d6e5000c09b42302ddddd4597a67198819a4e675
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array gdbarch_num_regs in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Use the architecture to build a regnum<->pnum table, which will be
338 1:1 unless a feature set specifies otherwise. */
339 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
340 gdbarch_num_regs (current_gdbarch),
341 struct packet_reg);
342 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
343 {
344 struct packet_reg *r = &rsa->regs[regnum];
345
346 if (register_size (current_gdbarch, regnum) == 0)
347 /* Do not try to fetch zero-sized (placeholder) registers. */
348 r->pnum = -1;
349 else
350 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
351
352 r->regnum = regnum;
353 }
354
355 /* Define the g/G packet format as the contents of each register
356 with a remote protocol number, in order of ascending protocol
357 number. */
358
359 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
360 * sizeof (struct packet_reg *));
361 for (num_remote_regs = 0, regnum = 0;
362 regnum < gdbarch_num_regs (current_gdbarch);
363 regnum++)
364 if (rsa->regs[regnum].pnum != -1)
365 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
366
367 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
368 compare_pnums);
369
370 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
371 {
372 remote_regs[regnum]->in_g_packet = 1;
373 remote_regs[regnum]->offset = offset;
374 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
375 }
376
377 /* Record the maximum possible size of the g packet - it may turn out
378 to be smaller. */
379 rsa->sizeof_g_packet = offset;
380
381 /* Default maximum number of characters in a packet body. Many
382 remote stubs have a hardwired buffer size of 400 bytes
383 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
384 as the maximum packet-size to ensure that the packet and an extra
385 NUL character can always fit in the buffer. This stops GDB
386 trashing stubs that try to squeeze an extra NUL into what is
387 already a full buffer (As of 1999-12-04 that was most stubs). */
388 rsa->remote_packet_size = 400 - 1;
389
390 /* This one is filled in when a ``g'' packet is received. */
391 rsa->actual_register_packet_size = 0;
392
393 /* Should rsa->sizeof_g_packet needs more space than the
394 default, adjust the size accordingly. Remember that each byte is
395 encoded as two characters. 32 is the overhead for the packet
396 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
397 (``$NN:G...#NN'') is a better guess, the below has been padded a
398 little. */
399 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
400 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
401
402 /* Make sure that the packet buffer is plenty big enough for
403 this architecture. */
404 if (rs->buf_size < rsa->remote_packet_size)
405 {
406 rs->buf_size = 2 * rsa->remote_packet_size;
407 rs->buf = xrealloc (rs->buf, rs->buf_size);
408 }
409
410 return rsa;
411 }
412
413 /* Return the current allowed size of a remote packet. This is
414 inferred from the current architecture, and should be used to
415 limit the length of outgoing packets. */
416 static long
417 get_remote_packet_size (void)
418 {
419 struct remote_state *rs = get_remote_state ();
420 struct remote_arch_state *rsa = get_remote_arch_state ();
421
422 if (rs->explicit_packet_size)
423 return rs->explicit_packet_size;
424
425 return rsa->remote_packet_size;
426 }
427
428 static struct packet_reg *
429 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
430 {
431 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
432 return NULL;
433 else
434 {
435 struct packet_reg *r = &rsa->regs[regnum];
436 gdb_assert (r->regnum == regnum);
437 return r;
438 }
439 }
440
441 static struct packet_reg *
442 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
443 {
444 int i;
445 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
446 {
447 struct packet_reg *r = &rsa->regs[i];
448 if (r->pnum == pnum)
449 return r;
450 }
451 return NULL;
452 }
453
454 /* FIXME: graces/2002-08-08: These variables should eventually be
455 bound to an instance of the target object (as in gdbarch-tdep()),
456 when such a thing exists. */
457
458 /* This is set to the data address of the access causing the target
459 to stop for a watchpoint. */
460 static CORE_ADDR remote_watch_data_address;
461
462 /* This is non-zero if target stopped for a watchpoint. */
463 static int remote_stopped_by_watchpoint_p;
464
465 static struct target_ops remote_ops;
466
467 static struct target_ops extended_remote_ops;
468
469 /* Temporary target ops. Just like the remote_ops and
470 extended_remote_ops, but with asynchronous support. */
471 static struct target_ops remote_async_ops;
472
473 static struct target_ops extended_async_remote_ops;
474
475 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
476 ``forever'' still use the normal timeout mechanism. This is
477 currently used by the ASYNC code to guarentee that target reads
478 during the initial connect always time-out. Once getpkt has been
479 modified to return a timeout indication and, in turn
480 remote_wait()/wait_for_inferior() have gained a timeout parameter
481 this can go away. */
482 static int wait_forever_enabled_p = 1;
483
484
485 /* This variable chooses whether to send a ^C or a break when the user
486 requests program interruption. Although ^C is usually what remote
487 systems expect, and that is the default here, sometimes a break is
488 preferable instead. */
489
490 static int remote_break;
491
492 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
493 remote_open knows that we don't have a file open when the program
494 starts. */
495 static struct serial *remote_desc = NULL;
496
497 /* This variable sets the number of bits in an address that are to be
498 sent in a memory ("M" or "m") packet. Normally, after stripping
499 leading zeros, the entire address would be sent. This variable
500 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
501 initial implementation of remote.c restricted the address sent in
502 memory packets to ``host::sizeof long'' bytes - (typically 32
503 bits). Consequently, for 64 bit targets, the upper 32 bits of an
504 address was never sent. Since fixing this bug may cause a break in
505 some remote targets this variable is principly provided to
506 facilitate backward compatibility. */
507
508 static int remote_address_size;
509
510 /* Tempoary to track who currently owns the terminal. See
511 target_async_terminal_* for more details. */
512
513 static int remote_async_terminal_ours_p;
514
515 \f
516 /* User configurable variables for the number of characters in a
517 memory read/write packet. MIN (rsa->remote_packet_size,
518 rsa->sizeof_g_packet) is the default. Some targets need smaller
519 values (fifo overruns, et.al.) and some users need larger values
520 (speed up transfers). The variables ``preferred_*'' (the user
521 request), ``current_*'' (what was actually set) and ``forced_*''
522 (Positive - a soft limit, negative - a hard limit). */
523
524 struct memory_packet_config
525 {
526 char *name;
527 long size;
528 int fixed_p;
529 };
530
531 /* Compute the current size of a read/write packet. Since this makes
532 use of ``actual_register_packet_size'' the computation is dynamic. */
533
534 static long
535 get_memory_packet_size (struct memory_packet_config *config)
536 {
537 struct remote_state *rs = get_remote_state ();
538 struct remote_arch_state *rsa = get_remote_arch_state ();
539
540 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
541 law?) that some hosts don't cope very well with large alloca()
542 calls. Eventually the alloca() code will be replaced by calls to
543 xmalloc() and make_cleanups() allowing this restriction to either
544 be lifted or removed. */
545 #ifndef MAX_REMOTE_PACKET_SIZE
546 #define MAX_REMOTE_PACKET_SIZE 16384
547 #endif
548 /* NOTE: 20 ensures we can write at least one byte. */
549 #ifndef MIN_REMOTE_PACKET_SIZE
550 #define MIN_REMOTE_PACKET_SIZE 20
551 #endif
552 long what_they_get;
553 if (config->fixed_p)
554 {
555 if (config->size <= 0)
556 what_they_get = MAX_REMOTE_PACKET_SIZE;
557 else
558 what_they_get = config->size;
559 }
560 else
561 {
562 what_they_get = get_remote_packet_size ();
563 /* Limit the packet to the size specified by the user. */
564 if (config->size > 0
565 && what_they_get > config->size)
566 what_they_get = config->size;
567
568 /* Limit it to the size of the targets ``g'' response unless we have
569 permission from the stub to use a larger packet size. */
570 if (rs->explicit_packet_size == 0
571 && rsa->actual_register_packet_size > 0
572 && what_they_get > rsa->actual_register_packet_size)
573 what_they_get = rsa->actual_register_packet_size;
574 }
575 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
576 what_they_get = MAX_REMOTE_PACKET_SIZE;
577 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
578 what_they_get = MIN_REMOTE_PACKET_SIZE;
579
580 /* Make sure there is room in the global buffer for this packet
581 (including its trailing NUL byte). */
582 if (rs->buf_size < what_they_get + 1)
583 {
584 rs->buf_size = 2 * what_they_get;
585 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
586 }
587
588 return what_they_get;
589 }
590
591 /* Update the size of a read/write packet. If they user wants
592 something really big then do a sanity check. */
593
594 static void
595 set_memory_packet_size (char *args, struct memory_packet_config *config)
596 {
597 int fixed_p = config->fixed_p;
598 long size = config->size;
599 if (args == NULL)
600 error (_("Argument required (integer, `fixed' or `limited')."));
601 else if (strcmp (args, "hard") == 0
602 || strcmp (args, "fixed") == 0)
603 fixed_p = 1;
604 else if (strcmp (args, "soft") == 0
605 || strcmp (args, "limit") == 0)
606 fixed_p = 0;
607 else
608 {
609 char *end;
610 size = strtoul (args, &end, 0);
611 if (args == end)
612 error (_("Invalid %s (bad syntax)."), config->name);
613 #if 0
614 /* Instead of explicitly capping the size of a packet to
615 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
616 instead allowed to set the size to something arbitrarily
617 large. */
618 if (size > MAX_REMOTE_PACKET_SIZE)
619 error (_("Invalid %s (too large)."), config->name);
620 #endif
621 }
622 /* Extra checks? */
623 if (fixed_p && !config->fixed_p)
624 {
625 if (! query (_("The target may not be able to correctly handle a %s\n"
626 "of %ld bytes. Change the packet size? "),
627 config->name, size))
628 error (_("Packet size not changed."));
629 }
630 /* Update the config. */
631 config->fixed_p = fixed_p;
632 config->size = size;
633 }
634
635 static void
636 show_memory_packet_size (struct memory_packet_config *config)
637 {
638 printf_filtered (_("The %s is %ld. "), config->name, config->size);
639 if (config->fixed_p)
640 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
641 get_memory_packet_size (config));
642 else
643 printf_filtered (_("Packets are limited to %ld bytes.\n"),
644 get_memory_packet_size (config));
645 }
646
647 static struct memory_packet_config memory_write_packet_config =
648 {
649 "memory-write-packet-size",
650 };
651
652 static void
653 set_memory_write_packet_size (char *args, int from_tty)
654 {
655 set_memory_packet_size (args, &memory_write_packet_config);
656 }
657
658 static void
659 show_memory_write_packet_size (char *args, int from_tty)
660 {
661 show_memory_packet_size (&memory_write_packet_config);
662 }
663
664 static long
665 get_memory_write_packet_size (void)
666 {
667 return get_memory_packet_size (&memory_write_packet_config);
668 }
669
670 static struct memory_packet_config memory_read_packet_config =
671 {
672 "memory-read-packet-size",
673 };
674
675 static void
676 set_memory_read_packet_size (char *args, int from_tty)
677 {
678 set_memory_packet_size (args, &memory_read_packet_config);
679 }
680
681 static void
682 show_memory_read_packet_size (char *args, int from_tty)
683 {
684 show_memory_packet_size (&memory_read_packet_config);
685 }
686
687 static long
688 get_memory_read_packet_size (void)
689 {
690 long size = get_memory_packet_size (&memory_read_packet_config);
691 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
692 extra buffer size argument before the memory read size can be
693 increased beyond this. */
694 if (size > get_remote_packet_size ())
695 size = get_remote_packet_size ();
696 return size;
697 }
698
699 \f
700 /* Generic configuration support for packets the stub optionally
701 supports. Allows the user to specify the use of the packet as well
702 as allowing GDB to auto-detect support in the remote stub. */
703
704 enum packet_support
705 {
706 PACKET_SUPPORT_UNKNOWN = 0,
707 PACKET_ENABLE,
708 PACKET_DISABLE
709 };
710
711 struct packet_config
712 {
713 const char *name;
714 const char *title;
715 enum auto_boolean detect;
716 enum packet_support support;
717 };
718
719 /* Analyze a packet's return value and update the packet config
720 accordingly. */
721
722 enum packet_result
723 {
724 PACKET_ERROR,
725 PACKET_OK,
726 PACKET_UNKNOWN
727 };
728
729 static void
730 update_packet_config (struct packet_config *config)
731 {
732 switch (config->detect)
733 {
734 case AUTO_BOOLEAN_TRUE:
735 config->support = PACKET_ENABLE;
736 break;
737 case AUTO_BOOLEAN_FALSE:
738 config->support = PACKET_DISABLE;
739 break;
740 case AUTO_BOOLEAN_AUTO:
741 config->support = PACKET_SUPPORT_UNKNOWN;
742 break;
743 }
744 }
745
746 static void
747 show_packet_config_cmd (struct packet_config *config)
748 {
749 char *support = "internal-error";
750 switch (config->support)
751 {
752 case PACKET_ENABLE:
753 support = "enabled";
754 break;
755 case PACKET_DISABLE:
756 support = "disabled";
757 break;
758 case PACKET_SUPPORT_UNKNOWN:
759 support = "unknown";
760 break;
761 }
762 switch (config->detect)
763 {
764 case AUTO_BOOLEAN_AUTO:
765 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
766 config->name, support);
767 break;
768 case AUTO_BOOLEAN_TRUE:
769 case AUTO_BOOLEAN_FALSE:
770 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
771 config->name, support);
772 break;
773 }
774 }
775
776 static void
777 add_packet_config_cmd (struct packet_config *config, const char *name,
778 const char *title, int legacy)
779 {
780 char *set_doc;
781 char *show_doc;
782 char *cmd_name;
783
784 config->name = name;
785 config->title = title;
786 config->detect = AUTO_BOOLEAN_AUTO;
787 config->support = PACKET_SUPPORT_UNKNOWN;
788 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
789 name, title);
790 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
791 name, title);
792 /* set/show TITLE-packet {auto,on,off} */
793 cmd_name = xstrprintf ("%s-packet", title);
794 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
795 &config->detect, set_doc, show_doc, NULL, /* help_doc */
796 set_remote_protocol_packet_cmd,
797 show_remote_protocol_packet_cmd,
798 &remote_set_cmdlist, &remote_show_cmdlist);
799 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
800 if (legacy)
801 {
802 char *legacy_name;
803 legacy_name = xstrprintf ("%s-packet", name);
804 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
805 &remote_set_cmdlist);
806 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
807 &remote_show_cmdlist);
808 }
809 }
810
811 static enum packet_result
812 packet_check_result (const char *buf)
813 {
814 if (buf[0] != '\0')
815 {
816 /* The stub recognized the packet request. Check that the
817 operation succeeded. */
818 if (buf[0] == 'E'
819 && isxdigit (buf[1]) && isxdigit (buf[2])
820 && buf[3] == '\0')
821 /* "Enn" - definitly an error. */
822 return PACKET_ERROR;
823
824 /* Always treat "E." as an error. This will be used for
825 more verbose error messages, such as E.memtypes. */
826 if (buf[0] == 'E' && buf[1] == '.')
827 return PACKET_ERROR;
828
829 /* The packet may or may not be OK. Just assume it is. */
830 return PACKET_OK;
831 }
832 else
833 /* The stub does not support the packet. */
834 return PACKET_UNKNOWN;
835 }
836
837 static enum packet_result
838 packet_ok (const char *buf, struct packet_config *config)
839 {
840 enum packet_result result;
841
842 result = packet_check_result (buf);
843 switch (result)
844 {
845 case PACKET_OK:
846 case PACKET_ERROR:
847 /* The stub recognized the packet request. */
848 switch (config->support)
849 {
850 case PACKET_SUPPORT_UNKNOWN:
851 if (remote_debug)
852 fprintf_unfiltered (gdb_stdlog,
853 "Packet %s (%s) is supported\n",
854 config->name, config->title);
855 config->support = PACKET_ENABLE;
856 break;
857 case PACKET_DISABLE:
858 internal_error (__FILE__, __LINE__,
859 _("packet_ok: attempt to use a disabled packet"));
860 break;
861 case PACKET_ENABLE:
862 break;
863 }
864 break;
865 case PACKET_UNKNOWN:
866 /* The stub does not support the packet. */
867 switch (config->support)
868 {
869 case PACKET_ENABLE:
870 if (config->detect == AUTO_BOOLEAN_AUTO)
871 /* If the stub previously indicated that the packet was
872 supported then there is a protocol error.. */
873 error (_("Protocol error: %s (%s) conflicting enabled responses."),
874 config->name, config->title);
875 else
876 /* The user set it wrong. */
877 error (_("Enabled packet %s (%s) not recognized by stub"),
878 config->name, config->title);
879 break;
880 case PACKET_SUPPORT_UNKNOWN:
881 if (remote_debug)
882 fprintf_unfiltered (gdb_stdlog,
883 "Packet %s (%s) is NOT supported\n",
884 config->name, config->title);
885 config->support = PACKET_DISABLE;
886 break;
887 case PACKET_DISABLE:
888 break;
889 }
890 break;
891 }
892
893 return result;
894 }
895
896 enum {
897 PACKET_vCont = 0,
898 PACKET_X,
899 PACKET_qSymbol,
900 PACKET_P,
901 PACKET_p,
902 PACKET_Z0,
903 PACKET_Z1,
904 PACKET_Z2,
905 PACKET_Z3,
906 PACKET_Z4,
907 PACKET_qXfer_auxv,
908 PACKET_qXfer_features,
909 PACKET_qXfer_memory_map,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose;
2017 CORE_ADDR text_addr, data_addr, bss_addr;
2018 struct section_offsets *offs;
2019
2020 putpkt ("qOffsets");
2021 getpkt (&rs->buf, &rs->buf_size, 0);
2022 buf = rs->buf;
2023
2024 if (buf[0] == '\000')
2025 return; /* Return silently. Stub doesn't support
2026 this command. */
2027 if (buf[0] == 'E')
2028 {
2029 warning (_("Remote failure reply: %s"), buf);
2030 return;
2031 }
2032
2033 /* Pick up each field in turn. This used to be done with scanf, but
2034 scanf will make trouble if CORE_ADDR size doesn't match
2035 conversion directives correctly. The following code will work
2036 with any size of CORE_ADDR. */
2037 text_addr = data_addr = bss_addr = 0;
2038 ptr = buf;
2039 lose = 0;
2040
2041 if (strncmp (ptr, "Text=", 5) == 0)
2042 {
2043 ptr += 5;
2044 /* Don't use strtol, could lose on big values. */
2045 while (*ptr && *ptr != ';')
2046 text_addr = (text_addr << 4) + fromhex (*ptr++);
2047 }
2048 else
2049 lose = 1;
2050
2051 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2052 {
2053 ptr += 6;
2054 while (*ptr && *ptr != ';')
2055 data_addr = (data_addr << 4) + fromhex (*ptr++);
2056 }
2057 else
2058 lose = 1;
2059
2060 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2061 {
2062 ptr += 5;
2063 while (*ptr && *ptr != ';')
2064 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2065 }
2066 else
2067 lose = 1;
2068
2069 if (lose)
2070 error (_("Malformed response to offset query, %s"), buf);
2071
2072 if (symfile_objfile == NULL)
2073 return;
2074
2075 offs = ((struct section_offsets *)
2076 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2077 memcpy (offs, symfile_objfile->section_offsets,
2078 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2079
2080 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2081
2082 /* This is a temporary kludge to force data and bss to use the same offsets
2083 because that's what nlmconv does now. The real solution requires changes
2084 to the stub and remote.c that I don't have time to do right now. */
2085
2086 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2087 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2088
2089 objfile_relocate (symfile_objfile, offs);
2090 }
2091
2092 /* Stub for catch_exception. */
2093
2094 static void
2095 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2096 {
2097 int from_tty = * (int *) from_tty_p;
2098
2099 immediate_quit++; /* Allow user to interrupt it. */
2100
2101 /* Ack any packet which the remote side has already sent. */
2102 serial_write (remote_desc, "+", 1);
2103
2104 /* Let the stub know that we want it to return the thread. */
2105 set_thread (-1, 0);
2106
2107 inferior_ptid = remote_current_thread (inferior_ptid);
2108
2109 get_offsets (); /* Get text, data & bss offsets. */
2110
2111 putpkt ("?"); /* Initiate a query from remote machine. */
2112 immediate_quit--;
2113
2114 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2115 }
2116
2117 /* Open a connection to a remote debugger.
