Remove regcache_raw_update
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef struct stop_reply *stop_reply_p;
100
101 DECLARE_QUEUE_P (stop_reply_p);
102 DEFINE_QUEUE_P (stop_reply_p);
103
104 /* Generic configuration support for packets the stub optionally
105 supports. Allows the user to specify the use of the packet as well
106 as allowing GDB to auto-detect support in the remote stub. */
107
108 enum packet_support
109 {
110 PACKET_SUPPORT_UNKNOWN = 0,
111 PACKET_ENABLE,
112 PACKET_DISABLE
113 };
114
115 /* Analyze a packet's return value and update the packet config
116 accordingly. */
117
118 enum packet_result
119 {
120 PACKET_ERROR,
121 PACKET_OK,
122 PACKET_UNKNOWN
123 };
124
125 struct threads_listing_context;
126
127 /* Stub vCont actions support.
128
129 Each field is a boolean flag indicating whether the stub reports
130 support for the corresponding action. */
131
132 struct vCont_action_support
133 {
134 /* vCont;t */
135 bool t = false;
136
137 /* vCont;r */
138 bool r = false;
139
140 /* vCont;s */
141 bool s = false;
142
143 /* vCont;S */
144 bool S = false;
145 };
146
147 /* About this many threadisds fit in a packet. */
148
149 #define MAXTHREADLISTRESULTS 32
150
151 /* Data for the vFile:pread readahead cache. */
152
153 struct readahead_cache
154 {
155 /* Invalidate the readahead cache. */
156 void invalidate ();
157
158 /* Invalidate the readahead cache if it is holding data for FD. */
159 void invalidate_fd (int fd);
160
161 /* Serve pread from the readahead cache. Returns number of bytes
162 read, or 0 if the request can't be served from the cache. */
163 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
164
165 /* The file descriptor for the file that is being cached. -1 if the
166 cache is invalid. */
167 int fd = -1;
168
169 /* The offset into the file that the cache buffer corresponds
170 to. */
171 ULONGEST offset = 0;
172
173 /* The buffer holding the cache contents. */
174 gdb_byte *buf = nullptr;
175 /* The buffer's size. We try to read as much as fits into a packet
176 at a time. */
177 size_t bufsize = 0;
178
179 /* Cache hit and miss counters. */
180 ULONGEST hit_count = 0;
181 ULONGEST miss_count = 0;
182 };
183
184 /* Description of the remote protocol for a given architecture. */
185
186 struct packet_reg
187 {
188 long offset; /* Offset into G packet. */
189 long regnum; /* GDB's internal register number. */
190 LONGEST pnum; /* Remote protocol register number. */
191 int in_g_packet; /* Always part of G packet. */
192 /* long size in bytes; == register_size (target_gdbarch (), regnum);
193 at present. */
194 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
195 at present. */
196 };
197
198 struct remote_arch_state
199 {
200 explicit remote_arch_state (struct gdbarch *gdbarch);
201
202 /* Description of the remote protocol registers. */
203 long sizeof_g_packet;
204
205 /* Description of the remote protocol registers indexed by REGNUM
206 (making an array gdbarch_num_regs in size). */
207 std::unique_ptr<packet_reg[]> regs;
208
209 /* This is the size (in chars) of the first response to the ``g''
210 packet. It is used as a heuristic when determining the maximum
211 size of memory-read and memory-write packets. A target will
212 typically only reserve a buffer large enough to hold the ``g''
213 packet. The size does not include packet overhead (headers and
214 trailers). */
215 long actual_register_packet_size;
216
217 /* This is the maximum size (in chars) of a non read/write packet.
218 It is also used as a cap on the size of read/write packets. */
219 long remote_packet_size;
220 };
221
222 /* Description of the remote protocol state for the currently
223 connected target. This is per-target state, and independent of the
224 selected architecture. */
225
226 class remote_state
227 {
228 public:
229
230 remote_state ();
231 ~remote_state ();
232
233 /* Get the remote arch state for GDBARCH. */
234 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
235
236 public: /* data */
237
238 /* A buffer to use for incoming packets, and its current size. The
239 buffer is grown dynamically for larger incoming packets.
240 Outgoing packets may also be constructed in this buffer.
241 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
242 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
243 packets. */
244 char *buf;
245 long buf_size;
246
247 /* True if we're going through initial connection setup (finding out
248 about the remote side's threads, relocating symbols, etc.). */
249 bool starting_up = false;
250
251 /* If we negotiated packet size explicitly (and thus can bypass
252 heuristics for the largest packet size that will not overflow
253 a buffer in the stub), this will be set to that packet size.
254 Otherwise zero, meaning to use the guessed size. */
255 long explicit_packet_size = 0;
256
257 /* remote_wait is normally called when the target is running and
258 waits for a stop reply packet. But sometimes we need to call it
259 when the target is already stopped. We can send a "?" packet
260 and have remote_wait read the response. Or, if we already have
261 the response, we can stash it in BUF and tell remote_wait to
262 skip calling getpkt. This flag is set when BUF contains a
263 stop reply packet and the target is not waiting. */
264 int cached_wait_status = 0;
265
266 /* True, if in no ack mode. That is, neither GDB nor the stub will
267 expect acks from each other. The connection is assumed to be
268 reliable. */
269 bool noack_mode = false;
270
271 /* True if we're connected in extended remote mode. */
272 bool extended = false;
273
274 /* True if we resumed the target and we're waiting for the target to
275 stop. In the mean time, we can't start another command/query.
276 The remote server wouldn't be ready to process it, so we'd
277 timeout waiting for a reply that would never come and eventually
278 we'd close the connection. This can happen in asynchronous mode
279 because we allow GDB commands while the target is running. */
280 bool waiting_for_stop_reply = false;
281
282 /* The status of the stub support for the various vCont actions. */
283 vCont_action_support supports_vCont;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 QUEUE (stop_reply_p) *stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public target_ops
401 {
402 public:
403 remote_target ()
404 {
405 to_stratum = process_stratum;
406 }
407 ~remote_target () override;
408
409 const target_info &info () const override
410 { return remote_target_info; }
411
412 thread_control_capabilities get_thread_control_capabilities () override
413 { return tc_schedlock; }
414
415 /* Open a remote connection. */
416 static void open (const char *, int);
417
418 void close () override;
419
420 void detach (inferior *, int) override;
421 void disconnect (const char *, int) override;
422
423 void commit_resume () override;
424 void resume (ptid_t, int, enum gdb_signal) override;
425 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
426
427 void fetch_registers (struct regcache *, int) override;
428 void store_registers (struct regcache *, int) override;
429 void prepare_to_store (struct regcache *) override;
430
431 void files_info () override;
432
433 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
434
435 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
436 enum remove_bp_reason) override;
437
438
439 bool stopped_by_sw_breakpoint () override;
440 bool supports_stopped_by_sw_breakpoint () override;
441
442 bool stopped_by_hw_breakpoint () override;
443
444 bool supports_stopped_by_hw_breakpoint () override;
445
446 bool stopped_by_watchpoint () override;
447
448 bool stopped_data_address (CORE_ADDR *) override;
449
450 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
451
452 int can_use_hw_breakpoint (enum bptype, int, int) override;
453
454 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
457
458 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
459
460 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 void kill () override;
467
468 void load (const char *, int) override;
469
470 void mourn_inferior () override;
471
472 void pass_signals (int, unsigned char *) override;
473
474 int set_syscall_catchpoint (int, bool, int,
475 gdb::array_view<const int>) override;
476
477 void program_signals (int, unsigned char *) override;
478
479 bool thread_alive (ptid_t ptid) override;
480
481 const char *thread_name (struct thread_info *) override;
482
483 void update_thread_list () override;
484
485 const char *pid_to_str (ptid_t) override;
486
487 const char *extra_thread_info (struct thread_info *) override;
488
489 ptid_t get_ada_task_ptid (long lwp, long thread) override;
490
491 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
492 int handle_len,
493 inferior *inf) override;
494
495 void stop (ptid_t) override;
496
497 void interrupt () override;
498
499 void pass_ctrlc () override;
500
501 enum target_xfer_status xfer_partial (enum target_object object,
502 const char *annex,
503 gdb_byte *readbuf,
504 const gdb_byte *writebuf,
505 ULONGEST offset, ULONGEST len,
506 ULONGEST *xfered_len) override;
507
508 ULONGEST get_memory_xfer_limit () override;
509
510 void rcmd (const char *command, struct ui_file *output) override;
511
512 char *pid_to_exec_file (int pid) override;
513
514 void log_command (const char *cmd) override
515 {
516 serial_log_command (this, cmd);
517 }
518
519 CORE_ADDR get_thread_local_address (ptid_t ptid,
520 CORE_ADDR load_module_addr,
521 CORE_ADDR offset) override;
522
523 bool has_all_memory () override { return default_child_has_all_memory (); }
524 bool has_memory () override { return default_child_has_memory (); }
525 bool has_stack () override { return default_child_has_stack (); }
526 bool has_registers () override { return default_child_has_registers (); }
527 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
528
529 bool can_execute_reverse () override;
530
531 std::vector<mem_region> memory_map () override;
532
533 void flash_erase (ULONGEST address, LONGEST length) override;
534
535 void flash_done () override;
536
537 const struct target_desc *read_description () override;
538
539 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
540 const gdb_byte *pattern, ULONGEST pattern_len,
541 CORE_ADDR *found_addrp) override;
542
543 bool can_async_p () override;
544
545 bool is_async_p () override;
546
547 void async (int) override;
548
549 void thread_events (int) override;
550
551 int can_do_single_step () override;
552
553 void terminal_inferior () override;
554
555 void terminal_ours () override;
556
557 bool supports_non_stop () override;
558
559 bool supports_multi_process () override;
560
561 bool supports_disable_randomization () override;
562
563 bool filesystem_is_local () override;
564
565
566 int fileio_open (struct inferior *inf, const char *filename,
567 int flags, int mode, int warn_if_slow,
568 int *target_errno) override;
569
570 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_pread (int fd, gdb_byte *read_buf, int len,
574 ULONGEST offset, int *target_errno) override;
575
576 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
577
578 int fileio_close (int fd, int *target_errno) override;
579
580 int fileio_unlink (struct inferior *inf,
581 const char *filename,
582 int *target_errno) override;
583
584 gdb::optional<std::string>
585 fileio_readlink (struct inferior *inf,
586 const char *filename,
587 int *target_errno) override;
588
589 bool supports_enable_disable_tracepoint () override;
590
591 bool supports_string_tracing () override;
592
593 bool supports_evaluation_of_breakpoint_conditions () override;
594
595 bool can_run_breakpoint_commands () override;
596
597 void trace_init () override;
598
599 void download_tracepoint (struct bp_location *location) override;
600
601 bool can_download_tracepoint () override;
602
603 void download_trace_state_variable (const trace_state_variable &tsv) override;
604
605 void enable_tracepoint (struct bp_location *location) override;
606
607 void disable_tracepoint (struct bp_location *location) override;
608
609 void trace_set_readonly_regions () override;
610
611 void trace_start () override;
612
613 int get_trace_status (struct trace_status *ts) override;
614
615 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
616 override;
617
618 void trace_stop () override;
619
620 int trace_find (enum trace_find_type type, int num,
621 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
622
623 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
624
625 int save_trace_data (const char *filename) override;
626
627 int upload_tracepoints (struct uploaded_tp **utpp) override;
628
629 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
630
631 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
632
633 int get_min_fast_tracepoint_insn_len () override;
634
635 void set_disconnected_tracing (int val) override;
636
637 void set_circular_trace_buffer (int val) override;
638
639 void set_trace_buffer_size (LONGEST val) override;
640
641 bool set_trace_notes (const char *user, const char *notes,
642 const char *stopnotes) override;
643
644 int core_of_thread (ptid_t ptid) override;
645
646 int verify_memory (const gdb_byte *data,
647 CORE_ADDR memaddr, ULONGEST size) override;
648
649
650 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
651
652 void set_permissions () override;
653
654 bool static_tracepoint_marker_at (CORE_ADDR,
655 struct static_tracepoint_marker *marker)
656 override;
657
658 std::vector<static_tracepoint_marker>
659 static_tracepoint_markers_by_strid (const char *id) override;
660
661 traceframe_info_up traceframe_info () override;
662
663 bool use_agent (bool use) override;
664 bool can_use_agent () override;
665
666 struct btrace_target_info *enable_btrace (ptid_t ptid,
667 const struct btrace_config *conf) override;
668
669 void disable_btrace (struct btrace_target_info *tinfo) override;
670
671 void teardown_btrace (struct btrace_target_info *tinfo) override;
672
673 enum btrace_error read_btrace (struct btrace_data *data,
674 struct btrace_target_info *btinfo,
675 enum btrace_read_type type) override;
676
677 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
678 bool augmented_libraries_svr4_read () override;
679 int follow_fork (int, int) override;
680 void follow_exec (struct inferior *, char *) override;
681 int insert_fork_catchpoint (int) override;
682 int remove_fork_catchpoint (int) override;
683 int insert_vfork_catchpoint (int) override;
684 int remove_vfork_catchpoint (int) override;
685 int insert_exec_catchpoint (int) override;
686 int remove_exec_catchpoint (int) override;
687 enum exec_direction_kind execution_direction () override;
688
689 public: /* Remote specific methods. */
690
691 void remote_download_command_source (int num, ULONGEST addr,
692 struct command_line *cmds);
693
694 void remote_file_put (const char *local_file, const char *remote_file,
695 int from_tty);
696 void remote_file_get (const char *remote_file, const char *local_file,
697 int from_tty);
698 void remote_file_delete (const char *remote_file, int from_tty);
699
700 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
703 ULONGEST offset, int *remote_errno);
704 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706
707 int remote_hostio_send_command (int command_bytes, int which_packet,
708 int *remote_errno, char **attachment,
709 int *attachment_len);
710 int remote_hostio_set_filesystem (struct inferior *inf,
711 int *remote_errno);
712 /* We should get rid of this and use fileio_open directly. */
713 int remote_hostio_open (struct inferior *inf, const char *filename,
714 int flags, int mode, int warn_if_slow,
715 int *remote_errno);
716 int remote_hostio_close (int fd, int *remote_errno);
717
718 int remote_hostio_unlink (inferior *inf, const char *filename,
719 int *remote_errno);
720
721 struct remote_state *get_remote_state ();
722
723 long get_remote_packet_size (void);
724 long get_memory_packet_size (struct memory_packet_config *config);
725
726 long get_memory_write_packet_size ();
727 long get_memory_read_packet_size ();
728
729 char *append_pending_thread_resumptions (char *p, char *endp,
730 ptid_t ptid);
731 static void open_1 (const char *name, int from_tty, int extended_p);
732 void start_remote (int from_tty, int extended_p);
733 void remote_detach_1 (int from_tty, struct inferior *inf);
734
735 char *append_resumption (char *p, char *endp,
736 ptid_t ptid, int step, gdb_signal siggnal);
737 int remote_resume_with_vcont (ptid_t ptid, int step,
738 gdb_signal siggnal);
739
740 void add_current_inferior_and_thread (char *wait_status);
741
742 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
743 int options);
744 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
745 int options);
746
747 ptid_t process_stop_reply (struct stop_reply *stop_reply,
748 target_waitstatus *status);
749
750 void remote_notice_new_inferior (ptid_t currthread, int executing);
751
752 void process_initial_stop_replies (int from_tty);
753
754 void remote_add_thread (ptid_t ptid, bool running, bool executing);
755
756 void btrace_sync_conf (const btrace_config *conf);
757
758 void remote_btrace_maybe_reopen ();
759
760 void remove_new_fork_children (threads_listing_context *context);
761 void kill_new_fork_children (int pid);
762 void discard_pending_stop_replies (struct inferior *inf);
763 int stop_reply_queue_length ();
764
765 void check_pending_events_prevent_wildcard_vcont
766 (int *may_global_wildcard_vcont);
767
768 void discard_pending_stop_replies_in_queue ();
769 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
770 struct stop_reply *queued_stop_reply (ptid_t ptid);
771 int peek_stop_reply (ptid_t ptid);
772 void remote_parse_stop_reply (char *buf, stop_reply *event);
773
774 void remote_stop_ns (ptid_t ptid);
775 void remote_interrupt_as ();
776 void remote_interrupt_ns ();
777
778 char *remote_get_noisy_reply ();
779 int remote_query_attached (int pid);
780 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
781 int try_open_exec);
782
783 ptid_t remote_current_thread (ptid_t oldpid);
784 ptid_t get_current_thread (char *wait_status);
785
786 void set_thread (ptid_t ptid, int gen);
787 void set_general_thread (ptid_t ptid);
788 void set_continue_thread (ptid_t ptid);
789 void set_general_process ();
790
791 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
792
793 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
794 gdb_ext_thread_info *info);
795 int remote_get_threadinfo (threadref *threadid, int fieldset,
796 gdb_ext_thread_info *info);
797
798 int parse_threadlist_response (char *pkt, int result_limit,
799 threadref *original_echo,
800 threadref *resultlist,
801 int *doneflag);
802 int remote_get_threadlist (int startflag, threadref *nextthread,
803 int result_limit, int *done, int *result_count,
804 threadref *threadlist);
805
806 int remote_threadlist_iterator (rmt_thread_action stepfunction,
807 void *context, int looplimit);
808
809 int remote_get_threads_with_ql (threads_listing_context *context);
810 int remote_get_threads_with_qxfer (threads_listing_context *context);
811 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
812
813 void extended_remote_restart ();
814
815 void get_offsets ();
816
817 void remote_check_symbols ();
818
819 void remote_supported_packet (const struct protocol_feature *feature,
820 enum packet_support support,
821 const char *argument);
822
823 void remote_query_supported ();
824
825 void remote_packet_size (const protocol_feature *feature,
826 packet_support support, const char *value);
827
828 void remote_serial_quit_handler ();
829
830 void remote_detach_pid (int pid);
831
832 void remote_vcont_probe ();
833
834 void remote_resume_with_hc (ptid_t ptid, int step,
835 gdb_signal siggnal);
836
837 void send_interrupt_sequence ();
838 void interrupt_query ();
839
840 void remote_notif_get_pending_events (notif_client *nc);
841
842 int fetch_register_using_p (struct regcache *regcache,
843 packet_reg *reg);
844 int send_g_packet ();
845 void process_g_packet (struct regcache *regcache);
846 void fetch_registers_using_g (struct regcache *regcache);
847 int store_register_using_P (const struct regcache *regcache,
848 packet_reg *reg);
849 void store_registers_using_G (const struct regcache *regcache);
850
851 void set_remote_traceframe ();
852
853 void check_binary_download (CORE_ADDR addr);
854
855 target_xfer_status remote_write_bytes_aux (const char *header,
856 CORE_ADDR memaddr,
857 const gdb_byte *myaddr,
858 ULONGEST len_units,
859 int unit_size,
860 ULONGEST *xfered_len_units,
861 char packet_format,
862 int use_length);
863
864 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
865 const gdb_byte *myaddr, ULONGEST len,
866 int unit_size, ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
869 ULONGEST len_units,
870 int unit_size, ULONGEST *xfered_len_units);
871
872 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
873 ULONGEST memaddr,
874 ULONGEST len,
875 int unit_size,
876 ULONGEST *xfered_len);
877
878 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
879 gdb_byte *myaddr, ULONGEST len,
880 int unit_size,
881 ULONGEST *xfered_len);
882
883 packet_result remote_send_printf (const char *format, ...)
884 ATTRIBUTE_PRINTF (2, 3);
885
886 target_xfer_status remote_flash_write (ULONGEST address,
887 ULONGEST length, ULONGEST *xfered_len,
888 const gdb_byte *data);
889
890 int readchar (int timeout);
891
892 void remote_serial_write (const char *str, int len);
893
894 int putpkt (const char *buf);
895 int putpkt_binary (const char *buf, int cnt);
896
897 void skip_frame ();
898 long read_frame (char **buf_p, long *sizeof_buf);
899 void getpkt (char **buf, long *sizeof_buf, int forever);
900 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
901 int expecting_notif, int *is_notif);
902 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
903 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
904 int *is_notif);
905 int remote_vkill (int pid);
906 void remote_kill_k ();
907
908 void extended_remote_disable_randomization (int val);
909 int extended_remote_run (const std::string &args);
910
911 void send_environment_packet (const char *action,
912 const char *packet,
913 const char *value);
914
915 void extended_remote_environment_support ();
916 void extended_remote_set_inferior_cwd ();
917
918 target_xfer_status remote_write_qxfer (const char *object_name,
919 const char *annex,
920 const gdb_byte *writebuf,
921 ULONGEST offset, LONGEST len,
922 ULONGEST *xfered_len,
923 struct packet_config *packet);
924
925 target_xfer_status remote_read_qxfer (const char *object_name,
926 const char *annex,
927 gdb_byte *readbuf, ULONGEST offset,
928 LONGEST len,
929 ULONGEST *xfered_len,
930 struct packet_config *packet);
931
932 void push_stop_reply (struct stop_reply *new_event);
933
934 bool vcont_r_supported ();
935
936 void packet_command (const char *args, int from_tty);
937
938 private: /* data fields */
939
940 /* The remote state. Don't reference this directly. Use the
941 get_remote_state method instead. */
942 remote_state m_remote_state;
943 };
944
945 static const target_info extended_remote_target_info = {
946 "extended-remote",
947 N_("Extended remote serial target in gdb-specific protocol"),
948 remote_doc
949 };
950
951 /* Set up the extended remote target by extending the standard remote
952 target and adding to it. */
953
954 class extended_remote_target final : public remote_target
955 {
956 public:
957 const target_info &info () const override
958 { return extended_remote_target_info; }
959
960 /* Open an extended-remote connection. */
961 static void open (const char *, int);
962
963 bool can_create_inferior () override { return true; }
964 void create_inferior (const char *, const std::string &,
965 char **, int) override;
966
967 void detach (inferior *, int) override;
968
969 bool can_attach () override { return true; }
970 void attach (const char *, int) override;
971
972 void post_attach (int) override;
973 bool supports_disable_randomization () override;
974 };
975
976 /* Per-program-space data key. */
977 static const struct program_space_data *remote_pspace_data;
978
979 /* The variable registered as the control variable used by the
980 remote exec-file commands. While the remote exec-file setting is
981 per-program-space, the set/show machinery uses this as the
982 location of the remote exec-file value. */
983 static char *remote_exec_file_var;
984
985 /* The size to align memory write packets, when practical. The protocol
986 does not guarantee any alignment, and gdb will generate short
987 writes and unaligned writes, but even as a best-effort attempt this
988 can improve bulk transfers. For instance, if a write is misaligned
989 relative to the target's data bus, the stub may need to make an extra
990 round trip fetching data from the target. This doesn't make a
991 huge difference, but it's easy to do, so we try to be helpful.
992
993 The alignment chosen is arbitrary; usually data bus width is
994 important here, not the possibly larger cache line size. */
995 enum { REMOTE_ALIGN_WRITES = 16 };
996
997 /* Prototypes for local functions. */
998
999 static int hexnumlen (ULONGEST num);
1000
1001 static int stubhex (int ch);
1002
1003 static int hexnumstr (char *, ULONGEST);
1004
1005 static int hexnumnstr (char *, ULONGEST, int);
1006
1007 static CORE_ADDR remote_address_masked (CORE_ADDR);
1008
1009 static void print_packet (const char *);
1010
1011 static int stub_unpack_int (char *buff, int fieldlength);
1012
1013 struct packet_config;
1014
1015 static void show_packet_config_cmd (struct packet_config *config);
1016
1017 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1018 int from_tty,
1019 struct cmd_list_element *c,
1020 const char *value);
1021
1022 static ptid_t read_ptid (const char *buf, const char **obuf);
1023
1024 struct stop_reply;
1025 static void stop_reply_xfree (struct stop_reply *);
1026
1027 static void remote_async_inferior_event_handler (gdb_client_data);
1028
1029 static int remote_read_description_p (struct target_ops *target);
1030
1031 static void remote_console_output (char *msg);
1032
1033 static void remote_btrace_reset (remote_state *rs);
1034
1035 static void remote_unpush_and_throw (void);
1036
1037 /* For "remote". */
1038
1039 static struct cmd_list_element *remote_cmdlist;
1040
1041 /* For "set remote" and "show remote". */
1042
1043 static struct cmd_list_element *remote_set_cmdlist;
1044 static struct cmd_list_element *remote_show_cmdlist;
1045
1046 /* Controls whether GDB is willing to use range stepping. */
1047
1048 static int use_range_stepping = 1;
1049
1050 /* The max number of chars in debug output. The rest of chars are
1051 omitted. */
1052
1053 #define REMOTE_DEBUG_MAX_CHAR 512
1054
1055 /* Private data that we'll store in (struct thread_info)->priv. */
1056 struct remote_thread_info : public private_thread_info
1057 {
1058 std::string extra;
1059 std::string name;
1060 int core = -1;
1061
1062 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1063 sequence of bytes. */
1064 gdb::byte_vector thread_handle;
1065
1066 /* Whether the target stopped for a breakpoint/watchpoint. */
1067 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1068
1069 /* This is set to the data address of the access causing the target
1070 to stop for a watchpoint. */
1071 CORE_ADDR watch_data_address = 0;
1072
1073 /* Fields used by the vCont action coalescing implemented in
1074 remote_resume / remote_commit_resume. remote_resume stores each
1075 thread's last resume request in these fields, so that a later
1076 remote_commit_resume knows which is the proper action for this
1077 thread to include in the vCont packet. */
1078
1079 /* True if the last target_resume call for this thread was a step
1080 request, false if a continue request. */
1081 int last_resume_step = 0;
1082
1083 /* The signal specified in the last target_resume call for this
1084 thread. */
1085 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1086
1087 /* Whether this thread was already vCont-resumed on the remote
1088 side. */
1089 int vcont_resumed = 0;
1090 };
1091
1092 remote_state::remote_state ()
1093 {
1094 /* The default buffer size is unimportant; it will be expanded
1095 whenever a larger buffer is needed. */
1096 this->buf_size = 400;
1097 this->buf = (char *) xmalloc (this->buf_size);
1098
1099 this->stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
1100 }
1101
1102 remote_state::~remote_state ()
1103 {
1104 xfree (this->last_pass_packet);
1105 xfree (this->last_program_signals_packet);
1106 xfree (this->buf);
1107 xfree (this->finished_object);
1108 xfree (this->finished_annex);
1109 QUEUE_free (stop_reply_p, this->stop_reply_queue);
1110 }
1111
1112 /* Utility: generate error from an incoming stub packet. */
1113 static void
1114 trace_error (char *buf)
1115 {
1116 if (*buf++ != 'E')
1117 return; /* not an error msg */
1118 switch (*buf)
1119 {
1120 case '1': /* malformed packet error */
1121 if (*++buf == '0') /* general case: */
1122 error (_("remote.c: error in outgoing packet."));
1123 else
1124 error (_("remote.c: error in outgoing packet at field #%ld."),
1125 strtol (buf, NULL, 16));
1126 default:
1127 error (_("Target returns error code '%s'."), buf);
1128 }
1129 }
1130
1131 /* Utility: wait for reply from stub, while accepting "O" packets. */
1132
1133 char *
1134 remote_target::remote_get_noisy_reply ()
1135 {
1136 struct remote_state *rs = get_remote_state ();
1137
1138 do /* Loop on reply from remote stub. */
1139 {
1140 char *buf;
1141
1142 QUIT; /* Allow user to bail out with ^C. */
1143 getpkt (&rs->buf, &rs->buf_size, 0);
1144 buf = rs->buf;
1145 if (buf[0] == 'E')
1146 trace_error (buf);
1147 else if (startswith (buf, "qRelocInsn:"))
1148 {
1149 ULONGEST ul;
1150 CORE_ADDR from, to, org_to;
1151 const char *p, *pp;
1152 int adjusted_size = 0;
1153 int relocated = 0;
1154
1155 p = buf + strlen ("qRelocInsn:");
1156 pp = unpack_varlen_hex (p, &ul);
1157 if (*pp != ';')
1158 error (_("invalid qRelocInsn packet: %s"), buf);
1159 from = ul;
1160
1161 p = pp + 1;
1162 unpack_varlen_hex (p, &ul);
1163 to = ul;
1164
1165 org_to = to;
1166
1167 TRY
1168 {
1169 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1170 relocated = 1;
1171 }
1172 CATCH (ex, RETURN_MASK_ALL)
1173 {
1174 if (ex.error == MEMORY_ERROR)
1175 {
1176 /* Propagate memory errors silently back to the
1177 target. The stub may have limited the range of
1178 addresses we can write to, for example. */
1179 }
1180 else
1181 {
1182 /* Something unexpectedly bad happened. Be verbose
1183 so we can tell what, and propagate the error back
1184 to the stub, so it doesn't get stuck waiting for
1185 a response. */
1186 exception_fprintf (gdb_stderr, ex,
1187 _("warning: relocating instruction: "));
1188 }
1189 putpkt ("E01");
1190 }
1191 END_CATCH
1192
1193 if (relocated)
1194 {
1195 adjusted_size = to - org_to;
1196
1197 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1198 putpkt (buf);
1199 }
1200 }
1201 else if (buf[0] == 'O' && buf[1] != 'K')
1202 remote_console_output (buf + 1); /* 'O' message from stub */
1203 else
1204 return buf; /* Here's the actual reply. */
1205 }
1206 while (1);
1207 }
1208
1209 struct remote_arch_state *
1210 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1211 {
1212 remote_arch_state *rsa;
1213
1214 auto it = this->m_arch_states.find (gdbarch);
1215 if (it == this->m_arch_states.end ())
1216 {
1217 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1218 std::forward_as_tuple (gdbarch),
1219 std::forward_as_tuple (gdbarch));
1220 rsa = &p.first->second;
1221
1222 /* Make sure that the packet buffer is plenty big enough for
1223 this architecture. */
1224 if (this->buf_size < rsa->remote_packet_size)
1225 {
1226 this->buf_size = 2 * rsa->remote_packet_size;
1227 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1228 }
1229 }
1230 else
1231 rsa = &it->second;
1232
1233 return rsa;
1234 }
1235
1236 /* Fetch the global remote target state. */
1237
1238 remote_state *
1239 remote_target::get_remote_state ()
1240 {
1241 /* Make sure that the remote architecture state has been
1242 initialized, because doing so might reallocate rs->buf. Any
1243 function which calls getpkt also needs to be mindful of changes
1244 to rs->buf, but this call limits the number of places which run
1245 into trouble. */
1246 m_remote_state.get_remote_arch_state (target_gdbarch ());
1247
1248 return &m_remote_state;
1249 }
1250
1251 /* Cleanup routine for the remote module's pspace data. */
1252
1253 static void
1254 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1255 {
1256 char *remote_exec_file = (char *) arg;
1257
1258 xfree (remote_exec_file);
1259 }
1260
1261 /* Fetch the remote exec-file from the current program space. */
1262
1263 static const char *
1264 get_remote_exec_file (void)
1265 {
1266 char *remote_exec_file;
1267
1268 remote_exec_file
1269 = (char *) program_space_data (current_program_space,
1270 remote_pspace_data);
1271 if (remote_exec_file == NULL)
1272 return "";
1273
1274 return remote_exec_file;
1275 }
1276
1277 /* Set the remote exec file for PSPACE. */
1278
1279 static void
1280 set_pspace_remote_exec_file (struct program_space *pspace,
1281 char *remote_exec_file)
1282 {
1283 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1284
1285 xfree (old_file);
1286 set_program_space_data (pspace, remote_pspace_data,
1287 xstrdup (remote_exec_file));
1288 }
1289
1290 /* The "set/show remote exec-file" set command hook. */
1291
1292 static void
1293 set_remote_exec_file (const char *ignored, int from_tty,
1294 struct cmd_list_element *c)
1295 {
1296 gdb_assert (remote_exec_file_var != NULL);
1297 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1298 }
1299
1300 /* The "set/show remote exec-file" show command hook. */
1301
1302 static void
1303 show_remote_exec_file (struct ui_file *file, int from_tty,
1304 struct cmd_list_element *cmd, const char *value)
1305 {
1306 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1307 }
1308
1309 static int
1310 compare_pnums (const void *lhs_, const void *rhs_)
1311 {
1312 const struct packet_reg * const *lhs
1313 = (const struct packet_reg * const *) lhs_;
1314 const struct packet_reg * const *rhs
1315 = (const struct packet_reg * const *) rhs_;
1316
1317 if ((*lhs)->pnum < (*rhs)->pnum)
1318 return -1;
1319 else if ((*lhs)->pnum == (*rhs)->pnum)
1320 return 0;
1321 else
1322 return 1;
1323 }
1324
1325 static int
1326 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1327 {
1328 int regnum, num_remote_regs, offset;
1329 struct packet_reg **remote_regs;
1330
1331 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1332 {
1333 struct packet_reg *r = &regs[regnum];
1334
1335 if (register_size (gdbarch, regnum) == 0)
1336 /* Do not try to fetch zero-sized (placeholder) registers. */
1337 r->pnum = -1;
1338 else
1339 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1340
1341 r->regnum = regnum;
1342 }
1343
1344 /* Define the g/G packet format as the contents of each register
1345 with a remote protocol number, in order of ascending protocol
1346 number. */
1347
1348 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1349 for (num_remote_regs = 0, regnum = 0;
1350 regnum < gdbarch_num_regs (gdbarch);
1351 regnum++)
1352 if (regs[regnum].pnum != -1)
1353 remote_regs[num_remote_regs++] = &regs[regnum];
1354
1355 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1356 compare_pnums);
1357
1358 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1359 {
1360 remote_regs[regnum]->in_g_packet = 1;
1361 remote_regs[regnum]->offset = offset;
1362 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1363 }
1364
1365 return offset;
1366 }
1367
1368 /* Given the architecture described by GDBARCH, return the remote
1369 protocol register's number and the register's offset in the g/G
1370 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1371 If the target does not have a mapping for REGNUM, return false,
1372 otherwise, return true. */
1373
1374 int
1375 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1376 int *pnum, int *poffset)
1377 {
1378 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1379
1380 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1381
1382 map_regcache_remote_table (gdbarch, regs.data ());
1383
1384 *pnum = regs[regnum].pnum;
1385 *poffset = regs[regnum].offset;
1386
1387 return *pnum != -1;
1388 }
1389
1390 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1391 {
1392 /* Use the architecture to build a regnum<->pnum table, which will be
1393 1:1 unless a feature set specifies otherwise. */
1394 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1395
1396 /* Record the maximum possible size of the g packet - it may turn out
1397 to be smaller. */
1398 this->sizeof_g_packet
1399 = map_regcache_remote_table (gdbarch, this->regs.get ());
1400
1401 /* Default maximum number of characters in a packet body. Many
1402 remote stubs have a hardwired buffer size of 400 bytes
1403 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1404 as the maximum packet-size to ensure that the packet and an extra
1405 NUL character can always fit in the buffer. This stops GDB
1406 trashing stubs that try to squeeze an extra NUL into what is
1407 already a full buffer (As of 1999-12-04 that was most stubs). */
1408 this->remote_packet_size = 400 - 1;
1409
1410 /* This one is filled in when a ``g'' packet is received. */
1411 this->actual_register_packet_size = 0;
1412
1413 /* Should rsa->sizeof_g_packet needs more space than the
1414 default, adjust the size accordingly. Remember that each byte is
1415 encoded as two characters. 32 is the overhead for the packet
1416 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1417 (``$NN:G...#NN'') is a better guess, the below has been padded a
1418 little. */
1419 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1420 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1421 }
1422
1423 /* Get a pointer to the current remote target. If not connected to a
1424 remote target, return NULL. */
1425
1426 static remote_target *
1427 get_current_remote_target ()
1428 {
1429 target_ops *proc_target = find_target_at (process_stratum);
1430 return dynamic_cast<remote_target *> (proc_target);
1431 }
1432
1433 /* Return the current allowed size of a remote packet. This is
1434 inferred from the current architecture, and should be used to
1435 limit the length of outgoing packets. */
1436 long
1437 remote_target::get_remote_packet_size ()
1438 {
1439 struct remote_state *rs = get_remote_state ();
1440 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1441
1442 if (rs->explicit_packet_size)
1443 return rs->explicit_packet_size;
1444
1445 return rsa->remote_packet_size;
1446 }
1447
1448 static struct packet_reg *
1449 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1450 long regnum)
1451 {
1452 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1453 return NULL;
1454 else
1455 {
1456 struct packet_reg *r = &rsa->regs[regnum];
1457
1458 gdb_assert (r->regnum == regnum);
1459 return r;
1460 }
1461 }
1462
1463 static struct packet_reg *
1464 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1465 LONGEST pnum)
1466 {
1467 int i;
1468
1469 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1470 {
1471 struct packet_reg *r = &rsa->regs[i];
1472
1473 if (r->pnum == pnum)
1474 return r;
1475 }
1476 return NULL;
1477 }
1478
1479 /* Allow the user to specify what sequence to send to the remote
1480 when he requests a program interruption: Although ^C is usually
1481 what remote systems expect (this is the default, here), it is
1482 sometimes preferable to send a break. On other systems such
1483 as the Linux kernel, a break followed by g, which is Magic SysRq g
1484 is required in order to interrupt the execution. */
1485 const char interrupt_sequence_control_c[] = "Ctrl-C";
1486 const char interrupt_sequence_break[] = "BREAK";
1487 const char interrupt_sequence_break_g[] = "BREAK-g";
1488 static const char *const interrupt_sequence_modes[] =
1489 {
1490 interrupt_sequence_control_c,
1491 interrupt_sequence_break,
1492 interrupt_sequence_break_g,
1493 NULL
1494 };
1495 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1496
1497 static void
1498 show_interrupt_sequence (struct ui_file *file, int from_tty,
1499 struct cmd_list_element *c,
1500 const char *value)
1501 {
1502 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1503 fprintf_filtered (file,
1504 _("Send the ASCII ETX character (Ctrl-c) "
1505 "to the remote target to interrupt the "
1506 "execution of the program.\n"));
1507 else if (interrupt_sequence_mode == interrupt_sequence_break)
1508 fprintf_filtered (file,
1509 _("send a break signal to the remote target "
1510 "to interrupt the execution of the program.\n"));
1511 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1512 fprintf_filtered (file,
1513 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1514 "the remote target to interrupt the execution "
1515 "of Linux kernel.\n"));
1516 else
1517 internal_error (__FILE__, __LINE__,
1518 _("Invalid value for interrupt_sequence_mode: %s."),
1519 interrupt_sequence_mode);
1520 }
1521
1522 /* This boolean variable specifies whether interrupt_sequence is sent
1523 to the remote target when gdb connects to it.
1524 This is mostly needed when you debug the Linux kernel: The Linux kernel
1525 expects BREAK g which is Magic SysRq g for connecting gdb. */
1526 static int interrupt_on_connect = 0;
1527
1528 /* This variable is used to implement the "set/show remotebreak" commands.
