_console_output (buf + 1);
3335 /* Return immediately to the event loop. The event loop will
3336 still be waiting on the inferior afterwards. */
3337 status->kind = TARGET_WAITKIND_IGNORE;
3338 goto got_status;
3339 case '\0':
3340 if (last_sent_signal != TARGET_SIGNAL_0)
3341 {
3342 /* Zero length reply means that we tried 'S' or 'C' and
3343 the remote system doesn't support it. */
3344 target_terminal_ours_for_output ();
3345 printf_filtered
3346 ("Can't send signals to this remote system. %s not sent.\n",
3347 target_signal_to_name (last_sent_signal));
3348 last_sent_signal = TARGET_SIGNAL_0;
3349 target_terminal_inferior ();
3350
3351 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3352 putpkt ((char *) buf);
3353 continue;
3354 }
3355 /* else fallthrough */
3356 default:
3357 warning (_("Invalid remote reply: %s"), buf);
3358 continue;
3359 }
3360 }
3361 got_status:
3362 if (thread_num != -1)
3363 {
3364 return pid_to_ptid (thread_num);
3365 }
3366 return inferior_ptid;
3367 }
3368
3369 /* Number of bytes of registers this stub implements. */
3370
3371 static int register_bytes_found;
3372
3373 /* Read the remote registers into the block REGS. */
3374 /* Currently we just read all the registers, so we don't use regnum. */
3375
3376 static int
3377 fetch_register_using_p (int regnum)
3378 {
3379 struct remote_state *rs = get_remote_state ();
3380 char *buf, *p;
3381 char regp[MAX_REGISTER_SIZE];
3382 int i;
3383
3384 p = rs->buf;
3385 *p++ = 'p';
3386 p += hexnumstr (p, regnum);
3387 *p++ = '\0';
3388 remote_send (&rs->buf, &rs->buf_size);
3389
3390 buf = rs->buf;
3391
3392 /* If the stub didn't recognize the packet, or if we got an error,
3393 tell our caller. */
3394 if (buf[0] == '\0' || buf[0] == 'E')
3395 return 0;
3396
3397 /* If this register is unfetchable, tell the regcache. */
3398 if (buf[0] == 'x')
3399 {
3400 regcache_raw_supply (current_regcache, regnum, NULL);
3401 set_register_cached (regnum, -1);
3402 return 1;
3403 }
3404
3405 /* Otherwise, parse and supply the value. */
3406 p = buf;
3407 i = 0;
3408 while (p[0] != 0)
3409 {
3410 if (p[1] == 0)
3411 {
3412 error (_("fetch_register_using_p: early buf termination"));
3413 return 0;
3414 }
3415
3416 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3417 p += 2;
3418 }
3419 regcache_raw_supply (current_regcache, regnum, regp);
3420 return 1;
3421 }
3422
3423 static void
3424 remote_fetch_registers (int regnum)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 struct remote_arch_state *rsa = get_remote_arch_state ();
3428 char *buf;
3429 int i;
3430 char *p;
3431 char *regs = alloca (rsa->sizeof_g_packet);
3432
3433 set_thread (PIDGET (inferior_ptid), 1);
3434
3435 if (regnum >= 0)
3436 {
3437 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3438 gdb_assert (reg != NULL);
3439 if (!reg->in_g_packet)
3440 internal_error (__FILE__, __LINE__,
3441 _("Attempt to fetch a non G-packet register when this "
3442 "remote.c does not support the p-packet."));
3443 }
3444 switch (remote_protocol_packets[PACKET_p].support)
3445 {
3446 case PACKET_DISABLE:
3447 break;
3448 case PACKET_ENABLE:
3449 if (fetch_register_using_p (regnum))
3450 return;
3451 else
3452 error (_("Protocol error: p packet not recognized by stub"));
3453 case PACKET_SUPPORT_UNKNOWN:
3454 if (fetch_register_using_p (regnum))
3455 {
3456 /* The stub recognized the 'p' packet. Remember this. */
3457 remote_protocol_packets[PACKET_p].support = PACKET_ENABLE;
3458 return;
3459 }
3460 else
3461 {
3462 /* The stub does not support the 'P' packet. Use 'G'
3463 instead, and don't try using 'P' in the future (it
3464 will just waste our time). */
3465 remote_protocol_packets[PACKET_p].support = PACKET_DISABLE;
3466 break;
3467 }
3468 }
3469
3470 sprintf (rs->buf, "g");
3471 remote_send (&rs->buf, &rs->buf_size);
3472 buf = rs->buf;
3473
3474 /* Save the size of the packet sent to us by the target. Its used
3475 as a heuristic when determining the max size of packets that the
3476 target can safely receive. */
3477 if ((rsa->actual_register_packet_size) == 0)
3478 (rsa->actual_register_packet_size) = strlen (buf);
3479
3480 /* Unimplemented registers read as all bits zero. */
3481 memset (regs, 0, rsa->sizeof_g_packet);
3482
3483 /* We can get out of synch in various cases. If the first character
3484 in the buffer is not a hex character, assume that has happened
3485 and try to fetch another packet to read. */
3486 while ((buf[0] < '0' || buf[0] > '9')
3487 && (buf[0] < 'A' || buf[0] > 'F')
3488 && (buf[0] < 'a' || buf[0] > 'f')
3489 && buf[0] != 'x') /* New: unavailable register value. */
3490 {
3491 if (remote_debug)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "Bad register packet; fetching a new packet\n");
3494 getpkt (&rs->buf, &rs->buf_size, 0);
3495 buf = rs->buf;
3496 }
3497
3498 /* Reply describes registers byte by byte, each byte encoded as two
3499 hex characters. Suck them all up, then supply them to the
3500 register cacheing/storage mechanism. */
3501
3502 p = buf;
3503 for (i = 0; i < rsa->sizeof_g_packet; i++)
3504 {
3505 if (p[0] == 0)
3506 break;
3507 if (p[1] == 0)
3508 {
3509 warning (_("Remote reply is of odd length: %s"), buf);
3510 /* Don't change register_bytes_found in this case, and don't
3511 print a second warning. */
3512 goto supply_them;
3513 }
3514 if (p[0] == 'x' && p[1] == 'x')
3515 regs[i] = 0; /* 'x' */
3516 else
3517 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3518 p += 2;
3519 }
3520
3521 if (i != register_bytes_found)
3522 {
3523 register_bytes_found = i;
3524 if (REGISTER_BYTES_OK_P ()
3525 && !REGISTER_BYTES_OK (i))
3526 warning (_("Remote reply is too short: %s"), buf);
3527 }
3528
3529 supply_them:
3530 {
3531 int i;
3532 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3533 {
3534 struct packet_reg *r = &rsa->regs[i];
3535 if (r->in_g_packet)
3536 {
3537 if (r->offset * 2 >= strlen (buf))
3538 /* A short packet that didn't include the register's
3539 value, this implies that the register is zero (and
3540 not that the register is unavailable). Supply that
3541 zero value. */
3542 regcache_raw_supply (current_regcache, r->regnum, NULL);
3543 else if (buf[r->offset * 2] == 'x')
3544 {
3545 gdb_assert (r->offset * 2 < strlen (buf));
3546 /* The register isn't available, mark it as such (at
3547 the same time setting the value to zero). */
3548 regcache_raw_supply (current_regcache, r->regnum, NULL);
3549 set_register_cached (i, -1);
3550 }
3551 else
3552 regcache_raw_supply (current_regcache, r->regnum,
3553 regs + r->offset);
3554 }
3555 }
3556 }
3557 }
3558
3559 /* Prepare to store registers. Since we may send them all (using a
3560 'G' request), we have to read out the ones we don't want to change
3561 first. */
3562
3563 static void
3564 remote_prepare_to_store (void)
3565 {
3566 struct remote_arch_state *rsa = get_remote_arch_state ();
3567 int i;
3568 gdb_byte buf[MAX_REGISTER_SIZE];
3569
3570 /* Make sure the entire registers array is valid. */
3571 switch (remote_protocol_packets[PACKET_P].support)
3572 {
3573 case PACKET_DISABLE:
3574 case PACKET_SUPPORT_UNKNOWN:
3575 /* Make sure all the necessary registers are cached. */
3576 for (i = 0; i < NUM_REGS; i++)
3577 if (rsa->regs[i].in_g_packet)
3578 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3579 break;
3580 case PACKET_ENABLE:
3581 break;
3582 }
3583 }
3584
3585 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3586 packet was not recognized. */
3587
3588 static int
3589 store_register_using_P (int regnum)
3590 {
3591 struct remote_state *rs = get_remote_state ();
3592 struct remote_arch_state *rsa = get_remote_arch_state ();
3593 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3594 /* Try storing a single register. */
3595 char *buf = rs->buf;
3596 gdb_byte regp[MAX_REGISTER_SIZE];
3597 char *p;
3598
3599 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3600 p = buf + strlen (buf);
3601 regcache_raw_collect (current_regcache, reg->regnum, regp);
3602 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3603 remote_send (&rs->buf, &rs->buf_size);
3604
3605 return rs->buf[0] != '\0';
3606 }
3607
3608
3609 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3610 contents of the register cache buffer. FIXME: ignores errors. */
3611
3612 static void
3613 remote_store_registers (int regnum)
3614 {
3615 struct remote_state *rs = get_remote_state ();
3616 struct remote_arch_state *rsa = get_remote_arch_state ();
3617 gdb_byte *regs;
3618 char *p;
3619
3620 set_thread (PIDGET (inferior_ptid), 1);
3621
3622 if (regnum >= 0)
3623 {
3624 switch (remote_protocol_packets[PACKET_P].support)
3625 {
3626 case PACKET_DISABLE:
3627 break;
3628 case PACKET_ENABLE:
3629 if (store_register_using_P (regnum))
3630 return;
3631 else
3632 error (_("Protocol error: P packet not recognized by stub"));
3633 case PACKET_SUPPORT_UNKNOWN:
3634 if (store_register_using_P (regnum))
3635 {
3636 /* The stub recognized the 'P' packet. Remember this. */
3637 remote_protocol_packets[PACKET_P].support = PACKET_ENABLE;
3638 return;
3639 }
3640 else
3641 {
3642 /* The stub does not support the 'P' packet. Use 'G'
3643 instead, and don't try using 'P' in the future (it
3644 will just waste our time). */
3645 remote_protocol_packets[PACKET_P].support = PACKET_DISABLE;
3646 break;
3647 }
3648 }
3649 }
3650
3651 /* Extract all the registers in the regcache copying them into a
3652 local buffer. */
3653 {
3654 int i;
3655 regs = alloca (rsa->sizeof_g_packet);
3656 memset (regs, 0, rsa->sizeof_g_packet);
3657 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3658 {
3659 struct packet_reg *r = &rsa->regs[i];
3660 if (r->in_g_packet)
3661 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3662 }
3663 }
3664
3665 /* Command describes registers byte by byte,
3666 each byte encoded as two hex characters. */
3667 p = rs->buf;
3668 *p++ = 'G';
3669 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3670 bin2hex (regs, p, register_bytes_found);
3671 remote_send (&rs->buf, &rs->buf_size);
3672 }
3673 \f
3674
3675 /* Return the number of hex digits in num. */
3676
3677 static int
3678 hexnumlen (ULONGEST num)
3679 {
3680 int i;
3681
3682 for (i = 0; num != 0; i++)
3683 num >>= 4;
3684
3685 return max (i, 1);
3686 }
3687
3688 /* Set BUF to the minimum number of hex digits representing NUM. */
3689
3690 static int
3691 hexnumstr (char *buf, ULONGEST num)
3692 {
3693 int len = hexnumlen (num);