2118 NAME is the filename used for communication. */
2119
2120 static void
2121 remote_open (char *name, int from_tty)
2122 {
2123 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2124 }
2125
2126 /* Just like remote_open, but with asynchronous support. */
2127 static void
2128 remote_async_open (char *name, int from_tty)
2129 {
2130 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2131 }
2132
2133 /* Open a connection to a remote debugger using the extended
2134 remote gdb protocol. NAME is the filename used for communication. */
2135
2136 static void
2137 extended_remote_open (char *name, int from_tty)
2138 {
2139 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2140 0 /* async_p */);
2141 }
2142
2143 /* Just like extended_remote_open, but with asynchronous support. */
2144 static void
2145 extended_remote_async_open (char *name, int from_tty)
2146 {
2147 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2148 1 /*extended_p */, 1 /* async_p */);
2149 }
2150
2151 /* Generic code for opening a connection to a remote target. */
2152
2153 static void
2154 init_all_packet_configs (void)
2155 {
2156 int i;
2157 for (i = 0; i < PACKET_MAX; i++)
2158 update_packet_config (&remote_protocol_packets[i]);
2159 }
2160
2161 /* Symbol look-up. */
2162
2163 static void
2164 remote_check_symbols (struct objfile *objfile)
2165 {
2166 struct remote_state *rs = get_remote_state ();
2167 char *msg, *reply, *tmp;
2168 struct minimal_symbol *sym;
2169 int end;
2170
2171 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2172 return;
2173
2174 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2175 because we need both at the same time. */
2176 msg = alloca (get_remote_packet_size ());
2177
2178 /* Invite target to request symbol lookups. */
2179
2180 putpkt ("qSymbol::");
2181 getpkt (&rs->buf, &rs->buf_size, 0);
2182 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2183 reply = rs->buf;
2184
2185 while (strncmp (reply, "qSymbol:", 8) == 0)
2186 {
2187 tmp = &reply[8];
2188 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2189 msg[end] = '\0';
2190 sym = lookup_minimal_symbol (msg, NULL, NULL);
2191 if (sym == NULL)
2192 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2193 else
2194 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2195 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2196 &reply[8]);
2197 putpkt (msg);
2198 getpkt (&rs->buf, &rs->buf_size, 0);
2199 reply = rs->buf;
2200 }
2201 }
2202
2203 static struct serial *
2204 remote_serial_open (char *name)
2205 {
2206 static int udp_warning = 0;
2207
2208 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2209 of in ser-tcp.c, because it is the remote protocol assuming that the
2210 serial connection is reliable and not the serial connection promising
2211 to be. */
2212 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2213 {
2214 warning (_("\
2215 The remote protocol may be unreliable over UDP.\n\
2216 Some events may be lost, rendering further debugging impossible."));
2217 udp_warning = 1;
2218 }
2219
2220 return serial_open (name);
2221 }
2222
2223 /* This type describes each known response to the qSupported
2224 packet. */
2225 struct protocol_feature
2226 {
2227 /* The name of this protocol feature. */
2228 const char *name;
2229
2230 /* The default for this protocol feature. */
2231 enum packet_support default_support;
2232
2233 /* The function to call when this feature is reported, or after
2234 qSupported processing if the feature is not supported.
2235 The first argument points to this structure. The second
2236 argument indicates whether the packet requested support be
2237 enabled, disabled, or probed (or the default, if this function
2238 is being called at the end of processing and this feature was
2239 not reported). The third argument may be NULL; if not NULL, it
2240 is a NUL-terminated string taken from the packet following
2241 this feature's name and an equals sign. */
2242 void (*func) (const struct protocol_feature *, enum packet_support,
2243 const char *);
2244
2245 /* The corresponding packet for this feature. Only used if
2246 FUNC is remote_supported_packet. */
2247 int packet;
2248 };
2249
2250 static void
2251 remote_supported_packet (const struct protocol_feature *feature,
2252 enum packet_support support,
2253 const char *argument)
2254 {
2255 if (argument)
2256 {
2257 warning (_("Remote qSupported response supplied an unexpected value for"
2258 " \"%s\"."), feature->name);
2259 return;
2260 }
2261
2262 if (remote_protocol_packets[feature->packet].support
2263 == PACKET_SUPPORT_UNKNOWN)
2264 remote_protocol_packets[feature->packet].support = support;
2265 }
2266
2267 static void
2268 remote_packet_size (const struct protocol_feature *feature,
2269 enum packet_support support, const char *value)
2270 {
2271 struct remote_state *rs = get_remote_state ();
2272
2273 int packet_size;
2274 char *value_end;
2275
2276 if (support != PACKET_ENABLE)
2277 return;
2278
2279 if (value == NULL || *value == '\0')
2280 {
2281 warning (_("Remote target reported \"%s\" without a size."),
2282 feature->name);
2283 return;
2284 }
2285
2286 errno = 0;
2287 packet_size = strtol (value, &value_end, 16);
2288 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2289 {
2290 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2291 feature->name, value);
2292 return;
2293 }
2294
2295 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2296 {
2297 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2298 packet_size, MAX_REMOTE_PACKET_SIZE);
2299 packet_size = MAX_REMOTE_PACKET_SIZE;
2300 }
2301
2302 /* Record the new maximum packet size. */
2303 rs->explicit_packet_size = packet_size;
2304 }
2305
2306 static struct protocol_feature remote_protocol_features[] = {
2307 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2308 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2309 PACKET_qXfer_auxv },
2310 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2311 PACKET_qXfer_features },
2312 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2313 PACKET_qXfer_memory_map },
2314 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2315 PACKET_QPassSignals },
2316 };
2317
2318 static void
2319 remote_query_supported (void)
2320 {
2321 struct remote_state *rs = get_remote_state ();
2322 char *next;
2323 int i;
2324 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2325
2326 /* The packet support flags are handled differently for this packet
2327 than for most others. We treat an error, a disabled packet, and
2328 an empty response identically: any features which must be reported
2329 to be used will be automatically disabled. An empty buffer
2330 accomplishes this, since that is also the representation for a list
2331 containing no features. */
2332
2333 rs->buf[0] = 0;
2334 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2335 {
2336 putpkt ("qSupported");
2337 getpkt (&rs->buf, &rs->buf_size, 0);
2338
2339 /* If an error occured, warn, but do not return - just reset the
2340 buffer to empty and go on to disable features. */
2341 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2342 == PACKET_ERROR)
2343 {
2344 warning (_("Remote failure reply: %s"), rs->buf);
2345 rs->buf[0] = 0;
2346 }
2347 }
2348
2349 memset (seen, 0, sizeof (seen));
2350
2351 next = rs->buf;
2352 while (*next)
2353 {
2354 enum packet_support is_supported;
2355 char *p, *end, *name_end, *value;
2356
2357 /* First separate out this item from the rest of the packet. If
2358 there's another item after this, we overwrite the separator
2359 (terminated strings are much easier to work with). */
2360 p = next;
2361 end = strchr (p, ';');
2362 if (end == NULL)
2363 {
2364 end = p + strlen (p);
2365 next = end;
2366 }
2367 else
2368 {
2369 *end = '\0';
2370 next = end + 1;
2371
2372 if (end == p)
2373 {
2374 warning (_("empty item in \"qSupported\" response"));
2375 continue;
2376 }
2377 }
2378
2379 name_end = strchr (p, '=');
2380 if (name_end)
2381 {
2382 /* This is a name=value entry. */
2383 is_supported = PACKET_ENABLE;
2384 value = name_end + 1;
2385 *name_end = '\0';
2386 }
2387 else
2388 {
2389 value = NULL;
2390 switch (end[-1])
2391 {
2392 case '+':
2393 is_supported = PACKET_ENABLE;
2394 break;
2395
2396 case '-':
2397 is_supported = PACKET_DISABLE;
2398 break;
2399
2400 case '?':
2401 is_supported = PACKET_SUPPORT_UNKNOWN;
2402 break;
2403
2404 default:
2405 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2406 continue;
2407 }
2408 end[-1] = '\0';
2409 }
2410
2411 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2412 if (strcmp (remote_protocol_features[i].name, p) == 0)
2413 {
2414 const struct protocol_feature *feature;
2415
2416 seen[i] = 1;
2417 feature = &remote_protocol_features[i];
2418 feature->func (feature, is_supported, value);
2419 break;
2420 }
2421 }
2422
2423 /* If we increased the packet size, make sure to increase the global
2424 buffer size also. We delay this until after parsing the entire
2425 qSupported packet, because this is the same buffer we were
2426 parsing. */
2427 if (rs->buf_size < rs->explicit_packet_size)
2428 {
2429 rs->buf_size = rs->explicit_packet_size;
2430 rs->buf = xrealloc (rs->buf, rs->buf_size);
2431 }
2432
2433 /* Handle the defaults for unmentioned features. */
2434 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2435 if (!seen[i])
2436 {
2437 const struct protocol_feature *feature;
2438
2439 feature = &remote_protocol_features[i];
2440 feature->func (feature, feature->default_support, NULL);
2441 }
2442 }
2443
2444
2445 static void
2446 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2447 int extended_p, int async_p)
2448 {
2449 struct remote_state *rs = get_remote_state ();
2450 if (name == 0)
2451 error (_("To open a remote debug connection, you need to specify what\n"
2452 "serial device is attached to the remote system\n"
2453 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2454
2455 /* See FIXME above. */
2456 if (!async_p)
2457 wait_forever_enabled_p = 1;
2458
2459 target_preopen (from_tty);
2460
2461 unpush_target (target);
2462
2463 /* Make sure we send the passed signals list the next time we resume. */
2464 xfree (last_pass_packet);
2465 last_pass_packet = NULL;
2466
2467 remote_fileio_reset ();
2468 reopen_exec_file ();
2469 reread_symbols ();
2470
2471 remote_desc = remote_serial_open (name);
2472 if (!remote_desc)
2473 perror_with_name (name);
2474
2475 if (baud_rate != -1)
2476 {
2477 if (serial_setbaudrate (remote_desc, baud_rate))
2478 {
2479 /* The requested speed could not be set. Error out to
2480 top level after closing remote_desc. Take care to
2481 set remote_desc to NULL to avoid closing remote_desc
2482 more than once. */
2483 serial_close (remote_desc);
2484 remote_desc = NULL;
2485 perror_with_name (name);
2486 }
2487 }
2488
2489 serial_raw (remote_desc);
2490
2491 /* If there is something sitting in the buffer we might take it as a
2492 response to a command, which would be bad. */
2493 serial_flush_input (remote_desc);
2494
2495 if (from_tty)
2496 {
2497 puts_filtered ("Remote debugging using ");
2498 puts_filtered (name);
2499 puts_filtered ("\n");
2500 }
2501 push_target (target); /* Switch to using remote target now. */
2502
2503 /* Reset the target state; these things will be queried either by
2504 remote_query_supported or as they are needed. */
2505 init_all_packet_configs ();
2506 rs->explicit_packet_size = 0;
2507
2508 general_thread = -2;
2509 continue_thread = -2;
2510
2511 /* Probe for ability to use "ThreadInfo" query, as required. */
2512 use_threadinfo_query = 1;
2513 use_threadextra_query = 1;
2514
2515 /* The first packet we send to the target is the optional "supported
2516 packets" request. If the target can answer this, it will tell us
2517 which later probes to skip. */
2518 remote_query_supported ();
2519
2520 /* Next, if the target can specify a description, read it. We do
2521 this before anything involving memory or registers. */
2522 target_find_description ();
2523
2524 /* Without this, some commands which require an active target (such
2525 as kill) won't work. This variable serves (at least) double duty
2526 as both the pid of the target process (if it has such), and as a
2527 flag indicating that a target is active. These functions should
2528 be split out into seperate variables, especially since GDB will
2529 someday have a notion of debugging several processes. */
2530
2531 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2532
2533 if (async_p)
2534 {
2535 /* With this target we start out by owning the terminal. */
2536 remote_async_terminal_ours_p = 1;
2537
2538 /* FIXME: cagney/1999-09-23: During the initial connection it is
2539 assumed that the target is already ready and able to respond to
2540 requests. Unfortunately remote_start_remote() eventually calls
2541 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2542 around this. Eventually a mechanism that allows
2543 wait_for_inferior() to expect/get timeouts will be
2544 implemented. */
2545 wait_forever_enabled_p = 0;
2546 }
2547
2548 /* First delete any symbols previously loaded from shared libraries. */
2549 no_shared_libraries (NULL, 0);
2550
2551 /* Start the remote connection. If error() or QUIT, discard this
2552 target (we'd otherwise be in an inconsistent state) and then
2553 propogate the error on up the exception chain. This ensures that
2554 the caller doesn't stumble along blindly assuming that the
2555 function succeeded. The CLI doesn't have this problem but other
2556 UI's, such as MI do.
2557
2558 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2559 this function should return an error indication letting the
2560 caller restore the previous state. Unfortunately the command
2561 ``target remote'' is directly wired to this function making that
2562 impossible. On a positive note, the CLI side of this problem has
2563 been fixed - the function set_cmd_context() makes it possible for
2564 all the ``target ....'' commands to share a common callback
2565 function. See cli-dump.c. */
2566 {
2567 struct gdb_exception ex
2568 = catch_exception (uiout, remote_start_remote, &from_tty,
2569 RETURN_MASK_ALL);
2570 if (ex.reason < 0)
2571 {
2572 pop_target ();
2573 if (async_p)
2574 wait_forever_enabled_p = 1;
2575 throw_exception (ex);
2576 }
2577 }
2578
2579 if (async_p)
2580 wait_forever_enabled_p = 1;
2581
2582 if (extended_p)
2583 {
2584 /* Tell the remote that we are using the extended protocol. */
2585 putpkt ("!");
2586 getpkt (&rs->buf, &rs->buf_size, 0);
2587 }
2588
2589 if (exec_bfd) /* No use without an exec file. */
2590 remote_check_symbols (symfile_objfile);
2591 }
2592
2593 /* This takes a program previously attached to and detaches it. After
2594 this is done, GDB can be used to debug some other program. We
2595 better not have left any breakpoints in the target program or it'll
2596 die when it hits one. */
2597
2598 static void
2599 remote_detach (char *args, int from_tty)
2600 {
2601 struct remote_state *rs = get_remote_state ();
2602
2603 if (args)
2604 error (_("Argument given to \"detach\" when remotely debugging."));
2605
2606 /* Tell the remote target to detach. */
2607 strcpy (rs->buf, "D");
2608 putpkt (rs->buf);
2609 getpkt (&rs->buf, &rs->buf_size, 0);
2610
2611 if (rs->buf[0] == 'E')
2612 error (_("Can't detach process."));
2613
2614 /* Unregister the file descriptor from the event loop. */
2615 if (target_is_async_p ())
2616 serial_async (remote_desc, NULL, 0);
2617
2618 target_mourn_inferior ();
2619 if (from_tty)
2620 puts_filtered ("Ending remote debugging.\n");
2621 }
2622
2623 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2624
2625 static void
2626 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2627 {
2628 if (args)
2629 error (_("Argument given to \"detach\" when remotely debugging."));
2630
2631 /* Unregister the file descriptor from the event loop. */
2632 if (target_is_async_p ())
2633 serial_async (remote_desc, NULL, 0);
2634
2635 target_mourn_inferior ();
2636 if (from_tty)
2637 puts_filtered ("Ending remote debugging.\n");
2638 }
2639
2640 /* Convert hex digit A to a number. */
2641
2642 static int
2643 fromhex (int a)
2644 {
2645 if (a >= '0' && a <= '9')
2646 return a - '0';
2647 else if (a >= 'a' && a <= 'f')
2648 return a - 'a' + 10;
2649 else if (a >= 'A' && a <= 'F')
2650 return a - 'A' + 10;
2651 else
2652 error (_("Reply contains invalid hex digit %d"), a);
2653 }
2654
2655 static int
2656 hex2bin (const char *hex, gdb_byte *bin, int count)
2657 {
2658 int i;
2659
2660 for (i = 0; i < count; i++)
2661 {
2662 if (hex[0] == 0 || hex[1] == 0)
2663 {
2664 /* Hex string is short, or of uneven length.
2665 Return the count that has been converted so far. */
2666 return i;
2667 }
2668 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2669 hex += 2;
2670 }
2671 return i;
2672 }
2673
2674 /* Convert number NIB to a hex digit. */
2675
2676 static int
2677 tohex (int nib)
2678 {
2679 if (nib < 10)
2680 return '0' + nib;
2681 else
2682 return 'a' + nib - 10;
2683 }
2684
2685 static int
2686 bin2hex (const gdb_byte *bin, char *hex, int count)
2687 {
2688 int i;
2689 /* May use a length, or a nul-terminated string as input. */
2690 if (count == 0)
2691 count = strlen ((char *) bin);
2692
2693 for (i = 0; i < count; i++)
2694 {
2695 *hex++ = tohex ((*bin >> 4) & 0xf);
2696 *hex++ = tohex (*bin++ & 0xf);
2697 }
2698 *hex = 0;
2699 return i;
2700 }
2701 \f
2702 /* Check for the availability of vCont. This function should also check
2703 the response. */
2704
2705 static void
2706 remote_vcont_probe (struct remote_state *rs)
2707 {
2708 char *buf;
2709
2710 strcpy (rs->buf, "vCont?");
2711 putpkt (rs->buf);
2712 getpkt (&rs->buf, &rs->buf_size, 0);
2713 buf = rs->buf;
2714
2715 /* Make sure that the features we assume are supported. */
2716 if (strncmp (buf, "vCont", 5) == 0)
2717 {
2718 char *p = &buf[5];
2719 int support_s, support_S, support_c, support_C;
2720
2721 support_s = 0;
2722 support_S = 0;
2723 support_c = 0;
2724 support_C = 0;
2725 while (p && *p == ';')
2726 {
2727 p++;
2728 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2729 support_s = 1;
2730 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2731 support_S = 1;
2732 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2733 support_c = 1;
2734 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2735 support_C = 1;
2736
2737 p = strchr (p, ';');
2738 }
2739
2740 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2741 BUF will make packet_ok disable the packet. */
2742 if (!support_s || !support_S || !support_c || !support_C)
2743 buf[0] = 0;
2744 }
2745
2746 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2747 }
2748
2749 /* Resume the remote inferior by using a "vCont" packet. The thread
2750 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2751 resumed thread should be single-stepped and/or signalled. If PTID's
2752 PID is -1, then all threads are resumed; the thread to be stepped and/or
2753 signalled is given in the global INFERIOR_PTID. This function returns
2754 non-zero iff it resumes the inferior.
