gdb: move cheap pointer equality check earlier in types_equal
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 bool follow_fork (bool, bool) override;
686 void follow_exec (struct inferior *, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, int executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
772
773 void btrace_sync_conf (const btrace_config *conf);
774
775 void remote_btrace_maybe_reopen ();
776
777 void remove_new_fork_children (threads_listing_context *context);
778 void kill_new_fork_children (int pid);
779 void discard_pending_stop_replies (struct inferior *inf);
780 int stop_reply_queue_length ();
781
782 void check_pending_events_prevent_wildcard_vcont
783 (int *may_global_wildcard_vcont);
784
785 void discard_pending_stop_replies_in_queue ();
786 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
787 struct stop_reply *queued_stop_reply (ptid_t ptid);
788 int peek_stop_reply (ptid_t ptid);
789 void remote_parse_stop_reply (const char *buf, stop_reply *event);
790
791 void remote_stop_ns (ptid_t ptid);
792 void remote_interrupt_as ();
793 void remote_interrupt_ns ();
794
795 char *remote_get_noisy_reply ();
796 int remote_query_attached (int pid);
797 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
798 int try_open_exec);
799
800 ptid_t remote_current_thread (ptid_t oldpid);
801 ptid_t get_current_thread (const char *wait_status);
802
803 void set_thread (ptid_t ptid, int gen);
804 void set_general_thread (ptid_t ptid);
805 void set_continue_thread (ptid_t ptid);
806 void set_general_process ();
807
808 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
809
810 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
811 gdb_ext_thread_info *info);
812 int remote_get_threadinfo (threadref *threadid, int fieldset,
813 gdb_ext_thread_info *info);
814
815 int parse_threadlist_response (const char *pkt, int result_limit,
816 threadref *original_echo,
817 threadref *resultlist,
818 int *doneflag);
819 int remote_get_threadlist (int startflag, threadref *nextthread,
820 int result_limit, int *done, int *result_count,
821 threadref *threadlist);
822
823 int remote_threadlist_iterator (rmt_thread_action stepfunction,
824 void *context, int looplimit);
825
826 int remote_get_threads_with_ql (threads_listing_context *context);
827 int remote_get_threads_with_qxfer (threads_listing_context *context);
828 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
829
830 void extended_remote_restart ();
831
832 void get_offsets ();
833
834 void remote_check_symbols ();
835
836 void remote_supported_packet (const struct protocol_feature *feature,
837 enum packet_support support,
838 const char *argument);
839
840 void remote_query_supported ();
841
842 void remote_packet_size (const protocol_feature *feature,
843 packet_support support, const char *value);
844
845 void remote_serial_quit_handler ();
846
847 void remote_detach_pid (int pid);
848
849 void remote_vcont_probe ();
850
851 void remote_resume_with_hc (ptid_t ptid, int step,
852 gdb_signal siggnal);
853
854 void send_interrupt_sequence ();
855 void interrupt_query ();
856
857 void remote_notif_get_pending_events (notif_client *nc);
858
859 int fetch_register_using_p (struct regcache *regcache,
860 packet_reg *reg);
861 int send_g_packet ();
862 void process_g_packet (struct regcache *regcache);
863 void fetch_registers_using_g (struct regcache *regcache);
864 int store_register_using_P (const struct regcache *regcache,
865 packet_reg *reg);
866 void store_registers_using_G (const struct regcache *regcache);
867
868 void set_remote_traceframe ();
869
870 void check_binary_download (CORE_ADDR addr);
871
872 target_xfer_status remote_write_bytes_aux (const char *header,
873 CORE_ADDR memaddr,
874 const gdb_byte *myaddr,
875 ULONGEST len_units,
876 int unit_size,
877 ULONGEST *xfered_len_units,
878 char packet_format,
879 int use_length);
880
881 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
882 const gdb_byte *myaddr, ULONGEST len,
883 int unit_size, ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
886 ULONGEST len_units,
887 int unit_size, ULONGEST *xfered_len_units);
888
889 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
890 ULONGEST memaddr,
891 ULONGEST len,
892 int unit_size,
893 ULONGEST *xfered_len);
894
895 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
896 gdb_byte *myaddr, ULONGEST len,
897 int unit_size,
898 ULONGEST *xfered_len);
899
900 packet_result remote_send_printf (const char *format, ...)
901 ATTRIBUTE_PRINTF (2, 3);
902
903 target_xfer_status remote_flash_write (ULONGEST address,
904 ULONGEST length, ULONGEST *xfered_len,
905 const gdb_byte *data);
906
907 int readchar (int timeout);
908
909 void remote_serial_write (const char *str, int len);
910
911 int putpkt (const char *buf);
912 int putpkt_binary (const char *buf, int cnt);
913
914 int putpkt (const gdb::char_vector &buf)
915 {
916 return putpkt (buf.data ());
917 }
918
919 void skip_frame ();
920 long read_frame (gdb::char_vector *buf_p);
921 void getpkt (gdb::char_vector *buf, int forever);
922 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
923 int expecting_notif, int *is_notif);
924 int getpkt_sane (gdb::char_vector *buf, int forever);
925 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
926 int *is_notif);
927 int remote_vkill (int pid);
928 void remote_kill_k ();
929
930 void extended_remote_disable_randomization (int val);
931 int extended_remote_run (const std::string &args);
932
933 void send_environment_packet (const char *action,
934 const char *packet,
935 const char *value);
936
937 void extended_remote_environment_support ();
938 void extended_remote_set_inferior_cwd ();
939
940 target_xfer_status remote_write_qxfer (const char *object_name,
941 const char *annex,
942 const gdb_byte *writebuf,
943 ULONGEST offset, LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 target_xfer_status remote_read_qxfer (const char *object_name,
948 const char *annex,
949 gdb_byte *readbuf, ULONGEST offset,
950 LONGEST len,
951 ULONGEST *xfered_len,
952 struct packet_config *packet);
953
954 void push_stop_reply (struct stop_reply *new_event);
955
956 bool vcont_r_supported ();
957
958 void packet_command (const char *args, int from_tty);
959
960 private: /* data fields */
961
962 /* The remote state. Don't reference this directly. Use the
963 get_remote_state method instead. */
964 remote_state m_remote_state;
965 };
966
967 static const target_info extended_remote_target_info = {
968 "extended-remote",
969 N_("Extended remote serial target in gdb-specific protocol"),
970 remote_doc
971 };
972
973 /* Set up the extended remote target by extending the standard remote
974 target and adding to it. */
975
976 class extended_remote_target final : public remote_target
977 {
978 public:
979 const target_info &info () const override
980 { return extended_remote_target_info; }
981
982 /* Open an extended-remote connection. */
983 static void open (const char *, int);
984
985 bool can_create_inferior () override { return true; }
986 void create_inferior (const char *, const std::string &,
987 char **, int) override;
988
989 void detach (inferior *, int) override;
990
991 bool can_attach () override { return true; }
992 void attach (const char *, int) override;
993
994 void post_attach (int) override;
995 bool supports_disable_randomization () override;
996 };
997
998 /* Per-program-space data key. */
999 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1000 remote_pspace_data;
1001
1002 /* The variable registered as the control variable used by the
1003 remote exec-file commands. While the remote exec-file setting is
1004 per-program-space, the set/show machinery uses this as the
1005 location of the remote exec-file value. */
1006 static char *remote_exec_file_var;
1007
1008 /* The size to align memory write packets, when practical. The protocol
1009 does not guarantee any alignment, and gdb will generate short
1010 writes and unaligned writes, but even as a best-effort attempt this
1011 can improve bulk transfers. For instance, if a write is misaligned
1012 relative to the target's data bus, the stub may need to make an extra
1013 round trip fetching data from the target. This doesn't make a
1014 huge difference, but it's easy to do, so we try to be helpful.
1015
1016 The alignment chosen is arbitrary; usually data bus width is
1017 important here, not the possibly larger cache line size. */
1018 enum { REMOTE_ALIGN_WRITES = 16 };
1019
1020 /* Prototypes for local functions. */
1021
1022 static int hexnumlen (ULONGEST num);
1023
1024 static int stubhex (int ch);
1025
1026 static int hexnumstr (char *, ULONGEST);
1027
1028 static int hexnumnstr (char *, ULONGEST, int);
1029
1030 static CORE_ADDR remote_address_masked (CORE_ADDR);
1031
1032 static void print_packet (const char *);
1033
1034 static int stub_unpack_int (const char *buff, int fieldlength);
1035
1036 struct packet_config;
1037
1038 static void show_packet_config_cmd (struct packet_config *config);
1039
1040 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1041 int from_tty,
1042 struct cmd_list_element *c,
1043 const char *value);
1044
1045 static ptid_t read_ptid (const char *buf, const char **obuf);
1046
1047 static void remote_async_inferior_event_handler (gdb_client_data);
1048
1049 static bool remote_read_description_p (struct target_ops *target);
1050
1051 static void remote_console_output (const char *msg);
1052
1053 static void remote_btrace_reset (remote_state *rs);
1054
1055 static void remote_unpush_and_throw (remote_target *target);
1056
1057 /* For "remote". */
1058
1059 static struct cmd_list_element *remote_cmdlist;
1060
1061 /* For "set remote" and "show remote". */
1062
1063 static struct cmd_list_element *remote_set_cmdlist;
1064 static struct cmd_list_element *remote_show_cmdlist;
1065
1066 /* Controls whether GDB is willing to use range stepping. */
1067
1068 static bool use_range_stepping = true;
1069
1070 /* From the remote target's point of view, each thread is in one of these three
1071 states. */
1072 enum class resume_state
1073 {
1074 /* Not resumed - we haven't been asked to resume this thread. */
1075 NOT_RESUMED,
1076
1077 /* We have been asked to resume this thread, but haven't sent a vCont action
1078 for it yet. We'll need to consider it next time commit_resume is
1079 called. */
1080 RESUMED_PENDING_VCONT,
1081
1082 /* We have been asked to resume this thread, and we have sent a vCont action
1083 for it. */
1084 RESUMED,
1085 };
1086
1087 /* Information about a thread's pending vCont-resume. Used when a thread is in
1088 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1089 stores this information which is then picked up by
1090 remote_target::commit_resume to know which is the proper action for this
1091 thread to include in the vCont packet. */
1092 struct resumed_pending_vcont_info
1093 {
1094 /* True if the last resume call for this thread was a step request, false
1095 if a continue request. */
1096 bool step;
1097
1098 /* The signal specified in the last resume call for this thread. */
1099 gdb_signal sig;
1100 };
1101
1102 /* Private data that we'll store in (struct thread_info)->priv. */
1103 struct remote_thread_info : public private_thread_info
1104 {
1105 std::string extra;
1106 std::string name;
1107 int core = -1;
1108
1109 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1110 sequence of bytes. */
1111 gdb::byte_vector thread_handle;
1112
1113 /* Whether the target stopped for a breakpoint/watchpoint. */
1114 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1115
1116 /* This is set to the data address of the access causing the target
1117 to stop for a watchpoint. */
1118 CORE_ADDR watch_data_address = 0;
1119
1120 /* Get the thread's resume state. */
1121 enum resume_state get_resume_state () const
1122 {
1123 return m_resume_state;
1124 }
1125
1126 /* Put the thread in the NOT_RESUMED state. */
1127 void set_not_resumed ()
1128 {
1129 m_resume_state = resume_state::NOT_RESUMED;
1130 }
1131
1132 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1133 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1134 {
1135 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1136 m_resumed_pending_vcont_info.step = step;
1137 m_resumed_pending_vcont_info.sig = sig;
1138 }
1139
1140 /* Get the information this thread's pending vCont-resumption.
1141
1142 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1143 state. */
1144 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1145 {
1146 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1147
1148 return m_resumed_pending_vcont_info;
1149 }
1150
1151 /* Put the thread in the VCONT_RESUMED state. */
1152 void set_resumed ()
1153 {
1154 m_resume_state = resume_state::RESUMED;
1155 }
1156
1157 private:
1158 /* Resume state for this thread. This is used to implement vCont action
1159 coalescing (only when the target operates in non-stop mode).
1160
1161 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1162 which notes that this thread must be considered in the next commit_resume
1163 call.
1164
1165 remote_target::commit_resume sends a vCont packet with actions for the
1166 threads in the RESUMED_PENDING_VCONT state and moves them to the
1167 VCONT_RESUMED state.
1168
1169 When reporting a stop to the core for a thread, that thread is moved back
1170 to the NOT_RESUMED state. */
1171 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1172
1173 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1174 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1175 };
1176
1177 remote_state::remote_state ()
1178 : buf (400)
1179 {
1180 }
1181
1182 remote_state::~remote_state ()
1183 {
1184 xfree (this->last_pass_packet);
1185 xfree (this->last_program_signals_packet);
1186 xfree (this->finished_object);
1187 xfree (this->finished_annex);
1188 }
1189
1190 /* Utility: generate error from an incoming stub packet. */
1191 static void
1192 trace_error (char *buf)
1193 {
1194 if (*buf++ != 'E')
1195 return; /* not an error msg */
1196 switch (*buf)
1197 {
1198 case '1': /* malformed packet error */
1199 if (*++buf == '0') /* general case: */
1200 error (_("remote.c: error in outgoing packet."));
1201 else
1202 error (_("remote.c: error in outgoing packet at field #%ld."),
1203 strtol (buf, NULL, 16));
1204 default:
1205 error (_("Target returns error code '%s'."), buf);
1206 }
1207 }
1208
1209 /* Utility: wait for reply from stub, while accepting "O" packets. */
1210
1211 char *
1212 remote_target::remote_get_noisy_reply ()
1213 {
1214 struct remote_state *rs = get_remote_state ();
1215
1216 do /* Loop on reply from remote stub. */
1217 {
1218 char *buf;
1219
1220 QUIT; /* Allow user to bail out with ^C. */
1221 getpkt (&rs->buf, 0);
1222 buf = rs->buf.data ();
1223 if (buf[0] == 'E')
1224 trace_error (buf);
1225 else if (startswith (buf, "qRelocInsn:"))
1226 {
1227 ULONGEST ul;
1228 CORE_ADDR from, to, org_to;
1229 const char *p, *pp;
1230 int adjusted_size = 0;
1231 int relocated = 0;
1232
1233 p = buf + strlen ("qRelocInsn:");
1234 pp = unpack_varlen_hex (p, &ul);
1235 if (*pp != ';')
1236 error (_("invalid qRelocInsn packet: %s"), buf);
1237 from = ul;
1238
1239 p = pp + 1;
1240 unpack_varlen_hex (p, &ul);
1241 to = ul;
1242
1243 org_to = to;
1244
1245 try
1246 {
1247 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1248 relocated = 1;
1249 }
1250 catch (const gdb_exception &ex)
1251 {
1252 if (ex.error == MEMORY_ERROR)
1253 {
1254 /* Propagate memory errors silently back to the
1255 target. The stub may have limited the range of
1256 addresses we can write to, for example. */
1257 }
1258 else
1259 {
1260 /* Something unexpectedly bad happened. Be verbose
1261 so we can tell what, and propagate the error back
1262 to the stub, so it doesn't get stuck waiting for
1263 a response. */
1264 exception_fprintf (gdb_stderr, ex,
1265 _("warning: relocating instruction: "));
1266 }
1267 putpkt ("E01");
1268 }
1269
1270 if (relocated)
1271 {
1272 adjusted_size = to - org_to;
1273
1274 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1275 putpkt (buf);
1276 }
1277 }
1278 else if (buf[0] == 'O' && buf[1] != 'K')
1279 remote_console_output (buf + 1); /* 'O' message from stub */
1280 else
1281 return buf; /* Here's the actual reply. */
1282 }
1283 while (1);
1284 }
1285
1286 struct remote_arch_state *
1287 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1288 {
1289 remote_arch_state *rsa;
1290
1291 auto it = this->m_arch_states.find (gdbarch);
1292 if (it == this->m_arch_states.end ())
1293 {
1294 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1295 std::forward_as_tuple (gdbarch),
1296 std::forward_as_tuple (gdbarch));
1297 rsa = &p.first->second;
1298
1299 /* Make sure that the packet buffer is plenty big enough for
1300 this architecture. */
1301 if (this->buf.size () < rsa->remote_packet_size)
1302 this->buf.resize (2 * rsa->remote_packet_size);
1303 }
1304 else
1305 rsa = &it->second;
1306
1307 return rsa;
1308 }
1309
1310 /* Fetch the global remote target state. */
1311
1312 remote_state *
1313 remote_target::get_remote_state ()
1314 {
1315 /* Make sure that the remote architecture state has been
1316 initialized, because doing so might reallocate rs->buf. Any
1317 function which calls getpkt also needs to be mindful of changes
1318 to rs->buf, but this call limits the number of places which run
1319 into trouble. */
1320 m_remote_state.get_remote_arch_state (target_gdbarch ());
1321
1322 return &m_remote_state;
1323 }
1324
1325 /* Fetch the remote exec-file from the current program space. */
1326
1327 static const char *
1328 get_remote_exec_file (void)
1329 {
1330 char *remote_exec_file;
1331
1332 remote_exec_file = remote_pspace_data.get (current_program_space);
1333 if (remote_exec_file == NULL)
1334 return "";
1335
1336 return remote_exec_file;
1337 }
1338
1339 /* Set the remote exec file for PSPACE. */
1340
1341 static void
1342 set_pspace_remote_exec_file (struct program_space *pspace,
1343 const char *remote_exec_file)
1344 {
1345 char *old_file = remote_pspace_data.get (pspace);
1346
1347 xfree (old_file);
1348 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1349 }
1350
1351 /* The "set/show remote exec-file" set command hook. */
1352
1353 static void
1354 set_remote_exec_file (const char *ignored, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 gdb_assert (remote_exec_file_var != NULL);
1358 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1359 }
1360
1361 /* The "set/show remote exec-file" show command hook. */
1362
1363 static void
1364 show_remote_exec_file (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *cmd, const char *value)
1366 {
1367 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1368 }
1369
1370 static int
1371 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1372 {
1373 int regnum, num_remote_regs, offset;
1374 struct packet_reg **remote_regs;
1375
1376 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1377 {
1378 struct packet_reg *r = &regs[regnum];
1379
1380 if (register_size (gdbarch, regnum) == 0)
1381 /* Do not try to fetch zero-sized (placeholder) registers. */
1382 r->pnum = -1;
1383 else
1384 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1385
1386 r->regnum = regnum;
1387 }
1388
1389 /* Define the g/G packet format as the contents of each register
1390 with a remote protocol number, in order of ascending protocol
1391 number. */
1392
1393 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1394 for (num_remote_regs = 0, regnum = 0;
1395 regnum < gdbarch_num_regs (gdbarch);
1396 regnum++)
1397 if (regs[regnum].pnum != -1)
1398 remote_regs[num_remote_regs++] = &regs[regnum];
1399
1400 std::sort (remote_regs, remote_regs + num_remote_regs,
1401 [] (const packet_reg *a, const packet_reg *b)
1402 { return a->pnum < b->pnum; });
1403
1404 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1405 {
1406 remote_regs[regnum]->in_g_packet = 1;
1407 remote_regs[regnum]->offset = offset;
1408 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Given the architecture described by GDBARCH, return the remote
1415 protocol register's number and the register's offset in the g/G
1416 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1417 If the target does not have a mapping for REGNUM, return false,
1418 otherwise, return true. */
1419
1420 int
1421 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1422 int *pnum, int *poffset)
1423 {
1424 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1425
1426 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1427
1428 map_regcache_remote_table (gdbarch, regs.data ());
1429
1430 *pnum = regs[regnum].pnum;
1431 *poffset = regs[regnum].offset;
1432
1433 return *pnum != -1;
1434 }
1435
1436 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1437 {
1438 /* Use the architecture to build a regnum<->pnum table, which will be
1439 1:1 unless a feature set specifies otherwise. */
1440 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1441
1442 /* Record the maximum possible size of the g packet - it may turn out
1443 to be smaller. */
1444 this->sizeof_g_packet
1445 = map_regcache_remote_table (gdbarch, this->regs.get ());
1446
1447 /* Default maximum number of characters in a packet body. Many
1448 remote stubs have a hardwired buffer size of 400 bytes
1449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1450 as the maximum packet-size to ensure that the packet and an extra
1451 NUL character can always fit in the buffer. This stops GDB
1452 trashing stubs that try to squeeze an extra NUL into what is
1453 already a full buffer (As of 1999-12-04 that was most stubs). */
1454 this->remote_packet_size = 400 - 1;
1455
1456 /* This one is filled in when a ``g'' packet is received. */
1457 this->actual_register_packet_size = 0;
1458
1459 /* Should rsa->sizeof_g_packet needs more space than the
1460 default, adjust the size accordingly. Remember that each byte is
1461 encoded as two characters. 32 is the overhead for the packet
1462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1463 (``$NN:G...#NN'') is a better guess, the below has been padded a
1464 little. */
1465 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1466 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1467 }
1468
1469 /* Get a pointer to the current remote target. If not connected to a
1470 remote target, return NULL. */
1471
1472 static remote_target *
1473 get_current_remote_target ()
1474 {
1475 target_ops *proc_target = current_inferior ()->process_target ();
1476 return dynamic_cast<remote_target *> (proc_target);
1477 }
1478
1479 /* Return the current allowed size of a remote packet. This is
1480 inferred from the current architecture, and should be used to
1481 limit the length of outgoing packets. */
1482 long
1483 remote_target::get_remote_packet_size ()
1484 {
1485 struct remote_state *rs = get_remote_state ();
1486 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1487
1488 if (rs->explicit_packet_size)
1489 return rs->explicit_packet_size;
1490
1491 return rsa->remote_packet_size;
1492 }
1493
1494 static struct packet_reg *
1495 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1496 long regnum)
1497 {
1498 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1499 return NULL;
1500 else
1501 {
1502 struct packet_reg *r = &rsa->regs[regnum];
1503
1504 gdb_assert (r->regnum == regnum);
1505 return r;
1506 }
1507 }
1508
1509 static struct packet_reg *
1510 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1511 LONGEST pnum)
1512 {
1513 int i;
1514
1515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1516 {
1517 struct packet_reg *r = &rsa->regs[i];
1518
1519 if (r->pnum == pnum)
1520 return r;
1521 }
1522 return NULL;
1523 }
1524
1525 /* Allow the user to specify what sequence to send to the remote
1526 when he requests a program interruption: Although ^C is usually
1527 what remote systems expect (this is the default, here), it is
1528 sometimes preferable to send a break. On other systems such
1529 as the Linux kernel, a break followed by g, which is Magic SysRq g
1530 is required in order to interrupt the execution. */
1531 const char interrupt_sequence_control_c[] = "Ctrl-C";
1532 const char interrupt_sequence_break[] = "BREAK";
1533 const char interrupt_sequence_break_g[] = "BREAK-g";
1534 static const char *const interrupt_sequence_modes[] =
1535 {
1536 interrupt_sequence_control_c,
1537 interrupt_sequence_break,
1538 interrupt_sequence_break_g,
1539 NULL
1540 };
1541 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1542
1543 static void
1544 show_interrupt_sequence (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1549 fprintf_filtered (file,
1550 _("Send the ASCII ETX character (Ctrl-c) "
1551 "to the remote target to interrupt the "
1552 "execution of the program.\n"));
1553 else if (interrupt_sequence_mode == interrupt_sequence_break)
1554 fprintf_filtered (file,
1555 _("send a break signal to the remote target "
1556 "to interrupt the execution of the program.\n"));
1557 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1558 fprintf_filtered (file,
1559 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1560 "the remote target to interrupt the execution "
1561 "of Linux kernel.\n"));
1562 else
1563 internal_error (__FILE__, __LINE__,
1564 _("Invalid value for interrupt_sequence_mode: %s."),
1565 interrupt_sequence_mode);
1566 }
1567
1568 /* This boolean variable specifies whether interrupt_sequence is sent
1569 to the remote target when gdb connects to it.
1570 This is mostly needed when you debug the Linux kernel: The Linux kernel
1571 expects BREAK g which is Magic SysRq g for connecting gdb. */
1572 static bool interrupt_on_connect = false;
1573
1574 /* This variable is used to implement the "set/show remotebreak" commands.
1575 Since these commands are now deprecated in favor of "set/show remote
1576 interrupt-sequence", it no longer has any effect on the code. */
1577 static bool remote_break;
1578
1579 static void
1580 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1581 {
1582 if (remote_break)
1583 interrupt_sequence_mode = interrupt_sequence_break;
1584 else
1585 interrupt_sequence_mode = interrupt_sequence_control_c;
1586 }
1587
1588 static void
1589 show_remotebreak (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c,
1591 const char *value)
1592 {
1593 }
1594
1595 /* This variable sets the number of bits in an address that are to be
1596 sent in a memory ("M" or "m") packet. Normally, after stripping
1597 leading zeros, the entire address would be sent. This variable
1598 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1599 initial implementation of remote.c restricted the address sent in
1600 memory packets to ``host::sizeof long'' bytes - (typically 32
1601 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1602 address was never sent. Since fixing this bug may cause a break in
1603 some remote targets this variable is principally provided to
1604 facilitate backward compatibility. */
1605
1606 static unsigned int remote_address_size;
1607
1608 \f
1609 /* User configurable variables for the number of characters in a
1610 memory read/write packet. MIN (rsa->remote_packet_size,
1611 rsa->sizeof_g_packet) is the default. Some targets need smaller
1612 values (fifo overruns, et.al.) and some users need larger values
1613 (speed up transfers). The variables ``preferred_*'' (the user
1614 request), ``current_*'' (what was actually set) and ``forced_*''
1615 (Positive - a soft limit, negative - a hard limit). */
1616
1617 struct memory_packet_config
1618 {
1619 const char *name;
1620 long size;
1621 int fixed_p;
1622 };
1623
1624 /* The default max memory-write-packet-size, when the setting is
1625 "fixed". The 16k is historical. (It came from older GDB's using
1626 alloca for buffers and the knowledge (folklore?) that some hosts
1627 don't cope very well with large alloca calls.) */
1628 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1629
1630 /* The minimum remote packet size for memory transfers. Ensures we
1631 can write at least one byte. */
1632 #define MIN_MEMORY_PACKET_SIZE 20
1633
1634 /* Get the memory packet size, assuming it is fixed. */
1635
1636 static long
1637 get_fixed_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 gdb_assert (config->fixed_p);
1640
1641 if (config->size <= 0)
1642 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1643 else
1644 return config->size;
1645 }
1646
1647 /* Compute the current size of a read/write packet. Since this makes
1648 use of ``actual_register_packet_size'' the computation is dynamic. */
1649
1650 long
1651 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1655
1656 long what_they_get;
1657 if (config->fixed_p)
1658 what_they_get = get_fixed_memory_packet_size (config);
1659 else
1660 {
1661 what_they_get = get_remote_packet_size ();
1662 /* Limit the packet to the size specified by the user. */
1663 if (config->size > 0
1664 && what_they_get > config->size)
1665 what_they_get = config->size;
1666
1667 /* Limit it to the size of the targets ``g'' response unless we have
1668 permission from the stub to use a larger packet size. */
1669 if (rs->explicit_packet_size == 0
1670 && rsa->actual_register_packet_size > 0
1671 && what_they_get > rsa->actual_register_packet_size)
1672 what_they_get = rsa->actual_register_packet_size;
1673 }
1674 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1675 what_they_get = MIN_MEMORY_PACKET_SIZE;
1676
1677 /* Make sure there is room in the global buffer for this packet
1678 (including its trailing NUL byte). */
1679 if (rs->buf.size () < what_they_get + 1)
1680 rs->buf.resize (2 * what_they_get);
1681
1682 return what_they_get;
1683 }
1684
1685 /* Update the size of a read/write packet. If they user wants
1686 something really big then do a sanity check. */
1687
1688 static void
1689 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1690 {
1691 int fixed_p = config->fixed_p;
1692 long size = config->size;
1693
1694 if (args == NULL)
1695 error (_("Argument required (integer, `fixed' or `limited')."));
1696 else if (strcmp (args, "hard") == 0
1697 || strcmp (args, "fixed") == 0)
1698 fixed_p = 1;
1699 else if (strcmp (args, "soft") == 0
1700 || strcmp (args, "limit") == 0)
1701 fixed_p = 0;
1702 else
1703 {
1704 char *end;
1705
1706 size = strtoul (args, &end, 0);
1707 if (args == end)
1708 error (_("Invalid %s (bad syntax)."), config->name);
1709
1710 /* Instead of explicitly capping the size of a packet to or
1711 disallowing it, the user is allowed to set the size to
1712 something arbitrarily large. */
1713 }
1714
1715 /* Extra checks? */
1716 if (fixed_p && !config->fixed_p)
1717 {
1718 /* So that the query shows the correct value. */
1719 long query_size = (size <= 0
1720 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1721 : size);
1722
1723 if (! query (_("The target may not be able to correctly handle a %s\n"
1724 "of %ld bytes. Change the packet size? "),
1725 config->name, query_size))
1726 error (_("Packet size not changed."));
1727 }
1728 /* Update the config. */
1729 config->fixed_p = fixed_p;
1730 config->size = size;
1731 }
1732
1733 static void
1734 show_memory_packet_size (struct memory_packet_config *config)
1735 {
1736 if (config->size == 0)
1737 printf_filtered (_("The %s is 0 (default). "), config->name);
1738 else
1739 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1740 if (config->fixed_p)
1741 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1742 get_fixed_memory_packet_size (config));
1743 else
1744 {
1745 remote_target *remote = get_current_remote_target ();
1746
1747 if (remote != NULL)
1748 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1749 remote->get_memory_packet_size (config));
1750 else
1751 puts_filtered ("The actual limit will be further reduced "
1752 "dependent on the target.\n");
1753 }
1754 }
1755
1756 /* FIXME: needs to be per-remote-target. */
1757 static struct memory_packet_config memory_write_packet_config =
1758 {
1759 "memory-write-packet-size",
1760 };
1761
1762 static void
1763 set_memory_write_packet_size (const char *args, int from_tty)
1764 {
1765 set_memory_packet_size (args, &memory_write_packet_config);
1766 }
1767
1768 static void
1769 show_memory_write_packet_size (const char *args, int from_tty)
1770 {
1771 show_memory_packet_size (&memory_write_packet_config);
1772 }
1773
1774 /* Show the number of hardware watchpoints that can be used. */
1775
1776 static void
1777 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1778 struct cmd_list_element *c,
1779 const char *value)
1780 {
1781 fprintf_filtered (file, _("The maximum number of target hardware "
1782 "watchpoints is %s.\n"), value);
1783 }
1784
1785 /* Show the length limit (in bytes) for hardware watchpoints. */
1786
1787 static void
1788 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1789 struct cmd_list_element *c,
1790 const char *value)
1791 {
1792 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1793 "hardware watchpoint is %s.\n"), value);
1794 }
1795
1796 /* Show the number of hardware breakpoints that can be used. */
1797
1798 static void
1799 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c,
1801 const char *value)
1802 {
1803 fprintf_filtered (file, _("The maximum number of target hardware "
1804 "breakpoints is %s.\n"), value);
1805 }
1806
1807 /* Controls the maximum number of characters to display in the debug output
1808 for each remote packet. The remaining characters are omitted. */
1809
1810 static int remote_packet_max_chars = 512;
1811
1812 /* Show the maximum number of characters to display for each remote packet
1813 when remote debugging is enabled. */
1814
1815 static void
1816 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("Number of remote packet characters to "
1821 "display is %s.\n"), value);
1822 }
1823
1824 long
1825 remote_target::get_memory_write_packet_size ()
1826 {
1827 return get_memory_packet_size (&memory_write_packet_config);
1828 }
1829
1830 /* FIXME: needs to be per-remote-target. */
1831 static struct memory_packet_config memory_read_packet_config =
1832 {
1833 "memory-read-packet-size",
1834 };
1835
1836 static void
1837 set_memory_read_packet_size (const char *args, int from_tty)
1838 {
1839 set_memory_packet_size (args, &memory_read_packet_config);
1840 }
1841
1842 static void
1843 show_memory_read_packet_size (const char *args, int from_tty)
1844 {
1845 show_memory_packet_size (&memory_read_packet_config);
1846 }
1847
1848 long
1849 remote_target::get_memory_read_packet_size ()
1850 {
1851 long size = get_memory_packet_size (&memory_read_packet_config);
1852
1853 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1854 extra buffer size argument before the memory read size can be
1855 increased beyond this. */
1856 if (size > get_remote_packet_size ())
1857 size = get_remote_packet_size ();
1858 return size;
1859 }
1860
1861 \f
1862
1863 struct packet_config
1864 {
1865 const char *name;
1866 const char *title;
1867
1868 /* If auto, GDB auto-detects support for this packet or feature,
1869 either through qSupported, or by trying the packet and looking
1870 at the response. If true, GDB assumes the target supports this
1871 packet. If false, the packet is disabled. Configs that don't
1872 have an associated command always have this set to auto. */
1873 enum auto_boolean detect;
1874
1875 /* Does the target support this packet? */
1876 enum packet_support support;
1877 };
1878
1879 static enum packet_support packet_config_support (struct packet_config *config);
1880 static enum packet_support packet_support (int packet);
1881
1882 static void
1883 show_packet_config_cmd (struct packet_config *config)
1884 {
1885 const char *support = "internal-error";
1886
1887 switch (packet_config_support (config))
1888 {
1889 case PACKET_ENABLE:
1890 support = "enabled";
1891 break;
1892 case PACKET_DISABLE:
1893 support = "disabled";
1894 break;
1895 case PACKET_SUPPORT_UNKNOWN:
1896 support = "unknown";
1897 break;
1898 }
1899 switch (config->detect)
1900 {
1901 case AUTO_BOOLEAN_AUTO:
1902 printf_filtered (_("Support for the `%s' packet "
1903 "is auto-detected, currently %s.\n"),
1904 config->name, support);
1905 break;
1906 case AUTO_BOOLEAN_TRUE:
1907 case AUTO_BOOLEAN_FALSE:
1908 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1909 config->name, support);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 add_packet_config_cmd (struct packet_config *config, const char *name,
1916 const char *title, int legacy)
1917 {
1918 char *set_doc;
1919 char *show_doc;
1920 char *cmd_name;
1921
1922 config->name = name;
1923 config->title = title;
1924 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1925 name, title);
1926 show_doc = xstrprintf ("Show current use of remote "
1927 "protocol `%s' (%s) packet.",
1928 name, title);
1929 /* set/show TITLE-packet {auto,on,off} */
1930 cmd_name = xstrprintf ("%s-packet", title);
1931 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1932 &config->detect, set_doc,
1933 show_doc, NULL, /* help_doc */
1934 NULL,
1935 show_remote_protocol_packet_cmd,
1936 &remote_set_cmdlist, &remote_show_cmdlist);
1937 /* The command code copies the documentation strings. */
1938 xfree (set_doc);
1939 xfree (show_doc);
1940 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1941 if (legacy)
1942 {
1943 char *legacy_name;
1944
1945 legacy_name = xstrprintf ("%s-packet", name);
1946 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1947 &remote_set_cmdlist);
1948 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1949 &remote_show_cmdlist);
1950 }
1951 }
1952
1953 static enum packet_result
1954 packet_check_result (const char *buf)
1955 {
1956 if (buf[0] != '\0')
1957 {
1958 /* The stub recognized the packet request. Check that the
1959 operation succeeded. */
1960 if (buf[0] == 'E'
1961 && isxdigit (buf[1]) && isxdigit (buf[2])
1962 && buf[3] == '\0')
1963 /* "Enn" - definitely an error. */
1964 return PACKET_ERROR;
1965
1966 /* Always treat "E." as an error. This will be used for
1967 more verbose error messages, such as E.memtypes. */
1968 if (buf[0] == 'E' && buf[1] == '.')
1969 return PACKET_ERROR;
1970
1971 /* The packet may or may not be OK. Just assume it is. */
1972 return PACKET_OK;
1973 }
1974 else
1975 /* The stub does not support the packet. */
1976 return PACKET_UNKNOWN;
1977 }
1978
1979 static enum packet_result
1980 packet_check_result (const gdb::char_vector &buf)
1981 {
1982 return packet_check_result (buf.data ());
1983 }
1984
1985 static enum packet_result
1986 packet_ok (const char *buf, struct packet_config *config)
1987 {
1988 enum packet_result result;
1989
1990 if (config->detect != AUTO_BOOLEAN_TRUE
1991 && config->support == PACKET_DISABLE)
1992 internal_error (__FILE__, __LINE__,
1993 _("packet_ok: attempt to use a disabled packet"));
1994
1995 result = packet_check_result (buf);
1996 switch (result)
1997 {
1998 case PACKET_OK:
1999 case PACKET_ERROR:
2000 /* The stub recognized the packet request. */
2001 if (config->support == PACKET_SUPPORT_UNKNOWN)
2002 {
2003 remote_debug_printf ("Packet %s (%s) is supported",
2004 config->name, config->title);
2005 config->support = PACKET_ENABLE;
2006 }
2007 break;
2008 case PACKET_UNKNOWN:
2009 /* The stub does not support the packet. */
2010 if (config->detect == AUTO_BOOLEAN_AUTO
2011 && config->support == PACKET_ENABLE)
2012 {
2013 /* If the stub previously indicated that the packet was
2014 supported then there is a protocol error. */
2015 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2016 config->name, config->title);
2017 }
2018 else if (config->detect == AUTO_BOOLEAN_TRUE)
2019 {
2020 /* The user set it wrong. */
2021 error (_("Enabled packet %s (%s) not recognized by stub"),
2022 config->name, config->title);
2023 }
2024
2025 remote_debug_printf ("Packet %s (%s) is NOT supported",
2026 config->name, config->title);
2027 config->support = PACKET_DISABLE;
2028 break;
2029 }
2030
2031 return result;
2032 }
2033
2034 static enum packet_result
2035 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2036 {
2037 return packet_ok (buf.data (), config);
2038 }
2039
2040 enum {
2041 PACKET_vCont = 0,
2042 PACKET_X,
2043 PACKET_qSymbol,
2044 PACKET_P,
2045 PACKET_p,
2046 PACKET_Z0,
2047 PACKET_Z1,
2048 PACKET_Z2,
2049 PACKET_Z3,
2050 PACKET_Z4,
2051 PACKET_vFile_setfs,
2052 PACKET_vFile_open,
2053 PACKET_vFile_pread,
2054 PACKET_vFile_pwrite,
2055 PACKET_vFile_close,
2056 PACKET_vFile_unlink,
2057 PACKET_vFile_readlink,
2058 PACKET_vFile_fstat,
2059 PACKET_qXfer_auxv,
2060 PACKET_qXfer_features,
2061 PACKET_qXfer_exec_file,
2062 PACKET_qXfer_libraries,
2063 PACKET_qXfer_libraries_svr4,
2064 PACKET_qXfer_memory_map,
2065 PACKET_qXfer_osdata,
2066 PACKET_qXfer_threads,
2067 PACKET_qXfer_statictrace_read,
2068 PACKET_qXfer_traceframe_info,
2069 PACKET_qXfer_uib,
2070 PACKET_qGetTIBAddr,
2071 PACKET_qGetTLSAddr,
2072 PACKET_qSupported,
2073 PACKET_qTStatus,
2074 PACKET_QPassSignals,
2075 PACKET_QCatchSyscalls,
2076 PACKET_QProgramSignals,
2077 PACKET_QSetWorkingDir,
2078 PACKET_QStartupWithShell,
2079 PACKET_QEnvironmentHexEncoded,
2080 PACKET_QEnvironmentReset,
2081 PACKET_QEnvironmentUnset,
2082 PACKET_qCRC,
2083 PACKET_qSearch_memory,
2084 PACKET_vAttach,
2085 PACKET_vRun,
2086 PACKET_QStartNoAckMode,
2087 PACKET_vKill,
2088 PACKET_qXfer_siginfo_read,
2089 PACKET_qXfer_siginfo_write,
2090 PACKET_qAttached,
2091
2092 /* Support for conditional tracepoints. */
2093 PACKET_ConditionalTracepoints,
2094
2095 /* Support for target-side breakpoint conditions. */
2096 PACKET_ConditionalBreakpoints,
2097
2098 /* Support for target-side breakpoint commands. */
2099 PACKET_BreakpointCommands,
2100
2101 /* Support for fast tracepoints. */
2102 PACKET_FastTracepoints,
2103
2104 /* Support for static tracepoints. */
2105 PACKET_StaticTracepoints,
2106
2107 /* Support for installing tracepoints while a trace experiment is
2108 running. */
2109 PACKET_InstallInTrace,
2110
2111 PACKET_bc,
2112 PACKET_bs,
2113 PACKET_TracepointSource,
2114 PACKET_QAllow,
2115 PACKET_qXfer_fdpic,
2116 PACKET_QDisableRandomization,
2117 PACKET_QAgent,
2118 PACKET_QTBuffer_size,
2119 PACKET_Qbtrace_off,
2120 PACKET_Qbtrace_bts,
2121 PACKET_Qbtrace_pt,
2122 PACKET_qXfer_btrace,
2123
2124 /* Support for the QNonStop packet. */
2125 PACKET_QNonStop,
2126
2127 /* Support for the QThreadEvents packet. */
2128 PACKET_QThreadEvents,
2129
2130 /* Support for multi-process extensions. */
2131 PACKET_multiprocess_feature,
2132
2133 /* Support for enabling and disabling tracepoints while a trace
2134 experiment is running. */
2135 PACKET_EnableDisableTracepoints_feature,
2136
2137 /* Support for collecting strings using the tracenz bytecode. */
2138 PACKET_tracenz_feature,
2139
2140 /* Support for continuing to run a trace experiment while GDB is
2141 disconnected. */
2142 PACKET_DisconnectedTracing_feature,
2143
2144 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2145 PACKET_augmented_libraries_svr4_read_feature,
2146
2147 /* Support for the qXfer:btrace-conf:read packet. */
2148 PACKET_qXfer_btrace_conf,
2149
2150 /* Support for the Qbtrace-conf:bts:size packet. */
2151 PACKET_Qbtrace_conf_bts_size,
2152
2153 /* Support for swbreak+ feature. */
2154 PACKET_swbreak_feature,
2155
2156 /* Support for hwbreak+ feature. */
2157 PACKET_hwbreak_feature,
2158
2159 /* Support for fork events. */
2160 PACKET_fork_event_feature,
2161
2162 /* Support for vfork events. */
2163 PACKET_vfork_event_feature,
2164
2165 /* Support for the Qbtrace-conf:pt:size packet. */
2166 PACKET_Qbtrace_conf_pt_size,
2167
2168 /* Support for exec events. */
2169 PACKET_exec_event_feature,
2170
2171 /* Support for query supported vCont actions. */
2172 PACKET_vContSupported,
2173
2174 /* Support remote CTRL-C. */
2175 PACKET_vCtrlC,
2176
2177 /* Support TARGET_WAITKIND_NO_RESUMED. */
2178 PACKET_no_resumed,
2179
2180 /* Support for memory tagging, allocation tag fetch/store
2181 packets and the tag violation stop replies. */
2182 PACKET_memory_tagging_feature,
2183
2184 PACKET_MAX
2185 };
2186
2187 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2188 assuming all remote targets are the same server (thus all support
2189 the same packets). */
2190 static struct packet_config remote_protocol_packets[PACKET_MAX];
2191
2192 /* Returns the packet's corresponding "set remote foo-packet" command
2193 state. See struct packet_config for more details. */
2194
2195 static enum auto_boolean
2196 packet_set_cmd_state (int packet)
2197 {
2198 return remote_protocol_packets[packet].detect;
2199 }
2200
2201 /* Returns whether a given packet or feature is supported. This takes
2202 into account the state of the corresponding "set remote foo-packet"
2203 command, which may be used to bypass auto-detection. */
2204
2205 static enum packet_support
2206 packet_config_support (struct packet_config *config)
2207 {
2208 switch (config->detect)
2209 {
2210 case AUTO_BOOLEAN_TRUE:
2211 return PACKET_ENABLE;
2212 case AUTO_BOOLEAN_FALSE:
2213 return PACKET_DISABLE;
2214 case AUTO_BOOLEAN_AUTO:
2215 return config->support;
2216 default:
2217 gdb_assert_not_reached (_("bad switch"));
2218 }
2219 }
2220
2221 /* Same as packet_config_support, but takes the packet's enum value as
2222 argument. */
2223
2224 static enum packet_support
2225 packet_support (int packet)
2226 {
2227 struct packet_config *config = &remote_protocol_packets[packet];
2228
2229 return packet_config_support (config);
2230 }
2231
2232 static void
2233 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2234 struct cmd_list_element *c,
2235 const char *value)
2236 {
2237 struct packet_config *packet;
2238
2239 for (packet = remote_protocol_packets;
2240 packet < &remote_protocol_packets[PACKET_MAX];
2241 packet++)
2242 {
2243 if (&packet->detect == c->var)
2244 {
2245 show_packet_config_cmd (packet);
2246 return;
2247 }
2248 }
2249 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2250 c->name);
2251 }
2252
2253 /* Should we try one of the 'Z' requests? */
2254
2255 enum Z_packet_type
2256 {
2257 Z_PACKET_SOFTWARE_BP,
2258 Z_PACKET_HARDWARE_BP,
2259 Z_PACKET_WRITE_WP,
2260 Z_PACKET_READ_WP,
2261 Z_PACKET_ACCESS_WP,
2262 NR_Z_PACKET_TYPES
2263 };
2264
2265 /* For compatibility with older distributions. Provide a ``set remote
2266 Z-packet ...'' command that updates all the Z packet types. */
2267
2268 static enum auto_boolean remote_Z_packet_detect;
2269
2270 static void
2271 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2272 struct cmd_list_element *c)
2273 {
2274 int i;
2275
2276 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2277 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2278 }
2279
2280 static void
2281 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2282 struct cmd_list_element *c,
2283 const char *value)
2284 {
2285 int i;
2286
2287 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2288 {
2289 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2290 }
2291 }
2292
2293 /* Returns true if the multi-process extensions are in effect. */
2294
2295 static int
2296 remote_multi_process_p (struct remote_state *rs)
2297 {
2298 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2299 }
2300
2301 /* Returns true if fork events are supported. */
2302
2303 static int
2304 remote_fork_event_p (struct remote_state *rs)
2305 {
2306 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2307 }
2308
2309 /* Returns true if vfork events are supported. */
2310
2311 static int
2312 remote_vfork_event_p (struct remote_state *rs)
2313 {
2314 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2315 }
2316
2317 /* Returns true if exec events are supported. */
2318
2319 static int
2320 remote_exec_event_p (struct remote_state *rs)
2321 {
2322 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2323 }
2324
2325 /* Returns true if memory tagging is supported, false otherwise. */
2326
2327 static bool
2328 remote_memory_tagging_p ()
2329 {
2330 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2331 }
2332
2333 /* Insert fork catchpoint target routine. If fork events are enabled
2334 then return success, nothing more to do. */
2335
2336 int
2337 remote_target::insert_fork_catchpoint (int pid)
2338 {
2339 struct remote_state *rs = get_remote_state ();
2340
2341 return !remote_fork_event_p (rs);
2342 }
2343
2344 /* Remove fork catchpoint target routine. Nothing to do, just
2345 return success. */
2346
2347 int
2348 remote_target::remove_fork_catchpoint (int pid)
2349 {
2350 return 0;
2351 }
2352
2353 /* Insert vfork catchpoint target routine. If vfork events are enabled
2354 then return success, nothing more to do. */
2355
2356 int
2357 remote_target::insert_vfork_catchpoint (int pid)
2358 {
2359 struct remote_state *rs = get_remote_state ();
2360
2361 return !remote_vfork_event_p (rs);
2362 }
2363
2364 /* Remove vfork catchpoint target routine. Nothing to do, just
2365 return success. */
2366
2367 int
2368 remote_target::remove_vfork_catchpoint (int pid)
2369 {
2370 return 0;
2371 }
2372
2373 /* Insert exec catchpoint target routine. If exec events are
2374 enabled, just return success. */
2375
2376 int
2377 remote_target::insert_exec_catchpoint (int pid)
2378 {
2379 struct remote_state *rs = get_remote_state ();
2380
2381 return !remote_exec_event_p (rs);
2382 }
2383
2384 /* Remove exec catchpoint target routine. Nothing to do, just
2385 return success. */
2386
2387 int
2388 remote_target::remove_exec_catchpoint (int pid)
2389 {
2390 return 0;
2391 }
2392
2393 \f
2394
2395 /* Take advantage of the fact that the TID field is not used, to tag
2396 special ptids with it set to != 0. */
2397 static const ptid_t magic_null_ptid (42000, -1, 1);
2398 static const ptid_t not_sent_ptid (42000, -2, 1);
2399 static const ptid_t any_thread_ptid (42000, 0, 1);
2400
2401 /* Find out if the stub attached to PID (and hence GDB should offer to
2402 detach instead of killing it when bailing out). */
2403
2404 int
2405 remote_target::remote_query_attached (int pid)
2406 {
2407 struct remote_state *rs = get_remote_state ();
2408 size_t size = get_remote_packet_size ();
2409
2410 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2411 return 0;
2412
2413 if (remote_multi_process_p (rs))
2414 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2415 else
2416 xsnprintf (rs->buf.data (), size, "qAttached");
2417
2418 putpkt (rs->buf);
2419 getpkt (&rs->buf, 0);
2420
2421 switch (packet_ok (rs->buf,
2422 &remote_protocol_packets[PACKET_qAttached]))
2423 {
2424 case PACKET_OK:
2425 if (strcmp (rs->buf.data (), "1") == 0)
2426 return 1;
2427 break;
2428 case PACKET_ERROR:
2429 warning (_("Remote failure reply: %s"), rs->buf.data ());
2430 break;
2431 case PACKET_UNKNOWN:
2432 break;
2433 }
2434
2435 return 0;
2436 }
2437
2438 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2439 has been invented by GDB, instead of reported by the target. Since
2440 we can be connected to a remote system before before knowing about
2441 any inferior, mark the target with execution when we find the first
2442 inferior. If ATTACHED is 1, then we had just attached to this
2443 inferior. If it is 0, then we just created this inferior. If it
2444 is -1, then try querying the remote stub to find out if it had
2445 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2446 attempt to open this inferior's executable as the main executable
2447 if no main executable is open already. */
2448
2449 inferior *
2450 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2451 int try_open_exec)
2452 {
2453 struct inferior *inf;
2454
2455 /* Check whether this process we're learning about is to be
2456 considered attached, or if is to be considered to have been
2457 spawned by the stub. */
2458 if (attached == -1)
2459 attached = remote_query_attached (pid);
2460
2461 if (gdbarch_has_global_solist (target_gdbarch ()))
2462 {
2463 /* If the target shares code across all inferiors, then every
2464 attach adds a new inferior. */
2465 inf = add_inferior (pid);
2466
2467 /* ... and every inferior is bound to the same program space.
2468 However, each inferior may still have its own address
2469 space. */
2470 inf->aspace = maybe_new_address_space ();
2471 inf->pspace = current_program_space;
2472 }
2473 else
2474 {
2475 /* In the traditional debugging scenario, there's a 1-1 match
2476 between program/address spaces. We simply bind the inferior
2477 to the program space's address space. */
2478 inf = current_inferior ();
2479
2480 /* However, if the current inferior is already bound to a
2481 process, find some other empty inferior. */
2482 if (inf->pid != 0)
2483 {
2484 inf = nullptr;
2485 for (inferior *it : all_inferiors ())
2486 if (it->pid == 0)
2487 {
2488 inf = it;
2489 break;
2490 }
2491 }
2492 if (inf == nullptr)
2493 {
2494 /* Since all inferiors were already bound to a process, add
2495 a new inferior. */
2496 inf = add_inferior_with_spaces ();
2497 }
2498 switch_to_inferior_no_thread (inf);
2499 inf->push_target (this);
2500 inferior_appeared (inf, pid);
2501 }
2502
2503 inf->attach_flag = attached;
2504 inf->fake_pid_p = fake_pid_p;
2505
2506 /* If no main executable is currently open then attempt to
2507 open the file that was executed to create this inferior. */
2508 if (try_open_exec && get_exec_file (0) == NULL)
2509 exec_file_locate_attach (pid, 0, 1);
2510
2511 /* Check for exec file mismatch, and let the user solve it. */
2512 validate_exec_file (1);
2513
2514 return inf;
2515 }
2516
2517 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2518 static remote_thread_info *get_remote_thread_info (remote_target *target,
2519 ptid_t ptid);
2520
2521 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2522 according to RUNNING. */
2523
2524 thread_info *
2525 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2526 {
2527 struct remote_state *rs = get_remote_state ();
2528 struct thread_info *thread;
2529
2530 /* GDB historically didn't pull threads in the initial connection
2531 setup. If the remote target doesn't even have a concept of
2532 threads (e.g., a bare-metal target), even if internally we
2533 consider that a single-threaded target, mentioning a new thread
2534 might be confusing to the user. Be silent then, preserving the
2535 age old behavior. */
2536 if (rs->starting_up)
2537 thread = add_thread_silent (this, ptid);
2538 else
2539 thread = add_thread (this, ptid);
2540
2541 /* We start by assuming threads are resumed. That state then gets updated
2542 when we process a matching stop reply. */
2543 get_remote_thread_info (thread)->set_resumed ();
2544
2545 set_executing (this, ptid, executing);
2546 set_running (this, ptid, running);
2547
2548 return thread;
2549 }
2550
2551 /* Come here when we learn about a thread id from the remote target.
2552 It may be the first time we hear about such thread, so take the
2553 opportunity to add it to GDB's thread list. In case this is the
2554 first time we're noticing its corresponding inferior, add it to
2555 GDB's inferior list as well. EXECUTING indicates whether the
2556 thread is (internally) executing or stopped. */
2557
2558 void
2559 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2560 {
2561 /* In non-stop mode, we assume new found threads are (externally)
2562 running until proven otherwise with a stop reply. In all-stop,
2563 we can only get here if all threads are stopped. */
2564 int running = target_is_non_stop_p () ? 1 : 0;
2565
2566 /* If this is a new thread, add it to GDB's thread list.
2567 If we leave it up to WFI to do this, bad things will happen. */
2568
2569 thread_info *tp = find_thread_ptid (this, currthread);
2570 if (tp != NULL && tp->state == THREAD_EXITED)
2571 {
2572 /* We're seeing an event on a thread id we knew had exited.