3694 return hexnumnstr (buf, num, len);
3695 }
3696
3697
3698 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3699
3700 static int
3701 hexnumnstr (char *buf, ULONGEST num, int width)
3702 {
3703 int i;
3704
3705 buf[width] = '\0';
3706
3707 for (i = width - 1; i >= 0; i--)
3708 {
3709 buf[i] = "0123456789abcdef"[(num & 0xf)];
3710 num >>= 4;
3711 }
3712
3713 return width;
3714 }
3715
3716 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3717
3718 static CORE_ADDR
3719 remote_address_masked (CORE_ADDR addr)
3720 {
3721 if (remote_address_size > 0
3722 && remote_address_size < (sizeof (ULONGEST) * 8))
3723 {
3724 /* Only create a mask when that mask can safely be constructed
3725 in a ULONGEST variable. */
3726 ULONGEST mask = 1;
3727 mask = (mask << remote_address_size) - 1;
3728 addr &= mask;
3729 }
3730 return addr;
3731 }
3732
3733 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3734 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3735 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3736 (which may be more than *OUT_LEN due to escape characters). The
3737 total number of bytes in the output buffer will be at most
3738 OUT_MAXLEN. */
3739
3740 static int
3741 remote_escape_output (const gdb_byte *buffer, int len,
3742 gdb_byte *out_buf, int *out_len,
3743 int out_maxlen)
3744 {
3745 int input_index, output_index;
3746
3747 output_index = 0;
3748 for (input_index = 0; input_index < len; input_index++)
3749 {
3750 gdb_byte b = buffer[input_index];
3751
3752 if (b == '$' || b == '#' || b == '}')
3753 {
3754 /* These must be escaped. */
3755 if (output_index + 2 > out_maxlen)
3756 break;
3757 out_buf[output_index++] = '}';
3758 out_buf[output_index++] = b ^ 0x20;
3759 }
3760 else
3761 {
3762 if (output_index + 1 > out_maxlen)
3763 break;
3764 out_buf[output_index++] = b;
3765 }
3766 }
3767
3768 *out_len = input_index;
3769 return output_index;
3770 }
3771
3772 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3773 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3774 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3775
3776 This function reverses remote_escape_output. It allows more
3777 escaped characters than that function does, in particular because
3778 '*' must be escaped to avoid the run-length encoding processing
3779 in reading packets. */
3780
3781 static int
3782 remote_unescape_input (const gdb_byte *buffer, int len,
3783 gdb_byte *out_buf, int out_maxlen)
3784 {
3785 int input_index, output_index;
3786 int escaped;
3787
3788 output_index = 0;
3789 escaped = 0;
3790 for (input_index = 0; input_index < len; input_index++)
3791 {
3792 gdb_byte b = buffer[input_index];
3793
3794 if (output_index + 1 > out_maxlen)
3795 {
3796 warning (_("Received too much data from remote target;"
3797 " ignoring overflow."));
3798 return output_index;
3799 }
3800
3801 if (escaped)
3802 {
3803 out_buf[output_index++] = b ^ 0x20;
3804 escaped = 0;
3805 }
3806 else if (b == '}')
3807 escaped = 1;
3808 else
3809 out_buf[output_index++] = b;
3810 }
3811
3812 if (escaped)
3813 error (_("Unmatched escape character in target response."));
3814
3815 return output_index;
3816 }
3817
3818 /* Determine whether the remote target supports binary downloading.
3819 This is accomplished by sending a no-op memory write of zero length
3820 to the target at the specified address. It does not suffice to send
3821 the whole packet, since many stubs strip the eighth bit and
3822 subsequently compute a wrong checksum, which causes real havoc with
3823 remote_write_bytes.
3824
3825 NOTE: This can still lose if the serial line is not eight-bit
3826 clean. In cases like this, the user should clear "remote
3827 X-packet". */
3828
3829 static void
3830 check_binary_download (CORE_ADDR addr)
3831 {
3832 struct remote_state *rs = get_remote_state ();
3833
3834 switch (remote_protocol_packets[PACKET_X].support)
3835 {
3836 case PACKET_DISABLE:
3837 break;
3838 case PACKET_ENABLE:
3839 break;
3840 case PACKET_SUPPORT_UNKNOWN:
3841 {
3842 char *p;
3843
3844 p = rs->buf;
3845 *p++ = 'X';
3846 p += hexnumstr (p, (ULONGEST) addr);
3847 *p++ = ',';
3848 p += hexnumstr (p, (ULONGEST) 0);
3849 *p++ = ':';
3850 *p = '\0';
3851
3852 putpkt_binary (rs->buf, (int) (p - rs->buf));
3853 getpkt (&rs->buf, &rs->buf_size, 0);
3854
3855 if (rs->buf[0] == '\0')
3856 {
3857 if (remote_debug)
3858 fprintf_unfiltered (gdb_stdlog,
3859 "binary downloading NOT suppported by target\n");
3860 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
3861 }
3862 else
3863 {
3864 if (remote_debug)
3865 fprintf_unfiltered (gdb_stdlog,
3866 "binary downloading suppported by target\n");
3867 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
3868 }
3869 break;
3870 }
3871 }
3872 }
3873
3874 /* Write memory data directly to the remote machine.
3875 This does not inform the data cache; the data cache uses this.
3876 HEADER is the starting part of the packet.
3877 MEMADDR is the address in the remote memory space.
3878 MYADDR is the address of the buffer in our space.
3879 LEN is the number of bytes.
3880 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
3881 should send data as binary ('X'), or hex-encoded ('M').
3882
3883 The function creates packet of the form
3884 <HEADER><ADDRESS>,<LENGTH>:<DATA>
3885
3886 where encoding of <DATA> is termined by PACKET_FORMAT.
3887
3888 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
3889 are omitted.
3890
3891 Returns the number of bytes transferred, or 0 (setting errno) for
3892
3893 Returns number of bytes transferred, or 0 (setting errno) for
3894 error. Only transfer a single packet. */
3895
3896 static int
3897 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
3898 const gdb_byte *myaddr, int len,
3899 char packet_format, int use_length)
3900 {
3901 struct remote_state *rs = get_remote_state ();
3902 char *p;
3903 char *plen = NULL;
3904 int plenlen = 0;
3905 int todo;
3906 int nr_bytes;
3907 int payload_size;
3908 int payload_length;
3909 int header_length;
3910
3911 if (packet_format != 'X' && packet_format != 'M')
3912 internal_error (__FILE__, __LINE__,
3913 "remote_write_bytes_aux: bad packet format");
3914
3915 /* Should this be the selected frame? */
3916 gdbarch_remote_translate_xfer_address (current_gdbarch,
3917 current_regcache,
3918 memaddr, len,
3919 &memaddr, &len);
3920
3921 if (len <= 0)
3922 return 0;
3923
3924 payload_size = get_memory_write_packet_size ();
3925
3926 /* The packet buffer will be large enough for the payload;
3927 get_memory_packet_size ensures this. */
3928 rs->buf[0] = '\0';
3929
3930 /* Compute the size of the actual payload by subtracting out the
3931 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3932 */
3933 payload_size -= strlen ("$,:#NN");
3934 if (!use_length)
3935 /* The comma won't be used. */
3936 payload_size += 1;
3937 header_length = strlen (header);
3938 payload_size -= header_length;
3939 payload_size -= hexnumlen (memaddr);
3940
3941 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
3942
3943 strcat (rs->buf, header);
3944 p = rs->buf + strlen (header);
3945
3946 /* Compute a best guess of the number of bytes actually transfered. */
3947 if (packet_format == 'X')
3948 {
3949 /* Best guess at number of bytes that will fit. */
3950 todo = min (len, payload_size);
3951 if (use_length)
3952 payload_size -= hexnumlen (todo);
3953 todo = min (todo, payload_size);
3954 }
3955 else
3956 {
3957 /* Num bytes that will fit. */
3958 todo = min (len, payload_size / 2);
3959 if (use_length)
3960 payload_size -= hexnumlen (todo);
3961 todo = min (todo, payload_size / 2);
3962 }
3963
3964 if (todo <= 0)
3965 internal_error (__FILE__, __LINE__,
3966 _("minumum packet size too small to write data"));
3967
3968 /* If we already need another packet, then try to align the end
3969 of this packet to a useful boundary. */
3970 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
3971 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
3972
3973 /* Append "<memaddr>". */
3974 memaddr = remote_address_masked (memaddr);
3975 p += hexnumstr (p, (ULONGEST) memaddr);
3976
3977 if (use_length)
3978 {
3979 /* Append ",". */
3980 *p++ = ',';
3981
3982 /* Append <len>. Retain the location/size of <len>. It may need to
3983 be adjusted once the packet body has been created. */
3984 plen = p;
3985 plenlen = hexnumstr (p, (ULONGEST) todo);
3986 p += plenlen;
3987 }
3988
3989 /* Append ":". */
3990 *p++ = ':';
3991 *p = '\0';
3992
3993 /* Append the packet body. */
3994 if (packet_format == 'X')
3995 {
3996 /* Binary mode. Send target system values byte by byte, in
3997 increasing byte addresses. Only escape certain critical
3998 characters. */
3999 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4000 payload_size);
4001
4002 /* If not all TODO bytes fit, then we'll need another packet. Make
4003 a second try to keep the end of the packet aligned. */
4004 if (nr_bytes < todo)
4005 {
4006 int new_nr_bytes;
4007
4008 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4009 - memaddr);
4010 if (new_nr_bytes != nr_bytes)
4011 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4012 p, &nr_bytes,
4013 payload_size);
4014 }
4015
4016 p += payload_length;
4017 if (use_length && nr_bytes < todo)
4018 {
4019 /* Escape chars have filled up the buffer prematurely,
4020 and we have actually sent fewer bytes than planned.
4021 Fix-up the length field of the packet. Use the same
4022 number of characters as before. */
4023 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4024 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4025 }
4026 }
4027 else
4028 {
4029 /* Normal mode: Send target system values byte by byte, in
4030 increasing byte addresses. Each byte is encoded as a two hex
4031 value. */
4032 nr_bytes = bin2hex (myaddr, p, todo);
4033 p += 2 * nr_bytes;
4034 }
4035
4036 putpkt_binary (rs->buf, (int) (p - rs->buf));
4037 getpkt (&rs->buf, &rs->buf_size, 0);
4038
4039 if (rs->buf[0] == 'E')
4040 {
4041 /* There is no correspondance between what the remote protocol
4042 uses for errors and errno codes. We would like a cleaner way
4043 of representing errors (big enough to include errno codes,
4044 bfd_error codes, and others). But for now just return EIO. */
4045 errno = EIO;
4046 return 0;
4047 }
4048
4049 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4050 fewer bytes than we'd planned. */
4051 return nr_bytes;
4052 }
4053
4054 /* Write memory data directly to the remote machine.
