*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_open (char *name, int from_tty);
96
97 static void extended_remote_open (char *name, int from_tty);
98
99 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (struct regcache *regcache, int regno);
104
105 static void remote_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void remote_mourn_1 (struct target_ops *);
112
113 static void remote_send (char **buf, long *sizeof_buf_p);
114
115 static int readchar (int timeout);
116
117 static ptid_t remote_wait (ptid_t ptid,
118 struct target_waitstatus *status);
119
120 static void remote_kill (void);
121
122 static int tohex (int nib);
123
124 static int remote_can_async_p (void);
125
126 static int remote_is_async_p (void);
127
128 static void remote_async (void (*callback) (enum inferior_event_type event_type,
129 void *context), void *context);
130
131 static int remote_async_mask (int new_mask);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* Controls if async mode is permitted. */
212 static int remote_async_permitted = 0;
213
214 static int remote_async_permitted_set = 0;
215
216 static void
217 set_maintenance_remote_async_permitted (char *args, int from_tty,
218 struct cmd_list_element *c)
219 {
220 if (target_has_execution)
221 {
222 remote_async_permitted_set = remote_async_permitted; /* revert */
223 error (_("Cannot change this setting while the inferior is running."));
224 }
225
226 remote_async_permitted = remote_async_permitted_set;
227 }
228
229 static void
230 show_maintenance_remote_async_permitted (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("\
234 Controlling the remote inferior in asynchronous mode is %s.\n"),
235 value);
236 }
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Description of the remote protocol state for the currently
248 connected target. This is per-target state, and independent of the
249 selected architecture. */
250
251 struct remote_state
252 {
253 /* A buffer to use for incoming packets, and its current size. The
254 buffer is grown dynamically for larger incoming packets.
255 Outgoing packets may also be constructed in this buffer.
256 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
257 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
258 packets. */
259 char *buf;
260 long buf_size;
261
262 /* If we negotiated packet size explicitly (and thus can bypass
263 heuristics for the largest packet size that will not overflow
264 a buffer in the stub), this will be set to that packet size.
265 Otherwise zero, meaning to use the guessed size. */
266 long explicit_packet_size;
267
268 /* remote_wait is normally called when the target is running and
269 waits for a stop reply packet. But sometimes we need to call it
270 when the target is already stopped. We can send a "?" packet
271 and have remote_wait read the response. Or, if we already have
272 the response, we can stash it in BUF and tell remote_wait to
273 skip calling getpkt. This flag is set when BUF contains a
274 stop reply packet and the target is not waiting. */
275 int cached_wait_status;
276 };
277
278 /* This data could be associated with a target, but we do not always
279 have access to the current target when we need it, so for now it is
280 static. This will be fine for as long as only one target is in use
281 at a time. */
282 static struct remote_state remote_state;
283
284 static struct remote_state *
285 get_remote_state_raw (void)
286 {
287 return &remote_state;
288 }
289
290 /* Description of the remote protocol for a given architecture. */
291
292 struct packet_reg
293 {
294 long offset; /* Offset into G packet. */
295 long regnum; /* GDB's internal register number. */
296 LONGEST pnum; /* Remote protocol register number. */
297 int in_g_packet; /* Always part of G packet. */
298 /* long size in bytes; == register_size (current_gdbarch, regnum);
299 at present. */
300 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
301 at present. */
302 };
303
304 struct remote_arch_state
305 {
306 /* Description of the remote protocol registers. */
307 long sizeof_g_packet;
308
309 /* Description of the remote protocol registers indexed by REGNUM
310 (making an array gdbarch_num_regs in size). */
311 struct packet_reg *regs;
312
313 /* This is the size (in chars) of the first response to the ``g''
314 packet. It is used as a heuristic when determining the maximum
315 size of memory-read and memory-write packets. A target will
316 typically only reserve a buffer large enough to hold the ``g''
317 packet. The size does not include packet overhead (headers and
318 trailers). */
319 long actual_register_packet_size;
320
321 /* This is the maximum size (in chars) of a non read/write packet.
322 It is also used as a cap on the size of read/write packets. */
323 long remote_packet_size;
324 };
325
326
327 /* Handle for retreving the remote protocol data from gdbarch. */
328 static struct gdbarch_data *remote_gdbarch_data_handle;
329
330 static struct remote_arch_state *
331 get_remote_arch_state (void)
332 {
333 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
334 }
335
336 /* Fetch the global remote target state. */
337
338 static struct remote_state *
339 get_remote_state (void)
340 {
341 /* Make sure that the remote architecture state has been
342 initialized, because doing so might reallocate rs->buf. Any
343 function which calls getpkt also needs to be mindful of changes
344 to rs->buf, but this call limits the number of places which run
345 into trouble. */
346 get_remote_arch_state ();
347
348 return get_remote_state_raw ();
349 }
350
351 static int
352 compare_pnums (const void *lhs_, const void *rhs_)
353 {
354 const struct packet_reg * const *lhs = lhs_;
355 const struct packet_reg * const *rhs = rhs_;
356
357 if ((*lhs)->pnum < (*rhs)->pnum)
358 return -1;
359 else if ((*lhs)->pnum == (*rhs)->pnum)
360 return 0;
361 else
362 return 1;
363 }
364
365 static void *
366 init_remote_state (struct gdbarch *gdbarch)
367 {
368 int regnum, num_remote_regs, offset;
369 struct remote_state *rs = get_remote_state_raw ();
370 struct remote_arch_state *rsa;
371 struct packet_reg **remote_regs;
372
373 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
374
375 /* Use the architecture to build a regnum<->pnum table, which will be
376 1:1 unless a feature set specifies otherwise. */
377 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
378 gdbarch_num_regs (gdbarch),
379 struct packet_reg);
380 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
381 {
382 struct packet_reg *r = &rsa->regs[regnum];
383
384 if (register_size (gdbarch, regnum) == 0)
385 /* Do not try to fetch zero-sized (placeholder) registers. */
386 r->pnum = -1;
387 else
388 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
389
390 r->regnum = regnum;
391 }
392
393 /* Define the g/G packet format as the contents of each register
394 with a remote protocol number, in order of ascending protocol
395 number. */
396
397 remote_regs = alloca (gdbarch_num_regs (gdbarch)
398 * sizeof (struct packet_reg *));
399 for (num_remote_regs = 0, regnum = 0;
400 regnum < gdbarch_num_regs (gdbarch);
401 regnum++)
402 if (rsa->regs[regnum].pnum != -1)
403 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
404
405 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
406 compare_pnums);
407
408 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
409 {
410 remote_regs[regnum]->in_g_packet = 1;
411 remote_regs[regnum]->offset = offset;
412 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
413 }
414
415 /* Record the maximum possible size of the g packet - it may turn out
416 to be smaller. */
417 rsa->sizeof_g_packet = offset;
418
419 /* Default maximum number of characters in a packet body. Many
420 remote stubs have a hardwired buffer size of 400 bytes
421 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
422 as the maximum packet-size to ensure that the packet and an extra
423 NUL character can always fit in the buffer. This stops GDB
424 trashing stubs that try to squeeze an extra NUL into what is
425 already a full buffer (As of 1999-12-04 that was most stubs). */
426 rsa->remote_packet_size = 400 - 1;
427
428 /* This one is filled in when a ``g'' packet is received. */
429 rsa->actual_register_packet_size = 0;
430
431 /* Should rsa->sizeof_g_packet needs more space than the
432 default, adjust the size accordingly. Remember that each byte is
433 encoded as two characters. 32 is the overhead for the packet
434 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
435 (``$NN:G...#NN'') is a better guess, the below has been padded a
436 little. */
437 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
438 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
439
440 /* Make sure that the packet buffer is plenty big enough for
441 this architecture. */
442 if (rs->buf_size < rsa->remote_packet_size)
443 {
444 rs->buf_size = 2 * rsa->remote_packet_size;
445 rs->buf = xrealloc (rs->buf, rs->buf_size);
446 }
447
448 return rsa;
449 }
450
451 /* Return the current allowed size of a remote packet. This is
452 inferred from the current architecture, and should be used to
453 limit the length of outgoing packets. */
454 static long
455 get_remote_packet_size (void)
456 {
457 struct remote_state *rs = get_remote_state ();
458 struct remote_arch_state *rsa = get_remote_arch_state ();
459
460 if (rs->explicit_packet_size)
461 return rs->explicit_packet_size;
462
463 return rsa->remote_packet_size;
464 }
465
466 static struct packet_reg *
467 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
468 {
469 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
470 return NULL;
471 else
472 {
473 struct packet_reg *r = &rsa->regs[regnum];
474 gdb_assert (r->regnum == regnum);
475 return r;
476 }
477 }
478
479 static struct packet_reg *
480 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
481 {
482 int i;
483 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
484 {
485 struct packet_reg *r = &rsa->regs[i];
486 if (r->pnum == pnum)
487 return r;
488 }
489 return NULL;
490 }
491
492 /* FIXME: graces/2002-08-08: These variables should eventually be
493 bound to an instance of the target object (as in gdbarch-tdep()),
494 when such a thing exists. */
495
496 /* This is set to the data address of the access causing the target
497 to stop for a watchpoint. */
498 static CORE_ADDR remote_watch_data_address;
499
500 /* This is non-zero if target stopped for a watchpoint. */
501 static int remote_stopped_by_watchpoint_p;
502
503 static struct target_ops remote_ops;
504
505 static struct target_ops extended_remote_ops;
506
507 static int remote_async_mask_value = 1;
508
509 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
510 ``forever'' still use the normal timeout mechanism. This is
511 currently used by the ASYNC code to guarentee that target reads
512 during the initial connect always time-out. Once getpkt has been
513 modified to return a timeout indication and, in turn
514 remote_wait()/wait_for_inferior() have gained a timeout parameter
515 this can go away. */
516 static int wait_forever_enabled_p = 1;
517
518
519 /* This variable chooses whether to send a ^C or a break when the user
520 requests program interruption. Although ^C is usually what remote
521 systems expect, and that is the default here, sometimes a break is
522 preferable instead. */
523
524 static int remote_break;
525
526 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
527 remote_open knows that we don't have a file open when the program
528 starts. */
529 static struct serial *remote_desc = NULL;
530
531 /* This variable sets the number of bits in an address that are to be
532 sent in a memory ("M" or "m") packet. Normally, after stripping
533 leading zeros, the entire address would be sent. This variable
534 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
535 initial implementation of remote.c restricted the address sent in
536 memory packets to ``host::sizeof long'' bytes - (typically 32
537 bits). Consequently, for 64 bit targets, the upper 32 bits of an
538 address was never sent. Since fixing this bug may cause a break in
539 some remote targets this variable is principly provided to
540 facilitate backward compatibility. */
541
542 static int remote_address_size;
543
544 /* Temporary to track who currently owns the terminal. See
545 remote_terminal_* for more details. */
546
547 static int remote_async_terminal_ours_p;
548
549 /* The executable file to use for "run" on the remote side. */
550
551 static char *remote_exec_file = "";
552
553 \f
554 /* User configurable variables for the number of characters in a
555 memory read/write packet. MIN (rsa->remote_packet_size,
556 rsa->sizeof_g_packet) is the default. Some targets need smaller
557 values (fifo overruns, et.al.) and some users need larger values
558 (speed up transfers). The variables ``preferred_*'' (the user
559 request), ``current_*'' (what was actually set) and ``forced_*''
560 (Positive - a soft limit, negative - a hard limit). */
561
562 struct memory_packet_config
563 {
564 char *name;
565 long size;
566 int fixed_p;
567 };
568
569 /* Compute the current size of a read/write packet. Since this makes
570 use of ``actual_register_packet_size'' the computation is dynamic. */
571
572 static long
573 get_memory_packet_size (struct memory_packet_config *config)
574 {
575 struct remote_state *rs = get_remote_state ();
576 struct remote_arch_state *rsa = get_remote_arch_state ();
577
578 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
579 law?) that some hosts don't cope very well with large alloca()
580 calls. Eventually the alloca() code will be replaced by calls to
581 xmalloc() and make_cleanups() allowing this restriction to either
582 be lifted or removed. */
583 #ifndef MAX_REMOTE_PACKET_SIZE
584 #define MAX_REMOTE_PACKET_SIZE 16384
585 #endif
586 /* NOTE: 20 ensures we can write at least one byte. */
587 #ifndef MIN_REMOTE_PACKET_SIZE
588 #define MIN_REMOTE_PACKET_SIZE 20
589 #endif
590 long what_they_get;
591 if (config->fixed_p)
592 {
593 if (config->size <= 0)
594 what_they_get = MAX_REMOTE_PACKET_SIZE;
595 else
596 what_they_get = config->size;
597 }
598 else
599 {
600 what_they_get = get_remote_packet_size ();
601 /* Limit the packet to the size specified by the user. */
602 if (config->size > 0
603 && what_they_get > config->size)
604 what_they_get = config->size;
605
606 /* Limit it to the size of the targets ``g'' response unless we have
607 permission from the stub to use a larger packet size. */
608 if (rs->explicit_packet_size == 0
609 && rsa->actual_register_packet_size > 0
610 && what_they_get > rsa->actual_register_packet_size)
611 what_they_get = rsa->actual_register_packet_size;
612 }
613 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
614 what_they_get = MAX_REMOTE_PACKET_SIZE;
615 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
616 what_they_get = MIN_REMOTE_PACKET_SIZE;
617
618 /* Make sure there is room in the global buffer for this packet
619 (including its trailing NUL byte). */
620 if (rs->buf_size < what_they_get + 1)
621 {
622 rs->buf_size = 2 * what_they_get;
623 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
624 }
625
626 return what_they_get;
627 }
628
629 /* Update the size of a read/write packet. If they user wants
630 something really big then do a sanity check. */
631
632 static void
633 set_memory_packet_size (char *args, struct memory_packet_config *config)
634 {
635 int fixed_p = config->fixed_p;
636 long size = config->size;
637 if (args == NULL)
638 error (_("Argument required (integer, `fixed' or `limited')."));
639 else if (strcmp (args, "hard") == 0
640 || strcmp (args, "fixed") == 0)
641 fixed_p = 1;
642 else if (strcmp (args, "soft") == 0
643 || strcmp (args, "limit") == 0)
644 fixed_p = 0;
645 else
646 {
647 char *end;
648 size = strtoul (args, &end, 0);
649 if (args == end)
650 error (_("Invalid %s (bad syntax)."), config->name);
651 #if 0
652 /* Instead of explicitly capping the size of a packet to
653 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
654 instead allowed to set the size to something arbitrarily
655 large. */
656 if (size > MAX_REMOTE_PACKET_SIZE)
657 error (_("Invalid %s (too large)."), config->name);
658 #endif
659 }
660 /* Extra checks? */
661 if (fixed_p && !config->fixed_p)
662 {
663 if (! query (_("The target may not be able to correctly handle a %s\n"
664 "of %ld bytes. Change the packet size? "),
665 config->name, size))
666 error (_("Packet size not changed."));
667 }
668 /* Update the config. */
669 config->fixed_p = fixed_p;
670 config->size = size;
671 }
672
673 static void
674 show_memory_packet_size (struct memory_packet_config *config)
675 {
676 printf_filtered (_("The %s is %ld. "), config->name, config->size);
677 if (config->fixed_p)
678 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
679 get_memory_packet_size (config));
680 else
681 printf_filtered (_("Packets are limited to %ld bytes.\n"),
682 get_memory_packet_size (config));
683 }
684
685 static struct memory_packet_config memory_write_packet_config =
686 {
687 "memory-write-packet-size",
688 };
689
690 static void
691 set_memory_write_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_write_packet_config);
694 }
695
696 static void
697 show_memory_write_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_write_packet_config);
700 }
701
702 static long
703 get_memory_write_packet_size (void)
704 {
705 return get_memory_packet_size (&memory_write_packet_config);
706 }
707
708 static struct memory_packet_config memory_read_packet_config =
709 {
710 "memory-read-packet-size",
711 };
712
713 static void
714 set_memory_read_packet_size (char *args, int from_tty)
715 {
716 set_memory_packet_size (args, &memory_read_packet_config);
717 }
718
719 static void
720 show_memory_read_packet_size (char *args, int from_tty)
721 {
722 show_memory_packet_size (&memory_read_packet_config);
723 }
724
725 static long
726 get_memory_read_packet_size (void)
727 {
728 long size = get_memory_packet_size (&memory_read_packet_config);
729 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
730 extra buffer size argument before the memory read size can be
731 increased beyond this. */
732 if (size > get_remote_packet_size ())
733 size = get_remote_packet_size ();
734 return size;
735 }
736
737 \f
738 /* Generic configuration support for packets the stub optionally
739 supports. Allows the user to specify the use of the packet as well
740 as allowing GDB to auto-detect support in the remote stub. */
741
742 enum packet_support
743 {
744 PACKET_SUPPORT_UNKNOWN = 0,
745 PACKET_ENABLE,
746 PACKET_DISABLE
747 };
748
749 struct packet_config
750 {
751 const char *name;
752 const char *title;
753 enum auto_boolean detect;
754 enum packet_support support;
755 };
756
757 /* Analyze a packet's return value and update the packet config
758 accordingly. */
759
760 enum packet_result
761 {
762 PACKET_ERROR,
763 PACKET_OK,
764 PACKET_UNKNOWN
765 };
766
767 static void
768 update_packet_config (struct packet_config *config)
769 {
770 switch (config->detect)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 config->support = PACKET_ENABLE;
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 config->support = PACKET_DISABLE;
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 config->support = PACKET_SUPPORT_UNKNOWN;
780 break;
781 }
782 }
783
784 static void
785 show_packet_config_cmd (struct packet_config *config)
786 {
787 char *support = "internal-error";
788 switch (config->support)
789 {
790 case PACKET_ENABLE:
791 support = "enabled";
792 break;
793 case PACKET_DISABLE:
794 support = "disabled";
795 break;
796 case PACKET_SUPPORT_UNKNOWN:
797 support = "unknown";
798 break;
799 }
800 switch (config->detect)
801 {
802 case AUTO_BOOLEAN_AUTO:
803 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
804 config->name, support);
805 break;
806 case AUTO_BOOLEAN_TRUE:
807 case AUTO_BOOLEAN_FALSE:
808 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
809 config->name, support);
810 break;
811 }
812 }
813
814 static void
815 add_packet_config_cmd (struct packet_config *config, const char *name,
816 const char *title, int legacy)
817 {
818 char *set_doc;
819 char *show_doc;
820 char *cmd_name;
821
822 config->name = name;
823 config->title = title;
824 config->detect = AUTO_BOOLEAN_AUTO;
825 config->support = PACKET_SUPPORT_UNKNOWN;
826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
827 name, title);
828 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
829 name, title);
830 /* set/show TITLE-packet {auto,on,off} */
831 cmd_name = xstrprintf ("%s-packet", title);
832 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
833 &config->detect, set_doc, show_doc, NULL, /* help_doc */
834 set_remote_protocol_packet_cmd,
835 show_remote_protocol_packet_cmd,
836 &remote_set_cmdlist, &remote_show_cmdlist);
837 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
838 if (legacy)
839 {
840 char *legacy_name;
841 legacy_name = xstrprintf ("%s-packet", name);
842 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
843 &remote_set_cmdlist);
844 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
845 &remote_show_cmdlist);
846 }
847 }
848
849 static enum packet_result
850 packet_check_result (const char *buf)
851 {
852 if (buf[0] != '\0')
853 {
854 /* The stub recognized the packet request. Check that the
855 operation succeeded. */
856 if (buf[0] == 'E'
857 && isxdigit (buf[1]) && isxdigit (buf[2])
858 && buf[3] == '\0')
859 /* "Enn" - definitly an error. */
860 return PACKET_ERROR;
861
862 /* Always treat "E." as an error. This will be used for
863 more verbose error messages, such as E.memtypes. */
864 if (buf[0] == 'E' && buf[1] == '.')
865 return PACKET_ERROR;
866
867 /* The packet may or may not be OK. Just assume it is. */
868 return PACKET_OK;
869 }
870 else
871 /* The stub does not support the packet. */
872 return PACKET_UNKNOWN;
873 }
874
875 static enum packet_result
876 packet_ok (const char *buf, struct packet_config *config)
877 {
878 enum packet_result result;
879
880 result = packet_check_result (buf);
881 switch (result)
882 {
883 case PACKET_OK:
884 case PACKET_ERROR:
885 /* The stub recognized the packet request. */
886 switch (config->support)
887 {
888 case PACKET_SUPPORT_UNKNOWN:
889 if (remote_debug)
890 fprintf_unfiltered (gdb_stdlog,
891 "Packet %s (%s) is supported\n",
892 config->name, config->title);
893 config->support = PACKET_ENABLE;
894 break;
895 case PACKET_DISABLE:
896 internal_error (__FILE__, __LINE__,
897 _("packet_ok: attempt to use a disabled packet"));
898 break;
899 case PACKET_ENABLE:
900 break;
901 }
902 break;
903 case PACKET_UNKNOWN:
904 /* The stub does not support the packet. */
905 switch (config->support)
906 {
907 case PACKET_ENABLE:
908 if (config->detect == AUTO_BOOLEAN_AUTO)
909 /* If the stub previously indicated that the packet was
910 supported then there is a protocol error.. */
911 error (_("Protocol error: %s (%s) conflicting enabled responses."),
912 config->name, config->title);
913 else
914 /* The user set it wrong. */
915 error (_("Enabled packet %s (%s) not recognized by stub"),
916 config->name, config->title);
917 break;
918 case PACKET_SUPPORT_UNKNOWN:
919 if (remote_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "Packet %s (%s) is NOT supported\n",
922 config->name, config->title);
923 config->support = PACKET_DISABLE;
924 break;
925 case PACKET_DISABLE:
926 break;
927 }
928 break;
929 }
930
931 return result;
932 }
933
934 enum {
935 PACKET_vCont = 0,
936 PACKET_X,
937 PACKET_qSymbol,
938 PACKET_P,
939 PACKET_p,
940 PACKET_Z0,
941 PACKET_Z1,
942 PACKET_Z2,
943 PACKET_Z3,
944 PACKET_Z4,
945 PACKET_vFile_open,
946 PACKET_vFile_pread,
947 PACKET_vFile_pwrite,
948 PACKET_vFile_close,
949 PACKET_vFile_unlink,
950 PACKET_qXfer_auxv,
951 PACKET_qXfer_features,
952 PACKET_qXfer_libraries,
953 PACKET_qXfer_memory_map,
954 PACKET_qXfer_spu_read,
955 PACKET_qXfer_spu_write,
956 PACKET_qGetTLSAddr,
957 PACKET_qSupported,
958 PACKET_QPassSignals,
959 PACKET_qSearch_memory,
960 PACKET_vAttach,
961 PACKET_vRun,
962 PACKET_MAX
963 };
964
965 static struct packet_config remote_protocol_packets[PACKET_MAX];
966
967 static void
968 set_remote_protocol_packet_cmd (char *args, int from_tty,
969 struct cmd_list_element *c)
970 {
971 struct packet_config *packet;
972
973 for (packet = remote_protocol_packets;
974 packet < &remote_protocol_packets[PACKET_MAX];
975 packet++)
976 {
977 if (&packet->detect == c->var)
978 {
979 update_packet_config (packet);
980 return;
981 }
982 }
983 internal_error (__FILE__, __LINE__, "Could not find config for %s",
984 c->name);
985 }
986
987 static void
988 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c,
990 const char *value)
991 {
992 struct packet_config *packet;
993
994 for (packet = remote_protocol_packets;
995 packet < &remote_protocol_packets[PACKET_MAX];
996 packet++)
997 {
998 if (&packet->detect == c->var)
999 {
1000 show_packet_config_cmd (packet);
1001 return;
1002 }
1003 }
1004 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1005 c->name);
1006 }
1007
1008 /* Should we try one of the 'Z' requests? */
1009
1010 enum Z_packet_type
1011 {
1012 Z_PACKET_SOFTWARE_BP,
1013 Z_PACKET_HARDWARE_BP,
1014 Z_PACKET_WRITE_WP,
1015 Z_PACKET_READ_WP,
1016 Z_PACKET_ACCESS_WP,
1017 NR_Z_PACKET_TYPES
1018 };
1019
1020 /* For compatibility with older distributions. Provide a ``set remote
1021 Z-packet ...'' command that updates all the Z packet types. */
1022
1023 static enum auto_boolean remote_Z_packet_detect;
1024
1025 static void
1026 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1027 struct cmd_list_element *c)
1028 {
1029 int i;
1030 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1031 {
1032 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1033 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1034 }
1035 }
1036
1037 static void
1038 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1039 struct cmd_list_element *c,
1040 const char *value)
1041 {
1042 int i;
1043 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1044 {
1045 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1046 }
1047 }
1048
1049 /* Should we try the 'ThreadInfo' query packet?
1050
1051 This variable (NOT available to the user: auto-detect only!)
1052 determines whether GDB will use the new, simpler "ThreadInfo"
1053 query or the older, more complex syntax for thread queries.
1054 This is an auto-detect variable (set to true at each connect,
1055 and set to false when the target fails to recognize it). */
1056
1057 static int use_threadinfo_query;
1058 static int use_threadextra_query;
1059
1060 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1061 static struct async_signal_handler *sigint_remote_twice_token;
1062 static struct async_signal_handler *sigint_remote_token;
1063
1064 \f
1065
1066
1067 /* These are the threads which we last sent to the remote system.
1068 -1 for all or -2 for not sent yet. */
1069 static int general_thread;
1070 static int continue_thread;
1071
1072 /* Call this function as a result of
1073 1) A halt indication (T packet) containing a thread id
1074 2) A direct query of currthread
1075 3) Successful execution of set thread
1076 */
1077
1078 static void
1079 record_currthread (int currthread)
1080 {
1081 general_thread = currthread;
1082
1083 /* If this is a new thread, add it to GDB's thread list.
