gdb: Use add_setshow_zuinteger_unlimited_cmd in remote.c
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 char *buf;
252 long buf_size;
253
254 /* True if we're going through initial connection setup (finding out
255 about the remote side's threads, relocating symbols, etc.). */
256 bool starting_up = false;
257
258 /* If we negotiated packet size explicitly (and thus can bypass
259 heuristics for the largest packet size that will not overflow
260 a buffer in the stub), this will be set to that packet size.
261 Otherwise zero, meaning to use the guessed size. */
262 long explicit_packet_size = 0;
263
264 /* remote_wait is normally called when the target is running and
265 waits for a stop reply packet. But sometimes we need to call it
266 when the target is already stopped. We can send a "?" packet
267 and have remote_wait read the response. Or, if we already have
268 the response, we can stash it in BUF and tell remote_wait to
269 skip calling getpkt. This flag is set when BUF contains a
270 stop reply packet and the target is not waiting. */
271 int cached_wait_status = 0;
272
273 /* True, if in no ack mode. That is, neither GDB nor the stub will
274 expect acks from each other. The connection is assumed to be
275 reliable. */
276 bool noack_mode = false;
277
278 /* True if we're connected in extended remote mode. */
279 bool extended = false;
280
281 /* True if we resumed the target and we're waiting for the target to
282 stop. In the mean time, we can't start another command/query.
283 The remote server wouldn't be ready to process it, so we'd
284 timeout waiting for a reply that would never come and eventually
285 we'd close the connection. This can happen in asynchronous mode
286 because we allow GDB commands while the target is running. */
287 bool waiting_for_stop_reply = false;
288
289 /* The status of the stub support for the various vCont actions. */
290 vCont_action_support supports_vCont;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public target_ops
408 {
409 public:
410 remote_target ()
411 {
412 to_stratum = process_stratum;
413 }
414 ~remote_target () override;
415
416 const target_info &info () const override
417 { return remote_target_info; }
418
419 thread_control_capabilities get_thread_control_capabilities () override
420 { return tc_schedlock; }
421
422 /* Open a remote connection. */
423 static void open (const char *, int);
424
425 void close () override;
426
427 void detach (inferior *, int) override;
428 void disconnect (const char *, int) override;
429
430 void commit_resume () override;
431 void resume (ptid_t, int, enum gdb_signal) override;
432 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (int, unsigned char *) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (int, unsigned char *) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 const char *pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 void stop (ptid_t) override;
503
504 void interrupt () override;
505
506 void pass_ctrlc () override;
507
508 enum target_xfer_status xfer_partial (enum target_object object,
509 const char *annex,
510 gdb_byte *readbuf,
511 const gdb_byte *writebuf,
512 ULONGEST offset, ULONGEST len,
513 ULONGEST *xfered_len) override;
514
515 ULONGEST get_memory_xfer_limit () override;
516
517 void rcmd (const char *command, struct ui_file *output) override;
518
519 char *pid_to_exec_file (int pid) override;
520
521 void log_command (const char *cmd) override
522 {
523 serial_log_command (this, cmd);
524 }
525
526 CORE_ADDR get_thread_local_address (ptid_t ptid,
527 CORE_ADDR load_module_addr,
528 CORE_ADDR offset) override;
529
530 bool has_all_memory () override { return default_child_has_all_memory (); }
531 bool has_memory () override { return default_child_has_memory (); }
532 bool has_stack () override { return default_child_has_stack (); }
533 bool has_registers () override { return default_child_has_registers (); }
534 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
535
536 bool can_execute_reverse () override;
537
538 std::vector<mem_region> memory_map () override;
539
540 void flash_erase (ULONGEST address, LONGEST length) override;
541
542 void flash_done () override;
543
544 const struct target_desc *read_description () override;
545
546 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
547 const gdb_byte *pattern, ULONGEST pattern_len,
548 CORE_ADDR *found_addrp) override;
549
550 bool can_async_p () override;
551
552 bool is_async_p () override;
553
554 void async (int) override;
555
556 void thread_events (int) override;
557
558 int can_do_single_step () override;
559
560 void terminal_inferior () override;
561
562 void terminal_ours () override;
563
564 bool supports_non_stop () override;
565
566 bool supports_multi_process () override;
567
568 bool supports_disable_randomization () override;
569
570 bool filesystem_is_local () override;
571
572
573 int fileio_open (struct inferior *inf, const char *filename,
574 int flags, int mode, int warn_if_slow,
575 int *target_errno) override;
576
577 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_pread (int fd, gdb_byte *read_buf, int len,
581 ULONGEST offset, int *target_errno) override;
582
583 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
584
585 int fileio_close (int fd, int *target_errno) override;
586
587 int fileio_unlink (struct inferior *inf,
588 const char *filename,
589 int *target_errno) override;
590
591 gdb::optional<std::string>
592 fileio_readlink (struct inferior *inf,
593 const char *filename,
594 int *target_errno) override;
595
596 bool supports_enable_disable_tracepoint () override;
597
598 bool supports_string_tracing () override;
599
600 bool supports_evaluation_of_breakpoint_conditions () override;
601
602 bool can_run_breakpoint_commands () override;
603
604 void trace_init () override;
605
606 void download_tracepoint (struct bp_location *location) override;
607
608 bool can_download_tracepoint () override;
609
610 void download_trace_state_variable (const trace_state_variable &tsv) override;
611
612 void enable_tracepoint (struct bp_location *location) override;
613
614 void disable_tracepoint (struct bp_location *location) override;
615
616 void trace_set_readonly_regions () override;
617
618 void trace_start () override;
619
620 int get_trace_status (struct trace_status *ts) override;
621
622 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
623 override;
624
625 void trace_stop () override;
626
627 int trace_find (enum trace_find_type type, int num,
628 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
629
630 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
631
632 int save_trace_data (const char *filename) override;
633
634 int upload_tracepoints (struct uploaded_tp **utpp) override;
635
636 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
637
638 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
639
640 int get_min_fast_tracepoint_insn_len () override;
641
642 void set_disconnected_tracing (int val) override;
643
644 void set_circular_trace_buffer (int val) override;
645
646 void set_trace_buffer_size (LONGEST val) override;
647
648 bool set_trace_notes (const char *user, const char *notes,
649 const char *stopnotes) override;
650
651 int core_of_thread (ptid_t ptid) override;
652
653 int verify_memory (const gdb_byte *data,
654 CORE_ADDR memaddr, ULONGEST size) override;
655
656
657 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
658
659 void set_permissions () override;
660
661 bool static_tracepoint_marker_at (CORE_ADDR,
662 struct static_tracepoint_marker *marker)
663 override;
664
665 std::vector<static_tracepoint_marker>
666 static_tracepoint_markers_by_strid (const char *id) override;
667
668 traceframe_info_up traceframe_info () override;
669
670 bool use_agent (bool use) override;
671 bool can_use_agent () override;
672
673 struct btrace_target_info *enable_btrace (ptid_t ptid,
674 const struct btrace_config *conf) override;
675
676 void disable_btrace (struct btrace_target_info *tinfo) override;
677
678 void teardown_btrace (struct btrace_target_info *tinfo) override;
679
680 enum btrace_error read_btrace (struct btrace_data *data,
681 struct btrace_target_info *btinfo,
682 enum btrace_read_type type) override;
683
684 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
685 bool augmented_libraries_svr4_read () override;
686 int follow_fork (int, int) override;
687 void follow_exec (struct inferior *, char *) override;
688 int insert_fork_catchpoint (int) override;
689 int remove_fork_catchpoint (int) override;
690 int insert_vfork_catchpoint (int) override;
691 int remove_vfork_catchpoint (int) override;
692 int insert_exec_catchpoint (int) override;
693 int remove_exec_catchpoint (int) override;
694 enum exec_direction_kind execution_direction () override;
695
696 public: /* Remote specific methods. */
697
698 void remote_download_command_source (int num, ULONGEST addr,
699 struct command_line *cmds);
700
701 void remote_file_put (const char *local_file, const char *remote_file,
702 int from_tty);
703 void remote_file_get (const char *remote_file, const char *local_file,
704 int from_tty);
705 void remote_file_delete (const char *remote_file, int from_tty);
706
707 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
708 ULONGEST offset, int *remote_errno);
709 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
710 ULONGEST offset, int *remote_errno);
711 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
712 ULONGEST offset, int *remote_errno);
713
714 int remote_hostio_send_command (int command_bytes, int which_packet,
715 int *remote_errno, char **attachment,
716 int *attachment_len);
717 int remote_hostio_set_filesystem (struct inferior *inf,
718 int *remote_errno);
719 /* We should get rid of this and use fileio_open directly. */
720 int remote_hostio_open (struct inferior *inf, const char *filename,
721 int flags, int mode, int warn_if_slow,
722 int *remote_errno);
723 int remote_hostio_close (int fd, int *remote_errno);
724
725 int remote_hostio_unlink (inferior *inf, const char *filename,
726 int *remote_errno);
727
728 struct remote_state *get_remote_state ();
729
730 long get_remote_packet_size (void);
731 long get_memory_packet_size (struct memory_packet_config *config);
732
733 long get_memory_write_packet_size ();
734 long get_memory_read_packet_size ();
735
736 char *append_pending_thread_resumptions (char *p, char *endp,
737 ptid_t ptid);
738 static void open_1 (const char *name, int from_tty, int extended_p);
739 void start_remote (int from_tty, int extended_p);
740 void remote_detach_1 (struct inferior *inf, int from_tty);
741
742 char *append_resumption (char *p, char *endp,
743 ptid_t ptid, int step, gdb_signal siggnal);
744 int remote_resume_with_vcont (ptid_t ptid, int step,
745 gdb_signal siggnal);
746
747 void add_current_inferior_and_thread (char *wait_status);
748
749 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
750 int options);
751 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
752 int options);
753
754 ptid_t process_stop_reply (struct stop_reply *stop_reply,
755 target_waitstatus *status);
756
757 void remote_notice_new_inferior (ptid_t currthread, int executing);
758
759 void process_initial_stop_replies (int from_tty);
760
761 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
762
763 void btrace_sync_conf (const btrace_config *conf);
764
765 void remote_btrace_maybe_reopen ();
766
767 void remove_new_fork_children (threads_listing_context *context);
768 void kill_new_fork_children (int pid);
769 void discard_pending_stop_replies (struct inferior *inf);
770 int stop_reply_queue_length ();
771
772 void check_pending_events_prevent_wildcard_vcont
773 (int *may_global_wildcard_vcont);
774
775 void discard_pending_stop_replies_in_queue ();
776 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
777 struct stop_reply *queued_stop_reply (ptid_t ptid);
778 int peek_stop_reply (ptid_t ptid);
779 void remote_parse_stop_reply (char *buf, stop_reply *event);
780
781 void remote_stop_ns (ptid_t ptid);
782 void remote_interrupt_as ();
783 void remote_interrupt_ns ();
784
785 char *remote_get_noisy_reply ();
786 int remote_query_attached (int pid);
787 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
788 int try_open_exec);
789
790 ptid_t remote_current_thread (ptid_t oldpid);
791 ptid_t get_current_thread (char *wait_status);
792
793 void set_thread (ptid_t ptid, int gen);
794 void set_general_thread (ptid_t ptid);
795 void set_continue_thread (ptid_t ptid);
796 void set_general_process ();
797
798 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
799
800 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
801 gdb_ext_thread_info *info);
802 int remote_get_threadinfo (threadref *threadid, int fieldset,
803 gdb_ext_thread_info *info);
804
805 int parse_threadlist_response (char *pkt, int result_limit,
806 threadref *original_echo,
807 threadref *resultlist,
808 int *doneflag);
809 int remote_get_threadlist (int startflag, threadref *nextthread,
810 int result_limit, int *done, int *result_count,
811 threadref *threadlist);
812
813 int remote_threadlist_iterator (rmt_thread_action stepfunction,
814 void *context, int looplimit);
815
816 int remote_get_threads_with_ql (threads_listing_context *context);
817 int remote_get_threads_with_qxfer (threads_listing_context *context);
818 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
819
820 void extended_remote_restart ();
821
822 void get_offsets ();
823
824 void remote_check_symbols ();
825
826 void remote_supported_packet (const struct protocol_feature *feature,
827 enum packet_support support,
828 const char *argument);
829
830 void remote_query_supported ();
831
832 void remote_packet_size (const protocol_feature *feature,
833 packet_support support, const char *value);
834
835 void remote_serial_quit_handler ();
836
837 void remote_detach_pid (int pid);
838
839 void remote_vcont_probe ();
840
841 void remote_resume_with_hc (ptid_t ptid, int step,
842 gdb_signal siggnal);
843
844 void send_interrupt_sequence ();
845 void interrupt_query ();
846
847 void remote_notif_get_pending_events (notif_client *nc);
848
849 int fetch_register_using_p (struct regcache *regcache,
850 packet_reg *reg);
851 int send_g_packet ();
852 void process_g_packet (struct regcache *regcache);
853 void fetch_registers_using_g (struct regcache *regcache);
854 int store_register_using_P (const struct regcache *regcache,
855 packet_reg *reg);
856 void store_registers_using_G (const struct regcache *regcache);
857
858 void set_remote_traceframe ();
859
860 void check_binary_download (CORE_ADDR addr);
861
862 target_xfer_status remote_write_bytes_aux (const char *header,
863 CORE_ADDR memaddr,
864 const gdb_byte *myaddr,
865 ULONGEST len_units,
866 int unit_size,
867 ULONGEST *xfered_len_units,
868 char packet_format,
869 int use_length);
870
871 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
872 const gdb_byte *myaddr, ULONGEST len,
873 int unit_size, ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size, ULONGEST *xfered_len_units);
878
879 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
880 ULONGEST memaddr,
881 ULONGEST len,
882 int unit_size,
883 ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
886 gdb_byte *myaddr, ULONGEST len,
887 int unit_size,
888 ULONGEST *xfered_len);
889
890 packet_result remote_send_printf (const char *format, ...)
891 ATTRIBUTE_PRINTF (2, 3);
892
893 target_xfer_status remote_flash_write (ULONGEST address,
894 ULONGEST length, ULONGEST *xfered_len,
895 const gdb_byte *data);
896
897 int readchar (int timeout);
898
899 void remote_serial_write (const char *str, int len);
900
901 int putpkt (const char *buf);
902 int putpkt_binary (const char *buf, int cnt);
903
904 void skip_frame ();
905 long read_frame (char **buf_p, long *sizeof_buf);
906 void getpkt (char **buf, long *sizeof_buf, int forever);
907 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
908 int expecting_notif, int *is_notif);
909 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
910 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
911 int *is_notif);
912 int remote_vkill (int pid);
913 void remote_kill_k ();
914
915 void extended_remote_disable_randomization (int val);
916 int extended_remote_run (const std::string &args);
917
918 void send_environment_packet (const char *action,
919 const char *packet,
920 const char *value);
921
922 void extended_remote_environment_support ();
923 void extended_remote_set_inferior_cwd ();
924
925 target_xfer_status remote_write_qxfer (const char *object_name,
926 const char *annex,
927 const gdb_byte *writebuf,
928 ULONGEST offset, LONGEST len,
929 ULONGEST *xfered_len,
930 struct packet_config *packet);
931
932 target_xfer_status remote_read_qxfer (const char *object_name,
933 const char *annex,
934 gdb_byte *readbuf, ULONGEST offset,
935 LONGEST len,
936 ULONGEST *xfered_len,
937 struct packet_config *packet);
938
939 void push_stop_reply (struct stop_reply *new_event);
940
941 bool vcont_r_supported ();
942
943 void packet_command (const char *args, int from_tty);
944
945 private: /* data fields */
946
947 /* The remote state. Don't reference this directly. Use the
948 get_remote_state method instead. */
949 remote_state m_remote_state;
950 };
951
952 static const target_info extended_remote_target_info = {
953 "extended-remote",
954 N_("Extended remote serial target in gdb-specific protocol"),
955 remote_doc
956 };
957
958 /* Set up the extended remote target by extending the standard remote
959 target and adding to it. */
960
961 class extended_remote_target final : public remote_target
962 {
963 public:
964 const target_info &info () const override
965 { return extended_remote_target_info; }
966
967 /* Open an extended-remote connection. */
968 static void open (const char *, int);
969
970 bool can_create_inferior () override { return true; }
971 void create_inferior (const char *, const std::string &,
972 char **, int) override;
973
974 void detach (inferior *, int) override;
975
976 bool can_attach () override { return true; }
977 void attach (const char *, int) override;
978
979 void post_attach (int) override;
980 bool supports_disable_randomization () override;
981 };
982
983 /* Per-program-space data key. */
984 static const struct program_space_data *remote_pspace_data;
985
986 /* The variable registered as the control variable used by the
987 remote exec-file commands. While the remote exec-file setting is
988 per-program-space, the set/show machinery uses this as the
989 location of the remote exec-file value. */
990 static char *remote_exec_file_var;
991
992 /* The size to align memory write packets, when practical. The protocol
993 does not guarantee any alignment, and gdb will generate short
994 writes and unaligned writes, but even as a best-effort attempt this
995 can improve bulk transfers. For instance, if a write is misaligned
996 relative to the target's data bus, the stub may need to make an extra
997 round trip fetching data from the target. This doesn't make a
998 huge difference, but it's easy to do, so we try to be helpful.
999
1000 The alignment chosen is arbitrary; usually data bus width is
1001 important here, not the possibly larger cache line size. */
1002 enum { REMOTE_ALIGN_WRITES = 16 };
1003
1004 /* Prototypes for local functions. */
1005
1006 static int hexnumlen (ULONGEST num);
1007
1008 static int stubhex (int ch);
1009
1010 static int hexnumstr (char *, ULONGEST);
1011
1012 static int hexnumnstr (char *, ULONGEST, int);
1013
1014 static CORE_ADDR remote_address_masked (CORE_ADDR);
1015
1016 static void print_packet (const char *);
1017
1018 static int stub_unpack_int (char *buff, int fieldlength);
1019
1020 struct packet_config;
1021
1022 static void show_packet_config_cmd (struct packet_config *config);
1023
1024 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1025 int from_tty,
1026 struct cmd_list_element *c,
1027 const char *value);
1028
1029 static ptid_t read_ptid (const char *buf, const char **obuf);
1030
1031 static void remote_async_inferior_event_handler (gdb_client_data);
1032
1033 static int remote_read_description_p (struct target_ops *target);
1034
1035 static void remote_console_output (char *msg);
1036
1037 static void remote_btrace_reset (remote_state *rs);
1038
1039 static void remote_unpush_and_throw (void);
1040
1041 /* For "remote". */
1042
1043 static struct cmd_list_element *remote_cmdlist;
1044
1045 /* For "set remote" and "show remote". */
1046
1047 static struct cmd_list_element *remote_set_cmdlist;
1048 static struct cmd_list_element *remote_show_cmdlist;
1049
1050 /* Controls whether GDB is willing to use range stepping. */
1051
1052 static int use_range_stepping = 1;
1053
1054 /* The max number of chars in debug output. The rest of chars are
1055 omitted. */
1056
1057 #define REMOTE_DEBUG_MAX_CHAR 512
1058
1059 /* Private data that we'll store in (struct thread_info)->priv. */
1060 struct remote_thread_info : public private_thread_info
1061 {
1062 std::string extra;
1063 std::string name;
1064 int core = -1;
1065
1066 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1067 sequence of bytes. */
1068 gdb::byte_vector thread_handle;
1069
1070 /* Whether the target stopped for a breakpoint/watchpoint. */
1071 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1072
1073 /* This is set to the data address of the access causing the target
1074 to stop for a watchpoint. */
1075 CORE_ADDR watch_data_address = 0;
1076
1077 /* Fields used by the vCont action coalescing implemented in
1078 remote_resume / remote_commit_resume. remote_resume stores each
1079 thread's last resume request in these fields, so that a later
1080 remote_commit_resume knows which is the proper action for this
1081 thread to include in the vCont packet. */
1082
1083 /* True if the last target_resume call for this thread was a step
1084 request, false if a continue request. */
1085 int last_resume_step = 0;
1086
1087 /* The signal specified in the last target_resume call for this
1088 thread. */
1089 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1090
1091 /* Whether this thread was already vCont-resumed on the remote
1092 side. */
1093 int vcont_resumed = 0;
1094 };
1095
1096 remote_state::remote_state ()
1097 {
1098 /* The default buffer size is unimportant; it will be expanded
1099 whenever a larger buffer is needed. */
1100 this->buf_size = 400;
1101 this->buf = (char *) xmalloc (this->buf_size);
1102 }
1103
1104 remote_state::~remote_state ()
1105 {
1106 xfree (this->last_pass_packet);
1107 xfree (this->last_program_signals_packet);
1108 xfree (this->buf);
1109 xfree (this->finished_object);
1110 xfree (this->finished_annex);
1111 }
1112
1113 /* Utility: generate error from an incoming stub packet. */
1114 static void
1115 trace_error (char *buf)
1116 {
1117 if (*buf++ != 'E')
1118 return; /* not an error msg */
1119 switch (*buf)
1120 {
1121 case '1': /* malformed packet error */
1122 if (*++buf == '0') /* general case: */
1123 error (_("remote.c: error in outgoing packet."));
1124 else
1125 error (_("remote.c: error in outgoing packet at field #%ld."),
1126 strtol (buf, NULL, 16));
1127 default:
1128 error (_("Target returns error code '%s'."), buf);
1129 }
1130 }
1131
1132 /* Utility: wait for reply from stub, while accepting "O" packets. */
1133
1134 char *
1135 remote_target::remote_get_noisy_reply ()
1136 {
1137 struct remote_state *rs = get_remote_state ();
1138
1139 do /* Loop on reply from remote stub. */
1140 {
1141 char *buf;
1142
1143 QUIT; /* Allow user to bail out with ^C. */
1144 getpkt (&rs->buf, &rs->buf_size, 0);
1145 buf = rs->buf;
1146 if (buf[0] == 'E')
1147 trace_error (buf);
1148 else if (startswith (buf, "qRelocInsn:"))
1149 {
1150 ULONGEST ul;
1151 CORE_ADDR from, to, org_to;
1152 const char *p, *pp;
1153 int adjusted_size = 0;
1154 int relocated = 0;
1155
1156 p = buf + strlen ("qRelocInsn:");
1157 pp = unpack_varlen_hex (p, &ul);
1158 if (*pp != ';')
1159 error (_("invalid qRelocInsn packet: %s"), buf);
1160 from = ul;
1161
1162 p = pp + 1;
1163 unpack_varlen_hex (p, &ul);
1164 to = ul;
1165
1166 org_to = to;
1167
1168 TRY
1169 {
1170 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1171 relocated = 1;
1172 }
1173 CATCH (ex, RETURN_MASK_ALL)
1174 {
1175 if (ex.error == MEMORY_ERROR)
1176 {
1177 /* Propagate memory errors silently back to the
1178 target. The stub may have limited the range of
1179 addresses we can write to, for example. */
1180 }
1181 else
1182 {
1183 /* Something unexpectedly bad happened. Be verbose
1184 so we can tell what, and propagate the error back
1185 to the stub, so it doesn't get stuck waiting for
1186 a response. */
1187 exception_fprintf (gdb_stderr, ex,
1188 _("warning: relocating instruction: "));
1189 }
1190 putpkt ("E01");
1191 }
1192 END_CATCH
1193
1194 if (relocated)
1195 {
1196 adjusted_size = to - org_to;
1197
1198 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1199 putpkt (buf);
1200 }
1201 }
1202 else if (buf[0] == 'O' && buf[1] != 'K')
1203 remote_console_output (buf + 1); /* 'O' message from stub */
1204 else
1205 return buf; /* Here's the actual reply. */
1206 }
1207 while (1);
1208 }
1209
1210 struct remote_arch_state *
1211 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1212 {
1213 remote_arch_state *rsa;
1214
1215 auto it = this->m_arch_states.find (gdbarch);
1216 if (it == this->m_arch_states.end ())
1217 {
1218 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1219 std::forward_as_tuple (gdbarch),
1220 std::forward_as_tuple (gdbarch));
1221 rsa = &p.first->second;
1222
1223 /* Make sure that the packet buffer is plenty big enough for
1224 this architecture. */
1225 if (this->buf_size < rsa->remote_packet_size)
1226 {
1227 this->buf_size = 2 * rsa->remote_packet_size;
1228 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1229 }
1230 }
1231 else
1232 rsa = &it->second;
1233
1234 return rsa;
1235 }
1236
1237 /* Fetch the global remote target state. */
1238
1239 remote_state *
1240 remote_target::get_remote_state ()
1241 {
1242 /* Make sure that the remote architecture state has been
1243 initialized, because doing so might reallocate rs->buf. Any
1244 function which calls getpkt also needs to be mindful of changes
1245 to rs->buf, but this call limits the number of places which run
1246 into trouble. */
1247 m_remote_state.get_remote_arch_state (target_gdbarch ());
1248
1249 return &m_remote_state;
1250 }
1251
1252 /* Cleanup routine for the remote module's pspace data. */
1253
1254 static void
1255 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1256 {
1257 char *remote_exec_file = (char *) arg;
1258
1259 xfree (remote_exec_file);
1260 }
1261
1262 /* Fetch the remote exec-file from the current program space. */
1263
1264 static const char *
1265 get_remote_exec_file (void)
1266 {
1267 char *remote_exec_file;
1268
1269 remote_exec_file
1270 = (char *) program_space_data (current_program_space,
1271 remote_pspace_data);
1272 if (remote_exec_file == NULL)
1273 return "";
1274
1275 return remote_exec_file;
1276 }
1277
1278 /* Set the remote exec file for PSPACE. */
1279
1280 static void
1281 set_pspace_remote_exec_file (struct program_space *pspace,
1282 char *remote_exec_file)
1283 {
1284 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1285
1286 xfree (old_file);
1287 set_program_space_data (pspace, remote_pspace_data,
1288 xstrdup (remote_exec_file));
1289 }
1290
1291 /* The "set/show remote exec-file" set command hook. */
1292
1293 static void
1294 set_remote_exec_file (const char *ignored, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 gdb_assert (remote_exec_file_var != NULL);
1298 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1299 }
1300
1301 /* The "set/show remote exec-file" show command hook. */
1302
1303 static void
1304 show_remote_exec_file (struct ui_file *file, int from_tty,
1305 struct cmd_list_element *cmd, const char *value)
1306 {
1307 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1308 }
1309
1310 static int
1311 compare_pnums (const void *lhs_, const void *rhs_)
1312 {
1313 const struct packet_reg * const *lhs
1314 = (const struct packet_reg * const *) lhs_;
1315 const struct packet_reg * const *rhs
1316 = (const struct packet_reg * const *) rhs_;
1317
1318 if ((*lhs)->pnum < (*rhs)->pnum)
1319 return -1;
1320 else if ((*lhs)->pnum == (*rhs)->pnum)
1321 return 0;
1322 else
1323 return 1;
1324 }
1325
1326 static int
1327 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1328 {
1329 int regnum, num_remote_regs, offset;
1330 struct packet_reg **remote_regs;
1331
1332 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1333 {
1334 struct packet_reg *r = &regs[regnum];
1335
1336 if (register_size (gdbarch, regnum) == 0)
1337 /* Do not try to fetch zero-sized (placeholder) registers. */
1338 r->pnum = -1;
1339 else
1340 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1341
1342 r->regnum = regnum;
1343 }
1344
1345 /* Define the g/G packet format as the contents of each register
1346 with a remote protocol number, in order of ascending protocol
1347 number. */
1348
1349 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1350 for (num_remote_regs = 0, regnum = 0;
1351 regnum < gdbarch_num_regs (gdbarch);
1352 regnum++)
1353 if (regs[regnum].pnum != -1)
1354 remote_regs[num_remote_regs++] = &regs[regnum];
1355
1356 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1357 compare_pnums);
1358
1359 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1360 {
1361 remote_regs[regnum]->in_g_packet = 1;
1362 remote_regs[regnum]->offset = offset;
1363 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1364 }
1365
1366 return offset;
1367 }
1368
1369 /* Given the architecture described by GDBARCH, return the remote
1370 protocol register's number and the register's offset in the g/G
1371 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1372 If the target does not have a mapping for REGNUM, return false,
1373 otherwise, return true. */
1374
1375 int
1376 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1377 int *pnum, int *poffset)
1378 {
1379 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1380
1381 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1382
1383 map_regcache_remote_table (gdbarch, regs.data ());
1384
1385 *pnum = regs[regnum].pnum;
1386 *poffset = regs[regnum].offset;
1387
1388 return *pnum != -1;
1389 }
1390
1391 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1392 {
1393 /* Use the architecture to build a regnum<->pnum table, which will be
1394 1:1 unless a feature set specifies otherwise. */
1395 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1396
1397 /* Record the maximum possible size of the g packet - it may turn out
1398 to be smaller. */
1399 this->sizeof_g_packet
1400 = map_regcache_remote_table (gdbarch, this->regs.get ());
1401
1402 /* Default maximum number of characters in a packet body. Many
1403 remote stubs have a hardwired buffer size of 400 bytes
1404 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1405 as the maximum packet-size to ensure that the packet and an extra
1406 NUL character can always fit in the buffer. This stops GDB
1407 trashing stubs that try to squeeze an extra NUL into what is
1408 already a full buffer (As of 1999-12-04 that was most stubs). */
1409 this->remote_packet_size = 400 - 1;
1410
1411 /* This one is filled in when a ``g'' packet is received. */
1412 this->actual_register_packet_size = 0;
1413
1414 /* Should rsa->sizeof_g_packet needs more space than the
1415 default, adjust the size accordingly. Remember that each byte is
1416 encoded as two characters. 32 is the overhead for the packet
1417 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1418 (``$NN:G...#NN'') is a better guess, the below has been padded a
1419 little. */
1420 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1421 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1422 }
1423
1424 /* Get a pointer to the current remote target. If not connected to a
1425 remote target, return NULL. */
1426
1427 static remote_target *
1428 get_current_remote_target ()
1429 {
1430 target_ops *proc_target = find_target_at (process_stratum);
1431 return dynamic_cast<remote_target *> (proc_target);
1432 }
1433
1434 /* Return the current allowed size of a remote packet. This is
1435 inferred from the current architecture, and should be used to
1436 limit the length of outgoing packets. */
1437 long
1438 remote_target::get_remote_packet_size ()
1439 {
1440 struct remote_state *rs = get_remote_state ();
1441 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1442
1443 if (rs->explicit_packet_size)
1444 return rs->explicit_packet_size;
1445
1446 return rsa->remote_packet_size;
1447 }
1448
1449 static struct packet_reg *
1450 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1451 long regnum)
1452 {
1453 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1454 return NULL;
1455 else
1456 {
1457 struct packet_reg *r = &rsa->regs[regnum];
1458
1459 gdb_assert (r->regnum == regnum);
1460 return r;
1461 }
1462 }
1463
1464 static struct packet_reg *
1465 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1466 LONGEST pnum)
1467 {
1468 int i;
1469
1470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1471 {
1472 struct packet_reg *r = &rsa->regs[i];
1473
1474 if (r->pnum == pnum)
1475 return r;
1476 }
1477 return NULL;
1478 }
1479
1480 /* Allow the user to specify what sequence to send to the remote
1481 when he requests a program interruption: Although ^C is usually
1482 what remote systems expect (this is the default, here), it is
1483 sometimes preferable to send a break. On other systems such
1484 as the Linux kernel, a break followed by g, which is Magic SysRq g
1485 is required in order to interrupt the execution. */
1486 const char interrupt_sequence_control_c[] = "Ctrl-C";
1487 const char interrupt_sequence_break[] = "BREAK";
1488 const char interrupt_sequence_break_g[] = "BREAK-g";
1489 static const char *const interrupt_sequence_modes[] =
1490 {
1491 interrupt_sequence_control_c,
1492 interrupt_sequence_break,
1493 interrupt_sequence_break_g,
1494 NULL
1495 };
1496 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1497
1498 static void
1499 show_interrupt_sequence (struct ui_file *file, int from_tty,
1500 struct cmd_list_element *c,
1501 const char *value)
1502 {
1503 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1504 fprintf_filtered (file,
1505 _("Send the ASCII ETX character (Ctrl-c) "
1506 "to the remote target to interrupt the "
1507 "execution of the program.\n"));
1508 else if (interrupt_sequence_mode == interrupt_sequence_break)
1509 fprintf_filtered (file,
1510 _("send a break signal to the remote target "
1511 "to interrupt the execution of the program.\n"));
1512 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1513 fprintf_filtered (file,
1514 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1515 "the remote target to interrupt the execution "
1516 "of Linux kernel.\n"));
1517 else
1518 internal_error (__FILE__, __LINE__,
1519 _("Invalid value for interrupt_sequence_mode: %s."),
1520 interrupt_sequence_mode);
1521 }
1522
1523 /* This boolean variable specifies whether interrupt_sequence is sent
1524 to the remote target when gdb connects to it.
1525 This is mostly needed when you debug the Linux kernel: The Linux kernel
1526 expects BREAK g which is Magic SysRq g for connecting gdb. */
1527 static int interrupt_on_connect = 0;
1528
1529 /* This variable is used to implement the "set/show remotebreak" commands.
1530 Since these commands are now deprecated in favor of "set/show remote
1531 interrupt-sequence", it no longer has any effect on the code. */
1532 static int remote_break;
1533
1534 static void
1535 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1536 {
1537 if (remote_break)
1538 interrupt_sequence_mode = interrupt_sequence_break;
1539 else
1540 interrupt_sequence_mode = interrupt_sequence_control_c;
1541 }
1542
1543 static void
1544 show_remotebreak (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 }
1549
1550 /* This variable sets the number of bits in an address that are to be
1551 sent in a memory ("M" or "m") packet. Normally, after stripping
1552 leading zeros, the entire address would be sent. This variable
1553 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1554 initial implementation of remote.c restricted the address sent in
1555 memory packets to ``host::sizeof long'' bytes - (typically 32
1556 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1557 address was never sent. Since fixing this bug may cause a break in
1558 some remote targets this variable is principly provided to
1559 facilitate backward compatibility. */
1560
1561 static unsigned int remote_address_size;
1562
1563 \f
1564 /* User configurable variables for the number of characters in a
1565 memory read/write packet. MIN (rsa->remote_packet_size,
1566 rsa->sizeof_g_packet) is the default. Some targets need smaller
1567 values (fifo overruns, et.al.) and some users need larger values
1568 (speed up transfers). The variables ``preferred_*'' (the user
1569 request), ``current_*'' (what was actually set) and ``forced_*''
1570 (Positive - a soft limit, negative - a hard limit). */
1571
1572 struct memory_packet_config
1573 {
1574 const char *name;
1575 long size;
1576 int fixed_p;
1577 };
1578
1579 /* The default max memory-write-packet-size, when the setting is
1580 "fixed". The 16k is historical. (It came from older GDB's using
1581 alloca for buffers and the knowledge (folklore?) that some hosts
1582 don't cope very well with large alloca calls.) */
1583 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1584
1585 /* The minimum remote packet size for memory transfers. Ensures we
1586 can write at least one byte. */
1587 #define MIN_MEMORY_PACKET_SIZE 20
1588
1589 /* Get the memory packet size, assuming it is fixed. */
1590
1591 static long
1592 get_fixed_memory_packet_size (struct memory_packet_config *config)
1593 {
1594 gdb_assert (config->fixed_p);
1595
1596 if (config->size <= 0)
1597 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1598 else
1599 return config->size;
1600 }
1601
1602 /* Compute the current size of a read/write packet. Since this makes
1603 use of ``actual_register_packet_size'' the computation is dynamic. */
1604
1605 long
1606 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1607 {
1608 struct remote_state *rs = get_remote_state ();
1609 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1610
1611 long what_they_get;
1612 if (config->fixed_p)
1613 what_they_get = get_fixed_memory_packet_size (config);
1614 else
1615 {
1616 what_they_get = get_remote_packet_size ();
1617 /* Limit the packet to the size specified by the user. */
1618 if (config->size > 0
1619 && what_they_get > config->size)
1620 what_they_get = config->size;
1621
1622 /* Limit it to the size of the targets ``g'' response unless we have
1623 permission from the stub to use a larger packet size. */
1624 if (rs->explicit_packet_size == 0
1625 && rsa->actual_register_packet_size > 0
1626 && what_they_get > rsa->actual_register_packet_size)
1627 what_they_get = rsa->actual_register_packet_size;
1628 }
1629 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1630 what_they_get = MIN_MEMORY_PACKET_SIZE;
1631
1632 /* Make sure there is room in the global buffer for this packet
1633 (including its trailing NUL byte). */
1634 if (rs->buf_size < what_they_get + 1)
1635 {
1636 rs->buf_size = 2 * what_they_get;
1637 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1638 }
1639
1640 return what_they_get;
1641 }
1642
1643 /* Update the size of a read/write packet. If they user wants
1644 something really big then do a sanity check. */
1645
1646 static void
1647 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1648 {
1649 int fixed_p = config->fixed_p;
1650 long size = config->size;
1651
1652 if (args == NULL)
1653 error (_("Argument required (integer, `fixed' or `limited')."));
1654 else if (strcmp (args, "hard") == 0
1655 || strcmp (args, "fixed") == 0)
1656 fixed_p = 1;
1657 else if (strcmp (args, "soft") == 0
1658 || strcmp (args, "limit") == 0)
1659 fixed_p = 0;
1660 else
1661 {
1662 char *end;
1663
1664 size = strtoul (args, &end, 0);
1665 if (args == end)
1666 error (_("Invalid %s (bad syntax)."), config->name);
1667
1668 /* Instead of explicitly capping the size of a packet to or
1669 disallowing it, the user is allowed to set the size to
1670 something arbitrarily large. */
1671 }
1672
1673 /* Extra checks? */
1674 if (fixed_p && !config->fixed_p)
1675 {
1676 /* So that the query shows the correct value. */
1677 long query_size = (size <= 0
1678 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1679 : size);
1680
1681 if (! query (_("The target may not be able to correctly handle a %s\n"
1682 "of %ld bytes. Change the packet size? "),
1683 config->name, query_size))
1684 error (_("Packet size not changed."));
1685 }
1686 /* Update the config. */
1687 config->fixed_p = fixed_p;
1688 config->size = size;
1689 }
1690
1691 static void
1692 show_memory_packet_size (struct memory_packet_config *config)
1693 {
1694 if (config->size == 0)
1695 printf_filtered (_("The %s is 0 (default). "), config->name);
1696 else
1697 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1698 if (config->fixed_p)
1699 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1700 get_fixed_memory_packet_size (config));
1701 else
1702 {
1703 remote_target *remote = get_current_remote_target ();
1704
1705 if (remote != NULL)
1706 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1707 remote->get_memory_packet_size (config));
1708 else
1709 puts_filtered ("The actual limit will be further reduced "
1710 "dependent on the target.\n");
1711 }
1712 }
1713
1714 static struct memory_packet_config memory_write_packet_config =
1715 {
1716 "memory-write-packet-size",
1717 };
1718
1719 static void
1720 set_memory_write_packet_size (const char *args, int from_tty)
1721 {
1722 set_memory_packet_size (args, &memory_write_packet_config);
1723 }
1724
1725 static void
1726 show_memory_write_packet_size (const char *args, int from_tty)
1727 {
1728 show_memory_packet_size (&memory_write_packet_config);
1729 }
1730
1731 /* Show the number of hardware watchpoints that can be used. */
1732
1733 static void
1734 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1735 struct cmd_list_element *c,
1736 const char *value)
1737 {
1738 fprintf_filtered (file, _("The maximum number of target hardware "
1739 "watchpoints is %s.\n"), value);
1740 }
1741
1742 /* Show the length limit (in bytes) for hardware watchpoints. */
1743
1744 static void
1745 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1746 struct cmd_list_element *c,
1747 const char *value)
1748 {
1749 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1750 "hardware watchpoint is %s.\n"), value);
1751 }
1752
1753 /* Show the number of hardware breakpoints that can be used. */
1754
1755 static void
1756 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1757 struct cmd_list_element *c,
1758 const char *value)
1759 {
1760 fprintf_filtered (file, _("The maximum number of target hardware "
1761 "breakpoints is %s.\n"), value);
1762 }
1763
1764 long
1765 remote_target::get_memory_write_packet_size ()
1766 {
1767 return get_memory_packet_size (&memory_write_packet_config);
1768 }
1769
1770 static struct memory_packet_config memory_read_packet_config =
1771 {
1772 "memory-read-packet-size",
1773 };
1774
1775 static void
1776 set_memory_read_packet_size (const char *args, int from_tty)
1777 {
1778 set_memory_packet_size (args, &memory_read_packet_config);
1779 }
1780
1781 static void
1782 show_memory_read_packet_size (const char *args, int from_tty)
1783 {
1784 show_memory_packet_size (&memory_read_packet_config);
1785 }
1786
1787 long
1788 remote_target::get_memory_read_packet_size ()
1789 {
1790 long size = get_memory_packet_size (&memory_read_packet_config);
1791
1792 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1793 extra buffer size argument before the memory read size can be
1794 increased beyond this. */
1795 if (size > get_remote_packet_size ())
1796 size = get_remote_packet_size ();
1797 return size;
1798 }
1799
1800 \f
1801
1802 struct packet_config
1803 {
1804 const char *name;
1805 const char *title;
1806
1807 /* If auto, GDB auto-detects support for this packet or feature,
1808 either through qSupported, or by trying the packet and looking
1809 at the response. If true, GDB assumes the target supports this
1810 packet. If false, the packet is disabled. Configs that don't
1811 have an associated command always have this set to auto. */
1812 enum auto_boolean detect;
1813
1814 /* Does the target support this packet? */
1815 enum packet_support support;
1816 };
1817
1818 static enum packet_support packet_config_support (struct packet_config *config);
1819 static enum packet_support packet_support (int packet);
1820
1821 static void
1822 show_packet_config_cmd (struct packet_config *config)
1823 {
1824 const char *support = "internal-error";
1825
1826 switch (packet_config_support (config))
1827 {
1828 case PACKET_ENABLE:
1829 support = "enabled";
1830 break;
1831 case PACKET_DISABLE:
1832 support = "disabled";
1833 break;
1834 case PACKET_SUPPORT_UNKNOWN:
1835 support = "unknown";
1836 break;
1837 }
1838 switch (config->detect)
1839 {
1840 case AUTO_BOOLEAN_AUTO:
1841 printf_filtered (_("Support for the `%s' packet "
1842 "is auto-detected, currently %s.\n"),
1843 config->name, support);
1844 break;
1845 case AUTO_BOOLEAN_TRUE:
1846 case AUTO_BOOLEAN_FALSE:
1847 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1848 config->name, support);
1849 break;
1850 }
1851 }
1852
1853 static void
1854 add_packet_config_cmd (struct packet_config *config, const char *name,
1855 const char *title, int legacy)
1856 {
1857 char *set_doc;
1858 char *show_doc;
1859 char *cmd_name;
1860
1861 config->name = name;
1862 config->title = title;
1863 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1864 name, title);
1865 show_doc = xstrprintf ("Show current use of remote "
1866 "protocol `%s' (%s) packet",
1867 name, title);
1868 /* set/show TITLE-packet {auto,on,off} */
1869 cmd_name = xstrprintf ("%s-packet", title);
1870 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1871 &config->detect, set_doc,
1872 show_doc, NULL, /* help_doc */
1873 NULL,
1874 show_remote_protocol_packet_cmd,
1875 &remote_set_cmdlist, &remote_show_cmdlist);
1876 /* The command code copies the documentation strings. */
1877 xfree (set_doc);
1878 xfree (show_doc);
1879 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1880 if (legacy)
1881 {
1882 char *legacy_name;
1883
1884 legacy_name = xstrprintf ("%s-packet", name);
1885 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1886 &remote_set_cmdlist);
1887 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1888 &remote_show_cmdlist);
1889 }
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const char *buf)
1894 {
1895 if (buf[0] != '\0')
1896 {
1897 /* The stub recognized the packet request. Check that the
1898 operation succeeded. */
1899 if (buf[0] == 'E'
1900 && isxdigit (buf[1]) && isxdigit (buf[2])
1901 && buf[3] == '\0')
1902 /* "Enn" - definitly an error. */
1903 return PACKET_ERROR;
1904
1905 /* Always treat "E." as an error. This will be used for
1906 more verbose error messages, such as E.memtypes. */
1907 if (buf[0] == 'E' && buf[1] == '.')
1908 return PACKET_ERROR;
1909
1910 /* The packet may or may not be OK. Just assume it is. */
1911 return PACKET_OK;
1912 }
1913 else
1914 /* The stub does not support the packet. */
1915 return PACKET_UNKNOWN;
1916 }
1917
1918 static enum packet_result
1919 packet_ok (const char *buf, struct packet_config *config)
1920 {
1921 enum packet_result result;
1922
1923 if (config->detect != AUTO_BOOLEAN_TRUE
1924 && config->support == PACKET_DISABLE)
1925 internal_error (__FILE__, __LINE__,
1926 _("packet_ok: attempt to use a disabled packet"));
1927
1928 result = packet_check_result (buf);
1929 switch (result)
1930 {
1931 case PACKET_OK:
1932 case PACKET_ERROR:
1933 /* The stub recognized the packet request. */
1934 if (config->support == PACKET_SUPPORT_UNKNOWN)
1935 {
1936 if (remote_debug)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "Packet %s (%s) is supported\n",
1939 config->name, config->title);
1940 config->support = PACKET_ENABLE;
1941 }
1942 break;
1943 case PACKET_UNKNOWN:
1944 /* The stub does not support the packet. */
1945 if (config->detect == AUTO_BOOLEAN_AUTO
1946 && config->support == PACKET_ENABLE)
1947 {
1948 /* If the stub previously indicated that the packet was
1949 supported then there is a protocol error. */
1950 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1951 config->name, config->title);
1952 }
1953 else if (config->detect == AUTO_BOOLEAN_TRUE)
1954 {
1955 /* The user set it wrong. */
1956 error (_("Enabled packet %s (%s) not recognized by stub"),
1957 config->name, config->title);
1958 }
1959
1960 if (remote_debug)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "Packet %s (%s) is NOT supported\n",
1963 config->name, config->title);
1964 config->support = PACKET_DISABLE;
1965 break;
1966 }
1967
1968 return result;
1969 }
1970
1971 enum {
1972 PACKET_vCont = 0,
1973 PACKET_X,
1974 PACKET_qSymbol,
1975 PACKET_P,
1976 PACKET_p,
1977 PACKET_Z0,
1978 PACKET_Z1,
1979 PACKET_Z2,
1980 PACKET_Z3,
1981 PACKET_Z4,
1982 PACKET_vFile_setfs,
1983 PACKET_vFile_open,
1984 PACKET_vFile_pread,
1985 PACKET_vFile_pwrite,
1986 PACKET_vFile_close,
1987 PACKET_vFile_unlink,
1988 PACKET_vFile_readlink,
1989 PACKET_vFile_fstat,
1990 PACKET_qXfer_auxv,
1991 PACKET_qXfer_features,
1992 PACKET_qXfer_exec_file,
1993 PACKET_qXfer_libraries,
1994 PACKET_qXfer_libraries_svr4,
1995 PACKET_qXfer_memory_map,
1996 PACKET_qXfer_spu_read,
1997 PACKET_qXfer_spu_write,
1998 PACKET_qXfer_osdata,
1999 PACKET_qXfer_threads,
2000 PACKET_qXfer_statictrace_read,
2001 PACKET_qXfer_traceframe_info,
2002 PACKET_qXfer_uib,
2003 PACKET_qGetTIBAddr,
2004 PACKET_qGetTLSAddr,
2005 PACKET_qSupported,
2006 PACKET_qTStatus,
2007 PACKET_QPassSignals,
2008 PACKET_QCatchSyscalls,
2009 PACKET_QProgramSignals,
2010 PACKET_QSetWorkingDir,
2011 PACKET_QStartupWithShell,
2012 PACKET_QEnvironmentHexEncoded,
2013 PACKET_QEnvironmentReset,
2014 PACKET_QEnvironmentUnset,
2015 PACKET_qCRC,
2016 PACKET_qSearch_memory,
2017 PACKET_vAttach,
2018 PACKET_vRun,
2019 PACKET_QStartNoAckMode,
2020 PACKET_vKill,
2021 PACKET_qXfer_siginfo_read,
2022 PACKET_qXfer_siginfo_write,
2023 PACKET_qAttached,
2024
2025 /* Support for conditional tracepoints. */
2026 PACKET_ConditionalTracepoints,
2027
2028 /* Support for target-side breakpoint conditions. */
2029 PACKET_ConditionalBreakpoints,
2030
2031 /* Support for target-side breakpoint commands. */
2032 PACKET_BreakpointCommands,
2033
2034 /* Support for fast tracepoints. */
2035 PACKET_FastTracepoints,
2036
2037 /* Support for static tracepoints. */
2038 PACKET_StaticTracepoints,
2039
2040 /* Support for installing tracepoints while a trace experiment is
2041 running. */
2042 PACKET_InstallInTrace,
2043
2044 PACKET_bc,
2045 PACKET_bs,
2046 PACKET_TracepointSource,
2047 PACKET_QAllow,
2048 PACKET_qXfer_fdpic,
2049 PACKET_QDisableRandomization,
2050 PACKET_QAgent,
2051 PACKET_QTBuffer_size,
2052 PACKET_Qbtrace_off,
2053 PACKET_Qbtrace_bts,
2054 PACKET_Qbtrace_pt,
2055 PACKET_qXfer_btrace,
2056
2057 /* Support for the QNonStop packet. */
2058 PACKET_QNonStop,
2059
2060 /* Support for the QThreadEvents packet. */
2061 PACKET_QThreadEvents,
2062
2063 /* Support for multi-process extensions. */
2064 PACKET_multiprocess_feature,
2065
2066 /* Support for enabling and disabling tracepoints while a trace
2067 experiment is running. */
2068 PACKET_EnableDisableTracepoints_feature,
2069
2070 /* Support for collecting strings using the tracenz bytecode. */
2071 PACKET_tracenz_feature,
2072
2073 /* Support for continuing to run a trace experiment while GDB is
2074 disconnected. */
2075 PACKET_DisconnectedTracing_feature,
2076
2077 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2078 PACKET_augmented_libraries_svr4_read_feature,
2079
2080 /* Support for the qXfer:btrace-conf:read packet. */
2081 PACKET_qXfer_btrace_conf,
2082
2083 /* Support for the Qbtrace-conf:bts:size packet. */
2084 PACKET_Qbtrace_conf_bts_size,
2085
2086 /* Support for swbreak+ feature. */
2087 PACKET_swbreak_feature,
2088
2089 /* Support for hwbreak+ feature. */
2090 PACKET_hwbreak_feature,
2091
2092 /* Support for fork events. */
2093 PACKET_fork_event_feature,
2094
2095 /* Support for vfork events. */
2096 PACKET_vfork_event_feature,
2097
2098 /* Support for the Qbtrace-conf:pt:size packet. */
2099 PACKET_Qbtrace_conf_pt_size,
2100
2101 /* Support for exec events. */
2102 PACKET_exec_event_feature,
2103
2104 /* Support for query supported vCont actions. */
2105 PACKET_vContSupported,
2106
2107 /* Support remote CTRL-C. */
2108 PACKET_vCtrlC,
2109
2110 /* Support TARGET_WAITKIND_NO_RESUMED. */
2111 PACKET_no_resumed,
2112
2113 PACKET_MAX
2114 };
2115
2116 static struct packet_config remote_protocol_packets[PACKET_MAX];
2117
2118 /* Returns the packet's corresponding "set remote foo-packet" command
2119 state. See struct packet_config for more details. */
2120
2121 static enum auto_boolean
2122 packet_set_cmd_state (int packet)
2123 {
2124 return remote_protocol_packets[packet].detect;
2125 }
2126
2127 /* Returns whether a given packet or feature is supported. This takes
2128 into account the state of the corresponding "set remote foo-packet"
2129 command, which may be used to bypass auto-detection. */
2130
2131 static enum packet_support
2132 packet_config_support (struct packet_config *config)
2133 {
2134 switch (config->detect)
2135 {
2136 case AUTO_BOOLEAN_TRUE:
2137 return PACKET_ENABLE;
2138 case AUTO_BOOLEAN_FALSE:
2139 return PACKET_DISABLE;
2140 case AUTO_BOOLEAN_AUTO:
2141 return config->support;
2142 default:
2143 gdb_assert_not_reached (_("bad switch"));
2144 }
2145 }
2146
2147 /* Same as packet_config_support, but takes the packet's enum value as
2148 argument. */
2149
2150 static enum packet_support
2151 packet_support (int packet)
2152 {
2153 struct packet_config *config = &remote_protocol_packets[packet];
2154
2155 return packet_config_support (config);
2156 }
2157
2158 static void
2159 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2160 struct cmd_list_element *c,
2161 const char *value)
2162 {
2163 struct packet_config *packet;
2164
2165 for (packet = remote_protocol_packets;
2166 packet < &remote_protocol_packets[PACKET_MAX];
2167 packet++)
2168 {
2169 if (&packet->detect == c->var)
2170 {
2171 show_packet_config_cmd (packet);
2172 return;
2173 }
2174 }
2175 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2176 c->name);
2177 }
2178
2179 /* Should we try one of the 'Z' requests? */
2180
2181 enum Z_packet_type
2182 {
2183 Z_PACKET_SOFTWARE_BP,
2184 Z_PACKET_HARDWARE_BP,
2185 Z_PACKET_WRITE_WP,
2186 Z_PACKET_READ_WP,
2187 Z_PACKET_ACCESS_WP,
2188 NR_Z_PACKET_TYPES
2189 };
2190
2191 /* For compatibility with older distributions. Provide a ``set remote
2192 Z-packet ...'' command that updates all the Z packet types. */
2193
2194 static enum auto_boolean remote_Z_packet_detect;
2195
2196 static void
2197 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2198 struct cmd_list_element *c)
2199 {
2200 int i;
2201
2202 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2203 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2204 }
2205
2206 static void
2207 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c,
2209 const char *value)
2210 {
2211 int i;
2212
2213 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2214 {
2215 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2216 }
2217 }
2218
2219 /* Returns true if the multi-process extensions are in effect. */
2220
2221 static int
2222 remote_multi_process_p (struct remote_state *rs)
2223 {
2224 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2225 }
2226
2227 /* Returns true if fork events are supported. */
2228
2229 static int
2230 remote_fork_event_p (struct remote_state *rs)
2231 {
2232 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2233 }
2234
2235 /* Returns true if vfork events are supported. */
2236
2237 static int
2238 remote_vfork_event_p (struct remote_state *rs)
2239 {
2240 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2241 }
2242
2243 /* Returns true if exec events are supported. */
2244
2245 static int
2246 remote_exec_event_p (struct remote_state *rs)
2247 {
2248 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2249 }
2250
2251 /* Insert fork catchpoint target routine. If fork events are enabled
2252 then return success, nothing more to do. */
2253
2254 int
2255 remote_target::insert_fork_catchpoint (int pid)
2256 {
2257 struct remote_state *rs = get_remote_state ();
2258
2259 return !remote_fork_event_p (rs);
2260 }
2261
2262 /* Remove fork catchpoint target routine. Nothing to do, just
2263 return success. */
2264
2265 int
2266 remote_target::remove_fork_catchpoint (int pid)
2267 {
2268 return 0;
2269 }
2270
2271 /* Insert vfork catchpoint target routine. If vfork events are enabled
2272 then return success, nothing more to do. */
2273
2274 int
2275 remote_target::insert_vfork_catchpoint (int pid)
2276 {
2277 struct remote_state *rs = get_remote_state ();
2278
2279 return !remote_vfork_event_p (rs);
2280 }
2281
2282 /* Remove vfork catchpoint target routine. Nothing to do, just
2283 return success. */
2284
2285 int
2286 remote_target::remove_vfork_catchpoint (int pid)
2287 {
2288 return 0;
2289 }
2290
2291 /* Insert exec catchpoint target routine. If exec events are
2292 enabled, just return success. */
2293
2294 int
2295 remote_target::insert_exec_catchpoint (int pid)
2296 {
2297 struct remote_state *rs = get_remote_state ();
2298
2299 return !remote_exec_event_p (rs);
2300 }
2301
2302 /* Remove exec catchpoint target routine. Nothing to do, just
2303 return success. */
2304
2305 int
2306 remote_target::remove_exec_catchpoint (int pid)
2307 {
2308 return 0;
2309 }
2310
2311 \f
2312
2313 static ptid_t magic_null_ptid;
2314 static ptid_t not_sent_ptid;
2315 static ptid_t any_thread_ptid;
2316
2317 /* Find out if the stub attached to PID (and hence GDB should offer to
2318 detach instead of killing it when bailing out). */
2319
2320 int
2321 remote_target::remote_query_attached (int pid)
2322 {
2323 struct remote_state *rs = get_remote_state ();
2324 size_t size = get_remote_packet_size ();
2325
2326 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2327 return 0;
2328
2329 if (remote_multi_process_p (rs))
2330 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2331 else
2332 xsnprintf (rs->buf, size, "qAttached");
2333
2334 putpkt (rs->buf);
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336
2337 switch (packet_ok (rs->buf,
2338 &remote_protocol_packets[PACKET_qAttached]))
2339 {
2340 case PACKET_OK:
2341 if (strcmp (rs->buf, "1") == 0)
2342 return 1;
2343 break;
2344 case PACKET_ERROR:
2345 warning (_("Remote failure reply: %s"), rs->buf);
2346 break;
2347 case PACKET_UNKNOWN:
2348 break;
2349 }
2350
2351 return 0;
2352 }
2353
2354 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2355 has been invented by GDB, instead of reported by the target. Since
2356 we can be connected to a remote system before before knowing about
2357 any inferior, mark the target with execution when we find the first
2358 inferior. If ATTACHED is 1, then we had just attached to this
2359 inferior. If it is 0, then we just created this inferior. If it
2360 is -1, then try querying the remote stub to find out if it had
2361 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2362 attempt to open this inferior's executable as the main executable
2363 if no main executable is open already. */
2364
2365 inferior *
2366 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2367 int try_open_exec)
2368 {
2369 struct inferior *inf;
2370
2371 /* Check whether this process we're learning about is to be
2372 considered attached, or if is to be considered to have been
2373 spawned by the stub. */
2374 if (attached == -1)
2375 attached = remote_query_attached (pid);
2376
2377 if (gdbarch_has_global_solist (target_gdbarch ()))
2378 {
2379 /* If the target shares code across all inferiors, then every
2380 attach adds a new inferior. */
2381 inf = add_inferior (pid);
2382
2383 /* ... and every inferior is bound to the same program space.