2755
2756 This function issues a strict subset of all possible vCont commands at the
2757 moment. */
2758
2759 static int
2760 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2761 {
2762 struct remote_state *rs = get_remote_state ();
2763 int pid = PIDGET (ptid);
2764 char *buf = NULL, *outbuf;
2765 struct cleanup *old_cleanup;
2766
2767 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2768 remote_vcont_probe (rs);
2769
2770 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2771 return 0;
2772
2773 /* If we could generate a wider range of packets, we'd have to worry
2774 about overflowing BUF. Should there be a generic
2775 "multi-part-packet" packet? */
2776
2777 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2778 {
2779 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2780 don't have any PID numbers the inferior will understand. Make sure
2781 to only send forms that do not specify a PID. */
2782 if (step && siggnal != TARGET_SIGNAL_0)
2783 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2784 else if (step)
2785 outbuf = xstrprintf ("vCont;s");
2786 else if (siggnal != TARGET_SIGNAL_0)
2787 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2788 else
2789 outbuf = xstrprintf ("vCont;c");
2790 }
2791 else if (pid == -1)
2792 {
2793 /* Resume all threads, with preference for INFERIOR_PTID. */
2794 if (step && siggnal != TARGET_SIGNAL_0)
2795 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2796 PIDGET (inferior_ptid));
2797 else if (step)
2798 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2799 else if (siggnal != TARGET_SIGNAL_0)
2800 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2801 PIDGET (inferior_ptid));
2802 else
2803 outbuf = xstrprintf ("vCont;c");
2804 }
2805 else
2806 {
2807 /* Scheduler locking; resume only PTID. */
2808 if (step && siggnal != TARGET_SIGNAL_0)
2809 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2810 else if (step)
2811 outbuf = xstrprintf ("vCont;s:%x", pid);
2812 else if (siggnal != TARGET_SIGNAL_0)
2813 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2814 else
2815 outbuf = xstrprintf ("vCont;c:%x", pid);
2816 }
2817
2818 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2819 old_cleanup = make_cleanup (xfree, outbuf);
2820
2821 putpkt (outbuf);
2822
2823 do_cleanups (old_cleanup);
2824
2825 return 1;
2826 }
2827
2828 /* Tell the remote machine to resume. */
2829
2830 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2831
2832 static int last_sent_step;
2833
2834 static void
2835 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2836 {
2837 struct remote_state *rs = get_remote_state ();
2838 char *buf;
2839 int pid = PIDGET (ptid);
2840
2841 last_sent_signal = siggnal;
2842 last_sent_step = step;
2843
2844 /* A hook for when we need to do something at the last moment before
2845 resumption. */
2846 if (deprecated_target_resume_hook)
2847 (*deprecated_target_resume_hook) ();
2848
2849 /* Update the inferior on signals to silently pass, if they've changed. */
2850 remote_pass_signals ();
2851
2852 /* The vCont packet doesn't need to specify threads via Hc. */
2853 if (remote_vcont_resume (ptid, step, siggnal))
2854 return;
2855
2856 /* All other supported resume packets do use Hc, so call set_thread. */
2857 if (pid == -1)
2858 set_thread (0, 0); /* Run any thread. */
2859 else
2860 set_thread (pid, 0); /* Run this thread. */
2861
2862 buf = rs->buf;
2863 if (siggnal != TARGET_SIGNAL_0)
2864 {
2865 buf[0] = step ? 'S' : 'C';
2866 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2867 buf[2] = tohex (((int) siggnal) & 0xf);
2868 buf[3] = '\0';
2869 }
2870 else
2871 strcpy (buf, step ? "s" : "c");
2872
2873 putpkt (buf);
2874 }
2875
2876 /* Same as remote_resume, but with async support. */
2877 static void
2878 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2879 {
2880 remote_resume (ptid, step, siggnal);
2881
2882 /* We are about to start executing the inferior, let's register it
2883 with the event loop. NOTE: this is the one place where all the
2884 execution commands end up. We could alternatively do this in each
2885 of the execution commands in infcmd.c. */
2886 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2887 into infcmd.c in order to allow inferior function calls to work
2888 NOT asynchronously. */
2889 if (target_can_async_p ())
2890 target_async (inferior_event_handler, 0);
2891 /* Tell the world that the target is now executing. */
2892 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2893 this? Instead, should the client of target just assume (for
2894 async targets) that the target is going to start executing? Is
2895 this information already found in the continuation block? */
2896 if (target_is_async_p ())
2897 target_executing = 1;
2898 }
2899 \f
2900
2901 /* Set up the signal handler for SIGINT, while the target is
2902 executing, ovewriting the 'regular' SIGINT signal handler. */
2903 static void
2904 initialize_sigint_signal_handler (void)
2905 {
2906 sigint_remote_token =
2907 create_async_signal_handler (async_remote_interrupt, NULL);
2908 signal (SIGINT, handle_remote_sigint);
2909 }
2910
2911 /* Signal handler for SIGINT, while the target is executing. */
2912 static void
2913 handle_remote_sigint (int sig)
2914 {
2915 signal (sig, handle_remote_sigint_twice);
2916 sigint_remote_twice_token =
2917 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2918 mark_async_signal_handler_wrapper (sigint_remote_token);
2919 }
2920
2921 /* Signal handler for SIGINT, installed after SIGINT has already been
2922 sent once. It will take effect the second time that the user sends
2923 a ^C. */
2924 static void
2925 handle_remote_sigint_twice (int sig)
2926 {
2927 signal (sig, handle_sigint);
2928 sigint_remote_twice_token =
2929 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2930 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2931 }
2932
2933 /* Perform the real interruption of the target execution, in response
2934 to a ^C. */
2935 static void
2936 async_remote_interrupt (gdb_client_data arg)
2937 {
2938 if (remote_debug)
2939 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2940
2941 target_stop ();
2942 }
2943
2944 /* Perform interrupt, if the first attempt did not succeed. Just give
2945 up on the target alltogether. */
2946 void
2947 async_remote_interrupt_twice (gdb_client_data arg)
2948 {
2949 if (remote_debug)
2950 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2951 /* Do something only if the target was not killed by the previous
2952 cntl-C. */
2953 if (target_executing)
2954 {
2955 interrupt_query ();
2956 signal (SIGINT, handle_remote_sigint);
2957 }
2958 }
2959
2960 /* Reinstall the usual SIGINT handlers, after the target has
2961 stopped. */
2962 static void
2963 cleanup_sigint_signal_handler (void *dummy)
2964 {
2965 signal (SIGINT, handle_sigint);
2966 if (sigint_remote_twice_token)
2967 delete_async_signal_handler (&sigint_remote_twice_token);
2968 if (sigint_remote_token)
2969 delete_async_signal_handler (&sigint_remote_token);
2970 }
2971
2972 /* Send ^C to target to halt it. Target will respond, and send us a
2973 packet. */
2974 static void (*ofunc) (int);
2975
2976 /* The command line interface's stop routine. This function is installed
2977 as a signal handler for SIGINT. The first time a user requests a
2978 stop, we call remote_stop to send a break or ^C. If there is no
2979 response from the target (it didn't stop when the user requested it),
2980 we ask the user if he'd like to detach from the target. */
2981 static void
2982 remote_interrupt (int signo)
2983 {
2984 /* If this doesn't work, try more severe steps. */
2985 signal (signo, remote_interrupt_twice);
2986
2987 if (remote_debug)
2988 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2989
2990 target_stop ();
2991 }
2992
2993 /* The user typed ^C twice. */
2994
2995 static void
2996 remote_interrupt_twice (int signo)
2997 {
2998 signal (signo, ofunc);
2999 interrupt_query ();
3000 signal (signo, remote_interrupt);
3001 }
3002
3003 /* This is the generic stop called via the target vector. When a target
3004 interrupt is requested, either by the command line or the GUI, we
3005 will eventually end up here. */
3006 static void
3007 remote_stop (void)
3008 {
3009 /* Send a break or a ^C, depending on user preference. */
3010 if (remote_debug)
3011 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3012
3013 if (remote_break)
3014 serial_send_break (remote_desc);
3015 else
3016 serial_write (remote_desc, "\003", 1);
3017 }
3018
3019 /* Ask the user what to do when an interrupt is received. */
3020
3021 static void
3022 interrupt_query (void)
3023 {
3024 target_terminal_ours ();
3025
3026 if (query ("Interrupted while waiting for the program.\n\
3027 Give up (and stop debugging it)? "))
3028 {
3029 target_mourn_inferior ();
3030 deprecated_throw_reason (RETURN_QUIT);
3031 }
3032
3033 target_terminal_inferior ();
3034 }
3035
3036 /* Enable/disable target terminal ownership. Most targets can use
3037 terminal groups to control terminal ownership. Remote targets are
3038 different in that explicit transfer of ownership to/from GDB/target
3039 is required. */
3040
3041 static void
3042 remote_async_terminal_inferior (void)
3043 {
3044 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3045 sync_execution here. This function should only be called when
3046 GDB is resuming the inferior in the forground. A background
3047 resume (``run&'') should leave GDB in control of the terminal and
3048 consequently should not call this code. */
3049 if (!sync_execution)
3050 return;
3051 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3052 calls target_terminal_*() idenpotent. The event-loop GDB talking
3053 to an asynchronous target with a synchronous command calls this
3054 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3055 stops trying to transfer the terminal to the target when it
3056 shouldn't this guard can go away. */
3057 if (!remote_async_terminal_ours_p)
3058 return;
3059 delete_file_handler (input_fd);
3060 remote_async_terminal_ours_p = 0;
3061 initialize_sigint_signal_handler ();
3062 /* NOTE: At this point we could also register our selves as the
3063 recipient of all input. Any characters typed could then be
3064 passed on down to the target. */
3065 }
3066
3067 static void
3068 remote_async_terminal_ours (void)
3069 {
3070 /* See FIXME in remote_async_terminal_inferior. */
3071 if (!sync_execution)
3072 return;
3073 /* See FIXME in remote_async_terminal_inferior. */
3074 if (remote_async_terminal_ours_p)
3075 return;
3076 cleanup_sigint_signal_handler (NULL);
3077 add_file_handler (input_fd, stdin_event_handler, 0);
3078 remote_async_terminal_ours_p = 1;
3079 }
3080
3081 /* If nonzero, ignore the next kill. */
3082
3083 int kill_kludge;
3084
3085 void
3086 remote_console_output (char *msg)
3087 {
3088 char *p;
3089
3090 for (p = msg; p[0] && p[1]; p += 2)
3091 {
3092 char tb[2];
3093 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3094 tb[0] = c;
3095 tb[1] = 0;
3096 fputs_unfiltered (tb, gdb_stdtarg);
3097 }
3098 gdb_flush (gdb_stdtarg);
3099 }
3100
3101 /* Wait until the remote machine stops, then return,
3102 storing status in STATUS just as `wait' would.
3103 Returns "pid", which in the case of a multi-threaded
3104 remote OS, is the thread-id. */
3105
3106 static ptid_t
3107 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3108 {
3109 struct remote_state *rs = get_remote_state ();
3110 struct remote_arch_state *rsa = get_remote_arch_state ();
3111 ULONGEST thread_num = -1;
3112 ULONGEST addr;
3113
3114 status->kind = TARGET_WAITKIND_EXITED;
3115 status->value.integer = 0;
3116
3117 while (1)
3118 {
3119 char *buf, *p;
3120
3121 ofunc = signal (SIGINT, remote_interrupt);
3122 getpkt (&rs->buf, &rs->buf_size, 1);
3123 signal (SIGINT, ofunc);
3124
3125 buf = rs->buf;
3126
3127 /* This is a hook for when we need to do something (perhaps the
3128 collection of trace data) every time the target stops. */
3129 if (deprecated_target_wait_loop_hook)
3130 (*deprecated_target_wait_loop_hook) ();
3131
3132 remote_stopped_by_watchpoint_p = 0;
3133
3134 switch (buf[0])
3135 {
3136 case 'E': /* Error of some sort. */
3137 warning (_("Remote failure reply: %s"), buf);
3138 continue;
3139 case 'F': /* File-I/O request. */
3140 remote_fileio_request (buf);
3141 continue;
3142 case 'T': /* Status with PC, SP, FP, ... */
3143 {
3144 gdb_byte regs[MAX_REGISTER_SIZE];
3145
3146 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3147 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3148 ss = signal number
3149 n... = register number
3150 r... = register contents
3151 */
3152 p = &buf[3]; /* after Txx */
3153
3154 while (*p)
3155 {
3156 char *p1;
3157 char *p_temp;
3158 int fieldsize;
3159 LONGEST pnum = 0;
3160
3161 /* If the packet contains a register number save it in
3162 pnum and set p1 to point to the character following
3163 it. Otherwise p1 points to p. */
3164
3165 /* If this packet is an awatch packet, don't parse the
3166 'a' as a register number. */
3167
3168 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3169 {
3170 /* Read the ``P'' register number. */
3171 pnum = strtol (p, &p_temp, 16);
3172 p1 = p_temp;
3173 }
3174 else
3175 p1 = p;
3176
3177 if (p1 == p) /* No register number present here. */
3178 {
3179 p1 = strchr (p, ':');
3180 if (p1 == NULL)
3181 error (_("Malformed packet(a) (missing colon): %s\n\
3182 Packet: '%s'\n"),
3183 p, buf);
3184 if (strncmp (p, "thread", p1 - p) == 0)
3185 {
3186 p_temp = unpack_varlen_hex (++p1, &thread_num);
3187 record_currthread (thread_num);
3188 p = p_temp;
3189 }
3190 else if ((strncmp (p, "watch", p1 - p) == 0)
3191 || (strncmp (p, "rwatch", p1 - p) == 0)
3192 || (strncmp (p, "awatch", p1 - p) == 0))
3193 {
3194 remote_stopped_by_watchpoint_p = 1;
3195 p = unpack_varlen_hex (++p1, &addr);
3196 remote_watch_data_address = (CORE_ADDR)addr;
3197 }
3198 else
3199 {
3200 /* Silently skip unknown optional info. */
3201 p_temp = strchr (p1 + 1, ';');
3202 if (p_temp)
3203 p = p_temp;
3204 }
3205 }
3206 else
3207 {
3208 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3209 p = p1;
3210
3211 if (*p++ != ':')
3212 error (_("Malformed packet(b) (missing colon): %s\n\
3213 Packet: '%s'\n"),
3214 p, buf);
3215
3216 if (reg == NULL)
3217 error (_("Remote sent bad register number %s: %s\n\
3218 Packet: '%s'\n"),
3219 phex_nz (pnum, 0), p, buf);
3220
3221 fieldsize = hex2bin (p, regs,
3222 register_size (current_gdbarch,
3223 reg->regnum));
3224 p += 2 * fieldsize;
3225 if (fieldsize < register_size (current_gdbarch,
3226 reg->regnum))
3227 warning (_("Remote reply is too short: %s"), buf);
3228 regcache_raw_supply (current_regcache,
3229 reg->regnum, regs);
3230 }
3231
3232 if (*p++ != ';')
3233 error (_("Remote register badly formatted: %s\nhere: %s"),
3234 buf, p);
3235 }
3236 }
3237 /* fall through */
3238 case 'S': /* Old style status, just signal only. */
3239 status->kind = TARGET_WAITKIND_STOPPED;
3240 status->value.sig = (enum target_signal)
3241 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3242
3243 if (buf[3] == 'p')
3244 {
3245 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3246 record_currthread (thread_num);
3247 }
3248 goto got_status;
3249 case 'W': /* Target exited. */
3250 {
3251 /* The remote process exited. */
3252 status->kind = TARGET_WAITKIND_EXITED;
3253 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3254 goto got_status;
3255 }
3256 case 'X':
3257 status->kind = TARGET_WAITKIND_SIGNALLED;
3258 status->value.sig = (enum target_signal)
3259 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3260 kill_kludge = 1;
3261
3262 goto got_status;
3263 case 'O': /* Console output. */
3264 remote_console_output (buf + 1);
3265 continue;
3266 case '\0':
3267 if (last_sent_signal != TARGET_SIGNAL_0)
3268 {
3269 /* Zero length reply means that we tried 'S' or 'C' and
3270 the remote system doesn't support it. */
3271 target_terminal_ours_for_output ();
3272 printf_filtered
3273 ("Can't send signals to this remote system. %s not sent.\n",
3274 target_signal_to_name (last_sent_signal));
3275 last_sent_signal = TARGET_SIGNAL_0;
3276 target_terminal_inferior ();
3277
3278 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3279 putpkt ((char *) buf);
3280 continue;
3281 }
3282 /* else fallthrough */
3283 default:
3284 warning (_("Invalid remote reply: %s"), buf);
3285 continue;
3286 }
3287 }
3288 got_status:
3289 if (thread_num != -1)
3290 {
3291 return pid_to_ptid (thread_num);
3292 }
3293 return inferior_ptid;
3294 }
3295
3296 /* Async version of remote_wait. */
3297 static ptid_t
3298 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3299 {
3300 struct remote_state *rs = get_remote_state ();
3301 struct remote_arch_state *rsa = get_remote_arch_state ();
3302 ULONGEST thread_num = -1;
3303 ULONGEST addr;
3304
3305 status->kind = TARGET_WAITKIND_EXITED;
3306 status->value.integer = 0;
3307
3308 remote_stopped_by_watchpoint_p = 0;
3309
3310 while (1)
3311 {
3312 char *buf, *p;
3313
3314 if (!target_is_async_p ())
3315 ofunc = signal (SIGINT, remote_interrupt);
3316 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3317 _never_ wait for ever -> test on target_is_async_p().