4055 This does not inform the data cache; the data cache uses this.
4056 MEMADDR is the address in the remote memory space.
4057 MYADDR is the address of the buffer in our space.
4058 LEN is the number of bytes.
4059
4060 Returns number of bytes transferred, or 0 (setting errno) for
4061 error. Only transfer a single packet. */
4062
4063 int
4064 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4065 {
4066 char *packet_format = 0;
4067
4068 /* Check whether the target supports binary download. */
4069 check_binary_download (memaddr);
4070
4071 switch (remote_protocol_packets[PACKET_X].support)
4072 {
4073 case PACKET_ENABLE:
4074 packet_format = "X";
4075 break;
4076 case PACKET_DISABLE:
4077 packet_format = "M";
4078 break;
4079 case PACKET_SUPPORT_UNKNOWN:
4080 internal_error (__FILE__, __LINE__,
4081 _("remote_write_bytes: bad internal state"));
4082 default:
4083 internal_error (__FILE__, __LINE__, _("bad switch"));
4084 }
4085
4086 return remote_write_bytes_aux (packet_format,
4087 memaddr, myaddr, len, packet_format[0], 1);
4088 }
4089
4090 /* Read memory data directly from the remote machine.
4091 This does not use the data cache; the data cache uses this.
4092 MEMADDR is the address in the remote memory space.
4093 MYADDR is the address of the buffer in our space.
4094 LEN is the number of bytes.
4095
4096 Returns number of bytes transferred, or 0 for error. */
4097
4098 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4099 remote targets) shouldn't attempt to read the entire buffer.
4100 Instead it should read a single packet worth of data and then
4101 return the byte size of that packet to the caller. The caller (its
4102 caller and its callers caller ;-) already contains code for
4103 handling partial reads. */
4104
4105 int
4106 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4107 {
4108 struct remote_state *rs = get_remote_state ();
4109 int max_buf_size; /* Max size of packet output buffer. */
4110 int origlen;
4111
4112 /* Should this be the selected frame? */
4113 gdbarch_remote_translate_xfer_address (current_gdbarch,
4114 current_regcache,
4115 memaddr, len,
4116 &memaddr, &len);
4117
4118 if (len <= 0)
4119 return 0;
4120
4121 max_buf_size = get_memory_read_packet_size ();
4122 /* The packet buffer will be large enough for the payload;
4123 get_memory_packet_size ensures this. */
4124
4125 origlen = len;
4126 while (len > 0)
4127 {
4128 char *p;
4129 int todo;
4130 int i;
4131
4132 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4133
4134 /* construct "m"<memaddr>","<len>" */
4135 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4136 memaddr = remote_address_masked (memaddr);
4137 p = rs->buf;
4138 *p++ = 'm';
4139 p += hexnumstr (p, (ULONGEST) memaddr);
4140 *p++ = ',';
4141 p += hexnumstr (p, (ULONGEST) todo);
4142 *p = '\0';
4143
4144 putpkt (rs->buf);
4145 getpkt (&rs->buf, &rs->buf_size, 0);
4146
4147 if (rs->buf[0] == 'E'
4148 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4149 && rs->buf[3] == '\0')
4150 {
4151 /* There is no correspondance between what the remote
4152 protocol uses for errors and errno codes. We would like
4153 a cleaner way of representing errors (big enough to
4154 include errno codes, bfd_error codes, and others). But
4155 for now just return EIO. */
4156 errno = EIO;
4157 return 0;
4158 }
4159
4160 /* Reply describes memory byte by byte,
4161 each byte encoded as two hex characters. */
4162
4163 p = rs->buf;
4164 if ((i = hex2bin (p, myaddr, todo)) < todo)
4165 {
4166 /* Reply is short. This means that we were able to read
4167 only part of what we wanted to. */
4168 return i + (origlen - len);
4169 }
4170 myaddr += todo;
4171 memaddr += todo;
4172 len -= todo;
4173 }
4174 return origlen;
4175 }
4176 \f
4177 /* Read or write LEN bytes from inferior memory at MEMADDR,
4178 transferring to or from debugger address BUFFER. Write to inferior
4179 if SHOULD_WRITE is nonzero. Returns length of data written or
4180 read; 0 for error. TARGET is unused. */
4181
4182 static int
4183 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4184 int should_write, struct mem_attrib *attrib,
4185 struct target_ops *target)
4186 {
4187 int res;
4188
4189 if (should_write)
4190 res = remote_write_bytes (mem_addr, buffer, mem_len);
4191 else
4192 res = remote_read_bytes (mem_addr, buffer, mem_len);
4193
4194 return res;
4195 }
4196
4197 /* Sends a packet with content determined by the printf format string
4198 FORMAT and the remaining arguments, then gets the reply. Returns
4199 whether the packet was a success, a failure, or unknown. */
4200
4201 enum packet_result
4202 remote_send_printf (const char *format, ...)
4203 {
4204 struct remote_state *rs = get_remote_state ();
4205 int max_size = get_remote_packet_size ();
4206
4207 va_list ap;
4208 va_start (ap, format);
4209
4210 rs->buf[0] = '\0';
4211 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4212 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4213
4214 if (putpkt (rs->buf) < 0)
4215 error (_("Communication problem with target."));
4216
4217 rs->buf[0] = '\0';
4218 getpkt (&rs->buf, &rs->buf_size, 0);
4219
4220 return packet_check_result (rs->buf);
4221 }
4222
4223 static void
4224 restore_remote_timeout (void *p)
4225 {
4226 int value = *(int *)p;
4227 remote_timeout = value;
4228 }
4229
4230 /* Flash writing can take quite some time. We'll set
4231 effectively infinite timeout for flash operations.
4232 In future, we'll need to decide on a better approach. */
4233 static const int remote_flash_timeout = 1000;
4234
4235 static void
4236 remote_flash_erase (struct target_ops *ops,
4237 ULONGEST address, LONGEST length)
4238 {
4239 int saved_remote_timeout = remote_timeout;
4240 enum packet_result ret;
4241
4242 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4243 &saved_remote_timeout);
4244 remote_timeout = remote_flash_timeout;
4245
4246 ret = remote_send_printf ("vFlashErase:%s,%s",
4247 paddr (address),
4248 phex (length, 4));
4249 switch (ret)
4250 {
4251 case PACKET_UNKNOWN:
4252 error (_("Remote target does not support flash erase"));
4253 case PACKET_ERROR:
4254 error (_("Error erasing flash with vFlashErase packet"));
4255 default:
4256 break;
4257 }
4258
4259 do_cleanups (back_to);
4260 }
4261
4262 static LONGEST
4263 remote_flash_write (struct target_ops *ops,
4264 ULONGEST address, LONGEST length,
4265 const gdb_byte *data)
4266 {
4267 int saved_remote_timeout = remote_timeout;
4268 int ret;
4269 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4270 &saved_remote_timeout);
4271
4272 remote_timeout = remote_flash_timeout;
4273 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4274 do_cleanups (back_to);
4275
4276 return ret;
4277 }
4278
4279 static void
4280 remote_flash_done (struct target_ops *ops)
4281 {
4282 int saved_remote_timeout = remote_timeout;
4283 int ret;
4284 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4285 &saved_remote_timeout);
4286
4287 remote_timeout = remote_flash_timeout;
4288 ret = remote_send_printf ("vFlashDone");
4289 do_cleanups (back_to);
4290
4291 switch (ret)
4292 {
4293 case PACKET_UNKNOWN:
4294 error (_("Remote target does not support vFlashDone"));
4295 case PACKET_ERROR:
4296 error (_("Error finishing flash operation"));
4297 default:
4298 break;
4299 }
4300 }
4301
4302 static void
4303 remote_files_info (struct target_ops *ignore)
4304 {
4305 puts_filtered ("Debugging a target over a serial line.\n");
4306 }
4307 \f
4308 /* Stuff for dealing with the packets which are part of this protocol.
4309 See comment at top of file for details. */
4310
4311 /* Read a single character from the remote end. */
4312
4313 static int
4314 readchar (int timeout)
4315 {
4316 int ch;
4317
4318 ch = serial_readchar (remote_desc, timeout);
4319
4320 if (ch >= 0)
4321 return ch;
4322
4323 switch ((enum serial_rc) ch)
4324 {
4325 case SERIAL_EOF:
4326 target_mourn_inferior ();
4327 error (_("Remote connection closed"));
4328 /* no return */
4329 case SERIAL_ERROR:
4330 perror_with_name (_("Remote communication error"));
4331 /* no return */
4332 case SERIAL_TIMEOUT:
4333 break;
4334 }
4335 return ch;
4336 }
4337
4338 /* Send the command in *BUF to the remote machine, and read the reply
4339 into *BUF. Report an error if we get an error reply. Resize
4340 *BUF using xrealloc if necessary to hold the result, and update
4341 *SIZEOF_BUF. */
4342
4343 static void
4344 remote_send (char **buf,
4345 long *sizeof_buf)
4346 {
4347 putpkt (*buf);
4348 getpkt (buf, sizeof_buf, 0);
4349
4350 if ((*buf)[0] == 'E')
4351 error (_("Remote failure reply: %s"), *buf);
4352 }
4353
4354 /* Display a null-terminated packet on stdout, for debugging, using C
4355 string notation. */
4356
4357 static void
4358 print_packet (char *buf)
4359 {
4360 puts_filtered ("\"");
4361 fputstr_filtered (buf, '"', gdb_stdout);
4362 puts_filtered ("\"");
4363 }
4364
4365 int
4366 putpkt (char *buf)
4367 {
4368 return putpkt_binary (buf, strlen (buf));
4369 }
4370
4371 /* Send a packet to the remote machine, with error checking. The data
4372 of the packet is in BUF. The string in BUF can be at most
4373 get_remote_packet_size () - 5 to account for the $, # and checksum,
4374 and for a possible /0 if we are debugging (remote_debug) and want
4375 to print the sent packet as a string. */
4376
4377 static int
4378 putpkt_binary (char *buf, int cnt)
4379 {
4380 int i;
4381 unsigned char csum = 0;
4382 char *buf2 = alloca (cnt + 6);
4383
4384 int ch;
4385 int tcount = 0;
4386 char *p;
4387
4388 /* Copy the packet into buffer BUF2, encapsulating it
4389 and giving it a checksum. */
4390
4391 p = buf2;
4392 *p++ = '$';
4393
4394 for (i = 0; i < cnt; i++)
4395 {
4396 csum += buf[i];
4397 *p++ = buf[i];
4398 }
4399 *p++ = '#';
4400 *p++ = tohex ((csum >> 4) & 0xf);
4401 *p++ = tohex (csum & 0xf);
4402
4403 /* Send it over and over until we get a positive ack. */
4404
4405 while (1)
4406 {
4407 int started_error_output = 0;
4408
4409 if (remote_debug)
4410 {
4411 *p = '\0';
4412 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4413 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4414 fprintf_unfiltered (gdb_stdlog, "...");
4415 gdb_flush (gdb_stdlog);
4416 }
4417 if (serial_write (remote_desc, buf2, p - buf2))
4418 perror_with_name (_("putpkt: write failed"));
4419
4420 /* Read until either a timeout occurs (-2) or '+' is read. */
4421 while (1)
4422 {
4423 ch = readchar (remote_timeout);
4424
4425 if (remote_debug)
4426 {
4427 switch (ch)
4428 {
4429 case '+':
4430 case '-':
4431 case SERIAL_TIMEOUT:
4432 case '$':
4433 if (started_error_output)
4434 {
4435 putchar_unfiltered ('\n');
4436 started_error_output = 0;
4437 }
4438 }
4439 }
4440
4441 switch (ch)
4442 {
4443 case '+':
4444 if (remote_debug)
4445 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4446 return 1;
4447 case '-':
4448 if (remote_debug)
4449 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4450 case SERIAL_TIMEOUT:
4451 tcount++;
4452 if (tcount > 3)
4453 return 0;
4454 break; /* Retransmit buffer. */
4455 case '$':
4456 {
4457 if (remote_debug)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "Packet instead of Ack, ignoring it\n");
4460 /* It's probably an old response sent because an ACK
4461 was lost. Gobble up the packet and ack it so it
4462 doesn't get retransmitted when we resend this
4463 packet. */
4464 skip_frame ();
4465 serial_write (remote_desc, "+", 1);
4466 continue; /* Now, go look for +. */
4467 }
4468 default:
4469 if (remote_debug)
4470 {
4471 if (!started_error_output)
4472 {
4473 started_error_output = 1;
4474 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4475 }
4476 fputc_unfiltered (ch & 0177, gdb_stdlog);
4477 }
4478 continue;
4479 }
4480 break; /* Here to retransmit. */
4481 }
4482
4483 #if 0
4484 /* This is wrong. If doing a long backtrace, the user should be
4485 able to get out next time we call QUIT, without anything as
4486 violent as interrupt_query. If we want to provide a way out of
4487 here without getting to the next QUIT, it should be based on
4488 hitting ^C twice as in remote_wait. */
4489 if (quit_flag)
4490 {
4491 quit_flag = 0;
4492 interrupt_query ();
4493 }
4494 #endif
4495 }
4496 }
4497
4498 /* Come here after finding the start of a frame when we expected an
4499 ack. Do our best to discard the rest of this packet. */
4500
4501 static void
4502 skip_frame (void)
4503 {
4504 int c;
4505
4506 while (1)
4507 {
4508 c = readchar (remote_timeout);
4509 switch (c)
4510 {
4511 case SERIAL_TIMEOUT:
4512 /* Nothing we can do. */
4513 return;
4514 case '#':
4515 /* Discard the two bytes of checksum and stop. */
4516 c = readchar (remote_timeout);
4517 if (c >= 0)
4518 c = readchar (remote_timeout);
4519
4520 return;
4521 case '*': /* Run length encoding. */
4522 /* Discard the repeat count. */
4523 c = readchar (remote_timeout);
4524 if (c < 0)
4525 return;
4526 break;
4527 default:
4528 /* A regular character. */
4529 break;
4530 }
4531 }
4532 }
4533
4534 /* Come here after finding the start of the frame. Collect the rest
4535 into *BUF, verifying the checksum, length, and handling run-length
4536 compression. NUL terminate the buffer. If there is not enough room,
4537 expand *BUF using xrealloc.