1529 Since these commands are now deprecated in favor of "set/show remote
1530 interrupt-sequence", it no longer has any effect on the code. */
1531 static int remote_break;
1532
1533 static void
1534 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1535 {
1536 if (remote_break)
1537 interrupt_sequence_mode = interrupt_sequence_break;
1538 else
1539 interrupt_sequence_mode = interrupt_sequence_control_c;
1540 }
1541
1542 static void
1543 show_remotebreak (struct ui_file *file, int from_tty,
1544 struct cmd_list_element *c,
1545 const char *value)
1546 {
1547 }
1548
1549 /* This variable sets the number of bits in an address that are to be
1550 sent in a memory ("M" or "m") packet. Normally, after stripping
1551 leading zeros, the entire address would be sent. This variable
1552 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1553 initial implementation of remote.c restricted the address sent in
1554 memory packets to ``host::sizeof long'' bytes - (typically 32
1555 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1556 address was never sent. Since fixing this bug may cause a break in
1557 some remote targets this variable is principly provided to
1558 facilitate backward compatibility. */
1559
1560 static unsigned int remote_address_size;
1561
1562 \f
1563 /* User configurable variables for the number of characters in a
1564 memory read/write packet. MIN (rsa->remote_packet_size,
1565 rsa->sizeof_g_packet) is the default. Some targets need smaller
1566 values (fifo overruns, et.al.) and some users need larger values
1567 (speed up transfers). The variables ``preferred_*'' (the user
1568 request), ``current_*'' (what was actually set) and ``forced_*''
1569 (Positive - a soft limit, negative - a hard limit). */
1570
1571 struct memory_packet_config
1572 {
1573 const char *name;
1574 long size;
1575 int fixed_p;
1576 };
1577
1578 /* The default max memory-write-packet-size, when the setting is
1579 "fixed". The 16k is historical. (It came from older GDB's using
1580 alloca for buffers and the knowledge (folklore?) that some hosts
1581 don't cope very well with large alloca calls.) */
1582 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1583
1584 /* The minimum remote packet size for memory transfers. Ensures we
1585 can write at least one byte. */
1586 #define MIN_MEMORY_PACKET_SIZE 20
1587
1588 /* Get the memory packet size, assuming it is fixed. */
1589
1590 static long
1591 get_fixed_memory_packet_size (struct memory_packet_config *config)
1592 {
1593 gdb_assert (config->fixed_p);
1594
1595 if (config->size <= 0)
1596 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1597 else
1598 return config->size;
1599 }
1600
1601 /* Compute the current size of a read/write packet. Since this makes
1602 use of ``actual_register_packet_size'' the computation is dynamic. */
1603
1604 long
1605 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1606 {
1607 struct remote_state *rs = get_remote_state ();
1608 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1609
1610 long what_they_get;
1611 if (config->fixed_p)
1612 what_they_get = get_fixed_memory_packet_size (config);
1613 else
1614 {
1615 what_they_get = get_remote_packet_size ();
1616 /* Limit the packet to the size specified by the user. */
1617 if (config->size > 0
1618 && what_they_get > config->size)
1619 what_they_get = config->size;
1620
1621 /* Limit it to the size of the targets ``g'' response unless we have
1622 permission from the stub to use a larger packet size. */
1623 if (rs->explicit_packet_size == 0
1624 && rsa->actual_register_packet_size > 0
1625 && what_they_get > rsa->actual_register_packet_size)
1626 what_they_get = rsa->actual_register_packet_size;
1627 }
1628 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1629 what_they_get = MIN_MEMORY_PACKET_SIZE;
1630
1631 /* Make sure there is room in the global buffer for this packet
1632 (including its trailing NUL byte). */
1633 if (rs->buf_size < what_they_get + 1)
1634 {
1635 rs->buf_size = 2 * what_they_get;
1636 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1637 }
1638
1639 return what_they_get;
1640 }
1641
1642 /* Update the size of a read/write packet. If they user wants
1643 something really big then do a sanity check. */
1644
1645 static void
1646 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1647 {
1648 int fixed_p = config->fixed_p;
1649 long size = config->size;
1650
1651 if (args == NULL)
1652 error (_("Argument required (integer, `fixed' or `limited')."));
1653 else if (strcmp (args, "hard") == 0
1654 || strcmp (args, "fixed") == 0)
1655 fixed_p = 1;
1656 else if (strcmp (args, "soft") == 0
1657 || strcmp (args, "limit") == 0)
1658 fixed_p = 0;
1659 else
1660 {
1661 char *end;
1662
1663 size = strtoul (args, &end, 0);
1664 if (args == end)
1665 error (_("Invalid %s (bad syntax)."), config->name);
1666
1667 /* Instead of explicitly capping the size of a packet to or
1668 disallowing it, the user is allowed to set the size to
1669 something arbitrarily large. */
1670 }
1671
1672 /* Extra checks? */
1673 if (fixed_p && !config->fixed_p)
1674 {
1675 /* So that the query shows the correct value. */
1676 long query_size = (size <= 0
1677 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1678 : size);
1679
1680 if (! query (_("The target may not be able to correctly handle a %s\n"
1681 "of %ld bytes. Change the packet size? "),
1682 config->name, query_size))
1683 error (_("Packet size not changed."));
1684 }
1685 /* Update the config. */
1686 config->fixed_p = fixed_p;
1687 config->size = size;
1688 }
1689
1690 static void
1691 show_memory_packet_size (struct memory_packet_config *config)
1692 {
1693 if (config->size == 0)
1694 printf_filtered (_("The %s is 0 (default). "), config->name);
1695 else
1696 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1697 if (config->fixed_p)
1698 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1699 get_fixed_memory_packet_size (config));
1700 else
1701 {
1702 remote_target *remote = get_current_remote_target ();
1703
1704 if (remote != NULL)
1705 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1706 remote->get_memory_packet_size (config));
1707 else
1708 puts_filtered ("The actual limit will be further reduced "
1709 "dependent on the target.\n");
1710 }
1711 }
1712
1713 static struct memory_packet_config memory_write_packet_config =
1714 {
1715 "memory-write-packet-size",
1716 };
1717
1718 static void
1719 set_memory_write_packet_size (const char *args, int from_tty)
1720 {
1721 set_memory_packet_size (args, &memory_write_packet_config);
1722 }
1723
1724 static void
1725 show_memory_write_packet_size (const char *args, int from_tty)
1726 {
1727 show_memory_packet_size (&memory_write_packet_config);
1728 }
1729
1730 long
1731 remote_target::get_memory_write_packet_size ()
1732 {
1733 return get_memory_packet_size (&memory_write_packet_config);
1734 }
1735
1736 static struct memory_packet_config memory_read_packet_config =
1737 {
1738 "memory-read-packet-size",
1739 };
1740
1741 static void
1742 set_memory_read_packet_size (const char *args, int from_tty)
1743 {
1744 set_memory_packet_size (args, &memory_read_packet_config);
1745 }
1746
1747 static void
1748 show_memory_read_packet_size (const char *args, int from_tty)
1749 {
1750 show_memory_packet_size (&memory_read_packet_config);
1751 }
1752
1753 long
1754 remote_target::get_memory_read_packet_size ()
1755 {
1756 long size = get_memory_packet_size (&memory_read_packet_config);
1757
1758 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1759 extra buffer size argument before the memory read size can be
1760 increased beyond this. */
1761 if (size > get_remote_packet_size ())
1762 size = get_remote_packet_size ();
1763 return size;
1764 }
1765
1766 \f
1767
1768 struct packet_config
1769 {
1770 const char *name;
1771 const char *title;
1772
1773 /* If auto, GDB auto-detects support for this packet or feature,
1774 either through qSupported, or by trying the packet and looking
1775 at the response. If true, GDB assumes the target supports this
1776 packet. If false, the packet is disabled. Configs that don't
1777 have an associated command always have this set to auto. */
1778 enum auto_boolean detect;
1779
1780 /* Does the target support this packet? */
1781 enum packet_support support;
1782 };
1783
1784 static enum packet_support packet_config_support (struct packet_config *config);
1785 static enum packet_support packet_support (int packet);
1786
1787 static void
1788 show_packet_config_cmd (struct packet_config *config)
1789 {
1790 const char *support = "internal-error";
1791
1792 switch (packet_config_support (config))
1793 {
1794 case PACKET_ENABLE:
1795 support = "enabled";
1796 break;
1797 case PACKET_DISABLE:
1798 support = "disabled";
1799 break;
1800 case PACKET_SUPPORT_UNKNOWN:
1801 support = "unknown";
1802 break;
1803 }
1804 switch (config->detect)
1805 {
1806 case AUTO_BOOLEAN_AUTO:
1807 printf_filtered (_("Support for the `%s' packet "
1808 "is auto-detected, currently %s.\n"),
1809 config->name, support);
1810 break;
1811 case AUTO_BOOLEAN_TRUE:
1812 case AUTO_BOOLEAN_FALSE:
1813 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1814 config->name, support);
1815 break;
1816 }
1817 }
1818
1819 static void
1820 add_packet_config_cmd (struct packet_config *config, const char *name,
1821 const char *title, int legacy)
1822 {
1823 char *set_doc;
1824 char *show_doc;
1825 char *cmd_name;
1826
1827 config->name = name;
1828 config->title = title;
1829 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1830 name, title);
1831 show_doc = xstrprintf ("Show current use of remote "
1832 "protocol `%s' (%s) packet",
1833 name, title);
1834 /* set/show TITLE-packet {auto,on,off} */
1835 cmd_name = xstrprintf ("%s-packet", title);
1836 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1837 &config->detect, set_doc,
1838 show_doc, NULL, /* help_doc */
1839 NULL,
1840 show_remote_protocol_packet_cmd,
1841 &remote_set_cmdlist, &remote_show_cmdlist);
1842 /* The command code copies the documentation strings. */
1843 xfree (set_doc);
1844 xfree (show_doc);
1845 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1846 if (legacy)
1847 {
1848 char *legacy_name;
1849
1850 legacy_name = xstrprintf ("%s-packet", name);
1851 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1852 &remote_set_cmdlist);
1853 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1854 &remote_show_cmdlist);
1855 }
1856 }
1857
1858 static enum packet_result
1859 packet_check_result (const char *buf)
1860 {
1861 if (buf[0] != '\0')
1862 {
1863 /* The stub recognized the packet request. Check that the
1864 operation succeeded. */
1865 if (buf[0] == 'E'
1866 && isxdigit (buf[1]) && isxdigit (buf[2])
1867 && buf[3] == '\0')
1868 /* "Enn" - definitly an error. */
1869 return PACKET_ERROR;
1870
1871 /* Always treat "E." as an error. This will be used for
1872 more verbose error messages, such as E.memtypes. */
1873 if (buf[0] == 'E' && buf[1] == '.')
1874 return PACKET_ERROR;
1875
1876 /* The packet may or may not be OK. Just assume it is. */
1877 return PACKET_OK;
1878 }
1879 else
1880 /* The stub does not support the packet. */
1881 return PACKET_UNKNOWN;
1882 }
1883
1884 static enum packet_result
1885 packet_ok (const char *buf, struct packet_config *config)
1886 {
1887 enum packet_result result;
1888
1889 if (config->detect != AUTO_BOOLEAN_TRUE
1890 && config->support == PACKET_DISABLE)
1891 internal_error (__FILE__, __LINE__,
1892 _("packet_ok: attempt to use a disabled packet"));
1893
1894 result = packet_check_result (buf);
1895 switch (result)
1896 {
1897 case PACKET_OK:
1898 case PACKET_ERROR:
1899 /* The stub recognized the packet request. */
1900 if (config->support == PACKET_SUPPORT_UNKNOWN)
1901 {
1902 if (remote_debug)
1903 fprintf_unfiltered (gdb_stdlog,
1904 "Packet %s (%s) is supported\n",
1905 config->name, config->title);
1906 config->support = PACKET_ENABLE;
1907 }
1908 break;
1909 case PACKET_UNKNOWN:
1910 /* The stub does not support the packet. */
1911 if (config->detect == AUTO_BOOLEAN_AUTO
1912 && config->support == PACKET_ENABLE)
1913 {
1914 /* If the stub previously indicated that the packet was
1915 supported then there is a protocol error. */
1916 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1917 config->name, config->title);
1918 }
1919 else if (config->detect == AUTO_BOOLEAN_TRUE)
1920 {
1921 /* The user set it wrong. */
1922 error (_("Enabled packet %s (%s) not recognized by stub"),
1923 config->name, config->title);
1924 }
1925
1926 if (remote_debug)
1927 fprintf_unfiltered (gdb_stdlog,
1928 "Packet %s (%s) is NOT supported\n",
1929 config->name, config->title);
1930 config->support = PACKET_DISABLE;
1931 break;
1932 }
1933
1934 return result;
1935 }
1936
1937 enum {
1938 PACKET_vCont = 0,
1939 PACKET_X,
1940 PACKET_qSymbol,
1941 PACKET_P,
1942 PACKET_p,
1943 PACKET_Z0,
1944 PACKET_Z1,
1945 PACKET_Z2,
1946 PACKET_Z3,
1947 PACKET_Z4,
1948 PACKET_vFile_setfs,
1949 PACKET_vFile_open,
1950 PACKET_vFile_pread,
1951 PACKET_vFile_pwrite,
1952 PACKET_vFile_close,
1953 PACKET_vFile_unlink,
1954 PACKET_vFile_readlink,
1955 PACKET_vFile_fstat,
1956 PACKET_qXfer_auxv,
1957 PACKET_qXfer_features,
1958 PACKET_qXfer_exec_file,
1959 PACKET_qXfer_libraries,
1960 PACKET_qXfer_libraries_svr4,
1961 PACKET_qXfer_memory_map,
1962 PACKET_qXfer_spu_read,
1963 PACKET_qXfer_spu_write,
1964 PACKET_qXfer_osdata,
1965 PACKET_qXfer_threads,
1966 PACKET_qXfer_statictrace_read,
1967 PACKET_qXfer_traceframe_info,
1968 PACKET_qXfer_uib,
1969 PACKET_qGetTIBAddr,
1970 PACKET_qGetTLSAddr,
1971 PACKET_qSupported,
1972 PACKET_qTStatus,
1973 PACKET_QPassSignals,
1974 PACKET_QCatchSyscalls,
1975 PACKET_QProgramSignals,
1976 PACKET_QSetWorkingDir,
1977 PACKET_QStartupWithShell,
1978 PACKET_QEnvironmentHexEncoded,
1979 PACKET_QEnvironmentReset,
1980 PACKET_QEnvironmentUnset,
1981 PACKET_qCRC,
1982 PACKET_qSearch_memory,
1983 PACKET_vAttach,
1984 PACKET_vRun,
1985 PACKET_QStartNoAckMode,
1986 PACKET_vKill,
1987 PACKET_qXfer_siginfo_read,
1988 PACKET_qXfer_siginfo_write,
1989 PACKET_qAttached,
1990
1991 /* Support for conditional tracepoints. */
1992 PACKET_ConditionalTracepoints,
1993
1994 /* Support for target-side breakpoint conditions. */
1995 PACKET_ConditionalBreakpoints,
1996
1997 /* Support for target-side breakpoint commands. */
1998 PACKET_BreakpointCommands,
1999
2000 /* Support for fast tracepoints. */
2001 PACKET_FastTracepoints,
2002
2003 /* Support for static tracepoints. */
2004 PACKET_StaticTracepoints,
2005
2006 /* Support for installing tracepoints while a trace experiment is
2007 running. */
2008 PACKET_InstallInTrace,
2009
2010 PACKET_bc,
2011 PACKET_bs,
2012 PACKET_TracepointSource,
2013 PACKET_QAllow,
2014 PACKET_qXfer_fdpic,
2015 PACKET_QDisableRandomization,
2016 PACKET_QAgent,
2017 PACKET_QTBuffer_size,
2018 PACKET_Qbtrace_off,
2019 PACKET_Qbtrace_bts,
2020 PACKET_Qbtrace_pt,
2021 PACKET_qXfer_btrace,
2022
2023 /* Support for the QNonStop packet. */
2024 PACKET_QNonStop,
2025
2026 /* Support for the QThreadEvents packet. */
2027 PACKET_QThreadEvents,
2028
2029 /* Support for multi-process extensions. */
2030 PACKET_multiprocess_feature,
2031
2032 /* Support for enabling and disabling tracepoints while a trace
2033 experiment is running. */
2034 PACKET_EnableDisableTracepoints_feature,
2035
2036 /* Support for collecting strings using the tracenz bytecode. */
2037 PACKET_tracenz_feature,
2038
2039 /* Support for continuing to run a trace experiment while GDB is
2040 disconnected. */
2041 PACKET_DisconnectedTracing_feature,
2042
2043 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2044 PACKET_augmented_libraries_svr4_read_feature,
2045
2046 /* Support for the qXfer:btrace-conf:read packet. */
2047 PACKET_qXfer_btrace_conf,
2048
2049 /* Support for the Qbtrace-conf:bts:size packet. */
2050 PACKET_Qbtrace_conf_bts_size,
2051
2052 /* Support for swbreak+ feature. */
2053 PACKET_swbreak_feature,
2054
2055 /* Support for hwbreak+ feature. */
2056 PACKET_hwbreak_feature,
2057
2058 /* Support for fork events. */
2059 PACKET_fork_event_feature,
2060
2061 /* Support for vfork events. */
2062 PACKET_vfork_event_feature,
2063
2064 /* Support for the Qbtrace-conf:pt:size packet. */
2065 PACKET_Qbtrace_conf_pt_size,
2066
2067 /* Support for exec events. */
2068 PACKET_exec_event_feature,
2069
2070 /* Support for query supported vCont actions. */
2071 PACKET_vContSupported,
2072
2073 /* Support remote CTRL-C. */
2074 PACKET_vCtrlC,
2075
2076 /* Support TARGET_WAITKIND_NO_RESUMED. */
2077 PACKET_no_resumed,
2078
2079 PACKET_MAX
2080 };
2081
2082 static struct packet_config remote_protocol_packets[PACKET_MAX];
2083
2084 /* Returns the packet's corresponding "set remote foo-packet" command
2085 state. See struct packet_config for more details. */
2086
2087 static enum auto_boolean
2088 packet_set_cmd_state (int packet)
2089 {
2090 return remote_protocol_packets[packet].detect;
2091 }
2092
2093 /* Returns whether a given packet or feature is supported. This takes
2094 into account the state of the corresponding "set remote foo-packet"
2095 command, which may be used to bypass auto-detection. */
2096
2097 static enum packet_support
2098 packet_config_support (struct packet_config *config)
2099 {
2100 switch (config->detect)
2101 {
2102 case AUTO_BOOLEAN_TRUE:
2103 return PACKET_ENABLE;
2104 case AUTO_BOOLEAN_FALSE:
2105 return PACKET_DISABLE;
2106 case AUTO_BOOLEAN_AUTO:
2107 return config->support;
2108 default:
2109 gdb_assert_not_reached (_("bad switch"));
2110 }
2111 }
2112
2113 /* Same as packet_config_support, but takes the packet's enum value as
2114 argument. */
2115
2116 static enum packet_support
2117 packet_support (int packet)
2118 {
2119 struct packet_config *config = &remote_protocol_packets[packet];
2120
2121 return packet_config_support (config);
2122 }
2123
2124 static void
2125 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2126 struct cmd_list_element *c,
2127 const char *value)
2128 {
2129 struct packet_config *packet;
2130
2131 for (packet = remote_protocol_packets;
2132 packet < &remote_protocol_packets[PACKET_MAX];
2133 packet++)
2134 {
2135 if (&packet->detect == c->var)
2136 {
2137 show_packet_config_cmd (packet);
2138 return;
2139 }
2140 }
2141 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2142 c->name);
2143 }
2144
2145 /* Should we try one of the 'Z' requests? */
2146
2147 enum Z_packet_type
2148 {
2149 Z_PACKET_SOFTWARE_BP,
2150 Z_PACKET_HARDWARE_BP,
2151 Z_PACKET_WRITE_WP,
2152 Z_PACKET_READ_WP,
2153 Z_PACKET_ACCESS_WP,
2154 NR_Z_PACKET_TYPES
2155 };
2156
2157 /* For compatibility with older distributions. Provide a ``set remote
2158 Z-packet ...'' command that updates all the Z packet types. */
2159
2160 static enum auto_boolean remote_Z_packet_detect;
2161
2162 static void
2163 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2164 struct cmd_list_element *c)
2165 {
2166 int i;
2167
2168 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2169 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2170 }
2171
2172 static void
2173 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2174 struct cmd_list_element *c,
2175 const char *value)
2176 {
2177 int i;
2178
2179 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2180 {
2181 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2182 }
2183 }
2184
2185 /* Returns true if the multi-process extensions are in effect. */
2186
2187 static int
2188 remote_multi_process_p (struct remote_state *rs)
2189 {
2190 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2191 }
2192
2193 /* Returns true if fork events are supported. */
2194
2195 static int
2196 remote_fork_event_p (struct remote_state *rs)
2197 {
2198 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2199 }
2200
2201 /* Returns true if vfork events are supported. */
2202
2203 static int
2204 remote_vfork_event_p (struct remote_state *rs)
2205 {
2206 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2207 }
2208
2209 /* Returns true if exec events are supported. */
2210
2211 static int
2212 remote_exec_event_p (struct remote_state *rs)
2213 {
2214 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2215 }
2216
2217 /* Insert fork catchpoint target routine. If fork events are enabled
2218 then return success, nothing more to do. */
2219
2220 int
2221 remote_target::insert_fork_catchpoint (int pid)
2222 {
2223 struct remote_state *rs = get_remote_state ();
2224
2225 return !remote_fork_event_p (rs);
2226 }
2227
2228 /* Remove fork catchpoint target routine. Nothing to do, just
2229 return success. */
2230
2231 int
2232 remote_target::remove_fork_catchpoint (int pid)
2233 {
2234 return 0;
2235 }
2236
2237 /* Insert vfork catchpoint target routine. If vfork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_vfork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_vfork_event_p (rs);
2246 }
2247
2248 /* Remove vfork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_vfork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert exec catchpoint target routine. If exec events are
2258 enabled, just return success. */
2259
2260 int
2261 remote_target::insert_exec_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_exec_event_p (rs);
2266 }
2267
2268 /* Remove exec catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_exec_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 \f
2278
2279 static ptid_t magic_null_ptid;
2280 static ptid_t not_sent_ptid;
2281 static ptid_t any_thread_ptid;
2282
2283 /* Find out if the stub attached to PID (and hence GDB should offer to
2284 detach instead of killing it when bailing out). */
2285
2286 int
2287 remote_target::remote_query_attached (int pid)
2288 {
2289 struct remote_state *rs = get_remote_state ();
2290 size_t size = get_remote_packet_size ();
2291
2292 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2293 return 0;
2294
2295 if (remote_multi_process_p (rs))
2296 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2297 else
2298 xsnprintf (rs->buf, size, "qAttached");
2299
2300 putpkt (rs->buf);
2301 getpkt (&rs->buf, &rs->buf_size, 0);
2302
2303 switch (packet_ok (rs->buf,
2304 &remote_protocol_packets[PACKET_qAttached]))
2305 {
2306 case PACKET_OK:
2307 if (strcmp (rs->buf, "1") == 0)
2308 return 1;
2309 break;
2310 case PACKET_ERROR:
2311 warning (_("Remote failure reply: %s"), rs->buf);
2312 break;
2313 case PACKET_UNKNOWN:
2314 break;
2315 }
2316
2317 return 0;
2318 }
2319
2320 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2321 has been invented by GDB, instead of reported by the target. Since
2322 we can be connected to a remote system before before knowing about
2323 any inferior, mark the target with execution when we find the first
2324 inferior. If ATTACHED is 1, then we had just attached to this
2325 inferior. If it is 0, then we just created this inferior. If it
2326 is -1, then try querying the remote stub to find out if it had
2327 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2328 attempt to open this inferior's executable as the main executable
2329 if no main executable is open already. */
2330
2331 inferior *
2332 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2333 int try_open_exec)
2334 {
2335 struct inferior *inf;
2336
2337 /* Check whether this process we're learning about is to be
2338 considered attached, or if is to be considered to have been
2339 spawned by the stub. */
2340 if (attached == -1)
2341 attached = remote_query_attached (pid);
2342
2343 if (gdbarch_has_global_solist (target_gdbarch ()))
2344 {
2345 /* If the target shares code across all inferiors, then every
2346 attach adds a new inferior. */
2347 inf = add_inferior (pid);
2348
2349 /* ... and every inferior is bound to the same program space.
2350 However, each inferior may still have its own address
2351 space. */
2352 inf->aspace = maybe_new_address_space ();
2353 inf->pspace = current_program_space;
2354 }
2355 else
2356 {
2357 /* In the traditional debugging scenario, there's a 1-1 match
2358 between program/address spaces. We simply bind the inferior
2359 to the program space's address space. */
2360 inf = current_inferior ();
2361 inferior_appeared (inf, pid);
2362 }
2363
2364 inf->attach_flag = attached;
2365 inf->fake_pid_p = fake_pid_p;
2366
2367 /* If no main executable is currently open then attempt to
2368 open the file that was executed to create this inferior. */
2369 if (try_open_exec && get_exec_file (0) == NULL)
2370 exec_file_locate_attach (pid, 0, 1);
2371
2372 return inf;
2373 }
2374
2375 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2376
2377 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2378 according to RUNNING. */
2379
2380 void
2381 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384 struct thread_info *thread;
2385
2386 /* GDB historically didn't pull threads in the initial connection
2387 setup. If the remote target doesn't even have a concept of
2388 threads (e.g., a bare-metal target), even if internally we
2389 consider that a single-threaded target, mentioning a new thread
2390 might be confusing to the user. Be silent then, preserving the
2391 age old behavior. */
2392 if (rs->starting_up)
2393 thread = add_thread_silent (ptid);
2394 else
2395 thread = add_thread (ptid);
2396
2397 get_remote_thread_info (thread)->vcont_resumed = executing;
2398 set_executing (ptid, executing);
2399 set_running (ptid, running);
2400 }
2401
2402 /* Come here when we learn about a thread id from the remote target.
2403 It may be the first time we hear about such thread, so take the
2404 opportunity to add it to GDB's thread list. In case this is the
2405 first time we're noticing its corresponding inferior, add it to
2406 GDB's inferior list as well. EXECUTING indicates whether the
2407 thread is (internally) executing or stopped. */
2408
2409 void
2410 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2411 {
2412 /* In non-stop mode, we assume new found threads are (externally)
2413 running until proven otherwise with a stop reply. In all-stop,
2414 we can only get here if all threads are stopped. */
2415 int running = target_is_non_stop_p () ? 1 : 0;
2416
2417 /* If this is a new thread, add it to GDB's thread list.
2418 If we leave it up to WFI to do this, bad things will happen. */
2419
2420 if (in_thread_list (currthread) && is_exited (currthread))
2421 {
2422 /* We're seeing an event on a thread id we knew had exited.
2423 This has to be a new thread reusing the old id. Add it. */
2424 remote_add_thread (currthread, running, executing);
2425 return;
2426 }
2427
2428 if (!in_thread_list (currthread))
2429 {
2430 struct inferior *inf = NULL;
2431 int pid = ptid_get_pid (currthread);
2432
2433 if (ptid_is_pid (inferior_ptid)
2434 && pid == ptid_get_pid (inferior_ptid))
2435 {
2436 /* inferior_ptid has no thread member yet. This can happen
2437 with the vAttach -> remote_wait,"TAAthread:" path if the
2438 stub doesn't support qC. This is the first stop reported
2439 after an attach, so this is the main thread. Update the
2440 ptid in the thread list. */
2441 if (in_thread_list (pid_to_ptid (pid)))
2442 thread_change_ptid (inferior_ptid, currthread);
2443 else
2444 {
2445 remote_add_thread (currthread, running, executing);
2446 inferior_ptid = currthread;
2447 }
2448 return;
2449 }
2450
2451 if (ptid_equal (magic_null_ptid, inferior_ptid))
2452 {
2453 /* inferior_ptid is not set yet. This can happen with the
2454 vRun -> remote_wait,"TAAthread:" path if the stub
2455 doesn't support qC. This is the first stop reported
2456 after an attach, so this is the main thread. Update the
2457 ptid in the thread list. */
2458 thread_change_ptid (inferior_ptid, currthread);
2459 return;
2460 }
2461
2462 /* When connecting to a target remote, or to a target
2463 extended-remote which already was debugging an inferior, we
2464 may not know about it yet. Add it before adding its child
2465 thread, so notifications are emitted in a sensible order. */
2466 if (!in_inferior_list (ptid_get_pid (currthread)))
2467 {
2468 struct remote_state *rs = get_remote_state ();
2469 int fake_pid_p = !remote_multi_process_p (rs);
2470
2471 inf = remote_add_inferior (fake_pid_p,
2472 ptid_get_pid (currthread), -1, 1);
2473 }
2474
2475 /* This is really a new thread. Add it. */
2476 remote_add_thread (currthread, running, executing);
2477
2478 /* If we found a new inferior, let the common code do whatever
2479 it needs to with it (e.g., read shared libraries, insert
2480 breakpoints), unless we're just setting up an all-stop
2481 connection. */
2482 if (inf != NULL)
2483 {
2484 struct remote_state *rs = get_remote_state ();
2485
2486 if (!rs->starting_up)
2487 notice_new_inferior (currthread, executing, 0);
2488 }
2489 }
2490 }
2491
2492 /* Return THREAD's private thread data, creating it if necessary. */
2493
2494 static remote_thread_info *
2495 get_remote_thread_info (thread_info *thread)
2496 {
2497 gdb_assert (thread != NULL);
2498
2499 if (thread->priv == NULL)
2500 thread->priv.reset (new remote_thread_info);
2501
2502 return static_cast<remote_thread_info *> (thread->priv.get ());
2503 }
2504
2505 /* Return PTID's private thread data, creating it if necessary. */
2506
2507 static remote_thread_info *
2508 get_remote_thread_info (ptid_t ptid)
2509 {
2510 struct thread_info *info = find_thread_ptid (ptid);
2511
2512 return get_remote_thread_info (info);
2513 }
2514
2515 /* Call this function as a result of
2516 1) A halt indication (T packet) containing a thread id
2517 2) A direct query of currthread
2518 3) Successful execution of set thread */
2519
2520 static void
2521 record_currthread (struct remote_state *rs, ptid_t currthread)
2522 {
2523 rs->general_thread = currthread;
2524 }
2525
2526 /* If 'QPassSignals' is supported, tell the remote stub what signals
2527 it can simply pass through to the inferior without reporting. */
2528
2529 void
2530 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2531 {
2532 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2533 {
2534 char *pass_packet, *p;
2535 int count = 0, i;
2536 struct remote_state *rs = get_remote_state ();
2537
2538 gdb_assert (numsigs < 256);
2539 for (i = 0; i < numsigs; i++)
2540 {
2541 if (pass_signals[i])
2542 count++;
2543 }
2544 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2545 strcpy (pass_packet, "QPassSignals:");
2546 p = pass_packet + strlen (pass_packet);
2547 for (i = 0; i < numsigs; i++)
2548 {
2549 if (pass_signals[i])
2550 {
2551 if (i >= 16)
2552 *p++ = tohex (i >> 4);
2553 *p++ = tohex (i & 15);
2554 if (count)
2555 *p++ = ';';
2556 else
2557 break;
2558 count--;
2559 }
2560 }
2561 *p = 0;
2562 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2563 {
2564 putpkt (pass_packet);
2565 getpkt (&rs->buf, &rs->buf_size, 0);
2566 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2567 if (rs->last_pass_packet)
2568 xfree (rs->last_pass_packet);
2569 rs->last_pass_packet = pass_packet;
2570 }
2571 else
2572 xfree (pass_packet);
2573 }
2574 }
2575
2576 /* If 'QCatchSyscalls' is supported, tell the remote stub
2577 to report syscalls to GDB. */
2578
2579 int
2580 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2581 gdb::array_view<const int> syscall_counts)
2582 {
2583 const char *catch_packet;
2584 enum packet_result result;
2585 int n_sysno = 0;
2586
2587 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2588 {
2589 /* Not supported. */
2590 return 1;
2591 }
2592
2593 if (needed && any_count == 0)
2594 {
2595 /* Count how many syscalls are to be caught. */
2596 for (size_t i = 0; i < syscall_counts.size (); i++)
2597 {
2598 if (syscall_counts[i] != 0)
2599 n_sysno++;
2600 }
2601 }
2602
2603 if (remote_debug)
2604 {
2605 fprintf_unfiltered (gdb_stdlog,
2606 "remote_set_syscall_catchpoint "
2607 "pid %d needed %d any_count %d n_sysno %d\n",
2608 pid, needed, any_count, n_sysno);
2609 }
2610
2611 std::string built_packet;
2612 if (needed)
2613 {
2614 /* Prepare a packet with the sysno list, assuming max 8+1
2615 characters for a sysno. If the resulting packet size is too
2616 big, fallback on the non-selective packet. */
2617 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2618 built_packet.reserve (maxpktsz);
2619 built_packet = "QCatchSyscalls:1";
2620 if (any_count == 0)
2621 {
2622 /* Add in each syscall to be caught. */
2623 for (size_t i = 0; i < syscall_counts.size (); i++)
2624 {
2625 if (syscall_counts[i] != 0)
2626 string_appendf (built_packet, ";%zx", i);
2627 }
2628 }
2629 if (built_packet.size () > get_remote_packet_size ())
2630 {
2631 /* catch_packet too big. Fallback to less efficient
2632 non selective mode, with GDB doing the filtering. */
2633 catch_packet = "QCatchSyscalls:1";
2634 }
2635 else
2636 catch_packet = built_packet.c_str ();
2637 }
2638 else
2639 catch_packet = "QCatchSyscalls:0";
2640
2641 struct remote_state *rs = get_remote_state ();
2642
2643 putpkt (catch_packet);
2644 getpkt (&rs->buf, &rs->buf_size, 0);
2645 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2646 if (result == PACKET_OK)
2647 return 0;
2648 else
2649 return -1;
2650 }
2651
2652 /* If 'QProgramSignals' is supported, tell the remote stub what
2653 signals it should pass through to the inferior when detaching. */
2654
2655 void
2656 remote_target::program_signals (int numsigs, unsigned char *signals)
2657 {
2658 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2659 {
2660 char *packet, *p;
2661 int count = 0, i;
2662 struct remote_state *rs = get_remote_state ();
2663
2664 gdb_assert (numsigs < 256);
2665 for (i = 0; i < numsigs; i++)
2666 {
2667 if (signals[i])
2668 count++;
2669 }
2670 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2671 strcpy (packet, "QProgramSignals:");
2672 p = packet + strlen (packet);
2673 for (i = 0; i < numsigs; i++)
2674 {
2675 if (signal_pass_state (i))
2676 {
2677 if (i >= 16)
2678 *p++ = tohex (i >> 4);
2679 *p++ = tohex (i & 15);
2680 if (count)
2681 *p++ = ';';
2682 else
2683 break;
2684 count--;
2685 }
2686 }
2687 *p = 0;
2688 if (!rs->last_program_signals_packet
2689 || strcmp (rs->last_program_signals_packet, packet) != 0)
2690 {
2691 putpkt (packet);
2692 getpkt (&rs->buf, &rs->buf_size, 0);
2693 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2694 xfree (rs->last_program_signals_packet);
2695 rs->last_program_signals_packet = packet;
2696 }
2697 else
2698 xfree (packet);
2699 }
2700 }
2701
2702 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2703 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2704 thread. If GEN is set, set the general thread, if not, then set
2705 the step/continue thread. */
2706 void
2707 remote_target::set_thread (ptid_t ptid, int gen)
2708 {
2709 struct remote_state *rs = get_remote_state ();
2710 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2711 char *buf = rs->buf;
2712 char *endbuf = rs->buf + get_remote_packet_size ();
2713
2714 if (ptid_equal (state, ptid))
2715 return;
2716
2717 *buf++ = 'H';
2718 *buf++ = gen ? 'g' : 'c';
2719 if (ptid_equal (ptid, magic_null_ptid))
2720 xsnprintf (buf, endbuf - buf, "0");
2721 else if (ptid_equal (ptid, any_thread_ptid))
2722 xsnprintf (buf, endbuf - buf, "0");
2723 else if (ptid_equal (ptid, minus_one_ptid))
2724 xsnprintf (buf, endbuf - buf, "-1");
2725 else
2726 write_ptid (buf, endbuf, ptid);
2727 putpkt (rs->buf);
2728 getpkt (&rs->buf, &rs->buf_size, 0);
2729 if (gen)
2730 rs->general_thread = ptid;
2731 else
2732 rs->continue_thread = ptid;
2733 }
2734
2735 void
2736 remote_target::set_general_thread (ptid_t ptid)
2737 {
2738 set_thread (ptid, 1);
2739 }
2740
2741 void
2742 remote_target::set_continue_thread (ptid_t ptid)
2743 {
2744 set_thread (ptid, 0);
2745 }
2746
2747 /* Change the remote current process. Which thread within the process
2748 ends up selected isn't important, as long as it is the same process
2749 as what INFERIOR_PTID points to.
2750
2751 This comes from that fact that there is no explicit notion of
2752 "selected process" in the protocol. The selected process for
2753 general operations is the process the selected general thread
2754 belongs to. */
2755
2756 void
2757 remote_target::set_general_process ()
2758 {
2759 struct remote_state *rs = get_remote_state ();
2760
2761 /* If the remote can't handle multiple processes, don't bother. */
2762 if (!remote_multi_process_p (rs))
2763 return;
2764
2765 /* We only need to change the remote current thread if it's pointing
2766 at some other process. */
2767 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2768 set_general_thread (inferior_ptid);
2769 }
2770
2771 \f
2772 /* Return nonzero if this is the main thread that we made up ourselves
2773 to model non-threaded targets as single-threaded. */
2774
2775 static int
2776 remote_thread_always_alive (ptid_t ptid)
2777 {
2778 if (ptid_equal (ptid, magic_null_ptid))
2779 /* The main thread is always alive. */
2780 return 1;
2781
2782 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2783 /* The main thread is always alive. This can happen after a
2784 vAttach, if the remote side doesn't support
2785 multi-threading. */
2786 return 1;
2787
2788 return 0;
2789 }
2790
2791 /* Return nonzero if the thread PTID is still alive on the remote
2792 system. */
2793
2794 bool
2795 remote_target::thread_alive (ptid_t ptid)
2796 {
2797 struct remote_state *rs = get_remote_state ();
2798 char *p, *endp;
2799
2800 /* Check if this is a thread that we made up ourselves to model
2801 non-threaded targets as single-threaded. */
2802 if (remote_thread_always_alive (ptid))
2803 return 1;
2804
2805 p = rs->buf;
2806 endp = rs->buf + get_remote_packet_size ();
2807
2808 *p++ = 'T';
2809 write_ptid (p, endp, ptid);
2810
2811 putpkt (rs->buf);
2812 getpkt (&rs->buf, &rs->buf_size, 0);
2813 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2814 }
2815
2816 /* Return a pointer to a thread name if we know it and NULL otherwise.
2817 The thread_info object owns the memory for the name. */
2818
2819 const char *
2820 remote_target::thread_name (struct thread_info *info)
2821 {
2822 if (info->priv != NULL)
2823 {
2824 const std::string &name = get_remote_thread_info (info)->name;
2825 return !name.empty () ? name.c_str () : NULL;
2826 }
2827
2828 return NULL;
2829 }
2830
2831 /* About these extended threadlist and threadinfo packets. They are
2832 variable length packets but, the fields within them are often fixed
2833 length. They are redundent enough to send over UDP as is the
2834 remote protocol in general. There is a matching unit test module
2835 in libstub. */
2836
2837 /* WARNING: This threadref data structure comes from the remote O.S.,
2838 libstub protocol encoding, and remote.c. It is not particularly
2839 changable. */
2840
2841 /* Right now, the internal structure is int. We want it to be bigger.
2842 Plan to fix this. */
2843
2844 typedef int gdb_threadref; /* Internal GDB thread reference. */
2845
2846 /* gdb_ext_thread_info is an internal GDB data structure which is
2847 equivalent to the reply of the remote threadinfo packet. */
2848
2849 struct gdb_ext_thread_info
2850 {
2851 threadref threadid; /* External form of thread reference. */
2852 int active; /* Has state interesting to GDB?
2853 regs, stack. */
2854 char display[256]; /* Brief state display, name,
2855 blocked/suspended. */
2856 char shortname[32]; /* To be used to name threads. */
2857 char more_display[256]; /* Long info, statistics, queue depth,
2858 whatever. */
2859 };
2860
2861 /* The volume of remote transfers can be limited by submitting
2862 a mask containing bits specifying the desired information.
2863 Use a union of these values as the 'selection' parameter to
2864 get_thread_info. FIXME: Make these TAG names more thread specific. */
2865
2866 #define TAG_THREADID 1
2867 #define TAG_EXISTS 2
2868 #define TAG_DISPLAY 4
2869 #define TAG_THREADNAME 8
2870 #define TAG_MOREDISPLAY 16
2871
2872 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2873
2874 static char *unpack_nibble (char *buf, int *val);
2875
2876 static char *unpack_byte (char *buf, int *value);
2877
2878 static char *pack_int (char *buf, int value);
2879
2880 static char *unpack_int (char *buf, int *value);
2881
2882 static char *unpack_string (char *src, char *dest, int length);
2883
2884 static char *pack_threadid (char *pkt, threadref *id);
2885
2886 static char *unpack_threadid (char *inbuf, threadref *id);
2887
2888 void int_to_threadref (threadref *id, int value);
2889
2890 static int threadref_to_int (threadref *ref);
2891
2892 static void copy_threadref (threadref *dest, threadref *src);
2893
2894 static int threadmatch (threadref *dest, threadref *src);
2895
2896 static char *pack_threadinfo_request (char *pkt, int mode,
2897 threadref *id);
2898
2899 static char *pack_threadlist_request (char *pkt, int startflag,
2900 int threadcount,
2901 threadref *nextthread);
2902
2903 static int remote_newthread_step (threadref *ref, void *context);
2904
2905
2906 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2907 buffer we're allowed to write to. Returns
2908 BUF+CHARACTERS_WRITTEN. */
2909
2910 char *
2911 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2912 {
2913 int pid, tid;
2914 struct remote_state *rs = get_remote_state ();
2915
2916 if (remote_multi_process_p (rs))
2917 {
2918 pid = ptid_get_pid (ptid);
2919 if (pid < 0)
2920 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2921 else
2922 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2923 }
2924 tid = ptid_get_lwp (ptid);
2925 if (tid < 0)
2926 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2927 else
2928 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2929
2930 return buf;
2931 }
2932
2933 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2934 last parsed char. Returns null_ptid if no thread id is found, and
2935 throws an error if the thread id has an invalid format. */
2936
2937 static ptid_t
2938 read_ptid (const char *buf, const char **obuf)
2939 {
2940 const char *p = buf;
2941 const char *pp;
2942 ULONGEST pid = 0, tid = 0;
2943
2944 if (*p == 'p')
2945 {
2946 /* Multi-process ptid. */
2947 pp = unpack_varlen_hex (p + 1, &pid);
2948 if (*pp != '.')
