* cli/cli-interp.c (struct captured_execute_command_args):
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (ptid_t currthread);
187
188 static int fromhex (int a);
189
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214
215 static void remote_set_permissions (void);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 static void remote_console_output (char *msg);
248
249 /* The non-stop remote protocol provisions for one pending stop reply.
250 This is where we keep it until it is acknowledged. */
251
252 static struct stop_reply *pending_stop_reply = NULL;
253
254 /* For "remote". */
255
256 static struct cmd_list_element *remote_cmdlist;
257
258 /* For "set remote" and "show remote". */
259
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262
263 /* Description of the remote protocol state for the currently
264 connected target. This is per-target state, and independent of the
265 selected architecture. */
266
267 struct remote_state
268 {
269 /* A buffer to use for incoming packets, and its current size. The
270 buffer is grown dynamically for larger incoming packets.
271 Outgoing packets may also be constructed in this buffer.
272 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274 packets. */
275 char *buf;
276 long buf_size;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333 responded to that. */
334 int ctrlc_pending_p;
335 };
336
337 /* Private data that we'll store in (struct thread_info)->private. */
338 struct private_thread_info
339 {
340 char *extra;
341 int core;
342 };
343
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347 xfree (info->extra);
348 xfree (info);
349 }
350
351 /* Returns true if the multi-process extensions are in effect. */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355 return rs->extended && rs->multi_process_aware;
356 }
357
358 /* This data could be associated with a target, but we do not always
359 have access to the current target when we need it, so for now it is
360 static. This will be fine for as long as only one target is in use
361 at a time. */
362 static struct remote_state remote_state;
363
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367 return &remote_state;
368 }
369
370 /* Description of the remote protocol for a given architecture. */
371
372 struct packet_reg
373 {
374 long offset; /* Offset into G packet. */
375 long regnum; /* GDB's internal register number. */
376 LONGEST pnum; /* Remote protocol register number. */
377 int in_g_packet; /* Always part of G packet. */
378 /* long size in bytes; == register_size (target_gdbarch, regnum);
379 at present. */
380 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381 at present. */
382 };
383
384 struct remote_arch_state
385 {
386 /* Description of the remote protocol registers. */
387 long sizeof_g_packet;
388
389 /* Description of the remote protocol registers indexed by REGNUM
390 (making an array gdbarch_num_regs in size). */
391 struct packet_reg *regs;
392
393 /* This is the size (in chars) of the first response to the ``g''
394 packet. It is used as a heuristic when determining the maximum
395 size of memory-read and memory-write packets. A target will
396 typically only reserve a buffer large enough to hold the ``g''
397 packet. The size does not include packet overhead (headers and
398 trailers). */
399 long actual_register_packet_size;
400
401 /* This is the maximum size (in chars) of a non read/write packet.
402 It is also used as a cap on the size of read/write packets. */
403 long remote_packet_size;
404 };
405
406 long sizeof_pkt = 2000;
407
408 /* Utility: generate error from an incoming stub packet. */
409 static void
410 trace_error (char *buf)
411 {
412 if (*buf++ != 'E')
413 return; /* not an error msg */
414 switch (*buf)
415 {
416 case '1': /* malformed packet error */
417 if (*++buf == '0') /* general case: */
418 error (_("remote.c: error in outgoing packet."));
419 else
420 error (_("remote.c: error in outgoing packet at field #%ld."),
421 strtol (buf, NULL, 16));
422 case '2':
423 error (_("trace API error 0x%s."), ++buf);
424 default:
425 error (_("Target returns error code '%s'."), buf);
426 }
427 }
428
429 /* Utility: wait for reply from stub, while accepting "O" packets. */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 long *sizeof_buf)
433 {
434 do /* Loop on reply from remote stub. */
435 {
436 char *buf;
437
438 QUIT; /* Allow user to bail out with ^C. */
439 getpkt (buf_p, sizeof_buf, 0);
440 buf = *buf_p;
441 if (buf[0] == 'E')
442 trace_error (buf);
443 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 {
445 ULONGEST ul;
446 CORE_ADDR from, to, org_to;
447 char *p, *pp;
448 int adjusted_size = 0;
449 volatile struct gdb_exception ex;
450
451 p = buf + strlen ("qRelocInsn:");
452 pp = unpack_varlen_hex (p, &ul);
453 if (*pp != ';')
454 error (_("invalid qRelocInsn packet: %s"), buf);
455 from = ul;
456
457 p = pp + 1;
458 unpack_varlen_hex (p, &ul);
459 to = ul;
460
461 org_to = to;
462
463 TRY_CATCH (ex, RETURN_MASK_ALL)
464 {
465 gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 }
467 if (ex.reason >= 0)
468 {
469 adjusted_size = to - org_to;
470
471 sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 putpkt (buf);
473 }
474 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 {
476 /* Propagate memory errors silently back to the target.
477 The stub may have limited the range of addresses we
478 can write to, for example. */
479 putpkt ("E01");
480 }
481 else
482 {
483 /* Something unexpectedly bad happened. Be verbose so
484 we can tell what, and propagate the error back to the
485 stub, so it doesn't get stuck waiting for a
486 response. */
487 exception_fprintf (gdb_stderr, ex,
488 _("warning: relocating instruction: "));
489 putpkt ("E01");
490 }
491 }
492 else if (buf[0] == 'O' && buf[1] != 'K')
493 remote_console_output (buf + 1); /* 'O' message from stub */
494 else
495 return buf; /* Here's the actual reply. */
496 }
497 while (1);
498 }
499
500 /* Handle for retreving the remote protocol data from gdbarch. */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508
509 /* Fetch the global remote target state. */
510
511 static struct remote_state *
512 get_remote_state (void)
513 {
514 /* Make sure that the remote architecture state has been
515 initialized, because doing so might reallocate rs->buf. Any
516 function which calls getpkt also needs to be mindful of changes
517 to rs->buf, but this call limits the number of places which run
518 into trouble. */
519 get_remote_arch_state ();
520
521 return get_remote_state_raw ();
522 }
523
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527 const struct packet_reg * const *lhs = lhs_;
528 const struct packet_reg * const *rhs = rhs_;
529
530 if ((*lhs)->pnum < (*rhs)->pnum)
531 return -1;
532 else if ((*lhs)->pnum == (*rhs)->pnum)
533 return 0;
534 else
535 return 1;
536 }
537
538 static void *
539 init_remote_state (struct gdbarch *gdbarch)
540 {
541 int regnum, num_remote_regs, offset;
542 struct remote_state *rs = get_remote_state_raw ();
543 struct remote_arch_state *rsa;
544 struct packet_reg **remote_regs;
545
546 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547
548 /* Use the architecture to build a regnum<->pnum table, which will be
549 1:1 unless a feature set specifies otherwise. */
550 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 gdbarch_num_regs (gdbarch),
552 struct packet_reg);
553 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554 {
555 struct packet_reg *r = &rsa->regs[regnum];
556
557 if (register_size (gdbarch, regnum) == 0)
558 /* Do not try to fetch zero-sized (placeholder) registers. */
559 r->pnum = -1;
560 else
561 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562
563 r->regnum = regnum;
564 }
565
566 /* Define the g/G packet format as the contents of each register
567 with a remote protocol number, in order of ascending protocol
568 number. */
569
570 remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 * sizeof (struct packet_reg *));
572 for (num_remote_regs = 0, regnum = 0;
573 regnum < gdbarch_num_regs (gdbarch);
574 regnum++)
575 if (rsa->regs[regnum].pnum != -1)
576 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577
578 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 compare_pnums);
580
581 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582 {
583 remote_regs[regnum]->in_g_packet = 1;
584 remote_regs[regnum]->offset = offset;
585 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586 }
587
588 /* Record the maximum possible size of the g packet - it may turn out
589 to be smaller. */
590 rsa->sizeof_g_packet = offset;
591
592 /* Default maximum number of characters in a packet body. Many
593 remote stubs have a hardwired buffer size of 400 bytes
594 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
595 as the maximum packet-size to ensure that the packet and an extra
596 NUL character can always fit in the buffer. This stops GDB
597 trashing stubs that try to squeeze an extra NUL into what is
598 already a full buffer (As of 1999-12-04 that was most stubs). */
599 rsa->remote_packet_size = 400 - 1;
600
601 /* This one is filled in when a ``g'' packet is received. */
602 rsa->actual_register_packet_size = 0;
603
604 /* Should rsa->sizeof_g_packet needs more space than the
605 default, adjust the size accordingly. Remember that each byte is
606 encoded as two characters. 32 is the overhead for the packet
607 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
608 (``$NN:G...#NN'') is a better guess, the below has been padded a
609 little. */
610 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612
613 /* Make sure that the packet buffer is plenty big enough for
614 this architecture. */
615 if (rs->buf_size < rsa->remote_packet_size)
616 {
617 rs->buf_size = 2 * rsa->remote_packet_size;
618 rs->buf = xrealloc (rs->buf, rs->buf_size);
619 }
620
621 return rsa;
622 }
623
624 /* Return the current allowed size of a remote packet. This is
625 inferred from the current architecture, and should be used to
626 limit the length of outgoing packets. */
627 static long
628 get_remote_packet_size (void)
629 {
630 struct remote_state *rs = get_remote_state ();
631 struct remote_arch_state *rsa = get_remote_arch_state ();
632
633 if (rs->explicit_packet_size)
634 return rs->explicit_packet_size;
635
636 return rsa->remote_packet_size;
637 }
638
639 static struct packet_reg *
640 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641 {
642 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643 return NULL;
644 else
645 {
646 struct packet_reg *r = &rsa->regs[regnum];
647
648 gdb_assert (r->regnum == regnum);
649 return r;
650 }
651 }
652
653 static struct packet_reg *
654 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655 {
656 int i;
657
658 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659 {
660 struct packet_reg *r = &rsa->regs[i];
661
662 if (r->pnum == pnum)
663 return r;
664 }
665 return NULL;
666 }
667
668 /* FIXME: graces/2002-08-08: These variables should eventually be
669 bound to an instance of the target object (as in gdbarch-tdep()),
670 when such a thing exists. */
671
672 /* This is set to the data address of the access causing the target
673 to stop for a watchpoint. */
674 static CORE_ADDR remote_watch_data_address;
675
676 /* This is non-zero if target stopped for a watchpoint. */
677 static int remote_stopped_by_watchpoint_p;
678
679 static struct target_ops remote_ops;
680
681 static struct target_ops extended_remote_ops;
682
683 static int remote_async_mask_value = 1;
684
685 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
686 ``forever'' still use the normal timeout mechanism. This is
687 currently used by the ASYNC code to guarentee that target reads
688 during the initial connect always time-out. Once getpkt has been
689 modified to return a timeout indication and, in turn
690 remote_wait()/wait_for_inferior() have gained a timeout parameter
691 this can go away. */
692 static int wait_forever_enabled_p = 1;
693
694 /* Allow the user to specify what sequence to send to the remote
695 when he requests a program interruption: Although ^C is usually
696 what remote systems expect (this is the default, here), it is
697 sometimes preferable to send a break. On other systems such
698 as the Linux kernel, a break followed by g, which is Magic SysRq g
699 is required in order to interrupt the execution. */
700 const char interrupt_sequence_control_c[] = "Ctrl-C";
701 const char interrupt_sequence_break[] = "BREAK";
702 const char interrupt_sequence_break_g[] = "BREAK-g";
703 static const char *interrupt_sequence_modes[] =
704 {
705 interrupt_sequence_control_c,
706 interrupt_sequence_break,
707 interrupt_sequence_break_g,
708 NULL
709 };
710 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711
712 static void
713 show_interrupt_sequence (struct ui_file *file, int from_tty,
714 struct cmd_list_element *c,
715 const char *value)
716 {
717 if (interrupt_sequence_mode == interrupt_sequence_control_c)
718 fprintf_filtered (file,
719 _("Send the ASCII ETX character (Ctrl-c) "
720 "to the remote target to interrupt the "
721 "execution of the program.\n"));
722 else if (interrupt_sequence_mode == interrupt_sequence_break)
723 fprintf_filtered (file,
724 _("send a break signal to the remote target "
725 "to interrupt the execution of the program.\n"));
726 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727 fprintf_filtered (file,
728 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 "the remote target to interrupt the execution "
730 "of Linux kernel.\n"));
731 else
732 internal_error (__FILE__, __LINE__,
733 _("Invalid value for interrupt_sequence_mode: %s."),
734 interrupt_sequence_mode);
735 }
736
737 /* This boolean variable specifies whether interrupt_sequence is sent
738 to the remote target when gdb connects to it.
739 This is mostly needed when you debug the Linux kernel: The Linux kernel
740 expects BREAK g which is Magic SysRq g for connecting gdb. */
741 static int interrupt_on_connect = 0;
742
743 /* This variable is used to implement the "set/show remotebreak" commands.
744 Since these commands are now deprecated in favor of "set/show remote
745 interrupt-sequence", it no longer has any effect on the code. */
746 static int remote_break;
747
748 static void
749 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750 {
751 if (remote_break)
752 interrupt_sequence_mode = interrupt_sequence_break;
753 else
754 interrupt_sequence_mode = interrupt_sequence_control_c;
755 }
756
757 static void
758 show_remotebreak (struct ui_file *file, int from_tty,
759 struct cmd_list_element *c,
760 const char *value)
761 {
762 }
763
764 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
765 remote_open knows that we don't have a file open when the program
766 starts. */
767 static struct serial *remote_desc = NULL;
768
769 /* This variable sets the number of bits in an address that are to be
770 sent in a memory ("M" or "m") packet. Normally, after stripping
771 leading zeros, the entire address would be sent. This variable
772 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
773 initial implementation of remote.c restricted the address sent in
774 memory packets to ``host::sizeof long'' bytes - (typically 32
775 bits). Consequently, for 64 bit targets, the upper 32 bits of an
776 address was never sent. Since fixing this bug may cause a break in
777 some remote targets this variable is principly provided to
778 facilitate backward compatibility. */
779
780 static int remote_address_size;
781
782 /* Temporary to track who currently owns the terminal. See
783 remote_terminal_* for more details. */
784
785 static int remote_async_terminal_ours_p;
786
787 /* The executable file to use for "run" on the remote side. */
788
789 static char *remote_exec_file = "";
790
791 \f
792 /* User configurable variables for the number of characters in a
793 memory read/write packet. MIN (rsa->remote_packet_size,
794 rsa->sizeof_g_packet) is the default. Some targets need smaller
795 values (fifo overruns, et.al.) and some users need larger values
796 (speed up transfers). The variables ``preferred_*'' (the user
797 request), ``current_*'' (what was actually set) and ``forced_*''
798 (Positive - a soft limit, negative - a hard limit). */
799
800 struct memory_packet_config
801 {
802 char *name;
803 long size;
804 int fixed_p;
805 };
806
807 /* Compute the current size of a read/write packet. Since this makes
808 use of ``actual_register_packet_size'' the computation is dynamic. */
809
810 static long
811 get_memory_packet_size (struct memory_packet_config *config)
812 {
813 struct remote_state *rs = get_remote_state ();
814 struct remote_arch_state *rsa = get_remote_arch_state ();
815
816 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817 law?) that some hosts don't cope very well with large alloca()
818 calls. Eventually the alloca() code will be replaced by calls to
819 xmalloc() and make_cleanups() allowing this restriction to either
820 be lifted or removed. */
821 #ifndef MAX_REMOTE_PACKET_SIZE
822 #define MAX_REMOTE_PACKET_SIZE 16384
823 #endif
824 /* NOTE: 20 ensures we can write at least one byte. */
825 #ifndef MIN_REMOTE_PACKET_SIZE
826 #define MIN_REMOTE_PACKET_SIZE 20
827 #endif
828 long what_they_get;
829 if (config->fixed_p)
830 {
831 if (config->size <= 0)
832 what_they_get = MAX_REMOTE_PACKET_SIZE;
833 else
834 what_they_get = config->size;
835 }
836 else
837 {
838 what_they_get = get_remote_packet_size ();
839 /* Limit the packet to the size specified by the user. */
840 if (config->size > 0
841 && what_they_get > config->size)
842 what_they_get = config->size;
843
844 /* Limit it to the size of the targets ``g'' response unless we have
845 permission from the stub to use a larger packet size. */
846 if (rs->explicit_packet_size == 0
847 && rsa->actual_register_packet_size > 0
848 && what_they_get > rsa->actual_register_packet_size)
849 what_they_get = rsa->actual_register_packet_size;
850 }
851 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852 what_they_get = MAX_REMOTE_PACKET_SIZE;
853 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854 what_they_get = MIN_REMOTE_PACKET_SIZE;
855
856 /* Make sure there is room in the global buffer for this packet
857 (including its trailing NUL byte). */
858 if (rs->buf_size < what_they_get + 1)
859 {
860 rs->buf_size = 2 * what_they_get;
861 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862 }
863
864 return what_they_get;
865 }
866
867 /* Update the size of a read/write packet. If they user wants
868 something really big then do a sanity check. */
869
870 static void
871 set_memory_packet_size (char *args, struct memory_packet_config *config)
872 {
873 int fixed_p = config->fixed_p;
874 long size = config->size;
875
876 if (args == NULL)
877 error (_("Argument required (integer, `fixed' or `limited')."));
878 else if (strcmp (args, "hard") == 0
879 || strcmp (args, "fixed") == 0)
880 fixed_p = 1;
881 else if (strcmp (args, "soft") == 0
882 || strcmp (args, "limit") == 0)
883 fixed_p = 0;
884 else
885 {
886 char *end;
887
888 size = strtoul (args, &end, 0);
889 if (args == end)
890 error (_("Invalid %s (bad syntax)."), config->name);
891 #if 0
892 /* Instead of explicitly capping the size of a packet to
893 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894 instead allowed to set the size to something arbitrarily
895 large. */
896 if (size > MAX_REMOTE_PACKET_SIZE)
897 error (_("Invalid %s (too large)."), config->name);
898 #endif
899 }
900 /* Extra checks? */
901 if (fixed_p && !config->fixed_p)
902 {
903 if (! query (_("The target may not be able to correctly handle a %s\n"
904 "of %ld bytes. Change the packet size? "),
905 config->name, size))
906 error (_("Packet size not changed."));
907 }
908 /* Update the config. */
909 config->fixed_p = fixed_p;
910 config->size = size;
911 }
912
913 static void
914 show_memory_packet_size (struct memory_packet_config *config)
915 {
916 printf_filtered (_("The %s is %ld. "), config->name, config->size);
917 if (config->fixed_p)
918 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 get_memory_packet_size (config));
920 else
921 printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 get_memory_packet_size (config));
923 }
924
925 static struct memory_packet_config memory_write_packet_config =
926 {
927 "memory-write-packet-size",
928 };
929
930 static void
931 set_memory_write_packet_size (char *args, int from_tty)
932 {
933 set_memory_packet_size (args, &memory_write_packet_config);
934 }
935
936 static void
937 show_memory_write_packet_size (char *args, int from_tty)
938 {
939 show_memory_packet_size (&memory_write_packet_config);
940 }
941
942 static long
943 get_memory_write_packet_size (void)
944 {
945 return get_memory_packet_size (&memory_write_packet_config);
946 }
947
948 static struct memory_packet_config memory_read_packet_config =
949 {
950 "memory-read-packet-size",
951 };
952
953 static void
954 set_memory_read_packet_size (char *args, int from_tty)
955 {
956 set_memory_packet_size (args, &memory_read_packet_config);
957 }
958
959 static void
960 show_memory_read_packet_size (char *args, int from_tty)
961 {
962 show_memory_packet_size (&memory_read_packet_config);
963 }
964
965 static long
966 get_memory_read_packet_size (void)
967 {
968 long size = get_memory_packet_size (&memory_read_packet_config);
969
970 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971 extra buffer size argument before the memory read size can be
972 increased beyond this. */
973 if (size > get_remote_packet_size ())
974 size = get_remote_packet_size ();
975 return size;
976 }
977
978 \f
979 /* Generic configuration support for packets the stub optionally
980 supports. Allows the user to specify the use of the packet as well
981 as allowing GDB to auto-detect support in the remote stub. */
982
983 enum packet_support
984 {
985 PACKET_SUPPORT_UNKNOWN = 0,
986 PACKET_ENABLE,
987 PACKET_DISABLE
988 };
989
990 struct packet_config
991 {
992 const char *name;
993 const char *title;
994 enum auto_boolean detect;
995 enum packet_support support;
996 };
997
998 /* Analyze a packet's return value and update the packet config
999 accordingly. */
1000
1001 enum packet_result
1002 {
1003 PACKET_ERROR,
1004 PACKET_OK,
1005 PACKET_UNKNOWN
1006 };
1007
1008 static void
1009 update_packet_config (struct packet_config *config)
1010 {
1011 switch (config->detect)
1012 {
1013 case AUTO_BOOLEAN_TRUE:
1014 config->support = PACKET_ENABLE;
1015 break;
1016 case AUTO_BOOLEAN_FALSE:
1017 config->support = PACKET_DISABLE;
1018 break;
1019 case AUTO_BOOLEAN_AUTO:
1020 config->support = PACKET_SUPPORT_UNKNOWN;
1021 break;
1022 }
1023 }
1024
1025 static void
1026 show_packet_config_cmd (struct packet_config *config)
1027 {
1028 char *support = "internal-error";
1029
1030 switch (config->support)
1031 {
1032 case PACKET_ENABLE:
1033 support = "enabled";
1034 break;
1035 case PACKET_DISABLE:
1036 support = "disabled";
1037 break;
1038 case PACKET_SUPPORT_UNKNOWN:
1039 support = "unknown";
1040 break;
1041 }
1042 switch (config->detect)
1043 {
1044 case AUTO_BOOLEAN_AUTO:
1045 printf_filtered (_("Support for the `%s' packet "
1046 "is auto-detected, currently %s.\n"),
1047 config->name, support);
1048 break;
1049 case AUTO_BOOLEAN_TRUE:
1050 case AUTO_BOOLEAN_FALSE:
1051 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1052 config->name, support);
1053 break;
1054 }
1055 }
1056
1057 static void
1058 add_packet_config_cmd (struct packet_config *config, const char *name,
1059 const char *title, int legacy)
1060 {
1061 char *set_doc;
1062 char *show_doc;
1063 char *cmd_name;
1064
1065 config->name = name;
1066 config->title = title;
1067 config->detect = AUTO_BOOLEAN_AUTO;
1068 config->support = PACKET_SUPPORT_UNKNOWN;
1069 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1070 name, title);
1071 show_doc = xstrprintf ("Show current use of remote "
1072 "protocol `%s' (%s) packet",
1073 name, title);
1074 /* set/show TITLE-packet {auto,on,off} */
1075 cmd_name = xstrprintf ("%s-packet", title);
1076 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1077 &config->detect, set_doc,
1078 show_doc, NULL, /* help_doc */
1079 set_remote_protocol_packet_cmd,
1080 show_remote_protocol_packet_cmd,
1081 &remote_set_cmdlist, &remote_show_cmdlist);
1082 /* The command code copies the documentation strings. */
1083 xfree (set_doc);
1084 xfree (show_doc);
1085 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1086 if (legacy)
1087 {
1088 char *legacy_name;
1089
1090 legacy_name = xstrprintf ("%s-packet", name);
1091 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1092 &remote_set_cmdlist);
1093 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1094 &remote_show_cmdlist);
1095 }
1096 }
1097
1098 static enum packet_result
1099 packet_check_result (const char *buf)
1100 {
1101 if (buf[0] != '\0')
1102 {
1103 /* The stub recognized the packet request. Check that the
1104 operation succeeded. */
1105 if (buf[0] == 'E'
1106 && isxdigit (buf[1]) && isxdigit (buf[2])
1107 && buf[3] == '\0')
1108 /* "Enn" - definitly an error. */
1109 return PACKET_ERROR;
1110
1111 /* Always treat "E." as an error. This will be used for
1112 more verbose error messages, such as E.memtypes. */
1113 if (buf[0] == 'E' && buf[1] == '.')
1114 return PACKET_ERROR;
1115
1116 /* The packet may or may not be OK. Just assume it is. */
1117 return PACKET_OK;
1118 }
1119 else
1120 /* The stub does not support the packet. */
1121 return PACKET_UNKNOWN;
1122 }
1123
1124 static enum packet_result
1125 packet_ok (const char *buf, struct packet_config *config)
1126 {
1127 enum packet_result result;
1128
1129 result = packet_check_result (buf);
1130 switch (result)
1131 {
1132 case PACKET_OK:
1133 case PACKET_ERROR:
1134 /* The stub recognized the packet request. */
1135 switch (config->support)
1136 {
1137 case PACKET_SUPPORT_UNKNOWN:
1138 if (remote_debug)
1139 fprintf_unfiltered (gdb_stdlog,
1140 "Packet %s (%s) is supported\n",
1141 config->name, config->title);
1142 config->support = PACKET_ENABLE;
1143 break;
1144 case PACKET_DISABLE:
1145 internal_error (__FILE__, __LINE__,
1146 _("packet_ok: attempt to use a disabled packet"));
1147 break;
1148 case PACKET_ENABLE:
1149 break;
1150 }
1151 break;
1152 case PACKET_UNKNOWN:
1153 /* The stub does not support the packet. */
1154 switch (config->support)
1155 {
1156 case PACKET_ENABLE:
1157 if (config->detect == AUTO_BOOLEAN_AUTO)
1158 /* If the stub previously indicated that the packet was
1159 supported then there is a protocol error.. */
1160 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1161 config->name, config->title);
1162 else
1163 /* The user set it wrong. */
1164 error (_("Enabled packet %s (%s) not recognized by stub"),
1165 config->name, config->title);
1166 break;
1167 case PACKET_SUPPORT_UNKNOWN:
1168 if (remote_debug)
1169 fprintf_unfiltered (gdb_stdlog,
1170 "Packet %s (%s) is NOT supported\n",
1171 config->name, config->title);
1172 config->support = PACKET_DISABLE;
1173 break;
1174 case PACKET_DISABLE:
1175 break;
1176 }
1177 break;
1178 }
1179
1180 return result;
1181 }
1182
1183 enum {
1184 PACKET_vCont = 0,
1185 PACKET_X,
1186 PACKET_qSymbol,
1187 PACKET_P,
1188 PACKET_p,
1189 PACKET_Z0,
1190 PACKET_Z1,
1191 PACKET_Z2,
1192 PACKET_Z3,
1193 PACKET_Z4,
1194 PACKET_vFile_open,
1195 PACKET_vFile_pread,
1196 PACKET_vFile_pwrite,
1197 PACKET_vFile_close,
1198 PACKET_vFile_unlink,
1199 PACKET_qXfer_auxv,
1200 PACKET_qXfer_features,
1201 PACKET_qXfer_libraries,
1202 PACKET_qXfer_memory_map,
1203 PACKET_qXfer_spu_read,
1204 PACKET_qXfer_spu_write,
1205 PACKET_qXfer_osdata,
1206 PACKET_qXfer_threads,
1207 PACKET_qXfer_statictrace_read,
1208 PACKET_qXfer_traceframe_info,
1209 PACKET_qGetTIBAddr,
1210 PACKET_qGetTLSAddr,
1211 PACKET_qSupported,
1212 PACKET_QPassSignals,
1213 PACKET_qSearch_memory,
1214 PACKET_vAttach,
1215 PACKET_vRun,
1216 PACKET_QStartNoAckMode,
1217 PACKET_vKill,
1218 PACKET_qXfer_siginfo_read,
1219 PACKET_qXfer_siginfo_write,
1220 PACKET_qAttached,
1221 PACKET_ConditionalTracepoints,
1222 PACKET_FastTracepoints,
1223 PACKET_StaticTracepoints,
1224 PACKET_bc,
1225 PACKET_bs,
1226 PACKET_TracepointSource,
1227 PACKET_QAllow,
1228 PACKET_MAX
1229 };
1230
1231 static struct packet_config remote_protocol_packets[PACKET_MAX];
1232
1233 static void
1234 set_remote_protocol_packet_cmd (char *args, int from_tty,
1235 struct cmd_list_element *c)
1236 {
1237 struct packet_config *packet;
1238
1239 for (packet = remote_protocol_packets;
1240 packet < &remote_protocol_packets[PACKET_MAX];
1241 packet++)
1242 {
1243 if (&packet->detect == c->var)
1244 {
1245 update_packet_config (packet);
1246 return;
1247 }
1248 }
1249 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1250 c->name);
1251 }
1252
1253 static void
1254 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1255 struct cmd_list_element *c,
1256 const char *value)
1257 {
1258 struct packet_config *packet;
1259
1260 for (packet = remote_protocol_packets;
1261 packet < &remote_protocol_packets[PACKET_MAX];
1262 packet++)
1263 {
1264 if (&packet->detect == c->var)
1265 {
1266 show_packet_config_cmd (packet);
1267 return;
1268 }
1269 }
1270 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1271 c->name);
1272 }
1273
1274 /* Should we try one of the 'Z' requests? */
1275
1276 enum Z_packet_type
1277 {
1278 Z_PACKET_SOFTWARE_BP,
1279 Z_PACKET_HARDWARE_BP,
1280 Z_PACKET_WRITE_WP,
1281 Z_PACKET_READ_WP,
1282 Z_PACKET_ACCESS_WP,
1283 NR_Z_PACKET_TYPES
1284 };
1285
1286 /* For compatibility with older distributions. Provide a ``set remote
1287 Z-packet ...'' command that updates all the Z packet types. */
1288
1289 static enum auto_boolean remote_Z_packet_detect;
1290
1291 static void
1292 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 int i;
1296
1297 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1298 {
1299 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1300 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1301 }
1302 }
1303
1304 static void
1305 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1306 struct cmd_list_element *c,
1307 const char *value)
1308 {
1309 int i;
1310
1311 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1312 {
1313 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1314 }
1315 }
1316
1317 /* Should we try the 'ThreadInfo' query packet?
1318
1319 This variable (NOT available to the user: auto-detect only!)
1320 determines whether GDB will use the new, simpler "ThreadInfo"
1321 query or the older, more complex syntax for thread queries.
1322 This is an auto-detect variable (set to true at each connect,
1323 and set to false when the target fails to recognize it). */
1324
1325 static int use_threadinfo_query;
1326 static int use_threadextra_query;
1327
1328 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1329 static struct async_signal_handler *sigint_remote_twice_token;
1330 static struct async_signal_handler *sigint_remote_token;
1331
1332 \f
1333 /* Asynchronous signal handle registered as event loop source for
1334 when we have pending events ready to be passed to the core. */
1335
1336 static struct async_event_handler *remote_async_inferior_event_token;
1337
1338 /* Asynchronous signal handle registered as event loop source for when
1339 the remote sent us a %Stop notification. The registered callback
1340 will do a vStopped sequence to pull the rest of the events out of
1341 the remote side into our event queue. */
1342
1343 static struct async_event_handler *remote_async_get_pending_events_token;
1344 \f
1345
1346 static ptid_t magic_null_ptid;
1347 static ptid_t not_sent_ptid;
1348 static ptid_t any_thread_ptid;
1349
1350 /* These are the threads which we last sent to the remote system. The
1351 TID member will be -1 for all or -2 for not sent yet. */
1352
1353 static ptid_t general_thread;
1354 static ptid_t continue_thread;
1355
1356 /* This the traceframe which we last selected on the remote system.
1357 It will be -1 if no traceframe is selected. */
1358 static int remote_traceframe_number = -1;
1359
1360 /* Find out if the stub attached to PID (and hence GDB should offer to
1361 detach instead of killing it when bailing out). */
1362
1363 static int
1364 remote_query_attached (int pid)
1365 {
1366 struct remote_state *rs = get_remote_state ();
1367
1368 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1369 return 0;
1370
1371 if (remote_multi_process_p (rs))
1372 sprintf (rs->buf, "qAttached:%x", pid);
1373 else
1374 sprintf (rs->buf, "qAttached");
1375
1376 putpkt (rs->buf);
1377 getpkt (&rs->buf, &rs->buf_size, 0);
1378
1379 switch (packet_ok (rs->buf,
1380 &remote_protocol_packets[PACKET_qAttached]))
1381 {
1382 case PACKET_OK:
1383 if (strcmp (rs->buf, "1") == 0)
1384 return 1;
1385 break;
1386 case PACKET_ERROR:
1387 warning (_("Remote failure reply: %s"), rs->buf);
1388 break;
1389 case PACKET_UNKNOWN:
1390 break;
1391 }
1392
1393 return 0;
1394 }
1395
1396 /* Add PID to GDB's inferior table. Since we can be connected to a
1397 remote system before before knowing about any inferior, mark the
1398 target with execution when we find the first inferior. If ATTACHED
1399 is 1, then we had just attached to this inferior. If it is 0, then
1400 we just created this inferior. If it is -1, then try querying the
1401 remote stub to find out if it had attached to the inferior or
1402 not. */
1403
1404 static struct inferior *
1405 remote_add_inferior (int pid, int attached)
1406 {
1407 struct inferior *inf;
1408
1409 /* Check whether this process we're learning about is to be
1410 considered attached, or if is to be considered to have been
1411 spawned by the stub. */
1412 if (attached == -1)
1413 attached = remote_query_attached (pid);
1414
1415 if (gdbarch_has_global_solist (target_gdbarch))
1416 {
1417 /* If the target shares code across all inferiors, then every
1418 attach adds a new inferior. */
1419 inf = add_inferior (pid);
1420
1421 /* ... and every inferior is bound to the same program space.
1422 However, each inferior may still have its own address
1423 space. */
1424 inf->aspace = maybe_new_address_space ();
1425 inf->pspace = current_program_space;
1426 }
1427 else
1428 {
1429 /* In the traditional debugging scenario, there's a 1-1 match
1430 between program/address spaces. We simply bind the inferior
1431 to the program space's address space. */
1432 inf = current_inferior ();
1433 inferior_appeared (inf, pid);
1434 }
1435
1436 inf->attach_flag = attached;
1437
1438 return inf;
1439 }
1440
1441 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1442 according to RUNNING. */
1443
1444 static void
1445 remote_add_thread (ptid_t ptid, int running)
1446 {
1447 add_thread (ptid);
1448
1449 set_executing (ptid, running);
1450 set_running (ptid, running);
1451 }
1452
1453 /* Come here when we learn about a thread id from the remote target.
1454 It may be the first time we hear about such thread, so take the
1455 opportunity to add it to GDB's thread list. In case this is the
1456 first time we're noticing its corresponding inferior, add it to
1457 GDB's inferior list as well. */
1458
1459 static void
1460 remote_notice_new_inferior (ptid_t currthread, int running)
1461 {
1462 /* If this is a new thread, add it to GDB's thread list.
1463 If we leave it up to WFI to do this, bad things will happen. */
1464
1465 if (in_thread_list (currthread) && is_exited (currthread))
1466 {
1467 /* We're seeing an event on a thread id we knew had exited.
1468 This has to be a new thread reusing the old id. Add it. */
1469 remote_add_thread (currthread, running);
1470 return;
1471 }
1472
1473 if (!in_thread_list (currthread))
1474 {
1475 struct inferior *inf = NULL;
1476 int pid = ptid_get_pid (currthread);
1477
1478 if (ptid_is_pid (inferior_ptid)
1479 && pid == ptid_get_pid (inferior_ptid))
1480 {
1481 /* inferior_ptid has no thread member yet. This can happen
1482 with the vAttach -> remote_wait,"TAAthread:" path if the
1483 stub doesn't support qC. This is the first stop reported
1484 after an attach, so this is the main thread. Update the
1485 ptid in the thread list. */
1486 if (in_thread_list (pid_to_ptid (pid)))
1487 thread_change_ptid (inferior_ptid, currthread);
1488 else
1489 {
1490 remote_add_thread (currthread, running);
1491 inferior_ptid = currthread;
1492 }
1493 return;
1494 }
1495
1496 if (ptid_equal (magic_null_ptid, inferior_ptid))
1497 {
1498 /* inferior_ptid is not set yet. This can happen with the
1499 vRun -> remote_wait,"TAAthread:" path if the stub
1500 doesn't support qC. This is the first stop reported
1501 after an attach, so this is the main thread. Update the
1502 ptid in the thread list. */
1503 thread_change_ptid (inferior_ptid, currthread);
1504 return;
1505 }
1506
1507 /* When connecting to a target remote, or to a target
1508 extended-remote which already was debugging an inferior, we
1509 may not know about it yet. Add it before adding its child
1510 thread, so notifications are emitted in a sensible order. */
1511 if (!in_inferior_list (ptid_get_pid (currthread)))
1512 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1513
1514 /* This is really a new thread. Add it. */
1515 remote_add_thread (currthread, running);
1516
1517 /* If we found a new inferior, let the common code do whatever
1518 it needs to with it (e.g., read shared libraries, insert
1519 breakpoints). */
1520 if (inf != NULL)
1521 notice_new_inferior (currthread, running, 0);
1522 }
1523 }
1524
1525 /* Return the private thread data, creating it if necessary. */
1526
1527 struct private_thread_info *
1528 demand_private_info (ptid_t ptid)
1529 {
1530 struct thread_info *info = find_thread_ptid (ptid);
1531
1532 gdb_assert (info);
1533
1534 if (!info->private)
1535 {
1536 info->private = xmalloc (sizeof (*(info->private)));
1537 info->private_dtor = free_private_thread_info;
1538 info->private->core = -1;
1539 info->private->extra = 0;
1540 }
1541
1542 return info->private;
1543 }
1544
1545 /* Call this function as a result of
1546 1) A halt indication (T packet) containing a thread id
1547 2) A direct query of currthread
1548 3) Successful execution of set thread */
1549
1550 static void
1551 record_currthread (ptid_t currthread)
1552 {
1553 general_thread = currthread;
1554 }
1555
1556 static char *last_pass_packet;
1557
1558 /* If 'QPassSignals' is supported, tell the remote stub what signals
1559 it can simply pass through to the inferior without reporting. */
1560
1561 static void
1562 remote_pass_signals (void)
1563 {
1564 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1565 {
1566 char *pass_packet, *p;
1567 int numsigs = (int) TARGET_SIGNAL_LAST;
1568 int count = 0, i;
1569
1570 gdb_assert (numsigs < 256);
1571 for (i = 0; i < numsigs; i++)
1572 {
1573 if (signal_stop_state (i) == 0
1574 && signal_print_state (i) == 0
1575 && signal_pass_state (i) == 1)
1576 count++;
1577 }
1578 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1579 strcpy (pass_packet, "QPassSignals:");
1580 p = pass_packet + strlen (pass_packet);
1581 for (i = 0; i < numsigs; i++)
1582 {
1583 if (signal_stop_state (i) == 0
1584 && signal_print_state (i) == 0
1585 && signal_pass_state (i) == 1)
1586 {
1587 if (i >= 16)
1588 *p++ = tohex (i >> 4);
1589 *p++ = tohex (i & 15);
1590 if (count)
1591 *p++ = ';';
1592 else
1593 break;
1594 count--;
1595 }
1596 }
1597 *p = 0;
1598 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1599 {
1600 struct remote_state *rs = get_remote_state ();
1601 char *buf = rs->buf;
1602
1603 putpkt (pass_packet);
1604 getpkt (&rs->buf, &rs->buf_size, 0);
1605 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1606 if (last_pass_packet)
1607 xfree (last_pass_packet);
1608 last_pass_packet = pass_packet;
1609 }
1610 else
1611 xfree (pass_packet);
1612 }
1613 }
1614
1615 static void
1616 remote_notice_signals (ptid_t ptid)
1617 {
1618 /* Update the remote on signals to silently pass, if they've
1619 changed. */
1620 remote_pass_signals ();
1621 }
1622
1623 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1624 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1625 thread. If GEN is set, set the general thread, if not, then set
1626 the step/continue thread. */
1627 static void
1628 set_thread (struct ptid ptid, int gen)
1629 {
1630 struct remote_state *rs = get_remote_state ();
1631 ptid_t state = gen ? general_thread : continue_thread;
1632 char *buf = rs->buf;
1633 char *endbuf = rs->buf + get_remote_packet_size ();
1634
1635 if (ptid_equal (state, ptid))
1636 return;
1637
1638 *buf++ = 'H';
1639 *buf++ = gen ? 'g' : 'c';
1640 if (ptid_equal (ptid, magic_null_ptid))
1641 xsnprintf (buf, endbuf - buf, "0");
1642 else if (ptid_equal (ptid, any_thread_ptid))
1643 xsnprintf (buf, endbuf - buf, "0");
1644 else if (ptid_equal (ptid, minus_one_ptid))
1645 xsnprintf (buf, endbuf - buf, "-1");
1646 else
1647 write_ptid (buf, endbuf, ptid);
1648 putpkt (rs->buf);
1649 getpkt (&rs->buf, &rs->buf_size, 0);
1650 if (gen)
1651 general_thread = ptid;
1652 else
1653 continue_thread = ptid;
1654 }
1655
1656 static void
1657 set_general_thread (struct ptid ptid)
1658 {
1659 set_thread (ptid, 1);
1660 }
1661
1662 static void
1663 set_continue_thread (struct ptid ptid)
1664 {
1665 set_thread (ptid, 0);
1666 }
1667
1668 /* Change the remote current process. Which thread within the process
1669 ends up selected isn't important, as long as it is the same process
1670 as what INFERIOR_PTID points to.