2384 However, each inferior may still have its own address
2385 space. */
2386 inf->aspace = maybe_new_address_space ();
2387 inf->pspace = current_program_space;
2388 }
2389 else
2390 {
2391 /* In the traditional debugging scenario, there's a 1-1 match
2392 between program/address spaces. We simply bind the inferior
2393 to the program space's address space. */
2394 inf = current_inferior ();
2395 inferior_appeared (inf, pid);
2396 }
2397
2398 inf->attach_flag = attached;
2399 inf->fake_pid_p = fake_pid_p;
2400
2401 /* If no main executable is currently open then attempt to
2402 open the file that was executed to create this inferior. */
2403 if (try_open_exec && get_exec_file (0) == NULL)
2404 exec_file_locate_attach (pid, 0, 1);
2405
2406 return inf;
2407 }
2408
2409 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2410 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2411
2412 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2413 according to RUNNING. */
2414
2415 thread_info *
2416 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2417 {
2418 struct remote_state *rs = get_remote_state ();
2419 struct thread_info *thread;
2420
2421 /* GDB historically didn't pull threads in the initial connection
2422 setup. If the remote target doesn't even have a concept of
2423 threads (e.g., a bare-metal target), even if internally we
2424 consider that a single-threaded target, mentioning a new thread
2425 might be confusing to the user. Be silent then, preserving the
2426 age old behavior. */
2427 if (rs->starting_up)
2428 thread = add_thread_silent (ptid);
2429 else
2430 thread = add_thread (ptid);
2431
2432 get_remote_thread_info (thread)->vcont_resumed = executing;
2433 set_executing (ptid, executing);
2434 set_running (ptid, running);
2435
2436 return thread;
2437 }
2438
2439 /* Come here when we learn about a thread id from the remote target.
2440 It may be the first time we hear about such thread, so take the
2441 opportunity to add it to GDB's thread list. In case this is the
2442 first time we're noticing its corresponding inferior, add it to
2443 GDB's inferior list as well. EXECUTING indicates whether the
2444 thread is (internally) executing or stopped. */
2445
2446 void
2447 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2448 {
2449 /* In non-stop mode, we assume new found threads are (externally)
2450 running until proven otherwise with a stop reply. In all-stop,
2451 we can only get here if all threads are stopped. */
2452 int running = target_is_non_stop_p () ? 1 : 0;
2453
2454 /* If this is a new thread, add it to GDB's thread list.
2455 If we leave it up to WFI to do this, bad things will happen. */
2456
2457 thread_info *tp = find_thread_ptid (currthread);
2458 if (tp != NULL && tp->state == THREAD_EXITED)
2459 {
2460 /* We're seeing an event on a thread id we knew had exited.
2461 This has to be a new thread reusing the old id. Add it. */
2462 remote_add_thread (currthread, running, executing);
2463 return;
2464 }
2465
2466 if (!in_thread_list (currthread))
2467 {
2468 struct inferior *inf = NULL;
2469 int pid = currthread.pid ();
2470
2471 if (inferior_ptid.is_pid ()
2472 && pid == inferior_ptid.pid ())
2473 {
2474 /* inferior_ptid has no thread member yet. This can happen
2475 with the vAttach -> remote_wait,"TAAthread:" path if the
2476 stub doesn't support qC. This is the first stop reported
2477 after an attach, so this is the main thread. Update the
2478 ptid in the thread list. */
2479 if (in_thread_list (ptid_t (pid)))
2480 thread_change_ptid (inferior_ptid, currthread);
2481 else
2482 {
2483 remote_add_thread (currthread, running, executing);
2484 inferior_ptid = currthread;
2485 }
2486 return;
2487 }
2488
2489 if (magic_null_ptid == inferior_ptid)
2490 {
2491 /* inferior_ptid is not set yet. This can happen with the
2492 vRun -> remote_wait,"TAAthread:" path if the stub
2493 doesn't support qC. This is the first stop reported
2494 after an attach, so this is the main thread. Update the
2495 ptid in the thread list. */
2496 thread_change_ptid (inferior_ptid, currthread);
2497 return;
2498 }
2499
2500 /* When connecting to a target remote, or to a target
2501 extended-remote which already was debugging an inferior, we
2502 may not know about it yet. Add it before adding its child
2503 thread, so notifications are emitted in a sensible order. */
2504 if (find_inferior_pid (currthread.pid ()) == NULL)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 int fake_pid_p = !remote_multi_process_p (rs);
2508
2509 inf = remote_add_inferior (fake_pid_p,
2510 currthread.pid (), -1, 1);
2511 }
2512
2513 /* This is really a new thread. Add it. */
2514 thread_info *new_thr
2515 = remote_add_thread (currthread, running, executing);
2516
2517 /* If we found a new inferior, let the common code do whatever
2518 it needs to with it (e.g., read shared libraries, insert
2519 breakpoints), unless we're just setting up an all-stop
2520 connection. */
2521 if (inf != NULL)
2522 {
2523 struct remote_state *rs = get_remote_state ();
2524
2525 if (!rs->starting_up)
2526 notice_new_inferior (new_thr, executing, 0);
2527 }
2528 }
2529 }
2530
2531 /* Return THREAD's private thread data, creating it if necessary. */
2532
2533 static remote_thread_info *
2534 get_remote_thread_info (thread_info *thread)
2535 {
2536 gdb_assert (thread != NULL);
2537
2538 if (thread->priv == NULL)
2539 thread->priv.reset (new remote_thread_info);
2540
2541 return static_cast<remote_thread_info *> (thread->priv.get ());
2542 }
2543
2544 static remote_thread_info *
2545 get_remote_thread_info (ptid_t ptid)
2546 {
2547 thread_info *thr = find_thread_ptid (ptid);
2548 return get_remote_thread_info (thr);
2549 }
2550
2551 /* Call this function as a result of
2552 1) A halt indication (T packet) containing a thread id
2553 2) A direct query of currthread
2554 3) Successful execution of set thread */
2555
2556 static void
2557 record_currthread (struct remote_state *rs, ptid_t currthread)
2558 {
2559 rs->general_thread = currthread;
2560 }
2561
2562 /* If 'QPassSignals' is supported, tell the remote stub what signals
2563 it can simply pass through to the inferior without reporting. */
2564
2565 void
2566 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2567 {
2568 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2569 {
2570 char *pass_packet, *p;
2571 int count = 0, i;
2572 struct remote_state *rs = get_remote_state ();
2573
2574 gdb_assert (numsigs < 256);
2575 for (i = 0; i < numsigs; i++)
2576 {
2577 if (pass_signals[i])
2578 count++;
2579 }
2580 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2581 strcpy (pass_packet, "QPassSignals:");
2582 p = pass_packet + strlen (pass_packet);
2583 for (i = 0; i < numsigs; i++)
2584 {
2585 if (pass_signals[i])
2586 {
2587 if (i >= 16)
2588 *p++ = tohex (i >> 4);
2589 *p++ = tohex (i & 15);
2590 if (count)
2591 *p++ = ';';
2592 else
2593 break;
2594 count--;
2595 }
2596 }
2597 *p = 0;
2598 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2599 {
2600 putpkt (pass_packet);
2601 getpkt (&rs->buf, &rs->buf_size, 0);
2602 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2603 if (rs->last_pass_packet)
2604 xfree (rs->last_pass_packet);
2605 rs->last_pass_packet = pass_packet;
2606 }
2607 else
2608 xfree (pass_packet);
2609 }
2610 }
2611
2612 /* If 'QCatchSyscalls' is supported, tell the remote stub
2613 to report syscalls to GDB. */
2614
2615 int
2616 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2617 gdb::array_view<const int> syscall_counts)
2618 {
2619 const char *catch_packet;
2620 enum packet_result result;
2621 int n_sysno = 0;
2622
2623 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2624 {
2625 /* Not supported. */
2626 return 1;
2627 }
2628
2629 if (needed && any_count == 0)
2630 {
2631 /* Count how many syscalls are to be caught. */
2632 for (size_t i = 0; i < syscall_counts.size (); i++)
2633 {
2634 if (syscall_counts[i] != 0)
2635 n_sysno++;
2636 }
2637 }
2638
2639 if (remote_debug)
2640 {
2641 fprintf_unfiltered (gdb_stdlog,
2642 "remote_set_syscall_catchpoint "
2643 "pid %d needed %d any_count %d n_sysno %d\n",
2644 pid, needed, any_count, n_sysno);
2645 }
2646
2647 std::string built_packet;
2648 if (needed)
2649 {
2650 /* Prepare a packet with the sysno list, assuming max 8+1
2651 characters for a sysno. If the resulting packet size is too
2652 big, fallback on the non-selective packet. */
2653 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2654 built_packet.reserve (maxpktsz);
2655 built_packet = "QCatchSyscalls:1";
2656 if (any_count == 0)
2657 {
2658 /* Add in each syscall to be caught. */
2659 for (size_t i = 0; i < syscall_counts.size (); i++)
2660 {
2661 if (syscall_counts[i] != 0)
2662 string_appendf (built_packet, ";%zx", i);
2663 }
2664 }
2665 if (built_packet.size () > get_remote_packet_size ())
2666 {
2667 /* catch_packet too big. Fallback to less efficient
2668 non selective mode, with GDB doing the filtering. */
2669 catch_packet = "QCatchSyscalls:1";
2670 }
2671 else
2672 catch_packet = built_packet.c_str ();
2673 }
2674 else
2675 catch_packet = "QCatchSyscalls:0";
2676
2677 struct remote_state *rs = get_remote_state ();
2678
2679 putpkt (catch_packet);
2680 getpkt (&rs->buf, &rs->buf_size, 0);
2681 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2682 if (result == PACKET_OK)
2683 return 0;
2684 else
2685 return -1;
2686 }
2687
2688 /* If 'QProgramSignals' is supported, tell the remote stub what
2689 signals it should pass through to the inferior when detaching. */
2690
2691 void
2692 remote_target::program_signals (int numsigs, unsigned char *signals)
2693 {
2694 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2695 {
2696 char *packet, *p;
2697 int count = 0, i;
2698 struct remote_state *rs = get_remote_state ();
2699
2700 gdb_assert (numsigs < 256);
2701 for (i = 0; i < numsigs; i++)
2702 {
2703 if (signals[i])
2704 count++;
2705 }
2706 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2707 strcpy (packet, "QProgramSignals:");
2708 p = packet + strlen (packet);
2709 for (i = 0; i < numsigs; i++)
2710 {
2711 if (signal_pass_state (i))
2712 {
2713 if (i >= 16)
2714 *p++ = tohex (i >> 4);
2715 *p++ = tohex (i & 15);
2716 if (count)
2717 *p++ = ';';
2718 else
2719 break;
2720 count--;
2721 }
2722 }
2723 *p = 0;
2724 if (!rs->last_program_signals_packet
2725 || strcmp (rs->last_program_signals_packet, packet) != 0)
2726 {
2727 putpkt (packet);
2728 getpkt (&rs->buf, &rs->buf_size, 0);
2729 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2730 xfree (rs->last_program_signals_packet);
2731 rs->last_program_signals_packet = packet;
2732 }
2733 else
2734 xfree (packet);
2735 }
2736 }
2737
2738 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2739 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2740 thread. If GEN is set, set the general thread, if not, then set
2741 the step/continue thread. */
2742 void
2743 remote_target::set_thread (ptid_t ptid, int gen)
2744 {
2745 struct remote_state *rs = get_remote_state ();
2746 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2747 char *buf = rs->buf;
2748 char *endbuf = rs->buf + get_remote_packet_size ();
2749
2750 if (state == ptid)
2751 return;
2752
2753 *buf++ = 'H';
2754 *buf++ = gen ? 'g' : 'c';
2755 if (ptid == magic_null_ptid)
2756 xsnprintf (buf, endbuf - buf, "0");
2757 else if (ptid == any_thread_ptid)
2758 xsnprintf (buf, endbuf - buf, "0");
2759 else if (ptid == minus_one_ptid)
2760 xsnprintf (buf, endbuf - buf, "-1");
2761 else
2762 write_ptid (buf, endbuf, ptid);
2763 putpkt (rs->buf);
2764 getpkt (&rs->buf, &rs->buf_size, 0);
2765 if (gen)
2766 rs->general_thread = ptid;
2767 else
2768 rs->continue_thread = ptid;
2769 }
2770
2771 void
2772 remote_target::set_general_thread (ptid_t ptid)
2773 {
2774 set_thread (ptid, 1);
2775 }
2776
2777 void
2778 remote_target::set_continue_thread (ptid_t ptid)
2779 {
2780 set_thread (ptid, 0);
2781 }
2782
2783 /* Change the remote current process. Which thread within the process
2784 ends up selected isn't important, as long as it is the same process
2785 as what INFERIOR_PTID points to.
2786
2787 This comes from that fact that there is no explicit notion of
2788 "selected process" in the protocol. The selected process for
2789 general operations is the process the selected general thread
2790 belongs to. */
2791
2792 void
2793 remote_target::set_general_process ()
2794 {
2795 struct remote_state *rs = get_remote_state ();
2796
2797 /* If the remote can't handle multiple processes, don't bother. */
2798 if (!remote_multi_process_p (rs))
2799 return;
2800
2801 /* We only need to change the remote current thread if it's pointing
2802 at some other process. */
2803 if (rs->general_thread.pid () != inferior_ptid.pid ())
2804 set_general_thread (inferior_ptid);
2805 }
2806
2807 \f
2808 /* Return nonzero if this is the main thread that we made up ourselves
2809 to model non-threaded targets as single-threaded. */
2810
2811 static int
2812 remote_thread_always_alive (ptid_t ptid)
2813 {
2814 if (ptid == magic_null_ptid)
2815 /* The main thread is always alive. */
2816 return 1;
2817
2818 if (ptid.pid () != 0 && ptid.lwp () == 0)
2819 /* The main thread is always alive. This can happen after a
2820 vAttach, if the remote side doesn't support
2821 multi-threading. */
2822 return 1;
2823
2824 return 0;
2825 }
2826
2827 /* Return nonzero if the thread PTID is still alive on the remote
2828 system. */
2829
2830 bool
2831 remote_target::thread_alive (ptid_t ptid)
2832 {
2833 struct remote_state *rs = get_remote_state ();
2834 char *p, *endp;
2835
2836 /* Check if this is a thread that we made up ourselves to model
2837 non-threaded targets as single-threaded. */
2838 if (remote_thread_always_alive (ptid))
2839 return 1;
2840
2841 p = rs->buf;
2842 endp = rs->buf + get_remote_packet_size ();
2843
2844 *p++ = 'T';
2845 write_ptid (p, endp, ptid);
2846
2847 putpkt (rs->buf);
2848 getpkt (&rs->buf, &rs->buf_size, 0);
2849 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2850 }
2851
2852 /* Return a pointer to a thread name if we know it and NULL otherwise.
2853 The thread_info object owns the memory for the name. */
2854
2855 const char *
2856 remote_target::thread_name (struct thread_info *info)
2857 {
2858 if (info->priv != NULL)
2859 {
2860 const std::string &name = get_remote_thread_info (info)->name;
2861 return !name.empty () ? name.c_str () : NULL;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* About these extended threadlist and threadinfo packets. They are
2868 variable length packets but, the fields within them are often fixed
2869 length. They are redundent enough to send over UDP as is the
2870 remote protocol in general. There is a matching unit test module
2871 in libstub. */
2872
2873 /* WARNING: This threadref data structure comes from the remote O.S.,
2874 libstub protocol encoding, and remote.c. It is not particularly
2875 changable. */
2876
2877 /* Right now, the internal structure is int. We want it to be bigger.
2878 Plan to fix this. */
2879
2880 typedef int gdb_threadref; /* Internal GDB thread reference. */
2881
2882 /* gdb_ext_thread_info is an internal GDB data structure which is
2883 equivalent to the reply of the remote threadinfo packet. */
2884
2885 struct gdb_ext_thread_info
2886 {
2887 threadref threadid; /* External form of thread reference. */
2888 int active; /* Has state interesting to GDB?
2889 regs, stack. */
2890 char display[256]; /* Brief state display, name,
2891 blocked/suspended. */
2892 char shortname[32]; /* To be used to name threads. */
2893 char more_display[256]; /* Long info, statistics, queue depth,
2894 whatever. */
2895 };
2896
2897 /* The volume of remote transfers can be limited by submitting
2898 a mask containing bits specifying the desired information.
2899 Use a union of these values as the 'selection' parameter to
2900 get_thread_info. FIXME: Make these TAG names more thread specific. */
2901
2902 #define TAG_THREADID 1
2903 #define TAG_EXISTS 2
2904 #define TAG_DISPLAY 4
2905 #define TAG_THREADNAME 8
2906 #define TAG_MOREDISPLAY 16
2907
2908 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2909
2910 static char *unpack_nibble (char *buf, int *val);
2911
2912 static char *unpack_byte (char *buf, int *value);
2913
2914 static char *pack_int (char *buf, int value);
2915
2916 static char *unpack_int (char *buf, int *value);
2917
2918 static char *unpack_string (char *src, char *dest, int length);
2919
2920 static char *pack_threadid (char *pkt, threadref *id);
2921
2922 static char *unpack_threadid (char *inbuf, threadref *id);
2923
2924 void int_to_threadref (threadref *id, int value);
2925
2926 static int threadref_to_int (threadref *ref);
2927
2928 static void copy_threadref (threadref *dest, threadref *src);
2929
2930 static int threadmatch (threadref *dest, threadref *src);
2931
2932 static char *pack_threadinfo_request (char *pkt, int mode,
2933 threadref *id);
2934
2935 static char *pack_threadlist_request (char *pkt, int startflag,
2936 int threadcount,
2937 threadref *nextthread);
2938
2939 static int remote_newthread_step (threadref *ref, void *context);
2940
2941
2942 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2943 buffer we're allowed to write to. Returns
2944 BUF+CHARACTERS_WRITTEN. */
2945
2946 char *
2947 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2948 {
2949 int pid, tid;
2950 struct remote_state *rs = get_remote_state ();
2951
2952 if (remote_multi_process_p (rs))
2953 {
2954 pid = ptid.pid ();
2955 if (pid < 0)
2956 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2957 else
2958 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2959 }
2960 tid = ptid.lwp ();
2961 if (tid < 0)
2962 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2963 else
2964 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2965
2966 return buf;
2967 }
2968
2969 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2970 last parsed char. Returns null_ptid if no thread id is found, and
2971 throws an error if the thread id has an invalid format. */
2972
2973 static ptid_t
2974 read_ptid (const char *buf, const char **obuf)
2975 {
2976 const char *p = buf;
2977 const char *pp;
2978 ULONGEST pid = 0, tid = 0;
2979
2980 if (*p == 'p')
2981 {
2982 /* Multi-process ptid. */
2983 pp = unpack_varlen_hex (p + 1, &pid);
2984 if (*pp != '.')
2985 error (_("invalid remote ptid: %s"), p);
2986
2987 p = pp;
2988 pp = unpack_varlen_hex (p + 1, &tid);
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 /* No multi-process. Just a tid. */
2995 pp = unpack_varlen_hex (p, &tid);
2996
2997 /* Return null_ptid when no thread id is found. */
2998 if (p == pp)
2999 {
3000 if (obuf)
3001 *obuf = pp;
3002 return null_ptid;
3003 }
3004
3005 /* Since the stub is not sending a process id, then default to
3006 what's in inferior_ptid, unless it's null at this point. If so,
3007 then since there's no way to know the pid of the reported
3008 threads, use the magic number. */
3009 if (inferior_ptid == null_ptid)
3010 pid = magic_null_ptid.pid ();
3011 else
3012 pid = inferior_ptid.pid ();
3013
3014 if (obuf)
3015 *obuf = pp;
3016 return ptid_t (pid, tid, 0);
3017 }
3018
3019 static int
3020 stubhex (int ch)
3021 {
3022 if (ch >= 'a' && ch <= 'f')
3023 return ch - 'a' + 10;
3024 if (ch >= '0' && ch <= '9')
3025 return ch - '0';
3026 if (ch >= 'A' && ch <= 'F')
3027 return ch - 'A' + 10;
3028 return -1;
3029 }
3030
3031 static int
3032 stub_unpack_int (char *buff, int fieldlength)
3033 {
3034 int nibble;
3035 int retval = 0;
3036
3037 while (fieldlength)
3038 {
3039 nibble = stubhex (*buff++);
3040 retval |= nibble;
3041 fieldlength--;
3042 if (fieldlength)
3043 retval = retval << 4;
3044 }
3045 return retval;
3046 }
3047
3048 static char *
3049 unpack_nibble (char *buf, int *val)
3050 {
3051 *val = fromhex (*buf++);
3052 return buf;
3053 }
3054
3055 static char *
3056 unpack_byte (char *buf, int *value)
3057 {
3058 *value = stub_unpack_int (buf, 2);
3059 return buf + 2;
3060 }
3061
3062 static char *
3063 pack_int (char *buf, int value)
3064 {
3065 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3066 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3067 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3068 buf = pack_hex_byte (buf, (value & 0xff));
3069 return buf;
3070 }
3071
3072 static char *
3073 unpack_int (char *buf, int *value)
3074 {
3075 *value = stub_unpack_int (buf, 8);
3076 return buf + 8;
3077 }
3078
3079 #if 0 /* Currently unused, uncomment when needed. */
3080 static char *pack_string (char *pkt, char *string);
3081
3082 static char *
3083 pack_string (char *pkt, char *string)
3084 {
3085 char ch;
3086 int len;
3087
3088 len = strlen (string);
3089 if (len > 200)
3090 len = 200; /* Bigger than most GDB packets, junk??? */
3091 pkt = pack_hex_byte (pkt, len);
3092 while (len-- > 0)
3093 {
3094 ch = *string++;
3095 if ((ch == '\0') || (ch == '#'))
3096 ch = '*'; /* Protect encapsulation. */
3097 *pkt++ = ch;
3098 }
3099 return pkt;
3100 }
3101 #endif /* 0 (unused) */
3102
3103 static char *
3104 unpack_string (char *src, char *dest, int length)
3105 {
3106 while (length--)
3107 *dest++ = *src++;
3108 *dest = '\0';
3109 return src;
3110 }
3111
3112 static char *
3113 pack_threadid (char *pkt, threadref *id)
3114 {
3115 char *limit;
3116 unsigned char *altid;
3117
3118 altid = (unsigned char *) id;
3119 limit = pkt + BUF_THREAD_ID_SIZE;
3120 while (pkt < limit)
3121 pkt = pack_hex_byte (pkt, *altid++);
3122 return pkt;
3123 }
3124
3125
3126 static char *
3127 unpack_threadid (char *inbuf, threadref *id)
3128 {
3129 char *altref;
3130 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3131 int x, y;
3132
3133 altref = (char *) id;
3134
3135 while (inbuf < limit)
3136 {
3137 x = stubhex (*inbuf++);
3138 y = stubhex (*inbuf++);
3139 *altref++ = (x << 4) | y;
3140 }
3141 return inbuf;
3142 }
3143
3144 /* Externally, threadrefs are 64 bits but internally, they are still
3145 ints. This is due to a mismatch of specifications. We would like
3146 to use 64bit thread references internally. This is an adapter
3147 function. */
3148
3149 void
3150 int_to_threadref (threadref *id, int value)
3151 {
3152 unsigned char *scan;
3153
3154 scan = (unsigned char *) id;
3155 {
3156 int i = 4;
3157 while (i--)
3158 *scan++ = 0;
3159 }
3160 *scan++ = (value >> 24) & 0xff;
3161 *scan++ = (value >> 16) & 0xff;
3162 *scan++ = (value >> 8) & 0xff;
3163 *scan++ = (value & 0xff);
3164 }
3165
3166 static int
3167 threadref_to_int (threadref *ref)
3168 {
3169 int i, value = 0;
3170 unsigned char *scan;
3171
3172 scan = *ref;
3173 scan += 4;
3174 i = 4;
3175 while (i-- > 0)
3176 value = (value << 8) | ((*scan++) & 0xff);
3177 return value;
3178 }
3179
3180 static void
3181 copy_threadref (threadref *dest, threadref *src)
3182 {
3183 int i;
3184 unsigned char *csrc, *cdest;
3185
3186 csrc = (unsigned char *) src;
3187 cdest = (unsigned char *) dest;
3188 i = 8;
3189 while (i--)
3190 *cdest++ = *csrc++;
3191 }
3192
3193 static int
3194 threadmatch (threadref *dest, threadref *src)
3195 {
3196 /* Things are broken right now, so just assume we got a match. */
3197 #if 0
3198 unsigned char *srcp, *destp;
3199 int i, result;
3200 srcp = (char *) src;
3201 destp = (char *) dest;
3202
3203 result = 1;
3204 while (i-- > 0)
3205 result &= (*srcp++ == *destp++) ? 1 : 0;
3206 return result;
3207 #endif
3208 return 1;
3209 }
3210
3211 /*
3212 threadid:1, # always request threadid
3213 context_exists:2,
3214 display:4,
3215 unique_name:8,
3216 more_display:16
3217 */
3218
3219 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3220
3221 static char *
3222 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3223 {
3224 *pkt++ = 'q'; /* Info Query */
3225 *pkt++ = 'P'; /* process or thread info */
3226 pkt = pack_int (pkt, mode); /* mode */
3227 pkt = pack_threadid (pkt, id); /* threadid */
3228 *pkt = '\0'; /* terminate */
3229 return pkt;
3230 }
3231
3232 /* These values tag the fields in a thread info response packet. */
3233 /* Tagging the fields allows us to request specific fields and to
3234 add more fields as time goes by. */
3235
3236 #define TAG_THREADID 1 /* Echo the thread identifier. */
3237 #define TAG_EXISTS 2 /* Is this process defined enough to
3238 fetch registers and its stack? */
3239 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3240 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3241 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3242 the process. */
3243
3244 int
3245 remote_target::remote_unpack_thread_info_response (char *pkt,
3246 threadref *expectedref,
3247 gdb_ext_thread_info *info)
3248 {
3249 struct remote_state *rs = get_remote_state ();
3250 int mask, length;
3251 int tag;
3252 threadref ref;
3253 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3254 int retval = 1;
3255
3256 /* info->threadid = 0; FIXME: implement zero_threadref. */
3257 info->active = 0;
3258 info->display[0] = '\0';
3259 info->shortname[0] = '\0';
3260 info->more_display[0] = '\0';
3261
3262 /* Assume the characters indicating the packet type have been
3263 stripped. */
3264 pkt = unpack_int (pkt, &mask); /* arg mask */
3265 pkt = unpack_threadid (pkt, &ref);
3266
3267 if (mask == 0)
3268 warning (_("Incomplete response to threadinfo request."));
3269 if (!threadmatch (&ref, expectedref))
3270 { /* This is an answer to a different request. */
3271 warning (_("ERROR RMT Thread info mismatch."));
3272 return 0;
3273 }
3274 copy_threadref (&info->threadid, &ref);
3275
3276 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3277
3278 /* Packets are terminated with nulls. */
3279 while ((pkt < limit) && mask && *pkt)
3280 {
3281 pkt = unpack_int (pkt, &tag); /* tag */
3282 pkt = unpack_byte (pkt, &length); /* length */
3283 if (!(tag & mask)) /* Tags out of synch with mask. */
3284 {
3285 warning (_("ERROR RMT: threadinfo tag mismatch."));
3286 retval = 0;
3287 break;
3288 }
3289 if (tag == TAG_THREADID)
3290 {
3291 if (length != 16)
3292 {
3293 warning (_("ERROR RMT: length of threadid is not 16."));
3294 retval = 0;
3295 break;
3296 }
3297 pkt = unpack_threadid (pkt, &ref);
3298 mask = mask & ~TAG_THREADID;
3299 continue;
3300 }
3301 if (tag == TAG_EXISTS)
3302 {
3303 info->active = stub_unpack_int (pkt, length);
3304 pkt += length;
3305 mask = mask & ~(TAG_EXISTS);
3306 if (length > 8)
3307 {
3308 warning (_("ERROR RMT: 'exists' length too long."));
3309 retval = 0;
3310 break;
3311 }
3312 continue;
3313 }
3314 if (tag == TAG_THREADNAME)
3315 {
3316 pkt = unpack_string (pkt, &info->shortname[0], length);
3317 mask = mask & ~TAG_THREADNAME;
3318 continue;
3319 }
3320 if (tag == TAG_DISPLAY)
3321 {
3322 pkt = unpack_string (pkt, &info->display[0], length);
3323 mask = mask & ~TAG_DISPLAY;
3324 continue;
3325 }
3326 if (tag == TAG_MOREDISPLAY)
3327 {
3328 pkt = unpack_string (pkt, &info->more_display[0], length);
3329 mask = mask & ~TAG_MOREDISPLAY;
3330 continue;
3331 }
3332 warning (_("ERROR RMT: unknown thread info tag."));
3333 break; /* Not a tag we know about. */
3334 }
3335 return retval;
3336 }
3337
3338 int
3339 remote_target::remote_get_threadinfo (threadref *threadid,
3340 int fieldset,
3341 gdb_ext_thread_info *info)
3342 {
3343 struct remote_state *rs = get_remote_state ();
3344 int result;
3345
3346 pack_threadinfo_request (rs->buf, fieldset, threadid);
3347 putpkt (rs->buf);
3348 getpkt (&rs->buf, &rs->buf_size, 0);
3349
3350 if (rs->buf[0] == '\0')
3351 return 0;
3352
3353 result = remote_unpack_thread_info_response (rs->buf + 2,
3354 threadid, info);
3355 return result;
3356 }
3357
3358 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3359
3360 static char *
3361 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3362 threadref *nextthread)
3363 {
3364 *pkt++ = 'q'; /* info query packet */
3365 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3366 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3367 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3368 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3369 *pkt = '\0';
3370 return pkt;
3371 }
3372
3373 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3374
3375 int
3376 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3377 threadref *original_echo,
3378 threadref *resultlist,
3379 int *doneflag)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 char *limit;
3383 int count, resultcount, done;
3384
3385 resultcount = 0;
3386 /* Assume the 'q' and 'M chars have been stripped. */
3387 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3388 /* done parse past here */
3389 pkt = unpack_byte (pkt, &count); /* count field */
3390 pkt = unpack_nibble (pkt, &done);
3391 /* The first threadid is the argument threadid. */
3392 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3393 while ((count-- > 0) && (pkt < limit))
3394 {
3395 pkt = unpack_threadid (pkt, resultlist++);
3396 if (resultcount++ >= result_limit)
3397 break;
3398 }
3399 if (doneflag)
3400 *doneflag = done;
3401 return resultcount;
3402 }
3403
3404 /* Fetch the next batch of threads from the remote. Returns -1 if the
3405 qL packet is not supported, 0 on error and 1 on success. */
3406
3407 int
3408 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3409 int result_limit, int *done, int *result_count,
3410 threadref *threadlist)
3411 {
3412 struct remote_state *rs = get_remote_state ();
3413 int result = 1;
3414
3415 /* Trancate result limit to be smaller than the packet size. */
3416 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3417 >= get_remote_packet_size ())
3418 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3419
3420 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3421 putpkt (rs->buf);
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 if (*rs->buf == '\0')
3424 {
3425 /* Packet not supported. */
3426 return -1;
3427 }
3428
3429 *result_count =
3430 parse_threadlist_response (rs->buf + 2, result_limit,
3431 &rs->echo_nextthread, threadlist, done);
3432
3433 if (!threadmatch (&rs->echo_nextthread, nextthread))
3434 {
3435 /* FIXME: This is a good reason to drop the packet. */
3436 /* Possably, there is a duplicate response. */
3437 /* Possabilities :
3438 retransmit immediatly - race conditions
3439 retransmit after timeout - yes
3440 exit
3441 wait for packet, then exit
3442 */
3443 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3444 return 0; /* I choose simply exiting. */
3445 }
3446 if (*result_count <= 0)
3447 {
3448 if (*done != 1)
3449 {
3450 warning (_("RMT ERROR : failed to get remote thread list."));
3451 result = 0;
3452 }
3453 return result; /* break; */
3454 }
3455 if (*result_count > result_limit)
3456 {
3457 *result_count = 0;
3458 warning (_("RMT ERROR: threadlist response longer than requested."));
3459 return 0;
3460 }
3461 return result;
3462 }
3463
3464 /* Fetch the list of remote threads, with the qL packet, and call
3465 STEPFUNCTION for each thread found. Stops iterating and returns 1
3466 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3467 STEPFUNCTION returns false. If the packet is not supported,
3468 returns -1. */
3469
3470 int
3471 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3472 void *context, int looplimit)
3473 {
3474 struct remote_state *rs = get_remote_state ();
3475 int done, i, result_count;
3476 int startflag = 1;
3477 int result = 1;
3478 int loopcount = 0;
3479
3480 done = 0;
3481 while (!done)
3482 {
3483 if (loopcount++ > looplimit)
3484 {
3485 result = 0;
3486 warning (_("Remote fetch threadlist -infinite loop-."));
3487 break;
3488 }
3489 result = remote_get_threadlist (startflag, &rs->nextthread,
3490 MAXTHREADLISTRESULTS,
3491 &done, &result_count,
3492 rs->resultthreadlist);
3493 if (result <= 0)
3494 break;
3495 /* Clear for later iterations. */
3496 startflag = 0;
3497 /* Setup to resume next batch of thread references, set nextthread. */
3498 if (result_count >= 1)
3499 copy_threadref (&rs->nextthread,
3500 &rs->resultthreadlist[result_count - 1]);
3501 i = 0;
3502 while (result_count--)
3503 {
3504 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3505 {
3506 result = 0;
3507 break;
3508 }
3509 }
3510 }
3511 return result;
3512 }
3513
3514 /* A thread found on the remote target. */
3515
3516 struct thread_item
3517 {
3518 explicit thread_item (ptid_t ptid_)
3519 : ptid (ptid_)
3520 {}
3521
3522 thread_item (thread_item &&other) = default;
3523 thread_item &operator= (thread_item &&other) = default;
3524
3525 DISABLE_COPY_AND_ASSIGN (thread_item);
3526
3527 /* The thread's PTID. */
3528 ptid_t ptid;
3529
3530 /* The thread's extra info. */
3531 std::string extra;
3532
3533 /* The thread's name. */
3534 std::string name;
3535
3536 /* The core the thread was running on. -1 if not known. */
3537 int core = -1;
3538
3539 /* The thread handle associated with the thread. */
3540 gdb::byte_vector thread_handle;
3541 };
3542
3543 /* Context passed around to the various methods listing remote
3544 threads. As new threads are found, they're added to the ITEMS
3545 vector. */
3546
3547 struct threads_listing_context
3548 {
3549 /* Return true if this object contains an entry for a thread with ptid
3550 PTID. */
3551
3552 bool contains_thread (ptid_t ptid) const
3553 {
3554 auto match_ptid = [&] (const thread_item &item)
3555 {
3556 return item.ptid == ptid;
3557 };
3558
3559 auto it = std::find_if (this->items.begin (),
3560 this->items.end (),
3561 match_ptid);
3562
3563 return it != this->items.end ();
3564 }
3565
3566 /* Remove the thread with ptid PTID. */
3567
3568 void remove_thread (ptid_t ptid)
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::remove_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 if (it != this->items.end ())
3580 this->items.erase (it);
3581 }
3582
3583 /* The threads found on the remote target. */
3584 std::vector<thread_item> items;
3585 };
3586
3587 static int
3588 remote_newthread_step (threadref *ref, void *data)
3589 {
3590 struct threads_listing_context *context
3591 = (struct threads_listing_context *) data;
3592 int pid = inferior_ptid.pid ();
3593 int lwp = threadref_to_int (ref);
3594 ptid_t ptid (pid, lwp);
3595
3596 context->items.emplace_back (ptid);
3597
3598 return 1; /* continue iterator */
3599 }
3600
3601 #define CRAZY_MAX_THREADS 1000
3602
3603 ptid_t
3604 remote_target::remote_current_thread (ptid_t oldpid)
3605 {
3606 struct remote_state *rs = get_remote_state ();
3607
3608 putpkt ("qC");
3609 getpkt (&rs->buf, &rs->buf_size, 0);
3610 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3611 {
3612 const char *obuf;
3613 ptid_t result;
3614
3615 result = read_ptid (&rs->buf[2], &obuf);
3616 if (*obuf != '\0' && remote_debug)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "warning: garbage in qC reply\n");
3619
3620 return result;
3621 }
3622 else
3623 return oldpid;
3624 }
3625
3626 /* List remote threads using the deprecated qL packet. */
3627
3628 int
3629 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3630 {
3631 if (remote_threadlist_iterator (remote_newthread_step, context,
3632 CRAZY_MAX_THREADS) >= 0)
3633 return 1;
3634
3635 return 0;
3636 }
3637
3638 #if defined(HAVE_LIBEXPAT)
3639
3640 static void
3641 start_thread (struct gdb_xml_parser *parser,
3642 const struct gdb_xml_element *element,
3643 void *user_data,
3644 std::vector<gdb_xml_value> &attributes)
3645 {
3646 struct threads_listing_context *data
3647 = (struct threads_listing_context *) user_data;
3648 struct gdb_xml_value *attr;
3649
3650 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3651 ptid_t ptid = read_ptid (id, NULL);
3652
3653 data->items.emplace_back (ptid);
3654 thread_item &item = data->items.back ();
3655
3656 attr = xml_find_attribute (attributes, "core");
3657 if (attr != NULL)
3658 item.core = *(ULONGEST *) attr->value.get ();
3659
3660 attr = xml_find_attribute (attributes, "name");
3661 if (attr != NULL)
3662 item.name = (const char *) attr->value.get ();
3663
3664 attr = xml_find_attribute (attributes, "handle");
3665 if (attr != NULL)
3666 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3667 }
3668
3669 static void
3670 end_thread (struct gdb_xml_parser *parser,
3671 const struct gdb_xml_element *element,
3672 void *user_data, const char *body_text)
3673 {
3674 struct threads_listing_context *data
3675 = (struct threads_listing_context *) user_data;
3676
3677 if (body_text != NULL && *body_text != '\0')
3678 data->items.back ().extra = body_text;
3679 }
3680
3681 const struct gdb_xml_attribute thread_attributes[] = {
3682 { "id", GDB_XML_AF_NONE, NULL, NULL },
3683 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3684 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3685 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3686 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element thread_children[] = {
3690 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3691 };
3692
3693 const struct gdb_xml_element threads_children[] = {
3694 { "thread", thread_attributes, thread_children,
3695 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3696 start_thread, end_thread },
3697 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3698 };
3699
3700 const struct gdb_xml_element threads_elements[] = {
3701 { "threads", NULL, threads_children,
3702 GDB_XML_EF_NONE, NULL, NULL },
3703 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3704 };
3705
3706 #endif
3707
3708 /* List remote threads using qXfer:threads:read. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3712 {
3713 #if defined(HAVE_LIBEXPAT)
3714 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3715 {
3716 gdb::optional<gdb::char_vector> xml
3717 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3718
3719 if (xml && (*xml)[0] != '\0')
3720 {
3721 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3722 threads_elements, xml->data (), context);
3723 }
3724
3725 return 1;
3726 }
3727 #endif
3728
3729 return 0;
3730 }
3731
3732 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3733
3734 int
3735 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3736 {
3737 struct remote_state *rs = get_remote_state ();
3738
3739 if (rs->use_threadinfo_query)
3740 {
3741 const char *bufp;
3742
3743 putpkt ("qfThreadInfo");
3744 getpkt (&rs->buf, &rs->buf_size, 0);
3745 bufp = rs->buf;
3746 if (bufp[0] != '\0') /* q packet recognized */
3747 {
3748 while (*bufp++ == 'm') /* reply contains one or more TID */
3749 {
3750 do
3751 {
3752 ptid_t ptid = read_ptid (bufp, &bufp);
3753 context->items.emplace_back (ptid);
3754 }
3755 while (*bufp++ == ','); /* comma-separated list */
3756 putpkt ("qsThreadInfo");
3757 getpkt (&rs->buf, &rs->buf_size, 0);
3758 bufp = rs->buf;
3759 }
3760 return 1;
3761 }
3762 else
3763 {
3764 /* Packet not recognized. */
3765 rs->use_threadinfo_query = 0;
3766 }
3767 }
3768
3769 return 0;
3770 }
3771
3772 /* Implement the to_update_thread_list function for the remote
3773 targets. */
3774
3775 void
3776 remote_target::update_thread_list ()
3777 {
3778 struct threads_listing_context context;
3779 int got_list = 0;
3780
3781 /* We have a few different mechanisms to fetch the thread list. Try
3782 them all, starting with the most preferred one first, falling
3783 back to older methods. */
3784 if (remote_get_threads_with_qxfer (&context)
3785 || remote_get_threads_with_qthreadinfo (&context)
3786 || remote_get_threads_with_ql (&context))
3787 {
3788 struct thread_info *tp, *tmp;
3789
3790 got_list = 1;
3791
3792 if (context.items.empty ()
3793 && remote_thread_always_alive (inferior_ptid))
3794 {
3795 /* Some targets don't really support threads, but still
3796 reply an (empty) thread list in response to the thread
3797 listing packets, instead of replying "packet not
3798 supported". Exit early so we don't delete the main
3799 thread. */
3800 return;
3801 }
3802
3803 /* CONTEXT now holds the current thread list on the remote
3804 target end. Delete GDB-side threads no longer found on the
3805 target. */
3806 ALL_THREADS_SAFE (tp, tmp)
3807 {
3808 if (!context.contains_thread (tp->ptid))
3809 {
3810 /* Not found. */
3811 delete_thread (tp);
3812 }
3813 }
3814
3815 /* Remove any unreported fork child threads from CONTEXT so
3816 that we don't interfere with follow fork, which is where
3817 creation of such threads is handled. */
3818 remove_new_fork_children (&context);
3819
3820 /* And now add threads we don't know about yet to our list. */
3821 for (thread_item &item : context.items)
3822 {
3823 if (item.ptid != null_ptid)
3824 {
3825 /* In non-stop mode, we assume new found threads are
3826 executing until proven otherwise with a stop reply.
3827 In all-stop, we can only get here if all threads are
3828 stopped. */
3829 int executing = target_is_non_stop_p () ? 1 : 0;
3830
3831 remote_notice_new_inferior (item.ptid, executing);
3832
3833 thread_info *tp = find_thread_ptid (item.ptid);
3834 remote_thread_info *info = get_remote_thread_info (tp);
3835 info->core = item.core;
3836 info->extra = std::move (item.extra);
3837 info->name = std::move (item.name);
3838 info->thread_handle = std::move (item.thread_handle);
3839 }
3840 }
3841 }
3842
3843 if (!got_list)
3844 {
3845 /* If no thread listing method is supported, then query whether
3846 each known thread is alive, one by one, with the T packet.
3847 If the target doesn't support threads at all, then this is a
3848 no-op. See remote_thread_alive. */
3849 prune_threads ();
3850 }
3851 }
3852
3853 /*
3854 * Collect a descriptive string about the given thread.
3855 * The target may say anything it wants to about the thread
3856 * (typically info about its blocked / runnable state, name, etc.).
3857 * This string will appear in the info threads display.
3858 *
3859 * Optional: targets are not required to implement this function.
3860 */
3861
3862 const char *
3863 remote_target::extra_thread_info (thread_info *tp)
3864 {
3865 struct remote_state *rs = get_remote_state ();
3866 int set;
3867 threadref id;
3868 struct gdb_ext_thread_info threadinfo;
3869
3870 if (rs->remote_desc == 0) /* paranoia */
3871 internal_error (__FILE__, __LINE__,
3872 _("remote_threads_extra_info"));
3873
3874 if (tp->ptid == magic_null_ptid
3875 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3876 /* This is the main thread which was added by GDB. The remote
3877 server doesn't know about it. */
3878 return NULL;
3879
3880 std::string &extra = get_remote_thread_info (tp)->extra;
3881
3882 /* If already have cached info, use it. */
3883 if (!extra.empty ())
3884 return extra.c_str ();
3885
3886 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3887 {
3888 /* If we're using qXfer:threads:read, then the extra info is
3889 included in the XML. So if we didn't have anything cached,
3890 it's because there's really no extra info. */
3891 return NULL;
3892 }
3893
3894 if (rs->use_threadextra_query)
3895 {
3896 char *b = rs->buf;
3897 char *endb = rs->buf + get_remote_packet_size ();
3898
3899 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3900 b += strlen (b);
3901 write_ptid (b, endb, tp->ptid);
3902
3903 putpkt (rs->buf);
3904 getpkt (&rs->buf, &rs->buf_size, 0);
3905 if (rs->buf[0] != 0)
3906 {
3907 extra.resize (strlen (rs->buf) / 2);
3908 hex2bin (rs->buf, (gdb_byte *) &extra[0], extra.size ());
3909 return extra.c_str ();
3910 }
3911 }
3912
3913 /* If the above query fails, fall back to the old method. */
3914 rs->use_threadextra_query = 0;
3915 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3916 | TAG_MOREDISPLAY | TAG_DISPLAY;
3917 int_to_threadref (&id, tp->ptid.lwp ());
3918 if (remote_get_threadinfo (&id, set, &threadinfo))
3919 if (threadinfo.active)
3920 {
3921 if (*threadinfo.shortname)
3922 string_appendf (extra, " Name: %s", threadinfo.shortname);
3923 if (*threadinfo.display)
3924 {
3925 if (!extra.empty ())
3926 extra += ',';
3927 string_appendf (extra, " State: %s", threadinfo.display);
3928 }
3929 if (*threadinfo.more_display)
3930 {
3931 if (!extra.empty ())
3932 extra += ',';
3933 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3934 }
3935 return extra.c_str ();
3936 }
3937 return NULL;
3938 }
3939 \f
3940
3941 bool
3942 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3943 struct static_tracepoint_marker *marker)
3944 {
3945 struct remote_state *rs = get_remote_state ();
3946 char *p = rs->buf;
3947
3948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3949 p += strlen (p);
3950 p += hexnumstr (p, addr);
3951 putpkt (rs->buf);
3952 getpkt (&rs->buf, &rs->buf_size, 0);
3953 p = rs->buf;
3954
3955 if (*p == 'E')
3956 error (_("Remote failure reply: %s"), p);
3957
3958 if (*p++ == 'm')
3959 {
3960 parse_static_tracepoint_marker_definition (p, NULL, marker);
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966
3967 std::vector<static_tracepoint_marker>
3968 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3969 {
3970 struct remote_state *rs = get_remote_state ();
3971 std::vector<static_tracepoint_marker> markers;
3972 const char *p;
3973 static_tracepoint_marker marker;
3974
3975 /* Ask for a first packet of static tracepoint marker
3976 definition. */
3977 putpkt ("qTfSTM");
3978 getpkt (&rs->buf, &rs->buf_size, 0);
3979 p = rs->buf;
3980 if (*p == 'E')
3981 error (_("Remote failure reply: %s"), p);
3982
3983 while (*p++ == 'm')
3984 {
3985 do
3986 {
3987 parse_static_tracepoint_marker_definition (p, &p, &marker);
3988
3989 if (strid == NULL || marker.str_id == strid)
3990 markers.push_back (std::move (marker));
3991 }
3992 while (*p++ == ','); /* comma-separated list */
3993 /* Ask for another packet of static tracepoint definition. */
3994 putpkt ("qTsSTM");
3995 getpkt (&rs->buf, &rs->buf_size, 0);
3996 p = rs->buf;
3997 }
3998
3999 return markers;
4000 }
4001
4002 \f
4003 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4004
4005 ptid_t
4006 remote_target::get_ada_task_ptid (long lwp, long thread)
4007 {
4008 return ptid_t (inferior_ptid.pid (), lwp, 0);
4009 }
4010 \f
4011
4012 /* Restart the remote side; this is an extended protocol operation. */
4013
4014 void
4015 remote_target::extended_remote_restart ()
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 /* Send the restart command; for reasons I don't understand the
4020 remote side really expects a number after the "R". */
4021 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
4022 putpkt (rs->buf);
4023
4024 remote_fileio_reset ();
4025 }
4026 \f
4027 /* Clean up connection to a remote debugger. */
4028
4029 void
4030 remote_target::close ()
4031 {
4032 /* Make sure we leave stdin registered in the event loop. */
4033 terminal_ours ();
4034
4035 /* We don't have a connection to the remote stub anymore. Get rid
4036 of all the inferiors and their threads we were controlling.