1084 If we leave it up to WFI to do this, bad things will happen. */
1085 if (!in_thread_list (pid_to_ptid (currthread)))
1086 add_thread (pid_to_ptid (currthread));
1087 }
1088
1089 static char *last_pass_packet;
1090
1091 /* If 'QPassSignals' is supported, tell the remote stub what signals
1092 it can simply pass through to the inferior without reporting. */
1093
1094 static void
1095 remote_pass_signals (void)
1096 {
1097 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1098 {
1099 char *pass_packet, *p;
1100 int numsigs = (int) TARGET_SIGNAL_LAST;
1101 int count = 0, i;
1102
1103 gdb_assert (numsigs < 256);
1104 for (i = 0; i < numsigs; i++)
1105 {
1106 if (signal_stop_state (i) == 0
1107 && signal_print_state (i) == 0
1108 && signal_pass_state (i) == 1)
1109 count++;
1110 }
1111 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1112 strcpy (pass_packet, "QPassSignals:");
1113 p = pass_packet + strlen (pass_packet);
1114 for (i = 0; i < numsigs; i++)
1115 {
1116 if (signal_stop_state (i) == 0
1117 && signal_print_state (i) == 0
1118 && signal_pass_state (i) == 1)
1119 {
1120 if (i >= 16)
1121 *p++ = tohex (i >> 4);
1122 *p++ = tohex (i & 15);
1123 if (count)
1124 *p++ = ';';
1125 else
1126 break;
1127 count--;
1128 }
1129 }
1130 *p = 0;
1131 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1132 {
1133 struct remote_state *rs = get_remote_state ();
1134 char *buf = rs->buf;
1135
1136 putpkt (pass_packet);
1137 getpkt (&rs->buf, &rs->buf_size, 0);
1138 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1139 if (last_pass_packet)
1140 xfree (last_pass_packet);
1141 last_pass_packet = pass_packet;
1142 }
1143 else
1144 xfree (pass_packet);
1145 }
1146 }
1147
1148 #define MAGIC_NULL_PID 42000
1149
1150 static void
1151 set_thread (int th, int gen)
1152 {
1153 struct remote_state *rs = get_remote_state ();
1154 char *buf = rs->buf;
1155 int state = gen ? general_thread : continue_thread;
1156
1157 if (state == th)
1158 return;
1159
1160 buf[0] = 'H';
1161 buf[1] = gen ? 'g' : 'c';
1162 if (th == MAGIC_NULL_PID)
1163 {
1164 buf[2] = '0';
1165 buf[3] = '\0';
1166 }
1167 else if (th < 0)
1168 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1169 else
1170 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1171 putpkt (buf);
1172 getpkt (&rs->buf, &rs->buf_size, 0);
1173 if (gen)
1174 general_thread = th;
1175 else
1176 continue_thread = th;
1177 }
1178 \f
1179 /* Return nonzero if the thread TH is still alive on the remote system. */
1180
1181 static int
1182 remote_thread_alive (ptid_t ptid)
1183 {
1184 struct remote_state *rs = get_remote_state ();
1185 int tid = PIDGET (ptid);
1186
1187 if (tid < 0)
1188 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1189 else
1190 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1191 putpkt (rs->buf);
1192 getpkt (&rs->buf, &rs->buf_size, 0);
1193 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1194 }
1195
1196 /* About these extended threadlist and threadinfo packets. They are
1197 variable length packets but, the fields within them are often fixed
1198 length. They are redundent enough to send over UDP as is the
1199 remote protocol in general. There is a matching unit test module
1200 in libstub. */
1201
1202 #define OPAQUETHREADBYTES 8
1203
1204 /* a 64 bit opaque identifier */
1205 typedef unsigned char threadref[OPAQUETHREADBYTES];
1206
1207 /* WARNING: This threadref data structure comes from the remote O.S.,
1208 libstub protocol encoding, and remote.c. it is not particularly
1209 changable. */
1210
1211 /* Right now, the internal structure is int. We want it to be bigger.
1212 Plan to fix this.
1213 */
1214
1215 typedef int gdb_threadref; /* Internal GDB thread reference. */
1216
1217 /* gdb_ext_thread_info is an internal GDB data structure which is
1218 equivalent to the reply of the remote threadinfo packet. */
1219
1220 struct gdb_ext_thread_info
1221 {
1222 threadref threadid; /* External form of thread reference. */
1223 int active; /* Has state interesting to GDB?
1224 regs, stack. */
1225 char display[256]; /* Brief state display, name,
1226 blocked/suspended. */
1227 char shortname[32]; /* To be used to name threads. */
1228 char more_display[256]; /* Long info, statistics, queue depth,
1229 whatever. */
1230 };
1231
1232 /* The volume of remote transfers can be limited by submitting
1233 a mask containing bits specifying the desired information.
1234 Use a union of these values as the 'selection' parameter to
1235 get_thread_info. FIXME: Make these TAG names more thread specific.
1236 */
1237
1238 #define TAG_THREADID 1
1239 #define TAG_EXISTS 2
1240 #define TAG_DISPLAY 4
1241 #define TAG_THREADNAME 8
1242 #define TAG_MOREDISPLAY 16
1243
1244 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1245
1246 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1247
1248 static char *unpack_nibble (char *buf, int *val);
1249
1250 static char *pack_nibble (char *buf, int nibble);
1251
1252 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1253
1254 static char *unpack_byte (char *buf, int *value);
1255
1256 static char *pack_int (char *buf, int value);
1257
1258 static char *unpack_int (char *buf, int *value);
1259
1260 static char *unpack_string (char *src, char *dest, int length);
1261
1262 static char *pack_threadid (char *pkt, threadref *id);
1263
1264 static char *unpack_threadid (char *inbuf, threadref *id);
1265
1266 void int_to_threadref (threadref *id, int value);
1267
1268 static int threadref_to_int (threadref *ref);
1269
1270 static void copy_threadref (threadref *dest, threadref *src);
1271
1272 static int threadmatch (threadref *dest, threadref *src);
1273
1274 static char *pack_threadinfo_request (char *pkt, int mode,
1275 threadref *id);
1276
1277 static int remote_unpack_thread_info_response (char *pkt,
1278 threadref *expectedref,
1279 struct gdb_ext_thread_info
1280 *info);
1281
1282
1283 static int remote_get_threadinfo (threadref *threadid,
1284 int fieldset, /*TAG mask */
1285 struct gdb_ext_thread_info *info);
1286
1287 static char *pack_threadlist_request (char *pkt, int startflag,
1288 int threadcount,
1289 threadref *nextthread);
1290
1291 static int parse_threadlist_response (char *pkt,
1292 int result_limit,
1293 threadref *original_echo,
1294 threadref *resultlist,
1295 int *doneflag);
1296
1297 static int remote_get_threadlist (int startflag,
1298 threadref *nextthread,
1299 int result_limit,
1300 int *done,
1301 int *result_count,
1302 threadref *threadlist);
1303
1304 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1305
1306 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1307 void *context, int looplimit);
1308
1309 static int remote_newthread_step (threadref *ref, void *context);
1310
1311 /* Encode 64 bits in 16 chars of hex. */
1312
1313 static const char hexchars[] = "0123456789abcdef";
1314
1315 static int
1316 ishex (int ch, int *val)
1317 {
1318 if ((ch >= 'a') && (ch <= 'f'))
1319 {
1320 *val = ch - 'a' + 10;
1321 return 1;
1322 }
1323 if ((ch >= 'A') && (ch <= 'F'))
1324 {
1325 *val = ch - 'A' + 10;
1326 return 1;
1327 }
1328 if ((ch >= '0') && (ch <= '9'))
1329 {
1330 *val = ch - '0';
1331 return 1;
1332 }
1333 return 0;
1334 }
1335
1336 static int
1337 stubhex (int ch)
1338 {
1339 if (ch >= 'a' && ch <= 'f')
1340 return ch - 'a' + 10;
1341 if (ch >= '0' && ch <= '9')
1342 return ch - '0';
1343 if (ch >= 'A' && ch <= 'F')
1344 return ch - 'A' + 10;
1345 return -1;
1346 }
1347
1348 static int
1349 stub_unpack_int (char *buff, int fieldlength)
1350 {
1351 int nibble;
1352 int retval = 0;
1353
1354 while (fieldlength)
1355 {
1356 nibble = stubhex (*buff++);
1357 retval |= nibble;
1358 fieldlength--;
1359 if (fieldlength)
1360 retval = retval << 4;
1361 }
1362 return retval;
1363 }
1364
1365 char *
1366 unpack_varlen_hex (char *buff, /* packet to parse */
1367 ULONGEST *result)
1368 {
1369 int nibble;
1370 ULONGEST retval = 0;
1371
1372 while (ishex (*buff, &nibble))
1373 {
1374 buff++;
1375 retval = retval << 4;
1376 retval |= nibble & 0x0f;
1377 }
1378 *result = retval;
1379 return buff;
1380 }
1381
1382 static char *
1383 unpack_nibble (char *buf, int *val)
1384 {
1385 *val = fromhex (*buf++);
1386 return buf;
1387 }
1388
1389 static char *
1390 pack_nibble (char *buf, int nibble)
1391 {
1392 *buf++ = hexchars[(nibble & 0x0f)];
1393 return buf;
1394 }
1395
1396 static char *
1397 pack_hex_byte (char *pkt, int byte)
1398 {
1399 *pkt++ = hexchars[(byte >> 4) & 0xf];
1400 *pkt++ = hexchars[(byte & 0xf)];
1401 return pkt;
1402 }
1403
1404 static char *
1405 unpack_byte (char *buf, int *value)
1406 {
1407 *value = stub_unpack_int (buf, 2);
1408 return buf + 2;
1409 }
1410
1411 static char *
1412 pack_int (char *buf, int value)
1413 {
1414 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1415 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1416 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1417 buf = pack_hex_byte (buf, (value & 0xff));
1418 return buf;
1419 }
1420
1421 static char *
1422 unpack_int (char *buf, int *value)
1423 {
1424 *value = stub_unpack_int (buf, 8);
1425 return buf + 8;
1426 }
1427
1428 #if 0 /* Currently unused, uncomment when needed. */
1429 static char *pack_string (char *pkt, char *string);
1430
1431 static char *
1432 pack_string (char *pkt, char *string)
1433 {
1434 char ch;
1435 int len;
1436
1437 len = strlen (string);
1438 if (len > 200)
1439 len = 200; /* Bigger than most GDB packets, junk??? */
1440 pkt = pack_hex_byte (pkt, len);
1441 while (len-- > 0)
1442 {
1443 ch = *string++;
1444 if ((ch == '\0') || (ch == '#'))
1445 ch = '*'; /* Protect encapsulation. */
1446 *pkt++ = ch;
1447 }
1448 return pkt;
1449 }
1450 #endif /* 0 (unused) */
1451
1452 static char *
1453 unpack_string (char *src, char *dest, int length)
1454 {
1455 while (length--)
1456 *dest++ = *src++;
1457 *dest = '\0';
1458 return src;
1459 }
1460
1461 static char *
1462 pack_threadid (char *pkt, threadref *id)
1463 {
1464 char *limit;
1465 unsigned char *altid;
1466
1467 altid = (unsigned char *) id;
1468 limit = pkt + BUF_THREAD_ID_SIZE;
1469 while (pkt < limit)
1470 pkt = pack_hex_byte (pkt, *altid++);
1471 return pkt;
1472 }
1473
1474
1475 static char *
1476 unpack_threadid (char *inbuf, threadref *id)
1477 {
1478 char *altref;
1479 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1480 int x, y;
1481
1482 altref = (char *) id;
1483
1484 while (inbuf < limit)
1485 {
1486 x = stubhex (*inbuf++);
1487 y = stubhex (*inbuf++);
1488 *altref++ = (x << 4) | y;
1489 }
1490 return inbuf;
1491 }
1492
1493 /* Externally, threadrefs are 64 bits but internally, they are still
1494 ints. This is due to a mismatch of specifications. We would like
1495 to use 64bit thread references internally. This is an adapter
1496 function. */
1497
1498 void
1499 int_to_threadref (threadref *id, int value)
1500 {
1501 unsigned char *scan;
1502
1503 scan = (unsigned char *) id;
1504 {
1505 int i = 4;
1506 while (i--)
1507 *scan++ = 0;
1508 }
1509 *scan++ = (value >> 24) & 0xff;
1510 *scan++ = (value >> 16) & 0xff;
1511 *scan++ = (value >> 8) & 0xff;
1512 *scan++ = (value & 0xff);
1513 }
1514
1515 static int
1516 threadref_to_int (threadref *ref)
1517 {
1518 int i, value = 0;
1519 unsigned char *scan;
1520
1521 scan = *ref;
1522 scan += 4;
1523 i = 4;
1524 while (i-- > 0)
1525 value = (value << 8) | ((*scan++) & 0xff);
1526 return value;
1527 }
1528
1529 static void
1530 copy_threadref (threadref *dest, threadref *src)
1531 {
1532 int i;
1533 unsigned char *csrc, *cdest;
1534
1535 csrc = (unsigned char *) src;
1536 cdest = (unsigned char *) dest;
1537 i = 8;
1538 while (i--)
1539 *cdest++ = *csrc++;
1540 }
1541
1542 static int
1543 threadmatch (threadref *dest, threadref *src)
1544 {
1545 /* Things are broken right now, so just assume we got a match. */
1546 #if 0
1547 unsigned char *srcp, *destp;
1548 int i, result;
1549 srcp = (char *) src;
1550 destp = (char *) dest;
1551
1552 result = 1;
1553 while (i-- > 0)
1554 result &= (*srcp++ == *destp++) ? 1 : 0;
1555 return result;
1556 #endif
1557 return 1;
1558 }
1559
1560 /*
1561 threadid:1, # always request threadid
1562 context_exists:2,
1563 display:4,
1564 unique_name:8,
1565 more_display:16
1566 */
1567
1568 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1569
1570 static char *
1571 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1572 {
1573 *pkt++ = 'q'; /* Info Query */
1574 *pkt++ = 'P'; /* process or thread info */
1575 pkt = pack_int (pkt, mode); /* mode */
1576 pkt = pack_threadid (pkt, id); /* threadid */
1577 *pkt = '\0'; /* terminate */
1578 return pkt;
1579 }
1580
1581 /* These values tag the fields in a thread info response packet. */
1582 /* Tagging the fields allows us to request specific fields and to
1583 add more fields as time goes by. */
1584
1585 #define TAG_THREADID 1 /* Echo the thread identifier. */
1586 #define TAG_EXISTS 2 /* Is this process defined enough to
1587 fetch registers and its stack? */
1588 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1589 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1590 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1591 the process. */
1592
1593 static int
1594 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1595 struct gdb_ext_thread_info *info)
1596 {
1597 struct remote_state *rs = get_remote_state ();
1598 int mask, length;
1599 int tag;
1600 threadref ref;
1601 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1602 int retval = 1;
1603
1604 /* info->threadid = 0; FIXME: implement zero_threadref. */
1605 info->active = 0;
1606 info->display[0] = '\0';
1607 info->shortname[0] = '\0';
1608 info->more_display[0] = '\0';
1609
1610 /* Assume the characters indicating the packet type have been
1611 stripped. */
1612 pkt = unpack_int (pkt, &mask); /* arg mask */
1613 pkt = unpack_threadid (pkt, &ref);
1614
1615 if (mask == 0)
1616 warning (_("Incomplete response to threadinfo request."));
1617 if (!threadmatch (&ref, expectedref))
1618 { /* This is an answer to a different request. */
1619 warning (_("ERROR RMT Thread info mismatch."));
1620 return 0;
1621 }
1622 copy_threadref (&info->threadid, &ref);
1623
1624 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1625
1626 /* Packets are terminated with nulls. */
1627 while ((pkt < limit) && mask && *pkt)
1628 {
1629 pkt = unpack_int (pkt, &tag); /* tag */
1630 pkt = unpack_byte (pkt, &length); /* length */
1631 if (!(tag & mask)) /* Tags out of synch with mask. */
1632 {
1633 warning (_("ERROR RMT: threadinfo tag mismatch."));
1634 retval = 0;
1635 break;
1636 }
1637 if (tag == TAG_THREADID)
1638 {
1639 if (length != 16)
1640 {
1641 warning (_("ERROR RMT: length of threadid is not 16."));
1642 retval = 0;
1643 break;
1644 }
1645 pkt = unpack_threadid (pkt, &ref);
1646 mask = mask & ~TAG_THREADID;
1647 continue;
1648 }
1649 if (tag == TAG_EXISTS)
1650 {
1651 info->active = stub_unpack_int (pkt, length);
1652 pkt += length;
1653 mask = mask & ~(TAG_EXISTS);
1654 if (length > 8)
1655 {
1656 warning (_("ERROR RMT: 'exists' length too long."));
1657 retval = 0;
1658 break;
1659 }
1660 continue;
1661 }
1662 if (tag == TAG_THREADNAME)
1663 {
1664 pkt = unpack_string (pkt, &info->shortname[0], length);
1665 mask = mask & ~TAG_THREADNAME;
1666 continue;
1667 }
1668 if (tag == TAG_DISPLAY)
1669 {
1670 pkt = unpack_string (pkt, &info->display[0], length);
1671 mask = mask & ~TAG_DISPLAY;
1672 continue;
1673 }
1674 if (tag == TAG_MOREDISPLAY)
1675 {
1676 pkt = unpack_string (pkt, &info->more_display[0], length);
1677 mask = mask & ~TAG_MOREDISPLAY;
1678 continue;
1679 }
1680 warning (_("ERROR RMT: unknown thread info tag."));
1681 break; /* Not a tag we know about. */
1682 }
1683 return retval;
1684 }
1685
1686 static int
1687 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1688 struct gdb_ext_thread_info *info)
1689 {
1690 struct remote_state *rs = get_remote_state ();
1691 int result;
1692
1693 pack_threadinfo_request (rs->buf, fieldset, threadid);
1694 putpkt (rs->buf);
1695 getpkt (&rs->buf, &rs->buf_size, 0);
1696 result = remote_unpack_thread_info_response (rs->buf + 2,
1697 threadid, info);
1698 return result;
1699 }
1700
1701 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1702
1703 static char *
1704 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1705 threadref *nextthread)
1706 {
1707 *pkt++ = 'q'; /* info query packet */
1708 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1709 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1710 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1711 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1712 *pkt = '\0';
1713 return pkt;
1714 }
1715
1716 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1717
1718 static int
1719 parse_threadlist_response (char *pkt, int result_limit,
1720 threadref *original_echo, threadref *resultlist,
1721 int *doneflag)
1722 {
1723 struct remote_state *rs = get_remote_state ();
1724 char *limit;
1725 int count, resultcount, done;
1726
1727 resultcount = 0;
1728 /* Assume the 'q' and 'M chars have been stripped. */
1729 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1730 /* done parse past here */
1731 pkt = unpack_byte (pkt, &count); /* count field */
1732 pkt = unpack_nibble (pkt, &done);
1733 /* The first threadid is the argument threadid. */
1734 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1735 while ((count-- > 0) && (pkt < limit))
1736 {
1737 pkt = unpack_threadid (pkt, resultlist++);
1738 if (resultcount++ >= result_limit)
1739 break;
1740 }
1741 if (doneflag)
1742 *doneflag = done;
1743 return resultcount;
1744 }
1745
1746 static int
1747 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1748 int *done, int *result_count, threadref *threadlist)
1749 {
1750 struct remote_state *rs = get_remote_state ();
1751 static threadref echo_nextthread;
1752 int result = 1;
1753
1754 /* Trancate result limit to be smaller than the packet size. */
1755 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1756 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1757
1758 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1759 putpkt (rs->buf);
1760 getpkt (&rs->buf, &rs->buf_size, 0);
1761
1762 if (*rs->buf == '\0')
1763 *result_count = 0;
1764 else
1765 *result_count =
1766 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1767 threadlist, done);
1768
1769 if (!threadmatch (&echo_nextthread, nextthread))
1770 {
1771 /* FIXME: This is a good reason to drop the packet. */
1772 /* Possably, there is a duplicate response. */
1773 /* Possabilities :
1774 retransmit immediatly - race conditions
1775 retransmit after timeout - yes
1776 exit
1777 wait for packet, then exit
1778 */
1779 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1780 return 0; /* I choose simply exiting. */
1781 }
1782 if (*result_count <= 0)
1783 {
1784 if (*done != 1)
1785 {
1786 warning (_("RMT ERROR : failed to get remote thread list."));
1787 result = 0;
1788 }
1789 return result; /* break; */
1790 }
1791 if (*result_count > result_limit)
1792 {
1793 *result_count = 0;
1794 warning (_("RMT ERROR: threadlist response longer than requested."));
1795 return 0;
1796 }
1797 return result;
1798 }
1799
1800 /* This is the interface between remote and threads, remotes upper
1801 interface. */
1802
1803 /* remote_find_new_threads retrieves the thread list and for each
1804 thread in the list, looks up the thread in GDB's internal list,
1805 ading the thread if it does not already exist. This involves
1806 getting partial thread lists from the remote target so, polling the
1807 quit_flag is required. */
1808
1809
1810 /* About this many threadisds fit in a packet. */
1811
1812 #define MAXTHREADLISTRESULTS 32
1813
1814 static int
1815 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1816 int looplimit)
1817 {
1818 int done, i, result_count;
1819 int startflag = 1;
1820 int result = 1;
1821 int loopcount = 0;
1822 static threadref nextthread;
1823 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1824
1825 done = 0;
1826 while (!done)
1827 {
1828 if (loopcount++ > looplimit)
1829 {
1830 result = 0;
1831 warning (_("Remote fetch threadlist -infinite loop-."));
1832 break;
1833 }
1834 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1835 &done, &result_count, resultthreadlist))
1836 {
1837 result = 0;
1838 break;
1839 }
1840 /* Clear for later iterations. */
1841 startflag = 0;
1842 /* Setup to resume next batch of thread references, set nextthread. */
1843 if (result_count >= 1)
1844 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1845 i = 0;
1846 while (result_count--)
1847 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1848 break;
1849 }
1850 return result;
1851 }
1852
1853 static int
1854 remote_newthread_step (threadref *ref, void *context)
1855 {
1856 ptid_t ptid;
1857
1858 ptid = pid_to_ptid (threadref_to_int (ref));
1859
1860 if (!in_thread_list (ptid))
1861 add_thread (ptid);
1862 return 1; /* continue iterator */
1863 }
1864
1865 #define CRAZY_MAX_THREADS 1000
1866
1867 static ptid_t
1868 remote_current_thread (ptid_t oldpid)
1869 {
1870 struct remote_state *rs = get_remote_state ();
1871
1872 putpkt ("qC");
1873 getpkt (&rs->buf, &rs->buf_size, 0);
1874 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1875 /* Use strtoul here, so we'll correctly parse values whose highest
1876 bit is set. The protocol carries them as a simple series of
1877 hex digits; in the absence of a sign, strtol will see such
1878 values as positive numbers out of range for signed 'long', and
1879 return LONG_MAX to indicate an overflow. */
1880 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1881 else
1882 return oldpid;
1883 }
1884
1885 /* Find new threads for info threads command.
1886 * Original version, using John Metzler's thread protocol.
1887 */
1888
1889 static void
1890 remote_find_new_threads (void)
1891 {
1892 remote_threadlist_iterator (remote_newthread_step, 0,
1893 CRAZY_MAX_THREADS);
1894 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1895 inferior_ptid = remote_current_thread (inferior_ptid);
1896 }
1897
1898 /*
1899 * Find all threads for info threads command.
1900 * Uses new thread protocol contributed by Cisco.
1901 * Falls back and attempts to use the older method (above)
1902 * if the target doesn't respond to the new method.
1903 */
1904
1905 static void
1906 remote_threads_info (void)
1907 {
1908 struct remote_state *rs = get_remote_state ();
1909 char *bufp;
1910 int tid;
1911
1912 if (remote_desc == 0) /* paranoia */
1913 error (_("Command can only be used when connected to the remote target."));
1914
1915 if (use_threadinfo_query)
1916 {
1917 putpkt ("qfThreadInfo");
1918 getpkt (&rs->buf, &rs->buf_size, 0);
1919 bufp = rs->buf;
1920 if (bufp[0] != '\0') /* q packet recognized */
1921 {
1922 while (*bufp++ == 'm') /* reply contains one or more TID */
1923 {
1924 do
1925 {
1926 /* Use strtoul here, so we'll correctly parse values
1927 whose highest bit is set. The protocol carries
1928 them as a simple series of hex digits; in the
1929 absence of a sign, strtol will see such values as
1930 positive numbers out of range for signed 'long',
1931 and return LONG_MAX to indicate an overflow. */
1932 tid = strtoul (bufp, &bufp, 16);
1933 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1934 add_thread (pid_to_ptid (tid));
1935 }
1936 while (*bufp++ == ','); /* comma-separated list */
1937 putpkt ("qsThreadInfo");
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 bufp = rs->buf;
1940 }
1941 return; /* done */
1942 }
1943 }
1944
1945 /* Else fall back to old method based on jmetzler protocol. */
1946 use_threadinfo_query = 0;
1947 remote_find_new_threads ();
1948 return;
1949 }
1950
1951 /*
1952 * Collect a descriptive string about the given thread.
1953 * The target may say anything it wants to about the thread
1954 * (typically info about its blocked / runnable state, name, etc.).
1955 * This string will appear in the info threads display.
1956 *
1957 * Optional: targets are not required to implement this function.