3318 However, before we do that we need to ensure that the caller
3319 knows how to take the target into/out of async mode. */
3320 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3321 if (!target_is_async_p ())
3322 signal (SIGINT, ofunc);
3323
3324 buf = rs->buf;
3325
3326 /* This is a hook for when we need to do something (perhaps the
3327 collection of trace data) every time the target stops. */
3328 if (deprecated_target_wait_loop_hook)
3329 (*deprecated_target_wait_loop_hook) ();
3330
3331 switch (buf[0])
3332 {
3333 case 'E': /* Error of some sort. */
3334 warning (_("Remote failure reply: %s"), buf);
3335 continue;
3336 case 'F': /* File-I/O request. */
3337 remote_fileio_request (buf);
3338 continue;
3339 case 'T': /* Status with PC, SP, FP, ... */
3340 {
3341 gdb_byte regs[MAX_REGISTER_SIZE];
3342
3343 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3344 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3345 ss = signal number
3346 n... = register number
3347 r... = register contents
3348 */
3349 p = &buf[3]; /* after Txx */
3350
3351 while (*p)
3352 {
3353 char *p1;
3354 char *p_temp;
3355 int fieldsize;
3356 long pnum = 0;
3357
3358 /* If the packet contains a register number, save it
3359 in pnum and set p1 to point to the character
3360 following it. Otherwise p1 points to p. */
3361
3362 /* If this packet is an awatch packet, don't parse the 'a'
3363 as a register number. */
3364
3365 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3366 {
3367 /* Read the register number. */
3368 pnum = strtol (p, &p_temp, 16);
3369 p1 = p_temp;
3370 }
3371 else
3372 p1 = p;
3373
3374 if (p1 == p) /* No register number present here. */
3375 {
3376 p1 = strchr (p, ':');
3377 if (p1 == NULL)
3378 error (_("Malformed packet(a) (missing colon): %s\n\
3379 Packet: '%s'\n"),
3380 p, buf);
3381 if (strncmp (p, "thread", p1 - p) == 0)
3382 {
3383 p_temp = unpack_varlen_hex (++p1, &thread_num);
3384 record_currthread (thread_num);
3385 p = p_temp;
3386 }
3387 else if ((strncmp (p, "watch", p1 - p) == 0)
3388 || (strncmp (p, "rwatch", p1 - p) == 0)
3389 || (strncmp (p, "awatch", p1 - p) == 0))
3390 {
3391 remote_stopped_by_watchpoint_p = 1;
3392 p = unpack_varlen_hex (++p1, &addr);
3393 remote_watch_data_address = (CORE_ADDR)addr;
3394 }
3395 else
3396 {
3397 /* Silently skip unknown optional info. */
3398 p_temp = strchr (p1 + 1, ';');
3399 if (p_temp)
3400 p = p_temp;
3401 }
3402 }
3403
3404 else
3405 {
3406 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3407 p = p1;
3408 if (*p++ != ':')
3409 error (_("Malformed packet(b) (missing colon): %s\n\
3410 Packet: '%s'\n"),
3411 p, buf);
3412
3413 if (reg == NULL)
3414 error (_("Remote sent bad register number %ld: %s\n\
3415 Packet: '%s'\n"),
3416 pnum, p, buf);
3417
3418 fieldsize = hex2bin (p, regs,
3419 register_size (current_gdbarch,
3420 reg->regnum));
3421 p += 2 * fieldsize;
3422 if (fieldsize < register_size (current_gdbarch,
3423 reg->regnum))
3424 warning (_("Remote reply is too short: %s"), buf);
3425 regcache_raw_supply (current_regcache, reg->regnum, regs);
3426 }
3427
3428 if (*p++ != ';')
3429 error (_("Remote register badly formatted: %s\nhere: %s"),
3430 buf, p);
3431 }
3432 }
3433 /* fall through */
3434 case 'S': /* Old style status, just signal only. */
3435 status->kind = TARGET_WAITKIND_STOPPED;
3436 status->value.sig = (enum target_signal)
3437 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3438
3439 if (buf[3] == 'p')
3440 {
3441 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3442 record_currthread (thread_num);
3443 }
3444 goto got_status;
3445 case 'W': /* Target exited. */
3446 {
3447 /* The remote process exited. */
3448 status->kind = TARGET_WAITKIND_EXITED;
3449 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3450 goto got_status;
3451 }
3452 case 'X':
3453 status->kind = TARGET_WAITKIND_SIGNALLED;
3454 status->value.sig = (enum target_signal)
3455 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3456 kill_kludge = 1;
3457
3458 goto got_status;
3459 case 'O': /* Console output. */
3460 remote_console_output (buf + 1);
3461 /* Return immediately to the event loop. The event loop will
3462 still be waiting on the inferior afterwards. */
3463 status->kind = TARGET_WAITKIND_IGNORE;
3464 goto got_status;
3465 case '\0':
3466 if (last_sent_signal != TARGET_SIGNAL_0)
3467 {
3468 /* Zero length reply means that we tried 'S' or 'C' and
3469 the remote system doesn't support it. */
3470 target_terminal_ours_for_output ();
3471 printf_filtered
3472 ("Can't send signals to this remote system. %s not sent.\n",
3473 target_signal_to_name (last_sent_signal));
3474 last_sent_signal = TARGET_SIGNAL_0;
3475 target_terminal_inferior ();
3476
3477 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3478 putpkt ((char *) buf);
3479 continue;
3480 }
3481 /* else fallthrough */
3482 default:
3483 warning (_("Invalid remote reply: %s"), buf);
3484 continue;
3485 }
3486 }
3487 got_status:
3488 if (thread_num != -1)
3489 {
3490 return pid_to_ptid (thread_num);
3491 }
3492 return inferior_ptid;
3493 }
3494
3495 /* Fetch a single register using a 'p' packet. */
3496
3497 static int
3498 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3499 {
3500 struct remote_state *rs = get_remote_state ();
3501 char *buf, *p;
3502 char regp[MAX_REGISTER_SIZE];
3503 int i;
3504
3505 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3506 return 0;
3507
3508 if (reg->pnum == -1)
3509 return 0;
3510
3511 p = rs->buf;
3512 *p++ = 'p';
3513 p += hexnumstr (p, reg->pnum);
3514 *p++ = '\0';
3515 remote_send (&rs->buf, &rs->buf_size);
3516
3517 buf = rs->buf;
3518
3519 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3520 {
3521 case PACKET_OK:
3522 break;
3523 case PACKET_UNKNOWN:
3524 return 0;
3525 case PACKET_ERROR:
3526 error (_("Could not fetch register \"%s\""),
3527 gdbarch_register_name (current_gdbarch, reg->regnum));
3528 }
3529
3530 /* If this register is unfetchable, tell the regcache. */
3531 if (buf[0] == 'x')
3532 {
3533 regcache_raw_supply (regcache, reg->regnum, NULL);
3534 return 1;
3535 }
3536
3537 /* Otherwise, parse and supply the value. */
3538 p = buf;
3539 i = 0;
3540 while (p[0] != 0)
3541 {
3542 if (p[1] == 0)
3543 error (_("fetch_register_using_p: early buf termination"));
3544
3545 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3546 p += 2;
3547 }
3548 regcache_raw_supply (regcache, reg->regnum, regp);
3549 return 1;
3550 }
3551
3552 /* Fetch the registers included in the target's 'g' packet. */
3553
3554 static int
3555 send_g_packet (void)
3556 {
3557 struct remote_state *rs = get_remote_state ();
3558 int i, buf_len;
3559 char *p;
3560 char *regs;
3561
3562 sprintf (rs->buf, "g");
3563 remote_send (&rs->buf, &rs->buf_size);
3564
3565 /* We can get out of synch in various cases. If the first character
3566 in the buffer is not a hex character, assume that has happened
3567 and try to fetch another packet to read. */
3568 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3569 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3570 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3571 && rs->buf[0] != 'x') /* New: unavailable register value. */
3572 {
3573 if (remote_debug)
3574 fprintf_unfiltered (gdb_stdlog,
3575 "Bad register packet; fetching a new packet\n");
3576 getpkt (&rs->buf, &rs->buf_size, 0);
3577 }
3578
3579 buf_len = strlen (rs->buf);
3580
3581 /* Sanity check the received packet. */
3582 if (buf_len % 2 != 0)
3583 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3584
3585 return buf_len / 2;
3586 }
3587
3588 static void
3589 process_g_packet (struct regcache *regcache)
3590 {
3591 struct remote_state *rs = get_remote_state ();
3592 struct remote_arch_state *rsa = get_remote_arch_state ();
3593 int i, buf_len;
3594 char *p;
3595 char *regs;
3596
3597 buf_len = strlen (rs->buf);
3598
3599 /* Further sanity checks, with knowledge of the architecture. */
3600 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3601 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3602 if (buf_len > 2 * rsa->sizeof_g_packet)
3603 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3604
3605 /* Save the size of the packet sent to us by the target. It is used
3606 as a heuristic when determining the max size of packets that the
3607 target can safely receive. */
3608 if (rsa->actual_register_packet_size == 0)
3609 rsa->actual_register_packet_size = buf_len;
3610
3611 /* If this is smaller than we guessed the 'g' packet would be,
3612 update our records. A 'g' reply that doesn't include a register's
3613 value implies either that the register is not available, or that
3614 the 'p' packet must be used. */
3615 if (buf_len < 2 * rsa->sizeof_g_packet)
3616 {
3617 rsa->sizeof_g_packet = buf_len / 2;
3618
3619 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3620 {
3621 if (rsa->regs[i].pnum == -1)
3622 continue;
3623
3624 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3625 rsa->regs[i].in_g_packet = 0;
3626 else
3627 rsa->regs[i].in_g_packet = 1;
3628 }
3629 }
3630
3631 regs = alloca (rsa->sizeof_g_packet);
3632
3633 /* Unimplemented registers read as all bits zero. */
3634 memset (regs, 0, rsa->sizeof_g_packet);
3635
3636 /* Reply describes registers byte by byte, each byte encoded as two
3637 hex characters. Suck them all up, then supply them to the
3638 register cacheing/storage mechanism. */
3639
3640 p = rs->buf;
3641 for (i = 0; i < rsa->sizeof_g_packet; i++)
3642 {
3643 if (p[0] == 0 || p[1] == 0)
3644 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3645 internal_error (__FILE__, __LINE__,
3646 "unexpected end of 'g' packet reply");
3647
3648 if (p[0] == 'x' && p[1] == 'x')
3649 regs[i] = 0; /* 'x' */
3650 else
3651 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3652 p += 2;
3653 }
3654
3655 {
3656 int i;
3657 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3658 {
3659 struct packet_reg *r = &rsa->regs[i];
3660 if (r->in_g_packet)
3661 {
3662 if (r->offset * 2 >= strlen (rs->buf))
3663 /* This shouldn't happen - we adjusted in_g_packet above. */
3664 internal_error (__FILE__, __LINE__,
3665 "unexpected end of 'g' packet reply");
3666 else if (rs->buf[r->offset * 2] == 'x')
3667 {
3668 gdb_assert (r->offset * 2 < strlen (rs->buf));
3669 /* The register isn't available, mark it as such (at
3670 the same time setting the value to zero). */
3671 regcache_raw_supply (regcache, r->regnum, NULL);
3672 }
3673 else
3674 regcache_raw_supply (regcache, r->regnum,
3675 regs + r->offset);
3676 }
3677 }
3678 }
3679 }
3680
3681 static void
3682 fetch_registers_using_g (struct regcache *regcache)
3683 {
3684 send_g_packet ();
3685 process_g_packet (regcache);
3686 }
3687
3688 static void
3689 remote_fetch_registers (struct regcache *regcache, int regnum)
3690 {
3691 struct remote_state *rs = get_remote_state ();
3692 struct remote_arch_state *rsa = get_remote_arch_state ();
3693 int i;
3694
3695 set_thread (PIDGET (inferior_ptid), 1);
3696
3697 if (regnum >= 0)
3698 {
3699 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3700 gdb_assert (reg != NULL);
3701
3702 /* If this register might be in the 'g' packet, try that first -
3703 we are likely to read more than one register. If this is the
3704 first 'g' packet, we might be overly optimistic about its
3705 contents, so fall back to 'p'. */
3706 if (reg->in_g_packet)
3707 {
3708 fetch_registers_using_g (regcache);
3709 if (reg->in_g_packet)
3710 return;
3711 }
3712
3713 if (fetch_register_using_p (regcache, reg))
3714 return;
3715
3716 /* This register is not available. */
3717 regcache_raw_supply (regcache, reg->regnum, NULL);
3718
3719 return;
3720 }
3721
3722 fetch_registers_using_g (regcache);
3723
3724 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3725 if (!rsa->regs[i].in_g_packet)
3726 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3727 {
3728 /* This register is not available. */
3729 regcache_raw_supply (regcache, i, NULL);
3730 }
3731 }
3732
3733 /* Prepare to store registers. Since we may send them all (using a
3734 'G' request), we have to read out the ones we don't want to change
3735 first. */
3736
3737 static void
3738 remote_prepare_to_store (struct regcache *regcache)
3739 {
3740 struct remote_arch_state *rsa = get_remote_arch_state ();
3741 int i;
3742 gdb_byte buf[MAX_REGISTER_SIZE];
3743
3744 /* Make sure the entire registers array is valid. */
3745 switch (remote_protocol_packets[PACKET_P].support)
3746 {
3747 case PACKET_DISABLE:
3748 case PACKET_SUPPORT_UNKNOWN:
3749 /* Make sure all the necessary registers are cached. */
3750 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3751 if (rsa->regs[i].in_g_packet)
3752 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3753 break;
3754 case PACKET_ENABLE:
3755 break;
3756 }
3757 }
3758
3759 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3760 packet was not recognized. */
3761
3762 static int
3763 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3764 {
3765 struct remote_state *rs = get_remote_state ();
3766 struct remote_arch_state *rsa = get_remote_arch_state ();
3767 /* Try storing a single register. */
3768 char *buf = rs->buf;
3769 gdb_byte regp[MAX_REGISTER_SIZE];
3770 char *p;
3771
3772 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3773 return 0;
3774
3775 if (reg->pnum == -1)
3776 return 0;
3777
3778 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3779 p = buf + strlen (buf);
3780 regcache_raw_collect (regcache, reg->regnum, regp);
3781 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3782 remote_send (&rs->buf, &rs->buf_size);
3783
3784 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3785 {
3786 case PACKET_OK:
3787 return 1;
3788 case PACKET_ERROR:
3789 error (_("Could not write register \"%s\""),
3790 gdbarch_register_name (current_gdbarch, reg->regnum));
3791 case PACKET_UNKNOWN:
3792 return 0;
3793 default:
3794 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3795 }
3796 }
3797
3798 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3799 contents of the register cache buffer. FIXME: ignores errors. */
3800
3801 static void
3802 store_registers_using_G (const struct regcache *regcache)
3803 {
3804 struct remote_state *rs = get_remote_state ();
3805 struct remote_arch_state *rsa = get_remote_arch_state ();
3806 gdb_byte *regs;
3807 char *p;
3808
3809 /* Extract all the registers in the regcache copying them into a
3810 local buffer. */
3811 {
3812 int i;
3813 regs = alloca (rsa->sizeof_g_packet);
3814 memset (regs, 0, rsa->sizeof_g_packet);
3815 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3816 {
3817 struct packet_reg *r = &rsa->regs[i];
3818 if (r->in_g_packet)
3819 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3820 }
3821 }
3822
3823 /* Command describes registers byte by byte,
3824 each byte encoded as two hex characters. */
3825 p = rs->buf;
3826 *p++ = 'G';
3827 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3828 updated. */
3829 bin2hex (regs, p, rsa->sizeof_g_packet);
3830 remote_send (&rs->buf, &rs->buf_size);
3831 }
3832
3833 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3834 of the register cache buffer. FIXME: ignores errors. */
3835
3836 static void
3837 remote_store_registers (struct regcache *regcache, int regnum)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 struct remote_arch_state *rsa = get_remote_arch_state ();
3841 int i;
3842
3843 set_thread (PIDGET (inferior_ptid), 1);
3844
3845 if (regnum >= 0)
3846 {
3847 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3848 gdb_assert (reg != NULL);
3849
3850 /* Always prefer to store registers using the 'P' packet if
3851 possible; we often change only a small number of registers.
3852 Sometimes we change a larger number; we'd need help from a
3853 higher layer to know to use 'G'. */
3854 if (store_register_using_P (regcache, reg))
3855 return;
3856
3857 /* For now, don't complain if we have no way to write the
3858 register. GDB loses track of unavailable registers too
3859 easily. Some day, this may be an error. We don't have
3860 any way to read the register, either... */
3861 if (!reg->in_g_packet)
3862 return;
3863
3864 store_registers_using_G (regcache);
3865 return;
3866 }
3867
3868 store_registers_using_G (regcache);
3869
3870 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3871 if (!rsa->regs[i].in_g_packet)
3872 if (!store_register_using_P (regcache, &rsa->regs[i]))
3873 /* See above for why we do not issue an error here. */
3874 continue;
3875 }
3876 \f
3877
3878 /* Return the number of hex digits in num. */
3879
3880 static int
3881 hexnumlen (ULONGEST num)
3882 {
3883 int i;
3884
3885 for (i = 0; num != 0; i++)
3886 num >>= 4;
3887
3888 return max (i, 1);
3889 }
3890
3891 /* Set BUF to the minimum number of hex digits representing NUM. */
3892
3893 static int
3894 hexnumstr (char *buf, ULONGEST num)
3895 {
3896 int len = hexnumlen (num);
3897 return hexnumnstr (buf, num, len);
3898 }
3899
3900
3901 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3902
3903 static int
3904 hexnumnstr (char *buf, ULONGEST num, int width)
3905 {
3906 int i;
3907
3908 buf[width] = '\0';
3909
3910 for (i = width - 1; i >= 0; i--)
3911 {
3912 buf[i] = "0123456789abcdef"[(num & 0xf)];
3913 num >>= 4;
3914 }
3915
3916 return width;
3917 }
3918
3919 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3920
3921 static CORE_ADDR
3922 remote_address_masked (CORE_ADDR addr)
3923 {
3924 if (remote_address_size > 0
3925 && remote_address_size < (sizeof (ULONGEST) * 8))
3926 {
3927 /* Only create a mask when that mask can safely be constructed
3928 in a ULONGEST variable. */
3929 ULONGEST mask = 1;
3930 mask = (mask << remote_address_size) - 1;
3931 addr &= mask;
3932 }
3933 return addr;
3934 }
3935
3936 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3937 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3938 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3939 (which may be more than *OUT_LEN due to escape characters). The
3940 total number of bytes in the output buffer will be at most
3941 OUT_MAXLEN. */
3942
3943 static int
3944 remote_escape_output (const gdb_byte *buffer, int len,
3945 gdb_byte *out_buf, int *out_len,
3946 int out_maxlen)
3947 {
3948 int input_index, output_index;
3949
3950 output_index = 0;
3951 for (input_index = 0; input_index < len; input_index++)
3952 {
3953 gdb_byte b = buffer[input_index];
3954
3955 if (b == '$' || b == '#' || b == '}')
3956 {
3957 /* These must be escaped. */
3958 if (output_index + 2 > out_maxlen)
3959 break;
3960 out_buf[output_index++] = '}';
3961 out_buf[output_index++] = b ^ 0x20;
3962 }
3963 else
3964 {
3965 if (output_index + 1 > out_maxlen)
3966 break;
3967 out_buf[output_index++] = b;
3968 }
3969 }
3970
3971 *out_len = input_index;
3972 return output_index;
3973 }
3974
3975 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3976 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3977 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3978
3979 This function reverses remote_escape_output. It allows more
3980 escaped characters than that function does, in particular because
3981 '*' must be escaped to avoid the run-length encoding processing
3982 in reading packets. */
3983
3984 static int
3985 remote_unescape_input (const gdb_byte *buffer, int len,
3986 gdb_byte *out_buf, int out_maxlen)
3987 {
3988 int input_index, output_index;
3989 int escaped;
3990
3991 output_index = 0;
3992 escaped = 0;
3993 for (input_index = 0; input_index < len; input_index++)
3994 {
3995 gdb_byte b = buffer[input_index];
3996
3997 if (output_index + 1 > out_maxlen)
3998 {
3999 warning (_("Received too much data from remote target;"
4000 " ignoring overflow."));
4001 return output_index;
4002 }
4003
4004 if (escaped)
4005 {
4006 out_buf[output_index++] = b ^ 0x20;
4007 escaped = 0;
4008 }
4009 else if (b == '}')
4010 escaped = 1;
4011 else
4012 out_buf[output_index++] = b;
4013 }
4014
4015 if (escaped)
4016 error (_("Unmatched escape character in target response."));
4017
4018 return output_index;
4019 }
4020
4021 /* Determine whether the remote target supports binary downloading.