1671
1672 This comes from that fact that there is no explicit notion of
1673 "selected process" in the protocol. The selected process for
1674 general operations is the process the selected general thread
1675 belongs to. */
1676
1677 static void
1678 set_general_process (void)
1679 {
1680 struct remote_state *rs = get_remote_state ();
1681
1682 /* If the remote can't handle multiple processes, don't bother. */
1683 if (!remote_multi_process_p (rs))
1684 return;
1685
1686 /* We only need to change the remote current thread if it's pointing
1687 at some other process. */
1688 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1689 set_general_thread (inferior_ptid);
1690 }
1691
1692 \f
1693 /* Return nonzero if the thread PTID is still alive on the remote
1694 system. */
1695
1696 static int
1697 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1698 {
1699 struct remote_state *rs = get_remote_state ();
1700 char *p, *endp;
1701
1702 if (ptid_equal (ptid, magic_null_ptid))
1703 /* The main thread is always alive. */
1704 return 1;
1705
1706 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1707 /* The main thread is always alive. This can happen after a
1708 vAttach, if the remote side doesn't support
1709 multi-threading. */
1710 return 1;
1711
1712 p = rs->buf;
1713 endp = rs->buf + get_remote_packet_size ();
1714
1715 *p++ = 'T';
1716 write_ptid (p, endp, ptid);
1717
1718 putpkt (rs->buf);
1719 getpkt (&rs->buf, &rs->buf_size, 0);
1720 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1721 }
1722
1723 /* About these extended threadlist and threadinfo packets. They are
1724 variable length packets but, the fields within them are often fixed
1725 length. They are redundent enough to send over UDP as is the
1726 remote protocol in general. There is a matching unit test module
1727 in libstub. */
1728
1729 #define OPAQUETHREADBYTES 8
1730
1731 /* a 64 bit opaque identifier */
1732 typedef unsigned char threadref[OPAQUETHREADBYTES];
1733
1734 /* WARNING: This threadref data structure comes from the remote O.S.,
1735 libstub protocol encoding, and remote.c. It is not particularly
1736 changable. */
1737
1738 /* Right now, the internal structure is int. We want it to be bigger.
1739 Plan to fix this. */
1740
1741 typedef int gdb_threadref; /* Internal GDB thread reference. */
1742
1743 /* gdb_ext_thread_info is an internal GDB data structure which is
1744 equivalent to the reply of the remote threadinfo packet. */
1745
1746 struct gdb_ext_thread_info
1747 {
1748 threadref threadid; /* External form of thread reference. */
1749 int active; /* Has state interesting to GDB?
1750 regs, stack. */
1751 char display[256]; /* Brief state display, name,
1752 blocked/suspended. */
1753 char shortname[32]; /* To be used to name threads. */
1754 char more_display[256]; /* Long info, statistics, queue depth,
1755 whatever. */
1756 };
1757
1758 /* The volume of remote transfers can be limited by submitting
1759 a mask containing bits specifying the desired information.
1760 Use a union of these values as the 'selection' parameter to
1761 get_thread_info. FIXME: Make these TAG names more thread specific. */
1762
1763 #define TAG_THREADID 1
1764 #define TAG_EXISTS 2
1765 #define TAG_DISPLAY 4
1766 #define TAG_THREADNAME 8
1767 #define TAG_MOREDISPLAY 16
1768
1769 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1770
1771 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1772
1773 static char *unpack_nibble (char *buf, int *val);
1774
1775 static char *pack_nibble (char *buf, int nibble);
1776
1777 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1778
1779 static char *unpack_byte (char *buf, int *value);
1780
1781 static char *pack_int (char *buf, int value);
1782
1783 static char *unpack_int (char *buf, int *value);
1784
1785 static char *unpack_string (char *src, char *dest, int length);
1786
1787 static char *pack_threadid (char *pkt, threadref *id);
1788
1789 static char *unpack_threadid (char *inbuf, threadref *id);
1790
1791 void int_to_threadref (threadref *id, int value);
1792
1793 static int threadref_to_int (threadref *ref);
1794
1795 static void copy_threadref (threadref *dest, threadref *src);
1796
1797 static int threadmatch (threadref *dest, threadref *src);
1798
1799 static char *pack_threadinfo_request (char *pkt, int mode,
1800 threadref *id);
1801
1802 static int remote_unpack_thread_info_response (char *pkt,
1803 threadref *expectedref,
1804 struct gdb_ext_thread_info
1805 *info);
1806
1807
1808 static int remote_get_threadinfo (threadref *threadid,
1809 int fieldset, /*TAG mask */
1810 struct gdb_ext_thread_info *info);
1811
1812 static char *pack_threadlist_request (char *pkt, int startflag,
1813 int threadcount,
1814 threadref *nextthread);
1815
1816 static int parse_threadlist_response (char *pkt,
1817 int result_limit,
1818 threadref *original_echo,
1819 threadref *resultlist,
1820 int *doneflag);
1821
1822 static int remote_get_threadlist (int startflag,
1823 threadref *nextthread,
1824 int result_limit,
1825 int *done,
1826 int *result_count,
1827 threadref *threadlist);
1828
1829 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1830
1831 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1832 void *context, int looplimit);
1833
1834 static int remote_newthread_step (threadref *ref, void *context);
1835
1836
1837 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1838 buffer we're allowed to write to. Returns
1839 BUF+CHARACTERS_WRITTEN. */
1840
1841 static char *
1842 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1843 {
1844 int pid, tid;
1845 struct remote_state *rs = get_remote_state ();
1846
1847 if (remote_multi_process_p (rs))
1848 {
1849 pid = ptid_get_pid (ptid);
1850 if (pid < 0)
1851 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1852 else
1853 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1854 }
1855 tid = ptid_get_tid (ptid);
1856 if (tid < 0)
1857 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1858 else
1859 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1860
1861 return buf;
1862 }
1863
1864 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1865 passed the last parsed char. Returns null_ptid on error. */
1866
1867 static ptid_t
1868 read_ptid (char *buf, char **obuf)
1869 {
1870 char *p = buf;
1871 char *pp;
1872 ULONGEST pid = 0, tid = 0;
1873
1874 if (*p == 'p')
1875 {
1876 /* Multi-process ptid. */
1877 pp = unpack_varlen_hex (p + 1, &pid);
1878 if (*pp != '.')
1879 error (_("invalid remote ptid: %s"), p);
1880
1881 p = pp;
1882 pp = unpack_varlen_hex (p + 1, &tid);
1883 if (obuf)
1884 *obuf = pp;
1885 return ptid_build (pid, 0, tid);
1886 }
1887
1888 /* No multi-process. Just a tid. */
1889 pp = unpack_varlen_hex (p, &tid);
1890
1891 /* Since the stub is not sending a process id, then default to
1892 what's in inferior_ptid, unless it's null at this point. If so,
1893 then since there's no way to know the pid of the reported
1894 threads, use the magic number. */
1895 if (ptid_equal (inferior_ptid, null_ptid))
1896 pid = ptid_get_pid (magic_null_ptid);
1897 else
1898 pid = ptid_get_pid (inferior_ptid);
1899
1900 if (obuf)
1901 *obuf = pp;
1902 return ptid_build (pid, 0, tid);
1903 }
1904
1905 /* Encode 64 bits in 16 chars of hex. */
1906
1907 static const char hexchars[] = "0123456789abcdef";
1908
1909 static int
1910 ishex (int ch, int *val)
1911 {
1912 if ((ch >= 'a') && (ch <= 'f'))
1913 {
1914 *val = ch - 'a' + 10;
1915 return 1;
1916 }
1917 if ((ch >= 'A') && (ch <= 'F'))
1918 {
1919 *val = ch - 'A' + 10;
1920 return 1;
1921 }
1922 if ((ch >= '0') && (ch <= '9'))
1923 {
1924 *val = ch - '0';
1925 return 1;
1926 }
1927 return 0;
1928 }
1929
1930 static int
1931 stubhex (int ch)
1932 {
1933 if (ch >= 'a' && ch <= 'f')
1934 return ch - 'a' + 10;
1935 if (ch >= '0' && ch <= '9')
1936 return ch - '0';
1937 if (ch >= 'A' && ch <= 'F')
1938 return ch - 'A' + 10;
1939 return -1;
1940 }
1941
1942 static int
1943 stub_unpack_int (char *buff, int fieldlength)
1944 {
1945 int nibble;
1946 int retval = 0;
1947
1948 while (fieldlength)
1949 {
1950 nibble = stubhex (*buff++);
1951 retval |= nibble;
1952 fieldlength--;
1953 if (fieldlength)
1954 retval = retval << 4;
1955 }
1956 return retval;
1957 }
1958
1959 char *
1960 unpack_varlen_hex (char *buff, /* packet to parse */
1961 ULONGEST *result)
1962 {
1963 int nibble;
1964 ULONGEST retval = 0;
1965
1966 while (ishex (*buff, &nibble))
1967 {
1968 buff++;
1969 retval = retval << 4;
1970 retval |= nibble & 0x0f;
1971 }
1972 *result = retval;
1973 return buff;
1974 }
1975
1976 static char *
1977 unpack_nibble (char *buf, int *val)
1978 {
1979 *val = fromhex (*buf++);
1980 return buf;
1981 }
1982
1983 static char *
1984 pack_nibble (char *buf, int nibble)
1985 {
1986 *buf++ = hexchars[(nibble & 0x0f)];
1987 return buf;
1988 }
1989
1990 static char *
1991 pack_hex_byte (char *pkt, int byte)
1992 {
1993 *pkt++ = hexchars[(byte >> 4) & 0xf];
1994 *pkt++ = hexchars[(byte & 0xf)];
1995 return pkt;
1996 }
1997
1998 static char *
1999 unpack_byte (char *buf, int *value)
2000 {
2001 *value = stub_unpack_int (buf, 2);
2002 return buf + 2;
2003 }
2004
2005 static char *
2006 pack_int (char *buf, int value)
2007 {
2008 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2009 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2010 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2011 buf = pack_hex_byte (buf, (value & 0xff));
2012 return buf;
2013 }
2014
2015 static char *
2016 unpack_int (char *buf, int *value)
2017 {
2018 *value = stub_unpack_int (buf, 8);
2019 return buf + 8;
2020 }
2021
2022 #if 0 /* Currently unused, uncomment when needed. */
2023 static char *pack_string (char *pkt, char *string);
2024
2025 static char *
2026 pack_string (char *pkt, char *string)
2027 {
2028 char ch;
2029 int len;
2030
2031 len = strlen (string);
2032 if (len > 200)
2033 len = 200; /* Bigger than most GDB packets, junk??? */
2034 pkt = pack_hex_byte (pkt, len);
2035 while (len-- > 0)
2036 {
2037 ch = *string++;
2038 if ((ch == '\0') || (ch == '#'))
2039 ch = '*'; /* Protect encapsulation. */
2040 *pkt++ = ch;
2041 }
2042 return pkt;
2043 }
2044 #endif /* 0 (unused) */
2045
2046 static char *
2047 unpack_string (char *src, char *dest, int length)
2048 {
2049 while (length--)
2050 *dest++ = *src++;
2051 *dest = '\0';
2052 return src;
2053 }
2054
2055 static char *
2056 pack_threadid (char *pkt, threadref *id)
2057 {
2058 char *limit;
2059 unsigned char *altid;
2060
2061 altid = (unsigned char *) id;
2062 limit = pkt + BUF_THREAD_ID_SIZE;
2063 while (pkt < limit)
2064 pkt = pack_hex_byte (pkt, *altid++);
2065 return pkt;
2066 }
2067
2068
2069 static char *
2070 unpack_threadid (char *inbuf, threadref *id)
2071 {
2072 char *altref;
2073 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2074 int x, y;
2075
2076 altref = (char *) id;
2077
2078 while (inbuf < limit)
2079 {
2080 x = stubhex (*inbuf++);
2081 y = stubhex (*inbuf++);
2082 *altref++ = (x << 4) | y;
2083 }
2084 return inbuf;
2085 }
2086
2087 /* Externally, threadrefs are 64 bits but internally, they are still
2088 ints. This is due to a mismatch of specifications. We would like
2089 to use 64bit thread references internally. This is an adapter
2090 function. */
2091
2092 void
2093 int_to_threadref (threadref *id, int value)
2094 {
2095 unsigned char *scan;
2096
2097 scan = (unsigned char *) id;
2098 {
2099 int i = 4;
2100 while (i--)
2101 *scan++ = 0;
2102 }
2103 *scan++ = (value >> 24) & 0xff;
2104 *scan++ = (value >> 16) & 0xff;
2105 *scan++ = (value >> 8) & 0xff;
2106 *scan++ = (value & 0xff);
2107 }
2108
2109 static int
2110 threadref_to_int (threadref *ref)
2111 {
2112 int i, value = 0;
2113 unsigned char *scan;
2114
2115 scan = *ref;
2116 scan += 4;
2117 i = 4;
2118 while (i-- > 0)
2119 value = (value << 8) | ((*scan++) & 0xff);
2120 return value;
2121 }
2122
2123 static void
2124 copy_threadref (threadref *dest, threadref *src)
2125 {
2126 int i;
2127 unsigned char *csrc, *cdest;
2128
2129 csrc = (unsigned char *) src;
2130 cdest = (unsigned char *) dest;
2131 i = 8;
2132 while (i--)
2133 *cdest++ = *csrc++;
2134 }
2135
2136 static int
2137 threadmatch (threadref *dest, threadref *src)
2138 {
2139 /* Things are broken right now, so just assume we got a match. */
2140 #if 0
2141 unsigned char *srcp, *destp;
2142 int i, result;
2143 srcp = (char *) src;
2144 destp = (char *) dest;
2145
2146 result = 1;
2147 while (i-- > 0)
2148 result &= (*srcp++ == *destp++) ? 1 : 0;
2149 return result;
2150 #endif
2151 return 1;
2152 }
2153
2154 /*
2155 threadid:1, # always request threadid
2156 context_exists:2,
2157 display:4,
2158 unique_name:8,
2159 more_display:16
2160 */
2161
2162 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2163
2164 static char *
2165 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2166 {
2167 *pkt++ = 'q'; /* Info Query */
2168 *pkt++ = 'P'; /* process or thread info */
2169 pkt = pack_int (pkt, mode); /* mode */
2170 pkt = pack_threadid (pkt, id); /* threadid */
2171 *pkt = '\0'; /* terminate */
2172 return pkt;
2173 }
2174
2175 /* These values tag the fields in a thread info response packet. */
2176 /* Tagging the fields allows us to request specific fields and to
2177 add more fields as time goes by. */
2178
2179 #define TAG_THREADID 1 /* Echo the thread identifier. */
2180 #define TAG_EXISTS 2 /* Is this process defined enough to
2181 fetch registers and its stack? */
2182 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2183 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2184 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2185 the process. */
2186
2187 static int
2188 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2189 struct gdb_ext_thread_info *info)
2190 {
2191 struct remote_state *rs = get_remote_state ();
2192 int mask, length;
2193 int tag;
2194 threadref ref;
2195 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2196 int retval = 1;
2197
2198 /* info->threadid = 0; FIXME: implement zero_threadref. */
2199 info->active = 0;
2200 info->display[0] = '\0';
2201 info->shortname[0] = '\0';
2202 info->more_display[0] = '\0';
2203
2204 /* Assume the characters indicating the packet type have been
2205 stripped. */
2206 pkt = unpack_int (pkt, &mask); /* arg mask */
2207 pkt = unpack_threadid (pkt, &ref);
2208
2209 if (mask == 0)
2210 warning (_("Incomplete response to threadinfo request."));
2211 if (!threadmatch (&ref, expectedref))
2212 { /* This is an answer to a different request. */
2213 warning (_("ERROR RMT Thread info mismatch."));
2214 return 0;
2215 }
2216 copy_threadref (&info->threadid, &ref);
2217
2218 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2219
2220 /* Packets are terminated with nulls. */
2221 while ((pkt < limit) && mask && *pkt)
2222 {
2223 pkt = unpack_int (pkt, &tag); /* tag */
2224 pkt = unpack_byte (pkt, &length); /* length */
2225 if (!(tag & mask)) /* Tags out of synch with mask. */
2226 {
2227 warning (_("ERROR RMT: threadinfo tag mismatch."));
2228 retval = 0;
2229 break;
2230 }
2231 if (tag == TAG_THREADID)
2232 {
2233 if (length != 16)
2234 {
2235 warning (_("ERROR RMT: length of threadid is not 16."));
2236 retval = 0;
2237 break;
2238 }
2239 pkt = unpack_threadid (pkt, &ref);
2240 mask = mask & ~TAG_THREADID;
2241 continue;
2242 }
2243 if (tag == TAG_EXISTS)
2244 {
2245 info->active = stub_unpack_int (pkt, length);
2246 pkt += length;
2247 mask = mask & ~(TAG_EXISTS);
2248 if (length > 8)
2249 {
2250 warning (_("ERROR RMT: 'exists' length too long."));
2251 retval = 0;
2252 break;
2253 }
2254 continue;
2255 }
2256 if (tag == TAG_THREADNAME)
2257 {
2258 pkt = unpack_string (pkt, &info->shortname[0], length);
2259 mask = mask & ~TAG_THREADNAME;
2260 continue;
2261 }
2262 if (tag == TAG_DISPLAY)
2263 {
2264 pkt = unpack_string (pkt, &info->display[0], length);
2265 mask = mask & ~TAG_DISPLAY;
2266 continue;
2267 }
2268 if (tag == TAG_MOREDISPLAY)
2269 {
2270 pkt = unpack_string (pkt, &info->more_display[0], length);
2271 mask = mask & ~TAG_MOREDISPLAY;
2272 continue;
2273 }
2274 warning (_("ERROR RMT: unknown thread info tag."));
2275 break; /* Not a tag we know about. */
2276 }
2277 return retval;
2278 }
2279
2280 static int
2281 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2282 struct gdb_ext_thread_info *info)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285 int result;
2286
2287 pack_threadinfo_request (rs->buf, fieldset, threadid);
2288 putpkt (rs->buf);
2289 getpkt (&rs->buf, &rs->buf_size, 0);
2290
2291 if (rs->buf[0] == '\0')
2292 return 0;
2293
2294 result = remote_unpack_thread_info_response (rs->buf + 2,
2295 threadid, info);
2296 return result;
2297 }
2298
2299 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2300
2301 static char *
2302 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2303 threadref *nextthread)
2304 {
2305 *pkt++ = 'q'; /* info query packet */
2306 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2307 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2308 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2309 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2310 *pkt = '\0';
2311 return pkt;
2312 }
2313
2314 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2315
2316 static int
2317 parse_threadlist_response (char *pkt, int result_limit,
2318 threadref *original_echo, threadref *resultlist,
2319 int *doneflag)
2320 {
2321 struct remote_state *rs = get_remote_state ();
2322 char *limit;
2323 int count, resultcount, done;
2324
2325 resultcount = 0;
2326 /* Assume the 'q' and 'M chars have been stripped. */
2327 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2328 /* done parse past here */
2329 pkt = unpack_byte (pkt, &count); /* count field */
2330 pkt = unpack_nibble (pkt, &done);
2331 /* The first threadid is the argument threadid. */
2332 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2333 while ((count-- > 0) && (pkt < limit))
2334 {
2335 pkt = unpack_threadid (pkt, resultlist++);
2336 if (resultcount++ >= result_limit)
2337 break;
2338 }
2339 if (doneflag)
2340 *doneflag = done;
2341 return resultcount;
2342 }
2343
2344 static int
2345 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2346 int *done, int *result_count, threadref *threadlist)
2347 {
2348 struct remote_state *rs = get_remote_state ();
2349 static threadref echo_nextthread;
2350 int result = 1;
2351
2352 /* Trancate result limit to be smaller than the packet size. */
2353 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2354 >= get_remote_packet_size ())
2355 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2356
2357 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2358 putpkt (rs->buf);
2359 getpkt (&rs->buf, &rs->buf_size, 0);
2360
2361 if (*rs->buf == '\0')
2362 return 0;
2363 else
2364 *result_count =
2365 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2366 threadlist, done);
2367
2368 if (!threadmatch (&echo_nextthread, nextthread))
2369 {
2370 /* FIXME: This is a good reason to drop the packet. */
2371 /* Possably, there is a duplicate response. */
2372 /* Possabilities :
2373 retransmit immediatly - race conditions
2374 retransmit after timeout - yes
2375 exit
2376 wait for packet, then exit
2377 */
2378 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2379 return 0; /* I choose simply exiting. */
2380 }
2381 if (*result_count <= 0)
2382 {
2383 if (*done != 1)
2384 {
2385 warning (_("RMT ERROR : failed to get remote thread list."));
2386 result = 0;
2387 }
2388 return result; /* break; */
2389 }
2390 if (*result_count > result_limit)
2391 {
2392 *result_count = 0;
2393 warning (_("RMT ERROR: threadlist response longer than requested."));
2394 return 0;
2395 }
2396 return result;
2397 }
2398
2399 /* This is the interface between remote and threads, remotes upper
2400 interface. */
2401
2402 /* remote_find_new_threads retrieves the thread list and for each
2403 thread in the list, looks up the thread in GDB's internal list,
2404 adding the thread if it does not already exist. This involves
2405 getting partial thread lists from the remote target so, polling the
2406 quit_flag is required. */
2407
2408
2409 /* About this many threadisds fit in a packet. */
2410
2411 #define MAXTHREADLISTRESULTS 32
2412
2413 static int
2414 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2415 int looplimit)
2416 {
2417 int done, i, result_count;
2418 int startflag = 1;
2419 int result = 1;
2420 int loopcount = 0;
2421 static threadref nextthread;
2422 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2423
2424 done = 0;
2425 while (!done)
2426 {
2427 if (loopcount++ > looplimit)
2428 {
2429 result = 0;
2430 warning (_("Remote fetch threadlist -infinite loop-."));
2431 break;
2432 }
2433 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2434 &done, &result_count, resultthreadlist))
2435 {
2436 result = 0;
2437 break;
2438 }
2439 /* Clear for later iterations. */
2440 startflag = 0;
2441 /* Setup to resume next batch of thread references, set nextthread. */
2442 if (result_count >= 1)
2443 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2444 i = 0;
2445 while (result_count--)
2446 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2447 break;
2448 }
2449 return result;
2450 }
2451
2452 static int
2453 remote_newthread_step (threadref *ref, void *context)
2454 {
2455 int pid = ptid_get_pid (inferior_ptid);
2456 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2457
2458 if (!in_thread_list (ptid))
2459 add_thread (ptid);
2460 return 1; /* continue iterator */
2461 }
2462
2463 #define CRAZY_MAX_THREADS 1000
2464
2465 static ptid_t
2466 remote_current_thread (ptid_t oldpid)
2467 {
2468 struct remote_state *rs = get_remote_state ();
2469
2470 putpkt ("qC");
2471 getpkt (&rs->buf, &rs->buf_size, 0);
2472 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2473 return read_ptid (&rs->buf[2], NULL);
2474 else
2475 return oldpid;
2476 }
2477
2478 /* Find new threads for info threads command.
2479 * Original version, using John Metzler's thread protocol.
2480 */
2481
2482 static void
2483 remote_find_new_threads (void)
2484 {
2485 remote_threadlist_iterator (remote_newthread_step, 0,
2486 CRAZY_MAX_THREADS);
2487 }
2488
2489 #if defined(HAVE_LIBEXPAT)
2490
2491 typedef struct thread_item
2492 {
2493 ptid_t ptid;
2494 char *extra;
2495 int core;
2496 } thread_item_t;
2497 DEF_VEC_O(thread_item_t);
2498
2499 struct threads_parsing_context
2500 {
2501 VEC (thread_item_t) *items;
2502 };
2503
2504 static void
2505 start_thread (struct gdb_xml_parser *parser,
2506 const struct gdb_xml_element *element,
2507 void *user_data, VEC(gdb_xml_value_s) *attributes)
2508 {
2509 struct threads_parsing_context *data = user_data;
2510
2511 struct thread_item item;
2512 char *id;
2513 struct gdb_xml_value *attr;
2514
2515 id = xml_find_attribute (attributes, "id")->value;
2516 item.ptid = read_ptid (id, NULL);
2517
2518 attr = xml_find_attribute (attributes, "core");
2519 if (attr != NULL)
2520 item.core = *(ULONGEST *) attr->value;
2521 else
2522 item.core = -1;
2523
2524 item.extra = 0;
2525
2526 VEC_safe_push (thread_item_t, data->items, &item);
2527 }
2528
2529 static void
2530 end_thread (struct gdb_xml_parser *parser,
2531 const struct gdb_xml_element *element,
2532 void *user_data, const char *body_text)
2533 {
2534 struct threads_parsing_context *data = user_data;
2535
2536 if (body_text && *body_text)
2537 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2538 }
2539
2540 const struct gdb_xml_attribute thread_attributes[] = {
2541 { "id", GDB_XML_AF_NONE, NULL, NULL },
2542 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2543 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2544 };
2545
2546 const struct gdb_xml_element thread_children[] = {
2547 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2548 };
2549
2550 const struct gdb_xml_element threads_children[] = {
2551 { "thread", thread_attributes, thread_children,
2552 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2553 start_thread, end_thread },
2554 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2555 };
2556
2557 const struct gdb_xml_element threads_elements[] = {
2558 { "threads", NULL, threads_children,
2559 GDB_XML_EF_NONE, NULL, NULL },
2560 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2561 };
2562
2563 /* Discard the contents of the constructed thread info context. */
2564
2565 static void
2566 clear_threads_parsing_context (void *p)
2567 {
2568 struct threads_parsing_context *context = p;
2569 int i;
2570 struct thread_item *item;
2571
2572 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2573 xfree (item->extra);
2574
2575 VEC_free (thread_item_t, context->items);
2576 }
2577
2578 #endif
2579
2580 /*
2581 * Find all threads for info threads command.
2582 * Uses new thread protocol contributed by Cisco.
2583 * Falls back and attempts to use the older method (above)
2584 * if the target doesn't respond to the new method.
2585 */
2586
2587 static void
2588 remote_threads_info (struct target_ops *ops)
2589 {
2590 struct remote_state *rs = get_remote_state ();
2591 char *bufp;
2592 ptid_t new_thread;
2593
2594 if (remote_desc == 0) /* paranoia */
2595 error (_("Command can only be used when connected to the remote target."));
2596
2597 #if defined(HAVE_LIBEXPAT)
2598 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2599 {
2600 char *xml = target_read_stralloc (&current_target,
2601 TARGET_OBJECT_THREADS, NULL);
2602
2603 struct cleanup *back_to = make_cleanup (xfree, xml);
2604
2605 if (xml && *xml)
2606 {
2607 struct threads_parsing_context context;
2608
2609 context.items = NULL;
2610 make_cleanup (clear_threads_parsing_context, &context);
2611
2612 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2613 threads_elements, xml, &context) == 0)
2614 {
2615 int i;
2616 struct thread_item *item;
2617
2618 for (i = 0;
2619 VEC_iterate (thread_item_t, context.items, i, item);
2620 ++i)
2621 {
2622 if (!ptid_equal (item->ptid, null_ptid))
2623 {
2624 struct private_thread_info *info;
2625 /* In non-stop mode, we assume new found threads
2626 are running until proven otherwise with a
2627 stop reply. In all-stop, we can only get
2628 here if all threads are stopped. */
2629 int running = non_stop ? 1 : 0;
2630
2631 remote_notice_new_inferior (item->ptid, running);
2632
2633 info = demand_private_info (item->ptid);
2634 info->core = item->core;
2635 info->extra = item->extra;
2636 item->extra = NULL;
2637 }
2638 }
2639 }
2640 }
2641
2642 do_cleanups (back_to);
2643 return;
2644 }
2645 #endif
2646
2647 if (use_threadinfo_query)
2648 {
2649 putpkt ("qfThreadInfo");
2650 getpkt (&rs->buf, &rs->buf_size, 0);
2651 bufp = rs->buf;
2652 if (bufp[0] != '\0') /* q packet recognized */
2653 {
2654 while (*bufp++ == 'm') /* reply contains one or more TID */
2655 {
2656 do
2657 {
2658 new_thread = read_ptid (bufp, &bufp);
2659 if (!ptid_equal (new_thread, null_ptid))
2660 {
2661 /* In non-stop mode, we assume new found threads
2662 are running until proven otherwise with a
2663 stop reply. In all-stop, we can only get
2664 here if all threads are stopped. */
2665 int running = non_stop ? 1 : 0;
2666
2667 remote_notice_new_inferior (new_thread, running);
2668 }
2669 }
2670 while (*bufp++ == ','); /* comma-separated list */
2671 putpkt ("qsThreadInfo");
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673 bufp = rs->buf;
2674 }
2675 return; /* done */
2676 }
2677 }
2678
2679 /* Only qfThreadInfo is supported in non-stop mode. */
2680 if (non_stop)
2681 return;
2682
2683 /* Else fall back to old method based on jmetzler protocol. */
2684 use_threadinfo_query = 0;
2685 remote_find_new_threads ();
2686 return;
2687 }
2688
2689 /*
2690 * Collect a descriptive string about the given thread.
2691 * The target may say anything it wants to about the thread
2692 * (typically info about its blocked / runnable state, name, etc.).
2693 * This string will appear in the info threads display.
2694 *
2695 * Optional: targets are not required to implement this function.
2696 */
2697
2698 static char *
2699 remote_threads_extra_info (struct thread_info *tp)
2700 {
2701 struct remote_state *rs = get_remote_state ();
2702 int result;
2703 int set;
2704 threadref id;
2705 struct gdb_ext_thread_info threadinfo;
2706 static char display_buf[100]; /* arbitrary... */
2707 int n = 0; /* position in display_buf */
2708
2709 if (remote_desc == 0) /* paranoia */
2710 internal_error (__FILE__, __LINE__,
2711 _("remote_threads_extra_info"));
2712
2713 if (ptid_equal (tp->ptid, magic_null_ptid)
2714 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2715 /* This is the main thread which was added by GDB. The remote
2716 server doesn't know about it. */
2717 return NULL;
2718
2719 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2720 {
2721 struct thread_info *info = find_thread_ptid (tp->ptid);
2722
2723 if (info && info->private)
2724 return info->private->extra;
2725 else
2726 return NULL;
2727 }
2728
2729 if (use_threadextra_query)
2730 {
2731 char *b = rs->buf;
2732 char *endb = rs->buf + get_remote_packet_size ();
2733
2734 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2735 b += strlen (b);
2736 write_ptid (b, endb, tp->ptid);
2737
2738 putpkt (rs->buf);
2739 getpkt (&rs->buf, &rs->buf_size, 0);
2740 if (rs->buf[0] != 0)
2741 {
2742 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2743 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2744 display_buf [result] = '\0';
2745 return display_buf;
2746 }
2747 }
2748
2749 /* If the above query fails, fall back to the old method. */
2750 use_threadextra_query = 0;
2751 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2752 | TAG_MOREDISPLAY | TAG_DISPLAY;
2753 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2754 if (remote_get_threadinfo (&id, set, &threadinfo))
2755 if (threadinfo.active)
2756 {
2757 if (*threadinfo.shortname)
2758 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2759 " Name: %s,", threadinfo.shortname);
2760 if (*threadinfo.display)
2761 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2762 " State: %s,", threadinfo.display);
2763 if (*threadinfo.more_display)
2764 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2765 " Priority: %s", threadinfo.more_display);
2766
2767 if (n > 0)
2768 {
2769 /* For purely cosmetic reasons, clear up trailing commas. */
2770 if (',' == display_buf[n-1])
2771 display_buf[n-1] = ' ';
2772 return display_buf;
2773 }
2774 }
2775 return NULL;
2776 }
2777 \f
2778
2779 static int
2780 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2781 struct static_tracepoint_marker *marker)
2782 {
2783 struct remote_state *rs = get_remote_state ();
2784 char *p = rs->buf;
2785
2786 sprintf (p, "qTSTMat:");
2787 p += strlen (p);
2788 p += hexnumstr (p, addr);
2789 putpkt (rs->buf);
2790 getpkt (&rs->buf, &rs->buf_size, 0);
2791 p = rs->buf;
2792
2793 if (*p == 'E')
2794 error (_("Remote failure reply: %s"), p);
2795
2796 if (*p++ == 'm')
2797 {
2798 parse_static_tracepoint_marker_definition (p, &p, marker);
2799 return 1;
2800 }
2801
2802 return 0;
2803 }
2804
2805 static void
2806 free_current_marker (void *arg)
2807 {
2808 struct static_tracepoint_marker **marker_p = arg;
2809
2810 if (*marker_p != NULL)
2811 {
2812 release_static_tracepoint_marker (*marker_p);
2813 xfree (*marker_p);
2814 }
2815 else
2816 *marker_p = NULL;
2817 }
2818
2819 static VEC(static_tracepoint_marker_p) *
2820 remote_static_tracepoint_markers_by_strid (const char *strid)
2821 {
2822 struct remote_state *rs = get_remote_state ();
2823 VEC(static_tracepoint_marker_p) *markers = NULL;
2824 struct static_tracepoint_marker *marker = NULL;
2825 struct cleanup *old_chain;
2826 char *p;
2827
2828 /* Ask for a first packet of static tracepoint marker
2829 definition. */
2830 putpkt ("qTfSTM");
2831 getpkt (&rs->buf, &rs->buf_size, 0);
2832 p = rs->buf;
2833 if (*p == 'E')
2834 error (_("Remote failure reply: %s"), p);
2835
2836 old_chain = make_cleanup (free_current_marker, &marker);
2837
2838 while (*p++ == 'm')
2839 {
2840 if (marker == NULL)
2841 marker = XCNEW (struct static_tracepoint_marker);
2842
2843 do
2844 {
2845 parse_static_tracepoint_marker_definition (p, &p, marker);
2846
2847 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2848 {
2849 VEC_safe_push (static_tracepoint_marker_p,
2850 markers, marker);
2851 marker = NULL;
2852 }
2853 else
2854 {
2855 release_static_tracepoint_marker (marker);
2856 memset (marker, 0, sizeof (*marker));
2857 }
2858 }
2859 while (*p++ == ','); /* comma-separated list */
2860 /* Ask for another packet of static tracepoint definition. */
2861 putpkt ("qTsSTM");
2862 getpkt (&rs->buf, &rs->buf_size, 0);
2863 p = rs->buf;
2864 }
2865
2866 do_cleanups (old_chain);
2867 return markers;
2868 }
2869
2870 \f
2871 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2872
2873 static ptid_t
2874 remote_get_ada_task_ptid (long lwp, long thread)
2875 {
2876 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2877 }
2878 \f
2879
2880 /* Restart the remote side; this is an extended protocol operation. */
2881
2882 static void
2883 extended_remote_restart (void)
2884 {
2885 struct remote_state *rs = get_remote_state ();
2886
2887 /* Send the restart command; for reasons I don't understand the
2888 remote side really expects a number after the "R". */
2889 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2890 putpkt (rs->buf);
2891
2892 remote_fileio_reset ();
2893 }
2894 \f
2895 /* Clean up connection to a remote debugger. */
2896
2897 static void
2898 remote_close (int quitting)
2899 {
2900 if (remote_desc == NULL)
2901 return; /* already closed */
2902
2903 /* Make sure we leave stdin registered in the event loop, and we
2904 don't leave the async SIGINT signal handler installed. */
2905 remote_terminal_ours ();
2906
2907 serial_close (remote_desc);
2908 remote_desc = NULL;
2909
2910 /* We don't have a connection to the remote stub anymore. Get rid
2911 of all the inferiors and their threads we were controlling.