2573 This has to be a new thread reusing the old id. Add it. */
2574 remote_add_thread (currthread, running, executing);
2575 return;
2576 }
2577
2578 if (!in_thread_list (this, currthread))
2579 {
2580 struct inferior *inf = NULL;
2581 int pid = currthread.pid ();
2582
2583 if (inferior_ptid.is_pid ()
2584 && pid == inferior_ptid.pid ())
2585 {
2586 /* inferior_ptid has no thread member yet. This can happen
2587 with the vAttach -> remote_wait,"TAAthread:" path if the
2588 stub doesn't support qC. This is the first stop reported
2589 after an attach, so this is the main thread. Update the
2590 ptid in the thread list. */
2591 if (in_thread_list (this, ptid_t (pid)))
2592 thread_change_ptid (this, inferior_ptid, currthread);
2593 else
2594 {
2595 thread_info *thr
2596 = remote_add_thread (currthread, running, executing);
2597 switch_to_thread (thr);
2598 }
2599 return;
2600 }
2601
2602 if (magic_null_ptid == inferior_ptid)
2603 {
2604 /* inferior_ptid is not set yet. This can happen with the
2605 vRun -> remote_wait,"TAAthread:" path if the stub
2606 doesn't support qC. This is the first stop reported
2607 after an attach, so this is the main thread. Update the
2608 ptid in the thread list. */
2609 thread_change_ptid (this, inferior_ptid, currthread);
2610 return;
2611 }
2612
2613 /* When connecting to a target remote, or to a target
2614 extended-remote which already was debugging an inferior, we
2615 may not know about it yet. Add it before adding its child
2616 thread, so notifications are emitted in a sensible order. */
2617 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620 bool fake_pid_p = !remote_multi_process_p (rs);
2621
2622 inf = remote_add_inferior (fake_pid_p,
2623 currthread.pid (), -1, 1);
2624 }
2625
2626 /* This is really a new thread. Add it. */
2627 thread_info *new_thr
2628 = remote_add_thread (currthread, running, executing);
2629
2630 /* If we found a new inferior, let the common code do whatever
2631 it needs to with it (e.g., read shared libraries, insert
2632 breakpoints), unless we're just setting up an all-stop
2633 connection. */
2634 if (inf != NULL)
2635 {
2636 struct remote_state *rs = get_remote_state ();
2637
2638 if (!rs->starting_up)
2639 notice_new_inferior (new_thr, executing, 0);
2640 }
2641 }
2642 }
2643
2644 /* Return THREAD's private thread data, creating it if necessary. */
2645
2646 static remote_thread_info *
2647 get_remote_thread_info (thread_info *thread)
2648 {
2649 gdb_assert (thread != NULL);
2650
2651 if (thread->priv == NULL)
2652 thread->priv.reset (new remote_thread_info);
2653
2654 return static_cast<remote_thread_info *> (thread->priv.get ());
2655 }
2656
2657 /* Return PTID's private thread data, creating it if necessary. */
2658
2659 static remote_thread_info *
2660 get_remote_thread_info (remote_target *target, ptid_t ptid)
2661 {
2662 thread_info *thr = find_thread_ptid (target, ptid);
2663 return get_remote_thread_info (thr);
2664 }
2665
2666 /* Call this function as a result of
2667 1) A halt indication (T packet) containing a thread id
2668 2) A direct query of currthread
2669 3) Successful execution of set thread */
2670
2671 static void
2672 record_currthread (struct remote_state *rs, ptid_t currthread)
2673 {
2674 rs->general_thread = currthread;
2675 }
2676
2677 /* If 'QPassSignals' is supported, tell the remote stub what signals
2678 it can simply pass through to the inferior without reporting. */
2679
2680 void
2681 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2682 {
2683 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2684 {
2685 char *pass_packet, *p;
2686 int count = 0;
2687 struct remote_state *rs = get_remote_state ();
2688
2689 gdb_assert (pass_signals.size () < 256);
2690 for (size_t i = 0; i < pass_signals.size (); i++)
2691 {
2692 if (pass_signals[i])
2693 count++;
2694 }
2695 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2696 strcpy (pass_packet, "QPassSignals:");
2697 p = pass_packet + strlen (pass_packet);
2698 for (size_t i = 0; i < pass_signals.size (); i++)
2699 {
2700 if (pass_signals[i])
2701 {
2702 if (i >= 16)
2703 *p++ = tohex (i >> 4);
2704 *p++ = tohex (i & 15);
2705 if (count)
2706 *p++ = ';';
2707 else
2708 break;
2709 count--;
2710 }
2711 }
2712 *p = 0;
2713 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2714 {
2715 putpkt (pass_packet);
2716 getpkt (&rs->buf, 0);
2717 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2718 xfree (rs->last_pass_packet);
2719 rs->last_pass_packet = pass_packet;
2720 }
2721 else
2722 xfree (pass_packet);
2723 }
2724 }
2725
2726 /* If 'QCatchSyscalls' is supported, tell the remote stub
2727 to report syscalls to GDB. */
2728
2729 int
2730 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2731 gdb::array_view<const int> syscall_counts)
2732 {
2733 const char *catch_packet;
2734 enum packet_result result;
2735 int n_sysno = 0;
2736
2737 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2738 {
2739 /* Not supported. */
2740 return 1;
2741 }
2742
2743 if (needed && any_count == 0)
2744 {
2745 /* Count how many syscalls are to be caught. */
2746 for (size_t i = 0; i < syscall_counts.size (); i++)
2747 {
2748 if (syscall_counts[i] != 0)
2749 n_sysno++;
2750 }
2751 }
2752
2753 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2754 pid, needed, any_count, n_sysno);
2755
2756 std::string built_packet;
2757 if (needed)
2758 {
2759 /* Prepare a packet with the sysno list, assuming max 8+1
2760 characters for a sysno. If the resulting packet size is too
2761 big, fallback on the non-selective packet. */
2762 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2763 built_packet.reserve (maxpktsz);
2764 built_packet = "QCatchSyscalls:1";
2765 if (any_count == 0)
2766 {
2767 /* Add in each syscall to be caught. */
2768 for (size_t i = 0; i < syscall_counts.size (); i++)
2769 {
2770 if (syscall_counts[i] != 0)
2771 string_appendf (built_packet, ";%zx", i);
2772 }
2773 }
2774 if (built_packet.size () > get_remote_packet_size ())
2775 {
2776 /* catch_packet too big. Fallback to less efficient
2777 non selective mode, with GDB doing the filtering. */
2778 catch_packet = "QCatchSyscalls:1";
2779 }
2780 else
2781 catch_packet = built_packet.c_str ();
2782 }
2783 else
2784 catch_packet = "QCatchSyscalls:0";
2785
2786 struct remote_state *rs = get_remote_state ();
2787
2788 putpkt (catch_packet);
2789 getpkt (&rs->buf, 0);
2790 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2791 if (result == PACKET_OK)
2792 return 0;
2793 else
2794 return -1;
2795 }
2796
2797 /* If 'QProgramSignals' is supported, tell the remote stub what
2798 signals it should pass through to the inferior when detaching. */
2799
2800 void
2801 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2802 {
2803 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2804 {
2805 char *packet, *p;
2806 int count = 0;
2807 struct remote_state *rs = get_remote_state ();
2808
2809 gdb_assert (signals.size () < 256);
2810 for (size_t i = 0; i < signals.size (); i++)
2811 {
2812 if (signals[i])
2813 count++;
2814 }
2815 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2816 strcpy (packet, "QProgramSignals:");
2817 p = packet + strlen (packet);
2818 for (size_t i = 0; i < signals.size (); i++)
2819 {
2820 if (signal_pass_state (i))
2821 {
2822 if (i >= 16)
2823 *p++ = tohex (i >> 4);
2824 *p++ = tohex (i & 15);
2825 if (count)
2826 *p++ = ';';
2827 else
2828 break;
2829 count--;
2830 }
2831 }
2832 *p = 0;
2833 if (!rs->last_program_signals_packet
2834 || strcmp (rs->last_program_signals_packet, packet) != 0)
2835 {
2836 putpkt (packet);
2837 getpkt (&rs->buf, 0);
2838 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2839 xfree (rs->last_program_signals_packet);
2840 rs->last_program_signals_packet = packet;
2841 }
2842 else
2843 xfree (packet);
2844 }
2845 }
2846
2847 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2848 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2849 thread. If GEN is set, set the general thread, if not, then set
2850 the step/continue thread. */
2851 void
2852 remote_target::set_thread (ptid_t ptid, int gen)
2853 {
2854 struct remote_state *rs = get_remote_state ();
2855 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2856 char *buf = rs->buf.data ();
2857 char *endbuf = buf + get_remote_packet_size ();
2858
2859 if (state == ptid)
2860 return;
2861
2862 *buf++ = 'H';
2863 *buf++ = gen ? 'g' : 'c';
2864 if (ptid == magic_null_ptid)
2865 xsnprintf (buf, endbuf - buf, "0");
2866 else if (ptid == any_thread_ptid)
2867 xsnprintf (buf, endbuf - buf, "0");
2868 else if (ptid == minus_one_ptid)
2869 xsnprintf (buf, endbuf - buf, "-1");
2870 else
2871 write_ptid (buf, endbuf, ptid);
2872 putpkt (rs->buf);
2873 getpkt (&rs->buf, 0);
2874 if (gen)
2875 rs->general_thread = ptid;
2876 else
2877 rs->continue_thread = ptid;
2878 }
2879
2880 void
2881 remote_target::set_general_thread (ptid_t ptid)
2882 {
2883 set_thread (ptid, 1);
2884 }
2885
2886 void
2887 remote_target::set_continue_thread (ptid_t ptid)
2888 {
2889 set_thread (ptid, 0);
2890 }
2891
2892 /* Change the remote current process. Which thread within the process
2893 ends up selected isn't important, as long as it is the same process
2894 as what INFERIOR_PTID points to.
2895
2896 This comes from that fact that there is no explicit notion of
2897 "selected process" in the protocol. The selected process for
2898 general operations is the process the selected general thread
2899 belongs to. */
2900
2901 void
2902 remote_target::set_general_process ()
2903 {
2904 struct remote_state *rs = get_remote_state ();
2905
2906 /* If the remote can't handle multiple processes, don't bother. */
2907 if (!remote_multi_process_p (rs))
2908 return;
2909
2910 /* We only need to change the remote current thread if it's pointing
2911 at some other process. */
2912 if (rs->general_thread.pid () != inferior_ptid.pid ())
2913 set_general_thread (inferior_ptid);
2914 }
2915
2916 \f
2917 /* Return nonzero if this is the main thread that we made up ourselves
2918 to model non-threaded targets as single-threaded. */
2919
2920 static int
2921 remote_thread_always_alive (ptid_t ptid)
2922 {
2923 if (ptid == magic_null_ptid)
2924 /* The main thread is always alive. */
2925 return 1;
2926
2927 if (ptid.pid () != 0 && ptid.lwp () == 0)
2928 /* The main thread is always alive. This can happen after a
2929 vAttach, if the remote side doesn't support
2930 multi-threading. */
2931 return 1;
2932
2933 return 0;
2934 }
2935
2936 /* Return nonzero if the thread PTID is still alive on the remote
2937 system. */
2938
2939 bool
2940 remote_target::thread_alive (ptid_t ptid)
2941 {
2942 struct remote_state *rs = get_remote_state ();
2943 char *p, *endp;
2944
2945 /* Check if this is a thread that we made up ourselves to model
2946 non-threaded targets as single-threaded. */
2947 if (remote_thread_always_alive (ptid))
2948 return 1;
2949
2950 p = rs->buf.data ();
2951 endp = p + get_remote_packet_size ();
2952
2953 *p++ = 'T';
2954 write_ptid (p, endp, ptid);
2955
2956 putpkt (rs->buf);
2957 getpkt (&rs->buf, 0);
2958 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2959 }
2960
2961 /* Return a pointer to a thread name if we know it and NULL otherwise.
2962 The thread_info object owns the memory for the name. */
2963
2964 const char *
2965 remote_target::thread_name (struct thread_info *info)
2966 {
2967 if (info->priv != NULL)
2968 {
2969 const std::string &name = get_remote_thread_info (info)->name;
2970 return !name.empty () ? name.c_str () : NULL;
2971 }
2972
2973 return NULL;
2974 }
2975
2976 /* About these extended threadlist and threadinfo packets. They are
2977 variable length packets but, the fields within them are often fixed
2978 length. They are redundant enough to send over UDP as is the
2979 remote protocol in general. There is a matching unit test module
2980 in libstub. */
2981
2982 /* WARNING: This threadref data structure comes from the remote O.S.,
2983 libstub protocol encoding, and remote.c. It is not particularly
2984 changable. */
2985
2986 /* Right now, the internal structure is int. We want it to be bigger.
2987 Plan to fix this. */
2988
2989 typedef int gdb_threadref; /* Internal GDB thread reference. */
2990
2991 /* gdb_ext_thread_info is an internal GDB data structure which is
2992 equivalent to the reply of the remote threadinfo packet. */
2993
2994 struct gdb_ext_thread_info
2995 {
2996 threadref threadid; /* External form of thread reference. */
2997 int active; /* Has state interesting to GDB?
2998 regs, stack. */
2999 char display[256]; /* Brief state display, name,
3000 blocked/suspended. */
3001 char shortname[32]; /* To be used to name threads. */
3002 char more_display[256]; /* Long info, statistics, queue depth,
3003 whatever. */
3004 };
3005
3006 /* The volume of remote transfers can be limited by submitting
3007 a mask containing bits specifying the desired information.
3008 Use a union of these values as the 'selection' parameter to
3009 get_thread_info. FIXME: Make these TAG names more thread specific. */
3010
3011 #define TAG_THREADID 1
3012 #define TAG_EXISTS 2
3013 #define TAG_DISPLAY 4
3014 #define TAG_THREADNAME 8
3015 #define TAG_MOREDISPLAY 16
3016
3017 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3018
3019 static const char *unpack_nibble (const char *buf, int *val);
3020
3021 static const char *unpack_byte (const char *buf, int *value);
3022
3023 static char *pack_int (char *buf, int value);
3024
3025 static const char *unpack_int (const char *buf, int *value);
3026
3027 static const char *unpack_string (const char *src, char *dest, int length);
3028
3029 static char *pack_threadid (char *pkt, threadref *id);
3030
3031 static const char *unpack_threadid (const char *inbuf, threadref *id);
3032
3033 void int_to_threadref (threadref *id, int value);
3034
3035 static int threadref_to_int (threadref *ref);
3036
3037 static void copy_threadref (threadref *dest, threadref *src);
3038
3039 static int threadmatch (threadref *dest, threadref *src);
3040
3041 static char *pack_threadinfo_request (char *pkt, int mode,
3042 threadref *id);
3043
3044 static char *pack_threadlist_request (char *pkt, int startflag,
3045 int threadcount,
3046 threadref *nextthread);
3047
3048 static int remote_newthread_step (threadref *ref, void *context);
3049
3050
3051 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3052 buffer we're allowed to write to. Returns
3053 BUF+CHARACTERS_WRITTEN. */
3054
3055 char *
3056 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3057 {
3058 int pid, tid;
3059 struct remote_state *rs = get_remote_state ();
3060
3061 if (remote_multi_process_p (rs))
3062 {
3063 pid = ptid.pid ();
3064 if (pid < 0)
3065 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3066 else
3067 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3068 }
3069 tid = ptid.lwp ();
3070 if (tid < 0)
3071 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3072 else
3073 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3074
3075 return buf;
3076 }
3077
3078 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3079 last parsed char. Returns null_ptid if no thread id is found, and
3080 throws an error if the thread id has an invalid format. */
3081
3082 static ptid_t
3083 read_ptid (const char *buf, const char **obuf)
3084 {
3085 const char *p = buf;
3086 const char *pp;
3087 ULONGEST pid = 0, tid = 0;
3088
3089 if (*p == 'p')
3090 {
3091 /* Multi-process ptid. */
3092 pp = unpack_varlen_hex (p + 1, &pid);
3093 if (*pp != '.')
3094 error (_("invalid remote ptid: %s"), p);
3095
3096 p = pp;
3097 pp = unpack_varlen_hex (p + 1, &tid);
3098 if (obuf)
3099 *obuf = pp;
3100 return ptid_t (pid, tid, 0);
3101 }
3102
3103 /* No multi-process. Just a tid. */
3104 pp = unpack_varlen_hex (p, &tid);
3105
3106 /* Return null_ptid when no thread id is found. */
3107 if (p == pp)
3108 {
3109 if (obuf)
3110 *obuf = pp;
3111 return null_ptid;
3112 }
3113
3114 /* Since the stub is not sending a process id, then default to
3115 what's in inferior_ptid, unless it's null at this point. If so,
3116 then since there's no way to know the pid of the reported
3117 threads, use the magic number. */
3118 if (inferior_ptid == null_ptid)
3119 pid = magic_null_ptid.pid ();
3120 else
3121 pid = inferior_ptid.pid ();
3122
3123 if (obuf)
3124 *obuf = pp;
3125 return ptid_t (pid, tid, 0);
3126 }
3127
3128 static int
3129 stubhex (int ch)
3130 {
3131 if (ch >= 'a' && ch <= 'f')
3132 return ch - 'a' + 10;
3133 if (ch >= '0' && ch <= '9')
3134 return ch - '0';
3135 if (ch >= 'A' && ch <= 'F')
3136 return ch - 'A' + 10;
3137 return -1;
3138 }
3139
3140 static int
3141 stub_unpack_int (const char *buff, int fieldlength)
3142 {
3143 int nibble;
3144 int retval = 0;
3145
3146 while (fieldlength)
3147 {
3148 nibble = stubhex (*buff++);
3149 retval |= nibble;
3150 fieldlength--;
3151 if (fieldlength)
3152 retval = retval << 4;
3153 }
3154 return retval;
3155 }
3156
3157 static const char *
3158 unpack_nibble (const char *buf, int *val)
3159 {
3160 *val = fromhex (*buf++);
3161 return buf;
3162 }
3163
3164 static const char *
3165 unpack_byte (const char *buf, int *value)
3166 {
3167 *value = stub_unpack_int (buf, 2);
3168 return buf + 2;
3169 }
3170
3171 static char *
3172 pack_int (char *buf, int value)
3173 {
3174 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3175 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3176 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3177 buf = pack_hex_byte (buf, (value & 0xff));
3178 return buf;
3179 }
3180
3181 static const char *
3182 unpack_int (const char *buf, int *value)
3183 {
3184 *value = stub_unpack_int (buf, 8);
3185 return buf + 8;
3186 }
3187
3188 #if 0 /* Currently unused, uncomment when needed. */
3189 static char *pack_string (char *pkt, char *string);
3190
3191 static char *
3192 pack_string (char *pkt, char *string)
3193 {
3194 char ch;
3195 int len;
3196
3197 len = strlen (string);
3198 if (len > 200)
3199 len = 200; /* Bigger than most GDB packets, junk??? */
3200 pkt = pack_hex_byte (pkt, len);
3201 while (len-- > 0)
3202 {
3203 ch = *string++;
3204 if ((ch == '\0') || (ch == '#'))
3205 ch = '*'; /* Protect encapsulation. */
3206 *pkt++ = ch;
3207 }
3208 return pkt;
3209 }
3210 #endif /* 0 (unused) */
3211
3212 static const char *
3213 unpack_string (const char *src, char *dest, int length)
3214 {
3215 while (length--)
3216 *dest++ = *src++;
3217 *dest = '\0';
3218 return src;
3219 }
3220
3221 static char *
3222 pack_threadid (char *pkt, threadref *id)
3223 {
3224 char *limit;
3225 unsigned char *altid;
3226
3227 altid = (unsigned char *) id;
3228 limit = pkt + BUF_THREAD_ID_SIZE;
3229 while (pkt < limit)
3230 pkt = pack_hex_byte (pkt, *altid++);
3231 return pkt;
3232 }
3233
3234
3235 static const char *
3236 unpack_threadid (const char *inbuf, threadref *id)
3237 {
3238 char *altref;
3239 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3240 int x, y;
3241
3242 altref = (char *) id;
3243
3244 while (inbuf < limit)
3245 {
3246 x = stubhex (*inbuf++);
3247 y = stubhex (*inbuf++);
3248 *altref++ = (x << 4) | y;
3249 }
3250 return inbuf;
3251 }
3252
3253 /* Externally, threadrefs are 64 bits but internally, they are still
3254 ints. This is due to a mismatch of specifications. We would like
3255 to use 64bit thread references internally. This is an adapter
3256 function. */
3257
3258 void
3259 int_to_threadref (threadref *id, int value)
3260 {
3261 unsigned char *scan;
3262
3263 scan = (unsigned char *) id;
3264 {
3265 int i = 4;
3266 while (i--)
3267 *scan++ = 0;
3268 }
3269 *scan++ = (value >> 24) & 0xff;
3270 *scan++ = (value >> 16) & 0xff;
3271 *scan++ = (value >> 8) & 0xff;
3272 *scan++ = (value & 0xff);
3273 }
3274
3275 static int
3276 threadref_to_int (threadref *ref)
3277 {
3278 int i, value = 0;
3279 unsigned char *scan;
3280
3281 scan = *ref;
3282 scan += 4;
3283 i = 4;
3284 while (i-- > 0)
3285 value = (value << 8) | ((*scan++) & 0xff);
3286 return value;
3287 }
3288
3289 static void
3290 copy_threadref (threadref *dest, threadref *src)
3291 {
3292 int i;
3293 unsigned char *csrc, *cdest;
3294
3295 csrc = (unsigned char *) src;
3296 cdest = (unsigned char *) dest;
3297 i = 8;
3298 while (i--)
3299 *cdest++ = *csrc++;
3300 }
3301
3302 static int
3303 threadmatch (threadref *dest, threadref *src)
3304 {
3305 /* Things are broken right now, so just assume we got a match. */
3306 #if 0
3307 unsigned char *srcp, *destp;
3308 int i, result;
3309 srcp = (char *) src;
3310 destp = (char *) dest;
3311
3312 result = 1;
3313 while (i-- > 0)
3314 result &= (*srcp++ == *destp++) ? 1 : 0;
3315 return result;
3316 #endif
3317 return 1;
3318 }
3319
3320 /*
3321 threadid:1, # always request threadid
3322 context_exists:2,
3323 display:4,
3324 unique_name:8,
3325 more_display:16
3326 */
3327
3328 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3329
3330 static char *
3331 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3332 {
3333 *pkt++ = 'q'; /* Info Query */
3334 *pkt++ = 'P'; /* process or thread info */
3335 pkt = pack_int (pkt, mode); /* mode */
3336 pkt = pack_threadid (pkt, id); /* threadid */
3337 *pkt = '\0'; /* terminate */
3338 return pkt;
3339 }
3340
3341 /* These values tag the fields in a thread info response packet. */
3342 /* Tagging the fields allows us to request specific fields and to
3343 add more fields as time goes by. */
3344
3345 #define TAG_THREADID 1 /* Echo the thread identifier. */
3346 #define TAG_EXISTS 2 /* Is this process defined enough to
3347 fetch registers and its stack? */
3348 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3349 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3350 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3351 the process. */
3352
3353 int
3354 remote_target::remote_unpack_thread_info_response (const char *pkt,
3355 threadref *expectedref,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int mask, length;
3360 int tag;
3361 threadref ref;
3362 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3363 int retval = 1;
3364
3365 /* info->threadid = 0; FIXME: implement zero_threadref. */
3366 info->active = 0;
3367 info->display[0] = '\0';
3368 info->shortname[0] = '\0';
3369 info->more_display[0] = '\0';
3370
3371 /* Assume the characters indicating the packet type have been
3372 stripped. */
3373 pkt = unpack_int (pkt, &mask); /* arg mask */
3374 pkt = unpack_threadid (pkt, &ref);
3375
3376 if (mask == 0)
3377 warning (_("Incomplete response to threadinfo request."));
3378 if (!threadmatch (&ref, expectedref))
3379 { /* This is an answer to a different request. */
3380 warning (_("ERROR RMT Thread info mismatch."));
3381 return 0;
3382 }
3383 copy_threadref (&info->threadid, &ref);
3384
3385 /* Loop on tagged fields , try to bail if something goes wrong. */
3386
3387 /* Packets are terminated with nulls. */
3388 while ((pkt < limit) && mask && *pkt)
3389 {
3390 pkt = unpack_int (pkt, &tag); /* tag */
3391 pkt = unpack_byte (pkt, &length); /* length */
3392 if (!(tag & mask)) /* Tags out of synch with mask. */
3393 {
3394 warning (_("ERROR RMT: threadinfo tag mismatch."));
3395 retval = 0;
3396 break;
3397 }
3398 if (tag == TAG_THREADID)
3399 {
3400 if (length != 16)
3401 {
3402 warning (_("ERROR RMT: length of threadid is not 16."));
3403 retval = 0;
3404 break;
3405 }
3406 pkt = unpack_threadid (pkt, &ref);
3407 mask = mask & ~TAG_THREADID;
3408 continue;
3409 }
3410 if (tag == TAG_EXISTS)
3411 {
3412 info->active = stub_unpack_int (pkt, length);
3413 pkt += length;
3414 mask = mask & ~(TAG_EXISTS);
3415 if (length > 8)
3416 {
3417 warning (_("ERROR RMT: 'exists' length too long."));
3418 retval = 0;
3419 break;
3420 }
3421 continue;
3422 }
3423 if (tag == TAG_THREADNAME)
3424 {
3425 pkt = unpack_string (pkt, &info->shortname[0], length);
3426 mask = mask & ~TAG_THREADNAME;
3427 continue;
3428 }
3429 if (tag == TAG_DISPLAY)
3430 {
3431 pkt = unpack_string (pkt, &info->display[0], length);
3432 mask = mask & ~TAG_DISPLAY;
3433 continue;
3434 }
3435 if (tag == TAG_MOREDISPLAY)
3436 {
3437 pkt = unpack_string (pkt, &info->more_display[0], length);
3438 mask = mask & ~TAG_MOREDISPLAY;
3439 continue;
3440 }
3441 warning (_("ERROR RMT: unknown thread info tag."));
3442 break; /* Not a tag we know about. */
3443 }
3444 return retval;
3445 }
3446
3447 int
3448 remote_target::remote_get_threadinfo (threadref *threadid,
3449 int fieldset,
3450 gdb_ext_thread_info *info)
3451 {
3452 struct remote_state *rs = get_remote_state ();
3453 int result;
3454
3455 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3456 putpkt (rs->buf);
3457 getpkt (&rs->buf, 0);
3458
3459 if (rs->buf[0] == '\0')
3460 return 0;
3461
3462 result = remote_unpack_thread_info_response (&rs->buf[2],
3463 threadid, info);
3464 return result;
3465 }
3466
3467 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3468
3469 static char *
3470 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3471 threadref *nextthread)
3472 {
3473 *pkt++ = 'q'; /* info query packet */
3474 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3475 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3476 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3477 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3478 *pkt = '\0';
3479 return pkt;
3480 }
3481
3482 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3483
3484 int
3485 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3486 threadref *original_echo,
3487 threadref *resultlist,
3488 int *doneflag)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int count, resultcount, done;
3492
3493 resultcount = 0;
3494 /* Assume the 'q' and 'M chars have been stripped. */
3495 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3496 /* done parse past here */
3497 pkt = unpack_byte (pkt, &count); /* count field */
3498 pkt = unpack_nibble (pkt, &done);
3499 /* The first threadid is the argument threadid. */
3500 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3501 while ((count-- > 0) && (pkt < limit))
3502 {
3503 pkt = unpack_threadid (pkt, resultlist++);
3504 if (resultcount++ >= result_limit)
3505 break;
3506 }
3507 if (doneflag)
3508 *doneflag = done;
3509 return resultcount;
3510 }
3511
3512 /* Fetch the next batch of threads from the remote. Returns -1 if the
3513 qL packet is not supported, 0 on error and 1 on success. */
3514
3515 int
3516 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3517 int result_limit, int *done, int *result_count,
3518 threadref *threadlist)
3519 {
3520 struct remote_state *rs = get_remote_state ();
3521 int result = 1;
3522
3523 /* Truncate result limit to be smaller than the packet size. */
3524 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3525 >= get_remote_packet_size ())
3526 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3527
3528 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3529 nextthread);
3530 putpkt (rs->buf);
3531 getpkt (&rs->buf, 0);
3532 if (rs->buf[0] == '\0')
3533 {
3534 /* Packet not supported. */
3535 return -1;
3536 }
3537
3538 *result_count =
3539 parse_threadlist_response (&rs->buf[2], result_limit,
3540 &rs->echo_nextthread, threadlist, done);
3541
3542 if (!threadmatch (&rs->echo_nextthread, nextthread))
3543 {
3544 /* FIXME: This is a good reason to drop the packet. */
3545 /* Possibly, there is a duplicate response. */
3546 /* Possibilities :
3547 retransmit immediatly - race conditions
3548 retransmit after timeout - yes
3549 exit
3550 wait for packet, then exit
3551 */
3552 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3553 return 0; /* I choose simply exiting. */
3554 }
3555 if (*result_count <= 0)
3556 {
3557 if (*done != 1)
3558 {
3559 warning (_("RMT ERROR : failed to get remote thread list."));
3560 result = 0;
3561 }
3562 return result; /* break; */
3563 }
3564 if (*result_count > result_limit)
3565 {
3566 *result_count = 0;
3567 warning (_("RMT ERROR: threadlist response longer than requested."));
3568 return 0;
3569 }
3570 return result;
3571 }
3572
3573 /* Fetch the list of remote threads, with the qL packet, and call
3574 STEPFUNCTION for each thread found. Stops iterating and returns 1
3575 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3576 STEPFUNCTION returns false. If the packet is not supported,
3577 returns -1. */
3578
3579 int
3580 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3581 void *context, int looplimit)
3582 {
3583 struct remote_state *rs = get_remote_state ();
3584 int done, i, result_count;
3585 int startflag = 1;
3586 int result = 1;
3587 int loopcount = 0;
3588
3589 done = 0;
3590 while (!done)
3591 {
3592 if (loopcount++ > looplimit)
3593 {
3594 result = 0;
3595 warning (_("Remote fetch threadlist -infinite loop-."));
3596 break;
3597 }
3598 result = remote_get_threadlist (startflag, &rs->nextthread,
3599 MAXTHREADLISTRESULTS,
3600 &done, &result_count,
3601 rs->resultthreadlist);
3602 if (result <= 0)
3603 break;
3604 /* Clear for later iterations. */
3605 startflag = 0;
3606 /* Setup to resume next batch of thread references, set nextthread. */
3607 if (result_count >= 1)
3608 copy_threadref (&rs->nextthread,
3609 &rs->resultthreadlist[result_count - 1]);
3610 i = 0;
3611 while (result_count--)
3612 {
3613 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3614 {
3615 result = 0;
3616 break;
3617 }
3618 }
3619 }
3620 return result;
3621 }
3622
3623 /* A thread found on the remote target. */
3624
3625 struct thread_item
3626 {
3627 explicit thread_item (ptid_t ptid_)
3628 : ptid (ptid_)
3629 {}
3630
3631 thread_item (thread_item &&other) = default;
3632 thread_item &operator= (thread_item &&other) = default;
3633
3634 DISABLE_COPY_AND_ASSIGN (thread_item);
3635
3636 /* The thread's PTID. */
3637 ptid_t ptid;
3638
3639 /* The thread's extra info. */
3640 std::string extra;
3641
3642 /* The thread's name. */
3643 std::string name;
3644
3645 /* The core the thread was running on. -1 if not known. */
3646 int core = -1;
3647
3648 /* The thread handle associated with the thread. */
3649 gdb::byte_vector thread_handle;
3650 };
3651
3652 /* Context passed around to the various methods listing remote
3653 threads. As new threads are found, they're added to the ITEMS
3654 vector. */
3655
3656 struct threads_listing_context
3657 {
3658 /* Return true if this object contains an entry for a thread with ptid
3659 PTID. */
3660
3661 bool contains_thread (ptid_t ptid) const
3662 {
3663 auto match_ptid = [&] (const thread_item &item)
3664 {
3665 return item.ptid == ptid;
3666 };
3667
3668 auto it = std::find_if (this->items.begin (),
3669 this->items.end (),
3670 match_ptid);
3671
3672 return it != this->items.end ();
3673 }
3674
3675 /* Remove the thread with ptid PTID. */
3676
3677 void remove_thread (ptid_t ptid)
3678 {
3679 auto match_ptid = [&] (const thread_item &item)
3680 {
3681 return item.ptid == ptid;
3682 };
3683
3684 auto it = std::remove_if (this->items.begin (),
3685 this->items.end (),
3686 match_ptid);
3687
3688 if (it != this->items.end ())
3689 this->items.erase (it);
3690 }
3691
3692 /* The threads found on the remote target. */
3693 std::vector<thread_item> items;
3694 };
3695
3696 static int
3697 remote_newthread_step (threadref *ref, void *data)
3698 {
3699 struct threads_listing_context *context
3700 = (struct threads_listing_context *) data;
3701 int pid = inferior_ptid.pid ();
3702 int lwp = threadref_to_int (ref);
3703 ptid_t ptid (pid, lwp);
3704
3705 context->items.emplace_back (ptid);
3706
3707 return 1; /* continue iterator */
3708 }
3709
3710 #define CRAZY_MAX_THREADS 1000
3711
3712 ptid_t
3713 remote_target::remote_current_thread (ptid_t oldpid)
3714 {
3715 struct remote_state *rs = get_remote_state ();
3716
3717 putpkt ("qC");
3718 getpkt (&rs->buf, 0);
3719 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3720 {
3721 const char *obuf;
3722 ptid_t result;
3723
3724 result = read_ptid (&rs->buf[2], &obuf);
3725 if (*obuf != '\0')
3726 remote_debug_printf ("warning: garbage in qC reply");
3727
3728 return result;
3729 }
3730 else
3731 return oldpid;
3732 }
3733
3734 /* List remote threads using the deprecated qL packet. */
3735
3736 int
3737 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3738 {
3739 if (remote_threadlist_iterator (remote_newthread_step, context,
3740 CRAZY_MAX_THREADS) >= 0)
3741 return 1;
3742
3743 return 0;
3744 }
3745
3746 #if defined(HAVE_LIBEXPAT)
3747
3748 static void
3749 start_thread (struct gdb_xml_parser *parser,
3750 const struct gdb_xml_element *element,
3751 void *user_data,
3752 std::vector<gdb_xml_value> &attributes)
3753 {
3754 struct threads_listing_context *data
3755 = (struct threads_listing_context *) user_data;
3756 struct gdb_xml_value *attr;
3757
3758 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3759 ptid_t ptid = read_ptid (id, NULL);
3760
3761 data->items.emplace_back (ptid);
3762 thread_item &item = data->items.back ();
3763
3764 attr = xml_find_attribute (attributes, "core");
3765 if (attr != NULL)
3766 item.core = *(ULONGEST *) attr->value.get ();
3767
3768 attr = xml_find_attribute (attributes, "name");
3769 if (attr != NULL)
3770 item.name = (const char *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "handle");
3773 if (attr != NULL)
3774 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3775 }
3776
3777 static void
3778 end_thread (struct gdb_xml_parser *parser,
3779 const struct gdb_xml_element *element,
3780 void *user_data, const char *body_text)
3781 {
3782 struct threads_listing_context *data
3783 = (struct threads_listing_context *) user_data;
3784
3785 if (body_text != NULL && *body_text != '\0')
3786 data->items.back ().extra = body_text;
3787 }
3788
3789 const struct gdb_xml_attribute thread_attributes[] = {
3790 { "id", GDB_XML_AF_NONE, NULL, NULL },
3791 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3792 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3793 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3794 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3795 };
3796
3797 const struct gdb_xml_element thread_children[] = {
3798 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element threads_children[] = {
3802 { "thread", thread_attributes, thread_children,
3803 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3804 start_thread, end_thread },
3805 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3806 };
3807
3808 const struct gdb_xml_element threads_elements[] = {
3809 { "threads", NULL, threads_children,
3810 GDB_XML_EF_NONE, NULL, NULL },
3811 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3812 };
3813
3814 #endif
3815
3816 /* List remote threads using qXfer:threads:read. */
3817
3818 int
3819 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3820 {
3821 #if defined(HAVE_LIBEXPAT)
3822 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3823 {
3824 gdb::optional<gdb::char_vector> xml
3825 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3826
3827 if (xml && (*xml)[0] != '\0')
3828 {
3829 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3830 threads_elements, xml->data (), context);
3831 }
3832
3833 return 1;
3834 }
3835 #endif
3836
3837 return 0;
3838 }
3839
3840 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3841
3842 int
3843 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3844 {
3845 struct remote_state *rs = get_remote_state ();
3846
3847 if (rs->use_threadinfo_query)
3848 {
3849 const char *bufp;
3850
3851 putpkt ("qfThreadInfo");
3852 getpkt (&rs->buf, 0);
3853 bufp = rs->buf.data ();
3854 if (bufp[0] != '\0') /* q packet recognized */
3855 {
3856 while (*bufp++ == 'm') /* reply contains one or more TID */
3857 {
3858 do
3859 {
3860 ptid_t ptid = read_ptid (bufp, &bufp);
3861 context->items.emplace_back (ptid);
3862 }
3863 while (*bufp++ == ','); /* comma-separated list */
3864 putpkt ("qsThreadInfo");
3865 getpkt (&rs->buf, 0);
3866 bufp = rs->buf.data ();
3867 }
3868 return 1;
3869 }
3870 else
3871 {
3872 /* Packet not recognized. */
3873 rs->use_threadinfo_query = 0;
3874 }
3875 }
3876
3877 return 0;
3878 }
3879
3880 /* Return true if INF only has one non-exited thread. */
3881
3882 static bool
3883 has_single_non_exited_thread (inferior *inf)
3884 {
3885 int count = 0;
3886 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3887 if (++count > 1)
3888 break;
3889 return count == 1;
3890 }
3891
3892 /* Implement the to_update_thread_list function for the remote
3893 targets. */
3894
3895 void
3896 remote_target::update_thread_list ()
3897 {
3898 struct threads_listing_context context;
3899 int got_list = 0;
3900
3901 /* We have a few different mechanisms to fetch the thread list. Try
3902 them all, starting with the most preferred one first, falling
3903 back to older methods. */
3904 if (remote_get_threads_with_qxfer (&context)
3905 || remote_get_threads_with_qthreadinfo (&context)
3906 || remote_get_threads_with_ql (&context))
3907 {
3908 got_list = 1;
3909
3910 if (context.items.empty ()
3911 && remote_thread_always_alive (inferior_ptid))
3912 {
3913 /* Some targets don't really support threads, but still
3914 reply an (empty) thread list in response to the thread
3915 listing packets, instead of replying "packet not
3916 supported". Exit early so we don't delete the main
3917 thread. */
3918 return;
3919 }
3920
3921 /* CONTEXT now holds the current thread list on the remote
3922 target end. Delete GDB-side threads no longer found on the
3923 target. */
3924 for (thread_info *tp : all_threads_safe ())
3925 {
3926 if (tp->inf->process_target () != this)
3927 continue;
3928
3929 if (!context.contains_thread (tp->ptid))
3930 {
3931 /* Do not remove the thread if it is the last thread in
3932 the inferior. This situation happens when we have a
3933 pending exit process status to process. Otherwise we
3934 may end up with a seemingly live inferior (i.e. pid
3935 != 0) that has no threads. */
3936 if (has_single_non_exited_thread (tp->inf))
3937 continue;
3938
3939 /* Not found. */
3940 delete_thread (tp);
3941 }
3942 }
3943
3944 /* Remove any unreported fork child threads from CONTEXT so
3945 that we don't interfere with follow fork, which is where
3946 creation of such threads is handled. */
3947 remove_new_fork_children (&context);
3948
3949 /* And now add threads we don't know about yet to our list. */
3950 for (thread_item &item : context.items)
3951 {
3952 if (item.ptid != null_ptid)
3953 {
3954 /* In non-stop mode, we assume new found threads are
3955 executing until proven otherwise with a stop reply.
3956 In all-stop, we can only get here if all threads are
3957 stopped. */
3958 int executing = target_is_non_stop_p () ? 1 : 0;
3959
3960 remote_notice_new_inferior (item.ptid, executing);
3961
3962 thread_info *tp = find_thread_ptid (this, item.ptid);
3963 remote_thread_info *info = get_remote_thread_info (tp);
3964 info->core = item.core;
3965 info->extra = std::move (item.extra);
3966 info->name = std::move (item.name);
3967 info->thread_handle = std::move (item.thread_handle);
3968 }
3969 }
3970 }
3971
3972 if (!got_list)
3973 {
3974 /* If no thread listing method is supported, then query whether
3975 each known thread is alive, one by one, with the T packet.
3976 If the target doesn't support threads at all, then this is a
3977 no-op. See remote_thread_alive. */
3978 prune_threads ();
3979 }
3980 }
3981
3982 /*
3983 * Collect a descriptive string about the given thread.
3984 * The target may say anything it wants to about the thread
3985 * (typically info about its blocked / runnable state, name, etc.).
3986 * This string will appear in the info threads display.
3987 *
3988 * Optional: targets are not required to implement this function.
3989 */
3990
3991 const char *
3992 remote_target::extra_thread_info (thread_info *tp)
3993 {
3994 struct remote_state *rs = get_remote_state ();
3995 int set;
3996 threadref id;
3997 struct gdb_ext_thread_info threadinfo;
3998
3999 if (rs->remote_desc == 0) /* paranoia */
4000 internal_error (__FILE__, __LINE__,
4001 _("remote_threads_extra_info"));
4002
4003 if (tp->ptid == magic_null_ptid
4004 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4005 /* This is the main thread which was added by GDB. The remote
4006 server doesn't know about it. */
4007 return NULL;
4008
4009 std::string &extra = get_remote_thread_info (tp)->extra;
4010
4011 /* If already have cached info, use it. */
4012 if (!extra.empty ())
4013 return extra.c_str ();
4014
4015 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4016 {
4017 /* If we're using qXfer:threads:read, then the extra info is
4018 included in the XML. So if we didn't have anything cached,
4019 it's because there's really no extra info. */
4020 return NULL;
4021 }
4022
4023 if (rs->use_threadextra_query)
4024 {
4025 char *b = rs->buf.data ();
4026 char *endb = b + get_remote_packet_size ();
4027
4028 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4029 b += strlen (b);
4030 write_ptid (b, endb, tp->ptid);
4031
4032 putpkt (rs->buf);
4033 getpkt (&rs->buf, 0);
4034 if (rs->buf[0] != 0)
4035 {
4036 extra.resize (strlen (rs->buf.data ()) / 2);
4037 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4038 return extra.c_str ();
4039 }
4040 }
4041
4042 /* If the above query fails, fall back to the old method. */
4043 rs->use_threadextra_query = 0;
4044 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4045 | TAG_MOREDISPLAY | TAG_DISPLAY;
4046 int_to_threadref (&id, tp->ptid.lwp ());
4047 if (remote_get_threadinfo (&id, set, &threadinfo))
4048 if (threadinfo.active)
4049 {
4050 if (*threadinfo.shortname)
4051 string_appendf (extra, " Name: %s", threadinfo.shortname);
4052 if (*threadinfo.display)
4053 {
4054 if (!extra.empty ())
4055 extra += ',';
4056 string_appendf (extra, " State: %s", threadinfo.display);
4057 }
4058 if (*threadinfo.more_display)
4059 {
4060 if (!extra.empty ())
4061 extra += ',';
4062 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4063 }
4064 return extra.c_str ();
4065 }
4066 return NULL;
4067 }
4068 \f
4069
4070 bool
4071 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4072 struct static_tracepoint_marker *marker)
4073 {
4074 struct remote_state *rs = get_remote_state ();
4075 char *p = rs->buf.data ();
4076
4077 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4078 p += strlen (p);
4079 p += hexnumstr (p, addr);
4080 putpkt (rs->buf);
4081 getpkt (&rs->buf, 0);
4082 p = rs->buf.data ();
4083
4084 if (*p == 'E')
4085 error (_("Remote failure reply: %s"), p);
4086
4087 if (*p++ == 'm')
4088 {
4089 parse_static_tracepoint_marker_definition (p, NULL, marker);
4090 return true;
4091 }
4092
4093 return false;
4094 }
4095
4096 std::vector<static_tracepoint_marker>
4097 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4098 {
4099 struct remote_state *rs = get_remote_state ();
4100 std::vector<static_tracepoint_marker> markers;
4101 const char *p;
4102 static_tracepoint_marker marker;
4103
4104 /* Ask for a first packet of static tracepoint marker
4105 definition. */
4106 putpkt ("qTfSTM");
4107 getpkt (&rs->buf, 0);
4108 p = rs->buf.data ();
4109 if (*p == 'E')
4110 error (_("Remote failure reply: %s"), p);
4111
4112 while (*p++ == 'm')
4113 {
4114 do
4115 {
4116 parse_static_tracepoint_marker_definition (p, &p, &marker);
4117
4118 if (strid == NULL || marker.str_id == strid)
4119 markers.push_back (std::move (marker));
4120 }
4121 while (*p++ == ','); /* comma-separated list */
4122 /* Ask for another packet of static tracepoint definition. */
4123 putpkt ("qTsSTM");
4124 getpkt (&rs->buf, 0);
4125 p = rs->buf.data ();
4126 }
4127
4128 return markers;
4129 }
4130
4131 \f
4132 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4133
4134 ptid_t
4135 remote_target::get_ada_task_ptid (long lwp, long thread)
4136 {
4137 return ptid_t (inferior_ptid.pid (), lwp, 0);
4138 }
4139 \f
4140
4141 /* Restart the remote side; this is an extended protocol operation. */
4142
4143 void
4144 remote_target::extended_remote_restart ()
4145 {
4146 struct remote_state *rs = get_remote_state ();
4147
4148 /* Send the restart command; for reasons I don't understand the
4149 remote side really expects a number after the "R". */
4150 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4151 putpkt (rs->buf);
4152
4153 remote_fileio_reset ();
4154 }
4155 \f
4156 /* Clean up connection to a remote debugger. */
4157
4158 void
4159 remote_target::close ()
4160 {
4161 /* Make sure we leave stdin registered in the event loop. */
4162 terminal_ours ();
4163
4164 trace_reset_local_state ();
4165
4166 delete this;
4167 }
4168
4169 remote_target::~remote_target ()
4170 {
4171 struct remote_state *rs = get_remote_state ();
4172
4173 /* Check for NULL because we may get here with a partially
4174 constructed target/connection. */
4175 if (rs->remote_desc == nullptr)
4176 return;
4177
4178 serial_close (rs->remote_desc);
4179
4180 /* We are destroying the remote target, so we should discard
4181 everything of this target. */
4182 discard_pending_stop_replies_in_queue ();
4183
4184 if (rs->remote_async_inferior_event_token)
4185 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4186
4187 delete rs->notif_state;
4188 }
4189
4190 /* Query the remote side for the text, data and bss offsets. */
4191
4192 void
4193 remote_target::get_offsets ()
4194 {
4195 struct remote_state *rs = get_remote_state ();
4196 char *buf;
4197 char *ptr;
4198 int lose, num_segments = 0, do_sections, do_segments;
4199 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4200
4201 if (current_program_space->symfile_object_file == NULL)
4202 return;
4203
4204 putpkt ("qOffsets");
4205 getpkt (&rs->buf, 0);
4206 buf = rs->buf.data ();
4207
4208 if (buf[0] == '\000')
4209 return; /* Return silently. Stub doesn't support
4210 this command. */
4211 if (buf[0] == 'E')
4212 {
4213 warning (_("Remote failure reply: %s"), buf);
4214 return;
4215 }
4216
4217 /* Pick up each field in turn. This used to be done with scanf, but
4218 scanf will make trouble if CORE_ADDR size doesn't match
4219 conversion directives correctly. The following code will work
4220 with any size of CORE_ADDR. */
4221 text_addr = data_addr = bss_addr = 0;
4222 ptr = buf;
4223 lose = 0;
4224
4225 if (startswith (ptr, "Text="))
4226 {
4227 ptr += 5;
4228 /* Don't use strtol, could lose on big values. */
4229 while (*ptr && *ptr != ';')
4230 text_addr = (text_addr << 4) + fromhex (*ptr++);
4231
4232 if (startswith (ptr, ";Data="))
4233 {
4234 ptr += 6;
4235 while (*ptr && *ptr != ';')
4236 data_addr = (data_addr << 4) + fromhex (*ptr++);
4237 }
4238 else
4239 lose = 1;
4240
4241 if (!lose && startswith (ptr, ";Bss="))
4242 {
4243 ptr += 5;
4244 while (*ptr && *ptr != ';')
4245 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4246
4247 if (bss_addr != data_addr)
4248 warning (_("Target reported unsupported offsets: %s"), buf);
4249 }
4250 else
4251 lose = 1;
4252 }
4253 else if (startswith (ptr, "TextSeg="))
4254 {
4255 ptr += 8;
4256 /* Don't use strtol, could lose on big values. */
4257 while (*ptr && *ptr != ';')
4258 text_addr = (text_addr << 4) + fromhex (*ptr++);
4259 num_segments = 1;
4260
4261 if (startswith (ptr, ";DataSeg="))
4262 {
4263 ptr += 9;
4264 while (*ptr && *ptr != ';')
4265 data_addr = (data_addr << 4) + fromhex (*ptr++);
4266 num_segments++;
4267 }
4268 }
4269 else
4270 lose = 1;
4271
4272 if (lose)
4273 error (_("Malformed response to offset query, %s"), buf);
4274 else if (*ptr != '\0')
4275 warning (_("Target reported unsupported offsets: %s"), buf);
4276
4277 objfile *objf = current_program_space->symfile_object_file;
4278 section_offsets offs = objf->section_offsets;
4279
4280 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4281 do_segments = (data != NULL);
4282 do_sections = num_segments == 0;
4283
4284 if (num_segments > 0)
4285 {
4286 segments[0] = text_addr;
4287 segments[1] = data_addr;
4288 }
4289 /* If we have two segments, we can still try to relocate everything
4290 by assuming that the .text and .data offsets apply to the whole
4291 text and data segments. Convert the offsets given in the packet
4292 to base addresses for symfile_map_offsets_to_segments. */
4293 else if (data != nullptr && data->segments.size () == 2)
4294 {
4295 segments[0] = data->segments[0].base + text_addr;
4296 segments[1] = data->segments[1].base + data_addr;
4297 num_segments = 2;
4298 }
4299 /* If the object file has only one segment, assume that it is text
4300 rather than data; main programs with no writable data are rare,
4301 but programs with no code are useless. Of course the code might
4302 have ended up in the data segment... to detect that we would need
4303 the permissions here. */
4304 else if (data && data->segments.size () == 1)
4305 {
4306 segments[0] = data->segments[0].base + text_addr;
4307 num_segments = 1;
4308 }
4309 /* There's no way to relocate by segment. */
4310 else
4311 do_segments = 0;
4312
4313 if (do_segments)
4314 {
4315 int ret = symfile_map_offsets_to_segments (objf->obfd,
4316 data.get (), offs,
4317 num_segments, segments);
4318
4319 if (ret == 0 && !do_sections)
4320 error (_("Can not handle qOffsets TextSeg "
4321 "response with this symbol file"));
4322
4323 if (ret > 0)
4324 do_sections = 0;
4325 }
4326
4327 if (do_sections)
4328 {
4329 offs[SECT_OFF_TEXT (objf)] = text_addr;
4330
4331 /* This is a temporary kludge to force data and bss to use the
4332 same offsets because that's what nlmconv does now. The real
4333 solution requires changes to the stub and remote.c that I
4334 don't have time to do right now. */
4335
4336 offs[SECT_OFF_DATA (objf)] = data_addr;
4337 offs[SECT_OFF_BSS (objf)] = data_addr;
4338 }
4339
4340 objfile_relocate (objf, offs);
4341 }
4342
4343 /* Send interrupt_sequence to remote target. */
4344
4345 void
4346 remote_target::send_interrupt_sequence ()
4347 {
4348 struct remote_state *rs = get_remote_state ();
4349
4350 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4351 remote_serial_write ("\x03", 1);
4352 else if (interrupt_sequence_mode == interrupt_sequence_break)
4353 serial_send_break (rs->remote_desc);
4354 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4355 {
4356 serial_send_break (rs->remote_desc);
4357 remote_serial_write ("g", 1);
4358 }
4359 else
4360 internal_error (__FILE__, __LINE__,
4361 _("Invalid value for interrupt_sequence_mode: %s."),
4362 interrupt_sequence_mode);
4363 }
4364
4365
4366 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4367 and extract the PTID. Returns NULL_PTID if not found. */
4368
4369 static ptid_t
4370 stop_reply_extract_thread (const char *stop_reply)
4371 {
4372 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4373 {
4374 const char *p;
4375
4376 /* Txx r:val ; r:val (...) */
4377 p = &stop_reply[3];
4378
4379 /* Look for "register" named "thread". */
4380 while (*p != '\0')
4381 {
4382 const char *p1;
4383
4384 p1 = strchr (p, ':');
4385 if (p1 == NULL)
4386 return null_ptid;
4387
4388 if (strncmp (p, "thread", p1 - p) == 0)
4389 return read_ptid (++p1, &p);
4390
4391 p1 = strchr (p, ';');
4392 if (p1 == NULL)
4393 return null_ptid;
4394 p1++;
4395
4396 p = p1;
4397 }
4398 }
4399
4400 return null_ptid;
4401 }
4402
4403 /* Determine the remote side's current thread. If we have a stop
4404 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4405 "thread" register we can extract the current thread from. If not,
4406 ask the remote which is the current thread with qC. The former
4407 method avoids a roundtrip. */
4408
4409 ptid_t
4410 remote_target::get_current_thread (const char *wait_status)
4411 {
4412 ptid_t ptid = null_ptid;
4413
4414 /* Note we don't use remote_parse_stop_reply as that makes use of
4415 the target architecture, which we haven't yet fully determined at
4416 this point. */
4417 if (wait_status != NULL)
4418 ptid = stop_reply_extract_thread (wait_status);
4419 if (ptid == null_ptid)
4420 ptid = remote_current_thread (inferior_ptid);
4421
4422 return ptid;
4423 }
4424
4425 /* Query the remote target for which is the current thread/process,
4426 add it to our tables, and update INFERIOR_PTID. The caller is
4427 responsible for setting the state such that the remote end is ready
4428 to return the current thread.
4429
4430 This function is called after handling the '?' or 'vRun' packets,
4431 whose response is a stop reply from which we can also try
4432 extracting the thread. If the target doesn't support the explicit
4433 qC query, we infer the current thread from that stop reply, passed
4434 in in WAIT_STATUS, which may be NULL.