4037 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4038 will be unable to find the thread corresponding to (pid, 0, 0). */
4039 inferior_ptid = null_ptid;
4040 discard_all_inferiors ();
4041
4042 trace_reset_local_state ();
4043
4044 delete this;
4045 }
4046
4047 remote_target::~remote_target ()
4048 {
4049 struct remote_state *rs = get_remote_state ();
4050
4051 /* Check for NULL because we may get here with a partially
4052 constructed target/connection. */
4053 if (rs->remote_desc == nullptr)
4054 return;
4055
4056 serial_close (rs->remote_desc);
4057
4058 /* We are destroying the remote target, so we should discard
4059 everything of this target. */
4060 discard_pending_stop_replies_in_queue ();
4061
4062 if (rs->remote_async_inferior_event_token)
4063 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4064
4065 remote_notif_state_xfree (rs->notif_state);
4066 }
4067
4068 /* Query the remote side for the text, data and bss offsets. */
4069
4070 void
4071 remote_target::get_offsets ()
4072 {
4073 struct remote_state *rs = get_remote_state ();
4074 char *buf;
4075 char *ptr;
4076 int lose, num_segments = 0, do_sections, do_segments;
4077 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4078 struct section_offsets *offs;
4079 struct symfile_segment_data *data;
4080
4081 if (symfile_objfile == NULL)
4082 return;
4083
4084 putpkt ("qOffsets");
4085 getpkt (&rs->buf, &rs->buf_size, 0);
4086 buf = rs->buf;
4087
4088 if (buf[0] == '\000')
4089 return; /* Return silently. Stub doesn't support
4090 this command. */
4091 if (buf[0] == 'E')
4092 {
4093 warning (_("Remote failure reply: %s"), buf);
4094 return;
4095 }
4096
4097 /* Pick up each field in turn. This used to be done with scanf, but
4098 scanf will make trouble if CORE_ADDR size doesn't match
4099 conversion directives correctly. The following code will work
4100 with any size of CORE_ADDR. */
4101 text_addr = data_addr = bss_addr = 0;
4102 ptr = buf;
4103 lose = 0;
4104
4105 if (startswith (ptr, "Text="))
4106 {
4107 ptr += 5;
4108 /* Don't use strtol, could lose on big values. */
4109 while (*ptr && *ptr != ';')
4110 text_addr = (text_addr << 4) + fromhex (*ptr++);
4111
4112 if (startswith (ptr, ";Data="))
4113 {
4114 ptr += 6;
4115 while (*ptr && *ptr != ';')
4116 data_addr = (data_addr << 4) + fromhex (*ptr++);
4117 }
4118 else
4119 lose = 1;
4120
4121 if (!lose && startswith (ptr, ";Bss="))
4122 {
4123 ptr += 5;
4124 while (*ptr && *ptr != ';')
4125 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4126
4127 if (bss_addr != data_addr)
4128 warning (_("Target reported unsupported offsets: %s"), buf);
4129 }
4130 else
4131 lose = 1;
4132 }
4133 else if (startswith (ptr, "TextSeg="))
4134 {
4135 ptr += 8;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139 num_segments = 1;
4140
4141 if (startswith (ptr, ";DataSeg="))
4142 {
4143 ptr += 9;
4144 while (*ptr && *ptr != ';')
4145 data_addr = (data_addr << 4) + fromhex (*ptr++);
4146 num_segments++;
4147 }
4148 }
4149 else
4150 lose = 1;
4151
4152 if (lose)
4153 error (_("Malformed response to offset query, %s"), buf);
4154 else if (*ptr != '\0')
4155 warning (_("Target reported unsupported offsets: %s"), buf);
4156
4157 offs = ((struct section_offsets *)
4158 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4159 memcpy (offs, symfile_objfile->section_offsets,
4160 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4161
4162 data = get_symfile_segment_data (symfile_objfile->obfd);
4163 do_segments = (data != NULL);
4164 do_sections = num_segments == 0;
4165
4166 if (num_segments > 0)
4167 {
4168 segments[0] = text_addr;
4169 segments[1] = data_addr;
4170 }
4171 /* If we have two segments, we can still try to relocate everything
4172 by assuming that the .text and .data offsets apply to the whole
4173 text and data segments. Convert the offsets given in the packet
4174 to base addresses for symfile_map_offsets_to_segments. */
4175 else if (data && data->num_segments == 2)
4176 {
4177 segments[0] = data->segment_bases[0] + text_addr;
4178 segments[1] = data->segment_bases[1] + data_addr;
4179 num_segments = 2;
4180 }
4181 /* If the object file has only one segment, assume that it is text
4182 rather than data; main programs with no writable data are rare,
4183 but programs with no code are useless. Of course the code might
4184 have ended up in the data segment... to detect that we would need
4185 the permissions here. */
4186 else if (data && data->num_segments == 1)
4187 {
4188 segments[0] = data->segment_bases[0] + text_addr;
4189 num_segments = 1;
4190 }
4191 /* There's no way to relocate by segment. */
4192 else
4193 do_segments = 0;
4194
4195 if (do_segments)
4196 {
4197 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4198 offs, num_segments, segments);
4199
4200 if (ret == 0 && !do_sections)
4201 error (_("Can not handle qOffsets TextSeg "
4202 "response with this symbol file"));
4203
4204 if (ret > 0)
4205 do_sections = 0;
4206 }
4207
4208 if (data)
4209 free_symfile_segment_data (data);
4210
4211 if (do_sections)
4212 {
4213 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4214
4215 /* This is a temporary kludge to force data and bss to use the
4216 same offsets because that's what nlmconv does now. The real
4217 solution requires changes to the stub and remote.c that I
4218 don't have time to do right now. */
4219
4220 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4221 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4222 }
4223
4224 objfile_relocate (symfile_objfile, offs);
4225 }
4226
4227 /* Send interrupt_sequence to remote target. */
4228
4229 void
4230 remote_target::send_interrupt_sequence ()
4231 {
4232 struct remote_state *rs = get_remote_state ();
4233
4234 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4235 remote_serial_write ("\x03", 1);
4236 else if (interrupt_sequence_mode == interrupt_sequence_break)
4237 serial_send_break (rs->remote_desc);
4238 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4239 {
4240 serial_send_break (rs->remote_desc);
4241 remote_serial_write ("g", 1);
4242 }
4243 else
4244 internal_error (__FILE__, __LINE__,
4245 _("Invalid value for interrupt_sequence_mode: %s."),
4246 interrupt_sequence_mode);
4247 }
4248
4249
4250 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4251 and extract the PTID. Returns NULL_PTID if not found. */
4252
4253 static ptid_t
4254 stop_reply_extract_thread (char *stop_reply)
4255 {
4256 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4257 {
4258 const char *p;
4259
4260 /* Txx r:val ; r:val (...) */
4261 p = &stop_reply[3];
4262
4263 /* Look for "register" named "thread". */
4264 while (*p != '\0')
4265 {
4266 const char *p1;
4267
4268 p1 = strchr (p, ':');
4269 if (p1 == NULL)
4270 return null_ptid;
4271
4272 if (strncmp (p, "thread", p1 - p) == 0)
4273 return read_ptid (++p1, &p);
4274
4275 p1 = strchr (p, ';');
4276 if (p1 == NULL)
4277 return null_ptid;
4278 p1++;
4279
4280 p = p1;
4281 }
4282 }
4283
4284 return null_ptid;
4285 }
4286
4287 /* Determine the remote side's current thread. If we have a stop
4288 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4289 "thread" register we can extract the current thread from. If not,
4290 ask the remote which is the current thread with qC. The former
4291 method avoids a roundtrip. */
4292
4293 ptid_t
4294 remote_target::get_current_thread (char *wait_status)
4295 {
4296 ptid_t ptid = null_ptid;
4297
4298 /* Note we don't use remote_parse_stop_reply as that makes use of
4299 the target architecture, which we haven't yet fully determined at
4300 this point. */
4301 if (wait_status != NULL)
4302 ptid = stop_reply_extract_thread (wait_status);
4303 if (ptid == null_ptid)
4304 ptid = remote_current_thread (inferior_ptid);
4305
4306 return ptid;
4307 }
4308
4309 /* Query the remote target for which is the current thread/process,
4310 add it to our tables, and update INFERIOR_PTID. The caller is
4311 responsible for setting the state such that the remote end is ready
4312 to return the current thread.
4313
4314 This function is called after handling the '?' or 'vRun' packets,
4315 whose response is a stop reply from which we can also try
4316 extracting the thread. If the target doesn't support the explicit
4317 qC query, we infer the current thread from that stop reply, passed
4318 in in WAIT_STATUS, which may be NULL. */
4319
4320 void
4321 remote_target::add_current_inferior_and_thread (char *wait_status)
4322 {
4323 struct remote_state *rs = get_remote_state ();
4324 int fake_pid_p = 0;
4325
4326 inferior_ptid = null_ptid;
4327
4328 /* Now, if we have thread information, update inferior_ptid. */
4329 ptid_t curr_ptid = get_current_thread (wait_status);
4330
4331 if (curr_ptid != null_ptid)
4332 {
4333 if (!remote_multi_process_p (rs))
4334 fake_pid_p = 1;
4335 }
4336 else
4337 {
4338 /* Without this, some commands which require an active target
4339 (such as kill) won't work. This variable serves (at least)
4340 double duty as both the pid of the target process (if it has
4341 such), and as a flag indicating that a target is active. */
4342 curr_ptid = magic_null_ptid;
4343 fake_pid_p = 1;
4344 }
4345
4346 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4347
4348 /* Add the main thread and switch to it. Don't try reading
4349 registers yet, since we haven't fetched the target description
4350 yet. */
4351 thread_info *tp = add_thread_silent (curr_ptid);
4352 switch_to_thread_no_regs (tp);
4353 }
4354
4355 /* Print info about a thread that was found already stopped on
4356 connection. */
4357
4358 static void
4359 print_one_stopped_thread (struct thread_info *thread)
4360 {
4361 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4362
4363 switch_to_thread (thread);
4364 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4365 set_current_sal_from_frame (get_current_frame ());
4366
4367 thread->suspend.waitstatus_pending_p = 0;
4368
4369 if (ws->kind == TARGET_WAITKIND_STOPPED)
4370 {
4371 enum gdb_signal sig = ws->value.sig;
4372
4373 if (signal_print_state (sig))
4374 gdb::observers::signal_received.notify (sig);
4375 }
4376 gdb::observers::normal_stop.notify (NULL, 1);
4377 }
4378
4379 /* Process all initial stop replies the remote side sent in response
4380 to the ? packet. These indicate threads that were already stopped
4381 on initial connection. We mark these threads as stopped and print
4382 their current frame before giving the user the prompt. */
4383
4384 void
4385 remote_target::process_initial_stop_replies (int from_tty)
4386 {
4387 int pending_stop_replies = stop_reply_queue_length ();
4388 struct inferior *inf;
4389 struct thread_info *thread;
4390 struct thread_info *selected = NULL;
4391 struct thread_info *lowest_stopped = NULL;
4392 struct thread_info *first = NULL;
4393
4394 /* Consume the initial pending events. */
4395 while (pending_stop_replies-- > 0)
4396 {
4397 ptid_t waiton_ptid = minus_one_ptid;
4398 ptid_t event_ptid;
4399 struct target_waitstatus ws;
4400 int ignore_event = 0;
4401 struct thread_info *thread;
4402
4403 memset (&ws, 0, sizeof (ws));
4404 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4405 if (remote_debug)
4406 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4407
4408 switch (ws.kind)
4409 {
4410 case TARGET_WAITKIND_IGNORE:
4411 case TARGET_WAITKIND_NO_RESUMED:
4412 case TARGET_WAITKIND_SIGNALLED:
4413 case TARGET_WAITKIND_EXITED:
4414 /* We shouldn't see these, but if we do, just ignore. */
4415 if (remote_debug)
4416 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4417 ignore_event = 1;
4418 break;
4419
4420 case TARGET_WAITKIND_EXECD:
4421 xfree (ws.value.execd_pathname);
4422 break;
4423 default:
4424 break;
4425 }
4426
4427 if (ignore_event)
4428 continue;
4429
4430 thread = find_thread_ptid (event_ptid);
4431
4432 if (ws.kind == TARGET_WAITKIND_STOPPED)
4433 {
4434 enum gdb_signal sig = ws.value.sig;
4435
4436 /* Stubs traditionally report SIGTRAP as initial signal,
4437 instead of signal 0. Suppress it. */
4438 if (sig == GDB_SIGNAL_TRAP)
4439 sig = GDB_SIGNAL_0;
4440 thread->suspend.stop_signal = sig;
4441 ws.value.sig = sig;
4442 }
4443
4444 thread->suspend.waitstatus = ws;
4445
4446 if (ws.kind != TARGET_WAITKIND_STOPPED
4447 || ws.value.sig != GDB_SIGNAL_0)
4448 thread->suspend.waitstatus_pending_p = 1;
4449
4450 set_executing (event_ptid, 0);
4451 set_running (event_ptid, 0);
4452 get_remote_thread_info (thread)->vcont_resumed = 0;
4453 }
4454
4455 /* "Notice" the new inferiors before anything related to
4456 registers/memory. */
4457 ALL_INFERIORS (inf)
4458 {
4459 if (inf->pid == 0)
4460 continue;
4461
4462 inf->needs_setup = 1;
4463
4464 if (non_stop)
4465 {
4466 thread = any_live_thread_of_inferior (inf);
4467 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4468 from_tty);
4469 }
4470 }
4471
4472 /* If all-stop on top of non-stop, pause all threads. Note this
4473 records the threads' stop pc, so must be done after "noticing"
4474 the inferiors. */
4475 if (!non_stop)
4476 {
4477 stop_all_threads ();
4478
4479 /* If all threads of an inferior were already stopped, we
4480 haven't setup the inferior yet. */
4481 ALL_INFERIORS (inf)
4482 {
4483 if (inf->pid == 0)
4484 continue;
4485
4486 if (inf->needs_setup)
4487 {
4488 thread = any_live_thread_of_inferior (inf);
4489 switch_to_thread_no_regs (thread);
4490 setup_inferior (0);
4491 }
4492 }
4493 }
4494
4495 /* Now go over all threads that are stopped, and print their current
4496 frame. If all-stop, then if there's a signalled thread, pick
4497 that as current. */
4498 ALL_NON_EXITED_THREADS (thread)
4499 {
4500 if (first == NULL)
4501 first = thread;
4502
4503 if (!non_stop)
4504 thread->set_running (false);
4505 else if (thread->state != THREAD_STOPPED)
4506 continue;
4507
4508 if (selected == NULL
4509 && thread->suspend.waitstatus_pending_p)
4510 selected = thread;
4511
4512 if (lowest_stopped == NULL
4513 || thread->inf->num < lowest_stopped->inf->num
4514 || thread->per_inf_num < lowest_stopped->per_inf_num)
4515 lowest_stopped = thread;
4516
4517 if (non_stop)
4518 print_one_stopped_thread (thread);
4519 }
4520
4521 /* In all-stop, we only print the status of one thread, and leave
4522 others with their status pending. */
4523 if (!non_stop)
4524 {
4525 thread = selected;
4526 if (thread == NULL)
4527 thread = lowest_stopped;
4528 if (thread == NULL)
4529 thread = first;
4530
4531 print_one_stopped_thread (thread);
4532 }
4533
4534 /* For "info program". */
4535 thread = inferior_thread ();
4536 if (thread->state == THREAD_STOPPED)
4537 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4538 }
4539
4540 /* Start the remote connection and sync state. */
4541
4542 void
4543 remote_target::start_remote (int from_tty, int extended_p)
4544 {
4545 struct remote_state *rs = get_remote_state ();
4546 struct packet_config *noack_config;
4547 char *wait_status = NULL;
4548
4549 /* Signal other parts that we're going through the initial setup,
4550 and so things may not be stable yet. E.g., we don't try to
4551 install tracepoints until we've relocated symbols. Also, a
4552 Ctrl-C before we're connected and synced up can't interrupt the
4553 target. Instead, it offers to drop the (potentially wedged)
4554 connection. */
4555 rs->starting_up = 1;
4556
4557 QUIT;
4558
4559 if (interrupt_on_connect)
4560 send_interrupt_sequence ();
4561
4562 /* Ack any packet which the remote side has already sent. */
4563 remote_serial_write ("+", 1);
4564
4565 /* The first packet we send to the target is the optional "supported
4566 packets" request. If the target can answer this, it will tell us
4567 which later probes to skip. */
4568 remote_query_supported ();
4569
4570 /* If the stub wants to get a QAllow, compose one and send it. */
4571 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4572 set_permissions ();
4573
4574 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4575 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4576 as a reply to known packet. For packet "vFile:setfs:" it is an
4577 invalid reply and GDB would return error in
4578 remote_hostio_set_filesystem, making remote files access impossible.
4579 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4580 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4581 {
4582 const char v_mustreplyempty[] = "vMustReplyEmpty";
4583
4584 putpkt (v_mustreplyempty);
4585 getpkt (&rs->buf, &rs->buf_size, 0);
4586 if (strcmp (rs->buf, "OK") == 0)
4587 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4588 else if (strcmp (rs->buf, "") != 0)
4589 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4590 rs->buf);
4591 }
4592
4593 /* Next, we possibly activate noack mode.
4594
4595 If the QStartNoAckMode packet configuration is set to AUTO,
4596 enable noack mode if the stub reported a wish for it with
4597 qSupported.
4598
4599 If set to TRUE, then enable noack mode even if the stub didn't
4600 report it in qSupported. If the stub doesn't reply OK, the
4601 session ends with an error.
4602
4603 If FALSE, then don't activate noack mode, regardless of what the
4604 stub claimed should be the default with qSupported. */
4605
4606 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4607 if (packet_config_support (noack_config) != PACKET_DISABLE)
4608 {
4609 putpkt ("QStartNoAckMode");
4610 getpkt (&rs->buf, &rs->buf_size, 0);
4611 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4612 rs->noack_mode = 1;
4613 }
4614
4615 if (extended_p)
4616 {
4617 /* Tell the remote that we are using the extended protocol. */
4618 putpkt ("!");
4619 getpkt (&rs->buf, &rs->buf_size, 0);
4620 }
4621
4622 /* Let the target know which signals it is allowed to pass down to
4623 the program. */
4624 update_signals_program_target ();
4625
4626 /* Next, if the target can specify a description, read it. We do
4627 this before anything involving memory or registers. */
4628 target_find_description ();
4629
4630 /* Next, now that we know something about the target, update the
4631 address spaces in the program spaces. */
4632 update_address_spaces ();
4633
4634 /* On OSs where the list of libraries is global to all
4635 processes, we fetch them early. */
4636 if (gdbarch_has_global_solist (target_gdbarch ()))
4637 solib_add (NULL, from_tty, auto_solib_add);
4638
4639 if (target_is_non_stop_p ())
4640 {
4641 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4642 error (_("Non-stop mode requested, but remote "
4643 "does not support non-stop"));
4644
4645 putpkt ("QNonStop:1");
4646 getpkt (&rs->buf, &rs->buf_size, 0);
4647
4648 if (strcmp (rs->buf, "OK") != 0)
4649 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4650
4651 /* Find about threads and processes the stub is already
4652 controlling. We default to adding them in the running state.
4653 The '?' query below will then tell us about which threads are
4654 stopped. */
4655 this->update_thread_list ();
4656 }
4657 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4658 {
4659 /* Don't assume that the stub can operate in all-stop mode.
4660 Request it explicitly. */
4661 putpkt ("QNonStop:0");
4662 getpkt (&rs->buf, &rs->buf_size, 0);
4663
4664 if (strcmp (rs->buf, "OK") != 0)
4665 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4666 }
4667
4668 /* Upload TSVs regardless of whether the target is running or not. The
4669 remote stub, such as GDBserver, may have some predefined or builtin
4670 TSVs, even if the target is not running. */
4671 if (get_trace_status (current_trace_status ()) != -1)
4672 {
4673 struct uploaded_tsv *uploaded_tsvs = NULL;
4674
4675 upload_trace_state_variables (&uploaded_tsvs);
4676 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4677 }
4678
4679 /* Check whether the target is running now. */
4680 putpkt ("?");
4681 getpkt (&rs->buf, &rs->buf_size, 0);
4682
4683 if (!target_is_non_stop_p ())
4684 {
4685 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4686 {
4687 if (!extended_p)
4688 error (_("The target is not running (try extended-remote?)"));
4689
4690 /* We're connected, but not running. Drop out before we
4691 call start_remote. */
4692 rs->starting_up = 0;
4693 return;
4694 }
4695 else
4696 {
4697 /* Save the reply for later. */
4698 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4699 strcpy (wait_status, rs->buf);
4700 }
4701
4702 /* Fetch thread list. */
4703 target_update_thread_list ();
4704
4705 /* Let the stub know that we want it to return the thread. */
4706 set_continue_thread (minus_one_ptid);
4707
4708 if (thread_count () == 0)
4709 {
4710 /* Target has no concept of threads at all. GDB treats
4711 non-threaded target as single-threaded; add a main
4712 thread. */
4713 add_current_inferior_and_thread (wait_status);
4714 }
4715 else
4716 {
4717 /* We have thread information; select the thread the target
4718 says should be current. If we're reconnecting to a
4719 multi-threaded program, this will ideally be the thread
4720 that last reported an event before GDB disconnected. */
4721 inferior_ptid = get_current_thread (wait_status);
4722 if (inferior_ptid == null_ptid)
4723 {
4724 /* Odd... The target was able to list threads, but not
4725 tell us which thread was current (no "thread"
4726 register in T stop reply?). Just pick the first
4727 thread in the thread list then. */
4728
4729 if (remote_debug)
4730 fprintf_unfiltered (gdb_stdlog,
4731 "warning: couldn't determine remote "
4732 "current thread; picking first in list.\n");
4733
4734 inferior_ptid = thread_list->ptid;
4735 }
4736 }
4737
4738 /* init_wait_for_inferior should be called before get_offsets in order
4739 to manage `inserted' flag in bp loc in a correct state.
4740 breakpoint_init_inferior, called from init_wait_for_inferior, set
4741 `inserted' flag to 0, while before breakpoint_re_set, called from
4742 start_remote, set `inserted' flag to 1. In the initialization of
4743 inferior, breakpoint_init_inferior should be called first, and then
4744 breakpoint_re_set can be called. If this order is broken, state of
4745 `inserted' flag is wrong, and cause some problems on breakpoint
4746 manipulation. */
4747 init_wait_for_inferior ();
4748
4749 get_offsets (); /* Get text, data & bss offsets. */
4750
4751 /* If we could not find a description using qXfer, and we know
4752 how to do it some other way, try again. This is not
4753 supported for non-stop; it could be, but it is tricky if
4754 there are no stopped threads when we connect. */
4755 if (remote_read_description_p (this)
4756 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4757 {
4758 target_clear_description ();
4759 target_find_description ();
4760 }
4761
4762 /* Use the previously fetched status. */
4763 gdb_assert (wait_status != NULL);
4764 strcpy (rs->buf, wait_status);
4765 rs->cached_wait_status = 1;
4766
4767 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4768 }
4769 else
4770 {
4771 /* Clear WFI global state. Do this before finding about new
4772 threads and inferiors, and setting the current inferior.
4773 Otherwise we would clear the proceed status of the current
4774 inferior when we want its stop_soon state to be preserved
4775 (see notice_new_inferior). */
4776 init_wait_for_inferior ();
4777
4778 /* In non-stop, we will either get an "OK", meaning that there
4779 are no stopped threads at this time; or, a regular stop
4780 reply. In the latter case, there may be more than one thread
4781 stopped --- we pull them all out using the vStopped
4782 mechanism. */
4783 if (strcmp (rs->buf, "OK") != 0)
4784 {
4785 struct notif_client *notif = &notif_client_stop;
4786
4787 /* remote_notif_get_pending_replies acks this one, and gets
4788 the rest out. */
4789 rs->notif_state->pending_event[notif_client_stop.id]
4790 = remote_notif_parse (this, notif, rs->buf);
4791 remote_notif_get_pending_events (notif);
4792 }
4793
4794 if (thread_count () == 0)
4795 {
4796 if (!extended_p)
4797 error (_("The target is not running (try extended-remote?)"));
4798
4799 /* We're connected, but not running. Drop out before we
4800 call start_remote. */
4801 rs->starting_up = 0;
4802 return;
4803 }
4804
4805 /* In non-stop mode, any cached wait status will be stored in
4806 the stop reply queue. */
4807 gdb_assert (wait_status == NULL);
4808
4809 /* Report all signals during attach/startup. */
4810 pass_signals (0, NULL);
4811
4812 /* If there are already stopped threads, mark them stopped and
4813 report their stops before giving the prompt to the user. */
4814 process_initial_stop_replies (from_tty);
4815
4816 if (target_can_async_p ())
4817 target_async (1);
4818 }
4819
4820 /* If we connected to a live target, do some additional setup. */
4821 if (target_has_execution)
4822 {
4823 if (symfile_objfile) /* No use without a symbol-file. */
4824 remote_check_symbols ();
4825 }
4826
4827 /* Possibly the target has been engaged in a trace run started
4828 previously; find out where things are at. */
4829 if (get_trace_status (current_trace_status ()) != -1)
4830 {
4831 struct uploaded_tp *uploaded_tps = NULL;
4832
4833 if (current_trace_status ()->running)
4834 printf_filtered (_("Trace is already running on the target.\n"));
4835
4836 upload_tracepoints (&uploaded_tps);
4837
4838 merge_uploaded_tracepoints (&uploaded_tps);
4839 }
4840
4841 /* Possibly the target has been engaged in a btrace record started
4842 previously; find out where things are at. */
4843 remote_btrace_maybe_reopen ();
4844
4845 /* The thread and inferior lists are now synchronized with the
4846 target, our symbols have been relocated, and we're merged the
4847 target's tracepoints with ours. We're done with basic start
4848 up. */
4849 rs->starting_up = 0;
4850
4851 /* Maybe breakpoints are global and need to be inserted now. */
4852 if (breakpoints_should_be_inserted_now ())
4853 insert_breakpoints ();
4854 }
4855
4856 /* Open a connection to a remote debugger.
4857 NAME is the filename used for communication. */
4858
4859 void
4860 remote_target::open (const char *name, int from_tty)
4861 {
4862 open_1 (name, from_tty, 0);
4863 }
4864
4865 /* Open a connection to a remote debugger using the extended
4866 remote gdb protocol. NAME is the filename used for communication. */
4867
4868 void
4869 extended_remote_target::open (const char *name, int from_tty)
4870 {
4871 open_1 (name, from_tty, 1 /*extended_p */);
4872 }
4873
4874 /* Reset all packets back to "unknown support". Called when opening a
4875 new connection to a remote target. */
4876
4877 static void
4878 reset_all_packet_configs_support (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4884 }
4885
4886 /* Initialize all packet configs. */
4887
4888 static void
4889 init_all_packet_configs (void)
4890 {
4891 int i;
4892
4893 for (i = 0; i < PACKET_MAX; i++)
4894 {
4895 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4896 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4897 }
4898 }
4899
4900 /* Symbol look-up. */
4901
4902 void
4903 remote_target::remote_check_symbols ()
4904 {
4905 char *msg, *reply, *tmp;
4906 int end;
4907 long reply_size;
4908 struct cleanup *old_chain;
4909
4910 /* The remote side has no concept of inferiors that aren't running
4911 yet, it only knows about running processes. If we're connected
4912 but our current inferior is not running, we should not invite the
4913 remote target to request symbol lookups related to its
4914 (unrelated) current process. */
4915 if (!target_has_execution)
4916 return;
4917
4918 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4919 return;
4920
4921 /* Make sure the remote is pointing at the right process. Note
4922 there's no way to select "no process". */
4923 set_general_process ();
4924
4925 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4926 because we need both at the same time. */
4927 msg = (char *) xmalloc (get_remote_packet_size ());
4928 old_chain = make_cleanup (xfree, msg);
4929 reply = (char *) xmalloc (get_remote_packet_size ());
4930 make_cleanup (free_current_contents, &reply);
4931 reply_size = get_remote_packet_size ();
4932
4933 /* Invite target to request symbol lookups. */
4934
4935 putpkt ("qSymbol::");
4936 getpkt (&reply, &reply_size, 0);
4937 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4938
4939 while (startswith (reply, "qSymbol:"))
4940 {
4941 struct bound_minimal_symbol sym;
4942
4943 tmp = &reply[8];
4944 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4945 msg[end] = '\0';
4946 sym = lookup_minimal_symbol (msg, NULL, NULL);
4947 if (sym.minsym == NULL)
4948 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4949 else
4950 {
4951 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4952 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4953
4954 /* If this is a function address, return the start of code
4955 instead of any data function descriptor. */
4956 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4957 sym_addr,
4958 current_top_target ());
4959
4960 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4961 phex_nz (sym_addr, addr_size), &reply[8]);
4962 }
4963
4964 putpkt (msg);
4965 getpkt (&reply, &reply_size, 0);
4966 }
4967
4968 do_cleanups (old_chain);
4969 }
4970
4971 static struct serial *
4972 remote_serial_open (const char *name)
4973 {
4974 static int udp_warning = 0;
4975
4976 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4977 of in ser-tcp.c, because it is the remote protocol assuming that the
4978 serial connection is reliable and not the serial connection promising
4979 to be. */
4980 if (!udp_warning && startswith (name, "udp:"))
4981 {
4982 warning (_("The remote protocol may be unreliable over UDP.\n"
4983 "Some events may be lost, rendering further debugging "
4984 "impossible."));
4985 udp_warning = 1;
4986 }
4987
4988 return serial_open (name);
4989 }
4990
4991 /* Inform the target of our permission settings. The permission flags
4992 work without this, but if the target knows the settings, it can do
4993 a couple things. First, it can add its own check, to catch cases
4994 that somehow manage to get by the permissions checks in target
4995 methods. Second, if the target is wired to disallow particular
4996 settings (for instance, a system in the field that is not set up to
4997 be able to stop at a breakpoint), it can object to any unavailable
4998 permissions. */
4999
5000 void
5001 remote_target::set_permissions ()
5002 {
5003 struct remote_state *rs = get_remote_state ();
5004
5005 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
5006 "WriteReg:%x;WriteMem:%x;"
5007 "InsertBreak:%x;InsertTrace:%x;"
5008 "InsertFastTrace:%x;Stop:%x",
5009 may_write_registers, may_write_memory,
5010 may_insert_breakpoints, may_insert_tracepoints,
5011 may_insert_fast_tracepoints, may_stop);
5012 putpkt (rs->buf);
5013 getpkt (&rs->buf, &rs->buf_size, 0);
5014
5015 /* If the target didn't like the packet, warn the user. Do not try
5016 to undo the user's settings, that would just be maddening. */
5017 if (strcmp (rs->buf, "OK") != 0)
5018 warning (_("Remote refused setting permissions with: %s"), rs->buf);
5019 }
5020
5021 /* This type describes each known response to the qSupported
5022 packet. */
5023 struct protocol_feature
5024 {
5025 /* The name of this protocol feature. */
5026 const char *name;
5027
5028 /* The default for this protocol feature. */
5029 enum packet_support default_support;
5030
5031 /* The function to call when this feature is reported, or after
5032 qSupported processing if the feature is not supported.
5033 The first argument points to this structure. The second
5034 argument indicates whether the packet requested support be
5035 enabled, disabled, or probed (or the default, if this function
5036 is being called at the end of processing and this feature was
5037 not reported). The third argument may be NULL; if not NULL, it
5038 is a NUL-terminated string taken from the packet following
5039 this feature's name and an equals sign. */
5040 void (*func) (remote_target *remote, const struct protocol_feature *,
5041 enum packet_support, const char *);
5042
5043 /* The corresponding packet for this feature. Only used if
5044 FUNC is remote_supported_packet. */
5045 int packet;
5046 };
5047
5048 static void
5049 remote_supported_packet (remote_target *remote,
5050 const struct protocol_feature *feature,
5051 enum packet_support support,
5052 const char *argument)
5053 {
5054 if (argument)
5055 {
5056 warning (_("Remote qSupported response supplied an unexpected value for"
5057 " \"%s\"."), feature->name);
5058 return;
5059 }
5060
5061 remote_protocol_packets[feature->packet].support = support;
5062 }
5063
5064 void
5065 remote_target::remote_packet_size (const protocol_feature *feature,
5066 enum packet_support support, const char *value)
5067 {
5068 struct remote_state *rs = get_remote_state ();
5069
5070 int packet_size;
5071 char *value_end;
5072
5073 if (support != PACKET_ENABLE)
5074 return;
5075
5076 if (value == NULL || *value == '\0')
5077 {
5078 warning (_("Remote target reported \"%s\" without a size."),
5079 feature->name);
5080 return;
5081 }
5082
5083 errno = 0;
5084 packet_size = strtol (value, &value_end, 16);
5085 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5086 {
5087 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5088 feature->name, value);
5089 return;
5090 }
5091
5092 /* Record the new maximum packet size. */
5093 rs->explicit_packet_size = packet_size;
5094 }
5095
5096 void
5097 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5098 enum packet_support support, const char *value)
5099 {
5100 remote->remote_packet_size (feature, support, value);
5101 }
5102
5103 static const struct protocol_feature remote_protocol_features[] = {
5104 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5105 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_auxv },
5107 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_exec_file },
5109 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_qXfer_features },
5111 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_qXfer_libraries },
5113 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_qXfer_libraries_svr4 },
5115 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5116 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5117 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_memory_map },
5119 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_spu_read },
5121 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_spu_write },
5123 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_qXfer_osdata },
5125 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_threads },
5127 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_traceframe_info },
5129 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QPassSignals },
5131 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_QCatchSyscalls },
5133 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_QProgramSignals },
5135 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_QSetWorkingDir },
5137 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QStartupWithShell },
5139 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_QEnvironmentHexEncoded },
5141 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QEnvironmentReset },
5143 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QEnvironmentUnset },
5145 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_QStartNoAckMode },
5147 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_multiprocess_feature },
5149 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5150 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_qXfer_siginfo_read },
5152 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_qXfer_siginfo_write },
5154 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_ConditionalTracepoints },
5156 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_ConditionalBreakpoints },
5158 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_BreakpointCommands },
5160 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_FastTracepoints },
5162 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_StaticTracepoints },
5164 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_InstallInTrace},
5166 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_DisconnectedTracing_feature },
5168 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_bc },
5170 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_bs },
5172 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_TracepointSource },
5174 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_QAllow },
5176 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_EnableDisableTracepoints_feature },
5178 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_fdpic },
5180 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_qXfer_uib },
5182 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_QDisableRandomization },
5184 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5185 { "QTBuffer:size", PACKET_DISABLE,
5186 remote_supported_packet, PACKET_QTBuffer_size},
5187 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5188 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5189 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5190 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5191 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_qXfer_btrace },
5193 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5194 PACKET_qXfer_btrace_conf },
5195 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5196 PACKET_Qbtrace_conf_bts_size },
5197 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5198 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5199 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_fork_event_feature },
5201 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_vfork_event_feature },
5203 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_exec_event_feature },
5205 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5206 PACKET_Qbtrace_conf_pt_size },
5207 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5208 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5209 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5210 };
5211
5212 static char *remote_support_xml;
5213
5214 /* Register string appended to "xmlRegisters=" in qSupported query. */
5215
5216 void
5217 register_remote_support_xml (const char *xml)
5218 {
5219 #if defined(HAVE_LIBEXPAT)
5220 if (remote_support_xml == NULL)
5221 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5222 else
5223 {
5224 char *copy = xstrdup (remote_support_xml + 13);
5225 char *p = strtok (copy, ",");
5226
5227 do
5228 {
5229 if (strcmp (p, xml) == 0)
5230 {
5231 /* already there */
5232 xfree (copy);
5233 return;
5234 }
5235 }
5236 while ((p = strtok (NULL, ",")) != NULL);
5237 xfree (copy);
5238
5239 remote_support_xml = reconcat (remote_support_xml,
5240 remote_support_xml, ",", xml,
5241 (char *) NULL);
5242 }
5243 #endif
5244 }
5245
5246 static void
5247 remote_query_supported_append (std::string *msg, const char *append)
5248 {
5249 if (!msg->empty ())
5250 msg->append (";");
5251 msg->append (append);
5252 }
5253
5254 void
5255 remote_target::remote_query_supported ()
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 char *next;
5259 int i;
5260 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5261
5262 /* The packet support flags are handled differently for this packet
5263 than for most others. We treat an error, a disabled packet, and
5264 an empty response identically: any features which must be reported
5265 to be used will be automatically disabled. An empty buffer
5266 accomplishes this, since that is also the representation for a list
5267 containing no features. */
5268
5269 rs->buf[0] = 0;
5270 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5271 {
5272 std::string q;
5273
5274 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5275 remote_query_supported_append (&q, "multiprocess+");
5276
5277 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5278 remote_query_supported_append (&q, "swbreak+");
5279 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "hwbreak+");
5281
5282 remote_query_supported_append (&q, "qRelocInsn+");
5283
5284 if (packet_set_cmd_state (PACKET_fork_event_feature)
5285 != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "fork-events+");
5287 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5288 != AUTO_BOOLEAN_FALSE)
5289 remote_query_supported_append (&q, "vfork-events+");
5290 if (packet_set_cmd_state (PACKET_exec_event_feature)
5291 != AUTO_BOOLEAN_FALSE)
5292 remote_query_supported_append (&q, "exec-events+");
5293
5294 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "vContSupported+");
5296
5297 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "QThreadEvents+");
5299
5300 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "no-resumed+");
5302
5303 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5304 the qSupported:xmlRegisters=i386 handling. */
5305 if (remote_support_xml != NULL
5306 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5307 remote_query_supported_append (&q, remote_support_xml);
5308
5309 q = "qSupported:" + q;
5310 putpkt (q.c_str ());
5311
5312 getpkt (&rs->buf, &rs->buf_size, 0);
5313
5314 /* If an error occured, warn, but do not return - just reset the
5315 buffer to empty and go on to disable features. */
5316 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5317 == PACKET_ERROR)
5318 {
5319 warning (_("Remote failure reply: %s"), rs->buf);
5320 rs->buf[0] = 0;
5321 }
5322 }
5323
5324 memset (seen, 0, sizeof (seen));
5325
5326 next = rs->buf;
5327 while (*next)
5328 {
5329 enum packet_support is_supported;
5330 char *p, *end, *name_end, *value;
5331
5332 /* First separate out this item from the rest of the packet. If
5333 there's another item after this, we overwrite the separator
5334 (terminated strings are much easier to work with). */
5335 p = next;
5336 end = strchr (p, ';');
5337 if (end == NULL)
5338 {
5339 end = p + strlen (p);
5340 next = end;
5341 }
5342 else
5343 {
5344 *end = '\0';
5345 next = end + 1;
5346
5347 if (end == p)
5348 {
5349 warning (_("empty item in \"qSupported\" response"));
5350 continue;
5351 }
5352 }
5353
5354 name_end = strchr (p, '=');
5355 if (name_end)
5356 {
5357 /* This is a name=value entry. */
5358 is_supported = PACKET_ENABLE;
5359 value = name_end + 1;
5360 *name_end = '\0';
5361 }
5362 else
5363 {
5364 value = NULL;
5365 switch (end[-1])
5366 {
5367 case '+':
5368 is_supported = PACKET_ENABLE;
5369 break;
5370
5371 case '-':
5372 is_supported = PACKET_DISABLE;
5373 break;
5374
5375 case '?':
5376 is_supported = PACKET_SUPPORT_UNKNOWN;
5377 break;
5378
5379 default:
5380 warning (_("unrecognized item \"%s\" "
5381 "in \"qSupported\" response"), p);
5382 continue;
5383 }
5384 end[-1] = '\0';
5385 }
5386
5387 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5388 if (strcmp (remote_protocol_features[i].name, p) == 0)
5389 {
5390 const struct protocol_feature *feature;
5391
5392 seen[i] = 1;
5393 feature = &remote_protocol_features[i];
5394 feature->func (this, feature, is_supported, value);
5395 break;
5396 }
5397 }
5398
5399 /* If we increased the packet size, make sure to increase the global
5400 buffer size also. We delay this until after parsing the entire
5401 qSupported packet, because this is the same buffer we were
5402 parsing. */
5403 if (rs->buf_size < rs->explicit_packet_size)
5404 {
5405 rs->buf_size = rs->explicit_packet_size;
5406 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5407 }
5408
5409 /* Handle the defaults for unmentioned features. */
5410 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5411 if (!seen[i])
5412 {
5413 const struct protocol_feature *feature;
5414
5415 feature = &remote_protocol_features[i];
5416 feature->func (this, feature, feature->default_support, NULL);
5417 }
5418 }
5419
5420 /* Serial QUIT handler for the remote serial descriptor.
5421
5422 Defers handling a Ctrl-C until we're done with the current
5423 command/response packet sequence, unless:
5424
5425 - We're setting up the connection. Don't send a remote interrupt
5426 request, as we're not fully synced yet. Quit immediately
5427 instead.
5428
5429 - The target has been resumed in the foreground
5430 (target_terminal::is_ours is false) with a synchronous resume
5431 packet, and we're blocked waiting for the stop reply, thus a
5432 Ctrl-C should be immediately sent to the target.
5433
5434 - We get a second Ctrl-C while still within the same serial read or
5435 write. In that case the serial is seemingly wedged --- offer to
5436 quit/disconnect.
5437
5438 - We see a second Ctrl-C without target response, after having
5439 previously interrupted the target. In that case the target/stub
5440 is probably wedged --- offer to quit/disconnect.
5441 */
5442
5443 void
5444 remote_target::remote_serial_quit_handler ()
5445 {
5446 struct remote_state *rs = get_remote_state ();
5447
5448 if (check_quit_flag ())
5449 {
5450 /* If we're starting up, we're not fully synced yet. Quit
5451 immediately. */
5452 if (rs->starting_up)
5453 quit ();
5454 else if (rs->got_ctrlc_during_io)
5455 {
5456 if (query (_("The target is not responding to GDB commands.\n"
5457 "Stop debugging it? ")))
5458 remote_unpush_and_throw ();
5459 }
5460 /* If ^C has already been sent once, offer to disconnect. */
5461 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5462 interrupt_query ();
5463 /* All-stop protocol, and blocked waiting for stop reply. Send
5464 an interrupt request. */
5465 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5466 target_interrupt ();
5467 else
5468 rs->got_ctrlc_during_io = 1;
5469 }
5470 }
5471
5472 /* The remote_target that is current while the quit handler is
5473 overridden with remote_serial_quit_handler. */
5474 static remote_target *curr_quit_handler_target;
5475
5476 static void
5477 remote_serial_quit_handler ()
5478 {
5479 curr_quit_handler_target->remote_serial_quit_handler ();
5480 }
5481
5482 /* Remove any of the remote.c targets from target stack. Upper targets depend
5483 on it so remove them first. */
5484
5485 static void
5486 remote_unpush_target (void)
5487 {
5488 pop_all_targets_at_and_above (process_stratum);
5489 }
5490
5491 static void
5492 remote_unpush_and_throw (void)
5493 {
5494 remote_unpush_target ();
5495 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5496 }
5497
5498 void
5499 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5500 {
5501 remote_target *curr_remote = get_current_remote_target ();
5502
5503 if (name == 0)
5504 error (_("To open a remote debug connection, you need to specify what\n"
5505 "serial device is attached to the remote system\n"
5506 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5507
5508 /* If we're connected to a running target, target_preopen will kill it.
5509 Ask this question first, before target_preopen has a chance to kill
5510 anything. */
5511 if (curr_remote != NULL && !have_inferiors ())
5512 {
5513 if (from_tty
5514 && !query (_("Already connected to a remote target. Disconnect? ")))
5515 error (_("Still connected."));
5516 }
5517
5518 /* Here the possibly existing remote target gets unpushed. */
5519 target_preopen (from_tty);
5520
5521 remote_fileio_reset ();
5522 reopen_exec_file ();
5523 reread_symbols ();
5524
5525 remote_target *remote
5526 = (extended_p ? new extended_remote_target () : new remote_target ());
5527 target_ops_up target_holder (remote);
5528
5529 remote_state *rs = remote->get_remote_state ();
5530
5531 /* See FIXME above. */
5532 if (!target_async_permitted)
5533 rs->wait_forever_enabled_p = 1;
5534
5535 rs->remote_desc = remote_serial_open (name);
5536 if (!rs->remote_desc)
5537 perror_with_name (name);
5538
5539 if (baud_rate != -1)
5540 {
5541 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5542 {
5543 /* The requested speed could not be set. Error out to
5544 top level after closing remote_desc. Take care to
5545 set remote_desc to NULL to avoid closing remote_desc
5546 more than once. */
5547 serial_close (rs->remote_desc);
5548 rs->remote_desc = NULL;
5549 perror_with_name (name);
5550 }
5551 }
5552
5553 serial_setparity (rs->remote_desc, serial_parity);
5554 serial_raw (rs->remote_desc);
5555
5556 /* If there is something sitting in the buffer we might take it as a
5557 response to a command, which would be bad. */
5558 serial_flush_input (rs->remote_desc);
5559
5560 if (from_tty)
5561 {
5562 puts_filtered ("Remote debugging using ");
5563 puts_filtered (name);
5564 puts_filtered ("\n");
5565 }
5566
5567 /* Switch to using the remote target now. */
5568 push_target (remote);
5569 /* The target stack owns the target now. */
5570 target_holder.release ();
5571
5572 /* Register extra event sources in the event loop. */
5573 rs->remote_async_inferior_event_token
5574 = create_async_event_handler (remote_async_inferior_event_handler,
5575 remote);
5576 rs->notif_state = remote_notif_state_allocate (remote);
5577
5578 /* Reset the target state; these things will be queried either by
5579 remote_query_supported or as they are needed. */
5580 reset_all_packet_configs_support ();
5581 rs->cached_wait_status = 0;
5582 rs->explicit_packet_size = 0;
5583 rs->noack_mode = 0;
5584 rs->extended = extended_p;
5585 rs->waiting_for_stop_reply = 0;
5586 rs->ctrlc_pending_p = 0;
5587 rs->got_ctrlc_during_io = 0;
5588
5589 rs->general_thread = not_sent_ptid;
5590 rs->continue_thread = not_sent_ptid;
5591 rs->remote_traceframe_number = -1;
5592
5593 rs->last_resume_exec_dir = EXEC_FORWARD;
5594
5595 /* Probe for ability to use "ThreadInfo" query, as required. */
5596 rs->use_threadinfo_query = 1;
5597 rs->use_threadextra_query = 1;
5598
5599 rs->readahead_cache.invalidate ();
5600
5601 if (target_async_permitted)
5602 {
5603 /* FIXME: cagney/1999-09-23: During the initial connection it is
5604 assumed that the target is already ready and able to respond to
5605 requests. Unfortunately remote_start_remote() eventually calls
5606 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5607 around this. Eventually a mechanism that allows
5608 wait_for_inferior() to expect/get timeouts will be
5609 implemented. */
5610 rs->wait_forever_enabled_p = 0;
5611 }
5612
5613 /* First delete any symbols previously loaded from shared libraries. */
5614 no_shared_libraries (NULL, 0);
5615
5616 /* Start afresh. */
5617 init_thread_list ();
5618
5619 /* Start the remote connection. If error() or QUIT, discard this
5620 target (we'd otherwise be in an inconsistent state) and then
5621 propogate the error on up the exception chain. This ensures that
5622 the caller doesn't stumble along blindly assuming that the
5623 function succeeded. The CLI doesn't have this problem but other
5624 UI's, such as MI do.
5625
5626 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5627 this function should return an error indication letting the
5628 caller restore the previous state. Unfortunately the command
5629 ``target remote'' is directly wired to this function making that
5630 impossible. On a positive note, the CLI side of this problem has
5631 been fixed - the function set_cmd_context() makes it possible for
5632 all the ``target ....'' commands to share a common callback
5633 function. See cli-dump.c. */
5634 {
5635
5636 TRY
5637 {
5638 remote->start_remote (from_tty, extended_p);
5639 }
5640 CATCH (ex, RETURN_MASK_ALL)
5641 {
5642 /* Pop the partially set up target - unless something else did
5643 already before throwing the exception. */
5644 if (ex.error != TARGET_CLOSE_ERROR)
5645 remote_unpush_target ();
5646 throw_exception (ex);
5647 }
5648 END_CATCH
5649 }
5650
5651 remote_btrace_reset (rs);
5652
5653 if (target_async_permitted)
5654 rs->wait_forever_enabled_p = 1;
5655 }
5656
5657 /* Detach the specified process. */
5658
5659 void
5660 remote_target::remote_detach_pid (int pid)
5661 {
5662 struct remote_state *rs = get_remote_state ();
5663
5664 if (remote_multi_process_p (rs))
5665 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5666 else
5667 strcpy (rs->buf, "D");
5668
5669 putpkt (rs->buf);
5670 getpkt (&rs->buf, &rs->buf_size, 0);
5671
5672 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5673 ;
5674 else if (rs->buf[0] == '\0')
5675 error (_("Remote doesn't know how to detach"));
5676 else
5677 error (_("Can't detach process."));
5678 }
5679
5680 /* This detaches a program to which we previously attached, using
5681 inferior_ptid to identify the process. After this is done, GDB
5682 can be used to debug some other program. We better not have left
5683 any breakpoints in the target program or it'll die when it hits
5684 one. */
5685
5686 void
5687 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5688 {
5689 int pid = inferior_ptid.pid ();
5690 struct remote_state *rs = get_remote_state ();
5691 int is_fork_parent;
5692
5693 if (!target_has_execution)
5694 error (_("No process to detach from."));
5695
5696 target_announce_detach (from_tty);
5697
5698 /* Tell the remote target to detach. */
5699 remote_detach_pid (pid);
5700
5701 /* Exit only if this is the only active inferior. */
5702 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5703 puts_filtered (_("Ending remote debugging.\n"));
5704
5705 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5706
5707 /* Check to see if we are detaching a fork parent. Note that if we
5708 are detaching a fork child, tp == NULL. */
5709 is_fork_parent = (tp != NULL
5710 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5711
5712 /* If doing detach-on-fork, we don't mourn, because that will delete
5713 breakpoints that should be available for the followed inferior. */
5714 if (!is_fork_parent)
5715 {
5716 /* Save the pid as a string before mourning, since that will
5717 unpush the remote target, and we need the string after. */
5718 std::string infpid = target_pid_to_str (ptid_t (pid));
5719
5720 target_mourn_inferior (inferior_ptid);
5721 if (print_inferior_events)
5722 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5723 inf->num, infpid.c_str ());
5724 }
5725 else
5726 {
5727 inferior_ptid = null_ptid;
5728 detach_inferior (current_inferior ());
5729 }
5730 }
5731
5732 void
5733 remote_target::detach (inferior *inf, int from_tty)
5734 {
5735 remote_detach_1 (inf, from_tty);
5736 }
5737
5738 void
5739 extended_remote_target::detach (inferior *inf, int from_tty)
5740 {
5741 remote_detach_1 (inf, from_tty);
5742 }
5743
5744 /* Target follow-fork function for remote targets. On entry, and
5745 at return, the current inferior is the fork parent.