2949 error (_("invalid remote ptid: %s"), p);
2950
2951 p = pp;
2952 pp = unpack_varlen_hex (p + 1, &tid);
2953 if (obuf)
2954 *obuf = pp;
2955 return ptid_build (pid, tid, 0);
2956 }
2957
2958 /* No multi-process. Just a tid. */
2959 pp = unpack_varlen_hex (p, &tid);
2960
2961 /* Return null_ptid when no thread id is found. */
2962 if (p == pp)
2963 {
2964 if (obuf)
2965 *obuf = pp;
2966 return null_ptid;
2967 }
2968
2969 /* Since the stub is not sending a process id, then default to
2970 what's in inferior_ptid, unless it's null at this point. If so,
2971 then since there's no way to know the pid of the reported
2972 threads, use the magic number. */
2973 if (ptid_equal (inferior_ptid, null_ptid))
2974 pid = ptid_get_pid (magic_null_ptid);
2975 else
2976 pid = ptid_get_pid (inferior_ptid);
2977
2978 if (obuf)
2979 *obuf = pp;
2980 return ptid_build (pid, tid, 0);
2981 }
2982
2983 static int
2984 stubhex (int ch)
2985 {
2986 if (ch >= 'a' && ch <= 'f')
2987 return ch - 'a' + 10;
2988 if (ch >= '0' && ch <= '9')
2989 return ch - '0';
2990 if (ch >= 'A' && ch <= 'F')
2991 return ch - 'A' + 10;
2992 return -1;
2993 }
2994
2995 static int
2996 stub_unpack_int (char *buff, int fieldlength)
2997 {
2998 int nibble;
2999 int retval = 0;
3000
3001 while (fieldlength)
3002 {
3003 nibble = stubhex (*buff++);
3004 retval |= nibble;
3005 fieldlength--;
3006 if (fieldlength)
3007 retval = retval << 4;
3008 }
3009 return retval;
3010 }
3011
3012 static char *
3013 unpack_nibble (char *buf, int *val)
3014 {
3015 *val = fromhex (*buf++);
3016 return buf;
3017 }
3018
3019 static char *
3020 unpack_byte (char *buf, int *value)
3021 {
3022 *value = stub_unpack_int (buf, 2);
3023 return buf + 2;
3024 }
3025
3026 static char *
3027 pack_int (char *buf, int value)
3028 {
3029 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3030 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3031 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3032 buf = pack_hex_byte (buf, (value & 0xff));
3033 return buf;
3034 }
3035
3036 static char *
3037 unpack_int (char *buf, int *value)
3038 {
3039 *value = stub_unpack_int (buf, 8);
3040 return buf + 8;
3041 }
3042
3043 #if 0 /* Currently unused, uncomment when needed. */
3044 static char *pack_string (char *pkt, char *string);
3045
3046 static char *
3047 pack_string (char *pkt, char *string)
3048 {
3049 char ch;
3050 int len;
3051
3052 len = strlen (string);
3053 if (len > 200)
3054 len = 200; /* Bigger than most GDB packets, junk??? */
3055 pkt = pack_hex_byte (pkt, len);
3056 while (len-- > 0)
3057 {
3058 ch = *string++;
3059 if ((ch == '\0') || (ch == '#'))
3060 ch = '*'; /* Protect encapsulation. */
3061 *pkt++ = ch;
3062 }
3063 return pkt;
3064 }
3065 #endif /* 0 (unused) */
3066
3067 static char *
3068 unpack_string (char *src, char *dest, int length)
3069 {
3070 while (length--)
3071 *dest++ = *src++;
3072 *dest = '\0';
3073 return src;
3074 }
3075
3076 static char *
3077 pack_threadid (char *pkt, threadref *id)
3078 {
3079 char *limit;
3080 unsigned char *altid;
3081
3082 altid = (unsigned char *) id;
3083 limit = pkt + BUF_THREAD_ID_SIZE;
3084 while (pkt < limit)
3085 pkt = pack_hex_byte (pkt, *altid++);
3086 return pkt;
3087 }
3088
3089
3090 static char *
3091 unpack_threadid (char *inbuf, threadref *id)
3092 {
3093 char *altref;
3094 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3095 int x, y;
3096
3097 altref = (char *) id;
3098
3099 while (inbuf < limit)
3100 {
3101 x = stubhex (*inbuf++);
3102 y = stubhex (*inbuf++);
3103 *altref++ = (x << 4) | y;
3104 }
3105 return inbuf;
3106 }
3107
3108 /* Externally, threadrefs are 64 bits but internally, they are still
3109 ints. This is due to a mismatch of specifications. We would like
3110 to use 64bit thread references internally. This is an adapter
3111 function. */
3112
3113 void
3114 int_to_threadref (threadref *id, int value)
3115 {
3116 unsigned char *scan;
3117
3118 scan = (unsigned char *) id;
3119 {
3120 int i = 4;
3121 while (i--)
3122 *scan++ = 0;
3123 }
3124 *scan++ = (value >> 24) & 0xff;
3125 *scan++ = (value >> 16) & 0xff;
3126 *scan++ = (value >> 8) & 0xff;
3127 *scan++ = (value & 0xff);
3128 }
3129
3130 static int
3131 threadref_to_int (threadref *ref)
3132 {
3133 int i, value = 0;
3134 unsigned char *scan;
3135
3136 scan = *ref;
3137 scan += 4;
3138 i = 4;
3139 while (i-- > 0)
3140 value = (value << 8) | ((*scan++) & 0xff);
3141 return value;
3142 }
3143
3144 static void
3145 copy_threadref (threadref *dest, threadref *src)
3146 {
3147 int i;
3148 unsigned char *csrc, *cdest;
3149
3150 csrc = (unsigned char *) src;
3151 cdest = (unsigned char *) dest;
3152 i = 8;
3153 while (i--)
3154 *cdest++ = *csrc++;
3155 }
3156
3157 static int
3158 threadmatch (threadref *dest, threadref *src)
3159 {
3160 /* Things are broken right now, so just assume we got a match. */
3161 #if 0
3162 unsigned char *srcp, *destp;
3163 int i, result;
3164 srcp = (char *) src;
3165 destp = (char *) dest;
3166
3167 result = 1;
3168 while (i-- > 0)
3169 result &= (*srcp++ == *destp++) ? 1 : 0;
3170 return result;
3171 #endif
3172 return 1;
3173 }
3174
3175 /*
3176 threadid:1, # always request threadid
3177 context_exists:2,
3178 display:4,
3179 unique_name:8,
3180 more_display:16
3181 */
3182
3183 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3184
3185 static char *
3186 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3187 {
3188 *pkt++ = 'q'; /* Info Query */
3189 *pkt++ = 'P'; /* process or thread info */
3190 pkt = pack_int (pkt, mode); /* mode */
3191 pkt = pack_threadid (pkt, id); /* threadid */
3192 *pkt = '\0'; /* terminate */
3193 return pkt;
3194 }
3195
3196 /* These values tag the fields in a thread info response packet. */
3197 /* Tagging the fields allows us to request specific fields and to
3198 add more fields as time goes by. */
3199
3200 #define TAG_THREADID 1 /* Echo the thread identifier. */
3201 #define TAG_EXISTS 2 /* Is this process defined enough to
3202 fetch registers and its stack? */
3203 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3204 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3205 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3206 the process. */
3207
3208 int
3209 remote_target::remote_unpack_thread_info_response (char *pkt,
3210 threadref *expectedref,
3211 gdb_ext_thread_info *info)
3212 {
3213 struct remote_state *rs = get_remote_state ();
3214 int mask, length;
3215 int tag;
3216 threadref ref;
3217 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3218 int retval = 1;
3219
3220 /* info->threadid = 0; FIXME: implement zero_threadref. */
3221 info->active = 0;
3222 info->display[0] = '\0';
3223 info->shortname[0] = '\0';
3224 info->more_display[0] = '\0';
3225
3226 /* Assume the characters indicating the packet type have been
3227 stripped. */
3228 pkt = unpack_int (pkt, &mask); /* arg mask */
3229 pkt = unpack_threadid (pkt, &ref);
3230
3231 if (mask == 0)
3232 warning (_("Incomplete response to threadinfo request."));
3233 if (!threadmatch (&ref, expectedref))
3234 { /* This is an answer to a different request. */
3235 warning (_("ERROR RMT Thread info mismatch."));
3236 return 0;
3237 }
3238 copy_threadref (&info->threadid, &ref);
3239
3240 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3241
3242 /* Packets are terminated with nulls. */
3243 while ((pkt < limit) && mask && *pkt)
3244 {
3245 pkt = unpack_int (pkt, &tag); /* tag */
3246 pkt = unpack_byte (pkt, &length); /* length */
3247 if (!(tag & mask)) /* Tags out of synch with mask. */
3248 {
3249 warning (_("ERROR RMT: threadinfo tag mismatch."));
3250 retval = 0;
3251 break;
3252 }
3253 if (tag == TAG_THREADID)
3254 {
3255 if (length != 16)
3256 {
3257 warning (_("ERROR RMT: length of threadid is not 16."));
3258 retval = 0;
3259 break;
3260 }
3261 pkt = unpack_threadid (pkt, &ref);
3262 mask = mask & ~TAG_THREADID;
3263 continue;
3264 }
3265 if (tag == TAG_EXISTS)
3266 {
3267 info->active = stub_unpack_int (pkt, length);
3268 pkt += length;
3269 mask = mask & ~(TAG_EXISTS);
3270 if (length > 8)
3271 {
3272 warning (_("ERROR RMT: 'exists' length too long."));
3273 retval = 0;
3274 break;
3275 }
3276 continue;
3277 }
3278 if (tag == TAG_THREADNAME)
3279 {
3280 pkt = unpack_string (pkt, &info->shortname[0], length);
3281 mask = mask & ~TAG_THREADNAME;
3282 continue;
3283 }
3284 if (tag == TAG_DISPLAY)
3285 {
3286 pkt = unpack_string (pkt, &info->display[0], length);
3287 mask = mask & ~TAG_DISPLAY;
3288 continue;
3289 }
3290 if (tag == TAG_MOREDISPLAY)
3291 {
3292 pkt = unpack_string (pkt, &info->more_display[0], length);
3293 mask = mask & ~TAG_MOREDISPLAY;
3294 continue;
3295 }
3296 warning (_("ERROR RMT: unknown thread info tag."));
3297 break; /* Not a tag we know about. */
3298 }
3299 return retval;
3300 }
3301
3302 int
3303 remote_target::remote_get_threadinfo (threadref *threadid,
3304 int fieldset,
3305 gdb_ext_thread_info *info)
3306 {
3307 struct remote_state *rs = get_remote_state ();
3308 int result;
3309
3310 pack_threadinfo_request (rs->buf, fieldset, threadid);
3311 putpkt (rs->buf);
3312 getpkt (&rs->buf, &rs->buf_size, 0);
3313
3314 if (rs->buf[0] == '\0')
3315 return 0;
3316
3317 result = remote_unpack_thread_info_response (rs->buf + 2,
3318 threadid, info);
3319 return result;
3320 }
3321
3322 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3323
3324 static char *
3325 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3326 threadref *nextthread)
3327 {
3328 *pkt++ = 'q'; /* info query packet */
3329 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3330 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3331 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3332 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3333 *pkt = '\0';
3334 return pkt;
3335 }
3336
3337 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3338
3339 int
3340 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3341 threadref *original_echo,
3342 threadref *resultlist,
3343 int *doneflag)
3344 {
3345 struct remote_state *rs = get_remote_state ();
3346 char *limit;
3347 int count, resultcount, done;
3348
3349 resultcount = 0;
3350 /* Assume the 'q' and 'M chars have been stripped. */
3351 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3352 /* done parse past here */
3353 pkt = unpack_byte (pkt, &count); /* count field */
3354 pkt = unpack_nibble (pkt, &done);
3355 /* The first threadid is the argument threadid. */
3356 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3357 while ((count-- > 0) && (pkt < limit))
3358 {
3359 pkt = unpack_threadid (pkt, resultlist++);
3360 if (resultcount++ >= result_limit)
3361 break;
3362 }
3363 if (doneflag)
3364 *doneflag = done;
3365 return resultcount;
3366 }
3367
3368 /* Fetch the next batch of threads from the remote. Returns -1 if the
3369 qL packet is not supported, 0 on error and 1 on success. */
3370
3371 int
3372 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3373 int result_limit, int *done, int *result_count,
3374 threadref *threadlist)
3375 {
3376 struct remote_state *rs = get_remote_state ();
3377 int result = 1;
3378
3379 /* Trancate result limit to be smaller than the packet size. */
3380 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3381 >= get_remote_packet_size ())
3382 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3383
3384 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3385 putpkt (rs->buf);
3386 getpkt (&rs->buf, &rs->buf_size, 0);
3387 if (*rs->buf == '\0')
3388 {
3389 /* Packet not supported. */
3390 return -1;
3391 }
3392
3393 *result_count =
3394 parse_threadlist_response (rs->buf + 2, result_limit,
3395 &rs->echo_nextthread, threadlist, done);
3396
3397 if (!threadmatch (&rs->echo_nextthread, nextthread))
3398 {
3399 /* FIXME: This is a good reason to drop the packet. */
3400 /* Possably, there is a duplicate response. */
3401 /* Possabilities :
3402 retransmit immediatly - race conditions
3403 retransmit after timeout - yes
3404 exit
3405 wait for packet, then exit
3406 */
3407 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3408 return 0; /* I choose simply exiting. */
3409 }
3410 if (*result_count <= 0)
3411 {
3412 if (*done != 1)
3413 {
3414 warning (_("RMT ERROR : failed to get remote thread list."));
3415 result = 0;
3416 }
3417 return result; /* break; */
3418 }
3419 if (*result_count > result_limit)
3420 {
3421 *result_count = 0;
3422 warning (_("RMT ERROR: threadlist response longer than requested."));
3423 return 0;
3424 }
3425 return result;
3426 }
3427
3428 /* Fetch the list of remote threads, with the qL packet, and call
3429 STEPFUNCTION for each thread found. Stops iterating and returns 1
3430 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3431 STEPFUNCTION returns false. If the packet is not supported,
3432 returns -1. */
3433
3434 int
3435 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3436 void *context, int looplimit)
3437 {
3438 struct remote_state *rs = get_remote_state ();
3439 int done, i, result_count;
3440 int startflag = 1;
3441 int result = 1;
3442 int loopcount = 0;
3443
3444 done = 0;
3445 while (!done)
3446 {
3447 if (loopcount++ > looplimit)
3448 {
3449 result = 0;
3450 warning (_("Remote fetch threadlist -infinite loop-."));
3451 break;
3452 }
3453 result = remote_get_threadlist (startflag, &rs->nextthread,
3454 MAXTHREADLISTRESULTS,
3455 &done, &result_count,
3456 rs->resultthreadlist);
3457 if (result <= 0)
3458 break;
3459 /* Clear for later iterations. */
3460 startflag = 0;
3461 /* Setup to resume next batch of thread references, set nextthread. */
3462 if (result_count >= 1)
3463 copy_threadref (&rs->nextthread,
3464 &rs->resultthreadlist[result_count - 1]);
3465 i = 0;
3466 while (result_count--)
3467 {
3468 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3469 {
3470 result = 0;
3471 break;
3472 }
3473 }
3474 }
3475 return result;
3476 }
3477
3478 /* A thread found on the remote target. */
3479
3480 struct thread_item
3481 {
3482 explicit thread_item (ptid_t ptid_)
3483 : ptid (ptid_)
3484 {}
3485
3486 thread_item (thread_item &&other) = default;
3487 thread_item &operator= (thread_item &&other) = default;
3488
3489 DISABLE_COPY_AND_ASSIGN (thread_item);
3490
3491 /* The thread's PTID. */
3492 ptid_t ptid;
3493
3494 /* The thread's extra info. */
3495 std::string extra;
3496
3497 /* The thread's name. */
3498 std::string name;
3499
3500 /* The core the thread was running on. -1 if not known. */
3501 int core = -1;
3502
3503 /* The thread handle associated with the thread. */
3504 gdb::byte_vector thread_handle;
3505 };
3506
3507 /* Context passed around to the various methods listing remote
3508 threads. As new threads are found, they're added to the ITEMS
3509 vector. */
3510
3511 struct threads_listing_context
3512 {
3513 /* Return true if this object contains an entry for a thread with ptid
3514 PTID. */
3515
3516 bool contains_thread (ptid_t ptid) const
3517 {
3518 auto match_ptid = [&] (const thread_item &item)
3519 {
3520 return item.ptid == ptid;
3521 };
3522
3523 auto it = std::find_if (this->items.begin (),
3524 this->items.end (),
3525 match_ptid);
3526
3527 return it != this->items.end ();
3528 }
3529
3530 /* Remove the thread with ptid PTID. */
3531
3532 void remove_thread (ptid_t ptid)
3533 {
3534 auto match_ptid = [&] (const thread_item &item)
3535 {
3536 return item.ptid == ptid;
3537 };
3538
3539 auto it = std::remove_if (this->items.begin (),
3540 this->items.end (),
3541 match_ptid);
3542
3543 if (it != this->items.end ())
3544 this->items.erase (it);
3545 }
3546
3547 /* The threads found on the remote target. */
3548 std::vector<thread_item> items;
3549 };
3550
3551 static int
3552 remote_newthread_step (threadref *ref, void *data)
3553 {
3554 struct threads_listing_context *context
3555 = (struct threads_listing_context *) data;
3556 int pid = inferior_ptid.pid ();
3557 int lwp = threadref_to_int (ref);
3558 ptid_t ptid (pid, lwp);
3559
3560 context->items.emplace_back (ptid);
3561
3562 return 1; /* continue iterator */
3563 }
3564
3565 #define CRAZY_MAX_THREADS 1000
3566
3567 ptid_t
3568 remote_target::remote_current_thread (ptid_t oldpid)
3569 {
3570 struct remote_state *rs = get_remote_state ();
3571
3572 putpkt ("qC");
3573 getpkt (&rs->buf, &rs->buf_size, 0);
3574 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3575 {
3576 const char *obuf;
3577 ptid_t result;
3578
3579 result = read_ptid (&rs->buf[2], &obuf);
3580 if (*obuf != '\0' && remote_debug)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "warning: garbage in qC reply\n");
3583
3584 return result;
3585 }
3586 else
3587 return oldpid;
3588 }
3589
3590 /* List remote threads using the deprecated qL packet. */
3591
3592 int
3593 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3594 {
3595 if (remote_threadlist_iterator (remote_newthread_step, context,
3596 CRAZY_MAX_THREADS) >= 0)
3597 return 1;
3598
3599 return 0;
3600 }
3601
3602 #if defined(HAVE_LIBEXPAT)
3603
3604 static void
3605 start_thread (struct gdb_xml_parser *parser,
3606 const struct gdb_xml_element *element,
3607 void *user_data,
3608 std::vector<gdb_xml_value> &attributes)
3609 {
3610 struct threads_listing_context *data
3611 = (struct threads_listing_context *) user_data;
3612 struct gdb_xml_value *attr;
3613
3614 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3615 ptid_t ptid = read_ptid (id, NULL);
3616
3617 data->items.emplace_back (ptid);
3618 thread_item &item = data->items.back ();
3619
3620 attr = xml_find_attribute (attributes, "core");
3621 if (attr != NULL)
3622 item.core = *(ULONGEST *) attr->value.get ();
3623
3624 attr = xml_find_attribute (attributes, "name");
3625 if (attr != NULL)
3626 item.name = (const char *) attr->value.get ();
3627
3628 attr = xml_find_attribute (attributes, "handle");
3629 if (attr != NULL)
3630 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3631 }
3632
3633 static void
3634 end_thread (struct gdb_xml_parser *parser,
3635 const struct gdb_xml_element *element,
3636 void *user_data, const char *body_text)
3637 {
3638 struct threads_listing_context *data
3639 = (struct threads_listing_context *) user_data;
3640
3641 if (body_text != NULL && *body_text != '\0')
3642 data->items.back ().extra = body_text;
3643 }
3644
3645 const struct gdb_xml_attribute thread_attributes[] = {
3646 { "id", GDB_XML_AF_NONE, NULL, NULL },
3647 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3648 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3649 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3650 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3651 };
3652
3653 const struct gdb_xml_element thread_children[] = {
3654 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3655 };
3656
3657 const struct gdb_xml_element threads_children[] = {
3658 { "thread", thread_attributes, thread_children,
3659 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3660 start_thread, end_thread },
3661 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3662 };
3663
3664 const struct gdb_xml_element threads_elements[] = {
3665 { "threads", NULL, threads_children,
3666 GDB_XML_EF_NONE, NULL, NULL },
3667 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3668 };
3669
3670 #endif
3671
3672 /* List remote threads using qXfer:threads:read. */
3673
3674 int
3675 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3676 {
3677 #if defined(HAVE_LIBEXPAT)
3678 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3679 {
3680 gdb::optional<gdb::char_vector> xml
3681 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3682
3683 if (xml && (*xml)[0] != '\0')
3684 {
3685 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3686 threads_elements, xml->data (), context);
3687 }
3688
3689 return 1;
3690 }
3691 #endif
3692
3693 return 0;
3694 }
3695
3696 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3697
3698 int
3699 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3700 {
3701 struct remote_state *rs = get_remote_state ();
3702
3703 if (rs->use_threadinfo_query)
3704 {
3705 const char *bufp;
3706
3707 putpkt ("qfThreadInfo");
3708 getpkt (&rs->buf, &rs->buf_size, 0);
3709 bufp = rs->buf;
3710 if (bufp[0] != '\0') /* q packet recognized */
3711 {
3712 while (*bufp++ == 'm') /* reply contains one or more TID */
3713 {
3714 do
3715 {
3716 ptid_t ptid = read_ptid (bufp, &bufp);
3717 context->items.emplace_back (ptid);
3718 }
3719 while (*bufp++ == ','); /* comma-separated list */
3720 putpkt ("qsThreadInfo");
3721 getpkt (&rs->buf, &rs->buf_size, 0);
3722 bufp = rs->buf;
3723 }
3724 return 1;
3725 }
3726 else
3727 {
3728 /* Packet not recognized. */
3729 rs->use_threadinfo_query = 0;
3730 }
3731 }
3732
3733 return 0;
3734 }
3735
3736 /* Implement the to_update_thread_list function for the remote
3737 targets. */
3738
3739 void
3740 remote_target::update_thread_list ()
3741 {
3742 struct threads_listing_context context;
3743 int got_list = 0;
3744
3745 /* We have a few different mechanisms to fetch the thread list. Try
3746 them all, starting with the most preferred one first, falling
3747 back to older methods. */
3748 if (remote_get_threads_with_qxfer (&context)
3749 || remote_get_threads_with_qthreadinfo (&context)
3750 || remote_get_threads_with_ql (&context))
3751 {
3752 struct thread_info *tp, *tmp;
3753
3754 got_list = 1;
3755
3756 if (context.items.empty ()
3757 && remote_thread_always_alive (inferior_ptid))
3758 {
3759 /* Some targets don't really support threads, but still
3760 reply an (empty) thread list in response to the thread
3761 listing packets, instead of replying "packet not
3762 supported". Exit early so we don't delete the main
3763 thread. */
3764 return;
3765 }
3766
3767 /* CONTEXT now holds the current thread list on the remote
3768 target end. Delete GDB-side threads no longer found on the
3769 target. */
3770 ALL_THREADS_SAFE (tp, tmp)
3771 {
3772 if (!context.contains_thread (tp->ptid))
3773 {
3774 /* Not found. */
3775 delete_thread (tp->ptid);
3776 }
3777 }
3778
3779 /* Remove any unreported fork child threads from CONTEXT so
3780 that we don't interfere with follow fork, which is where
3781 creation of such threads is handled. */
3782 remove_new_fork_children (&context);
3783
3784 /* And now add threads we don't know about yet to our list. */
3785 for (thread_item &item : context.items)
3786 {
3787 if (item.ptid != null_ptid)
3788 {
3789 /* In non-stop mode, we assume new found threads are
3790 executing until proven otherwise with a stop reply.
3791 In all-stop, we can only get here if all threads are
3792 stopped. */
3793 int executing = target_is_non_stop_p () ? 1 : 0;
3794
3795 remote_notice_new_inferior (item.ptid, executing);
3796
3797 remote_thread_info *info = get_remote_thread_info (item.ptid);
3798 info->core = item.core;
3799 info->extra = std::move (item.extra);
3800 info->name = std::move (item.name);
3801 info->thread_handle = std::move (item.thread_handle);
3802 }
3803 }
3804 }
3805
3806 if (!got_list)
3807 {
3808 /* If no thread listing method is supported, then query whether
3809 each known thread is alive, one by one, with the T packet.
3810 If the target doesn't support threads at all, then this is a
3811 no-op. See remote_thread_alive. */
3812 prune_threads ();
3813 }
3814 }
3815
3816 /*
3817 * Collect a descriptive string about the given thread.
3818 * The target may say anything it wants to about the thread
3819 * (typically info about its blocked / runnable state, name, etc.).
3820 * This string will appear in the info threads display.
3821 *
3822 * Optional: targets are not required to implement this function.
3823 */
3824
3825 const char *
3826 remote_target::extra_thread_info (thread_info *tp)
3827 {
3828 struct remote_state *rs = get_remote_state ();
3829 int result;
3830 int set;
3831 threadref id;
3832 struct gdb_ext_thread_info threadinfo;
3833 static char display_buf[100]; /* arbitrary... */
3834 int n = 0; /* position in display_buf */
3835
3836 if (rs->remote_desc == 0) /* paranoia */
3837 internal_error (__FILE__, __LINE__,
3838 _("remote_threads_extra_info"));
3839
3840 if (ptid_equal (tp->ptid, magic_null_ptid)
3841 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3842 /* This is the main thread which was added by GDB. The remote
3843 server doesn't know about it. */
3844 return NULL;
3845
3846 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3847 {
3848 struct thread_info *info = find_thread_ptid (tp->ptid);
3849
3850 if (info != NULL && info->priv != NULL)
3851 {
3852 const std::string &extra = get_remote_thread_info (info)->extra;
3853 return !extra.empty () ? extra.c_str () : NULL;
3854 }
3855 else
3856 return NULL;
3857 }
3858
3859 if (rs->use_threadextra_query)
3860 {
3861 char *b = rs->buf;
3862 char *endb = rs->buf + get_remote_packet_size ();
3863
3864 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3865 b += strlen (b);
3866 write_ptid (b, endb, tp->ptid);
3867
3868 putpkt (rs->buf);
3869 getpkt (&rs->buf, &rs->buf_size, 0);
3870 if (rs->buf[0] != 0)
3871 {
3872 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3873 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3874 display_buf [result] = '\0';
3875 return display_buf;
3876 }
3877 }
3878
3879 /* If the above query fails, fall back to the old method. */
3880 rs->use_threadextra_query = 0;
3881 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3882 | TAG_MOREDISPLAY | TAG_DISPLAY;
3883 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3884 if (remote_get_threadinfo (&id, set, &threadinfo))
3885 if (threadinfo.active)
3886 {
3887 if (*threadinfo.shortname)
3888 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3889 " Name: %s,", threadinfo.shortname);
3890 if (*threadinfo.display)
3891 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3892 " State: %s,", threadinfo.display);
3893 if (*threadinfo.more_display)
3894 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3895 " Priority: %s", threadinfo.more_display);
3896
3897 if (n > 0)
3898 {
3899 /* For purely cosmetic reasons, clear up trailing commas. */
3900 if (',' == display_buf[n-1])
3901 display_buf[n-1] = ' ';
3902 return display_buf;
3903 }
3904 }
3905 return NULL;
3906 }
3907 \f
3908
3909 bool
3910 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3911 struct static_tracepoint_marker *marker)
3912 {
3913 struct remote_state *rs = get_remote_state ();
3914 char *p = rs->buf;
3915
3916 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3917 p += strlen (p);
3918 p += hexnumstr (p, addr);
3919 putpkt (rs->buf);
3920 getpkt (&rs->buf, &rs->buf_size, 0);
3921 p = rs->buf;
3922
3923 if (*p == 'E')
3924 error (_("Remote failure reply: %s"), p);
3925
3926 if (*p++ == 'm')
3927 {
3928 parse_static_tracepoint_marker_definition (p, NULL, marker);
3929 return true;
3930 }
3931
3932 return false;
3933 }
3934
3935 std::vector<static_tracepoint_marker>
3936 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3937 {
3938 struct remote_state *rs = get_remote_state ();
3939 std::vector<static_tracepoint_marker> markers;
3940 const char *p;
3941 static_tracepoint_marker marker;
3942
3943 /* Ask for a first packet of static tracepoint marker
3944 definition. */
3945 putpkt ("qTfSTM");
3946 getpkt (&rs->buf, &rs->buf_size, 0);
3947 p = rs->buf;
3948 if (*p == 'E')
3949 error (_("Remote failure reply: %s"), p);
3950
3951 while (*p++ == 'm')
3952 {
3953 do
3954 {
3955 parse_static_tracepoint_marker_definition (p, &p, &marker);
3956
3957 if (strid == NULL || marker.str_id == strid)
3958 markers.push_back (std::move (marker));
3959 }
3960 while (*p++ == ','); /* comma-separated list */
3961 /* Ask for another packet of static tracepoint definition. */
3962 putpkt ("qTsSTM");
3963 getpkt (&rs->buf, &rs->buf_size, 0);
3964 p = rs->buf;
3965 }
3966
3967 return markers;
3968 }
3969
3970 \f
3971 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3972
3973 ptid_t
3974 remote_target::get_ada_task_ptid (long lwp, long thread)
3975 {
3976 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3977 }
3978 \f
3979
3980 /* Restart the remote side; this is an extended protocol operation. */
3981
3982 void
3983 remote_target::extended_remote_restart ()
3984 {
3985 struct remote_state *rs = get_remote_state ();
3986
3987 /* Send the restart command; for reasons I don't understand the
3988 remote side really expects a number after the "R". */
3989 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3990 putpkt (rs->buf);
3991
3992 remote_fileio_reset ();
3993 }
3994 \f
3995 /* Clean up connection to a remote debugger. */
3996
3997 void
3998 remote_target::close ()
3999 {
4000 /* Make sure we leave stdin registered in the event loop. */
4001 terminal_ours ();
4002
4003 /* We don't have a connection to the remote stub anymore. Get rid
4004 of all the inferiors and their threads we were controlling.
4005 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4006 will be unable to find the thread corresponding to (pid, 0, 0). */
4007 inferior_ptid = null_ptid;
4008 discard_all_inferiors ();
4009
4010 trace_reset_local_state ();
4011
4012 delete this;
4013 }
4014
4015 remote_target::~remote_target ()
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 /* Check for NULL because we may get here with a partially
4020 constructed target/connection. */
4021 if (rs->remote_desc == nullptr)
4022 return;
4023
4024 serial_close (rs->remote_desc);
4025
4026 /* We are destroying the remote target, so we should discard
4027 everything of this target. */
4028 discard_pending_stop_replies_in_queue ();
4029
4030 if (rs->remote_async_inferior_event_token)
4031 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4032
4033 remote_notif_state_xfree (rs->notif_state);
4034 }
4035
4036 /* Query the remote side for the text, data and bss offsets. */
4037
4038 void
4039 remote_target::get_offsets ()
4040 {
4041 struct remote_state *rs = get_remote_state ();
4042 char *buf;
4043 char *ptr;
4044 int lose, num_segments = 0, do_sections, do_segments;
4045 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4046 struct section_offsets *offs;
4047 struct symfile_segment_data *data;
4048
4049 if (symfile_objfile == NULL)
4050 return;
4051
4052 putpkt ("qOffsets");
4053 getpkt (&rs->buf, &rs->buf_size, 0);
4054 buf = rs->buf;
4055
4056 if (buf[0] == '\000')
4057 return; /* Return silently. Stub doesn't support
4058 this command. */
4059 if (buf[0] == 'E')
4060 {
4061 warning (_("Remote failure reply: %s"), buf);
4062 return;
4063 }
4064
4065 /* Pick up each field in turn. This used to be done with scanf, but
4066 scanf will make trouble if CORE_ADDR size doesn't match
4067 conversion directives correctly. The following code will work
4068 with any size of CORE_ADDR. */
4069 text_addr = data_addr = bss_addr = 0;
4070 ptr = buf;
4071 lose = 0;
4072
4073 if (startswith (ptr, "Text="))
4074 {
4075 ptr += 5;
4076 /* Don't use strtol, could lose on big values. */
4077 while (*ptr && *ptr != ';')
4078 text_addr = (text_addr << 4) + fromhex (*ptr++);
4079
4080 if (startswith (ptr, ";Data="))
4081 {
4082 ptr += 6;
4083 while (*ptr && *ptr != ';')
4084 data_addr = (data_addr << 4) + fromhex (*ptr++);
4085 }
4086 else
4087 lose = 1;
4088
4089 if (!lose && startswith (ptr, ";Bss="))
4090 {
4091 ptr += 5;
4092 while (*ptr && *ptr != ';')
4093 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4094
4095 if (bss_addr != data_addr)
4096 warning (_("Target reported unsupported offsets: %s"), buf);
4097 }
4098 else
4099 lose = 1;
4100 }
4101 else if (startswith (ptr, "TextSeg="))
4102 {
4103 ptr += 8;
4104 /* Don't use strtol, could lose on big values. */
4105 while (*ptr && *ptr != ';')
4106 text_addr = (text_addr << 4) + fromhex (*ptr++);
4107 num_segments = 1;
4108
4109 if (startswith (ptr, ";DataSeg="))
4110 {
4111 ptr += 9;
4112 while (*ptr && *ptr != ';')
4113 data_addr = (data_addr << 4) + fromhex (*ptr++);
4114 num_segments++;
4115 }
4116 }
4117 else
4118 lose = 1;
4119
4120 if (lose)
4121 error (_("Malformed response to offset query, %s"), buf);
4122 else if (*ptr != '\0')
4123 warning (_("Target reported unsupported offsets: %s"), buf);
4124
4125 offs = ((struct section_offsets *)
4126 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4127 memcpy (offs, symfile_objfile->section_offsets,
4128 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4129
4130 data = get_symfile_segment_data (symfile_objfile->obfd);
4131 do_segments = (data != NULL);
4132 do_sections = num_segments == 0;
4133
4134 if (num_segments > 0)
4135 {
4136 segments[0] = text_addr;
4137 segments[1] = data_addr;
4138 }
4139 /* If we have two segments, we can still try to relocate everything
4140 by assuming that the .text and .data offsets apply to the whole
4141 text and data segments. Convert the offsets given in the packet
4142 to base addresses for symfile_map_offsets_to_segments. */
4143 else if (data && data->num_segments == 2)
4144 {
4145 segments[0] = data->segment_bases[0] + text_addr;
4146 segments[1] = data->segment_bases[1] + data_addr;
4147 num_segments = 2;
4148 }
4149 /* If the object file has only one segment, assume that it is text
4150 rather than data; main programs with no writable data are rare,
4151 but programs with no code are useless. Of course the code might
4152 have ended up in the data segment... to detect that we would need
4153 the permissions here. */
4154 else if (data && data->num_segments == 1)
4155 {
4156 segments[0] = data->segment_bases[0] + text_addr;
4157 num_segments = 1;
4158 }
4159 /* There's no way to relocate by segment. */
4160 else
4161 do_segments = 0;
4162
4163 if (do_segments)
4164 {
4165 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4166 offs, num_segments, segments);
4167
4168 if (ret == 0 && !do_sections)
4169 error (_("Can not handle qOffsets TextSeg "
4170 "response with this symbol file"));
4171
4172 if (ret > 0)
4173 do_sections = 0;
4174 }
4175
4176 if (data)
4177 free_symfile_segment_data (data);
4178
4179 if (do_sections)
4180 {
4181 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4182
4183 /* This is a temporary kludge to force data and bss to use the
4184 same offsets because that's what nlmconv does now. The real
4185 solution requires changes to the stub and remote.c that I
4186 don't have time to do right now. */
4187
4188 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4189 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4190 }
4191
4192 objfile_relocate (symfile_objfile, offs);
4193 }
4194
4195 /* Send interrupt_sequence to remote target. */
4196
4197 void
4198 remote_target::send_interrupt_sequence ()
4199 {
4200 struct remote_state *rs = get_remote_state ();
4201
4202 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4203 remote_serial_write ("\x03", 1);
4204 else if (interrupt_sequence_mode == interrupt_sequence_break)
4205 serial_send_break (rs->remote_desc);
4206 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4207 {
4208 serial_send_break (rs->remote_desc);
4209 remote_serial_write ("g", 1);
4210 }
4211 else
4212 internal_error (__FILE__, __LINE__,
4213 _("Invalid value for interrupt_sequence_mode: %s."),
4214 interrupt_sequence_mode);
4215 }
4216
4217
4218 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4219 and extract the PTID. Returns NULL_PTID if not found. */
4220
4221 static ptid_t
4222 stop_reply_extract_thread (char *stop_reply)
4223 {
4224 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4225 {
4226 const char *p;
4227
4228 /* Txx r:val ; r:val (...) */
4229 p = &stop_reply[3];
4230
4231 /* Look for "register" named "thread". */
4232 while (*p != '\0')
4233 {
4234 const char *p1;
4235
4236 p1 = strchr (p, ':');
4237 if (p1 == NULL)
4238 return null_ptid;
4239
4240 if (strncmp (p, "thread", p1 - p) == 0)
4241 return read_ptid (++p1, &p);
4242
4243 p1 = strchr (p, ';');
4244 if (p1 == NULL)
4245 return null_ptid;
4246 p1++;
4247
4248 p = p1;
4249 }
4250 }
4251
4252 return null_ptid;
4253 }
4254
4255 /* Determine the remote side's current thread. If we have a stop
4256 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4257 "thread" register we can extract the current thread from. If not,
4258 ask the remote which is the current thread with qC. The former
4259 method avoids a roundtrip. */
4260
4261 ptid_t
4262 remote_target::get_current_thread (char *wait_status)
4263 {
4264 ptid_t ptid = null_ptid;
4265
4266 /* Note we don't use remote_parse_stop_reply as that makes use of
4267 the target architecture, which we haven't yet fully determined at
4268 this point. */
4269 if (wait_status != NULL)
4270 ptid = stop_reply_extract_thread (wait_status);
4271 if (ptid_equal (ptid, null_ptid))
4272 ptid = remote_current_thread (inferior_ptid);
4273
4274 return ptid;
4275 }
4276
4277 /* Query the remote target for which is the current thread/process,
4278 add it to our tables, and update INFERIOR_PTID. The caller is
4279 responsible for setting the state such that the remote end is ready
4280 to return the current thread.