4538
4539 Returns -1 on error, number of characters in buffer (ignoring the
4540 trailing NULL) on success. (could be extended to return one of the
4541 SERIAL status indications). */
4542
4543 static long
4544 read_frame (char **buf_p,
4545 long *sizeof_buf)
4546 {
4547 unsigned char csum;
4548 long bc;
4549 int c;
4550 char *buf = *buf_p;
4551
4552 csum = 0;
4553 bc = 0;
4554
4555 while (1)
4556 {
4557 c = readchar (remote_timeout);
4558 switch (c)
4559 {
4560 case SERIAL_TIMEOUT:
4561 if (remote_debug)
4562 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4563 return -1;
4564 case '$':
4565 if (remote_debug)
4566 fputs_filtered ("Saw new packet start in middle of old one\n",
4567 gdb_stdlog);
4568 return -1; /* Start a new packet, count retries. */
4569 case '#':
4570 {
4571 unsigned char pktcsum;
4572 int check_0 = 0;
4573 int check_1 = 0;
4574
4575 buf[bc] = '\0';
4576
4577 check_0 = readchar (remote_timeout);
4578 if (check_0 >= 0)
4579 check_1 = readchar (remote_timeout);
4580
4581 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4582 {
4583 if (remote_debug)
4584 fputs_filtered ("Timeout in checksum, retrying\n",
4585 gdb_stdlog);
4586 return -1;
4587 }
4588 else if (check_0 < 0 || check_1 < 0)
4589 {
4590 if (remote_debug)
4591 fputs_filtered ("Communication error in checksum\n",
4592 gdb_stdlog);
4593 return -1;
4594 }
4595
4596 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4597 if (csum == pktcsum)
4598 return bc;
4599
4600 if (remote_debug)
4601 {
4602 fprintf_filtered (gdb_stdlog,
4603 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4604 pktcsum, csum);
4605 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4606 fputs_filtered ("\n", gdb_stdlog);
4607 }
4608 /* Number of characters in buffer ignoring trailing
4609 NULL. */
4610 return -1;
4611 }
4612 case '*': /* Run length encoding. */
4613 {
4614 int repeat;
4615 csum += c;
4616
4617 c = readchar (remote_timeout);
4618 csum += c;
4619 repeat = c - ' ' + 3; /* Compute repeat count. */
4620
4621 /* The character before ``*'' is repeated. */
4622
4623 if (repeat > 0 && repeat <= 255 && bc > 0)
4624 {
4625 if (bc + repeat - 1 >= *sizeof_buf - 1)
4626 {
4627 /* Make some more room in the buffer. */
4628 *sizeof_buf += repeat;
4629 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4630 buf = *buf_p;
4631 }
4632
4633 memset (&buf[bc], buf[bc - 1], repeat);
4634 bc += repeat;
4635 continue;
4636 }
4637
4638 buf[bc] = '\0';
4639 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4640 return -1;
4641 }
4642 default:
4643 if (bc >= *sizeof_buf - 1)
4644 {
4645 /* Make some more room in the buffer. */
4646 *sizeof_buf *= 2;
4647 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4648 buf = *buf_p;
4649 }
4650
4651 buf[bc++] = c;
4652 csum += c;
4653 continue;
4654 }
4655 }
4656 }
4657
4658 /* Read a packet from the remote machine, with error checking, and
4659 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4660 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4661 rather than timing out; this is used (in synchronous mode) to wait
4662 for a target that is is executing user code to stop. */
4663 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4664 don't have to change all the calls to getpkt to deal with the
4665 return value, because at the moment I don't know what the right
4666 thing to do it for those. */
4667 void
4668 getpkt (char **buf,
4669 long *sizeof_buf,
4670 int forever)
4671 {
4672 int timed_out;
4673
4674 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4675 }
4676
4677
4678 /* Read a packet from the remote machine, with error checking, and
4679 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4680 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4681 rather than timing out; this is used (in synchronous mode) to wait
4682 for a target that is is executing user code to stop. If FOREVER ==
4683 0, this function is allowed to time out gracefully and return an
4684 indication of this to the caller. Otherwise return the number
4685 of bytes read. */
4686 static int
4687 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4688 {
4689 int c;
4690 int tries;
4691 int timeout;
4692 int val;
4693
4694 strcpy (*buf, "timeout");
4695
4696 if (forever)
4697 {
4698 timeout = watchdog > 0 ? watchdog : -1;
4699 }
4700
4701 else
4702 timeout = remote_timeout;
4703
4704 #define MAX_TRIES 3
4705
4706 for (tries = 1; tries <= MAX_TRIES; tries++)
4707 {
4708 /* This can loop forever if the remote side sends us characters
4709 continuously, but if it pauses, we'll get a zero from
4710 readchar because of timeout. Then we'll count that as a
4711 retry. */
4712
4713 /* Note that we will only wait forever prior to the start of a
4714 packet. After that, we expect characters to arrive at a
4715 brisk pace. They should show up within remote_timeout
4716 intervals. */
4717
4718 do
4719 {
4720 c = readchar (timeout);
4721
4722 if (c == SERIAL_TIMEOUT)
4723 {
4724 if (forever) /* Watchdog went off? Kill the target. */
4725 {
4726 QUIT;
4727 target_mourn_inferior ();
4728 error (_("Watchdog has expired. Target detached."));
4729 }
4730 if (remote_debug)
4731 fputs_filtered ("Timed out.\n", gdb_stdlog);
4732 goto retry;
4733 }
4734 }
4735 while (c != '$');
4736
4737 /* We've found the start of a packet, now collect the data. */
4738
4739 val = read_frame (buf, sizeof_buf);
4740
4741 if (val >= 0)
4742 {
4743 if (remote_debug)
4744 {
4745 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4746 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4747 fprintf_unfiltered (gdb_stdlog, "\n");
4748 }
4749 serial_write (remote_desc, "+", 1);
4750 return val;
4751 }
4752
4753 /* Try the whole thing again. */
4754 retry:
4755 serial_write (remote_desc, "-", 1);
4756 }
4757
4758 /* We have tried hard enough, and just can't receive the packet.
4759 Give up. */
4760
4761 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4762 serial_write (remote_desc, "+", 1);
4763 return -1;
4764 }
4765 \f
4766 static void
4767 remote_kill (void)
4768 {
4769 /* For some mysterious reason, wait_for_inferior calls kill instead of
4770 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4771 if (kill_kludge)
4772 {
4773 kill_kludge = 0;
4774 target_mourn_inferior ();
4775 return;
4776 }
4777
4778 /* Use catch_errors so the user can quit from gdb even when we aren't on
4779 speaking terms with the remote system. */
4780 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4781
4782 /* Don't wait for it to die. I'm not really sure it matters whether
4783 we do or not. For the existing stubs, kill is a noop. */
4784 target_mourn_inferior ();
4785 }
4786
4787 /* Async version of remote_kill. */
4788 static void
4789 remote_async_kill (void)
4790 {
4791 /* Unregister the file descriptor from the event loop. */
4792 if (target_is_async_p ())
4793 serial_async (remote_desc, NULL, 0);
4794
4795 /* For some mysterious reason, wait_for_inferior calls kill instead of
4796 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4797 if (kill_kludge)
4798 {
4799 kill_kludge = 0;
4800 target_mourn_inferior ();
4801 return;
4802 }
4803
4804 /* Use catch_errors so the user can quit from gdb even when we
4805 aren't on speaking terms with the remote system. */
4806 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4807
4808 /* Don't wait for it to die. I'm not really sure it matters whether
4809 we do or not. For the existing stubs, kill is a noop. */
4810 target_mourn_inferior ();
4811 }
4812
4813 static void
4814 remote_mourn (void)
4815 {
4816 remote_mourn_1 (&remote_ops);
4817 }
4818
4819 static void
4820 remote_async_mourn (void)
4821 {
4822 remote_mourn_1 (&remote_async_ops);
4823 }
4824
4825 static void
4826 extended_remote_mourn (void)
4827 {
4828 /* We do _not_ want to mourn the target like this; this will
4829 remove the extended remote target from the target stack,
4830 and the next time the user says "run" it'll fail.
4831
4832 FIXME: What is the right thing to do here? */
4833 #if 0
4834 remote_mourn_1 (&extended_remote_ops);
4835 #endif
4836 }
4837
4838 /* Worker function for remote_mourn. */
4839 static void
4840 remote_mourn_1 (struct target_ops *target)
4841 {
4842 unpush_target (target);
4843 generic_mourn_inferior ();
4844 }
4845
4846 /* In the extended protocol we want to be able to do things like
4847 "run" and have them basically work as expected. So we need
4848 a special create_inferior function.