4022 This is accomplished by sending a no-op memory write of zero length
4023 to the target at the specified address. It does not suffice to send
4024 the whole packet, since many stubs strip the eighth bit and
4025 subsequently compute a wrong checksum, which causes real havoc with
4026 remote_write_bytes.
4027
4028 NOTE: This can still lose if the serial line is not eight-bit
4029 clean. In cases like this, the user should clear "remote
4030 X-packet". */
4031
4032 static void
4033 check_binary_download (CORE_ADDR addr)
4034 {
4035 struct remote_state *rs = get_remote_state ();
4036
4037 switch (remote_protocol_packets[PACKET_X].support)
4038 {
4039 case PACKET_DISABLE:
4040 break;
4041 case PACKET_ENABLE:
4042 break;
4043 case PACKET_SUPPORT_UNKNOWN:
4044 {
4045 char *p;
4046
4047 p = rs->buf;
4048 *p++ = 'X';
4049 p += hexnumstr (p, (ULONGEST) addr);
4050 *p++ = ',';
4051 p += hexnumstr (p, (ULONGEST) 0);
4052 *p++ = ':';
4053 *p = '\0';
4054
4055 putpkt_binary (rs->buf, (int) (p - rs->buf));
4056 getpkt (&rs->buf, &rs->buf_size, 0);
4057
4058 if (rs->buf[0] == '\0')
4059 {
4060 if (remote_debug)
4061 fprintf_unfiltered (gdb_stdlog,
4062 "binary downloading NOT suppported by target\n");
4063 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4064 }
4065 else
4066 {
4067 if (remote_debug)
4068 fprintf_unfiltered (gdb_stdlog,
4069 "binary downloading suppported by target\n");
4070 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4071 }
4072 break;
4073 }
4074 }
4075 }
4076
4077 /* Write memory data directly to the remote machine.
4078 This does not inform the data cache; the data cache uses this.
4079 HEADER is the starting part of the packet.
4080 MEMADDR is the address in the remote memory space.
4081 MYADDR is the address of the buffer in our space.
4082 LEN is the number of bytes.
4083 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4084 should send data as binary ('X'), or hex-encoded ('M').
4085
4086 The function creates packet of the form
4087 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4088
4089 where encoding of <DATA> is termined by PACKET_FORMAT.
4090
4091 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4092 are omitted.
4093
4094 Returns the number of bytes transferred, or 0 (setting errno) for
4095 error. Only transfer a single packet. */
4096
4097 static int
4098 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4099 const gdb_byte *myaddr, int len,
4100 char packet_format, int use_length)
4101 {
4102 struct remote_state *rs = get_remote_state ();
4103 char *p;
4104 char *plen = NULL;
4105 int plenlen = 0;
4106 int todo;
4107 int nr_bytes;
4108 int payload_size;
4109 int payload_length;
4110 int header_length;
4111
4112 if (packet_format != 'X' && packet_format != 'M')
4113 internal_error (__FILE__, __LINE__,
4114 "remote_write_bytes_aux: bad packet format");
4115
4116 if (len <= 0)
4117 return 0;
4118
4119 payload_size = get_memory_write_packet_size ();
4120
4121 /* The packet buffer will be large enough for the payload;
4122 get_memory_packet_size ensures this. */
4123 rs->buf[0] = '\0';
4124
4125 /* Compute the size of the actual payload by subtracting out the
4126 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4127 */
4128 payload_size -= strlen ("$,:#NN");
4129 if (!use_length)
4130 /* The comma won't be used. */
4131 payload_size += 1;
4132 header_length = strlen (header);
4133 payload_size -= header_length;
4134 payload_size -= hexnumlen (memaddr);
4135
4136 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4137
4138 strcat (rs->buf, header);
4139 p = rs->buf + strlen (header);
4140
4141 /* Compute a best guess of the number of bytes actually transfered. */
4142 if (packet_format == 'X')
4143 {
4144 /* Best guess at number of bytes that will fit. */
4145 todo = min (len, payload_size);
4146 if (use_length)
4147 payload_size -= hexnumlen (todo);
4148 todo = min (todo, payload_size);
4149 }
4150 else
4151 {
4152 /* Num bytes that will fit. */
4153 todo = min (len, payload_size / 2);
4154 if (use_length)
4155 payload_size -= hexnumlen (todo);
4156 todo = min (todo, payload_size / 2);
4157 }
4158
4159 if (todo <= 0)
4160 internal_error (__FILE__, __LINE__,
4161 _("minumum packet size too small to write data"));
4162
4163 /* If we already need another packet, then try to align the end
4164 of this packet to a useful boundary. */
4165 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4166 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4167
4168 /* Append "<memaddr>". */
4169 memaddr = remote_address_masked (memaddr);
4170 p += hexnumstr (p, (ULONGEST) memaddr);
4171
4172 if (use_length)
4173 {
4174 /* Append ",". */
4175 *p++ = ',';
4176
4177 /* Append <len>. Retain the location/size of <len>. It may need to
4178 be adjusted once the packet body has been created. */
4179 plen = p;
4180 plenlen = hexnumstr (p, (ULONGEST) todo);
4181 p += plenlen;
4182 }
4183
4184 /* Append ":". */
4185 *p++ = ':';
4186 *p = '\0';
4187
4188 /* Append the packet body. */
4189 if (packet_format == 'X')
4190 {
4191 /* Binary mode. Send target system values byte by byte, in
4192 increasing byte addresses. Only escape certain critical
4193 characters. */
4194 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4195 payload_size);
4196
4197 /* If not all TODO bytes fit, then we'll need another packet. Make
4198 a second try to keep the end of the packet aligned. Don't do
4199 this if the packet is tiny. */
4200 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4201 {
4202 int new_nr_bytes;
4203
4204 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4205 - memaddr);
4206 if (new_nr_bytes != nr_bytes)
4207 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4208 p, &nr_bytes,
4209 payload_size);
4210 }
4211
4212 p += payload_length;
4213 if (use_length && nr_bytes < todo)
4214 {
4215 /* Escape chars have filled up the buffer prematurely,
4216 and we have actually sent fewer bytes than planned.
4217 Fix-up the length field of the packet. Use the same
4218 number of characters as before. */
4219 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4220 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4221 }
4222 }
4223 else
4224 {
4225 /* Normal mode: Send target system values byte by byte, in
4226 increasing byte addresses. Each byte is encoded as a two hex
4227 value. */
4228 nr_bytes = bin2hex (myaddr, p, todo);
4229 p += 2 * nr_bytes;
4230 }
4231
4232 putpkt_binary (rs->buf, (int) (p - rs->buf));
4233 getpkt (&rs->buf, &rs->buf_size, 0);
4234
4235 if (rs->buf[0] == 'E')
4236 {
4237 /* There is no correspondance between what the remote protocol
4238 uses for errors and errno codes. We would like a cleaner way
4239 of representing errors (big enough to include errno codes,
4240 bfd_error codes, and others). But for now just return EIO. */
4241 errno = EIO;
4242 return 0;
4243 }
4244
4245 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4246 fewer bytes than we'd planned. */
4247 return nr_bytes;
4248 }
4249
4250 /* Write memory data directly to the remote machine.
4251 This does not inform the data cache; the data cache uses this.
4252 MEMADDR is the address in the remote memory space.
4253 MYADDR is the address of the buffer in our space.
4254 LEN is the number of bytes.
4255
4256 Returns number of bytes transferred, or 0 (setting errno) for
4257 error. Only transfer a single packet. */
4258
4259 int
4260 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4261 {
4262 char *packet_format = 0;
4263
4264 /* Check whether the target supports binary download. */
4265 check_binary_download (memaddr);
4266
4267 switch (remote_protocol_packets[PACKET_X].support)
4268 {
4269 case PACKET_ENABLE:
4270 packet_format = "X";
4271 break;
4272 case PACKET_DISABLE:
4273 packet_format = "M";
4274 break;
4275 case PACKET_SUPPORT_UNKNOWN:
4276 internal_error (__FILE__, __LINE__,
4277 _("remote_write_bytes: bad internal state"));
4278 default:
4279 internal_error (__FILE__, __LINE__, _("bad switch"));
4280 }
4281
4282 return remote_write_bytes_aux (packet_format,
4283 memaddr, myaddr, len, packet_format[0], 1);
4284 }
4285
4286 /* Read memory data directly from the remote machine.
4287 This does not use the data cache; the data cache uses this.
4288 MEMADDR is the address in the remote memory space.
4289 MYADDR is the address of the buffer in our space.
4290 LEN is the number of bytes.
4291
4292 Returns number of bytes transferred, or 0 for error. */
4293
4294 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4295 remote targets) shouldn't attempt to read the entire buffer.
4296 Instead it should read a single packet worth of data and then
4297 return the byte size of that packet to the caller. The caller (its
4298 caller and its callers caller ;-) already contains code for
4299 handling partial reads. */
4300
4301 int
4302 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4303 {
4304 struct remote_state *rs = get_remote_state ();
4305 int max_buf_size; /* Max size of packet output buffer. */
4306 int origlen;
4307
4308 if (len <= 0)
4309 return 0;
4310
4311 max_buf_size = get_memory_read_packet_size ();
4312 /* The packet buffer will be large enough for the payload;
4313 get_memory_packet_size ensures this. */
4314
4315 origlen = len;
4316 while (len > 0)
4317 {
4318 char *p;
4319 int todo;
4320 int i;
4321
4322 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4323
4324 /* construct "m"<memaddr>","<len>" */
4325 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4326 memaddr = remote_address_masked (memaddr);
4327 p = rs->buf;
4328 *p++ = 'm';
4329 p += hexnumstr (p, (ULONGEST) memaddr);
4330 *p++ = ',';
4331 p += hexnumstr (p, (ULONGEST) todo);
4332 *p = '\0';
4333
4334 putpkt (rs->buf);
4335 getpkt (&rs->buf, &rs->buf_size, 0);
4336
4337 if (rs->buf[0] == 'E'
4338 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4339 && rs->buf[3] == '\0')
4340 {
4341 /* There is no correspondance between what the remote
4342 protocol uses for errors and errno codes. We would like
4343 a cleaner way of representing errors (big enough to
4344 include errno codes, bfd_error codes, and others). But
4345 for now just return EIO. */
4346 errno = EIO;
4347 return 0;
4348 }
4349
4350 /* Reply describes memory byte by byte,
4351 each byte encoded as two hex characters. */
4352
4353 p = rs->buf;
4354 if ((i = hex2bin (p, myaddr, todo)) < todo)
4355 {
4356 /* Reply is short. This means that we were able to read
4357 only part of what we wanted to. */
4358 return i + (origlen - len);
4359 }
4360 myaddr += todo;
4361 memaddr += todo;
4362 len -= todo;
4363 }
4364 return origlen;
4365 }
4366 \f
4367 /* Read or write LEN bytes from inferior memory at MEMADDR,
4368 transferring to or from debugger address BUFFER. Write to inferior
4369 if SHOULD_WRITE is nonzero. Returns length of data written or
4370 read; 0 for error. TARGET is unused. */
4371
4372 static int
4373 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4374 int should_write, struct mem_attrib *attrib,
4375 struct target_ops *target)
4376 {
4377 int res;
4378
4379 if (should_write)
4380 res = remote_write_bytes (mem_addr, buffer, mem_len);
4381 else
4382 res = remote_read_bytes (mem_addr, buffer, mem_len);
4383
4384 return res;
4385 }
4386
4387 /* Sends a packet with content determined by the printf format string
4388 FORMAT and the remaining arguments, then gets the reply. Returns
4389 whether the packet was a success, a failure, or unknown. */
4390
4391 enum packet_result
4392 remote_send_printf (const char *format, ...)
4393 {
4394 struct remote_state *rs = get_remote_state ();
4395 int max_size = get_remote_packet_size ();
4396
4397 va_list ap;
4398 va_start (ap, format);
4399
4400 rs->buf[0] = '\0';
4401 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4402 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4403
4404 if (putpkt (rs->buf) < 0)
4405 error (_("Communication problem with target."));
4406
4407 rs->buf[0] = '\0';
4408 getpkt (&rs->buf, &rs->buf_size, 0);
4409
4410 return packet_check_result (rs->buf);
4411 }
4412
4413 static void
4414 restore_remote_timeout (void *p)
4415 {
4416 int value = *(int *)p;
4417 remote_timeout = value;
4418 }
4419
4420 /* Flash writing can take quite some time. We'll set
4421 effectively infinite timeout for flash operations.
4422 In future, we'll need to decide on a better approach. */
4423 static const int remote_flash_timeout = 1000;
4424
4425 static void
4426 remote_flash_erase (struct target_ops *ops,
4427 ULONGEST address, LONGEST length)
4428 {
4429 int saved_remote_timeout = remote_timeout;
4430 enum packet_result ret;
4431
4432 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4433 &saved_remote_timeout);
4434 remote_timeout = remote_flash_timeout;
4435
4436 ret = remote_send_printf ("vFlashErase:%s,%s",
4437 paddr (address),
4438 phex (length, 4));
4439 switch (ret)
4440 {
4441 case PACKET_UNKNOWN:
4442 error (_("Remote target does not support flash erase"));
4443 case PACKET_ERROR:
4444 error (_("Error erasing flash with vFlashErase packet"));
4445 default:
4446 break;
4447 }
4448
4449 do_cleanups (back_to);
4450 }
4451
4452 static LONGEST
4453 remote_flash_write (struct target_ops *ops,
4454 ULONGEST address, LONGEST length,
4455 const gdb_byte *data)
4456 {
4457 int saved_remote_timeout = remote_timeout;
4458 int ret;
4459 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4460 &saved_remote_timeout);
4461
4462 remote_timeout = remote_flash_timeout;
4463 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4464 do_cleanups (back_to);
4465
4466 return ret;
4467 }
4468
4469 static void
4470 remote_flash_done (struct target_ops *ops)
4471 {
4472 int saved_remote_timeout = remote_timeout;
4473 int ret;
4474 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4475 &saved_remote_timeout);
4476
4477 remote_timeout = remote_flash_timeout;
4478 ret = remote_send_printf ("vFlashDone");
4479 do_cleanups (back_to);
4480
4481 switch (ret)
4482 {
4483 case PACKET_UNKNOWN:
4484 error (_("Remote target does not support vFlashDone"));
4485 case PACKET_ERROR:
4486 error (_("Error finishing flash operation"));
4487 default:
4488 break;
4489 }
4490 }
4491
4492 static void
4493 remote_files_info (struct target_ops *ignore)
4494 {
4495 puts_filtered ("Debugging a target over a serial line.\n");
4496 }
4497 \f
4498 /* Stuff for dealing with the packets which are part of this protocol.
4499 See comment at top of file for details. */
4500
4501 /* Read a single character from the remote end. */
4502
4503 static int
4504 readchar (int timeout)
4505 {
4506 int ch;
4507
4508 ch = serial_readchar (remote_desc, timeout);
4509
4510 if (ch >= 0)
4511 return ch;
4512
4513 switch ((enum serial_rc) ch)
4514 {
4515 case SERIAL_EOF:
4516 target_mourn_inferior ();
4517 error (_("Remote connection closed"));
4518 /* no return */
4519 case SERIAL_ERROR:
4520 perror_with_name (_("Remote communication error"));
4521 /* no return */
4522 case SERIAL_TIMEOUT:
4523 break;
4524 }
4525 return ch;
4526 }
4527
4528 /* Send the command in *BUF to the remote machine, and read the reply
4529 into *BUF. Report an error if we get an error reply. Resize
4530 *BUF using xrealloc if necessary to hold the result, and update
4531 *SIZEOF_BUF. */
4532
4533 static void
4534 remote_send (char **buf,
4535 long *sizeof_buf)
4536 {
4537 putpkt (*buf);
4538 getpkt (buf, sizeof_buf, 0);
4539
4540 if ((*buf)[0] == 'E')
4541 error (_("Remote failure reply: %s"), *buf);
4542 }
4543
4544 /* Display a null-terminated packet on stdout, for debugging, using C
4545 string notation. */
4546
4547 static void
4548 print_packet (char *buf)
4549 {
4550 puts_filtered ("\"");
4551 fputstr_filtered (buf, '"', gdb_stdout);
4552 puts_filtered ("\"");
4553 }
4554
4555 int
4556 putpkt (char *buf)
4557 {
4558 return putpkt_binary (buf, strlen (buf));
4559 }
4560
4561 /* Send a packet to the remote machine, with error checking. The data
4562 of the packet is in BUF. The string in BUF can be at most
4563 get_remote_packet_size () - 5 to account for the $, # and checksum,
4564 and for a possible /0 if we are debugging (remote_debug) and want
4565 to print the sent packet as a string. */
4566
4567 static int
4568 putpkt_binary (char *buf, int cnt)
4569 {
4570 int i;
4571 unsigned char csum = 0;
4572 char *buf2 = alloca (cnt + 6);
4573
4574 int ch;
4575 int tcount = 0;
4576 char *p;
4577
4578 /* Copy the packet into buffer BUF2, encapsulating it
4579 and giving it a checksum. */
4580
4581 p = buf2;
4582 *p++ = '$';
4583
4584 for (i = 0; i < cnt; i++)
4585 {
4586 csum += buf[i];
4587 *p++ = buf[i];
4588 }
4589 *p++ = '#';
4590 *p++ = tohex ((csum >> 4) & 0xf);
4591 *p++ = tohex (csum & 0xf);
4592
4593 /* Send it over and over until we get a positive ack. */
4594
4595 while (1)
4596 {
4597 int started_error_output = 0;
4598
4599 if (remote_debug)
4600 {
4601 *p = '\0';
4602 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4603 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4604 fprintf_unfiltered (gdb_stdlog, "...");
4605 gdb_flush (gdb_stdlog);
4606 }
4607 if (serial_write (remote_desc, buf2, p - buf2))
4608 perror_with_name (_("putpkt: write failed"));
4609
4610 /* Read until either a timeout occurs (-2) or '+' is read. */
4611 while (1)
4612 {
4613 ch = readchar (remote_timeout);
4614
4615 if (remote_debug)
4616 {
4617 switch (ch)
4618 {
4619 case '+':
4620 case '-':
4621 case SERIAL_TIMEOUT:
4622 case '$':
4623 if (started_error_output)
4624 {
4625 putchar_unfiltered ('\n');
4626 started_error_output = 0;
4627 }
4628 }
4629 }
4630
4631 switch (ch)
4632 {
4633 case '+':
4634 if (remote_debug)
4635 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4636 return 1;
4637 case '-':
4638 if (remote_debug)
4639 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4640 case SERIAL_TIMEOUT:
4641 tcount++;
4642 if (tcount > 3)
4643 return 0;
4644 break; /* Retransmit buffer. */
4645 case '$':
4646 {
4647 if (remote_debug)
4648 fprintf_unfiltered (gdb_stdlog,
4649 "Packet instead of Ack, ignoring it\n");
4650 /* It's probably an old response sent because an ACK
4651 was lost. Gobble up the packet and ack it so it
4652 doesn't get retransmitted when we resend this
4653 packet. */
4654 skip_frame ();
4655 serial_write (remote_desc, "+", 1);
4656 continue; /* Now, go look for +. */
4657 }
4658 default:
4659 if (remote_debug)
4660 {
4661 if (!started_error_output)
4662 {
4663 started_error_output = 1;
4664 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4665 }
4666 fputc_unfiltered (ch & 0177, gdb_stdlog);
4667 }
4668 continue;
4669 }
4670 break; /* Here to retransmit. */
4671 }
4672
4673 #if 0
4674 /* This is wrong. If doing a long backtrace, the user should be
4675 able to get out next time we call QUIT, without anything as
4676 violent as interrupt_query. If we want to provide a way out of
4677 here without getting to the next QUIT, it should be based on
4678 hitting ^C twice as in remote_wait. */
4679 if (quit_flag)
4680 {
4681 quit_flag = 0;
4682 interrupt_query ();
4683 }
4684 #endif
4685 }
4686 }
4687
4688 /* Come here after finding the start of a frame when we expected an
4689 ack. Do our best to discard the rest of this packet. */
4690
4691 static void
4692 skip_frame (void)
4693 {
4694 int c;
4695
4696 while (1)
4697 {
4698 c = readchar (remote_timeout);
4699 switch (c)
4700 {
4701 case SERIAL_TIMEOUT:
4702 /* Nothing we can do. */
4703 return;
4704 case '#':
4705 /* Discard the two bytes of checksum and stop. */
4706 c = readchar (remote_timeout);
4707 if (c >= 0)
4708 c = readchar (remote_timeout);
4709
4710 return;
4711 case '*': /* Run length encoding. */
4712 /* Discard the repeat count. */
4713 c = readchar (remote_timeout);
4714 if (c < 0)
4715 return;
4716 break;
4717 default:
4718 /* A regular character. */
4719 break;
4720 }
4721 }
4722 }
4723
4724 /* Come here after finding the start of the frame. Collect the rest
4725 into *BUF, verifying the checksum, length, and handling run-length
4726 compression. NUL terminate the buffer. If there is not enough room,
4727 expand *BUF using xrealloc.