4281
4282 This function is called after handling the '?' or 'vRun' packets,
4283 whose response is a stop reply from which we can also try
4284 extracting the thread. If the target doesn't support the explicit
4285 qC query, we infer the current thread from that stop reply, passed
4286 in in WAIT_STATUS, which may be NULL. */
4287
4288 void
4289 remote_target::add_current_inferior_and_thread (char *wait_status)
4290 {
4291 struct remote_state *rs = get_remote_state ();
4292 int fake_pid_p = 0;
4293
4294 inferior_ptid = null_ptid;
4295
4296 /* Now, if we have thread information, update inferior_ptid. */
4297 ptid_t curr_ptid = get_current_thread (wait_status);
4298
4299 if (curr_ptid != null_ptid)
4300 {
4301 if (!remote_multi_process_p (rs))
4302 fake_pid_p = 1;
4303 }
4304 else
4305 {
4306 /* Without this, some commands which require an active target
4307 (such as kill) won't work. This variable serves (at least)
4308 double duty as both the pid of the target process (if it has
4309 such), and as a flag indicating that a target is active. */
4310 curr_ptid = magic_null_ptid;
4311 fake_pid_p = 1;
4312 }
4313
4314 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
4315
4316 /* Add the main thread and switch to it. Don't try reading
4317 registers yet, since we haven't fetched the target description
4318 yet. */
4319 thread_info *tp = add_thread_silent (curr_ptid);
4320 switch_to_thread_no_regs (tp);
4321 }
4322
4323 /* Print info about a thread that was found already stopped on
4324 connection. */
4325
4326 static void
4327 print_one_stopped_thread (struct thread_info *thread)
4328 {
4329 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4330
4331 switch_to_thread (thread->ptid);
4332 stop_pc = get_frame_pc (get_current_frame ());
4333 set_current_sal_from_frame (get_current_frame ());
4334
4335 thread->suspend.waitstatus_pending_p = 0;
4336
4337 if (ws->kind == TARGET_WAITKIND_STOPPED)
4338 {
4339 enum gdb_signal sig = ws->value.sig;
4340
4341 if (signal_print_state (sig))
4342 gdb::observers::signal_received.notify (sig);
4343 }
4344 gdb::observers::normal_stop.notify (NULL, 1);
4345 }
4346
4347 /* Process all initial stop replies the remote side sent in response
4348 to the ? packet. These indicate threads that were already stopped
4349 on initial connection. We mark these threads as stopped and print
4350 their current frame before giving the user the prompt. */
4351
4352 void
4353 remote_target::process_initial_stop_replies (int from_tty)
4354 {
4355 int pending_stop_replies = stop_reply_queue_length ();
4356 struct inferior *inf;
4357 struct thread_info *thread;
4358 struct thread_info *selected = NULL;
4359 struct thread_info *lowest_stopped = NULL;
4360 struct thread_info *first = NULL;
4361
4362 /* Consume the initial pending events. */
4363 while (pending_stop_replies-- > 0)
4364 {
4365 ptid_t waiton_ptid = minus_one_ptid;
4366 ptid_t event_ptid;
4367 struct target_waitstatus ws;
4368 int ignore_event = 0;
4369 struct thread_info *thread;
4370
4371 memset (&ws, 0, sizeof (ws));
4372 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4373 if (remote_debug)
4374 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4375
4376 switch (ws.kind)
4377 {
4378 case TARGET_WAITKIND_IGNORE:
4379 case TARGET_WAITKIND_NO_RESUMED:
4380 case TARGET_WAITKIND_SIGNALLED:
4381 case TARGET_WAITKIND_EXITED:
4382 /* We shouldn't see these, but if we do, just ignore. */
4383 if (remote_debug)
4384 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4385 ignore_event = 1;
4386 break;
4387
4388 case TARGET_WAITKIND_EXECD:
4389 xfree (ws.value.execd_pathname);
4390 break;
4391 default:
4392 break;
4393 }
4394
4395 if (ignore_event)
4396 continue;
4397
4398 thread = find_thread_ptid (event_ptid);
4399
4400 if (ws.kind == TARGET_WAITKIND_STOPPED)
4401 {
4402 enum gdb_signal sig = ws.value.sig;
4403
4404 /* Stubs traditionally report SIGTRAP as initial signal,
4405 instead of signal 0. Suppress it. */
4406 if (sig == GDB_SIGNAL_TRAP)
4407 sig = GDB_SIGNAL_0;
4408 thread->suspend.stop_signal = sig;
4409 ws.value.sig = sig;
4410 }
4411
4412 thread->suspend.waitstatus = ws;
4413
4414 if (ws.kind != TARGET_WAITKIND_STOPPED
4415 || ws.value.sig != GDB_SIGNAL_0)
4416 thread->suspend.waitstatus_pending_p = 1;
4417
4418 set_executing (event_ptid, 0);
4419 set_running (event_ptid, 0);
4420 get_remote_thread_info (thread)->vcont_resumed = 0;
4421 }
4422
4423 /* "Notice" the new inferiors before anything related to
4424 registers/memory. */
4425 ALL_INFERIORS (inf)
4426 {
4427 if (inf->pid == 0)
4428 continue;
4429
4430 inf->needs_setup = 1;
4431
4432 if (non_stop)
4433 {
4434 thread = any_live_thread_of_process (inf->pid);
4435 notice_new_inferior (thread->ptid,
4436 thread->state == THREAD_RUNNING,
4437 from_tty);
4438 }
4439 }
4440
4441 /* If all-stop on top of non-stop, pause all threads. Note this
4442 records the threads' stop pc, so must be done after "noticing"
4443 the inferiors. */
4444 if (!non_stop)
4445 {
4446 stop_all_threads ();
4447
4448 /* If all threads of an inferior were already stopped, we
4449 haven't setup the inferior yet. */
4450 ALL_INFERIORS (inf)
4451 {
4452 if (inf->pid == 0)
4453 continue;
4454
4455 if (inf->needs_setup)
4456 {
4457 thread = any_live_thread_of_process (inf->pid);
4458 switch_to_thread_no_regs (thread);
4459 setup_inferior (0);
4460 }
4461 }
4462 }
4463
4464 /* Now go over all threads that are stopped, and print their current
4465 frame. If all-stop, then if there's a signalled thread, pick
4466 that as current. */
4467 ALL_NON_EXITED_THREADS (thread)
4468 {
4469 if (first == NULL)
4470 first = thread;
4471
4472 if (!non_stop)
4473 set_running (thread->ptid, 0);
4474 else if (thread->state != THREAD_STOPPED)
4475 continue;
4476
4477 if (selected == NULL
4478 && thread->suspend.waitstatus_pending_p)
4479 selected = thread;
4480
4481 if (lowest_stopped == NULL
4482 || thread->inf->num < lowest_stopped->inf->num
4483 || thread->per_inf_num < lowest_stopped->per_inf_num)
4484 lowest_stopped = thread;
4485
4486 if (non_stop)
4487 print_one_stopped_thread (thread);
4488 }
4489
4490 /* In all-stop, we only print the status of one thread, and leave
4491 others with their status pending. */
4492 if (!non_stop)
4493 {
4494 thread = selected;
4495 if (thread == NULL)
4496 thread = lowest_stopped;
4497 if (thread == NULL)
4498 thread = first;
4499
4500 print_one_stopped_thread (thread);
4501 }
4502
4503 /* For "info program". */
4504 thread = inferior_thread ();
4505 if (thread->state == THREAD_STOPPED)
4506 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4507 }
4508
4509 /* Start the remote connection and sync state. */
4510
4511 void
4512 remote_target::start_remote (int from_tty, int extended_p)
4513 {
4514 struct remote_state *rs = get_remote_state ();
4515 struct packet_config *noack_config;
4516 char *wait_status = NULL;
4517
4518 /* Signal other parts that we're going through the initial setup,
4519 and so things may not be stable yet. E.g., we don't try to
4520 install tracepoints until we've relocated symbols. Also, a
4521 Ctrl-C before we're connected and synced up can't interrupt the
4522 target. Instead, it offers to drop the (potentially wedged)
4523 connection. */
4524 rs->starting_up = 1;
4525
4526 QUIT;
4527
4528 if (interrupt_on_connect)
4529 send_interrupt_sequence ();
4530
4531 /* Ack any packet which the remote side has already sent. */
4532 remote_serial_write ("+", 1);
4533
4534 /* The first packet we send to the target is the optional "supported
4535 packets" request. If the target can answer this, it will tell us
4536 which later probes to skip. */
4537 remote_query_supported ();
4538
4539 /* If the stub wants to get a QAllow, compose one and send it. */
4540 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4541 set_permissions ();
4542
4543 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4544 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4545 as a reply to known packet. For packet "vFile:setfs:" it is an
4546 invalid reply and GDB would return error in
4547 remote_hostio_set_filesystem, making remote files access impossible.
4548 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4549 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4550 {
4551 const char v_mustreplyempty[] = "vMustReplyEmpty";
4552
4553 putpkt (v_mustreplyempty);
4554 getpkt (&rs->buf, &rs->buf_size, 0);
4555 if (strcmp (rs->buf, "OK") == 0)
4556 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4557 else if (strcmp (rs->buf, "") != 0)
4558 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4559 rs->buf);
4560 }
4561
4562 /* Next, we possibly activate noack mode.
4563
4564 If the QStartNoAckMode packet configuration is set to AUTO,
4565 enable noack mode if the stub reported a wish for it with
4566 qSupported.
4567
4568 If set to TRUE, then enable noack mode even if the stub didn't
4569 report it in qSupported. If the stub doesn't reply OK, the
4570 session ends with an error.
4571
4572 If FALSE, then don't activate noack mode, regardless of what the
4573 stub claimed should be the default with qSupported. */
4574
4575 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4576 if (packet_config_support (noack_config) != PACKET_DISABLE)
4577 {
4578 putpkt ("QStartNoAckMode");
4579 getpkt (&rs->buf, &rs->buf_size, 0);
4580 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4581 rs->noack_mode = 1;
4582 }
4583
4584 if (extended_p)
4585 {
4586 /* Tell the remote that we are using the extended protocol. */
4587 putpkt ("!");
4588 getpkt (&rs->buf, &rs->buf_size, 0);
4589 }
4590
4591 /* Let the target know which signals it is allowed to pass down to
4592 the program. */
4593 update_signals_program_target ();
4594
4595 /* Next, if the target can specify a description, read it. We do
4596 this before anything involving memory or registers. */
4597 target_find_description ();
4598
4599 /* Next, now that we know something about the target, update the
4600 address spaces in the program spaces. */
4601 update_address_spaces ();
4602
4603 /* On OSs where the list of libraries is global to all
4604 processes, we fetch them early. */
4605 if (gdbarch_has_global_solist (target_gdbarch ()))
4606 solib_add (NULL, from_tty, auto_solib_add);
4607
4608 if (target_is_non_stop_p ())
4609 {
4610 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4611 error (_("Non-stop mode requested, but remote "
4612 "does not support non-stop"));
4613
4614 putpkt ("QNonStop:1");
4615 getpkt (&rs->buf, &rs->buf_size, 0);
4616
4617 if (strcmp (rs->buf, "OK") != 0)
4618 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4619
4620 /* Find about threads and processes the stub is already
4621 controlling. We default to adding them in the running state.
4622 The '?' query below will then tell us about which threads are
4623 stopped. */
4624 this->update_thread_list ();
4625 }
4626 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4627 {
4628 /* Don't assume that the stub can operate in all-stop mode.
4629 Request it explicitly. */
4630 putpkt ("QNonStop:0");
4631 getpkt (&rs->buf, &rs->buf_size, 0);
4632
4633 if (strcmp (rs->buf, "OK") != 0)
4634 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4635 }
4636
4637 /* Upload TSVs regardless of whether the target is running or not. The
4638 remote stub, such as GDBserver, may have some predefined or builtin
4639 TSVs, even if the target is not running. */
4640 if (get_trace_status (current_trace_status ()) != -1)
4641 {
4642 struct uploaded_tsv *uploaded_tsvs = NULL;
4643
4644 upload_trace_state_variables (&uploaded_tsvs);
4645 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4646 }
4647
4648 /* Check whether the target is running now. */
4649 putpkt ("?");
4650 getpkt (&rs->buf, &rs->buf_size, 0);
4651
4652 if (!target_is_non_stop_p ())
4653 {
4654 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4655 {
4656 if (!extended_p)
4657 error (_("The target is not running (try extended-remote?)"));
4658
4659 /* We're connected, but not running. Drop out before we
4660 call start_remote. */
4661 rs->starting_up = 0;
4662 return;
4663 }
4664 else
4665 {
4666 /* Save the reply for later. */
4667 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4668 strcpy (wait_status, rs->buf);
4669 }
4670
4671 /* Fetch thread list. */
4672 target_update_thread_list ();
4673
4674 /* Let the stub know that we want it to return the thread. */
4675 set_continue_thread (minus_one_ptid);
4676
4677 if (thread_count () == 0)
4678 {
4679 /* Target has no concept of threads at all. GDB treats
4680 non-threaded target as single-threaded; add a main
4681 thread. */
4682 add_current_inferior_and_thread (wait_status);
4683 }
4684 else
4685 {
4686 /* We have thread information; select the thread the target
4687 says should be current. If we're reconnecting to a
4688 multi-threaded program, this will ideally be the thread
4689 that last reported an event before GDB disconnected. */
4690 inferior_ptid = get_current_thread (wait_status);
4691 if (ptid_equal (inferior_ptid, null_ptid))
4692 {
4693 /* Odd... The target was able to list threads, but not
4694 tell us which thread was current (no "thread"
4695 register in T stop reply?). Just pick the first
4696 thread in the thread list then. */
4697
4698 if (remote_debug)
4699 fprintf_unfiltered (gdb_stdlog,
4700 "warning: couldn't determine remote "
4701 "current thread; picking first in list.\n");
4702
4703 inferior_ptid = thread_list->ptid;
4704 }
4705 }
4706
4707 /* init_wait_for_inferior should be called before get_offsets in order
4708 to manage `inserted' flag in bp loc in a correct state.
4709 breakpoint_init_inferior, called from init_wait_for_inferior, set
4710 `inserted' flag to 0, while before breakpoint_re_set, called from
4711 start_remote, set `inserted' flag to 1. In the initialization of
4712 inferior, breakpoint_init_inferior should be called first, and then
4713 breakpoint_re_set can be called. If this order is broken, state of
4714 `inserted' flag is wrong, and cause some problems on breakpoint
4715 manipulation. */
4716 init_wait_for_inferior ();
4717
4718 get_offsets (); /* Get text, data & bss offsets. */
4719
4720 /* If we could not find a description using qXfer, and we know
4721 how to do it some other way, try again. This is not
4722 supported for non-stop; it could be, but it is tricky if
4723 there are no stopped threads when we connect. */
4724 if (remote_read_description_p (this)
4725 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4726 {
4727 target_clear_description ();
4728 target_find_description ();
4729 }
4730
4731 /* Use the previously fetched status. */
4732 gdb_assert (wait_status != NULL);
4733 strcpy (rs->buf, wait_status);
4734 rs->cached_wait_status = 1;
4735
4736 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4737 }
4738 else
4739 {
4740 /* Clear WFI global state. Do this before finding about new
4741 threads and inferiors, and setting the current inferior.
4742 Otherwise we would clear the proceed status of the current
4743 inferior when we want its stop_soon state to be preserved
4744 (see notice_new_inferior). */
4745 init_wait_for_inferior ();
4746
4747 /* In non-stop, we will either get an "OK", meaning that there
4748 are no stopped threads at this time; or, a regular stop
4749 reply. In the latter case, there may be more than one thread
4750 stopped --- we pull them all out using the vStopped
4751 mechanism. */
4752 if (strcmp (rs->buf, "OK") != 0)
4753 {
4754 struct notif_client *notif = &notif_client_stop;
4755
4756 /* remote_notif_get_pending_replies acks this one, and gets
4757 the rest out. */
4758 rs->notif_state->pending_event[notif_client_stop.id]
4759 = remote_notif_parse (this, notif, rs->buf);
4760 remote_notif_get_pending_events (notif);
4761 }
4762
4763 if (thread_count () == 0)
4764 {
4765 if (!extended_p)
4766 error (_("The target is not running (try extended-remote?)"));
4767
4768 /* We're connected, but not running. Drop out before we
4769 call start_remote. */
4770 rs->starting_up = 0;
4771 return;
4772 }
4773
4774 /* In non-stop mode, any cached wait status will be stored in
4775 the stop reply queue. */
4776 gdb_assert (wait_status == NULL);
4777
4778 /* Report all signals during attach/startup. */
4779 pass_signals (0, NULL);
4780
4781 /* If there are already stopped threads, mark them stopped and
4782 report their stops before giving the prompt to the user. */
4783 process_initial_stop_replies (from_tty);
4784
4785 if (target_can_async_p ())
4786 target_async (1);
4787 }
4788
4789 /* If we connected to a live target, do some additional setup. */
4790 if (target_has_execution)
4791 {
4792 if (symfile_objfile) /* No use without a symbol-file. */
4793 remote_check_symbols ();
4794 }
4795
4796 /* Possibly the target has been engaged in a trace run started
4797 previously; find out where things are at. */
4798 if (get_trace_status (current_trace_status ()) != -1)
4799 {
4800 struct uploaded_tp *uploaded_tps = NULL;
4801
4802 if (current_trace_status ()->running)
4803 printf_filtered (_("Trace is already running on the target.\n"));
4804
4805 upload_tracepoints (&uploaded_tps);
4806
4807 merge_uploaded_tracepoints (&uploaded_tps);
4808 }
4809
4810 /* Possibly the target has been engaged in a btrace record started
4811 previously; find out where things are at. */
4812 remote_btrace_maybe_reopen ();
4813
4814 /* The thread and inferior lists are now synchronized with the
4815 target, our symbols have been relocated, and we're merged the
4816 target's tracepoints with ours. We're done with basic start
4817 up. */
4818 rs->starting_up = 0;
4819
4820 /* Maybe breakpoints are global and need to be inserted now. */
4821 if (breakpoints_should_be_inserted_now ())
4822 insert_breakpoints ();
4823 }
4824
4825 /* Open a connection to a remote debugger.
4826 NAME is the filename used for communication. */
4827
4828 void
4829 remote_target::open (const char *name, int from_tty)
4830 {
4831 open_1 (name, from_tty, 0);
4832 }
4833
4834 /* Open a connection to a remote debugger using the extended
4835 remote gdb protocol. NAME is the filename used for communication. */
4836
4837 void
4838 extended_remote_target::open (const char *name, int from_tty)
4839 {
4840 open_1 (name, from_tty, 1 /*extended_p */);
4841 }
4842
4843 /* Reset all packets back to "unknown support". Called when opening a
4844 new connection to a remote target. */
4845
4846 static void
4847 reset_all_packet_configs_support (void)
4848 {
4849 int i;
4850
4851 for (i = 0; i < PACKET_MAX; i++)
4852 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4853 }
4854
4855 /* Initialize all packet configs. */
4856
4857 static void
4858 init_all_packet_configs (void)
4859 {
4860 int i;
4861
4862 for (i = 0; i < PACKET_MAX; i++)
4863 {
4864 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4865 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4866 }
4867 }
4868
4869 /* Symbol look-up. */
4870
4871 void
4872 remote_target::remote_check_symbols ()
4873 {
4874 char *msg, *reply, *tmp;
4875 int end;
4876 long reply_size;
4877 struct cleanup *old_chain;
4878
4879 /* The remote side has no concept of inferiors that aren't running
4880 yet, it only knows about running processes. If we're connected
4881 but our current inferior is not running, we should not invite the
4882 remote target to request symbol lookups related to its
4883 (unrelated) current process. */
4884 if (!target_has_execution)
4885 return;
4886
4887 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4888 return;
4889
4890 /* Make sure the remote is pointing at the right process. Note
4891 there's no way to select "no process". */
4892 set_general_process ();
4893
4894 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4895 because we need both at the same time. */
4896 msg = (char *) xmalloc (get_remote_packet_size ());
4897 old_chain = make_cleanup (xfree, msg);
4898 reply = (char *) xmalloc (get_remote_packet_size ());
4899 make_cleanup (free_current_contents, &reply);
4900 reply_size = get_remote_packet_size ();
4901
4902 /* Invite target to request symbol lookups. */
4903
4904 putpkt ("qSymbol::");
4905 getpkt (&reply, &reply_size, 0);
4906 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4907
4908 while (startswith (reply, "qSymbol:"))
4909 {
4910 struct bound_minimal_symbol sym;
4911
4912 tmp = &reply[8];
4913 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4914 msg[end] = '\0';
4915 sym = lookup_minimal_symbol (msg, NULL, NULL);
4916 if (sym.minsym == NULL)
4917 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4918 else
4919 {
4920 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4921 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4922
4923 /* If this is a function address, return the start of code
4924 instead of any data function descriptor. */
4925 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4926 sym_addr,
4927 target_stack);
4928
4929 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4930 phex_nz (sym_addr, addr_size), &reply[8]);
4931 }
4932
4933 putpkt (msg);
4934 getpkt (&reply, &reply_size, 0);
4935 }
4936
4937 do_cleanups (old_chain);
4938 }
4939
4940 static struct serial *
4941 remote_serial_open (const char *name)
4942 {
4943 static int udp_warning = 0;
4944
4945 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4946 of in ser-tcp.c, because it is the remote protocol assuming that the
4947 serial connection is reliable and not the serial connection promising
4948 to be. */
4949 if (!udp_warning && startswith (name, "udp:"))
4950 {
4951 warning (_("The remote protocol may be unreliable over UDP.\n"
4952 "Some events may be lost, rendering further debugging "
4953 "impossible."));
4954 udp_warning = 1;
4955 }
4956
4957 return serial_open (name);
4958 }
4959
4960 /* Inform the target of our permission settings. The permission flags
4961 work without this, but if the target knows the settings, it can do
4962 a couple things. First, it can add its own check, to catch cases
4963 that somehow manage to get by the permissions checks in target
4964 methods. Second, if the target is wired to disallow particular
4965 settings (for instance, a system in the field that is not set up to
4966 be able to stop at a breakpoint), it can object to any unavailable
4967 permissions. */
4968
4969 void
4970 remote_target::set_permissions ()
4971 {
4972 struct remote_state *rs = get_remote_state ();
4973
4974 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4975 "WriteReg:%x;WriteMem:%x;"
4976 "InsertBreak:%x;InsertTrace:%x;"
4977 "InsertFastTrace:%x;Stop:%x",
4978 may_write_registers, may_write_memory,
4979 may_insert_breakpoints, may_insert_tracepoints,
4980 may_insert_fast_tracepoints, may_stop);
4981 putpkt (rs->buf);
4982 getpkt (&rs->buf, &rs->buf_size, 0);
4983
4984 /* If the target didn't like the packet, warn the user. Do not try
4985 to undo the user's settings, that would just be maddening. */
4986 if (strcmp (rs->buf, "OK") != 0)
4987 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4988 }
4989
4990 /* This type describes each known response to the qSupported
4991 packet. */
4992 struct protocol_feature
4993 {
4994 /* The name of this protocol feature. */
4995 const char *name;
4996
4997 /* The default for this protocol feature. */
4998 enum packet_support default_support;
4999
5000 /* The function to call when this feature is reported, or after
5001 qSupported processing if the feature is not supported.
5002 The first argument points to this structure. The second
5003 argument indicates whether the packet requested support be
5004 enabled, disabled, or probed (or the default, if this function
5005 is being called at the end of processing and this feature was
5006 not reported). The third argument may be NULL; if not NULL, it
5007 is a NUL-terminated string taken from the packet following
5008 this feature's name and an equals sign. */
5009 void (*func) (remote_target *remote, const struct protocol_feature *,
5010 enum packet_support, const char *);
5011
5012 /* The corresponding packet for this feature. Only used if
5013 FUNC is remote_supported_packet. */
5014 int packet;
5015 };
5016
5017 static void
5018 remote_supported_packet (remote_target *remote,
5019 const struct protocol_feature *feature,
5020 enum packet_support support,
5021 const char *argument)
5022 {
5023 if (argument)
5024 {
5025 warning (_("Remote qSupported response supplied an unexpected value for"
5026 " \"%s\"."), feature->name);
5027 return;
5028 }
5029
5030 remote_protocol_packets[feature->packet].support = support;
5031 }
5032
5033 void
5034 remote_target::remote_packet_size (const protocol_feature *feature,
5035 enum packet_support support, const char *value)
5036 {
5037 struct remote_state *rs = get_remote_state ();
5038
5039 int packet_size;
5040 char *value_end;
5041
5042 if (support != PACKET_ENABLE)
5043 return;
5044
5045 if (value == NULL || *value == '\0')
5046 {
5047 warning (_("Remote target reported \"%s\" without a size."),
5048 feature->name);
5049 return;
5050 }
5051
5052 errno = 0;
5053 packet_size = strtol (value, &value_end, 16);
5054 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5055 {
5056 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5057 feature->name, value);
5058 return;
5059 }
5060
5061 /* Record the new maximum packet size. */
5062 rs->explicit_packet_size = packet_size;
5063 }
5064
5065 void
5066 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5067 enum packet_support support, const char *value)
5068 {
5069 remote->remote_packet_size (feature, support, value);
5070 }
5071
5072 static const struct protocol_feature remote_protocol_features[] = {
5073 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5074 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5075 PACKET_qXfer_auxv },
5076 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_exec_file },
5078 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_qXfer_features },
5080 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_libraries },
5082 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_libraries_svr4 },
5084 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5085 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5086 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_memory_map },
5088 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_spu_read },
5090 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_spu_write },
5092 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_osdata },
5094 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_threads },
5096 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_traceframe_info },
5098 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QPassSignals },
5100 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QCatchSyscalls },
5102 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_QProgramSignals },
5104 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QSetWorkingDir },
5106 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QStartupWithShell },
5108 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QEnvironmentHexEncoded },
5110 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QEnvironmentReset },
5112 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QEnvironmentUnset },
5114 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QStartNoAckMode },
5116 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_multiprocess_feature },
5118 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5119 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_siginfo_read },
5121 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_siginfo_write },
5123 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_ConditionalTracepoints },
5125 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_ConditionalBreakpoints },
5127 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_BreakpointCommands },
5129 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_FastTracepoints },
5131 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_StaticTracepoints },
5133 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_InstallInTrace},
5135 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_DisconnectedTracing_feature },
5137 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_bc },
5139 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_bs },
5141 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_TracepointSource },
5143 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QAllow },
5145 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_EnableDisableTracepoints_feature },
5147 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_qXfer_fdpic },
5149 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_qXfer_uib },
5151 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_QDisableRandomization },
5153 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5154 { "QTBuffer:size", PACKET_DISABLE,
5155 remote_supported_packet, PACKET_QTBuffer_size},
5156 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5157 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5158 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5159 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5160 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_btrace },
5162 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_qXfer_btrace_conf },
5164 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_Qbtrace_conf_bts_size },
5166 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5167 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5168 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_fork_event_feature },
5170 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_vfork_event_feature },
5172 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_exec_event_feature },
5174 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_Qbtrace_conf_pt_size },
5176 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5177 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5178 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5179 };
5180
5181 static char *remote_support_xml;
5182
5183 /* Register string appended to "xmlRegisters=" in qSupported query. */
5184
5185 void
5186 register_remote_support_xml (const char *xml)
5187 {
5188 #if defined(HAVE_LIBEXPAT)
5189 if (remote_support_xml == NULL)
5190 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5191 else
5192 {
5193 char *copy = xstrdup (remote_support_xml + 13);
5194 char *p = strtok (copy, ",");
5195
5196 do
5197 {
5198 if (strcmp (p, xml) == 0)
5199 {
5200 /* already there */
5201 xfree (copy);
5202 return;
5203 }
5204 }
5205 while ((p = strtok (NULL, ",")) != NULL);
5206 xfree (copy);
5207
5208 remote_support_xml = reconcat (remote_support_xml,
5209 remote_support_xml, ",", xml,
5210 (char *) NULL);
5211 }
5212 #endif
5213 }
5214
5215 static void
5216 remote_query_supported_append (std::string *msg, const char *append)
5217 {
5218 if (!msg->empty ())
5219 msg->append (";");
5220 msg->append (append);
5221 }
5222
5223 void
5224 remote_target::remote_query_supported ()
5225 {
5226 struct remote_state *rs = get_remote_state ();
5227 char *next;
5228 int i;
5229 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5230
5231 /* The packet support flags are handled differently for this packet
5232 than for most others. We treat an error, a disabled packet, and
5233 an empty response identically: any features which must be reported
5234 to be used will be automatically disabled. An empty buffer
5235 accomplishes this, since that is also the representation for a list
5236 containing no features. */
5237
5238 rs->buf[0] = 0;
5239 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5240 {
5241 std::string q;
5242
5243 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5244 remote_query_supported_append (&q, "multiprocess+");
5245
5246 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5247 remote_query_supported_append (&q, "swbreak+");
5248 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5249 remote_query_supported_append (&q, "hwbreak+");
5250
5251 remote_query_supported_append (&q, "qRelocInsn+");
5252
5253 if (packet_set_cmd_state (PACKET_fork_event_feature)
5254 != AUTO_BOOLEAN_FALSE)
5255 remote_query_supported_append (&q, "fork-events+");
5256 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5257 != AUTO_BOOLEAN_FALSE)
5258 remote_query_supported_append (&q, "vfork-events+");
5259 if (packet_set_cmd_state (PACKET_exec_event_feature)
5260 != AUTO_BOOLEAN_FALSE)
5261 remote_query_supported_append (&q, "exec-events+");
5262
5263 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5264 remote_query_supported_append (&q, "vContSupported+");
5265
5266 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5267 remote_query_supported_append (&q, "QThreadEvents+");
5268
5269 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5270 remote_query_supported_append (&q, "no-resumed+");
5271
5272 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5273 the qSupported:xmlRegisters=i386 handling. */
5274 if (remote_support_xml != NULL
5275 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5276 remote_query_supported_append (&q, remote_support_xml);
5277
5278 q = "qSupported:" + q;
5279 putpkt (q.c_str ());
5280
5281 getpkt (&rs->buf, &rs->buf_size, 0);
5282
5283 /* If an error occured, warn, but do not return - just reset the
5284 buffer to empty and go on to disable features. */
5285 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5286 == PACKET_ERROR)
5287 {
5288 warning (_("Remote failure reply: %s"), rs->buf);
5289 rs->buf[0] = 0;
5290 }
5291 }
5292
5293 memset (seen, 0, sizeof (seen));
5294
5295 next = rs->buf;
5296 while (*next)
5297 {
5298 enum packet_support is_supported;
5299 char *p, *end, *name_end, *value;
5300
5301 /* First separate out this item from the rest of the packet. If
5302 there's another item after this, we overwrite the separator
5303 (terminated strings are much easier to work with). */
5304 p = next;
5305 end = strchr (p, ';');
5306 if (end == NULL)
5307 {
5308 end = p + strlen (p);
5309 next = end;
5310 }
5311 else
5312 {
5313 *end = '\0';
5314 next = end + 1;
5315
5316 if (end == p)
5317 {
5318 warning (_("empty item in \"qSupported\" response"));
5319 continue;
5320 }
5321 }
5322
5323 name_end = strchr (p, '=');
5324 if (name_end)
5325 {
5326 /* This is a name=value entry. */
5327 is_supported = PACKET_ENABLE;
5328 value = name_end + 1;
5329 *name_end = '\0';
5330 }
5331 else
5332 {
5333 value = NULL;
5334 switch (end[-1])
5335 {
5336 case '+':
5337 is_supported = PACKET_ENABLE;
5338 break;
5339
5340 case '-':
5341 is_supported = PACKET_DISABLE;
5342 break;
5343
5344 case '?':
5345 is_supported = PACKET_SUPPORT_UNKNOWN;
5346 break;
5347
5348 default:
5349 warning (_("unrecognized item \"%s\" "
5350 "in \"qSupported\" response"), p);
5351 continue;
5352 }
5353 end[-1] = '\0';
5354 }
5355
5356 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5357 if (strcmp (remote_protocol_features[i].name, p) == 0)
5358 {
5359 const struct protocol_feature *feature;
5360
5361 seen[i] = 1;
5362 feature = &remote_protocol_features[i];
5363 feature->func (this, feature, is_supported, value);
5364 break;
5365 }
5366 }
5367
5368 /* If we increased the packet size, make sure to increase the global
5369 buffer size also. We delay this until after parsing the entire
5370 qSupported packet, because this is the same buffer we were
5371 parsing. */
5372 if (rs->buf_size < rs->explicit_packet_size)
5373 {
5374 rs->buf_size = rs->explicit_packet_size;
5375 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5376 }
5377
5378 /* Handle the defaults for unmentioned features. */
5379 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5380 if (!seen[i])
5381 {
5382 const struct protocol_feature *feature;
5383
5384 feature = &remote_protocol_features[i];
5385 feature->func (this, feature, feature->default_support, NULL);
5386 }
5387 }
5388
5389 /* Serial QUIT handler for the remote serial descriptor.
5390
5391 Defers handling a Ctrl-C until we're done with the current
5392 command/response packet sequence, unless:
5393
5394 - We're setting up the connection. Don't send a remote interrupt
5395 request, as we're not fully synced yet. Quit immediately
5396 instead.
5397
5398 - The target has been resumed in the foreground
5399 (target_terminal::is_ours is false) with a synchronous resume
5400 packet, and we're blocked waiting for the stop reply, thus a
5401 Ctrl-C should be immediately sent to the target.
5402
5403 - We get a second Ctrl-C while still within the same serial read or
5404 write. In that case the serial is seemingly wedged --- offer to
5405 quit/disconnect.
5406
5407 - We see a second Ctrl-C without target response, after having
5408 previously interrupted the target. In that case the target/stub
5409 is probably wedged --- offer to quit/disconnect.
5410 */
5411
5412 void
5413 remote_target::remote_serial_quit_handler ()
5414 {
5415 struct remote_state *rs = get_remote_state ();
5416
5417 if (check_quit_flag ())
5418 {
5419 /* If we're starting up, we're not fully synced yet. Quit
5420 immediately. */
5421 if (rs->starting_up)
5422 quit ();
5423 else if (rs->got_ctrlc_during_io)
5424 {
5425 if (query (_("The target is not responding to GDB commands.\n"
5426 "Stop debugging it? ")))
5427 remote_unpush_and_throw ();
5428 }
5429 /* If ^C has already been sent once, offer to disconnect. */
5430 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5431 interrupt_query ();
5432 /* All-stop protocol, and blocked waiting for stop reply. Send
5433 an interrupt request. */
5434 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5435 target_interrupt ();
5436 else
5437 rs->got_ctrlc_during_io = 1;
5438 }
5439 }
5440
5441 /* The remote_target that is current while the quit handler is
5442 overridden with remote_serial_quit_handler. */
5443 static remote_target *curr_quit_handler_target;
5444
5445 static void
5446 remote_serial_quit_handler ()
5447 {
5448 curr_quit_handler_target->remote_serial_quit_handler ();
5449 }
5450
5451 /* Remove any of the remote.c targets from target stack. Upper targets depend
5452 on it so remove them first. */
5453
5454 static void
5455 remote_unpush_target (void)
5456 {
5457 pop_all_targets_at_and_above (process_stratum);
5458 }
5459
5460 static void
5461 remote_unpush_and_throw (void)
5462 {
5463 remote_unpush_target ();
5464 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5465 }
5466
5467 void
5468 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5469 {
5470 remote_target *curr_remote = get_current_remote_target ();
5471
5472 if (name == 0)
5473 error (_("To open a remote debug connection, you need to specify what\n"
5474 "serial device is attached to the remote system\n"
5475 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5476
5477 /* If we're connected to a running target, target_preopen will kill it.
5478 Ask this question first, before target_preopen has a chance to kill
5479 anything. */
5480 if (curr_remote != NULL && !have_inferiors ())
5481 {
5482 if (from_tty
5483 && !query (_("Already connected to a remote target. Disconnect? ")))
5484 error (_("Still connected."));
5485 }
5486
5487 /* Here the possibly existing remote target gets unpushed. */
5488 target_preopen (from_tty);
5489
5490 remote_fileio_reset ();
5491 reopen_exec_file ();
5492 reread_symbols ();
5493
5494 remote_target *remote
5495 = (extended_p ? new extended_remote_target () : new remote_target ());
5496 target_ops_up target_holder (remote);
5497
5498 remote_state *rs = remote->get_remote_state ();
5499
5500 /* See FIXME above. */
5501 if (!target_async_permitted)
5502 rs->wait_forever_enabled_p = 1;
5503
5504 rs->remote_desc = remote_serial_open (name);
5505 if (!rs->remote_desc)
5506 perror_with_name (name);
5507
5508 if (baud_rate != -1)
5509 {
5510 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5511 {
5512 /* The requested speed could not be set. Error out to
5513 top level after closing remote_desc. Take care to
5514 set remote_desc to NULL to avoid closing remote_desc
5515 more than once. */
5516 serial_close (rs->remote_desc);
5517 rs->remote_desc = NULL;
5518 perror_with_name (name);
5519 }
5520 }
5521
5522 serial_setparity (rs->remote_desc, serial_parity);
5523 serial_raw (rs->remote_desc);
5524
5525 /* If there is something sitting in the buffer we might take it as a
5526 response to a command, which would be bad. */
5527 serial_flush_input (rs->remote_desc);
5528
5529 if (from_tty)
5530 {
5531 puts_filtered ("Remote debugging using ");
5532 puts_filtered (name);
5533 puts_filtered ("\n");
5534 }
5535
5536 /* Switch to using the remote target now. */
5537 push_target (remote);
5538 /* The target stack owns the target now. */
5539 target_holder.release ();
5540
5541 /* Register extra event sources in the event loop. */
5542 rs->remote_async_inferior_event_token
5543 = create_async_event_handler (remote_async_inferior_event_handler,
5544 remote);
5545 rs->notif_state = remote_notif_state_allocate (remote);
5546
5547 /* Reset the target state; these things will be queried either by
5548 remote_query_supported or as they are needed. */
5549 reset_all_packet_configs_support ();
5550 rs->cached_wait_status = 0;
5551 rs->explicit_packet_size = 0;
5552 rs->noack_mode = 0;
5553 rs->extended = extended_p;
5554 rs->waiting_for_stop_reply = 0;
5555 rs->ctrlc_pending_p = 0;
5556 rs->got_ctrlc_during_io = 0;
5557
5558 rs->general_thread = not_sent_ptid;
5559 rs->continue_thread = not_sent_ptid;
5560 rs->remote_traceframe_number = -1;
5561
5562 rs->last_resume_exec_dir = EXEC_FORWARD;
5563
5564 /* Probe for ability to use "ThreadInfo" query, as required. */
5565 rs->use_threadinfo_query = 1;
5566 rs->use_threadextra_query = 1;
5567
5568 rs->readahead_cache.invalidate ();
5569
5570 if (target_async_permitted)
5571 {
5572 /* FIXME: cagney/1999-09-23: During the initial connection it is
5573 assumed that the target is already ready and able to respond to
5574 requests. Unfortunately remote_start_remote() eventually calls
5575 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5576 around this. Eventually a mechanism that allows
5577 wait_for_inferior() to expect/get timeouts will be
5578 implemented. */
5579 rs->wait_forever_enabled_p = 0;
5580 }
5581
5582 /* First delete any symbols previously loaded from shared libraries. */
5583 no_shared_libraries (NULL, 0);
5584
5585 /* Start afresh. */
5586 init_thread_list ();
5587
5588 /* Start the remote connection. If error() or QUIT, discard this
5589 target (we'd otherwise be in an inconsistent state) and then
5590 propogate the error on up the exception chain. This ensures that
5591 the caller doesn't stumble along blindly assuming that the
5592 function succeeded. The CLI doesn't have this problem but other
5593 UI's, such as MI do.
5594
5595 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5596 this function should return an error indication letting the
5597 caller restore the previous state. Unfortunately the command
5598 ``target remote'' is directly wired to this function making that
5599 impossible. On a positive note, the CLI side of this problem has
5600 been fixed - the function set_cmd_context() makes it possible for
5601 all the ``target ....'' commands to share a common callback
5602 function. See cli-dump.c. */
5603 {
5604
5605 TRY
5606 {
5607 remote->start_remote (from_tty, extended_p);
5608 }
5609 CATCH (ex, RETURN_MASK_ALL)
5610 {
5611 /* Pop the partially set up target - unless something else did
5612 already before throwing the exception. */
5613 if (ex.error != TARGET_CLOSE_ERROR)
5614 remote_unpush_target ();
5615 throw_exception (ex);
5616 }
5617 END_CATCH
5618 }
5619
5620 remote_btrace_reset (rs);
5621
5622 if (target_async_permitted)
5623 rs->wait_forever_enabled_p = 1;
5624 }
5625
5626 /* Detach the specified process. */
5627
5628 void
5629 remote_target::remote_detach_pid (int pid)
5630 {
5631 struct remote_state *rs = get_remote_state ();
5632
5633 if (remote_multi_process_p (rs))
5634 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5635 else
5636 strcpy (rs->buf, "D");
5637
5638 putpkt (rs->buf);
5639 getpkt (&rs->buf, &rs->buf_size, 0);
5640
5641 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5642 ;
5643 else if (rs->buf[0] == '\0')
5644 error (_("Remote doesn't know how to detach"));
5645 else
5646 error (_("Can't detach process."));
5647 }
5648
5649 /* This detaches a program to which we previously attached, using
5650 inferior_ptid to identify the process. After this is done, GDB
5651 can be used to debug some other program. We better not have left
5652 any breakpoints in the target program or it'll die when it hits
5653 one. */
5654
5655 void
5656 remote_target::remote_detach_1 (int from_tty, inferior *inf)
5657 {
5658 int pid = ptid_get_pid (inferior_ptid);
5659 struct remote_state *rs = get_remote_state ();
5660 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5661 int is_fork_parent;
5662
5663 if (!target_has_execution)
5664 error (_("No process to detach from."));
5665
5666 target_announce_detach (from_tty);
5667
5668 /* Tell the remote target to detach. */
5669 remote_detach_pid (pid);
5670
5671 /* Exit only if this is the only active inferior. */
5672 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5673 puts_filtered (_("Ending remote debugging.\n"));
5674
5675 /* Check to see if we are detaching a fork parent. Note that if we
5676 are detaching a fork child, tp == NULL. */
5677 is_fork_parent = (tp != NULL
5678 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5679
5680 /* If doing detach-on-fork, we don't mourn, because that will delete
5681 breakpoints that should be available for the followed inferior. */
5682 if (!is_fork_parent)
5683 {
5684 /* Save the pid as a string before mourning, since that will
5685 unpush the remote target, and we need the string after. */
5686 std::string infpid = target_pid_to_str (pid_to_ptid (pid));
5687
5688 target_mourn_inferior (inferior_ptid);
5689 if (print_inferior_events)
5690 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5691 inf->num, infpid.c_str ());
5692 }
5693 else
5694 {
5695 inferior_ptid = null_ptid;
5696 detach_inferior (pid);
5697 }
5698 }
5699
5700 void
5701 remote_target::detach (inferior *inf, int from_tty)
5702 {
5703 remote_detach_1 (from_tty, inf);
5704 }
5705
5706 void
5707 extended_remote_target::detach (inferior *inf, int from_tty)
5708 {
5709 remote_detach_1 (from_tty, inf);
5710 }
5711
5712 /* Target follow-fork function for remote targets. On entry, and
5713 at return, the current inferior is the fork parent.