4849
4850 FIXME: One day add support for changing the exec file
4851 we're debugging, arguments and an environment. */
4852
4853 static void
4854 extended_remote_create_inferior (char *exec_file, char *args,
4855 char **env, int from_tty)
4856 {
4857 /* Rip out the breakpoints; we'll reinsert them after restarting
4858 the remote server. */
4859 remove_breakpoints ();
4860
4861 /* Now restart the remote server. */
4862 extended_remote_restart ();
4863
4864 /* Now put the breakpoints back in. This way we're safe if the
4865 restart function works via a unix fork on the remote side. */
4866 insert_breakpoints ();
4867
4868 /* Clean up from the last time we were running. */
4869 clear_proceed_status ();
4870 }
4871
4872 /* Async version of extended_remote_create_inferior. */
4873 static void
4874 extended_remote_async_create_inferior (char *exec_file, char *args,
4875 char **env, int from_tty)
4876 {
4877 /* Rip out the breakpoints; we'll reinsert them after restarting
4878 the remote server. */
4879 remove_breakpoints ();
4880
4881 /* If running asynchronously, register the target file descriptor
4882 with the event loop. */
4883 if (target_can_async_p ())
4884 target_async (inferior_event_handler, 0);
4885
4886 /* Now restart the remote server. */
4887 extended_remote_restart ();
4888
4889 /* Now put the breakpoints back in. This way we're safe if the
4890 restart function works via a unix fork on the remote side. */
4891 insert_breakpoints ();
4892
4893 /* Clean up from the last time we were running. */
4894 clear_proceed_status ();
4895 }
4896 \f
4897
4898 /* On some machines, e.g. 68k, we may use a different breakpoint
4899 instruction than other targets; in those use
4900 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4901 Also, bi-endian targets may define
4902 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4903 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4904 just call the standard routines that are in mem-break.c. */
4905
4906 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4907 target should use an identical BREAKPOINT_FROM_PC. As for native,
4908 the ARCH-OS-tdep.c code can override the default. */
4909
4910 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4911 #define DEPRECATED_REMOTE_BREAKPOINT
4912 #endif
4913
4914 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4915
4916 /* If the target isn't bi-endian, just pretend it is. */
4917 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4918 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4919 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4920 #endif
4921
4922 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4923 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4924
4925 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4926
4927 /* Insert a breakpoint. On targets that have software breakpoint
4928 support, we ask the remote target to do the work; on targets
4929 which don't, we insert a traditional memory breakpoint. */
4930
4931 static int
4932 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
4933 {
4934 CORE_ADDR addr = bp_tgt->placed_address;
4935 struct remote_state *rs = get_remote_state ();
4936 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4937 int val;
4938 #endif
4939
4940 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4941 If it succeeds, then set the support to PACKET_ENABLE. If it
4942 fails, and the user has explicitly requested the Z support then
4943 report an error, otherwise, mark it disabled and go on. */
4944
4945 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
4946 {
4947 char *p = rs->buf;
4948
4949 *(p++) = 'Z';
4950 *(p++) = '0';
4951 *(p++) = ',';
4952 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
4953 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
4954 p += hexnumstr (p, addr);
4955 sprintf (p, ",%d", bp_tgt->placed_size);
4956
4957 putpkt (rs->buf);
4958 getpkt (&rs->buf, &rs->buf_size, 0);
4959
4960 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
4961 {
4962 case PACKET_ERROR:
4963 return -1;
4964 case PACKET_OK:
4965 return 0;
4966 case PACKET_UNKNOWN:
4967 break;
4968 }
4969 }
4970
4971 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4972 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
4973 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
4974
4975 if (val == 0)
4976 {
4977 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4978 val = target_write_memory (addr, (char *) big_break_insn,
4979 sizeof big_break_insn);
4980 else
4981 val = target_write_memory (addr, (char *) little_break_insn,
4982 sizeof little_break_insn);
4983 }
4984
4985 return val;
4986 #else
4987 return memory_insert_breakpoint (bp_tgt);
4988 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4989 }
4990
4991 static int
4992 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
4993 {
4994 CORE_ADDR addr = bp_tgt->placed_address;
4995 struct remote_state *rs = get_remote_state ();
4996 int bp_size;
4997
4998 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
4999 {
5000 char *p = rs->buf;
5001
5002 *(p++) = 'z';
5003 *(p++) = '0';
5004 *(p++) = ',';
5005
5006 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5007 p += hexnumstr (p, addr);
5008 sprintf (p, ",%d", bp_tgt->placed_size);
5009
5010 putpkt (rs->buf);
5011 getpkt (&rs->buf, &rs->buf_size, 0);
5012
5013 return (rs->buf[0] == 'E');
5014 }
5015
5016 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5017 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
5018 bp_tgt->shadow_len);
5019 #else
5020 return memory_remove_breakpoint (bp_tgt);
5021 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5022 }
5023
5024 static int
5025 watchpoint_to_Z_packet (int type)
5026 {
5027 switch (type)
5028 {
5029 case hw_write:
5030 return Z_PACKET_WRITE_WP;
5031 break;
5032 case hw_read:
5033 return Z_PACKET_READ_WP;
5034 break;
5035 case hw_access:
5036 return Z_PACKET_ACCESS_WP;
5037 break;
5038 default:
5039 internal_error (__FILE__, __LINE__,
5040 _("hw_bp_to_z: bad watchpoint type %d"), type);
5041 }
5042 }
5043
5044 static int
5045 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5046 {
5047 struct remote_state *rs = get_remote_state ();
5048 char *p;
5049 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5050
5051 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5052 return -1;
5053
5054 sprintf (rs->buf, "Z%x,", packet);
5055 p = strchr (rs->buf, '\0');
5056 addr = remote_address_masked (addr);
5057 p += hexnumstr (p, (ULONGEST) addr);
5058 sprintf (p, ",%x", len);
5059
5060 putpkt (rs->buf);
5061 getpkt (&rs->buf, &rs->buf_size, 0);
5062
5063 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5064 {
5065 case PACKET_ERROR:
5066 case PACKET_UNKNOWN:
5067 return -1;
5068 case PACKET_OK:
5069 return 0;
5070 }
5071 internal_error (__FILE__, __LINE__,
5072 _("remote_insert_watchpoint: reached end of function"));
5073 }
5074
5075
5076 static int
5077 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5078 {
5079 struct remote_state *rs = get_remote_state ();
5080 char *p;
5081 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5082
5083 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5084 return -1;
5085
5086 sprintf (rs->buf, "z%x,", packet);
5087 p = strchr (rs->buf, '\0');
5088 addr = remote_address_masked (addr);
5089 p += hexnumstr (p, (ULONGEST) addr);
5090 sprintf (p, ",%x", len);
5091 putpkt (rs->buf);
5092 getpkt (&rs->buf, &rs->buf_size, 0);
5093
5094 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5095 {
5096 case PACKET_ERROR:
5097 case PACKET_UNKNOWN:
5098 return -1;
5099 case PACKET_OK:
5100 return 0;
5101 }
5102 internal_error (__FILE__, __LINE__,
5103 _("remote_remove_watchpoint: reached end of function"));
5104 }
5105
5106
5107 int remote_hw_watchpoint_limit = -1;
5108 int remote_hw_breakpoint_limit = -1;
5109
5110 static int
5111 remote_check_watch_resources (int type, int cnt, int ot)
5112 {
5113 if (type == bp_hardware_breakpoint)
5114 {
5115 if (remote_hw_breakpoint_limit == 0)
5116 return 0;
5117 else if (remote_hw_breakpoint_limit < 0)
5118 return 1;
5119 else if (cnt <= remote_hw_breakpoint_limit)
5120 return 1;
5121 }
5122 else
5123 {
5124 if (remote_hw_watchpoint_limit == 0)
5125 return 0;
5126 else if (remote_hw_watchpoint_limit < 0)
5127 return 1;
5128 else if (ot)
5129 return -1;
5130 else if (cnt <= remote_hw_watchpoint_limit)
5131 return 1;
5132 }
5133 return -1;
5134 }
5135
5136 static int
5137 remote_stopped_by_watchpoint (void)
5138 {
5139 return remote_stopped_by_watchpoint_p;
5140 }
5141
5142 extern int stepped_after_stopped_by_watchpoint;
5143
5144 static int
5145 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5146 {
5147 int rc = 0;
5148 if (remote_stopped_by_watchpoint ()
5149 || stepped_after_stopped_by_watchpoint)
5150 {
5151 *addr_p = remote_watch_data_address;
5152 rc = 1;
5153 }
5154
5155 return rc;
5156 }
5157
5158
5159 static int
5160 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5161 {
5162 CORE_ADDR addr;
5163 struct remote_state *rs = get_remote_state ();
5164 char *p = rs->buf;
5165
5166 /* The length field should be set to the size of a breakpoint
5167 instruction, even though we aren't inserting one ourselves. */
5168
5169 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5170
5171 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5172 return -1;
5173
5174 *(p++) = 'Z';
5175 *(p++) = '1';
5176 *(p++) = ',';
5177
5178 addr = remote_address_masked (bp_tgt->placed_address);
5179 p += hexnumstr (p, (ULONGEST) addr);
5180 sprintf (p, ",%x", bp_tgt->placed_size);
5181
5182 putpkt (rs->buf);
5183 getpkt (&rs->buf, &rs->buf_size, 0);
5184
5185 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5186 {
5187 case PACKET_ERROR:
5188 case PACKET_UNKNOWN:
5189 return -1;
5190 case PACKET_OK:
5191 return 0;
5192 }
5193 internal_error (__FILE__, __LINE__,
5194 _("remote_insert_hw_breakpoint: reached end of function"));
5195 }
5196
5197
5198 static int
5199 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5200 {
5201 CORE_ADDR addr;
5202 struct remote_state *rs = get_remote_state ();
5203 char *p = rs->buf;
5204
5205 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5206 return -1;
5207
5208 *(p++) = 'z';
5209 *(p++) = '1';
5210 *(p++) = ',';
5211
5212 addr = remote_address_masked (bp_tgt->placed_address);
5213 p += hexnumstr (p, (ULONGEST) addr);
5214 sprintf (p, ",%x", bp_tgt->placed_size);
5215
5216 putpkt (rs->buf);
5217 getpkt (&rs->buf, &rs->buf_size, 0);
5218
5219 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5220 {
5221 case PACKET_ERROR:
5222 case PACKET_UNKNOWN:
5223 return -1;
5224 case PACKET_OK:
5225 return 0;
5226 }
5227 internal_error (__FILE__, __LINE__,
5228 _("remote_remove_hw_breakpoint: reached end of function"));
5229 }
5230
5231 /* Some targets are only capable of doing downloads, and afterwards
5232 they switch to the remote serial protocol. This function provides
5233 a clean way to get from the download target to the remote target.
5234 It's basically just a wrapper so that we don't have to expose any
5235 of the internal workings of remote.c.
5236
5237 Prior to calling this routine, you should shutdown the current
5238 target code, else you will get the "A program is being debugged
5239 already..." message. Usually a call to pop_target() suffices. */
5240
5241 void
5242 push_remote_target (char *name, int from_tty)
5243 {
5244 printf_filtered (_("Switching to remote protocol\n"));
5245 remote_open (name, from_tty);
5246 }
5247
5248 /* Table used by the crc32 function to calcuate the checksum. */
5249
5250 static unsigned long crc32_table[256] =
5251 {0, 0};
5252
5253 static unsigned long
5254 crc32 (unsigned char *buf, int len, unsigned int crc)
5255 {
5256 if (!crc32_table[1])
5257 {
5258 /* Initialize the CRC table and the decoding table. */
5259 int i, j;
5260 unsigned int c;
5261
5262 for (i = 0; i < 256; i++)
5263 {
5264 for (c = i << 24, j = 8; j > 0; --j)
5265 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5266 crc32_table[i] = c;
5267 }
5268 }
5269
5270 while (len--)
5271 {
5272 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5273 buf++;
5274 }
5275 return crc;
5276 }
5277
5278 /* compare-sections command
5279
5280 With no arguments, compares each loadable section in the exec bfd
5281 with the same memory range on the target, and reports mismatches.