4435
4436 The function returns pointer to the main thread of the inferior. */
4437
4438 thread_info *
4439 remote_target::add_current_inferior_and_thread (const char *wait_status)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442 bool fake_pid_p = false;
4443
4444 switch_to_no_thread ();
4445
4446 /* Now, if we have thread information, update the current thread's
4447 ptid. */
4448 ptid_t curr_ptid = get_current_thread (wait_status);
4449
4450 if (curr_ptid != null_ptid)
4451 {
4452 if (!remote_multi_process_p (rs))
4453 fake_pid_p = true;
4454 }
4455 else
4456 {
4457 /* Without this, some commands which require an active target
4458 (such as kill) won't work. This variable serves (at least)
4459 double duty as both the pid of the target process (if it has
4460 such), and as a flag indicating that a target is active. */
4461 curr_ptid = magic_null_ptid;
4462 fake_pid_p = true;
4463 }
4464
4465 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4466
4467 /* Add the main thread and switch to it. Don't try reading
4468 registers yet, since we haven't fetched the target description
4469 yet. */
4470 thread_info *tp = add_thread_silent (this, curr_ptid);
4471 switch_to_thread_no_regs (tp);
4472
4473 return tp;
4474 }
4475
4476 /* Print info about a thread that was found already stopped on
4477 connection. */
4478
4479 static void
4480 print_one_stopped_thread (struct thread_info *thread)
4481 {
4482 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4483
4484 switch_to_thread (thread);
4485 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4486 set_current_sal_from_frame (get_current_frame ());
4487
4488 thread->suspend.waitstatus_pending_p = 0;
4489
4490 if (ws->kind == TARGET_WAITKIND_STOPPED)
4491 {
4492 enum gdb_signal sig = ws->value.sig;
4493
4494 if (signal_print_state (sig))
4495 gdb::observers::signal_received.notify (sig);
4496 }
4497 gdb::observers::normal_stop.notify (NULL, 1);
4498 }
4499
4500 /* Process all initial stop replies the remote side sent in response
4501 to the ? packet. These indicate threads that were already stopped
4502 on initial connection. We mark these threads as stopped and print
4503 their current frame before giving the user the prompt. */
4504
4505 void
4506 remote_target::process_initial_stop_replies (int from_tty)
4507 {
4508 int pending_stop_replies = stop_reply_queue_length ();
4509 struct thread_info *selected = NULL;
4510 struct thread_info *lowest_stopped = NULL;
4511 struct thread_info *first = NULL;
4512
4513 /* Consume the initial pending events. */
4514 while (pending_stop_replies-- > 0)
4515 {
4516 ptid_t waiton_ptid = minus_one_ptid;
4517 ptid_t event_ptid;
4518 struct target_waitstatus ws;
4519 int ignore_event = 0;
4520
4521 memset (&ws, 0, sizeof (ws));
4522 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4523 if (remote_debug)
4524 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4525
4526 switch (ws.kind)
4527 {
4528 case TARGET_WAITKIND_IGNORE:
4529 case TARGET_WAITKIND_NO_RESUMED:
4530 case TARGET_WAITKIND_SIGNALLED:
4531 case TARGET_WAITKIND_EXITED:
4532 /* We shouldn't see these, but if we do, just ignore. */
4533 remote_debug_printf ("event ignored");
4534 ignore_event = 1;
4535 break;
4536
4537 case TARGET_WAITKIND_EXECD:
4538 xfree (ws.value.execd_pathname);
4539 break;
4540 default:
4541 break;
4542 }
4543
4544 if (ignore_event)
4545 continue;
4546
4547 thread_info *evthread = find_thread_ptid (this, event_ptid);
4548
4549 if (ws.kind == TARGET_WAITKIND_STOPPED)
4550 {
4551 enum gdb_signal sig = ws.value.sig;
4552
4553 /* Stubs traditionally report SIGTRAP as initial signal,
4554 instead of signal 0. Suppress it. */
4555 if (sig == GDB_SIGNAL_TRAP)
4556 sig = GDB_SIGNAL_0;
4557 evthread->suspend.stop_signal = sig;
4558 ws.value.sig = sig;
4559 }
4560
4561 evthread->suspend.waitstatus = ws;
4562
4563 if (ws.kind != TARGET_WAITKIND_STOPPED
4564 || ws.value.sig != GDB_SIGNAL_0)
4565 evthread->suspend.waitstatus_pending_p = 1;
4566
4567 set_executing (this, event_ptid, false);
4568 set_running (this, event_ptid, false);
4569 get_remote_thread_info (evthread)->set_not_resumed ();
4570 }
4571
4572 /* "Notice" the new inferiors before anything related to
4573 registers/memory. */
4574 for (inferior *inf : all_non_exited_inferiors (this))
4575 {
4576 inf->needs_setup = 1;
4577
4578 if (non_stop)
4579 {
4580 thread_info *thread = any_live_thread_of_inferior (inf);
4581 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4582 from_tty);
4583 }
4584 }
4585
4586 /* If all-stop on top of non-stop, pause all threads. Note this
4587 records the threads' stop pc, so must be done after "noticing"
4588 the inferiors. */
4589 if (!non_stop)
4590 {
4591 stop_all_threads ();
4592
4593 /* If all threads of an inferior were already stopped, we
4594 haven't setup the inferior yet. */
4595 for (inferior *inf : all_non_exited_inferiors (this))
4596 {
4597 if (inf->needs_setup)
4598 {
4599 thread_info *thread = any_live_thread_of_inferior (inf);
4600 switch_to_thread_no_regs (thread);
4601 setup_inferior (0);
4602 }
4603 }
4604 }
4605
4606 /* Now go over all threads that are stopped, and print their current
4607 frame. If all-stop, then if there's a signalled thread, pick
4608 that as current. */
4609 for (thread_info *thread : all_non_exited_threads (this))
4610 {
4611 if (first == NULL)
4612 first = thread;
4613
4614 if (!non_stop)
4615 thread->set_running (false);
4616 else if (thread->state != THREAD_STOPPED)
4617 continue;
4618
4619 if (selected == NULL
4620 && thread->suspend.waitstatus_pending_p)
4621 selected = thread;
4622
4623 if (lowest_stopped == NULL
4624 || thread->inf->num < lowest_stopped->inf->num
4625 || thread->per_inf_num < lowest_stopped->per_inf_num)
4626 lowest_stopped = thread;
4627
4628 if (non_stop)
4629 print_one_stopped_thread (thread);
4630 }
4631
4632 /* In all-stop, we only print the status of one thread, and leave
4633 others with their status pending. */
4634 if (!non_stop)
4635 {
4636 thread_info *thread = selected;
4637 if (thread == NULL)
4638 thread = lowest_stopped;
4639 if (thread == NULL)
4640 thread = first;
4641
4642 print_one_stopped_thread (thread);
4643 }
4644
4645 /* For "info program". */
4646 thread_info *thread = inferior_thread ();
4647 if (thread->state == THREAD_STOPPED)
4648 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4649 }
4650
4651 /* Start the remote connection and sync state. */
4652
4653 void
4654 remote_target::start_remote (int from_tty, int extended_p)
4655 {
4656 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4657
4658 struct remote_state *rs = get_remote_state ();
4659 struct packet_config *noack_config;
4660
4661 /* Signal other parts that we're going through the initial setup,
4662 and so things may not be stable yet. E.g., we don't try to
4663 install tracepoints until we've relocated symbols. Also, a
4664 Ctrl-C before we're connected and synced up can't interrupt the
4665 target. Instead, it offers to drop the (potentially wedged)
4666 connection. */
4667 rs->starting_up = 1;
4668
4669 QUIT;
4670
4671 if (interrupt_on_connect)
4672 send_interrupt_sequence ();
4673
4674 /* Ack any packet which the remote side has already sent. */
4675 remote_serial_write ("+", 1);
4676
4677 /* The first packet we send to the target is the optional "supported
4678 packets" request. If the target can answer this, it will tell us
4679 which later probes to skip. */
4680 remote_query_supported ();
4681
4682 /* If the stub wants to get a QAllow, compose one and send it. */
4683 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4684 set_permissions ();
4685
4686 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4687 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4688 as a reply to known packet. For packet "vFile:setfs:" it is an
4689 invalid reply and GDB would return error in
4690 remote_hostio_set_filesystem, making remote files access impossible.
4691 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4692 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4693 {
4694 const char v_mustreplyempty[] = "vMustReplyEmpty";
4695
4696 putpkt (v_mustreplyempty);
4697 getpkt (&rs->buf, 0);
4698 if (strcmp (rs->buf.data (), "OK") == 0)
4699 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4700 else if (strcmp (rs->buf.data (), "") != 0)
4701 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4702 rs->buf.data ());
4703 }
4704
4705 /* Next, we possibly activate noack mode.
4706
4707 If the QStartNoAckMode packet configuration is set to AUTO,
4708 enable noack mode if the stub reported a wish for it with
4709 qSupported.
4710
4711 If set to TRUE, then enable noack mode even if the stub didn't
4712 report it in qSupported. If the stub doesn't reply OK, the
4713 session ends with an error.
4714
4715 If FALSE, then don't activate noack mode, regardless of what the
4716 stub claimed should be the default with qSupported. */
4717
4718 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4719 if (packet_config_support (noack_config) != PACKET_DISABLE)
4720 {
4721 putpkt ("QStartNoAckMode");
4722 getpkt (&rs->buf, 0);
4723 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4724 rs->noack_mode = 1;
4725 }
4726
4727 if (extended_p)
4728 {
4729 /* Tell the remote that we are using the extended protocol. */
4730 putpkt ("!");
4731 getpkt (&rs->buf, 0);
4732 }
4733
4734 /* Let the target know which signals it is allowed to pass down to
4735 the program. */
4736 update_signals_program_target ();
4737
4738 /* Next, if the target can specify a description, read it. We do
4739 this before anything involving memory or registers. */
4740 target_find_description ();
4741
4742 /* Next, now that we know something about the target, update the
4743 address spaces in the program spaces. */
4744 update_address_spaces ();
4745
4746 /* On OSs where the list of libraries is global to all
4747 processes, we fetch them early. */
4748 if (gdbarch_has_global_solist (target_gdbarch ()))
4749 solib_add (NULL, from_tty, auto_solib_add);
4750
4751 if (target_is_non_stop_p ())
4752 {
4753 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4754 error (_("Non-stop mode requested, but remote "
4755 "does not support non-stop"));
4756
4757 putpkt ("QNonStop:1");
4758 getpkt (&rs->buf, 0);
4759
4760 if (strcmp (rs->buf.data (), "OK") != 0)
4761 error (_("Remote refused setting non-stop mode with: %s"),
4762 rs->buf.data ());
4763
4764 /* Find about threads and processes the stub is already
4765 controlling. We default to adding them in the running state.
4766 The '?' query below will then tell us about which threads are
4767 stopped. */
4768 this->update_thread_list ();
4769 }
4770 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4771 {
4772 /* Don't assume that the stub can operate in all-stop mode.
4773 Request it explicitly. */
4774 putpkt ("QNonStop:0");
4775 getpkt (&rs->buf, 0);
4776
4777 if (strcmp (rs->buf.data (), "OK") != 0)
4778 error (_("Remote refused setting all-stop mode with: %s"),
4779 rs->buf.data ());
4780 }
4781
4782 /* Upload TSVs regardless of whether the target is running or not. The
4783 remote stub, such as GDBserver, may have some predefined or builtin
4784 TSVs, even if the target is not running. */
4785 if (get_trace_status (current_trace_status ()) != -1)
4786 {
4787 struct uploaded_tsv *uploaded_tsvs = NULL;
4788
4789 upload_trace_state_variables (&uploaded_tsvs);
4790 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4791 }
4792
4793 /* Check whether the target is running now. */
4794 putpkt ("?");
4795 getpkt (&rs->buf, 0);
4796
4797 if (!target_is_non_stop_p ())
4798 {
4799 char *wait_status = NULL;
4800
4801 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4802 {
4803 if (!extended_p)
4804 error (_("The target is not running (try extended-remote?)"));
4805
4806 /* We're connected, but not running. Drop out before we
4807 call start_remote. */
4808 rs->starting_up = 0;
4809 return;
4810 }
4811 else
4812 {
4813 /* Save the reply for later. */
4814 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4815 strcpy (wait_status, rs->buf.data ());
4816 }
4817
4818 /* Fetch thread list. */
4819 target_update_thread_list ();
4820
4821 /* Let the stub know that we want it to return the thread. */
4822 set_continue_thread (minus_one_ptid);
4823
4824 if (thread_count (this) == 0)
4825 {
4826 /* Target has no concept of threads at all. GDB treats
4827 non-threaded target as single-threaded; add a main
4828 thread. */
4829 thread_info *tp = add_current_inferior_and_thread (wait_status);
4830 get_remote_thread_info (tp)->set_resumed ();
4831 }
4832 else
4833 {
4834 /* We have thread information; select the thread the target
4835 says should be current. If we're reconnecting to a
4836 multi-threaded program, this will ideally be the thread
4837 that last reported an event before GDB disconnected. */
4838 ptid_t curr_thread = get_current_thread (wait_status);
4839 if (curr_thread == null_ptid)
4840 {
4841 /* Odd... The target was able to list threads, but not
4842 tell us which thread was current (no "thread"
4843 register in T stop reply?). Just pick the first
4844 thread in the thread list then. */
4845
4846 remote_debug_printf ("warning: couldn't determine remote "
4847 "current thread; picking first in list.");
4848
4849 for (thread_info *tp : all_non_exited_threads (this,
4850 minus_one_ptid))
4851 {
4852 switch_to_thread (tp);
4853 break;
4854 }
4855 }
4856 else
4857 switch_to_thread (find_thread_ptid (this, curr_thread));
4858 }
4859
4860 /* init_wait_for_inferior should be called before get_offsets in order
4861 to manage `inserted' flag in bp loc in a correct state.
4862 breakpoint_init_inferior, called from init_wait_for_inferior, set
4863 `inserted' flag to 0, while before breakpoint_re_set, called from
4864 start_remote, set `inserted' flag to 1. In the initialization of
4865 inferior, breakpoint_init_inferior should be called first, and then
4866 breakpoint_re_set can be called. If this order is broken, state of
4867 `inserted' flag is wrong, and cause some problems on breakpoint
4868 manipulation. */
4869 init_wait_for_inferior ();
4870
4871 get_offsets (); /* Get text, data & bss offsets. */
4872
4873 /* If we could not find a description using qXfer, and we know
4874 how to do it some other way, try again. This is not
4875 supported for non-stop; it could be, but it is tricky if
4876 there are no stopped threads when we connect. */
4877 if (remote_read_description_p (this)
4878 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4879 {
4880 target_clear_description ();
4881 target_find_description ();
4882 }
4883
4884 /* Use the previously fetched status. */
4885 gdb_assert (wait_status != NULL);
4886 strcpy (rs->buf.data (), wait_status);
4887 rs->cached_wait_status = 1;
4888
4889 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4890 }
4891 else
4892 {
4893 /* Clear WFI global state. Do this before finding about new
4894 threads and inferiors, and setting the current inferior.
4895 Otherwise we would clear the proceed status of the current
4896 inferior when we want its stop_soon state to be preserved
4897 (see notice_new_inferior). */
4898 init_wait_for_inferior ();
4899
4900 /* In non-stop, we will either get an "OK", meaning that there
4901 are no stopped threads at this time; or, a regular stop
4902 reply. In the latter case, there may be more than one thread
4903 stopped --- we pull them all out using the vStopped
4904 mechanism. */
4905 if (strcmp (rs->buf.data (), "OK") != 0)
4906 {
4907 struct notif_client *notif = &notif_client_stop;
4908
4909 /* remote_notif_get_pending_replies acks this one, and gets
4910 the rest out. */
4911 rs->notif_state->pending_event[notif_client_stop.id]
4912 = remote_notif_parse (this, notif, rs->buf.data ());
4913 remote_notif_get_pending_events (notif);
4914 }
4915
4916 if (thread_count (this) == 0)
4917 {
4918 if (!extended_p)
4919 error (_("The target is not running (try extended-remote?)"));
4920
4921 /* We're connected, but not running. Drop out before we
4922 call start_remote. */
4923 rs->starting_up = 0;
4924 return;
4925 }
4926
4927 /* Report all signals during attach/startup. */
4928 pass_signals ({});
4929
4930 /* If there are already stopped threads, mark them stopped and
4931 report their stops before giving the prompt to the user. */
4932 process_initial_stop_replies (from_tty);
4933
4934 if (target_can_async_p ())
4935 target_async (1);
4936 }
4937
4938 /* If we connected to a live target, do some additional setup. */
4939 if (target_has_execution ())
4940 {
4941 /* No use without a symbol-file. */
4942 if (current_program_space->symfile_object_file)
4943 remote_check_symbols ();
4944 }
4945
4946 /* Possibly the target has been engaged in a trace run started
4947 previously; find out where things are at. */
4948 if (get_trace_status (current_trace_status ()) != -1)
4949 {
4950 struct uploaded_tp *uploaded_tps = NULL;
4951
4952 if (current_trace_status ()->running)
4953 printf_filtered (_("Trace is already running on the target.\n"));
4954
4955 upload_tracepoints (&uploaded_tps);
4956
4957 merge_uploaded_tracepoints (&uploaded_tps);
4958 }
4959
4960 /* Possibly the target has been engaged in a btrace record started
4961 previously; find out where things are at. */
4962 remote_btrace_maybe_reopen ();
4963
4964 /* The thread and inferior lists are now synchronized with the
4965 target, our symbols have been relocated, and we're merged the
4966 target's tracepoints with ours. We're done with basic start
4967 up. */
4968 rs->starting_up = 0;
4969
4970 /* Maybe breakpoints are global and need to be inserted now. */
4971 if (breakpoints_should_be_inserted_now ())
4972 insert_breakpoints ();
4973 }
4974
4975 const char *
4976 remote_target::connection_string ()
4977 {
4978 remote_state *rs = get_remote_state ();
4979
4980 if (rs->remote_desc->name != NULL)
4981 return rs->remote_desc->name;
4982 else
4983 return NULL;
4984 }
4985
4986 /* Open a connection to a remote debugger.
4987 NAME is the filename used for communication. */
4988
4989 void
4990 remote_target::open (const char *name, int from_tty)
4991 {
4992 open_1 (name, from_tty, 0);
4993 }
4994
4995 /* Open a connection to a remote debugger using the extended
4996 remote gdb protocol. NAME is the filename used for communication. */
4997
4998 void
4999 extended_remote_target::open (const char *name, int from_tty)
5000 {
5001 open_1 (name, from_tty, 1 /*extended_p */);
5002 }
5003
5004 /* Reset all packets back to "unknown support". Called when opening a
5005 new connection to a remote target. */
5006
5007 static void
5008 reset_all_packet_configs_support (void)
5009 {
5010 int i;
5011
5012 for (i = 0; i < PACKET_MAX; i++)
5013 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5014 }
5015
5016 /* Initialize all packet configs. */
5017
5018 static void
5019 init_all_packet_configs (void)
5020 {
5021 int i;
5022
5023 for (i = 0; i < PACKET_MAX; i++)
5024 {
5025 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5026 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5027 }
5028 }
5029
5030 /* Symbol look-up. */
5031
5032 void
5033 remote_target::remote_check_symbols ()
5034 {
5035 char *tmp;
5036 int end;
5037
5038 /* The remote side has no concept of inferiors that aren't running
5039 yet, it only knows about running processes. If we're connected
5040 but our current inferior is not running, we should not invite the
5041 remote target to request symbol lookups related to its
5042 (unrelated) current process. */
5043 if (!target_has_execution ())
5044 return;
5045
5046 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5047 return;
5048
5049 /* Make sure the remote is pointing at the right process. Note
5050 there's no way to select "no process". */
5051 set_general_process ();
5052
5053 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5054 because we need both at the same time. */
5055 gdb::char_vector msg (get_remote_packet_size ());
5056 gdb::char_vector reply (get_remote_packet_size ());
5057
5058 /* Invite target to request symbol lookups. */
5059
5060 putpkt ("qSymbol::");
5061 getpkt (&reply, 0);
5062 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5063
5064 while (startswith (reply.data (), "qSymbol:"))
5065 {
5066 struct bound_minimal_symbol sym;
5067
5068 tmp = &reply[8];
5069 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5070 strlen (tmp) / 2);
5071 msg[end] = '\0';
5072 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5073 if (sym.minsym == NULL)
5074 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5075 &reply[8]);
5076 else
5077 {
5078 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5079 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5080
5081 /* If this is a function address, return the start of code
5082 instead of any data function descriptor. */
5083 sym_addr = gdbarch_convert_from_func_ptr_addr
5084 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5085
5086 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5087 phex_nz (sym_addr, addr_size), &reply[8]);
5088 }
5089
5090 putpkt (msg.data ());
5091 getpkt (&reply, 0);
5092 }
5093 }
5094
5095 static struct serial *
5096 remote_serial_open (const char *name)
5097 {
5098 static int udp_warning = 0;
5099
5100 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5101 of in ser-tcp.c, because it is the remote protocol assuming that the
5102 serial connection is reliable and not the serial connection promising
5103 to be. */
5104 if (!udp_warning && startswith (name, "udp:"))
5105 {
5106 warning (_("The remote protocol may be unreliable over UDP.\n"
5107 "Some events may be lost, rendering further debugging "
5108 "impossible."));
5109 udp_warning = 1;
5110 }
5111
5112 return serial_open (name);
5113 }
5114
5115 /* Inform the target of our permission settings. The permission flags
5116 work without this, but if the target knows the settings, it can do
5117 a couple things. First, it can add its own check, to catch cases
5118 that somehow manage to get by the permissions checks in target
5119 methods. Second, if the target is wired to disallow particular
5120 settings (for instance, a system in the field that is not set up to
5121 be able to stop at a breakpoint), it can object to any unavailable
5122 permissions. */
5123
5124 void
5125 remote_target::set_permissions ()
5126 {
5127 struct remote_state *rs = get_remote_state ();
5128
5129 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5130 "WriteReg:%x;WriteMem:%x;"
5131 "InsertBreak:%x;InsertTrace:%x;"
5132 "InsertFastTrace:%x;Stop:%x",
5133 may_write_registers, may_write_memory,
5134 may_insert_breakpoints, may_insert_tracepoints,
5135 may_insert_fast_tracepoints, may_stop);
5136 putpkt (rs->buf);
5137 getpkt (&rs->buf, 0);
5138
5139 /* If the target didn't like the packet, warn the user. Do not try
5140 to undo the user's settings, that would just be maddening. */
5141 if (strcmp (rs->buf.data (), "OK") != 0)
5142 warning (_("Remote refused setting permissions with: %s"),
5143 rs->buf.data ());
5144 }
5145
5146 /* This type describes each known response to the qSupported
5147 packet. */
5148 struct protocol_feature
5149 {
5150 /* The name of this protocol feature. */
5151 const char *name;
5152
5153 /* The default for this protocol feature. */
5154 enum packet_support default_support;
5155
5156 /* The function to call when this feature is reported, or after
5157 qSupported processing if the feature is not supported.
5158 The first argument points to this structure. The second
5159 argument indicates whether the packet requested support be
5160 enabled, disabled, or probed (or the default, if this function
5161 is being called at the end of processing and this feature was
5162 not reported). The third argument may be NULL; if not NULL, it
5163 is a NUL-terminated string taken from the packet following
5164 this feature's name and an equals sign. */
5165 void (*func) (remote_target *remote, const struct protocol_feature *,
5166 enum packet_support, const char *);
5167
5168 /* The corresponding packet for this feature. Only used if
5169 FUNC is remote_supported_packet. */
5170 int packet;
5171 };
5172
5173 static void
5174 remote_supported_packet (remote_target *remote,
5175 const struct protocol_feature *feature,
5176 enum packet_support support,
5177 const char *argument)
5178 {
5179 if (argument)
5180 {
5181 warning (_("Remote qSupported response supplied an unexpected value for"
5182 " \"%s\"."), feature->name);
5183 return;
5184 }
5185
5186 remote_protocol_packets[feature->packet].support = support;
5187 }
5188
5189 void
5190 remote_target::remote_packet_size (const protocol_feature *feature,
5191 enum packet_support support, const char *value)
5192 {
5193 struct remote_state *rs = get_remote_state ();
5194
5195 int packet_size;
5196 char *value_end;
5197
5198 if (support != PACKET_ENABLE)
5199 return;
5200
5201 if (value == NULL || *value == '\0')
5202 {
5203 warning (_("Remote target reported \"%s\" without a size."),
5204 feature->name);
5205 return;
5206 }
5207
5208 errno = 0;
5209 packet_size = strtol (value, &value_end, 16);
5210 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5211 {
5212 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5213 feature->name, value);
5214 return;
5215 }
5216
5217 /* Record the new maximum packet size. */
5218 rs->explicit_packet_size = packet_size;
5219 }
5220
5221 static void
5222 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5223 enum packet_support support, const char *value)
5224 {
5225 remote->remote_packet_size (feature, support, value);
5226 }
5227
5228 static const struct protocol_feature remote_protocol_features[] = {
5229 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5230 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5231 PACKET_qXfer_auxv },
5232 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5233 PACKET_qXfer_exec_file },
5234 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5235 PACKET_qXfer_features },
5236 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5237 PACKET_qXfer_libraries },
5238 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5239 PACKET_qXfer_libraries_svr4 },
5240 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5241 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5242 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5243 PACKET_qXfer_memory_map },
5244 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5245 PACKET_qXfer_osdata },
5246 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5247 PACKET_qXfer_threads },
5248 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5249 PACKET_qXfer_traceframe_info },
5250 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5251 PACKET_QPassSignals },
5252 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5253 PACKET_QCatchSyscalls },
5254 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5255 PACKET_QProgramSignals },
5256 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_QSetWorkingDir },
5258 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5259 PACKET_QStartupWithShell },
5260 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_QEnvironmentHexEncoded },
5262 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_QEnvironmentReset },
5264 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_QEnvironmentUnset },
5266 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_QStartNoAckMode },
5268 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_multiprocess_feature },
5270 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5271 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_qXfer_siginfo_read },
5273 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_qXfer_siginfo_write },
5275 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_ConditionalTracepoints },
5277 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_ConditionalBreakpoints },
5279 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_BreakpointCommands },
5281 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_FastTracepoints },
5283 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_StaticTracepoints },
5285 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5286 PACKET_InstallInTrace},
5287 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5288 PACKET_DisconnectedTracing_feature },
5289 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5290 PACKET_bc },
5291 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5292 PACKET_bs },
5293 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5294 PACKET_TracepointSource },
5295 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5296 PACKET_QAllow },
5297 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_EnableDisableTracepoints_feature },
5299 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_qXfer_fdpic },
5301 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_qXfer_uib },
5303 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_QDisableRandomization },
5305 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5306 { "QTBuffer:size", PACKET_DISABLE,
5307 remote_supported_packet, PACKET_QTBuffer_size},
5308 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5309 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5310 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5311 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5312 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_qXfer_btrace },
5314 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_btrace_conf },
5316 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_Qbtrace_conf_bts_size },
5318 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5319 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5320 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5321 PACKET_fork_event_feature },
5322 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5323 PACKET_vfork_event_feature },
5324 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5325 PACKET_exec_event_feature },
5326 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5327 PACKET_Qbtrace_conf_pt_size },
5328 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5329 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5330 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5331 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_memory_tagging_feature },
5333 };
5334
5335 static char *remote_support_xml;
5336
5337 /* Register string appended to "xmlRegisters=" in qSupported query. */
5338
5339 void
5340 register_remote_support_xml (const char *xml)
5341 {
5342 #if defined(HAVE_LIBEXPAT)
5343 if (remote_support_xml == NULL)
5344 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5345 else
5346 {
5347 char *copy = xstrdup (remote_support_xml + 13);
5348 char *saveptr;
5349 char *p = strtok_r (copy, ",", &saveptr);
5350
5351 do
5352 {
5353 if (strcmp (p, xml) == 0)
5354 {
5355 /* already there */
5356 xfree (copy);
5357 return;
5358 }
5359 }
5360 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5361 xfree (copy);
5362
5363 remote_support_xml = reconcat (remote_support_xml,
5364 remote_support_xml, ",", xml,
5365 (char *) NULL);
5366 }
5367 #endif
5368 }
5369
5370 static void
5371 remote_query_supported_append (std::string *msg, const char *append)
5372 {
5373 if (!msg->empty ())
5374 msg->append (";");
5375 msg->append (append);
5376 }
5377
5378 void
5379 remote_target::remote_query_supported ()
5380 {
5381 struct remote_state *rs = get_remote_state ();
5382 char *next;
5383 int i;
5384 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5385
5386 /* The packet support flags are handled differently for this packet
5387 than for most others. We treat an error, a disabled packet, and
5388 an empty response identically: any features which must be reported
5389 to be used will be automatically disabled. An empty buffer
5390 accomplishes this, since that is also the representation for a list
5391 containing no features. */
5392
5393 rs->buf[0] = 0;
5394 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5395 {
5396 std::string q;
5397
5398 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5399 remote_query_supported_append (&q, "multiprocess+");
5400
5401 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "swbreak+");
5403 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5404 remote_query_supported_append (&q, "hwbreak+");
5405
5406 remote_query_supported_append (&q, "qRelocInsn+");
5407
5408 if (packet_set_cmd_state (PACKET_fork_event_feature)
5409 != AUTO_BOOLEAN_FALSE)
5410 remote_query_supported_append (&q, "fork-events+");
5411 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5412 != AUTO_BOOLEAN_FALSE)
5413 remote_query_supported_append (&q, "vfork-events+");
5414 if (packet_set_cmd_state (PACKET_exec_event_feature)
5415 != AUTO_BOOLEAN_FALSE)
5416 remote_query_supported_append (&q, "exec-events+");
5417
5418 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "vContSupported+");
5420
5421 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "QThreadEvents+");
5423
5424 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "no-resumed+");
5426
5427 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5428 != AUTO_BOOLEAN_FALSE)
5429 remote_query_supported_append (&q, "memory-tagging+");
5430
5431 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5432 the qSupported:xmlRegisters=i386 handling. */
5433 if (remote_support_xml != NULL
5434 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5435 remote_query_supported_append (&q, remote_support_xml);
5436
5437 q = "qSupported:" + q;
5438 putpkt (q.c_str ());
5439
5440 getpkt (&rs->buf, 0);
5441
5442 /* If an error occured, warn, but do not return - just reset the
5443 buffer to empty and go on to disable features. */
5444 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5445 == PACKET_ERROR)
5446 {
5447 warning (_("Remote failure reply: %s"), rs->buf.data ());
5448 rs->buf[0] = 0;
5449 }
5450 }
5451
5452 memset (seen, 0, sizeof (seen));
5453
5454 next = rs->buf.data ();
5455 while (*next)
5456 {
5457 enum packet_support is_supported;
5458 char *p, *end, *name_end, *value;
5459
5460 /* First separate out this item from the rest of the packet. If
5461 there's another item after this, we overwrite the separator
5462 (terminated strings are much easier to work with). */
5463 p = next;
5464 end = strchr (p, ';');
5465 if (end == NULL)
5466 {
5467 end = p + strlen (p);
5468 next = end;
5469 }
5470 else
5471 {
5472 *end = '\0';
5473 next = end + 1;
5474
5475 if (end == p)
5476 {
5477 warning (_("empty item in \"qSupported\" response"));
5478 continue;
5479 }
5480 }
5481
5482 name_end = strchr (p, '=');
5483 if (name_end)
5484 {
5485 /* This is a name=value entry. */
5486 is_supported = PACKET_ENABLE;
5487 value = name_end + 1;
5488 *name_end = '\0';
5489 }
5490 else
5491 {
5492 value = NULL;
5493 switch (end[-1])
5494 {
5495 case '+':
5496 is_supported = PACKET_ENABLE;
5497 break;
5498
5499 case '-':
5500 is_supported = PACKET_DISABLE;
5501 break;
5502
5503 case '?':
5504 is_supported = PACKET_SUPPORT_UNKNOWN;
5505 break;
5506
5507 default:
5508 warning (_("unrecognized item \"%s\" "
5509 "in \"qSupported\" response"), p);
5510 continue;
5511 }
5512 end[-1] = '\0';
5513 }
5514
5515 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5516 if (strcmp (remote_protocol_features[i].name, p) == 0)
5517 {
5518 const struct protocol_feature *feature;
5519
5520 seen[i] = 1;
5521 feature = &remote_protocol_features[i];
5522 feature->func (this, feature, is_supported, value);
5523 break;
5524 }
5525 }
5526
5527 /* If we increased the packet size, make sure to increase the global
5528 buffer size also. We delay this until after parsing the entire
5529 qSupported packet, because this is the same buffer we were
5530 parsing. */
5531 if (rs->buf.size () < rs->explicit_packet_size)
5532 rs->buf.resize (rs->explicit_packet_size);
5533
5534 /* Handle the defaults for unmentioned features. */
5535 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5536 if (!seen[i])
5537 {
5538 const struct protocol_feature *feature;
5539
5540 feature = &remote_protocol_features[i];
5541 feature->func (this, feature, feature->default_support, NULL);
5542 }
5543 }
5544
5545 /* Serial QUIT handler for the remote serial descriptor.
5546
5547 Defers handling a Ctrl-C until we're done with the current
5548 command/response packet sequence, unless:
5549
5550 - We're setting up the connection. Don't send a remote interrupt
5551 request, as we're not fully synced yet. Quit immediately
5552 instead.
5553
5554 - The target has been resumed in the foreground
5555 (target_terminal::is_ours is false) with a synchronous resume
5556 packet, and we're blocked waiting for the stop reply, thus a
5557 Ctrl-C should be immediately sent to the target.
5558
5559 - We get a second Ctrl-C while still within the same serial read or
5560 write. In that case the serial is seemingly wedged --- offer to
5561 quit/disconnect.
5562
5563 - We see a second Ctrl-C without target response, after having
5564 previously interrupted the target. In that case the target/stub
5565 is probably wedged --- offer to quit/disconnect.
5566 */
5567
5568 void
5569 remote_target::remote_serial_quit_handler ()
5570 {
5571 struct remote_state *rs = get_remote_state ();
5572
5573 if (check_quit_flag ())
5574 {
5575 /* If we're starting up, we're not fully synced yet. Quit
5576 immediately. */
5577 if (rs->starting_up)
5578 quit ();
5579 else if (rs->got_ctrlc_during_io)
5580 {
5581 if (query (_("The target is not responding to GDB commands.\n"
5582 "Stop debugging it? ")))
5583 remote_unpush_and_throw (this);
5584 }
5585 /* If ^C has already been sent once, offer to disconnect. */
5586 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5587 interrupt_query ();
5588 /* All-stop protocol, and blocked waiting for stop reply. Send
5589 an interrupt request. */
5590 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5591 target_interrupt ();
5592 else
5593 rs->got_ctrlc_during_io = 1;
5594 }
5595 }
5596
5597 /* The remote_target that is current while the quit handler is
5598 overridden with remote_serial_quit_handler. */
5599 static remote_target *curr_quit_handler_target;
5600
5601 static void
5602 remote_serial_quit_handler ()
5603 {
5604 curr_quit_handler_target->remote_serial_quit_handler ();
5605 }
5606
5607 /* Remove the remote target from the target stack of each inferior
5608 that is using it. Upper targets depend on it so remove them
5609 first. */
5610
5611 static void
5612 remote_unpush_target (remote_target *target)
5613 {
5614 /* We have to unpush the target from all inferiors, even those that
5615 aren't running. */
5616 scoped_restore_current_inferior restore_current_inferior;
5617
5618 for (inferior *inf : all_inferiors (target))
5619 {
5620 switch_to_inferior_no_thread (inf);
5621 pop_all_targets_at_and_above (process_stratum);
5622 generic_mourn_inferior ();
5623 }
5624 }
5625
5626 static void
5627 remote_unpush_and_throw (remote_target *target)
5628 {
5629 remote_unpush_target (target);
5630 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5631 }
5632
5633 void
5634 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5635 {
5636 remote_target *curr_remote = get_current_remote_target ();
5637
5638 if (name == 0)
5639 error (_("To open a remote debug connection, you need to specify what\n"
5640 "serial device is attached to the remote system\n"
5641 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5642
5643 /* If we're connected to a running target, target_preopen will kill it.
5644 Ask this question first, before target_preopen has a chance to kill
5645 anything. */
5646 if (curr_remote != NULL && !target_has_execution ())
5647 {
5648 if (from_tty
5649 && !query (_("Already connected to a remote target. Disconnect? ")))
5650 error (_("Still connected."));
5651 }
5652
5653 /* Here the possibly existing remote target gets unpushed. */
5654 target_preopen (from_tty);
5655
5656 remote_fileio_reset ();
5657 reopen_exec_file ();
5658 reread_symbols ();
5659
5660 remote_target *remote
5661 = (extended_p ? new extended_remote_target () : new remote_target ());
5662 target_ops_up target_holder (remote);
5663
5664 remote_state *rs = remote->get_remote_state ();
5665
5666 /* See FIXME above. */
5667 if (!target_async_permitted)
5668 rs->wait_forever_enabled_p = 1;
5669
5670 rs->remote_desc = remote_serial_open (name);
5671 if (!rs->remote_desc)
5672 perror_with_name (name);
5673
5674 if (baud_rate != -1)
5675 {
5676 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5677 {
5678 /* The requested speed could not be set. Error out to
5679 top level after closing remote_desc. Take care to
5680 set remote_desc to NULL to avoid closing remote_desc
5681 more than once. */
5682 serial_close (rs->remote_desc);
5683 rs->remote_desc = NULL;
5684 perror_with_name (name);
5685 }
5686 }
5687
5688 serial_setparity (rs->remote_desc, serial_parity);
5689 serial_raw (rs->remote_desc);
5690
5691 /* If there is something sitting in the buffer we might take it as a
5692 response to a command, which would be bad. */
5693 serial_flush_input (rs->remote_desc);
5694
5695 if (from_tty)
5696 {
5697 puts_filtered ("Remote debugging using ");
5698 puts_filtered (name);
5699 puts_filtered ("\n");
5700 }
5701
5702 /* Switch to using the remote target now. */
5703 current_inferior ()->push_target (std::move (target_holder));
5704
5705 /* Register extra event sources in the event loop. */
5706 rs->remote_async_inferior_event_token
5707 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5708 "remote");
5709 rs->notif_state = remote_notif_state_allocate (remote);
5710
5711 /* Reset the target state; these things will be queried either by
5712 remote_query_supported or as they are needed. */
5713 reset_all_packet_configs_support ();
5714 rs->cached_wait_status = 0;
5715 rs->explicit_packet_size = 0;
5716 rs->noack_mode = 0;
5717 rs->extended = extended_p;
5718 rs->waiting_for_stop_reply = 0;
5719 rs->ctrlc_pending_p = 0;
5720 rs->got_ctrlc_during_io = 0;
5721
5722 rs->general_thread = not_sent_ptid;
5723 rs->continue_thread = not_sent_ptid;
5724 rs->remote_traceframe_number = -1;
5725
5726 rs->last_resume_exec_dir = EXEC_FORWARD;
5727
5728 /* Probe for ability to use "ThreadInfo" query, as required. */
5729 rs->use_threadinfo_query = 1;
5730 rs->use_threadextra_query = 1;
5731
5732 rs->readahead_cache.invalidate ();
5733
5734 if (target_async_permitted)
5735 {
5736 /* FIXME: cagney/1999-09-23: During the initial connection it is
5737 assumed that the target is already ready and able to respond to
5738 requests. Unfortunately remote_start_remote() eventually calls
5739 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5740 around this. Eventually a mechanism that allows
5741 wait_for_inferior() to expect/get timeouts will be
5742 implemented. */
5743 rs->wait_forever_enabled_p = 0;
5744 }
5745
5746 /* First delete any symbols previously loaded from shared libraries. */
5747 no_shared_libraries (NULL, 0);
5748
5749 /* Start the remote connection. If error() or QUIT, discard this
5750 target (we'd otherwise be in an inconsistent state) and then
5751 propogate the error on up the exception chain. This ensures that
5752 the caller doesn't stumble along blindly assuming that the
5753 function succeeded. The CLI doesn't have this problem but other
5754 UI's, such as MI do.
5755
5756 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5757 this function should return an error indication letting the
5758 caller restore the previous state. Unfortunately the command
5759 ``target remote'' is directly wired to this function making that
5760 impossible. On a positive note, the CLI side of this problem has
5761 been fixed - the function set_cmd_context() makes it possible for
5762 all the ``target ....'' commands to share a common callback
5763 function. See cli-dump.c. */
5764 {
5765
5766 try
5767 {
5768 remote->start_remote (from_tty, extended_p);
5769 }
5770 catch (const gdb_exception &ex)
5771 {
5772 /* Pop the partially set up target - unless something else did
5773 already before throwing the exception. */
5774 if (ex.error != TARGET_CLOSE_ERROR)
5775 remote_unpush_target (remote);
5776 throw;
5777 }
5778 }
5779
5780 remote_btrace_reset (rs);
5781
5782 if (target_async_permitted)
5783 rs->wait_forever_enabled_p = 1;
5784 }
5785
5786 /* Detach the specified process. */
5787
5788 void
5789 remote_target::remote_detach_pid (int pid)
5790 {
5791 struct remote_state *rs = get_remote_state ();
5792
5793 /* This should not be necessary, but the handling for D;PID in
5794 GDBserver versions prior to 8.2 incorrectly assumes that the
5795 selected process points to the same process we're detaching,
5796 leading to misbehavior (and possibly GDBserver crashing) when it
5797 does not. Since it's easy and cheap, work around it by forcing
5798 GDBserver to select GDB's current process. */
5799 set_general_process ();
5800
5801 if (remote_multi_process_p (rs))
5802 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5803 else
5804 strcpy (rs->buf.data (), "D");
5805
5806 putpkt (rs->buf);
5807 getpkt (&rs->buf, 0);
5808
5809 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5810 ;
5811 else if (rs->buf[0] == '\0')
5812 error (_("Remote doesn't know how to detach"));
5813 else
5814 error (_("Can't detach process."));
5815 }
5816
5817 /* This detaches a program to which we previously attached, using
5818 inferior_ptid to identify the process. After this is done, GDB
5819 can be used to debug some other program. We better not have left
5820 any breakpoints in the target program or it'll die when it hits
5821 one. */
5822
5823 void
5824 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5825 {
5826 int pid = inferior_ptid.pid ();
5827 struct remote_state *rs = get_remote_state ();
5828 int is_fork_parent;
5829
5830 if (!target_has_execution ())
5831 error (_("No process to detach from."));
5832
5833 target_announce_detach (from_tty);
5834
5835 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5836 {
5837 /* If we're in breakpoints-always-inserted mode, or the inferior
5838 is running, we have to remove breakpoints before detaching.
5839 We don't do this in common code instead because not all
5840 targets support removing breakpoints while the target is
5841 running. The remote target / gdbserver does, though. */
5842 remove_breakpoints_inf (current_inferior ());
5843 }
5844
5845 /* Tell the remote target to detach. */
5846 remote_detach_pid (pid);
5847
5848 /* Exit only if this is the only active inferior. */
5849 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5850 puts_filtered (_("Ending remote debugging.\n"));
5851
5852 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5853
5854 /* Check to see if we are detaching a fork parent. Note that if we
5855 are detaching a fork child, tp == NULL. */
5856 is_fork_parent = (tp != NULL
5857 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5858
5859 /* If doing detach-on-fork, we don't mourn, because that will delete
5860 breakpoints that should be available for the followed inferior. */
5861 if (!is_fork_parent)
5862 {
5863 /* Save the pid as a string before mourning, since that will
5864 unpush the remote target, and we need the string after. */
5865 std::string infpid = target_pid_to_str (ptid_t (pid));
5866
5867 target_mourn_inferior (inferior_ptid);
5868 if (print_inferior_events)
5869 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5870 inf->num, infpid.c_str ());
5871 }
5872 else
5873 {
5874 switch_to_no_thread ();
5875 detach_inferior (current_inferior ());
5876 }
5877 }
5878
5879 void
5880 remote_target::detach (inferior *inf, int from_tty)
5881 {
5882 remote_detach_1 (inf, from_tty);
5883 }
5884
5885 void
5886 extended_remote_target::detach (inferior *inf, int from_tty)
5887 {
5888 remote_detach_1 (inf, from_tty);
5889 }
5890
5891 /* Target follow-fork function for remote targets. On entry, and
5892 at return, the current inferior is the fork parent.
5893
5894 Note that although this is currently only used for extended-remote,
5895 it is named remote_follow_fork in anticipation of using it for the
5896 remote target as well. */
5897
5898 bool
5899 remote_target::follow_fork (bool follow_child, bool detach_fork)
5900 {
5901 struct remote_state *rs = get_remote_state ();
5902 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5903
5904 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5905 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5906 {
5907 /* When following the parent and detaching the child, we detach
5908 the child here. For the case of following the child and
5909 detaching the parent, the detach is done in the target-
5910 independent follow fork code in infrun.c. We can't use
5911 target_detach when detaching an unfollowed child because
5912 the client side doesn't know anything about the child. */
5913 if (detach_fork && !follow_child)
5914 {
5915 /* Detach the fork child. */
5916 ptid_t child_ptid;
5917 pid_t child_pid;
5918
5919 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5920 child_pid = child_ptid.pid ();
5921
5922 remote_detach_pid (child_pid);
5923 }
5924 }
5925
5926 return false;
5927 }
5928
5929 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5930 in the program space of the new inferior. On entry and at return the
5931 current inferior is the exec'ing inferior. INF is the new exec'd
5932 inferior, which may be the same as the exec'ing inferior unless
5933 follow-exec-mode is "new". */
5934
5935 void
5936 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5937 {
5938 /* We know that this is a target file name, so if it has the "target:"
5939 prefix we strip it off before saving it in the program space. */
5940 if (is_target_filename (execd_pathname))
5941 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5942
5943 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5944 }
5945
5946 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5947
5948 void
5949 remote_target::disconnect (const char *args, int from_tty)
5950 {
5951 if (args)
5952 error (_("Argument given to \"disconnect\" when remotely debugging."));
5953
5954 /* Make sure we unpush even the extended remote targets. Calling
5955 target_mourn_inferior won't unpush, and
5956 remote_target::mourn_inferior won't unpush if there is more than
5957 one inferior left. */
5958 remote_unpush_target (this);
5959
5960 if (from_tty)
5961 puts_filtered ("Ending remote debugging.\n");
5962 }
5963
5964 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5965 be chatty about it. */
5966
5967 void
5968 extended_remote_target::attach (const char *args, int from_tty)
5969 {
5970 struct remote_state *rs = get_remote_state ();
5971 int pid;
5972 char *wait_status = NULL;
5973
5974 pid = parse_pid_to_attach (args);
5975
5976 /* Remote PID can be freely equal to getpid, do not check it here the same
5977 way as in other targets. */
5978
5979 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5980 error (_("This target does not support attaching to a process"));
5981
5982 if (from_tty)
5983 {
5984 const char *exec_file = get_exec_file (0);
5985
5986 if (exec_file)
5987 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5988 target_pid_to_str (ptid_t (pid)).c_str ());
5989 else
5990 printf_unfiltered (_("Attaching to %s\n"),
5991 target_pid_to_str (ptid_t (pid)).c_str ());
5992 }
5993
5994 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5995 putpkt (rs->buf);
5996 getpkt (&rs->buf, 0);
5997
5998 switch (packet_ok (rs->buf,
5999 &remote_protocol_packets[PACKET_vAttach]))
6000 {
6001 case PACKET_OK:
6002 if (!target_is_non_stop_p ())
6003 {
6004 /* Save the reply for later. */
6005 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6006 strcpy (wait_status, rs->buf.data ());
6007 }
6008 else if (strcmp (rs->buf.data (), "OK") != 0)
6009 error (_("Attaching to %s failed with: %s"),
6010 target_pid_to_str (ptid_t (pid)).c_str (),
6011 rs->buf.data ());
6012 break;
6013 case PACKET_UNKNOWN:
6014 error (_("This target does not support attaching to a process"));
6015 default:
6016 error (_("Attaching to %s failed"),
6017 target_pid_to_str (ptid_t (pid)).c_str ());
6018 }
6019
6020 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6021
6022 inferior_ptid = ptid_t (pid);
6023
6024 if (target_is_non_stop_p ())
6025 {
6026 /* Get list of threads. */
6027 update_thread_list ();
6028
6029 thread_info *thread = first_thread_of_inferior (current_inferior ());
6030 if (thread != nullptr)
6031 switch_to_thread (thread);
6032
6033 /* Invalidate our notion of the remote current thread. */
6034 record_currthread (rs, minus_one_ptid);
6035 }
6036 else
6037 {
6038 /* Now, if we have thread information, update the main thread's
6039 ptid. */
6040 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6041
6042 /* Add the main thread to the thread list. */
6043 thread_info *thr = add_thread_silent (this, curr_ptid);
6044
6045 switch_to_thread (thr);
6046
6047 /* Don't consider the thread stopped until we've processed the
6048 saved stop reply. */
6049 set_executing (this, thr->ptid, true);
6050 }
6051
6052 /* Next, if the target can specify a description, read it. We do
6053 this before anything involving memory or registers. */
6054 target_find_description ();
6055
6056 if (!target_is_non_stop_p ())
6057 {
6058 /* Use the previously fetched status. */
6059 gdb_assert (wait_status != NULL);
6060
6061 if (target_can_async_p ())
6062 {
6063 struct notif_event *reply
6064 = remote_notif_parse (this, &notif_client_stop, wait_status);
6065
6066 push_stop_reply ((struct stop_reply *) reply);
6067
6068 target_async (1);
6069 }
6070 else
6071 {
6072 gdb_assert (wait_status != NULL);
6073 strcpy (rs->buf.data (), wait_status);
6074 rs->cached_wait_status = 1;
6075 }
6076 }
6077 else
6078 {
6079 gdb_assert (wait_status == NULL);
6080
6081 gdb_assert (target_can_async_p ());
6082 target_async (1);
6083 }
6084 }
6085
6086 /* Implementation of the to_post_attach method. */
6087
6088 void
6089 extended_remote_target::post_attach (int pid)
6090 {
6091 /* Get text, data & bss offsets. */
6092 get_offsets ();
6093
6094 /* In certain cases GDB might not have had the chance to start
6095 symbol lookup up until now. This could happen if the debugged
6096 binary is not using shared libraries, the vsyscall page is not
6097 present (on Linux) and the binary itself hadn't changed since the
6098 debugging process was started. */
6099 if (current_program_space->symfile_object_file != NULL)
6100 remote_check_symbols();
6101 }
6102
6103 \f
6104 /* Check for the availability of vCont. This function should also check
6105 the response. */
6106
6107 void
6108 remote_target::remote_vcont_probe ()
6109 {
6110 remote_state *rs = get_remote_state ();
6111 char *buf;
6112
6113 strcpy (rs->buf.data (), "vCont?");
6114 putpkt (rs->buf);
6115 getpkt (&rs->buf, 0);
6116 buf = rs->buf.data ();
6117
6118 /* Make sure that the features we assume are supported. */
6119 if (startswith (buf, "vCont"))
6120 {
6121 char *p = &buf[5];
6122 int support_c, support_C;
6123
6124 rs->supports_vCont.s = 0;
6125 rs->supports_vCont.S = 0;
6126 support_c = 0;
6127 support_C = 0;
6128 rs->supports_vCont.t = 0;
6129 rs->supports_vCont.r = 0;
6130 while (p && *p == ';')
6131 {
6132 p++;
6133 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6134 rs->supports_vCont.s = 1;
6135 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6136 rs->supports_vCont.S = 1;
6137 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6138 support_c = 1;
6139 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6140 support_C = 1;
6141 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6142 rs->supports_vCont.t = 1;
6143 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6144 rs->supports_vCont.r = 1;
6145
6146 p = strchr (p, ';');
6147 }
6148
6149 /* If c, and C are not all supported, we can't use vCont. Clearing
6150 BUF will make packet_ok disable the packet. */
6151 if (!support_c || !support_C)
6152 buf[0] = 0;
6153 }
6154
6155 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6156 rs->supports_vCont_probed = true;
6157 }
6158
6159 /* Helper function for building "vCont" resumptions. Write a
6160 resumption to P. ENDP points to one-passed-the-end of the buffer
6161 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6162 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6163 resumed thread should be single-stepped and/or signalled. If PTID
6164 equals minus_one_ptid, then all threads are resumed; if PTID
6165 represents a process, then all threads of the process are resumed;
6166 the thread to be stepped and/or signalled is given in the global
6167 INFERIOR_PTID. */
6168
6169 char *
6170 remote_target::append_resumption (char *p, char *endp,
6171 ptid_t ptid, int step, gdb_signal siggnal)
6172 {
6173 struct remote_state *rs = get_remote_state ();
6174
6175 if (step && siggnal != GDB_SIGNAL_0)
6176 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6177 else if (step
6178 /* GDB is willing to range step. */
6179 && use_range_stepping
6180 /* Target supports range stepping. */
6181 && rs->supports_vCont.r
6182 /* We don't currently support range stepping multiple
6183 threads with a wildcard (though the protocol allows it,
6184 so stubs shouldn't make an active effort to forbid
6185 it). */
6186 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6187 {
6188 struct thread_info *tp;
6189
6190 if (ptid == minus_one_ptid)
6191 {
6192 /* If we don't know about the target thread's tid, then
6193 we're resuming magic_null_ptid (see caller). */
6194 tp = find_thread_ptid (this, magic_null_ptid);
6195 }
6196 else
6197 tp = find_thread_ptid (this, ptid);
6198 gdb_assert (tp != NULL);
6199
6200 if (tp->control.may_range_step)
6201 {
6202 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6203
6204 p += xsnprintf (p, endp - p, ";r%s,%s",
6205 phex_nz (tp->control.step_range_start,
6206 addr_size),
6207 phex_nz (tp->control.step_range_end,
6208 addr_size));
6209 }
6210 else
6211 p += xsnprintf (p, endp - p, ";s");
6212 }
6213 else if (step)
6214 p += xsnprintf (p, endp - p, ";s");
6215 else if (siggnal != GDB_SIGNAL_0)
6216 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6217 else
6218 p += xsnprintf (p, endp - p, ";c");
6219
6220 if (remote_multi_process_p (rs) && ptid.is_pid ())
6221 {
6222 ptid_t nptid;
6223
6224 /* All (-1) threads of process. */
6225 nptid = ptid_t (ptid.pid (), -1, 0);
6226
6227 p += xsnprintf (p, endp - p, ":");
6228 p = write_ptid (p, endp, nptid);
6229 }
6230 else if (ptid != minus_one_ptid)
6231 {
6232 p += xsnprintf (p, endp - p, ":");
6233 p = write_ptid (p, endp, ptid);
6234 }
6235
6236 return p;
6237 }
6238
6239 /* Clear the thread's private info on resume. */
6240
6241 static void
6242 resume_clear_thread_private_info (struct thread_info *thread)
6243 {
6244 if (thread->priv != NULL)
6245 {
6246 remote_thread_info *priv = get_remote_thread_info (thread);
6247
6248 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6249 priv->watch_data_address = 0;
6250 }
6251 }
6252
6253 /* Append a vCont continue-with-signal action for threads that have a
6254 non-zero stop signal. */
6255
6256 char *
6257 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6258 ptid_t ptid)
6259 {
6260 for (thread_info *thread : all_non_exited_threads (this, ptid))
6261 if (inferior_ptid != thread->ptid
6262 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6263 {
6264 p = append_resumption (p, endp, thread->ptid,
6265 0, thread->suspend.stop_signal);
6266 thread->suspend.stop_signal = GDB_SIGNAL_0;
6267 resume_clear_thread_private_info (thread);
6268 }
6269
6270 return p;
6271 }
6272
6273 /* Set the target running, using the packets that use Hc
6274 (c/s/C/S). */
6275
6276 void
6277 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6278 gdb_signal siggnal)
6279 {
6280 struct remote_state *rs = get_remote_state ();
6281 char *buf;
6282
6283 rs->last_sent_signal = siggnal;
6284 rs->last_sent_step = step;
6285
6286 /* The c/s/C/S resume packets use Hc, so set the continue
6287 thread. */
6288 if (ptid == minus_one_ptid)
6289 set_continue_thread (any_thread_ptid);
6290 else
6291 set_continue_thread (ptid);
6292
6293 for (thread_info *thread : all_non_exited_threads (this))
6294 resume_clear_thread_private_info (thread);
6295
6296 buf = rs->buf.data ();
6297 if (::execution_direction == EXEC_REVERSE)
6298 {
6299 /* We don't pass signals to the target in reverse exec mode. */
6300 if (info_verbose && siggnal != GDB_SIGNAL_0)
6301 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6302 siggnal);
6303
6304 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6305 error (_("Remote reverse-step not supported."));
6306 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6307 error (_("Remote reverse-continue not supported."));
6308
6309 strcpy (buf, step ? "bs" : "bc");
6310 }
6311 else if (siggnal != GDB_SIGNAL_0)
6312 {
6313 buf[0] = step ? 'S' : 'C';
6314 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6315 buf[2] = tohex (((int) siggnal) & 0xf);
6316 buf[3] = '\0';
6317 }
6318 else
6319 strcpy (buf, step ? "s" : "c");
6320
6321 putpkt (buf);
6322 }
6323
6324 /* Resume the remote inferior by using a "vCont" packet. The thread
6325 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6326 resumed thread should be single-stepped and/or signalled. If PTID
6327 equals minus_one_ptid, then all threads are resumed; the thread to
6328 be stepped and/or signalled is given in the global INFERIOR_PTID.