2912 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2913 will be unable to find the thread corresponding to (pid, 0, 0). */
2914 inferior_ptid = null_ptid;
2915 discard_all_inferiors ();
2916
2917 /* We're no longer interested in any of these events. */
2918 discard_pending_stop_replies (-1);
2919
2920 if (remote_async_inferior_event_token)
2921 delete_async_event_handler (&remote_async_inferior_event_token);
2922 if (remote_async_get_pending_events_token)
2923 delete_async_event_handler (&remote_async_get_pending_events_token);
2924 }
2925
2926 /* Query the remote side for the text, data and bss offsets. */
2927
2928 static void
2929 get_offsets (void)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932 char *buf;
2933 char *ptr;
2934 int lose, num_segments = 0, do_sections, do_segments;
2935 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2936 struct section_offsets *offs;
2937 struct symfile_segment_data *data;
2938
2939 if (symfile_objfile == NULL)
2940 return;
2941
2942 putpkt ("qOffsets");
2943 getpkt (&rs->buf, &rs->buf_size, 0);
2944 buf = rs->buf;
2945
2946 if (buf[0] == '\000')
2947 return; /* Return silently. Stub doesn't support
2948 this command. */
2949 if (buf[0] == 'E')
2950 {
2951 warning (_("Remote failure reply: %s"), buf);
2952 return;
2953 }
2954
2955 /* Pick up each field in turn. This used to be done with scanf, but
2956 scanf will make trouble if CORE_ADDR size doesn't match
2957 conversion directives correctly. The following code will work
2958 with any size of CORE_ADDR. */
2959 text_addr = data_addr = bss_addr = 0;
2960 ptr = buf;
2961 lose = 0;
2962
2963 if (strncmp (ptr, "Text=", 5) == 0)
2964 {
2965 ptr += 5;
2966 /* Don't use strtol, could lose on big values. */
2967 while (*ptr && *ptr != ';')
2968 text_addr = (text_addr << 4) + fromhex (*ptr++);
2969
2970 if (strncmp (ptr, ";Data=", 6) == 0)
2971 {
2972 ptr += 6;
2973 while (*ptr && *ptr != ';')
2974 data_addr = (data_addr << 4) + fromhex (*ptr++);
2975 }
2976 else
2977 lose = 1;
2978
2979 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2980 {
2981 ptr += 5;
2982 while (*ptr && *ptr != ';')
2983 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2984
2985 if (bss_addr != data_addr)
2986 warning (_("Target reported unsupported offsets: %s"), buf);
2987 }
2988 else
2989 lose = 1;
2990 }
2991 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2992 {
2993 ptr += 8;
2994 /* Don't use strtol, could lose on big values. */
2995 while (*ptr && *ptr != ';')
2996 text_addr = (text_addr << 4) + fromhex (*ptr++);
2997 num_segments = 1;
2998
2999 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3000 {
3001 ptr += 9;
3002 while (*ptr && *ptr != ';')
3003 data_addr = (data_addr << 4) + fromhex (*ptr++);
3004 num_segments++;
3005 }
3006 }
3007 else
3008 lose = 1;
3009
3010 if (lose)
3011 error (_("Malformed response to offset query, %s"), buf);
3012 else if (*ptr != '\0')
3013 warning (_("Target reported unsupported offsets: %s"), buf);
3014
3015 offs = ((struct section_offsets *)
3016 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3017 memcpy (offs, symfile_objfile->section_offsets,
3018 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3019
3020 data = get_symfile_segment_data (symfile_objfile->obfd);
3021 do_segments = (data != NULL);
3022 do_sections = num_segments == 0;
3023
3024 if (num_segments > 0)
3025 {
3026 segments[0] = text_addr;
3027 segments[1] = data_addr;
3028 }
3029 /* If we have two segments, we can still try to relocate everything
3030 by assuming that the .text and .data offsets apply to the whole
3031 text and data segments. Convert the offsets given in the packet
3032 to base addresses for symfile_map_offsets_to_segments. */
3033 else if (data && data->num_segments == 2)
3034 {
3035 segments[0] = data->segment_bases[0] + text_addr;
3036 segments[1] = data->segment_bases[1] + data_addr;
3037 num_segments = 2;
3038 }
3039 /* If the object file has only one segment, assume that it is text
3040 rather than data; main programs with no writable data are rare,
3041 but programs with no code are useless. Of course the code might
3042 have ended up in the data segment... to detect that we would need
3043 the permissions here. */
3044 else if (data && data->num_segments == 1)
3045 {
3046 segments[0] = data->segment_bases[0] + text_addr;
3047 num_segments = 1;
3048 }
3049 /* There's no way to relocate by segment. */
3050 else
3051 do_segments = 0;
3052
3053 if (do_segments)
3054 {
3055 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3056 offs, num_segments, segments);
3057
3058 if (ret == 0 && !do_sections)
3059 error (_("Can not handle qOffsets TextSeg "
3060 "response with this symbol file"));
3061
3062 if (ret > 0)
3063 do_sections = 0;
3064 }
3065
3066 if (data)
3067 free_symfile_segment_data (data);
3068
3069 if (do_sections)
3070 {
3071 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3072
3073 /* This is a temporary kludge to force data and bss to use the
3074 same offsets because that's what nlmconv does now. The real
3075 solution requires changes to the stub and remote.c that I
3076 don't have time to do right now. */
3077
3078 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3079 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3080 }
3081
3082 objfile_relocate (symfile_objfile, offs);
3083 }
3084
3085 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3086 threads we know are stopped already. This is used during the
3087 initial remote connection in non-stop mode --- threads that are
3088 reported as already being stopped are left stopped. */
3089
3090 static int
3091 set_stop_requested_callback (struct thread_info *thread, void *data)
3092 {
3093 /* If we have a stop reply for this thread, it must be stopped. */
3094 if (peek_stop_reply (thread->ptid))
3095 set_stop_requested (thread->ptid, 1);
3096
3097 return 0;
3098 }
3099
3100 /* Send interrupt_sequence to remote target. */
3101 static void
3102 send_interrupt_sequence (void)
3103 {
3104 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3105 serial_write (remote_desc, "\x03", 1);
3106 else if (interrupt_sequence_mode == interrupt_sequence_break)
3107 serial_send_break (remote_desc);
3108 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3109 {
3110 serial_send_break (remote_desc);
3111 serial_write (remote_desc, "g", 1);
3112 }
3113 else
3114 internal_error (__FILE__, __LINE__,
3115 _("Invalid value for interrupt_sequence_mode: %s."),
3116 interrupt_sequence_mode);
3117 }
3118
3119 static void
3120 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3121 {
3122 struct remote_state *rs = get_remote_state ();
3123 struct packet_config *noack_config;
3124 char *wait_status = NULL;
3125
3126 immediate_quit++; /* Allow user to interrupt it. */
3127
3128 /* Ack any packet which the remote side has already sent. */
3129 serial_write (remote_desc, "+", 1);
3130
3131 if (interrupt_on_connect)
3132 send_interrupt_sequence ();
3133
3134 /* The first packet we send to the target is the optional "supported
3135 packets" request. If the target can answer this, it will tell us
3136 which later probes to skip. */
3137 remote_query_supported ();
3138
3139 /* If the stub wants to get a QAllow, compose one and send it. */
3140 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3141 remote_set_permissions ();
3142
3143 /* Next, we possibly activate noack mode.
3144
3145 If the QStartNoAckMode packet configuration is set to AUTO,
3146 enable noack mode if the stub reported a wish for it with
3147 qSupported.
3148
3149 If set to TRUE, then enable noack mode even if the stub didn't
3150 report it in qSupported. If the stub doesn't reply OK, the
3151 session ends with an error.
3152
3153 If FALSE, then don't activate noack mode, regardless of what the
3154 stub claimed should be the default with qSupported. */
3155
3156 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3157
3158 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3159 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3160 && noack_config->support == PACKET_ENABLE))
3161 {
3162 putpkt ("QStartNoAckMode");
3163 getpkt (&rs->buf, &rs->buf_size, 0);
3164 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3165 rs->noack_mode = 1;
3166 }
3167
3168 if (extended_p)
3169 {
3170 /* Tell the remote that we are using the extended protocol. */
3171 putpkt ("!");
3172 getpkt (&rs->buf, &rs->buf_size, 0);
3173 }
3174
3175 /* Next, if the target can specify a description, read it. We do
3176 this before anything involving memory or registers. */
3177 target_find_description ();
3178
3179 /* Next, now that we know something about the target, update the
3180 address spaces in the program spaces. */
3181 update_address_spaces ();
3182
3183 /* On OSs where the list of libraries is global to all
3184 processes, we fetch them early. */
3185 if (gdbarch_has_global_solist (target_gdbarch))
3186 solib_add (NULL, from_tty, target, auto_solib_add);
3187
3188 if (non_stop)
3189 {
3190 if (!rs->non_stop_aware)
3191 error (_("Non-stop mode requested, but remote "
3192 "does not support non-stop"));
3193
3194 putpkt ("QNonStop:1");
3195 getpkt (&rs->buf, &rs->buf_size, 0);
3196
3197 if (strcmp (rs->buf, "OK") != 0)
3198 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3199
3200 /* Find about threads and processes the stub is already
3201 controlling. We default to adding them in the running state.
3202 The '?' query below will then tell us about which threads are
3203 stopped. */
3204 remote_threads_info (target);
3205 }
3206 else if (rs->non_stop_aware)
3207 {
3208 /* Don't assume that the stub can operate in all-stop mode.
3209 Request it explicitely. */
3210 putpkt ("QNonStop:0");
3211 getpkt (&rs->buf, &rs->buf_size, 0);
3212
3213 if (strcmp (rs->buf, "OK") != 0)
3214 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3215 }
3216
3217 /* Check whether the target is running now. */
3218 putpkt ("?");
3219 getpkt (&rs->buf, &rs->buf_size, 0);
3220
3221 if (!non_stop)
3222 {
3223 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3224 {
3225 if (!extended_p)
3226 error (_("The target is not running (try extended-remote?)"));
3227
3228 /* We're connected, but not running. Drop out before we
3229 call start_remote. */
3230 return;
3231 }
3232 else
3233 {
3234 /* Save the reply for later. */
3235 wait_status = alloca (strlen (rs->buf) + 1);
3236 strcpy (wait_status, rs->buf);
3237 }
3238
3239 /* Let the stub know that we want it to return the thread. */
3240 set_continue_thread (minus_one_ptid);
3241
3242 /* Without this, some commands which require an active target
3243 (such as kill) won't work. This variable serves (at least)
3244 double duty as both the pid of the target process (if it has
3245 such), and as a flag indicating that a target is active.
3246 These functions should be split out into seperate variables,
3247 especially since GDB will someday have a notion of debugging
3248 several processes. */
3249 inferior_ptid = magic_null_ptid;
3250
3251 /* Now, if we have thread information, update inferior_ptid. */
3252 inferior_ptid = remote_current_thread (inferior_ptid);
3253
3254 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3255
3256 /* Always add the main thread. */
3257 add_thread_silent (inferior_ptid);
3258
3259 get_offsets (); /* Get text, data & bss offsets. */
3260
3261 /* If we could not find a description using qXfer, and we know
3262 how to do it some other way, try again. This is not
3263 supported for non-stop; it could be, but it is tricky if
3264 there are no stopped threads when we connect. */
3265 if (remote_read_description_p (target)
3266 && gdbarch_target_desc (target_gdbarch) == NULL)
3267 {
3268 target_clear_description ();
3269 target_find_description ();
3270 }
3271
3272 /* Use the previously fetched status. */
3273 gdb_assert (wait_status != NULL);
3274 strcpy (rs->buf, wait_status);
3275 rs->cached_wait_status = 1;
3276
3277 immediate_quit--;
3278 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3279 }
3280 else
3281 {
3282 /* Clear WFI global state. Do this before finding about new
3283 threads and inferiors, and setting the current inferior.
3284 Otherwise we would clear the proceed status of the current
3285 inferior when we want its stop_soon state to be preserved
3286 (see notice_new_inferior). */
3287 init_wait_for_inferior ();
3288
3289 /* In non-stop, we will either get an "OK", meaning that there
3290 are no stopped threads at this time; or, a regular stop
3291 reply. In the latter case, there may be more than one thread
3292 stopped --- we pull them all out using the vStopped
3293 mechanism. */
3294 if (strcmp (rs->buf, "OK") != 0)
3295 {
3296 struct stop_reply *stop_reply;
3297 struct cleanup *old_chain;
3298
3299 stop_reply = stop_reply_xmalloc ();
3300 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3301
3302 remote_parse_stop_reply (rs->buf, stop_reply);
3303 discard_cleanups (old_chain);
3304
3305 /* get_pending_stop_replies acks this one, and gets the rest
3306 out. */
3307 pending_stop_reply = stop_reply;
3308 remote_get_pending_stop_replies ();
3309
3310 /* Make sure that threads that were stopped remain
3311 stopped. */
3312 iterate_over_threads (set_stop_requested_callback, NULL);
3313 }
3314
3315 if (target_can_async_p ())
3316 target_async (inferior_event_handler, 0);
3317
3318 if (thread_count () == 0)
3319 {
3320 if (!extended_p)
3321 error (_("The target is not running (try extended-remote?)"));
3322
3323 /* We're connected, but not running. Drop out before we
3324 call start_remote. */
3325 return;
3326 }
3327
3328 /* Let the stub know that we want it to return the thread. */
3329
3330 /* Force the stub to choose a thread. */
3331 set_general_thread (null_ptid);
3332
3333 /* Query it. */
3334 inferior_ptid = remote_current_thread (minus_one_ptid);
3335 if (ptid_equal (inferior_ptid, minus_one_ptid))
3336 error (_("remote didn't report the current thread in non-stop mode"));
3337
3338 get_offsets (); /* Get text, data & bss offsets. */
3339
3340 /* In non-stop mode, any cached wait status will be stored in
3341 the stop reply queue. */
3342 gdb_assert (wait_status == NULL);
3343
3344 /* Update the remote on signals to silently pass, or more
3345 importantly, which to not ignore, in case a previous session
3346 had set some different set of signals to be ignored. */
3347 remote_pass_signals ();
3348 }
3349
3350 /* If we connected to a live target, do some additional setup. */
3351 if (target_has_execution)
3352 {
3353 if (exec_bfd) /* No use without an exec file. */
3354 remote_check_symbols (symfile_objfile);
3355 }
3356
3357 /* Possibly the target has been engaged in a trace run started
3358 previously; find out where things are at. */
3359 if (remote_get_trace_status (current_trace_status ()) != -1)
3360 {
3361 struct uploaded_tp *uploaded_tps = NULL;
3362 struct uploaded_tsv *uploaded_tsvs = NULL;
3363
3364 if (current_trace_status ()->running)
3365 printf_filtered (_("Trace is already running on the target.\n"));
3366
3367 /* Get trace state variables first, they may be checked when
3368 parsing uploaded commands. */
3369
3370 remote_upload_trace_state_variables (&uploaded_tsvs);
3371
3372 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3373
3374 remote_upload_tracepoints (&uploaded_tps);
3375
3376 merge_uploaded_tracepoints (&uploaded_tps);
3377 }
3378
3379 /* If breakpoints are global, insert them now. */
3380 if (gdbarch_has_global_breakpoints (target_gdbarch)
3381 && breakpoints_always_inserted_mode ())
3382 insert_breakpoints ();
3383 }
3384
3385 /* Open a connection to a remote debugger.
3386 NAME is the filename used for communication. */
3387
3388 static void
3389 remote_open (char *name, int from_tty)
3390 {
3391 remote_open_1 (name, from_tty, &remote_ops, 0);
3392 }
3393
3394 /* Open a connection to a remote debugger using the extended
3395 remote gdb protocol. NAME is the filename used for communication. */
3396
3397 static void
3398 extended_remote_open (char *name, int from_tty)
3399 {
3400 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3401 }
3402
3403 /* Generic code for opening a connection to a remote target. */
3404
3405 static void
3406 init_all_packet_configs (void)
3407 {
3408 int i;
3409
3410 for (i = 0; i < PACKET_MAX; i++)
3411 update_packet_config (&remote_protocol_packets[i]);
3412 }
3413
3414 /* Symbol look-up. */
3415
3416 static void
3417 remote_check_symbols (struct objfile *objfile)
3418 {
3419 struct remote_state *rs = get_remote_state ();
3420 char *msg, *reply, *tmp;
3421 struct minimal_symbol *sym;
3422 int end;
3423
3424 /* The remote side has no concept of inferiors that aren't running
3425 yet, it only knows about running processes. If we're connected
3426 but our current inferior is not running, we should not invite the
3427 remote target to request symbol lookups related to its
3428 (unrelated) current process. */
3429 if (!target_has_execution)
3430 return;
3431
3432 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3433 return;
3434
3435 /* Make sure the remote is pointing at the right process. Note
3436 there's no way to select "no process". */
3437 set_general_process ();
3438
3439 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3440 because we need both at the same time. */
3441 msg = alloca (get_remote_packet_size ());
3442
3443 /* Invite target to request symbol lookups. */
3444
3445 putpkt ("qSymbol::");
3446 getpkt (&rs->buf, &rs->buf_size, 0);
3447 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3448 reply = rs->buf;
3449
3450 while (strncmp (reply, "qSymbol:", 8) == 0)
3451 {
3452 tmp = &reply[8];
3453 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3454 msg[end] = '\0';
3455 sym = lookup_minimal_symbol (msg, NULL, NULL);
3456 if (sym == NULL)
3457 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3458 else
3459 {
3460 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3461 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3462
3463 /* If this is a function address, return the start of code
3464 instead of any data function descriptor. */
3465 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3466 sym_addr,
3467 &current_target);
3468
3469 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3470 phex_nz (sym_addr, addr_size), &reply[8]);
3471 }
3472
3473 putpkt (msg);
3474 getpkt (&rs->buf, &rs->buf_size, 0);
3475 reply = rs->buf;
3476 }
3477 }
3478
3479 static struct serial *
3480 remote_serial_open (char *name)
3481 {
3482 static int udp_warning = 0;
3483
3484 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3485 of in ser-tcp.c, because it is the remote protocol assuming that the
3486 serial connection is reliable and not the serial connection promising
3487 to be. */
3488 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3489 {
3490 warning (_("The remote protocol may be unreliable over UDP.\n"
3491 "Some events may be lost, rendering further debugging "
3492 "impossible."));
3493 udp_warning = 1;
3494 }
3495
3496 return serial_open (name);
3497 }
3498
3499 /* Inform the target of our permission settings. The permission flags
3500 work without this, but if the target knows the settings, it can do
3501 a couple things. First, it can add its own check, to catch cases
3502 that somehow manage to get by the permissions checks in target
3503 methods. Second, if the target is wired to disallow particular
3504 settings (for instance, a system in the field that is not set up to
3505 be able to stop at a breakpoint), it can object to any unavailable
3506 permissions. */
3507
3508 void
3509 remote_set_permissions (void)
3510 {
3511 struct remote_state *rs = get_remote_state ();
3512
3513 sprintf (rs->buf, "QAllow:"
3514 "WriteReg:%x;WriteMem:%x;"
3515 "InsertBreak:%x;InsertTrace:%x;"
3516 "InsertFastTrace:%x;Stop:%x",
3517 may_write_registers, may_write_memory,
3518 may_insert_breakpoints, may_insert_tracepoints,
3519 may_insert_fast_tracepoints, may_stop);
3520 putpkt (rs->buf);
3521 getpkt (&rs->buf, &rs->buf_size, 0);
3522
3523 /* If the target didn't like the packet, warn the user. Do not try
3524 to undo the user's settings, that would just be maddening. */
3525 if (strcmp (rs->buf, "OK") != 0)
3526 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3527 }
3528
3529 /* This type describes each known response to the qSupported
3530 packet. */
3531 struct protocol_feature
3532 {
3533 /* The name of this protocol feature. */
3534 const char *name;
3535
3536 /* The default for this protocol feature. */
3537 enum packet_support default_support;
3538
3539 /* The function to call when this feature is reported, or after
3540 qSupported processing if the feature is not supported.
3541 The first argument points to this structure. The second
3542 argument indicates whether the packet requested support be
3543 enabled, disabled, or probed (or the default, if this function
3544 is being called at the end of processing and this feature was
3545 not reported). The third argument may be NULL; if not NULL, it
3546 is a NUL-terminated string taken from the packet following
3547 this feature's name and an equals sign. */
3548 void (*func) (const struct protocol_feature *, enum packet_support,
3549 const char *);
3550
3551 /* The corresponding packet for this feature. Only used if
3552 FUNC is remote_supported_packet. */
3553 int packet;
3554 };
3555
3556 static void
3557 remote_supported_packet (const struct protocol_feature *feature,
3558 enum packet_support support,
3559 const char *argument)
3560 {
3561 if (argument)
3562 {
3563 warning (_("Remote qSupported response supplied an unexpected value for"
3564 " \"%s\"."), feature->name);
3565 return;
3566 }
3567
3568 if (remote_protocol_packets[feature->packet].support
3569 == PACKET_SUPPORT_UNKNOWN)
3570 remote_protocol_packets[feature->packet].support = support;
3571 }
3572
3573 static void
3574 remote_packet_size (const struct protocol_feature *feature,
3575 enum packet_support support, const char *value)
3576 {
3577 struct remote_state *rs = get_remote_state ();
3578
3579 int packet_size;
3580 char *value_end;
3581
3582 if (support != PACKET_ENABLE)
3583 return;
3584
3585 if (value == NULL || *value == '\0')
3586 {
3587 warning (_("Remote target reported \"%s\" without a size."),
3588 feature->name);
3589 return;
3590 }
3591
3592 errno = 0;
3593 packet_size = strtol (value, &value_end, 16);
3594 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3595 {
3596 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3597 feature->name, value);
3598 return;
3599 }
3600
3601 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3602 {
3603 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3604 packet_size, MAX_REMOTE_PACKET_SIZE);
3605 packet_size = MAX_REMOTE_PACKET_SIZE;
3606 }
3607
3608 /* Record the new maximum packet size. */
3609 rs->explicit_packet_size = packet_size;
3610 }
3611
3612 static void
3613 remote_multi_process_feature (const struct protocol_feature *feature,
3614 enum packet_support support, const char *value)
3615 {
3616 struct remote_state *rs = get_remote_state ();
3617
3618 rs->multi_process_aware = (support == PACKET_ENABLE);
3619 }
3620
3621 static void
3622 remote_non_stop_feature (const struct protocol_feature *feature,
3623 enum packet_support support, const char *value)
3624 {
3625 struct remote_state *rs = get_remote_state ();
3626
3627 rs->non_stop_aware = (support == PACKET_ENABLE);
3628 }
3629
3630 static void
3631 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3632 enum packet_support support,
3633 const char *value)
3634 {
3635 struct remote_state *rs = get_remote_state ();
3636
3637 rs->cond_tracepoints = (support == PACKET_ENABLE);
3638 }
3639
3640 static void
3641 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3642 enum packet_support support,
3643 const char *value)
3644 {
3645 struct remote_state *rs = get_remote_state ();
3646
3647 rs->fast_tracepoints = (support == PACKET_ENABLE);
3648 }
3649
3650 static void
3651 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3652 enum packet_support support,
3653 const char *value)
3654 {
3655 struct remote_state *rs = get_remote_state ();
3656
3657 rs->static_tracepoints = (support == PACKET_ENABLE);
3658 }
3659
3660 static void
3661 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3662 enum packet_support support,
3663 const char *value)
3664 {
3665 struct remote_state *rs = get_remote_state ();
3666
3667 rs->disconnected_tracing = (support == PACKET_ENABLE);
3668 }
3669
3670 static struct protocol_feature remote_protocol_features[] = {
3671 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3672 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3673 PACKET_qXfer_auxv },
3674 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3675 PACKET_qXfer_features },
3676 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3677 PACKET_qXfer_libraries },
3678 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3679 PACKET_qXfer_memory_map },
3680 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3681 PACKET_qXfer_spu_read },
3682 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3683 PACKET_qXfer_spu_write },
3684 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3685 PACKET_qXfer_osdata },
3686 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3687 PACKET_qXfer_threads },
3688 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3689 PACKET_qXfer_traceframe_info },
3690 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3691 PACKET_QPassSignals },
3692 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3693 PACKET_QStartNoAckMode },
3694 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3695 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3696 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3697 PACKET_qXfer_siginfo_read },
3698 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3699 PACKET_qXfer_siginfo_write },
3700 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3701 PACKET_ConditionalTracepoints },
3702 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3703 PACKET_FastTracepoints },
3704 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3705 PACKET_StaticTracepoints },
3706 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3707 -1 },
3708 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3709 PACKET_bc },
3710 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3711 PACKET_bs },
3712 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3713 PACKET_TracepointSource },
3714 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3715 PACKET_QAllow },
3716 };
3717
3718 static char *remote_support_xml;
3719
3720 /* Register string appended to "xmlRegisters=" in qSupported query. */
3721
3722 void
3723 register_remote_support_xml (const char *xml)
3724 {
3725 #if defined(HAVE_LIBEXPAT)
3726 if (remote_support_xml == NULL)
3727 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3728 else
3729 {
3730 char *copy = xstrdup (remote_support_xml + 13);
3731 char *p = strtok (copy, ",");
3732
3733 do
3734 {
3735 if (strcmp (p, xml) == 0)
3736 {
3737 /* already there */
3738 xfree (copy);
3739 return;
3740 }
3741 }
3742 while ((p = strtok (NULL, ",")) != NULL);
3743 xfree (copy);
3744
3745 remote_support_xml = reconcat (remote_support_xml,
3746 remote_support_xml, ",", xml,
3747 (char *) NULL);
3748 }
3749 #endif
3750 }
3751
3752 static char *
3753 remote_query_supported_append (char *msg, const char *append)
3754 {
3755 if (msg)
3756 return reconcat (msg, msg, ";", append, (char *) NULL);
3757 else
3758 return xstrdup (append);
3759 }
3760
3761 static void
3762 remote_query_supported (void)
3763 {
3764 struct remote_state *rs = get_remote_state ();
3765 char *next;
3766 int i;
3767 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3768
3769 /* The packet support flags are handled differently for this packet
3770 than for most others. We treat an error, a disabled packet, and
3771 an empty response identically: any features which must be reported
3772 to be used will be automatically disabled. An empty buffer
3773 accomplishes this, since that is also the representation for a list
3774 containing no features. */
3775
3776 rs->buf[0] = 0;
3777 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3778 {
3779 char *q = NULL;
3780 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3781
3782 if (rs->extended)
3783 q = remote_query_supported_append (q, "multiprocess+");
3784
3785 if (remote_support_xml)
3786 q = remote_query_supported_append (q, remote_support_xml);
3787
3788 q = remote_query_supported_append (q, "qRelocInsn+");
3789
3790 q = reconcat (q, "qSupported:", q, (char *) NULL);
3791 putpkt (q);
3792
3793 do_cleanups (old_chain);
3794
3795 getpkt (&rs->buf, &rs->buf_size, 0);
3796
3797 /* If an error occured, warn, but do not return - just reset the
3798 buffer to empty and go on to disable features. */
3799 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3800 == PACKET_ERROR)
3801 {
3802 warning (_("Remote failure reply: %s"), rs->buf);
3803 rs->buf[0] = 0;
3804 }
3805 }
3806
3807 memset (seen, 0, sizeof (seen));
3808
3809 next = rs->buf;
3810 while (*next)
3811 {
3812 enum packet_support is_supported;
3813 char *p, *end, *name_end, *value;
3814
3815 /* First separate out this item from the rest of the packet. If
3816 there's another item after this, we overwrite the separator
3817 (terminated strings are much easier to work with). */
3818 p = next;
3819 end = strchr (p, ';');
3820 if (end == NULL)
3821 {
3822 end = p + strlen (p);
3823 next = end;
3824 }
3825 else
3826 {
3827 *end = '\0';
3828 next = end + 1;
3829
3830 if (end == p)
3831 {
3832 warning (_("empty item in \"qSupported\" response"));
3833 continue;
3834 }
3835 }
3836
3837 name_end = strchr (p, '=');
3838 if (name_end)
3839 {
3840 /* This is a name=value entry. */
3841 is_supported = PACKET_ENABLE;
3842 value = name_end + 1;
3843 *name_end = '\0';
3844 }
3845 else
3846 {
3847 value = NULL;
3848 switch (end[-1])
3849 {
3850 case '+':
3851 is_supported = PACKET_ENABLE;
3852 break;
3853
3854 case '-':
3855 is_supported = PACKET_DISABLE;
3856 break;
3857
3858 case '?':
3859 is_supported = PACKET_SUPPORT_UNKNOWN;
3860 break;
3861
3862 default:
3863 warning (_("unrecognized item \"%s\" "
3864 "in \"qSupported\" response"), p);
3865 continue;
3866 }
3867 end[-1] = '\0';
3868 }
3869
3870 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3871 if (strcmp (remote_protocol_features[i].name, p) == 0)
3872 {
3873 const struct protocol_feature *feature;
3874
3875 seen[i] = 1;
3876 feature = &remote_protocol_features[i];
3877 feature->func (feature, is_supported, value);
3878 break;
3879 }
3880 }
3881
3882 /* If we increased the packet size, make sure to increase the global
3883 buffer size also. We delay this until after parsing the entire
3884 qSupported packet, because this is the same buffer we were
3885 parsing. */
3886 if (rs->buf_size < rs->explicit_packet_size)
3887 {
3888 rs->buf_size = rs->explicit_packet_size;
3889 rs->buf = xrealloc (rs->buf, rs->buf_size);
3890 }
3891
3892 /* Handle the defaults for unmentioned features. */
3893 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3894 if (!seen[i])
3895 {
3896 const struct protocol_feature *feature;
3897
3898 feature = &remote_protocol_features[i];
3899 feature->func (feature, feature->default_support, NULL);
3900 }
3901 }
3902
3903
3904 static void
3905 remote_open_1 (char *name, int from_tty,
3906 struct target_ops *target, int extended_p)
3907 {
3908 struct remote_state *rs = get_remote_state ();
3909
3910 if (name == 0)
3911 error (_("To open a remote debug connection, you need to specify what\n"
3912 "serial device is attached to the remote system\n"
3913 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3914
3915 /* See FIXME above. */
3916 if (!target_async_permitted)
3917 wait_forever_enabled_p = 1;
3918
3919 /* If we're connected to a running target, target_preopen will kill it.
3920 But if we're connected to a target system with no running process,
3921 then we will still be connected when it returns. Ask this question
3922 first, before target_preopen has a chance to kill anything. */
3923 if (remote_desc != NULL && !have_inferiors ())
3924 {
3925 if (!from_tty
3926 || query (_("Already connected to a remote target. Disconnect? ")))
3927 pop_target ();
3928 else
3929 error (_("Still connected."));
3930 }
3931
3932 target_preopen (from_tty);
3933
3934 unpush_target (target);
3935
3936 /* This time without a query. If we were connected to an
3937 extended-remote target and target_preopen killed the running
3938 process, we may still be connected. If we are starting "target
3939 remote" now, the extended-remote target will not have been
3940 removed by unpush_target. */
3941 if (remote_desc != NULL && !have_inferiors ())
3942 pop_target ();
3943
3944 /* Make sure we send the passed signals list the next time we resume. */
3945 xfree (last_pass_packet);
3946 last_pass_packet = NULL;
3947
3948 remote_fileio_reset ();
3949 reopen_exec_file ();
3950 reread_symbols ();
3951
3952 remote_desc = remote_serial_open (name);
3953 if (!remote_desc)
3954 perror_with_name (name);
3955
3956 if (baud_rate != -1)
3957 {
3958 if (serial_setbaudrate (remote_desc, baud_rate))
3959 {
3960 /* The requested speed could not be set. Error out to
3961 top level after closing remote_desc. Take care to
3962 set remote_desc to NULL to avoid closing remote_desc
3963 more than once. */
3964 serial_close (remote_desc);
3965 remote_desc = NULL;
3966 perror_with_name (name);
3967 }
3968 }
3969
3970 serial_raw (remote_desc);
3971
3972 /* If there is something sitting in the buffer we might take it as a
3973 response to a command, which would be bad. */
3974 serial_flush_input (remote_desc);
3975
3976 if (from_tty)
3977 {
3978 puts_filtered ("Remote debugging using ");
3979 puts_filtered (name);
3980 puts_filtered ("\n");
3981 }
3982 push_target (target); /* Switch to using remote target now. */
3983
3984 /* Register extra event sources in the event loop. */
3985 remote_async_inferior_event_token
3986 = create_async_event_handler (remote_async_inferior_event_handler,
3987 NULL);
3988 remote_async_get_pending_events_token
3989 = create_async_event_handler (remote_async_get_pending_events_handler,
3990 NULL);
3991
3992 /* Reset the target state; these things will be queried either by
3993 remote_query_supported or as they are needed. */
3994 init_all_packet_configs ();
3995 rs->cached_wait_status = 0;
3996 rs->explicit_packet_size = 0;
3997 rs->noack_mode = 0;
3998 rs->multi_process_aware = 0;
3999 rs->extended = extended_p;
4000 rs->non_stop_aware = 0;
4001 rs->waiting_for_stop_reply = 0;
4002 rs->ctrlc_pending_p = 0;
4003
4004 general_thread = not_sent_ptid;
4005 continue_thread = not_sent_ptid;
4006 remote_traceframe_number = -1;
4007
4008 /* Probe for ability to use "ThreadInfo" query, as required. */
4009 use_threadinfo_query = 1;
4010 use_threadextra_query = 1;
4011
4012 if (target_async_permitted)
4013 {
4014 /* With this target we start out by owning the terminal. */
4015 remote_async_terminal_ours_p = 1;
4016
4017 /* FIXME: cagney/1999-09-23: During the initial connection it is
4018 assumed that the target is already ready and able to respond to
4019 requests. Unfortunately remote_start_remote() eventually calls
4020 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4021 around this. Eventually a mechanism that allows
4022 wait_for_inferior() to expect/get timeouts will be
4023 implemented. */
4024 wait_forever_enabled_p = 0;
4025 }
4026
4027 /* First delete any symbols previously loaded from shared libraries. */
4028 no_shared_libraries (NULL, 0);
4029
4030 /* Start afresh. */
4031 init_thread_list ();
4032
4033 /* Start the remote connection. If error() or QUIT, discard this
4034 target (we'd otherwise be in an inconsistent state) and then
4035 propogate the error on up the exception chain. This ensures that
4036 the caller doesn't stumble along blindly assuming that the
4037 function succeeded. The CLI doesn't have this problem but other
4038 UI's, such as MI do.
4039
4040 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4041 this function should return an error indication letting the
4042 caller restore the previous state. Unfortunately the command
4043 ``target remote'' is directly wired to this function making that
4044 impossible. On a positive note, the CLI side of this problem has
4045 been fixed - the function set_cmd_context() makes it possible for
4046 all the ``target ....'' commands to share a common callback
4047 function. See cli-dump.c. */
4048 {
4049 volatile struct gdb_exception ex;
4050
4051 TRY_CATCH (ex, RETURN_MASK_ALL)
4052 {
4053 remote_start_remote (from_tty, target, extended_p);
4054 }
4055 if (ex.reason < 0)
4056 {
4057 /* Pop the partially set up target - unless something else did
4058 already before throwing the exception. */
4059 if (remote_desc != NULL)
4060 pop_target ();
4061 if (target_async_permitted)
4062 wait_forever_enabled_p = 1;
4063 throw_exception (ex);
4064 }
4065 }
4066
4067 if (target_async_permitted)
4068 wait_forever_enabled_p = 1;
4069 }
4070
4071 /* This takes a program previously attached to and detaches it. After
4072 this is done, GDB can be used to debug some other program. We
4073 better not have left any breakpoints in the target program or it'll
4074 die when it hits one. */
4075
4076 static void
4077 remote_detach_1 (char *args, int from_tty, int extended)
4078 {
4079 int pid = ptid_get_pid (inferior_ptid);
4080 struct remote_state *rs = get_remote_state ();
4081
4082 if (args)
4083 error (_("Argument given to \"detach\" when remotely debugging."));
4084
4085 if (!target_has_execution)
4086 error (_("No process to detach from."));
4087
4088 /* Tell the remote target to detach. */
4089 if (remote_multi_process_p (rs))
4090 sprintf (rs->buf, "D;%x", pid);
4091 else
4092 strcpy (rs->buf, "D");
4093
4094 putpkt (rs->buf);
4095 getpkt (&rs->buf, &rs->buf_size, 0);
4096
4097 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4098 ;
4099 else if (rs->buf[0] == '\0')
4100 error (_("Remote doesn't know how to detach"));
4101 else
4102 error (_("Can't detach process."));
4103
4104 if (from_tty)
4105 {
4106 if (remote_multi_process_p (rs))
4107 printf_filtered (_("Detached from remote %s.\n"),
4108 target_pid_to_str (pid_to_ptid (pid)));
4109 else
4110 {
4111 if (extended)
4112 puts_filtered (_("Detached from remote process.\n"));
4113 else
4114 puts_filtered (_("Ending remote debugging.\n"));
4115 }
4116 }
4117
4118 discard_pending_stop_replies (pid);
4119 target_mourn_inferior ();
4120 }
4121
4122 static void
4123 remote_detach (struct target_ops *ops, char *args, int from_tty)
4124 {
4125 remote_detach_1 (args, from_tty, 0);
4126 }
4127
4128 static void
4129 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4130 {
4131 remote_detach_1 (args, from_tty, 1);
4132 }
4133
4134 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4135
4136 static void
4137 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4138 {
4139 if (args)
4140 error (_("Argument given to \"disconnect\" when remotely debugging."));
4141
4142 /* Make sure we unpush even the extended remote targets; mourn
4143 won't do it. So call remote_mourn_1 directly instead of
4144 target_mourn_inferior. */
4145 remote_mourn_1 (target);
4146
4147 if (from_tty)
4148 puts_filtered ("Ending remote debugging.\n");
4149 }
4150
4151 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4152 be chatty about it. */
4153
4154 static void
4155 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4156 {
4157 struct remote_state *rs = get_remote_state ();
4158 int pid;
4159 char *wait_status = NULL;
4160
4161 pid = parse_pid_to_attach (args);
4162
4163 /* Remote PID can be freely equal to getpid, do not check it here the same
4164 way as in other targets. */
4165
4166 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4167 error (_("This target does not support attaching to a process"));
4168
4169 sprintf (rs->buf, "vAttach;%x", pid);
4170 putpkt (rs->buf);
4171 getpkt (&rs->buf, &rs->buf_size, 0);
4172
4173 if (packet_ok (rs->buf,
4174 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4175 {
4176 if (from_tty)
4177 printf_unfiltered (_("Attached to %s\n"),
4178 target_pid_to_str (pid_to_ptid (pid)));
4179
4180 if (!non_stop)
4181 {
4182 /* Save the reply for later. */
4183 wait_status = alloca (strlen (rs->buf) + 1);
4184 strcpy (wait_status, rs->buf);
4185 }
4186 else if (strcmp (rs->buf, "OK") != 0)
4187 error (_("Attaching to %s failed with: %s"),
4188 target_pid_to_str (pid_to_ptid (pid)),
4189 rs->buf);
4190 }
4191 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4192 error (_("This target does not support attaching to a process"));
4193 else
4194 error (_("Attaching to %s failed"),
4195 target_pid_to_str (pid_to_ptid (pid)));
4196
4197 set_current_inferior (remote_add_inferior (pid, 1));
4198
4199 inferior_ptid = pid_to_ptid (pid);
4200
4201 if (non_stop)
4202 {
4203 struct thread_info *thread;
4204
4205 /* Get list of threads. */
4206 remote_threads_info (target);
4207
4208 thread = first_thread_of_process (pid);
4209 if (thread)
4210 inferior_ptid = thread->ptid;
4211 else
4212 inferior_ptid = pid_to_ptid (pid);
4213
4214 /* Invalidate our notion of the remote current thread. */
4215 record_currthread (minus_one_ptid);
4216 }
4217 else
4218 {
4219 /* Now, if we have thread information, update inferior_ptid. */
4220 inferior_ptid = remote_current_thread (inferior_ptid);
4221
4222 /* Add the main thread to the thread list. */
4223 add_thread_silent (inferior_ptid);
4224 }
4225
4226 /* Next, if the target can specify a description, read it. We do
4227 this before anything involving memory or registers. */
4228 target_find_description ();
4229
4230 if (!non_stop)
4231 {
4232 /* Use the previously fetched status. */
4233 gdb_assert (wait_status != NULL);
4234
4235 if (target_can_async_p ())
4236 {
4237 struct stop_reply *stop_reply;
4238 struct cleanup *old_chain;
4239
4240 stop_reply = stop_reply_xmalloc ();
4241 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4242 remote_parse_stop_reply (wait_status, stop_reply);
4243 discard_cleanups (old_chain);
4244 push_stop_reply (stop_reply);
4245
4246 target_async (inferior_event_handler, 0);
4247 }
4248 else
4249 {
4250 gdb_assert (wait_status != NULL);
4251 strcpy (rs->buf, wait_status);
4252 rs->cached_wait_status = 1;
4253 }
4254 }
4255 else
4256 gdb_assert (wait_status == NULL);
4257 }
4258
4259 static void
4260 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4261 {
4262 extended_remote_attach_1 (ops, args, from_tty);
4263 }
4264
4265 /* Convert hex digit A to a number. */
4266
4267 static int
4268 fromhex (int a)
4269 {
4270 if (a >= '0' && a <= '9')
4271 return a - '0';
4272 else if (a >= 'a' && a <= 'f')
4273 return a - 'a' + 10;
4274 else if (a >= 'A' && a <= 'F')
4275 return a - 'A' + 10;
4276 else
4277 error (_("Reply contains invalid hex digit %d"), a);
4278 }
4279
4280 int
4281 hex2bin (const char *hex, gdb_byte *bin, int count)
4282 {
4283 int i;
4284
4285 for (i = 0; i < count; i++)
4286 {
4287 if (hex[0] == 0 || hex[1] == 0)
4288 {
4289 /* Hex string is short, or of uneven length.