1958 */
1959
1960 static char *
1961 remote_threads_extra_info (struct thread_info *tp)
1962 {
1963 struct remote_state *rs = get_remote_state ();
1964 int result;
1965 int set;
1966 threadref id;
1967 struct gdb_ext_thread_info threadinfo;
1968 static char display_buf[100]; /* arbitrary... */
1969 int n = 0; /* position in display_buf */
1970
1971 if (remote_desc == 0) /* paranoia */
1972 internal_error (__FILE__, __LINE__,
1973 _("remote_threads_extra_info"));
1974
1975 if (use_threadextra_query)
1976 {
1977 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1978 PIDGET (tp->ptid));
1979 putpkt (rs->buf);
1980 getpkt (&rs->buf, &rs->buf_size, 0);
1981 if (rs->buf[0] != 0)
1982 {
1983 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1984 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1985 display_buf [result] = '\0';
1986 return display_buf;
1987 }
1988 }
1989
1990 /* If the above query fails, fall back to the old method. */
1991 use_threadextra_query = 0;
1992 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1993 | TAG_MOREDISPLAY | TAG_DISPLAY;
1994 int_to_threadref (&id, PIDGET (tp->ptid));
1995 if (remote_get_threadinfo (&id, set, &threadinfo))
1996 if (threadinfo.active)
1997 {
1998 if (*threadinfo.shortname)
1999 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2000 " Name: %s,", threadinfo.shortname);
2001 if (*threadinfo.display)
2002 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2003 " State: %s,", threadinfo.display);
2004 if (*threadinfo.more_display)
2005 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2006 " Priority: %s", threadinfo.more_display);
2007
2008 if (n > 0)
2009 {
2010 /* For purely cosmetic reasons, clear up trailing commas. */
2011 if (',' == display_buf[n-1])
2012 display_buf[n-1] = ' ';
2013 return display_buf;
2014 }
2015 }
2016 return NULL;
2017 }
2018 \f
2019
2020 /* Restart the remote side; this is an extended protocol operation. */
2021
2022 static void
2023 extended_remote_restart (void)
2024 {
2025 struct remote_state *rs = get_remote_state ();
2026
2027 /* Send the restart command; for reasons I don't understand the
2028 remote side really expects a number after the "R". */
2029 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2030 putpkt (rs->buf);
2031
2032 remote_fileio_reset ();
2033 }
2034 \f
2035 /* Clean up connection to a remote debugger. */
2036
2037 static void
2038 remote_close (int quitting)
2039 {
2040 if (remote_desc)
2041 serial_close (remote_desc);
2042 remote_desc = NULL;
2043 }
2044
2045 /* Query the remote side for the text, data and bss offsets. */
2046
2047 static void
2048 get_offsets (void)
2049 {
2050 struct remote_state *rs = get_remote_state ();
2051 char *buf;
2052 char *ptr;
2053 int lose, num_segments = 0, do_sections, do_segments;
2054 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2055 struct section_offsets *offs;
2056 struct symfile_segment_data *data;
2057
2058 if (symfile_objfile == NULL)
2059 return;
2060
2061 putpkt ("qOffsets");
2062 getpkt (&rs->buf, &rs->buf_size, 0);
2063 buf = rs->buf;
2064
2065 if (buf[0] == '\000')
2066 return; /* Return silently. Stub doesn't support
2067 this command. */
2068 if (buf[0] == 'E')
2069 {
2070 warning (_("Remote failure reply: %s"), buf);
2071 return;
2072 }
2073
2074 /* Pick up each field in turn. This used to be done with scanf, but
2075 scanf will make trouble if CORE_ADDR size doesn't match
2076 conversion directives correctly. The following code will work
2077 with any size of CORE_ADDR. */
2078 text_addr = data_addr = bss_addr = 0;
2079 ptr = buf;
2080 lose = 0;
2081
2082 if (strncmp (ptr, "Text=", 5) == 0)
2083 {
2084 ptr += 5;
2085 /* Don't use strtol, could lose on big values. */
2086 while (*ptr && *ptr != ';')
2087 text_addr = (text_addr << 4) + fromhex (*ptr++);
2088
2089 if (strncmp (ptr, ";Data=", 6) == 0)
2090 {
2091 ptr += 6;
2092 while (*ptr && *ptr != ';')
2093 data_addr = (data_addr << 4) + fromhex (*ptr++);
2094 }
2095 else
2096 lose = 1;
2097
2098 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2099 {
2100 ptr += 5;
2101 while (*ptr && *ptr != ';')
2102 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2103
2104 if (bss_addr != data_addr)
2105 warning (_("Target reported unsupported offsets: %s"), buf);
2106 }
2107 else
2108 lose = 1;
2109 }
2110 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2111 {
2112 ptr += 8;
2113 /* Don't use strtol, could lose on big values. */
2114 while (*ptr && *ptr != ';')
2115 text_addr = (text_addr << 4) + fromhex (*ptr++);
2116 num_segments = 1;
2117
2118 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2119 {
2120 ptr += 9;
2121 while (*ptr && *ptr != ';')
2122 data_addr = (data_addr << 4) + fromhex (*ptr++);
2123 num_segments++;
2124 }
2125 }
2126 else
2127 lose = 1;
2128
2129 if (lose)
2130 error (_("Malformed response to offset query, %s"), buf);
2131 else if (*ptr != '\0')
2132 warning (_("Target reported unsupported offsets: %s"), buf);
2133
2134 offs = ((struct section_offsets *)
2135 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2136 memcpy (offs, symfile_objfile->section_offsets,
2137 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2138
2139 data = get_symfile_segment_data (symfile_objfile->obfd);
2140 do_segments = (data != NULL);
2141 do_sections = num_segments == 0;
2142
2143 if (num_segments > 0)
2144 {
2145 segments[0] = text_addr;
2146 segments[1] = data_addr;
2147 }
2148 /* If we have two segments, we can still try to relocate everything
2149 by assuming that the .text and .data offsets apply to the whole
2150 text and data segments. Convert the offsets given in the packet
2151 to base addresses for symfile_map_offsets_to_segments. */
2152 else if (data && data->num_segments == 2)
2153 {
2154 segments[0] = data->segment_bases[0] + text_addr;
2155 segments[1] = data->segment_bases[1] + data_addr;
2156 num_segments = 2;
2157 }
2158 /* If the object file has only one segment, assume that it is text
2159 rather than data; main programs with no writable data are rare,
2160 but programs with no code are useless. Of course the code might
2161 have ended up in the data segment... to detect that we would need
2162 the permissions here. */
2163 else if (data && data->num_segments == 1)
2164 {
2165 segments[0] = data->segment_bases[0] + text_addr;
2166 num_segments = 1;
2167 }
2168 /* There's no way to relocate by segment. */
2169 else
2170 do_segments = 0;
2171
2172 if (do_segments)
2173 {
2174 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2175 offs, num_segments, segments);
2176
2177 if (ret == 0 && !do_sections)
2178 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2179
2180 if (ret > 0)
2181 do_sections = 0;
2182 }
2183
2184 if (data)
2185 free_symfile_segment_data (data);
2186
2187 if (do_sections)
2188 {
2189 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2190
2191 /* This is a temporary kludge to force data and bss to use the same offsets
2192 because that's what nlmconv does now. The real solution requires changes
2193 to the stub and remote.c that I don't have time to do right now. */
2194
2195 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2196 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2197 }
2198
2199 objfile_relocate (symfile_objfile, offs);
2200 }
2201
2202 /* Stub for catch_exception. */
2203
2204 struct start_remote_args
2205 {
2206 int from_tty;
2207
2208 /* The current target. */
2209 struct target_ops *target;
2210
2211 /* Non-zero if this is an extended-remote target. */
2212 int extended_p;
2213 };
2214
2215 static void
2216 remote_start_remote (struct ui_out *uiout, void *opaque)
2217 {
2218 struct remote_state *rs = get_remote_state ();
2219 struct start_remote_args *args = opaque;
2220 char *wait_status = NULL;
2221
2222 immediate_quit++; /* Allow user to interrupt it. */
2223
2224 /* Ack any packet which the remote side has already sent. */
2225 serial_write (remote_desc, "+", 1);
2226
2227 /* Check whether the target is running now. */
2228 putpkt ("?");
2229 getpkt (&rs->buf, &rs->buf_size, 0);
2230
2231 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2232 {
2233 if (args->extended_p)
2234 {
2235 /* We're connected, but not running. Drop out before we
2236 call start_remote. */
2237 target_mark_exited (args->target);
2238 return;
2239 }
2240 else
2241 error (_("The target is not running (try extended-remote?)"));
2242 }
2243 else
2244 {
2245 if (args->extended_p)
2246 target_mark_running (args->target);
2247
2248 /* Save the reply for later. */
2249 wait_status = alloca (strlen (rs->buf) + 1);
2250 strcpy (wait_status, rs->buf);
2251 }
2252
2253 /* Let the stub know that we want it to return the thread. */
2254 set_thread (-1, 0);
2255
2256 /* Without this, some commands which require an active target
2257 (such as kill) won't work. This variable serves (at least)
2258 double duty as both the pid of the target process (if it has
2259 such), and as a flag indicating that a target is active.
2260 These functions should be split out into seperate variables,
2261 especially since GDB will someday have a notion of debugging
2262 several processes. */
2263 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2264
2265 /* Now, if we have thread information, update inferior_ptid. */
2266 inferior_ptid = remote_current_thread (inferior_ptid);
2267
2268 get_offsets (); /* Get text, data & bss offsets. */
2269
2270 /* Use the previously fetched status. */
2271 gdb_assert (wait_status != NULL);
2272 strcpy (rs->buf, wait_status);
2273 rs->cached_wait_status = 1;
2274
2275 immediate_quit--;
2276 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2277 }
2278
2279 /* Open a connection to a remote debugger.
2280 NAME is the filename used for communication. */
2281
2282 static void
2283 remote_open (char *name, int from_tty)
2284 {
2285 remote_open_1 (name, from_tty, &remote_ops, 0);
2286 }
2287
2288 /* Open a connection to a remote debugger using the extended
2289 remote gdb protocol. NAME is the filename used for communication. */
2290
2291 static void
2292 extended_remote_open (char *name, int from_tty)
2293 {
2294 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2295 }
2296
2297 /* Generic code for opening a connection to a remote target. */
2298
2299 static void
2300 init_all_packet_configs (void)
2301 {
2302 int i;
2303 for (i = 0; i < PACKET_MAX; i++)
2304 update_packet_config (&remote_protocol_packets[i]);
2305 }
2306
2307 /* Symbol look-up. */
2308
2309 static void
2310 remote_check_symbols (struct objfile *objfile)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 char *msg, *reply, *tmp;
2314 struct minimal_symbol *sym;
2315 int end;
2316
2317 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2318 return;
2319
2320 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2321 because we need both at the same time. */
2322 msg = alloca (get_remote_packet_size ());
2323
2324 /* Invite target to request symbol lookups. */
2325
2326 putpkt ("qSymbol::");
2327 getpkt (&rs->buf, &rs->buf_size, 0);
2328 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2329 reply = rs->buf;
2330
2331 while (strncmp (reply, "qSymbol:", 8) == 0)
2332 {
2333 tmp = &reply[8];
2334 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2335 msg[end] = '\0';
2336 sym = lookup_minimal_symbol (msg, NULL, NULL);
2337 if (sym == NULL)
2338 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2339 else
2340 {
2341 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2342
2343 /* If this is a function address, return the start of code
2344 instead of any data function descriptor. */
2345 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2346 sym_addr,
2347 &current_target);
2348
2349 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2350 paddr_nz (sym_addr), &reply[8]);
2351 }
2352
2353 putpkt (msg);
2354 getpkt (&rs->buf, &rs->buf_size, 0);
2355 reply = rs->buf;
2356 }
2357 }
2358
2359 static struct serial *
2360 remote_serial_open (char *name)
2361 {
2362 static int udp_warning = 0;
2363
2364 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2365 of in ser-tcp.c, because it is the remote protocol assuming that the
2366 serial connection is reliable and not the serial connection promising
2367 to be. */
2368 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2369 {
2370 warning (_("\
2371 The remote protocol may be unreliable over UDP.\n\
2372 Some events may be lost, rendering further debugging impossible."));
2373 udp_warning = 1;
2374 }
2375
2376 return serial_open (name);
2377 }
2378
2379 /* This type describes each known response to the qSupported
2380 packet. */
2381 struct protocol_feature
2382 {
2383 /* The name of this protocol feature. */
2384 const char *name;
2385
2386 /* The default for this protocol feature. */
2387 enum packet_support default_support;
2388
2389 /* The function to call when this feature is reported, or after
2390 qSupported processing if the feature is not supported.
2391 The first argument points to this structure. The second
2392 argument indicates whether the packet requested support be
2393 enabled, disabled, or probed (or the default, if this function
2394 is being called at the end of processing and this feature was
2395 not reported). The third argument may be NULL; if not NULL, it
2396 is a NUL-terminated string taken from the packet following
2397 this feature's name and an equals sign. */
2398 void (*func) (const struct protocol_feature *, enum packet_support,
2399 const char *);
2400
2401 /* The corresponding packet for this feature. Only used if
2402 FUNC is remote_supported_packet. */
2403 int packet;
2404 };
2405
2406 static void
2407 remote_supported_packet (const struct protocol_feature *feature,
2408 enum packet_support support,
2409 const char *argument)
2410 {
2411 if (argument)
2412 {
2413 warning (_("Remote qSupported response supplied an unexpected value for"
2414 " \"%s\"."), feature->name);
2415 return;
2416 }
2417
2418 if (remote_protocol_packets[feature->packet].support
2419 == PACKET_SUPPORT_UNKNOWN)
2420 remote_protocol_packets[feature->packet].support = support;
2421 }
2422
2423 static void
2424 remote_packet_size (const struct protocol_feature *feature,
2425 enum packet_support support, const char *value)
2426 {
2427 struct remote_state *rs = get_remote_state ();
2428
2429 int packet_size;
2430 char *value_end;
2431
2432 if (support != PACKET_ENABLE)
2433 return;
2434
2435 if (value == NULL || *value == '\0')
2436 {
2437 warning (_("Remote target reported \"%s\" without a size."),
2438 feature->name);
2439 return;
2440 }
2441
2442 errno = 0;
2443 packet_size = strtol (value, &value_end, 16);
2444 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2445 {
2446 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2447 feature->name, value);
2448 return;
2449 }
2450
2451 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2452 {
2453 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2454 packet_size, MAX_REMOTE_PACKET_SIZE);
2455 packet_size = MAX_REMOTE_PACKET_SIZE;
2456 }
2457
2458 /* Record the new maximum packet size. */
2459 rs->explicit_packet_size = packet_size;
2460 }
2461
2462 static struct protocol_feature remote_protocol_features[] = {
2463 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2464 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2465 PACKET_qXfer_auxv },
2466 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2467 PACKET_qXfer_features },
2468 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2469 PACKET_qXfer_libraries },
2470 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2471 PACKET_qXfer_memory_map },
2472 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2473 PACKET_qXfer_spu_read },
2474 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2475 PACKET_qXfer_spu_write },
2476 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2477 PACKET_QPassSignals },
2478 };
2479
2480 static void
2481 remote_query_supported (void)
2482 {
2483 struct remote_state *rs = get_remote_state ();
2484 char *next;
2485 int i;
2486 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2487
2488 /* The packet support flags are handled differently for this packet
2489 than for most others. We treat an error, a disabled packet, and
2490 an empty response identically: any features which must be reported
2491 to be used will be automatically disabled. An empty buffer
2492 accomplishes this, since that is also the representation for a list
2493 containing no features. */
2494
2495 rs->buf[0] = 0;
2496 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2497 {
2498 putpkt ("qSupported");
2499 getpkt (&rs->buf, &rs->buf_size, 0);
2500
2501 /* If an error occured, warn, but do not return - just reset the
2502 buffer to empty and go on to disable features. */
2503 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2504 == PACKET_ERROR)
2505 {
2506 warning (_("Remote failure reply: %s"), rs->buf);
2507 rs->buf[0] = 0;
2508 }
2509 }
2510
2511 memset (seen, 0, sizeof (seen));
2512
2513 next = rs->buf;
2514 while (*next)
2515 {
2516 enum packet_support is_supported;
2517 char *p, *end, *name_end, *value;
2518
2519 /* First separate out this item from the rest of the packet. If
2520 there's another item after this, we overwrite the separator
2521 (terminated strings are much easier to work with). */
2522 p = next;
2523 end = strchr (p, ';');
2524 if (end == NULL)
2525 {
2526 end = p + strlen (p);
2527 next = end;
2528 }
2529 else
2530 {
2531 *end = '\0';
2532 next = end + 1;
2533
2534 if (end == p)
2535 {
2536 warning (_("empty item in \"qSupported\" response"));
2537 continue;
2538 }
2539 }
2540
2541 name_end = strchr (p, '=');
2542 if (name_end)
2543 {
2544 /* This is a name=value entry. */
2545 is_supported = PACKET_ENABLE;
2546 value = name_end + 1;
2547 *name_end = '\0';
2548 }
2549 else
2550 {
2551 value = NULL;
2552 switch (end[-1])
2553 {
2554 case '+':
2555 is_supported = PACKET_ENABLE;
2556 break;
2557
2558 case '-':
2559 is_supported = PACKET_DISABLE;
2560 break;
2561
2562 case '?':
2563 is_supported = PACKET_SUPPORT_UNKNOWN;
2564 break;
2565
2566 default:
2567 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2568 continue;
2569 }
2570 end[-1] = '\0';
2571 }
2572
2573 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2574 if (strcmp (remote_protocol_features[i].name, p) == 0)
2575 {
2576 const struct protocol_feature *feature;
2577
2578 seen[i] = 1;
2579 feature = &remote_protocol_features[i];
2580 feature->func (feature, is_supported, value);
2581 break;
2582 }
2583 }
2584
2585 /* If we increased the packet size, make sure to increase the global
2586 buffer size also. We delay this until after parsing the entire
2587 qSupported packet, because this is the same buffer we were
2588 parsing. */
2589 if (rs->buf_size < rs->explicit_packet_size)
2590 {
2591 rs->buf_size = rs->explicit_packet_size;
2592 rs->buf = xrealloc (rs->buf, rs->buf_size);
2593 }
2594
2595 /* Handle the defaults for unmentioned features. */
2596 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2597 if (!seen[i])
2598 {
2599 const struct protocol_feature *feature;
2600
2601 feature = &remote_protocol_features[i];
2602 feature->func (feature, feature->default_support, NULL);
2603 }
2604 }
2605
2606
2607 static void
2608 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2609 {
2610 struct remote_state *rs = get_remote_state ();
2611 if (name == 0)
2612 error (_("To open a remote debug connection, you need to specify what\n"
2613 "serial device is attached to the remote system\n"
2614 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2615
2616 /* See FIXME above. */
2617 if (!remote_async_permitted)
2618 wait_forever_enabled_p = 1;
2619
2620 /* If we're connected to a running target, target_preopen will kill it.
2621 But if we're connected to a target system with no running process,
2622 then we will still be connected when it returns. Ask this question
2623 first, before target_preopen has a chance to kill anything. */
2624 if (remote_desc != NULL && !target_has_execution)
2625 {
2626 if (!from_tty
2627 || query (_("Already connected to a remote target. Disconnect? ")))
2628 pop_target ();
2629 else
2630 error (_("Still connected."));
2631 }
2632
2633 target_preopen (from_tty);
2634
2635 unpush_target (target);
2636
2637 /* This time without a query. If we were connected to an
2638 extended-remote target and target_preopen killed the running
2639 process, we may still be connected. If we are starting "target
2640 remote" now, the extended-remote target will not have been
2641 removed by unpush_target. */
2642 if (remote_desc != NULL && !target_has_execution)
2643 pop_target ();
2644
2645 /* Make sure we send the passed signals list the next time we resume. */
2646 xfree (last_pass_packet);
2647 last_pass_packet = NULL;
2648
2649 remote_fileio_reset ();
2650 reopen_exec_file ();
2651 reread_symbols ();
2652
2653 remote_desc = remote_serial_open (name);
2654 if (!remote_desc)
2655 perror_with_name (name);
2656
2657 if (baud_rate != -1)
2658 {
2659 if (serial_setbaudrate (remote_desc, baud_rate))
2660 {
2661 /* The requested speed could not be set. Error out to
2662 top level after closing remote_desc. Take care to
2663 set remote_desc to NULL to avoid closing remote_desc
2664 more than once. */
2665 serial_close (remote_desc);
2666 remote_desc = NULL;
2667 perror_with_name (name);
2668 }
2669 }
2670
2671 serial_raw (remote_desc);
2672
2673 /* If there is something sitting in the buffer we might take it as a
2674 response to a command, which would be bad. */
2675 serial_flush_input (remote_desc);
2676
2677 if (from_tty)
2678 {
2679 puts_filtered ("Remote debugging using ");
2680 puts_filtered (name);
2681 puts_filtered ("\n");
2682 }
2683 push_target (target); /* Switch to using remote target now. */
2684
2685 /* Assume that the target is running, unless we learn otherwise. */
2686 target_mark_running (target);
2687
2688 /* Reset the target state; these things will be queried either by
2689 remote_query_supported or as they are needed. */
2690 init_all_packet_configs ();
2691 rs->explicit_packet_size = 0;
2692
2693 general_thread = -2;
2694 continue_thread = -2;
2695
2696 /* Probe for ability to use "ThreadInfo" query, as required. */
2697 use_threadinfo_query = 1;
2698 use_threadextra_query = 1;
2699
2700 /* The first packet we send to the target is the optional "supported
2701 packets" request. If the target can answer this, it will tell us
2702 which later probes to skip. */
2703 remote_query_supported ();
2704
2705 /* Next, if the target can specify a description, read it. We do
2706 this before anything involving memory or registers. */
2707 target_find_description ();
2708
2709 if (remote_async_permitted)
2710 {
2711 /* With this target we start out by owning the terminal. */
2712 remote_async_terminal_ours_p = 1;
2713
2714 /* FIXME: cagney/1999-09-23: During the initial connection it is
2715 assumed that the target is already ready and able to respond to
2716 requests. Unfortunately remote_start_remote() eventually calls
2717 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2718 around this. Eventually a mechanism that allows
2719 wait_for_inferior() to expect/get timeouts will be
2720 implemented. */
2721 wait_forever_enabled_p = 0;
2722 }
2723
2724 /* First delete any symbols previously loaded from shared libraries. */
2725 no_shared_libraries (NULL, 0);
2726
2727 /* Start the remote connection. If error() or QUIT, discard this
2728 target (we'd otherwise be in an inconsistent state) and then
2729 propogate the error on up the exception chain. This ensures that
2730 the caller doesn't stumble along blindly assuming that the
2731 function succeeded. The CLI doesn't have this problem but other
2732 UI's, such as MI do.
2733
2734 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2735 this function should return an error indication letting the
2736 caller restore the previous state. Unfortunately the command
2737 ``target remote'' is directly wired to this function making that
2738 impossible. On a positive note, the CLI side of this problem has
2739 been fixed - the function set_cmd_context() makes it possible for
2740 all the ``target ....'' commands to share a common callback
2741 function. See cli-dump.c. */
2742 {
2743 struct gdb_exception ex;
2744 struct start_remote_args args;
2745
2746 args.from_tty = from_tty;
2747 args.target = target;
2748 args.extended_p = extended_p;
2749
2750 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2751 if (ex.reason < 0)
2752 {
2753 pop_target ();
2754 if (remote_async_permitted)
2755 wait_forever_enabled_p = 1;
2756 throw_exception (ex);
2757 }
2758 }
2759
2760 if (remote_async_permitted)
2761 wait_forever_enabled_p = 1;
2762
2763 if (extended_p)
2764 {
2765 /* Tell the remote that we are using the extended protocol. */
2766 putpkt ("!");
2767 getpkt (&rs->buf, &rs->buf_size, 0);
2768 }
2769
2770 /* If we connected to a live target, do some additional setup. */
2771 if (target_has_execution)
2772 {
2773 if (exec_bfd) /* No use without an exec file. */
2774 remote_check_symbols (symfile_objfile);
2775 }
2776 }
2777
2778 /* This takes a program previously attached to and detaches it. After
2779 this is done, GDB can be used to debug some other program. We
2780 better not have left any breakpoints in the target program or it'll
2781 die when it hits one. */
2782
2783 static void
2784 remote_detach_1 (char *args, int from_tty, int extended)
2785 {
2786 struct remote_state *rs = get_remote_state ();
2787
2788 if (args)
2789 error (_("Argument given to \"detach\" when remotely debugging."));
2790
2791 if (!target_has_execution)
2792 error (_("No process to detach from."));
2793
2794 /* Tell the remote target to detach. */
2795 strcpy (rs->buf, "D");
2796 putpkt (rs->buf);
2797 getpkt (&rs->buf, &rs->buf_size, 0);
2798
2799 if (rs->buf[0] == 'E')
2800 error (_("Can't detach process."));
2801
2802 /* Unregister the file descriptor from the event loop. */
2803 if (target_is_async_p ())
2804 serial_async (remote_desc, NULL, 0);
2805
2806 target_mourn_inferior ();
2807 if (from_tty)
2808 {
2809 if (extended)
2810 puts_filtered ("Detached from remote process.\n");
2811 else
2812 puts_filtered ("Ending remote debugging.\n");
2813 }
2814 }
2815
2816 static void
2817 remote_detach (char *args, int from_tty)
2818 {
2819 remote_detach_1 (args, from_tty, 0);
2820 }
2821
2822 static void
2823 extended_remote_detach (char *args, int from_tty)
2824 {
2825 remote_detach_1 (args, from_tty, 1);
2826 }
2827
2828 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2829
2830 static void
2831 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2832 {
2833 if (args)
2834 error (_("Argument given to \"disconnect\" when remotely debugging."));
2835
2836 /* Unregister the file descriptor from the event loop. */
2837 if (target_is_async_p ())
2838 serial_async (remote_desc, NULL, 0);
2839
2840 /* Make sure we unpush even the extended remote targets; mourn
2841 won't do it. So call remote_mourn_1 directly instead of
2842 target_mourn_inferior. */
2843 remote_mourn_1 (target);
2844
2845 if (from_tty)
2846 puts_filtered ("Ending remote debugging.\n");
2847 }
2848
2849 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2850 be chatty about it. */
2851
2852 static void
2853 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2854 {
2855 struct remote_state *rs = get_remote_state ();
2856 int pid;
2857 char *dummy;
2858 char *wait_status = NULL;
2859
2860 if (!args)
2861 error_no_arg (_("process-id to attach"));
2862
2863 dummy = args;
2864 pid = strtol (args, &dummy, 0);
2865 /* Some targets don't set errno on errors, grrr! */
2866 if (pid == 0 && args == dummy)
2867 error (_("Illegal process-id: %s."), args);
2868
2869 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2870 error (_("This target does not support attaching to a process"));
2871
2872 sprintf (rs->buf, "vAttach;%x", pid);
2873 putpkt (rs->buf);
2874 getpkt (&rs->buf, &rs->buf_size, 0);
2875
2876 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2877 {
2878 if (from_tty)
2879 printf_unfiltered (_("Attached to %s\n"),
2880 target_pid_to_str (pid_to_ptid (pid)));
2881
2882 /* Save the reply for later. */
2883 wait_status = alloca (strlen (rs->buf) + 1);
2884 strcpy (wait_status, rs->buf);
2885 }
2886 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2887 error (_("This target does not support attaching to a process"));
2888 else
2889 error (_("Attaching to %s failed"),
2890 target_pid_to_str (pid_to_ptid (pid)));
2891
2892 target_mark_running (target);
2893 inferior_ptid = pid_to_ptid (pid);
2894 attach_flag = 1;
2895
2896 /* Next, if the target can specify a description, read it. We do
2897 this before anything involving memory or registers. */
2898 target_find_description ();
2899
2900 /* Use the previously fetched status. */
2901 gdb_assert (wait_status != NULL);
2902 strcpy (rs->buf, wait_status);
2903 rs->cached_wait_status = 1;
2904 }
2905
2906 static void
2907 extended_remote_attach (char *args, int from_tty)
2908 {
2909 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2910 }
2911
2912 /* Convert hex digit A to a number. */
2913
2914 static int
2915 fromhex (int a)
2916 {
2917 if (a >= '0' && a <= '9')
2918 return a - '0';
2919 else if (a >= 'a' && a <= 'f')
2920 return a - 'a' + 10;
2921 else if (a >= 'A' && a <= 'F')
2922 return a - 'A' + 10;
2923 else
2924 error (_("Reply contains invalid hex digit %d"), a);
2925 }
2926
2927 static int
2928 hex2bin (const char *hex, gdb_byte *bin, int count)
2929 {
2930 int i;
2931
2932 for (i = 0; i < count; i++)
2933 {
2934 if (hex[0] == 0 || hex[1] == 0)
2935 {
2936 /* Hex string is short, or of uneven length.