5714
5715 Note that although this is currently only used for extended-remote,
5716 it is named remote_follow_fork in anticipation of using it for the
5717 remote target as well. */
5718
5719 int
5720 remote_target::follow_fork (int follow_child, int detach_fork)
5721 {
5722 struct remote_state *rs = get_remote_state ();
5723 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5724
5725 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5726 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5727 {
5728 /* When following the parent and detaching the child, we detach
5729 the child here. For the case of following the child and
5730 detaching the parent, the detach is done in the target-
5731 independent follow fork code in infrun.c. We can't use
5732 target_detach when detaching an unfollowed child because
5733 the client side doesn't know anything about the child. */
5734 if (detach_fork && !follow_child)
5735 {
5736 /* Detach the fork child. */
5737 ptid_t child_ptid;
5738 pid_t child_pid;
5739
5740 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5741 child_pid = ptid_get_pid (child_ptid);
5742
5743 remote_detach_pid (child_pid);
5744 }
5745 }
5746 return 0;
5747 }
5748
5749 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5750 in the program space of the new inferior. On entry and at return the
5751 current inferior is the exec'ing inferior. INF is the new exec'd
5752 inferior, which may be the same as the exec'ing inferior unless
5753 follow-exec-mode is "new". */
5754
5755 void
5756 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5757 {
5758 /* We know that this is a target file name, so if it has the "target:"
5759 prefix we strip it off before saving it in the program space. */
5760 if (is_target_filename (execd_pathname))
5761 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5762
5763 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5764 }
5765
5766 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5767
5768 void
5769 remote_target::disconnect (const char *args, int from_tty)
5770 {
5771 if (args)
5772 error (_("Argument given to \"disconnect\" when remotely debugging."));
5773
5774 /* Make sure we unpush even the extended remote targets. Calling
5775 target_mourn_inferior won't unpush, and remote_mourn won't
5776 unpush if there is more than one inferior left. */
5777 unpush_target (this);
5778 generic_mourn_inferior ();
5779
5780 if (from_tty)
5781 puts_filtered ("Ending remote debugging.\n");
5782 }
5783
5784 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5785 be chatty about it. */
5786
5787 void
5788 extended_remote_target::attach (const char *args, int from_tty)
5789 {
5790 struct remote_state *rs = get_remote_state ();
5791 int pid;
5792 char *wait_status = NULL;
5793
5794 pid = parse_pid_to_attach (args);
5795
5796 /* Remote PID can be freely equal to getpid, do not check it here the same
5797 way as in other targets. */
5798
5799 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5800 error (_("This target does not support attaching to a process"));
5801
5802 if (from_tty)
5803 {
5804 char *exec_file = get_exec_file (0);
5805
5806 if (exec_file)
5807 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5808 target_pid_to_str (pid_to_ptid (pid)));
5809 else
5810 printf_unfiltered (_("Attaching to %s\n"),
5811 target_pid_to_str (pid_to_ptid (pid)));
5812
5813 gdb_flush (gdb_stdout);
5814 }
5815
5816 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5817 putpkt (rs->buf);
5818 getpkt (&rs->buf, &rs->buf_size, 0);
5819
5820 switch (packet_ok (rs->buf,
5821 &remote_protocol_packets[PACKET_vAttach]))
5822 {
5823 case PACKET_OK:
5824 if (!target_is_non_stop_p ())
5825 {
5826 /* Save the reply for later. */
5827 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5828 strcpy (wait_status, rs->buf);
5829 }
5830 else if (strcmp (rs->buf, "OK") != 0)
5831 error (_("Attaching to %s failed with: %s"),
5832 target_pid_to_str (pid_to_ptid (pid)),
5833 rs->buf);
5834 break;
5835 case PACKET_UNKNOWN:
5836 error (_("This target does not support attaching to a process"));
5837 default:
5838 error (_("Attaching to %s failed"),
5839 target_pid_to_str (pid_to_ptid (pid)));
5840 }
5841
5842 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5843
5844 inferior_ptid = pid_to_ptid (pid);
5845
5846 if (target_is_non_stop_p ())
5847 {
5848 struct thread_info *thread;
5849
5850 /* Get list of threads. */
5851 update_thread_list ();
5852
5853 thread = first_thread_of_process (pid);
5854 if (thread)
5855 inferior_ptid = thread->ptid;
5856 else
5857 inferior_ptid = pid_to_ptid (pid);
5858
5859 /* Invalidate our notion of the remote current thread. */
5860 record_currthread (rs, minus_one_ptid);
5861 }
5862 else
5863 {
5864 /* Now, if we have thread information, update inferior_ptid. */
5865 inferior_ptid = remote_current_thread (inferior_ptid);
5866
5867 /* Add the main thread to the thread list. */
5868 thread_info *thr = add_thread_silent (inferior_ptid);
5869 /* Don't consider the thread stopped until we've processed the
5870 saved stop reply. */
5871 set_executing (thr->ptid, true);
5872 }
5873
5874 /* Next, if the target can specify a description, read it. We do
5875 this before anything involving memory or registers. */
5876 target_find_description ();
5877
5878 if (!target_is_non_stop_p ())
5879 {
5880 /* Use the previously fetched status. */
5881 gdb_assert (wait_status != NULL);
5882
5883 if (target_can_async_p ())
5884 {
5885 struct notif_event *reply
5886 = remote_notif_parse (this, &notif_client_stop, wait_status);
5887
5888 push_stop_reply ((struct stop_reply *) reply);
5889
5890 target_async (1);
5891 }
5892 else
5893 {
5894 gdb_assert (wait_status != NULL);
5895 strcpy (rs->buf, wait_status);
5896 rs->cached_wait_status = 1;
5897 }
5898 }
5899 else
5900 gdb_assert (wait_status == NULL);
5901 }
5902
5903 /* Implementation of the to_post_attach method. */
5904
5905 void
5906 extended_remote_target::post_attach (int pid)
5907 {
5908 /* Get text, data & bss offsets. */
5909 get_offsets ();
5910
5911 /* In certain cases GDB might not have had the chance to start
5912 symbol lookup up until now. This could happen if the debugged
5913 binary is not using shared libraries, the vsyscall page is not
5914 present (on Linux) and the binary itself hadn't changed since the
5915 debugging process was started. */
5916 if (symfile_objfile != NULL)
5917 remote_check_symbols();
5918 }
5919
5920 \f
5921 /* Check for the availability of vCont. This function should also check
5922 the response. */
5923
5924 void
5925 remote_target::remote_vcont_probe ()
5926 {
5927 remote_state *rs = get_remote_state ();
5928 char *buf;
5929
5930 strcpy (rs->buf, "vCont?");
5931 putpkt (rs->buf);
5932 getpkt (&rs->buf, &rs->buf_size, 0);
5933 buf = rs->buf;
5934
5935 /* Make sure that the features we assume are supported. */
5936 if (startswith (buf, "vCont"))
5937 {
5938 char *p = &buf[5];
5939 int support_c, support_C;
5940
5941 rs->supports_vCont.s = 0;
5942 rs->supports_vCont.S = 0;
5943 support_c = 0;
5944 support_C = 0;
5945 rs->supports_vCont.t = 0;
5946 rs->supports_vCont.r = 0;
5947 while (p && *p == ';')
5948 {
5949 p++;
5950 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5951 rs->supports_vCont.s = 1;
5952 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5953 rs->supports_vCont.S = 1;
5954 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5955 support_c = 1;
5956 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5957 support_C = 1;
5958 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5959 rs->supports_vCont.t = 1;
5960 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5961 rs->supports_vCont.r = 1;
5962
5963 p = strchr (p, ';');
5964 }
5965
5966 /* If c, and C are not all supported, we can't use vCont. Clearing
5967 BUF will make packet_ok disable the packet. */
5968 if (!support_c || !support_C)
5969 buf[0] = 0;
5970 }
5971
5972 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5973 }
5974
5975 /* Helper function for building "vCont" resumptions. Write a
5976 resumption to P. ENDP points to one-passed-the-end of the buffer
5977 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5978 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5979 resumed thread should be single-stepped and/or signalled. If PTID
5980 equals minus_one_ptid, then all threads are resumed; if PTID
5981 represents a process, then all threads of the process are resumed;
5982 the thread to be stepped and/or signalled is given in the global
5983 INFERIOR_PTID. */
5984
5985 char *
5986 remote_target::append_resumption (char *p, char *endp,
5987 ptid_t ptid, int step, gdb_signal siggnal)
5988 {
5989 struct remote_state *rs = get_remote_state ();
5990
5991 if (step && siggnal != GDB_SIGNAL_0)
5992 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5993 else if (step
5994 /* GDB is willing to range step. */
5995 && use_range_stepping
5996 /* Target supports range stepping. */
5997 && rs->supports_vCont.r
5998 /* We don't currently support range stepping multiple
5999 threads with a wildcard (though the protocol allows it,
6000 so stubs shouldn't make an active effort to forbid
6001 it). */
6002 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6003 {
6004 struct thread_info *tp;
6005
6006 if (ptid_equal (ptid, minus_one_ptid))
6007 {
6008 /* If we don't know about the target thread's tid, then
6009 we're resuming magic_null_ptid (see caller). */
6010 tp = find_thread_ptid (magic_null_ptid);
6011 }
6012 else
6013 tp = find_thread_ptid (ptid);
6014 gdb_assert (tp != NULL);
6015
6016 if (tp->control.may_range_step)
6017 {
6018 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6019
6020 p += xsnprintf (p, endp - p, ";r%s,%s",
6021 phex_nz (tp->control.step_range_start,
6022 addr_size),
6023 phex_nz (tp->control.step_range_end,
6024 addr_size));
6025 }
6026 else
6027 p += xsnprintf (p, endp - p, ";s");
6028 }
6029 else if (step)
6030 p += xsnprintf (p, endp - p, ";s");
6031 else if (siggnal != GDB_SIGNAL_0)
6032 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6033 else
6034 p += xsnprintf (p, endp - p, ";c");
6035
6036 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
6037 {
6038 ptid_t nptid;
6039
6040 /* All (-1) threads of process. */
6041 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6042
6043 p += xsnprintf (p, endp - p, ":");
6044 p = write_ptid (p, endp, nptid);
6045 }
6046 else if (!ptid_equal (ptid, minus_one_ptid))
6047 {
6048 p += xsnprintf (p, endp - p, ":");
6049 p = write_ptid (p, endp, ptid);
6050 }
6051
6052 return p;
6053 }
6054
6055 /* Clear the thread's private info on resume. */
6056
6057 static void
6058 resume_clear_thread_private_info (struct thread_info *thread)
6059 {
6060 if (thread->priv != NULL)
6061 {
6062 remote_thread_info *priv = get_remote_thread_info (thread);
6063
6064 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6065 priv->watch_data_address = 0;
6066 }
6067 }
6068
6069 /* Append a vCont continue-with-signal action for threads that have a
6070 non-zero stop signal. */
6071
6072 char *
6073 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6074 ptid_t ptid)
6075 {
6076 struct thread_info *thread;
6077
6078 ALL_NON_EXITED_THREADS (thread)
6079 if (ptid_match (thread->ptid, ptid)
6080 && !ptid_equal (inferior_ptid, thread->ptid)
6081 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6082 {
6083 p = append_resumption (p, endp, thread->ptid,
6084 0, thread->suspend.stop_signal);
6085 thread->suspend.stop_signal = GDB_SIGNAL_0;
6086 resume_clear_thread_private_info (thread);
6087 }
6088
6089 return p;
6090 }
6091
6092 /* Set the target running, using the packets that use Hc
6093 (c/s/C/S). */
6094
6095 void
6096 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6097 gdb_signal siggnal)
6098 {
6099 struct remote_state *rs = get_remote_state ();
6100 struct thread_info *thread;
6101 char *buf;
6102
6103 rs->last_sent_signal = siggnal;
6104 rs->last_sent_step = step;
6105
6106 /* The c/s/C/S resume packets use Hc, so set the continue
6107 thread. */
6108 if (ptid_equal (ptid, minus_one_ptid))
6109 set_continue_thread (any_thread_ptid);
6110 else
6111 set_continue_thread (ptid);
6112
6113 ALL_NON_EXITED_THREADS (thread)
6114 resume_clear_thread_private_info (thread);
6115
6116 buf = rs->buf;
6117 if (::execution_direction == EXEC_REVERSE)
6118 {
6119 /* We don't pass signals to the target in reverse exec mode. */
6120 if (info_verbose && siggnal != GDB_SIGNAL_0)
6121 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6122 siggnal);
6123
6124 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6125 error (_("Remote reverse-step not supported."));
6126 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6127 error (_("Remote reverse-continue not supported."));
6128
6129 strcpy (buf, step ? "bs" : "bc");
6130 }
6131 else if (siggnal != GDB_SIGNAL_0)
6132 {
6133 buf[0] = step ? 'S' : 'C';
6134 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6135 buf[2] = tohex (((int) siggnal) & 0xf);
6136 buf[3] = '\0';
6137 }
6138 else
6139 strcpy (buf, step ? "s" : "c");
6140
6141 putpkt (buf);
6142 }
6143
6144 /* Resume the remote inferior by using a "vCont" packet. The thread
6145 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6146 resumed thread should be single-stepped and/or signalled. If PTID
6147 equals minus_one_ptid, then all threads are resumed; the thread to
6148 be stepped and/or signalled is given in the global INFERIOR_PTID.
6149 This function returns non-zero iff it resumes the inferior.
6150
6151 This function issues a strict subset of all possible vCont commands
6152 at the moment. */
6153
6154 int
6155 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6156 enum gdb_signal siggnal)
6157 {
6158 struct remote_state *rs = get_remote_state ();
6159 char *p;
6160 char *endp;
6161
6162 /* No reverse execution actions defined for vCont. */
6163 if (::execution_direction == EXEC_REVERSE)
6164 return 0;
6165
6166 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6167 remote_vcont_probe ();
6168
6169 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6170 return 0;
6171
6172 p = rs->buf;
6173 endp = rs->buf + get_remote_packet_size ();
6174
6175 /* If we could generate a wider range of packets, we'd have to worry
6176 about overflowing BUF. Should there be a generic
6177 "multi-part-packet" packet? */
6178
6179 p += xsnprintf (p, endp - p, "vCont");
6180
6181 if (ptid_equal (ptid, magic_null_ptid))
6182 {
6183 /* MAGIC_NULL_PTID means that we don't have any active threads,
6184 so we don't have any TID numbers the inferior will
6185 understand. Make sure to only send forms that do not specify
6186 a TID. */
6187 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6188 }
6189 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
6190 {
6191 /* Resume all threads (of all processes, or of a single
6192 process), with preference for INFERIOR_PTID. This assumes
6193 inferior_ptid belongs to the set of all threads we are about
6194 to resume. */
6195 if (step || siggnal != GDB_SIGNAL_0)
6196 {
6197 /* Step inferior_ptid, with or without signal. */
6198 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6199 }
6200
6201 /* Also pass down any pending signaled resumption for other
6202 threads not the current. */
6203 p = append_pending_thread_resumptions (p, endp, ptid);
6204
6205 /* And continue others without a signal. */
6206 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6207 }
6208 else
6209 {
6210 /* Scheduler locking; resume only PTID. */
6211 append_resumption (p, endp, ptid, step, siggnal);
6212 }
6213
6214 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6215 putpkt (rs->buf);
6216
6217 if (target_is_non_stop_p ())
6218 {
6219 /* In non-stop, the stub replies to vCont with "OK". The stop
6220 reply will be reported asynchronously by means of a `%Stop'
6221 notification. */
6222 getpkt (&rs->buf, &rs->buf_size, 0);
6223 if (strcmp (rs->buf, "OK") != 0)
6224 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6225 }
6226
6227 return 1;
6228 }
6229
6230 /* Tell the remote machine to resume. */
6231
6232 void
6233 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6234 {
6235 struct remote_state *rs = get_remote_state ();
6236
6237 /* When connected in non-stop mode, the core resumes threads
6238 individually. Resuming remote threads directly in target_resume
6239 would thus result in sending one packet per thread. Instead, to
6240 minimize roundtrip latency, here we just store the resume
6241 request; the actual remote resumption will be done in
6242 target_commit_resume / remote_commit_resume, where we'll be able
6243 to do vCont action coalescing. */
6244 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6245 {
6246 remote_thread_info *remote_thr;
6247
6248 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
6249 remote_thr = get_remote_thread_info (inferior_ptid);
6250 else
6251 remote_thr = get_remote_thread_info (ptid);
6252
6253 remote_thr->last_resume_step = step;
6254 remote_thr->last_resume_sig = siggnal;
6255 return;
6256 }
6257
6258 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6259 (explained in remote-notif.c:handle_notification) so
6260 remote_notif_process is not called. We need find a place where
6261 it is safe to start a 'vNotif' sequence. It is good to do it
6262 before resuming inferior, because inferior was stopped and no RSP
6263 traffic at that moment. */
6264 if (!target_is_non_stop_p ())
6265 remote_notif_process (rs->notif_state, &notif_client_stop);
6266
6267 rs->last_resume_exec_dir = ::execution_direction;
6268
6269 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6270 if (!remote_resume_with_vcont (ptid, step, siggnal))
6271 remote_resume_with_hc (ptid, step, siggnal);
6272
6273 /* We are about to start executing the inferior, let's register it
6274 with the event loop. NOTE: this is the one place where all the
6275 execution commands end up. We could alternatively do this in each
6276 of the execution commands in infcmd.c. */
6277 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6278 into infcmd.c in order to allow inferior function calls to work
6279 NOT asynchronously. */
6280 if (target_can_async_p ())
6281 target_async (1);
6282
6283 /* We've just told the target to resume. The remote server will
6284 wait for the inferior to stop, and then send a stop reply. In
6285 the mean time, we can't start another command/query ourselves
6286 because the stub wouldn't be ready to process it. This applies
6287 only to the base all-stop protocol, however. In non-stop (which
6288 only supports vCont), the stub replies with an "OK", and is
6289 immediate able to process further serial input. */
6290 if (!target_is_non_stop_p ())
6291 rs->waiting_for_stop_reply = 1;
6292 }
6293
6294 static int is_pending_fork_parent_thread (struct thread_info *thread);
6295
6296 /* Private per-inferior info for target remote processes. */
6297
6298 struct remote_inferior : public private_inferior
6299 {
6300 /* Whether we can send a wildcard vCont for this process. */
6301 bool may_wildcard_vcont = true;
6302 };
6303
6304 /* Get the remote private inferior data associated to INF. */
6305
6306 static remote_inferior *
6307 get_remote_inferior (inferior *inf)
6308 {
6309 if (inf->priv == NULL)
6310 inf->priv.reset (new remote_inferior);
6311
6312 return static_cast<remote_inferior *> (inf->priv.get ());
6313 }
6314
6315 /* Class used to track the construction of a vCont packet in the
6316 outgoing packet buffer. This is used to send multiple vCont
6317 packets if we have more actions than would fit a single packet. */
6318
6319 class vcont_builder
6320 {
6321 public:
6322 explicit vcont_builder (remote_target *remote)
6323 : m_remote (remote)
6324 {
6325 restart ();
6326 }
6327
6328 void flush ();
6329 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6330
6331 private:
6332 void restart ();
6333
6334 /* The remote target. */
6335 remote_target *m_remote;
6336
6337 /* Pointer to the first action. P points here if no action has been
6338 appended yet. */
6339 char *m_first_action;
6340
6341 /* Where the next action will be appended. */
6342 char *m_p;
6343
6344 /* The end of the buffer. Must never write past this. */
6345 char *m_endp;
6346 };
6347
6348 /* Prepare the outgoing buffer for a new vCont packet. */
6349
6350 void
6351 vcont_builder::restart ()
6352 {
6353 struct remote_state *rs = m_remote->get_remote_state ();
6354
6355 m_p = rs->buf;
6356 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6357 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6358 m_first_action = m_p;
6359 }
6360
6361 /* If the vCont packet being built has any action, send it to the
6362 remote end. */
6363
6364 void
6365 vcont_builder::flush ()
6366 {
6367 struct remote_state *rs;
6368
6369 if (m_p == m_first_action)
6370 return;
6371
6372 rs = m_remote->get_remote_state ();
6373 m_remote->putpkt (rs->buf);
6374 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6375 if (strcmp (rs->buf, "OK") != 0)
6376 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6377 }
6378
6379 /* The largest action is range-stepping, with its two addresses. This
6380 is more than sufficient. If a new, bigger action is created, it'll
6381 quickly trigger a failed assertion in append_resumption (and we'll
6382 just bump this). */
6383 #define MAX_ACTION_SIZE 200
6384
6385 /* Append a new vCont action in the outgoing packet being built. If
6386 the action doesn't fit the packet along with previous actions, push
6387 what we've got so far to the remote end and start over a new vCont
6388 packet (with the new action). */
6389
6390 void
6391 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6392 {
6393 char buf[MAX_ACTION_SIZE + 1];
6394
6395 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6396 ptid, step, siggnal);
6397
6398 /* Check whether this new action would fit in the vCont packet along
6399 with previous actions. If not, send what we've got so far and
6400 start a new vCont packet. */
6401 size_t rsize = endp - buf;
6402 if (rsize > m_endp - m_p)
6403 {
6404 flush ();
6405 restart ();
6406
6407 /* Should now fit. */
6408 gdb_assert (rsize <= m_endp - m_p);
6409 }
6410
6411 memcpy (m_p, buf, rsize);
6412 m_p += rsize;
6413 *m_p = '\0';
6414 }
6415
6416 /* to_commit_resume implementation. */
6417
6418 void
6419 remote_target::commit_resume ()
6420 {
6421 struct inferior *inf;
6422 struct thread_info *tp;
6423 int any_process_wildcard;
6424 int may_global_wildcard_vcont;
6425
6426 /* If connected in all-stop mode, we'd send the remote resume
6427 request directly from remote_resume. Likewise if
6428 reverse-debugging, as there are no defined vCont actions for
6429 reverse execution. */
6430 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6431 return;
6432
6433 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6434 instead of resuming all threads of each process individually.
6435 However, if any thread of a process must remain halted, we can't
6436 send wildcard resumes and must send one action per thread.
6437
6438 Care must be taken to not resume threads/processes the server
6439 side already told us are stopped, but the core doesn't know about
6440 yet, because the events are still in the vStopped notification
6441 queue. For example:
6442
6443 #1 => vCont s:p1.1;c
6444 #2 <= OK
6445 #3 <= %Stopped T05 p1.1
6446 #4 => vStopped
6447 #5 <= T05 p1.2
6448 #6 => vStopped
6449 #7 <= OK
6450 #8 (infrun handles the stop for p1.1 and continues stepping)
6451 #9 => vCont s:p1.1;c
6452
6453 The last vCont above would resume thread p1.2 by mistake, because
6454 the server has no idea that the event for p1.2 had not been
6455 handled yet.
6456
6457 The server side must similarly ignore resume actions for the
6458 thread that has a pending %Stopped notification (and any other
6459 threads with events pending), until GDB acks the notification
6460 with vStopped. Otherwise, e.g., the following case is
6461 mishandled:
6462
6463 #1 => g (or any other packet)
6464 #2 <= [registers]
6465 #3 <= %Stopped T05 p1.2
6466 #4 => vCont s:p1.1;c
6467 #5 <= OK
6468
6469 Above, the server must not resume thread p1.2. GDB can't know
6470 that p1.2 stopped until it acks the %Stopped notification, and
6471 since from GDB's perspective all threads should be running, it
6472 sends a "c" action.
6473
6474 Finally, special care must also be given to handling fork/vfork
6475 events. A (v)fork event actually tells us that two processes
6476 stopped -- the parent and the child. Until we follow the fork,
6477 we must not resume the child. Therefore, if we have a pending
6478 fork follow, we must not send a global wildcard resume action
6479 (vCont;c). We can still send process-wide wildcards though. */
6480
6481 /* Start by assuming a global wildcard (vCont;c) is possible. */
6482 may_global_wildcard_vcont = 1;
6483
6484 /* And assume every process is individually wildcard-able too. */
6485 ALL_NON_EXITED_INFERIORS (inf)
6486 {
6487 remote_inferior *priv = get_remote_inferior (inf);
6488
6489 priv->may_wildcard_vcont = true;
6490 }
6491
6492 /* Check for any pending events (not reported or processed yet) and
6493 disable process and global wildcard resumes appropriately. */
6494 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6495
6496 ALL_NON_EXITED_THREADS (tp)
6497 {
6498 /* If a thread of a process is not meant to be resumed, then we
6499 can't wildcard that process. */
6500 if (!tp->executing)
6501 {
6502 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6503
6504 /* And if we can't wildcard a process, we can't wildcard
6505 everything either. */
6506 may_global_wildcard_vcont = 0;
6507 continue;
6508 }
6509
6510 /* If a thread is the parent of an unfollowed fork, then we
6511 can't do a global wildcard, as that would resume the fork
6512 child. */
6513 if (is_pending_fork_parent_thread (tp))
6514 may_global_wildcard_vcont = 0;
6515 }
6516
6517 /* Now let's build the vCont packet(s). Actions must be appended
6518 from narrower to wider scopes (thread -> process -> global). If
6519 we end up with too many actions for a single packet vcont_builder
6520 flushes the current vCont packet to the remote side and starts a
6521 new one. */
6522 struct vcont_builder vcont_builder (this);
6523
6524 /* Threads first. */
6525 ALL_NON_EXITED_THREADS (tp)
6526 {
6527 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6528
6529 if (!tp->executing || remote_thr->vcont_resumed)
6530 continue;
6531
6532 gdb_assert (!thread_is_in_step_over_chain (tp));
6533
6534 if (!remote_thr->last_resume_step
6535 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6536 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6537 {
6538 /* We'll send a wildcard resume instead. */
6539 remote_thr->vcont_resumed = 1;
6540 continue;
6541 }
6542
6543 vcont_builder.push_action (tp->ptid,
6544 remote_thr->last_resume_step,
6545 remote_thr->last_resume_sig);
6546 remote_thr->vcont_resumed = 1;
6547 }
6548
6549 /* Now check whether we can send any process-wide wildcard. This is
6550 to avoid sending a global wildcard in the case nothing is
6551 supposed to be resumed. */
6552 any_process_wildcard = 0;
6553
6554 ALL_NON_EXITED_INFERIORS (inf)
6555 {
6556 if (get_remote_inferior (inf)->may_wildcard_vcont)
6557 {
6558 any_process_wildcard = 1;
6559 break;
6560 }
6561 }
6562
6563 if (any_process_wildcard)
6564 {
6565 /* If all processes are wildcard-able, then send a single "c"
6566 action, otherwise, send an "all (-1) threads of process"
6567 continue action for each running process, if any. */
6568 if (may_global_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (minus_one_ptid,
6571 false, GDB_SIGNAL_0);
6572 }
6573 else
6574 {
6575 ALL_NON_EXITED_INFERIORS (inf)
6576 {
6577 if (get_remote_inferior (inf)->may_wildcard_vcont)
6578 {
6579 vcont_builder.push_action (pid_to_ptid (inf->pid),
6580 false, GDB_SIGNAL_0);
6581 }
6582 }
6583 }
6584 }
6585
6586 vcont_builder.flush ();
6587 }
6588
6589 \f
6590
6591 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6592 thread, all threads of a remote process, or all threads of all
6593 processes. */
6594
6595 void
6596 remote_target::remote_stop_ns (ptid_t ptid)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf;
6600 char *endp = rs->buf + get_remote_packet_size ();
6601
6602 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6603 remote_vcont_probe ();
6604
6605 if (!rs->supports_vCont.t)
6606 error (_("Remote server does not support stopping threads"));
6607
6608 if (ptid_equal (ptid, minus_one_ptid)
6609 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6610 p += xsnprintf (p, endp - p, "vCont;t");
6611 else
6612 {
6613 ptid_t nptid;
6614
6615 p += xsnprintf (p, endp - p, "vCont;t:");
6616
6617 if (ptid_is_pid (ptid))
6618 /* All (-1) threads of process. */
6619 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6620 else
6621 {
6622 /* Small optimization: if we already have a stop reply for
6623 this thread, no use in telling the stub we want this
6624 stopped. */
6625 if (peek_stop_reply (ptid))
6626 return;
6627
6628 nptid = ptid;
6629 }
6630
6631 write_ptid (p, endp, nptid);
6632 }
6633
6634 /* In non-stop, we get an immediate OK reply. The stop reply will
6635 come in asynchronously by notification. */
6636 putpkt (rs->buf);
6637 getpkt (&rs->buf, &rs->buf_size, 0);
6638 if (strcmp (rs->buf, "OK") != 0)
6639 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6640 }
6641
6642 /* All-stop version of target_interrupt. Sends a break or a ^C to
6643 interrupt the remote target. It is undefined which thread of which
6644 process reports the interrupt. */
6645
6646 void
6647 remote_target::remote_interrupt_as ()
6648 {
6649 struct remote_state *rs = get_remote_state ();
6650
6651 rs->ctrlc_pending_p = 1;
6652
6653 /* If the inferior is stopped already, but the core didn't know
6654 about it yet, just ignore the request. The cached wait status
6655 will be collected in remote_wait. */
6656 if (rs->cached_wait_status)
6657 return;
6658
6659 /* Send interrupt_sequence to remote target. */
6660 send_interrupt_sequence ();
6661 }
6662
6663 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6664 the remote target. It is undefined which thread of which process
6665 reports the interrupt. Throws an error if the packet is not
6666 supported by the server. */
6667
6668 void
6669 remote_target::remote_interrupt_ns ()
6670 {
6671 struct remote_state *rs = get_remote_state ();
6672 char *p = rs->buf;
6673 char *endp = rs->buf + get_remote_packet_size ();
6674
6675 xsnprintf (p, endp - p, "vCtrlC");
6676
6677 /* In non-stop, we get an immediate OK reply. The stop reply will
6678 come in asynchronously by notification. */
6679 putpkt (rs->buf);
6680 getpkt (&rs->buf, &rs->buf_size, 0);
6681
6682 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6683 {
6684 case PACKET_OK:
6685 break;
6686 case PACKET_UNKNOWN:
6687 error (_("No support for interrupting the remote target."));
6688 case PACKET_ERROR:
6689 error (_("Interrupting target failed: %s"), rs->buf);
6690 }
6691 }
6692
6693 /* Implement the to_stop function for the remote targets. */
6694
6695 void
6696 remote_target::stop (ptid_t ptid)
6697 {
6698 if (remote_debug)
6699 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6700
6701 if (target_is_non_stop_p ())
6702 remote_stop_ns (ptid);
6703 else
6704 {
6705 /* We don't currently have a way to transparently pause the
6706 remote target in all-stop mode. Interrupt it instead. */
6707 remote_interrupt_as ();
6708 }
6709 }
6710
6711 /* Implement the to_interrupt function for the remote targets. */
6712
6713 void
6714 remote_target::interrupt ()
6715 {
6716 if (remote_debug)
6717 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6718
6719 if (target_is_non_stop_p ())
6720 remote_interrupt_ns ();
6721 else
6722 remote_interrupt_as ();
6723 }
6724
6725 /* Implement the to_pass_ctrlc function for the remote targets. */
6726
6727 void
6728 remote_target::pass_ctrlc ()
6729 {
6730 struct remote_state *rs = get_remote_state ();
6731
6732 if (remote_debug)
6733 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6734
6735 /* If we're starting up, we're not fully synced yet. Quit
6736 immediately. */
6737 if (rs->starting_up)
6738 quit ();
6739 /* If ^C has already been sent once, offer to disconnect. */
6740 else if (rs->ctrlc_pending_p)
6741 interrupt_query ();
6742 else
6743 target_interrupt ();
6744 }
6745
6746 /* Ask the user what to do when an interrupt is received. */
6747
6748 void
6749 remote_target::interrupt_query ()
6750 {
6751 struct remote_state *rs = get_remote_state ();
6752
6753 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6754 {
6755 if (query (_("The target is not responding to interrupt requests.\n"
6756 "Stop debugging it? ")))
6757 {
6758 remote_unpush_target ();
6759 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6760 }
6761 }
6762 else
6763 {
6764 if (query (_("Interrupted while waiting for the program.\n"
6765 "Give up waiting? ")))
6766 quit ();
6767 }
6768 }
6769
6770 /* Enable/disable target terminal ownership. Most targets can use
6771 terminal groups to control terminal ownership. Remote targets are
6772 different in that explicit transfer of ownership to/from GDB/target
6773 is required. */
6774
6775 void
6776 remote_target::terminal_inferior ()
6777 {
6778 /* NOTE: At this point we could also register our selves as the
6779 recipient of all input. Any characters typed could then be
6780 passed on down to the target. */
6781 }
6782
6783 void
6784 remote_target::terminal_ours ()
6785 {
6786 }
6787
6788 static void
6789 remote_console_output (char *msg)
6790 {
6791 char *p;
6792
6793 for (p = msg; p[0] && p[1]; p += 2)
6794 {
6795 char tb[2];
6796 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6797
6798 tb[0] = c;
6799 tb[1] = 0;
6800 fputs_unfiltered (tb, gdb_stdtarg);
6801 }
6802 gdb_flush (gdb_stdtarg);
6803 }
6804
6805 DEF_VEC_O(cached_reg_t);
6806
6807 typedef struct stop_reply
6808 {
6809 struct notif_event base;
6810
6811 /* The identifier of the thread about this event */
6812 ptid_t ptid;
6813
6814 /* The remote state this event is associated with. When the remote
6815 connection, represented by a remote_state object, is closed,
6816 all the associated stop_reply events should be released. */
6817 struct remote_state *rs;
6818
6819 struct target_waitstatus ws;
6820
6821 /* The architecture associated with the expedited registers. */
6822 gdbarch *arch;
6823
6824 /* Expedited registers. This makes remote debugging a bit more
6825 efficient for those targets that provide critical registers as
6826 part of their normal status mechanism (as another roundtrip to
6827 fetch them is avoided). */
6828 VEC(cached_reg_t) *regcache;
6829
6830 enum target_stop_reason stop_reason;
6831
6832 CORE_ADDR watch_data_address;
6833
6834 int core;
6835 } *stop_reply_p;
6836
6837 static void
6838 stop_reply_xfree (struct stop_reply *r)
6839 {
6840 notif_event_xfree ((struct notif_event *) r);
6841 }
6842
6843 /* Return the length of the stop reply queue. */
6844
6845 int
6846 remote_target::stop_reply_queue_length ()
6847 {
6848 remote_state *rs = get_remote_state ();
6849 return QUEUE_length (stop_reply_p, rs->stop_reply_queue);
6850 }
6851
6852 void
6853 remote_notif_stop_parse (remote_target *remote,
6854 struct notif_client *self, char *buf,
6855 struct notif_event *event)
6856 {
6857 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6858 }
6859
6860 static void
6861 remote_notif_stop_ack (remote_target *remote,
6862 struct notif_client *self, char *buf,
6863 struct notif_event *event)
6864 {
6865 struct stop_reply *stop_reply = (struct stop_reply *) event;
6866
6867 /* acknowledge */
6868 putpkt (remote, self->ack_command);
6869
6870 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6871 {
6872 /* We got an unknown stop reply. */
6873 error (_("Unknown stop reply"));
6874 }
6875
6876 remote->push_stop_reply (stop_reply);
6877 }
6878
6879 static int
6880 remote_notif_stop_can_get_pending_events (remote_target *remote,
6881 struct notif_client *self)
6882 {
6883 /* We can't get pending events in remote_notif_process for
6884 notification stop, and we have to do this in remote_wait_ns
6885 instead. If we fetch all queued events from stub, remote stub
6886 may exit and we have no chance to process them back in
6887 remote_wait_ns. */
6888 remote_state *rs = remote->get_remote_state ();
6889 mark_async_event_handler (rs->remote_async_inferior_event_token);
6890 return 0;
6891 }
6892
6893 static void
6894 stop_reply_dtr (struct notif_event *event)
6895 {
6896 struct stop_reply *r = (struct stop_reply *) event;
6897 cached_reg_t *reg;
6898 int ix;
6899
6900 for (ix = 0;
6901 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6902 ix++)
6903 xfree (reg->data);
6904
6905 VEC_free (cached_reg_t, r->regcache);
6906 }
6907
6908 static struct notif_event *
6909 remote_notif_stop_alloc_reply (void)
6910 {
6911 /* We cast to a pointer to the "base class". */
6912 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6913
6914 r->dtr = stop_reply_dtr;
6915
6916 return r;
6917 }
6918
6919 /* A client of notification Stop. */
6920
6921 struct notif_client notif_client_stop =
6922 {
6923 "Stop",
6924 "vStopped",
6925 remote_notif_stop_parse,
6926 remote_notif_stop_ack,
6927 remote_notif_stop_can_get_pending_events,
6928 remote_notif_stop_alloc_reply,
6929 REMOTE_NOTIF_STOP,
6930 };
6931
6932 /* A parameter to pass data in and out. */
6933
6934 struct queue_iter_param
6935 {
6936 remote_target *remote;
6937 void *input;
6938 struct stop_reply *output;
6939 };
6940
6941 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6942 the pid of the process that owns the threads we want to check, or
6943 -1 if we want to check all threads. */
6944
6945 static int
6946 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6947 ptid_t thread_ptid)
6948 {
6949 if (ws->kind == TARGET_WAITKIND_FORKED
6950 || ws->kind == TARGET_WAITKIND_VFORKED)
6951 {
6952 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6953 return 1;
6954 }
6955
6956 return 0;
6957 }
6958
6959 /* Return the thread's pending status used to determine whether the
6960 thread is a fork parent stopped at a fork event. */
6961
6962 static struct target_waitstatus *
6963 thread_pending_fork_status (struct thread_info *thread)
6964 {
6965 if (thread->suspend.waitstatus_pending_p)
6966 return &thread->suspend.waitstatus;
6967 else
6968 return &thread->pending_follow;
6969 }
6970
6971 /* Determine if THREAD is a pending fork parent thread. */
6972
6973 static int
6974 is_pending_fork_parent_thread (struct thread_info *thread)
6975 {
6976 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6977 int pid = -1;
6978
6979 return is_pending_fork_parent (ws, pid, thread->ptid);
6980 }
6981
6982 /* Check whether EVENT is a fork event, and if it is, remove the
6983 fork child from the context list passed in DATA. */
6984
6985 static int
6986 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6987 QUEUE_ITER (stop_reply_p) *iter,
6988 stop_reply_p event,
6989 void *data)
6990 {
6991 struct queue_iter_param *param = (struct queue_iter_param *) data;
6992 struct threads_listing_context *context
6993 = (struct threads_listing_context *) param->input;
6994
6995 if (event->ws.kind == TARGET_WAITKIND_FORKED
6996 || event->ws.kind == TARGET_WAITKIND_VFORKED
6997 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6998 context->remove_thread (event->ws.value.related_pid);
6999
7000 return 1;
7001 }
7002
7003 /* If CONTEXT contains any fork child threads that have not been
7004 reported yet, remove them from the CONTEXT list. If such a
7005 thread exists it is because we are stopped at a fork catchpoint
7006 and have not yet called follow_fork, which will set up the
7007 host-side data structures for the new process. */
7008
7009 void
7010 remote_target::remove_new_fork_children (threads_listing_context *context)
7011 {
7012 struct thread_info * thread;
7013 int pid = -1;
7014 struct notif_client *notif = &notif_client_stop;
7015 struct queue_iter_param param;
7016
7017 /* For any threads stopped at a fork event, remove the corresponding
7018 fork child threads from the CONTEXT list. */
7019 ALL_NON_EXITED_THREADS (thread)
7020 {
7021 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7022
7023 if (is_pending_fork_parent (ws, pid, thread->ptid))
7024 context->remove_thread (ws->value.related_pid);
7025 }
7026
7027 /* Check for any pending fork events (not reported or processed yet)
7028 in process PID and remove those fork child threads from the
7029 CONTEXT list as well. */
7030 remote_notif_get_pending_events (notif);
7031 param.remote = this;
7032 param.input = context;
7033 param.output = NULL;
7034 QUEUE_iterate (stop_reply_p, get_remote_state ()->stop_reply_queue,
7035 remove_child_of_pending_fork, &param);
7036 }
7037
7038 /* Callback data for
7039 check_pending_event_prevents_wildcard_vcont_callback. */
7040 struct check_pending_event_prevents_wildcard_vcont_callback_data
7041 {
7042 /* The remote target. */
7043 remote_target *remote;
7044
7045 /* Whether we can do a global wildcard (vCont;c) */
7046 int *may_global_wildcard_vcont;
7047 };
7048
7049 /* Check whether EVENT would prevent a global or process wildcard
7050 vCont action. */
7051
7052 static int
7053 check_pending_event_prevents_wildcard_vcont_callback
7054 (QUEUE (stop_reply_p) *q,
7055 QUEUE_ITER (stop_reply_p) *iter,
7056 stop_reply_p event,
7057 void *data)
7058 {
7059 struct inferior *inf;
7060 auto *cb_data = (check_pending_event_prevents_wildcard_vcont_callback_data *) data;
7061
7062 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7063 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7064 return 1;
7065
7066 if (event->ws.kind == TARGET_WAITKIND_FORKED
7067 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7068 *cb_data->may_global_wildcard_vcont = 0;
7069
7070 inf = find_inferior_ptid (event->ptid);
7071
7072 /* This may be the first time we heard about this process.