4290 Return the count that has been converted so far. */
4291 return i;
4292 }
4293 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4294 hex += 2;
4295 }
4296 return i;
4297 }
4298
4299 /* Convert number NIB to a hex digit. */
4300
4301 static int
4302 tohex (int nib)
4303 {
4304 if (nib < 10)
4305 return '0' + nib;
4306 else
4307 return 'a' + nib - 10;
4308 }
4309
4310 int
4311 bin2hex (const gdb_byte *bin, char *hex, int count)
4312 {
4313 int i;
4314
4315 /* May use a length, or a nul-terminated string as input. */
4316 if (count == 0)
4317 count = strlen ((char *) bin);
4318
4319 for (i = 0; i < count; i++)
4320 {
4321 *hex++ = tohex ((*bin >> 4) & 0xf);
4322 *hex++ = tohex (*bin++ & 0xf);
4323 }
4324 *hex = 0;
4325 return i;
4326 }
4327 \f
4328 /* Check for the availability of vCont. This function should also check
4329 the response. */
4330
4331 static void
4332 remote_vcont_probe (struct remote_state *rs)
4333 {
4334 char *buf;
4335
4336 strcpy (rs->buf, "vCont?");
4337 putpkt (rs->buf);
4338 getpkt (&rs->buf, &rs->buf_size, 0);
4339 buf = rs->buf;
4340
4341 /* Make sure that the features we assume are supported. */
4342 if (strncmp (buf, "vCont", 5) == 0)
4343 {
4344 char *p = &buf[5];
4345 int support_s, support_S, support_c, support_C;
4346
4347 support_s = 0;
4348 support_S = 0;
4349 support_c = 0;
4350 support_C = 0;
4351 rs->support_vCont_t = 0;
4352 while (p && *p == ';')
4353 {
4354 p++;
4355 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4356 support_s = 1;
4357 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4358 support_S = 1;
4359 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4360 support_c = 1;
4361 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4362 support_C = 1;
4363 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4364 rs->support_vCont_t = 1;
4365
4366 p = strchr (p, ';');
4367 }
4368
4369 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4370 BUF will make packet_ok disable the packet. */
4371 if (!support_s || !support_S || !support_c || !support_C)
4372 buf[0] = 0;
4373 }
4374
4375 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4376 }
4377
4378 /* Helper function for building "vCont" resumptions. Write a
4379 resumption to P. ENDP points to one-passed-the-end of the buffer
4380 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4381 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4382 resumed thread should be single-stepped and/or signalled. If PTID
4383 equals minus_one_ptid, then all threads are resumed; if PTID
4384 represents a process, then all threads of the process are resumed;
4385 the thread to be stepped and/or signalled is given in the global
4386 INFERIOR_PTID. */
4387
4388 static char *
4389 append_resumption (char *p, char *endp,
4390 ptid_t ptid, int step, enum target_signal siggnal)
4391 {
4392 struct remote_state *rs = get_remote_state ();
4393
4394 if (step && siggnal != TARGET_SIGNAL_0)
4395 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4396 else if (step)
4397 p += xsnprintf (p, endp - p, ";s");
4398 else if (siggnal != TARGET_SIGNAL_0)
4399 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4400 else
4401 p += xsnprintf (p, endp - p, ";c");
4402
4403 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4404 {
4405 ptid_t nptid;
4406
4407 /* All (-1) threads of process. */
4408 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4409
4410 p += xsnprintf (p, endp - p, ":");
4411 p = write_ptid (p, endp, nptid);
4412 }
4413 else if (!ptid_equal (ptid, minus_one_ptid))
4414 {
4415 p += xsnprintf (p, endp - p, ":");
4416 p = write_ptid (p, endp, ptid);
4417 }
4418
4419 return p;
4420 }
4421
4422 /* Resume the remote inferior by using a "vCont" packet. The thread
4423 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4424 resumed thread should be single-stepped and/or signalled. If PTID
4425 equals minus_one_ptid, then all threads are resumed; the thread to
4426 be stepped and/or signalled is given in the global INFERIOR_PTID.
4427 This function returns non-zero iff it resumes the inferior.
4428
4429 This function issues a strict subset of all possible vCont commands at the
4430 moment. */
4431
4432 static int
4433 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4434 {
4435 struct remote_state *rs = get_remote_state ();
4436 char *p;
4437 char *endp;
4438
4439 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4440 remote_vcont_probe (rs);
4441
4442 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4443 return 0;
4444
4445 p = rs->buf;
4446 endp = rs->buf + get_remote_packet_size ();
4447
4448 /* If we could generate a wider range of packets, we'd have to worry
4449 about overflowing BUF. Should there be a generic
4450 "multi-part-packet" packet? */
4451
4452 p += xsnprintf (p, endp - p, "vCont");
4453
4454 if (ptid_equal (ptid, magic_null_ptid))
4455 {
4456 /* MAGIC_NULL_PTID means that we don't have any active threads,
4457 so we don't have any TID numbers the inferior will
4458 understand. Make sure to only send forms that do not specify
4459 a TID. */
4460 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4461 }
4462 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4463 {
4464 /* Resume all threads (of all processes, or of a single
4465 process), with preference for INFERIOR_PTID. This assumes
4466 inferior_ptid belongs to the set of all threads we are about
4467 to resume. */
4468 if (step || siggnal != TARGET_SIGNAL_0)
4469 {
4470 /* Step inferior_ptid, with or without signal. */
4471 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4472 }
4473
4474 /* And continue others without a signal. */
4475 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4476 }
4477 else
4478 {
4479 /* Scheduler locking; resume only PTID. */
4480 append_resumption (p, endp, ptid, step, siggnal);
4481 }
4482
4483 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4484 putpkt (rs->buf);
4485
4486 if (non_stop)
4487 {
4488 /* In non-stop, the stub replies to vCont with "OK". The stop
4489 reply will be reported asynchronously by means of a `%Stop'
4490 notification. */
4491 getpkt (&rs->buf, &rs->buf_size, 0);
4492 if (strcmp (rs->buf, "OK") != 0)
4493 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4494 }
4495
4496 return 1;
4497 }
4498
4499 /* Tell the remote machine to resume. */
4500
4501 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4502
4503 static int last_sent_step;
4504
4505 static void
4506 remote_resume (struct target_ops *ops,
4507 ptid_t ptid, int step, enum target_signal siggnal)
4508 {
4509 struct remote_state *rs = get_remote_state ();
4510 char *buf;
4511
4512 last_sent_signal = siggnal;
4513 last_sent_step = step;
4514
4515 /* Update the inferior on signals to silently pass, if they've changed. */
4516 remote_pass_signals ();
4517
4518 /* The vCont packet doesn't need to specify threads via Hc. */
4519 /* No reverse support (yet) for vCont. */
4520 if (execution_direction != EXEC_REVERSE)
4521 if (remote_vcont_resume (ptid, step, siggnal))
4522 goto done;
4523
4524 /* All other supported resume packets do use Hc, so set the continue
4525 thread. */
4526 if (ptid_equal (ptid, minus_one_ptid))
4527 set_continue_thread (any_thread_ptid);
4528 else
4529 set_continue_thread (ptid);
4530
4531 buf = rs->buf;
4532 if (execution_direction == EXEC_REVERSE)
4533 {
4534 /* We don't pass signals to the target in reverse exec mode. */
4535 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4536 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4537 siggnal);
4538
4539 if (step
4540 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4541 error (_("Remote reverse-step not supported."));
4542 if (!step
4543 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4544 error (_("Remote reverse-continue not supported."));
4545
4546 strcpy (buf, step ? "bs" : "bc");
4547 }
4548 else if (siggnal != TARGET_SIGNAL_0)
4549 {
4550 buf[0] = step ? 'S' : 'C';
4551 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4552 buf[2] = tohex (((int) siggnal) & 0xf);
4553 buf[3] = '\0';
4554 }
4555 else
4556 strcpy (buf, step ? "s" : "c");
4557
4558 putpkt (buf);
4559
4560 done:
4561 /* We are about to start executing the inferior, let's register it
4562 with the event loop. NOTE: this is the one place where all the
4563 execution commands end up. We could alternatively do this in each
4564 of the execution commands in infcmd.c. */
4565 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4566 into infcmd.c in order to allow inferior function calls to work
4567 NOT asynchronously. */
4568 if (target_can_async_p ())
4569 target_async (inferior_event_handler, 0);
4570
4571 /* We've just told the target to resume. The remote server will
4572 wait for the inferior to stop, and then send a stop reply. In
4573 the mean time, we can't start another command/query ourselves
4574 because the stub wouldn't be ready to process it. This applies
4575 only to the base all-stop protocol, however. In non-stop (which
4576 only supports vCont), the stub replies with an "OK", and is
4577 immediate able to process further serial input. */
4578 if (!non_stop)
4579 rs->waiting_for_stop_reply = 1;
4580 }
4581 \f
4582
4583 /* Set up the signal handler for SIGINT, while the target is
4584 executing, ovewriting the 'regular' SIGINT signal handler. */
4585 static void
4586 initialize_sigint_signal_handler (void)
4587 {
4588 signal (SIGINT, handle_remote_sigint);
4589 }
4590
4591 /* Signal handler for SIGINT, while the target is executing. */
4592 static void
4593 handle_remote_sigint (int sig)
4594 {
4595 signal (sig, handle_remote_sigint_twice);
4596 mark_async_signal_handler_wrapper (sigint_remote_token);
4597 }
4598
4599 /* Signal handler for SIGINT, installed after SIGINT has already been
4600 sent once. It will take effect the second time that the user sends
4601 a ^C. */
4602 static void
4603 handle_remote_sigint_twice (int sig)
4604 {
4605 signal (sig, handle_remote_sigint);
4606 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4607 }
4608
4609 /* Perform the real interruption of the target execution, in response
4610 to a ^C. */
4611 static void
4612 async_remote_interrupt (gdb_client_data arg)
4613 {
4614 if (remote_debug)
4615 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4616
4617 target_stop (inferior_ptid);
4618 }
4619
4620 /* Perform interrupt, if the first attempt did not succeed. Just give
4621 up on the target alltogether. */
4622 void
4623 async_remote_interrupt_twice (gdb_client_data arg)
4624 {
4625 if (remote_debug)
4626 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4627
4628 interrupt_query ();
4629 }
4630
4631 /* Reinstall the usual SIGINT handlers, after the target has
4632 stopped. */
4633 static void
4634 cleanup_sigint_signal_handler (void *dummy)
4635 {
4636 signal (SIGINT, handle_sigint);
4637 }
4638
4639 /* Send ^C to target to halt it. Target will respond, and send us a
4640 packet. */
4641 static void (*ofunc) (int);
4642
4643 /* The command line interface's stop routine. This function is installed
4644 as a signal handler for SIGINT. The first time a user requests a
4645 stop, we call remote_stop to send a break or ^C. If there is no
4646 response from the target (it didn't stop when the user requested it),
4647 we ask the user if he'd like to detach from the target. */
4648 static void
4649 remote_interrupt (int signo)
4650 {
4651 /* If this doesn't work, try more severe steps. */
4652 signal (signo, remote_interrupt_twice);
4653
4654 gdb_call_async_signal_handler (sigint_remote_token, 1);
4655 }
4656
4657 /* The user typed ^C twice. */
4658
4659 static void
4660 remote_interrupt_twice (int signo)
4661 {
4662 signal (signo, ofunc);
4663 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4664 signal (signo, remote_interrupt);
4665 }
4666
4667 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4668 thread, all threads of a remote process, or all threads of all
4669 processes. */
4670
4671 static void
4672 remote_stop_ns (ptid_t ptid)
4673 {
4674 struct remote_state *rs = get_remote_state ();
4675 char *p = rs->buf;
4676 char *endp = rs->buf + get_remote_packet_size ();
4677
4678 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4679 remote_vcont_probe (rs);
4680
4681 if (!rs->support_vCont_t)
4682 error (_("Remote server does not support stopping threads"));
4683
4684 if (ptid_equal (ptid, minus_one_ptid)
4685 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4686 p += xsnprintf (p, endp - p, "vCont;t");
4687 else
4688 {
4689 ptid_t nptid;
4690
4691 p += xsnprintf (p, endp - p, "vCont;t:");
4692
4693 if (ptid_is_pid (ptid))
4694 /* All (-1) threads of process. */
4695 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4696 else
4697 {
4698 /* Small optimization: if we already have a stop reply for
4699 this thread, no use in telling the stub we want this
4700 stopped. */
4701 if (peek_stop_reply (ptid))
4702 return;
4703
4704 nptid = ptid;
4705 }
4706
4707 write_ptid (p, endp, nptid);
4708 }
4709
4710 /* In non-stop, we get an immediate OK reply. The stop reply will
4711 come in asynchronously by notification. */
4712 putpkt (rs->buf);
4713 getpkt (&rs->buf, &rs->buf_size, 0);
4714 if (strcmp (rs->buf, "OK") != 0)
4715 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4716 }
4717
4718 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4719 remote target. It is undefined which thread of which process
4720 reports the stop. */
4721
4722 static void
4723 remote_stop_as (ptid_t ptid)
4724 {
4725 struct remote_state *rs = get_remote_state ();
4726
4727 rs->ctrlc_pending_p = 1;
4728
4729 /* If the inferior is stopped already, but the core didn't know
4730 about it yet, just ignore the request. The cached wait status
4731 will be collected in remote_wait. */
4732 if (rs->cached_wait_status)
4733 return;
4734
4735 /* Send interrupt_sequence to remote target. */
4736 send_interrupt_sequence ();
4737 }
4738
4739 /* This is the generic stop called via the target vector. When a target
4740 interrupt is requested, either by the command line or the GUI, we
4741 will eventually end up here. */
4742
4743 static void
4744 remote_stop (ptid_t ptid)
4745 {
4746 if (remote_debug)
4747 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4748
4749 if (non_stop)
4750 remote_stop_ns (ptid);
4751 else
4752 remote_stop_as (ptid);
4753 }
4754
4755 /* Ask the user what to do when an interrupt is received. */
4756
4757 static void
4758 interrupt_query (void)
4759 {
4760 target_terminal_ours ();
4761
4762 if (target_can_async_p ())
4763 {
4764 signal (SIGINT, handle_sigint);
4765 deprecated_throw_reason (RETURN_QUIT);
4766 }
4767 else
4768 {
4769 if (query (_("Interrupted while waiting for the program.\n\
4770 Give up (and stop debugging it)? ")))
4771 {
4772 pop_target ();
4773 deprecated_throw_reason (RETURN_QUIT);
4774 }
4775 }
4776
4777 target_terminal_inferior ();
4778 }
4779
4780 /* Enable/disable target terminal ownership. Most targets can use
4781 terminal groups to control terminal ownership. Remote targets are
4782 different in that explicit transfer of ownership to/from GDB/target
4783 is required. */
4784
4785 static void
4786 remote_terminal_inferior (void)
4787 {
4788 if (!target_async_permitted)
4789 /* Nothing to do. */
4790 return;
4791
4792 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4793 idempotent. The event-loop GDB talking to an asynchronous target
4794 with a synchronous command calls this function from both
4795 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4796 transfer the terminal to the target when it shouldn't this guard
4797 can go away. */
4798 if (!remote_async_terminal_ours_p)
4799 return;
4800 delete_file_handler (input_fd);
4801 remote_async_terminal_ours_p = 0;
4802 initialize_sigint_signal_handler ();
4803 /* NOTE: At this point we could also register our selves as the
4804 recipient of all input. Any characters typed could then be
4805 passed on down to the target. */
4806 }
4807
4808 static void
4809 remote_terminal_ours (void)
4810 {
4811 if (!target_async_permitted)
4812 /* Nothing to do. */
4813 return;
4814
4815 /* See FIXME in remote_terminal_inferior. */
4816 if (remote_async_terminal_ours_p)
4817 return;
4818 cleanup_sigint_signal_handler (NULL);
4819 add_file_handler (input_fd, stdin_event_handler, 0);
4820 remote_async_terminal_ours_p = 1;
4821 }
4822
4823 static void
4824 remote_console_output (char *msg)
4825 {
4826 char *p;
4827
4828 for (p = msg; p[0] && p[1]; p += 2)
4829 {
4830 char tb[2];
4831 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4832
4833 tb[0] = c;
4834 tb[1] = 0;
4835 fputs_unfiltered (tb, gdb_stdtarg);
4836 }
4837 gdb_flush (gdb_stdtarg);
4838 }
4839
4840 typedef struct cached_reg
4841 {
4842 int num;
4843 gdb_byte data[MAX_REGISTER_SIZE];
4844 } cached_reg_t;
4845
4846 DEF_VEC_O(cached_reg_t);
4847
4848 struct stop_reply
4849 {
4850 struct stop_reply *next;
4851
4852 ptid_t ptid;
4853
4854 struct target_waitstatus ws;
4855
4856 VEC(cached_reg_t) *regcache;
4857
4858 int stopped_by_watchpoint_p;
4859 CORE_ADDR watch_data_address;
4860
4861 int solibs_changed;
4862 int replay_event;
4863
4864 int core;
4865 };
4866
4867 /* The list of already fetched and acknowledged stop events. */
4868 static struct stop_reply *stop_reply_queue;
4869
4870 static struct stop_reply *
4871 stop_reply_xmalloc (void)
4872 {
4873 struct stop_reply *r = XMALLOC (struct stop_reply);
4874
4875 r->next = NULL;
4876 return r;
4877 }
4878
4879 static void
4880 stop_reply_xfree (struct stop_reply *r)
4881 {
4882 if (r != NULL)
4883 {
4884 VEC_free (cached_reg_t, r->regcache);
4885 xfree (r);
4886 }
4887 }
4888
4889 /* Discard all pending stop replies of inferior PID. If PID is -1,
4890 discard everything. */
4891
4892 static void
4893 discard_pending_stop_replies (int pid)
4894 {
4895 struct stop_reply *prev = NULL, *reply, *next;
4896
4897 /* Discard the in-flight notification. */
4898 if (pending_stop_reply != NULL
4899 && (pid == -1
4900 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4901 {
4902 stop_reply_xfree (pending_stop_reply);
4903 pending_stop_reply = NULL;
4904 }
4905
4906 /* Discard the stop replies we have already pulled with
4907 vStopped. */
4908 for (reply = stop_reply_queue; reply; reply = next)
4909 {
4910 next = reply->next;
4911 if (pid == -1
4912 || ptid_get_pid (reply->ptid) == pid)
4913 {
4914 if (reply == stop_reply_queue)
4915 stop_reply_queue = reply->next;
4916 else
4917 prev->next = reply->next;
4918
4919 stop_reply_xfree (reply);
4920 }
4921 else
4922 prev = reply;
4923 }
4924 }
4925
4926 /* Cleanup wrapper. */
4927
4928 static void
4929 do_stop_reply_xfree (void *arg)
4930 {
4931 struct stop_reply *r = arg;
4932
4933 stop_reply_xfree (r);
4934 }
4935
4936 /* Look for a queued stop reply belonging to PTID. If one is found,
4937 remove it from the queue, and return it. Returns NULL if none is
4938 found. If there are still queued events left to process, tell the
4939 event loop to get back to target_wait soon. */
4940
4941 static struct stop_reply *
4942 queued_stop_reply (ptid_t ptid)
4943 {
4944 struct stop_reply *it;
4945 struct stop_reply **it_link;
4946
4947 it = stop_reply_queue;
4948 it_link = &stop_reply_queue;
4949 while (it)
4950 {
4951 if (ptid_match (it->ptid, ptid))
4952 {
4953 *it_link = it->next;
4954 it->next = NULL;
4955 break;
4956 }
4957
4958 it_link = &it->next;
4959 it = *it_link;
4960 }
4961
4962 if (stop_reply_queue)
4963 /* There's still at least an event left. */
4964 mark_async_event_handler (remote_async_inferior_event_token);
4965
4966 return it;
4967 }
4968
4969 /* Push a fully parsed stop reply in the stop reply queue. Since we
4970 know that we now have at least one queued event left to pass to the
4971 core side, tell the event loop to get back to target_wait soon. */
4972
4973 static void
4974 push_stop_reply (struct stop_reply *new_event)
4975 {
4976 struct stop_reply *event;
4977
4978 if (stop_reply_queue)
4979 {
4980 for (event = stop_reply_queue;
4981 event && event->next;
4982 event = event->next)
4983 ;
4984
4985 event->next = new_event;
4986 }
4987 else
4988 stop_reply_queue = new_event;
4989
4990 mark_async_event_handler (remote_async_inferior_event_token);
4991 }
4992
4993 /* Returns true if we have a stop reply for PTID. */
4994
4995 static int
4996 peek_stop_reply (ptid_t ptid)
4997 {
4998 struct stop_reply *it;
4999
5000 for (it = stop_reply_queue; it; it = it->next)
5001 if (ptid_equal (ptid, it->ptid))
5002 {
5003 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5004 return 1;
5005 }
5006
5007 return 0;
5008 }
5009
5010 /* Parse the stop reply in BUF. Either the function succeeds, and the
5011 result is stored in EVENT, or throws an error. */
5012
5013 static void
5014 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5015 {
5016 struct remote_arch_state *rsa = get_remote_arch_state ();
5017 ULONGEST addr;
5018 char *p;
5019
5020 event->ptid = null_ptid;
5021 event->ws.kind = TARGET_WAITKIND_IGNORE;
5022 event->ws.value.integer = 0;
5023 event->solibs_changed = 0;
5024 event->replay_event = 0;
5025 event->stopped_by_watchpoint_p = 0;
5026 event->regcache = NULL;
5027 event->core = -1;
5028
5029 switch (buf[0])
5030 {
5031 case 'T': /* Status with PC, SP, FP, ... */
5032 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5033 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5034 ss = signal number
5035 n... = register number
5036 r... = register contents
5037 */
5038
5039 p = &buf[3]; /* after Txx */
5040 while (*p)
5041 {
5042 char *p1;
5043 char *p_temp;
5044 int fieldsize;
5045 LONGEST pnum = 0;
5046
5047 /* If the packet contains a register number, save it in
5048 pnum and set p1 to point to the character following it.
5049 Otherwise p1 points to p. */
5050
5051 /* If this packet is an awatch packet, don't parse the 'a'
5052 as a register number. */
5053
5054 if (strncmp (p, "awatch", strlen("awatch")) != 0
5055 && strncmp (p, "core", strlen ("core") != 0))
5056 {
5057 /* Read the ``P'' register number. */
5058 pnum = strtol (p, &p_temp, 16);
5059 p1 = p_temp;
5060 }
5061 else
5062 p1 = p;
5063
5064 if (p1 == p) /* No register number present here. */
5065 {
5066 p1 = strchr (p, ':');
5067 if (p1 == NULL)
5068 error (_("Malformed packet(a) (missing colon): %s\n\
5069 Packet: '%s'\n"),
5070 p, buf);
5071 if (strncmp (p, "thread", p1 - p) == 0)
5072 event->ptid = read_ptid (++p1, &p);
5073 else if ((strncmp (p, "watch", p1 - p) == 0)
5074 || (strncmp (p, "rwatch", p1 - p) == 0)
5075 || (strncmp (p, "awatch", p1 - p) == 0))
5076 {
5077 event->stopped_by_watchpoint_p = 1;
5078 p = unpack_varlen_hex (++p1, &addr);
5079 event->watch_data_address = (CORE_ADDR) addr;
5080 }
5081 else if (strncmp (p, "library", p1 - p) == 0)
5082 {
5083 p1++;
5084 p_temp = p1;
5085 while (*p_temp && *p_temp != ';')
5086 p_temp++;
5087
5088 event->solibs_changed = 1;
5089 p = p_temp;
5090 }
5091 else if (strncmp (p, "replaylog", p1 - p) == 0)
5092 {
5093 /* NO_HISTORY event.
5094 p1 will indicate "begin" or "end", but
5095 it makes no difference for now, so ignore it. */
5096 event->replay_event = 1;
5097 p_temp = strchr (p1 + 1, ';');
5098 if (p_temp)
5099 p = p_temp;
5100 }
5101 else if (strncmp (p, "core", p1 - p) == 0)
5102 {
5103 ULONGEST c;
5104
5105 p = unpack_varlen_hex (++p1, &c);
5106 event->core = c;
5107 }
5108 else
5109 {
5110 /* Silently skip unknown optional info. */
5111 p_temp = strchr (p1 + 1, ';');
5112 if (p_temp)
5113 p = p_temp;
5114 }
5115 }
5116 else
5117 {
5118 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5119 cached_reg_t cached_reg;
5120
5121 p = p1;
5122
5123 if (*p != ':')
5124 error (_("Malformed packet(b) (missing colon): %s\n\
5125 Packet: '%s'\n"),
5126 p, buf);
5127 ++p;
5128
5129 if (reg == NULL)
5130 error (_("Remote sent bad register number %s: %s\n\
5131 Packet: '%s'\n"),
5132 hex_string (pnum), p, buf);
5133
5134 cached_reg.num = reg->regnum;
5135
5136 fieldsize = hex2bin (p, cached_reg.data,
5137 register_size (target_gdbarch,
5138 reg->regnum));
5139 p += 2 * fieldsize;
5140 if (fieldsize < register_size (target_gdbarch,
5141 reg->regnum))
5142 warning (_("Remote reply is too short: %s"), buf);
5143
5144 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5145 }
5146
5147 if (*p != ';')
5148 error (_("Remote register badly formatted: %s\nhere: %s"),
5149 buf, p);
5150 ++p;
5151 }
5152 /* fall through */
5153 case 'S': /* Old style status, just signal only. */
5154 if (event->solibs_changed)
5155 event->ws.kind = TARGET_WAITKIND_LOADED;
5156 else if (event->replay_event)
5157 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5158 else
5159 {
5160 event->ws.kind = TARGET_WAITKIND_STOPPED;
5161 event->ws.value.sig = (enum target_signal)
5162 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5163 }
5164 break;
5165 case 'W': /* Target exited. */
5166 case 'X':
5167 {
5168 char *p;
5169 int pid;
5170 ULONGEST value;
5171
5172 /* GDB used to accept only 2 hex chars here. Stubs should
5173 only send more if they detect GDB supports multi-process
5174 support. */
5175 p = unpack_varlen_hex (&buf[1], &value);
5176
5177 if (buf[0] == 'W')
5178 {
5179 /* The remote process exited. */
5180 event->ws.kind = TARGET_WAITKIND_EXITED;
5181 event->ws.value.integer = value;
5182 }
5183 else
5184 {
5185 /* The remote process exited with a signal. */
5186 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5187 event->ws.value.sig = (enum target_signal) value;
5188 }
5189
5190 /* If no process is specified, assume inferior_ptid. */
5191 pid = ptid_get_pid (inferior_ptid);
5192 if (*p == '\0')
5193 ;
5194 else if (*p == ';')
5195 {
5196 p++;
5197
5198 if (p == '\0')
5199 ;
5200 else if (strncmp (p,
5201 "process:", sizeof ("process:") - 1) == 0)
5202 {
5203 ULONGEST upid;
5204
5205 p += sizeof ("process:") - 1;
5206 unpack_varlen_hex (p, &upid);
5207 pid = upid;
5208 }
5209 else
5210 error (_("unknown stop reply packet: %s"), buf);
5211 }
5212 else
5213 error (_("unknown stop reply packet: %s"), buf);
5214 event->ptid = pid_to_ptid (pid);
5215 }
5216 break;
5217 }
5218
5219 if (non_stop && ptid_equal (event->ptid, null_ptid))
5220 error (_("No process or thread specified in stop reply: %s"), buf);
5221 }
5222
5223 /* When the stub wants to tell GDB about a new stop reply, it sends a
5224 stop notification (%Stop). Those can come it at any time, hence,
5225 we have to make sure that any pending putpkt/getpkt sequence we're
5226 making is finished, before querying the stub for more events with
5227 vStopped. E.g., if we started a vStopped sequence immediatelly
5228 upon receiving the %Stop notification, something like this could
5229 happen:
5230
5231 1.1) --> Hg 1
5232 1.2) <-- OK
5233 1.3) --> g
5234 1.4) <-- %Stop
5235 1.5) --> vStopped
5236 1.6) <-- (registers reply to step #1.3)
5237
5238 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5239 query.
5240
5241 To solve this, whenever we parse a %Stop notification sucessfully,
5242 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5243 doing whatever we were doing:
5244
5245 2.1) --> Hg 1
5246 2.2) <-- OK
5247 2.3) --> g
5248 2.4) <-- %Stop
5249 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5250 2.5) <-- (registers reply to step #2.3)
5251
5252 Eventualy after step #2.5, we return to the event loop, which
5253 notices there's an event on the
5254 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5255 associated callback --- the function below. At this point, we're
5256 always safe to start a vStopped sequence. :
5257
5258 2.6) --> vStopped
5259 2.7) <-- T05 thread:2
5260 2.8) --> vStopped
5261 2.9) --> OK
5262 */
5263
5264 static void
5265 remote_get_pending_stop_replies (void)
5266 {
5267 struct remote_state *rs = get_remote_state ();
5268
5269 if (pending_stop_reply)
5270 {
5271 /* acknowledge */
5272 putpkt ("vStopped");
5273
5274 /* Now we can rely on it. */
5275 push_stop_reply (pending_stop_reply);
5276 pending_stop_reply = NULL;
5277
5278 while (1)
5279 {
5280 getpkt (&rs->buf, &rs->buf_size, 0);
5281 if (strcmp (rs->buf, "OK") == 0)
5282 break;
5283 else
5284 {
5285 struct cleanup *old_chain;
5286 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5287
5288 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5289 remote_parse_stop_reply (rs->buf, stop_reply);
5290
5291 /* acknowledge */
5292 putpkt ("vStopped");
5293
5294 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5295 {
5296 /* Now we can rely on it. */
5297 discard_cleanups (old_chain);
5298 push_stop_reply (stop_reply);
5299 }
5300 else
5301 /* We got an unknown stop reply. */
5302 do_cleanups (old_chain);
5303 }
5304 }
5305 }
5306 }
5307
5308
5309 /* Called when it is decided that STOP_REPLY holds the info of the
5310 event that is to be returned to the core. This function always
5311 destroys STOP_REPLY. */
5312
5313 static ptid_t
5314 process_stop_reply (struct stop_reply *stop_reply,
5315 struct target_waitstatus *status)
5316 {
5317 ptid_t ptid;
5318
5319 *status = stop_reply->ws;
5320 ptid = stop_reply->ptid;
5321
5322 /* If no thread/process was reported by the stub, assume the current
5323 inferior. */
5324 if (ptid_equal (ptid, null_ptid))
5325 ptid = inferior_ptid;
5326
5327 if (status->kind != TARGET_WAITKIND_EXITED
5328 && status->kind != TARGET_WAITKIND_SIGNALLED)
5329 {
5330 /* Expedited registers. */
5331 if (stop_reply->regcache)
5332 {
5333 struct regcache *regcache
5334 = get_thread_arch_regcache (ptid, target_gdbarch);
5335 cached_reg_t *reg;
5336 int ix;
5337
5338 for (ix = 0;
5339 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5340 ix++)
5341 regcache_raw_supply (regcache, reg->num, reg->data);
5342 VEC_free (cached_reg_t, stop_reply->regcache);
5343 }
5344
5345 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5346 remote_watch_data_address = stop_reply->watch_data_address;
5347
5348 remote_notice_new_inferior (ptid, 0);
5349 demand_private_info (ptid)->core = stop_reply->core;
5350 }
5351
5352 stop_reply_xfree (stop_reply);
5353 return ptid;
5354 }
5355
5356 /* The non-stop mode version of target_wait. */
5357
5358 static ptid_t
5359 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5360 {
5361 struct remote_state *rs = get_remote_state ();
5362 struct stop_reply *stop_reply;
5363 int ret;
5364
5365 /* If in non-stop mode, get out of getpkt even if a
5366 notification is received. */
5367
5368 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5369 0 /* forever */);
5370 while (1)
5371 {
5372 if (ret != -1)
5373 switch (rs->buf[0])
5374 {
5375 case 'E': /* Error of some sort. */
5376 /* We're out of sync with the target now. Did it continue
5377 or not? We can't tell which thread it was in non-stop,
5378 so just ignore this. */
5379 warning (_("Remote failure reply: %s"), rs->buf);
5380 break;
5381 case 'O': /* Console output. */
5382 remote_console_output (rs->buf + 1);
5383 break;
5384 default:
5385 warning (_("Invalid remote reply: %s"), rs->buf);
5386 break;
5387 }
5388
5389 /* Acknowledge a pending stop reply that may have arrived in the
5390 mean time. */
5391 if (pending_stop_reply != NULL)
5392 remote_get_pending_stop_replies ();
5393
5394 /* If indeed we noticed a stop reply, we're done. */
5395 stop_reply = queued_stop_reply (ptid);
5396 if (stop_reply != NULL)
5397 return process_stop_reply (stop_reply, status);
5398
5399 /* Still no event. If we're just polling for an event, then
5400 return to the event loop. */
5401 if (options & TARGET_WNOHANG)
5402 {
5403 status->kind = TARGET_WAITKIND_IGNORE;
5404 return minus_one_ptid;
5405 }
5406
5407 /* Otherwise do a blocking wait. */
5408 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5409 1 /* forever */);
5410 }
5411 }
5412
5413 /* Wait until the remote machine stops, then return, storing status in
5414 STATUS just as `wait' would. */
5415
5416 static ptid_t
5417 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5418 {
5419 struct remote_state *rs = get_remote_state ();
5420 ptid_t event_ptid = null_ptid;
5421 char *buf;
5422 struct stop_reply *stop_reply;
5423
5424 again:
5425
5426 status->kind = TARGET_WAITKIND_IGNORE;
5427 status->value.integer = 0;
5428
5429 stop_reply = queued_stop_reply (ptid);
5430 if (stop_reply != NULL)
5431 return process_stop_reply (stop_reply, status);
5432
5433 if (rs->cached_wait_status)
5434 /* Use the cached wait status, but only once. */
5435 rs->cached_wait_status = 0;
5436 else
5437 {
5438 int ret;
5439
5440 if (!target_is_async_p ())
5441 {
5442 ofunc = signal (SIGINT, remote_interrupt);
5443 /* If the user hit C-c before this packet, or between packets,
5444 pretend that it was hit right here. */
5445 if (quit_flag)
5446 {
5447 quit_flag = 0;
5448 remote_interrupt (SIGINT);
5449 }
5450 }
5451
5452 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5453 _never_ wait for ever -> test on target_is_async_p().