2937 Return the count that has been converted so far. */
2938 return i;
2939 }
2940 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2941 hex += 2;
2942 }
2943 return i;
2944 }
2945
2946 /* Convert number NIB to a hex digit. */
2947
2948 static int
2949 tohex (int nib)
2950 {
2951 if (nib < 10)
2952 return '0' + nib;
2953 else
2954 return 'a' + nib - 10;
2955 }
2956
2957 static int
2958 bin2hex (const gdb_byte *bin, char *hex, int count)
2959 {
2960 int i;
2961 /* May use a length, or a nul-terminated string as input. */
2962 if (count == 0)
2963 count = strlen ((char *) bin);
2964
2965 for (i = 0; i < count; i++)
2966 {
2967 *hex++ = tohex ((*bin >> 4) & 0xf);
2968 *hex++ = tohex (*bin++ & 0xf);
2969 }
2970 *hex = 0;
2971 return i;
2972 }
2973 \f
2974 /* Check for the availability of vCont. This function should also check
2975 the response. */
2976
2977 static void
2978 remote_vcont_probe (struct remote_state *rs)
2979 {
2980 char *buf;
2981
2982 strcpy (rs->buf, "vCont?");
2983 putpkt (rs->buf);
2984 getpkt (&rs->buf, &rs->buf_size, 0);
2985 buf = rs->buf;
2986
2987 /* Make sure that the features we assume are supported. */
2988 if (strncmp (buf, "vCont", 5) == 0)
2989 {
2990 char *p = &buf[5];
2991 int support_s, support_S, support_c, support_C;
2992
2993 support_s = 0;
2994 support_S = 0;
2995 support_c = 0;
2996 support_C = 0;
2997 while (p && *p == ';')
2998 {
2999 p++;
3000 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3001 support_s = 1;
3002 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3003 support_S = 1;
3004 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3005 support_c = 1;
3006 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3007 support_C = 1;
3008
3009 p = strchr (p, ';');
3010 }
3011
3012 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3013 BUF will make packet_ok disable the packet. */
3014 if (!support_s || !support_S || !support_c || !support_C)
3015 buf[0] = 0;
3016 }
3017
3018 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3019 }
3020
3021 /* Resume the remote inferior by using a "vCont" packet. The thread
3022 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3023 resumed thread should be single-stepped and/or signalled. If PTID's
3024 PID is -1, then all threads are resumed; the thread to be stepped and/or
3025 signalled is given in the global INFERIOR_PTID. This function returns
3026 non-zero iff it resumes the inferior.
3027
3028 This function issues a strict subset of all possible vCont commands at the
3029 moment. */
3030
3031 static int
3032 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3033 {
3034 struct remote_state *rs = get_remote_state ();
3035 int pid = PIDGET (ptid);
3036 char *outbuf;
3037 struct cleanup *old_cleanup;
3038
3039 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3040 remote_vcont_probe (rs);
3041
3042 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3043 return 0;
3044
3045 /* If we could generate a wider range of packets, we'd have to worry
3046 about overflowing BUF. Should there be a generic
3047 "multi-part-packet" packet? */
3048
3049 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3050 {
3051 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3052 don't have any PID numbers the inferior will understand. Make sure
3053 to only send forms that do not specify a PID. */
3054 if (step && siggnal != TARGET_SIGNAL_0)
3055 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3056 else if (step)
3057 outbuf = xstrprintf ("vCont;s");
3058 else if (siggnal != TARGET_SIGNAL_0)
3059 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3060 else
3061 outbuf = xstrprintf ("vCont;c");
3062 }
3063 else if (pid == -1)
3064 {
3065 /* Resume all threads, with preference for INFERIOR_PTID. */
3066 if (step && siggnal != TARGET_SIGNAL_0)
3067 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3068 PIDGET (inferior_ptid));
3069 else if (step)
3070 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3071 else if (siggnal != TARGET_SIGNAL_0)
3072 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3073 PIDGET (inferior_ptid));
3074 else
3075 outbuf = xstrprintf ("vCont;c");
3076 }
3077 else
3078 {
3079 /* Scheduler locking; resume only PTID. */
3080 if (step && siggnal != TARGET_SIGNAL_0)
3081 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3082 else if (step)
3083 outbuf = xstrprintf ("vCont;s:%x", pid);
3084 else if (siggnal != TARGET_SIGNAL_0)
3085 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3086 else
3087 outbuf = xstrprintf ("vCont;c:%x", pid);
3088 }
3089
3090 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3091 old_cleanup = make_cleanup (xfree, outbuf);
3092
3093 putpkt (outbuf);
3094
3095 do_cleanups (old_cleanup);
3096
3097 return 1;
3098 }
3099
3100 /* Tell the remote machine to resume. */
3101
3102 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3103
3104 static int last_sent_step;
3105
3106 static void
3107 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3108 {
3109 struct remote_state *rs = get_remote_state ();
3110 char *buf;
3111 int pid = PIDGET (ptid);
3112
3113 last_sent_signal = siggnal;
3114 last_sent_step = step;
3115
3116 /* Update the inferior on signals to silently pass, if they've changed. */
3117 remote_pass_signals ();
3118
3119 /* The vCont packet doesn't need to specify threads via Hc. */
3120 if (remote_vcont_resume (ptid, step, siggnal))
3121 goto done;
3122
3123 /* All other supported resume packets do use Hc, so call set_thread. */
3124 if (pid == -1)
3125 set_thread (0, 0); /* Run any thread. */
3126 else
3127 set_thread (pid, 0); /* Run this thread. */
3128
3129 buf = rs->buf;
3130 if (siggnal != TARGET_SIGNAL_0)
3131 {
3132 buf[0] = step ? 'S' : 'C';
3133 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3134 buf[2] = tohex (((int) siggnal) & 0xf);
3135 buf[3] = '\0';
3136 }
3137 else
3138 strcpy (buf, step ? "s" : "c");
3139
3140 putpkt (buf);
3141
3142 done:
3143 /* We are about to start executing the inferior, let's register it
3144 with the event loop. NOTE: this is the one place where all the
3145 execution commands end up. We could alternatively do this in each
3146 of the execution commands in infcmd.c. */
3147 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3148 into infcmd.c in order to allow inferior function calls to work
3149 NOT asynchronously. */
3150 if (target_can_async_p ())
3151 target_async (inferior_event_handler, 0);
3152 /* Tell the world that the target is now executing. */
3153 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3154 this? Instead, should the client of target just assume (for
3155 async targets) that the target is going to start executing? Is
3156 this information already found in the continuation block? */
3157 if (target_is_async_p ())
3158 target_executing = 1;
3159 }
3160 \f
3161
3162 /* Set up the signal handler for SIGINT, while the target is
3163 executing, ovewriting the 'regular' SIGINT signal handler. */
3164 static void
3165 initialize_sigint_signal_handler (void)
3166 {
3167 signal (SIGINT, handle_remote_sigint);
3168 }
3169
3170 /* Signal handler for SIGINT, while the target is executing. */
3171 static void
3172 handle_remote_sigint (int sig)
3173 {
3174 signal (sig, handle_remote_sigint_twice);
3175 mark_async_signal_handler_wrapper (sigint_remote_token);
3176 }
3177
3178 /* Signal handler for SIGINT, installed after SIGINT has already been
3179 sent once. It will take effect the second time that the user sends
3180 a ^C. */
3181 static void
3182 handle_remote_sigint_twice (int sig)
3183 {
3184 signal (sig, handle_remote_sigint);
3185 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3186 }
3187
3188 /* Perform the real interruption of the target execution, in response
3189 to a ^C. */
3190 static void
3191 async_remote_interrupt (gdb_client_data arg)
3192 {
3193 if (remote_debug)
3194 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3195
3196 target_stop ();
3197 }
3198
3199 /* Perform interrupt, if the first attempt did not succeed. Just give
3200 up on the target alltogether. */
3201 void
3202 async_remote_interrupt_twice (gdb_client_data arg)
3203 {
3204 if (remote_debug)
3205 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3206
3207 interrupt_query ();
3208 }
3209
3210 /* Reinstall the usual SIGINT handlers, after the target has
3211 stopped. */
3212 static void
3213 cleanup_sigint_signal_handler (void *dummy)
3214 {
3215 signal (SIGINT, handle_sigint);
3216 }
3217
3218 /* Send ^C to target to halt it. Target will respond, and send us a
3219 packet. */
3220 static void (*ofunc) (int);
3221
3222 /* The command line interface's stop routine. This function is installed
3223 as a signal handler for SIGINT. The first time a user requests a
3224 stop, we call remote_stop to send a break or ^C. If there is no
3225 response from the target (it didn't stop when the user requested it),
3226 we ask the user if he'd like to detach from the target. */
3227 static void
3228 remote_interrupt (int signo)
3229 {
3230 /* If this doesn't work, try more severe steps. */
3231 signal (signo, remote_interrupt_twice);
3232
3233 gdb_call_async_signal_handler (sigint_remote_token, 1);
3234 }
3235
3236 /* The user typed ^C twice. */
3237
3238 static void
3239 remote_interrupt_twice (int signo)
3240 {
3241 signal (signo, ofunc);
3242 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3243 signal (signo, remote_interrupt);
3244 }
3245
3246 /* This is the generic stop called via the target vector. When a target
3247 interrupt is requested, either by the command line or the GUI, we
3248 will eventually end up here. */
3249 static void
3250 remote_stop (void)
3251 {
3252 /* Send a break or a ^C, depending on user preference. */
3253 if (remote_debug)
3254 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3255
3256 if (remote_break)
3257 serial_send_break (remote_desc);
3258 else
3259 serial_write (remote_desc, "\003", 1);
3260 }
3261
3262 /* Ask the user what to do when an interrupt is received. */
3263
3264 static void
3265 interrupt_query (void)
3266 {
3267 target_terminal_ours ();
3268
3269 if (query ("Interrupted while waiting for the program.\n\
3270 Give up (and stop debugging it)? "))
3271 {
3272 target_mourn_inferior ();
3273 signal (SIGINT, handle_sigint);
3274 deprecated_throw_reason (RETURN_QUIT);
3275 }
3276
3277 target_terminal_inferior ();
3278 }
3279
3280 /* Enable/disable target terminal ownership. Most targets can use
3281 terminal groups to control terminal ownership. Remote targets are
3282 different in that explicit transfer of ownership to/from GDB/target
3283 is required. */
3284
3285 static void
3286 remote_terminal_inferior (void)
3287 {
3288 if (!remote_async_permitted)
3289 /* Nothing to do. */
3290 return;
3291
3292 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3293 sync_execution here. This function should only be called when
3294 GDB is resuming the inferior in the forground. A background
3295 resume (``run&'') should leave GDB in control of the terminal and
3296 consequently should not call this code. */
3297 if (!sync_execution)
3298 return;
3299 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3300 calls target_terminal_*() idenpotent. The event-loop GDB talking
3301 to an asynchronous target with a synchronous command calls this
3302 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3303 stops trying to transfer the terminal to the target when it
3304 shouldn't this guard can go away. */
3305 if (!remote_async_terminal_ours_p)
3306 return;
3307 delete_file_handler (input_fd);
3308 remote_async_terminal_ours_p = 0;
3309 initialize_sigint_signal_handler ();
3310 /* NOTE: At this point we could also register our selves as the
3311 recipient of all input. Any characters typed could then be
3312 passed on down to the target. */
3313 }
3314
3315 static void
3316 remote_terminal_ours (void)
3317 {
3318 if (!remote_async_permitted)
3319 /* Nothing to do. */
3320 return;
3321
3322 /* See FIXME in remote_terminal_inferior. */
3323 if (!sync_execution)
3324 return;
3325 /* See FIXME in remote_terminal_inferior. */
3326 if (remote_async_terminal_ours_p)
3327 return;
3328 cleanup_sigint_signal_handler (NULL);
3329 add_file_handler (input_fd, stdin_event_handler, 0);
3330 remote_async_terminal_ours_p = 1;
3331 }
3332
3333 void
3334 remote_console_output (char *msg)
3335 {
3336 char *p;
3337
3338 for (p = msg; p[0] && p[1]; p += 2)
3339 {
3340 char tb[2];
3341 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3342 tb[0] = c;
3343 tb[1] = 0;
3344 fputs_unfiltered (tb, gdb_stdtarg);
3345 }
3346 gdb_flush (gdb_stdtarg);
3347 }
3348
3349 /* Wait until the remote machine stops, then return,
3350 storing status in STATUS just as `wait' would.
3351 Returns "pid", which in the case of a multi-threaded
3352 remote OS, is the thread-id. */
3353
3354 static ptid_t
3355 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 struct remote_arch_state *rsa = get_remote_arch_state ();
3359 ULONGEST thread_num = -1;
3360 ULONGEST addr;
3361 int solibs_changed = 0;
3362
3363 status->kind = TARGET_WAITKIND_EXITED;
3364 status->value.integer = 0;
3365
3366 while (1)
3367 {
3368 char *buf, *p;
3369
3370 if (rs->cached_wait_status)
3371 /* Use the cached wait status, but only once. */
3372 rs->cached_wait_status = 0;
3373 else
3374 {
3375 if (!target_is_async_p ())
3376 {
3377 ofunc = signal (SIGINT, remote_interrupt);
3378 /* If the user hit C-c before this packet, or between packets,
3379 pretend that it was hit right here. */
3380 if (quit_flag)
3381 {
3382 quit_flag = 0;
3383 remote_interrupt (SIGINT);
3384 }
3385 }
3386 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3387 _never_ wait for ever -> test on target_is_async_p().
3388 However, before we do that we need to ensure that the caller
3389 knows how to take the target into/out of async mode. */
3390 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3391 if (!target_is_async_p ())
3392 signal (SIGINT, ofunc);
3393 }
3394
3395 buf = rs->buf;
3396
3397 remote_stopped_by_watchpoint_p = 0;
3398
3399 switch (buf[0])
3400 {
3401 case 'E': /* Error of some sort. */
3402 /* We're out of sync with the target now. Did it continue or not?
3403 Not is more likely, so report a stop. */
3404 warning (_("Remote failure reply: %s"), buf);
3405 status->kind = TARGET_WAITKIND_STOPPED;
3406 status->value.sig = TARGET_SIGNAL_0;
3407 goto got_status;
3408 case 'F': /* File-I/O request. */
3409 remote_fileio_request (buf);
3410 continue;
3411 case 'T': /* Status with PC, SP, FP, ... */
3412 {
3413 gdb_byte regs[MAX_REGISTER_SIZE];
3414
3415 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3416 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3417 ss = signal number
3418 n... = register number
3419 r... = register contents
3420 */
3421 p = &buf[3]; /* after Txx */
3422
3423 while (*p)
3424 {
3425 char *p1;
3426 char *p_temp;
3427 int fieldsize;
3428 LONGEST pnum = 0;
3429
3430 /* If the packet contains a register number, save it
3431 in pnum and set p1 to point to the character
3432 following it. Otherwise p1 points to p. */
3433
3434 /* If this packet is an awatch packet, don't parse the
3435 'a' as a register number. */
3436
3437 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3438 {
3439 /* Read the ``P'' register number. */
3440 pnum = strtol (p, &p_temp, 16);
3441 p1 = p_temp;
3442 }
3443 else
3444 p1 = p;
3445
3446 if (p1 == p) /* No register number present here. */
3447 {
3448 p1 = strchr (p, ':');
3449 if (p1 == NULL)
3450 error (_("Malformed packet(a) (missing colon): %s\n\
3451 Packet: '%s'\n"),
3452 p, buf);
3453 if (strncmp (p, "thread", p1 - p) == 0)
3454 {
3455 p_temp = unpack_varlen_hex (++p1, &thread_num);
3456 record_currthread (thread_num);
3457 p = p_temp;
3458 }
3459 else if ((strncmp (p, "watch", p1 - p) == 0)
3460 || (strncmp (p, "rwatch", p1 - p) == 0)
3461 || (strncmp (p, "awatch", p1 - p) == 0))
3462 {
3463 remote_stopped_by_watchpoint_p = 1;
3464 p = unpack_varlen_hex (++p1, &addr);
3465 remote_watch_data_address = (CORE_ADDR)addr;
3466 }
3467 else if (strncmp (p, "library", p1 - p) == 0)
3468 {
3469 p1++;
3470 p_temp = p1;
3471 while (*p_temp && *p_temp != ';')
3472 p_temp++;
3473
3474 solibs_changed = 1;
3475 p = p_temp;
3476 }
3477 else
3478 {
3479 /* Silently skip unknown optional info. */
3480 p_temp = strchr (p1 + 1, ';');
3481 if (p_temp)
3482 p = p_temp;
3483 }
3484 }
3485 else
3486 {
3487 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3488 p = p1;
3489
3490 if (*p++ != ':')
3491 error (_("Malformed packet(b) (missing colon): %s\n\
3492 Packet: '%s'\n"),
3493 p, buf);
3494
3495 if (reg == NULL)
3496 error (_("Remote sent bad register number %s: %s\n\
3497 Packet: '%s'\n"),
3498 phex_nz (pnum, 0), p, buf);
3499
3500 fieldsize = hex2bin (p, regs,
3501 register_size (current_gdbarch,
3502 reg->regnum));
3503 p += 2 * fieldsize;
3504 if (fieldsize < register_size (current_gdbarch,
3505 reg->regnum))
3506 warning (_("Remote reply is too short: %s"), buf);
3507 regcache_raw_supply (get_current_regcache (),
3508 reg->regnum, regs);
3509 }
3510
3511 if (*p++ != ';')
3512 error (_("Remote register badly formatted: %s\nhere: %s"),
3513 buf, p);
3514 }
3515 }
3516 /* fall through */
3517 case 'S': /* Old style status, just signal only. */
3518 if (solibs_changed)
3519 status->kind = TARGET_WAITKIND_LOADED;
3520 else
3521 {
3522 status->kind = TARGET_WAITKIND_STOPPED;
3523 status->value.sig = (enum target_signal)
3524 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3525 }
3526
3527 if (buf[3] == 'p')
3528 {
3529 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3530 record_currthread (thread_num);
3531 }
3532 goto got_status;
3533 case 'W': /* Target exited. */
3534 {
3535 /* The remote process exited. */
3536 status->kind = TARGET_WAITKIND_EXITED;
3537 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3538 goto got_status;
3539 }
3540 case 'X':
3541 status->kind = TARGET_WAITKIND_SIGNALLED;
3542 status->value.sig = (enum target_signal)
3543 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3544
3545 goto got_status;
3546 case 'O': /* Console output. */
3547 remote_console_output (buf + 1);
3548 if (target_can_async_p ())
3549 {
3550 /* Return immediately to the event loop. The event loop
3551 will still be waiting on the inferior afterwards. */
3552 status->kind = TARGET_WAITKIND_IGNORE;
3553 goto got_status;
3554 }
3555 else
3556 continue;
3557 case '\0':
3558 if (last_sent_signal != TARGET_SIGNAL_0)
3559 {
3560 /* Zero length reply means that we tried 'S' or 'C' and
3561 the remote system doesn't support it. */
3562 target_terminal_ours_for_output ();
3563 printf_filtered
3564 ("Can't send signals to this remote system. %s not sent.\n",
3565 target_signal_to_name (last_sent_signal));
3566 last_sent_signal = TARGET_SIGNAL_0;
3567 target_terminal_inferior ();
3568
3569 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3570 putpkt ((char *) buf);
3571 continue;
3572 }
3573 /* else fallthrough */
3574 default:
3575 warning (_("Invalid remote reply: %s"), buf);
3576 continue;
3577 }
3578 }
3579 got_status:
3580 if (thread_num != -1)
3581 {
3582 return pid_to_ptid (thread_num);
3583 }
3584 return inferior_ptid;
3585 }
3586
3587 /* Fetch a single register using a 'p' packet. */
3588
3589 static int
3590 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3591 {
3592 struct remote_state *rs = get_remote_state ();
3593 char *buf, *p;
3594 char regp[MAX_REGISTER_SIZE];
3595 int i;
3596
3597 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3598 return 0;
3599
3600 if (reg->pnum == -1)
3601 return 0;
3602
3603 p = rs->buf;
3604 *p++ = 'p';
3605 p += hexnumstr (p, reg->pnum);
3606 *p++ = '\0';
3607 remote_send (&rs->buf, &rs->buf_size);
3608
3609 buf = rs->buf;
3610
3611 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3612 {
3613 case PACKET_OK:
3614 break;
3615 case PACKET_UNKNOWN:
3616 return 0;
3617 case PACKET_ERROR:
3618 error (_("Could not fetch register \"%s\""),
3619 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3620 }
3621
3622 /* If this register is unfetchable, tell the regcache. */
3623 if (buf[0] == 'x')
3624 {
3625 regcache_raw_supply (regcache, reg->regnum, NULL);
3626 return 1;
3627 }
3628
3629 /* Otherwise, parse and supply the value. */
3630 p = buf;
3631 i = 0;
3632 while (p[0] != 0)
3633 {
3634 if (p[1] == 0)
3635 error (_("fetch_register_using_p: early buf termination"));
3636
3637 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3638 p += 2;
3639 }
3640 regcache_raw_supply (regcache, reg->regnum, regp);
3641 return 1;
3642 }
3643
3644 /* Fetch the registers included in the target's 'g' packet. */
3645
3646 static int
3647 send_g_packet (void)
3648 {
3649 struct remote_state *rs = get_remote_state ();
3650 int i, buf_len;
3651 char *p;
3652 char *regs;
3653
3654 sprintf (rs->buf, "g");
3655 remote_send (&rs->buf, &rs->buf_size);
3656
3657 /* We can get out of synch in various cases. If the first character
3658 in the buffer is not a hex character, assume that has happened
3659 and try to fetch another packet to read. */
3660 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3661 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3662 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3663 && rs->buf[0] != 'x') /* New: unavailable register value. */
3664 {
3665 if (remote_debug)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "Bad register packet; fetching a new packet\n");
3668 getpkt (&rs->buf, &rs->buf_size, 0);
3669 }
3670
3671 buf_len = strlen (rs->buf);
3672
3673 /* Sanity check the received packet. */
3674 if (buf_len % 2 != 0)
3675 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3676
3677 return buf_len / 2;
3678 }
3679
3680 static void
3681 process_g_packet (struct regcache *regcache)
3682 {
3683 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3684 struct remote_state *rs = get_remote_state ();
3685 struct remote_arch_state *rsa = get_remote_arch_state ();
3686 int i, buf_len;
3687 char *p;
3688 char *regs;
3689
3690 buf_len = strlen (rs->buf);
3691
3692 /* Further sanity checks, with knowledge of the architecture. */
3693 if (buf_len > 2 * rsa->sizeof_g_packet)
3694 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3695
3696 /* Save the size of the packet sent to us by the target. It is used
3697 as a heuristic when determining the max size of packets that the
3698 target can safely receive. */
3699 if (rsa->actual_register_packet_size == 0)
3700 rsa->actual_register_packet_size = buf_len;
3701
3702 /* If this is smaller than we guessed the 'g' packet would be,
3703 update our records. A 'g' reply that doesn't include a register's
3704 value implies either that the register is not available, or that
3705 the 'p' packet must be used. */
3706 if (buf_len < 2 * rsa->sizeof_g_packet)
3707 {
3708 rsa->sizeof_g_packet = buf_len / 2;
3709
3710 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3711 {
3712 if (rsa->regs[i].pnum == -1)
3713 continue;
3714
3715 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3716 rsa->regs[i].in_g_packet = 0;
3717 else
3718 rsa->regs[i].in_g_packet = 1;
3719 }
3720 }
3721
3722 regs = alloca (rsa->sizeof_g_packet);
3723
3724 /* Unimplemented registers read as all bits zero. */
3725 memset (regs, 0, rsa->sizeof_g_packet);
3726
3727 /* Reply describes registers byte by byte, each byte encoded as two
3728 hex characters. Suck them all up, then supply them to the
3729 register cacheing/storage mechanism. */
3730
3731 p = rs->buf;
3732 for (i = 0; i < rsa->sizeof_g_packet; i++)
3733 {
3734 if (p[0] == 0 || p[1] == 0)
3735 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3736 internal_error (__FILE__, __LINE__,
3737 "unexpected end of 'g' packet reply");
3738
3739 if (p[0] == 'x' && p[1] == 'x')
3740 regs[i] = 0; /* 'x' */
3741 else
3742 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3743 p += 2;
3744 }
3745
3746 {
3747 int i;
3748 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3749 {
3750 struct packet_reg *r = &rsa->regs[i];
3751 if (r->in_g_packet)
3752 {
3753 if (r->offset * 2 >= strlen (rs->buf))
3754 /* This shouldn't happen - we adjusted in_g_packet above. */
3755 internal_error (__FILE__, __LINE__,
3756 "unexpected end of 'g' packet reply");
3757 else if (rs->buf[r->offset * 2] == 'x')
3758 {
3759 gdb_assert (r->offset * 2 < strlen (rs->buf));
3760 /* The register isn't available, mark it as such (at
3761 the same time setting the value to zero). */
3762 regcache_raw_supply (regcache, r->regnum, NULL);
3763 }
3764 else
3765 regcache_raw_supply (regcache, r->regnum,
3766 regs + r->offset);
3767 }
3768 }
3769 }
3770 }
3771
3772 static void
3773 fetch_registers_using_g (struct regcache *regcache)
3774 {
3775 send_g_packet ();
3776 process_g_packet (regcache);
3777 }
3778
3779 static void
3780 remote_fetch_registers (struct regcache *regcache, int regnum)
3781 {
3782 struct remote_state *rs = get_remote_state ();
3783 struct remote_arch_state *rsa = get_remote_arch_state ();
3784 int i;
3785
3786 set_thread (PIDGET (inferior_ptid), 1);
3787
3788 if (regnum >= 0)
3789 {
3790 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3791 gdb_assert (reg != NULL);
3792
3793 /* If this register might be in the 'g' packet, try that first -
3794 we are likely to read more than one register. If this is the
3795 first 'g' packet, we might be overly optimistic about its
3796 contents, so fall back to 'p'. */
3797 if (reg->in_g_packet)
3798 {
3799 fetch_registers_using_g (regcache);
3800 if (reg->in_g_packet)
3801 return;
3802 }
3803
3804 if (fetch_register_using_p (regcache, reg))
3805 return;
3806
3807 /* This register is not available. */
3808 regcache_raw_supply (regcache, reg->regnum, NULL);
3809
3810 return;
3811 }
3812
3813 fetch_registers_using_g (regcache);
3814
3815 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3816 if (!rsa->regs[i].in_g_packet)
3817 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3818 {
3819 /* This register is not available. */
3820 regcache_raw_supply (regcache, i, NULL);
3821 }
3822 }
3823
3824 /* Prepare to store registers. Since we may send them all (using a
3825 'G' request), we have to read out the ones we don't want to change
3826 first. */
3827
3828 static void
3829 remote_prepare_to_store (struct regcache *regcache)
3830 {
3831 struct remote_arch_state *rsa = get_remote_arch_state ();
3832 int i;
3833 gdb_byte buf[MAX_REGISTER_SIZE];
3834
3835 /* Make sure the entire registers array is valid. */
3836 switch (remote_protocol_packets[PACKET_P].support)
3837 {
3838 case PACKET_DISABLE:
3839 case PACKET_SUPPORT_UNKNOWN:
3840 /* Make sure all the necessary registers are cached. */
3841 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3842 if (rsa->regs[i].in_g_packet)
3843 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3844 break;
3845 case PACKET_ENABLE:
3846 break;
3847 }
3848 }
3849
3850 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3851 packet was not recognized. */
3852
3853 static int
3854 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3855 {
3856 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3857 struct remote_state *rs = get_remote_state ();
3858 struct remote_arch_state *rsa = get_remote_arch_state ();
3859 /* Try storing a single register. */
3860 char *buf = rs->buf;
3861 gdb_byte regp[MAX_REGISTER_SIZE];
3862 char *p;
3863
3864 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3865 return 0;
3866
3867 if (reg->pnum == -1)
3868 return 0;
3869
3870 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3871 p = buf + strlen (buf);
3872 regcache_raw_collect (regcache, reg->regnum, regp);
3873 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3874 remote_send (&rs->buf, &rs->buf_size);
3875
3876 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3877 {
3878 case PACKET_OK:
3879 return 1;
3880 case PACKET_ERROR:
3881 error (_("Could not write register \"%s\""),
3882 gdbarch_register_name (gdbarch, reg->regnum));
3883 case PACKET_UNKNOWN:
3884 return 0;
3885 default:
3886 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3887 }
3888 }
3889
3890 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3891 contents of the register cache buffer. FIXME: ignores errors. */
3892
3893 static void
3894 store_registers_using_G (const struct regcache *regcache)
3895 {
3896 struct remote_state *rs = get_remote_state ();
3897 struct remote_arch_state *rsa = get_remote_arch_state ();
3898 gdb_byte *regs;
3899 char *p;
3900
3901 /* Extract all the registers in the regcache copying them into a
3902 local buffer. */
3903 {
3904 int i;
3905 regs = alloca (rsa->sizeof_g_packet);
3906 memset (regs, 0, rsa->sizeof_g_packet);
3907 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3908 {
3909 struct packet_reg *r = &rsa->regs[i];
3910 if (r->in_g_packet)
3911 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3912 }
3913 }
3914
3915 /* Command describes registers byte by byte,
3916 each byte encoded as two hex characters. */
3917 p = rs->buf;
3918 *p++ = 'G';
3919 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3920 updated. */
3921 bin2hex (regs, p, rsa->sizeof_g_packet);
3922 remote_send (&rs->buf, &rs->buf_size);
3923 }
3924
3925 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3926 of the register cache buffer. FIXME: ignores errors. */
3927
3928 static void
3929 remote_store_registers (struct regcache *regcache, int regnum)
3930 {
3931 struct remote_state *rs = get_remote_state ();
3932 struct remote_arch_state *rsa = get_remote_arch_state ();
3933 int i;
3934
3935 set_thread (PIDGET (inferior_ptid), 1);
3936
3937 if (regnum >= 0)
3938 {
3939 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3940 gdb_assert (reg != NULL);
3941
3942 /* Always prefer to store registers using the 'P' packet if
3943 possible; we often change only a small number of registers.