4728
4729 Returns -1 on error, number of characters in buffer (ignoring the
4730 trailing NULL) on success. (could be extended to return one of the
4731 SERIAL status indications). */
4732
4733 static long
4734 read_frame (char **buf_p,
4735 long *sizeof_buf)
4736 {
4737 unsigned char csum;
4738 long bc;
4739 int c;
4740 char *buf = *buf_p;
4741
4742 csum = 0;
4743 bc = 0;
4744
4745 while (1)
4746 {
4747 c = readchar (remote_timeout);
4748 switch (c)
4749 {
4750 case SERIAL_TIMEOUT:
4751 if (remote_debug)
4752 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4753 return -1;
4754 case '$':
4755 if (remote_debug)
4756 fputs_filtered ("Saw new packet start in middle of old one\n",
4757 gdb_stdlog);
4758 return -1; /* Start a new packet, count retries. */
4759 case '#':
4760 {
4761 unsigned char pktcsum;
4762 int check_0 = 0;
4763 int check_1 = 0;
4764
4765 buf[bc] = '\0';
4766
4767 check_0 = readchar (remote_timeout);
4768 if (check_0 >= 0)
4769 check_1 = readchar (remote_timeout);
4770
4771 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4772 {
4773 if (remote_debug)
4774 fputs_filtered ("Timeout in checksum, retrying\n",
4775 gdb_stdlog);
4776 return -1;
4777 }
4778 else if (check_0 < 0 || check_1 < 0)
4779 {
4780 if (remote_debug)
4781 fputs_filtered ("Communication error in checksum\n",
4782 gdb_stdlog);
4783 return -1;
4784 }
4785
4786 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4787 if (csum == pktcsum)
4788 return bc;
4789
4790 if (remote_debug)
4791 {
4792 fprintf_filtered (gdb_stdlog,
4793 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4794 pktcsum, csum);
4795 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4796 fputs_filtered ("\n", gdb_stdlog);
4797 }
4798 /* Number of characters in buffer ignoring trailing
4799 NULL. */
4800 return -1;
4801 }
4802 case '*': /* Run length encoding. */
4803 {
4804 int repeat;
4805 csum += c;
4806
4807 c = readchar (remote_timeout);
4808 csum += c;
4809 repeat = c - ' ' + 3; /* Compute repeat count. */
4810
4811 /* The character before ``*'' is repeated. */
4812
4813 if (repeat > 0 && repeat <= 255 && bc > 0)
4814 {
4815 if (bc + repeat - 1 >= *sizeof_buf - 1)
4816 {
4817 /* Make some more room in the buffer. */
4818 *sizeof_buf += repeat;
4819 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4820 buf = *buf_p;
4821 }
4822
4823 memset (&buf[bc], buf[bc - 1], repeat);
4824 bc += repeat;
4825 continue;
4826 }
4827
4828 buf[bc] = '\0';
4829 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4830 return -1;
4831 }
4832 default:
4833 if (bc >= *sizeof_buf - 1)
4834 {
4835 /* Make some more room in the buffer. */
4836 *sizeof_buf *= 2;
4837 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4838 buf = *buf_p;
4839 }
4840
4841 buf[bc++] = c;
4842 csum += c;
4843 continue;
4844 }
4845 }
4846 }
4847
4848 /* Read a packet from the remote machine, with error checking, and
4849 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4850 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4851 rather than timing out; this is used (in synchronous mode) to wait
4852 for a target that is is executing user code to stop. */
4853 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4854 don't have to change all the calls to getpkt to deal with the
4855 return value, because at the moment I don't know what the right
4856 thing to do it for those. */
4857 void
4858 getpkt (char **buf,
4859 long *sizeof_buf,
4860 int forever)
4861 {
4862 int timed_out;
4863
4864 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4865 }
4866
4867
4868 /* Read a packet from the remote machine, with error checking, and
4869 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4870 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4871 rather than timing out; this is used (in synchronous mode) to wait
4872 for a target that is is executing user code to stop. If FOREVER ==
4873 0, this function is allowed to time out gracefully and return an
4874 indication of this to the caller. Otherwise return the number
4875 of bytes read. */
4876 static int
4877 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4878 {
4879 int c;
4880 int tries;
4881 int timeout;
4882 int val;
4883
4884 strcpy (*buf, "timeout");
4885
4886 if (forever)
4887 {
4888 timeout = watchdog > 0 ? watchdog : -1;
4889 }
4890
4891 else
4892 timeout = remote_timeout;
4893
4894 #define MAX_TRIES 3
4895
4896 for (tries = 1; tries <= MAX_TRIES; tries++)
4897 {
4898 /* This can loop forever if the remote side sends us characters
4899 continuously, but if it pauses, we'll get a zero from
4900 readchar because of timeout. Then we'll count that as a
4901 retry. */
4902
4903 /* Note that we will only wait forever prior to the start of a
4904 packet. After that, we expect characters to arrive at a
4905 brisk pace. They should show up within remote_timeout
4906 intervals. */
4907
4908 do
4909 {
4910 c = readchar (timeout);
4911
4912 if (c == SERIAL_TIMEOUT)
4913 {
4914 if (forever) /* Watchdog went off? Kill the target. */
4915 {
4916 QUIT;
4917 target_mourn_inferior ();
4918 error (_("Watchdog has expired. Target detached."));
4919 }
4920 if (remote_debug)
4921 fputs_filtered ("Timed out.\n", gdb_stdlog);
4922 goto retry;
4923 }
4924 }
4925 while (c != '$');
4926
4927 /* We've found the start of a packet, now collect the data. */
4928
4929 val = read_frame (buf, sizeof_buf);
4930
4931 if (val >= 0)
4932 {
4933 if (remote_debug)
4934 {
4935 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4936 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4937 fprintf_unfiltered (gdb_stdlog, "\n");
4938 }
4939 serial_write (remote_desc, "+", 1);
4940 return val;
4941 }
4942
4943 /* Try the whole thing again. */
4944 retry:
4945 serial_write (remote_desc, "-", 1);
4946 }
4947
4948 /* We have tried hard enough, and just can't receive the packet.
4949 Give up. */
4950
4951 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4952 serial_write (remote_desc, "+", 1);
4953 return -1;
4954 }
4955 \f
4956 static void
4957 remote_kill (void)
4958 {
4959 /* For some mysterious reason, wait_for_inferior calls kill instead of
4960 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4961 if (kill_kludge)
4962 {
4963 kill_kludge = 0;
4964 target_mourn_inferior ();
4965 return;
4966 }
4967
4968 /* Use catch_errors so the user can quit from gdb even when we aren't on
4969 speaking terms with the remote system. */
4970 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4971
4972 /* Don't wait for it to die. I'm not really sure it matters whether
4973 we do or not. For the existing stubs, kill is a noop. */
4974 target_mourn_inferior ();
4975 }
4976
4977 /* Async version of remote_kill. */
4978 static void
4979 remote_async_kill (void)
4980 {
4981 /* Unregister the file descriptor from the event loop. */
4982 if (target_is_async_p ())
4983 serial_async (remote_desc, NULL, 0);
4984
4985 /* For some mysterious reason, wait_for_inferior calls kill instead of
4986 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4987 if (kill_kludge)
4988 {
4989 kill_kludge = 0;
4990 target_mourn_inferior ();
4991 return;
4992 }
4993
4994 /* Use catch_errors so the user can quit from gdb even when we
4995 aren't on speaking terms with the remote system. */
4996 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4997
4998 /* Don't wait for it to die. I'm not really sure it matters whether
4999 we do or not. For the existing stubs, kill is a noop. */
5000 target_mourn_inferior ();
5001 }
5002
5003 static void
5004 remote_mourn (void)
5005 {
5006 remote_mourn_1 (&remote_ops);
5007 }
5008
5009 static void
5010 remote_async_mourn (void)
5011 {
5012 remote_mourn_1 (&remote_async_ops);
5013 }
5014
5015 static void
5016 extended_remote_mourn (void)
5017 {
5018 /* We do _not_ want to mourn the target like this; this will
5019 remove the extended remote target from the target stack,
5020 and the next time the user says "run" it'll fail.
5021
5022 FIXME: What is the right thing to do here? */
5023 #if 0
5024 remote_mourn_1 (&extended_remote_ops);
5025 #endif
5026 }
5027
5028 /* Worker function for remote_mourn. */
5029 static void
5030 remote_mourn_1 (struct target_ops *target)
5031 {
5032 unpush_target (target);
5033 generic_mourn_inferior ();
5034 }
5035
5036 /* In the extended protocol we want to be able to do things like
5037 "run" and have them basically work as expected. So we need
5038 a special create_inferior function.
5039
5040 FIXME: One day add support for changing the exec file
5041 we're debugging, arguments and an environment. */
5042
5043 static void
5044 extended_remote_create_inferior (char *exec_file, char *args,
5045 char **env, int from_tty)
5046 {
5047 /* Rip out the breakpoints; we'll reinsert them after restarting
5048 the remote server. */
5049 remove_breakpoints ();
5050
5051 /* Now restart the remote server. */
5052 extended_remote_restart ();
5053
5054 /* NOTE: We don't need to recheck for a target description here; but
5055 if we gain the ability to switch the remote executable we may
5056 need to, if for instance we are running a process which requested
5057 different emulated hardware from the operating system. A
5058 concrete example of this is ARM GNU/Linux, where some binaries
5059 will have a legacy FPA coprocessor emulated and others may have
5060 access to a hardware VFP unit. */
5061
5062 /* Now put the breakpoints back in. This way we're safe if the
5063 restart function works via a unix fork on the remote side. */
5064 insert_breakpoints ();
5065
5066 /* Clean up from the last time we were running. */
5067 clear_proceed_status ();
5068 }
5069
5070 /* Async version of extended_remote_create_inferior. */
5071 static void
5072 extended_remote_async_create_inferior (char *exec_file, char *args,
5073 char **env, int from_tty)
5074 {
5075 /* Rip out the breakpoints; we'll reinsert them after restarting
5076 the remote server. */
5077 remove_breakpoints ();
5078
5079 /* If running asynchronously, register the target file descriptor
5080 with the event loop. */
5081 if (target_can_async_p ())
5082 target_async (inferior_event_handler, 0);
5083
5084 /* Now restart the remote server. */
5085 extended_remote_restart ();
5086
5087 /* NOTE: We don't need to recheck for a target description here; but
5088 if we gain the ability to switch the remote executable we may
5089 need to, if for instance we are running a process which requested
5090 different emulated hardware from the operating system. A
5091 concrete example of this is ARM GNU/Linux, where some binaries
5092 will have a legacy FPA coprocessor emulated and others may have
5093 access to a hardware VFP unit. */
5094
5095 /* Now put the breakpoints back in. This way we're safe if the
5096 restart function works via a unix fork on the remote side. */
5097 insert_breakpoints ();
5098
5099 /* Clean up from the last time we were running. */
5100 clear_proceed_status ();
5101 }
5102 \f
5103
5104 /* Insert a breakpoint. On targets that have software breakpoint
5105 support, we ask the remote target to do the work; on targets
5106 which don't, we insert a traditional memory breakpoint. */
5107
5108 static int
5109 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5110 {
5111 CORE_ADDR addr = bp_tgt->placed_address;
5112 struct remote_state *rs = get_remote_state ();
5113
5114 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5115 If it succeeds, then set the support to PACKET_ENABLE. If it
5116 fails, and the user has explicitly requested the Z support then
5117 report an error, otherwise, mark it disabled and go on. */
5118
5119 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5120 {
5121 char *p = rs->buf;
5122
5123 *(p++) = 'Z';
5124 *(p++) = '0';
5125 *(p++) = ',';
5126 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5127 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5128 p += hexnumstr (p, addr);
5129 sprintf (p, ",%d", bp_tgt->placed_size);
5130
5131 putpkt (rs->buf);
5132 getpkt (&rs->buf, &rs->buf_size, 0);
5133
5134 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5135 {
5136 case PACKET_ERROR:
5137 return -1;
5138 case PACKET_OK:
5139 return 0;
5140 case PACKET_UNKNOWN:
5141 break;
5142 }
5143 }
5144
5145 return memory_insert_breakpoint (bp_tgt);
5146 }
5147
5148 static int
5149 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5150 {
5151 CORE_ADDR addr = bp_tgt->placed_address;
5152 struct remote_state *rs = get_remote_state ();
5153 int bp_size;
5154
5155 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5156 {
5157 char *p = rs->buf;
5158
5159 *(p++) = 'z';
5160 *(p++) = '0';
5161 *(p++) = ',';
5162
5163 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5164 p += hexnumstr (p, addr);
5165 sprintf (p, ",%d", bp_tgt->placed_size);
5166
5167 putpkt (rs->buf);
5168 getpkt (&rs->buf, &rs->buf_size, 0);
5169
5170 return (rs->buf[0] == 'E');
5171 }
5172
5173 return memory_remove_breakpoint (bp_tgt);
5174 }
5175
5176 static int
5177 watchpoint_to_Z_packet (int type)
5178 {
5179 switch (type)
5180 {
5181 case hw_write:
5182 return Z_PACKET_WRITE_WP;
5183 break;
5184 case hw_read:
5185 return Z_PACKET_READ_WP;
5186 break;
5187 case hw_access:
5188 return Z_PACKET_ACCESS_WP;
5189 break;
5190 default:
5191 internal_error (__FILE__, __LINE__,
5192 _("hw_bp_to_z: bad watchpoint type %d"), type);
5193 }
5194 }
5195
5196 static int
5197 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5198 {
5199 struct remote_state *rs = get_remote_state ();
5200 char *p;
5201 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5202
5203 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5204 return -1;
5205
5206 sprintf (rs->buf, "Z%x,", packet);
5207 p = strchr (rs->buf, '\0');
5208 addr = remote_address_masked (addr);
5209 p += hexnumstr (p, (ULONGEST) addr);
5210 sprintf (p, ",%x", len);
5211
5212 putpkt (rs->buf);
5213 getpkt (&rs->buf, &rs->buf_size, 0);
5214
5215 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5216 {
5217 case PACKET_ERROR:
5218 case PACKET_UNKNOWN:
5219 return -1;
5220 case PACKET_OK:
5221 return 0;
5222 }
5223 internal_error (__FILE__, __LINE__,
5224 _("remote_insert_watchpoint: reached end of function"));
5225 }
5226
5227
5228 static int
5229 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5230 {
5231 struct remote_state *rs = get_remote_state ();
5232 char *p;
5233 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5234
5235 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5236 return -1;
5237
5238 sprintf (rs->buf, "z%x,", packet);
5239 p = strchr (rs->buf, '\0');
5240 addr = remote_address_masked (addr);
5241 p += hexnumstr (p, (ULONGEST) addr);
5242 sprintf (p, ",%x", len);
5243 putpkt (rs->buf);
5244 getpkt (&rs->buf, &rs->buf_size, 0);
5245
5246 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5247 {
5248 case PACKET_ERROR:
5249 case PACKET_UNKNOWN:
5250 return -1;
5251 case PACKET_OK:
5252 return 0;
5253 }
5254 internal_error (__FILE__, __LINE__,
5255 _("remote_remove_watchpoint: reached end of function"));
5256 }
5257
5258
5259 int remote_hw_watchpoint_limit = -1;
5260 int remote_hw_breakpoint_limit = -1;
5261
5262 static int
5263 remote_check_watch_resources (int type, int cnt, int ot)
5264 {
5265 if (type == bp_hardware_breakpoint)
5266 {
5267 if (remote_hw_breakpoint_limit == 0)
5268 return 0;
5269 else if (remote_hw_breakpoint_limit < 0)
5270 return 1;
5271 else if (cnt <= remote_hw_breakpoint_limit)
5272 return 1;
5273 }
5274 else
5275 {
5276 if (remote_hw_watchpoint_limit == 0)
5277 return 0;
5278 else if (remote_hw_watchpoint_limit < 0)
5279 return 1;
5280 else if (ot)
5281 return -1;
5282 else if (cnt <= remote_hw_watchpoint_limit)
5283 return 1;
5284 }
5285 return -1;
5286 }
5287
5288 static int
5289 remote_stopped_by_watchpoint (void)
5290 {
5291 return remote_stopped_by_watchpoint_p;
5292 }
5293
5294 extern int stepped_after_stopped_by_watchpoint;
5295
5296 static int
5297 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5298 {
5299 int rc = 0;
5300 if (remote_stopped_by_watchpoint ()
5301 || stepped_after_stopped_by_watchpoint)
5302 {
5303 *addr_p = remote_watch_data_address;
5304 rc = 1;
5305 }
5306
5307 return rc;
5308 }
5309
5310
5311 static int
5312 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5313 {
5314 CORE_ADDR addr;
5315 struct remote_state *rs = get_remote_state ();
5316 char *p = rs->buf;
5317
5318 /* The length field should be set to the size of a breakpoint
5319 instruction, even though we aren't inserting one ourselves. */
5320
5321 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5322
5323 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5324 return -1;
5325
5326 *(p++) = 'Z';
5327 *(p++) = '1';
5328 *(p++) = ',';
5329
5330 addr = remote_address_masked (bp_tgt->placed_address);
5331 p += hexnumstr (p, (ULONGEST) addr);
5332 sprintf (p, ",%x", bp_tgt->placed_size);
5333
5334 putpkt (rs->buf);
5335 getpkt (&rs->buf, &rs->buf_size, 0);
5336
5337 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5338 {
5339 case PACKET_ERROR:
5340 case PACKET_UNKNOWN:
5341 return -1;
5342 case PACKET_OK:
5343 return 0;
5344 }
5345 internal_error (__FILE__, __LINE__,
5346 _("remote_insert_hw_breakpoint: reached end of function"));
5347 }
5348
5349
5350 static int
5351 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5352 {
5353 CORE_ADDR addr;
5354 struct remote_state *rs = get_remote_state ();
5355 char *p = rs->buf;
5356
5357 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5358 return -1;
5359
5360 *(p++) = 'z';
5361 *(p++) = '1';
5362 *(p++) = ',';
5363
5364 addr = remote_address_masked (bp_tgt->placed_address);
5365 p += hexnumstr (p, (ULONGEST) addr);
5366 sprintf (p, ",%x", bp_tgt->placed_size);
5367
5368 putpkt (rs->buf);
5369 getpkt (&rs->buf, &rs->buf_size, 0);
5370
5371 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5372 {
5373 case PACKET_ERROR:
5374 case PACKET_UNKNOWN:
5375 return -1;
5376 case PACKET_OK:
5377 return 0;
5378 }
5379 internal_error (__FILE__, __LINE__,
5380 _("remote_remove_hw_breakpoint: reached end of function"));
5381 }
5382
5383 /* Some targets are only capable of doing downloads, and afterwards
5384 they switch to the remote serial protocol. This function provides
5385 a clean way to get from the download target to the remote target.