5454 However, before we do that we need to ensure that the caller
5455 knows how to take the target into/out of async mode. */
5456 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5457 if (!target_is_async_p ())
5458 signal (SIGINT, ofunc);
5459 }
5460
5461 buf = rs->buf;
5462
5463 remote_stopped_by_watchpoint_p = 0;
5464
5465 /* We got something. */
5466 rs->waiting_for_stop_reply = 0;
5467
5468 /* Assume that the target has acknowledged Ctrl-C unless we receive
5469 an 'F' or 'O' packet. */
5470 if (buf[0] != 'F' && buf[0] != 'O')
5471 rs->ctrlc_pending_p = 0;
5472
5473 switch (buf[0])
5474 {
5475 case 'E': /* Error of some sort. */
5476 /* We're out of sync with the target now. Did it continue or
5477 not? Not is more likely, so report a stop. */
5478 warning (_("Remote failure reply: %s"), buf);
5479 status->kind = TARGET_WAITKIND_STOPPED;
5480 status->value.sig = TARGET_SIGNAL_0;
5481 break;
5482 case 'F': /* File-I/O request. */
5483 remote_fileio_request (buf, rs->ctrlc_pending_p);
5484 rs->ctrlc_pending_p = 0;
5485 break;
5486 case 'T': case 'S': case 'X': case 'W':
5487 {
5488 struct stop_reply *stop_reply;
5489 struct cleanup *old_chain;
5490
5491 stop_reply = stop_reply_xmalloc ();
5492 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5493 remote_parse_stop_reply (buf, stop_reply);
5494 discard_cleanups (old_chain);
5495 event_ptid = process_stop_reply (stop_reply, status);
5496 break;
5497 }
5498 case 'O': /* Console output. */
5499 remote_console_output (buf + 1);
5500
5501 /* The target didn't really stop; keep waiting. */
5502 rs->waiting_for_stop_reply = 1;
5503
5504 break;
5505 case '\0':
5506 if (last_sent_signal != TARGET_SIGNAL_0)
5507 {
5508 /* Zero length reply means that we tried 'S' or 'C' and the
5509 remote system doesn't support it. */
5510 target_terminal_ours_for_output ();
5511 printf_filtered
5512 ("Can't send signals to this remote system. %s not sent.\n",
5513 target_signal_to_name (last_sent_signal));
5514 last_sent_signal = TARGET_SIGNAL_0;
5515 target_terminal_inferior ();
5516
5517 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5518 putpkt ((char *) buf);
5519
5520 /* We just told the target to resume, so a stop reply is in
5521 order. */
5522 rs->waiting_for_stop_reply = 1;
5523 break;
5524 }
5525 /* else fallthrough */
5526 default:
5527 warning (_("Invalid remote reply: %s"), buf);
5528 /* Keep waiting. */
5529 rs->waiting_for_stop_reply = 1;
5530 break;
5531 }
5532
5533 if (status->kind == TARGET_WAITKIND_IGNORE)
5534 {
5535 /* Nothing interesting happened. If we're doing a non-blocking
5536 poll, we're done. Otherwise, go back to waiting. */
5537 if (options & TARGET_WNOHANG)
5538 return minus_one_ptid;
5539 else
5540 goto again;
5541 }
5542 else if (status->kind != TARGET_WAITKIND_EXITED
5543 && status->kind != TARGET_WAITKIND_SIGNALLED)
5544 {
5545 if (!ptid_equal (event_ptid, null_ptid))
5546 record_currthread (event_ptid);
5547 else
5548 event_ptid = inferior_ptid;
5549 }
5550 else
5551 /* A process exit. Invalidate our notion of current thread. */
5552 record_currthread (minus_one_ptid);
5553
5554 return event_ptid;
5555 }
5556
5557 /* Wait until the remote machine stops, then return, storing status in
5558 STATUS just as `wait' would. */
5559
5560 static ptid_t
5561 remote_wait (struct target_ops *ops,
5562 ptid_t ptid, struct target_waitstatus *status, int options)
5563 {
5564 ptid_t event_ptid;
5565
5566 if (non_stop)
5567 event_ptid = remote_wait_ns (ptid, status, options);
5568 else
5569 event_ptid = remote_wait_as (ptid, status, options);
5570
5571 if (target_can_async_p ())
5572 {
5573 /* If there are are events left in the queue tell the event loop
5574 to return here. */
5575 if (stop_reply_queue)
5576 mark_async_event_handler (remote_async_inferior_event_token);
5577 }
5578
5579 return event_ptid;
5580 }
5581
5582 /* Fetch a single register using a 'p' packet. */
5583
5584 static int
5585 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5586 {
5587 struct remote_state *rs = get_remote_state ();
5588 char *buf, *p;
5589 char regp[MAX_REGISTER_SIZE];
5590 int i;
5591
5592 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5593 return 0;
5594
5595 if (reg->pnum == -1)
5596 return 0;
5597
5598 p = rs->buf;
5599 *p++ = 'p';
5600 p += hexnumstr (p, reg->pnum);
5601 *p++ = '\0';
5602 putpkt (rs->buf);
5603 getpkt (&rs->buf, &rs->buf_size, 0);
5604
5605 buf = rs->buf;
5606
5607 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5608 {
5609 case PACKET_OK:
5610 break;
5611 case PACKET_UNKNOWN:
5612 return 0;
5613 case PACKET_ERROR:
5614 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5615 gdbarch_register_name (get_regcache_arch (regcache),
5616 reg->regnum),
5617 buf);
5618 }
5619
5620 /* If this register is unfetchable, tell the regcache. */
5621 if (buf[0] == 'x')
5622 {
5623 regcache_raw_supply (regcache, reg->regnum, NULL);
5624 return 1;
5625 }
5626
5627 /* Otherwise, parse and supply the value. */
5628 p = buf;
5629 i = 0;
5630 while (p[0] != 0)
5631 {
5632 if (p[1] == 0)
5633 error (_("fetch_register_using_p: early buf termination"));
5634
5635 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5636 p += 2;
5637 }
5638 regcache_raw_supply (regcache, reg->regnum, regp);
5639 return 1;
5640 }
5641
5642 /* Fetch the registers included in the target's 'g' packet. */
5643
5644 static int
5645 send_g_packet (void)
5646 {
5647 struct remote_state *rs = get_remote_state ();
5648 int buf_len;
5649
5650 sprintf (rs->buf, "g");
5651 remote_send (&rs->buf, &rs->buf_size);
5652
5653 /* We can get out of synch in various cases. If the first character
5654 in the buffer is not a hex character, assume that has happened
5655 and try to fetch another packet to read. */
5656 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5657 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5658 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5659 && rs->buf[0] != 'x') /* New: unavailable register value. */
5660 {
5661 if (remote_debug)
5662 fprintf_unfiltered (gdb_stdlog,
5663 "Bad register packet; fetching a new packet\n");
5664 getpkt (&rs->buf, &rs->buf_size, 0);
5665 }
5666
5667 buf_len = strlen (rs->buf);
5668
5669 /* Sanity check the received packet. */
5670 if (buf_len % 2 != 0)
5671 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5672
5673 return buf_len / 2;
5674 }
5675
5676 static void
5677 process_g_packet (struct regcache *regcache)
5678 {
5679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5680 struct remote_state *rs = get_remote_state ();
5681 struct remote_arch_state *rsa = get_remote_arch_state ();
5682 int i, buf_len;
5683 char *p;
5684 char *regs;
5685
5686 buf_len = strlen (rs->buf);
5687
5688 /* Further sanity checks, with knowledge of the architecture. */
5689 if (buf_len > 2 * rsa->sizeof_g_packet)
5690 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5691
5692 /* Save the size of the packet sent to us by the target. It is used
5693 as a heuristic when determining the max size of packets that the
5694 target can safely receive. */
5695 if (rsa->actual_register_packet_size == 0)
5696 rsa->actual_register_packet_size = buf_len;
5697
5698 /* If this is smaller than we guessed the 'g' packet would be,
5699 update our records. A 'g' reply that doesn't include a register's
5700 value implies either that the register is not available, or that
5701 the 'p' packet must be used. */
5702 if (buf_len < 2 * rsa->sizeof_g_packet)
5703 {
5704 rsa->sizeof_g_packet = buf_len / 2;
5705
5706 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5707 {
5708 if (rsa->regs[i].pnum == -1)
5709 continue;
5710
5711 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5712 rsa->regs[i].in_g_packet = 0;
5713 else
5714 rsa->regs[i].in_g_packet = 1;
5715 }
5716 }
5717
5718 regs = alloca (rsa->sizeof_g_packet);
5719
5720 /* Unimplemented registers read as all bits zero. */
5721 memset (regs, 0, rsa->sizeof_g_packet);
5722
5723 /* Reply describes registers byte by byte, each byte encoded as two
5724 hex characters. Suck them all up, then supply them to the
5725 register cacheing/storage mechanism. */
5726
5727 p = rs->buf;
5728 for (i = 0; i < rsa->sizeof_g_packet; i++)
5729 {
5730 if (p[0] == 0 || p[1] == 0)
5731 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5732 internal_error (__FILE__, __LINE__,
5733 _("unexpected end of 'g' packet reply"));
5734
5735 if (p[0] == 'x' && p[1] == 'x')
5736 regs[i] = 0; /* 'x' */
5737 else
5738 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5739 p += 2;
5740 }
5741
5742 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5743 {
5744 struct packet_reg *r = &rsa->regs[i];
5745
5746 if (r->in_g_packet)
5747 {
5748 if (r->offset * 2 >= strlen (rs->buf))
5749 /* This shouldn't happen - we adjusted in_g_packet above. */
5750 internal_error (__FILE__, __LINE__,
5751 _("unexpected end of 'g' packet reply"));
5752 else if (rs->buf[r->offset * 2] == 'x')
5753 {
5754 gdb_assert (r->offset * 2 < strlen (rs->buf));
5755 /* The register isn't available, mark it as such (at
5756 the same time setting the value to zero). */
5757 regcache_raw_supply (regcache, r->regnum, NULL);
5758 }
5759 else
5760 regcache_raw_supply (regcache, r->regnum,
5761 regs + r->offset);
5762 }
5763 }
5764 }
5765
5766 static void
5767 fetch_registers_using_g (struct regcache *regcache)
5768 {
5769 send_g_packet ();
5770 process_g_packet (regcache);
5771 }
5772
5773 /* Make the remote selected traceframe match GDB's selected
5774 traceframe. */
5775
5776 static void
5777 set_remote_traceframe (void)
5778 {
5779 int newnum;
5780
5781 if (remote_traceframe_number == get_traceframe_number ())
5782 return;
5783
5784 /* Avoid recursion, remote_trace_find calls us again. */
5785 remote_traceframe_number = get_traceframe_number ();
5786
5787 newnum = target_trace_find (tfind_number,
5788 get_traceframe_number (), 0, 0, NULL);
5789
5790 /* Should not happen. If it does, all bets are off. */
5791 if (newnum != get_traceframe_number ())
5792 warning (_("could not set remote traceframe"));
5793 }
5794
5795 static void
5796 remote_fetch_registers (struct target_ops *ops,
5797 struct regcache *regcache, int regnum)
5798 {
5799 struct remote_arch_state *rsa = get_remote_arch_state ();
5800 int i;
5801
5802 set_remote_traceframe ();
5803 set_general_thread (inferior_ptid);
5804
5805 if (regnum >= 0)
5806 {
5807 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5808
5809 gdb_assert (reg != NULL);
5810
5811 /* If this register might be in the 'g' packet, try that first -
5812 we are likely to read more than one register. If this is the
5813 first 'g' packet, we might be overly optimistic about its
5814 contents, so fall back to 'p'. */
5815 if (reg->in_g_packet)
5816 {
5817 fetch_registers_using_g (regcache);
5818 if (reg->in_g_packet)
5819 return;
5820 }
5821
5822 if (fetch_register_using_p (regcache, reg))
5823 return;
5824
5825 /* This register is not available. */
5826 regcache_raw_supply (regcache, reg->regnum, NULL);
5827
5828 return;
5829 }
5830
5831 fetch_registers_using_g (regcache);
5832
5833 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5834 if (!rsa->regs[i].in_g_packet)
5835 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5836 {
5837 /* This register is not available. */
5838 regcache_raw_supply (regcache, i, NULL);
5839 }
5840 }
5841
5842 /* Prepare to store registers. Since we may send them all (using a
5843 'G' request), we have to read out the ones we don't want to change
5844 first. */
5845
5846 static void
5847 remote_prepare_to_store (struct regcache *regcache)
5848 {
5849 struct remote_arch_state *rsa = get_remote_arch_state ();
5850 int i;
5851 gdb_byte buf[MAX_REGISTER_SIZE];
5852
5853 /* Make sure the entire registers array is valid. */
5854 switch (remote_protocol_packets[PACKET_P].support)
5855 {
5856 case PACKET_DISABLE:
5857 case PACKET_SUPPORT_UNKNOWN:
5858 /* Make sure all the necessary registers are cached. */
5859 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5860 if (rsa->regs[i].in_g_packet)
5861 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5862 break;
5863 case PACKET_ENABLE:
5864 break;
5865 }
5866 }
5867
5868 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5869 packet was not recognized. */
5870
5871 static int
5872 store_register_using_P (const struct regcache *regcache,
5873 struct packet_reg *reg)
5874 {
5875 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5876 struct remote_state *rs = get_remote_state ();
5877 /* Try storing a single register. */
5878 char *buf = rs->buf;
5879 gdb_byte regp[MAX_REGISTER_SIZE];
5880 char *p;
5881
5882 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5883 return 0;
5884
5885 if (reg->pnum == -1)
5886 return 0;
5887
5888 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5889 p = buf + strlen (buf);
5890 regcache_raw_collect (regcache, reg->regnum, regp);
5891 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5892 putpkt (rs->buf);
5893 getpkt (&rs->buf, &rs->buf_size, 0);
5894
5895 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5896 {
5897 case PACKET_OK:
5898 return 1;
5899 case PACKET_ERROR:
5900 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5901 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5902 case PACKET_UNKNOWN:
5903 return 0;
5904 default:
5905 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5906 }
5907 }
5908
5909 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5910 contents of the register cache buffer. FIXME: ignores errors. */
5911
5912 static void
5913 store_registers_using_G (const struct regcache *regcache)
5914 {
5915 struct remote_state *rs = get_remote_state ();
5916 struct remote_arch_state *rsa = get_remote_arch_state ();
5917 gdb_byte *regs;
5918 char *p;
5919
5920 /* Extract all the registers in the regcache copying them into a
5921 local buffer. */
5922 {
5923 int i;
5924
5925 regs = alloca (rsa->sizeof_g_packet);
5926 memset (regs, 0, rsa->sizeof_g_packet);
5927 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5928 {
5929 struct packet_reg *r = &rsa->regs[i];
5930
5931 if (r->in_g_packet)
5932 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5933 }
5934 }
5935
5936 /* Command describes registers byte by byte,
5937 each byte encoded as two hex characters. */
5938 p = rs->buf;
5939 *p++ = 'G';
5940 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5941 updated. */
5942 bin2hex (regs, p, rsa->sizeof_g_packet);
5943 putpkt (rs->buf);
5944 getpkt (&rs->buf, &rs->buf_size, 0);
5945 if (packet_check_result (rs->buf) == PACKET_ERROR)
5946 error (_("Could not write registers; remote failure reply '%s'"),
5947 rs->buf);
5948 }
5949
5950 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5951 of the register cache buffer. FIXME: ignores errors. */
5952
5953 static void
5954 remote_store_registers (struct target_ops *ops,
5955 struct regcache *regcache, int regnum)
5956 {
5957 struct remote_arch_state *rsa = get_remote_arch_state ();
5958 int i;
5959
5960 set_remote_traceframe ();
5961 set_general_thread (inferior_ptid);
5962
5963 if (regnum >= 0)
5964 {
5965 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5966
5967 gdb_assert (reg != NULL);
5968
5969 /* Always prefer to store registers using the 'P' packet if
5970 possible; we often change only a small number of registers.
5971 Sometimes we change a larger number; we'd need help from a
5972 higher layer to know to use 'G'. */
5973 if (store_register_using_P (regcache, reg))
5974 return;
5975
5976 /* For now, don't complain if we have no way to write the
5977 register. GDB loses track of unavailable registers too
5978 easily. Some day, this may be an error. We don't have
5979 any way to read the register, either... */
5980 if (!reg->in_g_packet)
5981 return;
5982
5983 store_registers_using_G (regcache);
5984 return;
5985 }
5986
5987 store_registers_using_G (regcache);
5988
5989 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5990 if (!rsa->regs[i].in_g_packet)
5991 if (!store_register_using_P (regcache, &rsa->regs[i]))
5992 /* See above for why we do not issue an error here. */
5993 continue;
5994 }
5995 \f
5996
5997 /* Return the number of hex digits in num. */
5998
5999 static int
6000 hexnumlen (ULONGEST num)
6001 {
6002 int i;
6003
6004 for (i = 0; num != 0; i++)
6005 num >>= 4;
6006
6007 return max (i, 1);
6008 }
6009
6010 /* Set BUF to the minimum number of hex digits representing NUM. */
6011
6012 static int
6013 hexnumstr (char *buf, ULONGEST num)
6014 {
6015 int len = hexnumlen (num);
6016
6017 return hexnumnstr (buf, num, len);
6018 }
6019
6020
6021 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6022
6023 static int
6024 hexnumnstr (char *buf, ULONGEST num, int width)
6025 {
6026 int i;
6027
6028 buf[width] = '\0';
6029
6030 for (i = width - 1; i >= 0; i--)
6031 {
6032 buf[i] = "0123456789abcdef"[(num & 0xf)];
6033 num >>= 4;
6034 }
6035
6036 return width;
6037 }
6038
6039 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6040
6041 static CORE_ADDR
6042 remote_address_masked (CORE_ADDR addr)
6043 {
6044 int address_size = remote_address_size;
6045
6046 /* If "remoteaddresssize" was not set, default to target address size. */
6047 if (!address_size)
6048 address_size = gdbarch_addr_bit (target_gdbarch);
6049
6050 if (address_size > 0
6051 && address_size < (sizeof (ULONGEST) * 8))
6052 {
6053 /* Only create a mask when that mask can safely be constructed
6054 in a ULONGEST variable. */
6055 ULONGEST mask = 1;
6056
6057 mask = (mask << address_size) - 1;
6058 addr &= mask;
6059 }
6060 return addr;
6061 }
6062
6063 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6064 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6065 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6066 (which may be more than *OUT_LEN due to escape characters). The
6067 total number of bytes in the output buffer will be at most
6068 OUT_MAXLEN. */
6069
6070 static int
6071 remote_escape_output (const gdb_byte *buffer, int len,
6072 gdb_byte *out_buf, int *out_len,
6073 int out_maxlen)
6074 {
6075 int input_index, output_index;
6076
6077 output_index = 0;
6078 for (input_index = 0; input_index < len; input_index++)
6079 {
6080 gdb_byte b = buffer[input_index];
6081
6082 if (b == '$' || b == '#' || b == '}')
6083 {
6084 /* These must be escaped. */
6085 if (output_index + 2 > out_maxlen)
6086 break;
6087 out_buf[output_index++] = '}';
6088 out_buf[output_index++] = b ^ 0x20;
6089 }
6090 else
6091 {
6092 if (output_index + 1 > out_maxlen)
6093 break;
6094 out_buf[output_index++] = b;
6095 }
6096 }
6097
6098 *out_len = input_index;
6099 return output_index;
6100 }
6101
6102 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6103 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6104 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6105
6106 This function reverses remote_escape_output. It allows more
6107 escaped characters than that function does, in particular because
6108 '*' must be escaped to avoid the run-length encoding processing
6109 in reading packets. */
6110
6111 static int
6112 remote_unescape_input (const gdb_byte *buffer, int len,
6113 gdb_byte *out_buf, int out_maxlen)
6114 {
6115 int input_index, output_index;
6116 int escaped;
6117
6118 output_index = 0;
6119 escaped = 0;
6120 for (input_index = 0; input_index < len; input_index++)
6121 {
6122 gdb_byte b = buffer[input_index];
6123
6124 if (output_index + 1 > out_maxlen)
6125 {
6126 warning (_("Received too much data from remote target;"
6127 " ignoring overflow."));
6128 return output_index;
6129 }
6130
6131 if (escaped)
6132 {
6133 out_buf[output_index++] = b ^ 0x20;
6134 escaped = 0;
6135 }
6136 else if (b == '}')
6137 escaped = 1;
6138 else
6139 out_buf[output_index++] = b;
6140 }
6141
6142 if (escaped)
6143 error (_("Unmatched escape character in target response."));
6144
6145 return output_index;
6146 }
6147
6148 /* Determine whether the remote target supports binary downloading.
6149 This is accomplished by sending a no-op memory write of zero length
6150 to the target at the specified address. It does not suffice to send
6151 the whole packet, since many stubs strip the eighth bit and
6152 subsequently compute a wrong checksum, which causes real havoc with
6153 remote_write_bytes.
6154
6155 NOTE: This can still lose if the serial line is not eight-bit
6156 clean. In cases like this, the user should clear "remote
6157 X-packet". */
6158
6159 static void
6160 check_binary_download (CORE_ADDR addr)
6161 {
6162 struct remote_state *rs = get_remote_state ();
6163
6164 switch (remote_protocol_packets[PACKET_X].support)
6165 {
6166 case PACKET_DISABLE:
6167 break;
6168 case PACKET_ENABLE:
6169 break;
6170 case PACKET_SUPPORT_UNKNOWN:
6171 {
6172 char *p;
6173
6174 p = rs->buf;
6175 *p++ = 'X';
6176 p += hexnumstr (p, (ULONGEST) addr);
6177 *p++ = ',';
6178 p += hexnumstr (p, (ULONGEST) 0);
6179 *p++ = ':';
6180 *p = '\0';
6181
6182 putpkt_binary (rs->buf, (int) (p - rs->buf));
6183 getpkt (&rs->buf, &rs->buf_size, 0);
6184
6185 if (rs->buf[0] == '\0')
6186 {
6187 if (remote_debug)
6188 fprintf_unfiltered (gdb_stdlog,
6189 "binary downloading NOT "
6190 "supported by target\n");
6191 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6192 }
6193 else
6194 {
6195 if (remote_debug)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "binary downloading suppported by target\n");
6198 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6199 }
6200 break;
6201 }
6202 }
6203 }
6204
6205 /* Write memory data directly to the remote machine.
6206 This does not inform the data cache; the data cache uses this.
6207 HEADER is the starting part of the packet.
6208 MEMADDR is the address in the remote memory space.
6209 MYADDR is the address of the buffer in our space.
6210 LEN is the number of bytes.
6211 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6212 should send data as binary ('X'), or hex-encoded ('M').
6213
6214 The function creates packet of the form
6215 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6216
6217 where encoding of <DATA> is termined by PACKET_FORMAT.
6218
6219 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6220 are omitted.
6221
6222 Returns the number of bytes transferred, or 0 (setting errno) for
6223 error. Only transfer a single packet. */
6224
6225 static int
6226 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6227 const gdb_byte *myaddr, int len,
6228 char packet_format, int use_length)
6229 {
6230 struct remote_state *rs = get_remote_state ();
6231 char *p;
6232 char *plen = NULL;
6233 int plenlen = 0;
6234 int todo;
6235 int nr_bytes;
6236 int payload_size;
6237 int payload_length;
6238 int header_length;
6239
6240 if (packet_format != 'X' && packet_format != 'M')
6241 internal_error (__FILE__, __LINE__,
6242 _("remote_write_bytes_aux: bad packet format"));
6243
6244 if (len <= 0)
6245 return 0;
6246
6247 payload_size = get_memory_write_packet_size ();
6248
6249 /* The packet buffer will be large enough for the payload;
6250 get_memory_packet_size ensures this. */
6251 rs->buf[0] = '\0';
6252
6253 /* Compute the size of the actual payload by subtracting out the
6254 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6255
6256 payload_size -= strlen ("$,:#NN");
6257 if (!use_length)
6258 /* The comma won't be used. */
6259 payload_size += 1;
6260 header_length = strlen (header);
6261 payload_size -= header_length;
6262 payload_size -= hexnumlen (memaddr);
6263
6264 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6265
6266 strcat (rs->buf, header);
6267 p = rs->buf + strlen (header);
6268
6269 /* Compute a best guess of the number of bytes actually transfered. */
6270 if (packet_format == 'X')
6271 {
6272 /* Best guess at number of bytes that will fit. */
6273 todo = min (len, payload_size);
6274 if (use_length)
6275 payload_size -= hexnumlen (todo);
6276 todo = min (todo, payload_size);
6277 }
6278 else
6279 {
6280 /* Num bytes that will fit. */
6281 todo = min (len, payload_size / 2);
6282 if (use_length)
6283 payload_size -= hexnumlen (todo);
6284 todo = min (todo, payload_size / 2);
6285 }
6286
6287 if (todo <= 0)
6288 internal_error (__FILE__, __LINE__,
6289 _("minumum packet size too small to write data"));
6290
6291 /* If we already need another packet, then try to align the end
6292 of this packet to a useful boundary. */
6293 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6294 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6295
6296 /* Append "<memaddr>". */
6297 memaddr = remote_address_masked (memaddr);
6298 p += hexnumstr (p, (ULONGEST) memaddr);
6299
6300 if (use_length)
6301 {
6302 /* Append ",". */
6303 *p++ = ',';
6304
6305 /* Append <len>. Retain the location/size of <len>. It may need to
6306 be adjusted once the packet body has been created. */
6307 plen = p;
6308 plenlen = hexnumstr (p, (ULONGEST) todo);
6309 p += plenlen;
6310 }
6311
6312 /* Append ":". */
6313 *p++ = ':';
6314 *p = '\0';
6315
6316 /* Append the packet body. */
6317 if (packet_format == 'X')
6318 {
6319 /* Binary mode. Send target system values byte by byte, in
6320 increasing byte addresses. Only escape certain critical
6321 characters. */
6322 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6323 payload_size);
6324
6325 /* If not all TODO bytes fit, then we'll need another packet. Make
6326 a second try to keep the end of the packet aligned. Don't do
6327 this if the packet is tiny. */
6328 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6329 {
6330 int new_nr_bytes;
6331
6332 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6333 - memaddr);
6334 if (new_nr_bytes != nr_bytes)
6335 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6336 p, &nr_bytes,
6337 payload_size);
6338 }
6339
6340 p += payload_length;
6341 if (use_length && nr_bytes < todo)
6342 {
6343 /* Escape chars have filled up the buffer prematurely,
6344 and we have actually sent fewer bytes than planned.
6345 Fix-up the length field of the packet. Use the same
6346 number of characters as before. */
6347 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6348 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6349 }
6350 }
6351 else
6352 {
6353 /* Normal mode: Send target system values byte by byte, in
6354 increasing byte addresses. Each byte is encoded as a two hex
6355 value. */
6356 nr_bytes = bin2hex (myaddr, p, todo);
6357 p += 2 * nr_bytes;
6358 }
6359
6360 putpkt_binary (rs->buf, (int) (p - rs->buf));
6361 getpkt (&rs->buf, &rs->buf_size, 0);
6362
6363 if (rs->buf[0] == 'E')
6364 {
6365 /* There is no correspondance between what the remote protocol
6366 uses for errors and errno codes. We would like a cleaner way
6367 of representing errors (big enough to include errno codes,
6368 bfd_error codes, and others). But for now just return EIO. */
6369 errno = EIO;
6370 return 0;
6371 }
6372
6373 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6374 fewer bytes than we'd planned. */
6375 return nr_bytes;
6376 }
6377
6378 /* Write memory data directly to the remote machine.
6379 This does not inform the data cache; the data cache uses this.
6380 MEMADDR is the address in the remote memory space.
6381 MYADDR is the address of the buffer in our space.
6382 LEN is the number of bytes.
6383
6384 Returns number of bytes transferred, or 0 (setting errno) for
6385 error. Only transfer a single packet. */
6386
6387 static int
6388 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6389 {
6390 char *packet_format = 0;
6391
6392 /* Check whether the target supports binary download. */
6393 check_binary_download (memaddr);
6394
6395 switch (remote_protocol_packets[PACKET_X].support)
6396 {
6397 case PACKET_ENABLE:
6398 packet_format = "X";
6399 break;
6400 case PACKET_DISABLE:
6401 packet_format = "M";
6402 break;
6403 case PACKET_SUPPORT_UNKNOWN:
6404 internal_error (__FILE__, __LINE__,
6405 _("remote_write_bytes: bad internal state"));
6406 default:
6407 internal_error (__FILE__, __LINE__, _("bad switch"));
6408 }
6409
6410 return remote_write_bytes_aux (packet_format,
6411 memaddr, myaddr, len, packet_format[0], 1);
6412 }
6413
6414 /* Read memory data directly from the remote machine.
6415 This does not use the data cache; the data cache uses this.
6416 MEMADDR is the address in the remote memory space.
6417 MYADDR is the address of the buffer in our space.
6418 LEN is the number of bytes.
6419
6420 Returns number of bytes transferred, or 0 for error. */
6421
6422 static int
6423 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6424 {
6425 struct remote_state *rs = get_remote_state ();
6426 int max_buf_size; /* Max size of packet output buffer. */
6427 char *p;
6428 int todo;
6429 int i;
6430
6431 if (len <= 0)
6432 return 0;
6433
6434 max_buf_size = get_memory_read_packet_size ();
6435 /* The packet buffer will be large enough for the payload;
6436 get_memory_packet_size ensures this. */
6437
6438 /* Number if bytes that will fit. */
6439 todo = min (len, max_buf_size / 2);
6440
6441 /* Construct "m"<memaddr>","<len>". */
6442 memaddr = remote_address_masked (memaddr);
6443 p = rs->buf;
6444 *p++ = 'm';
6445 p += hexnumstr (p, (ULONGEST) memaddr);
6446 *p++ = ',';
6447 p += hexnumstr (p, (ULONGEST) todo);
6448 *p = '\0';
6449 putpkt (rs->buf);
6450 getpkt (&rs->buf, &rs->buf_size, 0);
6451 if (rs->buf[0] == 'E'
6452 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6453 && rs->buf[3] == '\0')
6454 {
6455 /* There is no correspondance between what the remote protocol
6456 uses for errors and errno codes. We would like a cleaner way
6457 of representing errors (big enough to include errno codes,
6458 bfd_error codes, and others). But for now just return
6459 EIO. */
6460 errno = EIO;
6461 return 0;
6462 }
6463 /* Reply describes memory byte by byte, each byte encoded as two hex
6464 characters. */
6465 p = rs->buf;
6466 i = hex2bin (p, myaddr, todo);
6467 /* Return what we have. Let higher layers handle partial reads. */
6468 return i;
6469 }
6470 \f
6471
6472 /* Remote notification handler. */
6473
6474 static void
6475 handle_notification (char *buf, size_t length)
6476 {
6477 if (strncmp (buf, "Stop:", 5) == 0)
6478 {
6479 if (pending_stop_reply)
6480 {
6481 /* We've already parsed the in-flight stop-reply, but the
6482 stub for some reason thought we didn't, possibly due to
6483 timeout on its side. Just ignore it. */
6484 if (remote_debug)
6485 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6486 }
6487 else
6488 {
6489 struct cleanup *old_chain;
6490 struct stop_reply *reply = stop_reply_xmalloc ();
6491
6492 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6493
6494 remote_parse_stop_reply (buf + 5, reply);
6495
6496 discard_cleanups (old_chain);
6497
6498 /* Be careful to only set it after parsing, since an error
6499 may be thrown then. */
6500 pending_stop_reply = reply;
6501
6502 /* Notify the event loop there's a stop reply to acknowledge
6503 and that there may be more events to fetch. */
6504 mark_async_event_handler (remote_async_get_pending_events_token);
6505
6506 if (remote_debug)
6507 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6508 }
6509 }
6510 else
6511 /* We ignore notifications we don't recognize, for compatibility
6512 with newer stubs. */
6513 ;
6514 }
6515
6516 \f
6517 /* Read or write LEN bytes from inferior memory at MEMADDR,
6518 transferring to or from debugger address BUFFER. Write to inferior
6519 if SHOULD_WRITE is nonzero. Returns length of data written or
6520 read; 0 for error. TARGET is unused. */
6521
6522 static int
6523 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6524 int should_write, struct mem_attrib *attrib,
6525 struct target_ops *target)
6526 {
6527 int res;
6528
6529 set_remote_traceframe ();
6530 set_general_thread (inferior_ptid);
6531
6532 if (should_write)
6533 res = remote_write_bytes (mem_addr, buffer, mem_len);
6534 else
6535 res = remote_read_bytes (mem_addr, buffer, mem_len);
6536
6537 return res;
6538 }
6539
6540 /* Sends a packet with content determined by the printf format string
6541 FORMAT and the remaining arguments, then gets the reply. Returns
6542 whether the packet was a success, a failure, or unknown. */
6543
6544 static enum packet_result
6545 remote_send_printf (const char *format, ...)
6546 {
6547 struct remote_state *rs = get_remote_state ();
6548 int max_size = get_remote_packet_size ();
6549 va_list ap;
6550
6551 va_start (ap, format);
6552
6553 rs->buf[0] = '\0';
6554 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6555 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6556
6557 if (putpkt (rs->buf) < 0)
6558 error (_("Communication problem with target."));
6559
6560 rs->buf[0] = '\0';
6561 getpkt (&rs->buf, &rs->buf_size, 0);
6562
6563 return packet_check_result (rs->buf);
6564 }
6565
6566 static void
6567 restore_remote_timeout (void *p)
6568 {
6569 int value = *(int *)p;
6570
6571 remote_timeout = value;
6572 }
6573
6574 /* Flash writing can take quite some time. We'll set
6575 effectively infinite timeout for flash operations.
6576 In future, we'll need to decide on a better approach. */
6577 static const int remote_flash_timeout = 1000;
6578
6579 static void
6580 remote_flash_erase (struct target_ops *ops,
6581 ULONGEST address, LONGEST length)
6582 {
6583 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6584 int saved_remote_timeout = remote_timeout;
6585 enum packet_result ret;
6586 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6587 &saved_remote_timeout);
6588
6589 remote_timeout = remote_flash_timeout;
6590
6591 ret = remote_send_printf ("vFlashErase:%s,%s",
6592 phex (address, addr_size),
6593 phex (length, 4));
6594 switch (ret)
6595 {
6596 case PACKET_UNKNOWN:
6597 error (_("Remote target does not support flash erase"));
6598 case PACKET_ERROR:
6599 error (_("Error erasing flash with vFlashErase packet"));
6600 default:
6601 break;
6602 }
6603
6604 do_cleanups (back_to);
6605 }
6606
6607 static LONGEST
6608 remote_flash_write (struct target_ops *ops,
6609 ULONGEST address, LONGEST length,
6610 const gdb_byte *data)
6611 {
6612 int saved_remote_timeout = remote_timeout;
6613 int ret;
6614 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6615 &saved_remote_timeout);
6616
6617 remote_timeout = remote_flash_timeout;
6618 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6619 do_cleanups (back_to);
6620
6621 return ret;
6622 }
6623
6624 static void
6625 remote_flash_done (struct target_ops *ops)
6626 {
6627 int saved_remote_timeout = remote_timeout;
6628 int ret;
6629 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6630 &saved_remote_timeout);
6631
6632 remote_timeout = remote_flash_timeout;
6633 ret = remote_send_printf ("vFlashDone");
6634 do_cleanups (back_to);
6635
6636 switch (ret)
6637 {
6638 case PACKET_UNKNOWN:
6639 error (_("Remote target does not support vFlashDone"));
6640 case PACKET_ERROR:
6641 error (_("Error finishing flash operation"));
6642 default:
6643 break;
6644 }
6645 }
6646
6647 static void
6648 remote_files_info (struct target_ops *ignore)
6649 {
6650 puts_filtered ("Debugging a target over a serial line.\n");
6651 }
6652 \f
6653 /* Stuff for dealing with the packets which are part of this protocol.
6654 See comment at top of file for details. */
6655
6656 /* Read a single character from the remote end. */
6657
6658 static int
6659 readchar (int timeout)
6660 {
6661 int ch;
6662
6663 ch = serial_readchar (remote_desc, timeout);
6664
6665 if (ch >= 0)
6666 return ch;
6667
6668 switch ((enum serial_rc) ch)
6669 {
6670 case SERIAL_EOF:
6671 pop_target ();
6672 error (_("Remote connection closed"));
6673 /* no return */
6674 case SERIAL_ERROR:
6675 pop_target ();
6676 perror_with_name (_("Remote communication error. "
6677 "Target disconnected."));
6678 /* no return */
6679 case SERIAL_TIMEOUT:
6680 break;
6681 }
6682 return ch;
6683 }
6684
6685 /* Send the command in *BUF to the remote machine, and read the reply
6686 into *BUF. Report an error if we get an error reply. Resize
6687 *BUF using xrealloc if necessary to hold the result, and update
6688 *SIZEOF_BUF. */
6689
6690 static void
6691 remote_send (char **buf,
6692 long *sizeof_buf)
6693 {
6694 putpkt (*buf);
6695 getpkt (buf, sizeof_buf, 0);
6696
6697 if ((*buf)[0] == 'E')
6698 error (_("Remote failure reply: %s"), *buf);
6699 }
6700
6701 /* Return a pointer to an xmalloc'ed string representing an escaped
6702 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6703 etc. The caller is responsible for releasing the returned
6704 memory. */
6705
6706 static char *
6707 escape_buffer (const char *buf, int n)
6708 {
6709 struct cleanup *old_chain;
6710 struct ui_file *stb;
6711 char *str;
6712
6713 stb = mem_fileopen ();
6714 old_chain = make_cleanup_ui_file_delete (stb);
6715
6716 fputstrn_unfiltered (buf, n, 0, stb);
6717 str = ui_file_xstrdup (stb, NULL);
6718 do_cleanups (old_chain);
6719 return str;
6720 }
6721
6722 /* Display a null-terminated packet on stdout, for debugging, using C
6723 string notation. */
6724
6725 static void
6726 print_packet (char *buf)
6727 {
6728 puts_filtered ("\"");
6729 fputstr_filtered (buf, '"', gdb_stdout);
6730 puts_filtered ("\"");
6731 }
6732
6733 int
6734 putpkt (char *buf)
6735 {
6736 return putpkt_binary (buf, strlen (buf));
6737 }
6738
6739 /* Send a packet to the remote machine, with error checking. The data
6740 of the packet is in BUF. The string in BUF can be at most
6741 get_remote_packet_size () - 5 to account for the $, # and checksum,
6742 and for a possible /0 if we are debugging (remote_debug) and want
6743 to print the sent packet as a string. */
6744
6745 static int
6746 putpkt_binary (char *buf, int cnt)
6747 {
6748 struct remote_state *rs = get_remote_state ();
6749 int i;
6750 unsigned char csum = 0;
6751 char *buf2 = alloca (cnt + 6);
6752
6753 int ch;
6754 int tcount = 0;
6755 char *p;
6756
6757 /* Catch cases like trying to read memory or listing threads while
6758 we're waiting for a stop reply. The remote server wouldn't be
6759 ready to handle this request, so we'd hang and timeout. We don't
6760 have to worry about this in synchronous mode, because in that
6761 case it's not possible to issue a command while the target is
6762 running. This is not a problem in non-stop mode, because in that
6763 case, the stub is always ready to process serial input. */
6764 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6765 error (_("Cannot execute this command while the target is running."));
6766
6767 /* We're sending out a new packet. Make sure we don't look at a
6768 stale cached response. */
6769 rs->cached_wait_status = 0;
6770
6771 /* Copy the packet into buffer BUF2, encapsulating it
6772 and giving it a checksum. */
6773
6774 p = buf2;
6775 *p++ = '$';
6776
6777 for (i = 0; i < cnt; i++)
6778 {
6779 csum += buf[i];
6780 *p++ = buf[i];
6781 }
6782 *p++ = '#';
6783 *p++ = tohex ((csum >> 4) & 0xf);
6784 *p++ = tohex (csum & 0xf);
6785
6786 /* Send it over and over until we get a positive ack. */
6787
6788 while (1)
6789 {
6790 int started_error_output = 0;
6791
6792 if (remote_debug)
6793 {
6794 struct cleanup *old_chain;
6795 char *str;
6796
6797 *p = '\0';
6798 str = escape_buffer (buf2, p - buf2);
6799 old_chain = make_cleanup (xfree, str);
6800 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6801 gdb_flush (gdb_stdlog);
6802 do_cleanups (old_chain);
6803 }
6804 if (serial_write (remote_desc, buf2, p - buf2))
6805 perror_with_name (_("putpkt: write failed"));
6806
6807 /* If this is a no acks version of the remote protocol, send the
6808 packet and move on. */
6809 if (rs->noack_mode)
6810 break;
6811
6812 /* Read until either a timeout occurs (-2) or '+' is read.
6813 Handle any notification that arrives in the mean time. */
6814 while (1)
6815 {
6816 ch = readchar (remote_timeout);
6817
6818 if (remote_debug)
6819 {
6820 switch (ch)
6821 {
6822 case '+':
6823 case '-':
6824 case SERIAL_TIMEOUT:
6825 case '$':
6826 case '%':
6827 if (started_error_output)
6828 {
6829 putchar_unfiltered ('\n');
6830 started_error_output = 0;
6831 }
6832 }
6833 }
6834
6835 switch (ch)
6836 {
6837 case '+':
6838 if (remote_debug)
6839 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6840 return 1;
6841 case '-':
6842 if (remote_debug)
6843 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6844 /* FALLTHROUGH */
6845 case SERIAL_TIMEOUT:
6846 tcount++;
6847 if (tcount > 3)
6848 return 0;
6849 break; /* Retransmit buffer. */
6850 case '$':
6851 {
6852 if (remote_debug)
6853 fprintf_unfiltered (gdb_stdlog,
6854 "Packet instead of Ack, ignoring it\n");
6855 /* It's probably an old response sent because an ACK
6856 was lost. Gobble up the packet and ack it so it
6857 doesn't get retransmitted when we resend this
6858 packet. */
6859 skip_frame ();
6860 serial_write (remote_desc, "+", 1);
6861 continue; /* Now, go look for +. */
6862 }
6863
6864 case '%':
6865 {
6866 int val;
6867
6868 /* If we got a notification, handle it, and go back to looking
6869 for an ack. */
6870 /* We've found the start of a notification. Now
6871 collect the data. */
6872 val = read_frame (&rs->buf, &rs->buf_size);
6873 if (val >= 0)
6874 {
6875 if (remote_debug)
6876 {
6877 struct cleanup *old_chain;
6878 char *str;
6879
6880 str = escape_buffer (rs->buf, val);
6881 old_chain = make_cleanup (xfree, str);
6882 fprintf_unfiltered (gdb_stdlog,
6883 " Notification received: %s\n",
6884 str);
6885 do_cleanups (old_chain);
6886 }
6887 handle_notification (rs->buf, val);
6888 /* We're in sync now, rewait for the ack. */
6889 tcount = 0;
6890 }
6891 else
6892 {
6893 if (remote_debug)
6894 {
6895 if (!started_error_output)
6896 {
6897 started_error_output = 1;
6898 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6899 }
6900 fputc_unfiltered (ch & 0177, gdb_stdlog);
6901 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6902 }
6903 }
6904 continue;
6905 }
6906 /* fall-through */
6907 default:
6908 if (remote_debug)
6909 {
6910 if (!started_error_output)
6911 {
6912 started_error_output = 1;
6913 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6914 }
6915 fputc_unfiltered (ch & 0177, gdb_stdlog);
6916 }
6917 continue;
6918 }
6919 break; /* Here to retransmit. */
6920 }
6921
6922 #if 0
6923 /* This is wrong. If doing a long backtrace, the user should be
6924 able to get out next time we call QUIT, without anything as
6925 violent as interrupt_query. If we want to provide a way out of
6926 here without getting to the next QUIT, it should be based on
6927 hitting ^C twice as in remote_wait. */
6928 if (quit_flag)
6929 {
6930 quit_flag = 0;
6931 interrupt_query ();
6932 }
6933 #endif
6934 }
6935 return 0;
6936 }
6937
6938 /* Come here after finding the start of a frame when we expected an
6939 ack. Do our best to discard the rest of this packet. */
6940
6941 static void
6942 skip_frame (void)
6943 {
6944 int c;
6945
6946 while (1)
6947 {
6948 c = readchar (remote_timeout);
6949 switch (c)
6950 {
6951 case SERIAL_TIMEOUT:
6952 /* Nothing we can do. */
6953 return;
6954 case '#':
6955 /* Discard the two bytes of checksum and stop. */
6956 c = readchar (remote_timeout);
6957 if (c >= 0)
6958 c = readchar (remote_timeout);
6959
6960 return;
6961 case '*': /* Run length encoding. */
6962 /* Discard the repeat count. */
6963 c = readchar (remote_timeout);
6964 if (c < 0)
6965 return;
6966 break;
6967 default:
6968 /* A regular character. */
6969 break;
6970 }
6971 }
6972 }
6973
6974 /* Come here after finding the start of the frame. Collect the rest
6975 into *BUF, verifying the checksum, length, and handling run-length
6976 compression. NUL terminate the buffer. If there is not enough room,
6977 expand *BUF using xrealloc.