5746
5747 Note that although this is currently only used for extended-remote,
5748 it is named remote_follow_fork in anticipation of using it for the
5749 remote target as well. */
5750
5751 int
5752 remote_target::follow_fork (int follow_child, int detach_fork)
5753 {
5754 struct remote_state *rs = get_remote_state ();
5755 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5756
5757 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5758 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5759 {
5760 /* When following the parent and detaching the child, we detach
5761 the child here. For the case of following the child and
5762 detaching the parent, the detach is done in the target-
5763 independent follow fork code in infrun.c. We can't use
5764 target_detach when detaching an unfollowed child because
5765 the client side doesn't know anything about the child. */
5766 if (detach_fork && !follow_child)
5767 {
5768 /* Detach the fork child. */
5769 ptid_t child_ptid;
5770 pid_t child_pid;
5771
5772 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5773 child_pid = child_ptid.pid ();
5774
5775 remote_detach_pid (child_pid);
5776 }
5777 }
5778 return 0;
5779 }
5780
5781 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5782 in the program space of the new inferior. On entry and at return the
5783 current inferior is the exec'ing inferior. INF is the new exec'd
5784 inferior, which may be the same as the exec'ing inferior unless
5785 follow-exec-mode is "new". */
5786
5787 void
5788 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5789 {
5790 /* We know that this is a target file name, so if it has the "target:"
5791 prefix we strip it off before saving it in the program space. */
5792 if (is_target_filename (execd_pathname))
5793 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5794
5795 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5796 }
5797
5798 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5799
5800 void
5801 remote_target::disconnect (const char *args, int from_tty)
5802 {
5803 if (args)
5804 error (_("Argument given to \"disconnect\" when remotely debugging."));
5805
5806 /* Make sure we unpush even the extended remote targets. Calling
5807 target_mourn_inferior won't unpush, and remote_mourn won't
5808 unpush if there is more than one inferior left. */
5809 unpush_target (this);
5810 generic_mourn_inferior ();
5811
5812 if (from_tty)
5813 puts_filtered ("Ending remote debugging.\n");
5814 }
5815
5816 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5817 be chatty about it. */
5818
5819 void
5820 extended_remote_target::attach (const char *args, int from_tty)
5821 {
5822 struct remote_state *rs = get_remote_state ();
5823 int pid;
5824 char *wait_status = NULL;
5825
5826 pid = parse_pid_to_attach (args);
5827
5828 /* Remote PID can be freely equal to getpid, do not check it here the same
5829 way as in other targets. */
5830
5831 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5832 error (_("This target does not support attaching to a process"));
5833
5834 if (from_tty)
5835 {
5836 char *exec_file = get_exec_file (0);
5837
5838 if (exec_file)
5839 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5840 target_pid_to_str (ptid_t (pid)));
5841 else
5842 printf_unfiltered (_("Attaching to %s\n"),
5843 target_pid_to_str (ptid_t (pid)));
5844
5845 gdb_flush (gdb_stdout);
5846 }
5847
5848 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5849 putpkt (rs->buf);
5850 getpkt (&rs->buf, &rs->buf_size, 0);
5851
5852 switch (packet_ok (rs->buf,
5853 &remote_protocol_packets[PACKET_vAttach]))
5854 {
5855 case PACKET_OK:
5856 if (!target_is_non_stop_p ())
5857 {
5858 /* Save the reply for later. */
5859 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5860 strcpy (wait_status, rs->buf);
5861 }
5862 else if (strcmp (rs->buf, "OK") != 0)
5863 error (_("Attaching to %s failed with: %s"),
5864 target_pid_to_str (ptid_t (pid)),
5865 rs->buf);
5866 break;
5867 case PACKET_UNKNOWN:
5868 error (_("This target does not support attaching to a process"));
5869 default:
5870 error (_("Attaching to %s failed"),
5871 target_pid_to_str (ptid_t (pid)));
5872 }
5873
5874 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5875
5876 inferior_ptid = ptid_t (pid);
5877
5878 if (target_is_non_stop_p ())
5879 {
5880 struct thread_info *thread;
5881
5882 /* Get list of threads. */
5883 update_thread_list ();
5884
5885 thread = first_thread_of_inferior (current_inferior ());
5886 if (thread)
5887 inferior_ptid = thread->ptid;
5888 else
5889 inferior_ptid = ptid_t (pid);
5890
5891 /* Invalidate our notion of the remote current thread. */
5892 record_currthread (rs, minus_one_ptid);
5893 }
5894 else
5895 {
5896 /* Now, if we have thread information, update inferior_ptid. */
5897 inferior_ptid = remote_current_thread (inferior_ptid);
5898
5899 /* Add the main thread to the thread list. */
5900 thread_info *thr = add_thread_silent (inferior_ptid);
5901 /* Don't consider the thread stopped until we've processed the
5902 saved stop reply. */
5903 set_executing (thr->ptid, true);
5904 }
5905
5906 /* Next, if the target can specify a description, read it. We do
5907 this before anything involving memory or registers. */
5908 target_find_description ();
5909
5910 if (!target_is_non_stop_p ())
5911 {
5912 /* Use the previously fetched status. */
5913 gdb_assert (wait_status != NULL);
5914
5915 if (target_can_async_p ())
5916 {
5917 struct notif_event *reply
5918 = remote_notif_parse (this, &notif_client_stop, wait_status);
5919
5920 push_stop_reply ((struct stop_reply *) reply);
5921
5922 target_async (1);
5923 }
5924 else
5925 {
5926 gdb_assert (wait_status != NULL);
5927 strcpy (rs->buf, wait_status);
5928 rs->cached_wait_status = 1;
5929 }
5930 }
5931 else
5932 gdb_assert (wait_status == NULL);
5933 }
5934
5935 /* Implementation of the to_post_attach method. */
5936
5937 void
5938 extended_remote_target::post_attach (int pid)
5939 {
5940 /* Get text, data & bss offsets. */
5941 get_offsets ();
5942
5943 /* In certain cases GDB might not have had the chance to start
5944 symbol lookup up until now. This could happen if the debugged
5945 binary is not using shared libraries, the vsyscall page is not
5946 present (on Linux) and the binary itself hadn't changed since the
5947 debugging process was started. */
5948 if (symfile_objfile != NULL)
5949 remote_check_symbols();
5950 }
5951
5952 \f
5953 /* Check for the availability of vCont. This function should also check
5954 the response. */
5955
5956 void
5957 remote_target::remote_vcont_probe ()
5958 {
5959 remote_state *rs = get_remote_state ();
5960 char *buf;
5961
5962 strcpy (rs->buf, "vCont?");
5963 putpkt (rs->buf);
5964 getpkt (&rs->buf, &rs->buf_size, 0);
5965 buf = rs->buf;
5966
5967 /* Make sure that the features we assume are supported. */
5968 if (startswith (buf, "vCont"))
5969 {
5970 char *p = &buf[5];
5971 int support_c, support_C;
5972
5973 rs->supports_vCont.s = 0;
5974 rs->supports_vCont.S = 0;
5975 support_c = 0;
5976 support_C = 0;
5977 rs->supports_vCont.t = 0;
5978 rs->supports_vCont.r = 0;
5979 while (p && *p == ';')
5980 {
5981 p++;
5982 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5983 rs->supports_vCont.s = 1;
5984 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5985 rs->supports_vCont.S = 1;
5986 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5987 support_c = 1;
5988 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5989 support_C = 1;
5990 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5991 rs->supports_vCont.t = 1;
5992 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5993 rs->supports_vCont.r = 1;
5994
5995 p = strchr (p, ';');
5996 }
5997
5998 /* If c, and C are not all supported, we can't use vCont. Clearing
5999 BUF will make packet_ok disable the packet. */
6000 if (!support_c || !support_C)
6001 buf[0] = 0;
6002 }
6003
6004 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
6005 }
6006
6007 /* Helper function for building "vCont" resumptions. Write a
6008 resumption to P. ENDP points to one-passed-the-end of the buffer
6009 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6010 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6011 resumed thread should be single-stepped and/or signalled. If PTID
6012 equals minus_one_ptid, then all threads are resumed; if PTID
6013 represents a process, then all threads of the process are resumed;
6014 the thread to be stepped and/or signalled is given in the global
6015 INFERIOR_PTID. */
6016
6017 char *
6018 remote_target::append_resumption (char *p, char *endp,
6019 ptid_t ptid, int step, gdb_signal siggnal)
6020 {
6021 struct remote_state *rs = get_remote_state ();
6022
6023 if (step && siggnal != GDB_SIGNAL_0)
6024 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6025 else if (step
6026 /* GDB is willing to range step. */
6027 && use_range_stepping
6028 /* Target supports range stepping. */
6029 && rs->supports_vCont.r
6030 /* We don't currently support range stepping multiple
6031 threads with a wildcard (though the protocol allows it,
6032 so stubs shouldn't make an active effort to forbid
6033 it). */
6034 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6035 {
6036 struct thread_info *tp;
6037
6038 if (ptid == minus_one_ptid)
6039 {
6040 /* If we don't know about the target thread's tid, then
6041 we're resuming magic_null_ptid (see caller). */
6042 tp = find_thread_ptid (magic_null_ptid);
6043 }
6044 else
6045 tp = find_thread_ptid (ptid);
6046 gdb_assert (tp != NULL);
6047
6048 if (tp->control.may_range_step)
6049 {
6050 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6051
6052 p += xsnprintf (p, endp - p, ";r%s,%s",
6053 phex_nz (tp->control.step_range_start,
6054 addr_size),
6055 phex_nz (tp->control.step_range_end,
6056 addr_size));
6057 }
6058 else
6059 p += xsnprintf (p, endp - p, ";s");
6060 }
6061 else if (step)
6062 p += xsnprintf (p, endp - p, ";s");
6063 else if (siggnal != GDB_SIGNAL_0)
6064 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6065 else
6066 p += xsnprintf (p, endp - p, ";c");
6067
6068 if (remote_multi_process_p (rs) && ptid.is_pid ())
6069 {
6070 ptid_t nptid;
6071
6072 /* All (-1) threads of process. */
6073 nptid = ptid_t (ptid.pid (), -1, 0);
6074
6075 p += xsnprintf (p, endp - p, ":");
6076 p = write_ptid (p, endp, nptid);
6077 }
6078 else if (ptid != minus_one_ptid)
6079 {
6080 p += xsnprintf (p, endp - p, ":");
6081 p = write_ptid (p, endp, ptid);
6082 }
6083
6084 return p;
6085 }
6086
6087 /* Clear the thread's private info on resume. */
6088
6089 static void
6090 resume_clear_thread_private_info (struct thread_info *thread)
6091 {
6092 if (thread->priv != NULL)
6093 {
6094 remote_thread_info *priv = get_remote_thread_info (thread);
6095
6096 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6097 priv->watch_data_address = 0;
6098 }
6099 }
6100
6101 /* Append a vCont continue-with-signal action for threads that have a
6102 non-zero stop signal. */
6103
6104 char *
6105 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6106 ptid_t ptid)
6107 {
6108 struct thread_info *thread;
6109
6110 ALL_NON_EXITED_THREADS (thread)
6111 if (thread->ptid.matches (ptid)
6112 && inferior_ptid != thread->ptid
6113 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6114 {
6115 p = append_resumption (p, endp, thread->ptid,
6116 0, thread->suspend.stop_signal);
6117 thread->suspend.stop_signal = GDB_SIGNAL_0;
6118 resume_clear_thread_private_info (thread);
6119 }
6120
6121 return p;
6122 }
6123
6124 /* Set the target running, using the packets that use Hc
6125 (c/s/C/S). */
6126
6127 void
6128 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6129 gdb_signal siggnal)
6130 {
6131 struct remote_state *rs = get_remote_state ();
6132 struct thread_info *thread;
6133 char *buf;
6134
6135 rs->last_sent_signal = siggnal;
6136 rs->last_sent_step = step;
6137
6138 /* The c/s/C/S resume packets use Hc, so set the continue
6139 thread. */
6140 if (ptid == minus_one_ptid)
6141 set_continue_thread (any_thread_ptid);
6142 else
6143 set_continue_thread (ptid);
6144
6145 ALL_NON_EXITED_THREADS (thread)
6146 resume_clear_thread_private_info (thread);
6147
6148 buf = rs->buf;
6149 if (::execution_direction == EXEC_REVERSE)
6150 {
6151 /* We don't pass signals to the target in reverse exec mode. */
6152 if (info_verbose && siggnal != GDB_SIGNAL_0)
6153 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6154 siggnal);
6155
6156 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6157 error (_("Remote reverse-step not supported."));
6158 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6159 error (_("Remote reverse-continue not supported."));
6160
6161 strcpy (buf, step ? "bs" : "bc");
6162 }
6163 else if (siggnal != GDB_SIGNAL_0)
6164 {
6165 buf[0] = step ? 'S' : 'C';
6166 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6167 buf[2] = tohex (((int) siggnal) & 0xf);
6168 buf[3] = '\0';
6169 }
6170 else
6171 strcpy (buf, step ? "s" : "c");
6172
6173 putpkt (buf);
6174 }
6175
6176 /* Resume the remote inferior by using a "vCont" packet. The thread
6177 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6178 resumed thread should be single-stepped and/or signalled. If PTID
6179 equals minus_one_ptid, then all threads are resumed; the thread to
6180 be stepped and/or signalled is given in the global INFERIOR_PTID.
6181 This function returns non-zero iff it resumes the inferior.
6182
6183 This function issues a strict subset of all possible vCont commands
6184 at the moment. */
6185
6186 int
6187 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6188 enum gdb_signal siggnal)
6189 {
6190 struct remote_state *rs = get_remote_state ();
6191 char *p;
6192 char *endp;
6193
6194 /* No reverse execution actions defined for vCont. */
6195 if (::execution_direction == EXEC_REVERSE)
6196 return 0;
6197
6198 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6199 remote_vcont_probe ();
6200
6201 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6202 return 0;
6203
6204 p = rs->buf;
6205 endp = rs->buf + get_remote_packet_size ();
6206
6207 /* If we could generate a wider range of packets, we'd have to worry
6208 about overflowing BUF. Should there be a generic
6209 "multi-part-packet" packet? */
6210
6211 p += xsnprintf (p, endp - p, "vCont");
6212
6213 if (ptid == magic_null_ptid)
6214 {
6215 /* MAGIC_NULL_PTID means that we don't have any active threads,
6216 so we don't have any TID numbers the inferior will
6217 understand. Make sure to only send forms that do not specify
6218 a TID. */
6219 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6220 }
6221 else if (ptid == minus_one_ptid || ptid.is_pid ())
6222 {
6223 /* Resume all threads (of all processes, or of a single
6224 process), with preference for INFERIOR_PTID. This assumes
6225 inferior_ptid belongs to the set of all threads we are about
6226 to resume. */
6227 if (step || siggnal != GDB_SIGNAL_0)
6228 {
6229 /* Step inferior_ptid, with or without signal. */
6230 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6231 }
6232
6233 /* Also pass down any pending signaled resumption for other
6234 threads not the current. */
6235 p = append_pending_thread_resumptions (p, endp, ptid);
6236
6237 /* And continue others without a signal. */
6238 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6239 }
6240 else
6241 {
6242 /* Scheduler locking; resume only PTID. */
6243 append_resumption (p, endp, ptid, step, siggnal);
6244 }
6245
6246 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6247 putpkt (rs->buf);
6248
6249 if (target_is_non_stop_p ())
6250 {
6251 /* In non-stop, the stub replies to vCont with "OK". The stop
6252 reply will be reported asynchronously by means of a `%Stop'
6253 notification. */
6254 getpkt (&rs->buf, &rs->buf_size, 0);
6255 if (strcmp (rs->buf, "OK") != 0)
6256 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6257 }
6258
6259 return 1;
6260 }
6261
6262 /* Tell the remote machine to resume. */
6263
6264 void
6265 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6266 {
6267 struct remote_state *rs = get_remote_state ();
6268
6269 /* When connected in non-stop mode, the core resumes threads
6270 individually. Resuming remote threads directly in target_resume
6271 would thus result in sending one packet per thread. Instead, to
6272 minimize roundtrip latency, here we just store the resume
6273 request; the actual remote resumption will be done in
6274 target_commit_resume / remote_commit_resume, where we'll be able
6275 to do vCont action coalescing. */
6276 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6277 {
6278 remote_thread_info *remote_thr;
6279
6280 if (minus_one_ptid == ptid || ptid.is_pid ())
6281 remote_thr = get_remote_thread_info (inferior_ptid);
6282 else
6283 remote_thr = get_remote_thread_info (ptid);
6284
6285 remote_thr->last_resume_step = step;
6286 remote_thr->last_resume_sig = siggnal;
6287 return;
6288 }
6289
6290 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6291 (explained in remote-notif.c:handle_notification) so
6292 remote_notif_process is not called. We need find a place where
6293 it is safe to start a 'vNotif' sequence. It is good to do it
6294 before resuming inferior, because inferior was stopped and no RSP
6295 traffic at that moment. */
6296 if (!target_is_non_stop_p ())
6297 remote_notif_process (rs->notif_state, &notif_client_stop);
6298
6299 rs->last_resume_exec_dir = ::execution_direction;
6300
6301 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6302 if (!remote_resume_with_vcont (ptid, step, siggnal))
6303 remote_resume_with_hc (ptid, step, siggnal);
6304
6305 /* We are about to start executing the inferior, let's register it
6306 with the event loop. NOTE: this is the one place where all the
6307 execution commands end up. We could alternatively do this in each
6308 of the execution commands in infcmd.c. */
6309 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6310 into infcmd.c in order to allow inferior function calls to work
6311 NOT asynchronously. */
6312 if (target_can_async_p ())
6313 target_async (1);
6314
6315 /* We've just told the target to resume. The remote server will
6316 wait for the inferior to stop, and then send a stop reply. In
6317 the mean time, we can't start another command/query ourselves
6318 because the stub wouldn't be ready to process it. This applies
6319 only to the base all-stop protocol, however. In non-stop (which
6320 only supports vCont), the stub replies with an "OK", and is
6321 immediate able to process further serial input. */
6322 if (!target_is_non_stop_p ())
6323 rs->waiting_for_stop_reply = 1;
6324 }
6325
6326 static int is_pending_fork_parent_thread (struct thread_info *thread);
6327
6328 /* Private per-inferior info for target remote processes. */
6329
6330 struct remote_inferior : public private_inferior
6331 {
6332 /* Whether we can send a wildcard vCont for this process. */
6333 bool may_wildcard_vcont = true;
6334 };
6335
6336 /* Get the remote private inferior data associated to INF. */
6337
6338 static remote_inferior *
6339 get_remote_inferior (inferior *inf)
6340 {
6341 if (inf->priv == NULL)
6342 inf->priv.reset (new remote_inferior);
6343
6344 return static_cast<remote_inferior *> (inf->priv.get ());
6345 }
6346
6347 /* Class used to track the construction of a vCont packet in the
6348 outgoing packet buffer. This is used to send multiple vCont
6349 packets if we have more actions than would fit a single packet. */
6350
6351 class vcont_builder
6352 {
6353 public:
6354 explicit vcont_builder (remote_target *remote)
6355 : m_remote (remote)
6356 {
6357 restart ();
6358 }
6359
6360 void flush ();
6361 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6362
6363 private:
6364 void restart ();
6365
6366 /* The remote target. */
6367 remote_target *m_remote;
6368
6369 /* Pointer to the first action. P points here if no action has been
6370 appended yet. */
6371 char *m_first_action;
6372
6373 /* Where the next action will be appended. */
6374 char *m_p;
6375
6376 /* The end of the buffer. Must never write past this. */
6377 char *m_endp;
6378 };
6379
6380 /* Prepare the outgoing buffer for a new vCont packet. */
6381
6382 void
6383 vcont_builder::restart ()
6384 {
6385 struct remote_state *rs = m_remote->get_remote_state ();
6386
6387 m_p = rs->buf;
6388 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6389 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6390 m_first_action = m_p;
6391 }
6392
6393 /* If the vCont packet being built has any action, send it to the
6394 remote end. */
6395
6396 void
6397 vcont_builder::flush ()
6398 {
6399 struct remote_state *rs;
6400
6401 if (m_p == m_first_action)
6402 return;
6403
6404 rs = m_remote->get_remote_state ();
6405 m_remote->putpkt (rs->buf);
6406 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6407 if (strcmp (rs->buf, "OK") != 0)
6408 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6409 }
6410
6411 /* The largest action is range-stepping, with its two addresses. This
6412 is more than sufficient. If a new, bigger action is created, it'll
6413 quickly trigger a failed assertion in append_resumption (and we'll
6414 just bump this). */
6415 #define MAX_ACTION_SIZE 200
6416
6417 /* Append a new vCont action in the outgoing packet being built. If
6418 the action doesn't fit the packet along with previous actions, push
6419 what we've got so far to the remote end and start over a new vCont
6420 packet (with the new action). */
6421
6422 void
6423 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6424 {
6425 char buf[MAX_ACTION_SIZE + 1];
6426
6427 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6428 ptid, step, siggnal);
6429
6430 /* Check whether this new action would fit in the vCont packet along
6431 with previous actions. If not, send what we've got so far and
6432 start a new vCont packet. */
6433 size_t rsize = endp - buf;
6434 if (rsize > m_endp - m_p)
6435 {
6436 flush ();
6437 restart ();
6438
6439 /* Should now fit. */
6440 gdb_assert (rsize <= m_endp - m_p);
6441 }
6442
6443 memcpy (m_p, buf, rsize);
6444 m_p += rsize;
6445 *m_p = '\0';
6446 }
6447
6448 /* to_commit_resume implementation. */
6449
6450 void
6451 remote_target::commit_resume ()
6452 {
6453 struct inferior *inf;
6454 struct thread_info *tp;
6455 int any_process_wildcard;
6456 int may_global_wildcard_vcont;
6457
6458 /* If connected in all-stop mode, we'd send the remote resume
6459 request directly from remote_resume. Likewise if
6460 reverse-debugging, as there are no defined vCont actions for
6461 reverse execution. */
6462 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6463 return;
6464
6465 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6466 instead of resuming all threads of each process individually.
6467 However, if any thread of a process must remain halted, we can't
6468 send wildcard resumes and must send one action per thread.
6469
6470 Care must be taken to not resume threads/processes the server
6471 side already told us are stopped, but the core doesn't know about
6472 yet, because the events are still in the vStopped notification
6473 queue. For example:
6474
6475 #1 => vCont s:p1.1;c
6476 #2 <= OK
6477 #3 <= %Stopped T05 p1.1
6478 #4 => vStopped
6479 #5 <= T05 p1.2
6480 #6 => vStopped
6481 #7 <= OK
6482 #8 (infrun handles the stop for p1.1 and continues stepping)
6483 #9 => vCont s:p1.1;c
6484
6485 The last vCont above would resume thread p1.2 by mistake, because
6486 the server has no idea that the event for p1.2 had not been
6487 handled yet.
6488
6489 The server side must similarly ignore resume actions for the
6490 thread that has a pending %Stopped notification (and any other
6491 threads with events pending), until GDB acks the notification
6492 with vStopped. Otherwise, e.g., the following case is
6493 mishandled:
6494
6495 #1 => g (or any other packet)
6496 #2 <= [registers]
6497 #3 <= %Stopped T05 p1.2
6498 #4 => vCont s:p1.1;c
6499 #5 <= OK
6500
6501 Above, the server must not resume thread p1.2. GDB can't know
6502 that p1.2 stopped until it acks the %Stopped notification, and
6503 since from GDB's perspective all threads should be running, it
6504 sends a "c" action.
6505
6506 Finally, special care must also be given to handling fork/vfork
6507 events. A (v)fork event actually tells us that two processes
6508 stopped -- the parent and the child. Until we follow the fork,
6509 we must not resume the child. Therefore, if we have a pending
6510 fork follow, we must not send a global wildcard resume action
6511 (vCont;c). We can still send process-wide wildcards though. */
6512
6513 /* Start by assuming a global wildcard (vCont;c) is possible. */
6514 may_global_wildcard_vcont = 1;
6515
6516 /* And assume every process is individually wildcard-able too. */
6517 ALL_NON_EXITED_INFERIORS (inf)
6518 {
6519 remote_inferior *priv = get_remote_inferior (inf);
6520
6521 priv->may_wildcard_vcont = true;
6522 }
6523
6524 /* Check for any pending events (not reported or processed yet) and
6525 disable process and global wildcard resumes appropriately. */
6526 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6527
6528 ALL_NON_EXITED_THREADS (tp)
6529 {
6530 /* If a thread of a process is not meant to be resumed, then we
6531 can't wildcard that process. */
6532 if (!tp->executing)
6533 {
6534 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6535
6536 /* And if we can't wildcard a process, we can't wildcard
6537 everything either. */
6538 may_global_wildcard_vcont = 0;
6539 continue;
6540 }
6541
6542 /* If a thread is the parent of an unfollowed fork, then we
6543 can't do a global wildcard, as that would resume the fork
6544 child. */
6545 if (is_pending_fork_parent_thread (tp))
6546 may_global_wildcard_vcont = 0;
6547 }
6548
6549 /* Now let's build the vCont packet(s). Actions must be appended
6550 from narrower to wider scopes (thread -> process -> global). If
6551 we end up with too many actions for a single packet vcont_builder
6552 flushes the current vCont packet to the remote side and starts a
6553 new one. */
6554 struct vcont_builder vcont_builder (this);
6555
6556 /* Threads first. */
6557 ALL_NON_EXITED_THREADS (tp)
6558 {
6559 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6560
6561 if (!tp->executing || remote_thr->vcont_resumed)
6562 continue;
6563
6564 gdb_assert (!thread_is_in_step_over_chain (tp));
6565
6566 if (!remote_thr->last_resume_step
6567 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6568 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6569 {
6570 /* We'll send a wildcard resume instead. */
6571 remote_thr->vcont_resumed = 1;
6572 continue;
6573 }
6574
6575 vcont_builder.push_action (tp->ptid,
6576 remote_thr->last_resume_step,
6577 remote_thr->last_resume_sig);
6578 remote_thr->vcont_resumed = 1;
6579 }
6580
6581 /* Now check whether we can send any process-wide wildcard. This is
6582 to avoid sending a global wildcard in the case nothing is
6583 supposed to be resumed. */
6584 any_process_wildcard = 0;
6585
6586 ALL_NON_EXITED_INFERIORS (inf)
6587 {
6588 if (get_remote_inferior (inf)->may_wildcard_vcont)
6589 {
6590 any_process_wildcard = 1;
6591 break;
6592 }
6593 }
6594
6595 if (any_process_wildcard)
6596 {
6597 /* If all processes are wildcard-able, then send a single "c"
6598 action, otherwise, send an "all (-1) threads of process"
6599 continue action for each running process, if any. */
6600 if (may_global_wildcard_vcont)
6601 {
6602 vcont_builder.push_action (minus_one_ptid,
6603 false, GDB_SIGNAL_0);
6604 }
6605 else
6606 {
6607 ALL_NON_EXITED_INFERIORS (inf)
6608 {
6609 if (get_remote_inferior (inf)->may_wildcard_vcont)
6610 {
6611 vcont_builder.push_action (ptid_t (inf->pid),
6612 false, GDB_SIGNAL_0);
6613 }
6614 }
6615 }
6616 }
6617
6618 vcont_builder.flush ();
6619 }
6620
6621 \f
6622
6623 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6624 thread, all threads of a remote process, or all threads of all
6625 processes. */
6626
6627 void
6628 remote_target::remote_stop_ns (ptid_t ptid)
6629 {
6630 struct remote_state *rs = get_remote_state ();
6631 char *p = rs->buf;
6632 char *endp = rs->buf + get_remote_packet_size ();
6633
6634 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6635 remote_vcont_probe ();
6636
6637 if (!rs->supports_vCont.t)
6638 error (_("Remote server does not support stopping threads"));
6639
6640 if (ptid == minus_one_ptid
6641 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6642 p += xsnprintf (p, endp - p, "vCont;t");
6643 else
6644 {
6645 ptid_t nptid;
6646
6647 p += xsnprintf (p, endp - p, "vCont;t:");
6648
6649 if (ptid.is_pid ())
6650 /* All (-1) threads of process. */
6651 nptid = ptid_t (ptid.pid (), -1, 0);
6652 else
6653 {
6654 /* Small optimization: if we already have a stop reply for
6655 this thread, no use in telling the stub we want this
6656 stopped. */
6657 if (peek_stop_reply (ptid))
6658 return;
6659
6660 nptid = ptid;
6661 }
6662
6663 write_ptid (p, endp, nptid);
6664 }
6665
6666 /* In non-stop, we get an immediate OK reply. The stop reply will
6667 come in asynchronously by notification. */
6668 putpkt (rs->buf);
6669 getpkt (&rs->buf, &rs->buf_size, 0);
6670 if (strcmp (rs->buf, "OK") != 0)
6671 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6672 }
6673
6674 /* All-stop version of target_interrupt. Sends a break or a ^C to
6675 interrupt the remote target. It is undefined which thread of which
6676 process reports the interrupt. */
6677
6678 void
6679 remote_target::remote_interrupt_as ()
6680 {
6681 struct remote_state *rs = get_remote_state ();
6682
6683 rs->ctrlc_pending_p = 1;
6684
6685 /* If the inferior is stopped already, but the core didn't know
6686 about it yet, just ignore the request. The cached wait status
6687 will be collected in remote_wait. */
6688 if (rs->cached_wait_status)
6689 return;
6690
6691 /* Send interrupt_sequence to remote target. */
6692 send_interrupt_sequence ();
6693 }
6694
6695 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6696 the remote target. It is undefined which thread of which process
6697 reports the interrupt. Throws an error if the packet is not
6698 supported by the server. */
6699
6700 void
6701 remote_target::remote_interrupt_ns ()
6702 {
6703 struct remote_state *rs = get_remote_state ();
6704 char *p = rs->buf;
6705 char *endp = rs->buf + get_remote_packet_size ();
6706
6707 xsnprintf (p, endp - p, "vCtrlC");
6708
6709 /* In non-stop, we get an immediate OK reply. The stop reply will
6710 come in asynchronously by notification. */
6711 putpkt (rs->buf);
6712 getpkt (&rs->buf, &rs->buf_size, 0);
6713
6714 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6715 {
6716 case PACKET_OK:
6717 break;
6718 case PACKET_UNKNOWN:
6719 error (_("No support for interrupting the remote target."));
6720 case PACKET_ERROR:
6721 error (_("Interrupting target failed: %s"), rs->buf);
6722 }
6723 }
6724
6725 /* Implement the to_stop function for the remote targets. */
6726
6727 void
6728 remote_target::stop (ptid_t ptid)
6729 {
6730 if (remote_debug)
6731 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6732
6733 if (target_is_non_stop_p ())
6734 remote_stop_ns (ptid);
6735 else
6736 {
6737 /* We don't currently have a way to transparently pause the
6738 remote target in all-stop mode. Interrupt it instead. */
6739 remote_interrupt_as ();
6740 }
6741 }
6742
6743 /* Implement the to_interrupt function for the remote targets. */
6744
6745 void
6746 remote_target::interrupt ()
6747 {
6748 if (remote_debug)
6749 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6750
6751 if (target_is_non_stop_p ())
6752 remote_interrupt_ns ();
6753 else
6754 remote_interrupt_as ();
6755 }
6756
6757 /* Implement the to_pass_ctrlc function for the remote targets. */
6758
6759 void
6760 remote_target::pass_ctrlc ()
6761 {
6762 struct remote_state *rs = get_remote_state ();
6763
6764 if (remote_debug)
6765 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6766
6767 /* If we're starting up, we're not fully synced yet. Quit
6768 immediately. */
6769 if (rs->starting_up)
6770 quit ();
6771 /* If ^C has already been sent once, offer to disconnect. */
6772 else if (rs->ctrlc_pending_p)
6773 interrupt_query ();
6774 else
6775 target_interrupt ();
6776 }
6777
6778 /* Ask the user what to do when an interrupt is received. */
6779
6780 void
6781 remote_target::interrupt_query ()
6782 {
6783 struct remote_state *rs = get_remote_state ();
6784
6785 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6786 {
6787 if (query (_("The target is not responding to interrupt requests.\n"
6788 "Stop debugging it? ")))
6789 {
6790 remote_unpush_target ();
6791 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6792 }
6793 }
6794 else
6795 {
6796 if (query (_("Interrupted while waiting for the program.\n"
6797 "Give up waiting? ")))
6798 quit ();
6799 }
6800 }
6801
6802 /* Enable/disable target terminal ownership. Most targets can use
6803 terminal groups to control terminal ownership. Remote targets are
6804 different in that explicit transfer of ownership to/from GDB/target
6805 is required. */
6806
6807 void
6808 remote_target::terminal_inferior ()
6809 {
6810 /* NOTE: At this point we could also register our selves as the
6811 recipient of all input. Any characters typed could then be
6812 passed on down to the target. */
6813 }
6814
6815 void
6816 remote_target::terminal_ours ()
6817 {
6818 }
6819
6820 static void
6821 remote_console_output (char *msg)
6822 {
6823 char *p;
6824
6825 for (p = msg; p[0] && p[1]; p += 2)
6826 {
6827 char tb[2];
6828 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6829
6830 tb[0] = c;
6831 tb[1] = 0;
6832 fputs_unfiltered (tb, gdb_stdtarg);
6833 }
6834 gdb_flush (gdb_stdtarg);
6835 }
6836
6837 DEF_VEC_O(cached_reg_t);
6838
6839 typedef struct stop_reply
6840 {
6841 struct notif_event base;
6842
6843 /* The identifier of the thread about this event */
6844 ptid_t ptid;
6845
6846 /* The remote state this event is associated with. When the remote
6847 connection, represented by a remote_state object, is closed,
6848 all the associated stop_reply events should be released. */
6849 struct remote_state *rs;
6850
6851 struct target_waitstatus ws;
6852
6853 /* The architecture associated with the expedited registers. */
6854 gdbarch *arch;
6855
6856 /* Expedited registers. This makes remote debugging a bit more
6857 efficient for those targets that provide critical registers as
6858 part of their normal status mechanism (as another roundtrip to
6859 fetch them is avoided). */
6860 VEC(cached_reg_t) *regcache;
6861
6862 enum target_stop_reason stop_reason;
6863
6864 CORE_ADDR watch_data_address;
6865
6866 int core;
6867 } *stop_reply_p;
6868
6869 static void
6870 stop_reply_xfree (struct stop_reply *r)
6871 {
6872 notif_event_xfree ((struct notif_event *) r);
6873 }
6874
6875 /* Return the length of the stop reply queue. */
6876
6877 int
6878 remote_target::stop_reply_queue_length ()
6879 {
6880 remote_state *rs = get_remote_state ();
6881 return rs->stop_reply_queue.size ();
6882 }
6883
6884 void
6885 remote_notif_stop_parse (remote_target *remote,
6886 struct notif_client *self, char *buf,
6887 struct notif_event *event)
6888 {
6889 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6890 }
6891
6892 static void
6893 remote_notif_stop_ack (remote_target *remote,
6894 struct notif_client *self, char *buf,
6895 struct notif_event *event)
6896 {
6897 struct stop_reply *stop_reply = (struct stop_reply *) event;
6898
6899 /* acknowledge */
6900 putpkt (remote, self->ack_command);
6901
6902 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6903 {
6904 /* We got an unknown stop reply. */
6905 error (_("Unknown stop reply"));
6906 }
6907
6908 remote->push_stop_reply (stop_reply);
6909 }
6910
6911 static int
6912 remote_notif_stop_can_get_pending_events (remote_target *remote,
6913 struct notif_client *self)
6914 {
6915 /* We can't get pending events in remote_notif_process for
6916 notification stop, and we have to do this in remote_wait_ns
6917 instead. If we fetch all queued events from stub, remote stub
6918 may exit and we have no chance to process them back in
6919 remote_wait_ns. */
6920 remote_state *rs = remote->get_remote_state ();
6921 mark_async_event_handler (rs->remote_async_inferior_event_token);
6922 return 0;
6923 }
6924
6925 static void
6926 stop_reply_dtr (struct notif_event *event)
6927 {
6928 struct stop_reply *r = (struct stop_reply *) event;
6929 cached_reg_t *reg;
6930 int ix;
6931
6932 for (ix = 0;
6933 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6934 ix++)
6935 xfree (reg->data);
6936
6937 VEC_free (cached_reg_t, r->regcache);
6938 }
6939
6940 static struct notif_event *
6941 remote_notif_stop_alloc_reply (void)
6942 {
6943 /* We cast to a pointer to the "base class". */
6944 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6945
6946 r->dtr = stop_reply_dtr;
6947
6948 return r;
6949 }
6950
6951 /* A client of notification Stop. */
6952
6953 struct notif_client notif_client_stop =
6954 {
6955 "Stop",
6956 "vStopped",
6957 remote_notif_stop_parse,
6958 remote_notif_stop_ack,
6959 remote_notif_stop_can_get_pending_events,
6960 remote_notif_stop_alloc_reply,
6961 REMOTE_NOTIF_STOP,
6962 };
6963
6964 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6965 the pid of the process that owns the threads we want to check, or
6966 -1 if we want to check all threads. */
6967
6968 static int
6969 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6970 ptid_t thread_ptid)
6971 {
6972 if (ws->kind == TARGET_WAITKIND_FORKED
6973 || ws->kind == TARGET_WAITKIND_VFORKED)
6974 {
6975 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6976 return 1;
6977 }
6978
6979 return 0;
6980 }
6981
6982 /* Return the thread's pending status used to determine whether the
6983 thread is a fork parent stopped at a fork event. */
6984
6985 static struct target_waitstatus *
6986 thread_pending_fork_status (struct thread_info *thread)
6987 {
6988 if (thread->suspend.waitstatus_pending_p)
6989 return &thread->suspend.waitstatus;
6990 else
6991 return &thread->pending_follow;
6992 }
6993
6994 /* Determine if THREAD is a pending fork parent thread. */
6995
6996 static int
6997 is_pending_fork_parent_thread (struct thread_info *thread)
6998 {
6999 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7000 int pid = -1;
7001
7002 return is_pending_fork_parent (ws, pid, thread->ptid);
7003 }
7004
7005 /* If CONTEXT contains any fork child threads that have not been
7006 reported yet, remove them from the CONTEXT list. If such a
7007 thread exists it is because we are stopped at a fork catchpoint
7008 and have not yet called follow_fork, which will set up the
7009 host-side data structures for the new process. */
7010
7011 void
7012 remote_target::remove_new_fork_children (threads_listing_context *context)
7013 {
7014 struct thread_info * thread;
7015 int pid = -1;
7016 struct notif_client *notif = &notif_client_stop;
7017
7018 /* For any threads stopped at a fork event, remove the corresponding
7019 fork child threads from the CONTEXT list. */
7020 ALL_NON_EXITED_THREADS (thread)
7021 {
7022 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7023
7024 if (is_pending_fork_parent (ws, pid, thread->ptid))
7025 context->remove_thread (ws->value.related_pid);
7026 }
7027
7028 /* Check for any pending fork events (not reported or processed yet)
7029 in process PID and remove those fork child threads from the
7030 CONTEXT list as well. */
7031 remote_notif_get_pending_events (notif);
7032 for (auto &event : get_remote_state ()->stop_reply_queue)
7033 if (event->ws.kind == TARGET_WAITKIND_FORKED
7034 || event->ws.kind == TARGET_WAITKIND_VFORKED
7035 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7036 context->remove_thread (event->ws.value.related_pid);
7037 }
7038
7039 /* Check whether any event pending in the vStopped queue would prevent
7040 a global or process wildcard vCont action. Clear
7041 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7042 and clear the event inferior's may_wildcard_vcont flag if we can't
7043 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7044
7045 void
7046 remote_target::check_pending_events_prevent_wildcard_vcont
7047 (int *may_global_wildcard)
7048 {
7049 struct notif_client *notif = &notif_client_stop;
7050
7051 remote_notif_get_pending_events (notif);
7052 for (auto &event : get_remote_state ()->stop_reply_queue)
7053 {
7054 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7055 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7056 continue;
7057
7058 if (event->ws.kind == TARGET_WAITKIND_FORKED
7059 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7060 *may_global_wildcard = 0;
7061
7062 struct inferior *inf = find_inferior_ptid (event->ptid);
7063
7064 /* This may be the first time we heard about this process.
7065 Regardless, we must not do a global wildcard resume, otherwise
7066 we'd resume this process too. */
7067 *may_global_wildcard = 0;
7068 if (inf != NULL)
7069 get_remote_inferior (inf)->may_wildcard_vcont = false;
7070 }
7071 }
7072
7073 /* Discard all pending stop replies of inferior INF. */
7074
7075 void
7076 remote_target::discard_pending_stop_replies (struct inferior *inf)
7077 {
7078 struct stop_reply *reply;
7079 struct remote_state *rs = get_remote_state ();
7080 struct remote_notif_state *rns = rs->notif_state;
7081
7082 /* This function can be notified when an inferior exists. When the
7083 target is not remote, the notification state is NULL. */
7084 if (rs->remote_desc == NULL)
7085 return;
7086
7087 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7088
7089 /* Discard the in-flight notification. */
7090 if (reply != NULL && reply->ptid.pid () == inf->pid)
7091 {
7092 stop_reply_xfree (reply);
7093 rns->pending_event[notif_client_stop.id] = NULL;
7094 }
7095
7096 /* Discard the stop replies we have already pulled with
7097 vStopped. */
7098 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7099 rs->stop_reply_queue.end (),
7100 [=] (const stop_reply_up &event)
7101 {
7102 return event->ptid.pid () == inf->pid;
7103 });
7104 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7105 }
7106
7107 /* Discard the stop replies for RS in stop_reply_queue. */
7108
7109 void
7110 remote_target::discard_pending_stop_replies_in_queue ()
7111 {
7112 remote_state *rs = get_remote_state ();
7113
7114 /* Discard the stop replies we have already pulled with
7115 vStopped. */
7116 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7117 rs->stop_reply_queue.end (),
7118 [=] (const stop_reply_up &event)
7119 {
7120 return event->rs == rs;
7121 });
7122 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7123 }
7124
7125 /* Remove the first reply in 'stop_reply_queue' which matches
7126 PTID. */
7127
7128 struct stop_reply *
7129 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7130 {
7131 remote_state *rs = get_remote_state ();
7132
7133 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7134 rs->stop_reply_queue.end (),
7135 [=] (const stop_reply_up &event)
7136 {
7137 return event->ptid.matches (ptid);
7138 });
7139 struct stop_reply *result;
7140 if (iter == rs->stop_reply_queue.end ())
7141 result = nullptr;
7142 else
7143 {
7144 result = iter->release ();
7145 rs->stop_reply_queue.erase (iter);
7146 }
7147
7148 if (notif_debug)
7149 fprintf_unfiltered (gdb_stdlog,
7150 "notif: discard queued event: 'Stop' in %s\n",
7151 target_pid_to_str (ptid));
7152
7153 return result;
7154 }
7155
7156 /* Look for a queued stop reply belonging to PTID. If one is found,
7157 remove it from the queue, and return it. Returns NULL if none is
7158 found. If there are still queued events left to process, tell the
7159 event loop to get back to target_wait soon. */
7160
7161 struct stop_reply *
7162 remote_target::queued_stop_reply (ptid_t ptid)
7163 {
7164 remote_state *rs = get_remote_state ();
7165 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7166
7167 if (!rs->stop_reply_queue.empty ())
7168 {
7169 /* There's still at least an event left. */
7170 mark_async_event_handler (rs->remote_async_inferior_event_token);
7171 }
7172
7173 return r;
7174 }
7175
7176 /* Push a fully parsed stop reply in the stop reply queue. Since we
7177 know that we now have at least one queued event left to pass to the
7178 core side, tell the event loop to get back to target_wait soon. */
7179
7180 void
7181 remote_target::push_stop_reply (struct stop_reply *new_event)
7182 {
7183 remote_state *rs = get_remote_state ();
7184 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7185
7186 if (notif_debug)
7187 fprintf_unfiltered (gdb_stdlog,
7188 "notif: push 'Stop' %s to queue %d\n",
7189 target_pid_to_str (new_event->ptid),
7190 int (rs->stop_reply_queue.size ()));
7191
7192 mark_async_event_handler (rs->remote_async_inferior_event_token);
7193 }
7194
7195 /* Returns true if we have a stop reply for PTID. */
7196
7197 int
7198 remote_target::peek_stop_reply (ptid_t ptid)
7199 {
7200 remote_state *rs = get_remote_state ();
7201 for (auto &event : rs->stop_reply_queue)
7202 if (ptid == event->ptid
7203 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7204 return 1;
7205 return 0;
7206 }
7207
7208 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7209 starting with P and ending with PEND matches PREFIX. */
7210
7211 static int
7212 strprefix (const char *p, const char *pend, const char *prefix)
7213 {
7214 for ( ; p < pend; p++, prefix++)
7215 if (*p != *prefix)
7216 return 0;
7217 return *prefix == '\0';
7218 }
7219
7220 /* Parse the stop reply in BUF. Either the function succeeds, and the
7221 result is stored in EVENT, or throws an error. */
7222
7223 void
7224 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7225 {
7226 remote_arch_state *rsa = NULL;
7227 ULONGEST addr;
7228 const char *p;
7229 int skipregs = 0;
7230
7231 event->ptid = null_ptid;
7232 event->rs = get_remote_state ();
7233 event->ws.kind = TARGET_WAITKIND_IGNORE;
7234 event->ws.value.integer = 0;
7235 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7236 event->regcache = NULL;
7237 event->core = -1;
7238
7239 switch (buf[0])
7240 {
7241 case 'T': /* Status with PC, SP, FP, ... */
7242 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7243 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7244 ss = signal number
7245 n... = register number
7246 r... = register contents
7247 */
7248
7249 p = &buf[3]; /* after Txx */
7250 while (*p)
7251 {
7252 const char *p1;
7253 int fieldsize;
7254
7255 p1 = strchr (p, ':');
7256 if (p1 == NULL)
7257 error (_("Malformed packet(a) (missing colon): %s\n\
7258 Packet: '%s'\n"),
7259 p, buf);
7260 if (p == p1)
7261 error (_("Malformed packet(a) (missing register number): %s\n\
7262 Packet: '%s'\n"),
7263 p, buf);
7264
7265 /* Some "registers" are actually extended stop information.
7266 Note if you're adding a new entry here: GDB 7.9 and
7267 earlier assume that all register "numbers" that start
7268 with an hex digit are real register numbers. Make sure
7269 the server only sends such a packet if it knows the
7270 client understands it. */
7271
7272 if (strprefix (p, p1, "thread"))
7273 event->ptid = read_ptid (++p1, &p);
7274 else if (strprefix (p, p1, "syscall_entry"))
7275 {
7276 ULONGEST sysno;
7277
7278 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7279 p = unpack_varlen_hex (++p1, &sysno);
7280 event->ws.value.syscall_number = (int) sysno;
7281 }
7282 else if (strprefix (p, p1, "syscall_return"))
7283 {
7284 ULONGEST sysno;
7285
7286 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7287 p = unpack_varlen_hex (++p1, &sysno);
7288 event->ws.value.syscall_number = (int) sysno;
7289 }
7290 else if (strprefix (p, p1, "watch")
7291 || strprefix (p, p1, "rwatch")
7292 || strprefix (p, p1, "awatch"))
7293 {
7294 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7295 p = unpack_varlen_hex (++p1, &addr);
7296 event->watch_data_address = (CORE_ADDR) addr;
7297 }
7298 else if (strprefix (p, p1, "swbreak"))
7299 {
7300 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7301
7302 /* Make sure the stub doesn't forget to indicate support
7303 with qSupported. */
7304 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7305 error (_("Unexpected swbreak stop reason"));
7306
7307 /* The value part is documented as "must be empty",
7308 though we ignore it, in case we ever decide to make
7309 use of it in a backward compatible way. */
7310 p = strchrnul (p1 + 1, ';');
7311 }
7312 else if (strprefix (p, p1, "hwbreak"))
7313 {
7314 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7315
7316 /* Make sure the stub doesn't forget to indicate support
7317 with qSupported. */
7318 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7319 error (_("Unexpected hwbreak stop reason"));
7320
7321 /* See above. */
7322 p = strchrnul (p1 + 1, ';');
7323 }
7324 else if (strprefix (p, p1, "library"))
7325 {
7326 event->ws.kind = TARGET_WAITKIND_LOADED;
7327 p = strchrnul (p1 + 1, ';');
7328 }
7329 else if (strprefix (p, p1, "replaylog"))
7330 {
7331 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7332 /* p1 will indicate "begin" or "end", but it makes
7333 no difference for now, so ignore it. */
7334 p = strchrnul (p1 + 1, ';');
7335 }
7336 else if (strprefix (p, p1, "core"))
7337 {
7338 ULONGEST c;
7339
7340 p = unpack_varlen_hex (++p1, &c);
7341 event->core = c;
7342 }
7343 else if (strprefix (p, p1, "fork"))
7344 {
7345 event->ws.value.related_pid = read_ptid (++p1, &p);
7346 event->ws.kind = TARGET_WAITKIND_FORKED;
7347 }
7348 else if (strprefix (p, p1, "vfork"))
7349 {
7350 event->ws.value.related_pid = read_ptid (++p1, &p);
7351 event->ws.kind = TARGET_WAITKIND_VFORKED;
7352 }
7353 else if (strprefix (p, p1, "vforkdone"))
7354 {
7355 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7356 p = strchrnul (p1 + 1, ';');
7357 }
7358 else if (strprefix (p, p1, "exec"))
7359 {
7360 ULONGEST ignored;
7361 char pathname[PATH_MAX];
7362 int pathlen;
7363
7364 /* Determine the length of the execd pathname. */
7365 p = unpack_varlen_hex (++p1, &ignored);
7366 pathlen = (p - p1) / 2;
7367
7368 /* Save the pathname for event reporting and for
7369 the next run command. */
7370 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7371 pathname[pathlen] = '\0';
7372
7373 /* This is freed during event handling. */
7374 event->ws.value.execd_pathname = xstrdup (pathname);
7375 event->ws.kind = TARGET_WAITKIND_EXECD;
7376
7377 /* Skip the registers included in this packet, since
7378 they may be for an architecture different from the
7379 one used by the original program. */
7380 skipregs = 1;
7381 }
7382 else if (strprefix (p, p1, "create"))
7383 {
7384 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7385 p = strchrnul (p1 + 1, ';');
7386 }
7387 else
7388 {
7389 ULONGEST pnum;
7390 const char *p_temp;
7391
7392 if (skipregs)
7393 {
7394 p = strchrnul (p1 + 1, ';');
7395 p++;
7396 continue;
7397 }
7398
7399 /* Maybe a real ``P'' register number. */
7400 p_temp = unpack_varlen_hex (p, &pnum);
7401 /* If the first invalid character is the colon, we got a
7402 register number. Otherwise, it's an unknown stop
7403 reason. */
7404 if (p_temp == p1)
7405 {
7406 /* If we haven't parsed the event's thread yet, find
7407 it now, in order to find the architecture of the
7408 reported expedited registers. */
7409 if (event->ptid == null_ptid)
7410 {
7411 const char *thr = strstr (p1 + 1, ";thread:");
7412 if (thr != NULL)
7413 event->ptid = read_ptid (thr + strlen (";thread:"),
7414 NULL);
7415 else
7416 {
7417 /* Either the current thread hasn't changed,
7418 or the inferior is not multi-threaded.
7419 The event must be for the thread we last
7420 set as (or learned as being) current. */
7421 event->ptid = event->rs->general_thread;
7422 }
7423 }
7424
7425 if (rsa == NULL)
7426 {
7427 inferior *inf = (event->ptid == null_ptid
7428 ? NULL
7429 : find_inferior_ptid (event->ptid));
7430 /* If this is the first time we learn anything
7431 about this process, skip the registers
7432 included in this packet, since we don't yet
7433 know which architecture to use to parse them.