3944 Sometimes we change a larger number; we'd need help from a
3945 higher layer to know to use 'G'. */
3946 if (store_register_using_P (regcache, reg))
3947 return;
3948
3949 /* For now, don't complain if we have no way to write the
3950 register. GDB loses track of unavailable registers too
3951 easily. Some day, this may be an error. We don't have
3952 any way to read the register, either... */
3953 if (!reg->in_g_packet)
3954 return;
3955
3956 store_registers_using_G (regcache);
3957 return;
3958 }
3959
3960 store_registers_using_G (regcache);
3961
3962 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3963 if (!rsa->regs[i].in_g_packet)
3964 if (!store_register_using_P (regcache, &rsa->regs[i]))
3965 /* See above for why we do not issue an error here. */
3966 continue;
3967 }
3968 \f
3969
3970 /* Return the number of hex digits in num. */
3971
3972 static int
3973 hexnumlen (ULONGEST num)
3974 {
3975 int i;
3976
3977 for (i = 0; num != 0; i++)
3978 num >>= 4;
3979
3980 return max (i, 1);
3981 }
3982
3983 /* Set BUF to the minimum number of hex digits representing NUM. */
3984
3985 static int
3986 hexnumstr (char *buf, ULONGEST num)
3987 {
3988 int len = hexnumlen (num);
3989 return hexnumnstr (buf, num, len);
3990 }
3991
3992
3993 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3994
3995 static int
3996 hexnumnstr (char *buf, ULONGEST num, int width)
3997 {
3998 int i;
3999
4000 buf[width] = '\0';
4001
4002 for (i = width - 1; i >= 0; i--)
4003 {
4004 buf[i] = "0123456789abcdef"[(num & 0xf)];
4005 num >>= 4;
4006 }
4007
4008 return width;
4009 }
4010
4011 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4012
4013 static CORE_ADDR
4014 remote_address_masked (CORE_ADDR addr)
4015 {
4016 int address_size = remote_address_size;
4017 /* If "remoteaddresssize" was not set, default to target address size. */
4018 if (!address_size)
4019 address_size = gdbarch_addr_bit (current_gdbarch);
4020
4021 if (address_size > 0
4022 && address_size < (sizeof (ULONGEST) * 8))
4023 {
4024 /* Only create a mask when that mask can safely be constructed
4025 in a ULONGEST variable. */
4026 ULONGEST mask = 1;
4027 mask = (mask << address_size) - 1;
4028 addr &= mask;
4029 }
4030 return addr;
4031 }
4032
4033 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4034 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4035 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4036 (which may be more than *OUT_LEN due to escape characters). The
4037 total number of bytes in the output buffer will be at most
4038 OUT_MAXLEN. */
4039
4040 static int
4041 remote_escape_output (const gdb_byte *buffer, int len,
4042 gdb_byte *out_buf, int *out_len,
4043 int out_maxlen)
4044 {
4045 int input_index, output_index;
4046
4047 output_index = 0;
4048 for (input_index = 0; input_index < len; input_index++)
4049 {
4050 gdb_byte b = buffer[input_index];
4051
4052 if (b == '$' || b == '#' || b == '}')
4053 {
4054 /* These must be escaped. */
4055 if (output_index + 2 > out_maxlen)
4056 break;
4057 out_buf[output_index++] = '}';
4058 out_buf[output_index++] = b ^ 0x20;
4059 }
4060 else
4061 {
4062 if (output_index + 1 > out_maxlen)
4063 break;
4064 out_buf[output_index++] = b;
4065 }
4066 }
4067
4068 *out_len = input_index;
4069 return output_index;
4070 }
4071
4072 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4073 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4074 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4075
4076 This function reverses remote_escape_output. It allows more
4077 escaped characters than that function does, in particular because
4078 '*' must be escaped to avoid the run-length encoding processing
4079 in reading packets. */
4080
4081 static int
4082 remote_unescape_input (const gdb_byte *buffer, int len,
4083 gdb_byte *out_buf, int out_maxlen)
4084 {
4085 int input_index, output_index;
4086 int escaped;
4087
4088 output_index = 0;
4089 escaped = 0;
4090 for (input_index = 0; input_index < len; input_index++)
4091 {
4092 gdb_byte b = buffer[input_index];
4093
4094 if (output_index + 1 > out_maxlen)
4095 {
4096 warning (_("Received too much data from remote target;"
4097 " ignoring overflow."));
4098 return output_index;
4099 }
4100
4101 if (escaped)
4102 {
4103 out_buf[output_index++] = b ^ 0x20;
4104 escaped = 0;
4105 }
4106 else if (b == '}')
4107 escaped = 1;
4108 else
4109 out_buf[output_index++] = b;
4110 }
4111
4112 if (escaped)
4113 error (_("Unmatched escape character in target response."));
4114
4115 return output_index;
4116 }
4117
4118 /* Determine whether the remote target supports binary downloading.
4119 This is accomplished by sending a no-op memory write of zero length
4120 to the target at the specified address. It does not suffice to send
4121 the whole packet, since many stubs strip the eighth bit and
4122 subsequently compute a wrong checksum, which causes real havoc with
4123 remote_write_bytes.
4124
4125 NOTE: This can still lose if the serial line is not eight-bit
4126 clean. In cases like this, the user should clear "remote
4127 X-packet". */
4128
4129 static void
4130 check_binary_download (CORE_ADDR addr)
4131 {
4132 struct remote_state *rs = get_remote_state ();
4133
4134 switch (remote_protocol_packets[PACKET_X].support)
4135 {
4136 case PACKET_DISABLE:
4137 break;
4138 case PACKET_ENABLE:
4139 break;
4140 case PACKET_SUPPORT_UNKNOWN:
4141 {
4142 char *p;
4143
4144 p = rs->buf;
4145 *p++ = 'X';
4146 p += hexnumstr (p, (ULONGEST) addr);
4147 *p++ = ',';
4148 p += hexnumstr (p, (ULONGEST) 0);
4149 *p++ = ':';
4150 *p = '\0';
4151
4152 putpkt_binary (rs->buf, (int) (p - rs->buf));
4153 getpkt (&rs->buf, &rs->buf_size, 0);
4154
4155 if (rs->buf[0] == '\0')
4156 {
4157 if (remote_debug)
4158 fprintf_unfiltered (gdb_stdlog,
4159 "binary downloading NOT suppported by target\n");
4160 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4161 }
4162 else
4163 {
4164 if (remote_debug)
4165 fprintf_unfiltered (gdb_stdlog,
4166 "binary downloading suppported by target\n");
4167 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4168 }
4169 break;
4170 }
4171 }
4172 }
4173
4174 /* Write memory data directly to the remote machine.
4175 This does not inform the data cache; the data cache uses this.
4176 HEADER is the starting part of the packet.
4177 MEMADDR is the address in the remote memory space.
4178 MYADDR is the address of the buffer in our space.
4179 LEN is the number of bytes.
4180 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4181 should send data as binary ('X'), or hex-encoded ('M').
4182
4183 The function creates packet of the form
4184 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4185
4186 where encoding of <DATA> is termined by PACKET_FORMAT.
4187
4188 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4189 are omitted.
4190
4191 Returns the number of bytes transferred, or 0 (setting errno) for
4192 error. Only transfer a single packet. */
4193
4194 static int
4195 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4196 const gdb_byte *myaddr, int len,
4197 char packet_format, int use_length)
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *p;
4201 char *plen = NULL;
4202 int plenlen = 0;
4203 int todo;
4204 int nr_bytes;
4205 int payload_size;
4206 int payload_length;
4207 int header_length;
4208
4209 if (packet_format != 'X' && packet_format != 'M')
4210 internal_error (__FILE__, __LINE__,
4211 "remote_write_bytes_aux: bad packet format");
4212
4213 if (len <= 0)
4214 return 0;
4215
4216 payload_size = get_memory_write_packet_size ();
4217
4218 /* The packet buffer will be large enough for the payload;
4219 get_memory_packet_size ensures this. */
4220 rs->buf[0] = '\0';
4221
4222 /* Compute the size of the actual payload by subtracting out the
4223 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4224 */
4225 payload_size -= strlen ("$,:#NN");
4226 if (!use_length)
4227 /* The comma won't be used. */
4228 payload_size += 1;
4229 header_length = strlen (header);
4230 payload_size -= header_length;
4231 payload_size -= hexnumlen (memaddr);
4232
4233 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4234
4235 strcat (rs->buf, header);
4236 p = rs->buf + strlen (header);
4237
4238 /* Compute a best guess of the number of bytes actually transfered. */
4239 if (packet_format == 'X')
4240 {
4241 /* Best guess at number of bytes that will fit. */
4242 todo = min (len, payload_size);
4243 if (use_length)
4244 payload_size -= hexnumlen (todo);
4245 todo = min (todo, payload_size);
4246 }
4247 else
4248 {
4249 /* Num bytes that will fit. */
4250 todo = min (len, payload_size / 2);
4251 if (use_length)
4252 payload_size -= hexnumlen (todo);
4253 todo = min (todo, payload_size / 2);
4254 }
4255
4256 if (todo <= 0)
4257 internal_error (__FILE__, __LINE__,
4258 _("minumum packet size too small to write data"));
4259
4260 /* If we already need another packet, then try to align the end
4261 of this packet to a useful boundary. */
4262 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4263 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4264
4265 /* Append "<memaddr>". */
4266 memaddr = remote_address_masked (memaddr);
4267 p += hexnumstr (p, (ULONGEST) memaddr);
4268
4269 if (use_length)
4270 {
4271 /* Append ",". */
4272 *p++ = ',';
4273
4274 /* Append <len>. Retain the location/size of <len>. It may need to
4275 be adjusted once the packet body has been created. */
4276 plen = p;
4277 plenlen = hexnumstr (p, (ULONGEST) todo);
4278 p += plenlen;
4279 }
4280
4281 /* Append ":". */
4282 *p++ = ':';
4283 *p = '\0';
4284
4285 /* Append the packet body. */
4286 if (packet_format == 'X')
4287 {
4288 /* Binary mode. Send target system values byte by byte, in
4289 increasing byte addresses. Only escape certain critical
4290 characters. */
4291 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4292 payload_size);
4293
4294 /* If not all TODO bytes fit, then we'll need another packet. Make
4295 a second try to keep the end of the packet aligned. Don't do
4296 this if the packet is tiny. */
4297 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4298 {
4299 int new_nr_bytes;
4300
4301 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4302 - memaddr);
4303 if (new_nr_bytes != nr_bytes)
4304 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4305 p, &nr_bytes,
4306 payload_size);
4307 }
4308
4309 p += payload_length;
4310 if (use_length && nr_bytes < todo)
4311 {
4312 /* Escape chars have filled up the buffer prematurely,
4313 and we have actually sent fewer bytes than planned.
4314 Fix-up the length field of the packet. Use the same
4315 number of characters as before. */
4316 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4317 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4318 }
4319 }
4320 else
4321 {
4322 /* Normal mode: Send target system values byte by byte, in
4323 increasing byte addresses. Each byte is encoded as a two hex
4324 value. */
4325 nr_bytes = bin2hex (myaddr, p, todo);
4326 p += 2 * nr_bytes;
4327 }
4328
4329 putpkt_binary (rs->buf, (int) (p - rs->buf));
4330 getpkt (&rs->buf, &rs->buf_size, 0);
4331
4332 if (rs->buf[0] == 'E')
4333 {
4334 /* There is no correspondance between what the remote protocol
4335 uses for errors and errno codes. We would like a cleaner way
4336 of representing errors (big enough to include errno codes,
4337 bfd_error codes, and others). But for now just return EIO. */
4338 errno = EIO;
4339 return 0;
4340 }
4341
4342 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4343 fewer bytes than we'd planned. */
4344 return nr_bytes;
4345 }
4346
4347 /* Write memory data directly to the remote machine.
4348 This does not inform the data cache; the data cache uses this.
4349 MEMADDR is the address in the remote memory space.
4350 MYADDR is the address of the buffer in our space.
4351 LEN is the number of bytes.
4352
4353 Returns number of bytes transferred, or 0 (setting errno) for
4354 error. Only transfer a single packet. */
4355
4356 int
4357 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4358 {
4359 char *packet_format = 0;
4360
4361 /* Check whether the target supports binary download. */
4362 check_binary_download (memaddr);
4363
4364 switch (remote_protocol_packets[PACKET_X].support)
4365 {
4366 case PACKET_ENABLE:
4367 packet_format = "X";
4368 break;
4369 case PACKET_DISABLE:
4370 packet_format = "M";
4371 break;
4372 case PACKET_SUPPORT_UNKNOWN:
4373 internal_error (__FILE__, __LINE__,
4374 _("remote_write_bytes: bad internal state"));
4375 default:
4376 internal_error (__FILE__, __LINE__, _("bad switch"));
4377 }
4378
4379 return remote_write_bytes_aux (packet_format,
4380 memaddr, myaddr, len, packet_format[0], 1);
4381 }
4382
4383 /* Read memory data directly from the remote machine.
4384 This does not use the data cache; the data cache uses this.
4385 MEMADDR is the address in the remote memory space.
4386 MYADDR is the address of the buffer in our space.
4387 LEN is the number of bytes.
4388
4389 Returns number of bytes transferred, or 0 for error. */
4390
4391 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4392 remote targets) shouldn't attempt to read the entire buffer.
4393 Instead it should read a single packet worth of data and then
4394 return the byte size of that packet to the caller. The caller (its
4395 caller and its callers caller ;-) already contains code for
4396 handling partial reads. */
4397
4398 int
4399 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4400 {
4401 struct remote_state *rs = get_remote_state ();
4402 int max_buf_size; /* Max size of packet output buffer. */
4403 int origlen;
4404
4405 if (len <= 0)
4406 return 0;
4407
4408 max_buf_size = get_memory_read_packet_size ();
4409 /* The packet buffer will be large enough for the payload;
4410 get_memory_packet_size ensures this. */
4411
4412 origlen = len;
4413 while (len > 0)
4414 {
4415 char *p;
4416 int todo;
4417 int i;
4418
4419 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4420
4421 /* construct "m"<memaddr>","<len>" */
4422 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4423 memaddr = remote_address_masked (memaddr);
4424 p = rs->buf;
4425 *p++ = 'm';
4426 p += hexnumstr (p, (ULONGEST) memaddr);
4427 *p++ = ',';
4428 p += hexnumstr (p, (ULONGEST) todo);
4429 *p = '\0';
4430
4431 putpkt (rs->buf);
4432 getpkt (&rs->buf, &rs->buf_size, 0);
4433
4434 if (rs->buf[0] == 'E'
4435 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4436 && rs->buf[3] == '\0')
4437 {
4438 /* There is no correspondance between what the remote
4439 protocol uses for errors and errno codes. We would like
4440 a cleaner way of representing errors (big enough to
4441 include errno codes, bfd_error codes, and others). But
4442 for now just return EIO. */
4443 errno = EIO;
4444 return 0;
4445 }
4446
4447 /* Reply describes memory byte by byte,
4448 each byte encoded as two hex characters. */
4449
4450 p = rs->buf;
4451 if ((i = hex2bin (p, myaddr, todo)) < todo)
4452 {
4453 /* Reply is short. This means that we were able to read
4454 only part of what we wanted to. */
4455 return i + (origlen - len);
4456 }
4457 myaddr += todo;
4458 memaddr += todo;
4459 len -= todo;
4460 }
4461 return origlen;
4462 }
4463 \f
4464 /* Read or write LEN bytes from inferior memory at MEMADDR,
4465 transferring to or from debugger address BUFFER. Write to inferior
4466 if SHOULD_WRITE is nonzero. Returns length of data written or
4467 read; 0 for error. TARGET is unused. */
4468
4469 static int
4470 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4471 int should_write, struct mem_attrib *attrib,
4472 struct target_ops *target)
4473 {
4474 int res;
4475
4476 if (should_write)
4477 res = remote_write_bytes (mem_addr, buffer, mem_len);
4478 else
4479 res = remote_read_bytes (mem_addr, buffer, mem_len);
4480
4481 return res;
4482 }
4483
4484 /* Sends a packet with content determined by the printf format string
4485 FORMAT and the remaining arguments, then gets the reply. Returns
4486 whether the packet was a success, a failure, or unknown. */
4487
4488 enum packet_result
4489 remote_send_printf (const char *format, ...)
4490 {
4491 struct remote_state *rs = get_remote_state ();
4492 int max_size = get_remote_packet_size ();
4493
4494 va_list ap;
4495 va_start (ap, format);
4496
4497 rs->buf[0] = '\0';
4498 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4499 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4500
4501 if (putpkt (rs->buf) < 0)
4502 error (_("Communication problem with target."));
4503
4504 rs->buf[0] = '\0';
4505 getpkt (&rs->buf, &rs->buf_size, 0);
4506
4507 return packet_check_result (rs->buf);
4508 }
4509
4510 static void
4511 restore_remote_timeout (void *p)
4512 {
4513 int value = *(int *)p;
4514 remote_timeout = value;
4515 }
4516
4517 /* Flash writing can take quite some time. We'll set
4518 effectively infinite timeout for flash operations.
4519 In future, we'll need to decide on a better approach. */
4520 static const int remote_flash_timeout = 1000;
4521
4522 static void
4523 remote_flash_erase (struct target_ops *ops,
4524 ULONGEST address, LONGEST length)
4525 {
4526 int saved_remote_timeout = remote_timeout;
4527 enum packet_result ret;
4528
4529 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4530 &saved_remote_timeout);
4531 remote_timeout = remote_flash_timeout;
4532
4533 ret = remote_send_printf ("vFlashErase:%s,%s",
4534 paddr (address),
4535 phex (length, 4));
4536 switch (ret)
4537 {
4538 case PACKET_UNKNOWN:
4539 error (_("Remote target does not support flash erase"));
4540 case PACKET_ERROR:
4541 error (_("Error erasing flash with vFlashErase packet"));
4542 default:
4543 break;
4544 }
4545
4546 do_cleanups (back_to);
4547 }
4548
4549 static LONGEST
4550 remote_flash_write (struct target_ops *ops,
4551 ULONGEST address, LONGEST length,
4552 const gdb_byte *data)
4553 {
4554 int saved_remote_timeout = remote_timeout;
4555 int ret;
4556 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4557 &saved_remote_timeout);
4558
4559 remote_timeout = remote_flash_timeout;
4560 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4561 do_cleanups (back_to);
4562
4563 return ret;
4564 }
4565
4566 static void
4567 remote_flash_done (struct target_ops *ops)
4568 {
4569 int saved_remote_timeout = remote_timeout;
4570 int ret;
4571 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4572 &saved_remote_timeout);
4573
4574 remote_timeout = remote_flash_timeout;
4575 ret = remote_send_printf ("vFlashDone");
4576 do_cleanups (back_to);
4577
4578 switch (ret)
4579 {
4580 case PACKET_UNKNOWN:
4581 error (_("Remote target does not support vFlashDone"));
4582 case PACKET_ERROR:
4583 error (_("Error finishing flash operation"));
4584 default:
4585 break;
4586 }
4587 }
4588
4589 static void
4590 remote_files_info (struct target_ops *ignore)
4591 {
4592 puts_filtered ("Debugging a target over a serial line.\n");
4593 }
4594 \f
4595 /* Stuff for dealing with the packets which are part of this protocol.
4596 See comment at top of file for details. */
4597
4598 /* Read a single character from the remote end. */
4599
4600 static int
4601 readchar (int timeout)
4602 {
4603 int ch;
4604
4605 ch = serial_readchar (remote_desc, timeout);
4606
4607 if (ch >= 0)
4608 return ch;
4609
4610 switch ((enum serial_rc) ch)
4611 {
4612 case SERIAL_EOF:
4613 target_mourn_inferior ();
4614 error (_("Remote connection closed"));
4615 /* no return */
4616 case SERIAL_ERROR:
4617 perror_with_name (_("Remote communication error"));
4618 /* no return */
4619 case SERIAL_TIMEOUT:
4620 break;
4621 }
4622 return ch;
4623 }
4624
4625 /* Send the command in *BUF to the remote machine, and read the reply
4626 into *BUF. Report an error if we get an error reply. Resize
4627 *BUF using xrealloc if necessary to hold the result, and update
4628 *SIZEOF_BUF. */
4629
4630 static void
4631 remote_send (char **buf,
4632 long *sizeof_buf)
4633 {
4634 putpkt (*buf);
4635 getpkt (buf, sizeof_buf, 0);
4636
4637 if ((*buf)[0] == 'E')
4638 error (_("Remote failure reply: %s"), *buf);
4639 }
4640
4641 /* Display a null-terminated packet on stdout, for debugging, using C
4642 string notation. */
4643
4644 static void
4645 print_packet (char *buf)
4646 {
4647 puts_filtered ("\"");
4648 fputstr_filtered (buf, '"', gdb_stdout);
4649 puts_filtered ("\"");
4650 }
4651
4652 int
4653 putpkt (char *buf)
4654 {
4655 return putpkt_binary (buf, strlen (buf));
4656 }
4657
4658 /* Send a packet to the remote machine, with error checking. The data
4659 of the packet is in BUF. The string in BUF can be at most
4660 get_remote_packet_size () - 5 to account for the $, # and checksum,
4661 and for a possible /0 if we are debugging (remote_debug) and want
4662 to print the sent packet as a string. */
4663
4664 static int
4665 putpkt_binary (char *buf, int cnt)
4666 {
4667 struct remote_state *rs = get_remote_state ();
4668 int i;
4669 unsigned char csum = 0;
4670 char *buf2 = alloca (cnt + 6);
4671
4672 int ch;
4673 int tcount = 0;
4674 char *p;
4675
4676 /* We're sending out a new packet. Make sure we don't look at a
4677 stale cached response. */
4678 rs->cached_wait_status = 0;
4679
4680 /* Copy the packet into buffer BUF2, encapsulating it
4681 and giving it a checksum. */
4682
4683 p = buf2;
4684 *p++ = '$';
4685
4686 for (i = 0; i < cnt; i++)
4687 {
4688 csum += buf[i];
4689 *p++ = buf[i];
4690 }
4691 *p++ = '#';
4692 *p++ = tohex ((csum >> 4) & 0xf);
4693 *p++ = tohex (csum & 0xf);
4694
4695 /* Send it over and over until we get a positive ack. */
4696
4697 while (1)
4698 {
4699 int started_error_output = 0;
4700
4701 if (remote_debug)
4702 {
4703 *p = '\0';
4704 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4705 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4706 fprintf_unfiltered (gdb_stdlog, "...");
4707 gdb_flush (gdb_stdlog);
4708 }
4709 if (serial_write (remote_desc, buf2, p - buf2))
4710 perror_with_name (_("putpkt: write failed"));
4711
4712 /* Read until either a timeout occurs (-2) or '+' is read. */
4713 while (1)
4714 {
4715 ch = readchar (remote_timeout);
4716
4717 if (remote_debug)
4718 {
4719 switch (ch)
4720 {
4721 case '+':
4722 case '-':
4723 case SERIAL_TIMEOUT:
4724 case '$':
4725 if (started_error_output)
4726 {
4727 putchar_unfiltered ('\n');
4728 started_error_output = 0;
4729 }
4730 }
4731 }
4732
4733 switch (ch)
4734 {
4735 case '+':
4736 if (remote_debug)
4737 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4738 return 1;
4739 case '-':
4740 if (remote_debug)
4741 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4742 case SERIAL_TIMEOUT:
4743 tcount++;
4744 if (tcount > 3)
4745 return 0;
4746 break; /* Retransmit buffer. */
4747 case '$':
4748 {
4749 if (remote_debug)
4750 fprintf_unfiltered (gdb_stdlog,
4751 "Packet instead of Ack, ignoring it\n");
4752 /* It's probably an old response sent because an ACK
4753 was lost. Gobble up the packet and ack it so it
4754 doesn't get retransmitted when we resend this
4755 packet. */
4756 skip_frame ();
4757 serial_write (remote_desc, "+", 1);
4758 continue; /* Now, go look for +. */
4759 }
4760 default:
4761 if (remote_debug)
4762 {
4763 if (!started_error_output)
4764 {
4765 started_error_output = 1;
4766 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4767 }
4768 fputc_unfiltered (ch & 0177, gdb_stdlog);
4769 }
4770 continue;
4771 }
4772 break; /* Here to retransmit. */
4773 }
4774
4775 #if 0
4776 /* This is wrong. If doing a long backtrace, the user should be
4777 able to get out next time we call QUIT, without anything as
4778 violent as interrupt_query. If we want to provide a way out of
4779 here without getting to the next QUIT, it should be based on
4780 hitting ^C twice as in remote_wait. */
4781 if (quit_flag)
4782 {
4783 quit_flag = 0;
4784 interrupt_query ();
4785 }
4786 #endif
4787 }
4788 }
4789
4790 /* Come here after finding the start of a frame when we expected an
4791 ack. Do our best to discard the rest of this packet. */
4792
4793 static void
4794 skip_frame (void)
4795 {
4796 int c;
4797
4798 while (1)
4799 {
4800 c = readchar (remote_timeout);
4801 switch (c)
4802 {
4803 case SERIAL_TIMEOUT:
4804 /* Nothing we can do. */
4805 return;
4806 case '#':
4807 /* Discard the two bytes of checksum and stop. */
4808 c = readchar (remote_timeout);
4809 if (c >= 0)
4810 c = readchar (remote_timeout);
4811
4812 return;
4813 case '*': /* Run length encoding. */
4814 /* Discard the repeat count. */
4815 c = readchar (remote_timeout);
4816 if (c < 0)
4817 return;
4818 break;
4819 default:
4820 /* A regular character. */
4821 break;
4822 }
4823 }
4824 }
4825
4826 /* Come here after finding the start of the frame. Collect the rest
4827 into *BUF, verifying the checksum, length, and handling run-length
4828 compression. NUL terminate the buffer. If there is not enough room,
4829 expand *BUF using xrealloc.