6978
6979 Returns -1 on error, number of characters in buffer (ignoring the
6980 trailing NULL) on success. (could be extended to return one of the
6981 SERIAL status indications). */
6982
6983 static long
6984 read_frame (char **buf_p,
6985 long *sizeof_buf)
6986 {
6987 unsigned char csum;
6988 long bc;
6989 int c;
6990 char *buf = *buf_p;
6991 struct remote_state *rs = get_remote_state ();
6992
6993 csum = 0;
6994 bc = 0;
6995
6996 while (1)
6997 {
6998 c = readchar (remote_timeout);
6999 switch (c)
7000 {
7001 case SERIAL_TIMEOUT:
7002 if (remote_debug)
7003 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7004 return -1;
7005 case '$':
7006 if (remote_debug)
7007 fputs_filtered ("Saw new packet start in middle of old one\n",
7008 gdb_stdlog);
7009 return -1; /* Start a new packet, count retries. */
7010 case '#':
7011 {
7012 unsigned char pktcsum;
7013 int check_0 = 0;
7014 int check_1 = 0;
7015
7016 buf[bc] = '\0';
7017
7018 check_0 = readchar (remote_timeout);
7019 if (check_0 >= 0)
7020 check_1 = readchar (remote_timeout);
7021
7022 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7023 {
7024 if (remote_debug)
7025 fputs_filtered ("Timeout in checksum, retrying\n",
7026 gdb_stdlog);
7027 return -1;
7028 }
7029 else if (check_0 < 0 || check_1 < 0)
7030 {
7031 if (remote_debug)
7032 fputs_filtered ("Communication error in checksum\n",
7033 gdb_stdlog);
7034 return -1;
7035 }
7036
7037 /* Don't recompute the checksum; with no ack packets we
7038 don't have any way to indicate a packet retransmission
7039 is necessary. */
7040 if (rs->noack_mode)
7041 return bc;
7042
7043 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7044 if (csum == pktcsum)
7045 return bc;
7046
7047 if (remote_debug)
7048 {
7049 struct cleanup *old_chain;
7050 char *str;
7051
7052 str = escape_buffer (buf, bc);
7053 old_chain = make_cleanup (xfree, str);
7054 fprintf_unfiltered (gdb_stdlog,
7055 "Bad checksum, sentsum=0x%x, "
7056 "csum=0x%x, buf=%s\n",
7057 pktcsum, csum, str);
7058 do_cleanups (old_chain);
7059 }
7060 /* Number of characters in buffer ignoring trailing
7061 NULL. */
7062 return -1;
7063 }
7064 case '*': /* Run length encoding. */
7065 {
7066 int repeat;
7067
7068 csum += c;
7069 c = readchar (remote_timeout);
7070 csum += c;
7071 repeat = c - ' ' + 3; /* Compute repeat count. */
7072
7073 /* The character before ``*'' is repeated. */
7074
7075 if (repeat > 0 && repeat <= 255 && bc > 0)
7076 {
7077 if (bc + repeat - 1 >= *sizeof_buf - 1)
7078 {
7079 /* Make some more room in the buffer. */
7080 *sizeof_buf += repeat;
7081 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7082 buf = *buf_p;
7083 }
7084
7085 memset (&buf[bc], buf[bc - 1], repeat);
7086 bc += repeat;
7087 continue;
7088 }
7089
7090 buf[bc] = '\0';
7091 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7092 return -1;
7093 }
7094 default:
7095 if (bc >= *sizeof_buf - 1)
7096 {
7097 /* Make some more room in the buffer. */
7098 *sizeof_buf *= 2;
7099 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7100 buf = *buf_p;
7101 }
7102
7103 buf[bc++] = c;
7104 csum += c;
7105 continue;
7106 }
7107 }
7108 }
7109
7110 /* Read a packet from the remote machine, with error checking, and
7111 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7112 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7113 rather than timing out; this is used (in synchronous mode) to wait
7114 for a target that is is executing user code to stop. */
7115 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7116 don't have to change all the calls to getpkt to deal with the
7117 return value, because at the moment I don't know what the right
7118 thing to do it for those. */
7119 void
7120 getpkt (char **buf,
7121 long *sizeof_buf,
7122 int forever)
7123 {
7124 int timed_out;
7125
7126 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7127 }
7128
7129
7130 /* Read a packet from the remote machine, with error checking, and
7131 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7132 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7133 rather than timing out; this is used (in synchronous mode) to wait
7134 for a target that is is executing user code to stop. If FOREVER ==
7135 0, this function is allowed to time out gracefully and return an
7136 indication of this to the caller. Otherwise return the number of
7137 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7138 enough reason to return to the caller. */
7139
7140 static int
7141 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7142 int expecting_notif)
7143 {
7144 struct remote_state *rs = get_remote_state ();
7145 int c;
7146 int tries;
7147 int timeout;
7148 int val = -1;
7149
7150 /* We're reading a new response. Make sure we don't look at a
7151 previously cached response. */
7152 rs->cached_wait_status = 0;
7153
7154 strcpy (*buf, "timeout");
7155
7156 if (forever)
7157 timeout = watchdog > 0 ? watchdog : -1;
7158 else if (expecting_notif)
7159 timeout = 0; /* There should already be a char in the buffer. If
7160 not, bail out. */
7161 else
7162 timeout = remote_timeout;
7163
7164 #define MAX_TRIES 3
7165
7166 /* Process any number of notifications, and then return when
7167 we get a packet. */
7168 for (;;)
7169 {
7170 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7171 times. */
7172 for (tries = 1; tries <= MAX_TRIES; tries++)
7173 {
7174 /* This can loop forever if the remote side sends us
7175 characters continuously, but if it pauses, we'll get
7176 SERIAL_TIMEOUT from readchar because of timeout. Then
7177 we'll count that as a retry.
7178
7179 Note that even when forever is set, we will only wait
7180 forever prior to the start of a packet. After that, we
7181 expect characters to arrive at a brisk pace. They should
7182 show up within remote_timeout intervals. */
7183 do
7184 c = readchar (timeout);
7185 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7186
7187 if (c == SERIAL_TIMEOUT)
7188 {
7189 if (expecting_notif)
7190 return -1; /* Don't complain, it's normal to not get
7191 anything in this case. */
7192
7193 if (forever) /* Watchdog went off? Kill the target. */
7194 {
7195 QUIT;
7196 pop_target ();
7197 error (_("Watchdog timeout has expired. Target detached."));
7198 }
7199 if (remote_debug)
7200 fputs_filtered ("Timed out.\n", gdb_stdlog);
7201 }
7202 else
7203 {
7204 /* We've found the start of a packet or notification.
7205 Now collect the data. */
7206 val = read_frame (buf, sizeof_buf);
7207 if (val >= 0)
7208 break;
7209 }
7210
7211 serial_write (remote_desc, "-", 1);
7212 }
7213
7214 if (tries > MAX_TRIES)
7215 {
7216 /* We have tried hard enough, and just can't receive the
7217 packet/notification. Give up. */
7218 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7219
7220 /* Skip the ack char if we're in no-ack mode. */
7221 if (!rs->noack_mode)
7222 serial_write (remote_desc, "+", 1);
7223 return -1;
7224 }
7225
7226 /* If we got an ordinary packet, return that to our caller. */
7227 if (c == '$')
7228 {
7229 if (remote_debug)
7230 {
7231 struct cleanup *old_chain;
7232 char *str;
7233
7234 str = escape_buffer (*buf, val);
7235 old_chain = make_cleanup (xfree, str);
7236 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7237 do_cleanups (old_chain);
7238 }
7239
7240 /* Skip the ack char if we're in no-ack mode. */
7241 if (!rs->noack_mode)
7242 serial_write (remote_desc, "+", 1);
7243 return val;
7244 }
7245
7246 /* If we got a notification, handle it, and go back to looking
7247 for a packet. */
7248 else
7249 {
7250 gdb_assert (c == '%');
7251
7252 if (remote_debug)
7253 {
7254 struct cleanup *old_chain;
7255 char *str;
7256
7257 str = escape_buffer (*buf, val);
7258 old_chain = make_cleanup (xfree, str);
7259 fprintf_unfiltered (gdb_stdlog,
7260 " Notification received: %s\n",
7261 str);
7262 do_cleanups (old_chain);
7263 }
7264
7265 handle_notification (*buf, val);
7266
7267 /* Notifications require no acknowledgement. */
7268
7269 if (expecting_notif)
7270 return -1;
7271 }
7272 }
7273 }
7274
7275 static int
7276 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7277 {
7278 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7279 }
7280
7281 static int
7282 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7283 {
7284 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7285 }
7286
7287 \f
7288 static void
7289 remote_kill (struct target_ops *ops)
7290 {
7291 /* Use catch_errors so the user can quit from gdb even when we
7292 aren't on speaking terms with the remote system. */
7293 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7294
7295 /* Don't wait for it to die. I'm not really sure it matters whether
7296 we do or not. For the existing stubs, kill is a noop. */
7297 target_mourn_inferior ();
7298 }
7299
7300 static int
7301 remote_vkill (int pid, struct remote_state *rs)
7302 {
7303 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7304 return -1;
7305
7306 /* Tell the remote target to detach. */
7307 sprintf (rs->buf, "vKill;%x", pid);
7308 putpkt (rs->buf);
7309 getpkt (&rs->buf, &rs->buf_size, 0);
7310
7311 if (packet_ok (rs->buf,
7312 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7313 return 0;
7314 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7315 return -1;
7316 else
7317 return 1;
7318 }
7319
7320 static void
7321 extended_remote_kill (struct target_ops *ops)
7322 {
7323 int res;
7324 int pid = ptid_get_pid (inferior_ptid);
7325 struct remote_state *rs = get_remote_state ();
7326
7327 res = remote_vkill (pid, rs);
7328 if (res == -1 && !remote_multi_process_p (rs))
7329 {
7330 /* Don't try 'k' on a multi-process aware stub -- it has no way
7331 to specify the pid. */
7332
7333 putpkt ("k");
7334 #if 0
7335 getpkt (&rs->buf, &rs->buf_size, 0);
7336 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7337 res = 1;
7338 #else
7339 /* Don't wait for it to die. I'm not really sure it matters whether
7340 we do or not. For the existing stubs, kill is a noop. */
7341 res = 0;
7342 #endif
7343 }
7344
7345 if (res != 0)
7346 error (_("Can't kill process"));
7347
7348 target_mourn_inferior ();
7349 }
7350
7351 static void
7352 remote_mourn (struct target_ops *ops)
7353 {
7354 remote_mourn_1 (ops);
7355 }
7356
7357 /* Worker function for remote_mourn. */
7358 static void
7359 remote_mourn_1 (struct target_ops *target)
7360 {
7361 unpush_target (target);
7362
7363 /* remote_close takes care of doing most of the clean up. */
7364 generic_mourn_inferior ();
7365 }
7366
7367 static void
7368 extended_remote_mourn_1 (struct target_ops *target)
7369 {
7370 struct remote_state *rs = get_remote_state ();
7371
7372 /* In case we got here due to an error, but we're going to stay
7373 connected. */
7374 rs->waiting_for_stop_reply = 0;
7375
7376 /* We're no longer interested in these events. */
7377 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7378
7379 /* If the current general thread belonged to the process we just
7380 detached from or has exited, the remote side current general
7381 thread becomes undefined. Considering a case like this:
7382
7383 - We just got here due to a detach.
7384 - The process that we're detaching from happens to immediately
7385 report a global breakpoint being hit in non-stop mode, in the
7386 same thread we had selected before.
7387 - GDB attaches to this process again.
7388 - This event happens to be the next event we handle.
7389
7390 GDB would consider that the current general thread didn't need to
7391 be set on the stub side (with Hg), since for all it knew,
7392 GENERAL_THREAD hadn't changed.
7393
7394 Notice that although in all-stop mode, the remote server always
7395 sets the current thread to the thread reporting the stop event,
7396 that doesn't happen in non-stop mode; in non-stop, the stub *must
7397 not* change the current thread when reporting a breakpoint hit,
7398 due to the decoupling of event reporting and event handling.
7399
7400 To keep things simple, we always invalidate our notion of the
7401 current thread. */
7402 record_currthread (minus_one_ptid);
7403
7404 /* Unlike "target remote", we do not want to unpush the target; then
7405 the next time the user says "run", we won't be connected. */
7406
7407 /* Call common code to mark the inferior as not running. */
7408 generic_mourn_inferior ();
7409
7410 if (!have_inferiors ())
7411 {
7412 if (!remote_multi_process_p (rs))
7413 {
7414 /* Check whether the target is running now - some remote stubs
7415 automatically restart after kill. */
7416 putpkt ("?");
7417 getpkt (&rs->buf, &rs->buf_size, 0);
7418
7419 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7420 {
7421 /* Assume that the target has been restarted. Set
7422 inferior_ptid so that bits of core GDB realizes
7423 there's something here, e.g., so that the user can
7424 say "kill" again. */
7425 inferior_ptid = magic_null_ptid;
7426 }
7427 }
7428 }
7429 }
7430
7431 static void
7432 extended_remote_mourn (struct target_ops *ops)
7433 {
7434 extended_remote_mourn_1 (ops);
7435 }
7436
7437 static int
7438 extended_remote_run (char *args)
7439 {
7440 struct remote_state *rs = get_remote_state ();
7441 int len;
7442
7443 /* If the user has disabled vRun support, or we have detected that
7444 support is not available, do not try it. */
7445 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7446 return -1;
7447
7448 strcpy (rs->buf, "vRun;");
7449 len = strlen (rs->buf);
7450
7451 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7452 error (_("Remote file name too long for run packet"));
7453 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7454
7455 gdb_assert (args != NULL);
7456 if (*args)
7457 {
7458 struct cleanup *back_to;
7459 int i;
7460 char **argv;
7461
7462 argv = gdb_buildargv (args);
7463 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7464 for (i = 0; argv[i] != NULL; i++)
7465 {
7466 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7467 error (_("Argument list too long for run packet"));
7468 rs->buf[len++] = ';';
7469 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7470 }
7471 do_cleanups (back_to);
7472 }
7473
7474 rs->buf[len++] = '\0';
7475
7476 putpkt (rs->buf);
7477 getpkt (&rs->buf, &rs->buf_size, 0);
7478
7479 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7480 {
7481 /* We have a wait response; we don't need it, though. All is well. */
7482 return 0;
7483 }
7484 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7485 /* It wasn't disabled before, but it is now. */
7486 return -1;
7487 else
7488 {
7489 if (remote_exec_file[0] == '\0')
7490 error (_("Running the default executable on the remote target failed; "
7491 "try \"set remote exec-file\"?"));
7492 else
7493 error (_("Running \"%s\" on the remote target failed"),
7494 remote_exec_file);
7495 }
7496 }
7497
7498 /* In the extended protocol we want to be able to do things like
7499 "run" and have them basically work as expected. So we need
7500 a special create_inferior function. We support changing the
7501 executable file and the command line arguments, but not the
7502 environment. */
7503
7504 static void
7505 extended_remote_create_inferior_1 (char *exec_file, char *args,
7506 char **env, int from_tty)
7507 {
7508 /* If running asynchronously, register the target file descriptor
7509 with the event loop. */
7510 if (target_can_async_p ())
7511 target_async (inferior_event_handler, 0);
7512
7513 /* Now restart the remote server. */
7514 if (extended_remote_run (args) == -1)
7515 {
7516 /* vRun was not supported. Fail if we need it to do what the
7517 user requested. */
7518 if (remote_exec_file[0])
7519 error (_("Remote target does not support \"set remote exec-file\""));
7520 if (args[0])
7521 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7522
7523 /* Fall back to "R". */
7524 extended_remote_restart ();
7525 }
7526
7527 if (!have_inferiors ())
7528 {
7529 /* Clean up from the last time we ran, before we mark the target
7530 running again. This will mark breakpoints uninserted, and
7531 get_offsets may insert breakpoints. */
7532 init_thread_list ();
7533 init_wait_for_inferior ();
7534 }
7535
7536 /* Now mark the inferior as running before we do anything else. */
7537 inferior_ptid = magic_null_ptid;
7538
7539 /* Now, if we have thread information, update inferior_ptid. */
7540 inferior_ptid = remote_current_thread (inferior_ptid);
7541
7542 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7543 add_thread_silent (inferior_ptid);
7544
7545 /* Get updated offsets, if the stub uses qOffsets. */
7546 get_offsets ();
7547 }
7548
7549 static void
7550 extended_remote_create_inferior (struct target_ops *ops,
7551 char *exec_file, char *args,
7552 char **env, int from_tty)
7553 {
7554 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7555 }
7556 \f
7557
7558 /* Insert a breakpoint. On targets that have software breakpoint
7559 support, we ask the remote target to do the work; on targets
7560 which don't, we insert a traditional memory breakpoint. */
7561
7562 static int
7563 remote_insert_breakpoint (struct gdbarch *gdbarch,
7564 struct bp_target_info *bp_tgt)
7565 {
7566 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7567 If it succeeds, then set the support to PACKET_ENABLE. If it
7568 fails, and the user has explicitly requested the Z support then
7569 report an error, otherwise, mark it disabled and go on. */
7570
7571 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7572 {
7573 CORE_ADDR addr = bp_tgt->placed_address;
7574 struct remote_state *rs;
7575 char *p;
7576 int bpsize;
7577
7578 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7579
7580 rs = get_remote_state ();
7581 p = rs->buf;
7582
7583 *(p++) = 'Z';
7584 *(p++) = '0';
7585 *(p++) = ',';
7586 addr = (ULONGEST) remote_address_masked (addr);
7587 p += hexnumstr (p, addr);
7588 sprintf (p, ",%d", bpsize);
7589
7590 putpkt (rs->buf);
7591 getpkt (&rs->buf, &rs->buf_size, 0);
7592
7593 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7594 {
7595 case PACKET_ERROR:
7596 return -1;
7597 case PACKET_OK:
7598 bp_tgt->placed_address = addr;
7599 bp_tgt->placed_size = bpsize;
7600 return 0;
7601 case PACKET_UNKNOWN:
7602 break;
7603 }
7604 }
7605
7606 return memory_insert_breakpoint (gdbarch, bp_tgt);
7607 }
7608
7609 static int
7610 remote_remove_breakpoint (struct gdbarch *gdbarch,
7611 struct bp_target_info *bp_tgt)
7612 {
7613 CORE_ADDR addr = bp_tgt->placed_address;
7614 struct remote_state *rs = get_remote_state ();
7615
7616 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7617 {
7618 char *p = rs->buf;
7619
7620 *(p++) = 'z';
7621 *(p++) = '0';
7622 *(p++) = ',';
7623
7624 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7625 p += hexnumstr (p, addr);
7626 sprintf (p, ",%d", bp_tgt->placed_size);
7627
7628 putpkt (rs->buf);
7629 getpkt (&rs->buf, &rs->buf_size, 0);
7630
7631 return (rs->buf[0] == 'E');
7632 }
7633
7634 return memory_remove_breakpoint (gdbarch, bp_tgt);
7635 }
7636
7637 static int
7638 watchpoint_to_Z_packet (int type)
7639 {
7640 switch (type)
7641 {
7642 case hw_write:
7643 return Z_PACKET_WRITE_WP;
7644 break;
7645 case hw_read:
7646 return Z_PACKET_READ_WP;
7647 break;
7648 case hw_access:
7649 return Z_PACKET_ACCESS_WP;
7650 break;
7651 default:
7652 internal_error (__FILE__, __LINE__,
7653 _("hw_bp_to_z: bad watchpoint type %d"), type);
7654 }
7655 }
7656
7657 static int
7658 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7659 struct expression *cond)
7660 {
7661 struct remote_state *rs = get_remote_state ();
7662 char *p;
7663 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7664
7665 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7666 return 1;
7667
7668 sprintf (rs->buf, "Z%x,", packet);
7669 p = strchr (rs->buf, '\0');
7670 addr = remote_address_masked (addr);
7671 p += hexnumstr (p, (ULONGEST) addr);
7672 sprintf (p, ",%x", len);
7673
7674 putpkt (rs->buf);
7675 getpkt (&rs->buf, &rs->buf_size, 0);
7676
7677 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7678 {
7679 case PACKET_ERROR:
7680 return -1;
7681 case PACKET_UNKNOWN:
7682 return 1;
7683 case PACKET_OK:
7684 return 0;
7685 }
7686 internal_error (__FILE__, __LINE__,
7687 _("remote_insert_watchpoint: reached end of function"));
7688 }
7689
7690
7691 static int
7692 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7693 struct expression *cond)
7694 {
7695 struct remote_state *rs = get_remote_state ();
7696 char *p;
7697 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7698
7699 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7700 return -1;
7701
7702 sprintf (rs->buf, "z%x,", packet);
7703 p = strchr (rs->buf, '\0');
7704 addr = remote_address_masked (addr);
7705 p += hexnumstr (p, (ULONGEST) addr);
7706 sprintf (p, ",%x", len);
7707 putpkt (rs->buf);
7708 getpkt (&rs->buf, &rs->buf_size, 0);
7709
7710 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7711 {
7712 case PACKET_ERROR:
7713 case PACKET_UNKNOWN:
7714 return -1;
7715 case PACKET_OK:
7716 return 0;
7717 }
7718 internal_error (__FILE__, __LINE__,
7719 _("remote_remove_watchpoint: reached end of function"));
7720 }
7721
7722
7723 int remote_hw_watchpoint_limit = -1;
7724 int remote_hw_breakpoint_limit = -1;
7725
7726 static int
7727 remote_check_watch_resources (int type, int cnt, int ot)
7728 {
7729 if (type == bp_hardware_breakpoint)
7730 {
7731 if (remote_hw_breakpoint_limit == 0)
7732 return 0;
7733 else if (remote_hw_breakpoint_limit < 0)
7734 return 1;
7735 else if (cnt <= remote_hw_breakpoint_limit)
7736 return 1;
7737 }
7738 else
7739 {
7740 if (remote_hw_watchpoint_limit == 0)
7741 return 0;
7742 else if (remote_hw_watchpoint_limit < 0)
7743 return 1;
7744 else if (ot)
7745 return -1;
7746 else if (cnt <= remote_hw_watchpoint_limit)
7747 return 1;
7748 }
7749 return -1;
7750 }
7751
7752 static int
7753 remote_stopped_by_watchpoint (void)
7754 {
7755 return remote_stopped_by_watchpoint_p;
7756 }
7757
7758 static int
7759 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7760 {
7761 int rc = 0;
7762
7763 if (remote_stopped_by_watchpoint ())
7764 {
7765 *addr_p = remote_watch_data_address;
7766 rc = 1;
7767 }
7768
7769 return rc;
7770 }
7771
7772
7773 static int
7774 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7775 struct bp_target_info *bp_tgt)
7776 {
7777 CORE_ADDR addr;
7778 struct remote_state *rs;
7779 char *p;
7780
7781 /* The length field should be set to the size of a breakpoint
7782 instruction, even though we aren't inserting one ourselves. */
7783
7784 gdbarch_remote_breakpoint_from_pc
7785 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7786
7787 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7788 return -1;
7789
7790 rs = get_remote_state ();
7791 p = rs->buf;
7792
7793 *(p++) = 'Z';
7794 *(p++) = '1';
7795 *(p++) = ',';
7796
7797 addr = remote_address_masked (bp_tgt->placed_address);
7798 p += hexnumstr (p, (ULONGEST) addr);
7799 sprintf (p, ",%x", bp_tgt->placed_size);
7800
7801 putpkt (rs->buf);
7802 getpkt (&rs->buf, &rs->buf_size, 0);
7803
7804 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7805 {
7806 case PACKET_ERROR:
7807 case PACKET_UNKNOWN:
7808 return -1;
7809 case PACKET_OK:
7810 return 0;
7811 }
7812 internal_error (__FILE__, __LINE__,
7813 _("remote_insert_hw_breakpoint: reached end of function"));
7814 }
7815
7816
7817 static int
7818 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7819 struct bp_target_info *bp_tgt)
7820 {
7821 CORE_ADDR addr;
7822 struct remote_state *rs = get_remote_state ();
7823 char *p = rs->buf;
7824
7825 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7826 return -1;
7827
7828 *(p++) = 'z';
7829 *(p++) = '1';
7830 *(p++) = ',';
7831
7832 addr = remote_address_masked (bp_tgt->placed_address);
7833 p += hexnumstr (p, (ULONGEST) addr);
7834 sprintf (p, ",%x", bp_tgt->placed_size);
7835
7836 putpkt (rs->buf);
7837 getpkt (&rs->buf, &rs->buf_size, 0);
7838
7839 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7840 {
7841 case PACKET_ERROR:
7842 case PACKET_UNKNOWN:
7843 return -1;
7844 case PACKET_OK:
7845 return 0;
7846 }
7847 internal_error (__FILE__, __LINE__,
7848 _("remote_remove_hw_breakpoint: reached end of function"));
7849 }
7850
7851 /* Table used by the crc32 function to calcuate the checksum. */
7852
7853 static unsigned long crc32_table[256] =
7854 {0, 0};
7855
7856 static unsigned long
7857 crc32 (const unsigned char *buf, int len, unsigned int crc)
7858 {
7859 if (!crc32_table[1])
7860 {
7861 /* Initialize the CRC table and the decoding table. */
7862 int i, j;
7863 unsigned int c;
7864
7865 for (i = 0; i < 256; i++)
7866 {
7867 for (c = i << 24, j = 8; j > 0; --j)
7868 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7869 crc32_table[i] = c;
7870 }
7871 }
7872
7873 while (len--)
7874 {
7875 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7876 buf++;
7877 }
7878 return crc;
7879 }
7880
7881 /* Verify memory using the "qCRC:" request. */
7882
7883 static int
7884 remote_verify_memory (struct target_ops *ops,
7885 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7886 {
7887 struct remote_state *rs = get_remote_state ();
7888 unsigned long host_crc, target_crc;
7889 char *tmp;
7890
7891 /* FIXME: assumes lma can fit into long. */
7892 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7893 (long) lma, (long) size);
7894 putpkt (rs->buf);
7895
7896 /* Be clever; compute the host_crc before waiting for target
7897 reply. */
7898 host_crc = crc32 (data, size, 0xffffffff);
7899
7900 getpkt (&rs->buf, &rs->buf_size, 0);
7901 if (rs->buf[0] == 'E')
7902 return -1;
7903
7904 if (rs->buf[0] != 'C')
7905 error (_("remote target does not support this operation"));
7906
7907 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7908 target_crc = target_crc * 16 + fromhex (*tmp);
7909
7910 return (host_crc == target_crc);
7911 }
7912
7913 /* compare-sections command
7914
7915 With no arguments, compares each loadable section in the exec bfd
7916 with the same memory range on the target, and reports mismatches.
7917 Useful for verifying the image on the target against the exec file. */
7918
7919 static void
7920 compare_sections_command (char *args, int from_tty)
7921 {
7922 asection *s;
7923 struct cleanup *old_chain;
7924 char *sectdata;
7925 const char *sectname;
7926 bfd_size_type size;
7927 bfd_vma lma;
7928 int matched = 0;
7929 int mismatched = 0;
7930 int res;
7931
7932 if (!exec_bfd)
7933 error (_("command cannot be used without an exec file"));
7934
7935 for (s = exec_bfd->sections; s; s = s->next)
7936 {
7937 if (!(s->flags & SEC_LOAD))
7938 continue; /* Skip non-loadable section. */
7939
7940 size = bfd_get_section_size (s);
7941 if (size == 0)
7942 continue; /* Skip zero-length section. */
7943
7944 sectname = bfd_get_section_name (exec_bfd, s);
7945 if (args && strcmp (args, sectname) != 0)
7946 continue; /* Not the section selected by user. */
7947
7948 matched = 1; /* Do this section. */
7949 lma = s->lma;
7950
7951 sectdata = xmalloc (size);
7952 old_chain = make_cleanup (xfree, sectdata);
7953 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7954
7955 res = target_verify_memory (sectdata, lma, size);
7956
7957 if (res == -1)
7958 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7959 paddress (target_gdbarch, lma),
7960 paddress (target_gdbarch, lma + size));
7961
7962 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7963 paddress (target_gdbarch, lma),
7964 paddress (target_gdbarch, lma + size));
7965 if (res)
7966 printf_filtered ("matched.\n");
7967 else
7968 {
7969 printf_filtered ("MIS-MATCHED!\n");
7970 mismatched++;
7971 }
7972
7973 do_cleanups (old_chain);
7974 }
7975 if (mismatched > 0)
7976 warning (_("One or more sections of the remote executable does not match\n\
7977 the loaded file\n"));
7978 if (args && !matched)
7979 printf_filtered (_("No loaded section named '%s'.\n"), args);
7980 }
7981
7982 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7983 into remote target. The number of bytes written to the remote
7984 target is returned, or -1 for error. */
7985
7986 static LONGEST
7987 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7988 const char *annex, const gdb_byte *writebuf,
7989 ULONGEST offset, LONGEST len,
7990 struct packet_config *packet)
7991 {
7992 int i, buf_len;
7993 ULONGEST n;
7994 struct remote_state *rs = get_remote_state ();
7995 int max_size = get_memory_write_packet_size ();
7996
7997 if (packet->support == PACKET_DISABLE)
7998 return -1;
7999
8000 /* Insert header. */
8001 i = snprintf (rs->buf, max_size,
8002 "qXfer:%s:write:%s:%s:",
8003 object_name, annex ? annex : "",
8004 phex_nz (offset, sizeof offset));
8005 max_size -= (i + 1);
8006
8007 /* Escape as much data as fits into rs->buf. */
8008 buf_len = remote_escape_output
8009 (writebuf, len, (rs->buf + i), &max_size, max_size);
8010
8011 if (putpkt_binary (rs->buf, i + buf_len) < 0
8012 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8013 || packet_ok (rs->buf, packet) != PACKET_OK)
8014 return -1;
8015
8016 unpack_varlen_hex (rs->buf, &n);
8017 return n;
8018 }
8019
8020 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8021 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8022 number of bytes read is returned, or 0 for EOF, or -1 for error.
8023 The number of bytes read may be less than LEN without indicating an
8024 EOF. PACKET is checked and updated to indicate whether the remote
8025 target supports this object. */
8026
8027 static LONGEST
8028 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8029 const char *annex,
8030 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8031 struct packet_config *packet)
8032 {
8033 static char *finished_object;
8034 static char *finished_annex;
8035 static ULONGEST finished_offset;
8036
8037 struct remote_state *rs = get_remote_state ();
8038 LONGEST i, n, packet_len;
8039
8040 if (packet->support == PACKET_DISABLE)
8041 return -1;
8042
8043 /* Check whether we've cached an end-of-object packet that matches
8044 this request. */
8045 if (finished_object)
8046 {
8047 if (strcmp (object_name, finished_object) == 0
8048 && strcmp (annex ? annex : "", finished_annex) == 0
8049 && offset == finished_offset)
8050 return 0;
8051
8052 /* Otherwise, we're now reading something different. Discard
8053 the cache. */
8054 xfree (finished_object);
8055 xfree (finished_annex);
8056 finished_object = NULL;
8057 finished_annex = NULL;
8058 }
8059
8060 /* Request only enough to fit in a single packet. The actual data
8061 may not, since we don't know how much of it will need to be escaped;
8062 the target is free to respond with slightly less data. We subtract
8063 five to account for the response type and the protocol frame. */
8064 n = min (get_remote_packet_size () - 5, len);
8065 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8066 object_name, annex ? annex : "",
8067 phex_nz (offset, sizeof offset),
8068 phex_nz (n, sizeof n));
8069 i = putpkt (rs->buf);
8070 if (i < 0)
8071 return -1;
8072
8073 rs->buf[0] = '\0';
8074 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8075 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8076 return -1;
8077
8078 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8079 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8080
8081 /* 'm' means there is (or at least might be) more data after this
8082 batch. That does not make sense unless there's at least one byte
8083 of data in this reply. */
8084 if (rs->buf[0] == 'm' && packet_len == 1)
8085 error (_("Remote qXfer reply contained no data."));
8086
8087 /* Got some data. */
8088 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8089
8090 /* 'l' is an EOF marker, possibly including a final block of data,
8091 or possibly empty. If we have the final block of a non-empty
8092 object, record this fact to bypass a subsequent partial read. */
8093 if (rs->buf[0] == 'l' && offset + i > 0)
8094 {
8095 finished_object = xstrdup (object_name);
8096 finished_annex = xstrdup (annex ? annex : "");
8097 finished_offset = offset + i;
8098 }
8099
8100 return i;
8101 }
8102
8103 static LONGEST
8104 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8105 const char *annex, gdb_byte *readbuf,
8106 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8107 {
8108 struct remote_state *rs;
8109 int i;
8110 char *p2;
8111 char query_type;
8112
8113 set_remote_traceframe ();
8114 set_general_thread (inferior_ptid);
8115
8116 rs = get_remote_state ();
8117
8118 /* Handle memory using the standard memory routines. */
8119 if (object == TARGET_OBJECT_MEMORY)
8120 {
8121 int xfered;
8122
8123 errno = 0;
8124
8125 /* If the remote target is connected but not running, we should
8126 pass this request down to a lower stratum (e.g. the executable
8127 file). */
8128 if (!target_has_execution)
8129 return 0;
8130
8131 if (writebuf != NULL)
8132 xfered = remote_write_bytes (offset, writebuf, len);
8133 else
8134 xfered = remote_read_bytes (offset, readbuf, len);
8135
8136 if (xfered > 0)
8137 return xfered;
8138 else if (xfered == 0 && errno == 0)
8139 return 0;
8140 else
8141 return -1;
8142 }
8143
8144 /* Handle SPU memory using qxfer packets. */
8145 if (object == TARGET_OBJECT_SPU)
8146 {
8147 if (readbuf)
8148 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8149 &remote_protocol_packets
8150 [PACKET_qXfer_spu_read]);
8151 else
8152 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8153 &remote_protocol_packets
8154 [PACKET_qXfer_spu_write]);
8155 }
8156
8157 /* Handle extra signal info using qxfer packets. */
8158 if (object == TARGET_OBJECT_SIGNAL_INFO)
8159 {
8160 if (readbuf)
8161 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8162 &remote_protocol_packets
8163 [PACKET_qXfer_siginfo_read]);
8164 else
8165 return remote_write_qxfer (ops, "siginfo", annex,
8166 writebuf, offset, len,
8167 &remote_protocol_packets
8168 [PACKET_qXfer_siginfo_write]);
8169 }
8170
8171 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8172 {
8173 if (readbuf)
8174 return remote_read_qxfer (ops, "statictrace", annex,
8175 readbuf, offset, len,
8176 &remote_protocol_packets
8177 [PACKET_qXfer_statictrace_read]);
8178 else
8179 return -1;
8180 }
8181
8182 /* Only handle flash writes. */
8183 if (writebuf != NULL)
8184 {
8185 LONGEST xfered;
8186
8187 switch (object)
8188 {
8189 case TARGET_OBJECT_FLASH:
8190 xfered = remote_flash_write (ops, offset, len, writebuf);
8191
8192 if (xfered > 0)
8193 return xfered;
8194 else if (xfered == 0 && errno == 0)
8195 return 0;
8196 else
8197 return -1;
8198
8199 default:
8200 return -1;
8201 }
8202 }
8203
8204 /* Map pre-existing objects onto letters. DO NOT do this for new
8205 objects!!! Instead specify new query packets. */
8206 switch (object)
8207 {
8208 case TARGET_OBJECT_AVR:
8209 query_type = 'R';
8210 break;
8211
8212 case TARGET_OBJECT_AUXV:
8213 gdb_assert (annex == NULL);
8214 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8215 &remote_protocol_packets[PACKET_qXfer_auxv]);
8216
8217 case TARGET_OBJECT_AVAILABLE_FEATURES:
8218 return remote_read_qxfer
8219 (ops, "features", annex, readbuf, offset, len,
8220 &remote_protocol_packets[PACKET_qXfer_features]);
8221
8222 case TARGET_OBJECT_LIBRARIES:
8223 return remote_read_qxfer
8224 (ops, "libraries", annex, readbuf, offset, len,
8225 &remote_protocol_packets[PACKET_qXfer_libraries]);
8226
8227 case TARGET_OBJECT_MEMORY_MAP:
8228 gdb_assert (annex == NULL);
8229 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8230 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8231
8232 case TARGET_OBJECT_OSDATA:
8233 /* Should only get here if we're connected. */
8234 gdb_assert (remote_desc);
8235 return remote_read_qxfer
8236 (ops, "osdata", annex, readbuf, offset, len,
8237 &remote_protocol_packets[PACKET_qXfer_osdata]);
8238
8239 case TARGET_OBJECT_THREADS:
8240 gdb_assert (annex == NULL);
8241 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8242 &remote_protocol_packets[PACKET_qXfer_threads]);
8243
8244 case TARGET_OBJECT_TRACEFRAME_INFO:
8245 gdb_assert (annex == NULL);
8246 return remote_read_qxfer
8247 (ops, "traceframe-info", annex, readbuf, offset, len,
8248 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8249 default:
8250 return -1;
8251 }
8252
8253 /* Note: a zero OFFSET and LEN can be used to query the minimum
8254 buffer size. */
8255 if (offset == 0 && len == 0)
8256 return (get_remote_packet_size ());
8257 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8258 large enough let the caller deal with it. */
8259 if (len < get_remote_packet_size ())
8260 return -1;
8261 len = get_remote_packet_size ();
8262
8263 /* Except for querying the minimum buffer size, target must be open. */
8264 if (!remote_desc)
8265 error (_("remote query is only available after target open"));
8266
8267 gdb_assert (annex != NULL);
8268 gdb_assert (readbuf != NULL);
8269
8270 p2 = rs->buf;
8271 *p2++ = 'q';
8272 *p2++ = query_type;
8273
8274 /* We used one buffer char for the remote protocol q command and
8275 another for the query type. As the remote protocol encapsulation
8276 uses 4 chars plus one extra in case we are debugging
8277 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8278 string. */
8279 i = 0;
8280 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8281 {
8282 /* Bad caller may have sent forbidden characters. */
8283 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8284 *p2++ = annex[i];
8285 i++;
8286 }
8287 *p2 = '\0';
8288 gdb_assert (annex[i] == '\0');
8289
8290 i = putpkt (rs->buf);
8291 if (i < 0)
8292 return i;
8293
8294 getpkt (&rs->buf, &rs->buf_size, 0);
8295 strcpy ((char *) readbuf, rs->buf);
8296
8297 return strlen ((char *) readbuf);
8298 }
8299
8300 static int
8301 remote_search_memory (struct target_ops* ops,
8302 CORE_ADDR start_addr, ULONGEST search_space_len,
8303 const gdb_byte *pattern, ULONGEST pattern_len,
8304 CORE_ADDR *found_addrp)
8305 {
8306 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8307 struct remote_state *rs = get_remote_state ();
8308 int max_size = get_memory_write_packet_size ();
8309 struct packet_config *packet =
8310 &remote_protocol_packets[PACKET_qSearch_memory];
8311 /* Number of packet bytes used to encode the pattern;
8312 this could be more than PATTERN_LEN due to escape characters. */
8313 int escaped_pattern_len;
8314 /* Amount of pattern that was encodable in the packet. */
8315 int used_pattern_len;
8316 int i;
8317 int found;
8318 ULONGEST found_addr;
8319
8320 /* Don't go to the target if we don't have to.