7434 We'll determine the architecture later when
7435 we process the stop reply and retrieve the
7436 target description, via
7437 remote_notice_new_inferior ->
7438 post_create_inferior. */
7439 if (inf == NULL)
7440 {
7441 p = strchrnul (p1 + 1, ';');
7442 p++;
7443 continue;
7444 }
7445
7446 event->arch = inf->gdbarch;
7447 rsa = event->rs->get_remote_arch_state (event->arch);
7448 }
7449
7450 packet_reg *reg
7451 = packet_reg_from_pnum (event->arch, rsa, pnum);
7452 cached_reg_t cached_reg;
7453
7454 if (reg == NULL)
7455 error (_("Remote sent bad register number %s: %s\n\
7456 Packet: '%s'\n"),
7457 hex_string (pnum), p, buf);
7458
7459 cached_reg.num = reg->regnum;
7460 cached_reg.data = (gdb_byte *)
7461 xmalloc (register_size (event->arch, reg->regnum));
7462
7463 p = p1 + 1;
7464 fieldsize = hex2bin (p, cached_reg.data,
7465 register_size (event->arch, reg->regnum));
7466 p += 2 * fieldsize;
7467 if (fieldsize < register_size (event->arch, reg->regnum))
7468 warning (_("Remote reply is too short: %s"), buf);
7469
7470 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7471 }
7472 else
7473 {
7474 /* Not a number. Silently skip unknown optional
7475 info. */
7476 p = strchrnul (p1 + 1, ';');
7477 }
7478 }
7479
7480 if (*p != ';')
7481 error (_("Remote register badly formatted: %s\nhere: %s"),
7482 buf, p);
7483 ++p;
7484 }
7485
7486 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7487 break;
7488
7489 /* fall through */
7490 case 'S': /* Old style status, just signal only. */
7491 {
7492 int sig;
7493
7494 event->ws.kind = TARGET_WAITKIND_STOPPED;
7495 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7496 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7497 event->ws.value.sig = (enum gdb_signal) sig;
7498 else
7499 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7500 }
7501 break;
7502 case 'w': /* Thread exited. */
7503 {
7504 const char *p;
7505 ULONGEST value;
7506
7507 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7508 p = unpack_varlen_hex (&buf[1], &value);
7509 event->ws.value.integer = value;
7510 if (*p != ';')
7511 error (_("stop reply packet badly formatted: %s"), buf);
7512 event->ptid = read_ptid (++p, NULL);
7513 break;
7514 }
7515 case 'W': /* Target exited. */
7516 case 'X':
7517 {
7518 const char *p;
7519 int pid;
7520 ULONGEST value;
7521
7522 /* GDB used to accept only 2 hex chars here. Stubs should
7523 only send more if they detect GDB supports multi-process
7524 support. */
7525 p = unpack_varlen_hex (&buf[1], &value);
7526
7527 if (buf[0] == 'W')
7528 {
7529 /* The remote process exited. */
7530 event->ws.kind = TARGET_WAITKIND_EXITED;
7531 event->ws.value.integer = value;
7532 }
7533 else
7534 {
7535 /* The remote process exited with a signal. */
7536 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7537 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7538 event->ws.value.sig = (enum gdb_signal) value;
7539 else
7540 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7541 }
7542
7543 /* If no process is specified, assume inferior_ptid. */
7544 pid = inferior_ptid.pid ();
7545 if (*p == '\0')
7546 ;
7547 else if (*p == ';')
7548 {
7549 p++;
7550
7551 if (*p == '\0')
7552 ;
7553 else if (startswith (p, "process:"))
7554 {
7555 ULONGEST upid;
7556
7557 p += sizeof ("process:") - 1;
7558 unpack_varlen_hex (p, &upid);
7559 pid = upid;
7560 }
7561 else
7562 error (_("unknown stop reply packet: %s"), buf);
7563 }
7564 else
7565 error (_("unknown stop reply packet: %s"), buf);
7566 event->ptid = ptid_t (pid);
7567 }
7568 break;
7569 case 'N':
7570 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7571 event->ptid = minus_one_ptid;
7572 break;
7573 }
7574
7575 if (target_is_non_stop_p () && event->ptid == null_ptid)
7576 error (_("No process or thread specified in stop reply: %s"), buf);
7577 }
7578
7579 /* When the stub wants to tell GDB about a new notification reply, it
7580 sends a notification (%Stop, for example). Those can come it at
7581 any time, hence, we have to make sure that any pending
7582 putpkt/getpkt sequence we're making is finished, before querying
7583 the stub for more events with the corresponding ack command
7584 (vStopped, for example). E.g., if we started a vStopped sequence
7585 immediately upon receiving the notification, something like this
7586 could happen:
7587
7588 1.1) --> Hg 1
7589 1.2) <-- OK
7590 1.3) --> g
7591 1.4) <-- %Stop
7592 1.5) --> vStopped
7593 1.6) <-- (registers reply to step #1.3)
7594
7595 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7596 query.
7597
7598 To solve this, whenever we parse a %Stop notification successfully,
7599 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7600 doing whatever we were doing:
7601
7602 2.1) --> Hg 1
7603 2.2) <-- OK
7604 2.3) --> g
7605 2.4) <-- %Stop
7606 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7607 2.5) <-- (registers reply to step #2.3)
7608
7609 Eventualy after step #2.5, we return to the event loop, which
7610 notices there's an event on the
7611 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7612 associated callback --- the function below. At this point, we're
7613 always safe to start a vStopped sequence. :
7614
7615 2.6) --> vStopped
7616 2.7) <-- T05 thread:2
7617 2.8) --> vStopped
7618 2.9) --> OK
7619 */
7620
7621 void
7622 remote_target::remote_notif_get_pending_events (notif_client *nc)
7623 {
7624 struct remote_state *rs = get_remote_state ();
7625
7626 if (rs->notif_state->pending_event[nc->id] != NULL)
7627 {
7628 if (notif_debug)
7629 fprintf_unfiltered (gdb_stdlog,
7630 "notif: process: '%s' ack pending event\n",
7631 nc->name);
7632
7633 /* acknowledge */
7634 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7635 rs->notif_state->pending_event[nc->id] = NULL;
7636
7637 while (1)
7638 {
7639 getpkt (&rs->buf, &rs->buf_size, 0);
7640 if (strcmp (rs->buf, "OK") == 0)
7641 break;
7642 else
7643 remote_notif_ack (this, nc, rs->buf);
7644 }
7645 }
7646 else
7647 {
7648 if (notif_debug)
7649 fprintf_unfiltered (gdb_stdlog,
7650 "notif: process: '%s' no pending reply\n",
7651 nc->name);
7652 }
7653 }
7654
7655 /* Wrapper around remote_target::remote_notif_get_pending_events to
7656 avoid having to export the whole remote_target class. */
7657
7658 void
7659 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7660 {
7661 remote->remote_notif_get_pending_events (nc);
7662 }
7663
7664 /* Called when it is decided that STOP_REPLY holds the info of the
7665 event that is to be returned to the core. This function always
7666 destroys STOP_REPLY. */
7667
7668 ptid_t
7669 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7670 struct target_waitstatus *status)
7671 {
7672 ptid_t ptid;
7673
7674 *status = stop_reply->ws;
7675 ptid = stop_reply->ptid;
7676
7677 /* If no thread/process was reported by the stub, assume the current
7678 inferior. */
7679 if (ptid == null_ptid)
7680 ptid = inferior_ptid;
7681
7682 if (status->kind != TARGET_WAITKIND_EXITED
7683 && status->kind != TARGET_WAITKIND_SIGNALLED
7684 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7685 {
7686 /* Expedited registers. */
7687 if (stop_reply->regcache)
7688 {
7689 struct regcache *regcache
7690 = get_thread_arch_regcache (ptid, stop_reply->arch);
7691 cached_reg_t *reg;
7692 int ix;
7693
7694 for (ix = 0;
7695 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7696 ix++)
7697 {
7698 regcache->raw_supply (reg->num, reg->data);
7699 xfree (reg->data);
7700 }
7701
7702 VEC_free (cached_reg_t, stop_reply->regcache);
7703 }
7704
7705 remote_notice_new_inferior (ptid, 0);
7706 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7707 remote_thr->core = stop_reply->core;
7708 remote_thr->stop_reason = stop_reply->stop_reason;
7709 remote_thr->watch_data_address = stop_reply->watch_data_address;
7710 remote_thr->vcont_resumed = 0;
7711 }
7712
7713 stop_reply_xfree (stop_reply);
7714 return ptid;
7715 }
7716
7717 /* The non-stop mode version of target_wait. */
7718
7719 ptid_t
7720 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7721 {
7722 struct remote_state *rs = get_remote_state ();
7723 struct stop_reply *stop_reply;
7724 int ret;
7725 int is_notif = 0;
7726
7727 /* If in non-stop mode, get out of getpkt even if a
7728 notification is received. */
7729
7730 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7731 0 /* forever */, &is_notif);
7732 while (1)
7733 {
7734 if (ret != -1 && !is_notif)
7735 switch (rs->buf[0])
7736 {
7737 case 'E': /* Error of some sort. */
7738 /* We're out of sync with the target now. Did it continue
7739 or not? We can't tell which thread it was in non-stop,
7740 so just ignore this. */
7741 warning (_("Remote failure reply: %s"), rs->buf);
7742 break;
7743 case 'O': /* Console output. */
7744 remote_console_output (rs->buf + 1);
7745 break;
7746 default:
7747 warning (_("Invalid remote reply: %s"), rs->buf);
7748 break;
7749 }
7750
7751 /* Acknowledge a pending stop reply that may have arrived in the
7752 mean time. */
7753 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7754 remote_notif_get_pending_events (&notif_client_stop);
7755
7756 /* If indeed we noticed a stop reply, we're done. */
7757 stop_reply = queued_stop_reply (ptid);
7758 if (stop_reply != NULL)
7759 return process_stop_reply (stop_reply, status);
7760
7761 /* Still no event. If we're just polling for an event, then
7762 return to the event loop. */
7763 if (options & TARGET_WNOHANG)
7764 {
7765 status->kind = TARGET_WAITKIND_IGNORE;
7766 return minus_one_ptid;
7767 }
7768
7769 /* Otherwise do a blocking wait. */
7770 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7771 1 /* forever */, &is_notif);
7772 }
7773 }
7774
7775 /* Wait until the remote machine stops, then return, storing status in
7776 STATUS just as `wait' would. */
7777
7778 ptid_t
7779 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7780 {
7781 struct remote_state *rs = get_remote_state ();
7782 ptid_t event_ptid = null_ptid;
7783 char *buf;
7784 struct stop_reply *stop_reply;
7785
7786 again:
7787
7788 status->kind = TARGET_WAITKIND_IGNORE;
7789 status->value.integer = 0;
7790
7791 stop_reply = queued_stop_reply (ptid);
7792 if (stop_reply != NULL)
7793 return process_stop_reply (stop_reply, status);
7794
7795 if (rs->cached_wait_status)
7796 /* Use the cached wait status, but only once. */
7797 rs->cached_wait_status = 0;
7798 else
7799 {
7800 int ret;
7801 int is_notif;
7802 int forever = ((options & TARGET_WNOHANG) == 0
7803 && rs->wait_forever_enabled_p);
7804
7805 if (!rs->waiting_for_stop_reply)
7806 {
7807 status->kind = TARGET_WAITKIND_NO_RESUMED;
7808 return minus_one_ptid;
7809 }
7810
7811 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7812 _never_ wait for ever -> test on target_is_async_p().
7813 However, before we do that we need to ensure that the caller
7814 knows how to take the target into/out of async mode. */
7815 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7816 forever, &is_notif);
7817
7818 /* GDB gets a notification. Return to core as this event is
7819 not interesting. */
7820 if (ret != -1 && is_notif)
7821 return minus_one_ptid;
7822
7823 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7824 return minus_one_ptid;
7825 }
7826
7827 buf = rs->buf;
7828
7829 /* Assume that the target has acknowledged Ctrl-C unless we receive
7830 an 'F' or 'O' packet. */
7831 if (buf[0] != 'F' && buf[0] != 'O')
7832 rs->ctrlc_pending_p = 0;
7833
7834 switch (buf[0])
7835 {
7836 case 'E': /* Error of some sort. */
7837 /* We're out of sync with the target now. Did it continue or
7838 not? Not is more likely, so report a stop. */
7839 rs->waiting_for_stop_reply = 0;
7840
7841 warning (_("Remote failure reply: %s"), buf);
7842 status->kind = TARGET_WAITKIND_STOPPED;
7843 status->value.sig = GDB_SIGNAL_0;
7844 break;
7845 case 'F': /* File-I/O request. */
7846 /* GDB may access the inferior memory while handling the File-I/O
7847 request, but we don't want GDB accessing memory while waiting
7848 for a stop reply. See the comments in putpkt_binary. Set
7849 waiting_for_stop_reply to 0 temporarily. */
7850 rs->waiting_for_stop_reply = 0;
7851 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7852 rs->ctrlc_pending_p = 0;
7853 /* GDB handled the File-I/O request, and the target is running
7854 again. Keep waiting for events. */
7855 rs->waiting_for_stop_reply = 1;
7856 break;
7857 case 'N': case 'T': case 'S': case 'X': case 'W':
7858 {
7859 struct stop_reply *stop_reply;
7860
7861 /* There is a stop reply to handle. */
7862 rs->waiting_for_stop_reply = 0;
7863
7864 stop_reply
7865 = (struct stop_reply *) remote_notif_parse (this,
7866 &notif_client_stop,
7867 rs->buf);
7868
7869 event_ptid = process_stop_reply (stop_reply, status);
7870 break;
7871 }
7872 case 'O': /* Console output. */
7873 remote_console_output (buf + 1);
7874 break;
7875 case '\0':
7876 if (rs->last_sent_signal != GDB_SIGNAL_0)
7877 {
7878 /* Zero length reply means that we tried 'S' or 'C' and the
7879 remote system doesn't support it. */
7880 target_terminal::ours_for_output ();
7881 printf_filtered
7882 ("Can't send signals to this remote system. %s not sent.\n",
7883 gdb_signal_to_name (rs->last_sent_signal));
7884 rs->last_sent_signal = GDB_SIGNAL_0;
7885 target_terminal::inferior ();
7886
7887 strcpy (buf, rs->last_sent_step ? "s" : "c");
7888 putpkt (buf);
7889 break;
7890 }
7891 /* fallthrough */
7892 default:
7893 warning (_("Invalid remote reply: %s"), buf);
7894 break;
7895 }
7896
7897 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7898 return minus_one_ptid;
7899 else if (status->kind == TARGET_WAITKIND_IGNORE)
7900 {
7901 /* Nothing interesting happened. If we're doing a non-blocking
7902 poll, we're done. Otherwise, go back to waiting. */
7903 if (options & TARGET_WNOHANG)
7904 return minus_one_ptid;
7905 else
7906 goto again;
7907 }
7908 else if (status->kind != TARGET_WAITKIND_EXITED
7909 && status->kind != TARGET_WAITKIND_SIGNALLED)
7910 {
7911 if (event_ptid != null_ptid)
7912 record_currthread (rs, event_ptid);
7913 else
7914 event_ptid = inferior_ptid;
7915 }
7916 else
7917 /* A process exit. Invalidate our notion of current thread. */
7918 record_currthread (rs, minus_one_ptid);
7919
7920 return event_ptid;
7921 }
7922
7923 /* Wait until the remote machine stops, then return, storing status in
7924 STATUS just as `wait' would. */
7925
7926 ptid_t
7927 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7928 {
7929 ptid_t event_ptid;
7930
7931 if (target_is_non_stop_p ())
7932 event_ptid = wait_ns (ptid, status, options);
7933 else
7934 event_ptid = wait_as (ptid, status, options);
7935
7936 if (target_is_async_p ())
7937 {
7938 remote_state *rs = get_remote_state ();
7939
7940 /* If there are are events left in the queue tell the event loop
7941 to return here. */
7942 if (!rs->stop_reply_queue.empty ())
7943 mark_async_event_handler (rs->remote_async_inferior_event_token);
7944 }
7945
7946 return event_ptid;
7947 }
7948
7949 /* Fetch a single register using a 'p' packet. */
7950
7951 int
7952 remote_target::fetch_register_using_p (struct regcache *regcache,
7953 packet_reg *reg)
7954 {
7955 struct gdbarch *gdbarch = regcache->arch ();
7956 struct remote_state *rs = get_remote_state ();
7957 char *buf, *p;
7958 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7959 int i;
7960
7961 if (packet_support (PACKET_p) == PACKET_DISABLE)
7962 return 0;
7963
7964 if (reg->pnum == -1)
7965 return 0;
7966
7967 p = rs->buf;
7968 *p++ = 'p';
7969 p += hexnumstr (p, reg->pnum);
7970 *p++ = '\0';
7971 putpkt (rs->buf);
7972 getpkt (&rs->buf, &rs->buf_size, 0);
7973
7974 buf = rs->buf;
7975
7976 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7977 {
7978 case PACKET_OK:
7979 break;
7980 case PACKET_UNKNOWN:
7981 return 0;
7982 case PACKET_ERROR:
7983 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7984 gdbarch_register_name (regcache->arch (),
7985 reg->regnum),
7986 buf);
7987 }
7988
7989 /* If this register is unfetchable, tell the regcache. */
7990 if (buf[0] == 'x')
7991 {
7992 regcache->raw_supply (reg->regnum, NULL);
7993 return 1;
7994 }
7995
7996 /* Otherwise, parse and supply the value. */
7997 p = buf;
7998 i = 0;
7999 while (p[0] != 0)
8000 {
8001 if (p[1] == 0)
8002 error (_("fetch_register_using_p: early buf termination"));
8003
8004 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8005 p += 2;
8006 }
8007 regcache->raw_supply (reg->regnum, regp);
8008 return 1;
8009 }
8010
8011 /* Fetch the registers included in the target's 'g' packet. */
8012
8013 int
8014 remote_target::send_g_packet ()
8015 {
8016 struct remote_state *rs = get_remote_state ();
8017 int buf_len;
8018
8019 xsnprintf (rs->buf, get_remote_packet_size (), "g");
8020 putpkt (rs->buf);
8021 getpkt (&rs->buf, &rs->buf_size, 0);
8022 if (packet_check_result (rs->buf) == PACKET_ERROR)
8023 error (_("Could not read registers; remote failure reply '%s'"),
8024 rs->buf);
8025
8026 /* We can get out of synch in various cases. If the first character
8027 in the buffer is not a hex character, assume that has happened
8028 and try to fetch another packet to read. */
8029 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8030 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8031 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8032 && rs->buf[0] != 'x') /* New: unavailable register value. */
8033 {
8034 if (remote_debug)
8035 fprintf_unfiltered (gdb_stdlog,
8036 "Bad register packet; fetching a new packet\n");
8037 getpkt (&rs->buf, &rs->buf_size, 0);
8038 }
8039
8040 buf_len = strlen (rs->buf);
8041
8042 /* Sanity check the received packet. */
8043 if (buf_len % 2 != 0)
8044 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8045
8046 return buf_len / 2;
8047 }
8048
8049 void
8050 remote_target::process_g_packet (struct regcache *regcache)
8051 {
8052 struct gdbarch *gdbarch = regcache->arch ();
8053 struct remote_state *rs = get_remote_state ();
8054 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8055 int i, buf_len;
8056 char *p;
8057 char *regs;
8058
8059 buf_len = strlen (rs->buf);
8060
8061 /* Further sanity checks, with knowledge of the architecture. */
8062 if (buf_len > 2 * rsa->sizeof_g_packet)
8063 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8064 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8065
8066 /* Save the size of the packet sent to us by the target. It is used
8067 as a heuristic when determining the max size of packets that the
8068 target can safely receive. */
8069 if (rsa->actual_register_packet_size == 0)
8070 rsa->actual_register_packet_size = buf_len;
8071
8072 /* If this is smaller than we guessed the 'g' packet would be,
8073 update our records. A 'g' reply that doesn't include a register's
8074 value implies either that the register is not available, or that
8075 the 'p' packet must be used. */
8076 if (buf_len < 2 * rsa->sizeof_g_packet)
8077 {
8078 long sizeof_g_packet = buf_len / 2;
8079
8080 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8081 {
8082 long offset = rsa->regs[i].offset;
8083 long reg_size = register_size (gdbarch, i);
8084
8085 if (rsa->regs[i].pnum == -1)
8086 continue;
8087
8088 if (offset >= sizeof_g_packet)
8089 rsa->regs[i].in_g_packet = 0;
8090 else if (offset + reg_size > sizeof_g_packet)
8091 error (_("Truncated register %d in remote 'g' packet"), i);
8092 else
8093 rsa->regs[i].in_g_packet = 1;
8094 }
8095
8096 /* Looks valid enough, we can assume this is the correct length
8097 for a 'g' packet. It's important not to adjust
8098 rsa->sizeof_g_packet if we have truncated registers otherwise
8099 this "if" won't be run the next time the method is called
8100 with a packet of the same size and one of the internal errors
8101 below will trigger instead. */
8102 rsa->sizeof_g_packet = sizeof_g_packet;
8103 }
8104
8105 regs = (char *) alloca (rsa->sizeof_g_packet);
8106
8107 /* Unimplemented registers read as all bits zero. */
8108 memset (regs, 0, rsa->sizeof_g_packet);
8109
8110 /* Reply describes registers byte by byte, each byte encoded as two
8111 hex characters. Suck them all up, then supply them to the
8112 register cacheing/storage mechanism. */
8113
8114 p = rs->buf;
8115 for (i = 0; i < rsa->sizeof_g_packet; i++)
8116 {
8117 if (p[0] == 0 || p[1] == 0)
8118 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8119 internal_error (__FILE__, __LINE__,
8120 _("unexpected end of 'g' packet reply"));
8121
8122 if (p[0] == 'x' && p[1] == 'x')
8123 regs[i] = 0; /* 'x' */
8124 else
8125 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8126 p += 2;
8127 }
8128
8129 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8130 {
8131 struct packet_reg *r = &rsa->regs[i];
8132 long reg_size = register_size (gdbarch, i);
8133
8134 if (r->in_g_packet)
8135 {
8136 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8137 /* This shouldn't happen - we adjusted in_g_packet above. */
8138 internal_error (__FILE__, __LINE__,
8139 _("unexpected end of 'g' packet reply"));
8140 else if (rs->buf[r->offset * 2] == 'x')
8141 {
8142 gdb_assert (r->offset * 2 < strlen (rs->buf));
8143 /* The register isn't available, mark it as such (at
8144 the same time setting the value to zero). */
8145 regcache->raw_supply (r->regnum, NULL);
8146 }
8147 else
8148 regcache->raw_supply (r->regnum, regs + r->offset);
8149 }
8150 }
8151 }
8152
8153 void
8154 remote_target::fetch_registers_using_g (struct regcache *regcache)
8155 {
8156 send_g_packet ();
8157 process_g_packet (regcache);
8158 }
8159
8160 /* Make the remote selected traceframe match GDB's selected
8161 traceframe. */
8162
8163 void
8164 remote_target::set_remote_traceframe ()
8165 {
8166 int newnum;
8167 struct remote_state *rs = get_remote_state ();
8168
8169 if (rs->remote_traceframe_number == get_traceframe_number ())
8170 return;
8171
8172 /* Avoid recursion, remote_trace_find calls us again. */
8173 rs->remote_traceframe_number = get_traceframe_number ();
8174
8175 newnum = target_trace_find (tfind_number,
8176 get_traceframe_number (), 0, 0, NULL);
8177
8178 /* Should not happen. If it does, all bets are off. */
8179 if (newnum != get_traceframe_number ())
8180 warning (_("could not set remote traceframe"));
8181 }
8182
8183 void
8184 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8185 {
8186 struct gdbarch *gdbarch = regcache->arch ();
8187 struct remote_state *rs = get_remote_state ();
8188 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8189 int i;
8190
8191 set_remote_traceframe ();
8192 set_general_thread (regcache->ptid ());
8193
8194 if (regnum >= 0)
8195 {
8196 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8197
8198 gdb_assert (reg != NULL);
8199
8200 /* If this register might be in the 'g' packet, try that first -
8201 we are likely to read more than one register. If this is the
8202 first 'g' packet, we might be overly optimistic about its
8203 contents, so fall back to 'p'. */
8204 if (reg->in_g_packet)
8205 {
8206 fetch_registers_using_g (regcache);
8207 if (reg->in_g_packet)
8208 return;
8209 }
8210
8211 if (fetch_register_using_p (regcache, reg))
8212 return;
8213
8214 /* This register is not available. */
8215 regcache->raw_supply (reg->regnum, NULL);
8216
8217 return;
8218 }
8219
8220 fetch_registers_using_g (regcache);
8221
8222 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8223 if (!rsa->regs[i].in_g_packet)
8224 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8225 {
8226 /* This register is not available. */
8227 regcache->raw_supply (i, NULL);
8228 }
8229 }
8230
8231 /* Prepare to store registers. Since we may send them all (using a
8232 'G' request), we have to read out the ones we don't want to change
8233 first. */
8234
8235 void
8236 remote_target::prepare_to_store (struct regcache *regcache)
8237 {
8238 struct remote_state *rs = get_remote_state ();
8239 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8240 int i;
8241
8242 /* Make sure the entire registers array is valid. */
8243 switch (packet_support (PACKET_P))
8244 {
8245 case PACKET_DISABLE:
8246 case PACKET_SUPPORT_UNKNOWN:
8247 /* Make sure all the necessary registers are cached. */
8248 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8249 if (rsa->regs[i].in_g_packet)
8250 regcache->raw_update (rsa->regs[i].regnum);
8251 break;
8252 case PACKET_ENABLE:
8253 break;
8254 }
8255 }
8256
8257 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8258 packet was not recognized. */
8259
8260 int
8261 remote_target::store_register_using_P (const struct regcache *regcache,
8262 packet_reg *reg)
8263 {
8264 struct gdbarch *gdbarch = regcache->arch ();
8265 struct remote_state *rs = get_remote_state ();
8266 /* Try storing a single register. */
8267 char *buf = rs->buf;
8268 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8269 char *p;
8270
8271 if (packet_support (PACKET_P) == PACKET_DISABLE)
8272 return 0;
8273
8274 if (reg->pnum == -1)
8275 return 0;
8276
8277 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8278 p = buf + strlen (buf);
8279 regcache->raw_collect (reg->regnum, regp);
8280 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8281 putpkt (rs->buf);
8282 getpkt (&rs->buf, &rs->buf_size, 0);
8283
8284 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8285 {
8286 case PACKET_OK:
8287 return 1;
8288 case PACKET_ERROR:
8289 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8290 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8291 case PACKET_UNKNOWN:
8292 return 0;
8293 default:
8294 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8295 }
8296 }
8297
8298 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8299 contents of the register cache buffer. FIXME: ignores errors. */
8300
8301 void
8302 remote_target::store_registers_using_G (const struct regcache *regcache)
8303 {
8304 struct remote_state *rs = get_remote_state ();
8305 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8306 gdb_byte *regs;
8307 char *p;
8308
8309 /* Extract all the registers in the regcache copying them into a
8310 local buffer. */
8311 {
8312 int i;
8313
8314 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8315 memset (regs, 0, rsa->sizeof_g_packet);
8316 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8317 {
8318 struct packet_reg *r = &rsa->regs[i];
8319
8320 if (r->in_g_packet)
8321 regcache->raw_collect (r->regnum, regs + r->offset);
8322 }
8323 }
8324
8325 /* Command describes registers byte by byte,
8326 each byte encoded as two hex characters. */
8327 p = rs->buf;
8328 *p++ = 'G';
8329 bin2hex (regs, p, rsa->sizeof_g_packet);
8330 putpkt (rs->buf);
8331 getpkt (&rs->buf, &rs->buf_size, 0);
8332 if (packet_check_result (rs->buf) == PACKET_ERROR)
8333 error (_("Could not write registers; remote failure reply '%s'"),
8334 rs->buf);
8335 }
8336
8337 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8338 of the register cache buffer. FIXME: ignores errors. */
8339
8340 void
8341 remote_target::store_registers (struct regcache *regcache, int regnum)
8342 {
8343 struct gdbarch *gdbarch = regcache->arch ();
8344 struct remote_state *rs = get_remote_state ();
8345 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8346 int i;
8347
8348 set_remote_traceframe ();
8349 set_general_thread (regcache->ptid ());
8350
8351 if (regnum >= 0)
8352 {
8353 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8354
8355 gdb_assert (reg != NULL);
8356
8357 /* Always prefer to store registers using the 'P' packet if
8358 possible; we often change only a small number of registers.
8359 Sometimes we change a larger number; we'd need help from a
8360 higher layer to know to use 'G'. */
8361 if (store_register_using_P (regcache, reg))
8362 return;
8363
8364 /* For now, don't complain if we have no way to write the
8365 register. GDB loses track of unavailable registers too
8366 easily. Some day, this may be an error. We don't have
8367 any way to read the register, either... */
8368 if (!reg->in_g_packet)
8369 return;
8370
8371 store_registers_using_G (regcache);
8372 return;
8373 }
8374
8375 store_registers_using_G (regcache);
8376
8377 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8378 if (!rsa->regs[i].in_g_packet)
8379 if (!store_register_using_P (regcache, &rsa->regs[i]))
8380 /* See above for why we do not issue an error here. */
8381 continue;
8382 }
8383 \f
8384
8385 /* Return the number of hex digits in num. */
8386
8387 static int
8388 hexnumlen (ULONGEST num)
8389 {
8390 int i;
8391
8392 for (i = 0; num != 0; i++)
8393 num >>= 4;
8394
8395 return std::max (i, 1);
8396 }
8397
8398 /* Set BUF to the minimum number of hex digits representing NUM. */
8399
8400 static int
8401 hexnumstr (char *buf, ULONGEST num)
8402 {
8403 int len = hexnumlen (num);
8404
8405 return hexnumnstr (buf, num, len);
8406 }
8407
8408
8409 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8410
8411 static int
8412 hexnumnstr (char *buf, ULONGEST num, int width)
8413 {
8414 int i;
8415
8416 buf[width] = '\0';
8417
8418 for (i = width - 1; i >= 0; i--)
8419 {
8420 buf[i] = "0123456789abcdef"[(num & 0xf)];
8421 num >>= 4;
8422 }
8423
8424 return width;
8425 }
8426
8427 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8428
8429 static CORE_ADDR
8430 remote_address_masked (CORE_ADDR addr)
8431 {
8432 unsigned int address_size = remote_address_size;
8433
8434 /* If "remoteaddresssize" was not set, default to target address size. */
8435 if (!address_size)
8436 address_size = gdbarch_addr_bit (target_gdbarch ());
8437
8438 if (address_size > 0
8439 && address_size < (sizeof (ULONGEST) * 8))
8440 {
8441 /* Only create a mask when that mask can safely be constructed
8442 in a ULONGEST variable. */
8443 ULONGEST mask = 1;
8444
8445 mask = (mask << address_size) - 1;
8446 addr &= mask;
8447 }
8448 return addr;
8449 }
8450
8451 /* Determine whether the remote target supports binary downloading.
8452 This is accomplished by sending a no-op memory write of zero length
8453 to the target at the specified address. It does not suffice to send
8454 the whole packet, since many stubs strip the eighth bit and
8455 subsequently compute a wrong checksum, which causes real havoc with
8456 remote_write_bytes.
8457
8458 NOTE: This can still lose if the serial line is not eight-bit
8459 clean. In cases like this, the user should clear "remote
8460 X-packet". */
8461
8462 void
8463 remote_target::check_binary_download (CORE_ADDR addr)
8464 {
8465 struct remote_state *rs = get_remote_state ();
8466
8467 switch (packet_support (PACKET_X))
8468 {
8469 case PACKET_DISABLE:
8470 break;
8471 case PACKET_ENABLE:
8472 break;
8473 case PACKET_SUPPORT_UNKNOWN:
8474 {
8475 char *p;
8476
8477 p = rs->buf;
8478 *p++ = 'X';
8479 p += hexnumstr (p, (ULONGEST) addr);
8480 *p++ = ',';
8481 p += hexnumstr (p, (ULONGEST) 0);
8482 *p++ = ':';
8483 *p = '\0';
8484
8485 putpkt_binary (rs->buf, (int) (p - rs->buf));
8486 getpkt (&rs->buf, &rs->buf_size, 0);
8487
8488 if (rs->buf[0] == '\0')
8489 {
8490 if (remote_debug)
8491 fprintf_unfiltered (gdb_stdlog,
8492 "binary downloading NOT "
8493 "supported by target\n");
8494 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8495 }
8496 else
8497 {
8498 if (remote_debug)
8499 fprintf_unfiltered (gdb_stdlog,
8500 "binary downloading supported by target\n");
8501 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8502 }
8503 break;
8504 }
8505 }
8506 }
8507
8508 /* Helper function to resize the payload in order to try to get a good
8509 alignment. We try to write an amount of data such that the next write will
8510 start on an address aligned on REMOTE_ALIGN_WRITES. */
8511
8512 static int
8513 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8514 {
8515 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8516 }
8517
8518 /* Write memory data directly to the remote machine.
8519 This does not inform the data cache; the data cache uses this.
8520 HEADER is the starting part of the packet.
8521 MEMADDR is the address in the remote memory space.
8522 MYADDR is the address of the buffer in our space.
8523 LEN_UNITS is the number of addressable units to write.
8524 UNIT_SIZE is the length in bytes of an addressable unit.
8525 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8526 should send data as binary ('X'), or hex-encoded ('M').
8527
8528 The function creates packet of the form
8529 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8530
8531 where encoding of <DATA> is terminated by PACKET_FORMAT.
8532
8533 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8534 are omitted.
8535
8536 Return the transferred status, error or OK (an
8537 'enum target_xfer_status' value). Save the number of addressable units
8538 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8539
8540 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8541 exchange between gdb and the stub could look like (?? in place of the
8542 checksum):
8543
8544 -> $m1000,4#??
8545 <- aaaabbbbccccdddd
8546
8547 -> $M1000,3:eeeeffffeeee#??
8548 <- OK
8549
8550 -> $m1000,4#??
8551 <- eeeeffffeeeedddd */
8552
8553 target_xfer_status
8554 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8555 const gdb_byte *myaddr,
8556 ULONGEST len_units,
8557 int unit_size,
8558 ULONGEST *xfered_len_units,
8559 char packet_format, int use_length)
8560 {
8561 struct remote_state *rs = get_remote_state ();
8562 char *p;
8563 char *plen = NULL;
8564 int plenlen = 0;
8565 int todo_units;
8566 int units_written;
8567 int payload_capacity_bytes;
8568 int payload_length_bytes;
8569
8570 if (packet_format != 'X' && packet_format != 'M')
8571 internal_error (__FILE__, __LINE__,
8572 _("remote_write_bytes_aux: bad packet format"));
8573
8574 if (len_units == 0)
8575 return TARGET_XFER_EOF;
8576
8577 payload_capacity_bytes = get_memory_write_packet_size ();
8578
8579 /* The packet buffer will be large enough for the payload;
8580 get_memory_packet_size ensures this. */
8581 rs->buf[0] = '\0';
8582
8583 /* Compute the size of the actual payload by subtracting out the
8584 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8585
8586 payload_capacity_bytes -= strlen ("$,:#NN");
8587 if (!use_length)
8588 /* The comma won't be used. */
8589 payload_capacity_bytes += 1;
8590 payload_capacity_bytes -= strlen (header);
8591 payload_capacity_bytes -= hexnumlen (memaddr);
8592
8593 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8594
8595 strcat (rs->buf, header);
8596 p = rs->buf + strlen (header);
8597
8598 /* Compute a best guess of the number of bytes actually transfered. */
8599 if (packet_format == 'X')
8600 {
8601 /* Best guess at number of bytes that will fit. */
8602 todo_units = std::min (len_units,
8603 (ULONGEST) payload_capacity_bytes / unit_size);
8604 if (use_length)
8605 payload_capacity_bytes -= hexnumlen (todo_units);
8606 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8607 }
8608 else
8609 {
8610 /* Number of bytes that will fit. */
8611 todo_units
8612 = std::min (len_units,
8613 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8614 if (use_length)
8615 payload_capacity_bytes -= hexnumlen (todo_units);
8616 todo_units = std::min (todo_units,
8617 (payload_capacity_bytes / unit_size) / 2);
8618 }
8619
8620 if (todo_units <= 0)
8621 internal_error (__FILE__, __LINE__,
8622 _("minimum packet size too small to write data"));
8623
8624 /* If we already need another packet, then try to align the end
8625 of this packet to a useful boundary. */
8626 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8627 todo_units = align_for_efficient_write (todo_units, memaddr);
8628
8629 /* Append "<memaddr>". */
8630 memaddr = remote_address_masked (memaddr);
8631 p += hexnumstr (p, (ULONGEST) memaddr);
8632
8633 if (use_length)
8634 {
8635 /* Append ",". */
8636 *p++ = ',';
8637
8638 /* Append the length and retain its location and size. It may need to be
8639 adjusted once the packet body has been created. */
8640 plen = p;
8641 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8642 p += plenlen;
8643 }
8644
8645 /* Append ":". */
8646 *p++ = ':';
8647 *p = '\0';
8648
8649 /* Append the packet body. */
8650 if (packet_format == 'X')
8651 {
8652 /* Binary mode. Send target system values byte by byte, in
8653 increasing byte addresses. Only escape certain critical
8654 characters. */
8655 payload_length_bytes =
8656 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8657 &units_written, payload_capacity_bytes);
8658
8659 /* If not all TODO units fit, then we'll need another packet. Make
8660 a second try to keep the end of the packet aligned. Don't do
8661 this if the packet is tiny. */
8662 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8663 {
8664 int new_todo_units;
8665
8666 new_todo_units = align_for_efficient_write (units_written, memaddr);
8667
8668 if (new_todo_units != units_written)
8669 payload_length_bytes =
8670 remote_escape_output (myaddr, new_todo_units, unit_size,
8671 (gdb_byte *) p, &units_written,
8672 payload_capacity_bytes);
8673 }
8674
8675 p += payload_length_bytes;
8676 if (use_length && units_written < todo_units)
8677 {
8678 /* Escape chars have filled up the buffer prematurely,
8679 and we have actually sent fewer units than planned.
8680 Fix-up the length field of the packet. Use the same
8681 number of characters as before. */
8682 plen += hexnumnstr (plen, (ULONGEST) units_written,
8683 plenlen);
8684 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8685 }
8686 }
8687 else
8688 {
8689 /* Normal mode: Send target system values byte by byte, in
8690 increasing byte addresses. Each byte is encoded as a two hex
8691 value. */
8692 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8693 units_written = todo_units;
8694 }
8695
8696 putpkt_binary (rs->buf, (int) (p - rs->buf));
8697 getpkt (&rs->buf, &rs->buf_size, 0);
8698
8699 if (rs->buf[0] == 'E')
8700 return TARGET_XFER_E_IO;
8701
8702 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8703 send fewer units than we'd planned. */
8704 *xfered_len_units = (ULONGEST) units_written;
8705 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8706 }
8707
8708 /* Write memory data directly to the remote machine.
8709 This does not inform the data cache; the data cache uses this.
8710 MEMADDR is the address in the remote memory space.
8711 MYADDR is the address of the buffer in our space.
8712 LEN is the number of bytes.
8713
8714 Return the transferred status, error or OK (an
8715 'enum target_xfer_status' value). Save the number of bytes
8716 transferred in *XFERED_LEN. Only transfer a single packet. */
8717
8718 target_xfer_status
8719 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8720 ULONGEST len, int unit_size,
8721 ULONGEST *xfered_len)
8722 {
8723 const char *packet_format = NULL;
8724
8725 /* Check whether the target supports binary download. */
8726 check_binary_download (memaddr);
8727
8728 switch (packet_support (PACKET_X))
8729 {
8730 case PACKET_ENABLE:
8731 packet_format = "X";
8732 break;
8733 case PACKET_DISABLE:
8734 packet_format = "M";
8735 break;
8736 case PACKET_SUPPORT_UNKNOWN:
8737 internal_error (__FILE__, __LINE__,
8738 _("remote_write_bytes: bad internal state"));
8739 default:
8740 internal_error (__FILE__, __LINE__, _("bad switch"));
8741 }
8742
8743 return remote_write_bytes_aux (packet_format,
8744 memaddr, myaddr, len, unit_size, xfered_len,
8745 packet_format[0], 1);
8746 }
8747
8748 /* Read memory data directly from the remote machine.
8749 This does not use the data cache; the data cache uses this.
8750 MEMADDR is the address in the remote memory space.
8751 MYADDR is the address of the buffer in our space.
8752 LEN_UNITS is the number of addressable memory units to read..
8753 UNIT_SIZE is the length in bytes of an addressable unit.
8754
8755 Return the transferred status, error or OK (an
8756 'enum target_xfer_status' value). Save the number of bytes
8757 transferred in *XFERED_LEN_UNITS.
8758
8759 See the comment of remote_write_bytes_aux for an example of
8760 memory read/write exchange between gdb and the stub. */
8761
8762 target_xfer_status
8763 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8764 ULONGEST len_units,
8765 int unit_size, ULONGEST *xfered_len_units)
8766 {
8767 struct remote_state *rs = get_remote_state ();
8768 int buf_size_bytes; /* Max size of packet output buffer. */
8769 char *p;
8770 int todo_units;
8771 int decoded_bytes;
8772
8773 buf_size_bytes = get_memory_read_packet_size ();
8774 /* The packet buffer will be large enough for the payload;
8775 get_memory_packet_size ensures this. */
8776
8777 /* Number of units that will fit. */
8778 todo_units = std::min (len_units,
8779 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8780
8781 /* Construct "m"<memaddr>","<len>". */
8782 memaddr = remote_address_masked (memaddr);
8783 p = rs->buf;
8784 *p++ = 'm';
8785 p += hexnumstr (p, (ULONGEST) memaddr);
8786 *p++ = ',';
8787 p += hexnumstr (p, (ULONGEST) todo_units);
8788 *p = '\0';
8789 putpkt (rs->buf);
8790 getpkt (&rs->buf, &rs->buf_size, 0);
8791 if (rs->buf[0] == 'E'
8792 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8793 && rs->buf[3] == '\0')
8794 return TARGET_XFER_E_IO;
8795 /* Reply describes memory byte by byte, each byte encoded as two hex
8796 characters. */
8797 p = rs->buf;
8798 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8799 /* Return what we have. Let higher layers handle partial reads. */
8800 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8801 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8802 }
8803
8804 /* Using the set of read-only target sections of remote, read live
8805 read-only memory.
8806
8807 For interface/parameters/return description see target.h,
8808 to_xfer_partial. */
8809
8810 target_xfer_status
8811 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8812 ULONGEST memaddr,
8813 ULONGEST len,
8814 int unit_size,
8815 ULONGEST *xfered_len)
8816 {
8817 struct target_section *secp;
8818 struct target_section_table *table;
8819
8820 secp = target_section_by_addr (this, memaddr);
8821 if (secp != NULL
8822 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8823 secp->the_bfd_section)
8824 & SEC_READONLY))
8825 {
8826 struct target_section *p;
8827 ULONGEST memend = memaddr + len;
8828
8829 table = target_get_section_table (this);
8830
8831 for (p = table->sections; p < table->sections_end; p++)
8832 {
8833 if (memaddr >= p->addr)
8834 {
8835 if (memend <= p->endaddr)
8836 {
8837 /* Entire transfer is within this section. */
8838 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8839 xfered_len);
8840 }
8841 else if (memaddr >= p->endaddr)
8842 {
8843 /* This section ends before the transfer starts. */
8844 continue;
8845 }
8846 else
8847 {
8848 /* This section overlaps the transfer. Just do half. */
8849 len = p->endaddr - memaddr;
8850 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8851 xfered_len);
8852 }
8853 }
8854 }
8855 }
8856
8857 return TARGET_XFER_EOF;
8858 }
8859
8860 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8861 first if the requested memory is unavailable in traceframe.
8862 Otherwise, fall back to remote_read_bytes_1. */
8863
8864 target_xfer_status
8865 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8866 gdb_byte *myaddr, ULONGEST len, int unit_size,
8867 ULONGEST *xfered_len)
8868 {
8869 if (len == 0)
8870 return TARGET_XFER_EOF;
8871
8872 if (get_traceframe_number () != -1)
8873 {
8874 std::vector<mem_range> available;
8875
8876 /* If we fail to get the set of available memory, then the
8877 target does not support querying traceframe info, and so we
8878 attempt reading from the traceframe anyway (assuming the
8879 target implements the old QTro packet then). */
8880 if (traceframe_available_memory (&available, memaddr, len))
8881 {
8882 if (available.empty () || available[0].start != memaddr)
8883 {
8884 enum target_xfer_status res;
8885
8886 /* Don't read into the traceframe's available
8887 memory. */
8888 if (!available.empty ())
8889 {
8890 LONGEST oldlen = len;
8891
8892 len = available[0].start - memaddr;
8893 gdb_assert (len <= oldlen);
8894 }
8895
8896 /* This goes through the topmost target again. */
8897 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8898 len, unit_size, xfered_len);
8899 if (res == TARGET_XFER_OK)
8900 return TARGET_XFER_OK;
8901 else
8902 {
8903 /* No use trying further, we know some memory starting
8904 at MEMADDR isn't available. */
8905 *xfered_len = len;
8906 return (*xfered_len != 0) ?
8907 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8908 }
8909 }
8910
8911 /* Don't try to read more than how much is available, in
8912 case the target implements the deprecated QTro packet to
8913 cater for older GDBs (the target's knowledge of read-only
8914 sections may be outdated by now). */
8915 len = available[0].length;
8916 }
8917 }
8918
8919 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8920 }
8921
8922 \f
8923
8924 /* Sends a packet with content determined by the printf format string
8925 FORMAT and the remaining arguments, then gets the reply. Returns
8926 whether the packet was a success, a failure, or unknown. */
8927
8928 packet_result
8929 remote_target::remote_send_printf (const char *format, ...)
8930 {
8931 struct remote_state *rs = get_remote_state ();
8932 int max_size = get_remote_packet_size ();
8933 va_list ap;
8934
8935 va_start (ap, format);
8936
8937 rs->buf[0] = '\0';
8938 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8939 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8940
8941 if (putpkt (rs->buf) < 0)
8942 error (_("Communication problem with target."));
8943
8944 rs->buf[0] = '\0';
8945 getpkt (&rs->buf, &rs->buf_size, 0);
8946
8947 return packet_check_result (rs->buf);
8948 }
8949
8950 /* Flash writing can take quite some time. We'll set
8951 effectively infinite timeout for flash operations.
8952 In future, we'll need to decide on a better approach. */
8953 static const int remote_flash_timeout = 1000;
8954
8955 void
8956 remote_target::flash_erase (ULONGEST address, LONGEST length)
8957 {
8958 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8959 enum packet_result ret;
8960 scoped_restore restore_timeout
8961 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8962
8963 ret = remote_send_printf ("vFlashErase:%s,%s",
8964 phex (address, addr_size),
8965 phex (length, 4));
8966 switch (ret)
8967 {
8968 case PACKET_UNKNOWN:
8969 error (_("Remote target does not support flash erase"));
8970 case PACKET_ERROR:
8971 error (_("Error erasing flash with vFlashErase packet"));
8972 default:
8973 break;
8974 }
8975 }
8976
8977 target_xfer_status
8978 remote_target::remote_flash_write (ULONGEST address,
8979 ULONGEST length, ULONGEST *xfered_len,
8980 const gdb_byte *data)
8981 {
8982 scoped_restore restore_timeout
8983 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8984 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8985 xfered_len,'X', 0);
8986 }
8987
8988 void
8989 remote_target::flash_done ()
8990 {
8991 int ret;
8992
8993 scoped_restore restore_timeout
8994 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8995
8996 ret = remote_send_printf ("vFlashDone");
8997
8998 switch (ret)
8999 {
9000 case PACKET_UNKNOWN:
9001 error (_("Remote target does not support vFlashDone"));
9002 case PACKET_ERROR:
9003 error (_("Error finishing flash operation"));
9004 default:
9005 break;
9006 }
9007 }
9008
9009 void
9010 remote_target::files_info ()
9011 {
9012 puts_filtered ("Debugging a target over a serial line.\n");
9013 }
9014 \f
9015 /* Stuff for dealing with the packets which are part of this protocol.
9016 See comment at top of file for details. */
9017
9018 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9019 error to higher layers. Called when a serial error is detected.
9020 The exception message is STRING, followed by a colon and a blank,
9021 the system error message for errno at function entry and final dot
9022 for output compatibility with throw_perror_with_name. */
9023
9024 static void
9025 unpush_and_perror (const char *string)
9026 {
9027 int saved_errno = errno;
9028
9029 remote_unpush_target ();
9030 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9031 safe_strerror (saved_errno));
9032 }
9033
9034 /* Read a single character from the remote end. The current quit
9035 handler is overridden to avoid quitting in the middle of packet
9036 sequence, as that would break communication with the remote server.
9037 See remote_serial_quit_handler for more detail. */
9038
9039 int
9040 remote_target::readchar (int timeout)
9041 {
9042 int ch;
9043 struct remote_state *rs = get_remote_state ();
9044
9045 {
9046 scoped_restore restore_quit_target
9047 = make_scoped_restore (&curr_quit_handler_target, this);
9048 scoped_restore restore_quit
9049 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9050
9051 rs->got_ctrlc_during_io = 0;
9052
9053 ch = serial_readchar (rs->remote_desc, timeout);
9054
9055 if (rs->got_ctrlc_during_io)
9056 set_quit_flag ();
9057 }
9058
9059 if (ch >= 0)
9060 return ch;
9061
9062 switch ((enum serial_rc) ch)
9063 {
9064 case SERIAL_EOF:
9065 remote_unpush_target ();
9066 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9067 /* no return */
9068 case SERIAL_ERROR:
9069 unpush_and_perror (_("Remote communication error. "
9070 "Target disconnected."));
9071 /* no return */
9072 case SERIAL_TIMEOUT:
9073 break;
9074 }
9075 return ch;
9076 }
9077
9078 /* Wrapper for serial_write that closes the target and throws if
9079 writing fails. The current quit handler is overridden to avoid
9080 quitting in the middle of packet sequence, as that would break
9081 communication with the remote server. See
9082 remote_serial_quit_handler for more detail. */
9083
9084 void
9085 remote_target::remote_serial_write (const char *str, int len)
9086 {
9087 struct remote_state *rs = get_remote_state ();
9088
9089 scoped_restore restore_quit_target
9090 = make_scoped_restore (&curr_quit_handler_target, this);
9091 scoped_restore restore_quit
9092 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9093
9094 rs->got_ctrlc_during_io = 0;
9095
9096 if (serial_write (rs->remote_desc, str, len))
9097 {
9098 unpush_and_perror (_("Remote communication error. "
9099 "Target disconnected."));
9100 }
9101
9102 if (rs->got_ctrlc_during_io)
9103 set_quit_flag ();
9104 }
9105
9106 /* Return a string representing an escaped version of BUF, of len N.
9107 E.g. \n is converted to \\n, \t to \\t, etc. */
9108
9109 static std::string
9110 escape_buffer (const char *buf, int n)
9111 {
9112 string_file stb;
9113
9114 stb.putstrn (buf, n, '\\');
9115 return std::move (stb.string ());
9116 }
9117
9118 /* Display a null-terminated packet on stdout, for debugging, using C
9119 string notation. */
9120
9121 static void
9122 print_packet (const char *buf)
9123 {
9124 puts_filtered ("\"");
9125 fputstr_filtered (buf, '"', gdb_stdout);
9126 puts_filtered ("\"");
9127 }
9128
9129 int
9130 remote_target::putpkt (const char *buf)
9131 {
9132 return putpkt_binary (buf, strlen (buf));
9133 }
9134
9135 /* Wrapper around remote_target::putpkt to avoid exporting
9136 remote_target. */
9137
9138 int
9139 putpkt (remote_target *remote, const char *buf)
9140 {
9141 return remote->putpkt (buf);
9142 }
9143
9144 /* Send a packet to the remote machine, with error checking. The data
9145 of the packet is in BUF. The string in BUF can be at most
9146 get_remote_packet_size () - 5 to account for the $, # and checksum,
9147 and for a possible /0 if we are debugging (remote_debug) and want
9148 to print the sent packet as a string. */
9149
9150 int
9151 remote_target::putpkt_binary (const char *buf, int cnt)
9152 {
9153 struct remote_state *rs = get_remote_state ();
9154 int i;
9155 unsigned char csum = 0;
9156 gdb::def_vector<char> data (cnt + 6);
9157 char *buf2 = data.data ();
9158
9159 int ch;
9160 int tcount = 0;
9161 char *p;
9162
9163 /* Catch cases like trying to read memory or listing threads while
9164 we're waiting for a stop reply. The remote server wouldn't be
9165 ready to handle this request, so we'd hang and timeout. We don't
9166 have to worry about this in synchronous mode, because in that
9167 case it's not possible to issue a command while the target is
9168 running. This is not a problem in non-stop mode, because in that
9169 case, the stub is always ready to process serial input. */
9170 if (!target_is_non_stop_p ()
9171 && target_is_async_p ()
9172 && rs->waiting_for_stop_reply)
9173 {
9174 error (_("Cannot execute this command while the target is running.\n"
9175 "Use the \"interrupt\" command to stop the target\n"
9176 "and then try again."));
9177 }
9178
9179 /* We're sending out a new packet. Make sure we don't look at a
9180 stale cached response. */
9181 rs->cached_wait_status = 0;
9182
9183 /* Copy the packet into buffer BUF2, encapsulating it
9184 and giving it a checksum. */
9185
9186 p = buf2;
9187 *p++ = '$';
9188
9189 for (i = 0; i < cnt; i++)
9190 {
9191 csum += buf[i];
9192 *p++ = buf[i];
9193 }
9194 *p++ = '#';
9195 *p++ = tohex ((csum >> 4) & 0xf);
9196 *p++ = tohex (csum & 0xf);
9197
9198 /* Send it over and over until we get a positive ack. */
9199
9200 while (1)
9201 {
9202 int started_error_output = 0;
9203
9204 if (remote_debug)
9205 {
9206 *p = '\0';
9207
9208 int len = (int) (p - buf2);
9209
9210 std::string str
9211 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9212
9213 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9214
9215 if (len > REMOTE_DEBUG_MAX_CHAR)
9216 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9217 len - REMOTE_DEBUG_MAX_CHAR);
9218
9219 fprintf_unfiltered (gdb_stdlog, "...");
9220
9221 gdb_flush (gdb_stdlog);
9222 }
9223 remote_serial_write (buf2, p - buf2);
9224
9225 /* If this is a no acks version of the remote protocol, send the
9226 packet and move on. */
9227 if (rs->noack_mode)
9228 break;
9229
9230 /* Read until either a timeout occurs (-2) or '+' is read.