4830
4831 Returns -1 on error, number of characters in buffer (ignoring the
4832 trailing NULL) on success. (could be extended to return one of the
4833 SERIAL status indications). */
4834
4835 static long
4836 read_frame (char **buf_p,
4837 long *sizeof_buf)
4838 {
4839 unsigned char csum;
4840 long bc;
4841 int c;
4842 char *buf = *buf_p;
4843
4844 csum = 0;
4845 bc = 0;
4846
4847 while (1)
4848 {
4849 c = readchar (remote_timeout);
4850 switch (c)
4851 {
4852 case SERIAL_TIMEOUT:
4853 if (remote_debug)
4854 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4855 return -1;
4856 case '$':
4857 if (remote_debug)
4858 fputs_filtered ("Saw new packet start in middle of old one\n",
4859 gdb_stdlog);
4860 return -1; /* Start a new packet, count retries. */
4861 case '#':
4862 {
4863 unsigned char pktcsum;
4864 int check_0 = 0;
4865 int check_1 = 0;
4866
4867 buf[bc] = '\0';
4868
4869 check_0 = readchar (remote_timeout);
4870 if (check_0 >= 0)
4871 check_1 = readchar (remote_timeout);
4872
4873 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4874 {
4875 if (remote_debug)
4876 fputs_filtered ("Timeout in checksum, retrying\n",
4877 gdb_stdlog);
4878 return -1;
4879 }
4880 else if (check_0 < 0 || check_1 < 0)
4881 {
4882 if (remote_debug)
4883 fputs_filtered ("Communication error in checksum\n",
4884 gdb_stdlog);
4885 return -1;
4886 }
4887
4888 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4889 if (csum == pktcsum)
4890 return bc;
4891
4892 if (remote_debug)
4893 {
4894 fprintf_filtered (gdb_stdlog,
4895 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4896 pktcsum, csum);
4897 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4898 fputs_filtered ("\n", gdb_stdlog);
4899 }
4900 /* Number of characters in buffer ignoring trailing
4901 NULL. */
4902 return -1;
4903 }
4904 case '*': /* Run length encoding. */
4905 {
4906 int repeat;
4907 csum += c;
4908
4909 c = readchar (remote_timeout);
4910 csum += c;
4911 repeat = c - ' ' + 3; /* Compute repeat count. */
4912
4913 /* The character before ``*'' is repeated. */
4914
4915 if (repeat > 0 && repeat <= 255 && bc > 0)
4916 {
4917 if (bc + repeat - 1 >= *sizeof_buf - 1)
4918 {
4919 /* Make some more room in the buffer. */
4920 *sizeof_buf += repeat;
4921 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4922 buf = *buf_p;
4923 }
4924
4925 memset (&buf[bc], buf[bc - 1], repeat);
4926 bc += repeat;
4927 continue;
4928 }
4929
4930 buf[bc] = '\0';
4931 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4932 return -1;
4933 }
4934 default:
4935 if (bc >= *sizeof_buf - 1)
4936 {
4937 /* Make some more room in the buffer. */
4938 *sizeof_buf *= 2;
4939 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4940 buf = *buf_p;
4941 }
4942
4943 buf[bc++] = c;
4944 csum += c;
4945 continue;
4946 }
4947 }
4948 }
4949
4950 /* Read a packet from the remote machine, with error checking, and
4951 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4952 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4953 rather than timing out; this is used (in synchronous mode) to wait
4954 for a target that is is executing user code to stop. */
4955 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4956 don't have to change all the calls to getpkt to deal with the
4957 return value, because at the moment I don't know what the right
4958 thing to do it for those. */
4959 void
4960 getpkt (char **buf,
4961 long *sizeof_buf,
4962 int forever)
4963 {
4964 int timed_out;
4965
4966 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4967 }
4968
4969
4970 /* Read a packet from the remote machine, with error checking, and
4971 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4972 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4973 rather than timing out; this is used (in synchronous mode) to wait
4974 for a target that is is executing user code to stop. If FOREVER ==
4975 0, this function is allowed to time out gracefully and return an
4976 indication of this to the caller. Otherwise return the number
4977 of bytes read. */
4978 static int
4979 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4980 {
4981 struct remote_state *rs = get_remote_state ();
4982 int c;
4983 int tries;
4984 int timeout;
4985 int val;
4986
4987 /* We're reading a new response. Make sure we don't look at a
4988 previously cached response. */
4989 rs->cached_wait_status = 0;
4990
4991 strcpy (*buf, "timeout");
4992
4993 if (forever)
4994 {
4995 timeout = watchdog > 0 ? watchdog : -1;
4996 }
4997
4998 else
4999 timeout = remote_timeout;
5000
5001 #define MAX_TRIES 3
5002
5003 for (tries = 1; tries <= MAX_TRIES; tries++)
5004 {
5005 /* This can loop forever if the remote side sends us characters
5006 continuously, but if it pauses, we'll get a zero from
5007 readchar because of timeout. Then we'll count that as a
5008 retry. */
5009
5010 /* Note that we will only wait forever prior to the start of a
5011 packet. After that, we expect characters to arrive at a
5012 brisk pace. They should show up within remote_timeout
5013 intervals. */
5014
5015 do
5016 {
5017 c = readchar (timeout);
5018
5019 if (c == SERIAL_TIMEOUT)
5020 {
5021 if (forever) /* Watchdog went off? Kill the target. */
5022 {
5023 QUIT;
5024 target_mourn_inferior ();
5025 error (_("Watchdog timeout has expired. Target detached."));
5026 }
5027 if (remote_debug)
5028 fputs_filtered ("Timed out.\n", gdb_stdlog);
5029 goto retry;
5030 }
5031 }
5032 while (c != '$');
5033
5034 /* We've found the start of a packet, now collect the data. */
5035
5036 val = read_frame (buf, sizeof_buf);
5037
5038 if (val >= 0)
5039 {
5040 if (remote_debug)
5041 {
5042 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5043 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5044 fprintf_unfiltered (gdb_stdlog, "\n");
5045 }
5046 serial_write (remote_desc, "+", 1);
5047 return val;
5048 }
5049
5050 /* Try the whole thing again. */
5051 retry:
5052 serial_write (remote_desc, "-", 1);
5053 }
5054
5055 /* We have tried hard enough, and just can't receive the packet.
5056 Give up. */
5057
5058 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5059 serial_write (remote_desc, "+", 1);
5060 return -1;
5061 }
5062 \f
5063 static void
5064 remote_kill (void)
5065 {
5066 /* Unregister the file descriptor from the event loop. */
5067 if (target_is_async_p ())
5068 serial_async (remote_desc, NULL, 0);
5069
5070 /* Use catch_errors so the user can quit from gdb even when we
5071 aren't on speaking terms with the remote system. */
5072 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5073
5074 /* Don't wait for it to die. I'm not really sure it matters whether
5075 we do or not. For the existing stubs, kill is a noop. */
5076 target_mourn_inferior ();
5077 }
5078
5079 static void
5080 remote_mourn (void)
5081 {
5082 remote_mourn_1 (&remote_ops);
5083 }
5084
5085 /* Worker function for remote_mourn. */
5086 static void
5087 remote_mourn_1 (struct target_ops *target)
5088 {
5089 unpush_target (target);
5090 generic_mourn_inferior ();
5091 }
5092
5093 static void
5094 extended_remote_mourn_1 (struct target_ops *target)
5095 {
5096 struct remote_state *rs = get_remote_state ();
5097
5098 /* Unlike "target remote", we do not want to unpush the target; then
5099 the next time the user says "run", we won't be connected. */
5100
5101 /* Call common code to mark the inferior as not running. */
5102 generic_mourn_inferior ();
5103
5104 /* Check whether the target is running now - some remote stubs
5105 automatically restart after kill. */
5106 putpkt ("?");
5107 getpkt (&rs->buf, &rs->buf_size, 0);
5108
5109 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5110 {
5111 /* Assume that the target has been restarted. Set inferior_ptid
5112 so that bits of core GDB realizes there's something here, e.g.,
5113 so that the user can say "kill" again. */
5114 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5115 }
5116 else
5117 {
5118 /* Mark this (still pushed) target as not executable until we
5119 restart it. */
5120 target_mark_exited (target);
5121 }
5122 }
5123
5124 static void
5125 extended_remote_mourn (void)
5126 {
5127 extended_remote_mourn_1 (&extended_remote_ops);
5128 }
5129
5130 static int
5131 extended_remote_run (char *args)
5132 {
5133 struct remote_state *rs = get_remote_state ();
5134 char *p;
5135 int len;
5136
5137 /* If the user has disabled vRun support, or we have detected that
5138 support is not available, do not try it. */
5139 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5140 return -1;
5141
5142 strcpy (rs->buf, "vRun;");
5143 len = strlen (rs->buf);
5144
5145 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5146 error (_("Remote file name too long for run packet"));
5147 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5148
5149 if (*args)
5150 {
5151 struct cleanup *back_to;
5152 int i;
5153 char **argv;
5154
5155 argv = buildargv (args);
5156 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5157 for (i = 0; argv[i] != NULL; i++)
5158 {
5159 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5160 error (_("Argument list too long for run packet"));
5161 rs->buf[len++] = ';';
5162 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5163 }
5164 do_cleanups (back_to);
5165 }
5166
5167 rs->buf[len++] = '\0';
5168
5169 putpkt (rs->buf);
5170 getpkt (&rs->buf, &rs->buf_size, 0);
5171
5172 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5173 {
5174 /* We have a wait response; we don't need it, though. All is well. */
5175 return 0;
5176 }
5177 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5178 /* It wasn't disabled before, but it is now. */
5179 return -1;
5180 else
5181 {
5182 if (remote_exec_file[0] == '\0')
5183 error (_("Running the default executable on the remote target failed; "
5184 "try \"set remote exec-file\"?"));
5185 else
5186 error (_("Running \"%s\" on the remote target failed"),
5187 remote_exec_file);
5188 }
5189 }
5190
5191 /* In the extended protocol we want to be able to do things like
5192 "run" and have them basically work as expected. So we need
5193 a special create_inferior function. We support changing the
5194 executable file and the command line arguments, but not the
5195 environment. */
5196
5197 static void
5198 extended_remote_create_inferior_1 (char *exec_file, char *args,
5199 char **env, int from_tty)
5200 {
5201 /* If running asynchronously, register the target file descriptor
5202 with the event loop. */
5203 if (target_can_async_p ())
5204 target_async (inferior_event_handler, 0);
5205
5206 /* Now restart the remote server. */
5207 if (extended_remote_run (args) == -1)
5208 {
5209 /* vRun was not supported. Fail if we need it to do what the
5210 user requested. */
5211 if (remote_exec_file[0])
5212 error (_("Remote target does not support \"set remote exec-file\""));
5213 if (args[0])
5214 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5215
5216 /* Fall back to "R". */
5217 extended_remote_restart ();
5218 }
5219
5220 /* Clean up from the last time we ran, before we mark the target
5221 running again. This will mark breakpoints uninserted, and
5222 get_offsets may insert breakpoints. */
5223 init_thread_list ();
5224 init_wait_for_inferior ();
5225
5226 /* Now mark the inferior as running before we do anything else. */
5227 attach_flag = 0;
5228 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5229 target_mark_running (&extended_remote_ops);
5230
5231 /* Get updated offsets, if the stub uses qOffsets. */
5232 get_offsets ();
5233 }
5234
5235 static void
5236 extended_remote_create_inferior (char *exec_file, char *args,
5237 char **env, int from_tty)
5238 {
5239 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5240 }
5241 \f
5242
5243 /* Insert a breakpoint. On targets that have software breakpoint
5244 support, we ask the remote target to do the work; on targets
5245 which don't, we insert a traditional memory breakpoint. */
5246
5247 static int
5248 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5249 {
5250 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5251 If it succeeds, then set the support to PACKET_ENABLE. If it
5252 fails, and the user has explicitly requested the Z support then
5253 report an error, otherwise, mark it disabled and go on. */
5254
5255 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5256 {
5257 CORE_ADDR addr;
5258 struct remote_state *rs;
5259 char *p;
5260
5261 gdbarch_breakpoint_from_pc
5262 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5263
5264 rs = get_remote_state ();
5265 p = rs->buf;
5266
5267 *(p++) = 'Z';
5268 *(p++) = '0';
5269 *(p++) = ',';
5270 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5271 p += hexnumstr (p, addr);
5272 sprintf (p, ",%d", bp_tgt->placed_size);
5273
5274 putpkt (rs->buf);
5275 getpkt (&rs->buf, &rs->buf_size, 0);
5276
5277 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5278 {
5279 case PACKET_ERROR:
5280 return -1;
5281 case PACKET_OK:
5282 return 0;
5283 case PACKET_UNKNOWN:
5284 break;
5285 }
5286 }
5287
5288 return memory_insert_breakpoint (bp_tgt);
5289 }
5290
5291 static int
5292 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5293 {
5294 CORE_ADDR addr = bp_tgt->placed_address;
5295 struct remote_state *rs = get_remote_state ();
5296 int bp_size;
5297
5298 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5299 {
5300 char *p = rs->buf;
5301
5302 *(p++) = 'z';
5303 *(p++) = '0';
5304 *(p++) = ',';
5305
5306 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5307 p += hexnumstr (p, addr);
5308 sprintf (p, ",%d", bp_tgt->placed_size);
5309
5310 putpkt (rs->buf);
5311 getpkt (&rs->buf, &rs->buf_size, 0);
5312
5313 return (rs->buf[0] == 'E');
5314 }
5315
5316 return memory_remove_breakpoint (bp_tgt);
5317 }
5318
5319 static int
5320 watchpoint_to_Z_packet (int type)
5321 {
5322 switch (type)
5323 {
5324 case hw_write:
5325 return Z_PACKET_WRITE_WP;
5326 break;
5327 case hw_read:
5328 return Z_PACKET_READ_WP;
5329 break;
5330 case hw_access:
5331 return Z_PACKET_ACCESS_WP;
5332 break;
5333 default:
5334 internal_error (__FILE__, __LINE__,
5335 _("hw_bp_to_z: bad watchpoint type %d"), type);
5336 }
5337 }
5338
5339 static int
5340 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5341 {
5342 struct remote_state *rs = get_remote_state ();
5343 char *p;
5344 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5345
5346 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5347 return -1;
5348
5349 sprintf (rs->buf, "Z%x,", packet);
5350 p = strchr (rs->buf, '\0');
5351 addr = remote_address_masked (addr);
5352 p += hexnumstr (p, (ULONGEST) addr);
5353 sprintf (p, ",%x", len);
5354
5355 putpkt (rs->buf);
5356 getpkt (&rs->buf, &rs->buf_size, 0);
5357
5358 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5359 {
5360 case PACKET_ERROR:
5361 case PACKET_UNKNOWN:
5362 return -1;
5363 case PACKET_OK:
5364 return 0;
5365 }
5366 internal_error (__FILE__, __LINE__,
5367 _("remote_insert_watchpoint: reached end of function"));
5368 }
5369
5370
5371 static int
5372 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5373 {
5374 struct remote_state *rs = get_remote_state ();
5375 char *p;
5376 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5377
5378 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5379 return -1;
5380
5381 sprintf (rs->buf, "z%x,", packet);
5382 p = strchr (rs->buf, '\0');
5383 addr = remote_address_masked (addr);
5384 p += hexnumstr (p, (ULONGEST) addr);
5385 sprintf (p, ",%x", len);
5386 putpkt (rs->buf);
5387 getpkt (&rs->buf, &rs->buf_size, 0);
5388
5389 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5390 {
5391 case PACKET_ERROR:
5392 case PACKET_UNKNOWN:
5393 return -1;
5394 case PACKET_OK:
5395 return 0;
5396 }
5397 internal_error (__FILE__, __LINE__,
5398 _("remote_remove_watchpoint: reached end of function"));
5399 }
5400
5401
5402 int remote_hw_watchpoint_limit = -1;
5403 int remote_hw_breakpoint_limit = -1;
5404
5405 static int
5406 remote_check_watch_resources (int type, int cnt, int ot)
5407 {
5408 if (type == bp_hardware_breakpoint)
5409 {
5410 if (remote_hw_breakpoint_limit == 0)
5411 return 0;
5412 else if (remote_hw_breakpoint_limit < 0)
5413 return 1;
5414 else if (cnt <= remote_hw_breakpoint_limit)
5415 return 1;
5416 }
5417 else
5418 {
5419 if (remote_hw_watchpoint_limit == 0)
5420 return 0;
5421 else if (remote_hw_watchpoint_limit < 0)
5422 return 1;
5423 else if (ot)
5424 return -1;
5425 else if (cnt <= remote_hw_watchpoint_limit)
5426 return 1;
5427 }
5428 return -1;
5429 }
5430
5431 static int
5432 remote_stopped_by_watchpoint (void)
5433 {
5434 return remote_stopped_by_watchpoint_p;
5435 }
5436
5437 static int
5438 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5439 {
5440 int rc = 0;
5441 if (remote_stopped_by_watchpoint ())
5442 {
5443 *addr_p = remote_watch_data_address;
5444 rc = 1;
5445 }
5446
5447 return rc;
5448 }
5449
5450
5451 static int
5452 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5453 {
5454 CORE_ADDR addr;
5455 struct remote_state *rs;
5456 char *p;
5457
5458 /* The length field should be set to the size of a breakpoint
5459 instruction, even though we aren't inserting one ourselves. */
5460
5461 gdbarch_breakpoint_from_pc
5462 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5463
5464 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5465 return -1;
5466
5467 rs = get_remote_state ();
5468 p = rs->buf;
5469
5470 *(p++) = 'Z';
5471 *(p++) = '1';
5472 *(p++) = ',';
5473
5474 addr = remote_address_masked (bp_tgt->placed_address);
5475 p += hexnumstr (p, (ULONGEST) addr);
5476 sprintf (p, ",%x", bp_tgt->placed_size);
5477
5478 putpkt (rs->buf);
5479 getpkt (&rs->buf, &rs->buf_size, 0);
5480
5481 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5482 {
5483 case PACKET_ERROR:
5484 case PACKET_UNKNOWN:
5485 return -1;
5486 case PACKET_OK:
5487 return 0;
5488 }
5489 internal_error (__FILE__, __LINE__,
5490 _("remote_insert_hw_breakpoint: reached end of function"));
5491 }
5492
5493
5494 static int
5495 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5496 {
5497 CORE_ADDR addr;
5498 struct remote_state *rs = get_remote_state ();
5499 char *p = rs->buf;
5500
5501 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5502 return -1;
5503
5504 *(p++) = 'z';
5505 *(p++) = '1';
5506 *(p++) = ',';
5507
5508 addr = remote_address_masked (bp_tgt->placed_address);
5509 p += hexnumstr (p, (ULONGEST) addr);
5510 sprintf (p, ",%x", bp_tgt->placed_size);
5511
5512 putpkt (rs->buf);
5513 getpkt (&rs->buf, &rs->buf_size, 0);
5514
5515 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5516 {
5517 case PACKET_ERROR:
5518 case PACKET_UNKNOWN:
5519 return -1;
5520 case PACKET_OK:
5521 return 0;
5522 }
5523 internal_error (__FILE__, __LINE__,
5524 _("remote_remove_hw_breakpoint: reached end of function"));
5525 }
5526
5527 /* Some targets are only capable of doing downloads, and afterwards
5528 they switch to the remote serial protocol. This function provides
5529 a clean way to get from the download target to the remote target.
5530 It's basically just a wrapper so that we don't have to expose any
5531 of the internal workings of remote.c.
5532
5533 Prior to calling this routine, you should shutdown the current
5534 target code, else you will get the "A program is being debugged
5535 already..." message. Usually a call to pop_target() suffices. */
5536
5537 void
5538 push_remote_target (char *name, int from_tty)
5539 {
5540 printf_filtered (_("Switching to remote protocol\n"));
5541 remote_open (name, from_tty);
5542 }
5543
5544 /* Table used by the crc32 function to calcuate the checksum. */
5545
5546 static unsigned long crc32_table[256] =
5547 {0, 0};
5548
5549 static unsigned long
5550 crc32 (unsigned char *buf, int len, unsigned int crc)
5551 {
5552 if (!crc32_table[1])
5553 {
5554 /* Initialize the CRC table and the decoding table. */
5555 int i, j;
5556 unsigned int c;
5557
5558 for (i = 0; i < 256; i++)
5559 {
5560 for (c = i << 24, j = 8; j > 0; --j)
5561 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5562 crc32_table[i] = c;
5563 }
5564 }
5565
5566 while (len--)
5567 {
5568 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5569 buf++;
5570 }
5571 return crc;
5572 }
5573
5574 /* compare-sections command
5575
5576 With no arguments, compares each loadable section in the exec bfd
5577 with the same memory range on the target, and reports mismatches.
5578 Useful for verifying the image on the target against the exec file.
5579 Depends on the target understanding the new "qCRC:" request. */
5580
5581 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5582 target method (target verify memory) and generic version of the
5583 actual command. This will allow other high-level code (especially
5584 generic_load()) to make use of this target functionality. */
5585
5586 static void
5587 compare_sections_command (char *args, int from_tty)
5588 {
5589 struct remote_state *rs = get_remote_state ();
5590 asection *s;
5591 unsigned long host_crc, target_crc;
5592 extern bfd *exec_bfd;
5593 struct cleanup *old_chain;
5594 char *tmp;
5595 char *sectdata;
5596 const char *sectname;
5597 bfd_size_type size;
5598 bfd_vma lma;
5599 int matched = 0;
5600 int mismatched = 0;
5601
5602 if (!exec_bfd)
5603 error (_("command cannot be used without an exec file"));
5604 if (!current_target.to_shortname ||
5605 strcmp (current_target.to_shortname, "remote") != 0)
5606 error (_("command can only be used with remote target"));
5607
5608 for (s = exec_bfd->sections; s; s = s->next)
5609 {
5610 if (!(s->flags & SEC_LOAD))
5611 continue; /* skip non-loadable section */
5612
5613 size = bfd_get_section_size (s);
5614 if (size == 0)
5615 continue; /* skip zero-length section */
5616
5617 sectname = bfd_get_section_name (exec_bfd, s);
5618 if (args && strcmp (args, sectname) != 0)
5619 continue; /* not the section selected by user */
5620
5621 matched = 1; /* do this section */
5622 lma = s->lma;
5623 /* FIXME: assumes lma can fit into long. */
5624 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5625 (long) lma, (long) size);
5626 putpkt (rs->buf);
5627
5628 /* Be clever; compute the host_crc before waiting for target
5629 reply. */
5630 sectdata = xmalloc (size);
5631 old_chain = make_cleanup (xfree, sectdata);
5632 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5633 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5634
5635 getpkt (&rs->buf, &rs->buf_size, 0);
5636 if (rs->buf[0] == 'E')
5637 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5638 sectname, paddr (lma), paddr (lma + size));
5639 if (rs->buf[0] != 'C')
5640 error (_("remote target does not support this operation"));
5641
5642 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5643 target_crc = target_crc * 16 + fromhex (*tmp);
5644
5645 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5646 sectname, paddr (lma), paddr (lma + size));
5647 if (host_crc == target_crc)
5648 printf_filtered ("matched.\n");
5649 else
5650 {
5651 printf_filtered ("MIS-MATCHED!\n");
5652 mismatched++;
5653 }
5654
5655 do_cleanups (old_chain);
5656 }
5657 if (mismatched > 0)
5658 warning (_("One or more sections of the remote executable does not match\n\
5659 the loaded file\n"));
5660 if (args && !matched)
5661 printf_filtered (_("No loaded section named '%s'.\n"), args);
5662 }
5663
5664 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5665 into remote target. The number of bytes written to the remote
5666 target is returned, or -1 for error. */
5667
5668 static LONGEST
5669 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5670 const char *annex, const gdb_byte *writebuf,
5671 ULONGEST offset, LONGEST len,
5672 struct packet_config *packet)
5673 {
5674 int i, buf_len;
5675 ULONGEST n;
5676 gdb_byte *wbuf;
5677 struct remote_state *rs = get_remote_state ();
5678 int max_size = get_memory_write_packet_size ();
5679
5680 if (packet->support == PACKET_DISABLE)
5681 return -1;
5682
5683 /* Insert header. */
5684 i = snprintf (rs->buf, max_size,
5685 "qXfer:%s:write:%s:%s:",
5686 object_name, annex ? annex : "",
5687 phex_nz (offset, sizeof offset));
5688 max_size -= (i + 1);
5689
5690 /* Escape as much data as fits into rs->buf. */
5691 buf_len = remote_escape_output
5692 (writebuf, len, (rs->buf + i), &max_size, max_size);
5693
5694 if (putpkt_binary (rs->buf, i + buf_len) < 0
5695 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5696 || packet_ok (rs->buf, packet) != PACKET_OK)
5697 return -1;
5698
5699 unpack_varlen_hex (rs->buf, &n);
5700 return n;
5701 }
5702
5703 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5704 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5705 number of bytes read is returned, or 0 for EOF, or -1 for error.