5386 It's basically just a wrapper so that we don't have to expose any
5387 of the internal workings of remote.c.
5388
5389 Prior to calling this routine, you should shutdown the current
5390 target code, else you will get the "A program is being debugged
5391 already..." message. Usually a call to pop_target() suffices. */
5392
5393 void
5394 push_remote_target (char *name, int from_tty)
5395 {
5396 printf_filtered (_("Switching to remote protocol\n"));
5397 remote_open (name, from_tty);
5398 }
5399
5400 /* Table used by the crc32 function to calcuate the checksum. */
5401
5402 static unsigned long crc32_table[256] =
5403 {0, 0};
5404
5405 static unsigned long
5406 crc32 (unsigned char *buf, int len, unsigned int crc)
5407 {
5408 if (!crc32_table[1])
5409 {
5410 /* Initialize the CRC table and the decoding table. */
5411 int i, j;
5412 unsigned int c;
5413
5414 for (i = 0; i < 256; i++)
5415 {
5416 for (c = i << 24, j = 8; j > 0; --j)
5417 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5418 crc32_table[i] = c;
5419 }
5420 }
5421
5422 while (len--)
5423 {
5424 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5425 buf++;
5426 }
5427 return crc;
5428 }
5429
5430 /* compare-sections command
5431
5432 With no arguments, compares each loadable section in the exec bfd
5433 with the same memory range on the target, and reports mismatches.
5434 Useful for verifying the image on the target against the exec file.
5435 Depends on the target understanding the new "qCRC:" request. */
5436
5437 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5438 target method (target verify memory) and generic version of the
5439 actual command. This will allow other high-level code (especially
5440 generic_load()) to make use of this target functionality. */
5441
5442 static void
5443 compare_sections_command (char *args, int from_tty)
5444 {
5445 struct remote_state *rs = get_remote_state ();
5446 asection *s;
5447 unsigned long host_crc, target_crc;
5448 extern bfd *exec_bfd;
5449 struct cleanup *old_chain;
5450 char *tmp;
5451 char *sectdata;
5452 const char *sectname;
5453 bfd_size_type size;
5454 bfd_vma lma;
5455 int matched = 0;
5456 int mismatched = 0;
5457
5458 if (!exec_bfd)
5459 error (_("command cannot be used without an exec file"));
5460 if (!current_target.to_shortname ||
5461 strcmp (current_target.to_shortname, "remote") != 0)
5462 error (_("command can only be used with remote target"));
5463
5464 for (s = exec_bfd->sections; s; s = s->next)
5465 {
5466 if (!(s->flags & SEC_LOAD))
5467 continue; /* skip non-loadable section */
5468
5469 size = bfd_get_section_size (s);
5470 if (size == 0)
5471 continue; /* skip zero-length section */
5472
5473 sectname = bfd_get_section_name (exec_bfd, s);
5474 if (args && strcmp (args, sectname) != 0)
5475 continue; /* not the section selected by user */
5476
5477 matched = 1; /* do this section */
5478 lma = s->lma;
5479 /* FIXME: assumes lma can fit into long. */
5480 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5481 (long) lma, (long) size);
5482 putpkt (rs->buf);
5483
5484 /* Be clever; compute the host_crc before waiting for target
5485 reply. */
5486 sectdata = xmalloc (size);
5487 old_chain = make_cleanup (xfree, sectdata);
5488 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5489 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5490
5491 getpkt (&rs->buf, &rs->buf_size, 0);
5492 if (rs->buf[0] == 'E')
5493 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5494 sectname, paddr (lma), paddr (lma + size));
5495 if (rs->buf[0] != 'C')
5496 error (_("remote target does not support this operation"));
5497
5498 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5499 target_crc = target_crc * 16 + fromhex (*tmp);
5500
5501 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5502 sectname, paddr (lma), paddr (lma + size));
5503 if (host_crc == target_crc)
5504 printf_filtered ("matched.\n");
5505 else
5506 {
5507 printf_filtered ("MIS-MATCHED!\n");
5508 mismatched++;
5509 }
5510
5511 do_cleanups (old_chain);
5512 }
5513 if (mismatched > 0)
5514 warning (_("One or more sections of the remote executable does not match\n\
5515 the loaded file\n"));
5516 if (args && !matched)
5517 printf_filtered (_("No loaded section named '%s'.\n"), args);
5518 }
5519
5520 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5521 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5522 number of bytes read is returned, or 0 for EOF, or -1 for error.
5523 The number of bytes read may be less than LEN without indicating an
5524 EOF. PACKET is checked and updated to indicate whether the remote
5525 target supports this object. */
5526
5527 static LONGEST
5528 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5529 const char *annex,
5530 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5531 struct packet_config *packet)
5532 {
5533 static char *finished_object;
5534 static char *finished_annex;
5535 static ULONGEST finished_offset;
5536
5537 struct remote_state *rs = get_remote_state ();
5538 unsigned int total = 0;
5539 LONGEST i, n, packet_len;
5540
5541 if (packet->support == PACKET_DISABLE)
5542 return -1;
5543
5544 /* Check whether we've cached an end-of-object packet that matches
5545 this request. */
5546 if (finished_object)
5547 {
5548 if (strcmp (object_name, finished_object) == 0
5549 && strcmp (annex ? annex : "", finished_annex) == 0
5550 && offset == finished_offset)
5551 return 0;
5552
5553 /* Otherwise, we're now reading something different. Discard
5554 the cache. */
5555 xfree (finished_object);
5556 xfree (finished_annex);
5557 finished_object = NULL;
5558 finished_annex = NULL;
5559 }
5560
5561 /* Request only enough to fit in a single packet. The actual data
5562 may not, since we don't know how much of it will need to be escaped;
5563 the target is free to respond with slightly less data. We subtract
5564 five to account for the response type and the protocol frame. */
5565 n = min (get_remote_packet_size () - 5, len);
5566 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5567 object_name, annex ? annex : "",
5568 phex_nz (offset, sizeof offset),
5569 phex_nz (n, sizeof n));
5570 i = putpkt (rs->buf);
5571 if (i < 0)
5572 return -1;
5573
5574 rs->buf[0] = '\0';
5575 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5576 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5577 return -1;
5578
5579 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5580 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5581
5582 /* 'm' means there is (or at least might be) more data after this
5583 batch. That does not make sense unless there's at least one byte
5584 of data in this reply. */
5585 if (rs->buf[0] == 'm' && packet_len == 1)
5586 error (_("Remote qXfer reply contained no data."));
5587
5588 /* Got some data. */
5589 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5590
5591 /* 'l' is an EOF marker, possibly including a final block of data,
5592 or possibly empty. Record it to bypass the next read, if one is
5593 issued. */
5594 if (rs->buf[0] == 'l')
5595 {
5596 finished_object = xstrdup (object_name);
5597 finished_annex = xstrdup (annex ? annex : "");
5598 finished_offset = offset + i;
5599 }
5600
5601 return i;
5602 }
5603
5604 static LONGEST
5605 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5606 const char *annex, gdb_byte *readbuf,
5607 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5608 {
5609 struct remote_state *rs = get_remote_state ();
5610 int i;
5611 char *p2;
5612 char query_type;
5613
5614 /* Handle memory using the standard memory routines. */
5615 if (object == TARGET_OBJECT_MEMORY)
5616 {
5617 int xfered;
5618 errno = 0;
5619
5620 if (writebuf != NULL)
5621 xfered = remote_write_bytes (offset, writebuf, len);
5622 else
5623 xfered = remote_read_bytes (offset, readbuf, len);
5624
5625 if (xfered > 0)
5626 return xfered;
5627 else if (xfered == 0 && errno == 0)
5628 return 0;
5629 else
5630 return -1;
5631 }
5632
5633 /* Only handle flash writes. */
5634 if (writebuf != NULL)
5635 {
5636 LONGEST xfered;
5637
5638 switch (object)
5639 {
5640 case TARGET_OBJECT_FLASH:
5641 xfered = remote_flash_write (ops, offset, len, writebuf);
5642
5643 if (xfered > 0)
5644 return xfered;
5645 else if (xfered == 0 && errno == 0)
5646 return 0;
5647 else
5648 return -1;
5649
5650 default:
5651 return -1;
5652 }
5653 }
5654
5655 /* Map pre-existing objects onto letters. DO NOT do this for new
5656 objects!!! Instead specify new query packets. */
5657 switch (object)
5658 {
5659 case TARGET_OBJECT_AVR:
5660 query_type = 'R';
5661 break;
5662
5663 case TARGET_OBJECT_AUXV:
5664 gdb_assert (annex == NULL);
5665 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5666 &remote_protocol_packets[PACKET_qXfer_auxv]);
5667
5668 case TARGET_OBJECT_AVAILABLE_FEATURES:
5669 return remote_read_qxfer
5670 (ops, "features", annex, readbuf, offset, len,
5671 &remote_protocol_packets[PACKET_qXfer_features]);
5672
5673 case TARGET_OBJECT_MEMORY_MAP:
5674 gdb_assert (annex == NULL);
5675 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5676 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5677
5678 default:
5679 return -1;
5680 }
5681
5682 /* Note: a zero OFFSET and LEN can be used to query the minimum
5683 buffer size. */
5684 if (offset == 0 && len == 0)
5685 return (get_remote_packet_size ());
5686 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5687 large enough let the caller deal with it. */
5688 if (len < get_remote_packet_size ())
5689 return -1;
5690 len = get_remote_packet_size ();
5691
5692 /* Except for querying the minimum buffer size, target must be open. */
5693 if (!remote_desc)
5694 error (_("remote query is only available after target open"));
5695
5696 gdb_assert (annex != NULL);
5697 gdb_assert (readbuf != NULL);
5698
5699 p2 = rs->buf;
5700 *p2++ = 'q';
5701 *p2++ = query_type;
5702
5703 /* We used one buffer char for the remote protocol q command and
5704 another for the query type. As the remote protocol encapsulation
5705 uses 4 chars plus one extra in case we are debugging
5706 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5707 string. */
5708 i = 0;
5709 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5710 {
5711 /* Bad caller may have sent forbidden characters. */
5712 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5713 *p2++ = annex[i];
5714 i++;
5715 }
5716 *p2 = '\0';
5717 gdb_assert (annex[i] == '\0');
5718
5719 i = putpkt (rs->buf);
5720 if (i < 0)
5721 return i;
5722
5723 getpkt (&rs->buf, &rs->buf_size, 0);
5724 strcpy ((char *) readbuf, rs->buf);
5725
5726 return strlen ((char *) readbuf);
5727 }
5728
5729 static void
5730 remote_rcmd (char *command,
5731 struct ui_file *outbuf)
5732 {
5733 struct remote_state *rs = get_remote_state ();
5734 char *p = rs->buf;
5735
5736 if (!remote_desc)
5737 error (_("remote rcmd is only available after target open"));
5738
5739 /* Send a NULL command across as an empty command. */
5740 if (command == NULL)
5741 command = "";
5742
5743 /* The query prefix. */
5744 strcpy (rs->buf, "qRcmd,");
5745 p = strchr (rs->buf, '\0');
5746
5747 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5748 error (_("\"monitor\" command ``%s'' is too long."), command);
5749
5750 /* Encode the actual command. */
5751 bin2hex ((gdb_byte *) command, p, 0);
5752
5753 if (putpkt (rs->buf) < 0)
5754 error (_("Communication problem with target."));
5755
5756 /* get/display the response */
5757 while (1)
5758 {
5759 char *buf;
5760
5761 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5762 rs->buf[0] = '\0';
5763 getpkt (&rs->buf, &rs->buf_size, 0);
5764 buf = rs->buf;
5765 if (buf[0] == '\0')
5766 error (_("Target does not support this command."));
5767 if (buf[0] == 'O' && buf[1] != 'K')
5768 {
5769 remote_console_output (buf + 1); /* 'O' message from stub. */
5770 continue;
5771 }
5772 if (strcmp (buf, "OK") == 0)
5773 break;
5774 if (strlen (buf) == 3 && buf[0] == 'E'
5775 && isdigit (buf[1]) && isdigit (buf[2]))
5776 {
5777 error (_("Protocol error with Rcmd"));
5778 }
5779 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5780 {
5781 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5782 fputc_unfiltered (c, outbuf);
5783 }
5784 break;
5785 }
5786 }
5787
5788 static VEC(mem_region_s) *
5789 remote_memory_map (struct target_ops *ops)
5790 {
5791 VEC(mem_region_s) *result = NULL;
5792 char *text = target_read_stralloc (&current_target,
5793 TARGET_OBJECT_MEMORY_MAP, NULL);
5794
5795 if (text)
5796 {
5797 struct cleanup *back_to = make_cleanup (xfree, text);
5798 result = parse_memory_map (text);
5799 do_cleanups (back_to);
5800 }
5801
5802 return result;
5803 }
5804
5805 static void
5806 packet_command (char *args, int from_tty)
5807 {
5808 struct remote_state *rs = get_remote_state ();
5809
5810 if (!remote_desc)
5811 error (_("command can only be used with remote target"));
5812
5813 if (!args)
5814 error (_("remote-packet command requires packet text as argument"));
5815
5816 puts_filtered ("sending: ");
5817 print_packet (args);
5818 puts_filtered ("\n");
5819 putpkt (args);
5820
5821 getpkt (&rs->buf, &rs->buf_size, 0);
5822 puts_filtered ("received: ");
5823 print_packet (rs->buf);
5824 puts_filtered ("\n");
5825 }
5826
5827 #if 0
5828 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5829
5830 static void display_thread_info (struct gdb_ext_thread_info *info);
5831
5832 static void threadset_test_cmd (char *cmd, int tty);
5833
5834 static void threadalive_test (char *cmd, int tty);
5835
5836 static void threadlist_test_cmd (char *cmd, int tty);
5837
5838 int get_and_display_threadinfo (threadref *ref);
5839
5840 static void threadinfo_test_cmd (char *cmd, int tty);
5841
5842 static int thread_display_step (threadref *ref, void *context);
5843
5844 static void threadlist_update_test_cmd (char *cmd, int tty);
5845
5846 static void init_remote_threadtests (void);
5847
5848 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5849
5850 static void
5851 threadset_test_cmd (char *cmd, int tty)
5852 {
5853 int sample_thread = SAMPLE_THREAD;
5854
5855 printf_filtered (_("Remote threadset test\n"));
5856 set_thread (sample_thread, 1);
5857 }
5858
5859
5860 static void
5861 threadalive_test (char *cmd, int tty)
5862 {
5863 int sample_thread = SAMPLE_THREAD;
5864
5865 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5866 printf_filtered ("PASS: Thread alive test\n");
5867 else
5868 printf_filtered ("FAIL: Thread alive test\n");
5869 }
5870
5871 void output_threadid (char *title, threadref *ref);
5872
5873 void
5874 output_threadid (char *title, threadref *ref)
5875 {
5876 char hexid[20];
5877
5878 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5879 hexid[16] = 0;
5880 printf_filtered ("%s %s\n", title, (&hexid[0]));
5881 }
5882
5883 static void
5884 threadlist_test_cmd (char *cmd, int tty)
5885 {
5886 int startflag = 1;
5887 threadref nextthread;
5888 int done, result_count;
5889 threadref threadlist[3];
5890
5891 printf_filtered ("Remote Threadlist test\n");
5892 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5893 &result_count, &threadlist[0]))
5894 printf_filtered ("FAIL: threadlist test\n");
5895 else
5896 {
5897 threadref *scan = threadlist;
5898 threadref *limit = scan + result_count;
5899
5900 while (scan < limit)
5901 output_threadid (" thread ", scan++);
5902 }
5903 }
5904
5905 void
5906 display_thread_info (struct gdb_ext_thread_info *info)
5907 {
5908 output_threadid ("Threadid: ", &info->threadid);
5909 printf_filtered ("Name: %s\n ", info->shortname);
5910 printf_filtered ("State: %s\n", info->display);
5911 printf_filtered ("other: %s\n\n", info->more_display);
5912 }
5913
5914 int
5915 get_and_display_threadinfo (threadref *ref)
5916 {
5917 int result;
5918 int set;
5919 struct gdb_ext_thread_info threadinfo;
5920
5921 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5922 | TAG_MOREDISPLAY | TAG_DISPLAY;
5923 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5924 display_thread_info (&threadinfo);
5925 return result;
5926 }
5927
5928 static void
5929 threadinfo_test_cmd (char *cmd, int tty)
5930 {
5931 int athread = SAMPLE_THREAD;
5932 threadref thread;
5933 int set;
5934
5935 int_to_threadref (&thread, athread);
5936 printf_filtered ("Remote Threadinfo test\n");
5937 if (!get_and_display_threadinfo (&thread))
5938 printf_filtered ("FAIL cannot get thread info\n");
5939 }
5940
5941 static int
5942 thread_display_step (threadref *ref, void *context)
5943 {
5944 /* output_threadid(" threadstep ",ref); *//* simple test */
5945 return get_and_display_threadinfo (ref);
5946 }
5947
5948 static void
5949 threadlist_update_test_cmd (char *cmd, int tty)
5950 {
5951 printf_filtered ("Remote Threadlist update test\n");
5952 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5953 }
5954
5955 static void
5956 init_remote_threadtests (void)
5957 {
5958 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5959 Fetch and print the remote list of thread identifiers, one pkt only"));
5960 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5961 _("Fetch and display info about one thread"));
5962 add_com ("tset", class_obscure, threadset_test_cmd,
5963 _("Test setting to a different thread"));
5964 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5965 _("Iterate through updating all remote thread info"));
5966 add_com ("talive", class_obscure, threadalive_test,
5967 _(" Remote thread alive test "));
5968 }
5969
5970 #endif /* 0 */
5971
5972 /* Convert a thread ID to a string. Returns the string in a static
5973 buffer. */
5974
5975 static char *
5976 remote_pid_to_str (ptid_t ptid)
5977 {
5978 static char buf[32];
5979
5980 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
5981 return buf;
5982 }
5983
5984 /* Get the address of the thread local variable in OBJFILE which is
5985 stored at OFFSET within the thread local storage for thread PTID. */
5986
5987 static CORE_ADDR
5988 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5989 {
5990 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5991 {
5992 struct remote_state *rs = get_remote_state ();
5993 char *p = rs->buf;
5994 enum packet_result result;
5995
5996 strcpy (p, "qGetTLSAddr:");
5997 p += strlen (p);
5998 p += hexnumstr (p, PIDGET (ptid));
5999 *p++ = ',';
6000 p += hexnumstr (p, offset);
6001 *p++ = ',';
6002 p += hexnumstr (p, lm);
6003 *p++ = '\0';
6004
6005 putpkt (rs->buf);
6006 getpkt (&rs->buf, &rs->buf_size, 0);
6007 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6008 if (result == PACKET_OK)
6009 {
6010 ULONGEST result;
6011
6012 unpack_varlen_hex (rs->buf, &result);
6013 return result;
6014 }
6015 else if (result == PACKET_UNKNOWN)
6016 throw_error (TLS_GENERIC_ERROR,
6017 _("Remote target doesn't support qGetTLSAddr packet"));
6018 else
6019 throw_error (TLS_GENERIC_ERROR,
6020 _("Remote target failed to process qGetTLSAddr request"));
6021 }
6022 else
6023 throw_error (TLS_GENERIC_ERROR,
6024 _("TLS not supported or disabled on this target"));
6025 /* Not reached. */
6026 return 0;
6027 }
6028
6029 /* Support for inferring a target description based on the current
6030 architecture and the size of a 'g' packet. While the 'g' packet
6031 can have any size (since optional registers can be left off the
6032 end), some sizes are easily recognizable given knowledge of the
6033 approximate architecture. */
6034
6035 struct remote_g_packet_guess
6036 {
6037 int bytes;
6038 const struct target_desc *tdesc;
6039 };
6040 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6041 DEF_VEC_O(remote_g_packet_guess_s);
6042
6043 struct remote_g_packet_data
6044 {
6045 VEC(remote_g_packet_guess_s) *guesses;
6046 };
6047
6048 static struct gdbarch_data *remote_g_packet_data_handle;
6049
6050 static void *
6051 remote_g_packet_data_init (struct obstack *obstack)
6052 {
6053 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6054 }
6055
6056 void
6057 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6058 const struct target_desc *tdesc)