7073 Regardless, we must not do a global wildcard resume, otherwise
7074 we'd resume this process too. */
7075 *cb_data->may_global_wildcard_vcont = 0;
7076 if (inf != NULL)
7077 get_remote_inferior (inf)->may_wildcard_vcont = false;
7078
7079 return 1;
7080 }
7081
7082 /* Check whether any event pending in the vStopped queue would prevent
7083 a global or process wildcard vCont action. Clear
7084 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7085 and clear the event inferior's may_wildcard_vcont flag if we can't
7086 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7087
7088 void
7089 remote_target::check_pending_events_prevent_wildcard_vcont
7090 (int *may_global_wildcard)
7091 {
7092 struct notif_client *notif = &notif_client_stop;
7093 check_pending_event_prevents_wildcard_vcont_callback_data cb_data
7094 {this, may_global_wildcard};
7095
7096 remote_notif_get_pending_events (notif);
7097 QUEUE_iterate (stop_reply_p, get_remote_state ()->stop_reply_queue,
7098 check_pending_event_prevents_wildcard_vcont_callback,
7099 &cb_data);
7100 }
7101
7102 /* Remove stop replies in the queue if its pid is equal to the given
7103 inferior's pid. */
7104
7105 static int
7106 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
7107 QUEUE_ITER (stop_reply_p) *iter,
7108 stop_reply_p event,
7109 void *data)
7110 {
7111 struct queue_iter_param *param = (struct queue_iter_param *) data;
7112 struct inferior *inf = (struct inferior *) param->input;
7113
7114 if (ptid_get_pid (event->ptid) == inf->pid)
7115 {
7116 stop_reply_xfree (event);
7117 QUEUE_remove_elem (stop_reply_p, q, iter);
7118 }
7119
7120 return 1;
7121 }
7122
7123 /* Discard all pending stop replies of inferior INF. */
7124
7125 void
7126 remote_target::discard_pending_stop_replies (struct inferior *inf)
7127 {
7128 struct queue_iter_param param;
7129 struct stop_reply *reply;
7130 struct remote_state *rs = get_remote_state ();
7131 struct remote_notif_state *rns = rs->notif_state;
7132
7133 /* This function can be notified when an inferior exists. When the
7134 target is not remote, the notification state is NULL. */
7135 if (rs->remote_desc == NULL)
7136 return;
7137
7138 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7139
7140 /* Discard the in-flight notification. */
7141 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
7142 {
7143 stop_reply_xfree (reply);
7144 rns->pending_event[notif_client_stop.id] = NULL;
7145 }
7146
7147 param.remote = this;
7148 param.input = inf;
7149 param.output = NULL;
7150 /* Discard the stop replies we have already pulled with
7151 vStopped. */
7152 QUEUE_iterate (stop_reply_p, rs->stop_reply_queue,
7153 remove_stop_reply_for_inferior, &param);
7154 }
7155
7156 /* If its remote state is equal to the given remote state,
7157 remove EVENT from the stop reply queue. */
7158
7159 static int
7160 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
7161 QUEUE_ITER (stop_reply_p) *iter,
7162 stop_reply_p event,
7163 void *data)
7164 {
7165 struct queue_iter_param *param = (struct queue_iter_param *) data;
7166 struct remote_state *rs = (struct remote_state *) param->input;
7167
7168 if (event->rs == rs)
7169 {
7170 stop_reply_xfree (event);
7171 QUEUE_remove_elem (stop_reply_p, q, iter);
7172 }
7173
7174 return 1;
7175 }
7176
7177 /* Discard the stop replies for RS in stop_reply_queue. */
7178
7179 void
7180 remote_target::discard_pending_stop_replies_in_queue ()
7181 {
7182 remote_state *rs = get_remote_state ();
7183 struct queue_iter_param param;
7184
7185 param.remote = this;
7186 param.input = rs;
7187 param.output = NULL;
7188 /* Discard the stop replies we have already pulled with
7189 vStopped. */
7190 QUEUE_iterate (stop_reply_p, rs->stop_reply_queue,
7191 remove_stop_reply_of_remote_state, &param);
7192 }
7193
7194 /* A parameter to pass data in and out. */
7195
7196 static int
7197 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
7198 QUEUE_ITER (stop_reply_p) *iter,
7199 stop_reply_p event,
7200 void *data)
7201 {
7202 struct queue_iter_param *param = (struct queue_iter_param *) data;
7203 ptid_t *ptid = (ptid_t *) param->input;
7204
7205 if (ptid_match (event->ptid, *ptid))
7206 {
7207 param->output = event;
7208 QUEUE_remove_elem (stop_reply_p, q, iter);
7209 return 0;
7210 }
7211
7212 return 1;
7213 }
7214
7215 /* Remove the first reply in 'stop_reply_queue' which matches
7216 PTID. */
7217
7218 struct stop_reply *
7219 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7220 {
7221 struct queue_iter_param param;
7222
7223 param.remote = this;
7224 param.input = &ptid;
7225 param.output = NULL;
7226
7227 QUEUE_iterate (stop_reply_p, get_remote_state ()->stop_reply_queue,
7228 remote_notif_remove_once_on_match, &param);
7229 if (notif_debug)
7230 fprintf_unfiltered (gdb_stdlog,
7231 "notif: discard queued event: 'Stop' in %s\n",
7232 target_pid_to_str (ptid));
7233
7234 return param.output;
7235 }
7236
7237 /* Look for a queued stop reply belonging to PTID. If one is found,
7238 remove it from the queue, and return it. Returns NULL if none is
7239 found. If there are still queued events left to process, tell the
7240 event loop to get back to target_wait soon. */
7241
7242 struct stop_reply *
7243 remote_target::queued_stop_reply (ptid_t ptid)
7244 {
7245 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7246
7247 if (!QUEUE_is_empty (stop_reply_p, get_remote_state ()->stop_reply_queue))
7248 {
7249 remote_state *rs = get_remote_state ();
7250 /* There's still at least an event left. */
7251 mark_async_event_handler (rs->remote_async_inferior_event_token);
7252 }
7253
7254 return r;
7255 }
7256
7257 /* Push a fully parsed stop reply in the stop reply queue. Since we
7258 know that we now have at least one queued event left to pass to the
7259 core side, tell the event loop to get back to target_wait soon. */
7260
7261 void
7262 remote_target::push_stop_reply (struct stop_reply *new_event)
7263 {
7264 remote_state *rs = get_remote_state ();
7265 QUEUE_enque (stop_reply_p, rs->stop_reply_queue, new_event);
7266
7267 if (notif_debug)
7268 fprintf_unfiltered (gdb_stdlog,
7269 "notif: push 'Stop' %s to queue %d\n",
7270 target_pid_to_str (new_event->ptid),
7271 QUEUE_length (stop_reply_p,
7272 rs->stop_reply_queue));
7273
7274 mark_async_event_handler (rs->remote_async_inferior_event_token);
7275 }
7276
7277 static int
7278 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
7279 QUEUE_ITER (stop_reply_p) *iter,
7280 struct stop_reply *event,
7281 void *data)
7282 {
7283 ptid_t *ptid = (ptid_t *) data;
7284
7285 return !(ptid_equal (*ptid, event->ptid)
7286 && event->ws.kind == TARGET_WAITKIND_STOPPED);
7287 }
7288
7289 /* Returns true if we have a stop reply for PTID. */
7290
7291 int
7292 remote_target::peek_stop_reply (ptid_t ptid)
7293 {
7294 remote_state *rs = get_remote_state ();
7295 return !QUEUE_iterate (stop_reply_p, rs->stop_reply_queue,
7296 stop_reply_match_ptid_and_ws, &ptid);
7297 }
7298
7299 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7300 starting with P and ending with PEND matches PREFIX. */
7301
7302 static int
7303 strprefix (const char *p, const char *pend, const char *prefix)
7304 {
7305 for ( ; p < pend; p++, prefix++)
7306 if (*p != *prefix)
7307 return 0;
7308 return *prefix == '\0';
7309 }
7310
7311 /* Parse the stop reply in BUF. Either the function succeeds, and the
7312 result is stored in EVENT, or throws an error. */
7313
7314 void
7315 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7316 {
7317 remote_arch_state *rsa = NULL;
7318 ULONGEST addr;
7319 const char *p;
7320 int skipregs = 0;
7321
7322 event->ptid = null_ptid;
7323 event->rs = get_remote_state ();
7324 event->ws.kind = TARGET_WAITKIND_IGNORE;
7325 event->ws.value.integer = 0;
7326 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7327 event->regcache = NULL;
7328 event->core = -1;
7329
7330 switch (buf[0])
7331 {
7332 case 'T': /* Status with PC, SP, FP, ... */
7333 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7334 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7335 ss = signal number
7336 n... = register number
7337 r... = register contents
7338 */
7339
7340 p = &buf[3]; /* after Txx */
7341 while (*p)
7342 {
7343 const char *p1;
7344 int fieldsize;
7345
7346 p1 = strchr (p, ':');
7347 if (p1 == NULL)
7348 error (_("Malformed packet(a) (missing colon): %s\n\
7349 Packet: '%s'\n"),
7350 p, buf);
7351 if (p == p1)
7352 error (_("Malformed packet(a) (missing register number): %s\n\
7353 Packet: '%s'\n"),
7354 p, buf);
7355
7356 /* Some "registers" are actually extended stop information.
7357 Note if you're adding a new entry here: GDB 7.9 and
7358 earlier assume that all register "numbers" that start
7359 with an hex digit are real register numbers. Make sure
7360 the server only sends such a packet if it knows the
7361 client understands it. */
7362
7363 if (strprefix (p, p1, "thread"))
7364 event->ptid = read_ptid (++p1, &p);
7365 else if (strprefix (p, p1, "syscall_entry"))
7366 {
7367 ULONGEST sysno;
7368
7369 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7370 p = unpack_varlen_hex (++p1, &sysno);
7371 event->ws.value.syscall_number = (int) sysno;
7372 }
7373 else if (strprefix (p, p1, "syscall_return"))
7374 {
7375 ULONGEST sysno;
7376
7377 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7378 p = unpack_varlen_hex (++p1, &sysno);
7379 event->ws.value.syscall_number = (int) sysno;
7380 }
7381 else if (strprefix (p, p1, "watch")
7382 || strprefix (p, p1, "rwatch")
7383 || strprefix (p, p1, "awatch"))
7384 {
7385 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7386 p = unpack_varlen_hex (++p1, &addr);
7387 event->watch_data_address = (CORE_ADDR) addr;
7388 }
7389 else if (strprefix (p, p1, "swbreak"))
7390 {
7391 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7392
7393 /* Make sure the stub doesn't forget to indicate support
7394 with qSupported. */
7395 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7396 error (_("Unexpected swbreak stop reason"));
7397
7398 /* The value part is documented as "must be empty",
7399 though we ignore it, in case we ever decide to make
7400 use of it in a backward compatible way. */
7401 p = strchrnul (p1 + 1, ';');
7402 }
7403 else if (strprefix (p, p1, "hwbreak"))
7404 {
7405 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7406
7407 /* Make sure the stub doesn't forget to indicate support
7408 with qSupported. */
7409 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7410 error (_("Unexpected hwbreak stop reason"));
7411
7412 /* See above. */
7413 p = strchrnul (p1 + 1, ';');
7414 }
7415 else if (strprefix (p, p1, "library"))
7416 {
7417 event->ws.kind = TARGET_WAITKIND_LOADED;
7418 p = strchrnul (p1 + 1, ';');
7419 }
7420 else if (strprefix (p, p1, "replaylog"))
7421 {
7422 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7423 /* p1 will indicate "begin" or "end", but it makes
7424 no difference for now, so ignore it. */
7425 p = strchrnul (p1 + 1, ';');
7426 }
7427 else if (strprefix (p, p1, "core"))
7428 {
7429 ULONGEST c;
7430
7431 p = unpack_varlen_hex (++p1, &c);
7432 event->core = c;
7433 }
7434 else if (strprefix (p, p1, "fork"))
7435 {
7436 event->ws.value.related_pid = read_ptid (++p1, &p);
7437 event->ws.kind = TARGET_WAITKIND_FORKED;
7438 }
7439 else if (strprefix (p, p1, "vfork"))
7440 {
7441 event->ws.value.related_pid = read_ptid (++p1, &p);
7442 event->ws.kind = TARGET_WAITKIND_VFORKED;
7443 }
7444 else if (strprefix (p, p1, "vforkdone"))
7445 {
7446 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7447 p = strchrnul (p1 + 1, ';');
7448 }
7449 else if (strprefix (p, p1, "exec"))
7450 {
7451 ULONGEST ignored;
7452 char pathname[PATH_MAX];
7453 int pathlen;
7454
7455 /* Determine the length of the execd pathname. */
7456 p = unpack_varlen_hex (++p1, &ignored);
7457 pathlen = (p - p1) / 2;
7458
7459 /* Save the pathname for event reporting and for
7460 the next run command. */
7461 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7462 pathname[pathlen] = '\0';
7463
7464 /* This is freed during event handling. */
7465 event->ws.value.execd_pathname = xstrdup (pathname);
7466 event->ws.kind = TARGET_WAITKIND_EXECD;
7467
7468 /* Skip the registers included in this packet, since
7469 they may be for an architecture different from the
7470 one used by the original program. */
7471 skipregs = 1;
7472 }
7473 else if (strprefix (p, p1, "create"))
7474 {
7475 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7476 p = strchrnul (p1 + 1, ';');
7477 }
7478 else
7479 {
7480 ULONGEST pnum;
7481 const char *p_temp;
7482
7483 if (skipregs)
7484 {
7485 p = strchrnul (p1 + 1, ';');
7486 p++;
7487 continue;
7488 }
7489
7490 /* Maybe a real ``P'' register number. */
7491 p_temp = unpack_varlen_hex (p, &pnum);
7492 /* If the first invalid character is the colon, we got a
7493 register number. Otherwise, it's an unknown stop
7494 reason. */
7495 if (p_temp == p1)
7496 {
7497 /* If we haven't parsed the event's thread yet, find
7498 it now, in order to find the architecture of the
7499 reported expedited registers. */
7500 if (event->ptid == null_ptid)
7501 {
7502 const char *thr = strstr (p1 + 1, ";thread:");
7503 if (thr != NULL)
7504 event->ptid = read_ptid (thr + strlen (";thread:"),
7505 NULL);
7506 else
7507 {
7508 /* Either the current thread hasn't changed,
7509 or the inferior is not multi-threaded.
7510 The event must be for the thread we last
7511 set as (or learned as being) current. */
7512 event->ptid = event->rs->general_thread;
7513 }
7514 }
7515
7516 if (rsa == NULL)
7517 {
7518 inferior *inf = (event->ptid == null_ptid
7519 ? NULL
7520 : find_inferior_ptid (event->ptid));
7521 /* If this is the first time we learn anything
7522 about this process, skip the registers
7523 included in this packet, since we don't yet
7524 know which architecture to use to parse them.
7525 We'll determine the architecture later when
7526 we process the stop reply and retrieve the
7527 target description, via
7528 remote_notice_new_inferior ->
7529 post_create_inferior. */
7530 if (inf == NULL)
7531 {
7532 p = strchrnul (p1 + 1, ';');
7533 p++;
7534 continue;
7535 }
7536
7537 event->arch = inf->gdbarch;
7538 rsa = event->rs->get_remote_arch_state (event->arch);
7539 }
7540
7541 packet_reg *reg
7542 = packet_reg_from_pnum (event->arch, rsa, pnum);
7543 cached_reg_t cached_reg;
7544
7545 if (reg == NULL)
7546 error (_("Remote sent bad register number %s: %s\n\
7547 Packet: '%s'\n"),
7548 hex_string (pnum), p, buf);
7549
7550 cached_reg.num = reg->regnum;
7551 cached_reg.data = (gdb_byte *)
7552 xmalloc (register_size (event->arch, reg->regnum));
7553
7554 p = p1 + 1;
7555 fieldsize = hex2bin (p, cached_reg.data,
7556 register_size (event->arch, reg->regnum));
7557 p += 2 * fieldsize;
7558 if (fieldsize < register_size (event->arch, reg->regnum))
7559 warning (_("Remote reply is too short: %s"), buf);
7560
7561 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7562 }
7563 else
7564 {
7565 /* Not a number. Silently skip unknown optional
7566 info. */
7567 p = strchrnul (p1 + 1, ';');
7568 }
7569 }
7570
7571 if (*p != ';')
7572 error (_("Remote register badly formatted: %s\nhere: %s"),
7573 buf, p);
7574 ++p;
7575 }
7576
7577 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7578 break;
7579
7580 /* fall through */
7581 case 'S': /* Old style status, just signal only. */
7582 {
7583 int sig;
7584
7585 event->ws.kind = TARGET_WAITKIND_STOPPED;
7586 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7587 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7588 event->ws.value.sig = (enum gdb_signal) sig;
7589 else
7590 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7591 }
7592 break;
7593 case 'w': /* Thread exited. */
7594 {
7595 const char *p;
7596 ULONGEST value;
7597
7598 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7599 p = unpack_varlen_hex (&buf[1], &value);
7600 event->ws.value.integer = value;
7601 if (*p != ';')
7602 error (_("stop reply packet badly formatted: %s"), buf);
7603 event->ptid = read_ptid (++p, NULL);
7604 break;
7605 }
7606 case 'W': /* Target exited. */
7607 case 'X':
7608 {
7609 const char *p;
7610 int pid;
7611 ULONGEST value;
7612
7613 /* GDB used to accept only 2 hex chars here. Stubs should
7614 only send more if they detect GDB supports multi-process
7615 support. */
7616 p = unpack_varlen_hex (&buf[1], &value);
7617
7618 if (buf[0] == 'W')
7619 {
7620 /* The remote process exited. */
7621 event->ws.kind = TARGET_WAITKIND_EXITED;
7622 event->ws.value.integer = value;
7623 }
7624 else
7625 {
7626 /* The remote process exited with a signal. */
7627 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7628 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7629 event->ws.value.sig = (enum gdb_signal) value;
7630 else
7631 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7632 }
7633
7634 /* If no process is specified, assume inferior_ptid. */
7635 pid = ptid_get_pid (inferior_ptid);
7636 if (*p == '\0')
7637 ;
7638 else if (*p == ';')
7639 {
7640 p++;
7641
7642 if (*p == '\0')
7643 ;
7644 else if (startswith (p, "process:"))
7645 {
7646 ULONGEST upid;
7647
7648 p += sizeof ("process:") - 1;
7649 unpack_varlen_hex (p, &upid);
7650 pid = upid;
7651 }
7652 else
7653 error (_("unknown stop reply packet: %s"), buf);
7654 }
7655 else
7656 error (_("unknown stop reply packet: %s"), buf);
7657 event->ptid = pid_to_ptid (pid);
7658 }
7659 break;
7660 case 'N':
7661 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7662 event->ptid = minus_one_ptid;
7663 break;
7664 }
7665
7666 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7667 error (_("No process or thread specified in stop reply: %s"), buf);
7668 }
7669
7670 /* When the stub wants to tell GDB about a new notification reply, it
7671 sends a notification (%Stop, for example). Those can come it at
7672 any time, hence, we have to make sure that any pending
7673 putpkt/getpkt sequence we're making is finished, before querying
7674 the stub for more events with the corresponding ack command
7675 (vStopped, for example). E.g., if we started a vStopped sequence
7676 immediately upon receiving the notification, something like this
7677 could happen:
7678
7679 1.1) --> Hg 1
7680 1.2) <-- OK
7681 1.3) --> g
7682 1.4) <-- %Stop
7683 1.5) --> vStopped
7684 1.6) <-- (registers reply to step #1.3)
7685
7686 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7687 query.
7688
7689 To solve this, whenever we parse a %Stop notification successfully,
7690 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7691 doing whatever we were doing:
7692
7693 2.1) --> Hg 1
7694 2.2) <-- OK
7695 2.3) --> g
7696 2.4) <-- %Stop
7697 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7698 2.5) <-- (registers reply to step #2.3)
7699
7700 Eventualy after step #2.5, we return to the event loop, which
7701 notices there's an event on the
7702 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7703 associated callback --- the function below. At this point, we're
7704 always safe to start a vStopped sequence. :
7705
7706 2.6) --> vStopped
7707 2.7) <-- T05 thread:2
7708 2.8) --> vStopped
7709 2.9) --> OK
7710 */
7711
7712 void
7713 remote_target::remote_notif_get_pending_events (notif_client *nc)
7714 {
7715 struct remote_state *rs = get_remote_state ();
7716
7717 if (rs->notif_state->pending_event[nc->id] != NULL)
7718 {
7719 if (notif_debug)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "notif: process: '%s' ack pending event\n",
7722 nc->name);
7723
7724 /* acknowledge */
7725 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7726 rs->notif_state->pending_event[nc->id] = NULL;
7727
7728 while (1)
7729 {
7730 getpkt (&rs->buf, &rs->buf_size, 0);
7731 if (strcmp (rs->buf, "OK") == 0)
7732 break;
7733 else
7734 remote_notif_ack (this, nc, rs->buf);
7735 }
7736 }
7737 else
7738 {
7739 if (notif_debug)
7740 fprintf_unfiltered (gdb_stdlog,
7741 "notif: process: '%s' no pending reply\n",
7742 nc->name);
7743 }
7744 }
7745
7746 /* Wrapper around remote_target::remote_notif_get_pending_events to
7747 avoid having to export the whole remote_target class. */
7748
7749 void
7750 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7751 {
7752 remote->remote_notif_get_pending_events (nc);
7753 }
7754
7755 /* Called when it is decided that STOP_REPLY holds the info of the
7756 event that is to be returned to the core. This function always
7757 destroys STOP_REPLY. */
7758
7759 ptid_t
7760 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7761 struct target_waitstatus *status)
7762 {
7763 ptid_t ptid;
7764
7765 *status = stop_reply->ws;
7766 ptid = stop_reply->ptid;
7767
7768 /* If no thread/process was reported by the stub, assume the current
7769 inferior. */
7770 if (ptid_equal (ptid, null_ptid))
7771 ptid = inferior_ptid;
7772
7773 if (status->kind != TARGET_WAITKIND_EXITED
7774 && status->kind != TARGET_WAITKIND_SIGNALLED
7775 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7776 {
7777 /* Expedited registers. */
7778 if (stop_reply->regcache)
7779 {
7780 struct regcache *regcache
7781 = get_thread_arch_regcache (ptid, stop_reply->arch);
7782 cached_reg_t *reg;
7783 int ix;
7784
7785 for (ix = 0;
7786 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7787 ix++)
7788 {
7789 regcache_raw_supply (regcache, reg->num, reg->data);
7790 xfree (reg->data);
7791 }
7792
7793 VEC_free (cached_reg_t, stop_reply->regcache);
7794 }
7795
7796 remote_notice_new_inferior (ptid, 0);
7797 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7798 remote_thr->core = stop_reply->core;
7799 remote_thr->stop_reason = stop_reply->stop_reason;
7800 remote_thr->watch_data_address = stop_reply->watch_data_address;
7801 remote_thr->vcont_resumed = 0;
7802 }
7803
7804 stop_reply_xfree (stop_reply);
7805 return ptid;
7806 }
7807
7808 /* The non-stop mode version of target_wait. */
7809
7810 ptid_t
7811 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7812 {
7813 struct remote_state *rs = get_remote_state ();
7814 struct stop_reply *stop_reply;
7815 int ret;
7816 int is_notif = 0;
7817
7818 /* If in non-stop mode, get out of getpkt even if a
7819 notification is received. */
7820
7821 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7822 0 /* forever */, &is_notif);
7823 while (1)
7824 {
7825 if (ret != -1 && !is_notif)
7826 switch (rs->buf[0])
7827 {
7828 case 'E': /* Error of some sort. */
7829 /* We're out of sync with the target now. Did it continue
7830 or not? We can't tell which thread it was in non-stop,
7831 so just ignore this. */
7832 warning (_("Remote failure reply: %s"), rs->buf);
7833 break;
7834 case 'O': /* Console output. */
7835 remote_console_output (rs->buf + 1);
7836 break;
7837 default:
7838 warning (_("Invalid remote reply: %s"), rs->buf);
7839 break;
7840 }
7841
7842 /* Acknowledge a pending stop reply that may have arrived in the
7843 mean time. */
7844 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7845 remote_notif_get_pending_events (&notif_client_stop);
7846
7847 /* If indeed we noticed a stop reply, we're done. */
7848 stop_reply = queued_stop_reply (ptid);
7849 if (stop_reply != NULL)
7850 return process_stop_reply (stop_reply, status);
7851
7852 /* Still no event. If we're just polling for an event, then
7853 return to the event loop. */
7854 if (options & TARGET_WNOHANG)
7855 {
7856 status->kind = TARGET_WAITKIND_IGNORE;
7857 return minus_one_ptid;
7858 }
7859
7860 /* Otherwise do a blocking wait. */
7861 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7862 1 /* forever */, &is_notif);
7863 }
7864 }
7865
7866 /* Wait until the remote machine stops, then return, storing status in
7867 STATUS just as `wait' would. */
7868
7869 ptid_t
7870 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7871 {
7872 struct remote_state *rs = get_remote_state ();
7873 ptid_t event_ptid = null_ptid;
7874 char *buf;
7875 struct stop_reply *stop_reply;
7876
7877 again:
7878
7879 status->kind = TARGET_WAITKIND_IGNORE;
7880 status->value.integer = 0;
7881
7882 stop_reply = queued_stop_reply (ptid);
7883 if (stop_reply != NULL)
7884 return process_stop_reply (stop_reply, status);
7885
7886 if (rs->cached_wait_status)
7887 /* Use the cached wait status, but only once. */
7888 rs->cached_wait_status = 0;
7889 else
7890 {
7891 int ret;
7892 int is_notif;
7893 int forever = ((options & TARGET_WNOHANG) == 0
7894 && rs->wait_forever_enabled_p);
7895
7896 if (!rs->waiting_for_stop_reply)
7897 {
7898 status->kind = TARGET_WAITKIND_NO_RESUMED;
7899 return minus_one_ptid;
7900 }
7901
7902 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7903 _never_ wait for ever -> test on target_is_async_p().
7904 However, before we do that we need to ensure that the caller
7905 knows how to take the target into/out of async mode. */
7906 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7907 forever, &is_notif);
7908
7909 /* GDB gets a notification. Return to core as this event is
7910 not interesting. */
7911 if (ret != -1 && is_notif)
7912 return minus_one_ptid;
7913
7914 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7915 return minus_one_ptid;
7916 }
7917
7918 buf = rs->buf;
7919
7920 /* Assume that the target has acknowledged Ctrl-C unless we receive
7921 an 'F' or 'O' packet. */
7922 if (buf[0] != 'F' && buf[0] != 'O')
7923 rs->ctrlc_pending_p = 0;
7924
7925 switch (buf[0])
7926 {
7927 case 'E': /* Error of some sort. */
7928 /* We're out of sync with the target now. Did it continue or
7929 not? Not is more likely, so report a stop. */
7930 rs->waiting_for_stop_reply = 0;
7931
7932 warning (_("Remote failure reply: %s"), buf);
7933 status->kind = TARGET_WAITKIND_STOPPED;
7934 status->value.sig = GDB_SIGNAL_0;
7935 break;
7936 case 'F': /* File-I/O request. */
7937 /* GDB may access the inferior memory while handling the File-I/O
7938 request, but we don't want GDB accessing memory while waiting
7939 for a stop reply. See the comments in putpkt_binary. Set
7940 waiting_for_stop_reply to 0 temporarily. */
7941 rs->waiting_for_stop_reply = 0;
7942 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7943 rs->ctrlc_pending_p = 0;
7944 /* GDB handled the File-I/O request, and the target is running
7945 again. Keep waiting for events. */
7946 rs->waiting_for_stop_reply = 1;
7947 break;
7948 case 'N': case 'T': case 'S': case 'X': case 'W':
7949 {
7950 struct stop_reply *stop_reply;
7951
7952 /* There is a stop reply to handle. */
7953 rs->waiting_for_stop_reply = 0;
7954
7955 stop_reply
7956 = (struct stop_reply *) remote_notif_parse (this,
7957 &notif_client_stop,
7958 rs->buf);
7959
7960 event_ptid = process_stop_reply (stop_reply, status);
7961 break;
7962 }
7963 case 'O': /* Console output. */
7964 remote_console_output (buf + 1);
7965 break;
7966 case '\0':
7967 if (rs->last_sent_signal != GDB_SIGNAL_0)
7968 {
7969 /* Zero length reply means that we tried 'S' or 'C' and the
7970 remote system doesn't support it. */
7971 target_terminal::ours_for_output ();
7972 printf_filtered
7973 ("Can't send signals to this remote system. %s not sent.\n",
7974 gdb_signal_to_name (rs->last_sent_signal));
7975 rs->last_sent_signal = GDB_SIGNAL_0;
7976 target_terminal::inferior ();
7977
7978 strcpy (buf, rs->last_sent_step ? "s" : "c");
7979 putpkt (buf);
7980 break;
7981 }
7982 /* fallthrough */
7983 default:
7984 warning (_("Invalid remote reply: %s"), buf);
7985 break;
7986 }
7987
7988 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7989 return minus_one_ptid;
7990 else if (status->kind == TARGET_WAITKIND_IGNORE)
7991 {
7992 /* Nothing interesting happened. If we're doing a non-blocking
7993 poll, we're done. Otherwise, go back to waiting. */
7994 if (options & TARGET_WNOHANG)
7995 return minus_one_ptid;
7996 else
7997 goto again;
7998 }
7999 else if (status->kind != TARGET_WAITKIND_EXITED
8000 && status->kind != TARGET_WAITKIND_SIGNALLED)
8001 {
8002 if (!ptid_equal (event_ptid, null_ptid))
8003 record_currthread (rs, event_ptid);
8004 else
8005 event_ptid = inferior_ptid;
8006 }
8007 else
8008 /* A process exit. Invalidate our notion of current thread. */
8009 record_currthread (rs, minus_one_ptid);
8010
8011 return event_ptid;
8012 }
8013
8014 /* Wait until the remote machine stops, then return, storing status in
8015 STATUS just as `wait' would. */
8016
8017 ptid_t
8018 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
8019 {
8020 ptid_t event_ptid;
8021
8022 if (target_is_non_stop_p ())
8023 event_ptid = wait_ns (ptid, status, options);
8024 else
8025 event_ptid = wait_as (ptid, status, options);
8026
8027 if (target_is_async_p ())
8028 {
8029 remote_state *rs = get_remote_state ();
8030
8031 /* If there are are events left in the queue tell the event loop
8032 to return here. */
8033 if (!QUEUE_is_empty (stop_reply_p, rs->stop_reply_queue))
8034 mark_async_event_handler (rs->remote_async_inferior_event_token);
8035 }
8036
8037 return event_ptid;
8038 }
8039
8040 /* Fetch a single register using a 'p' packet. */
8041
8042 int
8043 remote_target::fetch_register_using_p (struct regcache *regcache,
8044 packet_reg *reg)
8045 {
8046 struct gdbarch *gdbarch = regcache->arch ();
8047 struct remote_state *rs = get_remote_state ();
8048 char *buf, *p;
8049 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8050 int i;
8051
8052 if (packet_support (PACKET_p) == PACKET_DISABLE)
8053 return 0;
8054
8055 if (reg->pnum == -1)
8056 return 0;
8057
8058 p = rs->buf;
8059 *p++ = 'p';
8060 p += hexnumstr (p, reg->pnum);
8061 *p++ = '\0';
8062 putpkt (rs->buf);
8063 getpkt (&rs->buf, &rs->buf_size, 0);
8064
8065 buf = rs->buf;
8066
8067 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
8068 {
8069 case PACKET_OK:
8070 break;
8071 case PACKET_UNKNOWN:
8072 return 0;
8073 case PACKET_ERROR:
8074 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8075 gdbarch_register_name (regcache->arch (),
8076 reg->regnum),
8077 buf);
8078 }
8079
8080 /* If this register is unfetchable, tell the regcache. */
8081 if (buf[0] == 'x')
8082 {
8083 regcache_raw_supply (regcache, reg->regnum, NULL);
8084 return 1;
8085 }
8086
8087 /* Otherwise, parse and supply the value. */
8088 p = buf;
8089 i = 0;
8090 while (p[0] != 0)
8091 {
8092 if (p[1] == 0)
8093 error (_("fetch_register_using_p: early buf termination"));
8094
8095 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8096 p += 2;
8097 }
8098 regcache_raw_supply (regcache, reg->regnum, regp);
8099 return 1;
8100 }
8101
8102 /* Fetch the registers included in the target's 'g' packet. */
8103
8104 int
8105 remote_target::send_g_packet ()
8106 {
8107 struct remote_state *rs = get_remote_state ();
8108 int buf_len;
8109
8110 xsnprintf (rs->buf, get_remote_packet_size (), "g");
8111 putpkt (rs->buf);
8112 getpkt (&rs->buf, &rs->buf_size, 0);
8113 if (packet_check_result (rs->buf) == PACKET_ERROR)
8114 error (_("Could not read registers; remote failure reply '%s'"),
8115 rs->buf);
8116
8117 /* We can get out of synch in various cases. If the first character
8118 in the buffer is not a hex character, assume that has happened
8119 and try to fetch another packet to read. */
8120 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8121 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8122 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8123 && rs->buf[0] != 'x') /* New: unavailable register value. */
8124 {
8125 if (remote_debug)
8126 fprintf_unfiltered (gdb_stdlog,
8127 "Bad register packet; fetching a new packet\n");
8128 getpkt (&rs->buf, &rs->buf_size, 0);
8129 }
8130
8131 buf_len = strlen (rs->buf);
8132
8133 /* Sanity check the received packet. */
8134 if (buf_len % 2 != 0)
8135 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8136
8137 return buf_len / 2;
8138 }
8139
8140 void
8141 remote_target::process_g_packet (struct regcache *regcache)
8142 {
8143 struct gdbarch *gdbarch = regcache->arch ();
8144 struct remote_state *rs = get_remote_state ();
8145 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8146 int i, buf_len;
8147 char *p;
8148 char *regs;
8149
8150 buf_len = strlen (rs->buf);
8151
8152 /* Further sanity checks, with knowledge of the architecture. */
8153 if (buf_len > 2 * rsa->sizeof_g_packet)
8154 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8155 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8156
8157 /* Save the size of the packet sent to us by the target. It is used
8158 as a heuristic when determining the max size of packets that the
8159 target can safely receive. */
8160 if (rsa->actual_register_packet_size == 0)
8161 rsa->actual_register_packet_size = buf_len;
8162
8163 /* If this is smaller than we guessed the 'g' packet would be,
8164 update our records. A 'g' reply that doesn't include a register's
8165 value implies either that the register is not available, or that
8166 the 'p' packet must be used. */
8167 if (buf_len < 2 * rsa->sizeof_g_packet)
8168 {
8169 long sizeof_g_packet = buf_len / 2;
8170
8171 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8172 {
8173 long offset = rsa->regs[i].offset;
8174 long reg_size = register_size (gdbarch, i);
8175
8176 if (rsa->regs[i].pnum == -1)
8177 continue;
8178
8179 if (offset >= sizeof_g_packet)
8180 rsa->regs[i].in_g_packet = 0;
8181 else if (offset + reg_size > sizeof_g_packet)
8182 error (_("Truncated register %d in remote 'g' packet"), i);
8183 else
8184 rsa->regs[i].in_g_packet = 1;
8185 }
8186
8187 /* Looks valid enough, we can assume this is the correct length
8188 for a 'g' packet. It's important not to adjust
8189 rsa->sizeof_g_packet if we have truncated registers otherwise
8190 this "if" won't be run the next time the method is called
8191 with a packet of the same size and one of the internal errors
8192 below will trigger instead. */
8193 rsa->sizeof_g_packet = sizeof_g_packet;
8194 }
8195
8196 regs = (char *) alloca (rsa->sizeof_g_packet);
8197
8198 /* Unimplemented registers read as all bits zero. */
8199 memset (regs, 0, rsa->sizeof_g_packet);
8200
8201 /* Reply describes registers byte by byte, each byte encoded as two
8202 hex characters. Suck them all up, then supply them to the
8203 register cacheing/storage mechanism. */
8204
8205 p = rs->buf;
8206 for (i = 0; i < rsa->sizeof_g_packet; i++)
8207 {
8208 if (p[0] == 0 || p[1] == 0)
8209 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8210 internal_error (__FILE__, __LINE__,
8211 _("unexpected end of 'g' packet reply"));
8212
8213 if (p[0] == 'x' && p[1] == 'x')
8214 regs[i] = 0; /* 'x' */
8215 else
8216 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8217 p += 2;
8218 }
8219
8220 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8221 {
8222 struct packet_reg *r = &rsa->regs[i];
8223 long reg_size = register_size (gdbarch, i);
8224
8225 if (r->in_g_packet)
8226 {
8227 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8228 /* This shouldn't happen - we adjusted in_g_packet above. */
8229 internal_error (__FILE__, __LINE__,
8230 _("unexpected end of 'g' packet reply"));
8231 else if (rs->buf[r->offset * 2] == 'x')
8232 {
8233 gdb_assert (r->offset * 2 < strlen (rs->buf));
8234 /* The register isn't available, mark it as such (at
8235 the same time setting the value to zero). */
8236 regcache_raw_supply (regcache, r->regnum, NULL);
8237 }
8238 else
8239 regcache_raw_supply (regcache, r->regnum,
8240 regs + r->offset);
8241 }
8242 }
8243 }
8244
8245 void
8246 remote_target::fetch_registers_using_g (struct regcache *regcache)
8247 {
8248 send_g_packet ();
8249 process_g_packet (regcache);
8250 }
8251
8252 /* Make the remote selected traceframe match GDB's selected
8253 traceframe. */
8254
8255 void
8256 remote_target::set_remote_traceframe ()
8257 {
8258 int newnum;
8259 struct remote_state *rs = get_remote_state ();
8260
8261 if (rs->remote_traceframe_number == get_traceframe_number ())
8262 return;
8263
8264 /* Avoid recursion, remote_trace_find calls us again. */
8265 rs->remote_traceframe_number = get_traceframe_number ();
8266
8267 newnum = target_trace_find (tfind_number,
8268 get_traceframe_number (), 0, 0, NULL);
8269
8270 /* Should not happen. If it does, all bets are off. */
8271 if (newnum != get_traceframe_number ())
8272 warning (_("could not set remote traceframe"));
8273 }
8274
8275 void
8276 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8277 {
8278 struct gdbarch *gdbarch = regcache->arch ();
8279 struct remote_state *rs = get_remote_state ();
8280 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8281 int i;
8282
8283 set_remote_traceframe ();
8284 set_general_thread (regcache->ptid ());
8285
8286 if (regnum >= 0)
8287 {
8288 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8289
8290 gdb_assert (reg != NULL);
8291
8292 /* If this register might be in the 'g' packet, try that first -
8293 we are likely to read more than one register. If this is the
8294 first 'g' packet, we might be overly optimistic about its
8295 contents, so fall back to 'p'. */
8296 if (reg->in_g_packet)
8297 {
8298 fetch_registers_using_g (regcache);
8299 if (reg->in_g_packet)
8300 return;
8301 }
8302
8303 if (fetch_register_using_p (regcache, reg))
8304 return;
8305
8306 /* This register is not available. */
8307 regcache_raw_supply (regcache, reg->regnum, NULL);
8308
8309 return;
8310 }
8311
8312 fetch_registers_using_g (regcache);
8313
8314 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8315 if (!rsa->regs[i].in_g_packet)
8316 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8317 {
8318 /* This register is not available. */
8319 regcache_raw_supply (regcache, i, NULL);
8320 }
8321 }
8322
8323 /* Prepare to store registers. Since we may send them all (using a
8324 'G' request), we have to read out the ones we don't want to change
8325 first. */
8326
8327 void
8328 remote_target::prepare_to_store (struct regcache *regcache)
8329 {
8330 struct remote_state *rs = get_remote_state ();
8331 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8332 int i;
8333
8334 /* Make sure the entire registers array is valid. */
8335 switch (packet_support (PACKET_P))
8336 {
8337 case PACKET_DISABLE:
8338 case PACKET_SUPPORT_UNKNOWN:
8339 /* Make sure all the necessary registers are cached. */
8340 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8341 if (rsa->regs[i].in_g_packet)
8342 regcache->raw_update (rsa->regs[i].regnum);
8343 break;
8344 case PACKET_ENABLE:
8345 break;
8346 }
8347 }
8348
8349 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8350 packet was not recognized. */
8351
8352 int
8353 remote_target::store_register_using_P (const struct regcache *regcache,
8354 packet_reg *reg)
8355 {
8356 struct gdbarch *gdbarch = regcache->arch ();
8357 struct remote_state *rs = get_remote_state ();
8358 /* Try storing a single register. */
8359 char *buf = rs->buf;
8360 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8361 char *p;
8362
8363 if (packet_support (PACKET_P) == PACKET_DISABLE)
8364 return 0;
8365
8366 if (reg->pnum == -1)
8367 return 0;
8368
8369 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8370 p = buf + strlen (buf);
8371 regcache_raw_collect (regcache, reg->regnum, regp);
8372 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8373 putpkt (rs->buf);
8374 getpkt (&rs->buf, &rs->buf_size, 0);
8375
8376 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8377 {
8378 case PACKET_OK:
8379 return 1;
8380 case PACKET_ERROR:
8381 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8382 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8383 case PACKET_UNKNOWN:
8384 return 0;
8385 default:
8386 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8387 }
8388 }
8389
8390 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8391 contents of the register cache buffer. FIXME: ignores errors. */
8392
8393 void
8394 remote_target::store_registers_using_G (const struct regcache *regcache)
8395 {
8396 struct remote_state *rs = get_remote_state ();
8397 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8398 gdb_byte *regs;
8399 char *p;
8400
8401 /* Extract all the registers in the regcache copying them into a
8402 local buffer. */
8403 {
8404 int i;
8405
8406 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8407 memset (regs, 0, rsa->sizeof_g_packet);
8408 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8409 {
8410 struct packet_reg *r = &rsa->regs[i];
8411
8412 if (r->in_g_packet)
8413 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
8414 }
8415 }
8416
8417 /* Command describes registers byte by byte,
8418 each byte encoded as two hex characters. */
8419 p = rs->buf;
8420 *p++ = 'G';
8421 bin2hex (regs, p, rsa->sizeof_g_packet);
8422 putpkt (rs->buf);
8423 getpkt (&rs->buf, &rs->buf_size, 0);
8424 if (packet_check_result (rs->buf) == PACKET_ERROR)
8425 error (_("Could not write registers; remote failure reply '%s'"),
8426 rs->buf);
8427 }
8428
8429 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8430 of the register cache buffer. FIXME: ignores errors. */
8431
8432 void
8433 remote_target::store_registers (struct regcache *regcache, int regnum)
8434 {
8435 struct gdbarch *gdbarch = regcache->arch ();
8436 struct remote_state *rs = get_remote_state ();
8437 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8438 int i;
8439
8440 set_remote_traceframe ();
8441 set_general_thread (regcache->ptid ());
8442
8443 if (regnum >= 0)
8444 {
8445 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8446
8447 gdb_assert (reg != NULL);
8448
8449 /* Always prefer to store registers using the 'P' packet if
8450 possible; we often change only a small number of registers.