6329 This function returns non-zero iff it resumes the inferior.
6330
6331 This function issues a strict subset of all possible vCont commands
6332 at the moment. */
6333
6334 int
6335 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6336 enum gdb_signal siggnal)
6337 {
6338 struct remote_state *rs = get_remote_state ();
6339 char *p;
6340 char *endp;
6341
6342 /* No reverse execution actions defined for vCont. */
6343 if (::execution_direction == EXEC_REVERSE)
6344 return 0;
6345
6346 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6347 remote_vcont_probe ();
6348
6349 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6350 return 0;
6351
6352 p = rs->buf.data ();
6353 endp = p + get_remote_packet_size ();
6354
6355 /* If we could generate a wider range of packets, we'd have to worry
6356 about overflowing BUF. Should there be a generic
6357 "multi-part-packet" packet? */
6358
6359 p += xsnprintf (p, endp - p, "vCont");
6360
6361 if (ptid == magic_null_ptid)
6362 {
6363 /* MAGIC_NULL_PTID means that we don't have any active threads,
6364 so we don't have any TID numbers the inferior will
6365 understand. Make sure to only send forms that do not specify
6366 a TID. */
6367 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6368 }
6369 else if (ptid == minus_one_ptid || ptid.is_pid ())
6370 {
6371 /* Resume all threads (of all processes, or of a single
6372 process), with preference for INFERIOR_PTID. This assumes
6373 inferior_ptid belongs to the set of all threads we are about
6374 to resume. */
6375 if (step || siggnal != GDB_SIGNAL_0)
6376 {
6377 /* Step inferior_ptid, with or without signal. */
6378 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6379 }
6380
6381 /* Also pass down any pending signaled resumption for other
6382 threads not the current. */
6383 p = append_pending_thread_resumptions (p, endp, ptid);
6384
6385 /* And continue others without a signal. */
6386 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6387 }
6388 else
6389 {
6390 /* Scheduler locking; resume only PTID. */
6391 append_resumption (p, endp, ptid, step, siggnal);
6392 }
6393
6394 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6395 putpkt (rs->buf);
6396
6397 if (target_is_non_stop_p ())
6398 {
6399 /* In non-stop, the stub replies to vCont with "OK". The stop
6400 reply will be reported asynchronously by means of a `%Stop'
6401 notification. */
6402 getpkt (&rs->buf, 0);
6403 if (strcmp (rs->buf.data (), "OK") != 0)
6404 error (_("Unexpected vCont reply in non-stop mode: %s"),
6405 rs->buf.data ());
6406 }
6407
6408 return 1;
6409 }
6410
6411 /* Tell the remote machine to resume. */
6412
6413 void
6414 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6415 {
6416 struct remote_state *rs = get_remote_state ();
6417
6418 /* When connected in non-stop mode, the core resumes threads
6419 individually. Resuming remote threads directly in target_resume
6420 would thus result in sending one packet per thread. Instead, to
6421 minimize roundtrip latency, here we just store the resume
6422 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6423 resumption will be done in remote_target::commit_resume, where we'll be
6424 able to do vCont action coalescing. */
6425 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6426 {
6427 remote_thread_info *remote_thr;
6428
6429 if (minus_one_ptid == ptid || ptid.is_pid ())
6430 remote_thr = get_remote_thread_info (this, inferior_ptid);
6431 else
6432 remote_thr = get_remote_thread_info (this, ptid);
6433
6434 /* We don't expect the core to ask to resume an already resumed (from
6435 its point of view) thread. */
6436 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6437
6438 remote_thr->set_resumed_pending_vcont (step, siggnal);
6439 return;
6440 }
6441
6442 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6443 (explained in remote-notif.c:handle_notification) so
6444 remote_notif_process is not called. We need find a place where
6445 it is safe to start a 'vNotif' sequence. It is good to do it
6446 before resuming inferior, because inferior was stopped and no RSP
6447 traffic at that moment. */
6448 if (!target_is_non_stop_p ())
6449 remote_notif_process (rs->notif_state, &notif_client_stop);
6450
6451 rs->last_resume_exec_dir = ::execution_direction;
6452
6453 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6454 if (!remote_resume_with_vcont (ptid, step, siggnal))
6455 remote_resume_with_hc (ptid, step, siggnal);
6456
6457 /* Update resumed state tracked by the remote target. */
6458 for (thread_info *tp : all_non_exited_threads (this, ptid))
6459 get_remote_thread_info (tp)->set_resumed ();
6460
6461 /* We are about to start executing the inferior, let's register it
6462 with the event loop. NOTE: this is the one place where all the
6463 execution commands end up. We could alternatively do this in each
6464 of the execution commands in infcmd.c. */
6465 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6466 into infcmd.c in order to allow inferior function calls to work
6467 NOT asynchronously. */
6468 if (target_can_async_p ())
6469 target_async (1);
6470
6471 /* We've just told the target to resume. The remote server will
6472 wait for the inferior to stop, and then send a stop reply. In
6473 the mean time, we can't start another command/query ourselves
6474 because the stub wouldn't be ready to process it. This applies
6475 only to the base all-stop protocol, however. In non-stop (which
6476 only supports vCont), the stub replies with an "OK", and is
6477 immediate able to process further serial input. */
6478 if (!target_is_non_stop_p ())
6479 rs->waiting_for_stop_reply = 1;
6480 }
6481
6482 static int is_pending_fork_parent_thread (struct thread_info *thread);
6483
6484 /* Private per-inferior info for target remote processes. */
6485
6486 struct remote_inferior : public private_inferior
6487 {
6488 /* Whether we can send a wildcard vCont for this process. */
6489 bool may_wildcard_vcont = true;
6490 };
6491
6492 /* Get the remote private inferior data associated to INF. */
6493
6494 static remote_inferior *
6495 get_remote_inferior (inferior *inf)
6496 {
6497 if (inf->priv == NULL)
6498 inf->priv.reset (new remote_inferior);
6499
6500 return static_cast<remote_inferior *> (inf->priv.get ());
6501 }
6502
6503 struct stop_reply : public notif_event
6504 {
6505 ~stop_reply ();
6506
6507 /* The identifier of the thread about this event */
6508 ptid_t ptid;
6509
6510 /* The remote state this event is associated with. When the remote
6511 connection, represented by a remote_state object, is closed,
6512 all the associated stop_reply events should be released. */
6513 struct remote_state *rs;
6514
6515 struct target_waitstatus ws;
6516
6517 /* The architecture associated with the expedited registers. */
6518 gdbarch *arch;
6519
6520 /* Expedited registers. This makes remote debugging a bit more
6521 efficient for those targets that provide critical registers as
6522 part of their normal status mechanism (as another roundtrip to
6523 fetch them is avoided). */
6524 std::vector<cached_reg_t> regcache;
6525
6526 enum target_stop_reason stop_reason;
6527
6528 CORE_ADDR watch_data_address;
6529
6530 int core;
6531 };
6532
6533 /* Class used to track the construction of a vCont packet in the
6534 outgoing packet buffer. This is used to send multiple vCont
6535 packets if we have more actions than would fit a single packet. */
6536
6537 class vcont_builder
6538 {
6539 public:
6540 explicit vcont_builder (remote_target *remote)
6541 : m_remote (remote)
6542 {
6543 restart ();
6544 }
6545
6546 void flush ();
6547 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6548
6549 private:
6550 void restart ();
6551
6552 /* The remote target. */
6553 remote_target *m_remote;
6554
6555 /* Pointer to the first action. P points here if no action has been
6556 appended yet. */
6557 char *m_first_action;
6558
6559 /* Where the next action will be appended. */
6560 char *m_p;
6561
6562 /* The end of the buffer. Must never write past this. */
6563 char *m_endp;
6564 };
6565
6566 /* Prepare the outgoing buffer for a new vCont packet. */
6567
6568 void
6569 vcont_builder::restart ()
6570 {
6571 struct remote_state *rs = m_remote->get_remote_state ();
6572
6573 m_p = rs->buf.data ();
6574 m_endp = m_p + m_remote->get_remote_packet_size ();
6575 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6576 m_first_action = m_p;
6577 }
6578
6579 /* If the vCont packet being built has any action, send it to the
6580 remote end. */
6581
6582 void
6583 vcont_builder::flush ()
6584 {
6585 struct remote_state *rs;
6586
6587 if (m_p == m_first_action)
6588 return;
6589
6590 rs = m_remote->get_remote_state ();
6591 m_remote->putpkt (rs->buf);
6592 m_remote->getpkt (&rs->buf, 0);
6593 if (strcmp (rs->buf.data (), "OK") != 0)
6594 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6595 }
6596
6597 /* The largest action is range-stepping, with its two addresses. This
6598 is more than sufficient. If a new, bigger action is created, it'll
6599 quickly trigger a failed assertion in append_resumption (and we'll
6600 just bump this). */
6601 #define MAX_ACTION_SIZE 200
6602
6603 /* Append a new vCont action in the outgoing packet being built. If
6604 the action doesn't fit the packet along with previous actions, push
6605 what we've got so far to the remote end and start over a new vCont
6606 packet (with the new action). */
6607
6608 void
6609 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6610 {
6611 char buf[MAX_ACTION_SIZE + 1];
6612
6613 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6614 ptid, step, siggnal);
6615
6616 /* Check whether this new action would fit in the vCont packet along
6617 with previous actions. If not, send what we've got so far and
6618 start a new vCont packet. */
6619 size_t rsize = endp - buf;
6620 if (rsize > m_endp - m_p)
6621 {
6622 flush ();
6623 restart ();
6624
6625 /* Should now fit. */
6626 gdb_assert (rsize <= m_endp - m_p);
6627 }
6628
6629 memcpy (m_p, buf, rsize);
6630 m_p += rsize;
6631 *m_p = '\0';
6632 }
6633
6634 /* to_commit_resume implementation. */
6635
6636 void
6637 remote_target::commit_resumed ()
6638 {
6639 int any_process_wildcard;
6640 int may_global_wildcard_vcont;
6641
6642 /* If connected in all-stop mode, we'd send the remote resume
6643 request directly from remote_resume. Likewise if
6644 reverse-debugging, as there are no defined vCont actions for
6645 reverse execution. */
6646 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6647 return;
6648
6649 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6650 instead of resuming all threads of each process individually.
6651 However, if any thread of a process must remain halted, we can't
6652 send wildcard resumes and must send one action per thread.
6653
6654 Care must be taken to not resume threads/processes the server
6655 side already told us are stopped, but the core doesn't know about
6656 yet, because the events are still in the vStopped notification
6657 queue. For example:
6658
6659 #1 => vCont s:p1.1;c
6660 #2 <= OK
6661 #3 <= %Stopped T05 p1.1
6662 #4 => vStopped
6663 #5 <= T05 p1.2
6664 #6 => vStopped
6665 #7 <= OK
6666 #8 (infrun handles the stop for p1.1 and continues stepping)
6667 #9 => vCont s:p1.1;c
6668
6669 The last vCont above would resume thread p1.2 by mistake, because
6670 the server has no idea that the event for p1.2 had not been
6671 handled yet.
6672
6673 The server side must similarly ignore resume actions for the
6674 thread that has a pending %Stopped notification (and any other
6675 threads with events pending), until GDB acks the notification
6676 with vStopped. Otherwise, e.g., the following case is
6677 mishandled:
6678
6679 #1 => g (or any other packet)
6680 #2 <= [registers]
6681 #3 <= %Stopped T05 p1.2
6682 #4 => vCont s:p1.1;c
6683 #5 <= OK
6684
6685 Above, the server must not resume thread p1.2. GDB can't know
6686 that p1.2 stopped until it acks the %Stopped notification, and
6687 since from GDB's perspective all threads should be running, it
6688 sends a "c" action.
6689
6690 Finally, special care must also be given to handling fork/vfork
6691 events. A (v)fork event actually tells us that two processes
6692 stopped -- the parent and the child. Until we follow the fork,
6693 we must not resume the child. Therefore, if we have a pending
6694 fork follow, we must not send a global wildcard resume action
6695 (vCont;c). We can still send process-wide wildcards though. */
6696
6697 /* Start by assuming a global wildcard (vCont;c) is possible. */
6698 may_global_wildcard_vcont = 1;
6699
6700 /* And assume every process is individually wildcard-able too. */
6701 for (inferior *inf : all_non_exited_inferiors (this))
6702 {
6703 remote_inferior *priv = get_remote_inferior (inf);
6704
6705 priv->may_wildcard_vcont = true;
6706 }
6707
6708 /* Check for any pending events (not reported or processed yet) and
6709 disable process and global wildcard resumes appropriately. */
6710 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6711
6712 bool any_pending_vcont_resume = false;
6713
6714 for (thread_info *tp : all_non_exited_threads (this))
6715 {
6716 remote_thread_info *priv = get_remote_thread_info (tp);
6717
6718 /* If a thread of a process is not meant to be resumed, then we
6719 can't wildcard that process. */
6720 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6721 {
6722 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6723
6724 /* And if we can't wildcard a process, we can't wildcard
6725 everything either. */
6726 may_global_wildcard_vcont = 0;
6727 continue;
6728 }
6729
6730 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6731 any_pending_vcont_resume = true;
6732
6733 /* If a thread is the parent of an unfollowed fork, then we
6734 can't do a global wildcard, as that would resume the fork
6735 child. */
6736 if (is_pending_fork_parent_thread (tp))
6737 may_global_wildcard_vcont = 0;
6738 }
6739
6740 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6741 do. */
6742 if (!any_pending_vcont_resume)
6743 return;
6744
6745 /* Now let's build the vCont packet(s). Actions must be appended
6746 from narrower to wider scopes (thread -> process -> global). If
6747 we end up with too many actions for a single packet vcont_builder
6748 flushes the current vCont packet to the remote side and starts a
6749 new one. */
6750 struct vcont_builder vcont_builder (this);
6751
6752 /* Threads first. */
6753 for (thread_info *tp : all_non_exited_threads (this))
6754 {
6755 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6756
6757 /* If the thread was previously vCont-resumed, no need to send a specific
6758 action for it. If we didn't receive a resume request for it, don't
6759 send an action for it either. */
6760 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6761 continue;
6762
6763 gdb_assert (!thread_is_in_step_over_chain (tp));
6764
6765 /* We should never be commit-resuming a thread that has a stop reply.
6766 Otherwise, we would end up reporting a stop event for a thread while
6767 it is running on the remote target. */
6768 remote_state *rs = get_remote_state ();
6769 for (const auto &stop_reply : rs->stop_reply_queue)
6770 gdb_assert (stop_reply->ptid != tp->ptid);
6771
6772 const resumed_pending_vcont_info &info
6773 = remote_thr->resumed_pending_vcont_info ();
6774
6775 /* Check if we need to send a specific action for this thread. If not,
6776 it will be included in a wildcard resume instead. */
6777 if (info.step || info.sig != GDB_SIGNAL_0
6778 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6779 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6780
6781 remote_thr->set_resumed ();
6782 }
6783
6784 /* Now check whether we can send any process-wide wildcard. This is
6785 to avoid sending a global wildcard in the case nothing is
6786 supposed to be resumed. */
6787 any_process_wildcard = 0;
6788
6789 for (inferior *inf : all_non_exited_inferiors (this))
6790 {
6791 if (get_remote_inferior (inf)->may_wildcard_vcont)
6792 {
6793 any_process_wildcard = 1;
6794 break;
6795 }
6796 }
6797
6798 if (any_process_wildcard)
6799 {
6800 /* If all processes are wildcard-able, then send a single "c"
6801 action, otherwise, send an "all (-1) threads of process"
6802 continue action for each running process, if any. */
6803 if (may_global_wildcard_vcont)
6804 {
6805 vcont_builder.push_action (minus_one_ptid,
6806 false, GDB_SIGNAL_0);
6807 }
6808 else
6809 {
6810 for (inferior *inf : all_non_exited_inferiors (this))
6811 {
6812 if (get_remote_inferior (inf)->may_wildcard_vcont)
6813 {
6814 vcont_builder.push_action (ptid_t (inf->pid),
6815 false, GDB_SIGNAL_0);
6816 }
6817 }
6818 }
6819 }
6820
6821 vcont_builder.flush ();
6822 }
6823
6824 /* Implementation of target_has_pending_events. */
6825
6826 bool
6827 remote_target::has_pending_events ()
6828 {
6829 if (target_can_async_p ())
6830 {
6831 remote_state *rs = get_remote_state ();
6832
6833 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6834 return true;
6835
6836 /* Note that BUFCNT can be negative, indicating sticky
6837 error. */
6838 if (rs->remote_desc->bufcnt != 0)
6839 return true;
6840 }
6841 return false;
6842 }
6843
6844 \f
6845
6846 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6847 thread, all threads of a remote process, or all threads of all
6848 processes. */
6849
6850 void
6851 remote_target::remote_stop_ns (ptid_t ptid)
6852 {
6853 struct remote_state *rs = get_remote_state ();
6854 char *p = rs->buf.data ();
6855 char *endp = p + get_remote_packet_size ();
6856
6857 /* If any thread that needs to stop was resumed but pending a vCont
6858 resume, generate a phony stop_reply. However, first check
6859 whether the thread wasn't resumed with a signal. Generating a
6860 phony stop in that case would result in losing the signal. */
6861 bool needs_commit = false;
6862 for (thread_info *tp : all_non_exited_threads (this, ptid))
6863 {
6864 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6865
6866 if (remote_thr->get_resume_state ()
6867 == resume_state::RESUMED_PENDING_VCONT)
6868 {
6869 const resumed_pending_vcont_info &info
6870 = remote_thr->resumed_pending_vcont_info ();
6871 if (info.sig != GDB_SIGNAL_0)
6872 {
6873 /* This signal must be forwarded to the inferior. We
6874 could commit-resume just this thread, but its simpler
6875 to just commit-resume everything. */
6876 needs_commit = true;
6877 break;
6878 }
6879 }
6880 }
6881
6882 if (needs_commit)
6883 commit_resumed ();
6884 else
6885 for (thread_info *tp : all_non_exited_threads (this, ptid))
6886 {
6887 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6888
6889 if (remote_thr->get_resume_state ()
6890 == resume_state::RESUMED_PENDING_VCONT)
6891 {
6892 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6893 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6894 tp->ptid.lwp (), tp->ptid.tid ());
6895
6896 /* Check that the thread wasn't resumed with a signal.
6897 Generating a phony stop would result in losing the
6898 signal. */
6899 const resumed_pending_vcont_info &info
6900 = remote_thr->resumed_pending_vcont_info ();
6901 gdb_assert (info.sig == GDB_SIGNAL_0);
6902
6903 stop_reply *sr = new stop_reply ();
6904 sr->ptid = tp->ptid;
6905 sr->rs = rs;
6906 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6907 sr->ws.value.sig = GDB_SIGNAL_0;
6908 sr->arch = tp->inf->gdbarch;
6909 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6910 sr->watch_data_address = 0;
6911 sr->core = 0;
6912 this->push_stop_reply (sr);
6913
6914 /* Pretend that this thread was actually resumed on the
6915 remote target, then stopped. If we leave it in the
6916 RESUMED_PENDING_VCONT state and the commit_resumed
6917 method is called while the stop reply is still in the
6918 queue, we'll end up reporting a stop event to the core
6919 for that thread while it is running on the remote
6920 target... that would be bad. */
6921 remote_thr->set_resumed ();
6922 }
6923 }
6924
6925 /* FIXME: This supports_vCont_probed check is a workaround until
6926 packet_support is per-connection. */
6927 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6928 || !rs->supports_vCont_probed)
6929 remote_vcont_probe ();
6930
6931 if (!rs->supports_vCont.t)
6932 error (_("Remote server does not support stopping threads"));
6933
6934 if (ptid == minus_one_ptid
6935 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6936 p += xsnprintf (p, endp - p, "vCont;t");
6937 else
6938 {
6939 ptid_t nptid;
6940
6941 p += xsnprintf (p, endp - p, "vCont;t:");
6942
6943 if (ptid.is_pid ())
6944 /* All (-1) threads of process. */
6945 nptid = ptid_t (ptid.pid (), -1, 0);
6946 else
6947 {
6948 /* Small optimization: if we already have a stop reply for
6949 this thread, no use in telling the stub we want this
6950 stopped. */
6951 if (peek_stop_reply (ptid))
6952 return;
6953
6954 nptid = ptid;
6955 }
6956
6957 write_ptid (p, endp, nptid);
6958 }
6959
6960 /* In non-stop, we get an immediate OK reply. The stop reply will
6961 come in asynchronously by notification. */
6962 putpkt (rs->buf);
6963 getpkt (&rs->buf, 0);
6964 if (strcmp (rs->buf.data (), "OK") != 0)
6965 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6966 rs->buf.data ());
6967 }
6968
6969 /* All-stop version of target_interrupt. Sends a break or a ^C to
6970 interrupt the remote target. It is undefined which thread of which
6971 process reports the interrupt. */
6972
6973 void
6974 remote_target::remote_interrupt_as ()
6975 {
6976 struct remote_state *rs = get_remote_state ();
6977
6978 rs->ctrlc_pending_p = 1;
6979
6980 /* If the inferior is stopped already, but the core didn't know
6981 about it yet, just ignore the request. The cached wait status
6982 will be collected in remote_wait. */
6983 if (rs->cached_wait_status)
6984 return;
6985
6986 /* Send interrupt_sequence to remote target. */
6987 send_interrupt_sequence ();
6988 }
6989
6990 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6991 the remote target. It is undefined which thread of which process
6992 reports the interrupt. Throws an error if the packet is not
6993 supported by the server. */
6994
6995 void
6996 remote_target::remote_interrupt_ns ()
6997 {
6998 struct remote_state *rs = get_remote_state ();
6999 char *p = rs->buf.data ();
7000 char *endp = p + get_remote_packet_size ();
7001
7002 xsnprintf (p, endp - p, "vCtrlC");
7003
7004 /* In non-stop, we get an immediate OK reply. The stop reply will
7005 come in asynchronously by notification. */
7006 putpkt (rs->buf);
7007 getpkt (&rs->buf, 0);
7008
7009 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7010 {
7011 case PACKET_OK:
7012 break;
7013 case PACKET_UNKNOWN:
7014 error (_("No support for interrupting the remote target."));
7015 case PACKET_ERROR:
7016 error (_("Interrupting target failed: %s"), rs->buf.data ());
7017 }
7018 }
7019
7020 /* Implement the to_stop function for the remote targets. */
7021
7022 void
7023 remote_target::stop (ptid_t ptid)
7024 {
7025 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7026
7027 if (target_is_non_stop_p ())
7028 remote_stop_ns (ptid);
7029 else
7030 {
7031 /* We don't currently have a way to transparently pause the
7032 remote target in all-stop mode. Interrupt it instead. */
7033 remote_interrupt_as ();
7034 }
7035 }
7036
7037 /* Implement the to_interrupt function for the remote targets. */
7038
7039 void
7040 remote_target::interrupt ()
7041 {
7042 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7043
7044 if (target_is_non_stop_p ())
7045 remote_interrupt_ns ();
7046 else
7047 remote_interrupt_as ();
7048 }
7049
7050 /* Implement the to_pass_ctrlc function for the remote targets. */
7051
7052 void
7053 remote_target::pass_ctrlc ()
7054 {
7055 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7056
7057 struct remote_state *rs = get_remote_state ();
7058
7059 /* If we're starting up, we're not fully synced yet. Quit
7060 immediately. */
7061 if (rs->starting_up)
7062 quit ();
7063 /* If ^C has already been sent once, offer to disconnect. */
7064 else if (rs->ctrlc_pending_p)
7065 interrupt_query ();
7066 else
7067 target_interrupt ();
7068 }
7069
7070 /* Ask the user what to do when an interrupt is received. */
7071
7072 void
7073 remote_target::interrupt_query ()
7074 {
7075 struct remote_state *rs = get_remote_state ();
7076
7077 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7078 {
7079 if (query (_("The target is not responding to interrupt requests.\n"
7080 "Stop debugging it? ")))
7081 {
7082 remote_unpush_target (this);
7083 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7084 }
7085 }
7086 else
7087 {
7088 if (query (_("Interrupted while waiting for the program.\n"
7089 "Give up waiting? ")))
7090 quit ();
7091 }
7092 }
7093
7094 /* Enable/disable target terminal ownership. Most targets can use
7095 terminal groups to control terminal ownership. Remote targets are
7096 different in that explicit transfer of ownership to/from GDB/target
7097 is required. */
7098
7099 void
7100 remote_target::terminal_inferior ()
7101 {
7102 /* NOTE: At this point we could also register our selves as the
7103 recipient of all input. Any characters typed could then be
7104 passed on down to the target. */
7105 }
7106
7107 void
7108 remote_target::terminal_ours ()
7109 {
7110 }
7111
7112 static void
7113 remote_console_output (const char *msg)
7114 {
7115 const char *p;
7116
7117 for (p = msg; p[0] && p[1]; p += 2)
7118 {
7119 char tb[2];
7120 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7121
7122 tb[0] = c;
7123 tb[1] = 0;
7124 gdb_stdtarg->puts (tb);
7125 }
7126 gdb_stdtarg->flush ();
7127 }
7128
7129 /* Return the length of the stop reply queue. */
7130
7131 int
7132 remote_target::stop_reply_queue_length ()
7133 {
7134 remote_state *rs = get_remote_state ();
7135 return rs->stop_reply_queue.size ();
7136 }
7137
7138 static void
7139 remote_notif_stop_parse (remote_target *remote,
7140 struct notif_client *self, const char *buf,
7141 struct notif_event *event)
7142 {
7143 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7144 }
7145
7146 static void
7147 remote_notif_stop_ack (remote_target *remote,
7148 struct notif_client *self, const char *buf,
7149 struct notif_event *event)
7150 {
7151 struct stop_reply *stop_reply = (struct stop_reply *) event;
7152
7153 /* acknowledge */
7154 putpkt (remote, self->ack_command);
7155
7156 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7157 the notification. It was left in the queue because we need to
7158 acknowledge it and pull the rest of the notifications out. */
7159 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7160 remote->push_stop_reply (stop_reply);
7161 }
7162
7163 static int
7164 remote_notif_stop_can_get_pending_events (remote_target *remote,
7165 struct notif_client *self)
7166 {
7167 /* We can't get pending events in remote_notif_process for
7168 notification stop, and we have to do this in remote_wait_ns
7169 instead. If we fetch all queued events from stub, remote stub
7170 may exit and we have no chance to process them back in
7171 remote_wait_ns. */
7172 remote_state *rs = remote->get_remote_state ();
7173 mark_async_event_handler (rs->remote_async_inferior_event_token);
7174 return 0;
7175 }
7176
7177 stop_reply::~stop_reply ()
7178 {
7179 for (cached_reg_t &reg : regcache)
7180 xfree (reg.data);
7181 }
7182
7183 static notif_event_up
7184 remote_notif_stop_alloc_reply ()
7185 {
7186 return notif_event_up (new struct stop_reply ());
7187 }
7188
7189 /* A client of notification Stop. */
7190
7191 struct notif_client notif_client_stop =
7192 {
7193 "Stop",
7194 "vStopped",
7195 remote_notif_stop_parse,
7196 remote_notif_stop_ack,
7197 remote_notif_stop_can_get_pending_events,
7198 remote_notif_stop_alloc_reply,
7199 REMOTE_NOTIF_STOP,
7200 };
7201
7202 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7203 the pid of the process that owns the threads we want to check, or
7204 -1 if we want to check all threads. */
7205
7206 static int
7207 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7208 ptid_t thread_ptid)
7209 {
7210 if (ws->kind == TARGET_WAITKIND_FORKED
7211 || ws->kind == TARGET_WAITKIND_VFORKED)
7212 {
7213 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7214 return 1;
7215 }
7216
7217 return 0;
7218 }
7219
7220 /* Return the thread's pending status used to determine whether the
7221 thread is a fork parent stopped at a fork event. */
7222
7223 static struct target_waitstatus *
7224 thread_pending_fork_status (struct thread_info *thread)
7225 {
7226 if (thread->suspend.waitstatus_pending_p)
7227 return &thread->suspend.waitstatus;
7228 else
7229 return &thread->pending_follow;
7230 }
7231
7232 /* Determine if THREAD is a pending fork parent thread. */
7233
7234 static int
7235 is_pending_fork_parent_thread (struct thread_info *thread)
7236 {
7237 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7238 int pid = -1;
7239
7240 return is_pending_fork_parent (ws, pid, thread->ptid);
7241 }
7242
7243 /* If CONTEXT contains any fork child threads that have not been
7244 reported yet, remove them from the CONTEXT list. If such a
7245 thread exists it is because we are stopped at a fork catchpoint
7246 and have not yet called follow_fork, which will set up the
7247 host-side data structures for the new process. */
7248
7249 void
7250 remote_target::remove_new_fork_children (threads_listing_context *context)
7251 {
7252 int pid = -1;
7253 struct notif_client *notif = &notif_client_stop;
7254
7255 /* For any threads stopped at a fork event, remove the corresponding
7256 fork child threads from the CONTEXT list. */
7257 for (thread_info *thread : all_non_exited_threads (this))
7258 {
7259 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7260
7261 if (is_pending_fork_parent (ws, pid, thread->ptid))
7262 context->remove_thread (ws->value.related_pid);
7263 }
7264
7265 /* Check for any pending fork events (not reported or processed yet)
7266 in process PID and remove those fork child threads from the
7267 CONTEXT list as well. */
7268 remote_notif_get_pending_events (notif);
7269 for (auto &event : get_remote_state ()->stop_reply_queue)
7270 if (event->ws.kind == TARGET_WAITKIND_FORKED
7271 || event->ws.kind == TARGET_WAITKIND_VFORKED
7272 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7273 context->remove_thread (event->ws.value.related_pid);
7274 }
7275
7276 /* Check whether any event pending in the vStopped queue would prevent
7277 a global or process wildcard vCont action. Clear
7278 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7279 and clear the event inferior's may_wildcard_vcont flag if we can't
7280 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7281
7282 void
7283 remote_target::check_pending_events_prevent_wildcard_vcont
7284 (int *may_global_wildcard)
7285 {
7286 struct notif_client *notif = &notif_client_stop;
7287
7288 remote_notif_get_pending_events (notif);
7289 for (auto &event : get_remote_state ()->stop_reply_queue)
7290 {
7291 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7292 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7293 continue;
7294
7295 if (event->ws.kind == TARGET_WAITKIND_FORKED
7296 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7297 *may_global_wildcard = 0;
7298
7299 /* This may be the first time we heard about this process.
7300 Regardless, we must not do a global wildcard resume, otherwise
7301 we'd resume this process too. */
7302 *may_global_wildcard = 0;
7303 if (event->ptid != null_ptid)
7304 {
7305 inferior *inf = find_inferior_ptid (this, event->ptid);
7306 if (inf != NULL)
7307 get_remote_inferior (inf)->may_wildcard_vcont = false;
7308 }
7309 }
7310 }
7311
7312 /* Discard all pending stop replies of inferior INF. */
7313
7314 void
7315 remote_target::discard_pending_stop_replies (struct inferior *inf)
7316 {
7317 struct stop_reply *reply;
7318 struct remote_state *rs = get_remote_state ();
7319 struct remote_notif_state *rns = rs->notif_state;
7320
7321 /* This function can be notified when an inferior exists. When the
7322 target is not remote, the notification state is NULL. */
7323 if (rs->remote_desc == NULL)
7324 return;
7325
7326 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7327
7328 /* Discard the in-flight notification. */
7329 if (reply != NULL && reply->ptid.pid () == inf->pid)
7330 {
7331 /* Leave the notification pending, since the server expects that
7332 we acknowledge it with vStopped. But clear its contents, so
7333 that later on when we acknowledge it, we also discard it. */
7334 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7335
7336 if (remote_debug)
7337 fprintf_unfiltered (gdb_stdlog,
7338 "discarded in-flight notification\n");
7339 }
7340
7341 /* Discard the stop replies we have already pulled with
7342 vStopped. */
7343 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7344 rs->stop_reply_queue.end (),
7345 [=] (const stop_reply_up &event)
7346 {
7347 return event->ptid.pid () == inf->pid;
7348 });
7349 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7350 }
7351
7352 /* Discard the stop replies for RS in stop_reply_queue. */
7353
7354 void
7355 remote_target::discard_pending_stop_replies_in_queue ()
7356 {
7357 remote_state *rs = get_remote_state ();
7358
7359 /* Discard the stop replies we have already pulled with
7360 vStopped. */
7361 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7362 rs->stop_reply_queue.end (),
7363 [=] (const stop_reply_up &event)
7364 {
7365 return event->rs == rs;
7366 });
7367 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7368 }
7369
7370 /* Remove the first reply in 'stop_reply_queue' which matches
7371 PTID. */
7372
7373 struct stop_reply *
7374 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7375 {
7376 remote_state *rs = get_remote_state ();
7377
7378 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7379 rs->stop_reply_queue.end (),
7380 [=] (const stop_reply_up &event)
7381 {
7382 return event->ptid.matches (ptid);
7383 });
7384 struct stop_reply *result;
7385 if (iter == rs->stop_reply_queue.end ())
7386 result = nullptr;
7387 else
7388 {
7389 result = iter->release ();
7390 rs->stop_reply_queue.erase (iter);
7391 }
7392
7393 if (notif_debug)
7394 fprintf_unfiltered (gdb_stdlog,
7395 "notif: discard queued event: 'Stop' in %s\n",
7396 target_pid_to_str (ptid).c_str ());
7397
7398 return result;
7399 }
7400
7401 /* Look for a queued stop reply belonging to PTID. If one is found,
7402 remove it from the queue, and return it. Returns NULL if none is
7403 found. If there are still queued events left to process, tell the
7404 event loop to get back to target_wait soon. */
7405
7406 struct stop_reply *
7407 remote_target::queued_stop_reply (ptid_t ptid)
7408 {
7409 remote_state *rs = get_remote_state ();
7410 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7411
7412 if (!rs->stop_reply_queue.empty ())
7413 {
7414 /* There's still at least an event left. */
7415 mark_async_event_handler (rs->remote_async_inferior_event_token);
7416 }
7417
7418 return r;
7419 }
7420
7421 /* Push a fully parsed stop reply in the stop reply queue. Since we
7422 know that we now have at least one queued event left to pass to the
7423 core side, tell the event loop to get back to target_wait soon. */
7424
7425 void
7426 remote_target::push_stop_reply (struct stop_reply *new_event)
7427 {
7428 remote_state *rs = get_remote_state ();
7429 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7430
7431 if (notif_debug)
7432 fprintf_unfiltered (gdb_stdlog,
7433 "notif: push 'Stop' %s to queue %d\n",
7434 target_pid_to_str (new_event->ptid).c_str (),
7435 int (rs->stop_reply_queue.size ()));
7436
7437 mark_async_event_handler (rs->remote_async_inferior_event_token);
7438 }
7439
7440 /* Returns true if we have a stop reply for PTID. */
7441
7442 int
7443 remote_target::peek_stop_reply (ptid_t ptid)
7444 {
7445 remote_state *rs = get_remote_state ();
7446 for (auto &event : rs->stop_reply_queue)
7447 if (ptid == event->ptid
7448 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7449 return 1;
7450 return 0;
7451 }
7452
7453 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7454 starting with P and ending with PEND matches PREFIX. */
7455
7456 static int
7457 strprefix (const char *p, const char *pend, const char *prefix)
7458 {
7459 for ( ; p < pend; p++, prefix++)
7460 if (*p != *prefix)
7461 return 0;
7462 return *prefix == '\0';
7463 }
7464
7465 /* Parse the stop reply in BUF. Either the function succeeds, and the
7466 result is stored in EVENT, or throws an error. */
7467
7468 void
7469 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7470 {
7471 remote_arch_state *rsa = NULL;
7472 ULONGEST addr;
7473 const char *p;
7474 int skipregs = 0;
7475
7476 event->ptid = null_ptid;
7477 event->rs = get_remote_state ();
7478 event->ws.kind = TARGET_WAITKIND_IGNORE;
7479 event->ws.value.integer = 0;
7480 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7481 event->regcache.clear ();
7482 event->core = -1;
7483
7484 switch (buf[0])
7485 {
7486 case 'T': /* Status with PC, SP, FP, ... */
7487 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7488 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7489 ss = signal number
7490 n... = register number
7491 r... = register contents
7492 */
7493
7494 p = &buf[3]; /* after Txx */
7495 while (*p)
7496 {
7497 const char *p1;
7498 int fieldsize;
7499
7500 p1 = strchr (p, ':');
7501 if (p1 == NULL)
7502 error (_("Malformed packet(a) (missing colon): %s\n\
7503 Packet: '%s'\n"),
7504 p, buf);
7505 if (p == p1)
7506 error (_("Malformed packet(a) (missing register number): %s\n\
7507 Packet: '%s'\n"),
7508 p, buf);
7509
7510 /* Some "registers" are actually extended stop information.
7511 Note if you're adding a new entry here: GDB 7.9 and
7512 earlier assume that all register "numbers" that start
7513 with an hex digit are real register numbers. Make sure
7514 the server only sends such a packet if it knows the
7515 client understands it. */
7516
7517 if (strprefix (p, p1, "thread"))
7518 event->ptid = read_ptid (++p1, &p);
7519 else if (strprefix (p, p1, "syscall_entry"))
7520 {
7521 ULONGEST sysno;
7522
7523 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7524 p = unpack_varlen_hex (++p1, &sysno);
7525 event->ws.value.syscall_number = (int) sysno;
7526 }
7527 else if (strprefix (p, p1, "syscall_return"))
7528 {
7529 ULONGEST sysno;
7530
7531 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7532 p = unpack_varlen_hex (++p1, &sysno);
7533 event->ws.value.syscall_number = (int) sysno;
7534 }
7535 else if (strprefix (p, p1, "watch")
7536 || strprefix (p, p1, "rwatch")
7537 || strprefix (p, p1, "awatch"))
7538 {
7539 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7540 p = unpack_varlen_hex (++p1, &addr);
7541 event->watch_data_address = (CORE_ADDR) addr;
7542 }
7543 else if (strprefix (p, p1, "swbreak"))
7544 {
7545 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7546
7547 /* Make sure the stub doesn't forget to indicate support
7548 with qSupported. */
7549 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7550 error (_("Unexpected swbreak stop reason"));
7551
7552 /* The value part is documented as "must be empty",
7553 though we ignore it, in case we ever decide to make
7554 use of it in a backward compatible way. */
7555 p = strchrnul (p1 + 1, ';');
7556 }
7557 else if (strprefix (p, p1, "hwbreak"))
7558 {
7559 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7560
7561 /* Make sure the stub doesn't forget to indicate support
7562 with qSupported. */
7563 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7564 error (_("Unexpected hwbreak stop reason"));
7565
7566 /* See above. */
7567 p = strchrnul (p1 + 1, ';');
7568 }
7569 else if (strprefix (p, p1, "library"))
7570 {
7571 event->ws.kind = TARGET_WAITKIND_LOADED;
7572 p = strchrnul (p1 + 1, ';');
7573 }
7574 else if (strprefix (p, p1, "replaylog"))
7575 {
7576 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7577 /* p1 will indicate "begin" or "end", but it makes
7578 no difference for now, so ignore it. */
7579 p = strchrnul (p1 + 1, ';');
7580 }
7581 else if (strprefix (p, p1, "core"))
7582 {
7583 ULONGEST c;
7584
7585 p = unpack_varlen_hex (++p1, &c);
7586 event->core = c;
7587 }
7588 else if (strprefix (p, p1, "fork"))
7589 {
7590 event->ws.value.related_pid = read_ptid (++p1, &p);
7591 event->ws.kind = TARGET_WAITKIND_FORKED;
7592 }
7593 else if (strprefix (p, p1, "vfork"))
7594 {
7595 event->ws.value.related_pid = read_ptid (++p1, &p);
7596 event->ws.kind = TARGET_WAITKIND_VFORKED;
7597 }
7598 else if (strprefix (p, p1, "vforkdone"))
7599 {
7600 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7601 p = strchrnul (p1 + 1, ';');
7602 }
7603 else if (strprefix (p, p1, "exec"))
7604 {
7605 ULONGEST ignored;
7606 int pathlen;
7607
7608 /* Determine the length of the execd pathname. */
7609 p = unpack_varlen_hex (++p1, &ignored);
7610 pathlen = (p - p1) / 2;
7611
7612 /* Save the pathname for event reporting and for
7613 the next run command. */
7614 gdb::unique_xmalloc_ptr<char[]> pathname
7615 ((char *) xmalloc (pathlen + 1));
7616 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7617 pathname[pathlen] = '\0';
7618
7619 /* This is freed during event handling. */
7620 event->ws.value.execd_pathname = pathname.release ();
7621 event->ws.kind = TARGET_WAITKIND_EXECD;
7622
7623 /* Skip the registers included in this packet, since
7624 they may be for an architecture different from the
7625 one used by the original program. */
7626 skipregs = 1;
7627 }
7628 else if (strprefix (p, p1, "create"))
7629 {
7630 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7631 p = strchrnul (p1 + 1, ';');
7632 }
7633 else
7634 {
7635 ULONGEST pnum;
7636 const char *p_temp;
7637
7638 if (skipregs)
7639 {
7640 p = strchrnul (p1 + 1, ';');
7641 p++;
7642 continue;
7643 }
7644
7645 /* Maybe a real ``P'' register number. */
7646 p_temp = unpack_varlen_hex (p, &pnum);
7647 /* If the first invalid character is the colon, we got a
7648 register number. Otherwise, it's an unknown stop
7649 reason. */
7650 if (p_temp == p1)
7651 {
7652 /* If we haven't parsed the event's thread yet, find
7653 it now, in order to find the architecture of the
7654 reported expedited registers. */
7655 if (event->ptid == null_ptid)
7656 {
7657 /* If there is no thread-id information then leave
7658 the event->ptid as null_ptid. Later in
7659 process_stop_reply we will pick a suitable
7660 thread. */
7661 const char *thr = strstr (p1 + 1, ";thread:");
7662 if (thr != NULL)
7663 event->ptid = read_ptid (thr + strlen (";thread:"),
7664 NULL);
7665 }
7666
7667 if (rsa == NULL)
7668 {
7669 inferior *inf
7670 = (event->ptid == null_ptid
7671 ? NULL
7672 : find_inferior_ptid (this, event->ptid));
7673 /* If this is the first time we learn anything
7674 about this process, skip the registers
7675 included in this packet, since we don't yet
7676 know which architecture to use to parse them.
7677 We'll determine the architecture later when
7678 we process the stop reply and retrieve the
7679 target description, via
7680 remote_notice_new_inferior ->
7681 post_create_inferior. */
7682 if (inf == NULL)
7683 {
7684 p = strchrnul (p1 + 1, ';');
7685 p++;
7686 continue;
7687 }
7688
7689 event->arch = inf->gdbarch;
7690 rsa = event->rs->get_remote_arch_state (event->arch);
7691 }
7692
7693 packet_reg *reg
7694 = packet_reg_from_pnum (event->arch, rsa, pnum);
7695 cached_reg_t cached_reg;
7696
7697 if (reg == NULL)
7698 error (_("Remote sent bad register number %s: %s\n\
7699 Packet: '%s'\n"),
7700 hex_string (pnum), p, buf);
7701
7702 cached_reg.num = reg->regnum;
7703 cached_reg.data = (gdb_byte *)
7704 xmalloc (register_size (event->arch, reg->regnum));
7705
7706 p = p1 + 1;
7707 fieldsize = hex2bin (p, cached_reg.data,
7708 register_size (event->arch, reg->regnum));
7709 p += 2 * fieldsize;
7710 if (fieldsize < register_size (event->arch, reg->regnum))
7711 warning (_("Remote reply is too short: %s"), buf);
7712
7713 event->regcache.push_back (cached_reg);
7714 }
7715 else
7716 {
7717 /* Not a number. Silently skip unknown optional
7718 info. */
7719 p = strchrnul (p1 + 1, ';');
7720 }
7721 }
7722
7723 if (*p != ';')
7724 error (_("Remote register badly formatted: %s\nhere: %s"),
7725 buf, p);
7726 ++p;
7727 }
7728
7729 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7730 break;
7731
7732 /* fall through */
7733 case 'S': /* Old style status, just signal only. */
7734 {
7735 int sig;
7736
7737 event->ws.kind = TARGET_WAITKIND_STOPPED;
7738 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7739 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7740 event->ws.value.sig = (enum gdb_signal) sig;
7741 else
7742 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7743 }
7744 break;
7745 case 'w': /* Thread exited. */
7746 {
7747 ULONGEST value;
7748
7749 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7750 p = unpack_varlen_hex (&buf[1], &value);
7751 event->ws.value.integer = value;
7752 if (*p != ';')
7753 error (_("stop reply packet badly formatted: %s"), buf);
7754 event->ptid = read_ptid (++p, NULL);
7755 break;
7756 }
7757 case 'W': /* Target exited. */
7758 case 'X':
7759 {
7760 ULONGEST value;
7761
7762 /* GDB used to accept only 2 hex chars here. Stubs should
7763 only send more if they detect GDB supports multi-process
7764 support. */
7765 p = unpack_varlen_hex (&buf[1], &value);
7766
7767 if (buf[0] == 'W')
7768 {
7769 /* The remote process exited. */
7770 event->ws.kind = TARGET_WAITKIND_EXITED;
7771 event->ws.value.integer = value;
7772 }
7773 else
7774 {
7775 /* The remote process exited with a signal. */
7776 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7777 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7778 event->ws.value.sig = (enum gdb_signal) value;
7779 else
7780 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7781 }
7782
7783 /* If no process is specified, return null_ptid, and let the
7784 caller figure out the right process to use. */
7785 int pid = 0;
7786 if (*p == '\0')
7787 ;
7788 else if (*p == ';')
7789 {
7790 p++;
7791
7792 if (*p == '\0')
7793 ;
7794 else if (startswith (p, "process:"))
7795 {
7796 ULONGEST upid;
7797
7798 p += sizeof ("process:") - 1;
7799 unpack_varlen_hex (p, &upid);
7800 pid = upid;
7801 }
7802 else
7803 error (_("unknown stop reply packet: %s"), buf);
7804 }
7805 else
7806 error (_("unknown stop reply packet: %s"), buf);
7807 event->ptid = ptid_t (pid);
7808 }
7809 break;
7810 case 'N':
7811 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7812 event->ptid = minus_one_ptid;
7813 break;
7814 }
7815 }
7816
7817 /* When the stub wants to tell GDB about a new notification reply, it
7818 sends a notification (%Stop, for example). Those can come it at
7819 any time, hence, we have to make sure that any pending
7820 putpkt/getpkt sequence we're making is finished, before querying
7821 the stub for more events with the corresponding ack command
7822 (vStopped, for example). E.g., if we started a vStopped sequence
7823 immediately upon receiving the notification, something like this
7824 could happen:
7825
7826 1.1) --> Hg 1
7827 1.2) <-- OK
7828 1.3) --> g
7829 1.4) <-- %Stop
7830 1.5) --> vStopped
7831 1.6) <-- (registers reply to step #1.3)
7832
7833 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7834 query.
7835
7836 To solve this, whenever we parse a %Stop notification successfully,
7837 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7838 doing whatever we were doing:
7839
7840 2.1) --> Hg 1
7841 2.2) <-- OK
7842 2.3) --> g
7843 2.4) <-- %Stop
7844 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7845 2.5) <-- (registers reply to step #2.3)
7846
7847 Eventually after step #2.5, we return to the event loop, which
7848 notices there's an event on the
7849 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7850 associated callback --- the function below. At this point, we're
7851 always safe to start a vStopped sequence. :
7852
7853 2.6) --> vStopped
7854 2.7) <-- T05 thread:2
7855 2.8) --> vStopped
7856 2.9) --> OK
7857 */
7858
7859 void
7860 remote_target::remote_notif_get_pending_events (notif_client *nc)
7861 {
7862 struct remote_state *rs = get_remote_state ();
7863
7864 if (rs->notif_state->pending_event[nc->id] != NULL)
7865 {
7866 if (notif_debug)
7867 fprintf_unfiltered (gdb_stdlog,
7868 "notif: process: '%s' ack pending event\n",
7869 nc->name);
7870
7871 /* acknowledge */
7872 nc->ack (this, nc, rs->buf.data (),
7873 rs->notif_state->pending_event[nc->id]);
7874 rs->notif_state->pending_event[nc->id] = NULL;
7875
7876 while (1)
7877 {
7878 getpkt (&rs->buf, 0);
7879 if (strcmp (rs->buf.data (), "OK") == 0)
7880 break;
7881 else
7882 remote_notif_ack (this, nc, rs->buf.data ());
7883 }
7884 }
7885 else
7886 {
7887 if (notif_debug)
7888 fprintf_unfiltered (gdb_stdlog,
7889 "notif: process: '%s' no pending reply\n",
7890 nc->name);
7891 }
7892 }
7893
7894 /* Wrapper around remote_target::remote_notif_get_pending_events to
7895 avoid having to export the whole remote_target class. */
7896
7897 void
7898 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7899 {
7900 remote->remote_notif_get_pending_events (nc);
7901 }
7902
7903 /* Called from process_stop_reply when the stop packet we are responding
7904 to didn't include a process-id or thread-id. STATUS is the stop event
7905 we are responding to.
7906
7907 It is the task of this function to select a suitable thread (or process)
7908 and return its ptid, this is the thread (or process) we will assume the
7909 stop event came from.
7910
7911 In some cases there isn't really any choice about which thread (or
7912 process) is selected, a basic remote with a single process containing a
7913 single thread might choose not to send any process-id or thread-id in
7914 its stop packets, this function will select and return the one and only
7915 thread.
7916
7917 However, if a target supports multiple threads (or processes) and still
7918 doesn't include a thread-id (or process-id) in its stop packet then
7919 first, this is a badly behaving target, and second, we're going to have
7920 to select a thread (or process) at random and use that. This function
7921 will print a warning to the user if it detects that there is the
7922 possibility that GDB is guessing which thread (or process) to
7923 report.
7924
7925 Note that this is called before GDB fetches the updated thread list from the
7926 target. So it's possible for the stop reply to be ambiguous and for GDB to
7927 not realize it. For example, if there's initially one thread, the target
7928 spawns a second thread, and then sends a stop reply without an id that
7929 concerns the first thread. GDB will assume the stop reply is about the
7930 first thread - the only thread it knows about - without printing a warning.
7931 Anyway, if the remote meant for the stop reply to be about the second thread,
7932 then it would be really broken, because GDB doesn't know about that thread
7933 yet. */
7934
7935 ptid_t
7936 remote_target::select_thread_for_ambiguous_stop_reply
7937 (const struct target_waitstatus *status)
7938 {
7939 /* Some stop events apply to all threads in an inferior, while others
7940 only apply to a single thread. */
7941 bool process_wide_stop
7942 = (status->kind == TARGET_WAITKIND_EXITED
7943 || status->kind == TARGET_WAITKIND_SIGNALLED);
7944
7945 thread_info *first_resumed_thread = nullptr;
7946 bool ambiguous = false;
7947
7948 /* Consider all non-exited threads of the target, find the first resumed
7949 one. */
7950 for (thread_info *thr : all_non_exited_threads (this))
7951 {
7952 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7953
7954 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7955 continue;
7956
7957 if (first_resumed_thread == nullptr)
7958 first_resumed_thread = thr;
7959 else if (!process_wide_stop
7960 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7961 ambiguous = true;
7962 }
7963
7964 gdb_assert (first_resumed_thread != nullptr);
7965
7966 /* Warn if the remote target is sending ambiguous stop replies. */
7967 if (ambiguous)
7968 {
7969 static bool warned = false;
7970
7971 if (!warned)
7972 {
7973 /* If you are seeing this warning then the remote target has
7974 stopped without specifying a thread-id, but the target
7975 does have multiple threads (or inferiors), and so GDB is
7976 having to guess which thread stopped.