9231 Handle any notification that arrives in the mean time. */
9232 while (1)
9233 {
9234 ch = readchar (remote_timeout);
9235
9236 if (remote_debug)
9237 {
9238 switch (ch)
9239 {
9240 case '+':
9241 case '-':
9242 case SERIAL_TIMEOUT:
9243 case '$':
9244 case '%':
9245 if (started_error_output)
9246 {
9247 putchar_unfiltered ('\n');
9248 started_error_output = 0;
9249 }
9250 }
9251 }
9252
9253 switch (ch)
9254 {
9255 case '+':
9256 if (remote_debug)
9257 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9258 return 1;
9259 case '-':
9260 if (remote_debug)
9261 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9262 /* FALLTHROUGH */
9263 case SERIAL_TIMEOUT:
9264 tcount++;
9265 if (tcount > 3)
9266 return 0;
9267 break; /* Retransmit buffer. */
9268 case '$':
9269 {
9270 if (remote_debug)
9271 fprintf_unfiltered (gdb_stdlog,
9272 "Packet instead of Ack, ignoring it\n");
9273 /* It's probably an old response sent because an ACK
9274 was lost. Gobble up the packet and ack it so it
9275 doesn't get retransmitted when we resend this
9276 packet. */
9277 skip_frame ();
9278 remote_serial_write ("+", 1);
9279 continue; /* Now, go look for +. */
9280 }
9281
9282 case '%':
9283 {
9284 int val;
9285
9286 /* If we got a notification, handle it, and go back to looking
9287 for an ack. */
9288 /* We've found the start of a notification. Now
9289 collect the data. */
9290 val = read_frame (&rs->buf, &rs->buf_size);
9291 if (val >= 0)
9292 {
9293 if (remote_debug)
9294 {
9295 std::string str = escape_buffer (rs->buf, val);
9296
9297 fprintf_unfiltered (gdb_stdlog,
9298 " Notification received: %s\n",
9299 str.c_str ());
9300 }
9301 handle_notification (rs->notif_state, rs->buf);
9302 /* We're in sync now, rewait for the ack. */
9303 tcount = 0;
9304 }
9305 else
9306 {
9307 if (remote_debug)
9308 {
9309 if (!started_error_output)
9310 {
9311 started_error_output = 1;
9312 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9313 }
9314 fputc_unfiltered (ch & 0177, gdb_stdlog);
9315 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9316 }
9317 }
9318 continue;
9319 }
9320 /* fall-through */
9321 default:
9322 if (remote_debug)
9323 {
9324 if (!started_error_output)
9325 {
9326 started_error_output = 1;
9327 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9328 }
9329 fputc_unfiltered (ch & 0177, gdb_stdlog);
9330 }
9331 continue;
9332 }
9333 break; /* Here to retransmit. */
9334 }
9335
9336 #if 0
9337 /* This is wrong. If doing a long backtrace, the user should be
9338 able to get out next time we call QUIT, without anything as
9339 violent as interrupt_query. If we want to provide a way out of
9340 here without getting to the next QUIT, it should be based on
9341 hitting ^C twice as in remote_wait. */
9342 if (quit_flag)
9343 {
9344 quit_flag = 0;
9345 interrupt_query ();
9346 }
9347 #endif
9348 }
9349
9350 return 0;
9351 }
9352
9353 /* Come here after finding the start of a frame when we expected an
9354 ack. Do our best to discard the rest of this packet. */
9355
9356 void
9357 remote_target::skip_frame ()
9358 {
9359 int c;
9360
9361 while (1)
9362 {
9363 c = readchar (remote_timeout);
9364 switch (c)
9365 {
9366 case SERIAL_TIMEOUT:
9367 /* Nothing we can do. */
9368 return;
9369 case '#':
9370 /* Discard the two bytes of checksum and stop. */
9371 c = readchar (remote_timeout);
9372 if (c >= 0)
9373 c = readchar (remote_timeout);
9374
9375 return;
9376 case '*': /* Run length encoding. */
9377 /* Discard the repeat count. */
9378 c = readchar (remote_timeout);
9379 if (c < 0)
9380 return;
9381 break;
9382 default:
9383 /* A regular character. */
9384 break;
9385 }
9386 }
9387 }
9388
9389 /* Come here after finding the start of the frame. Collect the rest
9390 into *BUF, verifying the checksum, length, and handling run-length
9391 compression. NUL terminate the buffer. If there is not enough room,
9392 expand *BUF using xrealloc.
9393
9394 Returns -1 on error, number of characters in buffer (ignoring the
9395 trailing NULL) on success. (could be extended to return one of the
9396 SERIAL status indications). */
9397
9398 long
9399 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9400 {
9401 unsigned char csum;
9402 long bc;
9403 int c;
9404 char *buf = *buf_p;
9405 struct remote_state *rs = get_remote_state ();
9406
9407 csum = 0;
9408 bc = 0;
9409
9410 while (1)
9411 {
9412 c = readchar (remote_timeout);
9413 switch (c)
9414 {
9415 case SERIAL_TIMEOUT:
9416 if (remote_debug)
9417 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9418 return -1;
9419 case '$':
9420 if (remote_debug)
9421 fputs_filtered ("Saw new packet start in middle of old one\n",
9422 gdb_stdlog);
9423 return -1; /* Start a new packet, count retries. */
9424 case '#':
9425 {
9426 unsigned char pktcsum;
9427 int check_0 = 0;
9428 int check_1 = 0;
9429
9430 buf[bc] = '\0';
9431
9432 check_0 = readchar (remote_timeout);
9433 if (check_0 >= 0)
9434 check_1 = readchar (remote_timeout);
9435
9436 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9437 {
9438 if (remote_debug)
9439 fputs_filtered ("Timeout in checksum, retrying\n",
9440 gdb_stdlog);
9441 return -1;
9442 }
9443 else if (check_0 < 0 || check_1 < 0)
9444 {
9445 if (remote_debug)
9446 fputs_filtered ("Communication error in checksum\n",
9447 gdb_stdlog);
9448 return -1;
9449 }
9450
9451 /* Don't recompute the checksum; with no ack packets we
9452 don't have any way to indicate a packet retransmission
9453 is necessary. */
9454 if (rs->noack_mode)
9455 return bc;
9456
9457 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9458 if (csum == pktcsum)
9459 return bc;
9460
9461 if (remote_debug)
9462 {
9463 std::string str = escape_buffer (buf, bc);
9464
9465 fprintf_unfiltered (gdb_stdlog,
9466 "Bad checksum, sentsum=0x%x, "
9467 "csum=0x%x, buf=%s\n",
9468 pktcsum, csum, str.c_str ());
9469 }
9470 /* Number of characters in buffer ignoring trailing
9471 NULL. */
9472 return -1;
9473 }
9474 case '*': /* Run length encoding. */
9475 {
9476 int repeat;
9477
9478 csum += c;
9479 c = readchar (remote_timeout);
9480 csum += c;
9481 repeat = c - ' ' + 3; /* Compute repeat count. */
9482
9483 /* The character before ``*'' is repeated. */
9484
9485 if (repeat > 0 && repeat <= 255 && bc > 0)
9486 {
9487 if (bc + repeat - 1 >= *sizeof_buf - 1)
9488 {
9489 /* Make some more room in the buffer. */
9490 *sizeof_buf += repeat;
9491 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9492 buf = *buf_p;
9493 }
9494
9495 memset (&buf[bc], buf[bc - 1], repeat);
9496 bc += repeat;
9497 continue;
9498 }
9499
9500 buf[bc] = '\0';
9501 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9502 return -1;
9503 }
9504 default:
9505 if (bc >= *sizeof_buf - 1)
9506 {
9507 /* Make some more room in the buffer. */
9508 *sizeof_buf *= 2;
9509 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9510 buf = *buf_p;
9511 }
9512
9513 buf[bc++] = c;
9514 csum += c;
9515 continue;
9516 }
9517 }
9518 }
9519
9520 /* Read a packet from the remote machine, with error checking, and
9521 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9522 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9523 rather than timing out; this is used (in synchronous mode) to wait
9524 for a target that is is executing user code to stop. */
9525 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9526 don't have to change all the calls to getpkt to deal with the
9527 return value, because at the moment I don't know what the right
9528 thing to do it for those. */
9529
9530 void
9531 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9532 {
9533 getpkt_sane (buf, sizeof_buf, forever);
9534 }
9535
9536
9537 /* Read a packet from the remote machine, with error checking, and
9538 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9539 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9540 rather than timing out; this is used (in synchronous mode) to wait
9541 for a target that is is executing user code to stop. If FOREVER ==
9542 0, this function is allowed to time out gracefully and return an
9543 indication of this to the caller. Otherwise return the number of
9544 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9545 enough reason to return to the caller. *IS_NOTIF is an output
9546 boolean that indicates whether *BUF holds a notification or not
9547 (a regular packet). */
9548
9549 int
9550 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9551 int forever, int expecting_notif,
9552 int *is_notif)
9553 {
9554 struct remote_state *rs = get_remote_state ();
9555 int c;
9556 int tries;
9557 int timeout;
9558 int val = -1;
9559
9560 /* We're reading a new response. Make sure we don't look at a
9561 previously cached response. */
9562 rs->cached_wait_status = 0;
9563
9564 strcpy (*buf, "timeout");
9565
9566 if (forever)
9567 timeout = watchdog > 0 ? watchdog : -1;
9568 else if (expecting_notif)
9569 timeout = 0; /* There should already be a char in the buffer. If
9570 not, bail out. */
9571 else
9572 timeout = remote_timeout;
9573
9574 #define MAX_TRIES 3
9575
9576 /* Process any number of notifications, and then return when
9577 we get a packet. */
9578 for (;;)
9579 {
9580 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9581 times. */
9582 for (tries = 1; tries <= MAX_TRIES; tries++)
9583 {
9584 /* This can loop forever if the remote side sends us
9585 characters continuously, but if it pauses, we'll get
9586 SERIAL_TIMEOUT from readchar because of timeout. Then
9587 we'll count that as a retry.
9588
9589 Note that even when forever is set, we will only wait
9590 forever prior to the start of a packet. After that, we
9591 expect characters to arrive at a brisk pace. They should
9592 show up within remote_timeout intervals. */
9593 do
9594 c = readchar (timeout);
9595 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9596
9597 if (c == SERIAL_TIMEOUT)
9598 {
9599 if (expecting_notif)
9600 return -1; /* Don't complain, it's normal to not get
9601 anything in this case. */
9602
9603 if (forever) /* Watchdog went off? Kill the target. */
9604 {
9605 remote_unpush_target ();
9606 throw_error (TARGET_CLOSE_ERROR,
9607 _("Watchdog timeout has expired. "
9608 "Target detached."));
9609 }
9610 if (remote_debug)
9611 fputs_filtered ("Timed out.\n", gdb_stdlog);
9612 }
9613 else
9614 {
9615 /* We've found the start of a packet or notification.
9616 Now collect the data. */
9617 val = read_frame (buf, sizeof_buf);
9618 if (val >= 0)
9619 break;
9620 }
9621
9622 remote_serial_write ("-", 1);
9623 }
9624
9625 if (tries > MAX_TRIES)
9626 {
9627 /* We have tried hard enough, and just can't receive the
9628 packet/notification. Give up. */
9629 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9630
9631 /* Skip the ack char if we're in no-ack mode. */
9632 if (!rs->noack_mode)
9633 remote_serial_write ("+", 1);
9634 return -1;
9635 }
9636
9637 /* If we got an ordinary packet, return that to our caller. */
9638 if (c == '$')
9639 {
9640 if (remote_debug)
9641 {
9642 std::string str
9643 = escape_buffer (*buf,
9644 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9645
9646 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9647 str.c_str ());
9648
9649 if (val > REMOTE_DEBUG_MAX_CHAR)
9650 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9651 val - REMOTE_DEBUG_MAX_CHAR);
9652
9653 fprintf_unfiltered (gdb_stdlog, "\n");
9654 }
9655
9656 /* Skip the ack char if we're in no-ack mode. */
9657 if (!rs->noack_mode)
9658 remote_serial_write ("+", 1);
9659 if (is_notif != NULL)
9660 *is_notif = 0;
9661 return val;
9662 }
9663
9664 /* If we got a notification, handle it, and go back to looking
9665 for a packet. */
9666 else
9667 {
9668 gdb_assert (c == '%');
9669
9670 if (remote_debug)
9671 {
9672 std::string str = escape_buffer (*buf, val);
9673
9674 fprintf_unfiltered (gdb_stdlog,
9675 " Notification received: %s\n",
9676 str.c_str ());
9677 }
9678 if (is_notif != NULL)
9679 *is_notif = 1;
9680
9681 handle_notification (rs->notif_state, *buf);
9682
9683 /* Notifications require no acknowledgement. */
9684
9685 if (expecting_notif)
9686 return val;
9687 }
9688 }
9689 }
9690
9691 int
9692 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9693 {
9694 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9695 }
9696
9697 int
9698 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9699 int *is_notif)
9700 {
9701 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9702 is_notif);
9703 }
9704
9705 /* Kill any new fork children of process PID that haven't been
9706 processed by follow_fork. */
9707
9708 void
9709 remote_target::kill_new_fork_children (int pid)
9710 {
9711 remote_state *rs = get_remote_state ();
9712 struct thread_info *thread;
9713 struct notif_client *notif = &notif_client_stop;
9714
9715 /* Kill the fork child threads of any threads in process PID
9716 that are stopped at a fork event. */
9717 ALL_NON_EXITED_THREADS (thread)
9718 {
9719 struct target_waitstatus *ws = &thread->pending_follow;
9720
9721 if (is_pending_fork_parent (ws, pid, thread->ptid))
9722 {
9723 int child_pid = ws->value.related_pid.pid ();
9724 int res;
9725
9726 res = remote_vkill (child_pid);
9727 if (res != 0)
9728 error (_("Can't kill fork child process %d"), child_pid);
9729 }
9730 }
9731
9732 /* Check for any pending fork events (not reported or processed yet)
9733 in process PID and kill those fork child threads as well. */
9734 remote_notif_get_pending_events (notif);
9735 for (auto &event : rs->stop_reply_queue)
9736 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9737 {
9738 int child_pid = event->ws.value.related_pid.pid ();
9739 int res;
9740
9741 res = remote_vkill (child_pid);
9742 if (res != 0)
9743 error (_("Can't kill fork child process %d"), child_pid);
9744 }
9745 }
9746
9747 \f
9748 /* Target hook to kill the current inferior. */
9749
9750 void
9751 remote_target::kill ()
9752 {
9753 int res = -1;
9754 int pid = inferior_ptid.pid ();
9755 struct remote_state *rs = get_remote_state ();
9756
9757 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9758 {
9759 /* If we're stopped while forking and we haven't followed yet,
9760 kill the child task. We need to do this before killing the
9761 parent task because if this is a vfork then the parent will
9762 be sleeping. */
9763 kill_new_fork_children (pid);
9764
9765 res = remote_vkill (pid);
9766 if (res == 0)
9767 {
9768 target_mourn_inferior (inferior_ptid);
9769 return;
9770 }
9771 }
9772
9773 /* If we are in 'target remote' mode and we are killing the only
9774 inferior, then we will tell gdbserver to exit and unpush the
9775 target. */
9776 if (res == -1 && !remote_multi_process_p (rs)
9777 && number_of_live_inferiors () == 1)
9778 {
9779 remote_kill_k ();
9780
9781 /* We've killed the remote end, we get to mourn it. If we are
9782 not in extended mode, mourning the inferior also unpushes
9783 remote_ops from the target stack, which closes the remote
9784 connection. */
9785 target_mourn_inferior (inferior_ptid);
9786
9787 return;
9788 }
9789
9790 error (_("Can't kill process"));
9791 }
9792
9793 /* Send a kill request to the target using the 'vKill' packet. */
9794
9795 int
9796 remote_target::remote_vkill (int pid)
9797 {
9798 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9799 return -1;
9800
9801 remote_state *rs = get_remote_state ();
9802
9803 /* Tell the remote target to detach. */
9804 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9805 putpkt (rs->buf);
9806 getpkt (&rs->buf, &rs->buf_size, 0);
9807
9808 switch (packet_ok (rs->buf,
9809 &remote_protocol_packets[PACKET_vKill]))
9810 {
9811 case PACKET_OK:
9812 return 0;
9813 case PACKET_ERROR:
9814 return 1;
9815 case PACKET_UNKNOWN:
9816 return -1;
9817 default:
9818 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9819 }
9820 }
9821
9822 /* Send a kill request to the target using the 'k' packet. */
9823
9824 void
9825 remote_target::remote_kill_k ()
9826 {
9827 /* Catch errors so the user can quit from gdb even when we
9828 aren't on speaking terms with the remote system. */
9829 TRY
9830 {
9831 putpkt ("k");
9832 }
9833 CATCH (ex, RETURN_MASK_ERROR)
9834 {
9835 if (ex.error == TARGET_CLOSE_ERROR)
9836 {
9837 /* If we got an (EOF) error that caused the target
9838 to go away, then we're done, that's what we wanted.
9839 "k" is susceptible to cause a premature EOF, given
9840 that the remote server isn't actually required to
9841 reply to "k", and it can happen that it doesn't
9842 even get to reply ACK to the "k". */
9843 return;
9844 }
9845
9846 /* Otherwise, something went wrong. We didn't actually kill
9847 the target. Just propagate the exception, and let the
9848 user or higher layers decide what to do. */
9849 throw_exception (ex);
9850 }
9851 END_CATCH
9852 }
9853
9854 void
9855 remote_target::mourn_inferior ()
9856 {
9857 struct remote_state *rs = get_remote_state ();
9858
9859 /* We're no longer interested in notification events of an inferior
9860 that exited or was killed/detached. */
9861 discard_pending_stop_replies (current_inferior ());
9862
9863 /* In 'target remote' mode with one inferior, we close the connection. */
9864 if (!rs->extended && number_of_live_inferiors () <= 1)
9865 {
9866 unpush_target (this);
9867
9868 /* remote_close takes care of doing most of the clean up. */
9869 generic_mourn_inferior ();
9870 return;
9871 }
9872
9873 /* In case we got here due to an error, but we're going to stay
9874 connected. */
9875 rs->waiting_for_stop_reply = 0;
9876
9877 /* If the current general thread belonged to the process we just
9878 detached from or has exited, the remote side current general
9879 thread becomes undefined. Considering a case like this:
9880
9881 - We just got here due to a detach.
9882 - The process that we're detaching from happens to immediately
9883 report a global breakpoint being hit in non-stop mode, in the
9884 same thread we had selected before.
9885 - GDB attaches to this process again.
9886 - This event happens to be the next event we handle.
9887
9888 GDB would consider that the current general thread didn't need to
9889 be set on the stub side (with Hg), since for all it knew,
9890 GENERAL_THREAD hadn't changed.
9891
9892 Notice that although in all-stop mode, the remote server always
9893 sets the current thread to the thread reporting the stop event,
9894 that doesn't happen in non-stop mode; in non-stop, the stub *must
9895 not* change the current thread when reporting a breakpoint hit,
9896 due to the decoupling of event reporting and event handling.
9897
9898 To keep things simple, we always invalidate our notion of the
9899 current thread. */
9900 record_currthread (rs, minus_one_ptid);
9901
9902 /* Call common code to mark the inferior as not running. */
9903 generic_mourn_inferior ();
9904
9905 if (!have_inferiors ())
9906 {
9907 if (!remote_multi_process_p (rs))
9908 {
9909 /* Check whether the target is running now - some remote stubs
9910 automatically restart after kill. */
9911 putpkt ("?");
9912 getpkt (&rs->buf, &rs->buf_size, 0);
9913
9914 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9915 {
9916 /* Assume that the target has been restarted. Set
9917 inferior_ptid so that bits of core GDB realizes
9918 there's something here, e.g., so that the user can
9919 say "kill" again. */
9920 inferior_ptid = magic_null_ptid;
9921 }
9922 }
9923 }
9924 }
9925
9926 bool
9927 extended_remote_target::supports_disable_randomization ()
9928 {
9929 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9930 }
9931
9932 void
9933 remote_target::extended_remote_disable_randomization (int val)
9934 {
9935 struct remote_state *rs = get_remote_state ();
9936 char *reply;
9937
9938 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9939 val);
9940 putpkt (rs->buf);
9941 reply = remote_get_noisy_reply ();
9942 if (*reply == '\0')
9943 error (_("Target does not support QDisableRandomization."));
9944 if (strcmp (reply, "OK") != 0)
9945 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9946 }
9947
9948 int
9949 remote_target::extended_remote_run (const std::string &args)
9950 {
9951 struct remote_state *rs = get_remote_state ();
9952 int len;
9953 const char *remote_exec_file = get_remote_exec_file ();
9954
9955 /* If the user has disabled vRun support, or we have detected that
9956 support is not available, do not try it. */
9957 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9958 return -1;
9959
9960 strcpy (rs->buf, "vRun;");
9961 len = strlen (rs->buf);
9962
9963 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9964 error (_("Remote file name too long for run packet"));
9965 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9966 strlen (remote_exec_file));
9967
9968 if (!args.empty ())
9969 {
9970 int i;
9971
9972 gdb_argv argv (args.c_str ());
9973 for (i = 0; argv[i] != NULL; i++)
9974 {
9975 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9976 error (_("Argument list too long for run packet"));
9977 rs->buf[len++] = ';';
9978 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9979 strlen (argv[i]));
9980 }
9981 }
9982
9983 rs->buf[len++] = '\0';
9984
9985 putpkt (rs->buf);
9986 getpkt (&rs->buf, &rs->buf_size, 0);
9987
9988 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9989 {
9990 case PACKET_OK:
9991 /* We have a wait response. All is well. */
9992 return 0;
9993 case PACKET_UNKNOWN:
9994 return -1;
9995 case PACKET_ERROR:
9996 if (remote_exec_file[0] == '\0')
9997 error (_("Running the default executable on the remote target failed; "
9998 "try \"set remote exec-file\"?"));
9999 else
10000 error (_("Running \"%s\" on the remote target failed"),
10001 remote_exec_file);
10002 default:
10003 gdb_assert_not_reached (_("bad switch"));
10004 }
10005 }
10006
10007 /* Helper function to send set/unset environment packets. ACTION is
10008 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10009 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10010 sent. */
10011
10012 void
10013 remote_target::send_environment_packet (const char *action,
10014 const char *packet,
10015 const char *value)
10016 {
10017 remote_state *rs = get_remote_state ();
10018
10019 /* Convert the environment variable to an hex string, which
10020 is the best format to be transmitted over the wire. */
10021 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10022 strlen (value));
10023
10024 xsnprintf (rs->buf, get_remote_packet_size (),
10025 "%s:%s", packet, encoded_value.c_str ());
10026
10027 putpkt (rs->buf);
10028 getpkt (&rs->buf, &rs->buf_size, 0);
10029 if (strcmp (rs->buf, "OK") != 0)
10030 warning (_("Unable to %s environment variable '%s' on remote."),
10031 action, value);
10032 }
10033
10034 /* Helper function to handle the QEnvironment* packets. */
10035
10036 void
10037 remote_target::extended_remote_environment_support ()
10038 {
10039 remote_state *rs = get_remote_state ();
10040
10041 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10042 {
10043 putpkt ("QEnvironmentReset");
10044 getpkt (&rs->buf, &rs->buf_size, 0);
10045 if (strcmp (rs->buf, "OK") != 0)
10046 warning (_("Unable to reset environment on remote."));
10047 }
10048
10049 gdb_environ *e = &current_inferior ()->environment;
10050
10051 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10052 for (const std::string &el : e->user_set_env ())
10053 send_environment_packet ("set", "QEnvironmentHexEncoded",
10054 el.c_str ());
10055
10056 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10057 for (const std::string &el : e->user_unset_env ())
10058 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10059 }
10060
10061 /* Helper function to set the current working directory for the
10062 inferior in the remote target. */
10063
10064 void
10065 remote_target::extended_remote_set_inferior_cwd ()
10066 {
10067 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10068 {
10069 const char *inferior_cwd = get_inferior_cwd ();
10070 remote_state *rs = get_remote_state ();
10071
10072 if (inferior_cwd != NULL)
10073 {
10074 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10075 strlen (inferior_cwd));
10076
10077 xsnprintf (rs->buf, get_remote_packet_size (),
10078 "QSetWorkingDir:%s", hexpath.c_str ());
10079 }
10080 else
10081 {
10082 /* An empty inferior_cwd means that the user wants us to
10083 reset the remote server's inferior's cwd. */
10084 xsnprintf (rs->buf, get_remote_packet_size (),
10085 "QSetWorkingDir:");
10086 }
10087
10088 putpkt (rs->buf);
10089 getpkt (&rs->buf, &rs->buf_size, 0);
10090 if (packet_ok (rs->buf,
10091 &remote_protocol_packets[PACKET_QSetWorkingDir])
10092 != PACKET_OK)
10093 error (_("\
10094 Remote replied unexpectedly while setting the inferior's working\n\
10095 directory: %s"),
10096 rs->buf);
10097
10098 }
10099 }
10100
10101 /* In the extended protocol we want to be able to do things like
10102 "run" and have them basically work as expected. So we need
10103 a special create_inferior function. We support changing the
10104 executable file and the command line arguments, but not the
10105 environment. */
10106
10107 void
10108 extended_remote_target::create_inferior (const char *exec_file,
10109 const std::string &args,
10110 char **env, int from_tty)
10111 {
10112 int run_worked;
10113 char *stop_reply;
10114 struct remote_state *rs = get_remote_state ();
10115 const char *remote_exec_file = get_remote_exec_file ();
10116
10117 /* If running asynchronously, register the target file descriptor
10118 with the event loop. */
10119 if (target_can_async_p ())
10120 target_async (1);
10121
10122 /* Disable address space randomization if requested (and supported). */
10123 if (supports_disable_randomization ())
10124 extended_remote_disable_randomization (disable_randomization);
10125
10126 /* If startup-with-shell is on, we inform gdbserver to start the
10127 remote inferior using a shell. */
10128 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10129 {
10130 xsnprintf (rs->buf, get_remote_packet_size (),
10131 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10132 putpkt (rs->buf);
10133 getpkt (&rs->buf, &rs->buf_size, 0);
10134 if (strcmp (rs->buf, "OK") != 0)
10135 error (_("\
10136 Remote replied unexpectedly while setting startup-with-shell: %s"),
10137 rs->buf);
10138 }
10139
10140 extended_remote_environment_support ();
10141
10142 extended_remote_set_inferior_cwd ();
10143
10144 /* Now restart the remote server. */
10145 run_worked = extended_remote_run (args) != -1;
10146 if (!run_worked)
10147 {
10148 /* vRun was not supported. Fail if we need it to do what the
10149 user requested. */
10150 if (remote_exec_file[0])
10151 error (_("Remote target does not support \"set remote exec-file\""));
10152 if (!args.empty ())
10153 error (_("Remote target does not support \"set args\" or run <ARGS>"));
10154
10155 /* Fall back to "R". */
10156 extended_remote_restart ();
10157 }
10158
10159 if (!have_inferiors ())
10160 {
10161 /* Clean up from the last time we ran, before we mark the target
10162 running again. This will mark breakpoints uninserted, and
10163 get_offsets may insert breakpoints. */
10164 init_thread_list ();
10165 init_wait_for_inferior ();
10166 }
10167
10168 /* vRun's success return is a stop reply. */
10169 stop_reply = run_worked ? rs->buf : NULL;
10170 add_current_inferior_and_thread (stop_reply);
10171
10172 /* Get updated offsets, if the stub uses qOffsets. */
10173 get_offsets ();
10174 }
10175 \f
10176
10177 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10178 the list of conditions (in agent expression bytecode format), if any, the
10179 target needs to evaluate. The output is placed into the packet buffer
10180 started from BUF and ended at BUF_END. */
10181
10182 static int
10183 remote_add_target_side_condition (struct gdbarch *gdbarch,
10184 struct bp_target_info *bp_tgt, char *buf,
10185 char *buf_end)
10186 {
10187 if (bp_tgt->conditions.empty ())
10188 return 0;
10189
10190 buf += strlen (buf);
10191 xsnprintf (buf, buf_end - buf, "%s", ";");
10192 buf++;
10193
10194 /* Send conditions to the target. */
10195 for (agent_expr *aexpr : bp_tgt->conditions)
10196 {
10197 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10198 buf += strlen (buf);
10199 for (int i = 0; i < aexpr->len; ++i)
10200 buf = pack_hex_byte (buf, aexpr->buf[i]);
10201 *buf = '\0';
10202 }
10203 return 0;
10204 }
10205
10206 static void
10207 remote_add_target_side_commands (struct gdbarch *gdbarch,
10208 struct bp_target_info *bp_tgt, char *buf)
10209 {
10210 if (bp_tgt->tcommands.empty ())
10211 return;
10212
10213 buf += strlen (buf);
10214
10215 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10216 buf += strlen (buf);
10217
10218 /* Concatenate all the agent expressions that are commands into the
10219 cmds parameter. */
10220 for (agent_expr *aexpr : bp_tgt->tcommands)
10221 {
10222 sprintf (buf, "X%x,", aexpr->len);
10223 buf += strlen (buf);
10224 for (int i = 0; i < aexpr->len; ++i)
10225 buf = pack_hex_byte (buf, aexpr->buf[i]);
10226 *buf = '\0';
10227 }
10228 }
10229
10230 /* Insert a breakpoint. On targets that have software breakpoint
10231 support, we ask the remote target to do the work; on targets
10232 which don't, we insert a traditional memory breakpoint. */
10233
10234 int
10235 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10236 struct bp_target_info *bp_tgt)
10237 {
10238 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10239 If it succeeds, then set the support to PACKET_ENABLE. If it
10240 fails, and the user has explicitly requested the Z support then
10241 report an error, otherwise, mark it disabled and go on. */
10242
10243 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10244 {
10245 CORE_ADDR addr = bp_tgt->reqstd_address;
10246 struct remote_state *rs;
10247 char *p, *endbuf;
10248
10249 /* Make sure the remote is pointing at the right process, if
10250 necessary. */
10251 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10252 set_general_process ();
10253
10254 rs = get_remote_state ();
10255 p = rs->buf;
10256 endbuf = rs->buf + get_remote_packet_size ();
10257
10258 *(p++) = 'Z';
10259 *(p++) = '0';
10260 *(p++) = ',';
10261 addr = (ULONGEST) remote_address_masked (addr);
10262 p += hexnumstr (p, addr);
10263 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10264
10265 if (supports_evaluation_of_breakpoint_conditions ())
10266 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10267
10268 if (can_run_breakpoint_commands ())
10269 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10270
10271 putpkt (rs->buf);
10272 getpkt (&rs->buf, &rs->buf_size, 0);
10273
10274 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10275 {
10276 case PACKET_ERROR:
10277 return -1;
10278 case PACKET_OK:
10279 return 0;
10280 case PACKET_UNKNOWN:
10281 break;
10282 }
10283 }
10284
10285 /* If this breakpoint has target-side commands but this stub doesn't
10286 support Z0 packets, throw error. */
10287 if (!bp_tgt->tcommands.empty ())
10288 throw_error (NOT_SUPPORTED_ERROR, _("\
10289 Target doesn't support breakpoints that have target side commands."));
10290
10291 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10292 }
10293
10294 int
10295 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10296 struct bp_target_info *bp_tgt,
10297 enum remove_bp_reason reason)
10298 {
10299 CORE_ADDR addr = bp_tgt->placed_address;
10300 struct remote_state *rs = get_remote_state ();
10301
10302 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10303 {
10304 char *p = rs->buf;
10305 char *endbuf = rs->buf + get_remote_packet_size ();
10306
10307 /* Make sure the remote is pointing at the right process, if
10308 necessary. */
10309 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10310 set_general_process ();
10311
10312 *(p++) = 'z';
10313 *(p++) = '0';
10314 *(p++) = ',';
10315
10316 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10317 p += hexnumstr (p, addr);
10318 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10319
10320 putpkt (rs->buf);
10321 getpkt (&rs->buf, &rs->buf_size, 0);
10322
10323 return (rs->buf[0] == 'E');
10324 }
10325
10326 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10327 }
10328
10329 static enum Z_packet_type
10330 watchpoint_to_Z_packet (int type)
10331 {
10332 switch (type)
10333 {
10334 case hw_write:
10335 return Z_PACKET_WRITE_WP;
10336 break;
10337 case hw_read:
10338 return Z_PACKET_READ_WP;
10339 break;
10340 case hw_access:
10341 return Z_PACKET_ACCESS_WP;
10342 break;
10343 default:
10344 internal_error (__FILE__, __LINE__,
10345 _("hw_bp_to_z: bad watchpoint type %d"), type);
10346 }
10347 }
10348
10349 int
10350 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10351 enum target_hw_bp_type type, struct expression *cond)
10352 {
10353 struct remote_state *rs = get_remote_state ();
10354 char *endbuf = rs->buf + get_remote_packet_size ();
10355 char *p;
10356 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10357
10358 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10359 return 1;
10360
10361 /* Make sure the remote is pointing at the right process, if
10362 necessary. */
10363 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10364 set_general_process ();
10365
10366 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10367 p = strchr (rs->buf, '\0');
10368 addr = remote_address_masked (addr);
10369 p += hexnumstr (p, (ULONGEST) addr);
10370 xsnprintf (p, endbuf - p, ",%x", len);
10371
10372 putpkt (rs->buf);
10373 getpkt (&rs->buf, &rs->buf_size, 0);
10374
10375 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10376 {
10377 case PACKET_ERROR:
10378 return -1;
10379 case PACKET_UNKNOWN:
10380 return 1;
10381 case PACKET_OK:
10382 return 0;
10383 }
10384 internal_error (__FILE__, __LINE__,
10385 _("remote_insert_watchpoint: reached end of function"));
10386 }
10387
10388 bool
10389 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10390 CORE_ADDR start, int length)
10391 {
10392 CORE_ADDR diff = remote_address_masked (addr - start);
10393
10394 return diff < length;
10395 }
10396
10397
10398 int
10399 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10400 enum target_hw_bp_type type, struct expression *cond)
10401 {
10402 struct remote_state *rs = get_remote_state ();
10403 char *endbuf = rs->buf + get_remote_packet_size ();
10404 char *p;
10405 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10406
10407 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10408 return -1;
10409
10410 /* Make sure the remote is pointing at the right process, if
10411 necessary. */
10412 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10413 set_general_process ();
10414
10415 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10416 p = strchr (rs->buf, '\0');
10417 addr = remote_address_masked (addr);
10418 p += hexnumstr (p, (ULONGEST) addr);
10419 xsnprintf (p, endbuf - p, ",%x", len);
10420 putpkt (rs->buf);
10421 getpkt (&rs->buf, &rs->buf_size, 0);
10422
10423 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10424 {
10425 case PACKET_ERROR:
10426 case PACKET_UNKNOWN:
10427 return -1;
10428 case PACKET_OK:
10429 return 0;
10430 }
10431 internal_error (__FILE__, __LINE__,
10432 _("remote_remove_watchpoint: reached end of function"));
10433 }
10434
10435
10436 int remote_hw_watchpoint_limit = -1;
10437 int remote_hw_watchpoint_length_limit = -1;
10438 int remote_hw_breakpoint_limit = -1;
10439
10440 int
10441 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10442 {
10443 if (remote_hw_watchpoint_length_limit == 0)
10444 return 0;
10445 else if (remote_hw_watchpoint_length_limit < 0)
10446 return 1;
10447 else if (len <= remote_hw_watchpoint_length_limit)
10448 return 1;
10449 else
10450 return 0;
10451 }
10452
10453 int
10454 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10455 {
10456 if (type == bp_hardware_breakpoint)
10457 {
10458 if (remote_hw_breakpoint_limit == 0)
10459 return 0;
10460 else if (remote_hw_breakpoint_limit < 0)
10461 return 1;
10462 else if (cnt <= remote_hw_breakpoint_limit)
10463 return 1;
10464 }
10465 else
10466 {
10467 if (remote_hw_watchpoint_limit == 0)
10468 return 0;
10469 else if (remote_hw_watchpoint_limit < 0)
10470 return 1;
10471 else if (ot)
10472 return -1;
10473 else if (cnt <= remote_hw_watchpoint_limit)
10474 return 1;
10475 }
10476 return -1;
10477 }
10478
10479 /* The to_stopped_by_sw_breakpoint method of target remote. */
10480
10481 bool
10482 remote_target::stopped_by_sw_breakpoint ()
10483 {
10484 struct thread_info *thread = inferior_thread ();
10485
10486 return (thread->priv != NULL
10487 && (get_remote_thread_info (thread)->stop_reason
10488 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10489 }
10490
10491 /* The to_supports_stopped_by_sw_breakpoint method of target
10492 remote. */
10493
10494 bool
10495 remote_target::supports_stopped_by_sw_breakpoint ()
10496 {
10497 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10498 }
10499
10500 /* The to_stopped_by_hw_breakpoint method of target remote. */
10501
10502 bool
10503 remote_target::stopped_by_hw_breakpoint ()
10504 {
10505 struct thread_info *thread = inferior_thread ();
10506
10507 return (thread->priv != NULL
10508 && (get_remote_thread_info (thread)->stop_reason
10509 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10510 }
10511
10512 /* The to_supports_stopped_by_hw_breakpoint method of target
10513 remote. */
10514
10515 bool
10516 remote_target::supports_stopped_by_hw_breakpoint ()
10517 {
10518 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10519 }
10520
10521 bool
10522 remote_target::stopped_by_watchpoint ()
10523 {
10524 struct thread_info *thread = inferior_thread ();
10525
10526 return (thread->priv != NULL
10527 && (get_remote_thread_info (thread)->stop_reason
10528 == TARGET_STOPPED_BY_WATCHPOINT));
10529 }
10530
10531 bool
10532 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10533 {
10534 struct thread_info *thread = inferior_thread ();
10535
10536 if (thread->priv != NULL
10537 && (get_remote_thread_info (thread)->stop_reason
10538 == TARGET_STOPPED_BY_WATCHPOINT))
10539 {
10540 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10541 return true;
10542 }
10543
10544 return false;
10545 }
10546
10547
10548 int
10549 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10550 struct bp_target_info *bp_tgt)
10551 {
10552 CORE_ADDR addr = bp_tgt->reqstd_address;
10553 struct remote_state *rs;
10554 char *p, *endbuf;
10555 char *message;
10556
10557 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10558 return -1;
10559
10560 /* Make sure the remote is pointing at the right process, if
10561 necessary. */
10562 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10563 set_general_process ();
10564
10565 rs = get_remote_state ();
10566 p = rs->buf;
10567 endbuf = rs->buf + get_remote_packet_size ();
10568
10569 *(p++) = 'Z';
10570 *(p++) = '1';
10571 *(p++) = ',';
10572
10573 addr = remote_address_masked (addr);
10574 p += hexnumstr (p, (ULONGEST) addr);
10575 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10576
10577 if (supports_evaluation_of_breakpoint_conditions ())
10578 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10579
10580 if (can_run_breakpoint_commands ())
10581 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10582
10583 putpkt (rs->buf);
10584 getpkt (&rs->buf, &rs->buf_size, 0);
10585
10586 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10587 {
10588 case PACKET_ERROR:
10589 if (rs->buf[1] == '.')
10590 {
10591 message = strchr (rs->buf + 2, '.');
10592 if (message)
10593 error (_("Remote failure reply: %s"), message + 1);
10594 }
10595 return -1;
10596 case PACKET_UNKNOWN:
10597 return -1;
10598 case PACKET_OK:
10599 return 0;
10600 }
10601 internal_error (__FILE__, __LINE__,
10602 _("remote_insert_hw_breakpoint: reached end of function"));
10603 }
10604
10605
10606 int
10607 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10608 struct bp_target_info *bp_tgt)
10609 {
10610 CORE_ADDR addr;
10611 struct remote_state *rs = get_remote_state ();
10612 char *p = rs->buf;
10613 char *endbuf = rs->buf + get_remote_packet_size ();
10614
10615 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10616 return -1;
10617
10618 /* Make sure the remote is pointing at the right process, if
10619 necessary. */
10620 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10621 set_general_process ();
10622
10623 *(p++) = 'z';
10624 *(p++) = '1';
10625 *(p++) = ',';
10626
10627 addr = remote_address_masked (bp_tgt->placed_address);
10628 p += hexnumstr (p, (ULONGEST) addr);
10629 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10630
10631 putpkt (rs->buf);
10632 getpkt (&rs->buf, &rs->buf_size, 0);
10633
10634 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10635 {
10636 case PACKET_ERROR:
10637 case PACKET_UNKNOWN:
10638 return -1;
10639 case PACKET_OK:
10640 return 0;
10641 }
10642 internal_error (__FILE__, __LINE__,
10643 _("remote_remove_hw_breakpoint: reached end of function"));
10644 }
10645
10646 /* Verify memory using the "qCRC:" request. */
10647
10648 int
10649 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10650 {
10651 struct remote_state *rs = get_remote_state ();
10652 unsigned long host_crc, target_crc;
10653 char *tmp;
10654
10655 /* It doesn't make sense to use qCRC if the remote target is
10656 connected but not running. */
10657 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10658 {
10659 enum packet_result result;
10660
10661 /* Make sure the remote is pointing at the right process. */
10662 set_general_process ();
10663
10664 /* FIXME: assumes lma can fit into long. */
10665 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10666 (long) lma, (long) size);
10667 putpkt (rs->buf);
10668
10669 /* Be clever; compute the host_crc before waiting for target
10670 reply. */
10671 host_crc = xcrc32 (data, size, 0xffffffff);
10672
10673 getpkt (&rs->buf, &rs->buf_size, 0);
10674
10675 result = packet_ok (rs->buf,
10676 &remote_protocol_packets[PACKET_qCRC]);
10677 if (result == PACKET_ERROR)
10678 return -1;
10679 else if (result == PACKET_OK)
10680 {
10681 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10682 target_crc = target_crc * 16 + fromhex (*tmp);
10683
10684 return (host_crc == target_crc);
10685 }
10686 }
10687
10688 return simple_verify_memory (this, data, lma, size);
10689 }
10690
10691 /* compare-sections command
10692
10693 With no arguments, compares each loadable section in the exec bfd
10694 with the same memory range on the target, and reports mismatches.
10695 Useful for verifying the image on the target against the exec file. */
10696
10697 static void
10698 compare_sections_command (const char *args, int from_tty)
10699 {
10700 asection *s;
10701 const char *sectname;
10702 bfd_size_type size;
10703 bfd_vma lma;
10704 int matched = 0;
10705 int mismatched = 0;
10706 int res;
10707 int read_only = 0;
10708
10709 if (!exec_bfd)
10710 error (_("command cannot be used without an exec file"));
10711
10712 if (args != NULL && strcmp (args, "-r") == 0)
10713 {
10714 read_only = 1;
10715 args = NULL;
10716 }
10717
10718 for (s = exec_bfd->sections; s; s = s->next)
10719 {
10720 if (!(s->flags & SEC_LOAD))
10721 continue; /* Skip non-loadable section. */
10722
10723 if (read_only && (s->flags & SEC_READONLY) == 0)
10724 continue; /* Skip writeable sections */
10725
10726 size = bfd_get_section_size (s);
10727 if (size == 0)
10728 continue; /* Skip zero-length section. */
10729
10730 sectname = bfd_get_section_name (exec_bfd, s);
10731 if (args && strcmp (args, sectname) != 0)
10732 continue; /* Not the section selected by user. */
10733
10734 matched = 1; /* Do this section. */
10735 lma = s->lma;
10736
10737 gdb::byte_vector sectdata (size);
10738 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10739
10740 res = target_verify_memory (sectdata.data (), lma, size);
10741
10742 if (res == -1)
10743 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10744 paddress (target_gdbarch (), lma),
10745 paddress (target_gdbarch (), lma + size));
10746
10747 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10748 paddress (target_gdbarch (), lma),
10749 paddress (target_gdbarch (), lma + size));
10750 if (res)
10751 printf_filtered ("matched.\n");
10752 else
10753 {
10754 printf_filtered ("MIS-MATCHED!\n");
10755 mismatched++;
10756 }
10757 }
10758 if (mismatched > 0)
10759 warning (_("One or more sections of the target image does not match\n\
10760 the loaded file\n"));
10761 if (args && !matched)
10762 printf_filtered (_("No loaded section named '%s'.\n"), args);
10763 }
10764
10765 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10766 into remote target. The number of bytes written to the remote
10767 target is returned, or -1 for error. */
10768
10769 target_xfer_status
10770 remote_target::remote_write_qxfer (const char *object_name,
10771 const char *annex, const gdb_byte *writebuf,
10772 ULONGEST offset, LONGEST len,
10773 ULONGEST *xfered_len,
10774 struct packet_config *packet)
10775 {
10776 int i, buf_len;
10777 ULONGEST n;
10778 struct remote_state *rs = get_remote_state ();
10779 int max_size = get_memory_write_packet_size ();
10780
10781 if (packet_config_support (packet) == PACKET_DISABLE)
10782 return TARGET_XFER_E_IO;
10783
10784 /* Insert header. */
10785 i = snprintf (rs->buf, max_size,
10786 "qXfer:%s:write:%s:%s:",
10787 object_name, annex ? annex : "",
10788 phex_nz (offset, sizeof offset));
10789 max_size -= (i + 1);
10790
10791 /* Escape as much data as fits into rs->buf. */
10792 buf_len = remote_escape_output
10793 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10794
10795 if (putpkt_binary (rs->buf, i + buf_len) < 0
10796 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10797 || packet_ok (rs->buf, packet) != PACKET_OK)
10798 return TARGET_XFER_E_IO;
10799
10800 unpack_varlen_hex (rs->buf, &n);
10801
10802 *xfered_len = n;
10803 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10804 }
10805
10806 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10807 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10808 number of bytes read is returned, or 0 for EOF, or -1 for error.
10809 The number of bytes read may be less than LEN without indicating an
10810 EOF. PACKET is checked and updated to indicate whether the remote
10811 target supports this object. */
10812
10813 target_xfer_status
10814 remote_target::remote_read_qxfer (const char *object_name,
10815 const char *annex,
10816 gdb_byte *readbuf, ULONGEST offset,
10817 LONGEST len,
10818 ULONGEST *xfered_len,
10819 struct packet_config *packet)
10820 {
10821 struct remote_state *rs = get_remote_state ();
10822 LONGEST i, n, packet_len;
10823
10824 if (packet_config_support (packet) == PACKET_DISABLE)
10825 return TARGET_XFER_E_IO;
10826
10827 /* Check whether we've cached an end-of-object packet that matches
10828 this request. */
10829 if (rs->finished_object)
10830 {
10831 if (strcmp (object_name, rs->finished_object) == 0
10832 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10833 && offset == rs->finished_offset)
10834 return TARGET_XFER_EOF;
10835
10836
10837 /* Otherwise, we're now reading something different. Discard
10838 the cache. */
10839 xfree (rs->finished_object);
10840 xfree (rs->finished_annex);
10841 rs->finished_object = NULL;
10842 rs->finished_annex = NULL;
10843 }
10844
10845 /* Request only enough to fit in a single packet. The actual data
10846 may not, since we don't know how much of it will need to be escaped;
10847 the target is free to respond with slightly less data. We subtract
10848 five to account for the response type and the protocol frame. */
10849 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10850 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10851 object_name, annex ? annex : "",
10852 phex_nz (offset, sizeof offset),
10853 phex_nz (n, sizeof n));
10854 i = putpkt (rs->buf);
10855 if (i < 0)
10856 return TARGET_XFER_E_IO;
10857
10858 rs->buf[0] = '\0';
10859 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10860 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10861 return TARGET_XFER_E_IO;
10862
10863 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10864 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10865
10866 /* 'm' means there is (or at least might be) more data after this
10867 batch. That does not make sense unless there's at least one byte
10868 of data in this reply. */
10869 if (rs->buf[0] == 'm' && packet_len == 1)
10870 error (_("Remote qXfer reply contained no data."));
10871
10872 /* Got some data. */
10873 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10874 packet_len - 1, readbuf, n);
10875
10876 /* 'l' is an EOF marker, possibly including a final block of data,
10877 or possibly empty. If we have the final block of a non-empty
10878 object, record this fact to bypass a subsequent partial read. */
10879 if (rs->buf[0] == 'l' && offset + i > 0)
10880 {
10881 rs->finished_object = xstrdup (object_name);
10882 rs->finished_annex = xstrdup (annex ? annex : "");
10883 rs->finished_offset = offset + i;
10884 }
10885
10886 if (i == 0)
10887 return TARGET_XFER_EOF;
10888 else
10889 {
10890 *xfered_len = i;
10891 return TARGET_XFER_OK;
10892 }
10893 }
10894
10895 enum target_xfer_status
10896 remote_target::xfer_partial (enum target_object object,
10897 const char *annex, gdb_byte *readbuf,
10898 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10899 ULONGEST *xfered_len)
10900 {
10901 struct remote_state *rs;
10902 int i;
10903 char *p2;
10904 char query_type;
10905 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10906
10907 set_remote_traceframe ();
10908 set_general_thread (inferior_ptid);
10909
10910 rs = get_remote_state ();
10911
10912 /* Handle memory using the standard memory routines. */
10913 if (object == TARGET_OBJECT_MEMORY)
10914 {
10915 /* If the remote target is connected but not running, we should
10916 pass this request down to a lower stratum (e.g. the executable
10917 file). */
10918 if (!target_has_execution)
10919 return TARGET_XFER_EOF;
10920
10921 if (writebuf != NULL)
10922 return remote_write_bytes (offset, writebuf, len, unit_size,
10923 xfered_len);
10924 else
10925 return remote_read_bytes (offset, readbuf, len, unit_size,
10926 xfered_len);
10927 }
10928
10929 /* Handle SPU memory using qxfer packets. */
10930 if (object == TARGET_OBJECT_SPU)
10931 {
10932 if (readbuf)
10933 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10934 xfered_len, &remote_protocol_packets
10935 [PACKET_qXfer_spu_read]);
10936 else
10937 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10938 xfered_len, &remote_protocol_packets
10939 [PACKET_qXfer_spu_write]);
10940 }
10941
10942 /* Handle extra signal info using qxfer packets. */
10943 if (object == TARGET_OBJECT_SIGNAL_INFO)
10944 {
10945 if (readbuf)
10946 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10947 xfered_len, &remote_protocol_packets
10948 [PACKET_qXfer_siginfo_read]);
10949 else
10950 return remote_write_qxfer ("siginfo", annex,
10951 writebuf, offset, len, xfered_len,
10952 &remote_protocol_packets
10953 [PACKET_qXfer_siginfo_write]);
10954 }
10955
10956 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10957 {
10958 if (readbuf)
10959 return remote_read_qxfer ("statictrace", annex,
10960 readbuf, offset, len, xfered_len,
10961 &remote_protocol_packets
10962 [PACKET_qXfer_statictrace_read]);
10963 else
10964 return TARGET_XFER_E_IO;
10965 }
10966
10967 /* Only handle flash writes. */
10968 if (writebuf != NULL)
10969 {
10970 switch (object)
10971 {
10972 case TARGET_OBJECT_FLASH:
10973 return remote_flash_write (offset, len, xfered_len,
10974 writebuf);
10975
10976 default:
10977 return TARGET_XFER_E_IO;
10978 }
10979 }
10980
10981 /* Map pre-existing objects onto letters. DO NOT do this for new
10982 objects!!! Instead specify new query packets. */
10983 switch (object)
10984 {
10985 case TARGET_OBJECT_AVR:
10986 query_type = 'R';
10987 break;
10988
10989 case TARGET_OBJECT_AUXV:
10990 gdb_assert (annex == NULL);
10991 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10992 xfered_len,
10993 &remote_protocol_packets[PACKET_qXfer_auxv]);
10994
10995 case TARGET_OBJECT_AVAILABLE_FEATURES:
10996 return remote_read_qxfer
10997 ("features", annex, readbuf, offset, len, xfered_len,
10998 &remote_protocol_packets[PACKET_qXfer_features]);
10999
11000 case TARGET_OBJECT_LIBRARIES:
11001 return remote_read_qxfer
11002 ("libraries", annex, readbuf, offset, len, xfered_len,
11003 &remote_protocol_packets[PACKET_qXfer_libraries]);
11004
11005 case TARGET_OBJECT_LIBRARIES_SVR4:
11006 return remote_read_qxfer
11007 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11008 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11009
11010 case TARGET_OBJECT_MEMORY_MAP:
11011 gdb_assert (annex == NULL);
11012 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11013 xfered_len,
11014 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11015
11016 case TARGET_OBJECT_OSDATA:
11017 /* Should only get here if we're connected. */
11018 gdb_assert (rs->remote_desc);
11019 return remote_read_qxfer
11020 ("osdata", annex, readbuf, offset, len, xfered_len,
11021 &remote_protocol_packets[PACKET_qXfer_osdata]);
11022
11023 case TARGET_OBJECT_THREADS:
11024 gdb_assert (annex == NULL);
11025 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11026 xfered_len,
11027 &remote_protocol_packets[PACKET_qXfer_threads]);
11028
11029 case TARGET_OBJECT_TRACEFRAME_INFO:
11030 gdb_assert (annex == NULL);
11031 return remote_read_qxfer
11032 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11033 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11034
11035 case TARGET_OBJECT_FDPIC:
11036 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11037 xfered_len,
11038 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11039
11040 case TARGET_OBJECT_OPENVMS_UIB:
11041 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11042 xfered_len,
11043 &remote_protocol_packets[PACKET_qXfer_uib]);
11044
11045 case TARGET_OBJECT_BTRACE:
11046 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11047 xfered_len,
11048 &remote_protocol_packets[PACKET_qXfer_btrace]);
11049
11050 case TARGET_OBJECT_BTRACE_CONF:
11051 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11052 len, xfered_len,
11053 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11054
11055 case TARGET_OBJECT_EXEC_FILE:
11056 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11057 len, xfered_len,
11058 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11059
11060 default:
11061 return TARGET_XFER_E_IO;
11062 }
11063
11064 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11065 large enough let the caller deal with it. */
11066 if (len < get_remote_packet_size ())
11067 return TARGET_XFER_E_IO;
11068 len = get_remote_packet_size ();
11069
11070 /* Except for querying the minimum buffer size, target must be open. */
11071 if (!rs->remote_desc)
11072 error (_("remote query is only available after target open"));
11073
11074 gdb_assert (annex != NULL);
11075 gdb_assert (readbuf != NULL);
11076
11077 p2 = rs->buf;
11078 *p2++ = 'q';
11079 *p2++ = query_type;
11080
11081 /* We used one buffer char for the remote protocol q command and
11082 another for the query type. As the remote protocol encapsulation
11083 uses 4 chars plus one extra in case we are debugging
11084 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11085 string. */
11086 i = 0;
11087 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11088 {
11089 /* Bad caller may have sent forbidden characters. */
11090 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11091 *p2++ = annex[i];
11092 i++;
11093 }
11094 *p2 = '\0';
11095 gdb_assert (annex[i] == '\0');
11096
11097 i = putpkt (rs->buf);
11098 if (i < 0)
11099 return TARGET_XFER_E_IO;
11100
11101 getpkt (&rs->buf, &rs->buf_size, 0);
11102 strcpy ((char *) readbuf, rs->buf);
11103
11104 *xfered_len = strlen ((char *) readbuf);
11105 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11106 }
11107
11108 /* Implementation of to_get_memory_xfer_limit. */
11109
11110 ULONGEST
11111 remote_target::get_memory_xfer_limit ()
11112 {
11113 return get_memory_write_packet_size ();
11114 }
11115
11116 int
11117 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11118 const gdb_byte *pattern, ULONGEST pattern_len,
11119 CORE_ADDR *found_addrp)
11120 {
11121 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11122 struct remote_state *rs = get_remote_state ();
11123 int max_size = get_memory_write_packet_size ();
11124 struct packet_config *packet =
11125 &remote_protocol_packets[PACKET_qSearch_memory];
11126 /* Number of packet bytes used to encode the pattern;
11127 this could be more than PATTERN_LEN due to escape characters. */
11128 int escaped_pattern_len;
11129 /* Amount of pattern that was encodable in the packet. */
11130 int used_pattern_len;
11131 int i;
11132 int found;
11133 ULONGEST found_addr;
11134
11135 /* Don't go to the target if we don't have to. This is done before
11136 checking packet_config_support to avoid the possibility that a
11137 success for this edge case means the facility works in
11138 general. */
11139 if (pattern_len > search_space_len)
11140 return 0;
11141 if (pattern_len == 0)
11142 {
11143 *found_addrp = start_addr;
11144 return 1;
11145 }
11146
11147 /* If we already know the packet isn't supported, fall back to the simple
11148 way of searching memory. */
11149
11150 if (packet_config_support (packet) == PACKET_DISABLE)
11151 {
11152 /* Target doesn't provided special support, fall back and use the
11153 standard support (copy memory and do the search here). */
11154 return simple_search_memory (this, start_addr, search_space_len,
11155 pattern, pattern_len, found_addrp);
11156 }
11157
11158 /* Make sure the remote is pointing at the right process. */
11159 set_general_process ();
11160
11161 /* Insert header. */
11162 i = snprintf (rs->buf, max_size,
11163 "qSearch:memory:%s;%s;",
11164 phex_nz (start_addr, addr_size),
11165 phex_nz (search_space_len, sizeof (search_space_len)));
11166 max_size -= (i + 1);
11167
11168 /* Escape as much data as fits into rs->buf. */
11169 escaped_pattern_len =
11170 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11171 &used_pattern_len, max_size);
11172
11173 /* Bail if the pattern is too large. */
11174 if (used_pattern_len != pattern_len)
11175 error (_("Pattern is too large to transmit to remote target."));
11176
11177 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11178 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11179 || packet_ok (rs->buf, packet) != PACKET_OK)
11180 {
11181 /* The request may not have worked because the command is not
11182 supported. If so, fall back to the simple way. */
11183 if (packet_config_support (packet) == PACKET_DISABLE)
11184 {
11185 return simple_search_memory (this, start_addr, search_space_len,
11186 pattern, pattern_len, found_addrp);
11187 }
11188 return -1;
11189 }
11190
11191 if (rs->buf[0] == '0')
11192 found = 0;
11193 else if (rs->buf[0] == '1')
11194 {
11195 found = 1;
11196 if (rs->buf[1] != ',')
11197 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11198 unpack_varlen_hex (rs->buf + 2, &found_addr);
11199 *found_addrp = found_addr;
11200 }
11201 else
11202 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11203
11204 return found;
11205 }
11206
11207 void
11208 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11209 {
11210 struct remote_state *rs = get_remote_state ();
11211 char *p = rs->buf;
11212
11213 if (!rs->remote_desc)
11214 error (_("remote rcmd is only available after target open"));
11215
11216 /* Send a NULL command across as an empty command. */
11217 if (command == NULL)
11218 command = "";
11219
11220 /* The query prefix. */
11221 strcpy (rs->buf, "qRcmd,");
11222 p = strchr (rs->buf, '\0');
11223
11224 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11225 > get_remote_packet_size ())
11226 error (_("\"monitor\" command ``%s'' is too long."), command);
11227
11228 /* Encode the actual command. */
11229 bin2hex ((const gdb_byte *) command, p, strlen (command));
11230
11231 if (putpkt (rs->buf) < 0)
11232 error (_("Communication problem with target."));
11233
11234 /* get/display the response */
11235 while (1)
11236 {
11237 char *buf;
11238
11239 /* XXX - see also remote_get_noisy_reply(). */
11240 QUIT; /* Allow user to bail out with ^C. */
11241 rs->buf[0] = '\0';
11242 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11243 {
11244 /* Timeout. Continue to (try to) read responses.