8451 Sometimes we change a larger number; we'd need help from a
8452 higher layer to know to use 'G'. */
8453 if (store_register_using_P (regcache, reg))
8454 return;
8455
8456 /* For now, don't complain if we have no way to write the
8457 register. GDB loses track of unavailable registers too
8458 easily. Some day, this may be an error. We don't have
8459 any way to read the register, either... */
8460 if (!reg->in_g_packet)
8461 return;
8462
8463 store_registers_using_G (regcache);
8464 return;
8465 }
8466
8467 store_registers_using_G (regcache);
8468
8469 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8470 if (!rsa->regs[i].in_g_packet)
8471 if (!store_register_using_P (regcache, &rsa->regs[i]))
8472 /* See above for why we do not issue an error here. */
8473 continue;
8474 }
8475 \f
8476
8477 /* Return the number of hex digits in num. */
8478
8479 static int
8480 hexnumlen (ULONGEST num)
8481 {
8482 int i;
8483
8484 for (i = 0; num != 0; i++)
8485 num >>= 4;
8486
8487 return std::max (i, 1);
8488 }
8489
8490 /* Set BUF to the minimum number of hex digits representing NUM. */
8491
8492 static int
8493 hexnumstr (char *buf, ULONGEST num)
8494 {
8495 int len = hexnumlen (num);
8496
8497 return hexnumnstr (buf, num, len);
8498 }
8499
8500
8501 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8502
8503 static int
8504 hexnumnstr (char *buf, ULONGEST num, int width)
8505 {
8506 int i;
8507
8508 buf[width] = '\0';
8509
8510 for (i = width - 1; i >= 0; i--)
8511 {
8512 buf[i] = "0123456789abcdef"[(num & 0xf)];
8513 num >>= 4;
8514 }
8515
8516 return width;
8517 }
8518
8519 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8520
8521 static CORE_ADDR
8522 remote_address_masked (CORE_ADDR addr)
8523 {
8524 unsigned int address_size = remote_address_size;
8525
8526 /* If "remoteaddresssize" was not set, default to target address size. */
8527 if (!address_size)
8528 address_size = gdbarch_addr_bit (target_gdbarch ());
8529
8530 if (address_size > 0
8531 && address_size < (sizeof (ULONGEST) * 8))
8532 {
8533 /* Only create a mask when that mask can safely be constructed
8534 in a ULONGEST variable. */
8535 ULONGEST mask = 1;
8536
8537 mask = (mask << address_size) - 1;
8538 addr &= mask;
8539 }
8540 return addr;
8541 }
8542
8543 /* Determine whether the remote target supports binary downloading.
8544 This is accomplished by sending a no-op memory write of zero length
8545 to the target at the specified address. It does not suffice to send
8546 the whole packet, since many stubs strip the eighth bit and
8547 subsequently compute a wrong checksum, which causes real havoc with
8548 remote_write_bytes.
8549
8550 NOTE: This can still lose if the serial line is not eight-bit
8551 clean. In cases like this, the user should clear "remote
8552 X-packet". */
8553
8554 void
8555 remote_target::check_binary_download (CORE_ADDR addr)
8556 {
8557 struct remote_state *rs = get_remote_state ();
8558
8559 switch (packet_support (PACKET_X))
8560 {
8561 case PACKET_DISABLE:
8562 break;
8563 case PACKET_ENABLE:
8564 break;
8565 case PACKET_SUPPORT_UNKNOWN:
8566 {
8567 char *p;
8568
8569 p = rs->buf;
8570 *p++ = 'X';
8571 p += hexnumstr (p, (ULONGEST) addr);
8572 *p++ = ',';
8573 p += hexnumstr (p, (ULONGEST) 0);
8574 *p++ = ':';
8575 *p = '\0';
8576
8577 putpkt_binary (rs->buf, (int) (p - rs->buf));
8578 getpkt (&rs->buf, &rs->buf_size, 0);
8579
8580 if (rs->buf[0] == '\0')
8581 {
8582 if (remote_debug)
8583 fprintf_unfiltered (gdb_stdlog,
8584 "binary downloading NOT "
8585 "supported by target\n");
8586 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8587 }
8588 else
8589 {
8590 if (remote_debug)
8591 fprintf_unfiltered (gdb_stdlog,
8592 "binary downloading supported by target\n");
8593 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8594 }
8595 break;
8596 }
8597 }
8598 }
8599
8600 /* Helper function to resize the payload in order to try to get a good
8601 alignment. We try to write an amount of data such that the next write will
8602 start on an address aligned on REMOTE_ALIGN_WRITES. */
8603
8604 static int
8605 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8606 {
8607 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8608 }
8609
8610 /* Write memory data directly to the remote machine.
8611 This does not inform the data cache; the data cache uses this.
8612 HEADER is the starting part of the packet.
8613 MEMADDR is the address in the remote memory space.
8614 MYADDR is the address of the buffer in our space.
8615 LEN_UNITS is the number of addressable units to write.
8616 UNIT_SIZE is the length in bytes of an addressable unit.
8617 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8618 should send data as binary ('X'), or hex-encoded ('M').
8619
8620 The function creates packet of the form
8621 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8622
8623 where encoding of <DATA> is terminated by PACKET_FORMAT.
8624
8625 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8626 are omitted.
8627
8628 Return the transferred status, error or OK (an
8629 'enum target_xfer_status' value). Save the number of addressable units
8630 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8631
8632 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8633 exchange between gdb and the stub could look like (?? in place of the
8634 checksum):
8635
8636 -> $m1000,4#??
8637 <- aaaabbbbccccdddd
8638
8639 -> $M1000,3:eeeeffffeeee#??
8640 <- OK
8641
8642 -> $m1000,4#??
8643 <- eeeeffffeeeedddd */
8644
8645 target_xfer_status
8646 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8647 const gdb_byte *myaddr,
8648 ULONGEST len_units,
8649 int unit_size,
8650 ULONGEST *xfered_len_units,
8651 char packet_format, int use_length)
8652 {
8653 struct remote_state *rs = get_remote_state ();
8654 char *p;
8655 char *plen = NULL;
8656 int plenlen = 0;
8657 int todo_units;
8658 int units_written;
8659 int payload_capacity_bytes;
8660 int payload_length_bytes;
8661
8662 if (packet_format != 'X' && packet_format != 'M')
8663 internal_error (__FILE__, __LINE__,
8664 _("remote_write_bytes_aux: bad packet format"));
8665
8666 if (len_units == 0)
8667 return TARGET_XFER_EOF;
8668
8669 payload_capacity_bytes = get_memory_write_packet_size ();
8670
8671 /* The packet buffer will be large enough for the payload;
8672 get_memory_packet_size ensures this. */
8673 rs->buf[0] = '\0';
8674
8675 /* Compute the size of the actual payload by subtracting out the
8676 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8677
8678 payload_capacity_bytes -= strlen ("$,:#NN");
8679 if (!use_length)
8680 /* The comma won't be used. */
8681 payload_capacity_bytes += 1;
8682 payload_capacity_bytes -= strlen (header);
8683 payload_capacity_bytes -= hexnumlen (memaddr);
8684
8685 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8686
8687 strcat (rs->buf, header);
8688 p = rs->buf + strlen (header);
8689
8690 /* Compute a best guess of the number of bytes actually transfered. */
8691 if (packet_format == 'X')
8692 {
8693 /* Best guess at number of bytes that will fit. */
8694 todo_units = std::min (len_units,
8695 (ULONGEST) payload_capacity_bytes / unit_size);
8696 if (use_length)
8697 payload_capacity_bytes -= hexnumlen (todo_units);
8698 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8699 }
8700 else
8701 {
8702 /* Number of bytes that will fit. */
8703 todo_units
8704 = std::min (len_units,
8705 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8706 if (use_length)
8707 payload_capacity_bytes -= hexnumlen (todo_units);
8708 todo_units = std::min (todo_units,
8709 (payload_capacity_bytes / unit_size) / 2);
8710 }
8711
8712 if (todo_units <= 0)
8713 internal_error (__FILE__, __LINE__,
8714 _("minimum packet size too small to write data"));
8715
8716 /* If we already need another packet, then try to align the end
8717 of this packet to a useful boundary. */
8718 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8719 todo_units = align_for_efficient_write (todo_units, memaddr);
8720
8721 /* Append "<memaddr>". */
8722 memaddr = remote_address_masked (memaddr);
8723 p += hexnumstr (p, (ULONGEST) memaddr);
8724
8725 if (use_length)
8726 {
8727 /* Append ",". */
8728 *p++ = ',';
8729
8730 /* Append the length and retain its location and size. It may need to be
8731 adjusted once the packet body has been created. */
8732 plen = p;
8733 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8734 p += plenlen;
8735 }
8736
8737 /* Append ":". */
8738 *p++ = ':';
8739 *p = '\0';
8740
8741 /* Append the packet body. */
8742 if (packet_format == 'X')
8743 {
8744 /* Binary mode. Send target system values byte by byte, in
8745 increasing byte addresses. Only escape certain critical
8746 characters. */
8747 payload_length_bytes =
8748 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8749 &units_written, payload_capacity_bytes);
8750
8751 /* If not all TODO units fit, then we'll need another packet. Make
8752 a second try to keep the end of the packet aligned. Don't do
8753 this if the packet is tiny. */
8754 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8755 {
8756 int new_todo_units;
8757
8758 new_todo_units = align_for_efficient_write (units_written, memaddr);
8759
8760 if (new_todo_units != units_written)
8761 payload_length_bytes =
8762 remote_escape_output (myaddr, new_todo_units, unit_size,
8763 (gdb_byte *) p, &units_written,
8764 payload_capacity_bytes);
8765 }
8766
8767 p += payload_length_bytes;
8768 if (use_length && units_written < todo_units)
8769 {
8770 /* Escape chars have filled up the buffer prematurely,
8771 and we have actually sent fewer units than planned.
8772 Fix-up the length field of the packet. Use the same
8773 number of characters as before. */
8774 plen += hexnumnstr (plen, (ULONGEST) units_written,
8775 plenlen);
8776 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8777 }
8778 }
8779 else
8780 {
8781 /* Normal mode: Send target system values byte by byte, in
8782 increasing byte addresses. Each byte is encoded as a two hex
8783 value. */
8784 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8785 units_written = todo_units;
8786 }
8787
8788 putpkt_binary (rs->buf, (int) (p - rs->buf));
8789 getpkt (&rs->buf, &rs->buf_size, 0);
8790
8791 if (rs->buf[0] == 'E')
8792 return TARGET_XFER_E_IO;
8793
8794 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8795 send fewer units than we'd planned. */
8796 *xfered_len_units = (ULONGEST) units_written;
8797 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8798 }
8799
8800 /* Write memory data directly to the remote machine.
8801 This does not inform the data cache; the data cache uses this.
8802 MEMADDR is the address in the remote memory space.
8803 MYADDR is the address of the buffer in our space.
8804 LEN is the number of bytes.
8805
8806 Return the transferred status, error or OK (an
8807 'enum target_xfer_status' value). Save the number of bytes
8808 transferred in *XFERED_LEN. Only transfer a single packet. */
8809
8810 target_xfer_status
8811 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8812 ULONGEST len, int unit_size,
8813 ULONGEST *xfered_len)
8814 {
8815 const char *packet_format = NULL;
8816
8817 /* Check whether the target supports binary download. */
8818 check_binary_download (memaddr);
8819
8820 switch (packet_support (PACKET_X))
8821 {
8822 case PACKET_ENABLE:
8823 packet_format = "X";
8824 break;
8825 case PACKET_DISABLE:
8826 packet_format = "M";
8827 break;
8828 case PACKET_SUPPORT_UNKNOWN:
8829 internal_error (__FILE__, __LINE__,
8830 _("remote_write_bytes: bad internal state"));
8831 default:
8832 internal_error (__FILE__, __LINE__, _("bad switch"));
8833 }
8834
8835 return remote_write_bytes_aux (packet_format,
8836 memaddr, myaddr, len, unit_size, xfered_len,
8837 packet_format[0], 1);
8838 }
8839
8840 /* Read memory data directly from the remote machine.
8841 This does not use the data cache; the data cache uses this.
8842 MEMADDR is the address in the remote memory space.
8843 MYADDR is the address of the buffer in our space.
8844 LEN_UNITS is the number of addressable memory units to read..
8845 UNIT_SIZE is the length in bytes of an addressable unit.
8846
8847 Return the transferred status, error or OK (an
8848 'enum target_xfer_status' value). Save the number of bytes
8849 transferred in *XFERED_LEN_UNITS.
8850
8851 See the comment of remote_write_bytes_aux for an example of
8852 memory read/write exchange between gdb and the stub. */
8853
8854 target_xfer_status
8855 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8856 ULONGEST len_units,
8857 int unit_size, ULONGEST *xfered_len_units)
8858 {
8859 struct remote_state *rs = get_remote_state ();
8860 int buf_size_bytes; /* Max size of packet output buffer. */
8861 char *p;
8862 int todo_units;
8863 int decoded_bytes;
8864
8865 buf_size_bytes = get_memory_read_packet_size ();
8866 /* The packet buffer will be large enough for the payload;
8867 get_memory_packet_size ensures this. */
8868
8869 /* Number of units that will fit. */
8870 todo_units = std::min (len_units,
8871 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8872
8873 /* Construct "m"<memaddr>","<len>". */
8874 memaddr = remote_address_masked (memaddr);
8875 p = rs->buf;
8876 *p++ = 'm';
8877 p += hexnumstr (p, (ULONGEST) memaddr);
8878 *p++ = ',';
8879 p += hexnumstr (p, (ULONGEST) todo_units);
8880 *p = '\0';
8881 putpkt (rs->buf);
8882 getpkt (&rs->buf, &rs->buf_size, 0);
8883 if (rs->buf[0] == 'E'
8884 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8885 && rs->buf[3] == '\0')
8886 return TARGET_XFER_E_IO;
8887 /* Reply describes memory byte by byte, each byte encoded as two hex
8888 characters. */
8889 p = rs->buf;
8890 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8891 /* Return what we have. Let higher layers handle partial reads. */
8892 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8893 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8894 }
8895
8896 /* Using the set of read-only target sections of remote, read live
8897 read-only memory.
8898
8899 For interface/parameters/return description see target.h,
8900 to_xfer_partial. */
8901
8902 target_xfer_status
8903 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8904 ULONGEST memaddr,
8905 ULONGEST len,
8906 int unit_size,
8907 ULONGEST *xfered_len)
8908 {
8909 struct target_section *secp;
8910 struct target_section_table *table;
8911
8912 secp = target_section_by_addr (this, memaddr);
8913 if (secp != NULL
8914 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8915 secp->the_bfd_section)
8916 & SEC_READONLY))
8917 {
8918 struct target_section *p;
8919 ULONGEST memend = memaddr + len;
8920
8921 table = target_get_section_table (this);
8922
8923 for (p = table->sections; p < table->sections_end; p++)
8924 {
8925 if (memaddr >= p->addr)
8926 {
8927 if (memend <= p->endaddr)
8928 {
8929 /* Entire transfer is within this section. */
8930 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8931 xfered_len);
8932 }
8933 else if (memaddr >= p->endaddr)
8934 {
8935 /* This section ends before the transfer starts. */
8936 continue;
8937 }
8938 else
8939 {
8940 /* This section overlaps the transfer. Just do half. */
8941 len = p->endaddr - memaddr;
8942 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8943 xfered_len);
8944 }
8945 }
8946 }
8947 }
8948
8949 return TARGET_XFER_EOF;
8950 }
8951
8952 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8953 first if the requested memory is unavailable in traceframe.
8954 Otherwise, fall back to remote_read_bytes_1. */
8955
8956 target_xfer_status
8957 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8958 gdb_byte *myaddr, ULONGEST len, int unit_size,
8959 ULONGEST *xfered_len)
8960 {
8961 if (len == 0)
8962 return TARGET_XFER_EOF;
8963
8964 if (get_traceframe_number () != -1)
8965 {
8966 std::vector<mem_range> available;
8967
8968 /* If we fail to get the set of available memory, then the
8969 target does not support querying traceframe info, and so we
8970 attempt reading from the traceframe anyway (assuming the
8971 target implements the old QTro packet then). */
8972 if (traceframe_available_memory (&available, memaddr, len))
8973 {
8974 if (available.empty () || available[0].start != memaddr)
8975 {
8976 enum target_xfer_status res;
8977
8978 /* Don't read into the traceframe's available
8979 memory. */
8980 if (!available.empty ())
8981 {
8982 LONGEST oldlen = len;
8983
8984 len = available[0].start - memaddr;
8985 gdb_assert (len <= oldlen);
8986 }
8987
8988 /* This goes through the topmost target again. */
8989 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8990 len, unit_size, xfered_len);
8991 if (res == TARGET_XFER_OK)
8992 return TARGET_XFER_OK;
8993 else
8994 {
8995 /* No use trying further, we know some memory starting
8996 at MEMADDR isn't available. */
8997 *xfered_len = len;
8998 return (*xfered_len != 0) ?
8999 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9000 }
9001 }
9002
9003 /* Don't try to read more than how much is available, in
9004 case the target implements the deprecated QTro packet to
9005 cater for older GDBs (the target's knowledge of read-only
9006 sections may be outdated by now). */
9007 len = available[0].length;
9008 }
9009 }
9010
9011 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9012 }
9013
9014 \f
9015
9016 /* Sends a packet with content determined by the printf format string
9017 FORMAT and the remaining arguments, then gets the reply. Returns
9018 whether the packet was a success, a failure, or unknown. */
9019
9020 packet_result
9021 remote_target::remote_send_printf (const char *format, ...)
9022 {
9023 struct remote_state *rs = get_remote_state ();
9024 int max_size = get_remote_packet_size ();
9025 va_list ap;
9026
9027 va_start (ap, format);
9028
9029 rs->buf[0] = '\0';
9030 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
9031 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9032
9033 if (putpkt (rs->buf) < 0)
9034 error (_("Communication problem with target."));
9035
9036 rs->buf[0] = '\0';
9037 getpkt (&rs->buf, &rs->buf_size, 0);
9038
9039 return packet_check_result (rs->buf);
9040 }
9041
9042 /* Flash writing can take quite some time. We'll set
9043 effectively infinite timeout for flash operations.
9044 In future, we'll need to decide on a better approach. */
9045 static const int remote_flash_timeout = 1000;
9046
9047 void
9048 remote_target::flash_erase (ULONGEST address, LONGEST length)
9049 {
9050 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9051 enum packet_result ret;
9052 scoped_restore restore_timeout
9053 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9054
9055 ret = remote_send_printf ("vFlashErase:%s,%s",
9056 phex (address, addr_size),
9057 phex (length, 4));
9058 switch (ret)
9059 {
9060 case PACKET_UNKNOWN:
9061 error (_("Remote target does not support flash erase"));
9062 case PACKET_ERROR:
9063 error (_("Error erasing flash with vFlashErase packet"));
9064 default:
9065 break;
9066 }
9067 }
9068
9069 target_xfer_status
9070 remote_target::remote_flash_write (ULONGEST address,
9071 ULONGEST length, ULONGEST *xfered_len,
9072 const gdb_byte *data)
9073 {
9074 scoped_restore restore_timeout
9075 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9076 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9077 xfered_len,'X', 0);
9078 }
9079
9080 void
9081 remote_target::flash_done ()
9082 {
9083 int ret;
9084
9085 scoped_restore restore_timeout
9086 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9087
9088 ret = remote_send_printf ("vFlashDone");
9089
9090 switch (ret)
9091 {
9092 case PACKET_UNKNOWN:
9093 error (_("Remote target does not support vFlashDone"));
9094 case PACKET_ERROR:
9095 error (_("Error finishing flash operation"));
9096 default:
9097 break;
9098 }
9099 }
9100
9101 void
9102 remote_target::files_info ()
9103 {
9104 puts_filtered ("Debugging a target over a serial line.\n");
9105 }
9106 \f
9107 /* Stuff for dealing with the packets which are part of this protocol.
9108 See comment at top of file for details. */
9109
9110 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9111 error to higher layers. Called when a serial error is detected.
9112 The exception message is STRING, followed by a colon and a blank,
9113 the system error message for errno at function entry and final dot
9114 for output compatibility with throw_perror_with_name. */
9115
9116 static void
9117 unpush_and_perror (const char *string)
9118 {
9119 int saved_errno = errno;
9120
9121 remote_unpush_target ();
9122 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9123 safe_strerror (saved_errno));
9124 }
9125
9126 /* Read a single character from the remote end. The current quit
9127 handler is overridden to avoid quitting in the middle of packet
9128 sequence, as that would break communication with the remote server.
9129 See remote_serial_quit_handler for more detail. */
9130
9131 int
9132 remote_target::readchar (int timeout)
9133 {
9134 int ch;
9135 struct remote_state *rs = get_remote_state ();
9136
9137 {
9138 scoped_restore restore_quit_target
9139 = make_scoped_restore (&curr_quit_handler_target, this);
9140 scoped_restore restore_quit
9141 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9142
9143 rs->got_ctrlc_during_io = 0;
9144
9145 ch = serial_readchar (rs->remote_desc, timeout);
9146
9147 if (rs->got_ctrlc_during_io)
9148 set_quit_flag ();
9149 }
9150
9151 if (ch >= 0)
9152 return ch;
9153
9154 switch ((enum serial_rc) ch)
9155 {
9156 case SERIAL_EOF:
9157 remote_unpush_target ();
9158 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9159 /* no return */
9160 case SERIAL_ERROR:
9161 unpush_and_perror (_("Remote communication error. "
9162 "Target disconnected."));
9163 /* no return */
9164 case SERIAL_TIMEOUT:
9165 break;
9166 }
9167 return ch;
9168 }
9169
9170 /* Wrapper for serial_write that closes the target and throws if
9171 writing fails. The current quit handler is overridden to avoid
9172 quitting in the middle of packet sequence, as that would break
9173 communication with the remote server. See
9174 remote_serial_quit_handler for more detail. */
9175
9176 void
9177 remote_target::remote_serial_write (const char *str, int len)
9178 {
9179 struct remote_state *rs = get_remote_state ();
9180
9181 scoped_restore restore_quit_target
9182 = make_scoped_restore (&curr_quit_handler_target, this);
9183 scoped_restore restore_quit
9184 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9185
9186 rs->got_ctrlc_during_io = 0;
9187
9188 if (serial_write (rs->remote_desc, str, len))
9189 {
9190 unpush_and_perror (_("Remote communication error. "
9191 "Target disconnected."));
9192 }
9193
9194 if (rs->got_ctrlc_during_io)
9195 set_quit_flag ();
9196 }
9197
9198 /* Return a string representing an escaped version of BUF, of len N.
9199 E.g. \n is converted to \\n, \t to \\t, etc. */
9200
9201 static std::string
9202 escape_buffer (const char *buf, int n)
9203 {
9204 string_file stb;
9205
9206 stb.putstrn (buf, n, '\\');
9207 return std::move (stb.string ());
9208 }
9209
9210 /* Display a null-terminated packet on stdout, for debugging, using C
9211 string notation. */
9212
9213 static void
9214 print_packet (const char *buf)
9215 {
9216 puts_filtered ("\"");
9217 fputstr_filtered (buf, '"', gdb_stdout);
9218 puts_filtered ("\"");
9219 }
9220
9221 int
9222 remote_target::putpkt (const char *buf)
9223 {
9224 return putpkt_binary (buf, strlen (buf));
9225 }
9226
9227 /* Wrapper around remote_target::putpkt to avoid exporting
9228 remote_target. */
9229
9230 int
9231 putpkt (remote_target *remote, const char *buf)
9232 {
9233 return remote->putpkt (buf);
9234 }
9235
9236 /* Send a packet to the remote machine, with error checking. The data
9237 of the packet is in BUF. The string in BUF can be at most
9238 get_remote_packet_size () - 5 to account for the $, # and checksum,
9239 and for a possible /0 if we are debugging (remote_debug) and want
9240 to print the sent packet as a string. */
9241
9242 int
9243 remote_target::putpkt_binary (const char *buf, int cnt)
9244 {
9245 struct remote_state *rs = get_remote_state ();
9246 int i;
9247 unsigned char csum = 0;
9248 gdb::def_vector<char> data (cnt + 6);
9249 char *buf2 = data.data ();
9250
9251 int ch;
9252 int tcount = 0;
9253 char *p;
9254
9255 /* Catch cases like trying to read memory or listing threads while
9256 we're waiting for a stop reply. The remote server wouldn't be
9257 ready to handle this request, so we'd hang and timeout. We don't
9258 have to worry about this in synchronous mode, because in that
9259 case it's not possible to issue a command while the target is
9260 running. This is not a problem in non-stop mode, because in that
9261 case, the stub is always ready to process serial input. */
9262 if (!target_is_non_stop_p ()
9263 && target_is_async_p ()
9264 && rs->waiting_for_stop_reply)
9265 {
9266 error (_("Cannot execute this command while the target is running.\n"
9267 "Use the \"interrupt\" command to stop the target\n"
9268 "and then try again."));
9269 }
9270
9271 /* We're sending out a new packet. Make sure we don't look at a
9272 stale cached response. */
9273 rs->cached_wait_status = 0;
9274
9275 /* Copy the packet into buffer BUF2, encapsulating it
9276 and giving it a checksum. */
9277
9278 p = buf2;
9279 *p++ = '$';
9280
9281 for (i = 0; i < cnt; i++)
9282 {
9283 csum += buf[i];
9284 *p++ = buf[i];
9285 }
9286 *p++ = '#';
9287 *p++ = tohex ((csum >> 4) & 0xf);
9288 *p++ = tohex (csum & 0xf);
9289
9290 /* Send it over and over until we get a positive ack. */
9291
9292 while (1)
9293 {
9294 int started_error_output = 0;
9295
9296 if (remote_debug)
9297 {
9298 *p = '\0';
9299
9300 int len = (int) (p - buf2);
9301
9302 std::string str
9303 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9304
9305 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9306
9307 if (len > REMOTE_DEBUG_MAX_CHAR)
9308 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9309 len - REMOTE_DEBUG_MAX_CHAR);
9310
9311 fprintf_unfiltered (gdb_stdlog, "...");
9312
9313 gdb_flush (gdb_stdlog);
9314 }
9315 remote_serial_write (buf2, p - buf2);
9316
9317 /* If this is a no acks version of the remote protocol, send the
9318 packet and move on. */
9319 if (rs->noack_mode)
9320 break;
9321
9322 /* Read until either a timeout occurs (-2) or '+' is read.
9323 Handle any notification that arrives in the mean time. */
9324 while (1)
9325 {
9326 ch = readchar (remote_timeout);
9327
9328 if (remote_debug)
9329 {
9330 switch (ch)
9331 {
9332 case '+':
9333 case '-':
9334 case SERIAL_TIMEOUT:
9335 case '$':
9336 case '%':
9337 if (started_error_output)
9338 {
9339 putchar_unfiltered ('\n');
9340 started_error_output = 0;
9341 }
9342 }
9343 }
9344
9345 switch (ch)
9346 {
9347 case '+':
9348 if (remote_debug)
9349 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9350 return 1;
9351 case '-':
9352 if (remote_debug)
9353 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9354 /* FALLTHROUGH */
9355 case SERIAL_TIMEOUT:
9356 tcount++;
9357 if (tcount > 3)
9358 return 0;
9359 break; /* Retransmit buffer. */
9360 case '$':
9361 {
9362 if (remote_debug)
9363 fprintf_unfiltered (gdb_stdlog,
9364 "Packet instead of Ack, ignoring it\n");
9365 /* It's probably an old response sent because an ACK
9366 was lost. Gobble up the packet and ack it so it
9367 doesn't get retransmitted when we resend this
9368 packet. */
9369 skip_frame ();
9370 remote_serial_write ("+", 1);
9371 continue; /* Now, go look for +. */
9372 }
9373
9374 case '%':
9375 {
9376 int val;
9377
9378 /* If we got a notification, handle it, and go back to looking
9379 for an ack. */
9380 /* We've found the start of a notification. Now
9381 collect the data. */
9382 val = read_frame (&rs->buf, &rs->buf_size);
9383 if (val >= 0)
9384 {
9385 if (remote_debug)
9386 {
9387 std::string str = escape_buffer (rs->buf, val);
9388
9389 fprintf_unfiltered (gdb_stdlog,
9390 " Notification received: %s\n",
9391 str.c_str ());
9392 }
9393 handle_notification (rs->notif_state, rs->buf);
9394 /* We're in sync now, rewait for the ack. */
9395 tcount = 0;
9396 }
9397 else
9398 {
9399 if (remote_debug)
9400 {
9401 if (!started_error_output)
9402 {
9403 started_error_output = 1;
9404 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9405 }
9406 fputc_unfiltered (ch & 0177, gdb_stdlog);
9407 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9408 }
9409 }
9410 continue;
9411 }
9412 /* fall-through */
9413 default:
9414 if (remote_debug)
9415 {
9416 if (!started_error_output)
9417 {
9418 started_error_output = 1;
9419 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9420 }
9421 fputc_unfiltered (ch & 0177, gdb_stdlog);
9422 }
9423 continue;
9424 }
9425 break; /* Here to retransmit. */
9426 }
9427
9428 #if 0
9429 /* This is wrong. If doing a long backtrace, the user should be
9430 able to get out next time we call QUIT, without anything as
9431 violent as interrupt_query. If we want to provide a way out of
9432 here without getting to the next QUIT, it should be based on
9433 hitting ^C twice as in remote_wait. */
9434 if (quit_flag)
9435 {
9436 quit_flag = 0;
9437 interrupt_query ();
9438 }
9439 #endif
9440 }
9441
9442 return 0;
9443 }
9444
9445 /* Come here after finding the start of a frame when we expected an
9446 ack. Do our best to discard the rest of this packet. */
9447
9448 void
9449 remote_target::skip_frame ()
9450 {
9451 int c;
9452
9453 while (1)
9454 {
9455 c = readchar (remote_timeout);
9456 switch (c)
9457 {
9458 case SERIAL_TIMEOUT:
9459 /* Nothing we can do. */
9460 return;
9461 case '#':
9462 /* Discard the two bytes of checksum and stop. */
9463 c = readchar (remote_timeout);
9464 if (c >= 0)
9465 c = readchar (remote_timeout);
9466
9467 return;
9468 case '*': /* Run length encoding. */
9469 /* Discard the repeat count. */
9470 c = readchar (remote_timeout);
9471 if (c < 0)
9472 return;
9473 break;
9474 default:
9475 /* A regular character. */
9476 break;
9477 }
9478 }
9479 }
9480
9481 /* Come here after finding the start of the frame. Collect the rest
9482 into *BUF, verifying the checksum, length, and handling run-length
9483 compression. NUL terminate the buffer. If there is not enough room,
9484 expand *BUF using xrealloc.
9485
9486 Returns -1 on error, number of characters in buffer (ignoring the
9487 trailing NULL) on success. (could be extended to return one of the
9488 SERIAL status indications). */
9489
9490 long
9491 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9492 {
9493 unsigned char csum;
9494 long bc;
9495 int c;
9496 char *buf = *buf_p;
9497 struct remote_state *rs = get_remote_state ();
9498
9499 csum = 0;
9500 bc = 0;
9501
9502 while (1)
9503 {
9504 c = readchar (remote_timeout);
9505 switch (c)
9506 {
9507 case SERIAL_TIMEOUT:
9508 if (remote_debug)
9509 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9510 return -1;
9511 case '$':
9512 if (remote_debug)
9513 fputs_filtered ("Saw new packet start in middle of old one\n",
9514 gdb_stdlog);
9515 return -1; /* Start a new packet, count retries. */
9516 case '#':
9517 {
9518 unsigned char pktcsum;
9519 int check_0 = 0;
9520 int check_1 = 0;
9521
9522 buf[bc] = '\0';
9523
9524 check_0 = readchar (remote_timeout);
9525 if (check_0 >= 0)
9526 check_1 = readchar (remote_timeout);
9527
9528 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9529 {
9530 if (remote_debug)
9531 fputs_filtered ("Timeout in checksum, retrying\n",
9532 gdb_stdlog);
9533 return -1;
9534 }
9535 else if (check_0 < 0 || check_1 < 0)
9536 {
9537 if (remote_debug)
9538 fputs_filtered ("Communication error in checksum\n",
9539 gdb_stdlog);
9540 return -1;
9541 }
9542
9543 /* Don't recompute the checksum; with no ack packets we
9544 don't have any way to indicate a packet retransmission
9545 is necessary. */
9546 if (rs->noack_mode)
9547 return bc;
9548
9549 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9550 if (csum == pktcsum)
9551 return bc;
9552
9553 if (remote_debug)
9554 {
9555 std::string str = escape_buffer (buf, bc);
9556
9557 fprintf_unfiltered (gdb_stdlog,
9558 "Bad checksum, sentsum=0x%x, "
9559 "csum=0x%x, buf=%s\n",
9560 pktcsum, csum, str.c_str ());
9561 }
9562 /* Number of characters in buffer ignoring trailing
9563 NULL. */
9564 return -1;
9565 }
9566 case '*': /* Run length encoding. */
9567 {
9568 int repeat;
9569
9570 csum += c;
9571 c = readchar (remote_timeout);
9572 csum += c;
9573 repeat = c - ' ' + 3; /* Compute repeat count. */
9574
9575 /* The character before ``*'' is repeated. */
9576
9577 if (repeat > 0 && repeat <= 255 && bc > 0)
9578 {
9579 if (bc + repeat - 1 >= *sizeof_buf - 1)
9580 {
9581 /* Make some more room in the buffer. */
9582 *sizeof_buf += repeat;
9583 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9584 buf = *buf_p;
9585 }
9586
9587 memset (&buf[bc], buf[bc - 1], repeat);
9588 bc += repeat;
9589 continue;
9590 }
9591
9592 buf[bc] = '\0';
9593 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9594 return -1;
9595 }
9596 default:
9597 if (bc >= *sizeof_buf - 1)
9598 {
9599 /* Make some more room in the buffer. */
9600 *sizeof_buf *= 2;
9601 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9602 buf = *buf_p;
9603 }
9604
9605 buf[bc++] = c;
9606 csum += c;
9607 continue;
9608 }
9609 }
9610 }
9611
9612 /* Read a packet from the remote machine, with error checking, and
9613 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9614 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9615 rather than timing out; this is used (in synchronous mode) to wait
9616 for a target that is is executing user code to stop. */
9617 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9618 don't have to change all the calls to getpkt to deal with the
9619 return value, because at the moment I don't know what the right
9620 thing to do it for those. */
9621
9622 void
9623 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9624 {
9625 getpkt_sane (buf, sizeof_buf, forever);
9626 }
9627
9628
9629 /* Read a packet from the remote machine, with error checking, and
9630 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9631 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9632 rather than timing out; this is used (in synchronous mode) to wait
9633 for a target that is is executing user code to stop. If FOREVER ==
9634 0, this function is allowed to time out gracefully and return an
9635 indication of this to the caller. Otherwise return the number of
9636 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9637 enough reason to return to the caller. *IS_NOTIF is an output
9638 boolean that indicates whether *BUF holds a notification or not
9639 (a regular packet). */
9640
9641 int
9642 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9643 int forever, int expecting_notif,
9644 int *is_notif)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647 int c;
9648 int tries;
9649 int timeout;
9650 int val = -1;
9651
9652 /* We're reading a new response. Make sure we don't look at a
9653 previously cached response. */
9654 rs->cached_wait_status = 0;
9655
9656 strcpy (*buf, "timeout");
9657
9658 if (forever)
9659 timeout = watchdog > 0 ? watchdog : -1;
9660 else if (expecting_notif)
9661 timeout = 0; /* There should already be a char in the buffer. If
9662 not, bail out. */
9663 else
9664 timeout = remote_timeout;
9665
9666 #define MAX_TRIES 3
9667
9668 /* Process any number of notifications, and then return when
9669 we get a packet. */
9670 for (;;)
9671 {
9672 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9673 times. */
9674 for (tries = 1; tries <= MAX_TRIES; tries++)
9675 {
9676 /* This can loop forever if the remote side sends us
9677 characters continuously, but if it pauses, we'll get
9678 SERIAL_TIMEOUT from readchar because of timeout. Then
9679 we'll count that as a retry.
9680
9681 Note that even when forever is set, we will only wait
9682 forever prior to the start of a packet. After that, we
9683 expect characters to arrive at a brisk pace. They should
9684 show up within remote_timeout intervals. */
9685 do
9686 c = readchar (timeout);
9687 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9688
9689 if (c == SERIAL_TIMEOUT)
9690 {
9691 if (expecting_notif)
9692 return -1; /* Don't complain, it's normal to not get
9693 anything in this case. */
9694
9695 if (forever) /* Watchdog went off? Kill the target. */
9696 {
9697 remote_unpush_target ();
9698 throw_error (TARGET_CLOSE_ERROR,
9699 _("Watchdog timeout has expired. "
9700 "Target detached."));
9701 }
9702 if (remote_debug)
9703 fputs_filtered ("Timed out.\n", gdb_stdlog);
9704 }
9705 else
9706 {
9707 /* We've found the start of a packet or notification.
9708 Now collect the data. */
9709 val = read_frame (buf, sizeof_buf);
9710 if (val >= 0)
9711 break;
9712 }
9713
9714 remote_serial_write ("-", 1);
9715 }
9716
9717 if (tries > MAX_TRIES)
9718 {
9719 /* We have tried hard enough, and just can't receive the
9720 packet/notification. Give up. */
9721 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9722
9723 /* Skip the ack char if we're in no-ack mode. */
9724 if (!rs->noack_mode)
9725 remote_serial_write ("+", 1);
9726 return -1;
9727 }
9728
9729 /* If we got an ordinary packet, return that to our caller. */
9730 if (c == '$')
9731 {
9732 if (remote_debug)
9733 {
9734 std::string str
9735 = escape_buffer (*buf,
9736 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9737
9738 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9739 str.c_str ());
9740
9741 if (val > REMOTE_DEBUG_MAX_CHAR)
9742 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9743 val - REMOTE_DEBUG_MAX_CHAR);
9744
9745 fprintf_unfiltered (gdb_stdlog, "\n");
9746 }
9747
9748 /* Skip the ack char if we're in no-ack mode. */
9749 if (!rs->noack_mode)
9750 remote_serial_write ("+", 1);
9751 if (is_notif != NULL)
9752 *is_notif = 0;
9753 return val;
9754 }
9755
9756 /* If we got a notification, handle it, and go back to looking
9757 for a packet. */
9758 else
9759 {
9760 gdb_assert (c == '%');
9761
9762 if (remote_debug)
9763 {
9764 std::string str = escape_buffer (*buf, val);
9765
9766 fprintf_unfiltered (gdb_stdlog,
9767 " Notification received: %s\n",
9768 str.c_str ());
9769 }
9770 if (is_notif != NULL)
9771 *is_notif = 1;
9772
9773 handle_notification (rs->notif_state, *buf);
9774
9775 /* Notifications require no acknowledgement. */
9776
9777 if (expecting_notif)
9778 return val;
9779 }
9780 }
9781 }
9782
9783 int
9784 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9785 {
9786 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9787 }
9788
9789 int
9790 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9791 int *is_notif)
9792 {
9793 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9794 is_notif);
9795 }
9796
9797 /* Check whether EVENT is a fork event for the process specified
9798 by the pid passed in DATA, and if it is, kill the fork child. */
9799
9800 int
9801 remote_kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9802 QUEUE_ITER (stop_reply_p) *iter,
9803 stop_reply_p event,
9804 void *data)
9805 {
9806 struct queue_iter_param *param = (struct queue_iter_param *) data;
9807 int parent_pid = *(int *) param->input;
9808
9809 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9810 {
9811 remote_target *remote = param->remote;
9812 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9813 int res;
9814
9815 res = remote->remote_vkill (child_pid);
9816 if (res != 0)
9817 error (_("Can't kill fork child process %d"), child_pid);
9818 }
9819
9820 return 1;
9821 }
9822
9823 /* Kill any new fork children of process PID that haven't been
9824 processed by follow_fork. */
9825
9826 void
9827 remote_target::kill_new_fork_children (int pid)
9828 {
9829 remote_state *rs = get_remote_state ();
9830 struct thread_info *thread;
9831 struct notif_client *notif = &notif_client_stop;
9832 struct queue_iter_param param;
9833
9834 /* Kill the fork child threads of any threads in process PID
9835 that are stopped at a fork event. */
9836 ALL_NON_EXITED_THREADS (thread)
9837 {
9838 struct target_waitstatus *ws = &thread->pending_follow;
9839
9840 if (is_pending_fork_parent (ws, pid, thread->ptid))
9841 {
9842 int child_pid = ptid_get_pid (ws->value.related_pid);
9843 int res;
9844
9845 res = remote_vkill (child_pid);
9846 if (res != 0)
9847 error (_("Can't kill fork child process %d"), child_pid);
9848 }
9849 }
9850
9851 /* Check for any pending fork events (not reported or processed yet)
9852 in process PID and kill those fork child threads as well. */
9853 remote_notif_get_pending_events (notif);
9854 param.remote = this;
9855 param.input = &pid;
9856 param.output = NULL;
9857 QUEUE_iterate (stop_reply_p, rs->stop_reply_queue,
9858 remote_kill_child_of_pending_fork, &param);
9859 }
9860
9861 \f
9862 /* Target hook to kill the current inferior. */
9863
9864 void
9865 remote_target::kill ()
9866 {
9867 int res = -1;
9868 int pid = ptid_get_pid (inferior_ptid);
9869 struct remote_state *rs = get_remote_state ();
9870
9871 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9872 {
9873 /* If we're stopped while forking and we haven't followed yet,
9874 kill the child task. We need to do this before killing the
9875 parent task because if this is a vfork then the parent will
9876 be sleeping. */
9877 kill_new_fork_children (pid);
9878
9879 res = remote_vkill (pid);
9880 if (res == 0)
9881 {
9882 target_mourn_inferior (inferior_ptid);
9883 return;
9884 }
9885 }
9886
9887 /* If we are in 'target remote' mode and we are killing the only
9888 inferior, then we will tell gdbserver to exit and unpush the
9889 target. */
9890 if (res == -1 && !remote_multi_process_p (rs)
9891 && number_of_live_inferiors () == 1)
9892 {
9893 remote_kill_k ();
9894
9895 /* We've killed the remote end, we get to mourn it. If we are
9896 not in extended mode, mourning the inferior also unpushes
9897 remote_ops from the target stack, which closes the remote
9898 connection. */
9899 target_mourn_inferior (inferior_ptid);
9900
9901 return;
9902 }
9903
9904 error (_("Can't kill process"));
9905 }
9906
9907 /* Send a kill request to the target using the 'vKill' packet. */
9908
9909 int
9910 remote_target::remote_vkill (int pid)
9911 {
9912 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9913 return -1;
9914
9915 remote_state *rs = get_remote_state ();
9916
9917 /* Tell the remote target to detach. */
9918 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9919 putpkt (rs->buf);
9920 getpkt (&rs->buf, &rs->buf_size, 0);
9921
9922 switch (packet_ok (rs->buf,
9923 &remote_protocol_packets[PACKET_vKill]))
9924 {
9925 case PACKET_OK:
9926 return 0;
9927 case PACKET_ERROR:
9928 return 1;
9929 case PACKET_UNKNOWN:
9930 return -1;
9931 default:
9932 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9933 }
9934 }
9935
9936 /* Send a kill request to the target using the 'k' packet. */
9937
9938 void
9939 remote_target::remote_kill_k ()
9940 {
9941 /* Catch errors so the user can quit from gdb even when we
9942 aren't on speaking terms with the remote system. */
9943 TRY
9944 {
9945 putpkt ("k");
9946 }
9947 CATCH (ex, RETURN_MASK_ERROR)
9948 {
9949 if (ex.error == TARGET_CLOSE_ERROR)
9950 {
9951 /* If we got an (EOF) error that caused the target
9952 to go away, then we're done, that's what we wanted.