7977
7978 Examples of what might cause this are the target sending
7979 and 'S' stop packet, or a 'T' stop packet and not
7980 including a thread-id.
7981
7982 Additionally, the target might send a 'W' or 'X packet
7983 without including a process-id, when the target has
7984 multiple running inferiors. */
7985 if (process_wide_stop)
7986 warning (_("multi-inferior target stopped without "
7987 "sending a process-id, using first "
7988 "non-exited inferior"));
7989 else
7990 warning (_("multi-threaded target stopped without "
7991 "sending a thread-id, using first "
7992 "non-exited thread"));
7993 warned = true;
7994 }
7995 }
7996
7997 /* If this is a stop for all threads then don't use a particular threads
7998 ptid, instead create a new ptid where only the pid field is set. */
7999 if (process_wide_stop)
8000 return ptid_t (first_resumed_thread->ptid.pid ());
8001 else
8002 return first_resumed_thread->ptid;
8003 }
8004
8005 /* Called when it is decided that STOP_REPLY holds the info of the
8006 event that is to be returned to the core. This function always
8007 destroys STOP_REPLY. */
8008
8009 ptid_t
8010 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8011 struct target_waitstatus *status)
8012 {
8013 *status = stop_reply->ws;
8014 ptid_t ptid = stop_reply->ptid;
8015
8016 /* If no thread/process was reported by the stub then select a suitable
8017 thread/process. */
8018 if (ptid == null_ptid)
8019 ptid = select_thread_for_ambiguous_stop_reply (status);
8020 gdb_assert (ptid != null_ptid);
8021
8022 if (status->kind != TARGET_WAITKIND_EXITED
8023 && status->kind != TARGET_WAITKIND_SIGNALLED
8024 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8025 {
8026 /* Expedited registers. */
8027 if (!stop_reply->regcache.empty ())
8028 {
8029 struct regcache *regcache
8030 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8031
8032 for (cached_reg_t &reg : stop_reply->regcache)
8033 {
8034 regcache->raw_supply (reg.num, reg.data);
8035 xfree (reg.data);
8036 }
8037
8038 stop_reply->regcache.clear ();
8039 }
8040
8041 remote_notice_new_inferior (ptid, 0);
8042 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8043 remote_thr->core = stop_reply->core;
8044 remote_thr->stop_reason = stop_reply->stop_reason;
8045 remote_thr->watch_data_address = stop_reply->watch_data_address;
8046
8047 if (target_is_non_stop_p ())
8048 {
8049 /* If the target works in non-stop mode, a stop-reply indicates that
8050 only this thread stopped. */
8051 remote_thr->set_not_resumed ();
8052 }
8053 else
8054 {
8055 /* If the target works in all-stop mode, a stop-reply indicates that
8056 all the target's threads stopped. */
8057 for (thread_info *tp : all_non_exited_threads (this))
8058 get_remote_thread_info (tp)->set_not_resumed ();
8059 }
8060 }
8061
8062 delete stop_reply;
8063 return ptid;
8064 }
8065
8066 /* The non-stop mode version of target_wait. */
8067
8068 ptid_t
8069 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8070 target_wait_flags options)
8071 {
8072 struct remote_state *rs = get_remote_state ();
8073 struct stop_reply *stop_reply;
8074 int ret;
8075 int is_notif = 0;
8076
8077 /* If in non-stop mode, get out of getpkt even if a
8078 notification is received. */
8079
8080 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8081 while (1)
8082 {
8083 if (ret != -1 && !is_notif)
8084 switch (rs->buf[0])
8085 {
8086 case 'E': /* Error of some sort. */
8087 /* We're out of sync with the target now. Did it continue
8088 or not? We can't tell which thread it was in non-stop,
8089 so just ignore this. */
8090 warning (_("Remote failure reply: %s"), rs->buf.data ());
8091 break;
8092 case 'O': /* Console output. */
8093 remote_console_output (&rs->buf[1]);
8094 break;
8095 default:
8096 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8097 break;
8098 }
8099
8100 /* Acknowledge a pending stop reply that may have arrived in the
8101 mean time. */
8102 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8103 remote_notif_get_pending_events (&notif_client_stop);
8104
8105 /* If indeed we noticed a stop reply, we're done. */
8106 stop_reply = queued_stop_reply (ptid);
8107 if (stop_reply != NULL)
8108 return process_stop_reply (stop_reply, status);
8109
8110 /* Still no event. If we're just polling for an event, then
8111 return to the event loop. */
8112 if (options & TARGET_WNOHANG)
8113 {
8114 status->kind = TARGET_WAITKIND_IGNORE;
8115 return minus_one_ptid;
8116 }
8117
8118 /* Otherwise do a blocking wait. */
8119 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8120 }
8121 }
8122
8123 /* Return the first resumed thread. */
8124
8125 static ptid_t
8126 first_remote_resumed_thread (remote_target *target)
8127 {
8128 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8129 if (tp->resumed)
8130 return tp->ptid;
8131 return null_ptid;
8132 }
8133
8134 /* Wait until the remote machine stops, then return, storing status in
8135 STATUS just as `wait' would. */
8136
8137 ptid_t
8138 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8139 target_wait_flags options)
8140 {
8141 struct remote_state *rs = get_remote_state ();
8142 ptid_t event_ptid = null_ptid;
8143 char *buf;
8144 struct stop_reply *stop_reply;
8145
8146 again:
8147
8148 status->kind = TARGET_WAITKIND_IGNORE;
8149 status->value.integer = 0;
8150
8151 stop_reply = queued_stop_reply (ptid);
8152 if (stop_reply != NULL)
8153 return process_stop_reply (stop_reply, status);
8154
8155 if (rs->cached_wait_status)
8156 /* Use the cached wait status, but only once. */
8157 rs->cached_wait_status = 0;
8158 else
8159 {
8160 int ret;
8161 int is_notif;
8162 int forever = ((options & TARGET_WNOHANG) == 0
8163 && rs->wait_forever_enabled_p);
8164
8165 if (!rs->waiting_for_stop_reply)
8166 {
8167 status->kind = TARGET_WAITKIND_NO_RESUMED;
8168 return minus_one_ptid;
8169 }
8170
8171 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8172 _never_ wait for ever -> test on target_is_async_p().
8173 However, before we do that we need to ensure that the caller
8174 knows how to take the target into/out of async mode. */
8175 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8176
8177 /* GDB gets a notification. Return to core as this event is
8178 not interesting. */
8179 if (ret != -1 && is_notif)
8180 return minus_one_ptid;
8181
8182 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8183 return minus_one_ptid;
8184 }
8185
8186 buf = rs->buf.data ();
8187
8188 /* Assume that the target has acknowledged Ctrl-C unless we receive
8189 an 'F' or 'O' packet. */
8190 if (buf[0] != 'F' && buf[0] != 'O')
8191 rs->ctrlc_pending_p = 0;
8192
8193 switch (buf[0])
8194 {
8195 case 'E': /* Error of some sort. */
8196 /* We're out of sync with the target now. Did it continue or
8197 not? Not is more likely, so report a stop. */
8198 rs->waiting_for_stop_reply = 0;
8199
8200 warning (_("Remote failure reply: %s"), buf);
8201 status->kind = TARGET_WAITKIND_STOPPED;
8202 status->value.sig = GDB_SIGNAL_0;
8203 break;
8204 case 'F': /* File-I/O request. */
8205 /* GDB may access the inferior memory while handling the File-I/O
8206 request, but we don't want GDB accessing memory while waiting
8207 for a stop reply. See the comments in putpkt_binary. Set
8208 waiting_for_stop_reply to 0 temporarily. */
8209 rs->waiting_for_stop_reply = 0;
8210 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8211 rs->ctrlc_pending_p = 0;
8212 /* GDB handled the File-I/O request, and the target is running
8213 again. Keep waiting for events. */
8214 rs->waiting_for_stop_reply = 1;
8215 break;
8216 case 'N': case 'T': case 'S': case 'X': case 'W':
8217 {
8218 /* There is a stop reply to handle. */
8219 rs->waiting_for_stop_reply = 0;
8220
8221 stop_reply
8222 = (struct stop_reply *) remote_notif_parse (this,
8223 &notif_client_stop,
8224 rs->buf.data ());
8225
8226 event_ptid = process_stop_reply (stop_reply, status);
8227 break;
8228 }
8229 case 'O': /* Console output. */
8230 remote_console_output (buf + 1);
8231 break;
8232 case '\0':
8233 if (rs->last_sent_signal != GDB_SIGNAL_0)
8234 {
8235 /* Zero length reply means that we tried 'S' or 'C' and the
8236 remote system doesn't support it. */
8237 target_terminal::ours_for_output ();
8238 printf_filtered
8239 ("Can't send signals to this remote system. %s not sent.\n",
8240 gdb_signal_to_name (rs->last_sent_signal));
8241 rs->last_sent_signal = GDB_SIGNAL_0;
8242 target_terminal::inferior ();
8243
8244 strcpy (buf, rs->last_sent_step ? "s" : "c");
8245 putpkt (buf);
8246 break;
8247 }
8248 /* fallthrough */
8249 default:
8250 warning (_("Invalid remote reply: %s"), buf);
8251 break;
8252 }
8253
8254 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8255 return minus_one_ptid;
8256 else if (status->kind == TARGET_WAITKIND_IGNORE)
8257 {
8258 /* Nothing interesting happened. If we're doing a non-blocking
8259 poll, we're done. Otherwise, go back to waiting. */
8260 if (options & TARGET_WNOHANG)
8261 return minus_one_ptid;
8262 else
8263 goto again;
8264 }
8265 else if (status->kind != TARGET_WAITKIND_EXITED
8266 && status->kind != TARGET_WAITKIND_SIGNALLED)
8267 {
8268 if (event_ptid != null_ptid)
8269 record_currthread (rs, event_ptid);
8270 else
8271 event_ptid = first_remote_resumed_thread (this);
8272 }
8273 else
8274 {
8275 /* A process exit. Invalidate our notion of current thread. */
8276 record_currthread (rs, minus_one_ptid);
8277 /* It's possible that the packet did not include a pid. */
8278 if (event_ptid == null_ptid)
8279 event_ptid = first_remote_resumed_thread (this);
8280 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8281 if (event_ptid == null_ptid)
8282 event_ptid = magic_null_ptid;
8283 }
8284
8285 return event_ptid;
8286 }
8287
8288 /* Wait until the remote machine stops, then return, storing status in
8289 STATUS just as `wait' would. */
8290
8291 ptid_t
8292 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8293 target_wait_flags options)
8294 {
8295 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8296
8297 remote_state *rs = get_remote_state ();
8298
8299 /* Start by clearing the flag that asks for our wait method to be called,
8300 we'll mark it again at the end if needed. */
8301 if (target_is_async_p ())
8302 clear_async_event_handler (rs->remote_async_inferior_event_token);
8303
8304 ptid_t event_ptid;
8305
8306 if (target_is_non_stop_p ())
8307 event_ptid = wait_ns (ptid, status, options);
8308 else
8309 event_ptid = wait_as (ptid, status, options);
8310
8311 if (target_is_async_p ())
8312 {
8313 /* If there are events left in the queue, or unacknowledged
8314 notifications, then tell the event loop to call us again. */
8315 if (!rs->stop_reply_queue.empty ()
8316 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8317 mark_async_event_handler (rs->remote_async_inferior_event_token);
8318 }
8319
8320 return event_ptid;
8321 }
8322
8323 /* Fetch a single register using a 'p' packet. */
8324
8325 int
8326 remote_target::fetch_register_using_p (struct regcache *regcache,
8327 packet_reg *reg)
8328 {
8329 struct gdbarch *gdbarch = regcache->arch ();
8330 struct remote_state *rs = get_remote_state ();
8331 char *buf, *p;
8332 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8333 int i;
8334
8335 if (packet_support (PACKET_p) == PACKET_DISABLE)
8336 return 0;
8337
8338 if (reg->pnum == -1)
8339 return 0;
8340
8341 p = rs->buf.data ();
8342 *p++ = 'p';
8343 p += hexnumstr (p, reg->pnum);
8344 *p++ = '\0';
8345 putpkt (rs->buf);
8346 getpkt (&rs->buf, 0);
8347
8348 buf = rs->buf.data ();
8349
8350 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8351 {
8352 case PACKET_OK:
8353 break;
8354 case PACKET_UNKNOWN:
8355 return 0;
8356 case PACKET_ERROR:
8357 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8358 gdbarch_register_name (regcache->arch (),
8359 reg->regnum),
8360 buf);
8361 }
8362
8363 /* If this register is unfetchable, tell the regcache. */
8364 if (buf[0] == 'x')
8365 {
8366 regcache->raw_supply (reg->regnum, NULL);
8367 return 1;
8368 }
8369
8370 /* Otherwise, parse and supply the value. */
8371 p = buf;
8372 i = 0;
8373 while (p[0] != 0)
8374 {
8375 if (p[1] == 0)
8376 error (_("fetch_register_using_p: early buf termination"));
8377
8378 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8379 p += 2;
8380 }
8381 regcache->raw_supply (reg->regnum, regp);
8382 return 1;
8383 }
8384
8385 /* Fetch the registers included in the target's 'g' packet. */
8386
8387 int
8388 remote_target::send_g_packet ()
8389 {
8390 struct remote_state *rs = get_remote_state ();
8391 int buf_len;
8392
8393 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8394 putpkt (rs->buf);
8395 getpkt (&rs->buf, 0);
8396 if (packet_check_result (rs->buf) == PACKET_ERROR)
8397 error (_("Could not read registers; remote failure reply '%s'"),
8398 rs->buf.data ());
8399
8400 /* We can get out of synch in various cases. If the first character
8401 in the buffer is not a hex character, assume that has happened
8402 and try to fetch another packet to read. */
8403 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8404 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8405 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8406 && rs->buf[0] != 'x') /* New: unavailable register value. */
8407 {
8408 remote_debug_printf ("Bad register packet; fetching a new packet");
8409 getpkt (&rs->buf, 0);
8410 }
8411
8412 buf_len = strlen (rs->buf.data ());
8413
8414 /* Sanity check the received packet. */
8415 if (buf_len % 2 != 0)
8416 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8417
8418 return buf_len / 2;
8419 }
8420
8421 void
8422 remote_target::process_g_packet (struct regcache *regcache)
8423 {
8424 struct gdbarch *gdbarch = regcache->arch ();
8425 struct remote_state *rs = get_remote_state ();
8426 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8427 int i, buf_len;
8428 char *p;
8429 char *regs;
8430
8431 buf_len = strlen (rs->buf.data ());
8432
8433 /* Further sanity checks, with knowledge of the architecture. */
8434 if (buf_len > 2 * rsa->sizeof_g_packet)
8435 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8436 "bytes): %s"),
8437 rsa->sizeof_g_packet, buf_len / 2,
8438 rs->buf.data ());
8439
8440 /* Save the size of the packet sent to us by the target. It is used
8441 as a heuristic when determining the max size of packets that the
8442 target can safely receive. */
8443 if (rsa->actual_register_packet_size == 0)
8444 rsa->actual_register_packet_size = buf_len;
8445
8446 /* If this is smaller than we guessed the 'g' packet would be,
8447 update our records. A 'g' reply that doesn't include a register's
8448 value implies either that the register is not available, or that
8449 the 'p' packet must be used. */
8450 if (buf_len < 2 * rsa->sizeof_g_packet)
8451 {
8452 long sizeof_g_packet = buf_len / 2;
8453
8454 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8455 {
8456 long offset = rsa->regs[i].offset;
8457 long reg_size = register_size (gdbarch, i);
8458
8459 if (rsa->regs[i].pnum == -1)
8460 continue;
8461
8462 if (offset >= sizeof_g_packet)
8463 rsa->regs[i].in_g_packet = 0;
8464 else if (offset + reg_size > sizeof_g_packet)
8465 error (_("Truncated register %d in remote 'g' packet"), i);
8466 else
8467 rsa->regs[i].in_g_packet = 1;
8468 }
8469
8470 /* Looks valid enough, we can assume this is the correct length
8471 for a 'g' packet. It's important not to adjust
8472 rsa->sizeof_g_packet if we have truncated registers otherwise
8473 this "if" won't be run the next time the method is called
8474 with a packet of the same size and one of the internal errors
8475 below will trigger instead. */
8476 rsa->sizeof_g_packet = sizeof_g_packet;
8477 }
8478
8479 regs = (char *) alloca (rsa->sizeof_g_packet);
8480
8481 /* Unimplemented registers read as all bits zero. */
8482 memset (regs, 0, rsa->sizeof_g_packet);
8483
8484 /* Reply describes registers byte by byte, each byte encoded as two
8485 hex characters. Suck them all up, then supply them to the
8486 register cacheing/storage mechanism. */
8487
8488 p = rs->buf.data ();
8489 for (i = 0; i < rsa->sizeof_g_packet; i++)
8490 {
8491 if (p[0] == 0 || p[1] == 0)
8492 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8493 internal_error (__FILE__, __LINE__,
8494 _("unexpected end of 'g' packet reply"));
8495
8496 if (p[0] == 'x' && p[1] == 'x')
8497 regs[i] = 0; /* 'x' */
8498 else
8499 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8500 p += 2;
8501 }
8502
8503 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8504 {
8505 struct packet_reg *r = &rsa->regs[i];
8506 long reg_size = register_size (gdbarch, i);
8507
8508 if (r->in_g_packet)
8509 {
8510 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8511 /* This shouldn't happen - we adjusted in_g_packet above. */
8512 internal_error (__FILE__, __LINE__,
8513 _("unexpected end of 'g' packet reply"));
8514 else if (rs->buf[r->offset * 2] == 'x')
8515 {
8516 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8517 /* The register isn't available, mark it as such (at
8518 the same time setting the value to zero). */
8519 regcache->raw_supply (r->regnum, NULL);
8520 }
8521 else
8522 regcache->raw_supply (r->regnum, regs + r->offset);
8523 }
8524 }
8525 }
8526
8527 void
8528 remote_target::fetch_registers_using_g (struct regcache *regcache)
8529 {
8530 send_g_packet ();
8531 process_g_packet (regcache);
8532 }
8533
8534 /* Make the remote selected traceframe match GDB's selected
8535 traceframe. */
8536
8537 void
8538 remote_target::set_remote_traceframe ()
8539 {
8540 int newnum;
8541 struct remote_state *rs = get_remote_state ();
8542
8543 if (rs->remote_traceframe_number == get_traceframe_number ())
8544 return;
8545
8546 /* Avoid recursion, remote_trace_find calls us again. */
8547 rs->remote_traceframe_number = get_traceframe_number ();
8548
8549 newnum = target_trace_find (tfind_number,
8550 get_traceframe_number (), 0, 0, NULL);
8551
8552 /* Should not happen. If it does, all bets are off. */
8553 if (newnum != get_traceframe_number ())
8554 warning (_("could not set remote traceframe"));
8555 }
8556
8557 void
8558 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8559 {
8560 struct gdbarch *gdbarch = regcache->arch ();
8561 struct remote_state *rs = get_remote_state ();
8562 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8563 int i;
8564
8565 set_remote_traceframe ();
8566 set_general_thread (regcache->ptid ());
8567
8568 if (regnum >= 0)
8569 {
8570 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8571
8572 gdb_assert (reg != NULL);
8573
8574 /* If this register might be in the 'g' packet, try that first -
8575 we are likely to read more than one register. If this is the
8576 first 'g' packet, we might be overly optimistic about its
8577 contents, so fall back to 'p'. */
8578 if (reg->in_g_packet)
8579 {
8580 fetch_registers_using_g (regcache);
8581 if (reg->in_g_packet)
8582 return;
8583 }
8584
8585 if (fetch_register_using_p (regcache, reg))
8586 return;
8587
8588 /* This register is not available. */
8589 regcache->raw_supply (reg->regnum, NULL);
8590
8591 return;
8592 }
8593
8594 fetch_registers_using_g (regcache);
8595
8596 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8597 if (!rsa->regs[i].in_g_packet)
8598 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8599 {
8600 /* This register is not available. */
8601 regcache->raw_supply (i, NULL);
8602 }
8603 }
8604
8605 /* Prepare to store registers. Since we may send them all (using a
8606 'G' request), we have to read out the ones we don't want to change
8607 first. */
8608
8609 void
8610 remote_target::prepare_to_store (struct regcache *regcache)
8611 {
8612 struct remote_state *rs = get_remote_state ();
8613 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8614 int i;
8615
8616 /* Make sure the entire registers array is valid. */
8617 switch (packet_support (PACKET_P))
8618 {
8619 case PACKET_DISABLE:
8620 case PACKET_SUPPORT_UNKNOWN:
8621 /* Make sure all the necessary registers are cached. */
8622 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8623 if (rsa->regs[i].in_g_packet)
8624 regcache->raw_update (rsa->regs[i].regnum);
8625 break;
8626 case PACKET_ENABLE:
8627 break;
8628 }
8629 }
8630
8631 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8632 packet was not recognized. */
8633
8634 int
8635 remote_target::store_register_using_P (const struct regcache *regcache,
8636 packet_reg *reg)
8637 {
8638 struct gdbarch *gdbarch = regcache->arch ();
8639 struct remote_state *rs = get_remote_state ();
8640 /* Try storing a single register. */
8641 char *buf = rs->buf.data ();
8642 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8643 char *p;
8644
8645 if (packet_support (PACKET_P) == PACKET_DISABLE)
8646 return 0;
8647
8648 if (reg->pnum == -1)
8649 return 0;
8650
8651 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8652 p = buf + strlen (buf);
8653 regcache->raw_collect (reg->regnum, regp);
8654 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8655 putpkt (rs->buf);
8656 getpkt (&rs->buf, 0);
8657
8658 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8659 {
8660 case PACKET_OK:
8661 return 1;
8662 case PACKET_ERROR:
8663 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8664 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8665 case PACKET_UNKNOWN:
8666 return 0;
8667 default:
8668 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8669 }
8670 }
8671
8672 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8673 contents of the register cache buffer. FIXME: ignores errors. */
8674
8675 void
8676 remote_target::store_registers_using_G (const struct regcache *regcache)
8677 {
8678 struct remote_state *rs = get_remote_state ();
8679 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8680 gdb_byte *regs;
8681 char *p;
8682
8683 /* Extract all the registers in the regcache copying them into a
8684 local buffer. */
8685 {
8686 int i;
8687
8688 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8689 memset (regs, 0, rsa->sizeof_g_packet);
8690 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8691 {
8692 struct packet_reg *r = &rsa->regs[i];
8693
8694 if (r->in_g_packet)
8695 regcache->raw_collect (r->regnum, regs + r->offset);
8696 }
8697 }
8698
8699 /* Command describes registers byte by byte,
8700 each byte encoded as two hex characters. */
8701 p = rs->buf.data ();
8702 *p++ = 'G';
8703 bin2hex (regs, p, rsa->sizeof_g_packet);
8704 putpkt (rs->buf);
8705 getpkt (&rs->buf, 0);
8706 if (packet_check_result (rs->buf) == PACKET_ERROR)
8707 error (_("Could not write registers; remote failure reply '%s'"),
8708 rs->buf.data ());
8709 }
8710
8711 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8712 of the register cache buffer. FIXME: ignores errors. */
8713
8714 void
8715 remote_target::store_registers (struct regcache *regcache, int regnum)
8716 {
8717 struct gdbarch *gdbarch = regcache->arch ();
8718 struct remote_state *rs = get_remote_state ();
8719 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8720 int i;
8721
8722 set_remote_traceframe ();
8723 set_general_thread (regcache->ptid ());
8724
8725 if (regnum >= 0)
8726 {
8727 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8728
8729 gdb_assert (reg != NULL);
8730
8731 /* Always prefer to store registers using the 'P' packet if
8732 possible; we often change only a small number of registers.
8733 Sometimes we change a larger number; we'd need help from a
8734 higher layer to know to use 'G'. */
8735 if (store_register_using_P (regcache, reg))
8736 return;
8737
8738 /* For now, don't complain if we have no way to write the
8739 register. GDB loses track of unavailable registers too
8740 easily. Some day, this may be an error. We don't have
8741 any way to read the register, either... */
8742 if (!reg->in_g_packet)
8743 return;
8744
8745 store_registers_using_G (regcache);
8746 return;
8747 }
8748
8749 store_registers_using_G (regcache);
8750
8751 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8752 if (!rsa->regs[i].in_g_packet)
8753 if (!store_register_using_P (regcache, &rsa->regs[i]))
8754 /* See above for why we do not issue an error here. */
8755 continue;
8756 }
8757 \f
8758
8759 /* Return the number of hex digits in num. */
8760
8761 static int
8762 hexnumlen (ULONGEST num)
8763 {
8764 int i;
8765
8766 for (i = 0; num != 0; i++)
8767 num >>= 4;
8768
8769 return std::max (i, 1);
8770 }
8771
8772 /* Set BUF to the minimum number of hex digits representing NUM. */
8773
8774 static int
8775 hexnumstr (char *buf, ULONGEST num)
8776 {
8777 int len = hexnumlen (num);
8778
8779 return hexnumnstr (buf, num, len);
8780 }
8781
8782
8783 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8784
8785 static int
8786 hexnumnstr (char *buf, ULONGEST num, int width)
8787 {
8788 int i;
8789
8790 buf[width] = '\0';
8791
8792 for (i = width - 1; i >= 0; i--)
8793 {
8794 buf[i] = "0123456789abcdef"[(num & 0xf)];
8795 num >>= 4;
8796 }
8797
8798 return width;
8799 }
8800
8801 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8802
8803 static CORE_ADDR
8804 remote_address_masked (CORE_ADDR addr)
8805 {
8806 unsigned int address_size = remote_address_size;
8807
8808 /* If "remoteaddresssize" was not set, default to target address size. */
8809 if (!address_size)
8810 address_size = gdbarch_addr_bit (target_gdbarch ());
8811
8812 if (address_size > 0
8813 && address_size < (sizeof (ULONGEST) * 8))
8814 {
8815 /* Only create a mask when that mask can safely be constructed
8816 in a ULONGEST variable. */
8817 ULONGEST mask = 1;
8818
8819 mask = (mask << address_size) - 1;
8820 addr &= mask;
8821 }
8822 return addr;
8823 }
8824
8825 /* Determine whether the remote target supports binary downloading.
8826 This is accomplished by sending a no-op memory write of zero length
8827 to the target at the specified address. It does not suffice to send
8828 the whole packet, since many stubs strip the eighth bit and
8829 subsequently compute a wrong checksum, which causes real havoc with
8830 remote_write_bytes.
8831
8832 NOTE: This can still lose if the serial line is not eight-bit
8833 clean. In cases like this, the user should clear "remote
8834 X-packet". */
8835
8836 void
8837 remote_target::check_binary_download (CORE_ADDR addr)
8838 {
8839 struct remote_state *rs = get_remote_state ();
8840
8841 switch (packet_support (PACKET_X))
8842 {
8843 case PACKET_DISABLE:
8844 break;
8845 case PACKET_ENABLE:
8846 break;
8847 case PACKET_SUPPORT_UNKNOWN:
8848 {
8849 char *p;
8850
8851 p = rs->buf.data ();
8852 *p++ = 'X';
8853 p += hexnumstr (p, (ULONGEST) addr);
8854 *p++ = ',';
8855 p += hexnumstr (p, (ULONGEST) 0);
8856 *p++ = ':';
8857 *p = '\0';
8858
8859 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8860 getpkt (&rs->buf, 0);
8861
8862 if (rs->buf[0] == '\0')
8863 {
8864 remote_debug_printf ("binary downloading NOT supported by target");
8865 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8866 }
8867 else
8868 {
8869 remote_debug_printf ("binary downloading supported by target");
8870 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8871 }
8872 break;
8873 }
8874 }
8875 }
8876
8877 /* Helper function to resize the payload in order to try to get a good
8878 alignment. We try to write an amount of data such that the next write will
8879 start on an address aligned on REMOTE_ALIGN_WRITES. */
8880
8881 static int
8882 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8883 {
8884 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8885 }
8886
8887 /* Write memory data directly to the remote machine.
8888 This does not inform the data cache; the data cache uses this.
8889 HEADER is the starting part of the packet.
8890 MEMADDR is the address in the remote memory space.
8891 MYADDR is the address of the buffer in our space.
8892 LEN_UNITS is the number of addressable units to write.
8893 UNIT_SIZE is the length in bytes of an addressable unit.
8894 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8895 should send data as binary ('X'), or hex-encoded ('M').
8896
8897 The function creates packet of the form
8898 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8899
8900 where encoding of <DATA> is terminated by PACKET_FORMAT.
8901
8902 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8903 are omitted.
8904
8905 Return the transferred status, error or OK (an
8906 'enum target_xfer_status' value). Save the number of addressable units
8907 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8908
8909 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8910 exchange between gdb and the stub could look like (?? in place of the
8911 checksum):
8912
8913 -> $m1000,4#??
8914 <- aaaabbbbccccdddd
8915
8916 -> $M1000,3:eeeeffffeeee#??
8917 <- OK
8918
8919 -> $m1000,4#??
8920 <- eeeeffffeeeedddd */
8921
8922 target_xfer_status
8923 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8924 const gdb_byte *myaddr,
8925 ULONGEST len_units,
8926 int unit_size,
8927 ULONGEST *xfered_len_units,
8928 char packet_format, int use_length)
8929 {
8930 struct remote_state *rs = get_remote_state ();
8931 char *p;
8932 char *plen = NULL;
8933 int plenlen = 0;
8934 int todo_units;
8935 int units_written;
8936 int payload_capacity_bytes;
8937 int payload_length_bytes;
8938
8939 if (packet_format != 'X' && packet_format != 'M')
8940 internal_error (__FILE__, __LINE__,
8941 _("remote_write_bytes_aux: bad packet format"));
8942
8943 if (len_units == 0)
8944 return TARGET_XFER_EOF;
8945
8946 payload_capacity_bytes = get_memory_write_packet_size ();
8947
8948 /* The packet buffer will be large enough for the payload;
8949 get_memory_packet_size ensures this. */
8950 rs->buf[0] = '\0';
8951
8952 /* Compute the size of the actual payload by subtracting out the
8953 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8954
8955 payload_capacity_bytes -= strlen ("$,:#NN");
8956 if (!use_length)
8957 /* The comma won't be used. */
8958 payload_capacity_bytes += 1;
8959 payload_capacity_bytes -= strlen (header);
8960 payload_capacity_bytes -= hexnumlen (memaddr);
8961
8962 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8963
8964 strcat (rs->buf.data (), header);
8965 p = rs->buf.data () + strlen (header);
8966
8967 /* Compute a best guess of the number of bytes actually transfered. */
8968 if (packet_format == 'X')
8969 {
8970 /* Best guess at number of bytes that will fit. */
8971 todo_units = std::min (len_units,
8972 (ULONGEST) payload_capacity_bytes / unit_size);
8973 if (use_length)
8974 payload_capacity_bytes -= hexnumlen (todo_units);
8975 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8976 }
8977 else
8978 {
8979 /* Number of bytes that will fit. */
8980 todo_units
8981 = std::min (len_units,
8982 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8983 if (use_length)
8984 payload_capacity_bytes -= hexnumlen (todo_units);
8985 todo_units = std::min (todo_units,
8986 (payload_capacity_bytes / unit_size) / 2);
8987 }
8988
8989 if (todo_units <= 0)
8990 internal_error (__FILE__, __LINE__,
8991 _("minimum packet size too small to write data"));
8992
8993 /* If we already need another packet, then try to align the end
8994 of this packet to a useful boundary. */
8995 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8996 todo_units = align_for_efficient_write (todo_units, memaddr);
8997
8998 /* Append "<memaddr>". */
8999 memaddr = remote_address_masked (memaddr);
9000 p += hexnumstr (p, (ULONGEST) memaddr);
9001
9002 if (use_length)
9003 {
9004 /* Append ",". */
9005 *p++ = ',';
9006
9007 /* Append the length and retain its location and size. It may need to be
9008 adjusted once the packet body has been created. */
9009 plen = p;
9010 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9011 p += plenlen;
9012 }
9013
9014 /* Append ":". */
9015 *p++ = ':';
9016 *p = '\0';
9017
9018 /* Append the packet body. */
9019 if (packet_format == 'X')
9020 {
9021 /* Binary mode. Send target system values byte by byte, in
9022 increasing byte addresses. Only escape certain critical
9023 characters. */
9024 payload_length_bytes =
9025 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9026 &units_written, payload_capacity_bytes);
9027
9028 /* If not all TODO units fit, then we'll need another packet. Make
9029 a second try to keep the end of the packet aligned. Don't do
9030 this if the packet is tiny. */
9031 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9032 {
9033 int new_todo_units;
9034
9035 new_todo_units = align_for_efficient_write (units_written, memaddr);
9036
9037 if (new_todo_units != units_written)
9038 payload_length_bytes =
9039 remote_escape_output (myaddr, new_todo_units, unit_size,
9040 (gdb_byte *) p, &units_written,
9041 payload_capacity_bytes);
9042 }
9043
9044 p += payload_length_bytes;
9045 if (use_length && units_written < todo_units)
9046 {
9047 /* Escape chars have filled up the buffer prematurely,
9048 and we have actually sent fewer units than planned.
9049 Fix-up the length field of the packet. Use the same
9050 number of characters as before. */
9051 plen += hexnumnstr (plen, (ULONGEST) units_written,
9052 plenlen);
9053 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9054 }
9055 }
9056 else
9057 {
9058 /* Normal mode: Send target system values byte by byte, in
9059 increasing byte addresses. Each byte is encoded as a two hex
9060 value. */
9061 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9062 units_written = todo_units;
9063 }
9064
9065 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9066 getpkt (&rs->buf, 0);
9067
9068 if (rs->buf[0] == 'E')
9069 return TARGET_XFER_E_IO;
9070
9071 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9072 send fewer units than we'd planned. */
9073 *xfered_len_units = (ULONGEST) units_written;
9074 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9075 }
9076
9077 /* Write memory data directly to the remote machine.
9078 This does not inform the data cache; the data cache uses this.
9079 MEMADDR is the address in the remote memory space.
9080 MYADDR is the address of the buffer in our space.
9081 LEN is the number of bytes.
9082
9083 Return the transferred status, error or OK (an
9084 'enum target_xfer_status' value). Save the number of bytes
9085 transferred in *XFERED_LEN. Only transfer a single packet. */
9086
9087 target_xfer_status
9088 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9089 ULONGEST len, int unit_size,
9090 ULONGEST *xfered_len)
9091 {
9092 const char *packet_format = NULL;
9093
9094 /* Check whether the target supports binary download. */
9095 check_binary_download (memaddr);
9096
9097 switch (packet_support (PACKET_X))
9098 {
9099 case PACKET_ENABLE:
9100 packet_format = "X";
9101 break;
9102 case PACKET_DISABLE:
9103 packet_format = "M";
9104 break;
9105 case PACKET_SUPPORT_UNKNOWN:
9106 internal_error (__FILE__, __LINE__,
9107 _("remote_write_bytes: bad internal state"));
9108 default:
9109 internal_error (__FILE__, __LINE__, _("bad switch"));
9110 }
9111
9112 return remote_write_bytes_aux (packet_format,
9113 memaddr, myaddr, len, unit_size, xfered_len,
9114 packet_format[0], 1);
9115 }
9116
9117 /* Read memory data directly from the remote machine.
9118 This does not use the data cache; the data cache uses this.
9119 MEMADDR is the address in the remote memory space.
9120 MYADDR is the address of the buffer in our space.
9121 LEN_UNITS is the number of addressable memory units to read..
9122 UNIT_SIZE is the length in bytes of an addressable unit.
9123
9124 Return the transferred status, error or OK (an
9125 'enum target_xfer_status' value). Save the number of bytes
9126 transferred in *XFERED_LEN_UNITS.
9127
9128 See the comment of remote_write_bytes_aux for an example of
9129 memory read/write exchange between gdb and the stub. */
9130
9131 target_xfer_status
9132 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9133 ULONGEST len_units,
9134 int unit_size, ULONGEST *xfered_len_units)
9135 {
9136 struct remote_state *rs = get_remote_state ();
9137 int buf_size_bytes; /* Max size of packet output buffer. */
9138 char *p;
9139 int todo_units;
9140 int decoded_bytes;
9141
9142 buf_size_bytes = get_memory_read_packet_size ();
9143 /* The packet buffer will be large enough for the payload;
9144 get_memory_packet_size ensures this. */
9145
9146 /* Number of units that will fit. */
9147 todo_units = std::min (len_units,
9148 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9149
9150 /* Construct "m"<memaddr>","<len>". */
9151 memaddr = remote_address_masked (memaddr);
9152 p = rs->buf.data ();
9153 *p++ = 'm';
9154 p += hexnumstr (p, (ULONGEST) memaddr);
9155 *p++ = ',';
9156 p += hexnumstr (p, (ULONGEST) todo_units);
9157 *p = '\0';
9158 putpkt (rs->buf);
9159 getpkt (&rs->buf, 0);
9160 if (rs->buf[0] == 'E'
9161 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9162 && rs->buf[3] == '\0')
9163 return TARGET_XFER_E_IO;
9164 /* Reply describes memory byte by byte, each byte encoded as two hex
9165 characters. */
9166 p = rs->buf.data ();
9167 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9168 /* Return what we have. Let higher layers handle partial reads. */
9169 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9170 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9171 }
9172
9173 /* Using the set of read-only target sections of remote, read live
9174 read-only memory.
9175
9176 For interface/parameters/return description see target.h,
9177 to_xfer_partial. */
9178
9179 target_xfer_status
9180 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9181 ULONGEST memaddr,
9182 ULONGEST len,
9183 int unit_size,
9184 ULONGEST *xfered_len)
9185 {
9186 const struct target_section *secp;
9187
9188 secp = target_section_by_addr (this, memaddr);
9189 if (secp != NULL
9190 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9191 {
9192 ULONGEST memend = memaddr + len;
9193
9194 const target_section_table *table = target_get_section_table (this);
9195 for (const target_section &p : *table)
9196 {
9197 if (memaddr >= p.addr)
9198 {
9199 if (memend <= p.endaddr)
9200 {
9201 /* Entire transfer is within this section. */
9202 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9203 xfered_len);
9204 }
9205 else if (memaddr >= p.endaddr)
9206 {
9207 /* This section ends before the transfer starts. */
9208 continue;
9209 }
9210 else
9211 {
9212 /* This section overlaps the transfer. Just do half. */
9213 len = p.endaddr - memaddr;
9214 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9215 xfered_len);
9216 }
9217 }
9218 }
9219 }
9220
9221 return TARGET_XFER_EOF;
9222 }
9223
9224 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9225 first if the requested memory is unavailable in traceframe.
9226 Otherwise, fall back to remote_read_bytes_1. */
9227
9228 target_xfer_status
9229 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9230 gdb_byte *myaddr, ULONGEST len, int unit_size,
9231 ULONGEST *xfered_len)
9232 {
9233 if (len == 0)
9234 return TARGET_XFER_EOF;
9235
9236 if (get_traceframe_number () != -1)
9237 {
9238 std::vector<mem_range> available;
9239
9240 /* If we fail to get the set of available memory, then the
9241 target does not support querying traceframe info, and so we
9242 attempt reading from the traceframe anyway (assuming the
9243 target implements the old QTro packet then). */
9244 if (traceframe_available_memory (&available, memaddr, len))
9245 {
9246 if (available.empty () || available[0].start != memaddr)
9247 {
9248 enum target_xfer_status res;
9249
9250 /* Don't read into the traceframe's available
9251 memory. */
9252 if (!available.empty ())
9253 {
9254 LONGEST oldlen = len;
9255
9256 len = available[0].start - memaddr;
9257 gdb_assert (len <= oldlen);
9258 }
9259
9260 /* This goes through the topmost target again. */
9261 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9262 len, unit_size, xfered_len);
9263 if (res == TARGET_XFER_OK)
9264 return TARGET_XFER_OK;
9265 else
9266 {
9267 /* No use trying further, we know some memory starting
9268 at MEMADDR isn't available. */
9269 *xfered_len = len;
9270 return (*xfered_len != 0) ?
9271 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9272 }
9273 }
9274
9275 /* Don't try to read more than how much is available, in
9276 case the target implements the deprecated QTro packet to
9277 cater for older GDBs (the target's knowledge of read-only
9278 sections may be outdated by now). */
9279 len = available[0].length;
9280 }
9281 }
9282
9283 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9284 }
9285
9286 \f
9287
9288 /* Sends a packet with content determined by the printf format string
9289 FORMAT and the remaining arguments, then gets the reply. Returns
9290 whether the packet was a success, a failure, or unknown. */
9291
9292 packet_result
9293 remote_target::remote_send_printf (const char *format, ...)
9294 {
9295 struct remote_state *rs = get_remote_state ();
9296 int max_size = get_remote_packet_size ();
9297 va_list ap;
9298
9299 va_start (ap, format);
9300
9301 rs->buf[0] = '\0';
9302 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9303
9304 va_end (ap);
9305
9306 if (size >= max_size)
9307 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9308
9309 if (putpkt (rs->buf) < 0)
9310 error (_("Communication problem with target."));
9311
9312 rs->buf[0] = '\0';
9313 getpkt (&rs->buf, 0);
9314
9315 return packet_check_result (rs->buf);
9316 }
9317
9318 /* Flash writing can take quite some time. We'll set
9319 effectively infinite timeout for flash operations.
9320 In future, we'll need to decide on a better approach. */
9321 static const int remote_flash_timeout = 1000;
9322
9323 void
9324 remote_target::flash_erase (ULONGEST address, LONGEST length)
9325 {
9326 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9327 enum packet_result ret;
9328 scoped_restore restore_timeout
9329 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9330
9331 ret = remote_send_printf ("vFlashErase:%s,%s",
9332 phex (address, addr_size),
9333 phex (length, 4));
9334 switch (ret)
9335 {
9336 case PACKET_UNKNOWN:
9337 error (_("Remote target does not support flash erase"));
9338 case PACKET_ERROR:
9339 error (_("Error erasing flash with vFlashErase packet"));
9340 default:
9341 break;
9342 }
9343 }
9344
9345 target_xfer_status
9346 remote_target::remote_flash_write (ULONGEST address,
9347 ULONGEST length, ULONGEST *xfered_len,
9348 const gdb_byte *data)
9349 {
9350 scoped_restore restore_timeout
9351 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9352 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9353 xfered_len,'X', 0);
9354 }
9355
9356 void
9357 remote_target::flash_done ()
9358 {
9359 int ret;
9360
9361 scoped_restore restore_timeout
9362 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9363
9364 ret = remote_send_printf ("vFlashDone");
9365
9366 switch (ret)
9367 {
9368 case PACKET_UNKNOWN:
9369 error (_("Remote target does not support vFlashDone"));
9370 case PACKET_ERROR:
9371 error (_("Error finishing flash operation"));
9372 default:
9373 break;
9374 }
9375 }
9376
9377 void
9378 remote_target::files_info ()
9379 {
9380 puts_filtered ("Debugging a target over a serial line.\n");
9381 }
9382 \f
9383 /* Stuff for dealing with the packets which are part of this protocol.
9384 See comment at top of file for details. */
9385
9386 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9387 error to higher layers. Called when a serial error is detected.
9388 The exception message is STRING, followed by a colon and a blank,
9389 the system error message for errno at function entry and final dot
9390 for output compatibility with throw_perror_with_name. */
9391
9392 static void
9393 unpush_and_perror (remote_target *target, const char *string)
9394 {
9395 int saved_errno = errno;
9396
9397 remote_unpush_target (target);
9398 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9399 safe_strerror (saved_errno));
9400 }
9401
9402 /* Read a single character from the remote end. The current quit
9403 handler is overridden to avoid quitting in the middle of packet
9404 sequence, as that would break communication with the remote server.
9405 See remote_serial_quit_handler for more detail. */
9406
9407 int
9408 remote_target::readchar (int timeout)
9409 {
9410 int ch;
9411 struct remote_state *rs = get_remote_state ();
9412
9413 {
9414 scoped_restore restore_quit_target
9415 = make_scoped_restore (&curr_quit_handler_target, this);
9416 scoped_restore restore_quit
9417 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9418
9419 rs->got_ctrlc_during_io = 0;
9420
9421 ch = serial_readchar (rs->remote_desc, timeout);
9422
9423 if (rs->got_ctrlc_during_io)
9424 set_quit_flag ();
9425 }
9426
9427 if (ch >= 0)
9428 return ch;
9429
9430 switch ((enum serial_rc) ch)
9431 {
9432 case SERIAL_EOF:
9433 remote_unpush_target (this);
9434 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9435 /* no return */
9436 case SERIAL_ERROR:
9437 unpush_and_perror (this, _("Remote communication error. "
9438 "Target disconnected."));
9439 /* no return */
9440 case SERIAL_TIMEOUT:
9441 break;
9442 }
9443 return ch;
9444 }
9445
9446 /* Wrapper for serial_write that closes the target and throws if
9447 writing fails. The current quit handler is overridden to avoid
9448 quitting in the middle of packet sequence, as that would break
9449 communication with the remote server. See
9450 remote_serial_quit_handler for more detail. */
9451
9452 void
9453 remote_target::remote_serial_write (const char *str, int len)
9454 {
9455 struct remote_state *rs = get_remote_state ();
9456
9457 scoped_restore restore_quit_target
9458 = make_scoped_restore (&curr_quit_handler_target, this);
9459 scoped_restore restore_quit
9460 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9461
9462 rs->got_ctrlc_during_io = 0;
9463
9464 if (serial_write (rs->remote_desc, str, len))
9465 {
9466 unpush_and_perror (this, _("Remote communication error. "
9467 "Target disconnected."));
9468 }
9469
9470 if (rs->got_ctrlc_during_io)
9471 set_quit_flag ();
9472 }
9473
9474 /* Return a string representing an escaped version of BUF, of len N.
9475 E.g. \n is converted to \\n, \t to \\t, etc. */
9476
9477 static std::string
9478 escape_buffer (const char *buf, int n)
9479 {
9480 string_file stb;
9481
9482 stb.putstrn (buf, n, '\\');
9483 return std::move (stb.string ());
9484 }
9485
9486 /* Display a null-terminated packet on stdout, for debugging, using C
9487 string notation. */
9488
9489 static void
9490 print_packet (const char *buf)
9491 {
9492 puts_filtered ("\"");
9493 fputstr_filtered (buf, '"', gdb_stdout);
9494 puts_filtered ("\"");
9495 }
9496
9497 int
9498 remote_target::putpkt (const char *buf)
9499 {
9500 return putpkt_binary (buf, strlen (buf));
9501 }
9502
9503 /* Wrapper around remote_target::putpkt to avoid exporting
9504 remote_target. */
9505
9506 int
9507 putpkt (remote_target *remote, const char *buf)
9508 {
9509 return remote->putpkt (buf);
9510 }
9511
9512 /* Send a packet to the remote machine, with error checking. The data
9513 of the packet is in BUF. The string in BUF can be at most
9514 get_remote_packet_size () - 5 to account for the $, # and checksum,
9515 and for a possible /0 if we are debugging (remote_debug) and want
9516 to print the sent packet as a string. */
9517
9518 int
9519 remote_target::putpkt_binary (const char *buf, int cnt)
9520 {
9521 struct remote_state *rs = get_remote_state ();
9522 int i;
9523 unsigned char csum = 0;
9524 gdb::def_vector<char> data (cnt + 6);
9525 char *buf2 = data.data ();
9526
9527 int ch;
9528 int tcount = 0;
9529 char *p;
9530
9531 /* Catch cases like trying to read memory or listing threads while
9532 we're waiting for a stop reply. The remote server wouldn't be
9533 ready to handle this request, so we'd hang and timeout. We don't
9534 have to worry about this in synchronous mode, because in that
9535 case it's not possible to issue a command while the target is
9536 running. This is not a problem in non-stop mode, because in that
9537 case, the stub is always ready to process serial input. */
9538 if (!target_is_non_stop_p ()
9539 && target_is_async_p ()
9540 && rs->waiting_for_stop_reply)
9541 {
9542 error (_("Cannot execute this command while the target is running.\n"
9543 "Use the \"interrupt\" command to stop the target\n"
9544 "and then try again."));
9545 }
9546
9547 /* We're sending out a new packet. Make sure we don't look at a
9548 stale cached response. */
9549 rs->cached_wait_status = 0;
9550
9551 /* Copy the packet into buffer BUF2, encapsulating it
9552 and giving it a checksum. */
9553
9554 p = buf2;
9555 *p++ = '$';
9556
9557 for (i = 0; i < cnt; i++)
9558 {
9559 csum += buf[i];
9560 *p++ = buf[i];
9561 }
9562 *p++ = '#';
9563 *p++ = tohex ((csum >> 4) & 0xf);
9564 *p++ = tohex (csum & 0xf);
9565
9566 /* Send it over and over until we get a positive ack. */
9567
9568 while (1)
9569 {
9570 if (remote_debug)
9571 {
9572 *p = '\0';
9573
9574 int len = (int) (p - buf2);
9575 int max_chars;
9576
9577 if (remote_packet_max_chars < 0)
9578 max_chars = len;
9579 else
9580 max_chars = remote_packet_max_chars;
9581
9582 std::string str
9583 = escape_buffer (buf2, std::min (len, max_chars));
9584
9585 if (len > max_chars)
9586 remote_debug_printf_nofunc
9587 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9588 len - max_chars);
9589 else
9590 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9591 }
9592 remote_serial_write (buf2, p - buf2);
9593
9594 /* If this is a no acks version of the remote protocol, send the
9595 packet and move on. */
9596 if (rs->noack_mode)
9597 break;
9598
9599 /* Read until either a timeout occurs (-2) or '+' is read.
9600 Handle any notification that arrives in the mean time. */
9601 while (1)
9602 {
9603 ch = readchar (remote_timeout);
9604
9605 switch (ch)
9606 {
9607 case '+':
9608 remote_debug_printf_nofunc ("Received Ack");
9609 return 1;
9610 case '-':
9611 remote_debug_printf_nofunc ("Received Nak");
9612 /* FALLTHROUGH */
9613 case SERIAL_TIMEOUT:
9614 tcount++;
9615 if (tcount > 3)
9616 return 0;
9617 break; /* Retransmit buffer. */
9618 case '$':
9619 {
9620 remote_debug_printf ("Packet instead of Ack, ignoring it");
9621 /* It's probably an old response sent because an ACK
9622 was lost. Gobble up the packet and ack it so it
9623 doesn't get retransmitted when we resend this
9624 packet. */
9625 skip_frame ();
9626 remote_serial_write ("+", 1);
9627 continue; /* Now, go look for +. */
9628 }
9629
9630 case '%':
9631 {
9632 int val;
9633
9634 /* If we got a notification, handle it, and go back to looking
9635 for an ack. */
9636 /* We've found the start of a notification. Now
9637 collect the data. */
9638 val = read_frame (&rs->buf);
9639 if (val >= 0)
9640 {
9641 remote_debug_printf_nofunc
9642 (" Notification received: %s",
9643 escape_buffer (rs->buf.data (), val).c_str ());
9644
9645 handle_notification (rs->notif_state, rs->buf.data ());
9646 /* We're in sync now, rewait for the ack. */
9647 tcount = 0;
9648 }
9649 else
9650 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9651 rs->buf.data ());
9652 continue;
9653 }
9654 /* fall-through */
9655 default:
9656 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9657 rs->buf.data ());
9658 continue;
9659 }
9660 break; /* Here to retransmit. */
9661 }
9662
9663 #if 0
9664 /* This is wrong. If doing a long backtrace, the user should be
9665 able to get out next time we call QUIT, without anything as
9666 violent as interrupt_query. If we want to provide a way out of
9667 here without getting to the next QUIT, it should be based on
9668 hitting ^C twice as in remote_wait. */
9669 if (quit_flag)
9670 {
9671 quit_flag = 0;
9672 interrupt_query ();
9673 }
9674 #endif
9675 }
9676
9677 return 0;
9678 }
9679
9680 /* Come here after finding the start of a frame when we expected an
9681 ack. Do our best to discard the rest of this packet. */
9682
9683 void
9684 remote_target::skip_frame ()
9685 {
9686 int c;
9687
9688 while (1)
9689 {
9690 c = readchar (remote_timeout);
9691 switch (c)
9692 {
9693 case SERIAL_TIMEOUT:
9694 /* Nothing we can do. */
9695 return;
9696 case '#':
9697 /* Discard the two bytes of checksum and stop. */
9698 c = readchar (remote_timeout);
9699 if (c >= 0)
9700 c = readchar (remote_timeout);
9701
9702 return;
9703 case '*': /* Run length encoding. */
9704 /* Discard the repeat count. */
9705 c = readchar (remote_timeout);
9706 if (c < 0)
9707 return;
9708 break;
9709 default:
9710 /* A regular character. */
9711 break;
9712 }
9713 }
9714 }
9715
9716 /* Come here after finding the start of the frame. Collect the rest
9717 into *BUF, verifying the checksum, length, and handling run-length
9718 compression. NUL terminate the buffer. If there is not enough room,
9719 expand *BUF.