8321 This is done before checking packet->support to avoid the possibility that
8322 a success for this edge case means the facility works in general. */
8323 if (pattern_len > search_space_len)
8324 return 0;
8325 if (pattern_len == 0)
8326 {
8327 *found_addrp = start_addr;
8328 return 1;
8329 }
8330
8331 /* If we already know the packet isn't supported, fall back to the simple
8332 way of searching memory. */
8333
8334 if (packet->support == PACKET_DISABLE)
8335 {
8336 /* Target doesn't provided special support, fall back and use the
8337 standard support (copy memory and do the search here). */
8338 return simple_search_memory (ops, start_addr, search_space_len,
8339 pattern, pattern_len, found_addrp);
8340 }
8341
8342 /* Insert header. */
8343 i = snprintf (rs->buf, max_size,
8344 "qSearch:memory:%s;%s;",
8345 phex_nz (start_addr, addr_size),
8346 phex_nz (search_space_len, sizeof (search_space_len)));
8347 max_size -= (i + 1);
8348
8349 /* Escape as much data as fits into rs->buf. */
8350 escaped_pattern_len =
8351 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8352 &used_pattern_len, max_size);
8353
8354 /* Bail if the pattern is too large. */
8355 if (used_pattern_len != pattern_len)
8356 error (_("Pattern is too large to transmit to remote target."));
8357
8358 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8359 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8360 || packet_ok (rs->buf, packet) != PACKET_OK)
8361 {
8362 /* The request may not have worked because the command is not
8363 supported. If so, fall back to the simple way. */
8364 if (packet->support == PACKET_DISABLE)
8365 {
8366 return simple_search_memory (ops, start_addr, search_space_len,
8367 pattern, pattern_len, found_addrp);
8368 }
8369 return -1;
8370 }
8371
8372 if (rs->buf[0] == '0')
8373 found = 0;
8374 else if (rs->buf[0] == '1')
8375 {
8376 found = 1;
8377 if (rs->buf[1] != ',')
8378 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8379 unpack_varlen_hex (rs->buf + 2, &found_addr);
8380 *found_addrp = found_addr;
8381 }
8382 else
8383 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8384
8385 return found;
8386 }
8387
8388 static void
8389 remote_rcmd (char *command,
8390 struct ui_file *outbuf)
8391 {
8392 struct remote_state *rs = get_remote_state ();
8393 char *p = rs->buf;
8394
8395 if (!remote_desc)
8396 error (_("remote rcmd is only available after target open"));
8397
8398 /* Send a NULL command across as an empty command. */
8399 if (command == NULL)
8400 command = "";
8401
8402 /* The query prefix. */
8403 strcpy (rs->buf, "qRcmd,");
8404 p = strchr (rs->buf, '\0');
8405
8406 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8407 > get_remote_packet_size ())
8408 error (_("\"monitor\" command ``%s'' is too long."), command);
8409
8410 /* Encode the actual command. */
8411 bin2hex ((gdb_byte *) command, p, 0);
8412
8413 if (putpkt (rs->buf) < 0)
8414 error (_("Communication problem with target."));
8415
8416 /* get/display the response */
8417 while (1)
8418 {
8419 char *buf;
8420
8421 /* XXX - see also remote_get_noisy_reply(). */
8422 rs->buf[0] = '\0';
8423 getpkt (&rs->buf, &rs->buf_size, 0);
8424 buf = rs->buf;
8425 if (buf[0] == '\0')
8426 error (_("Target does not support this command."));
8427 if (buf[0] == 'O' && buf[1] != 'K')
8428 {
8429 remote_console_output (buf + 1); /* 'O' message from stub. */
8430 continue;
8431 }
8432 if (strcmp (buf, "OK") == 0)
8433 break;
8434 if (strlen (buf) == 3 && buf[0] == 'E'
8435 && isdigit (buf[1]) && isdigit (buf[2]))
8436 {
8437 error (_("Protocol error with Rcmd"));
8438 }
8439 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8440 {
8441 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8442
8443 fputc_unfiltered (c, outbuf);
8444 }
8445 break;
8446 }
8447 }
8448
8449 static VEC(mem_region_s) *
8450 remote_memory_map (struct target_ops *ops)
8451 {
8452 VEC(mem_region_s) *result = NULL;
8453 char *text = target_read_stralloc (&current_target,
8454 TARGET_OBJECT_MEMORY_MAP, NULL);
8455
8456 if (text)
8457 {
8458 struct cleanup *back_to = make_cleanup (xfree, text);
8459
8460 result = parse_memory_map (text);
8461 do_cleanups (back_to);
8462 }
8463
8464 return result;
8465 }
8466
8467 static void
8468 packet_command (char *args, int from_tty)
8469 {
8470 struct remote_state *rs = get_remote_state ();
8471
8472 if (!remote_desc)
8473 error (_("command can only be used with remote target"));
8474
8475 if (!args)
8476 error (_("remote-packet command requires packet text as argument"));
8477
8478 puts_filtered ("sending: ");
8479 print_packet (args);
8480 puts_filtered ("\n");
8481 putpkt (args);
8482
8483 getpkt (&rs->buf, &rs->buf_size, 0);
8484 puts_filtered ("received: ");
8485 print_packet (rs->buf);
8486 puts_filtered ("\n");
8487 }
8488
8489 #if 0
8490 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8491
8492 static void display_thread_info (struct gdb_ext_thread_info *info);
8493
8494 static void threadset_test_cmd (char *cmd, int tty);
8495
8496 static void threadalive_test (char *cmd, int tty);
8497
8498 static void threadlist_test_cmd (char *cmd, int tty);
8499
8500 int get_and_display_threadinfo (threadref *ref);
8501
8502 static void threadinfo_test_cmd (char *cmd, int tty);
8503
8504 static int thread_display_step (threadref *ref, void *context);
8505
8506 static void threadlist_update_test_cmd (char *cmd, int tty);
8507
8508 static void init_remote_threadtests (void);
8509
8510 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8511
8512 static void
8513 threadset_test_cmd (char *cmd, int tty)
8514 {
8515 int sample_thread = SAMPLE_THREAD;
8516
8517 printf_filtered (_("Remote threadset test\n"));
8518 set_general_thread (sample_thread);
8519 }
8520
8521
8522 static void
8523 threadalive_test (char *cmd, int tty)
8524 {
8525 int sample_thread = SAMPLE_THREAD;
8526 int pid = ptid_get_pid (inferior_ptid);
8527 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8528
8529 if (remote_thread_alive (ptid))
8530 printf_filtered ("PASS: Thread alive test\n");
8531 else
8532 printf_filtered ("FAIL: Thread alive test\n");
8533 }
8534
8535 void output_threadid (char *title, threadref *ref);
8536
8537 void
8538 output_threadid (char *title, threadref *ref)
8539 {
8540 char hexid[20];
8541
8542 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8543 hexid[16] = 0;
8544 printf_filtered ("%s %s\n", title, (&hexid[0]));
8545 }
8546
8547 static void
8548 threadlist_test_cmd (char *cmd, int tty)
8549 {
8550 int startflag = 1;
8551 threadref nextthread;
8552 int done, result_count;
8553 threadref threadlist[3];
8554
8555 printf_filtered ("Remote Threadlist test\n");
8556 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8557 &result_count, &threadlist[0]))
8558 printf_filtered ("FAIL: threadlist test\n");
8559 else
8560 {
8561 threadref *scan = threadlist;
8562 threadref *limit = scan + result_count;
8563
8564 while (scan < limit)
8565 output_threadid (" thread ", scan++);
8566 }
8567 }
8568
8569 void
8570 display_thread_info (struct gdb_ext_thread_info *info)
8571 {
8572 output_threadid ("Threadid: ", &info->threadid);
8573 printf_filtered ("Name: %s\n ", info->shortname);
8574 printf_filtered ("State: %s\n", info->display);
8575 printf_filtered ("other: %s\n\n", info->more_display);
8576 }
8577
8578 int
8579 get_and_display_threadinfo (threadref *ref)
8580 {
8581 int result;
8582 int set;
8583 struct gdb_ext_thread_info threadinfo;
8584
8585 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8586 | TAG_MOREDISPLAY | TAG_DISPLAY;
8587 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8588 display_thread_info (&threadinfo);
8589 return result;
8590 }
8591
8592 static void
8593 threadinfo_test_cmd (char *cmd, int tty)
8594 {
8595 int athread = SAMPLE_THREAD;
8596 threadref thread;
8597 int set;
8598
8599 int_to_threadref (&thread, athread);
8600 printf_filtered ("Remote Threadinfo test\n");
8601 if (!get_and_display_threadinfo (&thread))
8602 printf_filtered ("FAIL cannot get thread info\n");
8603 }
8604
8605 static int
8606 thread_display_step (threadref *ref, void *context)
8607 {
8608 /* output_threadid(" threadstep ",ref); *//* simple test */
8609 return get_and_display_threadinfo (ref);
8610 }
8611
8612 static void
8613 threadlist_update_test_cmd (char *cmd, int tty)
8614 {
8615 printf_filtered ("Remote Threadlist update test\n");
8616 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8617 }
8618
8619 static void
8620 init_remote_threadtests (void)
8621 {
8622 add_com ("tlist", class_obscure, threadlist_test_cmd,
8623 _("Fetch and print the remote list of "
8624 "thread identifiers, one pkt only"));
8625 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8626 _("Fetch and display info about one thread"));
8627 add_com ("tset", class_obscure, threadset_test_cmd,
8628 _("Test setting to a different thread"));
8629 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8630 _("Iterate through updating all remote thread info"));
8631 add_com ("talive", class_obscure, threadalive_test,
8632 _(" Remote thread alive test "));
8633 }
8634
8635 #endif /* 0 */
8636
8637 /* Convert a thread ID to a string. Returns the string in a static
8638 buffer. */
8639
8640 static char *
8641 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8642 {
8643 static char buf[64];
8644 struct remote_state *rs = get_remote_state ();
8645
8646 if (ptid_is_pid (ptid))
8647 {
8648 /* Printing an inferior target id. */
8649
8650 /* When multi-process extensions are off, there's no way in the
8651 remote protocol to know the remote process id, if there's any
8652 at all. There's one exception --- when we're connected with
8653 target extended-remote, and we manually attached to a process
8654 with "attach PID". We don't record anywhere a flag that
8655 allows us to distinguish that case from the case of
8656 connecting with extended-remote and the stub already being
8657 attached to a process, and reporting yes to qAttached, hence
8658 no smart special casing here. */
8659 if (!remote_multi_process_p (rs))
8660 {
8661 xsnprintf (buf, sizeof buf, "Remote target");
8662 return buf;
8663 }
8664
8665 return normal_pid_to_str (ptid);
8666 }
8667 else
8668 {
8669 if (ptid_equal (magic_null_ptid, ptid))
8670 xsnprintf (buf, sizeof buf, "Thread <main>");
8671 else if (remote_multi_process_p (rs))
8672 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8673 ptid_get_pid (ptid), ptid_get_tid (ptid));
8674 else
8675 xsnprintf (buf, sizeof buf, "Thread %ld",
8676 ptid_get_tid (ptid));
8677 return buf;
8678 }
8679 }
8680
8681 /* Get the address of the thread local variable in OBJFILE which is
8682 stored at OFFSET within the thread local storage for thread PTID. */
8683
8684 static CORE_ADDR
8685 remote_get_thread_local_address (struct target_ops *ops,
8686 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8687 {
8688 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8689 {
8690 struct remote_state *rs = get_remote_state ();
8691 char *p = rs->buf;
8692 char *endp = rs->buf + get_remote_packet_size ();
8693 enum packet_result result;
8694
8695 strcpy (p, "qGetTLSAddr:");
8696 p += strlen (p);
8697 p = write_ptid (p, endp, ptid);
8698 *p++ = ',';
8699 p += hexnumstr (p, offset);
8700 *p++ = ',';
8701 p += hexnumstr (p, lm);
8702 *p++ = '\0';
8703
8704 putpkt (rs->buf);
8705 getpkt (&rs->buf, &rs->buf_size, 0);
8706 result = packet_ok (rs->buf,
8707 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8708 if (result == PACKET_OK)
8709 {
8710 ULONGEST result;
8711
8712 unpack_varlen_hex (rs->buf, &result);
8713 return result;
8714 }
8715 else if (result == PACKET_UNKNOWN)
8716 throw_error (TLS_GENERIC_ERROR,
8717 _("Remote target doesn't support qGetTLSAddr packet"));
8718 else
8719 throw_error (TLS_GENERIC_ERROR,
8720 _("Remote target failed to process qGetTLSAddr request"));
8721 }
8722 else
8723 throw_error (TLS_GENERIC_ERROR,
8724 _("TLS not supported or disabled on this target"));
8725 /* Not reached. */
8726 return 0;
8727 }
8728
8729 /* Provide thread local base, i.e. Thread Information Block address.
8730 Returns 1 if ptid is found and thread_local_base is non zero. */
8731
8732 int
8733 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8734 {
8735 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8736 {
8737 struct remote_state *rs = get_remote_state ();
8738 char *p = rs->buf;
8739 char *endp = rs->buf + get_remote_packet_size ();
8740 enum packet_result result;
8741
8742 strcpy (p, "qGetTIBAddr:");
8743 p += strlen (p);
8744 p = write_ptid (p, endp, ptid);
8745 *p++ = '\0';
8746
8747 putpkt (rs->buf);
8748 getpkt (&rs->buf, &rs->buf_size, 0);
8749 result = packet_ok (rs->buf,
8750 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8751 if (result == PACKET_OK)
8752 {
8753 ULONGEST result;
8754
8755 unpack_varlen_hex (rs->buf, &result);
8756 if (addr)
8757 *addr = (CORE_ADDR) result;
8758 return 1;
8759 }
8760 else if (result == PACKET_UNKNOWN)
8761 error (_("Remote target doesn't support qGetTIBAddr packet"));
8762 else
8763 error (_("Remote target failed to process qGetTIBAddr request"));
8764 }
8765 else
8766 error (_("qGetTIBAddr not supported or disabled on this target"));
8767 /* Not reached. */
8768 return 0;
8769 }
8770
8771 /* Support for inferring a target description based on the current
8772 architecture and the size of a 'g' packet. While the 'g' packet
8773 can have any size (since optional registers can be left off the
8774 end), some sizes are easily recognizable given knowledge of the
8775 approximate architecture. */
8776
8777 struct remote_g_packet_guess
8778 {
8779 int bytes;
8780 const struct target_desc *tdesc;
8781 };
8782 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8783 DEF_VEC_O(remote_g_packet_guess_s);
8784
8785 struct remote_g_packet_data
8786 {
8787 VEC(remote_g_packet_guess_s) *guesses;
8788 };
8789
8790 static struct gdbarch_data *remote_g_packet_data_handle;
8791
8792 static void *
8793 remote_g_packet_data_init (struct obstack *obstack)
8794 {
8795 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8796 }
8797
8798 void
8799 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8800 const struct target_desc *tdesc)
8801 {
8802 struct remote_g_packet_data *data
8803 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8804 struct remote_g_packet_guess new_guess, *guess;
8805 int ix;
8806
8807 gdb_assert (tdesc != NULL);
8808
8809 for (ix = 0;
8810 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8811 ix++)
8812 if (guess->bytes == bytes)
8813 internal_error (__FILE__, __LINE__,
8814 _("Duplicate g packet description added for size %d"),
8815 bytes);
8816
8817 new_guess.bytes = bytes;
8818 new_guess.tdesc = tdesc;
8819 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8820 }
8821
8822 /* Return 1 if remote_read_description would do anything on this target
8823 and architecture, 0 otherwise. */
8824
8825 static int
8826 remote_read_description_p (struct target_ops *target)
8827 {
8828 struct remote_g_packet_data *data
8829 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8830
8831 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8832 return 1;
8833
8834 return 0;
8835 }
8836
8837 static const struct target_desc *
8838 remote_read_description (struct target_ops *target)
8839 {
8840 struct remote_g_packet_data *data
8841 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8842
8843 /* Do not try this during initial connection, when we do not know
8844 whether there is a running but stopped thread. */
8845 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8846 return NULL;
8847
8848 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8849 {
8850 struct remote_g_packet_guess *guess;
8851 int ix;
8852 int bytes = send_g_packet ();
8853
8854 for (ix = 0;
8855 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8856 ix++)
8857 if (guess->bytes == bytes)
8858 return guess->tdesc;
8859
8860 /* We discard the g packet. A minor optimization would be to
8861 hold on to it, and fill the register cache once we have selected
8862 an architecture, but it's too tricky to do safely. */
8863 }
8864
8865 return NULL;
8866 }
8867
8868 /* Remote file transfer support. This is host-initiated I/O, not
8869 target-initiated; for target-initiated, see remote-fileio.c. */
8870
8871 /* If *LEFT is at least the length of STRING, copy STRING to
8872 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8873 decrease *LEFT. Otherwise raise an error. */
8874
8875 static void
8876 remote_buffer_add_string (char **buffer, int *left, char *string)
8877 {
8878 int len = strlen (string);
8879
8880 if (len > *left)
8881 error (_("Packet too long for target."));
8882
8883 memcpy (*buffer, string, len);
8884 *buffer += len;
8885 *left -= len;
8886
8887 /* NUL-terminate the buffer as a convenience, if there is
8888 room. */
8889 if (*left)
8890 **buffer = '\0';
8891 }
8892
8893 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8894 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8895 decrease *LEFT. Otherwise raise an error. */
8896
8897 static void
8898 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8899 int len)
8900 {
8901 if (2 * len > *left)
8902 error (_("Packet too long for target."));
8903
8904 bin2hex (bytes, *buffer, len);
8905 *buffer += 2 * len;
8906 *left -= 2 * len;
8907
8908 /* NUL-terminate the buffer as a convenience, if there is
8909 room. */
8910 if (*left)
8911 **buffer = '\0';
8912 }
8913
8914 /* If *LEFT is large enough, convert VALUE to hex and add it to
8915 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8916 decrease *LEFT. Otherwise raise an error. */
8917
8918 static void
8919 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8920 {
8921 int len = hexnumlen (value);
8922
8923 if (len > *left)
8924 error (_("Packet too long for target."));
8925
8926 hexnumstr (*buffer, value);
8927 *buffer += len;
8928 *left -= len;
8929
8930 /* NUL-terminate the buffer as a convenience, if there is
8931 room. */
8932 if (*left)
8933 **buffer = '\0';
8934 }
8935
8936 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8937 value, *REMOTE_ERRNO to the remote error number or zero if none
8938 was included, and *ATTACHMENT to point to the start of the annex
8939 if any. The length of the packet isn't needed here; there may
8940 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8941
8942 Return 0 if the packet could be parsed, -1 if it could not. If
8943 -1 is returned, the other variables may not be initialized. */
8944
8945 static int
8946 remote_hostio_parse_result (char *buffer, int *retcode,
8947 int *remote_errno, char **attachment)
8948 {
8949 char *p, *p2;
8950
8951 *remote_errno = 0;
8952 *attachment = NULL;
8953
8954 if (buffer[0] != 'F')
8955 return -1;
8956
8957 errno = 0;
8958 *retcode = strtol (&buffer[1], &p, 16);
8959 if (errno != 0 || p == &buffer[1])
8960 return -1;
8961
8962 /* Check for ",errno". */
8963 if (*p == ',')
8964 {
8965 errno = 0;
8966 *remote_errno = strtol (p + 1, &p2, 16);
8967 if (errno != 0 || p + 1 == p2)
8968 return -1;
8969 p = p2;
8970 }
8971
8972 /* Check for ";attachment". If there is no attachment, the
8973 packet should end here. */
8974 if (*p == ';')
8975 {
8976 *attachment = p + 1;
8977 return 0;
8978 }
8979 else if (*p == '\0')
8980 return 0;
8981 else
8982 return -1;
8983 }
8984
8985 /* Send a prepared I/O packet to the target and read its response.
8986 The prepared packet is in the global RS->BUF before this function
8987 is called, and the answer is there when we return.
8988
8989 COMMAND_BYTES is the length of the request to send, which may include
8990 binary data. WHICH_PACKET is the packet configuration to check
8991 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8992 is set to the error number and -1 is returned. Otherwise the value
8993 returned by the function is returned.
8994
8995 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8996 attachment is expected; an error will be reported if there's a
8997 mismatch. If one is found, *ATTACHMENT will be set to point into
8998 the packet buffer and *ATTACHMENT_LEN will be set to the
8999 attachment's length. */
9000
9001 static int
9002 remote_hostio_send_command (int command_bytes, int which_packet,
9003 int *remote_errno, char **attachment,
9004 int *attachment_len)
9005 {
9006 struct remote_state *rs = get_remote_state ();
9007 int ret, bytes_read;
9008 char *attachment_tmp;
9009
9010 if (!remote_desc
9011 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9012 {
9013 *remote_errno = FILEIO_ENOSYS;
9014 return -1;
9015 }
9016
9017 putpkt_binary (rs->buf, command_bytes);
9018 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9019
9020 /* If it timed out, something is wrong. Don't try to parse the
9021 buffer. */
9022 if (bytes_read < 0)
9023 {
9024 *remote_errno = FILEIO_EINVAL;
9025 return -1;
9026 }
9027
9028 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9029 {
9030 case PACKET_ERROR:
9031 *remote_errno = FILEIO_EINVAL;
9032 return -1;
9033 case PACKET_UNKNOWN:
9034 *remote_errno = FILEIO_ENOSYS;
9035 return -1;
9036 case PACKET_OK:
9037 break;
9038 }
9039
9040 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9041 &attachment_tmp))
9042 {
9043 *remote_errno = FILEIO_EINVAL;
9044 return -1;
9045 }
9046
9047 /* Make sure we saw an attachment if and only if we expected one. */
9048 if ((attachment_tmp == NULL && attachment != NULL)
9049 || (attachment_tmp != NULL && attachment == NULL))
9050 {
9051 *remote_errno = FILEIO_EINVAL;
9052 return -1;
9053 }
9054
9055 /* If an attachment was found, it must point into the packet buffer;
9056 work out how many bytes there were. */
9057 if (attachment_tmp != NULL)
9058 {
9059 *attachment = attachment_tmp;
9060 *attachment_len = bytes_read - (*attachment - rs->buf);
9061 }
9062
9063 return ret;
9064 }
9065
9066 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9067 remote file descriptor, or -1 if an error occurs (and set
9068 *REMOTE_ERRNO). */
9069
9070 static int
9071 remote_hostio_open (const char *filename, int flags, int mode,
9072 int *remote_errno)
9073 {
9074 struct remote_state *rs = get_remote_state ();
9075 char *p = rs->buf;
9076 int left = get_remote_packet_size () - 1;
9077
9078 remote_buffer_add_string (&p, &left, "vFile:open:");
9079
9080 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9081 strlen (filename));
9082 remote_buffer_add_string (&p, &left, ",");
9083
9084 remote_buffer_add_int (&p, &left, flags);
9085 remote_buffer_add_string (&p, &left, ",");
9086
9087 remote_buffer_add_int (&p, &left, mode);
9088
9089 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9090 remote_errno, NULL, NULL);
9091 }
9092
9093 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9094 Return the number of bytes written, or -1 if an error occurs (and
9095 set *REMOTE_ERRNO). */
9096
9097 static int
9098 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9099 ULONGEST offset, int *remote_errno)
9100 {
9101 struct remote_state *rs = get_remote_state ();
9102 char *p = rs->buf;
9103 int left = get_remote_packet_size ();
9104 int out_len;
9105
9106 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9107
9108 remote_buffer_add_int (&p, &left, fd);
9109 remote_buffer_add_string (&p, &left, ",");
9110
9111 remote_buffer_add_int (&p, &left, offset);
9112 remote_buffer_add_string (&p, &left, ",");
9113
9114 p += remote_escape_output (write_buf, len, p, &out_len,
9115 get_remote_packet_size () - (p - rs->buf));
9116
9117 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9118 remote_errno, NULL, NULL);
9119 }
9120
9121 /* Read up to LEN bytes FD on the remote target into READ_BUF
9122 Return the number of bytes read, or -1 if an error occurs (and
9123 set *REMOTE_ERRNO). */
9124
9125 static int
9126 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9127 ULONGEST offset, int *remote_errno)
9128 {
9129 struct remote_state *rs = get_remote_state ();
9130 char *p = rs->buf;
9131 char *attachment;
9132 int left = get_remote_packet_size ();
9133 int ret, attachment_len;
9134 int read_len;
9135
9136 remote_buffer_add_string (&p, &left, "vFile:pread:");
9137
9138 remote_buffer_add_int (&p, &left, fd);
9139 remote_buffer_add_string (&p, &left, ",");
9140
9141 remote_buffer_add_int (&p, &left, len);
9142 remote_buffer_add_string (&p, &left, ",");
9143
9144 remote_buffer_add_int (&p, &left, offset);
9145
9146 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9147 remote_errno, &attachment,
9148 &attachment_len);
9149
9150 if (ret < 0)
9151 return ret;
9152
9153 read_len = remote_unescape_input (attachment, attachment_len,
9154 read_buf, len);
9155 if (read_len != ret)
9156 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9157
9158 return ret;
9159 }
9160
9161 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9162 (and set *REMOTE_ERRNO). */
9163
9164 static int
9165 remote_hostio_close (int fd, int *remote_errno)
9166 {
9167 struct remote_state *rs = get_remote_state ();
9168 char *p = rs->buf;
9169 int left = get_remote_packet_size () - 1;
9170
9171 remote_buffer_add_string (&p, &left, "vFile:close:");
9172
9173 remote_buffer_add_int (&p, &left, fd);
9174
9175 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9176 remote_errno, NULL, NULL);
9177 }
9178
9179 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9180 occurs (and set *REMOTE_ERRNO). */
9181
9182 static int
9183 remote_hostio_unlink (const char *filename, int *remote_errno)
9184 {
9185 struct remote_state *rs = get_remote_state ();
9186 char *p = rs->buf;
9187 int left = get_remote_packet_size () - 1;
9188
9189 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9190
9191 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9192 strlen (filename));
9193
9194 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9195 remote_errno, NULL, NULL);
9196 }
9197
9198 static int
9199 remote_fileio_errno_to_host (int errnum)
9200 {
9201 switch (errnum)
9202 {
9203 case FILEIO_EPERM:
9204 return EPERM;
9205 case FILEIO_ENOENT:
9206 return ENOENT;
9207 case FILEIO_EINTR:
9208 return EINTR;
9209 case FILEIO_EIO:
9210 return EIO;
9211 case FILEIO_EBADF:
9212 return EBADF;
9213 case FILEIO_EACCES:
9214 return EACCES;
9215 case FILEIO_EFAULT:
9216 return EFAULT;
9217 case FILEIO_EBUSY:
9218 return EBUSY;
9219 case FILEIO_EEXIST:
9220 return EEXIST;
9221 case FILEIO_ENODEV:
9222 return ENODEV;
9223 case FILEIO_ENOTDIR:
9224 return ENOTDIR;
9225 case FILEIO_EISDIR:
9226 return EISDIR;
9227 case FILEIO_EINVAL:
9228 return EINVAL;
9229 case FILEIO_ENFILE:
9230 return ENFILE;
9231 case FILEIO_EMFILE:
9232 return EMFILE;
9233 case FILEIO_EFBIG:
9234 return EFBIG;
9235 case FILEIO_ENOSPC:
9236 return ENOSPC;
9237 case FILEIO_ESPIPE:
9238 return ESPIPE;
9239 case FILEIO_EROFS:
9240 return EROFS;
9241 case FILEIO_ENOSYS:
9242 return ENOSYS;
9243 case FILEIO_ENAMETOOLONG:
9244 return ENAMETOOLONG;
9245 }
9246 return -1;
9247 }
9248
9249 static char *
9250 remote_hostio_error (int errnum)
9251 {
9252 int host_error = remote_fileio_errno_to_host (errnum);
9253
9254 if (host_error == -1)
9255 error (_("Unknown remote I/O error %d"), errnum);
9256 else
9257 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9258 }
9259
9260 static void
9261 remote_hostio_close_cleanup (void *opaque)
9262 {
9263 int fd = *(int *) opaque;
9264 int remote_errno;
9265
9266 remote_hostio_close (fd, &remote_errno);
9267 }
9268
9269
9270 static void *
9271 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9272 {
9273 const char *filename = bfd_get_filename (abfd);
9274 int fd, remote_errno;
9275 int *stream;
9276
9277 gdb_assert (remote_filename_p (filename));
9278
9279 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9280 if (fd == -1)
9281 {
9282 errno = remote_fileio_errno_to_host (remote_errno);
9283 bfd_set_error (bfd_error_system_call);
9284 return NULL;
9285 }
9286
9287 stream = xmalloc (sizeof (int));
9288 *stream = fd;
9289 return stream;
9290 }
9291
9292 static int
9293 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9294 {
9295 int fd = *(int *)stream;
9296 int remote_errno;
9297
9298 xfree (stream);
9299
9300 /* Ignore errors on close; these may happen if the remote
9301 connection was already torn down. */
9302 remote_hostio_close (fd, &remote_errno);
9303
9304 return 1;
9305 }
9306
9307 static file_ptr
9308 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9309 file_ptr nbytes, file_ptr offset)
9310 {
9311 int fd = *(int *)stream;
9312 int remote_errno;
9313 file_ptr pos, bytes;
9314
9315 pos = 0;
9316 while (nbytes > pos)
9317 {
9318 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9319 offset + pos, &remote_errno);
9320 if (bytes == 0)
9321 /* Success, but no bytes, means end-of-file. */
9322 break;
9323 if (bytes == -1)
9324 {
9325 errno = remote_fileio_errno_to_host (remote_errno);
9326 bfd_set_error (bfd_error_system_call);
9327 return -1;
9328 }
9329
9330 pos += bytes;
9331 }
9332
9333 return pos;
9334 }
9335
9336 static int
9337 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9338 {
9339 /* FIXME: We should probably implement remote_hostio_stat. */
9340 sb->st_size = INT_MAX;
9341 return 0;
9342 }
9343
9344 int
9345 remote_filename_p (const char *filename)
9346 {
9347 return strncmp (filename, "remote:", 7) == 0;
9348 }
9349
9350 bfd *
9351 remote_bfd_open (const char *remote_file, const char *target)
9352 {
9353 return bfd_openr_iovec (remote_file, target,
9354 remote_bfd_iovec_open, NULL,
9355 remote_bfd_iovec_pread,
9356 remote_bfd_iovec_close,
9357 remote_bfd_iovec_stat);
9358 }
9359
9360 void
9361 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9362 {
9363 struct cleanup *back_to, *close_cleanup;
9364 int retcode, fd, remote_errno, bytes, io_size;
9365 FILE *file;
9366 gdb_byte *buffer;
9367 int bytes_in_buffer;
9368 int saw_eof;
9369 ULONGEST offset;
9370
9371 if (!remote_desc)
9372 error (_("command can only be used with remote target"));
9373
9374 file = fopen (local_file, "rb");
9375 if (file == NULL)
9376 perror_with_name (local_file);
9377 back_to = make_cleanup_fclose (file);
9378
9379 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9380 | FILEIO_O_TRUNC),
9381 0700, &remote_errno);
9382 if (fd == -1)
9383 remote_hostio_error (remote_errno);
9384
9385 /* Send up to this many bytes at once. They won't all fit in the
9386 remote packet limit, so we'll transfer slightly fewer. */
9387 io_size = get_remote_packet_size ();
9388 buffer = xmalloc (io_size);
9389 make_cleanup (xfree, buffer);
9390
9391 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9392
9393 bytes_in_buffer = 0;
9394 saw_eof = 0;
9395 offset = 0;
9396 while (bytes_in_buffer || !saw_eof)
9397 {
9398 if (!saw_eof)
9399 {
9400 bytes = fread (buffer + bytes_in_buffer, 1,
9401 io_size - bytes_in_buffer,
9402 file);
9403 if (bytes == 0)
9404 {
9405 if (ferror (file))
9406 error (_("Error reading %s."), local_file);
9407 else
9408 {
9409 /* EOF. Unless there is something still in the
9410 buffer from the last iteration, we are done. */
9411 saw_eof = 1;
9412 if (bytes_in_buffer == 0)
9413 break;
9414 }
9415 }
9416 }
9417 else
9418 bytes = 0;
9419
9420 bytes += bytes_in_buffer;
9421 bytes_in_buffer = 0;
9422
9423 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9424 offset, &remote_errno);
9425
9426 if (retcode < 0)
9427 remote_hostio_error (remote_errno);
9428 else if (retcode == 0)
9429 error (_("Remote write of %d bytes returned 0!"), bytes);
9430 else if (retcode < bytes)
9431 {
9432 /* Short write. Save the rest of the read data for the next
9433 write. */
9434 bytes_in_buffer = bytes - retcode;
9435 memmove (buffer, buffer + retcode, bytes_in_buffer);
9436 }
9437
9438 offset += retcode;
9439 }
9440
9441 discard_cleanups (close_cleanup);
9442 if (remote_hostio_close (fd, &remote_errno))
9443 remote_hostio_error (remote_errno);
9444
9445 if (from_tty)
9446 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9447 do_cleanups (back_to);
9448 }
9449
9450 void
9451 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9452 {
9453 struct cleanup *back_to, *close_cleanup;
9454 int fd, remote_errno, bytes, io_size;
9455 FILE *file;
9456 gdb_byte *buffer;
9457 ULONGEST offset;
9458
9459 if (!remote_desc)
9460 error (_("command can only be used with remote target"));
9461
9462 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9463 if (fd == -1)
9464 remote_hostio_error (remote_errno);
9465
9466 file = fopen (local_file, "wb");
9467 if (file == NULL)
9468 perror_with_name (local_file);
9469 back_to = make_cleanup_fclose (file);
9470
9471 /* Send up to this many bytes at once. They won't all fit in the
9472 remote packet limit, so we'll transfer slightly fewer. */
9473 io_size = get_remote_packet_size ();
9474 buffer = xmalloc (io_size);
9475 make_cleanup (xfree, buffer);
9476
9477 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9478
9479 offset = 0;
9480 while (1)
9481 {
9482 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9483 if (bytes == 0)
9484 /* Success, but no bytes, means end-of-file. */
9485 break;
9486 if (bytes == -1)
9487 remote_hostio_error (remote_errno);
9488
9489 offset += bytes;
9490
9491 bytes = fwrite (buffer, 1, bytes, file);
9492 if (bytes == 0)
9493 perror_with_name (local_file);
9494 }
9495
9496 discard_cleanups (close_cleanup);
9497 if (remote_hostio_close (fd, &remote_errno))
9498 remote_hostio_error (remote_errno);
9499
9500 if (from_tty)
9501 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9502 do_cleanups (back_to);
9503 }
9504
9505 void
9506 remote_file_delete (const char *remote_file, int from_tty)
9507 {
9508 int retcode, remote_errno;
9509
9510 if (!remote_desc)
9511 error (_("command can only be used with remote target"));
9512
9513 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9514 if (retcode == -1)
9515 remote_hostio_error (remote_errno);
9516
9517 if (from_tty)
9518 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9519 }
9520
9521 static void
9522 remote_put_command (char *args, int from_tty)
9523 {
9524 struct cleanup *back_to;
9525 char **argv;
9526
9527 if (args == NULL)
9528 error_no_arg (_("file to put"));
9529
9530 argv = gdb_buildargv (args);
9531 back_to = make_cleanup_freeargv (argv);
9532 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9533 error (_("Invalid parameters to remote put"));
9534
9535 remote_file_put (argv[0], argv[1], from_tty);
9536
9537 do_cleanups (back_to);
9538 }
9539
9540 static void
9541 remote_get_command (char *args, int from_tty)
9542 {
9543 struct cleanup *back_to;
9544 char **argv;
9545
9546 if (args == NULL)
9547 error_no_arg (_("file to get"));
9548
9549 argv = gdb_buildargv (args);
9550 back_to = make_cleanup_freeargv (argv);
9551 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9552 error (_("Invalid parameters to remote get"));
9553
9554 remote_file_get (argv[0], argv[1], from_tty);
9555
9556 do_cleanups (back_to);
9557 }
9558
9559 static void
9560 remote_delete_command (char *args, int from_tty)
9561 {
9562 struct cleanup *back_to;
9563 char **argv;
9564
9565 if (args == NULL)
9566 error_no_arg (_("file to delete"));
9567
9568 argv = gdb_buildargv (args);
9569 back_to = make_cleanup_freeargv (argv);
9570 if (argv[0] == NULL || argv[1] != NULL)
9571 error (_("Invalid parameters to remote delete"));
9572
9573 remote_file_delete (argv[0], from_tty);
9574
9575 do_cleanups (back_to);
9576 }
9577
9578 static void
9579 remote_command (char *args, int from_tty)
9580 {
9581 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9582 }
9583
9584 static int
9585 remote_can_execute_reverse (void)
9586 {
9587 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9588 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9589 return 1;
9590 else
9591 return 0;
9592 }
9593
9594 static int
9595 remote_supports_non_stop (void)
9596 {
9597 return 1;
9598 }
9599
9600 static int
9601 remote_supports_multi_process (void)
9602 {
9603 struct remote_state *rs = get_remote_state ();
9604
9605 return remote_multi_process_p (rs);
9606 }
9607
9608 int
9609 remote_supports_cond_tracepoints (void)
9610 {
9611 struct remote_state *rs = get_remote_state ();
9612
9613 return rs->cond_tracepoints;
9614 }
9615
9616 int
9617 remote_supports_fast_tracepoints (void)
9618 {
9619 struct remote_state *rs = get_remote_state ();
9620
9621 return rs->fast_tracepoints;
9622 }
9623
9624 static int
9625 remote_supports_static_tracepoints (void)
9626 {
9627 struct remote_state *rs = get_remote_state ();
9628
9629 return rs->static_tracepoints;
9630 }
9631
9632 static void
9633 remote_trace_init (void)
9634 {
9635 putpkt ("QTinit");
9636 remote_get_noisy_reply (&target_buf, &target_buf_size);
9637 if (strcmp (target_buf, "OK") != 0)
9638 error (_("Target does not support this command."));
9639 }
9640
9641 static void free_actions_list (char **actions_list);
9642 static void free_actions_list_cleanup_wrapper (void *);
9643 static void
9644 free_actions_list_cleanup_wrapper (void *al)
9645 {
9646 free_actions_list (al);
9647 }
9648
9649 static void
9650 free_actions_list (char **actions_list)
9651 {
9652 int ndx;
9653
9654 if (actions_list == 0)
9655 return;
9656
9657 for (ndx = 0; actions_list[ndx]; ndx++)
9658 xfree (actions_list[ndx]);
9659
9660 xfree (actions_list);
9661 }
9662
9663 /* Recursive routine to walk through command list including loops, and
9664 download packets for each command. */
9665
9666 static void
9667 remote_download_command_source (int num, ULONGEST addr,
9668 struct command_line *cmds)
9669 {
9670 struct remote_state *rs = get_remote_state ();
9671 struct command_line *cmd;
9672
9673 for (cmd = cmds; cmd; cmd = cmd->next)
9674 {
9675 QUIT; /* Allow user to bail out with ^C. */
9676 strcpy (rs->buf, "QTDPsrc:");
9677 encode_source_string (num, addr, "cmd", cmd->line,
9678 rs->buf + strlen (rs->buf),
9679 rs->buf_size - strlen (rs->buf));
9680 putpkt (rs->buf);
9681 remote_get_noisy_reply (&target_buf, &target_buf_size);
9682 if (strcmp (target_buf, "OK"))
9683 warning (_("Target does not support source download."));
9684
9685 if (cmd->control_type == while_control
9686 || cmd->control_type == while_stepping_control)
9687 {
9688 remote_download_command_source (num, addr, *cmd->body_list);
9689
9690 QUIT; /* Allow user to bail out with ^C. */
9691 strcpy (rs->buf, "QTDPsrc:");
9692 encode_source_string (num, addr, "cmd", "end",
9693 rs->buf + strlen (rs->buf),
9694 rs->buf_size - strlen (rs->buf));
9695 putpkt (rs->buf);
9696 remote_get_noisy_reply (&target_buf, &target_buf_size);
9697 if (strcmp (target_buf, "OK"))
9698 warning (_("Target does not support source download."));
9699 }
9700 }
9701 }
9702
9703 static void
9704 remote_download_tracepoint (struct breakpoint *t)
9705 {
9706 struct bp_location *loc;
9707 CORE_ADDR tpaddr;
9708 char addrbuf[40];
9709 char buf[2048];
9710 char **tdp_actions;
9711 char **stepping_actions;
9712 int ndx;
9713 struct cleanup *old_chain = NULL;
9714 struct agent_expr *aexpr;
9715 struct cleanup *aexpr_chain = NULL;
9716 char *pkt;
9717
9718 /* Iterate over all the tracepoint locations. It's up to the target to
9719 notice multiple tracepoint packets with the same number but different
9720 addresses, and treat them as multiple locations. */
9721 for (loc = t->loc; loc; loc = loc->next)
9722 {
9723 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9724 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9725 tdp_actions);
9726 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9727 stepping_actions);
9728
9729 tpaddr = loc->address;
9730 sprintf_vma (addrbuf, tpaddr);
9731 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9732 addrbuf, /* address */
9733 (t->enable_state == bp_enabled ? 'E' : 'D'),
9734 t->step_count, t->pass_count);
9735 /* Fast tracepoints are mostly handled by the target, but we can
9736 tell the target how big of an instruction block should be moved