11245 This is better than stopping with an error, assuming the stub
11246 is still executing the (long) monitor command.
11247 If needed, the user can interrupt gdb using C-c, obtaining
11248 an effect similar to stop on timeout. */
11249 continue;
11250 }
11251 buf = rs->buf;
11252 if (buf[0] == '\0')
11253 error (_("Target does not support this command."));
11254 if (buf[0] == 'O' && buf[1] != 'K')
11255 {
11256 remote_console_output (buf + 1); /* 'O' message from stub. */
11257 continue;
11258 }
11259 if (strcmp (buf, "OK") == 0)
11260 break;
11261 if (strlen (buf) == 3 && buf[0] == 'E'
11262 && isdigit (buf[1]) && isdigit (buf[2]))
11263 {
11264 error (_("Protocol error with Rcmd"));
11265 }
11266 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11267 {
11268 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11269
11270 fputc_unfiltered (c, outbuf);
11271 }
11272 break;
11273 }
11274 }
11275
11276 std::vector<mem_region>
11277 remote_target::memory_map ()
11278 {
11279 std::vector<mem_region> result;
11280 gdb::optional<gdb::char_vector> text
11281 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11282
11283 if (text)
11284 result = parse_memory_map (text->data ());
11285
11286 return result;
11287 }
11288
11289 static void
11290 packet_command (const char *args, int from_tty)
11291 {
11292 remote_target *remote = get_current_remote_target ();
11293
11294 if (remote == nullptr)
11295 error (_("command can only be used with remote target"));
11296
11297 remote->packet_command (args, from_tty);
11298 }
11299
11300 void
11301 remote_target::packet_command (const char *args, int from_tty)
11302 {
11303 if (!args)
11304 error (_("remote-packet command requires packet text as argument"));
11305
11306 puts_filtered ("sending: ");
11307 print_packet (args);
11308 puts_filtered ("\n");
11309 putpkt (args);
11310
11311 remote_state *rs = get_remote_state ();
11312
11313 getpkt (&rs->buf, &rs->buf_size, 0);
11314 puts_filtered ("received: ");
11315 print_packet (rs->buf);
11316 puts_filtered ("\n");
11317 }
11318
11319 #if 0
11320 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11321
11322 static void display_thread_info (struct gdb_ext_thread_info *info);
11323
11324 static void threadset_test_cmd (char *cmd, int tty);
11325
11326 static void threadalive_test (char *cmd, int tty);
11327
11328 static void threadlist_test_cmd (char *cmd, int tty);
11329
11330 int get_and_display_threadinfo (threadref *ref);
11331
11332 static void threadinfo_test_cmd (char *cmd, int tty);
11333
11334 static int thread_display_step (threadref *ref, void *context);
11335
11336 static void threadlist_update_test_cmd (char *cmd, int tty);
11337
11338 static void init_remote_threadtests (void);
11339
11340 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11341
11342 static void
11343 threadset_test_cmd (const char *cmd, int tty)
11344 {
11345 int sample_thread = SAMPLE_THREAD;
11346
11347 printf_filtered (_("Remote threadset test\n"));
11348 set_general_thread (sample_thread);
11349 }
11350
11351
11352 static void
11353 threadalive_test (const char *cmd, int tty)
11354 {
11355 int sample_thread = SAMPLE_THREAD;
11356 int pid = inferior_ptid.pid ();
11357 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11358
11359 if (remote_thread_alive (ptid))
11360 printf_filtered ("PASS: Thread alive test\n");
11361 else
11362 printf_filtered ("FAIL: Thread alive test\n");
11363 }
11364
11365 void output_threadid (char *title, threadref *ref);
11366
11367 void
11368 output_threadid (char *title, threadref *ref)
11369 {
11370 char hexid[20];
11371
11372 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11373 hexid[16] = 0;
11374 printf_filtered ("%s %s\n", title, (&hexid[0]));
11375 }
11376
11377 static void
11378 threadlist_test_cmd (const char *cmd, int tty)
11379 {
11380 int startflag = 1;
11381 threadref nextthread;
11382 int done, result_count;
11383 threadref threadlist[3];
11384
11385 printf_filtered ("Remote Threadlist test\n");
11386 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11387 &result_count, &threadlist[0]))
11388 printf_filtered ("FAIL: threadlist test\n");
11389 else
11390 {
11391 threadref *scan = threadlist;
11392 threadref *limit = scan + result_count;
11393
11394 while (scan < limit)
11395 output_threadid (" thread ", scan++);
11396 }
11397 }
11398
11399 void
11400 display_thread_info (struct gdb_ext_thread_info *info)
11401 {
11402 output_threadid ("Threadid: ", &info->threadid);
11403 printf_filtered ("Name: %s\n ", info->shortname);
11404 printf_filtered ("State: %s\n", info->display);
11405 printf_filtered ("other: %s\n\n", info->more_display);
11406 }
11407
11408 int
11409 get_and_display_threadinfo (threadref *ref)
11410 {
11411 int result;
11412 int set;
11413 struct gdb_ext_thread_info threadinfo;
11414
11415 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11416 | TAG_MOREDISPLAY | TAG_DISPLAY;
11417 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11418 display_thread_info (&threadinfo);
11419 return result;
11420 }
11421
11422 static void
11423 threadinfo_test_cmd (const char *cmd, int tty)
11424 {
11425 int athread = SAMPLE_THREAD;
11426 threadref thread;
11427 int set;
11428
11429 int_to_threadref (&thread, athread);
11430 printf_filtered ("Remote Threadinfo test\n");
11431 if (!get_and_display_threadinfo (&thread))
11432 printf_filtered ("FAIL cannot get thread info\n");
11433 }
11434
11435 static int
11436 thread_display_step (threadref *ref, void *context)
11437 {
11438 /* output_threadid(" threadstep ",ref); *//* simple test */
11439 return get_and_display_threadinfo (ref);
11440 }
11441
11442 static void
11443 threadlist_update_test_cmd (const char *cmd, int tty)
11444 {
11445 printf_filtered ("Remote Threadlist update test\n");
11446 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11447 }
11448
11449 static void
11450 init_remote_threadtests (void)
11451 {
11452 add_com ("tlist", class_obscure, threadlist_test_cmd,
11453 _("Fetch and print the remote list of "
11454 "thread identifiers, one pkt only"));
11455 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11456 _("Fetch and display info about one thread"));
11457 add_com ("tset", class_obscure, threadset_test_cmd,
11458 _("Test setting to a different thread"));
11459 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11460 _("Iterate through updating all remote thread info"));
11461 add_com ("talive", class_obscure, threadalive_test,
11462 _(" Remote thread alive test "));
11463 }
11464
11465 #endif /* 0 */
11466
11467 /* Convert a thread ID to a string. Returns the string in a static
11468 buffer. */
11469
11470 const char *
11471 remote_target::pid_to_str (ptid_t ptid)
11472 {
11473 static char buf[64];
11474 struct remote_state *rs = get_remote_state ();
11475
11476 if (ptid == null_ptid)
11477 return normal_pid_to_str (ptid);
11478 else if (ptid.is_pid ())
11479 {
11480 /* Printing an inferior target id. */
11481
11482 /* When multi-process extensions are off, there's no way in the
11483 remote protocol to know the remote process id, if there's any
11484 at all. There's one exception --- when we're connected with
11485 target extended-remote, and we manually attached to a process
11486 with "attach PID". We don't record anywhere a flag that
11487 allows us to distinguish that case from the case of
11488 connecting with extended-remote and the stub already being
11489 attached to a process, and reporting yes to qAttached, hence
11490 no smart special casing here. */
11491 if (!remote_multi_process_p (rs))
11492 {
11493 xsnprintf (buf, sizeof buf, "Remote target");
11494 return buf;
11495 }
11496
11497 return normal_pid_to_str (ptid);
11498 }
11499 else
11500 {
11501 if (magic_null_ptid == ptid)
11502 xsnprintf (buf, sizeof buf, "Thread <main>");
11503 else if (remote_multi_process_p (rs))
11504 if (ptid.lwp () == 0)
11505 return normal_pid_to_str (ptid);
11506 else
11507 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11508 ptid.pid (), ptid.lwp ());
11509 else
11510 xsnprintf (buf, sizeof buf, "Thread %ld",
11511 ptid.lwp ());
11512 return buf;
11513 }
11514 }
11515
11516 /* Get the address of the thread local variable in OBJFILE which is
11517 stored at OFFSET within the thread local storage for thread PTID. */
11518
11519 CORE_ADDR
11520 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11521 CORE_ADDR offset)
11522 {
11523 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11524 {
11525 struct remote_state *rs = get_remote_state ();
11526 char *p = rs->buf;
11527 char *endp = rs->buf + get_remote_packet_size ();
11528 enum packet_result result;
11529
11530 strcpy (p, "qGetTLSAddr:");
11531 p += strlen (p);
11532 p = write_ptid (p, endp, ptid);
11533 *p++ = ',';
11534 p += hexnumstr (p, offset);
11535 *p++ = ',';
11536 p += hexnumstr (p, lm);
11537 *p++ = '\0';
11538
11539 putpkt (rs->buf);
11540 getpkt (&rs->buf, &rs->buf_size, 0);
11541 result = packet_ok (rs->buf,
11542 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11543 if (result == PACKET_OK)
11544 {
11545 ULONGEST result;
11546
11547 unpack_varlen_hex (rs->buf, &result);
11548 return result;
11549 }
11550 else if (result == PACKET_UNKNOWN)
11551 throw_error (TLS_GENERIC_ERROR,
11552 _("Remote target doesn't support qGetTLSAddr packet"));
11553 else
11554 throw_error (TLS_GENERIC_ERROR,
11555 _("Remote target failed to process qGetTLSAddr request"));
11556 }
11557 else
11558 throw_error (TLS_GENERIC_ERROR,
11559 _("TLS not supported or disabled on this target"));
11560 /* Not reached. */
11561 return 0;
11562 }
11563
11564 /* Provide thread local base, i.e. Thread Information Block address.
11565 Returns 1 if ptid is found and thread_local_base is non zero. */
11566
11567 bool
11568 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11569 {
11570 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11571 {
11572 struct remote_state *rs = get_remote_state ();
11573 char *p = rs->buf;
11574 char *endp = rs->buf + get_remote_packet_size ();
11575 enum packet_result result;
11576
11577 strcpy (p, "qGetTIBAddr:");
11578 p += strlen (p);
11579 p = write_ptid (p, endp, ptid);
11580 *p++ = '\0';
11581
11582 putpkt (rs->buf);
11583 getpkt (&rs->buf, &rs->buf_size, 0);
11584 result = packet_ok (rs->buf,
11585 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11586 if (result == PACKET_OK)
11587 {
11588 ULONGEST result;
11589
11590 unpack_varlen_hex (rs->buf, &result);
11591 if (addr)
11592 *addr = (CORE_ADDR) result;
11593 return true;
11594 }
11595 else if (result == PACKET_UNKNOWN)
11596 error (_("Remote target doesn't support qGetTIBAddr packet"));
11597 else
11598 error (_("Remote target failed to process qGetTIBAddr request"));
11599 }
11600 else
11601 error (_("qGetTIBAddr not supported or disabled on this target"));
11602 /* Not reached. */
11603 return false;
11604 }
11605
11606 /* Support for inferring a target description based on the current
11607 architecture and the size of a 'g' packet. While the 'g' packet
11608 can have any size (since optional registers can be left off the
11609 end), some sizes are easily recognizable given knowledge of the
11610 approximate architecture. */
11611
11612 struct remote_g_packet_guess
11613 {
11614 int bytes;
11615 const struct target_desc *tdesc;
11616 };
11617 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11618 DEF_VEC_O(remote_g_packet_guess_s);
11619
11620 struct remote_g_packet_data
11621 {
11622 VEC(remote_g_packet_guess_s) *guesses;
11623 };
11624
11625 static struct gdbarch_data *remote_g_packet_data_handle;
11626
11627 static void *
11628 remote_g_packet_data_init (struct obstack *obstack)
11629 {
11630 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11631 }
11632
11633 void
11634 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11635 const struct target_desc *tdesc)
11636 {
11637 struct remote_g_packet_data *data
11638 = ((struct remote_g_packet_data *)
11639 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11640 struct remote_g_packet_guess new_guess, *guess;
11641 int ix;
11642
11643 gdb_assert (tdesc != NULL);
11644
11645 for (ix = 0;
11646 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11647 ix++)
11648 if (guess->bytes == bytes)
11649 internal_error (__FILE__, __LINE__,
11650 _("Duplicate g packet description added for size %d"),
11651 bytes);
11652
11653 new_guess.bytes = bytes;
11654 new_guess.tdesc = tdesc;
11655 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11656 }
11657
11658 /* Return 1 if remote_read_description would do anything on this target
11659 and architecture, 0 otherwise. */
11660
11661 static int
11662 remote_read_description_p (struct target_ops *target)
11663 {
11664 struct remote_g_packet_data *data
11665 = ((struct remote_g_packet_data *)
11666 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11667
11668 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11669 return 1;
11670
11671 return 0;
11672 }
11673
11674 const struct target_desc *
11675 remote_target::read_description ()
11676 {
11677 struct remote_g_packet_data *data
11678 = ((struct remote_g_packet_data *)
11679 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11680
11681 /* Do not try this during initial connection, when we do not know
11682 whether there is a running but stopped thread. */
11683 if (!target_has_execution || inferior_ptid == null_ptid)
11684 return beneath ()->read_description ();
11685
11686 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11687 {
11688 struct remote_g_packet_guess *guess;
11689 int ix;
11690 int bytes = send_g_packet ();
11691
11692 for (ix = 0;
11693 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11694 ix++)
11695 if (guess->bytes == bytes)
11696 return guess->tdesc;
11697
11698 /* We discard the g packet. A minor optimization would be to
11699 hold on to it, and fill the register cache once we have selected
11700 an architecture, but it's too tricky to do safely. */
11701 }
11702
11703 return beneath ()->read_description ();
11704 }
11705
11706 /* Remote file transfer support. This is host-initiated I/O, not
11707 target-initiated; for target-initiated, see remote-fileio.c. */
11708
11709 /* If *LEFT is at least the length of STRING, copy STRING to
11710 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11711 decrease *LEFT. Otherwise raise an error. */
11712
11713 static void
11714 remote_buffer_add_string (char **buffer, int *left, const char *string)
11715 {
11716 int len = strlen (string);
11717
11718 if (len > *left)
11719 error (_("Packet too long for target."));
11720
11721 memcpy (*buffer, string, len);
11722 *buffer += len;
11723 *left -= len;
11724
11725 /* NUL-terminate the buffer as a convenience, if there is
11726 room. */
11727 if (*left)
11728 **buffer = '\0';
11729 }
11730
11731 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11732 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11733 decrease *LEFT. Otherwise raise an error. */
11734
11735 static void
11736 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11737 int len)
11738 {
11739 if (2 * len > *left)
11740 error (_("Packet too long for target."));
11741
11742 bin2hex (bytes, *buffer, len);
11743 *buffer += 2 * len;
11744 *left -= 2 * len;
11745
11746 /* NUL-terminate the buffer as a convenience, if there is
11747 room. */
11748 if (*left)
11749 **buffer = '\0';
11750 }
11751
11752 /* If *LEFT is large enough, convert VALUE to hex and add it to
11753 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11754 decrease *LEFT. Otherwise raise an error. */
11755
11756 static void
11757 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11758 {
11759 int len = hexnumlen (value);
11760
11761 if (len > *left)
11762 error (_("Packet too long for target."));
11763
11764 hexnumstr (*buffer, value);
11765 *buffer += len;
11766 *left -= len;
11767
11768 /* NUL-terminate the buffer as a convenience, if there is
11769 room. */
11770 if (*left)
11771 **buffer = '\0';
11772 }
11773
11774 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11775 value, *REMOTE_ERRNO to the remote error number or zero if none
11776 was included, and *ATTACHMENT to point to the start of the annex
11777 if any. The length of the packet isn't needed here; there may
11778 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11779
11780 Return 0 if the packet could be parsed, -1 if it could not. If
11781 -1 is returned, the other variables may not be initialized. */
11782
11783 static int
11784 remote_hostio_parse_result (char *buffer, int *retcode,
11785 int *remote_errno, char **attachment)
11786 {
11787 char *p, *p2;
11788
11789 *remote_errno = 0;
11790 *attachment = NULL;
11791
11792 if (buffer[0] != 'F')
11793 return -1;
11794
11795 errno = 0;
11796 *retcode = strtol (&buffer[1], &p, 16);
11797 if (errno != 0 || p == &buffer[1])
11798 return -1;
11799
11800 /* Check for ",errno". */
11801 if (*p == ',')
11802 {
11803 errno = 0;
11804 *remote_errno = strtol (p + 1, &p2, 16);
11805 if (errno != 0 || p + 1 == p2)
11806 return -1;
11807 p = p2;
11808 }
11809
11810 /* Check for ";attachment". If there is no attachment, the
11811 packet should end here. */
11812 if (*p == ';')
11813 {
11814 *attachment = p + 1;
11815 return 0;
11816 }
11817 else if (*p == '\0')
11818 return 0;
11819 else
11820 return -1;
11821 }
11822
11823 /* Send a prepared I/O packet to the target and read its response.
11824 The prepared packet is in the global RS->BUF before this function
11825 is called, and the answer is there when we return.
11826
11827 COMMAND_BYTES is the length of the request to send, which may include
11828 binary data. WHICH_PACKET is the packet configuration to check
11829 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11830 is set to the error number and -1 is returned. Otherwise the value
11831 returned by the function is returned.
11832
11833 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11834 attachment is expected; an error will be reported if there's a
11835 mismatch. If one is found, *ATTACHMENT will be set to point into
11836 the packet buffer and *ATTACHMENT_LEN will be set to the
11837 attachment's length. */
11838
11839 int
11840 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11841 int *remote_errno, char **attachment,
11842 int *attachment_len)
11843 {
11844 struct remote_state *rs = get_remote_state ();
11845 int ret, bytes_read;
11846 char *attachment_tmp;
11847
11848 if (packet_support (which_packet) == PACKET_DISABLE)
11849 {
11850 *remote_errno = FILEIO_ENOSYS;
11851 return -1;
11852 }
11853
11854 putpkt_binary (rs->buf, command_bytes);
11855 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11856
11857 /* If it timed out, something is wrong. Don't try to parse the
11858 buffer. */
11859 if (bytes_read < 0)
11860 {
11861 *remote_errno = FILEIO_EINVAL;
11862 return -1;
11863 }
11864
11865 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11866 {
11867 case PACKET_ERROR:
11868 *remote_errno = FILEIO_EINVAL;
11869 return -1;
11870 case PACKET_UNKNOWN:
11871 *remote_errno = FILEIO_ENOSYS;
11872 return -1;
11873 case PACKET_OK:
11874 break;
11875 }
11876
11877 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11878 &attachment_tmp))
11879 {
11880 *remote_errno = FILEIO_EINVAL;
11881 return -1;
11882 }
11883
11884 /* Make sure we saw an attachment if and only if we expected one. */
11885 if ((attachment_tmp == NULL && attachment != NULL)
11886 || (attachment_tmp != NULL && attachment == NULL))
11887 {
11888 *remote_errno = FILEIO_EINVAL;
11889 return -1;
11890 }
11891
11892 /* If an attachment was found, it must point into the packet buffer;
11893 work out how many bytes there were. */
11894 if (attachment_tmp != NULL)
11895 {
11896 *attachment = attachment_tmp;
11897 *attachment_len = bytes_read - (*attachment - rs->buf);
11898 }
11899
11900 return ret;
11901 }
11902
11903 /* See declaration.h. */
11904
11905 void
11906 readahead_cache::invalidate ()
11907 {
11908 this->fd = -1;
11909 }
11910
11911 /* See declaration.h. */
11912
11913 void
11914 readahead_cache::invalidate_fd (int fd)
11915 {
11916 if (this->fd == fd)
11917 this->fd = -1;
11918 }
11919
11920 /* Set the filesystem remote_hostio functions that take FILENAME
11921 arguments will use. Return 0 on success, or -1 if an error
11922 occurs (and set *REMOTE_ERRNO). */
11923
11924 int
11925 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11926 int *remote_errno)
11927 {
11928 struct remote_state *rs = get_remote_state ();
11929 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11930 char *p = rs->buf;
11931 int left = get_remote_packet_size () - 1;
11932 char arg[9];
11933 int ret;
11934
11935 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11936 return 0;
11937
11938 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11939 return 0;
11940
11941 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11942
11943 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11944 remote_buffer_add_string (&p, &left, arg);
11945
11946 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11947 remote_errno, NULL, NULL);
11948
11949 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11950 return 0;
11951
11952 if (ret == 0)
11953 rs->fs_pid = required_pid;
11954
11955 return ret;
11956 }
11957
11958 /* Implementation of to_fileio_open. */
11959
11960 int
11961 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11962 int flags, int mode, int warn_if_slow,
11963 int *remote_errno)
11964 {
11965 struct remote_state *rs = get_remote_state ();
11966 char *p = rs->buf;
11967 int left = get_remote_packet_size () - 1;
11968
11969 if (warn_if_slow)
11970 {
11971 static int warning_issued = 0;
11972
11973 printf_unfiltered (_("Reading %s from remote target...\n"),
11974 filename);
11975
11976 if (!warning_issued)
11977 {
11978 warning (_("File transfers from remote targets can be slow."
11979 " Use \"set sysroot\" to access files locally"
11980 " instead."));
11981 warning_issued = 1;
11982 }
11983 }
11984
11985 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11986 return -1;
11987
11988 remote_buffer_add_string (&p, &left, "vFile:open:");
11989
11990 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11991 strlen (filename));
11992 remote_buffer_add_string (&p, &left, ",");
11993
11994 remote_buffer_add_int (&p, &left, flags);
11995 remote_buffer_add_string (&p, &left, ",");
11996
11997 remote_buffer_add_int (&p, &left, mode);
11998
11999 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
12000 remote_errno, NULL, NULL);
12001 }
12002
12003 int
12004 remote_target::fileio_open (struct inferior *inf, const char *filename,
12005 int flags, int mode, int warn_if_slow,
12006 int *remote_errno)
12007 {
12008 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12009 remote_errno);
12010 }
12011
12012 /* Implementation of to_fileio_pwrite. */
12013
12014 int
12015 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12016 ULONGEST offset, int *remote_errno)
12017 {
12018 struct remote_state *rs = get_remote_state ();
12019 char *p = rs->buf;
12020 int left = get_remote_packet_size ();
12021 int out_len;
12022
12023 rs->readahead_cache.invalidate_fd (fd);
12024
12025 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12026
12027 remote_buffer_add_int (&p, &left, fd);
12028 remote_buffer_add_string (&p, &left, ",");
12029
12030 remote_buffer_add_int (&p, &left, offset);
12031 remote_buffer_add_string (&p, &left, ",");
12032
12033 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12034 get_remote_packet_size () - (p - rs->buf));
12035
12036 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
12037 remote_errno, NULL, NULL);
12038 }
12039
12040 int
12041 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12042 ULONGEST offset, int *remote_errno)
12043 {
12044 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12045 }
12046
12047 /* Helper for the implementation of to_fileio_pread. Read the file
12048 from the remote side with vFile:pread. */
12049
12050 int
12051 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12052 ULONGEST offset, int *remote_errno)
12053 {
12054 struct remote_state *rs = get_remote_state ();
12055 char *p = rs->buf;
12056 char *attachment;
12057 int left = get_remote_packet_size ();
12058 int ret, attachment_len;
12059 int read_len;
12060
12061 remote_buffer_add_string (&p, &left, "vFile:pread:");
12062
12063 remote_buffer_add_int (&p, &left, fd);
12064 remote_buffer_add_string (&p, &left, ",");
12065
12066 remote_buffer_add_int (&p, &left, len);
12067 remote_buffer_add_string (&p, &left, ",");
12068
12069 remote_buffer_add_int (&p, &left, offset);
12070
12071 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12072 remote_errno, &attachment,
12073 &attachment_len);
12074
12075 if (ret < 0)
12076 return ret;
12077
12078 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12079 read_buf, len);
12080 if (read_len != ret)
12081 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12082
12083 return ret;
12084 }
12085
12086 /* See declaration.h. */
12087
12088 int
12089 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12090 ULONGEST offset)
12091 {
12092 if (this->fd == fd
12093 && this->offset <= offset
12094 && offset < this->offset + this->bufsize)
12095 {
12096 ULONGEST max = this->offset + this->bufsize;
12097
12098 if (offset + len > max)
12099 len = max - offset;
12100
12101 memcpy (read_buf, this->buf + offset - this->offset, len);
12102 return len;
12103 }
12104
12105 return 0;
12106 }
12107
12108 /* Implementation of to_fileio_pread. */
12109
12110 int
12111 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12112 ULONGEST offset, int *remote_errno)
12113 {
12114 int ret;
12115 struct remote_state *rs = get_remote_state ();
12116 readahead_cache *cache = &rs->readahead_cache;
12117
12118 ret = cache->pread (fd, read_buf, len, offset);
12119 if (ret > 0)
12120 {
12121 cache->hit_count++;
12122
12123 if (remote_debug)
12124 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12125 pulongest (cache->hit_count));
12126 return ret;
12127 }
12128
12129 cache->miss_count++;
12130 if (remote_debug)
12131 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12132 pulongest (cache->miss_count));
12133
12134 cache->fd = fd;
12135 cache->offset = offset;
12136 cache->bufsize = get_remote_packet_size ();
12137 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12138
12139 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12140 cache->offset, remote_errno);
12141 if (ret <= 0)
12142 {
12143 cache->invalidate_fd (fd);
12144 return ret;
12145 }
12146
12147 cache->bufsize = ret;
12148 return cache->pread (fd, read_buf, len, offset);
12149 }
12150
12151 int
12152 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12153 ULONGEST offset, int *remote_errno)
12154 {
12155 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12156 }
12157
12158 /* Implementation of to_fileio_close. */
12159
12160 int
12161 remote_target::remote_hostio_close (int fd, int *remote_errno)
12162 {
12163 struct remote_state *rs = get_remote_state ();
12164 char *p = rs->buf;
12165 int left = get_remote_packet_size () - 1;
12166
12167 rs->readahead_cache.invalidate_fd (fd);
12168
12169 remote_buffer_add_string (&p, &left, "vFile:close:");
12170
12171 remote_buffer_add_int (&p, &left, fd);
12172
12173 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12174 remote_errno, NULL, NULL);
12175 }
12176
12177 int
12178 remote_target::fileio_close (int fd, int *remote_errno)
12179 {
12180 return remote_hostio_close (fd, remote_errno);
12181 }
12182
12183 /* Implementation of to_fileio_unlink. */
12184
12185 int
12186 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12187 int *remote_errno)
12188 {
12189 struct remote_state *rs = get_remote_state ();
12190 char *p = rs->buf;
12191 int left = get_remote_packet_size () - 1;
12192
12193 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12194 return -1;
12195
12196 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12197
12198 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12199 strlen (filename));
12200
12201 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12202 remote_errno, NULL, NULL);
12203 }
12204
12205 int
12206 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12207 int *remote_errno)
12208 {
12209 return remote_hostio_unlink (inf, filename, remote_errno);
12210 }
12211
12212 /* Implementation of to_fileio_readlink. */
12213
12214 gdb::optional<std::string>
12215 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12216 int *remote_errno)
12217 {
12218 struct remote_state *rs = get_remote_state ();
12219 char *p = rs->buf;
12220 char *attachment;
12221 int left = get_remote_packet_size ();
12222 int len, attachment_len;
12223 int read_len;
12224
12225 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12226 return {};
12227
12228 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12229
12230 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12231 strlen (filename));
12232
12233 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12234 remote_errno, &attachment,
12235 &attachment_len);
12236
12237 if (len < 0)
12238 return {};
12239
12240 std::string ret (len, '\0');
12241
12242 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12243 (gdb_byte *) &ret[0], len);
12244 if (read_len != len)
12245 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12246
12247 return ret;
12248 }
12249
12250 /* Implementation of to_fileio_fstat. */
12251
12252 int
12253 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12254 {
12255 struct remote_state *rs = get_remote_state ();
12256 char *p = rs->buf;
12257 int left = get_remote_packet_size ();
12258 int attachment_len, ret;
12259 char *attachment;
12260 struct fio_stat fst;
12261 int read_len;
12262
12263 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12264
12265 remote_buffer_add_int (&p, &left, fd);
12266
12267 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12268 remote_errno, &attachment,
12269 &attachment_len);
12270 if (ret < 0)
12271 {
12272 if (*remote_errno != FILEIO_ENOSYS)
12273 return ret;
12274
12275 /* Strictly we should return -1, ENOSYS here, but when
12276 "set sysroot remote:" was implemented in August 2008
12277 BFD's need for a stat function was sidestepped with
12278 this hack. This was not remedied until March 2015
12279 so we retain the previous behavior to avoid breaking
12280 compatibility.
12281
12282 Note that the memset is a March 2015 addition; older
12283 GDBs set st_size *and nothing else* so the structure
12284 would have garbage in all other fields. This might
12285 break something but retaining the previous behavior
12286 here would be just too wrong. */
12287
12288 memset (st, 0, sizeof (struct stat));
12289 st->st_size = INT_MAX;
12290 return 0;
12291 }
12292
12293 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12294 (gdb_byte *) &fst, sizeof (fst));
12295
12296 if (read_len != ret)
12297 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12298
12299 if (read_len != sizeof (fst))
12300 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12301 read_len, (int) sizeof (fst));
12302
12303 remote_fileio_to_host_stat (&fst, st);
12304
12305 return 0;
12306 }
12307
12308 /* Implementation of to_filesystem_is_local. */
12309
12310 bool
12311 remote_target::filesystem_is_local ()
12312 {
12313 /* Valgrind GDB presents itself as a remote target but works
12314 on the local filesystem: it does not implement remote get
12315 and users are not expected to set a sysroot. To handle
12316 this case we treat the remote filesystem as local if the
12317 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12318 does not support vFile:open. */
12319 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12320 {
12321 enum packet_support ps = packet_support (PACKET_vFile_open);
12322
12323 if (ps == PACKET_SUPPORT_UNKNOWN)
12324 {
12325 int fd, remote_errno;
12326
12327 /* Try opening a file to probe support. The supplied
12328 filename is irrelevant, we only care about whether
12329 the stub recognizes the packet or not. */
12330 fd = remote_hostio_open (NULL, "just probing",
12331 FILEIO_O_RDONLY, 0700, 0,
12332 &remote_errno);
12333
12334 if (fd >= 0)
12335 remote_hostio_close (fd, &remote_errno);
12336
12337 ps = packet_support (PACKET_vFile_open);
12338 }
12339
12340 if (ps == PACKET_DISABLE)
12341 {
12342 static int warning_issued = 0;
12343
12344 if (!warning_issued)
12345 {
12346 warning (_("remote target does not support file"
12347 " transfer, attempting to access files"
12348 " from local filesystem."));
12349 warning_issued = 1;
12350 }
12351
12352 return true;
12353 }
12354 }
12355
12356 return false;
12357 }
12358
12359 static int
12360 remote_fileio_errno_to_host (int errnum)
12361 {
12362 switch (errnum)
12363 {
12364 case FILEIO_EPERM:
12365 return EPERM;
12366 case FILEIO_ENOENT:
12367 return ENOENT;
12368 case FILEIO_EINTR:
12369 return EINTR;
12370 case FILEIO_EIO:
12371 return EIO;
12372 case FILEIO_EBADF:
12373 return EBADF;
12374 case FILEIO_EACCES:
12375 return EACCES;
12376 case FILEIO_EFAULT:
12377 return EFAULT;
12378 case FILEIO_EBUSY:
12379 return EBUSY;
12380 case FILEIO_EEXIST:
12381 return EEXIST;
12382 case FILEIO_ENODEV:
12383 return ENODEV;
12384 case FILEIO_ENOTDIR:
12385 return ENOTDIR;
12386 case FILEIO_EISDIR:
12387 return EISDIR;
12388 case FILEIO_EINVAL:
12389 return EINVAL;
12390 case FILEIO_ENFILE:
12391 return ENFILE;
12392 case FILEIO_EMFILE:
12393 return EMFILE;
12394 case FILEIO_EFBIG:
12395 return EFBIG;
12396 case FILEIO_ENOSPC:
12397 return ENOSPC;
12398 case FILEIO_ESPIPE:
12399 return ESPIPE;
12400 case FILEIO_EROFS:
12401 return EROFS;
12402 case FILEIO_ENOSYS:
12403 return ENOSYS;
12404 case FILEIO_ENAMETOOLONG:
12405 return ENAMETOOLONG;
12406 }
12407 return -1;
12408 }
12409
12410 static char *
12411 remote_hostio_error (int errnum)
12412 {
12413 int host_error = remote_fileio_errno_to_host (errnum);
12414
12415 if (host_error == -1)
12416 error (_("Unknown remote I/O error %d"), errnum);
12417 else
12418 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12419 }
12420
12421 /* A RAII wrapper around a remote file descriptor. */
12422
12423 class scoped_remote_fd
12424 {
12425 public:
12426 scoped_remote_fd (remote_target *remote, int fd)
12427 : m_remote (remote), m_fd (fd)
12428 {
12429 }
12430
12431 ~scoped_remote_fd ()
12432 {
12433 if (m_fd != -1)
12434 {
12435 try
12436 {
12437 int remote_errno;
12438 m_remote->remote_hostio_close (m_fd, &remote_errno);
12439 }
12440 catch (...)