9720
9721 Returns -1 on error, number of characters in buffer (ignoring the
9722 trailing NULL) on success. (could be extended to return one of the
9723 SERIAL status indications). */
9724
9725 long
9726 remote_target::read_frame (gdb::char_vector *buf_p)
9727 {
9728 unsigned char csum;
9729 long bc;
9730 int c;
9731 char *buf = buf_p->data ();
9732 struct remote_state *rs = get_remote_state ();
9733
9734 csum = 0;
9735 bc = 0;
9736
9737 while (1)
9738 {
9739 c = readchar (remote_timeout);
9740 switch (c)
9741 {
9742 case SERIAL_TIMEOUT:
9743 remote_debug_printf ("Timeout in mid-packet, retrying");
9744 return -1;
9745
9746 case '$':
9747 remote_debug_printf ("Saw new packet start in middle of old one");
9748 return -1; /* Start a new packet, count retries. */
9749
9750 case '#':
9751 {
9752 unsigned char pktcsum;
9753 int check_0 = 0;
9754 int check_1 = 0;
9755
9756 buf[bc] = '\0';
9757
9758 check_0 = readchar (remote_timeout);
9759 if (check_0 >= 0)
9760 check_1 = readchar (remote_timeout);
9761
9762 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9763 {
9764 remote_debug_printf ("Timeout in checksum, retrying");
9765 return -1;
9766 }
9767 else if (check_0 < 0 || check_1 < 0)
9768 {
9769 remote_debug_printf ("Communication error in checksum");
9770 return -1;
9771 }
9772
9773 /* Don't recompute the checksum; with no ack packets we
9774 don't have any way to indicate a packet retransmission
9775 is necessary. */
9776 if (rs->noack_mode)
9777 return bc;
9778
9779 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9780 if (csum == pktcsum)
9781 return bc;
9782
9783 remote_debug_printf
9784 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9785 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9786
9787 /* Number of characters in buffer ignoring trailing
9788 NULL. */
9789 return -1;
9790 }
9791 case '*': /* Run length encoding. */
9792 {
9793 int repeat;
9794
9795 csum += c;
9796 c = readchar (remote_timeout);
9797 csum += c;
9798 repeat = c - ' ' + 3; /* Compute repeat count. */
9799
9800 /* The character before ``*'' is repeated. */
9801
9802 if (repeat > 0 && repeat <= 255 && bc > 0)
9803 {
9804 if (bc + repeat - 1 >= buf_p->size () - 1)
9805 {
9806 /* Make some more room in the buffer. */
9807 buf_p->resize (buf_p->size () + repeat);
9808 buf = buf_p->data ();
9809 }
9810
9811 memset (&buf[bc], buf[bc - 1], repeat);
9812 bc += repeat;
9813 continue;
9814 }
9815
9816 buf[bc] = '\0';
9817 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9818 return -1;
9819 }
9820 default:
9821 if (bc >= buf_p->size () - 1)
9822 {
9823 /* Make some more room in the buffer. */
9824 buf_p->resize (buf_p->size () * 2);
9825 buf = buf_p->data ();
9826 }
9827
9828 buf[bc++] = c;
9829 csum += c;
9830 continue;
9831 }
9832 }
9833 }
9834
9835 /* Set this to the maximum number of seconds to wait instead of waiting forever
9836 in target_wait(). If this timer times out, then it generates an error and
9837 the command is aborted. This replaces most of the need for timeouts in the
9838 GDB test suite, and makes it possible to distinguish between a hung target
9839 and one with slow communications. */
9840
9841 static int watchdog = 0;
9842 static void
9843 show_watchdog (struct ui_file *file, int from_tty,
9844 struct cmd_list_element *c, const char *value)
9845 {
9846 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9847 }
9848
9849 /* Read a packet from the remote machine, with error checking, and
9850 store it in *BUF. Resize *BUF if necessary to hold the result. If
9851 FOREVER, wait forever rather than timing out; this is used (in
9852 synchronous mode) to wait for a target that is is executing user
9853 code to stop. */
9854 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9855 don't have to change all the calls to getpkt to deal with the
9856 return value, because at the moment I don't know what the right
9857 thing to do it for those. */
9858
9859 void
9860 remote_target::getpkt (gdb::char_vector *buf, int forever)
9861 {
9862 getpkt_sane (buf, forever);
9863 }
9864
9865
9866 /* Read a packet from the remote machine, with error checking, and
9867 store it in *BUF. Resize *BUF if necessary to hold the result. If
9868 FOREVER, wait forever rather than timing out; this is used (in
9869 synchronous mode) to wait for a target that is is executing user
9870 code to stop. If FOREVER == 0, this function is allowed to time
9871 out gracefully and return an indication of this to the caller.
9872 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9873 consider receiving a notification enough reason to return to the
9874 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9875 holds a notification or not (a regular packet). */
9876
9877 int
9878 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9879 int forever, int expecting_notif,
9880 int *is_notif)
9881 {
9882 struct remote_state *rs = get_remote_state ();
9883 int c;
9884 int tries;
9885 int timeout;
9886 int val = -1;
9887
9888 /* We're reading a new response. Make sure we don't look at a
9889 previously cached response. */
9890 rs->cached_wait_status = 0;
9891
9892 strcpy (buf->data (), "timeout");
9893
9894 if (forever)
9895 timeout = watchdog > 0 ? watchdog : -1;
9896 else if (expecting_notif)
9897 timeout = 0; /* There should already be a char in the buffer. If
9898 not, bail out. */
9899 else
9900 timeout = remote_timeout;
9901
9902 #define MAX_TRIES 3
9903
9904 /* Process any number of notifications, and then return when
9905 we get a packet. */
9906 for (;;)
9907 {
9908 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9909 times. */
9910 for (tries = 1; tries <= MAX_TRIES; tries++)
9911 {
9912 /* This can loop forever if the remote side sends us
9913 characters continuously, but if it pauses, we'll get
9914 SERIAL_TIMEOUT from readchar because of timeout. Then
9915 we'll count that as a retry.
9916
9917 Note that even when forever is set, we will only wait
9918 forever prior to the start of a packet. After that, we
9919 expect characters to arrive at a brisk pace. They should
9920 show up within remote_timeout intervals. */
9921 do
9922 c = readchar (timeout);
9923 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9924
9925 if (c == SERIAL_TIMEOUT)
9926 {
9927 if (expecting_notif)
9928 return -1; /* Don't complain, it's normal to not get
9929 anything in this case. */
9930
9931 if (forever) /* Watchdog went off? Kill the target. */
9932 {
9933 remote_unpush_target (this);
9934 throw_error (TARGET_CLOSE_ERROR,
9935 _("Watchdog timeout has expired. "
9936 "Target detached."));
9937 }
9938
9939 remote_debug_printf ("Timed out.");
9940 }
9941 else
9942 {
9943 /* We've found the start of a packet or notification.
9944 Now collect the data. */
9945 val = read_frame (buf);
9946 if (val >= 0)
9947 break;
9948 }
9949
9950 remote_serial_write ("-", 1);
9951 }
9952
9953 if (tries > MAX_TRIES)
9954 {
9955 /* We have tried hard enough, and just can't receive the
9956 packet/notification. Give up. */
9957 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9958
9959 /* Skip the ack char if we're in no-ack mode. */
9960 if (!rs->noack_mode)
9961 remote_serial_write ("+", 1);
9962 return -1;
9963 }
9964
9965 /* If we got an ordinary packet, return that to our caller. */
9966 if (c == '$')
9967 {
9968 if (remote_debug)
9969 {
9970 int max_chars;
9971
9972 if (remote_packet_max_chars < 0)
9973 max_chars = val;
9974 else
9975 max_chars = remote_packet_max_chars;
9976
9977 std::string str
9978 = escape_buffer (buf->data (),
9979 std::min (val, max_chars));
9980
9981 if (val > max_chars)
9982 remote_debug_printf_nofunc
9983 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9984 val - max_chars);
9985 else
9986 remote_debug_printf_nofunc ("Packet received: %s",
9987 str.c_str ());
9988 }
9989
9990 /* Skip the ack char if we're in no-ack mode. */
9991 if (!rs->noack_mode)
9992 remote_serial_write ("+", 1);
9993 if (is_notif != NULL)
9994 *is_notif = 0;
9995 return val;
9996 }
9997
9998 /* If we got a notification, handle it, and go back to looking
9999 for a packet. */
10000 else
10001 {
10002 gdb_assert (c == '%');
10003
10004 remote_debug_printf_nofunc
10005 (" Notification received: %s",
10006 escape_buffer (buf->data (), val).c_str ());
10007
10008 if (is_notif != NULL)
10009 *is_notif = 1;
10010
10011 handle_notification (rs->notif_state, buf->data ());
10012
10013 /* Notifications require no acknowledgement. */
10014
10015 if (expecting_notif)
10016 return val;
10017 }
10018 }
10019 }
10020
10021 int
10022 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10023 {
10024 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10025 }
10026
10027 int
10028 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10029 int *is_notif)
10030 {
10031 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10032 }
10033
10034 /* Kill any new fork children of process PID that haven't been
10035 processed by follow_fork. */
10036
10037 void
10038 remote_target::kill_new_fork_children (int pid)
10039 {
10040 remote_state *rs = get_remote_state ();
10041 struct notif_client *notif = &notif_client_stop;
10042
10043 /* Kill the fork child threads of any threads in process PID
10044 that are stopped at a fork event. */
10045 for (thread_info *thread : all_non_exited_threads (this))
10046 {
10047 struct target_waitstatus *ws = &thread->pending_follow;
10048
10049 if (is_pending_fork_parent (ws, pid, thread->ptid))
10050 {
10051 int child_pid = ws->value.related_pid.pid ();
10052 int res;
10053
10054 res = remote_vkill (child_pid);
10055 if (res != 0)
10056 error (_("Can't kill fork child process %d"), child_pid);
10057 }
10058 }
10059
10060 /* Check for any pending fork events (not reported or processed yet)
10061 in process PID and kill those fork child threads as well. */
10062 remote_notif_get_pending_events (notif);
10063 for (auto &event : rs->stop_reply_queue)
10064 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10065 {
10066 int child_pid = event->ws.value.related_pid.pid ();
10067 int res;
10068
10069 res = remote_vkill (child_pid);
10070 if (res != 0)
10071 error (_("Can't kill fork child process %d"), child_pid);
10072 }
10073 }
10074
10075 \f
10076 /* Target hook to kill the current inferior. */
10077
10078 void
10079 remote_target::kill ()
10080 {
10081 int res = -1;
10082 int pid = inferior_ptid.pid ();
10083 struct remote_state *rs = get_remote_state ();
10084
10085 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10086 {
10087 /* If we're stopped while forking and we haven't followed yet,
10088 kill the child task. We need to do this before killing the
10089 parent task because if this is a vfork then the parent will
10090 be sleeping. */
10091 kill_new_fork_children (pid);
10092
10093 res = remote_vkill (pid);
10094 if (res == 0)
10095 {
10096 target_mourn_inferior (inferior_ptid);
10097 return;
10098 }
10099 }
10100
10101 /* If we are in 'target remote' mode and we are killing the only
10102 inferior, then we will tell gdbserver to exit and unpush the
10103 target. */
10104 if (res == -1 && !remote_multi_process_p (rs)
10105 && number_of_live_inferiors (this) == 1)
10106 {
10107 remote_kill_k ();
10108
10109 /* We've killed the remote end, we get to mourn it. If we are
10110 not in extended mode, mourning the inferior also unpushes
10111 remote_ops from the target stack, which closes the remote
10112 connection. */
10113 target_mourn_inferior (inferior_ptid);
10114
10115 return;
10116 }
10117
10118 error (_("Can't kill process"));
10119 }
10120
10121 /* Send a kill request to the target using the 'vKill' packet. */
10122
10123 int
10124 remote_target::remote_vkill (int pid)
10125 {
10126 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10127 return -1;
10128
10129 remote_state *rs = get_remote_state ();
10130
10131 /* Tell the remote target to detach. */
10132 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10133 putpkt (rs->buf);
10134 getpkt (&rs->buf, 0);
10135
10136 switch (packet_ok (rs->buf,
10137 &remote_protocol_packets[PACKET_vKill]))
10138 {
10139 case PACKET_OK:
10140 return 0;
10141 case PACKET_ERROR:
10142 return 1;
10143 case PACKET_UNKNOWN:
10144 return -1;
10145 default:
10146 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10147 }
10148 }
10149
10150 /* Send a kill request to the target using the 'k' packet. */
10151
10152 void
10153 remote_target::remote_kill_k ()
10154 {
10155 /* Catch errors so the user can quit from gdb even when we
10156 aren't on speaking terms with the remote system. */
10157 try
10158 {
10159 putpkt ("k");
10160 }
10161 catch (const gdb_exception_error &ex)
10162 {
10163 if (ex.error == TARGET_CLOSE_ERROR)
10164 {
10165 /* If we got an (EOF) error that caused the target
10166 to go away, then we're done, that's what we wanted.
10167 "k" is susceptible to cause a premature EOF, given
10168 that the remote server isn't actually required to
10169 reply to "k", and it can happen that it doesn't
10170 even get to reply ACK to the "k". */
10171 return;
10172 }
10173
10174 /* Otherwise, something went wrong. We didn't actually kill
10175 the target. Just propagate the exception, and let the
10176 user or higher layers decide what to do. */
10177 throw;
10178 }
10179 }
10180
10181 void
10182 remote_target::mourn_inferior ()
10183 {
10184 struct remote_state *rs = get_remote_state ();
10185
10186 /* We're no longer interested in notification events of an inferior
10187 that exited or was killed/detached. */
10188 discard_pending_stop_replies (current_inferior ());
10189
10190 /* In 'target remote' mode with one inferior, we close the connection. */
10191 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10192 {
10193 remote_unpush_target (this);
10194 return;
10195 }
10196
10197 /* In case we got here due to an error, but we're going to stay
10198 connected. */
10199 rs->waiting_for_stop_reply = 0;
10200
10201 /* If the current general thread belonged to the process we just
10202 detached from or has exited, the remote side current general
10203 thread becomes undefined. Considering a case like this:
10204
10205 - We just got here due to a detach.
10206 - The process that we're detaching from happens to immediately
10207 report a global breakpoint being hit in non-stop mode, in the
10208 same thread we had selected before.
10209 - GDB attaches to this process again.
10210 - This event happens to be the next event we handle.
10211
10212 GDB would consider that the current general thread didn't need to
10213 be set on the stub side (with Hg), since for all it knew,
10214 GENERAL_THREAD hadn't changed.
10215
10216 Notice that although in all-stop mode, the remote server always
10217 sets the current thread to the thread reporting the stop event,
10218 that doesn't happen in non-stop mode; in non-stop, the stub *must
10219 not* change the current thread when reporting a breakpoint hit,
10220 due to the decoupling of event reporting and event handling.
10221
10222 To keep things simple, we always invalidate our notion of the
10223 current thread. */
10224 record_currthread (rs, minus_one_ptid);
10225
10226 /* Call common code to mark the inferior as not running. */
10227 generic_mourn_inferior ();
10228 }
10229
10230 bool
10231 extended_remote_target::supports_disable_randomization ()
10232 {
10233 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10234 }
10235
10236 void
10237 remote_target::extended_remote_disable_randomization (int val)
10238 {
10239 struct remote_state *rs = get_remote_state ();
10240 char *reply;
10241
10242 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10243 "QDisableRandomization:%x", val);
10244 putpkt (rs->buf);
10245 reply = remote_get_noisy_reply ();
10246 if (*reply == '\0')
10247 error (_("Target does not support QDisableRandomization."));
10248 if (strcmp (reply, "OK") != 0)
10249 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10250 }
10251
10252 int
10253 remote_target::extended_remote_run (const std::string &args)
10254 {
10255 struct remote_state *rs = get_remote_state ();
10256 int len;
10257 const char *remote_exec_file = get_remote_exec_file ();
10258
10259 /* If the user has disabled vRun support, or we have detected that
10260 support is not available, do not try it. */
10261 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10262 return -1;
10263
10264 strcpy (rs->buf.data (), "vRun;");
10265 len = strlen (rs->buf.data ());
10266
10267 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10268 error (_("Remote file name too long for run packet"));
10269 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10270 strlen (remote_exec_file));
10271
10272 if (!args.empty ())
10273 {
10274 int i;
10275
10276 gdb_argv argv (args.c_str ());
10277 for (i = 0; argv[i] != NULL; i++)
10278 {
10279 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10280 error (_("Argument list too long for run packet"));
10281 rs->buf[len++] = ';';
10282 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10283 strlen (argv[i]));
10284 }
10285 }
10286
10287 rs->buf[len++] = '\0';
10288
10289 putpkt (rs->buf);
10290 getpkt (&rs->buf, 0);
10291
10292 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10293 {
10294 case PACKET_OK:
10295 /* We have a wait response. All is well. */
10296 return 0;
10297 case PACKET_UNKNOWN:
10298 return -1;
10299 case PACKET_ERROR:
10300 if (remote_exec_file[0] == '\0')
10301 error (_("Running the default executable on the remote target failed; "
10302 "try \"set remote exec-file\"?"));
10303 else
10304 error (_("Running \"%s\" on the remote target failed"),
10305 remote_exec_file);
10306 default:
10307 gdb_assert_not_reached (_("bad switch"));
10308 }
10309 }
10310
10311 /* Helper function to send set/unset environment packets. ACTION is
10312 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10313 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10314 sent. */
10315
10316 void
10317 remote_target::send_environment_packet (const char *action,
10318 const char *packet,
10319 const char *value)
10320 {
10321 remote_state *rs = get_remote_state ();
10322
10323 /* Convert the environment variable to an hex string, which
10324 is the best format to be transmitted over the wire. */
10325 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10326 strlen (value));
10327
10328 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10329 "%s:%s", packet, encoded_value.c_str ());
10330
10331 putpkt (rs->buf);
10332 getpkt (&rs->buf, 0);
10333 if (strcmp (rs->buf.data (), "OK") != 0)
10334 warning (_("Unable to %s environment variable '%s' on remote."),
10335 action, value);
10336 }
10337
10338 /* Helper function to handle the QEnvironment* packets. */
10339
10340 void
10341 remote_target::extended_remote_environment_support ()
10342 {
10343 remote_state *rs = get_remote_state ();
10344
10345 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10346 {
10347 putpkt ("QEnvironmentReset");
10348 getpkt (&rs->buf, 0);
10349 if (strcmp (rs->buf.data (), "OK") != 0)
10350 warning (_("Unable to reset environment on remote."));
10351 }
10352
10353 gdb_environ *e = &current_inferior ()->environment;
10354
10355 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10356 for (const std::string &el : e->user_set_env ())
10357 send_environment_packet ("set", "QEnvironmentHexEncoded",
10358 el.c_str ());
10359
10360 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10361 for (const std::string &el : e->user_unset_env ())
10362 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10363 }
10364
10365 /* Helper function to set the current working directory for the
10366 inferior in the remote target. */
10367
10368 void
10369 remote_target::extended_remote_set_inferior_cwd ()
10370 {
10371 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10372 {
10373 const char *inferior_cwd = get_inferior_cwd ();
10374 remote_state *rs = get_remote_state ();
10375
10376 if (inferior_cwd != NULL)
10377 {
10378 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10379 strlen (inferior_cwd));
10380
10381 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10382 "QSetWorkingDir:%s", hexpath.c_str ());
10383 }
10384 else
10385 {
10386 /* An empty inferior_cwd means that the user wants us to
10387 reset the remote server's inferior's cwd. */
10388 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10389 "QSetWorkingDir:");
10390 }
10391
10392 putpkt (rs->buf);
10393 getpkt (&rs->buf, 0);
10394 if (packet_ok (rs->buf,
10395 &remote_protocol_packets[PACKET_QSetWorkingDir])
10396 != PACKET_OK)
10397 error (_("\
10398 Remote replied unexpectedly while setting the inferior's working\n\
10399 directory: %s"),
10400 rs->buf.data ());
10401
10402 }
10403 }
10404
10405 /* In the extended protocol we want to be able to do things like
10406 "run" and have them basically work as expected. So we need
10407 a special create_inferior function. We support changing the
10408 executable file and the command line arguments, but not the
10409 environment. */
10410
10411 void
10412 extended_remote_target::create_inferior (const char *exec_file,
10413 const std::string &args,
10414 char **env, int from_tty)
10415 {
10416 int run_worked;
10417 char *stop_reply;
10418 struct remote_state *rs = get_remote_state ();
10419 const char *remote_exec_file = get_remote_exec_file ();
10420
10421 /* If running asynchronously, register the target file descriptor
10422 with the event loop. */
10423 if (target_can_async_p ())
10424 target_async (1);
10425
10426 /* Disable address space randomization if requested (and supported). */
10427 if (supports_disable_randomization ())
10428 extended_remote_disable_randomization (disable_randomization);
10429
10430 /* If startup-with-shell is on, we inform gdbserver to start the
10431 remote inferior using a shell. */
10432 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10433 {
10434 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10435 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10436 putpkt (rs->buf);
10437 getpkt (&rs->buf, 0);
10438 if (strcmp (rs->buf.data (), "OK") != 0)
10439 error (_("\
10440 Remote replied unexpectedly while setting startup-with-shell: %s"),
10441 rs->buf.data ());
10442 }
10443
10444 extended_remote_environment_support ();
10445
10446 extended_remote_set_inferior_cwd ();
10447
10448 /* Now restart the remote server. */
10449 run_worked = extended_remote_run (args) != -1;
10450 if (!run_worked)
10451 {
10452 /* vRun was not supported. Fail if we need it to do what the
10453 user requested. */
10454 if (remote_exec_file[0])
10455 error (_("Remote target does not support \"set remote exec-file\""));
10456 if (!args.empty ())
10457 error (_("Remote target does not support \"set args\" or run ARGS"));
10458
10459 /* Fall back to "R". */
10460 extended_remote_restart ();
10461 }
10462
10463 /* vRun's success return is a stop reply. */
10464 stop_reply = run_worked ? rs->buf.data () : NULL;
10465 add_current_inferior_and_thread (stop_reply);
10466
10467 /* Get updated offsets, if the stub uses qOffsets. */
10468 get_offsets ();
10469 }
10470 \f
10471
10472 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10473 the list of conditions (in agent expression bytecode format), if any, the
10474 target needs to evaluate. The output is placed into the packet buffer
10475 started from BUF and ended at BUF_END. */
10476
10477 static int
10478 remote_add_target_side_condition (struct gdbarch *gdbarch,
10479 struct bp_target_info *bp_tgt, char *buf,
10480 char *buf_end)
10481 {
10482 if (bp_tgt->conditions.empty ())
10483 return 0;
10484
10485 buf += strlen (buf);
10486 xsnprintf (buf, buf_end - buf, "%s", ";");
10487 buf++;
10488
10489 /* Send conditions to the target. */
10490 for (agent_expr *aexpr : bp_tgt->conditions)
10491 {
10492 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10493 buf += strlen (buf);
10494 for (int i = 0; i < aexpr->len; ++i)
10495 buf = pack_hex_byte (buf, aexpr->buf[i]);
10496 *buf = '\0';
10497 }
10498 return 0;
10499 }
10500
10501 static void
10502 remote_add_target_side_commands (struct gdbarch *gdbarch,
10503 struct bp_target_info *bp_tgt, char *buf)
10504 {
10505 if (bp_tgt->tcommands.empty ())
10506 return;
10507
10508 buf += strlen (buf);
10509
10510 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10511 buf += strlen (buf);
10512
10513 /* Concatenate all the agent expressions that are commands into the
10514 cmds parameter. */
10515 for (agent_expr *aexpr : bp_tgt->tcommands)
10516 {
10517 sprintf (buf, "X%x,", aexpr->len);
10518 buf += strlen (buf);
10519 for (int i = 0; i < aexpr->len; ++i)
10520 buf = pack_hex_byte (buf, aexpr->buf[i]);
10521 *buf = '\0';
10522 }
10523 }
10524
10525 /* Insert a breakpoint. On targets that have software breakpoint
10526 support, we ask the remote target to do the work; on targets
10527 which don't, we insert a traditional memory breakpoint. */
10528
10529 int
10530 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10531 struct bp_target_info *bp_tgt)
10532 {
10533 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10534 If it succeeds, then set the support to PACKET_ENABLE. If it
10535 fails, and the user has explicitly requested the Z support then
10536 report an error, otherwise, mark it disabled and go on. */
10537
10538 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10539 {
10540 CORE_ADDR addr = bp_tgt->reqstd_address;
10541 struct remote_state *rs;
10542 char *p, *endbuf;
10543
10544 /* Make sure the remote is pointing at the right process, if
10545 necessary. */
10546 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10547 set_general_process ();
10548
10549 rs = get_remote_state ();
10550 p = rs->buf.data ();
10551 endbuf = p + get_remote_packet_size ();
10552
10553 *(p++) = 'Z';
10554 *(p++) = '0';
10555 *(p++) = ',';
10556 addr = (ULONGEST) remote_address_masked (addr);
10557 p += hexnumstr (p, addr);
10558 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10559
10560 if (supports_evaluation_of_breakpoint_conditions ())
10561 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10562
10563 if (can_run_breakpoint_commands ())
10564 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10565
10566 putpkt (rs->buf);
10567 getpkt (&rs->buf, 0);
10568
10569 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10570 {
10571 case PACKET_ERROR:
10572 return -1;
10573 case PACKET_OK:
10574 return 0;
10575 case PACKET_UNKNOWN:
10576 break;
10577 }
10578 }
10579
10580 /* If this breakpoint has target-side commands but this stub doesn't
10581 support Z0 packets, throw error. */
10582 if (!bp_tgt->tcommands.empty ())
10583 throw_error (NOT_SUPPORTED_ERROR, _("\
10584 Target doesn't support breakpoints that have target side commands."));
10585
10586 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10587 }
10588
10589 int
10590 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10591 struct bp_target_info *bp_tgt,
10592 enum remove_bp_reason reason)
10593 {
10594 CORE_ADDR addr = bp_tgt->placed_address;
10595 struct remote_state *rs = get_remote_state ();
10596
10597 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10598 {
10599 char *p = rs->buf.data ();
10600 char *endbuf = p + get_remote_packet_size ();
10601
10602 /* Make sure the remote is pointing at the right process, if
10603 necessary. */
10604 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10605 set_general_process ();
10606
10607 *(p++) = 'z';
10608 *(p++) = '0';
10609 *(p++) = ',';
10610
10611 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10612 p += hexnumstr (p, addr);
10613 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10614
10615 putpkt (rs->buf);
10616 getpkt (&rs->buf, 0);
10617
10618 return (rs->buf[0] == 'E');
10619 }
10620
10621 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10622 }
10623
10624 static enum Z_packet_type
10625 watchpoint_to_Z_packet (int type)
10626 {
10627 switch (type)
10628 {
10629 case hw_write:
10630 return Z_PACKET_WRITE_WP;
10631 break;
10632 case hw_read:
10633 return Z_PACKET_READ_WP;
10634 break;
10635 case hw_access:
10636 return Z_PACKET_ACCESS_WP;
10637 break;
10638 default:
10639 internal_error (__FILE__, __LINE__,
10640 _("hw_bp_to_z: bad watchpoint type %d"), type);
10641 }
10642 }
10643
10644 int
10645 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10646 enum target_hw_bp_type type, struct expression *cond)
10647 {
10648 struct remote_state *rs = get_remote_state ();
10649 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10650 char *p;
10651 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10652
10653 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10654 return 1;
10655
10656 /* Make sure the remote is pointing at the right process, if
10657 necessary. */
10658 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10659 set_general_process ();
10660
10661 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10662 p = strchr (rs->buf.data (), '\0');
10663 addr = remote_address_masked (addr);
10664 p += hexnumstr (p, (ULONGEST) addr);
10665 xsnprintf (p, endbuf - p, ",%x", len);
10666
10667 putpkt (rs->buf);
10668 getpkt (&rs->buf, 0);
10669
10670 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10671 {
10672 case PACKET_ERROR:
10673 return -1;
10674 case PACKET_UNKNOWN:
10675 return 1;
10676 case PACKET_OK:
10677 return 0;
10678 }
10679 internal_error (__FILE__, __LINE__,
10680 _("remote_insert_watchpoint: reached end of function"));
10681 }
10682
10683 bool
10684 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10685 CORE_ADDR start, int length)
10686 {
10687 CORE_ADDR diff = remote_address_masked (addr - start);
10688
10689 return diff < length;
10690 }
10691
10692
10693 int
10694 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10695 enum target_hw_bp_type type, struct expression *cond)
10696 {
10697 struct remote_state *rs = get_remote_state ();
10698 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10699 char *p;
10700 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10701
10702 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10703 return -1;
10704
10705 /* Make sure the remote is pointing at the right process, if
10706 necessary. */
10707 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10708 set_general_process ();
10709
10710 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10711 p = strchr (rs->buf.data (), '\0');
10712 addr = remote_address_masked (addr);
10713 p += hexnumstr (p, (ULONGEST) addr);
10714 xsnprintf (p, endbuf - p, ",%x", len);
10715 putpkt (rs->buf);
10716 getpkt (&rs->buf, 0);
10717
10718 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10719 {
10720 case PACKET_ERROR:
10721 case PACKET_UNKNOWN:
10722 return -1;
10723 case PACKET_OK:
10724 return 0;
10725 }
10726 internal_error (__FILE__, __LINE__,
10727 _("remote_remove_watchpoint: reached end of function"));
10728 }
10729
10730
10731 static int remote_hw_watchpoint_limit = -1;
10732 static int remote_hw_watchpoint_length_limit = -1;
10733 static int remote_hw_breakpoint_limit = -1;
10734
10735 int
10736 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10737 {
10738 if (remote_hw_watchpoint_length_limit == 0)
10739 return 0;
10740 else if (remote_hw_watchpoint_length_limit < 0)
10741 return 1;
10742 else if (len <= remote_hw_watchpoint_length_limit)
10743 return 1;
10744 else
10745 return 0;
10746 }
10747
10748 int
10749 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10750 {
10751 if (type == bp_hardware_breakpoint)
10752 {
10753 if (remote_hw_breakpoint_limit == 0)
10754 return 0;
10755 else if (remote_hw_breakpoint_limit < 0)
10756 return 1;
10757 else if (cnt <= remote_hw_breakpoint_limit)
10758 return 1;
10759 }
10760 else
10761 {
10762 if (remote_hw_watchpoint_limit == 0)
10763 return 0;
10764 else if (remote_hw_watchpoint_limit < 0)
10765 return 1;
10766 else if (ot)
10767 return -1;
10768 else if (cnt <= remote_hw_watchpoint_limit)
10769 return 1;
10770 }
10771 return -1;
10772 }
10773
10774 /* The to_stopped_by_sw_breakpoint method of target remote. */
10775
10776 bool
10777 remote_target::stopped_by_sw_breakpoint ()
10778 {
10779 struct thread_info *thread = inferior_thread ();
10780
10781 return (thread->priv != NULL
10782 && (get_remote_thread_info (thread)->stop_reason
10783 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10784 }
10785
10786 /* The to_supports_stopped_by_sw_breakpoint method of target
10787 remote. */
10788
10789 bool
10790 remote_target::supports_stopped_by_sw_breakpoint ()
10791 {
10792 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10793 }
10794
10795 /* The to_stopped_by_hw_breakpoint method of target remote. */
10796
10797 bool
10798 remote_target::stopped_by_hw_breakpoint ()
10799 {
10800 struct thread_info *thread = inferior_thread ();
10801
10802 return (thread->priv != NULL
10803 && (get_remote_thread_info (thread)->stop_reason
10804 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10805 }
10806
10807 /* The to_supports_stopped_by_hw_breakpoint method of target
10808 remote. */
10809
10810 bool
10811 remote_target::supports_stopped_by_hw_breakpoint ()
10812 {
10813 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10814 }
10815
10816 bool
10817 remote_target::stopped_by_watchpoint ()
10818 {
10819 struct thread_info *thread = inferior_thread ();
10820
10821 return (thread->priv != NULL
10822 && (get_remote_thread_info (thread)->stop_reason
10823 == TARGET_STOPPED_BY_WATCHPOINT));
10824 }
10825
10826 bool
10827 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10828 {
10829 struct thread_info *thread = inferior_thread ();
10830
10831 if (thread->priv != NULL
10832 && (get_remote_thread_info (thread)->stop_reason
10833 == TARGET_STOPPED_BY_WATCHPOINT))
10834 {
10835 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10836 return true;
10837 }
10838
10839 return false;
10840 }
10841
10842
10843 int
10844 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10845 struct bp_target_info *bp_tgt)
10846 {
10847 CORE_ADDR addr = bp_tgt->reqstd_address;
10848 struct remote_state *rs;
10849 char *p, *endbuf;
10850 char *message;
10851
10852 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10853 return -1;
10854
10855 /* Make sure the remote is pointing at the right process, if
10856 necessary. */
10857 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10858 set_general_process ();
10859
10860 rs = get_remote_state ();
10861 p = rs->buf.data ();
10862 endbuf = p + get_remote_packet_size ();
10863
10864 *(p++) = 'Z';
10865 *(p++) = '1';
10866 *(p++) = ',';
10867
10868 addr = remote_address_masked (addr);
10869 p += hexnumstr (p, (ULONGEST) addr);
10870 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10871
10872 if (supports_evaluation_of_breakpoint_conditions ())
10873 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10874
10875 if (can_run_breakpoint_commands ())
10876 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10877
10878 putpkt (rs->buf);
10879 getpkt (&rs->buf, 0);
10880
10881 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10882 {
10883 case PACKET_ERROR:
10884 if (rs->buf[1] == '.')
10885 {
10886 message = strchr (&rs->buf[2], '.');
10887 if (message)
10888 error (_("Remote failure reply: %s"), message + 1);
10889 }
10890 return -1;
10891 case PACKET_UNKNOWN:
10892 return -1;
10893 case PACKET_OK:
10894 return 0;
10895 }
10896 internal_error (__FILE__, __LINE__,
10897 _("remote_insert_hw_breakpoint: reached end of function"));
10898 }
10899
10900
10901 int
10902 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10903 struct bp_target_info *bp_tgt)
10904 {
10905 CORE_ADDR addr;
10906 struct remote_state *rs = get_remote_state ();
10907 char *p = rs->buf.data ();
10908 char *endbuf = p + get_remote_packet_size ();
10909
10910 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10911 return -1;
10912
10913 /* Make sure the remote is pointing at the right process, if
10914 necessary. */
10915 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10916 set_general_process ();
10917
10918 *(p++) = 'z';
10919 *(p++) = '1';
10920 *(p++) = ',';
10921
10922 addr = remote_address_masked (bp_tgt->placed_address);
10923 p += hexnumstr (p, (ULONGEST) addr);
10924 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10925
10926 putpkt (rs->buf);
10927 getpkt (&rs->buf, 0);
10928
10929 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10930 {
10931 case PACKET_ERROR:
10932 case PACKET_UNKNOWN:
10933 return -1;
10934 case PACKET_OK:
10935 return 0;
10936 }
10937 internal_error (__FILE__, __LINE__,
10938 _("remote_remove_hw_breakpoint: reached end of function"));
10939 }
10940
10941 /* Verify memory using the "qCRC:" request. */
10942
10943 int
10944 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10945 {
10946 struct remote_state *rs = get_remote_state ();
10947 unsigned long host_crc, target_crc;
10948 char *tmp;
10949
10950 /* It doesn't make sense to use qCRC if the remote target is
10951 connected but not running. */
10952 if (target_has_execution ()
10953 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10954 {
10955 enum packet_result result;
10956
10957 /* Make sure the remote is pointing at the right process. */
10958 set_general_process ();
10959
10960 /* FIXME: assumes lma can fit into long. */
10961 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10962 (long) lma, (long) size);
10963 putpkt (rs->buf);
10964
10965 /* Be clever; compute the host_crc before waiting for target
10966 reply. */
10967 host_crc = xcrc32 (data, size, 0xffffffff);
10968
10969 getpkt (&rs->buf, 0);
10970
10971 result = packet_ok (rs->buf,
10972 &remote_protocol_packets[PACKET_qCRC]);
10973 if (result == PACKET_ERROR)
10974 return -1;
10975 else if (result == PACKET_OK)
10976 {
10977 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10978 target_crc = target_crc * 16 + fromhex (*tmp);
10979
10980 return (host_crc == target_crc);
10981 }
10982 }
10983
10984 return simple_verify_memory (this, data, lma, size);
10985 }
10986
10987 /* compare-sections command
10988
10989 With no arguments, compares each loadable section in the exec bfd
10990 with the same memory range on the target, and reports mismatches.
10991 Useful for verifying the image on the target against the exec file. */
10992
10993 static void
10994 compare_sections_command (const char *args, int from_tty)
10995 {
10996 asection *s;
10997 const char *sectname;
10998 bfd_size_type size;
10999 bfd_vma lma;
11000 int matched = 0;
11001 int mismatched = 0;
11002 int res;
11003 int read_only = 0;
11004
11005 if (!current_program_space->exec_bfd ())
11006 error (_("command cannot be used without an exec file"));
11007
11008 if (args != NULL && strcmp (args, "-r") == 0)
11009 {
11010 read_only = 1;
11011 args = NULL;
11012 }
11013
11014 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11015 {
11016 if (!(s->flags & SEC_LOAD))
11017 continue; /* Skip non-loadable section. */
11018
11019 if (read_only && (s->flags & SEC_READONLY) == 0)
11020 continue; /* Skip writeable sections */
11021
11022 size = bfd_section_size (s);
11023 if (size == 0)
11024 continue; /* Skip zero-length section. */
11025
11026 sectname = bfd_section_name (s);
11027 if (args && strcmp (args, sectname) != 0)
11028 continue; /* Not the section selected by user. */
11029
11030 matched = 1; /* Do this section. */
11031 lma = s->lma;
11032
11033 gdb::byte_vector sectdata (size);
11034 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11035 sectdata.data (), 0, size);
11036
11037 res = target_verify_memory (sectdata.data (), lma, size);
11038
11039 if (res == -1)
11040 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11041 paddress (target_gdbarch (), lma),
11042 paddress (target_gdbarch (), lma + size));
11043
11044 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11045 paddress (target_gdbarch (), lma),
11046 paddress (target_gdbarch (), lma + size));
11047 if (res)
11048 printf_filtered ("matched.\n");
11049 else
11050 {
11051 printf_filtered ("MIS-MATCHED!\n");
11052 mismatched++;
11053 }
11054 }
11055 if (mismatched > 0)
11056 warning (_("One or more sections of the target image does not match\n\
11057 the loaded file\n"));
11058 if (args && !matched)
11059 printf_filtered (_("No loaded section named '%s'.\n"), args);
11060 }
11061
11062 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11063 into remote target. The number of bytes written to the remote
11064 target is returned, or -1 for error. */
11065
11066 target_xfer_status
11067 remote_target::remote_write_qxfer (const char *object_name,
11068 const char *annex, const gdb_byte *writebuf,
11069 ULONGEST offset, LONGEST len,
11070 ULONGEST *xfered_len,
11071 struct packet_config *packet)
11072 {
11073 int i, buf_len;
11074 ULONGEST n;
11075 struct remote_state *rs = get_remote_state ();
11076 int max_size = get_memory_write_packet_size ();
11077
11078 if (packet_config_support (packet) == PACKET_DISABLE)
11079 return TARGET_XFER_E_IO;
11080
11081 /* Insert header. */
11082 i = snprintf (rs->buf.data (), max_size,
11083 "qXfer:%s:write:%s:%s:",
11084 object_name, annex ? annex : "",
11085 phex_nz (offset, sizeof offset));
11086 max_size -= (i + 1);
11087
11088 /* Escape as much data as fits into rs->buf. */
11089 buf_len = remote_escape_output
11090 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11091
11092 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11093 || getpkt_sane (&rs->buf, 0) < 0
11094 || packet_ok (rs->buf, packet) != PACKET_OK)
11095 return TARGET_XFER_E_IO;
11096
11097 unpack_varlen_hex (rs->buf.data (), &n);
11098
11099 *xfered_len = n;
11100 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11101 }
11102
11103 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11104 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11105 number of bytes read is returned, or 0 for EOF, or -1 for error.
11106 The number of bytes read may be less than LEN without indicating an
11107 EOF. PACKET is checked and updated to indicate whether the remote
11108 target supports this object. */
11109
11110 target_xfer_status
11111 remote_target::remote_read_qxfer (const char *object_name,
11112 const char *annex,
11113 gdb_byte *readbuf, ULONGEST offset,
11114 LONGEST len,
11115 ULONGEST *xfered_len,
11116 struct packet_config *packet)
11117 {
11118 struct remote_state *rs = get_remote_state ();
11119 LONGEST i, n, packet_len;
11120
11121 if (packet_config_support (packet) == PACKET_DISABLE)
11122 return TARGET_XFER_E_IO;
11123
11124 /* Check whether we've cached an end-of-object packet that matches
11125 this request. */
11126 if (rs->finished_object)
11127 {
11128 if (strcmp (object_name, rs->finished_object) == 0
11129 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11130 && offset == rs->finished_offset)
11131 return TARGET_XFER_EOF;
11132
11133
11134 /* Otherwise, we're now reading something different. Discard
11135 the cache. */
11136 xfree (rs->finished_object);
11137 xfree (rs->finished_annex);
11138 rs->finished_object = NULL;
11139 rs->finished_annex = NULL;
11140 }
11141
11142 /* Request only enough to fit in a single packet. The actual data
11143 may not, since we don't know how much of it will need to be escaped;
11144 the target is free to respond with slightly less data. We subtract
11145 five to account for the response type and the protocol frame. */
11146 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11147 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11148 "qXfer:%s:read:%s:%s,%s",
11149 object_name, annex ? annex : "",
11150 phex_nz (offset, sizeof offset),
11151 phex_nz (n, sizeof n));
11152 i = putpkt (rs->buf);
11153 if (i < 0)
11154 return TARGET_XFER_E_IO;
11155
11156 rs->buf[0] = '\0';
11157 packet_len = getpkt_sane (&rs->buf, 0);
11158 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11159 return TARGET_XFER_E_IO;
11160
11161 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11162 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11163
11164 /* 'm' means there is (or at least might be) more data after this
11165 batch. That does not make sense unless there's at least one byte
11166 of data in this reply. */
11167 if (rs->buf[0] == 'm' && packet_len == 1)
11168 error (_("Remote qXfer reply contained no data."));
11169
11170 /* Got some data. */
11171 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11172 packet_len - 1, readbuf, n);
11173
11174 /* 'l' is an EOF marker, possibly including a final block of data,
11175 or possibly empty. If we have the final block of a non-empty
11176 object, record this fact to bypass a subsequent partial read. */
11177 if (rs->buf[0] == 'l' && offset + i > 0)
11178 {
11179 rs->finished_object = xstrdup (object_name);
11180 rs->finished_annex = xstrdup (annex ? annex : "");
11181 rs->finished_offset = offset + i;
11182 }
11183
11184 if (i == 0)
11185 return TARGET_XFER_EOF;
11186 else
11187 {
11188 *xfered_len = i;
11189 return TARGET_XFER_OK;
11190 }
11191 }
11192
11193 enum target_xfer_status
11194 remote_target::xfer_partial (enum target_object object,
11195 const char *annex, gdb_byte *readbuf,
11196 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11197 ULONGEST *xfered_len)
11198 {
11199 struct remote_state *rs;
11200 int i;
11201 char *p2;
11202 char query_type;
11203 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11204
11205 set_remote_traceframe ();
11206 set_general_thread (inferior_ptid);
11207
11208 rs = get_remote_state ();
11209
11210 /* Handle memory using the standard memory routines. */
11211 if (object == TARGET_OBJECT_MEMORY)
11212 {
11213 /* If the remote target is connected but not running, we should
11214 pass this request down to a lower stratum (e.g. the executable
11215 file). */
11216 if (!target_has_execution ())
11217 return TARGET_XFER_EOF;
11218
11219 if (writebuf != NULL)
11220 return remote_write_bytes (offset, writebuf, len, unit_size,
11221 xfered_len);
11222 else
11223 return remote_read_bytes (offset, readbuf, len, unit_size,
11224 xfered_len);
11225 }
11226
11227 /* Handle extra signal info using qxfer packets. */
11228 if (object == TARGET_OBJECT_SIGNAL_INFO)
11229 {
11230 if (readbuf)
11231 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11232 xfered_len, &remote_protocol_packets
11233 [PACKET_qXfer_siginfo_read]);
11234 else
11235 return remote_write_qxfer ("siginfo", annex,
11236 writebuf, offset, len, xfered_len,
11237 &remote_protocol_packets
11238 [PACKET_qXfer_siginfo_write]);
11239 }
11240
11241 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11242 {
11243 if (readbuf)
11244 return remote_read_qxfer ("statictrace", annex,
11245 readbuf, offset, len, xfered_len,
11246 &remote_protocol_packets
11247 [PACKET_qXfer_statictrace_read]);
11248 else
11249 return TARGET_XFER_E_IO;
11250 }
11251
11252 /* Only handle flash writes. */
11253 if (writebuf != NULL)
11254 {
11255 switch (object)
11256 {
11257 case TARGET_OBJECT_FLASH:
11258 return remote_flash_write (offset, len, xfered_len,
11259 writebuf);
11260
11261 default:
11262 return TARGET_XFER_E_IO;
11263 }
11264 }
11265
11266 /* Map pre-existing objects onto letters. DO NOT do this for new
11267 objects!!! Instead specify new query packets. */
11268 switch (object)
11269 {
11270 case TARGET_OBJECT_AVR:
11271 query_type = 'R';
11272 break;
11273
11274 case TARGET_OBJECT_AUXV:
11275 gdb_assert (annex == NULL);
11276 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11277 xfered_len,
11278 &remote_protocol_packets[PACKET_qXfer_auxv]);
11279
11280 case TARGET_OBJECT_AVAILABLE_FEATURES:
11281 return remote_read_qxfer
11282 ("features", annex, readbuf, offset, len, xfered_len,
11283 &remote_protocol_packets[PACKET_qXfer_features]);
11284
11285 case TARGET_OBJECT_LIBRARIES:
11286 return remote_read_qxfer
11287 ("libraries", annex, readbuf, offset, len, xfered_len,
11288 &remote_protocol_packets[PACKET_qXfer_libraries]);
11289
11290 case TARGET_OBJECT_LIBRARIES_SVR4:
11291 return remote_read_qxfer
11292 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11293 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11294
11295 case TARGET_OBJECT_MEMORY_MAP:
11296 gdb_assert (annex == NULL);
11297 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11298 xfered_len,
11299 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11300
11301 case TARGET_OBJECT_OSDATA:
11302 /* Should only get here if we're connected. */
11303 gdb_assert (rs->remote_desc);
11304 return remote_read_qxfer
11305 ("osdata", annex, readbuf, offset, len, xfered_len,
11306 &remote_protocol_packets[PACKET_qXfer_osdata]);
11307
11308 case TARGET_OBJECT_THREADS:
11309 gdb_assert (annex == NULL);
11310 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11311 xfered_len,
11312 &remote_protocol_packets[PACKET_qXfer_threads]);
11313
11314 case TARGET_OBJECT_TRACEFRAME_INFO:
11315 gdb_assert (annex == NULL);
11316 return remote_read_qxfer
11317 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11318 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11319
11320 case TARGET_OBJECT_FDPIC:
11321 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11322 xfered_len,
11323 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11324
11325 case TARGET_OBJECT_OPENVMS_UIB:
11326 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11327 xfered_len,
11328 &remote_protocol_packets[PACKET_qXfer_uib]);
11329
11330 case TARGET_OBJECT_BTRACE:
11331 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11332 xfered_len,
11333 &remote_protocol_packets[PACKET_qXfer_btrace]);
11334
11335 case TARGET_OBJECT_BTRACE_CONF:
11336 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11337 len, xfered_len,
11338 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11339
11340 case TARGET_OBJECT_EXEC_FILE:
11341 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11342 len, xfered_len,
11343 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11344
11345 default:
11346 return TARGET_XFER_E_IO;
11347 }
11348
11349 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11350 large enough let the caller deal with it. */
11351 if (len < get_remote_packet_size ())
11352 return TARGET_XFER_E_IO;
11353 len = get_remote_packet_size ();
11354
11355 /* Except for querying the minimum buffer size, target must be open. */
11356 if (!rs->remote_desc)
11357 error (_("remote query is only available after target open"));
11358
11359 gdb_assert (annex != NULL);
11360 gdb_assert (readbuf != NULL);
11361
11362 p2 = rs->buf.data ();
11363 *p2++ = 'q';
11364 *p2++ = query_type;
11365
11366 /* We used one buffer char for the remote protocol q command and
11367 another for the query type. As the remote protocol encapsulation
11368 uses 4 chars plus one extra in case we are debugging
11369 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11370 string. */
11371 i = 0;
11372 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11373 {
11374 /* Bad caller may have sent forbidden characters. */
11375 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11376 *p2++ = annex[i];
11377 i++;
11378 }
11379 *p2 = '\0';
11380 gdb_assert (annex[i] == '\0');
11381
11382 i = putpkt (rs->buf);
11383 if (i < 0)
11384 return TARGET_XFER_E_IO;
11385
11386 getpkt (&rs->buf, 0);
11387 strcpy ((char *) readbuf, rs->buf.data ());
11388
11389 *xfered_len = strlen ((char *) readbuf);
11390 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11391 }
11392
11393 /* Implementation of to_get_memory_xfer_limit. */
11394
11395 ULONGEST
11396 remote_target::get_memory_xfer_limit ()
11397 {
11398 return get_memory_write_packet_size ();
11399 }
11400
11401 int
11402 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11403 const gdb_byte *pattern, ULONGEST pattern_len,
11404 CORE_ADDR *found_addrp)
11405 {
11406 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11407 struct remote_state *rs = get_remote_state ();
11408 int max_size = get_memory_write_packet_size ();
11409 struct packet_config *packet =
11410 &remote_protocol_packets[PACKET_qSearch_memory];
11411 /* Number of packet bytes used to encode the pattern;
11412 this could be more than PATTERN_LEN due to escape characters. */
11413 int escaped_pattern_len;
11414 /* Amount of pattern that was encodable in the packet. */
11415 int used_pattern_len;
11416 int i;
11417 int found;
11418 ULONGEST found_addr;
11419
11420 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11421 {
11422 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11423 == len);
11424 };
11425
11426 /* Don't go to the target if we don't have to. This is done before
11427 checking packet_config_support to avoid the possibility that a
11428 success for this edge case means the facility works in
11429 general. */
11430 if (pattern_len > search_space_len)
11431 return 0;
11432 if (pattern_len == 0)
11433 {
11434 *found_addrp = start_addr;
11435 return 1;
11436 }
11437
11438 /* If we already know the packet isn't supported, fall back to the simple
11439 way of searching memory. */
11440
11441 if (packet_config_support (packet) == PACKET_DISABLE)
11442 {
11443 /* Target doesn't provided special support, fall back and use the
11444 standard support (copy memory and do the search here). */
11445 return simple_search_memory (read_memory, start_addr, search_space_len,
11446 pattern, pattern_len, found_addrp);
11447 }
11448
11449 /* Make sure the remote is pointing at the right process. */
11450 set_general_process ();
11451
11452 /* Insert header. */
11453 i = snprintf (rs->buf.data (), max_size,
11454 "qSearch:memory:%s;%s;",
11455 phex_nz (start_addr, addr_size),
11456 phex_nz (search_space_len, sizeof (search_space_len)));
11457 max_size -= (i + 1);
11458
11459 /* Escape as much data as fits into rs->buf. */
11460 escaped_pattern_len =
11461 remote_escape_output (pattern, pattern_len, 1,
11462 (gdb_byte *) rs->buf.data () + i,
11463 &used_pattern_len, max_size);
11464
11465 /* Bail if the pattern is too large. */
11466 if (used_pattern_len != pattern_len)
11467 error (_("Pattern is too large to transmit to remote target."));
11468
11469 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11470 || getpkt_sane (&rs->buf, 0) < 0
11471 || packet_ok (rs->buf, packet) != PACKET_OK)
11472 {
11473 /* The request may not have worked because the command is not
11474 supported. If so, fall back to the simple way. */
11475 if (packet_config_support (packet) == PACKET_DISABLE)
11476 {
11477 return simple_search_memory (read_memory, start_addr, search_space_len,
11478 pattern, pattern_len, found_addrp);
11479 }
11480 return -1;
11481 }
11482
11483 if (rs->buf[0] == '0')
11484 found = 0;
11485 else if (rs->buf[0] == '1')
11486 {
11487 found = 1;
11488 if (rs->buf[1] != ',')
11489 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11490 unpack_varlen_hex (&rs->buf[2], &found_addr);
11491 *found_addrp = found_addr;
11492 }
11493 else
11494 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11495
11496 return found;
11497 }
11498
11499 void
11500 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11501 {
11502 struct remote_state *rs = get_remote_state ();
11503 char *p = rs->buf.data ();
11504
11505 if (!rs->remote_desc)
11506 error (_("remote rcmd is only available after target open"));
11507
11508 /* Send a NULL command across as an empty command. */
11509 if (command == NULL)
11510 command = "";
11511
11512 /* The query prefix. */
11513 strcpy (rs->buf.data (), "qRcmd,");
11514 p = strchr (rs->buf.data (), '\0');
11515
11516 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11517 > get_remote_packet_size ())
11518 error (_("\"monitor\" command ``%s'' is too long."), command);
11519
11520 /* Encode the actual command. */
11521 bin2hex ((const gdb_byte *) command, p, strlen (command));
11522
11523 if (putpkt (rs->buf) < 0)
11524 error (_("Communication problem with target."));
11525
11526 /* get/display the response */
11527 while (1)
11528 {
11529 char *buf;
11530
11531 /* XXX - see also remote_get_noisy_reply(). */
11532 QUIT; /* Allow user to bail out with ^C. */
11533 rs->buf[0] = '\0';
11534 if (getpkt_sane (&rs->buf, 0) == -1)
11535 {
11536 /* Timeout. Continue to (try to) read responses.
11537 This is better than stopping with an error, assuming the stub
11538 is still executing the (long) monitor command.