6059 {
6060 struct remote_g_packet_data *data
6061 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6062 struct remote_g_packet_guess new_guess, *guess;
6063 int ix;
6064
6065 gdb_assert (tdesc != NULL);
6066
6067 for (ix = 0;
6068 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6069 ix++)
6070 if (guess->bytes == bytes)
6071 internal_error (__FILE__, __LINE__,
6072 "Duplicate g packet description added for size %d",
6073 bytes);
6074
6075 new_guess.bytes = bytes;
6076 new_guess.tdesc = tdesc;
6077 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6078 }
6079
6080 static const struct target_desc *
6081 remote_read_description (struct target_ops *target)
6082 {
6083 struct remote_g_packet_data *data
6084 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6085
6086 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6087 {
6088 struct remote_g_packet_guess *guess;
6089 int ix;
6090 int bytes = send_g_packet ();
6091
6092 for (ix = 0;
6093 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6094 ix++)
6095 if (guess->bytes == bytes)
6096 return guess->tdesc;
6097
6098 /* We discard the g packet. A minor optimization would be to
6099 hold on to it, and fill the register cache once we have selected
6100 an architecture, but it's too tricky to do safely. */
6101 }
6102
6103 return NULL;
6104 }
6105
6106 static void
6107 init_remote_ops (void)
6108 {
6109 remote_ops.to_shortname = "remote";
6110 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6111 remote_ops.to_doc =
6112 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6113 Specify the serial device it is connected to\n\
6114 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6115 remote_ops.to_open = remote_open;
6116 remote_ops.to_close = remote_close;
6117 remote_ops.to_detach = remote_detach;
6118 remote_ops.to_disconnect = remote_disconnect;
6119 remote_ops.to_resume = remote_resume;
6120 remote_ops.to_wait = remote_wait;
6121 remote_ops.to_fetch_registers = remote_fetch_registers;
6122 remote_ops.to_store_registers = remote_store_registers;
6123 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6124 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6125 remote_ops.to_files_info = remote_files_info;
6126 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6127 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6128 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6129 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6130 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6131 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6132 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6133 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6134 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6135 remote_ops.to_kill = remote_kill;
6136 remote_ops.to_load = generic_load;
6137 remote_ops.to_mourn_inferior = remote_mourn;
6138 remote_ops.to_thread_alive = remote_thread_alive;
6139 remote_ops.to_find_new_threads = remote_threads_info;
6140 remote_ops.to_pid_to_str = remote_pid_to_str;
6141 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6142 remote_ops.to_stop = remote_stop;
6143 remote_ops.to_xfer_partial = remote_xfer_partial;
6144 remote_ops.to_rcmd = remote_rcmd;
6145 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6146 remote_ops.to_stratum = process_stratum;
6147 remote_ops.to_has_all_memory = 1;
6148 remote_ops.to_has_memory = 1;
6149 remote_ops.to_has_stack = 1;
6150 remote_ops.to_has_registers = 1;
6151 remote_ops.to_has_execution = 1;
6152 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6153 remote_ops.to_magic = OPS_MAGIC;
6154 remote_ops.to_memory_map = remote_memory_map;
6155 remote_ops.to_flash_erase = remote_flash_erase;
6156 remote_ops.to_flash_done = remote_flash_done;
6157 remote_ops.to_read_description = remote_read_description;
6158 }
6159
6160 /* Set up the extended remote vector by making a copy of the standard
6161 remote vector and adding to it. */
6162
6163 static void
6164 init_extended_remote_ops (void)
6165 {
6166 extended_remote_ops = remote_ops;
6167
6168 extended_remote_ops.to_shortname = "extended-remote";
6169 extended_remote_ops.to_longname =
6170 "Extended remote serial target in gdb-specific protocol";
6171 extended_remote_ops.to_doc =
6172 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6173 Specify the serial device it is connected to (e.g. /dev/ttya).",
6174 extended_remote_ops.to_open = extended_remote_open;
6175 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6176 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6177 }
6178
6179 static int
6180 remote_can_async_p (void)
6181 {
6182 /* We're async whenever the serial device is. */
6183 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6184 }
6185
6186 static int
6187 remote_is_async_p (void)
6188 {
6189 /* We're async whenever the serial device is. */
6190 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6191 }
6192
6193 /* Pass the SERIAL event on and up to the client. One day this code
6194 will be able to delay notifying the client of an event until the
6195 point where an entire packet has been received. */
6196
6197 static void (*async_client_callback) (enum inferior_event_type event_type,
6198 void *context);
6199 static void *async_client_context;
6200 static serial_event_ftype remote_async_serial_handler;
6201
6202 static void
6203 remote_async_serial_handler (struct serial *scb, void *context)
6204 {
6205 /* Don't propogate error information up to the client. Instead let
6206 the client find out about the error by querying the target. */
6207 async_client_callback (INF_REG_EVENT, async_client_context);
6208 }
6209
6210 static void
6211 remote_async (void (*callback) (enum inferior_event_type event_type,
6212 void *context), void *context)
6213 {
6214 if (current_target.to_async_mask_value == 0)
6215 internal_error (__FILE__, __LINE__,
6216 _("Calling remote_async when async is masked"));
6217
6218 if (callback != NULL)
6219 {
6220 serial_async (remote_desc, remote_async_serial_handler, NULL);
6221 async_client_callback = callback;
6222 async_client_context = context;
6223 }
6224 else
6225 serial_async (remote_desc, NULL, NULL);
6226 }
6227
6228 /* Target async and target extended-async.
6229
6230 This are temporary targets, until it is all tested. Eventually
6231 async support will be incorporated int the usual 'remote'
6232 target. */
6233
6234 static void
6235 init_remote_async_ops (void)
6236 {
6237 remote_async_ops.to_shortname = "async";
6238 remote_async_ops.to_longname =
6239 "Remote serial target in async version of the gdb-specific protocol";
6240 remote_async_ops.to_doc =
6241 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6242 Specify the serial device it is connected to (e.g. /dev/ttya).";
6243 remote_async_ops.to_open = remote_async_open;
6244 remote_async_ops.to_close = remote_close;
6245 remote_async_ops.to_detach = remote_detach;
6246 remote_async_ops.to_disconnect = remote_disconnect;
6247 remote_async_ops.to_resume = remote_async_resume;
6248 remote_async_ops.to_wait = remote_async_wait;
6249 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6250 remote_async_ops.to_store_registers = remote_store_registers;
6251 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6252 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6253 remote_async_ops.to_files_info = remote_files_info;
6254 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6255 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6256 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6257 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6258 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6259 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6260 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6261 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6262 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6263 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6264 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6265 remote_async_ops.to_kill = remote_async_kill;
6266 remote_async_ops.to_load = generic_load;
6267 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6268 remote_async_ops.to_thread_alive = remote_thread_alive;
6269 remote_async_ops.to_find_new_threads = remote_threads_info;
6270 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6271 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6272 remote_async_ops.to_stop = remote_stop;
6273 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6274 remote_async_ops.to_rcmd = remote_rcmd;
6275 remote_async_ops.to_stratum = process_stratum;
6276 remote_async_ops.to_has_all_memory = 1;
6277 remote_async_ops.to_has_memory = 1;
6278 remote_async_ops.to_has_stack = 1;
6279 remote_async_ops.to_has_registers = 1;
6280 remote_async_ops.to_has_execution = 1;
6281 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6282 remote_async_ops.to_can_async_p = remote_can_async_p;
6283 remote_async_ops.to_is_async_p = remote_is_async_p;
6284 remote_async_ops.to_async = remote_async;
6285 remote_async_ops.to_async_mask_value = 1;
6286 remote_async_ops.to_magic = OPS_MAGIC;
6287 remote_async_ops.to_memory_map = remote_memory_map;
6288 remote_async_ops.to_flash_erase = remote_flash_erase;
6289 remote_async_ops.to_flash_done = remote_flash_done;
6290 remote_ops.to_read_description = remote_read_description;
6291 }
6292
6293 /* Set up the async extended remote vector by making a copy of the standard
6294 remote vector and adding to it. */
6295
6296 static void
6297 init_extended_async_remote_ops (void)
6298 {
6299 extended_async_remote_ops = remote_async_ops;
6300
6301 extended_async_remote_ops.to_shortname = "extended-async";
6302 extended_async_remote_ops.to_longname =
6303 "Extended remote serial target in async gdb-specific protocol";
6304 extended_async_remote_ops.to_doc =
6305 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6306 Specify the serial device it is connected to (e.g. /dev/ttya).",
6307 extended_async_remote_ops.to_open = extended_remote_async_open;
6308 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6309 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6310 }
6311
6312 static void
6313 set_remote_cmd (char *args, int from_tty)
6314 {
6315 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6316 }
6317
6318 static void
6319 show_remote_cmd (char *args, int from_tty)
6320 {
6321 /* We can't just use cmd_show_list here, because we want to skip
6322 the redundant "show remote Z-packet" and the legacy aliases. */
6323 struct cleanup *showlist_chain;
6324 struct cmd_list_element *list = remote_show_cmdlist;
6325
6326 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6327 for (; list != NULL; list = list->next)
6328 if (strcmp (list->name, "Z-packet") == 0)
6329 continue;
6330 else if (list->type == not_set_cmd)
6331 /* Alias commands are exactly like the original, except they
6332 don't have the normal type. */
6333 continue;
6334 else
6335 {
6336 struct cleanup *option_chain
6337 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6338 ui_out_field_string (uiout, "name", list->name);
6339 ui_out_text (uiout, ": ");
6340 if (list->type == show_cmd)
6341 do_setshow_command ((char *) NULL, from_tty, list);
6342 else
6343 cmd_func (list, NULL, from_tty);
6344 /* Close the tuple. */
6345 do_cleanups (option_chain);
6346 }
6347
6348 /* Close the tuple. */
6349 do_cleanups (showlist_chain);
6350 }
6351
6352 static void
6353 build_remote_gdbarch_data (void)
6354 {
6355 remote_address_size = TARGET_ADDR_BIT;
6356 }
6357
6358 /* Function to be called whenever a new objfile (shlib) is detected. */
6359 static void
6360 remote_new_objfile (struct objfile *objfile)
6361 {
6362 if (remote_desc != 0) /* Have a remote connection. */
6363 remote_check_symbols (objfile);
6364 }
6365
6366 void
6367 _initialize_remote (void)
6368 {
6369 struct remote_state *rs;
6370
6371 /* architecture specific data */
6372 remote_gdbarch_data_handle =
6373 gdbarch_data_register_post_init (init_remote_state);
6374 remote_g_packet_data_handle =
6375 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6376
6377 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6378 that the remote protocol has been initialized. */
6379 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6380 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6381
6382 /* Initialize the per-target state. At the moment there is only one
6383 of these, not one per target. Only one target is active at a
6384 time. The default buffer size is unimportant; it will be expanded
6385 whenever a larger buffer is needed. */
6386 rs = get_remote_state_raw ();
6387 rs->buf_size = 400;
6388 rs->buf = xmalloc (rs->buf_size);
6389
6390 init_remote_ops ();
6391 add_target (&remote_ops);
6392
6393 init_extended_remote_ops ();
6394 add_target (&extended_remote_ops);
6395
6396 init_remote_async_ops ();
6397 add_target (&remote_async_ops);
6398
6399 init_extended_async_remote_ops ();
6400 add_target (&extended_async_remote_ops);
6401
6402 /* Hook into new objfile notification. */
6403 observer_attach_new_objfile (remote_new_objfile);
6404
6405 #if 0
6406 init_remote_threadtests ();
6407 #endif
6408
6409 /* set/show remote ... */
6410
6411 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6412 Remote protocol specific variables\n\
6413 Configure various remote-protocol specific variables such as\n\
6414 the packets being used"),
6415 &remote_set_cmdlist, "set remote ",
6416 0 /* allow-unknown */, &setlist);
6417 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6418 Remote protocol specific variables\n\
6419 Configure various remote-protocol specific variables such as\n\
6420 the packets being used"),
6421 &remote_show_cmdlist, "show remote ",
6422 0 /* allow-unknown */, &showlist);
6423
6424 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6425 Compare section data on target to the exec file.\n\
6426 Argument is a single section name (default: all loaded sections)."),
6427 &cmdlist);
6428
6429 add_cmd ("packet", class_maintenance, packet_command, _("\
6430 Send an arbitrary packet to a remote target.\n\
6431 maintenance packet TEXT\n\
6432 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6433 this command sends the string TEXT to the inferior, and displays the\n\
6434 response packet. GDB supplies the initial `$' character, and the\n\
6435 terminating `#' character and checksum."),
6436 &maintenancelist);
6437
6438 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6439 Set whether to send break if interrupted."), _("\
6440 Show whether to send break if interrupted."), _("\
6441 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6442 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6443 &setlist, &showlist);
6444
6445 /* Install commands for configuring memory read/write packets. */
6446
6447 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6448 Set the maximum number of bytes per memory write packet (deprecated)."),
6449 &setlist);
6450 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6451 Show the maximum number of bytes per memory write packet (deprecated)."),
6452 &showlist);
6453 add_cmd ("memory-write-packet-size", no_class,
6454 set_memory_write_packet_size, _("\
6455 Set the maximum number of bytes per memory-write packet.\n\
6456 Specify the number of bytes in a packet or 0 (zero) for the\n\
6457 default packet size. The actual limit is further reduced\n\
6458 dependent on the target. Specify ``fixed'' to disable the\n\
6459 further restriction and ``limit'' to enable that restriction."),
6460 &remote_set_cmdlist);
6461 add_cmd ("memory-read-packet-size", no_class,
6462 set_memory_read_packet_size, _("\
6463 Set the maximum number of bytes per memory-read packet.\n\
6464 Specify the number of bytes in a packet or 0 (zero) for the\n\
6465 default packet size. The actual limit is further reduced\n\
6466 dependent on the target. Specify ``fixed'' to disable the\n\
6467 further restriction and ``limit'' to enable that restriction."),
6468 &remote_set_cmdlist);
6469 add_cmd ("memory-write-packet-size", no_class,
6470 show_memory_write_packet_size,
6471 _("Show the maximum number of bytes per memory-write packet."),
6472 &remote_show_cmdlist);
6473 add_cmd ("memory-read-packet-size", no_class,
6474 show_memory_read_packet_size,
6475 _("Show the maximum number of bytes per memory-read packet."),
6476 &remote_show_cmdlist);
6477
6478 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6479 &remote_hw_watchpoint_limit, _("\
6480 Set the maximum number of target hardware watchpoints."), _("\
6481 Show the maximum number of target hardware watchpoints."), _("\
6482 Specify a negative limit for unlimited."),
6483 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6484 &remote_set_cmdlist, &remote_show_cmdlist);
6485 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6486 &remote_hw_breakpoint_limit, _("\
6487 Set the maximum number of target hardware breakpoints."), _("\
6488 Show the maximum number of target hardware breakpoints."), _("\
6489 Specify a negative limit for unlimited."),
6490 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6491 &remote_set_cmdlist, &remote_show_cmdlist);
6492
6493 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6494 &remote_address_size, _("\
6495 Set the maximum size of the address (in bits) in a memory packet."), _("\
6496 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6497 NULL,
6498 NULL, /* FIXME: i18n: */
6499 &setlist, &showlist);
6500
6501 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6502 "X", "binary-download", 1);
6503
6504 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6505 "vCont", "verbose-resume", 0);
6506
6507 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6508 "QPassSignals", "pass-signals", 0);
6509
6510 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6511 "qSymbol", "symbol-lookup", 0);
6512
6513 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6514 "P", "set-register", 1);
6515
6516 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6517 "p", "fetch-register", 1);
6518
6519 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6520 "Z0", "software-breakpoint", 0);
6521
6522 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6523 "Z1", "hardware-breakpoint", 0);
6524
6525 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6526 "Z2", "write-watchpoint", 0);
6527
6528 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6529 "Z3", "read-watchpoint", 0);
6530
6531 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6532 "Z4", "access-watchpoint", 0);
6533
6534 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6535 "qXfer:auxv:read", "read-aux-vector", 0);
6536
6537 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6538 "qXfer:features:read", "target-features", 0);
6539
6540 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6541 "qXfer:memory-map:read", "memory-map", 0);
6542
6543 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6544 "qGetTLSAddr", "get-thread-local-storage-address",
6545 0);
6546
6547 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6548 "qSupported", "supported-packets", 0);
6549
6550 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6551 Z sub-packet has its own set and show commands, but users may
6552 have sets to this variable in their .gdbinit files (or in their
6553 documentation). */
6554 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6555 &remote_Z_packet_detect, _("\
6556 Set use of remote protocol `Z' packets"), _("\
6557 Show use of remote protocol `Z' packets "), _("\
6558 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6559 packets."),
6560 set_remote_protocol_Z_packet_cmd,
6561 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6562 &remote_set_cmdlist, &remote_show_cmdlist);
6563
6564 /* Eventually initialize fileio. See fileio.c */
6565 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6566 }
This page took 0.310798 seconds and 4 git commands to generate.