5706 The number of bytes read may be less than LEN without indicating an
5707 EOF. PACKET is checked and updated to indicate whether the remote
5708 target supports this object. */
5709
5710 static LONGEST
5711 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5712 const char *annex,
5713 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5714 struct packet_config *packet)
5715 {
5716 static char *finished_object;
5717 static char *finished_annex;
5718 static ULONGEST finished_offset;
5719
5720 struct remote_state *rs = get_remote_state ();
5721 unsigned int total = 0;
5722 LONGEST i, n, packet_len;
5723
5724 if (packet->support == PACKET_DISABLE)
5725 return -1;
5726
5727 /* Check whether we've cached an end-of-object packet that matches
5728 this request. */
5729 if (finished_object)
5730 {
5731 if (strcmp (object_name, finished_object) == 0
5732 && strcmp (annex ? annex : "", finished_annex) == 0
5733 && offset == finished_offset)
5734 return 0;
5735
5736 /* Otherwise, we're now reading something different. Discard
5737 the cache. */
5738 xfree (finished_object);
5739 xfree (finished_annex);
5740 finished_object = NULL;
5741 finished_annex = NULL;
5742 }
5743
5744 /* Request only enough to fit in a single packet. The actual data
5745 may not, since we don't know how much of it will need to be escaped;
5746 the target is free to respond with slightly less data. We subtract
5747 five to account for the response type and the protocol frame. */
5748 n = min (get_remote_packet_size () - 5, len);
5749 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5750 object_name, annex ? annex : "",
5751 phex_nz (offset, sizeof offset),
5752 phex_nz (n, sizeof n));
5753 i = putpkt (rs->buf);
5754 if (i < 0)
5755 return -1;
5756
5757 rs->buf[0] = '\0';
5758 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5759 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5760 return -1;
5761
5762 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5763 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5764
5765 /* 'm' means there is (or at least might be) more data after this
5766 batch. That does not make sense unless there's at least one byte
5767 of data in this reply. */
5768 if (rs->buf[0] == 'm' && packet_len == 1)
5769 error (_("Remote qXfer reply contained no data."));
5770
5771 /* Got some data. */
5772 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5773
5774 /* 'l' is an EOF marker, possibly including a final block of data,
5775 or possibly empty. If we have the final block of a non-empty
5776 object, record this fact to bypass a subsequent partial read. */
5777 if (rs->buf[0] == 'l' && offset + i > 0)
5778 {
5779 finished_object = xstrdup (object_name);
5780 finished_annex = xstrdup (annex ? annex : "");
5781 finished_offset = offset + i;
5782 }
5783
5784 return i;
5785 }
5786
5787 static LONGEST
5788 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5789 const char *annex, gdb_byte *readbuf,
5790 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5791 {
5792 struct remote_state *rs = get_remote_state ();
5793 int i;
5794 char *p2;
5795 char query_type;
5796
5797 /* Handle memory using the standard memory routines. */
5798 if (object == TARGET_OBJECT_MEMORY)
5799 {
5800 int xfered;
5801 errno = 0;
5802
5803 /* If the remote target is connected but not running, we should
5804 pass this request down to a lower stratum (e.g. the executable
5805 file). */
5806 if (!target_has_execution)
5807 return 0;
5808
5809 if (writebuf != NULL)
5810 xfered = remote_write_bytes (offset, writebuf, len);
5811 else
5812 xfered = remote_read_bytes (offset, readbuf, len);
5813
5814 if (xfered > 0)
5815 return xfered;
5816 else if (xfered == 0 && errno == 0)
5817 return 0;
5818 else
5819 return -1;
5820 }
5821
5822 /* Handle SPU memory using qxfer packets. */
5823 if (object == TARGET_OBJECT_SPU)
5824 {
5825 if (readbuf)
5826 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5827 &remote_protocol_packets
5828 [PACKET_qXfer_spu_read]);
5829 else
5830 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5831 &remote_protocol_packets
5832 [PACKET_qXfer_spu_write]);
5833 }
5834
5835 /* Only handle flash writes. */
5836 if (writebuf != NULL)
5837 {
5838 LONGEST xfered;
5839
5840 switch (object)
5841 {
5842 case TARGET_OBJECT_FLASH:
5843 xfered = remote_flash_write (ops, offset, len, writebuf);
5844
5845 if (xfered > 0)
5846 return xfered;
5847 else if (xfered == 0 && errno == 0)
5848 return 0;
5849 else
5850 return -1;
5851
5852 default:
5853 return -1;
5854 }
5855 }
5856
5857 /* Map pre-existing objects onto letters. DO NOT do this for new
5858 objects!!! Instead specify new query packets. */
5859 switch (object)
5860 {
5861 case TARGET_OBJECT_AVR:
5862 query_type = 'R';
5863 break;
5864
5865 case TARGET_OBJECT_AUXV:
5866 gdb_assert (annex == NULL);
5867 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5868 &remote_protocol_packets[PACKET_qXfer_auxv]);
5869
5870 case TARGET_OBJECT_AVAILABLE_FEATURES:
5871 return remote_read_qxfer
5872 (ops, "features", annex, readbuf, offset, len,
5873 &remote_protocol_packets[PACKET_qXfer_features]);
5874
5875 case TARGET_OBJECT_LIBRARIES:
5876 return remote_read_qxfer
5877 (ops, "libraries", annex, readbuf, offset, len,
5878 &remote_protocol_packets[PACKET_qXfer_libraries]);
5879
5880 case TARGET_OBJECT_MEMORY_MAP:
5881 gdb_assert (annex == NULL);
5882 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5883 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5884
5885 default:
5886 return -1;
5887 }
5888
5889 /* Note: a zero OFFSET and LEN can be used to query the minimum
5890 buffer size. */
5891 if (offset == 0 && len == 0)
5892 return (get_remote_packet_size ());
5893 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5894 large enough let the caller deal with it. */
5895 if (len < get_remote_packet_size ())
5896 return -1;
5897 len = get_remote_packet_size ();
5898
5899 /* Except for querying the minimum buffer size, target must be open. */
5900 if (!remote_desc)
5901 error (_("remote query is only available after target open"));
5902
5903 gdb_assert (annex != NULL);
5904 gdb_assert (readbuf != NULL);
5905
5906 p2 = rs->buf;
5907 *p2++ = 'q';
5908 *p2++ = query_type;
5909
5910 /* We used one buffer char for the remote protocol q command and
5911 another for the query type. As the remote protocol encapsulation
5912 uses 4 chars plus one extra in case we are debugging
5913 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5914 string. */
5915 i = 0;
5916 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5917 {
5918 /* Bad caller may have sent forbidden characters. */
5919 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5920 *p2++ = annex[i];
5921 i++;
5922 }
5923 *p2 = '\0';
5924 gdb_assert (annex[i] == '\0');
5925
5926 i = putpkt (rs->buf);
5927 if (i < 0)
5928 return i;
5929
5930 getpkt (&rs->buf, &rs->buf_size, 0);
5931 strcpy ((char *) readbuf, rs->buf);
5932
5933 return strlen ((char *) readbuf);
5934 }
5935
5936 static int
5937 remote_search_memory (struct target_ops* ops,
5938 CORE_ADDR start_addr, ULONGEST search_space_len,
5939 const gdb_byte *pattern, ULONGEST pattern_len,
5940 CORE_ADDR *found_addrp)
5941 {
5942 struct remote_state *rs = get_remote_state ();
5943 int max_size = get_memory_write_packet_size ();
5944 struct packet_config *packet =
5945 &remote_protocol_packets[PACKET_qSearch_memory];
5946 /* number of packet bytes used to encode the pattern,
5947 this could be more than PATTERN_LEN due to escape characters */
5948 int escaped_pattern_len;
5949 /* amount of pattern that was encodable in the packet */
5950 int used_pattern_len;
5951 int i;
5952 int found;
5953 ULONGEST found_addr;
5954
5955 /* Don't go to the target if we don't have to.
5956 This is done before checking packet->support to avoid the possibility that
5957 a success for this edge case means the facility works in general. */
5958 if (pattern_len > search_space_len)
5959 return 0;
5960 if (pattern_len == 0)
5961 {
5962 *found_addrp = start_addr;
5963 return 1;
5964 }
5965
5966 /* If we already know the packet isn't supported, fall back to the simple
5967 way of searching memory. */
5968
5969 if (packet->support == PACKET_DISABLE)
5970 {
5971 /* Target doesn't provided special support, fall back and use the
5972 standard support (copy memory and do the search here). */
5973 return simple_search_memory (ops, start_addr, search_space_len,
5974 pattern, pattern_len, found_addrp);
5975 }
5976
5977 /* Insert header. */
5978 i = snprintf (rs->buf, max_size,
5979 "qSearch:memory:%s;%s;",
5980 paddr_nz (start_addr),
5981 phex_nz (search_space_len, sizeof (search_space_len)));
5982 max_size -= (i + 1);
5983
5984 /* Escape as much data as fits into rs->buf. */
5985 escaped_pattern_len =
5986 remote_escape_output (pattern, pattern_len, (rs->buf + i),
5987 &used_pattern_len, max_size);
5988
5989 /* Bail if the pattern is too large. */
5990 if (used_pattern_len != pattern_len)
5991 error ("Pattern is too large to transmit to remote target.");
5992
5993 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
5994 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5995 || packet_ok (rs->buf, packet) != PACKET_OK)
5996 {
5997 /* The request may not have worked because the command is not
5998 supported. If so, fall back to the simple way. */
5999 if (packet->support == PACKET_DISABLE)
6000 {
6001 return simple_search_memory (ops, start_addr, search_space_len,
6002 pattern, pattern_len, found_addrp);
6003 }
6004 return -1;
6005 }
6006
6007 if (rs->buf[0] == '0')
6008 found = 0;
6009 else if (rs->buf[0] == '1')
6010 {
6011 found = 1;
6012 if (rs->buf[1] != ',')
6013 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6014 unpack_varlen_hex (rs->buf + 2, &found_addr);
6015 *found_addrp = found_addr;
6016 }
6017 else
6018 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6019
6020 return found;
6021 }
6022
6023 static void
6024 remote_rcmd (char *command,
6025 struct ui_file *outbuf)
6026 {
6027 struct remote_state *rs = get_remote_state ();
6028 char *p = rs->buf;
6029
6030 if (!remote_desc)
6031 error (_("remote rcmd is only available after target open"));
6032
6033 /* Send a NULL command across as an empty command. */
6034 if (command == NULL)
6035 command = "";
6036
6037 /* The query prefix. */
6038 strcpy (rs->buf, "qRcmd,");
6039 p = strchr (rs->buf, '\0');
6040
6041 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6042 error (_("\"monitor\" command ``%s'' is too long."), command);
6043
6044 /* Encode the actual command. */
6045 bin2hex ((gdb_byte *) command, p, 0);
6046
6047 if (putpkt (rs->buf) < 0)
6048 error (_("Communication problem with target."));
6049
6050 /* get/display the response */
6051 while (1)
6052 {
6053 char *buf;
6054
6055 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6056 rs->buf[0] = '\0';
6057 getpkt (&rs->buf, &rs->buf_size, 0);
6058 buf = rs->buf;
6059 if (buf[0] == '\0')
6060 error (_("Target does not support this command."));
6061 if (buf[0] == 'O' && buf[1] != 'K')
6062 {
6063 remote_console_output (buf + 1); /* 'O' message from stub. */
6064 continue;
6065 }
6066 if (strcmp (buf, "OK") == 0)
6067 break;
6068 if (strlen (buf) == 3 && buf[0] == 'E'
6069 && isdigit (buf[1]) && isdigit (buf[2]))
6070 {
6071 error (_("Protocol error with Rcmd"));
6072 }
6073 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6074 {
6075 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6076 fputc_unfiltered (c, outbuf);
6077 }
6078 break;
6079 }
6080 }
6081
6082 static VEC(mem_region_s) *
6083 remote_memory_map (struct target_ops *ops)
6084 {
6085 VEC(mem_region_s) *result = NULL;
6086 char *text = target_read_stralloc (&current_target,
6087 TARGET_OBJECT_MEMORY_MAP, NULL);
6088
6089 if (text)
6090 {
6091 struct cleanup *back_to = make_cleanup (xfree, text);
6092 result = parse_memory_map (text);
6093 do_cleanups (back_to);
6094 }
6095
6096 return result;
6097 }
6098
6099 static void
6100 packet_command (char *args, int from_tty)
6101 {
6102 struct remote_state *rs = get_remote_state ();
6103
6104 if (!remote_desc)
6105 error (_("command can only be used with remote target"));
6106
6107 if (!args)
6108 error (_("remote-packet command requires packet text as argument"));
6109
6110 puts_filtered ("sending: ");
6111 print_packet (args);
6112 puts_filtered ("\n");
6113 putpkt (args);
6114
6115 getpkt (&rs->buf, &rs->buf_size, 0);
6116 puts_filtered ("received: ");
6117 print_packet (rs->buf);
6118 puts_filtered ("\n");
6119 }
6120
6121 #if 0
6122 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6123
6124 static void display_thread_info (struct gdb_ext_thread_info *info);
6125
6126 static void threadset_test_cmd (char *cmd, int tty);
6127
6128 static void threadalive_test (char *cmd, int tty);
6129
6130 static void threadlist_test_cmd (char *cmd, int tty);
6131
6132 int get_and_display_threadinfo (threadref *ref);
6133
6134 static void threadinfo_test_cmd (char *cmd, int tty);
6135
6136 static int thread_display_step (threadref *ref, void *context);
6137
6138 static void threadlist_update_test_cmd (char *cmd, int tty);
6139
6140 static void init_remote_threadtests (void);
6141
6142 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6143
6144 static void
6145 threadset_test_cmd (char *cmd, int tty)
6146 {
6147 int sample_thread = SAMPLE_THREAD;
6148
6149 printf_filtered (_("Remote threadset test\n"));
6150 set_thread (sample_thread, 1);
6151 }
6152
6153
6154 static void
6155 threadalive_test (char *cmd, int tty)
6156 {
6157 int sample_thread = SAMPLE_THREAD;
6158
6159 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6160 printf_filtered ("PASS: Thread alive test\n");
6161 else
6162 printf_filtered ("FAIL: Thread alive test\n");
6163 }
6164
6165 void output_threadid (char *title, threadref *ref);
6166
6167 void
6168 output_threadid (char *title, threadref *ref)
6169 {
6170 char hexid[20];
6171
6172 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6173 hexid[16] = 0;
6174 printf_filtered ("%s %s\n", title, (&hexid[0]));
6175 }
6176
6177 static void
6178 threadlist_test_cmd (char *cmd, int tty)
6179 {
6180 int startflag = 1;
6181 threadref nextthread;
6182 int done, result_count;
6183 threadref threadlist[3];
6184
6185 printf_filtered ("Remote Threadlist test\n");
6186 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6187 &result_count, &threadlist[0]))
6188 printf_filtered ("FAIL: threadlist test\n");
6189 else
6190 {
6191 threadref *scan = threadlist;
6192 threadref *limit = scan + result_count;
6193
6194 while (scan < limit)
6195 output_threadid (" thread ", scan++);
6196 }
6197 }
6198
6199 void
6200 display_thread_info (struct gdb_ext_thread_info *info)
6201 {
6202 output_threadid ("Threadid: ", &info->threadid);
6203 printf_filtered ("Name: %s\n ", info->shortname);
6204 printf_filtered ("State: %s\n", info->display);
6205 printf_filtered ("other: %s\n\n", info->more_display);
6206 }
6207
6208 int
6209 get_and_display_threadinfo (threadref *ref)
6210 {
6211 int result;
6212 int set;
6213 struct gdb_ext_thread_info threadinfo;
6214
6215 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6216 | TAG_MOREDISPLAY | TAG_DISPLAY;
6217 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6218 display_thread_info (&threadinfo);
6219 return result;
6220 }
6221
6222 static void
6223 threadinfo_test_cmd (char *cmd, int tty)
6224 {
6225 int athread = SAMPLE_THREAD;
6226 threadref thread;
6227 int set;
6228
6229 int_to_threadref (&thread, athread);
6230 printf_filtered ("Remote Threadinfo test\n");
6231 if (!get_and_display_threadinfo (&thread))
6232 printf_filtered ("FAIL cannot get thread info\n");
6233 }
6234
6235 static int
6236 thread_display_step (threadref *ref, void *context)
6237 {
6238 /* output_threadid(" threadstep ",ref); *//* simple test */
6239 return get_and_display_threadinfo (ref);
6240 }
6241
6242 static void
6243 threadlist_update_test_cmd (char *cmd, int tty)
6244 {
6245 printf_filtered ("Remote Threadlist update test\n");
6246 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6247 }
6248
6249 static void
6250 init_remote_threadtests (void)
6251 {
6252 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6253 Fetch and print the remote list of thread identifiers, one pkt only"));
6254 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6255 _("Fetch and display info about one thread"));
6256 add_com ("tset", class_obscure, threadset_test_cmd,
6257 _("Test setting to a different thread"));
6258 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6259 _("Iterate through updating all remote thread info"));
6260 add_com ("talive", class_obscure, threadalive_test,
6261 _(" Remote thread alive test "));
6262 }
6263
6264 #endif /* 0 */
6265
6266 /* Convert a thread ID to a string. Returns the string in a static
6267 buffer. */
6268
6269 static char *
6270 remote_pid_to_str (ptid_t ptid)
6271 {
6272 static char buf[32];
6273
6274 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6275 return buf;
6276 }
6277
6278 /* Get the address of the thread local variable in OBJFILE which is
6279 stored at OFFSET within the thread local storage for thread PTID. */
6280
6281 static CORE_ADDR
6282 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6283 {
6284 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6285 {
6286 struct remote_state *rs = get_remote_state ();
6287 char *p = rs->buf;
6288 enum packet_result result;
6289
6290 strcpy (p, "qGetTLSAddr:");
6291 p += strlen (p);
6292 p += hexnumstr (p, PIDGET (ptid));
6293 *p++ = ',';
6294 p += hexnumstr (p, offset);
6295 *p++ = ',';
6296 p += hexnumstr (p, lm);
6297 *p++ = '\0';
6298
6299 putpkt (rs->buf);
6300 getpkt (&rs->buf, &rs->buf_size, 0);
6301 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6302 if (result == PACKET_OK)
6303 {
6304 ULONGEST result;
6305
6306 unpack_varlen_hex (rs->buf, &result);
6307 return result;
6308 }
6309 else if (result == PACKET_UNKNOWN)
6310 throw_error (TLS_GENERIC_ERROR,
6311 _("Remote target doesn't support qGetTLSAddr packet"));
6312 else
6313 throw_error (TLS_GENERIC_ERROR,
6314 _("Remote target failed to process qGetTLSAddr request"));
6315 }
6316 else
6317 throw_error (TLS_GENERIC_ERROR,
6318 _("TLS not supported or disabled on this target"));
6319 /* Not reached. */
6320 return 0;
6321 }
6322
6323 /* Support for inferring a target description based on the current
6324 architecture and the size of a 'g' packet. While the 'g' packet
6325 can have any size (since optional registers can be left off the
6326 end), some sizes are easily recognizable given knowledge of the
6327 approximate architecture. */
6328
6329 struct remote_g_packet_guess
6330 {
6331 int bytes;
6332 const struct target_desc *tdesc;
6333 };
6334 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6335 DEF_VEC_O(remote_g_packet_guess_s);
6336
6337 struct remote_g_packet_data
6338 {
6339 VEC(remote_g_packet_guess_s) *guesses;
6340 };
6341
6342 static struct gdbarch_data *remote_g_packet_data_handle;
6343
6344 static void *
6345 remote_g_packet_data_init (struct obstack *obstack)
6346 {
6347 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6348 }
6349
6350 void
6351 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6352 const struct target_desc *tdesc)
6353 {
6354 struct remote_g_packet_data *data
6355 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6356 struct remote_g_packet_guess new_guess, *guess;
6357 int ix;
6358
6359 gdb_assert (tdesc != NULL);
6360
6361 for (ix = 0;
6362 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6363 ix++)
6364 if (guess->bytes == bytes)
6365 internal_error (__FILE__, __LINE__,
6366 "Duplicate g packet description added for size %d",
6367 bytes);
6368
6369 new_guess.bytes = bytes;
6370 new_guess.tdesc = tdesc;
6371 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6372 }
6373
6374 static const struct target_desc *
6375 remote_read_description (struct target_ops *target)
6376 {
6377 struct remote_g_packet_data *data
6378 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6379
6380 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6381 {
6382 struct remote_g_packet_guess *guess;
6383 int ix;
6384 int bytes = send_g_packet ();
6385
6386 for (ix = 0;
6387 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6388 ix++)
6389 if (guess->bytes == bytes)
6390 return guess->tdesc;
6391
6392 /* We discard the g packet. A minor optimization would be to
6393 hold on to it, and fill the register cache once we have selected
6394 an architecture, but it's too tricky to do safely. */
6395 }
6396
6397 return NULL;
6398 }
6399
6400 /* Remote file transfer support. This is host-initiated I/O, not
6401 target-initiated; for target-initiated, see remote-fileio.c. */
6402
6403 /* If *LEFT is at least the length of STRING, copy STRING to
6404 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6405 decrease *LEFT. Otherwise raise an error. */
6406
6407 static void
6408 remote_buffer_add_string (char **buffer, int *left, char *string)
6409 {
6410 int len = strlen (string);
6411
6412 if (len > *left)
6413 error (_("Packet too long for target."));
6414
6415 memcpy (*buffer, string, len);
6416 *buffer += len;
6417 *left -= len;
6418
6419 /* NUL-terminate the buffer as a convenience, if there is
6420 room. */
6421 if (*left)
6422 **buffer = '\0';
6423 }
6424
6425 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6426 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6427 decrease *LEFT. Otherwise raise an error. */
6428
6429 static void
6430 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6431 int len)
6432 {
6433 if (2 * len > *left)
6434 error (_("Packet too long for target."));
6435
6436 bin2hex (bytes, *buffer, len);
6437 *buffer += 2 * len;
6438 *left -= 2 * len;
6439
6440 /* NUL-terminate the buffer as a convenience, if there is
6441 room. */
6442 if (*left)
6443 **buffer = '\0';
6444 }
6445
6446 /* If *LEFT is large enough, convert VALUE to hex and add it to
6447 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6448 decrease *LEFT. Otherwise raise an error. */
6449
6450 static void
6451 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6452 {
6453 int len = hexnumlen (value);
6454
6455 if (len > *left)
6456 error (_("Packet too long for target."));
6457
6458 hexnumstr (*buffer, value);
6459 *buffer += len;
6460 *left -= len;
6461
6462 /* NUL-terminate the buffer as a convenience, if there is
6463 room. */
6464 if (*left)
6465 **buffer = '\0';
6466 }
6467
6468 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6469 value, *REMOTE_ERRNO to the remote error number or zero if none
6470 was included, and *ATTACHMENT to point to the start of the annex
6471 if any. The length of the packet isn't needed here; there may
6472 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6473
6474 Return 0 if the packet could be parsed, -1 if it could not. If
6475 -1 is returned, the other variables may not be initialized. */
6476
6477 static int
6478 remote_hostio_parse_result (char *buffer, int *retcode,
6479 int *remote_errno, char **attachment)
6480 {
6481 char *p, *p2;
6482
6483 *remote_errno = 0;
6484 *attachment = NULL;
6485
6486 if (buffer[0] != 'F')
6487 return -1;
6488
6489 errno = 0;
6490 *retcode = strtol (&buffer[1], &p, 16);
6491 if (errno != 0 || p == &buffer[1])
6492 return -1;
6493
6494 /* Check for ",errno". */
6495 if (*p == ',')
6496 {
6497 errno = 0;
6498 *remote_errno = strtol (p + 1, &p2, 16);
6499 if (errno != 0 || p + 1 == p2)
6500 return -1;
6501 p = p2;
6502 }
6503
6504 /* Check for ";attachment". If there is no attachment, the
6505 packet should end here. */
6506 if (*p == ';')
6507 {
6508 *attachment = p + 1;
6509 return 0;
6510 }
6511 else if (*p == '\0')
6512 return 0;
6513 else
6514 return -1;
6515 }
6516
6517 /* Send a prepared I/O packet to the target and read its response.
6518 The prepared packet is in the global RS->BUF before this function
6519 is called, and the answer is there when we return.
6520
6521 COMMAND_BYTES is the length of the request to send, which may include
6522 binary data. WHICH_PACKET is the packet configuration to check
6523 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6524 is set to the error number and -1 is returned. Otherwise the value
6525 returned by the function is returned.