11539 If needed, the user can interrupt gdb using C-c, obtaining
11540 an effect similar to stop on timeout. */
11541 continue;
11542 }
11543 buf = rs->buf.data ();
11544 if (buf[0] == '\0')
11545 error (_("Target does not support this command."));
11546 if (buf[0] == 'O' && buf[1] != 'K')
11547 {
11548 remote_console_output (buf + 1); /* 'O' message from stub. */
11549 continue;
11550 }
11551 if (strcmp (buf, "OK") == 0)
11552 break;
11553 if (strlen (buf) == 3 && buf[0] == 'E'
11554 && isdigit (buf[1]) && isdigit (buf[2]))
11555 {
11556 error (_("Protocol error with Rcmd"));
11557 }
11558 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11559 {
11560 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11561
11562 fputc_unfiltered (c, outbuf);
11563 }
11564 break;
11565 }
11566 }
11567
11568 std::vector<mem_region>
11569 remote_target::memory_map ()
11570 {
11571 std::vector<mem_region> result;
11572 gdb::optional<gdb::char_vector> text
11573 = target_read_stralloc (current_inferior ()->top_target (),
11574 TARGET_OBJECT_MEMORY_MAP, NULL);
11575
11576 if (text)
11577 result = parse_memory_map (text->data ());
11578
11579 return result;
11580 }
11581
11582 static void
11583 packet_command (const char *args, int from_tty)
11584 {
11585 remote_target *remote = get_current_remote_target ();
11586
11587 if (remote == nullptr)
11588 error (_("command can only be used with remote target"));
11589
11590 remote->packet_command (args, from_tty);
11591 }
11592
11593 void
11594 remote_target::packet_command (const char *args, int from_tty)
11595 {
11596 if (!args)
11597 error (_("remote-packet command requires packet text as argument"));
11598
11599 puts_filtered ("sending: ");
11600 print_packet (args);
11601 puts_filtered ("\n");
11602 putpkt (args);
11603
11604 remote_state *rs = get_remote_state ();
11605
11606 getpkt (&rs->buf, 0);
11607 puts_filtered ("received: ");
11608 print_packet (rs->buf.data ());
11609 puts_filtered ("\n");
11610 }
11611
11612 #if 0
11613 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11614
11615 static void display_thread_info (struct gdb_ext_thread_info *info);
11616
11617 static void threadset_test_cmd (char *cmd, int tty);
11618
11619 static void threadalive_test (char *cmd, int tty);
11620
11621 static void threadlist_test_cmd (char *cmd, int tty);
11622
11623 int get_and_display_threadinfo (threadref *ref);
11624
11625 static void threadinfo_test_cmd (char *cmd, int tty);
11626
11627 static int thread_display_step (threadref *ref, void *context);
11628
11629 static void threadlist_update_test_cmd (char *cmd, int tty);
11630
11631 static void init_remote_threadtests (void);
11632
11633 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11634
11635 static void
11636 threadset_test_cmd (const char *cmd, int tty)
11637 {
11638 int sample_thread = SAMPLE_THREAD;
11639
11640 printf_filtered (_("Remote threadset test\n"));
11641 set_general_thread (sample_thread);
11642 }
11643
11644
11645 static void
11646 threadalive_test (const char *cmd, int tty)
11647 {
11648 int sample_thread = SAMPLE_THREAD;
11649 int pid = inferior_ptid.pid ();
11650 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11651
11652 if (remote_thread_alive (ptid))
11653 printf_filtered ("PASS: Thread alive test\n");
11654 else
11655 printf_filtered ("FAIL: Thread alive test\n");
11656 }
11657
11658 void output_threadid (char *title, threadref *ref);
11659
11660 void
11661 output_threadid (char *title, threadref *ref)
11662 {
11663 char hexid[20];
11664
11665 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11666 hexid[16] = 0;
11667 printf_filtered ("%s %s\n", title, (&hexid[0]));
11668 }
11669
11670 static void
11671 threadlist_test_cmd (const char *cmd, int tty)
11672 {
11673 int startflag = 1;
11674 threadref nextthread;
11675 int done, result_count;
11676 threadref threadlist[3];
11677
11678 printf_filtered ("Remote Threadlist test\n");
11679 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11680 &result_count, &threadlist[0]))
11681 printf_filtered ("FAIL: threadlist test\n");
11682 else
11683 {
11684 threadref *scan = threadlist;
11685 threadref *limit = scan + result_count;
11686
11687 while (scan < limit)
11688 output_threadid (" thread ", scan++);
11689 }
11690 }
11691
11692 void
11693 display_thread_info (struct gdb_ext_thread_info *info)
11694 {
11695 output_threadid ("Threadid: ", &info->threadid);
11696 printf_filtered ("Name: %s\n ", info->shortname);
11697 printf_filtered ("State: %s\n", info->display);
11698 printf_filtered ("other: %s\n\n", info->more_display);
11699 }
11700
11701 int
11702 get_and_display_threadinfo (threadref *ref)
11703 {
11704 int result;
11705 int set;
11706 struct gdb_ext_thread_info threadinfo;
11707
11708 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11709 | TAG_MOREDISPLAY | TAG_DISPLAY;
11710 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11711 display_thread_info (&threadinfo);
11712 return result;
11713 }
11714
11715 static void
11716 threadinfo_test_cmd (const char *cmd, int tty)
11717 {
11718 int athread = SAMPLE_THREAD;
11719 threadref thread;
11720 int set;
11721
11722 int_to_threadref (&thread, athread);
11723 printf_filtered ("Remote Threadinfo test\n");
11724 if (!get_and_display_threadinfo (&thread))
11725 printf_filtered ("FAIL cannot get thread info\n");
11726 }
11727
11728 static int
11729 thread_display_step (threadref *ref, void *context)
11730 {
11731 /* output_threadid(" threadstep ",ref); *//* simple test */
11732 return get_and_display_threadinfo (ref);
11733 }
11734
11735 static void
11736 threadlist_update_test_cmd (const char *cmd, int tty)
11737 {
11738 printf_filtered ("Remote Threadlist update test\n");
11739 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11740 }
11741
11742 static void
11743 init_remote_threadtests (void)
11744 {
11745 add_com ("tlist", class_obscure, threadlist_test_cmd,
11746 _("Fetch and print the remote list of "
11747 "thread identifiers, one pkt only."));
11748 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11749 _("Fetch and display info about one thread."));
11750 add_com ("tset", class_obscure, threadset_test_cmd,
11751 _("Test setting to a different thread."));
11752 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11753 _("Iterate through updating all remote thread info."));
11754 add_com ("talive", class_obscure, threadalive_test,
11755 _("Remote thread alive test."));
11756 }
11757
11758 #endif /* 0 */
11759
11760 /* Convert a thread ID to a string. */
11761
11762 std::string
11763 remote_target::pid_to_str (ptid_t ptid)
11764 {
11765 struct remote_state *rs = get_remote_state ();
11766
11767 if (ptid == null_ptid)
11768 return normal_pid_to_str (ptid);
11769 else if (ptid.is_pid ())
11770 {
11771 /* Printing an inferior target id. */
11772
11773 /* When multi-process extensions are off, there's no way in the
11774 remote protocol to know the remote process id, if there's any
11775 at all. There's one exception --- when we're connected with
11776 target extended-remote, and we manually attached to a process
11777 with "attach PID". We don't record anywhere a flag that
11778 allows us to distinguish that case from the case of
11779 connecting with extended-remote and the stub already being
11780 attached to a process, and reporting yes to qAttached, hence
11781 no smart special casing here. */
11782 if (!remote_multi_process_p (rs))
11783 return "Remote target";
11784
11785 return normal_pid_to_str (ptid);
11786 }
11787 else
11788 {
11789 if (magic_null_ptid == ptid)
11790 return "Thread <main>";
11791 else if (remote_multi_process_p (rs))
11792 if (ptid.lwp () == 0)
11793 return normal_pid_to_str (ptid);
11794 else
11795 return string_printf ("Thread %d.%ld",
11796 ptid.pid (), ptid.lwp ());
11797 else
11798 return string_printf ("Thread %ld", ptid.lwp ());
11799 }
11800 }
11801
11802 /* Get the address of the thread local variable in OBJFILE which is
11803 stored at OFFSET within the thread local storage for thread PTID. */
11804
11805 CORE_ADDR
11806 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11807 CORE_ADDR offset)
11808 {
11809 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11810 {
11811 struct remote_state *rs = get_remote_state ();
11812 char *p = rs->buf.data ();
11813 char *endp = p + get_remote_packet_size ();
11814 enum packet_result result;
11815
11816 strcpy (p, "qGetTLSAddr:");
11817 p += strlen (p);
11818 p = write_ptid (p, endp, ptid);
11819 *p++ = ',';
11820 p += hexnumstr (p, offset);
11821 *p++ = ',';
11822 p += hexnumstr (p, lm);
11823 *p++ = '\0';
11824
11825 putpkt (rs->buf);
11826 getpkt (&rs->buf, 0);
11827 result = packet_ok (rs->buf,
11828 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11829 if (result == PACKET_OK)
11830 {
11831 ULONGEST addr;
11832
11833 unpack_varlen_hex (rs->buf.data (), &addr);
11834 return addr;
11835 }
11836 else if (result == PACKET_UNKNOWN)
11837 throw_error (TLS_GENERIC_ERROR,
11838 _("Remote target doesn't support qGetTLSAddr packet"));
11839 else
11840 throw_error (TLS_GENERIC_ERROR,
11841 _("Remote target failed to process qGetTLSAddr request"));
11842 }
11843 else
11844 throw_error (TLS_GENERIC_ERROR,
11845 _("TLS not supported or disabled on this target"));
11846 /* Not reached. */
11847 return 0;
11848 }
11849
11850 /* Provide thread local base, i.e. Thread Information Block address.
11851 Returns 1 if ptid is found and thread_local_base is non zero. */
11852
11853 bool
11854 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11855 {
11856 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11857 {
11858 struct remote_state *rs = get_remote_state ();
11859 char *p = rs->buf.data ();
11860 char *endp = p + get_remote_packet_size ();
11861 enum packet_result result;
11862
11863 strcpy (p, "qGetTIBAddr:");
11864 p += strlen (p);
11865 p = write_ptid (p, endp, ptid);
11866 *p++ = '\0';
11867
11868 putpkt (rs->buf);
11869 getpkt (&rs->buf, 0);
11870 result = packet_ok (rs->buf,
11871 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11872 if (result == PACKET_OK)
11873 {
11874 ULONGEST val;
11875 unpack_varlen_hex (rs->buf.data (), &val);
11876 if (addr)
11877 *addr = (CORE_ADDR) val;
11878 return true;
11879 }
11880 else if (result == PACKET_UNKNOWN)
11881 error (_("Remote target doesn't support qGetTIBAddr packet"));
11882 else
11883 error (_("Remote target failed to process qGetTIBAddr request"));
11884 }
11885 else
11886 error (_("qGetTIBAddr not supported or disabled on this target"));
11887 /* Not reached. */
11888 return false;
11889 }
11890
11891 /* Support for inferring a target description based on the current
11892 architecture and the size of a 'g' packet. While the 'g' packet
11893 can have any size (since optional registers can be left off the
11894 end), some sizes are easily recognizable given knowledge of the
11895 approximate architecture. */
11896
11897 struct remote_g_packet_guess
11898 {
11899 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11900 : bytes (bytes_),
11901 tdesc (tdesc_)
11902 {
11903 }
11904
11905 int bytes;
11906 const struct target_desc *tdesc;
11907 };
11908
11909 struct remote_g_packet_data : public allocate_on_obstack
11910 {
11911 std::vector<remote_g_packet_guess> guesses;
11912 };
11913
11914 static struct gdbarch_data *remote_g_packet_data_handle;
11915
11916 static void *
11917 remote_g_packet_data_init (struct obstack *obstack)
11918 {
11919 return new (obstack) remote_g_packet_data;
11920 }
11921
11922 void
11923 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11924 const struct target_desc *tdesc)
11925 {
11926 struct remote_g_packet_data *data
11927 = ((struct remote_g_packet_data *)
11928 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11929
11930 gdb_assert (tdesc != NULL);
11931
11932 for (const remote_g_packet_guess &guess : data->guesses)
11933 if (guess.bytes == bytes)
11934 internal_error (__FILE__, __LINE__,
11935 _("Duplicate g packet description added for size %d"),
11936 bytes);
11937
11938 data->guesses.emplace_back (bytes, tdesc);
11939 }
11940
11941 /* Return true if remote_read_description would do anything on this target
11942 and architecture, false otherwise. */
11943
11944 static bool
11945 remote_read_description_p (struct target_ops *target)
11946 {
11947 struct remote_g_packet_data *data
11948 = ((struct remote_g_packet_data *)
11949 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11950
11951 return !data->guesses.empty ();
11952 }
11953
11954 const struct target_desc *
11955 remote_target::read_description ()
11956 {
11957 struct remote_g_packet_data *data
11958 = ((struct remote_g_packet_data *)
11959 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11960
11961 /* Do not try this during initial connection, when we do not know
11962 whether there is a running but stopped thread. */
11963 if (!target_has_execution () || inferior_ptid == null_ptid)
11964 return beneath ()->read_description ();
11965
11966 if (!data->guesses.empty ())
11967 {
11968 int bytes = send_g_packet ();
11969
11970 for (const remote_g_packet_guess &guess : data->guesses)
11971 if (guess.bytes == bytes)
11972 return guess.tdesc;
11973
11974 /* We discard the g packet. A minor optimization would be to
11975 hold on to it, and fill the register cache once we have selected
11976 an architecture, but it's too tricky to do safely. */
11977 }
11978
11979 return beneath ()->read_description ();
11980 }
11981
11982 /* Remote file transfer support. This is host-initiated I/O, not
11983 target-initiated; for target-initiated, see remote-fileio.c. */
11984
11985 /* If *LEFT is at least the length of STRING, copy STRING to
11986 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11987 decrease *LEFT. Otherwise raise an error. */
11988
11989 static void
11990 remote_buffer_add_string (char **buffer, int *left, const char *string)
11991 {
11992 int len = strlen (string);
11993
11994 if (len > *left)
11995 error (_("Packet too long for target."));
11996
11997 memcpy (*buffer, string, len);
11998 *buffer += len;
11999 *left -= len;
12000
12001 /* NUL-terminate the buffer as a convenience, if there is
12002 room. */
12003 if (*left)
12004 **buffer = '\0';
12005 }
12006
12007 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12008 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12009 decrease *LEFT. Otherwise raise an error. */
12010
12011 static void
12012 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12013 int len)
12014 {
12015 if (2 * len > *left)
12016 error (_("Packet too long for target."));
12017
12018 bin2hex (bytes, *buffer, len);
12019 *buffer += 2 * len;
12020 *left -= 2 * len;
12021
12022 /* NUL-terminate the buffer as a convenience, if there is
12023 room. */
12024 if (*left)
12025 **buffer = '\0';
12026 }
12027
12028 /* If *LEFT is large enough, convert VALUE to hex and add it to
12029 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12030 decrease *LEFT. Otherwise raise an error. */
12031
12032 static void
12033 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12034 {
12035 int len = hexnumlen (value);
12036
12037 if (len > *left)
12038 error (_("Packet too long for target."));
12039
12040 hexnumstr (*buffer, value);
12041 *buffer += len;
12042 *left -= len;
12043
12044 /* NUL-terminate the buffer as a convenience, if there is
12045 room. */
12046 if (*left)
12047 **buffer = '\0';
12048 }
12049
12050 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12051 value, *REMOTE_ERRNO to the remote error number or zero if none
12052 was included, and *ATTACHMENT to point to the start of the annex
12053 if any. The length of the packet isn't needed here; there may
12054 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12055
12056 Return 0 if the packet could be parsed, -1 if it could not. If
12057 -1 is returned, the other variables may not be initialized. */
12058
12059 static int
12060 remote_hostio_parse_result (const char *buffer, int *retcode,
12061 int *remote_errno, const char **attachment)
12062 {
12063 char *p, *p2;
12064
12065 *remote_errno = 0;
12066 *attachment = NULL;
12067
12068 if (buffer[0] != 'F')
12069 return -1;
12070
12071 errno = 0;
12072 *retcode = strtol (&buffer[1], &p, 16);
12073 if (errno != 0 || p == &buffer[1])
12074 return -1;
12075
12076 /* Check for ",errno". */
12077 if (*p == ',')
12078 {
12079 errno = 0;
12080 *remote_errno = strtol (p + 1, &p2, 16);
12081 if (errno != 0 || p + 1 == p2)
12082 return -1;
12083 p = p2;
12084 }
12085
12086 /* Check for ";attachment". If there is no attachment, the
12087 packet should end here. */
12088 if (*p == ';')
12089 {
12090 *attachment = p + 1;
12091 return 0;
12092 }
12093 else if (*p == '\0')
12094 return 0;
12095 else
12096 return -1;
12097 }
12098
12099 /* Send a prepared I/O packet to the target and read its response.
12100 The prepared packet is in the global RS->BUF before this function
12101 is called, and the answer is there when we return.
12102
12103 COMMAND_BYTES is the length of the request to send, which may include
12104 binary data. WHICH_PACKET is the packet configuration to check
12105 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12106 is set to the error number and -1 is returned. Otherwise the value
12107 returned by the function is returned.
12108
12109 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12110 attachment is expected; an error will be reported if there's a
12111 mismatch. If one is found, *ATTACHMENT will be set to point into
12112 the packet buffer and *ATTACHMENT_LEN will be set to the
12113 attachment's length. */
12114
12115 int
12116 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12117 int *remote_errno, const char **attachment,
12118 int *attachment_len)
12119 {
12120 struct remote_state *rs = get_remote_state ();
12121 int ret, bytes_read;
12122 const char *attachment_tmp;
12123
12124 if (packet_support (which_packet) == PACKET_DISABLE)
12125 {
12126 *remote_errno = FILEIO_ENOSYS;
12127 return -1;
12128 }
12129
12130 putpkt_binary (rs->buf.data (), command_bytes);
12131 bytes_read = getpkt_sane (&rs->buf, 0);
12132
12133 /* If it timed out, something is wrong. Don't try to parse the
12134 buffer. */
12135 if (bytes_read < 0)
12136 {
12137 *remote_errno = FILEIO_EINVAL;
12138 return -1;
12139 }
12140
12141 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12142 {
12143 case PACKET_ERROR:
12144 *remote_errno = FILEIO_EINVAL;
12145 return -1;
12146 case PACKET_UNKNOWN:
12147 *remote_errno = FILEIO_ENOSYS;
12148 return -1;
12149 case PACKET_OK:
12150 break;
12151 }
12152
12153 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12154 &attachment_tmp))
12155 {
12156 *remote_errno = FILEIO_EINVAL;
12157 return -1;
12158 }
12159
12160 /* Make sure we saw an attachment if and only if we expected one. */
12161 if ((attachment_tmp == NULL && attachment != NULL)
12162 || (attachment_tmp != NULL && attachment == NULL))
12163 {
12164 *remote_errno = FILEIO_EINVAL;
12165 return -1;
12166 }
12167
12168 /* If an attachment was found, it must point into the packet buffer;
12169 work out how many bytes there were. */
12170 if (attachment_tmp != NULL)
12171 {
12172 *attachment = attachment_tmp;
12173 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12174 }
12175
12176 return ret;
12177 }
12178
12179 /* See declaration.h. */
12180
12181 void
12182 readahead_cache::invalidate ()
12183 {
12184 this->fd = -1;
12185 }
12186
12187 /* See declaration.h. */
12188
12189 void
12190 readahead_cache::invalidate_fd (int fd)
12191 {
12192 if (this->fd == fd)
12193 this->fd = -1;
12194 }
12195
12196 /* Set the filesystem remote_hostio functions that take FILENAME
12197 arguments will use. Return 0 on success, or -1 if an error
12198 occurs (and set *REMOTE_ERRNO). */
12199
12200 int
12201 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12202 int *remote_errno)
12203 {
12204 struct remote_state *rs = get_remote_state ();
12205 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12206 char *p = rs->buf.data ();
12207 int left = get_remote_packet_size () - 1;
12208 char arg[9];
12209 int ret;
12210
12211 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12212 return 0;
12213
12214 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12215 return 0;
12216
12217 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12218
12219 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12220 remote_buffer_add_string (&p, &left, arg);
12221
12222 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12223 remote_errno, NULL, NULL);
12224
12225 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12226 return 0;
12227
12228 if (ret == 0)
12229 rs->fs_pid = required_pid;
12230
12231 return ret;
12232 }
12233
12234 /* Implementation of to_fileio_open. */
12235
12236 int
12237 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12238 int flags, int mode, int warn_if_slow,
12239 int *remote_errno)
12240 {
12241 struct remote_state *rs = get_remote_state ();
12242 char *p = rs->buf.data ();
12243 int left = get_remote_packet_size () - 1;
12244
12245 if (warn_if_slow)
12246 {
12247 static int warning_issued = 0;
12248
12249 printf_unfiltered (_("Reading %s from remote target...\n"),
12250 filename);
12251
12252 if (!warning_issued)
12253 {
12254 warning (_("File transfers from remote targets can be slow."
12255 " Use \"set sysroot\" to access files locally"
12256 " instead."));
12257 warning_issued = 1;
12258 }
12259 }
12260
12261 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12262 return -1;
12263
12264 remote_buffer_add_string (&p, &left, "vFile:open:");
12265
12266 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12267 strlen (filename));
12268 remote_buffer_add_string (&p, &left, ",");
12269
12270 remote_buffer_add_int (&p, &left, flags);
12271 remote_buffer_add_string (&p, &left, ",");
12272
12273 remote_buffer_add_int (&p, &left, mode);
12274
12275 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12276 remote_errno, NULL, NULL);
12277 }
12278
12279 int
12280 remote_target::fileio_open (struct inferior *inf, const char *filename,
12281 int flags, int mode, int warn_if_slow,
12282 int *remote_errno)
12283 {
12284 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12285 remote_errno);
12286 }
12287
12288 /* Implementation of to_fileio_pwrite. */
12289
12290 int
12291 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12292 ULONGEST offset, int *remote_errno)
12293 {
12294 struct remote_state *rs = get_remote_state ();
12295 char *p = rs->buf.data ();
12296 int left = get_remote_packet_size ();
12297 int out_len;
12298
12299 rs->readahead_cache.invalidate_fd (fd);
12300
12301 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12302
12303 remote_buffer_add_int (&p, &left, fd);
12304 remote_buffer_add_string (&p, &left, ",");
12305
12306 remote_buffer_add_int (&p, &left, offset);
12307 remote_buffer_add_string (&p, &left, ",");
12308
12309 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12310 (get_remote_packet_size ()
12311 - (p - rs->buf.data ())));
12312
12313 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12314 remote_errno, NULL, NULL);
12315 }
12316
12317 int
12318 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12319 ULONGEST offset, int *remote_errno)
12320 {
12321 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12322 }
12323
12324 /* Helper for the implementation of to_fileio_pread. Read the file
12325 from the remote side with vFile:pread. */
12326
12327 int
12328 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12329 ULONGEST offset, int *remote_errno)
12330 {
12331 struct remote_state *rs = get_remote_state ();
12332 char *p = rs->buf.data ();
12333 const char *attachment;
12334 int left = get_remote_packet_size ();
12335 int ret, attachment_len;
12336 int read_len;
12337
12338 remote_buffer_add_string (&p, &left, "vFile:pread:");
12339
12340 remote_buffer_add_int (&p, &left, fd);
12341 remote_buffer_add_string (&p, &left, ",");
12342
12343 remote_buffer_add_int (&p, &left, len);
12344 remote_buffer_add_string (&p, &left, ",");
12345
12346 remote_buffer_add_int (&p, &left, offset);
12347
12348 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12349 remote_errno, &attachment,
12350 &attachment_len);
12351
12352 if (ret < 0)
12353 return ret;
12354
12355 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12356 read_buf, len);
12357 if (read_len != ret)
12358 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12359
12360 return ret;
12361 }
12362
12363 /* See declaration.h. */
12364
12365 int
12366 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12367 ULONGEST offset)
12368 {
12369 if (this->fd == fd
12370 && this->offset <= offset
12371 && offset < this->offset + this->bufsize)
12372 {
12373 ULONGEST max = this->offset + this->bufsize;
12374
12375 if (offset + len > max)
12376 len = max - offset;
12377
12378 memcpy (read_buf, this->buf + offset - this->offset, len);
12379 return len;
12380 }
12381
12382 return 0;
12383 }
12384
12385 /* Implementation of to_fileio_pread. */
12386
12387 int
12388 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12389 ULONGEST offset, int *remote_errno)
12390 {
12391 int ret;
12392 struct remote_state *rs = get_remote_state ();
12393 readahead_cache *cache = &rs->readahead_cache;
12394
12395 ret = cache->pread (fd, read_buf, len, offset);
12396 if (ret > 0)
12397 {
12398 cache->hit_count++;
12399
12400 remote_debug_printf ("readahead cache hit %s",
12401 pulongest (cache->hit_count));
12402 return ret;
12403 }
12404
12405 cache->miss_count++;
12406
12407 remote_debug_printf ("readahead cache miss %s",
12408 pulongest (cache->miss_count));
12409
12410 cache->fd = fd;
12411 cache->offset = offset;
12412 cache->bufsize = get_remote_packet_size ();
12413 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12414
12415 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12416 cache->offset, remote_errno);
12417 if (ret <= 0)
12418 {
12419 cache->invalidate_fd (fd);
12420 return ret;
12421 }
12422
12423 cache->bufsize = ret;
12424 return cache->pread (fd, read_buf, len, offset);
12425 }
12426
12427 int
12428 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12429 ULONGEST offset, int *remote_errno)
12430 {
12431 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12432 }
12433
12434 /* Implementation of to_fileio_close. */
12435
12436 int
12437 remote_target::remote_hostio_close (int fd, int *remote_errno)
12438 {
12439 struct remote_state *rs = get_remote_state ();
12440 char *p = rs->buf.data ();
12441 int left = get_remote_packet_size () - 1;
12442
12443 rs->readahead_cache.invalidate_fd (fd);
12444
12445 remote_buffer_add_string (&p, &left, "vFile:close:");
12446
12447 remote_buffer_add_int (&p, &left, fd);
12448
12449 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12450 remote_errno, NULL, NULL);
12451 }
12452
12453 int
12454 remote_target::fileio_close (int fd, int *remote_errno)
12455 {
12456 return remote_hostio_close (fd, remote_errno);
12457 }
12458
12459 /* Implementation of to_fileio_unlink. */
12460
12461 int
12462 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12463 int *remote_errno)
12464 {
12465 struct remote_state *rs = get_remote_state ();
12466 char *p = rs->buf.data ();
12467 int left = get_remote_packet_size () - 1;
12468
12469 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12470 return -1;
12471
12472 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12473
12474 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12475 strlen (filename));
12476
12477 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12478 remote_errno, NULL, NULL);
12479 }
12480
12481 int
12482 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12483 int *remote_errno)
12484 {
12485 return remote_hostio_unlink (inf, filename, remote_errno);
12486 }
12487
12488 /* Implementation of to_fileio_readlink. */
12489
12490 gdb::optional<std::string>
12491 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12492 int *remote_errno)
12493 {
12494 struct remote_state *rs = get_remote_state ();
12495 char *p = rs->buf.data ();
12496 const char *attachment;
12497 int left = get_remote_packet_size ();
12498 int len, attachment_len;
12499 int read_len;
12500
12501 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12502 return {};
12503
12504 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12505
12506 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12507 strlen (filename));
12508
12509 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12510 remote_errno, &attachment,
12511 &attachment_len);
12512
12513 if (len < 0)
12514 return {};
12515
12516 std::string ret (len, '\0');
12517
12518 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12519 (gdb_byte *) &ret[0], len);
12520 if (read_len != len)
12521 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12522
12523 return ret;
12524 }
12525
12526 /* Implementation of to_fileio_fstat. */
12527
12528 int
12529 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12530 {
12531 struct remote_state *rs = get_remote_state ();
12532 char *p = rs->buf.data ();
12533 int left = get_remote_packet_size ();
12534 int attachment_len, ret;
12535 const char *attachment;
12536 struct fio_stat fst;
12537 int read_len;
12538
12539 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12540
12541 remote_buffer_add_int (&p, &left, fd);
12542
12543 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12544 remote_errno, &attachment,
12545 &attachment_len);
12546 if (ret < 0)
12547 {
12548 if (*remote_errno != FILEIO_ENOSYS)
12549 return ret;
12550
12551 /* Strictly we should return -1, ENOSYS here, but when
12552 "set sysroot remote:" was implemented in August 2008
12553 BFD's need for a stat function was sidestepped with
12554 this hack. This was not remedied until March 2015
12555 so we retain the previous behavior to avoid breaking
12556 compatibility.
12557
12558 Note that the memset is a March 2015 addition; older
12559 GDBs set st_size *and nothing else* so the structure
12560 would have garbage in all other fields. This might
12561 break something but retaining the previous behavior
12562 here would be just too wrong. */
12563
12564 memset (st, 0, sizeof (struct stat));
12565 st->st_size = INT_MAX;
12566 return 0;
12567 }
12568
12569 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12570 (gdb_byte *) &fst, sizeof (fst));
12571
12572 if (read_len != ret)
12573 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12574
12575 if (read_len != sizeof (fst))
12576 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12577 read_len, (int) sizeof (fst));
12578
12579 remote_fileio_to_host_stat (&fst, st);
12580
12581 return 0;
12582 }
12583
12584 /* Implementation of to_filesystem_is_local. */
12585
12586 bool
12587 remote_target::filesystem_is_local ()
12588 {
12589 /* Valgrind GDB presents itself as a remote target but works
12590 on the local filesystem: it does not implement remote get
12591 and users are not expected to set a sysroot. To handle
12592 this case we treat the remote filesystem as local if the
12593 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12594 does not support vFile:open. */
12595 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12596 {
12597 enum packet_support ps = packet_support (PACKET_vFile_open);
12598
12599 if (ps == PACKET_SUPPORT_UNKNOWN)
12600 {
12601 int fd, remote_errno;
12602
12603 /* Try opening a file to probe support. The supplied
12604 filename is irrelevant, we only care about whether
12605 the stub recognizes the packet or not. */
12606 fd = remote_hostio_open (NULL, "just probing",
12607 FILEIO_O_RDONLY, 0700, 0,
12608 &remote_errno);
12609
12610 if (fd >= 0)
12611 remote_hostio_close (fd, &remote_errno);
12612
12613 ps = packet_support (PACKET_vFile_open);
12614 }
12615
12616 if (ps == PACKET_DISABLE)
12617 {
12618 static int warning_issued = 0;
12619
12620 if (!warning_issued)
12621 {
12622 warning (_("remote target does not support file"
12623 " transfer, attempting to access files"
12624 " from local filesystem."));
12625 warning_issued = 1;
12626 }
12627
12628 return true;
12629 }
12630 }
12631
12632 return false;
12633 }
12634
12635 static int
12636 remote_fileio_errno_to_host (int errnum)
12637 {
12638 switch (errnum)
12639 {
12640 case FILEIO_EPERM:
12641 return EPERM;
12642 case FILEIO_ENOENT:
12643 return ENOENT;
12644 case FILEIO_EINTR:
12645 return EINTR;
12646 case FILEIO_EIO:
12647 return EIO;
12648 case FILEIO_EBADF:
12649 return EBADF;
12650 case FILEIO_EACCES:
12651 return EACCES;
12652 case FILEIO_EFAULT:
12653 return EFAULT;
12654 case FILEIO_EBUSY:
12655 return EBUSY;
12656 case FILEIO_EEXIST:
12657 return EEXIST;
12658 case FILEIO_ENODEV:
12659 return ENODEV;
12660 case FILEIO_ENOTDIR:
12661 return ENOTDIR;
12662 case FILEIO_EISDIR:
12663 return EISDIR;
12664 case FILEIO_EINVAL:
12665 return EINVAL;
12666 case FILEIO_ENFILE:
12667 return ENFILE;
12668 case FILEIO_EMFILE:
12669 return EMFILE;
12670 case FILEIO_EFBIG:
12671 return EFBIG;
12672 case FILEIO_ENOSPC:
12673 return ENOSPC;
12674 case FILEIO_ESPIPE:
12675 return ESPIPE;
12676 case FILEIO_EROFS:
12677 return EROFS;
12678 case FILEIO_ENOSYS:
12679 return ENOSYS;
12680 case FILEIO_ENAMETOOLONG:
12681 return ENAMETOOLONG;
12682 }
12683 return -1;
12684 }
12685
12686 static char *
12687 remote_hostio_error (int errnum)
12688 {
12689 int host_error = remote_fileio_errno_to_host (errnum);
12690
12691 if (host_error == -1)
12692 error (_("Unknown remote I/O error %d"), errnum);
12693 else
12694 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12695 }
12696
12697 /* A RAII wrapper around a remote file descriptor. */
12698
12699 class scoped_remote_fd
12700 {
12701 public:
12702 scoped_remote_fd (remote_target *remote, int fd)
12703 : m_remote (remote), m_fd (fd)
12704 {
12705 }
12706
12707 ~scoped_remote_fd ()
12708 {
12709 if (m_fd != -1)
12710 {
12711 try
12712 {
12713 int remote_errno;
12714 m_remote->remote_hostio_close (m_fd, &remote_errno);
12715 }
12716 catch (...)
12717 {
12718 /* Swallow exception before it escapes the dtor. If
12719 something goes wrong, likely the connection is gone,
12720 and there's nothing else that can be done. */
12721 }
12722 }
12723 }
12724
12725 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12726
12727 /* Release ownership of the file descriptor, and return it. */
12728 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12729 {
12730 int fd = m_fd;
12731 m_fd = -1;
12732 return fd;
12733 }
12734
12735 /* Return the owned file descriptor. */
12736 int get () const noexcept
12737 {
12738 return m_fd;
12739 }
12740
12741 private:
12742 /* The remote target. */
12743 remote_target *m_remote;
12744
12745 /* The owned remote I/O file descriptor. */
12746 int m_fd;
12747 };
12748
12749 void
12750 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12751 {
12752 remote_target *remote = get_current_remote_target ();
12753
12754 if (remote == nullptr)
12755 error (_("command can only be used with remote target"));
12756
12757 remote->remote_file_put (local_file, remote_file, from_tty);
12758 }
12759
12760 void
12761 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12762 int from_tty)
12763 {
12764 int retcode, remote_errno, bytes, io_size;
12765 int bytes_in_buffer;
12766 int saw_eof;
12767 ULONGEST offset;
12768
12769 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12770 if (file == NULL)
12771 perror_with_name (local_file);
12772
12773 scoped_remote_fd fd
12774 (this, remote_hostio_open (NULL,
12775 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12776 | FILEIO_O_TRUNC),
12777 0700, 0, &remote_errno));
12778 if (fd.get () == -1)
12779 remote_hostio_error (remote_errno);
12780
12781 /* Send up to this many bytes at once. They won't all fit in the
12782 remote packet limit, so we'll transfer slightly fewer. */
12783 io_size = get_remote_packet_size ();
12784 gdb::byte_vector buffer (io_size);
12785
12786 bytes_in_buffer = 0;
12787 saw_eof = 0;
12788 offset = 0;
12789 while (bytes_in_buffer || !saw_eof)
12790 {
12791 if (!saw_eof)
12792 {
12793 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12794 io_size - bytes_in_buffer,
12795 file.get ());
12796 if (bytes == 0)
12797 {
12798 if (ferror (file.get ()))
12799 error (_("Error reading %s."), local_file);
12800 else
12801 {
12802 /* EOF. Unless there is something still in the
12803 buffer from the last iteration, we are done. */
12804 saw_eof = 1;
12805 if (bytes_in_buffer == 0)
12806 break;
12807 }
12808 }
12809 }
12810 else
12811 bytes = 0;
12812
12813 bytes += bytes_in_buffer;
12814 bytes_in_buffer = 0;
12815
12816 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12817 offset, &remote_errno);
12818
12819 if (retcode < 0)
12820 remote_hostio_error (remote_errno);
12821 else if (retcode == 0)
12822 error (_("Remote write of %d bytes returned 0!"), bytes);
12823 else if (retcode < bytes)
12824 {
12825 /* Short write. Save the rest of the read data for the next
12826 write. */
12827 bytes_in_buffer = bytes - retcode;
12828 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12829 }
12830
12831 offset += retcode;
12832 }
12833
12834 if (remote_hostio_close (fd.release (), &remote_errno))
12835 remote_hostio_error (remote_errno);
12836
12837 if (from_tty)
12838 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12839 }
12840
12841 void
12842 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12843 {
12844 remote_target *remote = get_current_remote_target ();
12845
12846 if (remote == nullptr)
12847 error (_("command can only be used with remote target"));
12848
12849 remote->remote_file_get (remote_file, local_file, from_tty);
12850 }
12851
12852 void
12853 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12854 int from_tty)
12855 {
12856 int remote_errno, bytes, io_size;
12857 ULONGEST offset;
12858
12859 scoped_remote_fd fd
12860 (this, remote_hostio_open (NULL,
12861 remote_file, FILEIO_O_RDONLY, 0, 0,
12862 &remote_errno));
12863 if (fd.get () == -1)
12864 remote_hostio_error (remote_errno);
12865
12866 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12867 if (file == NULL)
12868 perror_with_name (local_file);
12869
12870 /* Send up to this many bytes at once. They won't all fit in the
12871 remote packet limit, so we'll transfer slightly fewer. */
12872 io_size = get_remote_packet_size ();
12873 gdb::byte_vector buffer (io_size);
12874
12875 offset = 0;
12876 while (1)
12877 {
12878 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12879 &remote_errno);
12880 if (bytes == 0)
12881 /* Success, but no bytes, means end-of-file. */
12882 break;
12883 if (bytes == -1)
12884 remote_hostio_error (remote_errno);
12885
12886 offset += bytes;
12887
12888 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12889 if (bytes == 0)
12890 perror_with_name (local_file);
12891 }
12892
12893 if (remote_hostio_close (fd.release (), &remote_errno))
12894 remote_hostio_error (remote_errno);
12895
12896 if (from_tty)
12897 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12898 }
12899
12900 void
12901 remote_file_delete (const char *remote_file, int from_tty)
12902 {
12903 remote_target *remote = get_current_remote_target ();
12904
12905 if (remote == nullptr)
12906 error (_("command can only be used with remote target"));
12907
12908 remote->remote_file_delete (remote_file, from_tty);
12909 }
12910
12911 void
12912 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12913 {
12914 int retcode, remote_errno;
12915
12916 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12917 if (retcode == -1)
12918 remote_hostio_error (remote_errno);
12919
12920 if (from_tty)
12921 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12922 }
12923
12924 static void
12925 remote_put_command (const char *args, int from_tty)
12926 {
12927 if (args == NULL)
12928 error_no_arg (_("file to put"));
12929
12930 gdb_argv argv (args);
12931 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12932 error (_("Invalid parameters to remote put"));
12933
12934 remote_file_put (argv[0], argv[1], from_tty);
12935 }
12936
12937 static void
12938 remote_get_command (const char *args, int from_tty)
12939 {
12940 if (args == NULL)
12941 error_no_arg (_("file to get"));
12942
12943 gdb_argv argv (args);
12944 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12945 error (_("Invalid parameters to remote get"));
12946
12947 remote_file_get (argv[0], argv[1], from_tty);
12948 }
12949
12950 static void
12951 remote_delete_command (const char *args, int from_tty)
12952 {
12953 if (args == NULL)
12954 error_no_arg (_("file to delete"));
12955
12956 gdb_argv argv (args);
12957 if (argv[0] == NULL || argv[1] != NULL)
12958 error (_("Invalid parameters to remote delete"));
12959
12960 remote_file_delete (argv[0], from_tty);
12961 }
12962
12963 bool
12964 remote_target::can_execute_reverse ()
12965 {
12966 if (packet_support (PACKET_bs) == PACKET_ENABLE
12967 || packet_support (PACKET_bc) == PACKET_ENABLE)
12968 return true;
12969 else
12970 return false;
12971 }
12972
12973 bool
12974 remote_target::supports_non_stop ()
12975 {
12976 return true;
12977 }
12978
12979 bool
12980 remote_target::supports_disable_randomization ()
12981 {
12982 /* Only supported in extended mode. */
12983 return false;
12984 }
12985
12986 bool
12987 remote_target::supports_multi_process ()
12988 {
12989 struct remote_state *rs = get_remote_state ();
12990
12991 return remote_multi_process_p (rs);
12992 }
12993
12994 static int
12995 remote_supports_cond_tracepoints ()
12996 {
12997 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12998 }
12999
13000 bool
13001 remote_target::supports_evaluation_of_breakpoint_conditions ()
13002 {
13003 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13004 }
13005
13006 static int
13007 remote_supports_fast_tracepoints ()
13008 {
13009 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13010 }
13011
13012 static int
13013 remote_supports_static_tracepoints ()
13014 {
13015 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13016 }
13017
13018 static int
13019 remote_supports_install_in_trace ()
13020 {
13021 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13022 }
13023
13024 bool
13025 remote_target::supports_enable_disable_tracepoint ()
13026 {
13027 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13028 == PACKET_ENABLE);
13029 }
13030
13031 bool
13032 remote_target::supports_string_tracing ()
13033 {
13034 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13035 }
13036
13037 bool
13038 remote_target::can_run_breakpoint_commands ()
13039 {
13040 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13041 }
13042
13043 void
13044 remote_target::trace_init ()
13045 {
13046 struct remote_state *rs = get_remote_state ();
13047
13048 putpkt ("QTinit");
13049 remote_get_noisy_reply ();
13050 if (strcmp (rs->buf.data (), "OK") != 0)
13051 error (_("Target does not support this command."));
13052 }
13053
13054 /* Recursive routine to walk through command list including loops, and
13055 download packets for each command. */
13056
13057 void
13058 remote_target::remote_download_command_source (int num, ULONGEST addr,
13059 struct command_line *cmds)
13060 {
13061 struct remote_state *rs = get_remote_state ();
13062 struct command_line *cmd;
13063
13064 for (cmd = cmds; cmd; cmd = cmd->next)
13065 {
13066 QUIT; /* Allow user to bail out with ^C. */
13067 strcpy (rs->buf.data (), "QTDPsrc:");
13068 encode_source_string (num, addr, "cmd", cmd->line,
13069 rs->buf.data () + strlen (rs->buf.data ()),
13070 rs->buf.size () - strlen (rs->buf.data ()));
13071 putpkt (rs->buf);
13072 remote_get_noisy_reply ();
13073 if (strcmp (rs->buf.data (), "OK"))
13074 warning (_("Target does not support source download."));
13075
13076 if (cmd->control_type == while_control
13077 || cmd->control_type == while_stepping_control)
13078 {
13079 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13080
13081 QUIT; /* Allow user to bail out with ^C. */
13082 strcpy (rs->buf.data (), "QTDPsrc:");
13083 encode_source_string (num, addr, "cmd", "end",
13084 rs->buf.data () + strlen (rs->buf.data ()),
13085 rs->buf.size () - strlen (rs->buf.data ()));
13086 putpkt (rs->buf);
13087 remote_get_noisy_reply ();
13088 if (strcmp (rs->buf.data (), "OK"))
13089 warning (_("Target does not support source download."));
13090 }
13091 }
13092 }
13093
13094 void
13095 remote_target::download_tracepoint (struct bp_location *loc)
13096 {
13097 CORE_ADDR tpaddr;
13098 char addrbuf[40];
13099 std::vector<std::string> tdp_actions;
13100 std::vector<std::string> stepping_actions;
13101 char *pkt;
13102 struct breakpoint *b = loc->owner;
13103 struct tracepoint *t = (struct tracepoint *) b;
13104 struct remote_state *rs = get_remote_state ();
13105 int ret;
13106 const char *err_msg = _("Tracepoint packet too large for target.");
13107 size_t size_left;
13108
13109 /* We use a buffer other than rs->buf because we'll build strings
13110 across multiple statements, and other statements in between could
13111 modify rs->buf. */
13112 gdb::char_vector buf (get_remote_packet_size ());
13113
13114 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13115
13116 tpaddr = loc->address;
13117 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13118 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13119 b->number, addrbuf, /* address */
13120 (b->enable_state == bp_enabled ? 'E' : 'D'),
13121 t->step_count, t->pass_count);
13122
13123 if (ret < 0 || ret >= buf.size ())
13124 error ("%s", err_msg);
13125
13126 /* Fast tracepoints are mostly handled by the target, but we can
13127 tell the target how big of an instruction block should be moved
13128 around. */
13129 if (b->type == bp_fast_tracepoint)
13130 {
13131 /* Only test for support at download time; we may not know
13132 target capabilities at definition time. */
13133 if (remote_supports_fast_tracepoints ())
13134 {
13135 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13136 NULL))
13137 {
13138 size_left = buf.size () - strlen (buf.data ());
13139 ret = snprintf (buf.data () + strlen (buf.data ()),
13140 size_left, ":F%x",
13141 gdb_insn_length (loc->gdbarch, tpaddr));
13142
13143 if (ret < 0 || ret >= size_left)
13144 error ("%s", err_msg);
13145 }
13146 else
13147 /* If it passed validation at definition but fails now,
13148 something is very wrong. */
13149 internal_error (__FILE__, __LINE__,
13150 _("Fast tracepoint not "
13151 "valid during download"));
13152 }
13153 else
13154 /* Fast tracepoints are functionally identical to regular
13155 tracepoints, so don't take lack of support as a reason to
13156 give up on the trace run. */
13157 warning (_("Target does not support fast tracepoints, "
13158 "downloading %d as regular tracepoint"), b->number);
13159 }
13160 else if (b->type == bp_static_tracepoint)
13161 {
13162 /* Only test for support at download time; we may not know
13163 target capabilities at definition time. */
13164 if (remote_supports_static_tracepoints ())
13165 {
13166 struct static_tracepoint_marker marker;
13167
13168 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13169 {
13170 size_left = buf.size () - strlen (buf.data ());
13171 ret = snprintf (buf.data () + strlen (buf.data ()),
13172 size_left, ":S");
13173
13174 if (ret < 0 || ret >= size_left)
13175 error ("%s", err_msg);
13176 }
13177 else
13178 error (_("Static tracepoint not valid during download"));
13179 }
13180 else
13181 /* Fast tracepoints are functionally identical to regular
13182 tracepoints, so don't take lack of support as a reason
13183 to give up on the trace run. */
13184 error (_("Target does not support static tracepoints"));
13185 }
13186 /* If the tracepoint has a conditional, make it into an agent
13187 expression and append to the definition. */
13188 if (loc->cond)
13189 {
13190 /* Only test support at download time, we may not know target
13191 capabilities at definition time. */
13192 if (remote_supports_cond_tracepoints ())
13193 {
13194 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13195 loc->cond.get ());
13196
13197 size_left = buf.size () - strlen (buf.data ());
13198
13199 ret = snprintf (buf.data () + strlen (buf.data ()),
13200 size_left, ":X%x,", aexpr->len);
13201
13202 if (ret < 0 || ret >= size_left)
13203 error ("%s", err_msg);
13204
13205 size_left = buf.size () - strlen (buf.data ());
13206
13207 /* Two bytes to encode each aexpr byte, plus the terminating
13208 null byte. */
13209 if (aexpr->len * 2 + 1 > size_left)
13210 error ("%s", err_msg);
13211
13212 pkt = buf.data () + strlen (buf.data ());
13213
13214 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13215 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13216 *pkt = '\0';
13217 }
13218 else
13219 warning (_("Target does not support conditional tracepoints, "
13220 "ignoring tp %d cond"), b->number);
13221 }
13222
13223 if (b->commands || *default_collect)
13224 {
13225 size_left = buf.size () - strlen (buf.data ());
13226
13227 ret = snprintf (buf.data () + strlen (buf.data ()),
13228 size_left, "-");
13229
13230 if (ret < 0 || ret >= size_left)
13231 error ("%s", err_msg);
13232 }
13233
13234 putpkt (buf.data ());
13235 remote_get_noisy_reply ();
13236 if (strcmp (rs->buf.data (), "OK"))
13237 error (_("Target does not support tracepoints."));
13238
13239 /* do_single_steps (t); */
13240 for (auto action_it = tdp_actions.begin ();
13241 action_it != tdp_actions.end (); action_it++)
13242 {
13243 QUIT; /* Allow user to bail out with ^C. */
13244
13245 bool has_more = ((action_it + 1) != tdp_actions.end ()
13246 || !stepping_actions.empty ());
13247
13248 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13249 b->number, addrbuf, /* address */
13250 action_it->c_str (),
13251 has_more ? '-' : 0);
13252
13253 if (ret < 0 || ret >= buf.size ())
13254 error ("%s", err_msg);
13255
13256 putpkt (buf.data ());
13257 remote_get_noisy_reply ();
13258 if (strcmp (rs->buf.data (), "OK"))
13259 error (_("Error on target while setting tracepoints."));
13260 }
13261
13262 for (auto action_it = stepping_actions.begin ();
13263 action_it != stepping_actions.end (); action_it++)
13264 {
13265 QUIT; /* Allow user to bail out with ^C. */
13266
13267 bool is_first = action_it == stepping_actions.begin ();
13268 bool has_more = (action_it + 1) != stepping_actions.end ();
13269
13270 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13271 b->number, addrbuf, /* address */
13272 is_first ? "S" : "",
13273 action_it->c_str (),
13274 has_more ? "-" : "");
13275
13276 if (ret < 0 || ret >= buf.size ())
13277 error ("%s", err_msg);
13278
13279 putpkt (buf.data ());
13280 remote_get_noisy_reply ();
13281 if (strcmp (rs->buf.data (), "OK"))
13282 error (_("Error on target while setting tracepoints."));
13283 }
13284
13285 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13286 {
13287 if (b->location != NULL)
13288 {
13289 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13290
13291 if (ret < 0 || ret >= buf.size ())
13292 error ("%s", err_msg);
13293
13294 encode_source_string (b->number, loc->address, "at",
13295 event_location_to_string (b->location.get ()),
13296 buf.data () + strlen (buf.data ()),
13297 buf.size () - strlen (buf.data ()));
13298 putpkt (buf.data ());
13299 remote_get_noisy_reply ();
13300 if (strcmp (rs->buf.data (), "OK"))
13301 warning (_("Target does not support source download."));
13302 }
13303 if (b->cond_string)
13304 {
13305 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13306
13307 if (ret < 0 || ret >= buf.size ())
13308 error ("%s", err_msg);
13309
13310 encode_source_string (b->number, loc->address,
13311 "cond", b->cond_string,
13312 buf.data () + strlen (buf.data ()),
13313 buf.size () - strlen (buf.data ()));
13314 putpkt (buf.data ());
13315 remote_get_noisy_reply ();
13316 if (strcmp (rs->buf.data (), "OK"))
13317 warning (_("Target does not support source download."));
13318 }
13319 remote_download_command_source (b->number, loc->address,
13320 breakpoint_commands (b));
13321 }
13322 }
13323
13324 bool
13325 remote_target::can_download_tracepoint ()
13326 {
13327 struct remote_state *rs = get_remote_state ();
13328 struct trace_status *ts;
13329 int status;
13330
13331 /* Don't try to install tracepoints until we've relocated our
13332 symbols, and fetched and merged the target's tracepoint list with
13333 ours. */
13334 if (rs->starting_up)
13335 return false;
13336
13337 ts = current_trace_status ();
13338 status = get_trace_status (ts);
13339
13340 if (status == -1 || !ts->running_known || !ts->running)
13341 return false;
13342
13343 /* If we are in a tracing experiment, but remote stub doesn't support
13344 installing tracepoint in trace, we have to return. */
13345 if (!remote_supports_install_in_trace ())
13346 return false;
13347
13348 return true;
13349 }
13350
13351
13352 void
13353 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13354 {
13355 struct remote_state *rs = get_remote_state ();
13356 char *p;
13357
13358 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13359 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13360 tsv.builtin);
13361 p = rs->buf.data () + strlen (rs->buf.data ());
13362 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13363 >= get_remote_packet_size ())
13364 error (_("Trace state variable name too long for tsv definition packet"));
13365 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13366 *p++ = '\0';
13367 putpkt (rs->buf);
13368 remote_get_noisy_reply ();
13369 if (rs->buf[0] == '\0')
13370 error (_("Target does not support this command."));
13371 if (strcmp (rs->buf.data (), "OK") != 0)
13372 error (_("Error on target while downloading trace state variable."));
13373 }
13374
13375 void
13376 remote_target::enable_tracepoint (struct bp_location *location)
13377 {
13378 struct remote_state *rs = get_remote_state ();
13379
13380 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13381 location->owner->number,
13382 phex (location->address, sizeof (CORE_ADDR)));
13383 putpkt (rs->buf);
13384 remote_get_noisy_reply ();
13385 if (rs->buf[0] == '\0')
13386 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13387 if (strcmp (rs->buf.data (), "OK") != 0)
13388 error (_("Error on target while enabling tracepoint."));
13389 }
13390
13391 void
13392 remote_target::disable_tracepoint (struct bp_location *location)
13393 {
13394 struct remote_state *rs = get_remote_state ();
13395
13396 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13397 location->owner->number,
13398 phex (location->address, sizeof (CORE_ADDR)));
13399 putpkt (rs->buf);
13400 remote_get_noisy_reply ();
13401 if (rs->buf[0] == '\0')
13402 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13403 if (strcmp (rs->buf.data (), "OK") != 0)
13404 error (_("Error on target while disabling tracepoint."));
13405 }
13406
13407 void
13408 remote_target::trace_set_readonly_regions ()
13409 {
13410 asection *s;
13411 bfd_size_type size;
13412 bfd_vma vma;
13413 int anysecs = 0;
13414 int offset = 0;
13415
13416 if (!current_program_space->exec_bfd ())
13417 return; /* No information to give. */
13418
13419 struct remote_state *rs = get_remote_state ();
13420
13421 strcpy (rs->buf.data (), "QTro");
13422 offset = strlen (rs->buf.data ());
13423 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13424 {
13425 char tmp1[40], tmp2[40];
13426 int sec_length;
13427
13428 if ((s->flags & SEC_LOAD) == 0 ||
13429 /* (s->flags & SEC_CODE) == 0 || */
13430 (s->flags & SEC_READONLY) == 0)
13431 continue;
13432
13433 anysecs = 1;
13434 vma = bfd_section_vma (s);
13435 size = bfd_section_size (s);
13436 sprintf_vma (tmp1, vma);
13437 sprintf_vma (tmp2, vma + size);
13438 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13439 if (offset + sec_length + 1 > rs->buf.size ())
13440 {
13441 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13442 warning (_("\
13443 Too many sections for read-only sections definition packet."));
13444 break;
13445 }
13446 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13447 tmp1, tmp2);
13448 offset += sec_length;
13449 }
13450 if (anysecs)
13451 {
13452 putpkt (rs->buf);
13453 getpkt (&rs->buf, 0);
13454 }
13455 }
13456
13457 void
13458 remote_target::trace_start ()
13459 {
13460 struct remote_state *rs = get_remote_state ();
13461
13462 putpkt ("QTStart");
13463 remote_get_noisy_reply ();
13464 if (rs->buf[0] == '\0')
13465 error (_("Target does not support this command."));
13466 if (strcmp (rs->buf.data (), "OK") != 0)
13467 error (_("Bogus reply from target: %s"), rs->buf.data ());
13468 }
13469
13470 int
13471 remote_target::get_trace_status (struct trace_status *ts)
13472 {
13473 /* Initialize it just to avoid a GCC false warning. */
13474 char *p = NULL;
13475 enum packet_result result;
13476 struct remote_state *rs = get_remote_state ();
13477
13478 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13479 return -1;
13480
13481 /* FIXME we need to get register block size some other way. */
13482 trace_regblock_size
13483 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13484
13485 putpkt ("qTStatus");
13486
13487 try
13488 {
13489 p = remote_get_noisy_reply ();
13490 }
13491 catch (const gdb_exception_error &ex)
13492 {
13493 if (ex.error != TARGET_CLOSE_ERROR)
13494 {
13495 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13496 return -1;
13497 }
13498 throw;
13499 }
13500
13501 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13502
13503 /* If the remote target doesn't do tracing, flag it. */
13504 if (result == PACKET_UNKNOWN)
13505 return -1;
13506
13507 /* We're working with a live target. */
13508 ts->filename = NULL;
13509
13510 if (*p++ != 'T')
13511 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13512
13513 /* Function 'parse_trace_status' sets default value of each field of
13514 'ts' at first, so we don't have to do it here. */
13515 parse_trace_status (p, ts);
13516
13517 return ts->running;
13518 }
13519
13520 void
13521 remote_target::get_tracepoint_status (struct breakpoint *bp,
13522 struct uploaded_tp *utp)
13523 {
13524 struct remote_state *rs = get_remote_state ();
13525 char *reply;
13526 struct bp_location *loc;
13527 struct tracepoint *tp = (struct tracepoint *) bp;
13528 size_t size = get_remote_packet_size ();
13529
13530 if (tp)
13531 {
13532 tp->hit_count = 0;
13533 tp->traceframe_usage = 0;
13534 for (loc = tp->loc; loc; loc = loc->next)
13535 {
13536 /* If the tracepoint was never downloaded, don't go asking for
13537 any status. */
13538 if (tp->number_on_target == 0)
13539 continue;
13540 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13541 phex_nz (loc->address, 0));
13542 putpkt (rs->buf);
13543 reply = remote_get_noisy_reply ();
13544 if (reply && *reply)
13545 {
13546 if (*reply == 'V')
13547 parse_tracepoint_status (reply + 1, bp, utp);
13548 }
13549 }
13550 }
13551 else if (utp)
13552 {
13553 utp->hit_count = 0;
13554 utp->traceframe_usage = 0;
13555 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13556 phex_nz (utp->addr, 0));
13557 putpkt (rs->buf);
13558 reply = remote_get_noisy_reply ();
13559 if (reply && *reply)
13560 {
13561 if (*reply == 'V')
13562 parse_tracepoint_status (reply + 1, bp, utp);
13563 }
13564 }
13565 }
13566
13567 void
13568 remote_target::trace_stop ()
13569 {
13570 struct remote_state *rs = get_remote_state ();
13571
13572 putpkt ("QTStop");
13573 remote_get_noisy_reply ();
13574 if (rs->buf[0] == '\0')
13575 error (_("Target does not support this command."));
13576 if (strcmp (rs->buf.data (), "OK") != 0)
13577 error (_("Bogus reply from target: %s"), rs->buf.data ());
13578 }
13579
13580 int
13581 remote_target::trace_find (enum trace_find_type type, int num,
13582 CORE_ADDR addr1, CORE_ADDR addr2,
13583 int *tpp)
13584 {
13585 struct remote_state *rs = get_remote_state ();
13586 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13587 char *p, *reply;
13588 int target_frameno = -1, target_tracept = -1;
13589
13590 /* Lookups other than by absolute frame number depend on the current
13591 trace selected, so make sure it is correct on the remote end
13592 first. */
13593 if (type != tfind_number)
13594 set_remote_traceframe ();
13595
13596 p = rs->buf.data ();
13597 strcpy (p, "QTFrame:");
13598 p = strchr (p, '\0');
13599 switch (type)
13600 {
13601 case tfind_number:
13602 xsnprintf (p, endbuf - p, "%x", num);
13603 break;
13604 case tfind_pc:
13605 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13606 break;
13607 case tfind_tp:
13608 xsnprintf (p, endbuf - p, "tdp:%x", num);
13609 break;
13610 case tfind_range:
13611 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13612 phex_nz (addr2, 0));
13613 break;
13614 case tfind_outside:
13615 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13616 phex_nz (addr2, 0));
13617 break;
13618 default:
13619 error (_("Unknown trace find type %d"), type);
13620 }
13621
13622 putpkt (rs->buf);
13623 reply = remote_get_noisy_reply ();
13624 if (*reply == '\0')
13625 error (_("Target does not support this command."));
13626
13627 while (reply && *reply)
13628 switch (*reply)
13629 {
13630 case 'F':
13631 p = ++reply;
13632 target_frameno = (int) strtol (p, &reply, 16);
13633 if (reply == p)
13634 error (_("Unable to parse trace frame number"));
13635 /* Don't update our remote traceframe number cache on failure
13636 to select a remote traceframe. */
13637 if (target_frameno == -1)
13638 return -1;
13639 break;
13640 case 'T':
13641 p = ++reply;
13642 target_tracept = (int) strtol (p, &reply, 16);
13643 if (reply == p)
13644 error (_("Unable to parse tracepoint number"));
13645 break;
13646 case 'O': /* "OK"? */
13647 if (reply[1] == 'K' && reply[2] == '\0')
13648 reply += 2;
13649 else
13650 error (_("Bogus reply from target: %s"), reply);
13651 break;
13652 default:
13653 error (_("Bogus reply from target: %s"), reply);
13654 }
13655 if (tpp)
13656 *tpp = target_tracept;
13657
13658 rs->remote_traceframe_number = target_frameno;
13659 return target_frameno;
13660 }
13661
13662 bool
13663 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13664 {
13665 struct remote_state *rs = get_remote_state ();
13666 char *reply;
13667 ULONGEST uval;
13668
13669 set_remote_traceframe ();
13670
13671 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13672 putpkt (rs->buf);
13673 reply = remote_get_noisy_reply ();
13674 if (reply && *reply)
13675 {
13676 if (*reply == 'V')
13677 {
13678 unpack_varlen_hex (reply + 1, &uval);
13679 *val = (LONGEST) uval;
13680 return true;
13681 }
13682 }
13683 return false;
13684 }
13685
13686 int
13687 remote_target::save_trace_data (const char *filename)
13688 {
13689 struct remote_state *rs = get_remote_state ();
13690 char *p, *reply;
13691
13692 p = rs->buf.data ();
13693 strcpy (p, "QTSave:");
13694 p += strlen (p);
13695 if ((p - rs->buf.data ()) + strlen (filename) * 2
13696 >= get_remote_packet_size ())
13697 error (_("Remote file name too long for trace save packet"));
13698 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13699 *p++ = '\0';
13700 putpkt (rs->buf);
13701 reply = remote_get_noisy_reply ();
13702 if (*reply == '\0')
13703 error (_("Target does not support this command."));
13704 if (strcmp (reply, "OK") != 0)
13705 error (_("Bogus reply from target: %s"), reply);
13706 return 0;
13707 }
13708
13709 /* This is basically a memory transfer, but needs to be its own packet
13710 because we don't know how the target actually organizes its trace
13711 memory, plus we want to be able to ask for as much as possible, but
13712 not be unhappy if we don't get as much as we ask for. */
13713
13714 LONGEST
13715 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13716 {
13717 struct remote_state *rs = get_remote_state ();
13718 char *reply;
13719 char *p;
13720 int rslt;
13721
13722 p = rs->buf.data ();
13723 strcpy (p, "qTBuffer:");
13724 p += strlen (p);
13725 p += hexnumstr (p, offset);
13726 *p++ = ',';
13727 p += hexnumstr (p, len);
13728 *p++ = '\0';
13729
13730 putpkt (rs->buf);
13731 reply = remote_get_noisy_reply ();
13732 if (reply && *reply)
13733 {
13734 /* 'l' by itself means we're at the end of the buffer and
13735 there is nothing more to get. */
13736 if (*reply == 'l')
13737 return 0;
13738
13739 /* Convert the reply into binary. Limit the number of bytes to
13740 convert according to our passed-in buffer size, rather than
13741 what was returned in the packet; if the target is
13742 unexpectedly generous and gives us a bigger reply than we
13743 asked for, we don't want to crash. */
13744 rslt = hex2bin (reply, buf, len);
13745 return rslt;
13746 }
13747
13748 /* Something went wrong, flag as an error. */
13749 return -1;
13750 }
13751
13752 void
13753 remote_target::set_disconnected_tracing (int val)
13754 {
13755 struct remote_state *rs = get_remote_state ();
13756
13757 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13758 {
13759 char *reply;
13760
13761 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13762 "QTDisconnected:%x", val);
13763 putpkt (rs->buf);
13764 reply = remote_get_noisy_reply ();
13765 if (*reply == '\0')
13766 error (_("Target does not support this command."));
13767 if (strcmp (reply, "OK") != 0)
13768 error (_("Bogus reply from target: %s"), reply);
13769 }
13770 else if (val)
13771 warning (_("Target does not support disconnected tracing."));
13772 }
13773
13774 int
13775 remote_target::core_of_thread (ptid_t ptid)
13776 {
13777 thread_info *info = find_thread_ptid (this, ptid);
13778
13779 if (info != NULL && info->priv != NULL)
13780 return get_remote_thread_info (info)->core;
13781
13782 return -1;
13783 }
13784
13785 void
13786 remote_target::set_circular_trace_buffer (int val)
13787 {
13788 struct remote_state *rs = get_remote_state ();
13789 char *reply;
13790
13791 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13792 "QTBuffer:circular:%x", val);
13793 putpkt (rs->buf);
13794 reply = remote_get_noisy_reply ();
13795 if (*reply == '\0')
13796 error (_("Target does not support this command."));
13797 if (strcmp (reply, "OK") != 0)
13798 error (_("Bogus reply from target: %s"), reply);
13799 }
13800
13801 traceframe_info_up
13802 remote_target::traceframe_info ()
13803 {
13804 gdb::optional<gdb::char_vector> text
13805 = target_read_stralloc (current_inferior ()->top_target (),
13806 TARGET_OBJECT_TRACEFRAME_INFO,
13807 NULL);
13808 if (text)
13809 return parse_traceframe_info (text->data ());
13810
13811 return NULL;
13812 }
13813
13814 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13815 instruction on which a fast tracepoint may be placed. Returns -1
13816 if the packet is not supported, and 0 if the minimum instruction
13817 length is unknown. */
13818
13819 int
13820 remote_target::get_min_fast_tracepoint_insn_len ()
13821 {
13822 struct remote_state *rs = get_remote_state ();
13823 char *reply;
13824
13825 /* If we're not debugging a process yet, the IPA can't be
13826 loaded. */
13827 if (!target_has_execution ())
13828 return 0;
13829
13830 /* Make sure the remote is pointing at the right process. */
13831 set_general_process ();
13832
13833 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13834 putpkt (rs->buf);
13835 reply = remote_get_noisy_reply ();
13836 if (*reply == '\0')
13837 return -1;
13838 else
13839 {
13840 ULONGEST min_insn_len;
13841
13842 unpack_varlen_hex (reply, &min_insn_len);
13843
13844 return (int) min_insn_len;
13845 }
13846 }
13847
13848 void
13849 remote_target::set_trace_buffer_size (LONGEST val)
13850 {
13851 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13852 {
13853 struct remote_state *rs = get_remote_state ();
13854 char *buf = rs->buf.data ();
13855 char *endbuf = buf + get_remote_packet_size ();
13856 enum packet_result result;
13857
13858 gdb_assert (val >= 0 || val == -1);
13859 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13860 /* Send -1 as literal "-1" to avoid host size dependency. */
13861 if (val < 0)
13862 {
13863 *buf++ = '-';
13864 buf += hexnumstr (buf, (ULONGEST) -val);
13865 }
13866 else
13867 buf += hexnumstr (buf, (ULONGEST) val);
13868
13869 putpkt (rs->buf);
13870 remote_get_noisy_reply ();
13871 result = packet_ok (rs->buf,
13872 &remote_protocol_packets[PACKET_QTBuffer_size]);
13873
13874 if (result != PACKET_OK)
13875 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13876 }
13877 }
13878
13879 bool
13880 remote_target::set_trace_notes (const char *user, const char *notes,
13881 const char *stop_notes)
13882 {
13883 struct remote_state *rs = get_remote_state ();
13884 char *reply;
13885 char *buf = rs->buf.data ();
13886 char *endbuf = buf + get_remote_packet_size ();
13887 int nbytes;
13888
13889 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13890 if (user)
13891 {
13892 buf += xsnprintf (buf, endbuf - buf, "user:");
13893 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13894 buf += 2 * nbytes;
13895 *buf++ = ';';
13896 }
13897 if (notes)
13898 {
13899 buf += xsnprintf (buf, endbuf - buf, "notes:");
13900 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13901 buf += 2 * nbytes;
13902 *buf++ = ';';
13903 }
13904 if (stop_notes)
13905 {
13906 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13907 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13908 buf += 2 * nbytes;
13909 *buf++ = ';';
13910 }
13911 /* Ensure the buffer is terminated. */
13912 *buf = '\0';
13913
13914 putpkt (rs->buf);
13915 reply = remote_get_noisy_reply ();
13916 if (*reply == '\0')
13917 return false;
13918
13919 if (strcmp (reply, "OK") != 0)
13920 error (_("Bogus reply from target: %s"), reply);
13921
13922 return true;
13923 }
13924
13925 bool
13926 remote_target::use_agent (bool use)
13927 {
13928 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13929 {
13930 struct remote_state *rs = get_remote_state ();
13931
13932 /* If the stub supports QAgent. */
13933 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13934 putpkt (rs->buf);
13935 getpkt (&rs->buf, 0);
13936
13937 if (strcmp (rs->buf.data (), "OK") == 0)
13938 {
13939 ::use_agent = use;
13940 return true;
13941 }
13942 }
13943
13944 return false;
13945 }
13946
13947 bool
13948 remote_target::can_use_agent ()
13949 {
13950 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13951 }
13952
13953 struct btrace_target_info
13954 {
13955 /* The ptid of the traced thread. */
13956 ptid_t ptid;
13957
13958 /* The obtained branch trace configuration. */
13959 struct btrace_config conf;
13960 };
13961
13962 /* Reset our idea of our target's btrace configuration. */
13963
13964 static void
13965 remote_btrace_reset (remote_state *rs)
13966 {
13967 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13968 }
13969
13970 /* Synchronize the configuration with the target. */
13971
13972 void
13973 remote_target::btrace_sync_conf (const btrace_config *conf)
13974 {
13975 struct packet_config *packet;
13976 struct remote_state *rs;
13977 char *buf, *pos, *endbuf;
13978
13979 rs = get_remote_state ();
13980 buf = rs->buf.data ();
13981 endbuf = buf + get_remote_packet_size ();
13982
13983 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13984 if (packet_config_support (packet) == PACKET_ENABLE
13985 && conf->bts.size != rs->btrace_config.bts.size)
13986 {
13987 pos = buf;
13988 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13989 conf->bts.size);
13990
13991 putpkt (buf);
13992 getpkt (&rs->buf, 0);
13993
13994 if (packet_ok (buf, packet) == PACKET_ERROR)
13995 {
13996 if (buf[0] == 'E' && buf[1] == '.')