5282 Useful for verifying the image on the target against the exec file.
5283 Depends on the target understanding the new "qCRC:" request. */
5284
5285 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5286 target method (target verify memory) and generic version of the
5287 actual command. This will allow other high-level code (especially
5288 generic_load()) to make use of this target functionality. */
5289
5290 static void
5291 compare_sections_command (char *args, int from_tty)
5292 {
5293 struct remote_state *rs = get_remote_state ();
5294 asection *s;
5295 unsigned long host_crc, target_crc;
5296 extern bfd *exec_bfd;
5297 struct cleanup *old_chain;
5298 char *tmp;
5299 char *sectdata;
5300 const char *sectname;
5301 bfd_size_type size;
5302 bfd_vma lma;
5303 int matched = 0;
5304 int mismatched = 0;
5305
5306 if (!exec_bfd)
5307 error (_("command cannot be used without an exec file"));
5308 if (!current_target.to_shortname ||
5309 strcmp (current_target.to_shortname, "remote") != 0)
5310 error (_("command can only be used with remote target"));
5311
5312 for (s = exec_bfd->sections; s; s = s->next)
5313 {
5314 if (!(s->flags & SEC_LOAD))
5315 continue; /* skip non-loadable section */
5316
5317 size = bfd_get_section_size (s);
5318 if (size == 0)
5319 continue; /* skip zero-length section */
5320
5321 sectname = bfd_get_section_name (exec_bfd, s);
5322 if (args && strcmp (args, sectname) != 0)
5323 continue; /* not the section selected by user */
5324
5325 matched = 1; /* do this section */
5326 lma = s->lma;
5327 /* FIXME: assumes lma can fit into long. */
5328 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5329 (long) lma, (long) size);
5330 putpkt (rs->buf);
5331
5332 /* Be clever; compute the host_crc before waiting for target
5333 reply. */
5334 sectdata = xmalloc (size);
5335 old_chain = make_cleanup (xfree, sectdata);
5336 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5337 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5338
5339 getpkt (&rs->buf, &rs->buf_size, 0);
5340 if (rs->buf[0] == 'E')
5341 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5342 sectname, paddr (lma), paddr (lma + size));
5343 if (rs->buf[0] != 'C')
5344 error (_("remote target does not support this operation"));
5345
5346 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5347 target_crc = target_crc * 16 + fromhex (*tmp);
5348
5349 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5350 sectname, paddr (lma), paddr (lma + size));
5351 if (host_crc == target_crc)
5352 printf_filtered ("matched.\n");
5353 else
5354 {
5355 printf_filtered ("MIS-MATCHED!\n");
5356 mismatched++;
5357 }
5358
5359 do_cleanups (old_chain);
5360 }
5361 if (mismatched > 0)
5362 warning (_("One or more sections of the remote executable does not match\n\
5363 the loaded file\n"));
5364 if (args && !matched)
5365 printf_filtered (_("No loaded section named '%s'.\n"), args);
5366 }
5367
5368 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5369 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5370 number of bytes read is returned, or 0 for EOF, or -1 for error.
5371 The number of bytes read may be less than LEN without indicating an
5372 EOF. PACKET is checked and updated to indicate whether the remote
5373 target supports this object. */
5374
5375 static LONGEST
5376 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5377 const char *annex,
5378 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5379 struct packet_config *packet)
5380 {
5381 static char *finished_object;
5382 static char *finished_annex;
5383 static ULONGEST finished_offset;
5384
5385 struct remote_state *rs = get_remote_state ();
5386 unsigned int total = 0;
5387 LONGEST i, n, packet_len;
5388
5389 if (packet->support == PACKET_DISABLE)
5390 return -1;
5391
5392 /* Check whether we've cached an end-of-object packet that matches
5393 this request. */
5394 if (finished_object)
5395 {
5396 if (strcmp (object_name, finished_object) == 0
5397 && strcmp (annex ? annex : "", finished_annex) == 0
5398 && offset == finished_offset)
5399 return 0;
5400
5401 /* Otherwise, we're now reading something different. Discard
5402 the cache. */
5403 xfree (finished_object);
5404 xfree (finished_annex);
5405 finished_object = NULL;
5406 finished_annex = NULL;
5407 }
5408
5409 /* Request only enough to fit in a single packet. The actual data
5410 may not, since we don't know how much of it will need to be escaped;
5411 the target is free to respond with slightly less data. We subtract
5412 five to account for the response type and the protocol frame. */
5413 n = min (get_remote_packet_size () - 5, len);
5414 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5415 object_name, annex ? annex : "",
5416 phex_nz (offset, sizeof offset),
5417 phex_nz (n, sizeof n));
5418 i = putpkt (rs->buf);
5419 if (i < 0)
5420 return -1;
5421
5422 rs->buf[0] = '\0';
5423 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5424 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5425 return -1;
5426
5427 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5428 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5429
5430 /* 'm' means there is (or at least might be) more data after this
5431 batch. That does not make sense unless there's at least one byte
5432 of data in this reply. */
5433 if (rs->buf[0] == 'm' && packet_len == 1)
5434 error (_("Remote qXfer reply contained no data."));
5435
5436 /* Got some data. */
5437 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5438
5439 /* 'l' is an EOF marker, possibly including a final block of data,
5440 or possibly empty. Record it to bypass the next read, if one is
5441 issued. */
5442 if (rs->buf[0] == 'l')
5443 {
5444 finished_object = xstrdup (object_name);
5445 finished_annex = xstrdup (annex ? annex : "");
5446 finished_offset = offset + i;
5447 }
5448
5449 return i;
5450 }
5451
5452 static LONGEST
5453 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5454 const char *annex, gdb_byte *readbuf,
5455 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5456 {
5457 struct remote_state *rs = get_remote_state ();
5458 int i;
5459 char *p2;
5460 char query_type;
5461
5462 /* Handle memory using the standard memory routines. */
5463 if (object == TARGET_OBJECT_MEMORY)
5464 {
5465 int xfered;
5466 errno = 0;
5467
5468 if (writebuf != NULL)
5469 xfered = remote_write_bytes (offset, writebuf, len);
5470 else
5471 xfered = remote_read_bytes (offset, readbuf, len);
5472
5473 if (xfered > 0)
5474 return xfered;
5475 else if (xfered == 0 && errno == 0)
5476 return 0;
5477 else
5478 return -1;
5479 }
5480
5481 /* Only handle flash writes. */
5482 if (writebuf != NULL)
5483 {
5484 LONGEST xfered;
5485
5486 switch (object)
5487 {
5488 case TARGET_OBJECT_FLASH:
5489 xfered = remote_flash_write (ops, offset, len, writebuf);
5490
5491 if (xfered > 0)
5492 return xfered;
5493 else if (xfered == 0 && errno == 0)
5494 return 0;
5495 else
5496 return -1;
5497
5498 default:
5499 return -1;
5500 }
5501 }
5502
5503 /* Map pre-existing objects onto letters. DO NOT do this for new
5504 objects!!! Instead specify new query packets. */
5505 switch (object)
5506 {
5507 case TARGET_OBJECT_AVR:
5508 query_type = 'R';
5509 break;
5510
5511 case TARGET_OBJECT_AUXV:
5512 gdb_assert (annex == NULL);
5513 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5514 &remote_protocol_packets[PACKET_qXfer_auxv]);
5515
5516 case TARGET_OBJECT_MEMORY_MAP:
5517 gdb_assert (annex == NULL);
5518 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5519 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5520
5521 default:
5522 return -1;
5523 }
5524
5525 /* Note: a zero OFFSET and LEN can be used to query the minimum
5526 buffer size. */
5527 if (offset == 0 && len == 0)
5528 return (get_remote_packet_size ());
5529 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5530 large enough let the caller deal with it. */
5531 if (len < get_remote_packet_size ())
5532 return -1;
5533 len = get_remote_packet_size ();
5534
5535 /* Except for querying the minimum buffer size, target must be open. */
5536 if (!remote_desc)
5537 error (_("remote query is only available after target open"));
5538
5539 gdb_assert (annex != NULL);
5540 gdb_assert (readbuf != NULL);
5541
5542 p2 = rs->buf;
5543 *p2++ = 'q';
5544 *p2++ = query_type;
5545
5546 /* We used one buffer char for the remote protocol q command and
5547 another for the query type. As the remote protocol encapsulation
5548 uses 4 chars plus one extra in case we are debugging
5549 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5550 string. */
5551 i = 0;
5552 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5553 {
5554 /* Bad caller may have sent forbidden characters. */
5555 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5556 *p2++ = annex[i];
5557 i++;
5558 }
5559 *p2 = '\0';
5560 gdb_assert (annex[i] == '\0');
5561
5562 i = putpkt (rs->buf);
5563 if (i < 0)
5564 return i;
5565
5566 getpkt (&rs->buf, &rs->buf_size, 0);
5567 strcpy ((char *) readbuf, rs->buf);
5568
5569 return strlen ((char *) readbuf);
5570 }
5571
5572 static void
5573 remote_rcmd (char *command,
5574 struct ui_file *outbuf)
5575 {
5576 struct remote_state *rs = get_remote_state ();
5577 char *p = rs->buf;
5578
5579 if (!remote_desc)
5580 error (_("remote rcmd is only available after target open"));
5581
5582 /* Send a NULL command across as an empty command. */
5583 if (command == NULL)
5584 command = "";
5585
5586 /* The query prefix. */
5587 strcpy (rs->buf, "qRcmd,");
5588 p = strchr (rs->buf, '\0');
5589
5590 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5591 error (_("\"monitor\" command ``%s'' is too long."), command);
5592
5593 /* Encode the actual command. */
5594 bin2hex ((gdb_byte *) command, p, 0);
5595
5596 if (putpkt (rs->buf) < 0)
5597 error (_("Communication problem with target."));
5598
5599 /* get/display the response */
5600 while (1)
5601 {
5602 char *buf;
5603
5604 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5605 rs->buf[0] = '\0';
5606 getpkt (&rs->buf, &rs->buf_size, 0);
5607 buf = rs->buf;
5608 if (buf[0] == '\0')
5609 error (_("Target does not support this command."));
5610 if (buf[0] == 'O' && buf[1] != 'K')
5611 {
5612 remote_console_output (buf + 1); /* 'O' message from stub. */
5613 continue;
5614 }
5615 if (strcmp (buf, "OK") == 0)
5616 break;
5617 if (strlen (buf) == 3 && buf[0] == 'E'
5618 && isdigit (buf[1]) && isdigit (buf[2]))
5619 {
5620 error (_("Protocol error with Rcmd"));
5621 }
5622 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5623 {
5624 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5625 fputc_unfiltered (c, outbuf);
5626 }
5627 break;
5628 }
5629 }
5630
5631 static VEC(mem_region_s) *
5632 remote_memory_map (struct target_ops *ops)
5633 {
5634 VEC(mem_region_s) *result = NULL;
5635 char *text = target_read_stralloc (&current_target,
5636 TARGET_OBJECT_MEMORY_MAP, NULL);
5637
5638 if (text)
5639 {
5640 struct cleanup *back_to = make_cleanup (xfree, text);
5641 result = parse_memory_map (text);
5642 do_cleanups (back_to);
5643 }
5644
5645 return result;
5646 }
5647
5648 static void
5649 packet_command (char *args, int from_tty)