9737 around. */
9738 if (t->type == bp_fast_tracepoint)
9739 {
9740 /* Only test for support at download time; we may not know
9741 target capabilities at definition time. */
9742 if (remote_supports_fast_tracepoints ())
9743 {
9744 int isize;
9745
9746 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9747 tpaddr, &isize, NULL))
9748 sprintf (buf + strlen (buf), ":F%x", isize);
9749 else
9750 /* If it passed validation at definition but fails now,
9751 something is very wrong. */
9752 internal_error (__FILE__, __LINE__,
9753 _("Fast tracepoint not "
9754 "valid during download"));
9755 }
9756 else
9757 /* Fast tracepoints are functionally identical to regular
9758 tracepoints, so don't take lack of support as a reason to
9759 give up on the trace run. */
9760 warning (_("Target does not support fast tracepoints, "
9761 "downloading %d as regular tracepoint"), t->number);
9762 }
9763 else if (t->type == bp_static_tracepoint)
9764 {
9765 /* Only test for support at download time; we may not know
9766 target capabilities at definition time. */
9767 if (remote_supports_static_tracepoints ())
9768 {
9769 struct static_tracepoint_marker marker;
9770
9771 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9772 strcat (buf, ":S");
9773 else
9774 error (_("Static tracepoint not valid during download"));
9775 }
9776 else
9777 /* Fast tracepoints are functionally identical to regular
9778 tracepoints, so don't take lack of support as a reason
9779 to give up on the trace run. */
9780 error (_("Target does not support static tracepoints"));
9781 }
9782 /* If the tracepoint has a conditional, make it into an agent
9783 expression and append to the definition. */
9784 if (loc->cond)
9785 {
9786 /* Only test support at download time, we may not know target
9787 capabilities at definition time. */
9788 if (remote_supports_cond_tracepoints ())
9789 {
9790 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9791 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9792 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9793 pkt = buf + strlen (buf);
9794 for (ndx = 0; ndx < aexpr->len; ++ndx)
9795 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9796 *pkt = '\0';
9797 do_cleanups (aexpr_chain);
9798 }
9799 else
9800 warning (_("Target does not support conditional tracepoints, "
9801 "ignoring tp %d cond"), t->number);
9802 }
9803
9804 if (t->commands || *default_collect)
9805 strcat (buf, "-");
9806 putpkt (buf);
9807 remote_get_noisy_reply (&target_buf, &target_buf_size);
9808 if (strcmp (target_buf, "OK"))
9809 error (_("Target does not support tracepoints."));
9810
9811 /* do_single_steps (t); */
9812 if (tdp_actions)
9813 {
9814 for (ndx = 0; tdp_actions[ndx]; ndx++)
9815 {
9816 QUIT; /* Allow user to bail out with ^C. */
9817 sprintf (buf, "QTDP:-%x:%s:%s%c",
9818 t->number, addrbuf, /* address */
9819 tdp_actions[ndx],
9820 ((tdp_actions[ndx + 1] || stepping_actions)
9821 ? '-' : 0));
9822 putpkt (buf);
9823 remote_get_noisy_reply (&target_buf,
9824 &target_buf_size);
9825 if (strcmp (target_buf, "OK"))
9826 error (_("Error on target while setting tracepoints."));
9827 }
9828 }
9829 if (stepping_actions)
9830 {
9831 for (ndx = 0; stepping_actions[ndx]; ndx++)
9832 {
9833 QUIT; /* Allow user to bail out with ^C. */
9834 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9835 t->number, addrbuf, /* address */
9836 ((ndx == 0) ? "S" : ""),
9837 stepping_actions[ndx],
9838 (stepping_actions[ndx + 1] ? "-" : ""));
9839 putpkt (buf);
9840 remote_get_noisy_reply (&target_buf,
9841 &target_buf_size);
9842 if (strcmp (target_buf, "OK"))
9843 error (_("Error on target while setting tracepoints."));
9844 }
9845 }
9846
9847 if (remote_protocol_packets[PACKET_TracepointSource].support
9848 == PACKET_ENABLE)
9849 {
9850 if (t->addr_string)
9851 {
9852 strcpy (buf, "QTDPsrc:");
9853 encode_source_string (t->number, loc->address,
9854 "at", t->addr_string, buf + strlen (buf),
9855 2048 - strlen (buf));
9856
9857 putpkt (buf);
9858 remote_get_noisy_reply (&target_buf, &target_buf_size);
9859 if (strcmp (target_buf, "OK"))
9860 warning (_("Target does not support source download."));
9861 }
9862 if (t->cond_string)
9863 {
9864 strcpy (buf, "QTDPsrc:");
9865 encode_source_string (t->number, loc->address,
9866 "cond", t->cond_string, buf + strlen (buf),
9867 2048 - strlen (buf));
9868 putpkt (buf);
9869 remote_get_noisy_reply (&target_buf, &target_buf_size);
9870 if (strcmp (target_buf, "OK"))
9871 warning (_("Target does not support source download."));
9872 }
9873 remote_download_command_source (t->number, loc->address,
9874 breakpoint_commands (t));
9875 }
9876
9877 do_cleanups (old_chain);
9878 }
9879 }
9880
9881 static void
9882 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9883 {
9884 struct remote_state *rs = get_remote_state ();
9885 char *p;
9886
9887 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9888 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9889 p = rs->buf + strlen (rs->buf);
9890 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9891 error (_("Trace state variable name too long for tsv definition packet"));
9892 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9893 *p++ = '\0';
9894 putpkt (rs->buf);
9895 remote_get_noisy_reply (&target_buf, &target_buf_size);
9896 if (*target_buf == '\0')
9897 error (_("Target does not support this command."));
9898 if (strcmp (target_buf, "OK") != 0)
9899 error (_("Error on target while downloading trace state variable."));
9900 }
9901
9902 static void
9903 remote_trace_set_readonly_regions (void)
9904 {
9905 asection *s;
9906 bfd_size_type size;
9907 bfd_vma vma;
9908 int anysecs = 0;
9909
9910 if (!exec_bfd)
9911 return; /* No information to give. */
9912
9913 strcpy (target_buf, "QTro");
9914 for (s = exec_bfd->sections; s; s = s->next)
9915 {
9916 char tmp1[40], tmp2[40];
9917
9918 if ((s->flags & SEC_LOAD) == 0 ||
9919 /* (s->flags & SEC_CODE) == 0 || */
9920 (s->flags & SEC_READONLY) == 0)
9921 continue;
9922
9923 anysecs = 1;
9924 vma = bfd_get_section_vma (,s);
9925 size = bfd_get_section_size (s);
9926 sprintf_vma (tmp1, vma);
9927 sprintf_vma (tmp2, vma + size);
9928 sprintf (target_buf + strlen (target_buf),
9929 ":%s,%s", tmp1, tmp2);
9930 }
9931 if (anysecs)
9932 {
9933 putpkt (target_buf);
9934 getpkt (&target_buf, &target_buf_size, 0);
9935 }
9936 }
9937
9938 static void
9939 remote_trace_start (void)
9940 {
9941 putpkt ("QTStart");
9942 remote_get_noisy_reply (&target_buf, &target_buf_size);
9943 if (*target_buf == '\0')
9944 error (_("Target does not support this command."));
9945 if (strcmp (target_buf, "OK") != 0)
9946 error (_("Bogus reply from target: %s"), target_buf);
9947 }
9948
9949 static int
9950 remote_get_trace_status (struct trace_status *ts)
9951 {
9952 char *p;
9953 /* FIXME we need to get register block size some other way. */
9954 extern int trace_regblock_size;
9955
9956 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9957
9958 putpkt ("qTStatus");
9959 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9960
9961 /* If the remote target doesn't do tracing, flag it. */
9962 if (*p == '\0')
9963 return -1;
9964
9965 /* We're working with a live target. */
9966 ts->from_file = 0;
9967
9968 /* Set some defaults. */
9969 ts->running_known = 0;
9970 ts->stop_reason = trace_stop_reason_unknown;
9971 ts->traceframe_count = -1;
9972 ts->buffer_free = 0;
9973
9974 if (*p++ != 'T')
9975 error (_("Bogus trace status reply from target: %s"), target_buf);
9976
9977 parse_trace_status (p, ts);
9978
9979 return ts->running;
9980 }
9981
9982 static void
9983 remote_trace_stop (void)
9984 {
9985 putpkt ("QTStop");
9986 remote_get_noisy_reply (&target_buf, &target_buf_size);
9987 if (*target_buf == '\0')
9988 error (_("Target does not support this command."));
9989 if (strcmp (target_buf, "OK") != 0)
9990 error (_("Bogus reply from target: %s"), target_buf);
9991 }
9992
9993 static int
9994 remote_trace_find (enum trace_find_type type, int num,
9995 ULONGEST addr1, ULONGEST addr2,
9996 int *tpp)
9997 {
9998 struct remote_state *rs = get_remote_state ();
9999 char *p, *reply;
10000 int target_frameno = -1, target_tracept = -1;
10001
10002 /* Lookups other than by absolute frame number depend on the current
10003 trace selected, so make sure it is correct on the remote end
10004 first. */
10005 if (type != tfind_number)
10006 set_remote_traceframe ();
10007
10008 p = rs->buf;
10009 strcpy (p, "QTFrame:");
10010 p = strchr (p, '\0');
10011 switch (type)
10012 {
10013 case tfind_number:
10014 sprintf (p, "%x", num);
10015 break;
10016 case tfind_pc:
10017 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10018 break;
10019 case tfind_tp:
10020 sprintf (p, "tdp:%x", num);
10021 break;
10022 case tfind_range:
10023 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10024 break;
10025 case tfind_outside:
10026 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10027 break;
10028 default:
10029 error (_("Unknown trace find type %d"), type);
10030 }
10031
10032 putpkt (rs->buf);
10033 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10034 if (*reply == '\0')
10035 error (_("Target does not support this command."));
10036
10037 while (reply && *reply)
10038 switch (*reply)
10039 {
10040 case 'F':
10041 p = ++reply;
10042 target_frameno = (int) strtol (p, &reply, 16);
10043 if (reply == p)
10044 error (_("Unable to parse trace frame number"));
10045 /* Don't update our remote traceframe number cache on failure
10046 to select a remote traceframe. */
10047 if (target_frameno == -1)
10048 return -1;
10049 break;
10050 case 'T':
10051 p = ++reply;
10052 target_tracept = (int) strtol (p, &reply, 16);
10053 if (reply == p)
10054 error (_("Unable to parse tracepoint number"));
10055 break;
10056 case 'O': /* "OK"? */
10057 if (reply[1] == 'K' && reply[2] == '\0')
10058 reply += 2;
10059 else
10060 error (_("Bogus reply from target: %s"), reply);
10061 break;
10062 default:
10063 error (_("Bogus reply from target: %s"), reply);
10064 }
10065 if (tpp)
10066 *tpp = target_tracept;
10067
10068 remote_traceframe_number = target_frameno;
10069 return target_frameno;
10070 }
10071
10072 static int
10073 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10074 {
10075 struct remote_state *rs = get_remote_state ();
10076 char *reply;
10077 ULONGEST uval;
10078
10079 set_remote_traceframe ();
10080
10081 sprintf (rs->buf, "qTV:%x", tsvnum);
10082 putpkt (rs->buf);
10083 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10084 if (reply && *reply)
10085 {
10086 if (*reply == 'V')
10087 {
10088 unpack_varlen_hex (reply + 1, &uval);
10089 *val = (LONGEST) uval;
10090 return 1;
10091 }
10092 }
10093 return 0;
10094 }
10095
10096 static int
10097 remote_save_trace_data (const char *filename)
10098 {
10099 struct remote_state *rs = get_remote_state ();
10100 char *p, *reply;
10101
10102 p = rs->buf;
10103 strcpy (p, "QTSave:");
10104 p += strlen (p);
10105 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10106 error (_("Remote file name too long for trace save packet"));
10107 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10108 *p++ = '\0';
10109 putpkt (rs->buf);
10110 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10111 if (*reply != '\0')
10112 error (_("Target does not support this command."));
10113 if (strcmp (reply, "OK") != 0)
10114 error (_("Bogus reply from target: %s"), reply);
10115 return 0;
10116 }
10117
10118 /* This is basically a memory transfer, but needs to be its own packet
10119 because we don't know how the target actually organizes its trace
10120 memory, plus we want to be able to ask for as much as possible, but
10121 not be unhappy if we don't get as much as we ask for. */
10122
10123 static LONGEST
10124 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10125 {
10126 struct remote_state *rs = get_remote_state ();
10127 char *reply;
10128 char *p;
10129 int rslt;
10130
10131 p = rs->buf;
10132 strcpy (p, "qTBuffer:");
10133 p += strlen (p);
10134 p += hexnumstr (p, offset);
10135 *p++ = ',';
10136 p += hexnumstr (p, len);
10137 *p++ = '\0';
10138
10139 putpkt (rs->buf);
10140 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10141 if (reply && *reply)
10142 {
10143 /* 'l' by itself means we're at the end of the buffer and
10144 there is nothing more to get. */
10145 if (*reply == 'l')
10146 return 0;
10147
10148 /* Convert the reply into binary. Limit the number of bytes to
10149 convert according to our passed-in buffer size, rather than
10150 what was returned in the packet; if the target is
10151 unexpectedly generous and gives us a bigger reply than we
10152 asked for, we don't want to crash. */
10153 rslt = hex2bin (target_buf, buf, len);
10154 return rslt;
10155 }
10156
10157 /* Something went wrong, flag as an error. */
10158 return -1;
10159 }
10160
10161 static void
10162 remote_set_disconnected_tracing (int val)
10163 {
10164 struct remote_state *rs = get_remote_state ();
10165
10166 if (rs->disconnected_tracing)
10167 {
10168 char *reply;
10169
10170 sprintf (rs->buf, "QTDisconnected:%x", val);
10171 putpkt (rs->buf);
10172 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10173 if (*reply == '\0')
10174 error (_("Target does not support this command."));
10175 if (strcmp (reply, "OK") != 0)
10176 error (_("Bogus reply from target: %s"), reply);
10177 }
10178 else if (val)
10179 warning (_("Target does not support disconnected tracing."));
10180 }
10181
10182 static int
10183 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10184 {
10185 struct thread_info *info = find_thread_ptid (ptid);
10186
10187 if (info && info->private)
10188 return info->private->core;
10189 return -1;
10190 }
10191
10192 static void
10193 remote_set_circular_trace_buffer (int val)
10194 {
10195 struct remote_state *rs = get_remote_state ();
10196 char *reply;
10197
10198 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10199 putpkt (rs->buf);
10200 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10201 if (*reply == '\0')
10202 error (_("Target does not support this command."));
10203 if (strcmp (reply, "OK") != 0)
10204 error (_("Bogus reply from target: %s"), reply);
10205 }
10206
10207 static struct traceframe_info *
10208 remote_traceframe_info (void)
10209 {
10210 char *text;
10211
10212 text = target_read_stralloc (&current_target,
10213 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10214 if (text != NULL)
10215 {
10216 struct traceframe_info *info;
10217 struct cleanup *back_to = make_cleanup (xfree, text);
10218
10219 info = parse_traceframe_info (text);
10220 do_cleanups (back_to);
10221 return info;
10222 }
10223
10224 return NULL;
10225 }
10226
10227 static void
10228 init_remote_ops (void)
10229 {
10230 remote_ops.to_shortname = "remote";
10231 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10232 remote_ops.to_doc =
10233 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10234 Specify the serial device it is connected to\n\
10235 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10236 remote_ops.to_open = remote_open;
10237 remote_ops.to_close = remote_close;
10238 remote_ops.to_detach = remote_detach;
10239 remote_ops.to_disconnect = remote_disconnect;
10240 remote_ops.to_resume = remote_resume;
10241 remote_ops.to_wait = remote_wait;
10242 remote_ops.to_fetch_registers = remote_fetch_registers;
10243 remote_ops.to_store_registers = remote_store_registers;
10244 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10245 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10246 remote_ops.to_files_info = remote_files_info;
10247 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10248 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10249 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10250 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10251 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10252 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10253 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10254 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10255 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10256 remote_ops.to_kill = remote_kill;
10257 remote_ops.to_load = generic_load;
10258 remote_ops.to_mourn_inferior = remote_mourn;
10259 remote_ops.to_notice_signals = remote_notice_signals;
10260 remote_ops.to_thread_alive = remote_thread_alive;
10261 remote_ops.to_find_new_threads = remote_threads_info;
10262 remote_ops.to_pid_to_str = remote_pid_to_str;
10263 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10264 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10265 remote_ops.to_stop = remote_stop;
10266 remote_ops.to_xfer_partial = remote_xfer_partial;
10267 remote_ops.to_rcmd = remote_rcmd;
10268 remote_ops.to_log_command = serial_log_command;
10269 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10270 remote_ops.to_stratum = process_stratum;
10271 remote_ops.to_has_all_memory = default_child_has_all_memory;
10272 remote_ops.to_has_memory = default_child_has_memory;
10273 remote_ops.to_has_stack = default_child_has_stack;
10274 remote_ops.to_has_registers = default_child_has_registers;
10275 remote_ops.to_has_execution = default_child_has_execution;
10276 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10277 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10278 remote_ops.to_magic = OPS_MAGIC;
10279 remote_ops.to_memory_map = remote_memory_map;
10280 remote_ops.to_flash_erase = remote_flash_erase;
10281 remote_ops.to_flash_done = remote_flash_done;
10282 remote_ops.to_read_description = remote_read_description;
10283 remote_ops.to_search_memory = remote_search_memory;
10284 remote_ops.to_can_async_p = remote_can_async_p;
10285 remote_ops.to_is_async_p = remote_is_async_p;
10286 remote_ops.to_async = remote_async;
10287 remote_ops.to_async_mask = remote_async_mask;
10288 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10289 remote_ops.to_terminal_ours = remote_terminal_ours;
10290 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10291 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10292 remote_ops.to_trace_init = remote_trace_init;
10293 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10294 remote_ops.to_download_trace_state_variable
10295 = remote_download_trace_state_variable;
10296 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10297 remote_ops.to_trace_start = remote_trace_start;
10298 remote_ops.to_get_trace_status = remote_get_trace_status;
10299 remote_ops.to_trace_stop = remote_trace_stop;
10300 remote_ops.to_trace_find = remote_trace_find;
10301 remote_ops.to_get_trace_state_variable_value
10302 = remote_get_trace_state_variable_value;
10303 remote_ops.to_save_trace_data = remote_save_trace_data;
10304 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10305 remote_ops.to_upload_trace_state_variables
10306 = remote_upload_trace_state_variables;
10307 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10308 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10309 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10310 remote_ops.to_core_of_thread = remote_core_of_thread;
10311 remote_ops.to_verify_memory = remote_verify_memory;
10312 remote_ops.to_get_tib_address = remote_get_tib_address;
10313 remote_ops.to_set_permissions = remote_set_permissions;
10314 remote_ops.to_static_tracepoint_marker_at
10315 = remote_static_tracepoint_marker_at;
10316 remote_ops.to_static_tracepoint_markers_by_strid
10317 = remote_static_tracepoint_markers_by_strid;
10318 remote_ops.to_traceframe_info = remote_traceframe_info;
10319 }
10320
10321 /* Set up the extended remote vector by making a copy of the standard
10322 remote vector and adding to it. */
10323
10324 static void
10325 init_extended_remote_ops (void)
10326 {
10327 extended_remote_ops = remote_ops;
10328
10329 extended_remote_ops.to_shortname = "extended-remote";
10330 extended_remote_ops.to_longname =
10331 "Extended remote serial target in gdb-specific protocol";
10332 extended_remote_ops.to_doc =
10333 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10334 Specify the serial device it is connected to (e.g. /dev/ttya).";
10335 extended_remote_ops.to_open = extended_remote_open;
10336 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10337 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10338 extended_remote_ops.to_detach = extended_remote_detach;
10339 extended_remote_ops.to_attach = extended_remote_attach;
10340 extended_remote_ops.to_kill = extended_remote_kill;
10341 }
10342
10343 static int
10344 remote_can_async_p (void)
10345 {
10346 if (!target_async_permitted)
10347 /* We only enable async when the user specifically asks for it. */
10348 return 0;
10349
10350 /* We're async whenever the serial device is. */
10351 return remote_async_mask_value && serial_can_async_p (remote_desc);
10352 }
10353
10354 static int
10355 remote_is_async_p (void)
10356 {
10357 if (!target_async_permitted)
10358 /* We only enable async when the user specifically asks for it. */
10359 return 0;
10360
10361 /* We're async whenever the serial device is. */
10362 return remote_async_mask_value && serial_is_async_p (remote_desc);
10363 }
10364
10365 /* Pass the SERIAL event on and up to the client. One day this code
10366 will be able to delay notifying the client of an event until the
10367 point where an entire packet has been received. */
10368
10369 static void (*async_client_callback) (enum inferior_event_type event_type,
10370 void *context);
10371 static void *async_client_context;
10372 static serial_event_ftype remote_async_serial_handler;
10373
10374 static void
10375 remote_async_serial_handler (struct serial *scb, void *context)
10376 {
10377 /* Don't propogate error information up to the client. Instead let
10378 the client find out about the error by querying the target. */
10379 async_client_callback (INF_REG_EVENT, async_client_context);
10380 }
10381
10382 static void
10383 remote_async_inferior_event_handler (gdb_client_data data)
10384 {
10385 inferior_event_handler (INF_REG_EVENT, NULL);
10386 }
10387
10388 static void
10389 remote_async_get_pending_events_handler (gdb_client_data data)
10390 {
10391 remote_get_pending_stop_replies ();
10392 }
10393
10394 static void
10395 remote_async (void (*callback) (enum inferior_event_type event_type,
10396 void *context), void *context)
10397 {
10398 if (remote_async_mask_value == 0)
10399 internal_error (__FILE__, __LINE__,
10400 _("Calling remote_async when async is masked"));
10401
10402 if (callback != NULL)
10403 {
10404 serial_async (remote_desc, remote_async_serial_handler, NULL);
10405 async_client_callback = callback;
10406 async_client_context = context;
10407 }
10408 else
10409 serial_async (remote_desc, NULL, NULL);
10410 }
10411
10412 static int
10413 remote_async_mask (int new_mask)
10414 {
10415 int curr_mask = remote_async_mask_value;
10416
10417 remote_async_mask_value = new_mask;
10418 return curr_mask;
10419 }
10420
10421 static void
10422 set_remote_cmd (char *args, int from_tty)
10423 {
10424 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10425 }
10426
10427 static void
10428 show_remote_cmd (char *args, int from_tty)
10429 {
10430 /* We can't just use cmd_show_list here, because we want to skip
10431 the redundant "show remote Z-packet" and the legacy aliases. */
10432 struct cleanup *showlist_chain;
10433 struct cmd_list_element *list = remote_show_cmdlist;
10434
10435 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10436 for (; list != NULL; list = list->next)
10437 if (strcmp (list->name, "Z-packet") == 0)
10438 continue;
10439 else if (list->type == not_set_cmd)
10440 /* Alias commands are exactly like the original, except they
10441 don't have the normal type. */
10442 continue;
10443 else
10444 {
10445 struct cleanup *option_chain
10446 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10447
10448 ui_out_field_string (uiout, "name", list->name);
10449 ui_out_text (uiout, ": ");
10450 if (list->type == show_cmd)
10451 do_setshow_command ((char *) NULL, from_tty, list);
10452 else
10453 cmd_func (list, NULL, from_tty);
10454 /* Close the tuple. */
10455 do_cleanups (option_chain);
10456 }
10457
10458 /* Close the tuple. */
10459 do_cleanups (showlist_chain);
10460 }
10461
10462
10463 /* Function to be called whenever a new objfile (shlib) is detected. */
10464 static void
10465 remote_new_objfile (struct objfile *objfile)
10466 {
10467 if (remote_desc != 0) /* Have a remote connection. */
10468 remote_check_symbols (objfile);
10469 }
10470
10471 /* Pull all the tracepoints defined on the target and create local
10472 data structures representing them. We don't want to create real
10473 tracepoints yet, we don't want to mess up the user's existing
10474 collection. */
10475
10476 static int
10477 remote_upload_tracepoints (struct uploaded_tp **utpp)
10478 {
10479 struct remote_state *rs = get_remote_state ();
10480 char *p;
10481
10482 /* Ask for a first packet of tracepoint definition. */
10483 putpkt ("qTfP");
10484 getpkt (&rs->buf, &rs->buf_size, 0);
10485 p = rs->buf;
10486 while (*p && *p != 'l')
10487 {
10488 parse_tracepoint_definition (p, utpp);
10489 /* Ask for another packet of tracepoint definition. */
10490 putpkt ("qTsP");
10491 getpkt (&rs->buf, &rs->buf_size, 0);
10492 p = rs->buf;
10493 }
10494 return 0;
10495 }
10496
10497 static int
10498 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10499 {
10500 struct remote_state *rs = get_remote_state ();
10501 char *p;
10502
10503 /* Ask for a first packet of variable definition. */
10504 putpkt ("qTfV");
10505 getpkt (&rs->buf, &rs->buf_size, 0);
10506 p = rs->buf;
10507 while (*p && *p != 'l')
10508 {
10509 parse_tsv_definition (p, utsvp);
10510 /* Ask for another packet of variable definition. */
10511 putpkt ("qTsV");
10512 getpkt (&rs->buf, &rs->buf_size, 0);
10513 p = rs->buf;
10514 }
10515 return 0;
10516 }
10517
10518 void
10519 _initialize_remote (void)
10520 {
10521 struct remote_state *rs;
10522 struct cmd_list_element *cmd;
10523 char *cmd_name;
10524
10525 /* architecture specific data */
10526 remote_gdbarch_data_handle =
10527 gdbarch_data_register_post_init (init_remote_state);
10528 remote_g_packet_data_handle =
10529 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10530
10531 /* Initialize the per-target state. At the moment there is only one
10532 of these, not one per target. Only one target is active at a
10533 time. The default buffer size is unimportant; it will be expanded
10534 whenever a larger buffer is needed. */
10535 rs = get_remote_state_raw ();
10536 rs->buf_size = 400;
10537 rs->buf = xmalloc (rs->buf_size);
10538
10539 init_remote_ops ();
10540 add_target (&remote_ops);
10541
10542 init_extended_remote_ops ();
10543 add_target (&extended_remote_ops);
10544
10545 /* Hook into new objfile notification. */
10546 observer_attach_new_objfile (remote_new_objfile);
10547
10548 /* Set up signal handlers. */
10549 sigint_remote_token =
10550 create_async_signal_handler (async_remote_interrupt, NULL);
10551 sigint_remote_twice_token =
10552 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10553
10554 #if 0
10555 init_remote_threadtests ();
10556 #endif
10557
10558 /* set/show remote ... */
10559
10560 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10561 Remote protocol specific variables\n\
10562 Configure various remote-protocol specific variables such as\n\
10563 the packets being used"),
10564 &remote_set_cmdlist, "set remote ",
10565 0 /* allow-unknown */, &setlist);
10566 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10567 Remote protocol specific variables\n\
10568 Configure various remote-protocol specific variables such as\n\
10569 the packets being used"),
10570 &remote_show_cmdlist, "show remote ",
10571 0 /* allow-unknown */, &showlist);
10572
10573 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10574 Compare section data on target to the exec file.\n\
10575 Argument is a single section name (default: all loaded sections)."),
10576 &cmdlist);
10577
10578 add_cmd ("packet", class_maintenance, packet_command, _("\
10579 Send an arbitrary packet to a remote target.\n\
10580 maintenance packet TEXT\n\
10581 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10582 this command sends the string TEXT to the inferior, and displays the\n\
10583 response packet. GDB supplies the initial `$' character, and the\n\
10584 terminating `#' character and checksum."),
10585 &maintenancelist);
10586
10587 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10588 Set whether to send break if interrupted."), _("\
10589 Show whether to send break if interrupted."), _("\
10590 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10591 set_remotebreak, show_remotebreak,
10592 &setlist, &showlist);
10593 cmd_name = "remotebreak";
10594 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10595 deprecate_cmd (cmd, "set remote interrupt-sequence");
10596 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10597 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10598 deprecate_cmd (cmd, "show remote interrupt-sequence");
10599
10600 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10601 interrupt_sequence_modes, &interrupt_sequence_mode,
10602 _("\
10603 Set interrupt sequence to remote target."), _("\
10604 Show interrupt sequence to remote target."), _("\
10605 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10606 NULL, show_interrupt_sequence,
10607 &remote_set_cmdlist,
10608 &remote_show_cmdlist);
10609
10610 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10611 &interrupt_on_connect, _("\
10612 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10613 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10614 If set, interrupt sequence is sent to remote target."),
10615 NULL, NULL,
10616 &remote_set_cmdlist, &remote_show_cmdlist);
10617
10618 /* Install commands for configuring memory read/write packets. */
10619
10620 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10621 Set the maximum number of bytes per memory write packet (deprecated)."),
10622 &setlist);
10623 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10624 Show the maximum number of bytes per memory write packet (deprecated)."),
10625 &showlist);
10626 add_cmd ("memory-write-packet-size", no_class,
10627 set_memory_write_packet_size, _("\
10628 Set the maximum number of bytes per memory-write packet.\n\
10629 Specify the number of bytes in a packet or 0 (zero) for the\n\
10630 default packet size. The actual limit is further reduced\n\
10631 dependent on the target. Specify ``fixed'' to disable the\n\
10632 further restriction and ``limit'' to enable that restriction."),
10633 &remote_set_cmdlist);
10634 add_cmd ("memory-read-packet-size", no_class,
10635 set_memory_read_packet_size, _("\
10636 Set the maximum number of bytes per memory-read packet.\n\
10637 Specify the number of bytes in a packet or 0 (zero) for the\n\
10638 default packet size. The actual limit is further reduced\n\
10639 dependent on the target. Specify ``fixed'' to disable the\n\
10640 further restriction and ``limit'' to enable that restriction."),
10641 &remote_set_cmdlist);
10642 add_cmd ("memory-write-packet-size", no_class,
10643 show_memory_write_packet_size,
10644 _("Show the maximum number of bytes per memory-write packet."),
10645 &remote_show_cmdlist);
10646 add_cmd ("memory-read-packet-size", no_class,
10647 show_memory_read_packet_size,
10648 _("Show the maximum number of bytes per memory-read packet."),
10649 &remote_show_cmdlist);
10650
10651 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10652 &remote_hw_watchpoint_limit, _("\
10653 Set the maximum number of target hardware watchpoints."), _("\
10654 Show the maximum number of target hardware watchpoints."), _("\
10655 Specify a negative limit for unlimited."),
10656 NULL, NULL, /* FIXME: i18n: The maximum
10657 number of target hardware
10658 watchpoints is %s. */
10659 &remote_set_cmdlist, &remote_show_cmdlist);
10660 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10661 &remote_hw_breakpoint_limit, _("\
10662 Set the maximum number of target hardware breakpoints."), _("\
10663 Show the maximum number of target hardware breakpoints."), _("\
10664 Specify a negative limit for unlimited."),
10665 NULL, NULL, /* FIXME: i18n: The maximum
10666 number of target hardware
10667 breakpoints is %s. */
10668 &remote_set_cmdlist, &remote_show_cmdlist);
10669
10670 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10671 &remote_address_size, _("\
10672 Set the maximum size of the address (in bits) in a memory packet."), _("\
10673 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10674 NULL,
10675 NULL, /* FIXME: i18n: */
10676 &setlist, &showlist);
10677
10678 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10679 "X", "binary-download", 1);
10680
10681 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10682 "vCont", "verbose-resume", 0);
10683
10684 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10685 "QPassSignals", "pass-signals", 0);
10686
10687 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10688 "qSymbol", "symbol-lookup", 0);
10689
10690 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10691 "P", "set-register", 1);
10692
10693 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10694 "p", "fetch-register", 1);
10695
10696 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10697 "Z0", "software-breakpoint", 0);
10698
10699 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10700 "Z1", "hardware-breakpoint", 0);
10701
10702 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10703 "Z2", "write-watchpoint", 0);
10704
10705 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10706 "Z3", "read-watchpoint", 0);
10707
10708 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10709 "Z4", "access-watchpoint", 0);
10710
10711 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10712 "qXfer:auxv:read", "read-aux-vector", 0);
10713
10714 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10715 "qXfer:features:read", "target-features", 0);
10716
10717 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10718 "qXfer:libraries:read", "library-info", 0);
10719
10720 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10721 "qXfer:memory-map:read", "memory-map", 0);
10722
10723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10724 "qXfer:spu:read", "read-spu-object", 0);
10725
10726 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10727 "qXfer:spu:write", "write-spu-object", 0);
10728
10729 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10730 "qXfer:osdata:read", "osdata", 0);
10731
10732 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10733 "qXfer:threads:read", "threads", 0);
10734
10735 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10736 "qXfer:siginfo:read", "read-siginfo-object", 0);
10737
10738 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10739 "qXfer:siginfo:write", "write-siginfo-object", 0);
10740
10741 add_packet_config_cmd
10742 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10743 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10744
10745 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10746 "qGetTLSAddr", "get-thread-local-storage-address",
10747 0);
10748
10749 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10750 "qGetTIBAddr", "get-thread-information-block-address",
10751 0);
10752
10753 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10754 "bc", "reverse-continue", 0);
10755
10756 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10757 "bs", "reverse-step", 0);
10758
10759 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10760 "qSupported", "supported-packets", 0);
10761
10762 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10763 "qSearch:memory", "search-memory", 0);
10764
10765 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10766 "vFile:open", "hostio-open", 0);
10767
10768 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10769 "vFile:pread", "hostio-pread", 0);
10770
10771 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10772 "vFile:pwrite", "hostio-pwrite", 0);
10773
10774 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10775 "vFile:close", "hostio-close", 0);
10776
10777 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10778 "vFile:unlink", "hostio-unlink", 0);
10779
10780 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10781 "vAttach", "attach", 0);
10782
10783 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10784 "vRun", "run", 0);
10785
10786 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10787 "QStartNoAckMode", "noack", 0);
10788
10789 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10790 "vKill", "kill", 0);
10791
10792 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10793 "qAttached", "query-attached", 0);
10794
10795 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10796 "ConditionalTracepoints",
10797 "conditional-tracepoints", 0);
10798 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10799 "FastTracepoints", "fast-tracepoints", 0);
10800
10801 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10802 "TracepointSource", "TracepointSource", 0);
10803
10804 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10805 "QAllow", "allow", 0);
10806
10807 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10808 "StaticTracepoints", "static-tracepoints", 0);
10809
10810 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10811 "qXfer:statictrace:read", "read-sdata-object", 0);
10812
10813 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10814 Z sub-packet has its own set and show commands, but users may
10815 have sets to this variable in their .gdbinit files (or in their
10816 documentation). */
10817 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10818 &remote_Z_packet_detect, _("\
10819 Set use of remote protocol `Z' packets"), _("\
10820 Show use of remote protocol `Z' packets "), _("\
10821 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10822 packets."),
10823 set_remote_protocol_Z_packet_cmd,
10824 show_remote_protocol_Z_packet_cmd,
10825 /* FIXME: i18n: Use of remote protocol
10826 `Z' packets is %s. */
10827 &remote_set_cmdlist, &remote_show_cmdlist);
10828
10829 add_prefix_cmd ("remote", class_files, remote_command, _("\
10830 Manipulate files on the remote system\n\
10831 Transfer files to and from the remote target system."),
10832 &remote_cmdlist, "remote ",
10833 0 /* allow-unknown */, &cmdlist);
10834
10835 add_cmd ("put", class_files, remote_put_command,
10836 _("Copy a local file to the remote system."),
10837 &remote_cmdlist);
10838
10839 add_cmd ("get", class_files, remote_get_command,
10840 _("Copy a remote file to the local system."),
10841 &remote_cmdlist);
10842
10843 add_cmd ("delete", class_files, remote_delete_command,
10844 _("Delete a remote file."),
10845 &remote_cmdlist);
10846
10847 remote_exec_file = xstrdup ("");
10848 add_setshow_string_noescape_cmd ("exec-file", class_files,
10849 &remote_exec_file, _("\
10850 Set the remote pathname for \"run\""), _("\
10851 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10852 &remote_set_cmdlist, &remote_show_cmdlist);
10853
10854 /* Eventually initialize fileio. See fileio.c */
10855 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10856
10857 /* Take advantage of the fact that the LWP field is not used, to tag
10858 special ptids with it set to != 0. */
10859 magic_null_ptid = ptid_build (42000, 1, -1);
10860 not_sent_ptid = ptid_build (42000, 1, -2);
10861 any_thread_ptid = ptid_build (42000, 1, 0);
10862
10863 target_buf_size = 2048;
10864 target_buf = xmalloc (target_buf_size);
10865 }
10866
This page took 0.235237 seconds and 5 git commands to generate.