6526
6527 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6528 attachment is expected; an error will be reported if there's a
6529 mismatch. If one is found, *ATTACHMENT will be set to point into
6530 the packet buffer and *ATTACHMENT_LEN will be set to the
6531 attachment's length. */
6532
6533 static int
6534 remote_hostio_send_command (int command_bytes, int which_packet,
6535 int *remote_errno, char **attachment,
6536 int *attachment_len)
6537 {
6538 struct remote_state *rs = get_remote_state ();
6539 int ret, bytes_read;
6540 char *attachment_tmp;
6541
6542 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6543 {
6544 *remote_errno = FILEIO_ENOSYS;
6545 return -1;
6546 }
6547
6548 putpkt_binary (rs->buf, command_bytes);
6549 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6550
6551 /* If it timed out, something is wrong. Don't try to parse the
6552 buffer. */
6553 if (bytes_read < 0)
6554 {
6555 *remote_errno = FILEIO_EINVAL;
6556 return -1;
6557 }
6558
6559 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6560 {
6561 case PACKET_ERROR:
6562 *remote_errno = FILEIO_EINVAL;
6563 return -1;
6564 case PACKET_UNKNOWN:
6565 *remote_errno = FILEIO_ENOSYS;
6566 return -1;
6567 case PACKET_OK:
6568 break;
6569 }
6570
6571 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6572 &attachment_tmp))
6573 {
6574 *remote_errno = FILEIO_EINVAL;
6575 return -1;
6576 }
6577
6578 /* Make sure we saw an attachment if and only if we expected one. */
6579 if ((attachment_tmp == NULL && attachment != NULL)
6580 || (attachment_tmp != NULL && attachment == NULL))
6581 {
6582 *remote_errno = FILEIO_EINVAL;
6583 return -1;
6584 }
6585
6586 /* If an attachment was found, it must point into the packet buffer;
6587 work out how many bytes there were. */
6588 if (attachment_tmp != NULL)
6589 {
6590 *attachment = attachment_tmp;
6591 *attachment_len = bytes_read - (*attachment - rs->buf);
6592 }
6593
6594 return ret;
6595 }
6596
6597 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6598 remote file descriptor, or -1 if an error occurs (and set
6599 *REMOTE_ERRNO). */
6600
6601 static int
6602 remote_hostio_open (const char *filename, int flags, int mode,
6603 int *remote_errno)
6604 {
6605 struct remote_state *rs = get_remote_state ();
6606 char *p = rs->buf;
6607 int left = get_remote_packet_size () - 1;
6608
6609 remote_buffer_add_string (&p, &left, "vFile:open:");
6610
6611 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6612 strlen (filename));
6613 remote_buffer_add_string (&p, &left, ",");
6614
6615 remote_buffer_add_int (&p, &left, flags);
6616 remote_buffer_add_string (&p, &left, ",");
6617
6618 remote_buffer_add_int (&p, &left, mode);
6619
6620 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6621 remote_errno, NULL, NULL);
6622 }
6623
6624 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6625 Return the number of bytes written, or -1 if an error occurs (and
6626 set *REMOTE_ERRNO). */
6627
6628 static int
6629 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6630 ULONGEST offset, int *remote_errno)
6631 {
6632 struct remote_state *rs = get_remote_state ();
6633 char *p = rs->buf;
6634 int left = get_remote_packet_size ();
6635 int out_len;
6636
6637 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6638
6639 remote_buffer_add_int (&p, &left, fd);
6640 remote_buffer_add_string (&p, &left, ",");
6641
6642 remote_buffer_add_int (&p, &left, offset);
6643 remote_buffer_add_string (&p, &left, ",");
6644
6645 p += remote_escape_output (write_buf, len, p, &out_len,
6646 get_remote_packet_size () - (p - rs->buf));
6647
6648 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6649 remote_errno, NULL, NULL);
6650 }
6651
6652 /* Read up to LEN bytes FD on the remote target into READ_BUF
6653 Return the number of bytes read, or -1 if an error occurs (and
6654 set *REMOTE_ERRNO). */
6655
6656 static int
6657 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6658 ULONGEST offset, int *remote_errno)
6659 {
6660 struct remote_state *rs = get_remote_state ();
6661 char *p = rs->buf;
6662 char *attachment;
6663 int left = get_remote_packet_size ();
6664 int ret, attachment_len;
6665 int read_len;
6666
6667 remote_buffer_add_string (&p, &left, "vFile:pread:");
6668
6669 remote_buffer_add_int (&p, &left, fd);
6670 remote_buffer_add_string (&p, &left, ",");
6671
6672 remote_buffer_add_int (&p, &left, len);
6673 remote_buffer_add_string (&p, &left, ",");
6674
6675 remote_buffer_add_int (&p, &left, offset);
6676
6677 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6678 remote_errno, &attachment,
6679 &attachment_len);
6680
6681 if (ret < 0)
6682 return ret;
6683
6684 read_len = remote_unescape_input (attachment, attachment_len,
6685 read_buf, len);
6686 if (read_len != ret)
6687 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6688
6689 return ret;
6690 }
6691
6692 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6693 (and set *REMOTE_ERRNO). */
6694
6695 static int
6696 remote_hostio_close (int fd, int *remote_errno)
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699 char *p = rs->buf;
6700 int left = get_remote_packet_size () - 1;
6701
6702 remote_buffer_add_string (&p, &left, "vFile:close:");
6703
6704 remote_buffer_add_int (&p, &left, fd);
6705
6706 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6707 remote_errno, NULL, NULL);
6708 }
6709
6710 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6711 occurs (and set *REMOTE_ERRNO). */
6712
6713 static int
6714 remote_hostio_unlink (const char *filename, int *remote_errno)
6715 {
6716 struct remote_state *rs = get_remote_state ();
6717 char *p = rs->buf;
6718 int left = get_remote_packet_size () - 1;
6719
6720 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6721
6722 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6723 strlen (filename));
6724
6725 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6726 remote_errno, NULL, NULL);
6727 }
6728
6729 static int
6730 remote_fileio_errno_to_host (int errnum)
6731 {
6732 switch (errnum)
6733 {
6734 case FILEIO_EPERM:
6735 return EPERM;
6736 case FILEIO_ENOENT:
6737 return ENOENT;
6738 case FILEIO_EINTR:
6739 return EINTR;
6740 case FILEIO_EIO:
6741 return EIO;
6742 case FILEIO_EBADF:
6743 return EBADF;
6744 case FILEIO_EACCES:
6745 return EACCES;
6746 case FILEIO_EFAULT:
6747 return EFAULT;
6748 case FILEIO_EBUSY:
6749 return EBUSY;
6750 case FILEIO_EEXIST:
6751 return EEXIST;
6752 case FILEIO_ENODEV:
6753 return ENODEV;
6754 case FILEIO_ENOTDIR:
6755 return ENOTDIR;
6756 case FILEIO_EISDIR:
6757 return EISDIR;
6758 case FILEIO_EINVAL:
6759 return EINVAL;
6760 case FILEIO_ENFILE:
6761 return ENFILE;
6762 case FILEIO_EMFILE:
6763 return EMFILE;
6764 case FILEIO_EFBIG:
6765 return EFBIG;
6766 case FILEIO_ENOSPC:
6767 return ENOSPC;
6768 case FILEIO_ESPIPE:
6769 return ESPIPE;
6770 case FILEIO_EROFS:
6771 return EROFS;
6772 case FILEIO_ENOSYS:
6773 return ENOSYS;
6774 case FILEIO_ENAMETOOLONG:
6775 return ENAMETOOLONG;
6776 }
6777 return -1;
6778 }
6779
6780 static char *
6781 remote_hostio_error (int errnum)
6782 {
6783 int host_error = remote_fileio_errno_to_host (errnum);
6784
6785 if (host_error == -1)
6786 error (_("Unknown remote I/O error %d"), errnum);
6787 else
6788 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6789 }
6790
6791 static void
6792 fclose_cleanup (void *file)
6793 {
6794 fclose (file);
6795 }
6796
6797 static void
6798 remote_hostio_close_cleanup (void *opaque)
6799 {
6800 int fd = *(int *) opaque;
6801 int remote_errno;
6802
6803 remote_hostio_close (fd, &remote_errno);
6804 }
6805
6806 void
6807 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6808 {
6809 struct cleanup *back_to, *close_cleanup;
6810 int retcode, fd, remote_errno, bytes, io_size;
6811 FILE *file;
6812 gdb_byte *buffer;
6813 int bytes_in_buffer;
6814 int saw_eof;
6815 ULONGEST offset;
6816
6817 if (!remote_desc)
6818 error (_("command can only be used with remote target"));
6819
6820 file = fopen (local_file, "rb");
6821 if (file == NULL)
6822 perror_with_name (local_file);
6823 back_to = make_cleanup (fclose_cleanup, file);
6824
6825 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6826 | FILEIO_O_TRUNC),
6827 0700, &remote_errno);
6828 if (fd == -1)
6829 remote_hostio_error (remote_errno);
6830
6831 /* Send up to this many bytes at once. They won't all fit in the
6832 remote packet limit, so we'll transfer slightly fewer. */
6833 io_size = get_remote_packet_size ();
6834 buffer = xmalloc (io_size);
6835 make_cleanup (xfree, buffer);
6836
6837 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6838
6839 bytes_in_buffer = 0;
6840 saw_eof = 0;
6841 offset = 0;
6842 while (bytes_in_buffer || !saw_eof)
6843 {
6844 if (!saw_eof)
6845 {
6846 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6847 file);
6848 if (bytes == 0)
6849 {
6850 if (ferror (file))
6851 error (_("Error reading %s."), local_file);
6852 else
6853 {
6854 /* EOF. Unless there is something still in the
6855 buffer from the last iteration, we are done. */
6856 saw_eof = 1;
6857 if (bytes_in_buffer == 0)
6858 break;
6859 }
6860 }
6861 }
6862 else
6863 bytes = 0;
6864
6865 bytes += bytes_in_buffer;
6866 bytes_in_buffer = 0;
6867
6868 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6869
6870 if (retcode < 0)
6871 remote_hostio_error (remote_errno);
6872 else if (retcode == 0)
6873 error (_("Remote write of %d bytes returned 0!"), bytes);
6874 else if (retcode < bytes)
6875 {
6876 /* Short write. Save the rest of the read data for the next
6877 write. */
6878 bytes_in_buffer = bytes - retcode;
6879 memmove (buffer, buffer + retcode, bytes_in_buffer);
6880 }
6881
6882 offset += retcode;
6883 }
6884
6885 discard_cleanups (close_cleanup);
6886 if (remote_hostio_close (fd, &remote_errno))
6887 remote_hostio_error (remote_errno);
6888
6889 if (from_tty)
6890 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6891 do_cleanups (back_to);
6892 }
6893
6894 void
6895 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6896 {
6897 struct cleanup *back_to, *close_cleanup;
6898 int retcode, fd, remote_errno, bytes, io_size;
6899 FILE *file;
6900 gdb_byte *buffer;
6901 ULONGEST offset;
6902
6903 if (!remote_desc)
6904 error (_("command can only be used with remote target"));
6905
6906 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
6907 if (fd == -1)
6908 remote_hostio_error (remote_errno);
6909
6910 file = fopen (local_file, "wb");
6911 if (file == NULL)
6912 perror_with_name (local_file);
6913 back_to = make_cleanup (fclose_cleanup, file);
6914
6915 /* Send up to this many bytes at once. They won't all fit in the
6916 remote packet limit, so we'll transfer slightly fewer. */
6917 io_size = get_remote_packet_size ();
6918 buffer = xmalloc (io_size);
6919 make_cleanup (xfree, buffer);
6920
6921 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6922
6923 offset = 0;
6924 while (1)
6925 {
6926 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
6927 if (bytes == 0)
6928 /* Success, but no bytes, means end-of-file. */
6929 break;
6930 if (bytes == -1)
6931 remote_hostio_error (remote_errno);
6932
6933 offset += bytes;
6934
6935 bytes = fwrite (buffer, 1, bytes, file);
6936 if (bytes == 0)
6937 perror_with_name (local_file);
6938 }
6939
6940 discard_cleanups (close_cleanup);
6941 if (remote_hostio_close (fd, &remote_errno))
6942 remote_hostio_error (remote_errno);
6943
6944 if (from_tty)
6945 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
6946 do_cleanups (back_to);
6947 }
6948
6949 void
6950 remote_file_delete (const char *remote_file, int from_tty)
6951 {
6952 int retcode, remote_errno;
6953
6954 if (!remote_desc)
6955 error (_("command can only be used with remote target"));
6956
6957 retcode = remote_hostio_unlink (remote_file, &remote_errno);
6958 if (retcode == -1)
6959 remote_hostio_error (remote_errno);
6960
6961 if (from_tty)
6962 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
6963 }
6964
6965 static void
6966 remote_put_command (char *args, int from_tty)
6967 {
6968 struct cleanup *back_to;
6969 char **argv;
6970
6971 argv = buildargv (args);
6972 if (argv == NULL)
6973 nomem (0);
6974 back_to = make_cleanup_freeargv (argv);
6975 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6976 error (_("Invalid parameters to remote put"));
6977
6978 remote_file_put (argv[0], argv[1], from_tty);
6979
6980 do_cleanups (back_to);
6981 }
6982
6983 static void
6984 remote_get_command (char *args, int from_tty)
6985 {
6986 struct cleanup *back_to;
6987 char **argv;
6988
6989 argv = buildargv (args);
6990 if (argv == NULL)
6991 nomem (0);
6992 back_to = make_cleanup_freeargv (argv);
6993 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6994 error (_("Invalid parameters to remote get"));
6995
6996 remote_file_get (argv[0], argv[1], from_tty);
6997
6998 do_cleanups (back_to);
6999 }
7000
7001 static void
7002 remote_delete_command (char *args, int from_tty)
7003 {
7004 struct cleanup *back_to;
7005 char **argv;
7006
7007 argv = buildargv (args);
7008 if (argv == NULL)
7009 nomem (0);
7010 back_to = make_cleanup_freeargv (argv);
7011 if (argv[0] == NULL || argv[1] != NULL)
7012 error (_("Invalid parameters to remote delete"));
7013
7014 remote_file_delete (argv[0], from_tty);
7015
7016 do_cleanups (back_to);
7017 }
7018
7019 static void
7020 remote_command (char *args, int from_tty)
7021 {
7022 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7023 }
7024
7025 static void
7026 init_remote_ops (void)
7027 {
7028 remote_ops.to_shortname = "remote";
7029 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7030 remote_ops.to_doc =
7031 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7032 Specify the serial device it is connected to\n\
7033 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7034 remote_ops.to_open = remote_open;
7035 remote_ops.to_close = remote_close;
7036 remote_ops.to_detach = remote_detach;
7037 remote_ops.to_disconnect = remote_disconnect;
7038 remote_ops.to_resume = remote_resume;
7039 remote_ops.to_wait = remote_wait;
7040 remote_ops.to_fetch_registers = remote_fetch_registers;
7041 remote_ops.to_store_registers = remote_store_registers;
7042 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7043 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7044 remote_ops.to_files_info = remote_files_info;
7045 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7046 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7047 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7048 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7049 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7050 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7051 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7052 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7053 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7054 remote_ops.to_kill = remote_kill;
7055 remote_ops.to_load = generic_load;
7056 remote_ops.to_mourn_inferior = remote_mourn;
7057 remote_ops.to_thread_alive = remote_thread_alive;
7058 remote_ops.to_find_new_threads = remote_threads_info;
7059 remote_ops.to_pid_to_str = remote_pid_to_str;
7060 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7061 remote_ops.to_stop = remote_stop;
7062 remote_ops.to_xfer_partial = remote_xfer_partial;
7063 remote_ops.to_rcmd = remote_rcmd;
7064 remote_ops.to_log_command = serial_log_command;
7065 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7066 remote_ops.to_stratum = process_stratum;
7067 remote_ops.to_has_all_memory = 1;
7068 remote_ops.to_has_memory = 1;
7069 remote_ops.to_has_stack = 1;
7070 remote_ops.to_has_registers = 1;
7071 remote_ops.to_has_execution = 1;
7072 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7073 remote_ops.to_magic = OPS_MAGIC;
7074 remote_ops.to_memory_map = remote_memory_map;
7075 remote_ops.to_flash_erase = remote_flash_erase;
7076 remote_ops.to_flash_done = remote_flash_done;
7077 remote_ops.to_read_description = remote_read_description;
7078 remote_ops.to_search_memory = remote_search_memory;
7079 remote_ops.to_can_async_p = remote_can_async_p;
7080 remote_ops.to_is_async_p = remote_is_async_p;
7081 remote_ops.to_async = remote_async;
7082 remote_ops.to_async_mask = remote_async_mask;
7083 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7084 remote_ops.to_terminal_ours = remote_terminal_ours;
7085 }
7086
7087 /* Set up the extended remote vector by making a copy of the standard
7088 remote vector and adding to it. */
7089
7090 static void
7091 init_extended_remote_ops (void)
7092 {
7093 extended_remote_ops = remote_ops;
7094
7095 extended_remote_ops.to_shortname = "extended-remote";
7096 extended_remote_ops.to_longname =
7097 "Extended remote serial target in gdb-specific protocol";
7098 extended_remote_ops.to_doc =
7099 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7100 Specify the serial device it is connected to (e.g. /dev/ttya).";
7101 extended_remote_ops.to_open = extended_remote_open;
7102 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7103 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7104 extended_remote_ops.to_detach = extended_remote_detach;
7105 extended_remote_ops.to_attach = extended_remote_attach;
7106 }
7107
7108 static int
7109 remote_can_async_p (void)
7110 {
7111 if (!remote_async_permitted)
7112 /* We only enable async when the user specifically asks for it. */
7113 return 0;
7114
7115 /* We're async whenever the serial device is. */
7116 return remote_async_mask_value && serial_can_async_p (remote_desc);
7117 }
7118
7119 static int
7120 remote_is_async_p (void)
7121 {
7122 if (!remote_async_permitted)
7123 /* We only enable async when the user specifically asks for it. */
7124 return 0;
7125
7126 /* We're async whenever the serial device is. */
7127 return remote_async_mask_value && serial_is_async_p (remote_desc);
7128 }
7129
7130 /* Pass the SERIAL event on and up to the client. One day this code
7131 will be able to delay notifying the client of an event until the
7132 point where an entire packet has been received. */
7133
7134 static void (*async_client_callback) (enum inferior_event_type event_type,
7135 void *context);
7136 static void *async_client_context;
7137 static serial_event_ftype remote_async_serial_handler;
7138
7139 static void
7140 remote_async_serial_handler (struct serial *scb, void *context)
7141 {
7142 /* Don't propogate error information up to the client. Instead let
7143 the client find out about the error by querying the target. */
7144 async_client_callback (INF_REG_EVENT, async_client_context);
7145 }
7146
7147 static void
7148 remote_async (void (*callback) (enum inferior_event_type event_type,
7149 void *context), void *context)
7150 {
7151 if (remote_async_mask_value == 0)
7152 internal_error (__FILE__, __LINE__,
7153 _("Calling remote_async when async is masked"));
7154
7155 if (callback != NULL)
7156 {
7157 serial_async (remote_desc, remote_async_serial_handler, NULL);
7158 async_client_callback = callback;
7159 async_client_context = context;
7160 }
7161 else
7162 serial_async (remote_desc, NULL, NULL);
7163 }
7164
7165 static int
7166 remote_async_mask (int new_mask)
7167 {
7168 int curr_mask = remote_async_mask_value;
7169 remote_async_mask_value = new_mask;
7170 return curr_mask;
7171 }
7172
7173 static void
7174 set_remote_cmd (char *args, int from_tty)
7175 {
7176 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7177 }
7178
7179 static void
7180 show_remote_cmd (char *args, int from_tty)
7181 {
7182 /* We can't just use cmd_show_list here, because we want to skip
7183 the redundant "show remote Z-packet" and the legacy aliases. */
7184 struct cleanup *showlist_chain;
7185 struct cmd_list_element *list = remote_show_cmdlist;
7186
7187 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7188 for (; list != NULL; list = list->next)
7189 if (strcmp (list->name, "Z-packet") == 0)
7190 continue;
7191 else if (list->type == not_set_cmd)
7192 /* Alias commands are exactly like the original, except they
7193 don't have the normal type. */
7194 continue;
7195 else
7196 {
7197 struct cleanup *option_chain
7198 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7199 ui_out_field_string (uiout, "name", list->name);
7200 ui_out_text (uiout, ": ");
7201 if (list->type == show_cmd)
7202 do_setshow_command ((char *) NULL, from_tty, list);
7203 else
7204 cmd_func (list, NULL, from_tty);
7205 /* Close the tuple. */
7206 do_cleanups (option_chain);
7207 }
7208
7209 /* Close the tuple. */
7210 do_cleanups (showlist_chain);
7211 }
7212
7213
7214 /* Function to be called whenever a new objfile (shlib) is detected. */
7215 static void
7216 remote_new_objfile (struct objfile *objfile)
7217 {
7218 if (remote_desc != 0) /* Have a remote connection. */
7219 remote_check_symbols (objfile);
7220 }
7221
7222 void
7223 _initialize_remote (void)
7224 {
7225 struct remote_state *rs;
7226
7227 /* architecture specific data */
7228 remote_gdbarch_data_handle =
7229 gdbarch_data_register_post_init (init_remote_state);
7230 remote_g_packet_data_handle =
7231 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7232
7233 /* Initialize the per-target state. At the moment there is only one
7234 of these, not one per target. Only one target is active at a
7235 time. The default buffer size is unimportant; it will be expanded
7236 whenever a larger buffer is needed. */
7237 rs = get_remote_state_raw ();
7238 rs->buf_size = 400;
7239 rs->buf = xmalloc (rs->buf_size);
7240
7241 init_remote_ops ();
7242 add_target (&remote_ops);
7243
7244 init_extended_remote_ops ();
7245 add_target (&extended_remote_ops);
7246
7247 /* Hook into new objfile notification. */
7248 observer_attach_new_objfile (remote_new_objfile);
7249
7250 /* Set up signal handlers. */
7251 sigint_remote_token =
7252 create_async_signal_handler (async_remote_interrupt, NULL);
7253 sigint_remote_twice_token =
7254 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7255
7256 #if 0
7257 init_remote_threadtests ();
7258 #endif
7259
7260 /* set/show remote ... */
7261
7262 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7263 Remote protocol specific variables\n\
7264 Configure various remote-protocol specific variables such as\n\
7265 the packets being used"),
7266 &remote_set_cmdlist, "set remote ",
7267 0 /* allow-unknown */, &setlist);
7268 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7269 Remote protocol specific variables\n\
7270 Configure various remote-protocol specific variables such as\n\
7271 the packets being used"),
7272 &remote_show_cmdlist, "show remote ",
7273 0 /* allow-unknown */, &showlist);
7274
7275 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7276 Compare section data on target to the exec file.\n\
7277 Argument is a single section name (default: all loaded sections)."),
7278 &cmdlist);
7279
7280 add_cmd ("packet", class_maintenance, packet_command, _("\
7281 Send an arbitrary packet to a remote target.\n\
7282 maintenance packet TEXT\n\
7283 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7284 this command sends the string TEXT to the inferior, and displays the\n\
7285 response packet. GDB supplies the initial `$' character, and the\n\
7286 terminating `#' character and checksum."),
7287 &maintenancelist);
7288
7289 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7290 Set whether to send break if interrupted."), _("\
7291 Show whether to send break if interrupted."), _("\
7292 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7293 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7294 &setlist, &showlist);
7295
7296 /* Install commands for configuring memory read/write packets. */
7297
7298 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7299 Set the maximum number of bytes per memory write packet (deprecated)."),
7300 &setlist);
7301 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7302 Show the maximum number of bytes per memory write packet (deprecated)."),
7303 &showlist);
7304 add_cmd ("memory-write-packet-size", no_class,
7305 set_memory_write_packet_size, _("\
7306 Set the maximum number of bytes per memory-write packet.\n\
7307 Specify the number of bytes in a packet or 0 (zero) for the\n\
7308 default packet size. The actual limit is further reduced\n\
7309 dependent on the target. Specify ``fixed'' to disable the\n\
7310 further restriction and ``limit'' to enable that restriction."),
7311 &remote_set_cmdlist);
7312 add_cmd ("memory-read-packet-size", no_class,
7313 set_memory_read_packet_size, _("\
7314 Set the maximum number of bytes per memory-read packet.\n\
7315 Specify the number of bytes in a packet or 0 (zero) for the\n\
7316 default packet size. The actual limit is further reduced\n\
7317 dependent on the target. Specify ``fixed'' to disable the\n\
7318 further restriction and ``limit'' to enable that restriction."),
7319 &remote_set_cmdlist);
7320 add_cmd ("memory-write-packet-size", no_class,
7321 show_memory_write_packet_size,
7322 _("Show the maximum number of bytes per memory-write packet."),
7323 &remote_show_cmdlist);
7324 add_cmd ("memory-read-packet-size", no_class,
7325 show_memory_read_packet_size,
7326 _("Show the maximum number of bytes per memory-read packet."),
7327 &remote_show_cmdlist);
7328
7329 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7330 &remote_hw_watchpoint_limit, _("\
7331 Set the maximum number of target hardware watchpoints."), _("\
7332 Show the maximum number of target hardware watchpoints."), _("\
7333 Specify a negative limit for unlimited."),
7334 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7335 &remote_set_cmdlist, &remote_show_cmdlist);
7336 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7337 &remote_hw_breakpoint_limit, _("\
7338 Set the maximum number of target hardware breakpoints."), _("\
7339 Show the maximum number of target hardware breakpoints."), _("\
7340 Specify a negative limit for unlimited."),
7341 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7342 &remote_set_cmdlist, &remote_show_cmdlist);
7343
7344 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7345 &remote_address_size, _("\
7346 Set the maximum size of the address (in bits) in a memory packet."), _("\
7347 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7348 NULL,
7349 NULL, /* FIXME: i18n: */
7350 &setlist, &showlist);
7351
7352 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7353 "X", "binary-download", 1);
7354
7355 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7356 "vCont", "verbose-resume", 0);
7357
7358 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7359 "QPassSignals", "pass-signals", 0);
7360
7361 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7362 "qSymbol", "symbol-lookup", 0);
7363
7364 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7365 "P", "set-register", 1);
7366
7367 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7368 "p", "fetch-register", 1);
7369
7370 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7371 "Z0", "software-breakpoint", 0);
7372
7373 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7374 "Z1", "hardware-breakpoint", 0);
7375
7376 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7377 "Z2", "write-watchpoint", 0);
7378
7379 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7380 "Z3", "read-watchpoint", 0);
7381
7382 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7383 "Z4", "access-watchpoint", 0);
7384
7385 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7386 "qXfer:auxv:read", "read-aux-vector", 0);
7387
7388 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7389 "qXfer:features:read", "target-features", 0);
7390
7391 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7392 "qXfer:libraries:read", "library-info", 0);
7393
7394 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7395 "qXfer:memory-map:read", "memory-map", 0);
7396
7397 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7398 "qXfer:spu:read", "read-spu-object", 0);
7399
7400 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7401 "qXfer:spu:write", "write-spu-object", 0);
7402
7403 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7404 "qGetTLSAddr", "get-thread-local-storage-address",
7405 0);
7406
7407 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7408 "qSupported", "supported-packets", 0);
7409
7410 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7411 "qSearch:memory", "search-memory", 0);
7412
7413 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7414 "vFile:open", "hostio-open", 0);
7415
7416 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7417 "vFile:pread", "hostio-pread", 0);
7418
7419 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7420 "vFile:pwrite", "hostio-pwrite", 0);
7421
7422 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7423 "vFile:close", "hostio-close", 0);
7424
7425 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7426 "vFile:unlink", "hostio-unlink", 0);
7427
7428 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7429 "vAttach", "attach", 0);
7430
7431 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7432 "vRun", "run", 0);
7433
7434 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7435 Z sub-packet has its own set and show commands, but users may
7436 have sets to this variable in their .gdbinit files (or in their
7437 documentation). */
7438 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7439 &remote_Z_packet_detect, _("\
7440 Set use of remote protocol `Z' packets"), _("\
7441 Show use of remote protocol `Z' packets "), _("\
7442 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7443 packets."),
7444 set_remote_protocol_Z_packet_cmd,
7445 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7446 &remote_set_cmdlist, &remote_show_cmdlist);
7447
7448 add_prefix_cmd ("remote", class_files, remote_command, _("\
7449 Manipulate files on the remote system\n\
7450 Transfer files to and from the remote target system."),
7451 &remote_cmdlist, "remote ",
7452 0 /* allow-unknown */, &cmdlist);
7453
7454 add_cmd ("put", class_files, remote_put_command,
7455 _("Copy a local file to the remote system."),
7456 &remote_cmdlist);
7457
7458 add_cmd ("get", class_files, remote_get_command,
7459 _("Copy a remote file to the local system."),
7460 &remote_cmdlist);
7461
7462 add_cmd ("delete", class_files, remote_delete_command,
7463 _("Delete a remote file."),
7464 &remote_cmdlist);
7465
7466 remote_exec_file = xstrdup ("");
7467 add_setshow_string_noescape_cmd ("exec-file", class_files,
7468 &remote_exec_file, _("\
7469 Set the remote pathname for \"run\""), _("\
7470 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7471 &remote_set_cmdlist, &remote_show_cmdlist);
7472
7473 add_setshow_boolean_cmd ("remote-async", class_maintenance,
7474 &remote_async_permitted_set, _("\
7475 Set whether gdb controls the remote inferior in asynchronous mode."), _("\
7476 Show whether gdb controls the remote inferior in asynchronous mode."), _("\
7477 Tells gdb whether to control the remote inferior in asynchronous mode."),
7478 set_maintenance_remote_async_permitted,
7479 show_maintenance_remote_async_permitted,
7480 &maintenance_set_cmdlist,
7481 &maintenance_show_cmdlist);
7482
7483
7484 /* Eventually initialize fileio. See fileio.c */
7485 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7486 }
This page took 0.184287 seconds and 4 git commands to generate.