13997 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13998 else
13999 error (_("Failed to configure the BTS buffer size."));
14000 }
14001
14002 rs->btrace_config.bts.size = conf->bts.size;
14003 }
14004
14005 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14006 if (packet_config_support (packet) == PACKET_ENABLE
14007 && conf->pt.size != rs->btrace_config.pt.size)
14008 {
14009 pos = buf;
14010 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14011 conf->pt.size);
14012
14013 putpkt (buf);
14014 getpkt (&rs->buf, 0);
14015
14016 if (packet_ok (buf, packet) == PACKET_ERROR)
14017 {
14018 if (buf[0] == 'E' && buf[1] == '.')
14019 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14020 else
14021 error (_("Failed to configure the trace buffer size."));
14022 }
14023
14024 rs->btrace_config.pt.size = conf->pt.size;
14025 }
14026 }
14027
14028 /* Read the current thread's btrace configuration from the target and
14029 store it into CONF. */
14030
14031 static void
14032 btrace_read_config (struct btrace_config *conf)
14033 {
14034 gdb::optional<gdb::char_vector> xml
14035 = target_read_stralloc (current_inferior ()->top_target (),
14036 TARGET_OBJECT_BTRACE_CONF, "");
14037 if (xml)
14038 parse_xml_btrace_conf (conf, xml->data ());
14039 }
14040
14041 /* Maybe reopen target btrace. */
14042
14043 void
14044 remote_target::remote_btrace_maybe_reopen ()
14045 {
14046 struct remote_state *rs = get_remote_state ();
14047 int btrace_target_pushed = 0;
14048 #if !defined (HAVE_LIBIPT)
14049 int warned = 0;
14050 #endif
14051
14052 /* Don't bother walking the entirety of the remote thread list when
14053 we know the feature isn't supported by the remote. */
14054 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14055 return;
14056
14057 scoped_restore_current_thread restore_thread;
14058
14059 for (thread_info *tp : all_non_exited_threads (this))
14060 {
14061 set_general_thread (tp->ptid);
14062
14063 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14064 btrace_read_config (&rs->btrace_config);
14065
14066 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14067 continue;
14068
14069 #if !defined (HAVE_LIBIPT)
14070 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14071 {
14072 if (!warned)
14073 {
14074 warned = 1;
14075 warning (_("Target is recording using Intel Processor Trace "
14076 "but support was disabled at compile time."));
14077 }
14078
14079 continue;
14080 }
14081 #endif /* !defined (HAVE_LIBIPT) */
14082
14083 /* Push target, once, but before anything else happens. This way our
14084 changes to the threads will be cleaned up by unpushing the target
14085 in case btrace_read_config () throws. */
14086 if (!btrace_target_pushed)
14087 {
14088 btrace_target_pushed = 1;
14089 record_btrace_push_target ();
14090 printf_filtered (_("Target is recording using %s.\n"),
14091 btrace_format_string (rs->btrace_config.format));
14092 }
14093
14094 tp->btrace.target = XCNEW (struct btrace_target_info);
14095 tp->btrace.target->ptid = tp->ptid;
14096 tp->btrace.target->conf = rs->btrace_config;
14097 }
14098 }
14099
14100 /* Enable branch tracing. */
14101
14102 struct btrace_target_info *
14103 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14104 {
14105 struct btrace_target_info *tinfo = NULL;
14106 struct packet_config *packet = NULL;
14107 struct remote_state *rs = get_remote_state ();
14108 char *buf = rs->buf.data ();
14109 char *endbuf = buf + get_remote_packet_size ();
14110
14111 switch (conf->format)
14112 {
14113 case BTRACE_FORMAT_BTS:
14114 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14115 break;
14116
14117 case BTRACE_FORMAT_PT:
14118 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14119 break;
14120 }
14121
14122 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14123 error (_("Target does not support branch tracing."));
14124
14125 btrace_sync_conf (conf);
14126
14127 set_general_thread (ptid);
14128
14129 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14130 putpkt (rs->buf);
14131 getpkt (&rs->buf, 0);
14132
14133 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14134 {
14135 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14136 error (_("Could not enable branch tracing for %s: %s"),
14137 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14138 else
14139 error (_("Could not enable branch tracing for %s."),
14140 target_pid_to_str (ptid).c_str ());
14141 }
14142
14143 tinfo = XCNEW (struct btrace_target_info);
14144 tinfo->ptid = ptid;
14145
14146 /* If we fail to read the configuration, we lose some information, but the
14147 tracing itself is not impacted. */
14148 try
14149 {
14150 btrace_read_config (&tinfo->conf);
14151 }
14152 catch (const gdb_exception_error &err)
14153 {
14154 if (err.message != NULL)
14155 warning ("%s", err.what ());
14156 }
14157
14158 return tinfo;
14159 }
14160
14161 /* Disable branch tracing. */
14162
14163 void
14164 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14165 {
14166 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14167 struct remote_state *rs = get_remote_state ();
14168 char *buf = rs->buf.data ();
14169 char *endbuf = buf + get_remote_packet_size ();
14170
14171 if (packet_config_support (packet) != PACKET_ENABLE)
14172 error (_("Target does not support branch tracing."));
14173
14174 set_general_thread (tinfo->ptid);
14175
14176 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14177 putpkt (rs->buf);
14178 getpkt (&rs->buf, 0);
14179
14180 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14181 {
14182 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14183 error (_("Could not disable branch tracing for %s: %s"),
14184 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14185 else
14186 error (_("Could not disable branch tracing for %s."),
14187 target_pid_to_str (tinfo->ptid).c_str ());
14188 }
14189
14190 xfree (tinfo);
14191 }
14192
14193 /* Teardown branch tracing. */
14194
14195 void
14196 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14197 {
14198 /* We must not talk to the target during teardown. */
14199 xfree (tinfo);
14200 }
14201
14202 /* Read the branch trace. */
14203
14204 enum btrace_error
14205 remote_target::read_btrace (struct btrace_data *btrace,
14206 struct btrace_target_info *tinfo,
14207 enum btrace_read_type type)
14208 {
14209 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14210 const char *annex;
14211
14212 if (packet_config_support (packet) != PACKET_ENABLE)
14213 error (_("Target does not support branch tracing."));
14214
14215 #if !defined(HAVE_LIBEXPAT)
14216 error (_("Cannot process branch tracing result. XML parsing not supported."));
14217 #endif
14218
14219 switch (type)
14220 {
14221 case BTRACE_READ_ALL:
14222 annex = "all";
14223 break;
14224 case BTRACE_READ_NEW:
14225 annex = "new";
14226 break;
14227 case BTRACE_READ_DELTA:
14228 annex = "delta";
14229 break;
14230 default:
14231 internal_error (__FILE__, __LINE__,
14232 _("Bad branch tracing read type: %u."),
14233 (unsigned int) type);
14234 }
14235
14236 gdb::optional<gdb::char_vector> xml
14237 = target_read_stralloc (current_inferior ()->top_target (),
14238 TARGET_OBJECT_BTRACE, annex);
14239 if (!xml)
14240 return BTRACE_ERR_UNKNOWN;
14241
14242 parse_xml_btrace (btrace, xml->data ());
14243
14244 return BTRACE_ERR_NONE;
14245 }
14246
14247 const struct btrace_config *
14248 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14249 {
14250 return &tinfo->conf;
14251 }
14252
14253 bool
14254 remote_target::augmented_libraries_svr4_read ()
14255 {
14256 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14257 == PACKET_ENABLE);
14258 }
14259
14260 /* Implementation of to_load. */
14261
14262 void
14263 remote_target::load (const char *name, int from_tty)
14264 {
14265 generic_load (name, from_tty);
14266 }
14267
14268 /* Accepts an integer PID; returns a string representing a file that
14269 can be opened on the remote side to get the symbols for the child
14270 process. Returns NULL if the operation is not supported. */
14271
14272 char *
14273 remote_target::pid_to_exec_file (int pid)
14274 {
14275 static gdb::optional<gdb::char_vector> filename;
14276 char *annex = NULL;
14277
14278 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14279 return NULL;
14280
14281 inferior *inf = find_inferior_pid (this, pid);
14282 if (inf == NULL)
14283 internal_error (__FILE__, __LINE__,
14284 _("not currently attached to process %d"), pid);
14285
14286 if (!inf->fake_pid_p)
14287 {
14288 const int annex_size = 9;
14289
14290 annex = (char *) alloca (annex_size);
14291 xsnprintf (annex, annex_size, "%x", pid);
14292 }
14293
14294 filename = target_read_stralloc (current_inferior ()->top_target (),
14295 TARGET_OBJECT_EXEC_FILE, annex);
14296
14297 return filename ? filename->data () : nullptr;
14298 }
14299
14300 /* Implement the to_can_do_single_step target_ops method. */
14301
14302 int
14303 remote_target::can_do_single_step ()
14304 {
14305 /* We can only tell whether target supports single step or not by
14306 supported s and S vCont actions if the stub supports vContSupported
14307 feature. If the stub doesn't support vContSupported feature,
14308 we have conservatively to think target doesn't supports single
14309 step. */
14310 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14311 {
14312 struct remote_state *rs = get_remote_state ();
14313
14314 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14315 remote_vcont_probe ();
14316
14317 return rs->supports_vCont.s && rs->supports_vCont.S;
14318 }
14319 else
14320 return 0;
14321 }
14322
14323 /* Implementation of the to_execution_direction method for the remote
14324 target. */
14325
14326 enum exec_direction_kind
14327 remote_target::execution_direction ()
14328 {
14329 struct remote_state *rs = get_remote_state ();
14330
14331 return rs->last_resume_exec_dir;
14332 }
14333
14334 /* Return pointer to the thread_info struct which corresponds to
14335 THREAD_HANDLE (having length HANDLE_LEN). */
14336
14337 thread_info *
14338 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14339 int handle_len,
14340 inferior *inf)
14341 {
14342 for (thread_info *tp : all_non_exited_threads (this))
14343 {
14344 remote_thread_info *priv = get_remote_thread_info (tp);
14345
14346 if (tp->inf == inf && priv != NULL)
14347 {
14348 if (handle_len != priv->thread_handle.size ())
14349 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14350 handle_len, priv->thread_handle.size ());
14351 if (memcmp (thread_handle, priv->thread_handle.data (),
14352 handle_len) == 0)
14353 return tp;
14354 }
14355 }
14356
14357 return NULL;
14358 }
14359
14360 gdb::byte_vector
14361 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14362 {
14363 remote_thread_info *priv = get_remote_thread_info (tp);
14364 return priv->thread_handle;
14365 }
14366
14367 bool
14368 remote_target::can_async_p ()
14369 {
14370 struct remote_state *rs = get_remote_state ();
14371
14372 /* We don't go async if the user has explicitly prevented it with the
14373 "maint set target-async" command. */
14374 if (!target_async_permitted)
14375 return false;
14376
14377 /* We're async whenever the serial device is. */
14378 return serial_can_async_p (rs->remote_desc);
14379 }
14380
14381 bool
14382 remote_target::is_async_p ()
14383 {
14384 struct remote_state *rs = get_remote_state ();
14385
14386 if (!target_async_permitted)
14387 /* We only enable async when the user specifically asks for it. */
14388 return false;
14389
14390 /* We're async whenever the serial device is. */
14391 return serial_is_async_p (rs->remote_desc);
14392 }
14393
14394 /* Pass the SERIAL event on and up to the client. One day this code
14395 will be able to delay notifying the client of an event until the
14396 point where an entire packet has been received. */
14397
14398 static serial_event_ftype remote_async_serial_handler;
14399
14400 static void
14401 remote_async_serial_handler (struct serial *scb, void *context)
14402 {
14403 /* Don't propogate error information up to the client. Instead let
14404 the client find out about the error by querying the target. */
14405 inferior_event_handler (INF_REG_EVENT);
14406 }
14407
14408 static void
14409 remote_async_inferior_event_handler (gdb_client_data data)
14410 {
14411 inferior_event_handler (INF_REG_EVENT);
14412 }
14413
14414 int
14415 remote_target::async_wait_fd ()
14416 {
14417 struct remote_state *rs = get_remote_state ();
14418 return rs->remote_desc->fd;
14419 }
14420
14421 void
14422 remote_target::async (int enable)
14423 {
14424 struct remote_state *rs = get_remote_state ();
14425
14426 if (enable)
14427 {
14428 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14429
14430 /* If there are pending events in the stop reply queue tell the
14431 event loop to process them. */
14432 if (!rs->stop_reply_queue.empty ())
14433 mark_async_event_handler (rs->remote_async_inferior_event_token);
14434 /* For simplicity, below we clear the pending events token
14435 without remembering whether it is marked, so here we always
14436 mark it. If there's actually no pending notification to
14437 process, this ends up being a no-op (other than a spurious
14438 event-loop wakeup). */
14439 if (target_is_non_stop_p ())
14440 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14441 }
14442 else
14443 {
14444 serial_async (rs->remote_desc, NULL, NULL);
14445 /* If the core is disabling async, it doesn't want to be
14446 disturbed with target events. Clear all async event sources
14447 too. */
14448 clear_async_event_handler (rs->remote_async_inferior_event_token);
14449 if (target_is_non_stop_p ())
14450 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14451 }
14452 }
14453
14454 /* Implementation of the to_thread_events method. */
14455
14456 void
14457 remote_target::thread_events (int enable)
14458 {
14459 struct remote_state *rs = get_remote_state ();
14460 size_t size = get_remote_packet_size ();
14461
14462 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14463 return;
14464
14465 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14466 putpkt (rs->buf);
14467 getpkt (&rs->buf, 0);
14468
14469 switch (packet_ok (rs->buf,
14470 &remote_protocol_packets[PACKET_QThreadEvents]))
14471 {
14472 case PACKET_OK:
14473 if (strcmp (rs->buf.data (), "OK") != 0)
14474 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14475 break;
14476 case PACKET_ERROR:
14477 warning (_("Remote failure reply: %s"), rs->buf.data ());
14478 break;
14479 case PACKET_UNKNOWN:
14480 break;
14481 }
14482 }
14483
14484 static void
14485 show_remote_cmd (const char *args, int from_tty)
14486 {
14487 /* We can't just use cmd_show_list here, because we want to skip
14488 the redundant "show remote Z-packet" and the legacy aliases. */
14489 struct cmd_list_element *list = remote_show_cmdlist;
14490 struct ui_out *uiout = current_uiout;
14491
14492 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14493 for (; list != NULL; list = list->next)
14494 if (strcmp (list->name, "Z-packet") == 0)
14495 continue;
14496 else if (list->type == not_set_cmd)
14497 /* Alias commands are exactly like the original, except they
14498 don't have the normal type. */
14499 continue;
14500 else
14501 {
14502 ui_out_emit_tuple option_emitter (uiout, "option");
14503
14504 uiout->field_string ("name", list->name);
14505 uiout->text (": ");
14506 if (list->type == show_cmd)
14507 do_show_command (NULL, from_tty, list);
14508 else
14509 cmd_func (list, NULL, from_tty);
14510 }
14511 }
14512
14513
14514 /* Function to be called whenever a new objfile (shlib) is detected. */
14515 static void
14516 remote_new_objfile (struct objfile *objfile)
14517 {
14518 remote_target *remote = get_current_remote_target ();
14519
14520 if (remote != NULL) /* Have a remote connection. */
14521 remote->remote_check_symbols ();
14522 }
14523
14524 /* Pull all the tracepoints defined on the target and create local
14525 data structures representing them. We don't want to create real
14526 tracepoints yet, we don't want to mess up the user's existing
14527 collection. */
14528
14529 int
14530 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14531 {
14532 struct remote_state *rs = get_remote_state ();
14533 char *p;
14534
14535 /* Ask for a first packet of tracepoint definition. */
14536 putpkt ("qTfP");
14537 getpkt (&rs->buf, 0);
14538 p = rs->buf.data ();
14539 while (*p && *p != 'l')
14540 {
14541 parse_tracepoint_definition (p, utpp);
14542 /* Ask for another packet of tracepoint definition. */
14543 putpkt ("qTsP");
14544 getpkt (&rs->buf, 0);
14545 p = rs->buf.data ();
14546 }
14547 return 0;
14548 }
14549
14550 int
14551 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14552 {
14553 struct remote_state *rs = get_remote_state ();
14554 char *p;
14555
14556 /* Ask for a first packet of variable definition. */
14557 putpkt ("qTfV");
14558 getpkt (&rs->buf, 0);
14559 p = rs->buf.data ();
14560 while (*p && *p != 'l')
14561 {
14562 parse_tsv_definition (p, utsvp);
14563 /* Ask for another packet of variable definition. */
14564 putpkt ("qTsV");
14565 getpkt (&rs->buf, 0);
14566 p = rs->buf.data ();
14567 }
14568 return 0;
14569 }
14570
14571 /* The "set/show range-stepping" show hook. */
14572
14573 static void
14574 show_range_stepping (struct ui_file *file, int from_tty,
14575 struct cmd_list_element *c,
14576 const char *value)
14577 {
14578 fprintf_filtered (file,
14579 _("Debugger's willingness to use range stepping "
14580 "is %s.\n"), value);
14581 }
14582
14583 /* Return true if the vCont;r action is supported by the remote
14584 stub. */
14585
14586 bool
14587 remote_target::vcont_r_supported ()
14588 {
14589 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14590 remote_vcont_probe ();
14591
14592 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14593 && get_remote_state ()->supports_vCont.r);
14594 }
14595
14596 /* The "set/show range-stepping" set hook. */
14597
14598 static void
14599 set_range_stepping (const char *ignore_args, int from_tty,
14600 struct cmd_list_element *c)
14601 {
14602 /* When enabling, check whether range stepping is actually supported
14603 by the target, and warn if not. */
14604 if (use_range_stepping)
14605 {
14606 remote_target *remote = get_current_remote_target ();
14607 if (remote == NULL
14608 || !remote->vcont_r_supported ())
14609 warning (_("Range stepping is not supported by the current target"));
14610 }
14611 }
14612
14613 static void
14614 show_remote_debug (struct ui_file *file, int from_tty,
14615 struct cmd_list_element *c, const char *value)
14616 {
14617 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14618 value);
14619 }
14620
14621 static void
14622 show_remote_timeout (struct ui_file *file, int from_tty,
14623 struct cmd_list_element *c, const char *value)
14624 {
14625 fprintf_filtered (file,
14626 _("Timeout limit to wait for target to respond is %s.\n"),
14627 value);
14628 }
14629
14630 /* Implement the "supports_memory_tagging" target_ops method. */
14631
14632 bool
14633 remote_target::supports_memory_tagging ()
14634 {
14635 return remote_memory_tagging_p ();
14636 }
14637
14638 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14639
14640 static void
14641 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14642 size_t len, int type)
14643 {
14644 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14645
14646 std::string request = string_printf ("qMemTags:%s,%s:%s",
14647 phex_nz (address, addr_size),
14648 phex_nz (len, sizeof (len)),
14649 phex_nz (type, sizeof (type)));
14650
14651 strcpy (packet.data (), request.c_str ());
14652 }
14653
14654 /* Parse the qMemTags packet reply into TAGS.
14655
14656 Return true if successful, false otherwise. */
14657
14658 static bool
14659 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14660 gdb::byte_vector &tags)
14661 {
14662 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14663 return false;
14664
14665 /* Copy the tag data. */
14666 tags = hex2bin (reply.data () + 1);
14667
14668 return true;
14669 }
14670
14671 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14672
14673 static void
14674 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14675 size_t len, int type,
14676 const gdb::byte_vector &tags)
14677 {
14678 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14679
14680 /* Put together the main packet, address and length. */
14681 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14682 phex_nz (address, addr_size),
14683 phex_nz (len, sizeof (len)),
14684 phex_nz (type, sizeof (type)));
14685 request += bin2hex (tags.data (), tags.size ());
14686
14687 /* Check if we have exceeded the maximum packet size. */
14688 if (packet.size () < request.length ())
14689 error (_("Contents too big for packet QMemTags."));
14690
14691 strcpy (packet.data (), request.c_str ());
14692 }
14693
14694 /* Implement the "fetch_memtags" target_ops method. */
14695
14696 bool
14697 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14698 gdb::byte_vector &tags, int type)
14699 {
14700 /* Make sure the qMemTags packet is supported. */
14701 if (!remote_memory_tagging_p ())
14702 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14703
14704 struct remote_state *rs = get_remote_state ();
14705
14706 create_fetch_memtags_request (rs->buf, address, len, type);
14707
14708 putpkt (rs->buf);
14709 getpkt (&rs->buf, 0);
14710
14711 return parse_fetch_memtags_reply (rs->buf, tags);
14712 }
14713
14714 /* Implement the "store_memtags" target_ops method. */
14715
14716 bool
14717 remote_target::store_memtags (CORE_ADDR address, size_t len,
14718 const gdb::byte_vector &tags, int type)
14719 {
14720 /* Make sure the QMemTags packet is supported. */
14721 if (!remote_memory_tagging_p ())
14722 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14723
14724 struct remote_state *rs = get_remote_state ();
14725
14726 create_store_memtags_request (rs->buf, address, len, type, tags);
14727
14728 putpkt (rs->buf);
14729 getpkt (&rs->buf, 0);
14730
14731 /* Verify if the request was successful. */
14732 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14733 }
14734
14735 #if GDB_SELF_TEST
14736
14737 namespace selftests {
14738
14739 static void
14740 test_memory_tagging_functions ()
14741 {
14742 remote_target remote;
14743
14744 struct packet_config *config
14745 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14746
14747 scoped_restore restore_memtag_support_
14748 = make_scoped_restore (&config->support);
14749
14750 /* Test memory tagging packet support. */
14751 config->support = PACKET_SUPPORT_UNKNOWN;
14752 SELF_CHECK (remote.supports_memory_tagging () == false);
14753 config->support = PACKET_DISABLE;
14754 SELF_CHECK (remote.supports_memory_tagging () == false);
14755 config->support = PACKET_ENABLE;
14756 SELF_CHECK (remote.supports_memory_tagging () == true);
14757
14758 /* Setup testing. */
14759 gdb::char_vector packet;
14760 gdb::byte_vector tags, bv;
14761 std::string expected, reply;
14762 packet.resize (32000);
14763
14764 /* Test creating a qMemTags request. */
14765
14766 expected = "qMemTags:0,0:0";
14767 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14768 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14769
14770 expected = "qMemTags:deadbeef,10:1";
14771 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14772 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14773
14774 /* Test parsing a qMemTags reply. */
14775
14776 /* Error reply, tags vector unmodified. */
14777 reply = "E00";
14778 strcpy (packet.data (), reply.c_str ());
14779 tags.resize (0);
14780 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14781 SELF_CHECK (tags.size () == 0);
14782
14783 /* Valid reply, tags vector updated. */
14784 tags.resize (0);
14785 bv.resize (0);
14786
14787 for (int i = 0; i < 5; i++)
14788 bv.push_back (i);
14789
14790 reply = "m" + bin2hex (bv.data (), bv.size ());
14791 strcpy (packet.data (), reply.c_str ());
14792
14793 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14794 SELF_CHECK (tags.size () == 5);
14795
14796 for (int i = 0; i < 5; i++)
14797 SELF_CHECK (tags[i] == i);
14798
14799 /* Test creating a QMemTags request. */
14800
14801 /* Empty tag data. */
14802 tags.resize (0);
14803 expected = "QMemTags:0,0:0:";
14804 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14805 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14806 expected.length ()) == 0);
14807
14808 /* Non-empty tag data. */
14809 tags.resize (0);
14810 for (int i = 0; i < 5; i++)
14811 tags.push_back (i);
14812 expected = "QMemTags:deadbeef,ff:1:0001020304";
14813 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14814 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14815 expected.length ()) == 0);
14816 }
14817
14818 } // namespace selftests
14819 #endif /* GDB_SELF_TEST */
14820
14821 void _initialize_remote ();
14822 void
14823 _initialize_remote ()
14824 {
14825 struct cmd_list_element *cmd;
14826 const char *cmd_name;
14827
14828 /* architecture specific data */
14829 remote_g_packet_data_handle =
14830 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14831
14832 add_target (remote_target_info, remote_target::open);
14833 add_target (extended_remote_target_info, extended_remote_target::open);
14834
14835 /* Hook into new objfile notification. */
14836 gdb::observers::new_objfile.attach (remote_new_objfile);
14837
14838 #if 0
14839 init_remote_threadtests ();
14840 #endif
14841
14842 /* set/show remote ... */
14843
14844 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14845 Remote protocol specific variables.\n\
14846 Configure various remote-protocol specific variables such as\n\
14847 the packets being used."),
14848 &remote_set_cmdlist, "set remote ",
14849 0 /* allow-unknown */, &setlist);
14850 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14851 Remote protocol specific variables.\n\
14852 Configure various remote-protocol specific variables such as\n\
14853 the packets being used."),
14854 &remote_show_cmdlist, "show remote ",
14855 0 /* allow-unknown */, &showlist);
14856
14857 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14858 Compare section data on target to the exec file.\n\
14859 Argument is a single section name (default: all loaded sections).\n\
14860 To compare only read-only loaded sections, specify the -r option."),
14861 &cmdlist);
14862
14863 add_cmd ("packet", class_maintenance, packet_command, _("\
14864 Send an arbitrary packet to a remote target.\n\
14865 maintenance packet TEXT\n\
14866 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14867 this command sends the string TEXT to the inferior, and displays the\n\
14868 response packet. GDB supplies the initial `$' character, and the\n\
14869 terminating `#' character and checksum."),
14870 &maintenancelist);
14871
14872 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14873 Set whether to send break if interrupted."), _("\
14874 Show whether to send break if interrupted."), _("\
14875 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14876 set_remotebreak, show_remotebreak,
14877 &setlist, &showlist);
14878 cmd_name = "remotebreak";
14879 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14880 deprecate_cmd (cmd, "set remote interrupt-sequence");
14881 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14882 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14883 deprecate_cmd (cmd, "show remote interrupt-sequence");
14884
14885 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14886 interrupt_sequence_modes, &interrupt_sequence_mode,
14887 _("\
14888 Set interrupt sequence to remote target."), _("\
14889 Show interrupt sequence to remote target."), _("\
14890 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14891 NULL, show_interrupt_sequence,
14892 &remote_set_cmdlist,
14893 &remote_show_cmdlist);
14894
14895 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14896 &interrupt_on_connect, _("\
14897 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14898 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14899 If set, interrupt sequence is sent to remote target."),
14900 NULL, NULL,
14901 &remote_set_cmdlist, &remote_show_cmdlist);
14902
14903 /* Install commands for configuring memory read/write packets. */
14904
14905 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14906 Set the maximum number of bytes per memory write packet (deprecated)."),
14907 &setlist);
14908 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14909 Show the maximum number of bytes per memory write packet (deprecated)."),
14910 &showlist);
14911 add_cmd ("memory-write-packet-size", no_class,
14912 set_memory_write_packet_size, _("\
14913 Set the maximum number of bytes per memory-write packet.\n\
14914 Specify the number of bytes in a packet or 0 (zero) for the\n\
14915 default packet size. The actual limit is further reduced\n\
14916 dependent on the target. Specify ``fixed'' to disable the\n\
14917 further restriction and ``limit'' to enable that restriction."),
14918 &remote_set_cmdlist);
14919 add_cmd ("memory-read-packet-size", no_class,
14920 set_memory_read_packet_size, _("\
14921 Set the maximum number of bytes per memory-read packet.\n\
14922 Specify the number of bytes in a packet or 0 (zero) for the\n\
14923 default packet size. The actual limit is further reduced\n\
14924 dependent on the target. Specify ``fixed'' to disable the\n\
14925 further restriction and ``limit'' to enable that restriction."),
14926 &remote_set_cmdlist);
14927 add_cmd ("memory-write-packet-size", no_class,
14928 show_memory_write_packet_size,
14929 _("Show the maximum number of bytes per memory-write packet."),
14930 &remote_show_cmdlist);
14931 add_cmd ("memory-read-packet-size", no_class,
14932 show_memory_read_packet_size,
14933 _("Show the maximum number of bytes per memory-read packet."),
14934 &remote_show_cmdlist);
14935
14936 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14937 &remote_hw_watchpoint_limit, _("\
14938 Set the maximum number of target hardware watchpoints."), _("\
14939 Show the maximum number of target hardware watchpoints."), _("\
14940 Specify \"unlimited\" for unlimited hardware watchpoints."),
14941 NULL, show_hardware_watchpoint_limit,
14942 &remote_set_cmdlist,
14943 &remote_show_cmdlist);
14944 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14945 no_class,
14946 &remote_hw_watchpoint_length_limit, _("\
14947 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14948 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14949 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14950 NULL, show_hardware_watchpoint_length_limit,
14951 &remote_set_cmdlist, &remote_show_cmdlist);
14952 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14953 &remote_hw_breakpoint_limit, _("\
14954 Set the maximum number of target hardware breakpoints."), _("\
14955 Show the maximum number of target hardware breakpoints."), _("\
14956 Specify \"unlimited\" for unlimited hardware breakpoints."),
14957 NULL, show_hardware_breakpoint_limit,
14958 &remote_set_cmdlist, &remote_show_cmdlist);
14959
14960 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14961 &remote_address_size, _("\
14962 Set the maximum size of the address (in bits) in a memory packet."), _("\
14963 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14964 NULL,
14965 NULL, /* FIXME: i18n: */
14966 &setlist, &showlist);
14967
14968 init_all_packet_configs ();
14969
14970 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14971 "X", "binary-download", 1);
14972
14973 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14974 "vCont", "verbose-resume", 0);
14975
14976 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14977 "QPassSignals", "pass-signals", 0);
14978
14979 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14980 "QCatchSyscalls", "catch-syscalls", 0);
14981
14982 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14983 "QProgramSignals", "program-signals", 0);
14984
14985 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14986 "QSetWorkingDir", "set-working-dir", 0);
14987
14988 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14989 "QStartupWithShell", "startup-with-shell", 0);
14990
14991 add_packet_config_cmd (&remote_protocol_packets
14992 [PACKET_QEnvironmentHexEncoded],
14993 "QEnvironmentHexEncoded", "environment-hex-encoded",
14994 0);
14995
14996 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14997 "QEnvironmentReset", "environment-reset",
14998 0);
14999
15000 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15001 "QEnvironmentUnset", "environment-unset",
15002 0);
15003
15004 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15005 "qSymbol", "symbol-lookup", 0);
15006
15007 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15008 "P", "set-register", 1);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15011 "p", "fetch-register", 1);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15014 "Z0", "software-breakpoint", 0);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15017 "Z1", "hardware-breakpoint", 0);
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15020 "Z2", "write-watchpoint", 0);
15021
15022 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15023 "Z3", "read-watchpoint", 0);
15024
15025 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15026 "Z4", "access-watchpoint", 0);
15027
15028 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15029 "qXfer:auxv:read", "read-aux-vector", 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15032 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15033
15034 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15035 "qXfer:features:read", "target-features", 0);
15036
15037 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15038 "qXfer:libraries:read", "library-info", 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15041 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15042
15043 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15044 "qXfer:memory-map:read", "memory-map", 0);
15045
15046 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15047 "qXfer:osdata:read", "osdata", 0);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15050 "qXfer:threads:read", "threads", 0);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15053 "qXfer:siginfo:read", "read-siginfo-object", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15056 "qXfer:siginfo:write", "write-siginfo-object", 0);
15057
15058 add_packet_config_cmd
15059 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15060 "qXfer:traceframe-info:read", "traceframe-info", 0);
15061
15062 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15063 "qXfer:uib:read", "unwind-info-block", 0);
15064
15065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15066 "qGetTLSAddr", "get-thread-local-storage-address",
15067 0);
15068
15069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15070 "qGetTIBAddr", "get-thread-information-block-address",
15071 0);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15074 "bc", "reverse-continue", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15077 "bs", "reverse-step", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15080 "qSupported", "supported-packets", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15083 "qSearch:memory", "search-memory", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15086 "qTStatus", "trace-status", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15089 "vFile:setfs", "hostio-setfs", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15092 "vFile:open", "hostio-open", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15095 "vFile:pread", "hostio-pread", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15098 "vFile:pwrite", "hostio-pwrite", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15101 "vFile:close", "hostio-close", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15104 "vFile:unlink", "hostio-unlink", 0);
15105
15106 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15107 "vFile:readlink", "hostio-readlink", 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15110 "vFile:fstat", "hostio-fstat", 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15113 "vAttach", "attach", 0);
15114
15115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15116 "vRun", "run", 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15119 "QStartNoAckMode", "noack", 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15122 "vKill", "kill", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15125 "qAttached", "query-attached", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15128 "ConditionalTracepoints",
15129 "conditional-tracepoints", 0);
15130
15131 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15132 "ConditionalBreakpoints",
15133 "conditional-breakpoints", 0);
15134
15135 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15136 "BreakpointCommands",
15137 "breakpoint-commands", 0);
15138
15139 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15140 "FastTracepoints", "fast-tracepoints", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15143 "TracepointSource", "TracepointSource", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15146 "QAllow", "allow", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15149 "StaticTracepoints", "static-tracepoints", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15152 "InstallInTrace", "install-in-trace", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15155 "qXfer:statictrace:read", "read-sdata-object", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15158 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15161 "QDisableRandomization", "disable-randomization", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15164 "QAgent", "agent", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15167 "QTBuffer:size", "trace-buffer-size", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15170 "Qbtrace:off", "disable-btrace", 0);
15171
15172 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15173 "Qbtrace:bts", "enable-btrace-bts", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15176 "Qbtrace:pt", "enable-btrace-pt", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15179 "qXfer:btrace", "read-btrace", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15182 "qXfer:btrace-conf", "read-btrace-conf", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15185 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15188 "multiprocess-feature", "multiprocess-feature", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15191 "swbreak-feature", "swbreak-feature", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15194 "hwbreak-feature", "hwbreak-feature", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15197 "fork-event-feature", "fork-event-feature", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15200 "vfork-event-feature", "vfork-event-feature", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15203 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15206 "vContSupported", "verbose-resume-supported", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15209 "exec-event-feature", "exec-event-feature", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15212 "vCtrlC", "ctrl-c", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15215 "QThreadEvents", "thread-events", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15218 "N stop reply", "no-resumed-stop-reply", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15221 "memory-tagging-feature", "memory-tagging-feature", 0);
15222
15223 /* Assert that we've registered "set remote foo-packet" commands
15224 for all packet configs. */
15225 {
15226 int i;
15227
15228 for (i = 0; i < PACKET_MAX; i++)
15229 {
15230 /* Ideally all configs would have a command associated. Some
15231 still don't though. */
15232 int excepted;
15233
15234 switch (i)
15235 {
15236 case PACKET_QNonStop:
15237 case PACKET_EnableDisableTracepoints_feature:
15238 case PACKET_tracenz_feature:
15239 case PACKET_DisconnectedTracing_feature:
15240 case PACKET_augmented_libraries_svr4_read_feature:
15241 case PACKET_qCRC:
15242 /* Additions to this list need to be well justified:
15243 pre-existing packets are OK; new packets are not. */
15244 excepted = 1;
15245 break;
15246 default:
15247 excepted = 0;
15248 break;
15249 }
15250
15251 /* This catches both forgetting to add a config command, and
15252 forgetting to remove a packet from the exception list. */
15253 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15254 }
15255 }
15256
15257 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15258 Z sub-packet has its own set and show commands, but users may
15259 have sets to this variable in their .gdbinit files (or in their
15260 documentation). */
15261 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15262 &remote_Z_packet_detect, _("\
15263 Set use of remote protocol `Z' packets."), _("\
15264 Show use of remote protocol `Z' packets."), _("\
15265 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15266 packets."),
15267 set_remote_protocol_Z_packet_cmd,
15268 show_remote_protocol_Z_packet_cmd,
15269 /* FIXME: i18n: Use of remote protocol
15270 `Z' packets is %s. */
15271 &remote_set_cmdlist, &remote_show_cmdlist);
15272
15273 add_basic_prefix_cmd ("remote", class_files, _("\
15274 Manipulate files on the remote system.\n\
15275 Transfer files to and from the remote target system."),
15276 &remote_cmdlist, "remote ",
15277 0 /* allow-unknown */, &cmdlist);
15278
15279 add_cmd ("put", class_files, remote_put_command,
15280 _("Copy a local file to the remote system."),
15281 &remote_cmdlist);
15282
15283 add_cmd ("get", class_files, remote_get_command,
15284 _("Copy a remote file to the local system."),
15285 &remote_cmdlist);
15286
15287 add_cmd ("delete", class_files, remote_delete_command,
15288 _("Delete a remote file."),
15289 &remote_cmdlist);
15290
15291 add_setshow_string_noescape_cmd ("exec-file", class_files,
15292 &remote_exec_file_var, _("\
15293 Set the remote pathname for \"run\"."), _("\
15294 Show the remote pathname for \"run\"."), NULL,
15295 set_remote_exec_file,
15296 show_remote_exec_file,
15297 &remote_set_cmdlist,
15298 &remote_show_cmdlist);
15299
15300 add_setshow_boolean_cmd ("range-stepping", class_run,
15301 &use_range_stepping, _("\
15302 Enable or disable range stepping."), _("\
15303 Show whether target-assisted range stepping is enabled."), _("\
15304 If on, and the target supports it, when stepping a source line, GDB\n\
15305 tells the target to step the corresponding range of addresses itself instead\n\
15306 of issuing multiple single-steps. This speeds up source level\n\
15307 stepping. If off, GDB always issues single-steps, even if range\n\
15308 stepping is supported by the target. The default is on."),
15309 set_range_stepping,
15310 show_range_stepping,
15311 &setlist,
15312 &showlist);
15313
15314 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15315 Set watchdog timer."), _("\
15316 Show watchdog timer."), _("\
15317 When non-zero, this timeout is used instead of waiting forever for a target\n\
15318 to finish a low-level step or continue operation. If the specified amount\n\
15319 of time passes without a response from the target, an error occurs."),
15320 NULL,
15321 show_watchdog,
15322 &setlist, &showlist);
15323
15324 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15325 &remote_packet_max_chars, _("\
15326 Set the maximum number of characters to display for each remote packet."), _("\
15327 Show the maximum number of characters to display for each remote packet."), _("\
15328 Specify \"unlimited\" to display all the characters."),
15329 NULL, show_remote_packet_max_chars,
15330 &setdebuglist, &showdebuglist);
15331
15332 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15333 _("Set debugging of remote protocol."),
15334 _("Show debugging of remote protocol."),
15335 _("\
15336 When enabled, each packet sent or received with the remote target\n\
15337 is displayed."),
15338 NULL,
15339 show_remote_debug,
15340 &setdebuglist, &showdebuglist);
15341
15342 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15343 &remote_timeout, _("\
15344 Set timeout limit to wait for target to respond."), _("\
15345 Show timeout limit to wait for target to respond."), _("\
15346 This value is used to set the time limit for gdb to wait for a response\n\
15347 from the target."),
15348 NULL,
15349 show_remote_timeout,
15350 &setlist, &showlist);
15351
15352 /* Eventually initialize fileio. See fileio.c */
15353 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15354
15355 #if GDB_SELF_TEST
15356 selftests::register_test ("remote_memory_tagging",
15357 selftests::test_memory_tagging_functions);
15358 #endif
15359 }
This page took 0.365622 seconds and 4 git commands to generate.