12441 {
12442 /* Swallow exception before it escapes the dtor. If
12443 something goes wrong, likely the connection is gone,
12444 and there's nothing else that can be done. */
12445 }
12446 }
12447 }
12448
12449 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12450
12451 /* Release ownership of the file descriptor, and return it. */
12452 int release () noexcept
12453 {
12454 int fd = m_fd;
12455 m_fd = -1;
12456 return fd;
12457 }
12458
12459 /* Return the owned file descriptor. */
12460 int get () const noexcept
12461 {
12462 return m_fd;
12463 }
12464
12465 private:
12466 /* The remote target. */
12467 remote_target *m_remote;
12468
12469 /* The owned remote I/O file descriptor. */
12470 int m_fd;
12471 };
12472
12473 void
12474 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12475 {
12476 remote_target *remote = get_current_remote_target ();
12477
12478 if (remote == nullptr)
12479 error (_("command can only be used with remote target"));
12480
12481 remote->remote_file_put (local_file, remote_file, from_tty);
12482 }
12483
12484 void
12485 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12486 int from_tty)
12487 {
12488 int retcode, remote_errno, bytes, io_size;
12489 int bytes_in_buffer;
12490 int saw_eof;
12491 ULONGEST offset;
12492
12493 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12494 if (file == NULL)
12495 perror_with_name (local_file);
12496
12497 scoped_remote_fd fd
12498 (this, remote_hostio_open (NULL,
12499 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12500 | FILEIO_O_TRUNC),
12501 0700, 0, &remote_errno));
12502 if (fd.get () == -1)
12503 remote_hostio_error (remote_errno);
12504
12505 /* Send up to this many bytes at once. They won't all fit in the
12506 remote packet limit, so we'll transfer slightly fewer. */
12507 io_size = get_remote_packet_size ();
12508 gdb::byte_vector buffer (io_size);
12509
12510 bytes_in_buffer = 0;
12511 saw_eof = 0;
12512 offset = 0;
12513 while (bytes_in_buffer || !saw_eof)
12514 {
12515 if (!saw_eof)
12516 {
12517 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12518 io_size - bytes_in_buffer,
12519 file.get ());
12520 if (bytes == 0)
12521 {
12522 if (ferror (file.get ()))
12523 error (_("Error reading %s."), local_file);
12524 else
12525 {
12526 /* EOF. Unless there is something still in the
12527 buffer from the last iteration, we are done. */
12528 saw_eof = 1;
12529 if (bytes_in_buffer == 0)
12530 break;
12531 }
12532 }
12533 }
12534 else
12535 bytes = 0;
12536
12537 bytes += bytes_in_buffer;
12538 bytes_in_buffer = 0;
12539
12540 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12541 offset, &remote_errno);
12542
12543 if (retcode < 0)
12544 remote_hostio_error (remote_errno);
12545 else if (retcode == 0)
12546 error (_("Remote write of %d bytes returned 0!"), bytes);
12547 else if (retcode < bytes)
12548 {
12549 /* Short write. Save the rest of the read data for the next
12550 write. */
12551 bytes_in_buffer = bytes - retcode;
12552 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12553 }
12554
12555 offset += retcode;
12556 }
12557
12558 if (remote_hostio_close (fd.release (), &remote_errno))
12559 remote_hostio_error (remote_errno);
12560
12561 if (from_tty)
12562 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12563 }
12564
12565 void
12566 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12567 {
12568 remote_target *remote = get_current_remote_target ();
12569
12570 if (remote == nullptr)
12571 error (_("command can only be used with remote target"));
12572
12573 remote->remote_file_get (remote_file, local_file, from_tty);
12574 }
12575
12576 void
12577 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12578 int from_tty)
12579 {
12580 int remote_errno, bytes, io_size;
12581 ULONGEST offset;
12582
12583 scoped_remote_fd fd
12584 (this, remote_hostio_open (NULL,
12585 remote_file, FILEIO_O_RDONLY, 0, 0,
12586 &remote_errno));
12587 if (fd.get () == -1)
12588 remote_hostio_error (remote_errno);
12589
12590 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12591 if (file == NULL)
12592 perror_with_name (local_file);
12593
12594 /* Send up to this many bytes at once. They won't all fit in the
12595 remote packet limit, so we'll transfer slightly fewer. */
12596 io_size = get_remote_packet_size ();
12597 gdb::byte_vector buffer (io_size);
12598
12599 offset = 0;
12600 while (1)
12601 {
12602 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12603 &remote_errno);
12604 if (bytes == 0)
12605 /* Success, but no bytes, means end-of-file. */
12606 break;
12607 if (bytes == -1)
12608 remote_hostio_error (remote_errno);
12609
12610 offset += bytes;
12611
12612 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12613 if (bytes == 0)
12614 perror_with_name (local_file);
12615 }
12616
12617 if (remote_hostio_close (fd.release (), &remote_errno))
12618 remote_hostio_error (remote_errno);
12619
12620 if (from_tty)
12621 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12622 }
12623
12624 void
12625 remote_file_delete (const char *remote_file, int from_tty)
12626 {
12627 remote_target *remote = get_current_remote_target ();
12628
12629 if (remote == nullptr)
12630 error (_("command can only be used with remote target"));
12631
12632 remote->remote_file_delete (remote_file, from_tty);
12633 }
12634
12635 void
12636 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12637 {
12638 int retcode, remote_errno;
12639
12640 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12641 if (retcode == -1)
12642 remote_hostio_error (remote_errno);
12643
12644 if (from_tty)
12645 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12646 }
12647
12648 static void
12649 remote_put_command (const char *args, int from_tty)
12650 {
12651 if (args == NULL)
12652 error_no_arg (_("file to put"));
12653
12654 gdb_argv argv (args);
12655 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12656 error (_("Invalid parameters to remote put"));
12657
12658 remote_file_put (argv[0], argv[1], from_tty);
12659 }
12660
12661 static void
12662 remote_get_command (const char *args, int from_tty)
12663 {
12664 if (args == NULL)
12665 error_no_arg (_("file to get"));
12666
12667 gdb_argv argv (args);
12668 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12669 error (_("Invalid parameters to remote get"));
12670
12671 remote_file_get (argv[0], argv[1], from_tty);
12672 }
12673
12674 static void
12675 remote_delete_command (const char *args, int from_tty)
12676 {
12677 if (args == NULL)
12678 error_no_arg (_("file to delete"));
12679
12680 gdb_argv argv (args);
12681 if (argv[0] == NULL || argv[1] != NULL)
12682 error (_("Invalid parameters to remote delete"));
12683
12684 remote_file_delete (argv[0], from_tty);
12685 }
12686
12687 static void
12688 remote_command (const char *args, int from_tty)
12689 {
12690 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12691 }
12692
12693 bool
12694 remote_target::can_execute_reverse ()
12695 {
12696 if (packet_support (PACKET_bs) == PACKET_ENABLE
12697 || packet_support (PACKET_bc) == PACKET_ENABLE)
12698 return true;
12699 else
12700 return false;
12701 }
12702
12703 bool
12704 remote_target::supports_non_stop ()
12705 {
12706 return true;
12707 }
12708
12709 bool
12710 remote_target::supports_disable_randomization ()
12711 {
12712 /* Only supported in extended mode. */
12713 return false;
12714 }
12715
12716 bool
12717 remote_target::supports_multi_process ()
12718 {
12719 struct remote_state *rs = get_remote_state ();
12720
12721 return remote_multi_process_p (rs);
12722 }
12723
12724 static int
12725 remote_supports_cond_tracepoints ()
12726 {
12727 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12728 }
12729
12730 bool
12731 remote_target::supports_evaluation_of_breakpoint_conditions ()
12732 {
12733 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12734 }
12735
12736 static int
12737 remote_supports_fast_tracepoints ()
12738 {
12739 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12740 }
12741
12742 static int
12743 remote_supports_static_tracepoints ()
12744 {
12745 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12746 }
12747
12748 static int
12749 remote_supports_install_in_trace ()
12750 {
12751 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12752 }
12753
12754 bool
12755 remote_target::supports_enable_disable_tracepoint ()
12756 {
12757 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12758 == PACKET_ENABLE);
12759 }
12760
12761 bool
12762 remote_target::supports_string_tracing ()
12763 {
12764 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12765 }
12766
12767 bool
12768 remote_target::can_run_breakpoint_commands ()
12769 {
12770 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12771 }
12772
12773 void
12774 remote_target::trace_init ()
12775 {
12776 struct remote_state *rs = get_remote_state ();
12777
12778 putpkt ("QTinit");
12779 remote_get_noisy_reply ();
12780 if (strcmp (rs->buf, "OK") != 0)
12781 error (_("Target does not support this command."));
12782 }
12783
12784 /* Recursive routine to walk through command list including loops, and
12785 download packets for each command. */
12786
12787 void
12788 remote_target::remote_download_command_source (int num, ULONGEST addr,
12789 struct command_line *cmds)
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792 struct command_line *cmd;
12793
12794 for (cmd = cmds; cmd; cmd = cmd->next)
12795 {
12796 QUIT; /* Allow user to bail out with ^C. */
12797 strcpy (rs->buf, "QTDPsrc:");
12798 encode_source_string (num, addr, "cmd", cmd->line,
12799 rs->buf + strlen (rs->buf),
12800 rs->buf_size - strlen (rs->buf));
12801 putpkt (rs->buf);
12802 remote_get_noisy_reply ();
12803 if (strcmp (rs->buf, "OK"))
12804 warning (_("Target does not support source download."));
12805
12806 if (cmd->control_type == while_control
12807 || cmd->control_type == while_stepping_control)
12808 {
12809 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12810
12811 QUIT; /* Allow user to bail out with ^C. */
12812 strcpy (rs->buf, "QTDPsrc:");
12813 encode_source_string (num, addr, "cmd", "end",
12814 rs->buf + strlen (rs->buf),
12815 rs->buf_size - strlen (rs->buf));
12816 putpkt (rs->buf);
12817 remote_get_noisy_reply ();
12818 if (strcmp (rs->buf, "OK"))
12819 warning (_("Target does not support source download."));
12820 }
12821 }
12822 }
12823
12824 void
12825 remote_target::download_tracepoint (struct bp_location *loc)
12826 {
12827 #define BUF_SIZE 2048
12828
12829 CORE_ADDR tpaddr;
12830 char addrbuf[40];
12831 char buf[BUF_SIZE];
12832 std::vector<std::string> tdp_actions;
12833 std::vector<std::string> stepping_actions;
12834 char *pkt;
12835 struct breakpoint *b = loc->owner;
12836 struct tracepoint *t = (struct tracepoint *) b;
12837 struct remote_state *rs = get_remote_state ();
12838
12839 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12840
12841 tpaddr = loc->address;
12842 sprintf_vma (addrbuf, tpaddr);
12843 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12844 addrbuf, /* address */
12845 (b->enable_state == bp_enabled ? 'E' : 'D'),
12846 t->step_count, t->pass_count);
12847 /* Fast tracepoints are mostly handled by the target, but we can
12848 tell the target how big of an instruction block should be moved
12849 around. */
12850 if (b->type == bp_fast_tracepoint)
12851 {
12852 /* Only test for support at download time; we may not know
12853 target capabilities at definition time. */
12854 if (remote_supports_fast_tracepoints ())
12855 {
12856 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12857 NULL))
12858 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12859 gdb_insn_length (loc->gdbarch, tpaddr));
12860 else
12861 /* If it passed validation at definition but fails now,
12862 something is very wrong. */
12863 internal_error (__FILE__, __LINE__,
12864 _("Fast tracepoint not "
12865 "valid during download"));
12866 }
12867 else
12868 /* Fast tracepoints are functionally identical to regular
12869 tracepoints, so don't take lack of support as a reason to
12870 give up on the trace run. */
12871 warning (_("Target does not support fast tracepoints, "
12872 "downloading %d as regular tracepoint"), b->number);
12873 }
12874 else if (b->type == bp_static_tracepoint)
12875 {
12876 /* Only test for support at download time; we may not know
12877 target capabilities at definition time. */
12878 if (remote_supports_static_tracepoints ())
12879 {
12880 struct static_tracepoint_marker marker;
12881
12882 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12883 strcat (buf, ":S");
12884 else
12885 error (_("Static tracepoint not valid during download"));
12886 }
12887 else
12888 /* Fast tracepoints are functionally identical to regular
12889 tracepoints, so don't take lack of support as a reason
12890 to give up on the trace run. */
12891 error (_("Target does not support static tracepoints"));
12892 }
12893 /* If the tracepoint has a conditional, make it into an agent
12894 expression and append to the definition. */
12895 if (loc->cond)
12896 {
12897 /* Only test support at download time, we may not know target
12898 capabilities at definition time. */
12899 if (remote_supports_cond_tracepoints ())
12900 {
12901 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12902 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12903 aexpr->len);
12904 pkt = buf + strlen (buf);
12905 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12906 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12907 *pkt = '\0';
12908 }
12909 else
12910 warning (_("Target does not support conditional tracepoints, "
12911 "ignoring tp %d cond"), b->number);
12912 }
12913
12914 if (b->commands || *default_collect)
12915 strcat (buf, "-");
12916 putpkt (buf);
12917 remote_get_noisy_reply ();
12918 if (strcmp (rs->buf, "OK"))
12919 error (_("Target does not support tracepoints."));
12920
12921 /* do_single_steps (t); */
12922 for (auto action_it = tdp_actions.begin ();
12923 action_it != tdp_actions.end (); action_it++)
12924 {
12925 QUIT; /* Allow user to bail out with ^C. */
12926
12927 bool has_more = (action_it != tdp_actions.end ()
12928 || !stepping_actions.empty ());
12929
12930 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12931 b->number, addrbuf, /* address */
12932 action_it->c_str (),
12933 has_more ? '-' : 0);
12934 putpkt (buf);
12935 remote_get_noisy_reply ();
12936 if (strcmp (rs->buf, "OK"))
12937 error (_("Error on target while setting tracepoints."));
12938 }
12939
12940 for (auto action_it = stepping_actions.begin ();
12941 action_it != stepping_actions.end (); action_it++)
12942 {
12943 QUIT; /* Allow user to bail out with ^C. */
12944
12945 bool is_first = action_it == stepping_actions.begin ();
12946 bool has_more = action_it != stepping_actions.end ();
12947
12948 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12949 b->number, addrbuf, /* address */
12950 is_first ? "S" : "",
12951 action_it->c_str (),
12952 has_more ? "-" : "");
12953 putpkt (buf);
12954 remote_get_noisy_reply ();
12955 if (strcmp (rs->buf, "OK"))
12956 error (_("Error on target while setting tracepoints."));
12957 }
12958
12959 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12960 {
12961 if (b->location != NULL)
12962 {
12963 strcpy (buf, "QTDPsrc:");
12964 encode_source_string (b->number, loc->address, "at",
12965 event_location_to_string (b->location.get ()),
12966 buf + strlen (buf), 2048 - strlen (buf));
12967 putpkt (buf);
12968 remote_get_noisy_reply ();
12969 if (strcmp (rs->buf, "OK"))
12970 warning (_("Target does not support source download."));
12971 }
12972 if (b->cond_string)
12973 {
12974 strcpy (buf, "QTDPsrc:");
12975 encode_source_string (b->number, loc->address,
12976 "cond", b->cond_string, buf + strlen (buf),
12977 2048 - strlen (buf));
12978 putpkt (buf);
12979 remote_get_noisy_reply ();
12980 if (strcmp (rs->buf, "OK"))
12981 warning (_("Target does not support source download."));
12982 }
12983 remote_download_command_source (b->number, loc->address,
12984 breakpoint_commands (b));
12985 }
12986 }
12987
12988 bool
12989 remote_target::can_download_tracepoint ()
12990 {
12991 struct remote_state *rs = get_remote_state ();
12992 struct trace_status *ts;
12993 int status;
12994
12995 /* Don't try to install tracepoints until we've relocated our
12996 symbols, and fetched and merged the target's tracepoint list with
12997 ours. */
12998 if (rs->starting_up)
12999 return false;
13000
13001 ts = current_trace_status ();
13002 status = get_trace_status (ts);
13003
13004 if (status == -1 || !ts->running_known || !ts->running)
13005 return false;
13006
13007 /* If we are in a tracing experiment, but remote stub doesn't support
13008 installing tracepoint in trace, we have to return. */
13009 if (!remote_supports_install_in_trace ())
13010 return false;
13011
13012 return true;
13013 }
13014
13015
13016 void
13017 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13018 {
13019 struct remote_state *rs = get_remote_state ();
13020 char *p;
13021
13022 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13023 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13024 tsv.builtin);
13025 p = rs->buf + strlen (rs->buf);
13026 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13027 error (_("Trace state variable name too long for tsv definition packet"));
13028 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13029 *p++ = '\0';
13030 putpkt (rs->buf);
13031 remote_get_noisy_reply ();
13032 if (*rs->buf == '\0')
13033 error (_("Target does not support this command."));
13034 if (strcmp (rs->buf, "OK") != 0)
13035 error (_("Error on target while downloading trace state variable."));
13036 }
13037
13038 void
13039 remote_target::enable_tracepoint (struct bp_location *location)
13040 {
13041 struct remote_state *rs = get_remote_state ();
13042 char addr_buf[40];
13043
13044 sprintf_vma (addr_buf, location->address);
13045 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13046 location->owner->number, addr_buf);
13047 putpkt (rs->buf);
13048 remote_get_noisy_reply ();
13049 if (*rs->buf == '\0')
13050 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13051 if (strcmp (rs->buf, "OK") != 0)
13052 error (_("Error on target while enabling tracepoint."));
13053 }
13054
13055 void
13056 remote_target::disable_tracepoint (struct bp_location *location)
13057 {
13058 struct remote_state *rs = get_remote_state ();
13059 char addr_buf[40];
13060
13061 sprintf_vma (addr_buf, location->address);
13062 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13063 location->owner->number, addr_buf);
13064 putpkt (rs->buf);
13065 remote_get_noisy_reply ();
13066 if (*rs->buf == '\0')
13067 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13068 if (strcmp (rs->buf, "OK") != 0)
13069 error (_("Error on target while disabling tracepoint."));
13070 }
13071
13072 void
13073 remote_target::trace_set_readonly_regions ()
13074 {
13075 asection *s;
13076 bfd *abfd = NULL;
13077 bfd_size_type size;
13078 bfd_vma vma;
13079 int anysecs = 0;
13080 int offset = 0;
13081
13082 if (!exec_bfd)
13083 return; /* No information to give. */
13084
13085 struct remote_state *rs = get_remote_state ();
13086
13087 strcpy (rs->buf, "QTro");
13088 offset = strlen (rs->buf);
13089 for (s = exec_bfd->sections; s; s = s->next)
13090 {
13091 char tmp1[40], tmp2[40];
13092 int sec_length;
13093
13094 if ((s->flags & SEC_LOAD) == 0 ||
13095 /* (s->flags & SEC_CODE) == 0 || */
13096 (s->flags & SEC_READONLY) == 0)
13097 continue;
13098
13099 anysecs = 1;
13100 vma = bfd_get_section_vma (abfd, s);
13101 size = bfd_get_section_size (s);
13102 sprintf_vma (tmp1, vma);
13103 sprintf_vma (tmp2, vma + size);
13104 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13105 if (offset + sec_length + 1 > rs->buf_size)
13106 {
13107 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13108 warning (_("\
13109 Too many sections for read-only sections definition packet."));
13110 break;
13111 }
13112 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13113 tmp1, tmp2);
13114 offset += sec_length;
13115 }
13116 if (anysecs)
13117 {
13118 putpkt (rs->buf);
13119 getpkt (&rs->buf, &rs->buf_size, 0);
13120 }
13121 }
13122
13123 void
13124 remote_target::trace_start ()
13125 {
13126 struct remote_state *rs = get_remote_state ();
13127
13128 putpkt ("QTStart");
13129 remote_get_noisy_reply ();
13130 if (*rs->buf == '\0')
13131 error (_("Target does not support this command."));
13132 if (strcmp (rs->buf, "OK") != 0)
13133 error (_("Bogus reply from target: %s"), rs->buf);
13134 }
13135
13136 int
13137 remote_target::get_trace_status (struct trace_status *ts)
13138 {
13139 /* Initialize it just to avoid a GCC false warning. */
13140 char *p = NULL;
13141 /* FIXME we need to get register block size some other way. */
13142 extern int trace_regblock_size;
13143 enum packet_result result;
13144 struct remote_state *rs = get_remote_state ();
13145
13146 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13147 return -1;
13148
13149 trace_regblock_size
13150 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13151
13152 putpkt ("qTStatus");
13153
13154 TRY
13155 {
13156 p = remote_get_noisy_reply ();
13157 }
13158 CATCH (ex, RETURN_MASK_ERROR)
13159 {
13160 if (ex.error != TARGET_CLOSE_ERROR)
13161 {
13162 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13163 return -1;
13164 }
13165 throw_exception (ex);
13166 }
13167 END_CATCH
13168
13169 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13170
13171 /* If the remote target doesn't do tracing, flag it. */
13172 if (result == PACKET_UNKNOWN)
13173 return -1;
13174
13175 /* We're working with a live target. */
13176 ts->filename = NULL;
13177
13178 if (*p++ != 'T')
13179 error (_("Bogus trace status reply from target: %s"), rs->buf);
13180
13181 /* Function 'parse_trace_status' sets default value of each field of
13182 'ts' at first, so we don't have to do it here. */
13183 parse_trace_status (p, ts);
13184
13185 return ts->running;
13186 }
13187
13188 void
13189 remote_target::get_tracepoint_status (struct breakpoint *bp,
13190 struct uploaded_tp *utp)
13191 {
13192 struct remote_state *rs = get_remote_state ();
13193 char *reply;
13194 struct bp_location *loc;
13195 struct tracepoint *tp = (struct tracepoint *) bp;
13196 size_t size = get_remote_packet_size ();
13197
13198 if (tp)
13199 {
13200 tp->hit_count = 0;
13201 tp->traceframe_usage = 0;
13202 for (loc = tp->loc; loc; loc = loc->next)
13203 {
13204 /* If the tracepoint was never downloaded, don't go asking for
13205 any status. */
13206 if (tp->number_on_target == 0)
13207 continue;
13208 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13209 phex_nz (loc->address, 0));
13210 putpkt (rs->buf);
13211 reply = remote_get_noisy_reply ();
13212 if (reply && *reply)
13213 {
13214 if (*reply == 'V')
13215 parse_tracepoint_status (reply + 1, bp, utp);
13216 }
13217 }
13218 }
13219 else if (utp)
13220 {
13221 utp->hit_count = 0;
13222 utp->traceframe_usage = 0;
13223 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13224 phex_nz (utp->addr, 0));
13225 putpkt (rs->buf);
13226 reply = remote_get_noisy_reply ();
13227 if (reply && *reply)
13228 {
13229 if (*reply == 'V')
13230 parse_tracepoint_status (reply + 1, bp, utp);
13231 }
13232 }
13233 }
13234
13235 void
13236 remote_target::trace_stop ()
13237 {
13238 struct remote_state *rs = get_remote_state ();
13239
13240 putpkt ("QTStop");
13241 remote_get_noisy_reply ();
13242 if (*rs->buf == '\0')
13243 error (_("Target does not support this command."));
13244 if (strcmp (rs->buf, "OK") != 0)
13245 error (_("Bogus reply from target: %s"), rs->buf);
13246 }
13247
13248 int
13249 remote_target::trace_find (enum trace_find_type type, int num,
13250 CORE_ADDR addr1, CORE_ADDR addr2,
13251 int *tpp)
13252 {
13253 struct remote_state *rs = get_remote_state ();
13254 char *endbuf = rs->buf + get_remote_packet_size ();
13255 char *p, *reply;
13256 int target_frameno = -1, target_tracept = -1;
13257
13258 /* Lookups other than by absolute frame number depend on the current
13259 trace selected, so make sure it is correct on the remote end
13260 first. */
13261 if (type != tfind_number)
13262 set_remote_traceframe ();
13263
13264 p = rs->buf;
13265 strcpy (p, "QTFrame:");
13266 p = strchr (p, '\0');
13267 switch (type)
13268 {
13269 case tfind_number:
13270 xsnprintf (p, endbuf - p, "%x", num);
13271 break;
13272 case tfind_pc:
13273 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13274 break;
13275 case tfind_tp:
13276 xsnprintf (p, endbuf - p, "tdp:%x", num);
13277 break;
13278 case tfind_range:
13279 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13280 phex_nz (addr2, 0));
13281 break;
13282 case tfind_outside:
13283 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13284 phex_nz (addr2, 0));
13285 break;
13286 default:
13287 error (_("Unknown trace find type %d"), type);
13288 }
13289
13290 putpkt (rs->buf);
13291 reply = remote_get_noisy_reply ();
13292 if (*reply == '\0')
13293 error (_("Target does not support this command."));
13294
13295 while (reply && *reply)
13296 switch (*reply)
13297 {
13298 case 'F':
13299 p = ++reply;
13300 target_frameno = (int) strtol (p, &reply, 16);
13301 if (reply == p)
13302 error (_("Unable to parse trace frame number"));
13303 /* Don't update our remote traceframe number cache on failure
13304 to select a remote traceframe. */
13305 if (target_frameno == -1)
13306 return -1;
13307 break;
13308 case 'T':
13309 p = ++reply;
13310 target_tracept = (int) strtol (p, &reply, 16);
13311 if (reply == p)
13312 error (_("Unable to parse tracepoint number"));
13313 break;
13314 case 'O': /* "OK"? */
13315 if (reply[1] == 'K' && reply[2] == '\0')
13316 reply += 2;
13317 else
13318 error (_("Bogus reply from target: %s"), reply);
13319 break;
13320 default:
13321 error (_("Bogus reply from target: %s"), reply);
13322 }
13323 if (tpp)
13324 *tpp = target_tracept;
13325
13326 rs->remote_traceframe_number = target_frameno;
13327 return target_frameno;
13328 }
13329
13330 bool
13331 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13332 {
13333 struct remote_state *rs = get_remote_state ();
13334 char *reply;
13335 ULONGEST uval;
13336
13337 set_remote_traceframe ();
13338
13339 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13340 putpkt (rs->buf);
13341 reply = remote_get_noisy_reply ();
13342 if (reply && *reply)
13343 {
13344 if (*reply == 'V')
13345 {
13346 unpack_varlen_hex (reply + 1, &uval);
13347 *val = (LONGEST) uval;
13348 return true;
13349 }
13350 }
13351 return false;
13352 }
13353
13354 int
13355 remote_target::save_trace_data (const char *filename)
13356 {
13357 struct remote_state *rs = get_remote_state ();
13358 char *p, *reply;
13359
13360 p = rs->buf;
13361 strcpy (p, "QTSave:");
13362 p += strlen (p);
13363 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13364 error (_("Remote file name too long for trace save packet"));
13365 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13366 *p++ = '\0';
13367 putpkt (rs->buf);
13368 reply = remote_get_noisy_reply ();
13369 if (*reply == '\0')
13370 error (_("Target does not support this command."));
13371 if (strcmp (reply, "OK") != 0)
13372 error (_("Bogus reply from target: %s"), reply);
13373 return 0;
13374 }
13375
13376 /* This is basically a memory transfer, but needs to be its own packet
13377 because we don't know how the target actually organizes its trace
13378 memory, plus we want to be able to ask for as much as possible, but
13379 not be unhappy if we don't get as much as we ask for. */
13380
13381 LONGEST
13382 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13383 {
13384 struct remote_state *rs = get_remote_state ();
13385 char *reply;
13386 char *p;
13387 int rslt;
13388
13389 p = rs->buf;
13390 strcpy (p, "qTBuffer:");
13391 p += strlen (p);
13392 p += hexnumstr (p, offset);
13393 *p++ = ',';
13394 p += hexnumstr (p, len);
13395 *p++ = '\0';
13396
13397 putpkt (rs->buf);
13398 reply = remote_get_noisy_reply ();
13399 if (reply && *reply)
13400 {
13401 /* 'l' by itself means we're at the end of the buffer and
13402 there is nothing more to get. */
13403 if (*reply == 'l')
13404 return 0;
13405
13406 /* Convert the reply into binary. Limit the number of bytes to
13407 convert according to our passed-in buffer size, rather than
13408 what was returned in the packet; if the target is
13409 unexpectedly generous and gives us a bigger reply than we
13410 asked for, we don't want to crash. */
13411 rslt = hex2bin (reply, buf, len);
13412 return rslt;
13413 }
13414
13415 /* Something went wrong, flag as an error. */
13416 return -1;
13417 }
13418
13419 void
13420 remote_target::set_disconnected_tracing (int val)
13421 {
13422 struct remote_state *rs = get_remote_state ();
13423
13424 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13425 {
13426 char *reply;
13427
13428 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13429 putpkt (rs->buf);
13430 reply = remote_get_noisy_reply ();
13431 if (*reply == '\0')
13432 error (_("Target does not support this command."));
13433 if (strcmp (reply, "OK") != 0)
13434 error (_("Bogus reply from target: %s"), reply);
13435 }
13436 else if (val)
13437 warning (_("Target does not support disconnected tracing."));
13438 }
13439
13440 int
13441 remote_target::core_of_thread (ptid_t ptid)
13442 {
13443 struct thread_info *info = find_thread_ptid (ptid);
13444
13445 if (info != NULL && info->priv != NULL)
13446 return get_remote_thread_info (info)->core;
13447
13448 return -1;
13449 }
13450
13451 void
13452 remote_target::set_circular_trace_buffer (int val)
13453 {
13454 struct remote_state *rs = get_remote_state ();
13455 char *reply;
13456
13457 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13458 putpkt (rs->buf);
13459 reply = remote_get_noisy_reply ();
13460 if (*reply == '\0')
13461 error (_("Target does not support this command."));
13462 if (strcmp (reply, "OK") != 0)
13463 error (_("Bogus reply from target: %s"), reply);
13464 }
13465
13466 traceframe_info_up
13467 remote_target::traceframe_info ()
13468 {
13469 gdb::optional<gdb::char_vector> text
13470 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13471 NULL);
13472 if (text)
13473 return parse_traceframe_info (text->data ());
13474
13475 return NULL;
13476 }
13477
13478 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13479 instruction on which a fast tracepoint may be placed. Returns -1
13480 if the packet is not supported, and 0 if the minimum instruction
13481 length is unknown. */
13482
13483 int
13484 remote_target::get_min_fast_tracepoint_insn_len ()
13485 {
13486 struct remote_state *rs = get_remote_state ();
13487 char *reply;
13488
13489 /* If we're not debugging a process yet, the IPA can't be
13490 loaded. */
13491 if (!target_has_execution)
13492 return 0;
13493
13494 /* Make sure the remote is pointing at the right process. */
13495 set_general_process ();
13496
13497 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13498 putpkt (rs->buf);
13499 reply = remote_get_noisy_reply ();
13500 if (*reply == '\0')
13501 return -1;
13502 else
13503 {
13504 ULONGEST min_insn_len;
13505
13506 unpack_varlen_hex (reply, &min_insn_len);
13507
13508 return (int) min_insn_len;
13509 }
13510 }
13511
13512 void
13513 remote_target::set_trace_buffer_size (LONGEST val)
13514 {
13515 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13516 {
13517 struct remote_state *rs = get_remote_state ();
13518 char *buf = rs->buf;
13519 char *endbuf = rs->buf + get_remote_packet_size ();
13520 enum packet_result result;
13521
13522 gdb_assert (val >= 0 || val == -1);
13523 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13524 /* Send -1 as literal "-1" to avoid host size dependency. */
13525 if (val < 0)
13526 {
13527 *buf++ = '-';
13528 buf += hexnumstr (buf, (ULONGEST) -val);
13529 }
13530 else
13531 buf += hexnumstr (buf, (ULONGEST) val);
13532
13533 putpkt (rs->buf);
13534 remote_get_noisy_reply ();
13535 result = packet_ok (rs->buf,
13536 &remote_protocol_packets[PACKET_QTBuffer_size]);
13537
13538 if (result != PACKET_OK)
13539 warning (_("Bogus reply from target: %s"), rs->buf);
13540 }
13541 }
13542
13543 bool
13544 remote_target::set_trace_notes (const char *user, const char *notes,
13545 const char *stop_notes)
13546 {
13547 struct remote_state *rs = get_remote_state ();
13548 char *reply;
13549 char *buf = rs->buf;
13550 char *endbuf = rs->buf + get_remote_packet_size ();
13551 int nbytes;
13552
13553 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13554 if (user)
13555 {
13556 buf += xsnprintf (buf, endbuf - buf, "user:");
13557 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13558 buf += 2 * nbytes;
13559 *buf++ = ';';
13560 }
13561 if (notes)
13562 {
13563 buf += xsnprintf (buf, endbuf - buf, "notes:");
13564 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13565 buf += 2 * nbytes;
13566 *buf++ = ';';
13567 }
13568 if (stop_notes)
13569 {
13570 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13571 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13572 buf += 2 * nbytes;
13573 *buf++ = ';';
13574 }
13575 /* Ensure the buffer is terminated. */
13576 *buf = '\0';
13577
13578 putpkt (rs->buf);
13579 reply = remote_get_noisy_reply ();
13580 if (*reply == '\0')
13581 return false;
13582
13583 if (strcmp (reply, "OK") != 0)
13584 error (_("Bogus reply from target: %s"), reply);
13585
13586 return true;
13587 }
13588
13589 bool
13590 remote_target::use_agent (bool use)
13591 {
13592 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13593 {
13594 struct remote_state *rs = get_remote_state ();
13595
13596 /* If the stub supports QAgent. */
13597 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13598 putpkt (rs->buf);
13599 getpkt (&rs->buf, &rs->buf_size, 0);
13600
13601 if (strcmp (rs->buf, "OK") == 0)
13602 {
13603 ::use_agent = use;
13604 return true;
13605 }
13606 }
13607
13608 return false;
13609 }
13610
13611 bool
13612 remote_target::can_use_agent ()
13613 {
13614 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13615 }
13616
13617 struct btrace_target_info
13618 {
13619 /* The ptid of the traced thread. */
13620 ptid_t ptid;
13621
13622 /* The obtained branch trace configuration. */
13623 struct btrace_config conf;
13624 };
13625
13626 /* Reset our idea of our target's btrace configuration. */
13627
13628 static void
13629 remote_btrace_reset (remote_state *rs)
13630 {
13631 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13632 }
13633
13634 /* Synchronize the configuration with the target. */
13635
13636 void
13637 remote_target::btrace_sync_conf (const btrace_config *conf)
13638 {
13639 struct packet_config *packet;
13640 struct remote_state *rs;
13641 char *buf, *pos, *endbuf;
13642
13643 rs = get_remote_state ();
13644 buf = rs->buf;
13645 endbuf = buf + get_remote_packet_size ();
13646
13647 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13648 if (packet_config_support (packet) == PACKET_ENABLE
13649 && conf->bts.size != rs->btrace_config.bts.size)
13650 {
13651 pos = buf;
13652 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13653 conf->bts.size);
13654
13655 putpkt (buf);
13656 getpkt (&buf, &rs->buf_size, 0);
13657
13658 if (packet_ok (buf, packet) == PACKET_ERROR)
13659 {
13660 if (buf[0] == 'E' && buf[1] == '.')
13661 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13662 else
13663 error (_("Failed to configure the BTS buffer size."));
13664 }
13665
13666 rs->btrace_config.bts.size = conf->bts.size;
13667 }
13668
13669 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13670 if (packet_config_support (packet) == PACKET_ENABLE
13671 && conf->pt.size != rs->btrace_config.pt.size)
13672 {
13673 pos = buf;
13674 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13675 conf->pt.size);
13676
13677 putpkt (buf);
13678 getpkt (&buf, &rs->buf_size, 0);
13679
13680 if (packet_ok (buf, packet) == PACKET_ERROR)
13681 {
13682 if (buf[0] == 'E' && buf[1] == '.')
13683 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13684 else
13685 error (_("Failed to configure the trace buffer size."));
13686 }
13687
13688 rs->btrace_config.pt.size = conf->pt.size;
13689 }
13690 }
13691
13692 /* Read the current thread's btrace configuration from the target and
13693 store it into CONF. */
13694
13695 static void
13696 btrace_read_config (struct btrace_config *conf)
13697 {
13698 gdb::optional<gdb::char_vector> xml
13699 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13700 if (xml)
13701 parse_xml_btrace_conf (conf, xml->data ());
13702 }
13703
13704 /* Maybe reopen target btrace. */
13705
13706 void
13707 remote_target::remote_btrace_maybe_reopen ()
13708 {
13709 struct remote_state *rs = get_remote_state ();
13710 struct thread_info *tp;
13711 int btrace_target_pushed = 0;
13712 int warned = 0;
13713
13714 scoped_restore_current_thread restore_thread;
13715
13716 ALL_NON_EXITED_THREADS (tp)
13717 {
13718 set_general_thread (tp->ptid);
13719
13720 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13721 btrace_read_config (&rs->btrace_config);
13722
13723 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13724 continue;
13725
13726 #if !defined (HAVE_LIBIPT)
13727 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13728 {
13729 if (!warned)
13730 {
13731 warned = 1;
13732 warning (_("Target is recording using Intel Processor Trace "
13733 "but support was disabled at compile time."));
13734 }
13735
13736 continue;
13737 }
13738 #endif /* !defined (HAVE_LIBIPT) */
13739
13740 /* Push target, once, but before anything else happens. This way our
13741 changes to the threads will be cleaned up by unpushing the target
13742 in case btrace_read_config () throws. */
13743 if (!btrace_target_pushed)
13744 {
13745 btrace_target_pushed = 1;
13746 record_btrace_push_target ();
13747 printf_filtered (_("Target is recording using %s.\n"),
13748 btrace_format_string (rs->btrace_config.format));
13749 }
13750
13751 tp->btrace.target = XCNEW (struct btrace_target_info);
13752 tp->btrace.target->ptid = tp->ptid;
13753 tp->btrace.target->conf = rs->btrace_config;
13754 }
13755 }
13756
13757 /* Enable branch tracing. */
13758
13759 struct btrace_target_info *
13760 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13761 {
13762 struct btrace_target_info *tinfo = NULL;
13763 struct packet_config *packet = NULL;
13764 struct remote_state *rs = get_remote_state ();
13765 char *buf = rs->buf;
13766 char *endbuf = rs->buf + get_remote_packet_size ();
13767
13768 switch (conf->format)
13769 {
13770 case BTRACE_FORMAT_BTS:
13771 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13772 break;
13773
13774 case BTRACE_FORMAT_PT:
13775 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13776 break;
13777 }
13778
13779 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13780 error (_("Target does not support branch tracing."));
13781
13782 btrace_sync_conf (conf);
13783
13784 set_general_thread (ptid);
13785
13786 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13787 putpkt (rs->buf);
13788 getpkt (&rs->buf, &rs->buf_size, 0);
13789
13790 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13791 {
13792 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13793 error (_("Could not enable branch tracing for %s: %s"),
13794 target_pid_to_str (ptid), rs->buf + 2);
13795 else
13796 error (_("Could not enable branch tracing for %s."),
13797 target_pid_to_str (ptid));
13798 }
13799
13800 tinfo = XCNEW (struct btrace_target_info);
13801 tinfo->ptid = ptid;
13802
13803 /* If we fail to read the configuration, we lose some information, but the
13804 tracing itself is not impacted. */
13805 TRY
13806 {
13807 btrace_read_config (&tinfo->conf);
13808 }
13809 CATCH (err, RETURN_MASK_ERROR)
13810 {
13811 if (err.message != NULL)
13812 warning ("%s", err.message);
13813 }
13814 END_CATCH
13815
13816 return tinfo;
13817 }
13818
13819 /* Disable branch tracing. */
13820
13821 void
13822 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13823 {
13824 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13825 struct remote_state *rs = get_remote_state ();
13826 char *buf = rs->buf;
13827 char *endbuf = rs->buf + get_remote_packet_size ();
13828
13829 if (packet_config_support (packet) != PACKET_ENABLE)
13830 error (_("Target does not support branch tracing."));
13831
13832 set_general_thread (tinfo->ptid);
13833
13834 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13835 putpkt (rs->buf);
13836 getpkt (&rs->buf, &rs->buf_size, 0);
13837
13838 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13839 {
13840 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13841 error (_("Could not disable branch tracing for %s: %s"),
13842 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13843 else
13844 error (_("Could not disable branch tracing for %s."),
13845 target_pid_to_str (tinfo->ptid));
13846 }
13847
13848 xfree (tinfo);
13849 }
13850
13851 /* Teardown branch tracing. */
13852
13853 void
13854 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13855 {
13856 /* We must not talk to the target during teardown. */
13857 xfree (tinfo);
13858 }
13859
13860 /* Read the branch trace. */
13861
13862 enum btrace_error
13863 remote_target::read_btrace (struct btrace_data *btrace,
13864 struct btrace_target_info *tinfo,
13865 enum btrace_read_type type)
13866 {
13867 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13868 const char *annex;
13869
13870 if (packet_config_support (packet) != PACKET_ENABLE)
13871 error (_("Target does not support branch tracing."));
13872
13873 #if !defined(HAVE_LIBEXPAT)
13874 error (_("Cannot process branch tracing result. XML parsing not supported."));
13875 #endif
13876
13877 switch (type)
13878 {
13879 case BTRACE_READ_ALL:
13880 annex = "all";
13881 break;
13882 case BTRACE_READ_NEW:
13883 annex = "new";
13884 break;
13885 case BTRACE_READ_DELTA:
13886 annex = "delta";
13887 break;
13888 default:
13889 internal_error (__FILE__, __LINE__,
13890 _("Bad branch tracing read type: %u."),
13891 (unsigned int) type);
13892 }
13893
13894 gdb::optional<gdb::char_vector> xml
13895 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13896 if (!xml)
13897 return BTRACE_ERR_UNKNOWN;
13898
13899 parse_xml_btrace (btrace, xml->data ());
13900
13901 return BTRACE_ERR_NONE;
13902 }
13903
13904 const struct btrace_config *
13905 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13906 {
13907 return &tinfo->conf;
13908 }
13909
13910 bool
13911 remote_target::augmented_libraries_svr4_read ()
13912 {
13913 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13914 == PACKET_ENABLE);
13915 }
13916
13917 /* Implementation of to_load. */
13918
13919 void
13920 remote_target::load (const char *name, int from_tty)
13921 {
13922 generic_load (name, from_tty);
13923 }
13924
13925 /* Accepts an integer PID; returns a string representing a file that
13926 can be opened on the remote side to get the symbols for the child
13927 process. Returns NULL if the operation is not supported. */
13928
13929 char *
13930 remote_target::pid_to_exec_file (int pid)
13931 {
13932 static gdb::optional<gdb::char_vector> filename;
13933 struct inferior *inf;
13934 char *annex = NULL;
13935
13936 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13937 return NULL;
13938
13939 inf = find_inferior_pid (pid);
13940 if (inf == NULL)
13941 internal_error (__FILE__, __LINE__,
13942 _("not currently attached to process %d"), pid);
13943
13944 if (!inf->fake_pid_p)
13945 {
13946 const int annex_size = 9;
13947
13948 annex = (char *) alloca (annex_size);
13949 xsnprintf (annex, annex_size, "%x", pid);
13950 }
13951
13952 filename = target_read_stralloc (current_top_target (),
13953 TARGET_OBJECT_EXEC_FILE, annex);
13954
13955 return filename ? filename->data () : nullptr;
13956 }
13957
13958 /* Implement the to_can_do_single_step target_ops method. */
13959
13960 int
13961 remote_target::can_do_single_step ()
13962 {
13963 /* We can only tell whether target supports single step or not by
13964 supported s and S vCont actions if the stub supports vContSupported
13965 feature. If the stub doesn't support vContSupported feature,
13966 we have conservatively to think target doesn't supports single
13967 step. */
13968 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13969 {
13970 struct remote_state *rs = get_remote_state ();
13971
13972 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13973 remote_vcont_probe ();
13974
13975 return rs->supports_vCont.s && rs->supports_vCont.S;
13976 }
13977 else
13978 return 0;
13979 }
13980
13981 /* Implementation of the to_execution_direction method for the remote
13982 target. */
13983
13984 enum exec_direction_kind
13985 remote_target::execution_direction ()
13986 {
13987 struct remote_state *rs = get_remote_state ();
13988
13989 return rs->last_resume_exec_dir;
13990 }
13991
13992 /* Return pointer to the thread_info struct which corresponds to
13993 THREAD_HANDLE (having length HANDLE_LEN). */
13994
13995 thread_info *
13996 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13997 int handle_len,
13998 inferior *inf)
13999 {
14000 struct thread_info *tp;
14001
14002 ALL_NON_EXITED_THREADS (tp)
14003 {
14004 remote_thread_info *priv = get_remote_thread_info (tp);
14005
14006 if (tp->inf == inf && priv != NULL)
14007 {
14008 if (handle_len != priv->thread_handle.size ())
14009 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14010 handle_len, priv->thread_handle.size ());
14011 if (memcmp (thread_handle, priv->thread_handle.data (),
14012 handle_len) == 0)
14013 return tp;
14014 }
14015 }
14016
14017 return NULL;
14018 }
14019
14020 bool
14021 remote_target::can_async_p ()
14022 {
14023 struct remote_state *rs = get_remote_state ();
14024
14025 /* We don't go async if the user has explicitly prevented it with the
14026 "maint set target-async" command. */
14027 if (!target_async_permitted)
14028 return false;
14029
14030 /* We're async whenever the serial device is. */
14031 return serial_can_async_p (rs->remote_desc);
14032 }
14033
14034 bool
14035 remote_target::is_async_p ()
14036 {
14037 struct remote_state *rs = get_remote_state ();
14038
14039 if (!target_async_permitted)
14040 /* We only enable async when the user specifically asks for it. */
14041 return false;
14042
14043 /* We're async whenever the serial device is. */
14044 return serial_is_async_p (rs->remote_desc);
14045 }
14046
14047 /* Pass the SERIAL event on and up to the client. One day this code
14048 will be able to delay notifying the client of an event until the
14049 point where an entire packet has been received. */
14050
14051 static serial_event_ftype remote_async_serial_handler;
14052
14053 static void
14054 remote_async_serial_handler (struct serial *scb, void *context)
14055 {
14056 /* Don't propogate error information up to the client. Instead let
14057 the client find out about the error by querying the target. */
14058 inferior_event_handler (INF_REG_EVENT, NULL);
14059 }
14060
14061 static void
14062 remote_async_inferior_event_handler (gdb_client_data data)
14063 {
14064 inferior_event_handler (INF_REG_EVENT, data);
14065 }
14066
14067 void
14068 remote_target::async (int enable)
14069 {
14070 struct remote_state *rs = get_remote_state ();
14071
14072 if (enable)
14073 {
14074 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14075
14076 /* If there are pending events in the stop reply queue tell the
14077 event loop to process them. */
14078 if (!rs->stop_reply_queue.empty ())
14079 mark_async_event_handler (rs->remote_async_inferior_event_token);
14080 /* For simplicity, below we clear the pending events token
14081 without remembering whether it is marked, so here we always
14082 mark it. If there's actually no pending notification to
14083 process, this ends up being a no-op (other than a spurious
14084 event-loop wakeup). */
14085 if (target_is_non_stop_p ())
14086 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14087 }
14088 else
14089 {
14090 serial_async (rs->remote_desc, NULL, NULL);
14091 /* If the core is disabling async, it doesn't want to be
14092 disturbed with target events. Clear all async event sources
14093 too. */
14094 clear_async_event_handler (rs->remote_async_inferior_event_token);
14095 if (target_is_non_stop_p ())
14096 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14097 }
14098 }
14099
14100 /* Implementation of the to_thread_events method. */
14101
14102 void
14103 remote_target::thread_events (int enable)
14104 {
14105 struct remote_state *rs = get_remote_state ();
14106 size_t size = get_remote_packet_size ();
14107
14108 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14109 return;
14110
14111 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14112 putpkt (rs->buf);
14113 getpkt (&rs->buf, &rs->buf_size, 0);
14114
14115 switch (packet_ok (rs->buf,
14116 &remote_protocol_packets[PACKET_QThreadEvents]))
14117 {
14118 case PACKET_OK:
14119 if (strcmp (rs->buf, "OK") != 0)
14120 error (_("Remote refused setting thread events: %s"), rs->buf);
14121 break;
14122 case PACKET_ERROR:
14123 warning (_("Remote failure reply: %s"), rs->buf);
14124 break;
14125 case PACKET_UNKNOWN:
14126 break;
14127 }
14128 }
14129
14130 static void
14131 set_remote_cmd (const char *args, int from_tty)
14132 {
14133 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14134 }
14135
14136 static void
14137 show_remote_cmd (const char *args, int from_tty)
14138 {
14139 /* We can't just use cmd_show_list here, because we want to skip
14140 the redundant "show remote Z-packet" and the legacy aliases. */
14141 struct cmd_list_element *list = remote_show_cmdlist;
14142 struct ui_out *uiout = current_uiout;
14143
14144 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14145 for (; list != NULL; list = list->next)
14146 if (strcmp (list->name, "Z-packet") == 0)
14147 continue;
14148 else if (list->type == not_set_cmd)
14149 /* Alias commands are exactly like the original, except they
14150 don't have the normal type. */
14151 continue;
14152 else
14153 {
14154 ui_out_emit_tuple option_emitter (uiout, "option");
14155
14156 uiout->field_string ("name", list->name);
14157 uiout->text (": ");
14158 if (list->type == show_cmd)
14159 do_show_command (NULL, from_tty, list);
14160 else
14161 cmd_func (list, NULL, from_tty);
14162 }
14163 }
14164
14165
14166 /* Function to be called whenever a new objfile (shlib) is detected. */
14167 static void
14168 remote_new_objfile (struct objfile *objfile)
14169 {
14170 remote_target *remote = get_current_remote_target ();
14171
14172 if (remote != NULL) /* Have a remote connection. */
14173 remote->remote_check_symbols ();
14174 }
14175
14176 /* Pull all the tracepoints defined on the target and create local
14177 data structures representing them. We don't want to create real
14178 tracepoints yet, we don't want to mess up the user's existing
14179 collection. */
14180
14181 int
14182 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14183 {
14184 struct remote_state *rs = get_remote_state ();
14185 char *p;
14186
14187 /* Ask for a first packet of tracepoint definition. */
14188 putpkt ("qTfP");
14189 getpkt (&rs->buf, &rs->buf_size, 0);
14190 p = rs->buf;
14191 while (*p && *p != 'l')
14192 {
14193 parse_tracepoint_definition (p, utpp);
14194 /* Ask for another packet of tracepoint definition. */
14195 putpkt ("qTsP");
14196 getpkt (&rs->buf, &rs->buf_size, 0);
14197 p = rs->buf;
14198 }
14199 return 0;
14200 }
14201
14202 int
14203 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14204 {
14205 struct remote_state *rs = get_remote_state ();
14206 char *p;
14207
14208 /* Ask for a first packet of variable definition. */
14209 putpkt ("qTfV");
14210 getpkt (&rs->buf, &rs->buf_size, 0);
14211 p = rs->buf;
14212 while (*p && *p != 'l')
14213 {
14214 parse_tsv_definition (p, utsvp);
14215 /* Ask for another packet of variable definition. */
14216 putpkt ("qTsV");
14217 getpkt (&rs->buf, &rs->buf_size, 0);
14218 p = rs->buf;
14219 }
14220 return 0;
14221 }
14222
14223 /* The "set/show range-stepping" show hook. */
14224
14225 static void
14226 show_range_stepping (struct ui_file *file, int from_tty,
14227 struct cmd_list_element *c,
14228 const char *value)
14229 {
14230 fprintf_filtered (file,
14231 _("Debugger's willingness to use range stepping "
14232 "is %s.\n"), value);
14233 }
14234
14235 /* Return true if the vCont;r action is supported by the remote
14236 stub. */
14237
14238 bool
14239 remote_target::vcont_r_supported ()
14240 {
14241 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14242 remote_vcont_probe ();
14243
14244 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14245 && get_remote_state ()->supports_vCont.r);
14246 }
14247
14248 /* The "set/show range-stepping" set hook. */
14249
14250 static void
14251 set_range_stepping (const char *ignore_args, int from_tty,
14252 struct cmd_list_element *c)
14253 {
14254 /* When enabling, check whether range stepping is actually supported
14255 by the target, and warn if not. */
14256 if (use_range_stepping)
14257 {
14258 remote_target *remote = get_current_remote_target ();
14259 if (remote == NULL
14260 || !remote->vcont_r_supported ())
14261 warning (_("Range stepping is not supported by the current target"));
14262 }
14263 }
14264
14265 void
14266 _initialize_remote (void)
14267 {
14268 struct cmd_list_element *cmd;
14269 const char *cmd_name;
14270
14271 /* architecture specific data */
14272 remote_g_packet_data_handle =
14273 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14274
14275 remote_pspace_data
14276 = register_program_space_data_with_cleanup (NULL,
14277 remote_pspace_data_cleanup);
14278
14279 add_target (remote_target_info, remote_target::open);
14280 add_target (extended_remote_target_info, extended_remote_target::open);
14281
14282 /* Hook into new objfile notification. */
14283 gdb::observers::new_objfile.attach (remote_new_objfile);
14284
14285 #if 0
14286 init_remote_threadtests ();
14287 #endif
14288
14289 /* set/show remote ... */
14290
14291 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14292 Remote protocol specific variables\n\
14293 Configure various remote-protocol specific variables such as\n\
14294 the packets being used"),
14295 &remote_set_cmdlist, "set remote ",
14296 0 /* allow-unknown */, &setlist);
14297 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14298 Remote protocol specific variables\n\
14299 Configure various remote-protocol specific variables such as\n\
14300 the packets being used"),
14301 &remote_show_cmdlist, "show remote ",
14302 0 /* allow-unknown */, &showlist);
14303
14304 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14305 Compare section data on target to the exec file.\n\
14306 Argument is a single section name (default: all loaded sections).\n\
14307 To compare only read-only loaded sections, specify the -r option."),
14308 &cmdlist);
14309
14310 add_cmd ("packet", class_maintenance, packet_command, _("\
14311 Send an arbitrary packet to a remote target.\n\
14312 maintenance packet TEXT\n\
14313 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14314 this command sends the string TEXT to the inferior, and displays the\n\
14315 response packet. GDB supplies the initial `$' character, and the\n\
14316 terminating `#' character and checksum."),
14317 &maintenancelist);
14318
14319 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14320 Set whether to send break if interrupted."), _("\
14321 Show whether to send break if interrupted."), _("\
14322 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14323 set_remotebreak, show_remotebreak,
14324 &setlist, &showlist);
14325 cmd_name = "remotebreak";
14326 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14327 deprecate_cmd (cmd, "set remote interrupt-sequence");
14328 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14329 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14330 deprecate_cmd (cmd, "show remote interrupt-sequence");
14331
14332 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14333 interrupt_sequence_modes, &interrupt_sequence_mode,
14334 _("\
14335 Set interrupt sequence to remote target."), _("\
14336 Show interrupt sequence to remote target."), _("\
14337 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14338 NULL, show_interrupt_sequence,
14339 &remote_set_cmdlist,
14340 &remote_show_cmdlist);
14341
14342 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14343 &interrupt_on_connect, _("\
14344 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14345 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14346 If set, interrupt sequence is sent to remote target."),
14347 NULL, NULL,
14348 &remote_set_cmdlist, &remote_show_cmdlist);
14349
14350 /* Install commands for configuring memory read/write packets. */
14351
14352 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14353 Set the maximum number of bytes per memory write packet (deprecated)."),
14354 &setlist);
14355 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14356 Show the maximum number of bytes per memory write packet (deprecated)."),
14357 &showlist);
14358 add_cmd ("memory-write-packet-size", no_class,
14359 set_memory_write_packet_size, _("\
14360 Set the maximum number of bytes per memory-write packet.\n\
14361 Specify the number of bytes in a packet or 0 (zero) for the\n\
14362 default packet size. The actual limit is further reduced\n\
14363 dependent on the target. Specify ``fixed'' to disable the\n\
14364 further restriction and ``limit'' to enable that restriction."),
14365 &remote_set_cmdlist);
14366 add_cmd ("memory-read-packet-size", no_class,
14367 set_memory_read_packet_size, _("\
14368 Set the maximum number of bytes per memory-read packet.\n\
14369 Specify the number of bytes in a packet or 0 (zero) for the\n\
14370 default packet size. The actual limit is further reduced\n\
14371 dependent on the target. Specify ``fixed'' to disable the\n\
14372 further restriction and ``limit'' to enable that restriction."),
14373 &remote_set_cmdlist);
14374 add_cmd ("memory-write-packet-size", no_class,
14375 show_memory_write_packet_size,
14376 _("Show the maximum number of bytes per memory-write packet."),
14377 &remote_show_cmdlist);
14378 add_cmd ("memory-read-packet-size", no_class,
14379 show_memory_read_packet_size,
14380 _("Show the maximum number of bytes per memory-read packet."),
14381 &remote_show_cmdlist);
14382
14383 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14384 &remote_hw_watchpoint_limit, _("\
14385 Set the maximum number of target hardware watchpoints."), _("\
14386 Show the maximum number of target hardware watchpoints."), _("\
14387 Specify \"unlimited\" for unlimited hardware watchpoints."),
14388 NULL, show_hardware_watchpoint_limit,
14389 &remote_set_cmdlist,
14390 &remote_show_cmdlist);
14391 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14392 no_class,
14393 &remote_hw_watchpoint_length_limit, _("\
14394 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14395 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14396 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14397 NULL, show_hardware_watchpoint_length_limit,
14398 &remote_set_cmdlist, &remote_show_cmdlist);
14399 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14400 &remote_hw_breakpoint_limit, _("\
14401 Set the maximum number of target hardware breakpoints."), _("\
14402 Show the maximum number of target hardware breakpoints."), _("\
14403 Specify \"unlimited\" for unlimited hardware breakpoints."),
14404 NULL, show_hardware_breakpoint_limit,
14405 &remote_set_cmdlist, &remote_show_cmdlist);
14406
14407 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14408 &remote_address_size, _("\
14409 Set the maximum size of the address (in bits) in a memory packet."), _("\
14410 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14411 NULL,
14412 NULL, /* FIXME: i18n: */
14413 &setlist, &showlist);
14414
14415 init_all_packet_configs ();
14416
14417 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14418 "X", "binary-download", 1);
14419
14420 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14421 "vCont", "verbose-resume", 0);
14422
14423 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14424 "QPassSignals", "pass-signals", 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14427 "QCatchSyscalls", "catch-syscalls", 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14430 "QProgramSignals", "program-signals", 0);
14431
14432 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14433 "QSetWorkingDir", "set-working-dir", 0);
14434
14435 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14436 "QStartupWithShell", "startup-with-shell", 0);
14437
14438 add_packet_config_cmd (&remote_protocol_packets
14439 [PACKET_QEnvironmentHexEncoded],
14440 "QEnvironmentHexEncoded", "environment-hex-encoded",
14441 0);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14444 "QEnvironmentReset", "environment-reset",
14445 0);
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14448 "QEnvironmentUnset", "environment-unset",
14449 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14452 "qSymbol", "symbol-lookup", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14455 "P", "set-register", 1);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14458 "p", "fetch-register", 1);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14461 "Z0", "software-breakpoint", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14464 "Z1", "hardware-breakpoint", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14467 "Z2", "write-watchpoint", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14470 "Z3", "read-watchpoint", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14473 "Z4", "access-watchpoint", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14476 "qXfer:auxv:read", "read-aux-vector", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14479 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14482 "qXfer:features:read", "target-features", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14485 "qXfer:libraries:read", "library-info", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14488 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14491 "qXfer:memory-map:read", "memory-map", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14494 "qXfer:spu:read", "read-spu-object", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14497 "qXfer:spu:write", "write-spu-object", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14500 "qXfer:osdata:read", "osdata", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14503 "qXfer:threads:read", "threads", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14506 "qXfer:siginfo:read", "read-siginfo-object", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14509 "qXfer:siginfo:write", "write-siginfo-object", 0);
14510
14511 add_packet_config_cmd
14512 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14513 "qXfer:traceframe-info:read", "traceframe-info", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14516 "qXfer:uib:read", "unwind-info-block", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14519 "qGetTLSAddr", "get-thread-local-storage-address",
14520 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14523 "qGetTIBAddr", "get-thread-information-block-address",
14524 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14527 "bc", "reverse-continue", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14530 "bs", "reverse-step", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14533 "qSupported", "supported-packets", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14536 "qSearch:memory", "search-memory", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14539 "qTStatus", "trace-status", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14542 "vFile:setfs", "hostio-setfs", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14545 "vFile:open", "hostio-open", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14548 "vFile:pread", "hostio-pread", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14551 "vFile:pwrite", "hostio-pwrite", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14554 "vFile:close", "hostio-close", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14557 "vFile:unlink", "hostio-unlink", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14560 "vFile:readlink", "hostio-readlink", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14563 "vFile:fstat", "hostio-fstat", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14566 "vAttach", "attach", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14569 "vRun", "run", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14572 "QStartNoAckMode", "noack", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14575 "vKill", "kill", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14578 "qAttached", "query-attached", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14581 "ConditionalTracepoints",
14582 "conditional-tracepoints", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14585 "ConditionalBreakpoints",
14586 "conditional-breakpoints", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14589 "BreakpointCommands",
14590 "breakpoint-commands", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14593 "FastTracepoints", "fast-tracepoints", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14596 "TracepointSource", "TracepointSource", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14599 "QAllow", "allow", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14602 "StaticTracepoints", "static-tracepoints", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14605 "InstallInTrace", "install-in-trace", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14608 "qXfer:statictrace:read", "read-sdata-object", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14611 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14614 "QDisableRandomization", "disable-randomization", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14617 "QAgent", "agent", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14620 "QTBuffer:size", "trace-buffer-size", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14623 "Qbtrace:off", "disable-btrace", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14626 "Qbtrace:bts", "enable-btrace-bts", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14629 "Qbtrace:pt", "enable-btrace-pt", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14632 "qXfer:btrace", "read-btrace", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14635 "qXfer:btrace-conf", "read-btrace-conf", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14638 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14641 "multiprocess-feature", "multiprocess-feature", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14644 "swbreak-feature", "swbreak-feature", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14647 "hwbreak-feature", "hwbreak-feature", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14650 "fork-event-feature", "fork-event-feature", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14653 "vfork-event-feature", "vfork-event-feature", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14656 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14659 "vContSupported", "verbose-resume-supported", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14662 "exec-event-feature", "exec-event-feature", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14665 "vCtrlC", "ctrl-c", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14668 "QThreadEvents", "thread-events", 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14671 "N stop reply", "no-resumed-stop-reply", 0);
14672
14673 /* Assert that we've registered "set remote foo-packet" commands
14674 for all packet configs. */
14675 {
14676 int i;
14677
14678 for (i = 0; i < PACKET_MAX; i++)
14679 {
14680 /* Ideally all configs would have a command associated. Some
14681 still don't though. */
14682 int excepted;
14683
14684 switch (i)
14685 {
14686 case PACKET_QNonStop:
14687 case PACKET_EnableDisableTracepoints_feature:
14688 case PACKET_tracenz_feature:
14689 case PACKET_DisconnectedTracing_feature:
14690 case PACKET_augmented_libraries_svr4_read_feature:
14691 case PACKET_qCRC:
14692 /* Additions to this list need to be well justified:
14693 pre-existing packets are OK; new packets are not. */
14694 excepted = 1;
14695 break;
14696 default:
14697 excepted = 0;
14698 break;
14699 }
14700
14701 /* This catches both forgetting to add a config command, and
14702 forgetting to remove a packet from the exception list. */
14703 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14704 }
14705 }
14706
14707 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14708 Z sub-packet has its own set and show commands, but users may
14709 have sets to this variable in their .gdbinit files (or in their
14710 documentation). */
14711 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14712 &remote_Z_packet_detect, _("\
14713 Set use of remote protocol `Z' packets"), _("\
14714 Show use of remote protocol `Z' packets "), _("\
14715 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14716 packets."),
14717 set_remote_protocol_Z_packet_cmd,
14718 show_remote_protocol_Z_packet_cmd,
14719 /* FIXME: i18n: Use of remote protocol
14720 `Z' packets is %s. */
14721 &remote_set_cmdlist, &remote_show_cmdlist);
14722
14723 add_prefix_cmd ("remote", class_files, remote_command, _("\
14724 Manipulate files on the remote system\n\
14725 Transfer files to and from the remote target system."),
14726 &remote_cmdlist, "remote ",
14727 0 /* allow-unknown */, &cmdlist);
14728
14729 add_cmd ("put", class_files, remote_put_command,
14730 _("Copy a local file to the remote system."),
14731 &remote_cmdlist);
14732
14733 add_cmd ("get", class_files, remote_get_command,
14734 _("Copy a remote file to the local system."),
14735 &remote_cmdlist);
14736
14737 add_cmd ("delete", class_files, remote_delete_command,
14738 _("Delete a remote file."),
14739 &remote_cmdlist);
14740
14741 add_setshow_string_noescape_cmd ("exec-file", class_files,
14742 &remote_exec_file_var, _("\
14743 Set the remote pathname for \"run\""), _("\
14744 Show the remote pathname for \"run\""), NULL,
14745 set_remote_exec_file,
14746 show_remote_exec_file,
14747 &remote_set_cmdlist,
14748 &remote_show_cmdlist);
14749
14750 add_setshow_boolean_cmd ("range-stepping", class_run,
14751 &use_range_stepping, _("\
14752 Enable or disable range stepping."), _("\
14753 Show whether target-assisted range stepping is enabled."), _("\
14754 If on, and the target supports it, when stepping a source line, GDB\n\
14755 tells the target to step the corresponding range of addresses itself instead\n\
14756 of issuing multiple single-steps. This speeds up source level\n\
14757 stepping. If off, GDB always issues single-steps, even if range\n\
14758 stepping is supported by the target. The default is on."),
14759 set_range_stepping,
14760 show_range_stepping,
14761 &setlist,
14762 &showlist);
14763
14764 /* Eventually initialize fileio. See fileio.c */
14765 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14766
14767 /* Take advantage of the fact that the TID field is not used, to tag
14768 special ptids with it set to != 0. */
14769 magic_null_ptid = ptid_t (42000, -1, 1);
14770 not_sent_ptid = ptid_t (42000, -2, 1);
14771 any_thread_ptid = ptid_t (42000, 0, 1);
14772 }
This page took 0.319651 seconds and 5 git commands to generate.