5650 {
5651 struct remote_state *rs = get_remote_state ();
5652
5653 if (!remote_desc)
5654 error (_("command can only be used with remote target"));
5655
5656 if (!args)
5657 error (_("remote-packet command requires packet text as argument"));
5658
5659 puts_filtered ("sending: ");
5660 print_packet (args);
5661 puts_filtered ("\n");
5662 putpkt (args);
5663
5664 getpkt (&rs->buf, &rs->buf_size, 0);
5665 puts_filtered ("received: ");
5666 print_packet (rs->buf);
5667 puts_filtered ("\n");
5668 }
5669
5670 #if 0
5671 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5672
5673 static void display_thread_info (struct gdb_ext_thread_info *info);
5674
5675 static void threadset_test_cmd (char *cmd, int tty);
5676
5677 static void threadalive_test (char *cmd, int tty);
5678
5679 static void threadlist_test_cmd (char *cmd, int tty);
5680
5681 int get_and_display_threadinfo (threadref *ref);
5682
5683 static void threadinfo_test_cmd (char *cmd, int tty);
5684
5685 static int thread_display_step (threadref *ref, void *context);
5686
5687 static void threadlist_update_test_cmd (char *cmd, int tty);
5688
5689 static void init_remote_threadtests (void);
5690
5691 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5692
5693 static void
5694 threadset_test_cmd (char *cmd, int tty)
5695 {
5696 int sample_thread = SAMPLE_THREAD;
5697
5698 printf_filtered (_("Remote threadset test\n"));
5699 set_thread (sample_thread, 1);
5700 }
5701
5702
5703 static void
5704 threadalive_test (char *cmd, int tty)
5705 {
5706 int sample_thread = SAMPLE_THREAD;
5707
5708 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5709 printf_filtered ("PASS: Thread alive test\n");
5710 else
5711 printf_filtered ("FAIL: Thread alive test\n");
5712 }
5713
5714 void output_threadid (char *title, threadref *ref);
5715
5716 void
5717 output_threadid (char *title, threadref *ref)
5718 {
5719 char hexid[20];
5720
5721 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5722 hexid[16] = 0;
5723 printf_filtered ("%s %s\n", title, (&hexid[0]));
5724 }
5725
5726 static void
5727 threadlist_test_cmd (char *cmd, int tty)
5728 {
5729 int startflag = 1;
5730 threadref nextthread;
5731 int done, result_count;
5732 threadref threadlist[3];
5733
5734 printf_filtered ("Remote Threadlist test\n");
5735 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5736 &result_count, &threadlist[0]))
5737 printf_filtered ("FAIL: threadlist test\n");
5738 else
5739 {
5740 threadref *scan = threadlist;
5741 threadref *limit = scan + result_count;
5742
5743 while (scan < limit)
5744 output_threadid (" thread ", scan++);
5745 }
5746 }
5747
5748 void
5749 display_thread_info (struct gdb_ext_thread_info *info)
5750 {
5751 output_threadid ("Threadid: ", &info->threadid);
5752 printf_filtered ("Name: %s\n ", info->shortname);
5753 printf_filtered ("State: %s\n", info->display);
5754 printf_filtered ("other: %s\n\n", info->more_display);
5755 }
5756
5757 int
5758 get_and_display_threadinfo (threadref *ref)
5759 {
5760 int result;
5761 int set;
5762 struct gdb_ext_thread_info threadinfo;
5763
5764 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5765 | TAG_MOREDISPLAY | TAG_DISPLAY;
5766 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5767 display_thread_info (&threadinfo);
5768 return result;
5769 }
5770
5771 static void
5772 threadinfo_test_cmd (char *cmd, int tty)
5773 {
5774 int athread = SAMPLE_THREAD;
5775 threadref thread;
5776 int set;
5777
5778 int_to_threadref (&thread, athread);
5779 printf_filtered ("Remote Threadinfo test\n");
5780 if (!get_and_display_threadinfo (&thread))
5781 printf_filtered ("FAIL cannot get thread info\n");
5782 }
5783
5784 static int
5785 thread_display_step (threadref *ref, void *context)
5786 {
5787 /* output_threadid(" threadstep ",ref); *//* simple test */
5788 return get_and_display_threadinfo (ref);
5789 }
5790
5791 static void
5792 threadlist_update_test_cmd (char *cmd, int tty)
5793 {
5794 printf_filtered ("Remote Threadlist update test\n");
5795 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5796 }
5797
5798 static void
5799 init_remote_threadtests (void)
5800 {
5801 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5802 Fetch and print the remote list of thread identifiers, one pkt only"));
5803 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5804 _("Fetch and display info about one thread"));
5805 add_com ("tset", class_obscure, threadset_test_cmd,
5806 _("Test setting to a different thread"));
5807 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5808 _("Iterate through updating all remote thread info"));
5809 add_com ("talive", class_obscure, threadalive_test,
5810 _(" Remote thread alive test "));
5811 }
5812
5813 #endif /* 0 */
5814
5815 /* Convert a thread ID to a string. Returns the string in a static
5816 buffer. */
5817
5818 static char *
5819 remote_pid_to_str (ptid_t ptid)
5820 {
5821 static char buf[32];
5822
5823 xsnprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5824 return buf;
5825 }
5826
5827 /* Get the address of the thread local variable in OBJFILE which is
5828 stored at OFFSET within the thread local storage for thread PTID. */
5829
5830 static CORE_ADDR
5831 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5832 {
5833 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5834 {
5835 struct remote_state *rs = get_remote_state ();
5836 char *p = rs->buf;
5837 enum packet_result result;
5838
5839 strcpy (p, "qGetTLSAddr:");
5840 p += strlen (p);
5841 p += hexnumstr (p, PIDGET (ptid));
5842 *p++ = ',';
5843 p += hexnumstr (p, offset);
5844 *p++ = ',';
5845 p += hexnumstr (p, lm);
5846 *p++ = '\0';
5847
5848 putpkt (rs->buf);
5849 getpkt (&rs->buf, &rs->buf_size, 0);
5850 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
5851 if (result == PACKET_OK)
5852 {
5853 ULONGEST result;
5854
5855 unpack_varlen_hex (rs->buf, &result);
5856 return result;
5857 }
5858 else if (result == PACKET_UNKNOWN)
5859 throw_error (TLS_GENERIC_ERROR,
5860 _("Remote target doesn't support qGetTLSAddr packet"));
5861 else
5862 throw_error (TLS_GENERIC_ERROR,
5863 _("Remote target failed to process qGetTLSAddr request"));
5864 }
5865 else
5866 throw_error (TLS_GENERIC_ERROR,
5867 _("TLS not supported or disabled on this target"));
5868 /* Not reached. */
5869 return 0;
5870 }
5871
5872 static void
5873 init_remote_ops (void)
5874 {
5875 remote_ops.to_shortname = "remote";
5876 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5877 remote_ops.to_doc =
5878 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5879 Specify the serial device it is connected to\n\
5880 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5881 remote_ops.to_open = remote_open;
5882 remote_ops.to_close = remote_close;
5883 remote_ops.to_detach = remote_detach;
5884 remote_ops.to_disconnect = remote_disconnect;
5885 remote_ops.to_resume = remote_resume;
5886 remote_ops.to_wait = remote_wait;
5887 remote_ops.to_fetch_registers = remote_fetch_registers;
5888 remote_ops.to_store_registers = remote_store_registers;
5889 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5890 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5891 remote_ops.to_files_info = remote_files_info;
5892 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5893 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5894 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5895 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5896 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5897 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5898 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5899 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5900 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5901 remote_ops.to_kill = remote_kill;
5902 remote_ops.to_load = generic_load;
5903 remote_ops.to_mourn_inferior = remote_mourn;
5904 remote_ops.to_thread_alive = remote_thread_alive;
5905 remote_ops.to_find_new_threads = remote_threads_info;
5906 remote_ops.to_pid_to_str = remote_pid_to_str;
5907 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5908 remote_ops.to_stop = remote_stop;
5909 remote_ops.to_xfer_partial = remote_xfer_partial;
5910 remote_ops.to_rcmd = remote_rcmd;
5911 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5912 remote_ops.to_stratum = process_stratum;
5913 remote_ops.to_has_all_memory = 1;
5914 remote_ops.to_has_memory = 1;
5915 remote_ops.to_has_stack = 1;
5916 remote_ops.to_has_registers = 1;
5917 remote_ops.to_has_execution = 1;
5918 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5919 remote_ops.to_magic = OPS_MAGIC;
5920 remote_ops.to_memory_map = remote_memory_map;
5921 remote_ops.to_flash_erase = remote_flash_erase;
5922 remote_ops.to_flash_done = remote_flash_done;
5923 }
5924
5925 /* Set up the extended remote vector by making a copy of the standard
5926 remote vector and adding to it. */
5927
5928 static void
5929 init_extended_remote_ops (void)
5930 {
5931 extended_remote_ops = remote_ops;
5932
5933 extended_remote_ops.to_shortname = "extended-remote";
5934 extended_remote_ops.to_longname =
5935 "Extended remote serial target in gdb-specific protocol";
5936 extended_remote_ops.to_doc =
5937 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5938 Specify the serial device it is connected to (e.g. /dev/ttya).",
5939 extended_remote_ops.to_open = extended_remote_open;
5940 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5941 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5942 }
5943
5944 static int
5945 remote_can_async_p (void)
5946 {
5947 /* We're async whenever the serial device is. */
5948 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5949 }
5950
5951 static int
5952 remote_is_async_p (void)
5953 {
5954 /* We're async whenever the serial device is. */
5955 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5956 }
5957
5958 /* Pass the SERIAL event on and up to the client. One day this code
5959 will be able to delay notifying the client of an event until the
5960 point where an entire packet has been received. */
5961
5962 static void (*async_client_callback) (enum inferior_event_type event_type,
5963 void *context);
5964 static void *async_client_context;
5965 static serial_event_ftype remote_async_serial_handler;
5966
5967 static void
5968 remote_async_serial_handler (struct serial *scb, void *context)
5969 {
5970 /* Don't propogate error information up to the client. Instead let
5971 the client find out about the error by querying the target. */
5972 async_client_callback (INF_REG_EVENT, async_client_context);
5973 }
5974
5975 static void
5976 remote_async (void (*callback) (enum inferior_event_type event_type,
5977 void *context), void *context)
5978 {
5979 if (current_target.to_async_mask_value == 0)
5980 internal_error (__FILE__, __LINE__,
5981 _("Calling remote_async when async is masked"));
5982
5983 if (callback != NULL)
5984 {
5985 serial_async (remote_desc, remote_async_serial_handler, NULL);
5986 async_client_callback = callback;
5987 async_client_context = context;
5988 }
5989 else
5990 serial_async (remote_desc, NULL, NULL);
5991 }
5992
5993 /* Target async and target extended-async.
5994
5995 This are temporary targets, until it is all tested. Eventually
5996 async support will be incorporated int the usual 'remote'
5997 target. */
5998
5999 static void
6000 init_remote_async_ops (void)
6001 {
6002 remote_async_ops.to_shortname = "async";
6003 remote_async_ops.to_longname =
6004 "Remote serial target in async version of the gdb-specific protocol";
6005 remote_async_ops.to_doc =
6006 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6007 Specify the serial device it is connected to (e.g. /dev/ttya).";
6008 remote_async_ops.to_open = remote_async_open;
6009 remote_async_ops.to_close = remote_close;
6010 remote_async_ops.to_detach = remote_detach;
6011 remote_async_ops.to_disconnect = remote_disconnect;
6012 remote_async_ops.to_resume = remote_async_resume;
6013 remote_async_ops.to_wait = remote_async_wait;
6014 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6015 remote_async_ops.to_store_registers = remote_store_registers;
6016 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6017 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6018 remote_async_ops.to_files_info = remote_files_info;
6019 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6020 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6021 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6022 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6023 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6024 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6025 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6026 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6027 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6028 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6029 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6030 remote_async_ops.to_kill = remote_async_kill;
6031 remote_async_ops.to_load = generic_load;
6032 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6033 remote_async_ops.to_thread_alive = remote_thread_alive;
6034 remote_async_ops.to_find_new_threads = remote_threads_info;
6035 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6036 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6037 remote_async_ops.to_stop = remote_stop;
6038 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6039 remote_async_ops.to_rcmd = remote_rcmd;
6040 remote_async_ops.to_stratum = process_stratum;
6041 remote_async_ops.to_has_all_memory = 1;
6042 remote_async_ops.to_has_memory = 1;
6043 remote_async_ops.to_has_stack = 1;
6044 remote_async_ops.to_has_registers = 1;
6045 remote_async_ops.to_has_execution = 1;
6046 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6047 remote_async_ops.to_can_async_p = remote_can_async_p;
6048 remote_async_ops.to_is_async_p = remote_is_async_p;
6049 remote_async_ops.to_async = remote_async;
6050 remote_async_ops.to_async_mask_value = 1;
6051 remote_async_ops.to_magic = OPS_MAGIC;
6052 remote_async_ops.to_memory_map = remote_memory_map;
6053 remote_async_ops.to_flash_erase = remote_flash_erase;
6054 remote_async_ops.to_flash_done = remote_flash_done;
6055 }
6056
6057 /* Set up the async extended remote vector by making a copy of the standard
6058 remote vector and adding to it. */
6059
6060 static void
6061 init_extended_async_remote_ops (void)
6062 {
6063 extended_async_remote_ops = remote_async_ops;
6064
6065 extended_async_remote_ops.to_shortname = "extended-async";
6066 extended_async_remote_ops.to_longname =
6067 "Extended remote serial target in async gdb-specific protocol";
6068 extended_async_remote_ops.to_doc =
6069 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6070 Specify the serial device it is connected to (e.g. /dev/ttya).",
6071 extended_async_remote_ops.to_open = extended_remote_async_open;
6072 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6073 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6074 }
6075
6076 static void
6077 set_remote_cmd (char *args, int from_tty)
6078 {
6079 }
6080
6081 static void
6082 show_remote_cmd (char *args, int from_tty)
6083 {
6084 /* We can't just use cmd_show_list here, because we want to skip
6085 the redundant "show remote Z-packet". */
6086 struct cleanup *showlist_chain;
6087 struct cmd_list_element *list = remote_show_cmdlist;
6088
6089 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6090 for (; list != NULL; list = list->next)
6091 if (strcmp (list->name, "Z-packet") == 0)
6092 continue;
6093 else if (list->type == show_cmd)
6094 {
6095 struct cleanup *option_chain
6096 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6097 ui_out_field_string (uiout, "name", list->name);
6098 ui_out_text (uiout, ": ");
6099 do_setshow_command ((char *) NULL, from_tty, list);
6100 /* Close the tuple. */
6101 do_cleanups (option_chain);
6102 }
6103 }
6104
6105 static void
6106 build_remote_gdbarch_data (void)
6107 {
6108 remote_address_size = TARGET_ADDR_BIT;
6109 }
6110
6111 /* Saved pointer to previous owner of the new_objfile event. */
6112 static void (*remote_new_objfile_chain) (struct objfile *);
6113
6114 /* Function to be called whenever a new objfile (shlib) is detected. */
6115 static void
6116 remote_new_objfile (struct objfile *objfile)
6117 {
6118 if (remote_desc != 0) /* Have a remote connection. */
6119 {
6120 remote_check_symbols (objfile);
6121 }
6122 /* Call predecessor on chain, if any. */
6123 if (remote_new_objfile_chain != 0 &&
6124 remote_desc == 0)
6125 remote_new_objfile_chain (objfile);
6126 }
6127
6128 void
6129 _initialize_remote (void)
6130 {
6131 struct remote_state *rs;
6132
6133 /* architecture specific data */
6134 remote_gdbarch_data_handle =
6135 gdbarch_data_register_post_init (init_remote_state);
6136
6137 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6138 that the remote protocol has been initialized. */
6139 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6140 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6141
6142 /* Initialize the per-target state. At the moment there is only one
6143 of these, not one per target. Only one target is active at a
6144 time. The default buffer size is unimportant; it will be expanded
6145 whenever a larger buffer is needed. */
6146 rs = get_remote_state ();
6147 rs->buf_size = 400;
6148 rs->buf = xmalloc (rs->buf_size);
6149
6150 init_remote_ops ();
6151 add_target (&remote_ops);
6152
6153 init_extended_remote_ops ();
6154 add_target (&extended_remote_ops);
6155
6156 init_remote_async_ops ();
6157 add_target (&remote_async_ops);
6158
6159 init_extended_async_remote_ops ();
6160 add_target (&extended_async_remote_ops);
6161
6162 /* Hook into new objfile notification. */
6163 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6164 deprecated_target_new_objfile_hook = remote_new_objfile;
6165
6166 #if 0
6167 init_remote_threadtests ();
6168 #endif
6169
6170 /* set/show remote ... */
6171
6172 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6173 Remote protocol specific variables\n\
6174 Configure various remote-protocol specific variables such as\n\
6175 the packets being used"),
6176 &remote_set_cmdlist, "set remote ",
6177 0 /* allow-unknown */, &setlist);
6178 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6179 Remote protocol specific variables\n\
6180 Configure various remote-protocol specific variables such as\n\
6181 the packets being used"),
6182 &remote_show_cmdlist, "show remote ",
6183 0 /* allow-unknown */, &showlist);
6184
6185 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6186 Compare section data on target to the exec file.\n\
6187 Argument is a single section name (default: all loaded sections)."),
6188 &cmdlist);
6189
6190 add_cmd ("packet", class_maintenance, packet_command, _("\
6191 Send an arbitrary packet to a remote target.\n\
6192 maintenance packet TEXT\n\
6193 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6194 this command sends the string TEXT to the inferior, and displays the\n\
6195 response packet. GDB supplies the initial `$' character, and the\n\
6196 terminating `#' character and checksum."),
6197 &maintenancelist);
6198
6199 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6200 Set whether to send break if interrupted."), _("\
6201 Show whether to send break if interrupted."), _("\
6202 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6203 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6204 &setlist, &showlist);
6205
6206 /* Install commands for configuring memory read/write packets. */
6207
6208 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6209 Set the maximum number of bytes per memory write packet (deprecated)."),
6210 &setlist);
6211 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6212 Show the maximum number of bytes per memory write packet (deprecated)."),
6213 &showlist);
6214 add_cmd ("memory-write-packet-size", no_class,
6215 set_memory_write_packet_size, _("\
6216 Set the maximum number of bytes per memory-write packet.\n\
6217 Specify the number of bytes in a packet or 0 (zero) for the\n\
6218 default packet size. The actual limit is further reduced\n\
6219 dependent on the target. Specify ``fixed'' to disable the\n\
6220 further restriction and ``limit'' to enable that restriction."),
6221 &remote_set_cmdlist);
6222 add_cmd ("memory-read-packet-size", no_class,
6223 set_memory_read_packet_size, _("\
6224 Set the maximum number of bytes per memory-read packet.\n\
6225 Specify the number of bytes in a packet or 0 (zero) for the\n\
6226 default packet size. The actual limit is further reduced\n\
6227 dependent on the target. Specify ``fixed'' to disable the\n\
6228 further restriction and ``limit'' to enable that restriction."),
6229 &remote_set_cmdlist);
6230 add_cmd ("memory-write-packet-size", no_class,
6231 show_memory_write_packet_size,
6232 _("Show the maximum number of bytes per memory-write packet."),
6233 &remote_show_cmdlist);
6234 add_cmd ("memory-read-packet-size", no_class,
6235 show_memory_read_packet_size,
6236 _("Show the maximum number of bytes per memory-read packet."),
6237 &remote_show_cmdlist);
6238
6239 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6240 &remote_hw_watchpoint_limit, _("\
6241 Set the maximum number of target hardware watchpoints."), _("\
6242 Show the maximum number of target hardware watchpoints."), _("\
6243 Specify a negative limit for unlimited."),
6244 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6245 &remote_set_cmdlist, &remote_show_cmdlist);
6246 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6247 &remote_hw_breakpoint_limit, _("\
6248 Set the maximum number of target hardware breakpoints."), _("\
6249 Show the maximum number of target hardware breakpoints."), _("\
6250 Specify a negative limit for unlimited."),
6251 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6252 &remote_set_cmdlist, &remote_show_cmdlist);
6253
6254 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6255 &remote_address_size, _("\
6256 Set the maximum size of the address (in bits) in a memory packet."), _("\
6257 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6258 NULL,
6259 NULL, /* FIXME: i18n: */
6260 &setlist, &showlist);
6261
6262 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6263 "X", "binary-download", 1);
6264
6265 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6266 "vCont", "verbose-resume", 0);
6267
6268 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6269 "qSymbol", "symbol-lookup", 0);
6270
6271 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6272 "P", "set-register", 1);
6273
6274 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6275 "p", "fetch-register", 1);
6276
6277 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6278 "Z0", "software-breakpoint", 0);
6279
6280 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6281 "Z1", "hardware-breakpoint", 0);
6282
6283 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6284 "Z2", "write-watchpoint", 0);
6285
6286 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6287 "Z3", "read-watchpoint", 0);
6288
6289 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6290 "Z4", "access-watchpoint", 0);
6291
6292 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6293 "qXfer:auxv:read", "read-aux-vector", 0);
6294
6295 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6296 "qXfer:memory-map:read", "memory-map", 0);
6297
6298 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6299 "qGetTLSAddr", "get-thread-local-storage-address",
6300 0);
6301
6302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6303 "qSupported", "supported-packets", 0);
6304
6305 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6306 Z sub-packet has its own set and show commands, but users may
6307 have sets to this variable in their .gdbinit files (or in their
6308 documentation). */
6309 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6310 &remote_Z_packet_detect, _("\
6311 Set use of remote protocol `Z' packets"), _("\
6312 Show use of remote protocol `Z' packets "), _("\
6313 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6314 packets."),
6315 set_remote_protocol_Z_packet_cmd,
6316 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6317 &remote_set_cmdlist, &remote_show_cmdlist);
6318
6319 /* Eventually initialize fileio. See fileio.c */
6320 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6321 }
This page took 0.163273 seconds and 4 git commands to generate.