9953 "k" is susceptible to cause a premature EOF, given
9954 that the remote server isn't actually required to
9955 reply to "k", and it can happen that it doesn't
9956 even get to reply ACK to the "k". */
9957 return;
9958 }
9959
9960 /* Otherwise, something went wrong. We didn't actually kill
9961 the target. Just propagate the exception, and let the
9962 user or higher layers decide what to do. */
9963 throw_exception (ex);
9964 }
9965 END_CATCH
9966 }
9967
9968 void
9969 remote_target::mourn_inferior ()
9970 {
9971 struct remote_state *rs = get_remote_state ();
9972
9973 /* We're no longer interested in notification events of an inferior
9974 that exited or was killed/detached. */
9975 discard_pending_stop_replies (current_inferior ());
9976
9977 /* In 'target remote' mode with one inferior, we close the connection. */
9978 if (!rs->extended && number_of_live_inferiors () <= 1)
9979 {
9980 unpush_target (this);
9981
9982 /* remote_close takes care of doing most of the clean up. */
9983 generic_mourn_inferior ();
9984 return;
9985 }
9986
9987 /* In case we got here due to an error, but we're going to stay
9988 connected. */
9989 rs->waiting_for_stop_reply = 0;
9990
9991 /* If the current general thread belonged to the process we just
9992 detached from or has exited, the remote side current general
9993 thread becomes undefined. Considering a case like this:
9994
9995 - We just got here due to a detach.
9996 - The process that we're detaching from happens to immediately
9997 report a global breakpoint being hit in non-stop mode, in the
9998 same thread we had selected before.
9999 - GDB attaches to this process again.
10000 - This event happens to be the next event we handle.
10001
10002 GDB would consider that the current general thread didn't need to
10003 be set on the stub side (with Hg), since for all it knew,
10004 GENERAL_THREAD hadn't changed.
10005
10006 Notice that although in all-stop mode, the remote server always
10007 sets the current thread to the thread reporting the stop event,
10008 that doesn't happen in non-stop mode; in non-stop, the stub *must
10009 not* change the current thread when reporting a breakpoint hit,
10010 due to the decoupling of event reporting and event handling.
10011
10012 To keep things simple, we always invalidate our notion of the
10013 current thread. */
10014 record_currthread (rs, minus_one_ptid);
10015
10016 /* Call common code to mark the inferior as not running. */
10017 generic_mourn_inferior ();
10018
10019 if (!have_inferiors ())
10020 {
10021 if (!remote_multi_process_p (rs))
10022 {
10023 /* Check whether the target is running now - some remote stubs
10024 automatically restart after kill. */
10025 putpkt ("?");
10026 getpkt (&rs->buf, &rs->buf_size, 0);
10027
10028 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
10029 {
10030 /* Assume that the target has been restarted. Set
10031 inferior_ptid so that bits of core GDB realizes
10032 there's something here, e.g., so that the user can
10033 say "kill" again. */
10034 inferior_ptid = magic_null_ptid;
10035 }
10036 }
10037 }
10038 }
10039
10040 bool
10041 extended_remote_target::supports_disable_randomization ()
10042 {
10043 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10044 }
10045
10046 void
10047 remote_target::extended_remote_disable_randomization (int val)
10048 {
10049 struct remote_state *rs = get_remote_state ();
10050 char *reply;
10051
10052 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
10053 val);
10054 putpkt (rs->buf);
10055 reply = remote_get_noisy_reply ();
10056 if (*reply == '\0')
10057 error (_("Target does not support QDisableRandomization."));
10058 if (strcmp (reply, "OK") != 0)
10059 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10060 }
10061
10062 int
10063 remote_target::extended_remote_run (const std::string &args)
10064 {
10065 struct remote_state *rs = get_remote_state ();
10066 int len;
10067 const char *remote_exec_file = get_remote_exec_file ();
10068
10069 /* If the user has disabled vRun support, or we have detected that
10070 support is not available, do not try it. */
10071 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10072 return -1;
10073
10074 strcpy (rs->buf, "vRun;");
10075 len = strlen (rs->buf);
10076
10077 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10078 error (_("Remote file name too long for run packet"));
10079 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
10080 strlen (remote_exec_file));
10081
10082 if (!args.empty ())
10083 {
10084 int i;
10085
10086 gdb_argv argv (args.c_str ());
10087 for (i = 0; argv[i] != NULL; i++)
10088 {
10089 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10090 error (_("Argument list too long for run packet"));
10091 rs->buf[len++] = ';';
10092 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
10093 strlen (argv[i]));
10094 }
10095 }
10096
10097 rs->buf[len++] = '\0';
10098
10099 putpkt (rs->buf);
10100 getpkt (&rs->buf, &rs->buf_size, 0);
10101
10102 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10103 {
10104 case PACKET_OK:
10105 /* We have a wait response. All is well. */
10106 return 0;
10107 case PACKET_UNKNOWN:
10108 return -1;
10109 case PACKET_ERROR:
10110 if (remote_exec_file[0] == '\0')
10111 error (_("Running the default executable on the remote target failed; "
10112 "try \"set remote exec-file\"?"));
10113 else
10114 error (_("Running \"%s\" on the remote target failed"),
10115 remote_exec_file);
10116 default:
10117 gdb_assert_not_reached (_("bad switch"));
10118 }
10119 }
10120
10121 /* Helper function to send set/unset environment packets. ACTION is
10122 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10123 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10124 sent. */
10125
10126 void
10127 remote_target::send_environment_packet (const char *action,
10128 const char *packet,
10129 const char *value)
10130 {
10131 remote_state *rs = get_remote_state ();
10132
10133 /* Convert the environment variable to an hex string, which
10134 is the best format to be transmitted over the wire. */
10135 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10136 strlen (value));
10137
10138 xsnprintf (rs->buf, get_remote_packet_size (),
10139 "%s:%s", packet, encoded_value.c_str ());
10140
10141 putpkt (rs->buf);
10142 getpkt (&rs->buf, &rs->buf_size, 0);
10143 if (strcmp (rs->buf, "OK") != 0)
10144 warning (_("Unable to %s environment variable '%s' on remote."),
10145 action, value);
10146 }
10147
10148 /* Helper function to handle the QEnvironment* packets. */
10149
10150 void
10151 remote_target::extended_remote_environment_support ()
10152 {
10153 remote_state *rs = get_remote_state ();
10154
10155 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10156 {
10157 putpkt ("QEnvironmentReset");
10158 getpkt (&rs->buf, &rs->buf_size, 0);
10159 if (strcmp (rs->buf, "OK") != 0)
10160 warning (_("Unable to reset environment on remote."));
10161 }
10162
10163 gdb_environ *e = &current_inferior ()->environment;
10164
10165 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10166 for (const std::string &el : e->user_set_env ())
10167 send_environment_packet ("set", "QEnvironmentHexEncoded",
10168 el.c_str ());
10169
10170 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10171 for (const std::string &el : e->user_unset_env ())
10172 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10173 }
10174
10175 /* Helper function to set the current working directory for the
10176 inferior in the remote target. */
10177
10178 void
10179 remote_target::extended_remote_set_inferior_cwd ()
10180 {
10181 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10182 {
10183 const char *inferior_cwd = get_inferior_cwd ();
10184 remote_state *rs = get_remote_state ();
10185
10186 if (inferior_cwd != NULL)
10187 {
10188 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10189 strlen (inferior_cwd));
10190
10191 xsnprintf (rs->buf, get_remote_packet_size (),
10192 "QSetWorkingDir:%s", hexpath.c_str ());
10193 }
10194 else
10195 {
10196 /* An empty inferior_cwd means that the user wants us to
10197 reset the remote server's inferior's cwd. */
10198 xsnprintf (rs->buf, get_remote_packet_size (),
10199 "QSetWorkingDir:");
10200 }
10201
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, &rs->buf_size, 0);
10204 if (packet_ok (rs->buf,
10205 &remote_protocol_packets[PACKET_QSetWorkingDir])
10206 != PACKET_OK)
10207 error (_("\
10208 Remote replied unexpectedly while setting the inferior's working\n\
10209 directory: %s"),
10210 rs->buf);
10211
10212 }
10213 }
10214
10215 /* In the extended protocol we want to be able to do things like
10216 "run" and have them basically work as expected. So we need
10217 a special create_inferior function. We support changing the
10218 executable file and the command line arguments, but not the
10219 environment. */
10220
10221 void
10222 extended_remote_target::create_inferior (const char *exec_file,
10223 const std::string &args,
10224 char **env, int from_tty)
10225 {
10226 int run_worked;
10227 char *stop_reply;
10228 struct remote_state *rs = get_remote_state ();
10229 const char *remote_exec_file = get_remote_exec_file ();
10230
10231 /* If running asynchronously, register the target file descriptor
10232 with the event loop. */
10233 if (target_can_async_p ())
10234 target_async (1);
10235
10236 /* Disable address space randomization if requested (and supported). */
10237 if (supports_disable_randomization ())
10238 extended_remote_disable_randomization (disable_randomization);
10239
10240 /* If startup-with-shell is on, we inform gdbserver to start the
10241 remote inferior using a shell. */
10242 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10243 {
10244 xsnprintf (rs->buf, get_remote_packet_size (),
10245 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10246 putpkt (rs->buf);
10247 getpkt (&rs->buf, &rs->buf_size, 0);
10248 if (strcmp (rs->buf, "OK") != 0)
10249 error (_("\
10250 Remote replied unexpectedly while setting startup-with-shell: %s"),
10251 rs->buf);
10252 }
10253
10254 extended_remote_environment_support ();
10255
10256 extended_remote_set_inferior_cwd ();
10257
10258 /* Now restart the remote server. */
10259 run_worked = extended_remote_run (args) != -1;
10260 if (!run_worked)
10261 {
10262 /* vRun was not supported. Fail if we need it to do what the
10263 user requested. */
10264 if (remote_exec_file[0])
10265 error (_("Remote target does not support \"set remote exec-file\""));
10266 if (!args.empty ())
10267 error (_("Remote target does not support \"set args\" or run <ARGS>"));
10268
10269 /* Fall back to "R". */
10270 extended_remote_restart ();
10271 }
10272
10273 if (!have_inferiors ())
10274 {
10275 /* Clean up from the last time we ran, before we mark the target
10276 running again. This will mark breakpoints uninserted, and
10277 get_offsets may insert breakpoints. */
10278 init_thread_list ();
10279 init_wait_for_inferior ();
10280 }
10281
10282 /* vRun's success return is a stop reply. */
10283 stop_reply = run_worked ? rs->buf : NULL;
10284 add_current_inferior_and_thread (stop_reply);
10285
10286 /* Get updated offsets, if the stub uses qOffsets. */
10287 get_offsets ();
10288 }
10289 \f
10290
10291 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10292 the list of conditions (in agent expression bytecode format), if any, the
10293 target needs to evaluate. The output is placed into the packet buffer
10294 started from BUF and ended at BUF_END. */
10295
10296 static int
10297 remote_add_target_side_condition (struct gdbarch *gdbarch,
10298 struct bp_target_info *bp_tgt, char *buf,
10299 char *buf_end)
10300 {
10301 if (bp_tgt->conditions.empty ())
10302 return 0;
10303
10304 buf += strlen (buf);
10305 xsnprintf (buf, buf_end - buf, "%s", ";");
10306 buf++;
10307
10308 /* Send conditions to the target. */
10309 for (agent_expr *aexpr : bp_tgt->conditions)
10310 {
10311 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10312 buf += strlen (buf);
10313 for (int i = 0; i < aexpr->len; ++i)
10314 buf = pack_hex_byte (buf, aexpr->buf[i]);
10315 *buf = '\0';
10316 }
10317 return 0;
10318 }
10319
10320 static void
10321 remote_add_target_side_commands (struct gdbarch *gdbarch,
10322 struct bp_target_info *bp_tgt, char *buf)
10323 {
10324 if (bp_tgt->tcommands.empty ())
10325 return;
10326
10327 buf += strlen (buf);
10328
10329 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10330 buf += strlen (buf);
10331
10332 /* Concatenate all the agent expressions that are commands into the
10333 cmds parameter. */
10334 for (agent_expr *aexpr : bp_tgt->tcommands)
10335 {
10336 sprintf (buf, "X%x,", aexpr->len);
10337 buf += strlen (buf);
10338 for (int i = 0; i < aexpr->len; ++i)
10339 buf = pack_hex_byte (buf, aexpr->buf[i]);
10340 *buf = '\0';
10341 }
10342 }
10343
10344 /* Insert a breakpoint. On targets that have software breakpoint
10345 support, we ask the remote target to do the work; on targets
10346 which don't, we insert a traditional memory breakpoint. */
10347
10348 int
10349 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10350 struct bp_target_info *bp_tgt)
10351 {
10352 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10353 If it succeeds, then set the support to PACKET_ENABLE. If it
10354 fails, and the user has explicitly requested the Z support then
10355 report an error, otherwise, mark it disabled and go on. */
10356
10357 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10358 {
10359 CORE_ADDR addr = bp_tgt->reqstd_address;
10360 struct remote_state *rs;
10361 char *p, *endbuf;
10362
10363 /* Make sure the remote is pointing at the right process, if
10364 necessary. */
10365 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10366 set_general_process ();
10367
10368 rs = get_remote_state ();
10369 p = rs->buf;
10370 endbuf = rs->buf + get_remote_packet_size ();
10371
10372 *(p++) = 'Z';
10373 *(p++) = '0';
10374 *(p++) = ',';
10375 addr = (ULONGEST) remote_address_masked (addr);
10376 p += hexnumstr (p, addr);
10377 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10378
10379 if (supports_evaluation_of_breakpoint_conditions ())
10380 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10381
10382 if (can_run_breakpoint_commands ())
10383 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10384
10385 putpkt (rs->buf);
10386 getpkt (&rs->buf, &rs->buf_size, 0);
10387
10388 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10389 {
10390 case PACKET_ERROR:
10391 return -1;
10392 case PACKET_OK:
10393 return 0;
10394 case PACKET_UNKNOWN:
10395 break;
10396 }
10397 }
10398
10399 /* If this breakpoint has target-side commands but this stub doesn't
10400 support Z0 packets, throw error. */
10401 if (!bp_tgt->tcommands.empty ())
10402 throw_error (NOT_SUPPORTED_ERROR, _("\
10403 Target doesn't support breakpoints that have target side commands."));
10404
10405 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10406 }
10407
10408 int
10409 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10410 struct bp_target_info *bp_tgt,
10411 enum remove_bp_reason reason)
10412 {
10413 CORE_ADDR addr = bp_tgt->placed_address;
10414 struct remote_state *rs = get_remote_state ();
10415
10416 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10417 {
10418 char *p = rs->buf;
10419 char *endbuf = rs->buf + get_remote_packet_size ();
10420
10421 /* Make sure the remote is pointing at the right process, if
10422 necessary. */
10423 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10424 set_general_process ();
10425
10426 *(p++) = 'z';
10427 *(p++) = '0';
10428 *(p++) = ',';
10429
10430 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10431 p += hexnumstr (p, addr);
10432 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10433
10434 putpkt (rs->buf);
10435 getpkt (&rs->buf, &rs->buf_size, 0);
10436
10437 return (rs->buf[0] == 'E');
10438 }
10439
10440 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10441 }
10442
10443 static enum Z_packet_type
10444 watchpoint_to_Z_packet (int type)
10445 {
10446 switch (type)
10447 {
10448 case hw_write:
10449 return Z_PACKET_WRITE_WP;
10450 break;
10451 case hw_read:
10452 return Z_PACKET_READ_WP;
10453 break;
10454 case hw_access:
10455 return Z_PACKET_ACCESS_WP;
10456 break;
10457 default:
10458 internal_error (__FILE__, __LINE__,
10459 _("hw_bp_to_z: bad watchpoint type %d"), type);
10460 }
10461 }
10462
10463 int
10464 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10465 enum target_hw_bp_type type, struct expression *cond)
10466 {
10467 struct remote_state *rs = get_remote_state ();
10468 char *endbuf = rs->buf + get_remote_packet_size ();
10469 char *p;
10470 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10471
10472 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10473 return 1;
10474
10475 /* Make sure the remote is pointing at the right process, if
10476 necessary. */
10477 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10478 set_general_process ();
10479
10480 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10481 p = strchr (rs->buf, '\0');
10482 addr = remote_address_masked (addr);
10483 p += hexnumstr (p, (ULONGEST) addr);
10484 xsnprintf (p, endbuf - p, ",%x", len);
10485
10486 putpkt (rs->buf);
10487 getpkt (&rs->buf, &rs->buf_size, 0);
10488
10489 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10490 {
10491 case PACKET_ERROR:
10492 return -1;
10493 case PACKET_UNKNOWN:
10494 return 1;
10495 case PACKET_OK:
10496 return 0;
10497 }
10498 internal_error (__FILE__, __LINE__,
10499 _("remote_insert_watchpoint: reached end of function"));
10500 }
10501
10502 bool
10503 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10504 CORE_ADDR start, int length)
10505 {
10506 CORE_ADDR diff = remote_address_masked (addr - start);
10507
10508 return diff < length;
10509 }
10510
10511
10512 int
10513 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10514 enum target_hw_bp_type type, struct expression *cond)
10515 {
10516 struct remote_state *rs = get_remote_state ();
10517 char *endbuf = rs->buf + get_remote_packet_size ();
10518 char *p;
10519 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10520
10521 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10522 return -1;
10523
10524 /* Make sure the remote is pointing at the right process, if
10525 necessary. */
10526 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10527 set_general_process ();
10528
10529 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10530 p = strchr (rs->buf, '\0');
10531 addr = remote_address_masked (addr);
10532 p += hexnumstr (p, (ULONGEST) addr);
10533 xsnprintf (p, endbuf - p, ",%x", len);
10534 putpkt (rs->buf);
10535 getpkt (&rs->buf, &rs->buf_size, 0);
10536
10537 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10538 {
10539 case PACKET_ERROR:
10540 case PACKET_UNKNOWN:
10541 return -1;
10542 case PACKET_OK:
10543 return 0;
10544 }
10545 internal_error (__FILE__, __LINE__,
10546 _("remote_remove_watchpoint: reached end of function"));
10547 }
10548
10549
10550 int remote_hw_watchpoint_limit = -1;
10551 int remote_hw_watchpoint_length_limit = -1;
10552 int remote_hw_breakpoint_limit = -1;
10553
10554 int
10555 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10556 {
10557 if (remote_hw_watchpoint_length_limit == 0)
10558 return 0;
10559 else if (remote_hw_watchpoint_length_limit < 0)
10560 return 1;
10561 else if (len <= remote_hw_watchpoint_length_limit)
10562 return 1;
10563 else
10564 return 0;
10565 }
10566
10567 int
10568 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10569 {
10570 if (type == bp_hardware_breakpoint)
10571 {
10572 if (remote_hw_breakpoint_limit == 0)
10573 return 0;
10574 else if (remote_hw_breakpoint_limit < 0)
10575 return 1;
10576 else if (cnt <= remote_hw_breakpoint_limit)
10577 return 1;
10578 }
10579 else
10580 {
10581 if (remote_hw_watchpoint_limit == 0)
10582 return 0;
10583 else if (remote_hw_watchpoint_limit < 0)
10584 return 1;
10585 else if (ot)
10586 return -1;
10587 else if (cnt <= remote_hw_watchpoint_limit)
10588 return 1;
10589 }
10590 return -1;
10591 }
10592
10593 /* The to_stopped_by_sw_breakpoint method of target remote. */
10594
10595 bool
10596 remote_target::stopped_by_sw_breakpoint ()
10597 {
10598 struct thread_info *thread = inferior_thread ();
10599
10600 return (thread->priv != NULL
10601 && (get_remote_thread_info (thread)->stop_reason
10602 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10603 }
10604
10605 /* The to_supports_stopped_by_sw_breakpoint method of target
10606 remote. */
10607
10608 bool
10609 remote_target::supports_stopped_by_sw_breakpoint ()
10610 {
10611 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10612 }
10613
10614 /* The to_stopped_by_hw_breakpoint method of target remote. */
10615
10616 bool
10617 remote_target::stopped_by_hw_breakpoint ()
10618 {
10619 struct thread_info *thread = inferior_thread ();
10620
10621 return (thread->priv != NULL
10622 && (get_remote_thread_info (thread)->stop_reason
10623 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10624 }
10625
10626 /* The to_supports_stopped_by_hw_breakpoint method of target
10627 remote. */
10628
10629 bool
10630 remote_target::supports_stopped_by_hw_breakpoint ()
10631 {
10632 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10633 }
10634
10635 bool
10636 remote_target::stopped_by_watchpoint ()
10637 {
10638 struct thread_info *thread = inferior_thread ();
10639
10640 return (thread->priv != NULL
10641 && (get_remote_thread_info (thread)->stop_reason
10642 == TARGET_STOPPED_BY_WATCHPOINT));
10643 }
10644
10645 bool
10646 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10647 {
10648 struct thread_info *thread = inferior_thread ();
10649
10650 if (thread->priv != NULL
10651 && (get_remote_thread_info (thread)->stop_reason
10652 == TARGET_STOPPED_BY_WATCHPOINT))
10653 {
10654 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10655 return true;
10656 }
10657
10658 return false;
10659 }
10660
10661
10662 int
10663 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10664 struct bp_target_info *bp_tgt)
10665 {
10666 CORE_ADDR addr = bp_tgt->reqstd_address;
10667 struct remote_state *rs;
10668 char *p, *endbuf;
10669 char *message;
10670
10671 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10672 return -1;
10673
10674 /* Make sure the remote is pointing at the right process, if
10675 necessary. */
10676 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10677 set_general_process ();
10678
10679 rs = get_remote_state ();
10680 p = rs->buf;
10681 endbuf = rs->buf + get_remote_packet_size ();
10682
10683 *(p++) = 'Z';
10684 *(p++) = '1';
10685 *(p++) = ',';
10686
10687 addr = remote_address_masked (addr);
10688 p += hexnumstr (p, (ULONGEST) addr);
10689 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10690
10691 if (supports_evaluation_of_breakpoint_conditions ())
10692 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10693
10694 if (can_run_breakpoint_commands ())
10695 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10696
10697 putpkt (rs->buf);
10698 getpkt (&rs->buf, &rs->buf_size, 0);
10699
10700 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10701 {
10702 case PACKET_ERROR:
10703 if (rs->buf[1] == '.')
10704 {
10705 message = strchr (rs->buf + 2, '.');
10706 if (message)
10707 error (_("Remote failure reply: %s"), message + 1);
10708 }
10709 return -1;
10710 case PACKET_UNKNOWN:
10711 return -1;
10712 case PACKET_OK:
10713 return 0;
10714 }
10715 internal_error (__FILE__, __LINE__,
10716 _("remote_insert_hw_breakpoint: reached end of function"));
10717 }
10718
10719
10720 int
10721 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10722 struct bp_target_info *bp_tgt)
10723 {
10724 CORE_ADDR addr;
10725 struct remote_state *rs = get_remote_state ();
10726 char *p = rs->buf;
10727 char *endbuf = rs->buf + get_remote_packet_size ();
10728
10729 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10730 return -1;
10731
10732 /* Make sure the remote is pointing at the right process, if
10733 necessary. */
10734 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10735 set_general_process ();
10736
10737 *(p++) = 'z';
10738 *(p++) = '1';
10739 *(p++) = ',';
10740
10741 addr = remote_address_masked (bp_tgt->placed_address);
10742 p += hexnumstr (p, (ULONGEST) addr);
10743 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10744
10745 putpkt (rs->buf);
10746 getpkt (&rs->buf, &rs->buf_size, 0);
10747
10748 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10749 {
10750 case PACKET_ERROR:
10751 case PACKET_UNKNOWN:
10752 return -1;
10753 case PACKET_OK:
10754 return 0;
10755 }
10756 internal_error (__FILE__, __LINE__,
10757 _("remote_remove_hw_breakpoint: reached end of function"));
10758 }
10759
10760 /* Verify memory using the "qCRC:" request. */
10761
10762 int
10763 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10764 {
10765 struct remote_state *rs = get_remote_state ();
10766 unsigned long host_crc, target_crc;
10767 char *tmp;
10768
10769 /* It doesn't make sense to use qCRC if the remote target is
10770 connected but not running. */
10771 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10772 {
10773 enum packet_result result;
10774
10775 /* Make sure the remote is pointing at the right process. */
10776 set_general_process ();
10777
10778 /* FIXME: assumes lma can fit into long. */
10779 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10780 (long) lma, (long) size);
10781 putpkt (rs->buf);
10782
10783 /* Be clever; compute the host_crc before waiting for target
10784 reply. */
10785 host_crc = xcrc32 (data, size, 0xffffffff);
10786
10787 getpkt (&rs->buf, &rs->buf_size, 0);
10788
10789 result = packet_ok (rs->buf,
10790 &remote_protocol_packets[PACKET_qCRC]);
10791 if (result == PACKET_ERROR)
10792 return -1;
10793 else if (result == PACKET_OK)
10794 {
10795 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10796 target_crc = target_crc * 16 + fromhex (*tmp);
10797
10798 return (host_crc == target_crc);
10799 }
10800 }
10801
10802 return simple_verify_memory (this, data, lma, size);
10803 }
10804
10805 /* compare-sections command
10806
10807 With no arguments, compares each loadable section in the exec bfd
10808 with the same memory range on the target, and reports mismatches.
10809 Useful for verifying the image on the target against the exec file. */
10810
10811 static void
10812 compare_sections_command (const char *args, int from_tty)
10813 {
10814 asection *s;
10815 const char *sectname;
10816 bfd_size_type size;
10817 bfd_vma lma;
10818 int matched = 0;
10819 int mismatched = 0;
10820 int res;
10821 int read_only = 0;
10822
10823 if (!exec_bfd)
10824 error (_("command cannot be used without an exec file"));
10825
10826 if (args != NULL && strcmp (args, "-r") == 0)
10827 {
10828 read_only = 1;
10829 args = NULL;
10830 }
10831
10832 for (s = exec_bfd->sections; s; s = s->next)
10833 {
10834 if (!(s->flags & SEC_LOAD))
10835 continue; /* Skip non-loadable section. */
10836
10837 if (read_only && (s->flags & SEC_READONLY) == 0)
10838 continue; /* Skip writeable sections */
10839
10840 size = bfd_get_section_size (s);
10841 if (size == 0)
10842 continue; /* Skip zero-length section. */
10843
10844 sectname = bfd_get_section_name (exec_bfd, s);
10845 if (args && strcmp (args, sectname) != 0)
10846 continue; /* Not the section selected by user. */
10847
10848 matched = 1; /* Do this section. */
10849 lma = s->lma;
10850
10851 gdb::byte_vector sectdata (size);
10852 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10853
10854 res = target_verify_memory (sectdata.data (), lma, size);
10855
10856 if (res == -1)
10857 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10858 paddress (target_gdbarch (), lma),
10859 paddress (target_gdbarch (), lma + size));
10860
10861 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10862 paddress (target_gdbarch (), lma),
10863 paddress (target_gdbarch (), lma + size));
10864 if (res)
10865 printf_filtered ("matched.\n");
10866 else
10867 {
10868 printf_filtered ("MIS-MATCHED!\n");
10869 mismatched++;
10870 }
10871 }
10872 if (mismatched > 0)
10873 warning (_("One or more sections of the target image does not match\n\
10874 the loaded file\n"));
10875 if (args && !matched)
10876 printf_filtered (_("No loaded section named '%s'.\n"), args);
10877 }
10878
10879 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10880 into remote target. The number of bytes written to the remote
10881 target is returned, or -1 for error. */
10882
10883 target_xfer_status
10884 remote_target::remote_write_qxfer (const char *object_name,
10885 const char *annex, const gdb_byte *writebuf,
10886 ULONGEST offset, LONGEST len,
10887 ULONGEST *xfered_len,
10888 struct packet_config *packet)
10889 {
10890 int i, buf_len;
10891 ULONGEST n;
10892 struct remote_state *rs = get_remote_state ();
10893 int max_size = get_memory_write_packet_size ();
10894
10895 if (packet_config_support (packet) == PACKET_DISABLE)
10896 return TARGET_XFER_E_IO;
10897
10898 /* Insert header. */
10899 i = snprintf (rs->buf, max_size,
10900 "qXfer:%s:write:%s:%s:",
10901 object_name, annex ? annex : "",
10902 phex_nz (offset, sizeof offset));
10903 max_size -= (i + 1);
10904
10905 /* Escape as much data as fits into rs->buf. */
10906 buf_len = remote_escape_output
10907 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10908
10909 if (putpkt_binary (rs->buf, i + buf_len) < 0
10910 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10911 || packet_ok (rs->buf, packet) != PACKET_OK)
10912 return TARGET_XFER_E_IO;
10913
10914 unpack_varlen_hex (rs->buf, &n);
10915
10916 *xfered_len = n;
10917 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10918 }
10919
10920 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10921 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10922 number of bytes read is returned, or 0 for EOF, or -1 for error.
10923 The number of bytes read may be less than LEN without indicating an
10924 EOF. PACKET is checked and updated to indicate whether the remote
10925 target supports this object. */
10926
10927 target_xfer_status
10928 remote_target::remote_read_qxfer (const char *object_name,
10929 const char *annex,
10930 gdb_byte *readbuf, ULONGEST offset,
10931 LONGEST len,
10932 ULONGEST *xfered_len,
10933 struct packet_config *packet)
10934 {
10935 struct remote_state *rs = get_remote_state ();
10936 LONGEST i, n, packet_len;
10937
10938 if (packet_config_support (packet) == PACKET_DISABLE)
10939 return TARGET_XFER_E_IO;
10940
10941 /* Check whether we've cached an end-of-object packet that matches
10942 this request. */
10943 if (rs->finished_object)
10944 {
10945 if (strcmp (object_name, rs->finished_object) == 0
10946 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10947 && offset == rs->finished_offset)
10948 return TARGET_XFER_EOF;
10949
10950
10951 /* Otherwise, we're now reading something different. Discard
10952 the cache. */
10953 xfree (rs->finished_object);
10954 xfree (rs->finished_annex);
10955 rs->finished_object = NULL;
10956 rs->finished_annex = NULL;
10957 }
10958
10959 /* Request only enough to fit in a single packet. The actual data
10960 may not, since we don't know how much of it will need to be escaped;
10961 the target is free to respond with slightly less data. We subtract
10962 five to account for the response type and the protocol frame. */
10963 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10964 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10965 object_name, annex ? annex : "",
10966 phex_nz (offset, sizeof offset),
10967 phex_nz (n, sizeof n));
10968 i = putpkt (rs->buf);
10969 if (i < 0)
10970 return TARGET_XFER_E_IO;
10971
10972 rs->buf[0] = '\0';
10973 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10974 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10975 return TARGET_XFER_E_IO;
10976
10977 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10978 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10979
10980 /* 'm' means there is (or at least might be) more data after this
10981 batch. That does not make sense unless there's at least one byte
10982 of data in this reply. */
10983 if (rs->buf[0] == 'm' && packet_len == 1)
10984 error (_("Remote qXfer reply contained no data."));
10985
10986 /* Got some data. */
10987 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10988 packet_len - 1, readbuf, n);
10989
10990 /* 'l' is an EOF marker, possibly including a final block of data,
10991 or possibly empty. If we have the final block of a non-empty
10992 object, record this fact to bypass a subsequent partial read. */
10993 if (rs->buf[0] == 'l' && offset + i > 0)
10994 {
10995 rs->finished_object = xstrdup (object_name);
10996 rs->finished_annex = xstrdup (annex ? annex : "");
10997 rs->finished_offset = offset + i;
10998 }
10999
11000 if (i == 0)
11001 return TARGET_XFER_EOF;
11002 else
11003 {
11004 *xfered_len = i;
11005 return TARGET_XFER_OK;
11006 }
11007 }
11008
11009 enum target_xfer_status
11010 remote_target::xfer_partial (enum target_object object,
11011 const char *annex, gdb_byte *readbuf,
11012 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11013 ULONGEST *xfered_len)
11014 {
11015 struct remote_state *rs;
11016 int i;
11017 char *p2;
11018 char query_type;
11019 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11020
11021 set_remote_traceframe ();
11022 set_general_thread (inferior_ptid);
11023
11024 rs = get_remote_state ();
11025
11026 /* Handle memory using the standard memory routines. */
11027 if (object == TARGET_OBJECT_MEMORY)
11028 {
11029 /* If the remote target is connected but not running, we should
11030 pass this request down to a lower stratum (e.g. the executable
11031 file). */
11032 if (!target_has_execution)
11033 return TARGET_XFER_EOF;
11034
11035 if (writebuf != NULL)
11036 return remote_write_bytes (offset, writebuf, len, unit_size,
11037 xfered_len);
11038 else
11039 return remote_read_bytes (offset, readbuf, len, unit_size,
11040 xfered_len);
11041 }
11042
11043 /* Handle SPU memory using qxfer packets. */
11044 if (object == TARGET_OBJECT_SPU)
11045 {
11046 if (readbuf)
11047 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
11048 xfered_len, &remote_protocol_packets
11049 [PACKET_qXfer_spu_read]);
11050 else
11051 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
11052 xfered_len, &remote_protocol_packets
11053 [PACKET_qXfer_spu_write]);
11054 }
11055
11056 /* Handle extra signal info using qxfer packets. */
11057 if (object == TARGET_OBJECT_SIGNAL_INFO)
11058 {
11059 if (readbuf)
11060 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11061 xfered_len, &remote_protocol_packets
11062 [PACKET_qXfer_siginfo_read]);
11063 else
11064 return remote_write_qxfer ("siginfo", annex,
11065 writebuf, offset, len, xfered_len,
11066 &remote_protocol_packets
11067 [PACKET_qXfer_siginfo_write]);
11068 }
11069
11070 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11071 {
11072 if (readbuf)
11073 return remote_read_qxfer ("statictrace", annex,
11074 readbuf, offset, len, xfered_len,
11075 &remote_protocol_packets
11076 [PACKET_qXfer_statictrace_read]);
11077 else
11078 return TARGET_XFER_E_IO;
11079 }
11080
11081 /* Only handle flash writes. */
11082 if (writebuf != NULL)
11083 {
11084 switch (object)
11085 {
11086 case TARGET_OBJECT_FLASH:
11087 return remote_flash_write (offset, len, xfered_len,
11088 writebuf);
11089
11090 default:
11091 return TARGET_XFER_E_IO;
11092 }
11093 }
11094
11095 /* Map pre-existing objects onto letters. DO NOT do this for new
11096 objects!!! Instead specify new query packets. */
11097 switch (object)
11098 {
11099 case TARGET_OBJECT_AVR:
11100 query_type = 'R';
11101 break;
11102
11103 case TARGET_OBJECT_AUXV:
11104 gdb_assert (annex == NULL);
11105 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11106 xfered_len,
11107 &remote_protocol_packets[PACKET_qXfer_auxv]);
11108
11109 case TARGET_OBJECT_AVAILABLE_FEATURES:
11110 return remote_read_qxfer
11111 ("features", annex, readbuf, offset, len, xfered_len,
11112 &remote_protocol_packets[PACKET_qXfer_features]);
11113
11114 case TARGET_OBJECT_LIBRARIES:
11115 return remote_read_qxfer
11116 ("libraries", annex, readbuf, offset, len, xfered_len,
11117 &remote_protocol_packets[PACKET_qXfer_libraries]);
11118
11119 case TARGET_OBJECT_LIBRARIES_SVR4:
11120 return remote_read_qxfer
11121 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11122 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11123
11124 case TARGET_OBJECT_MEMORY_MAP:
11125 gdb_assert (annex == NULL);
11126 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11127 xfered_len,
11128 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11129
11130 case TARGET_OBJECT_OSDATA:
11131 /* Should only get here if we're connected. */
11132 gdb_assert (rs->remote_desc);
11133 return remote_read_qxfer
11134 ("osdata", annex, readbuf, offset, len, xfered_len,
11135 &remote_protocol_packets[PACKET_qXfer_osdata]);
11136
11137 case TARGET_OBJECT_THREADS:
11138 gdb_assert (annex == NULL);
11139 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11140 xfered_len,
11141 &remote_protocol_packets[PACKET_qXfer_threads]);
11142
11143 case TARGET_OBJECT_TRACEFRAME_INFO:
11144 gdb_assert (annex == NULL);
11145 return remote_read_qxfer
11146 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11147 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11148
11149 case TARGET_OBJECT_FDPIC:
11150 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11151 xfered_len,
11152 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11153
11154 case TARGET_OBJECT_OPENVMS_UIB:
11155 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11156 xfered_len,
11157 &remote_protocol_packets[PACKET_qXfer_uib]);
11158
11159 case TARGET_OBJECT_BTRACE:
11160 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11161 xfered_len,
11162 &remote_protocol_packets[PACKET_qXfer_btrace]);
11163
11164 case TARGET_OBJECT_BTRACE_CONF:
11165 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11166 len, xfered_len,
11167 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11168
11169 case TARGET_OBJECT_EXEC_FILE:
11170 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11171 len, xfered_len,
11172 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11173
11174 default:
11175 return TARGET_XFER_E_IO;
11176 }
11177
11178 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11179 large enough let the caller deal with it. */
11180 if (len < get_remote_packet_size ())
11181 return TARGET_XFER_E_IO;
11182 len = get_remote_packet_size ();
11183
11184 /* Except for querying the minimum buffer size, target must be open. */
11185 if (!rs->remote_desc)
11186 error (_("remote query is only available after target open"));
11187
11188 gdb_assert (annex != NULL);
11189 gdb_assert (readbuf != NULL);
11190
11191 p2 = rs->buf;
11192 *p2++ = 'q';
11193 *p2++ = query_type;
11194
11195 /* We used one buffer char for the remote protocol q command and
11196 another for the query type. As the remote protocol encapsulation
11197 uses 4 chars plus one extra in case we are debugging
11198 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11199 string. */
11200 i = 0;
11201 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11202 {
11203 /* Bad caller may have sent forbidden characters. */
11204 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11205 *p2++ = annex[i];
11206 i++;
11207 }
11208 *p2 = '\0';
11209 gdb_assert (annex[i] == '\0');
11210
11211 i = putpkt (rs->buf);
11212 if (i < 0)
11213 return TARGET_XFER_E_IO;
11214
11215 getpkt (&rs->buf, &rs->buf_size, 0);
11216 strcpy ((char *) readbuf, rs->buf);
11217
11218 *xfered_len = strlen ((char *) readbuf);
11219 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11220 }
11221
11222 /* Implementation of to_get_memory_xfer_limit. */
11223
11224 ULONGEST
11225 remote_target::get_memory_xfer_limit ()
11226 {
11227 return get_memory_write_packet_size ();
11228 }
11229
11230 int
11231 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11232 const gdb_byte *pattern, ULONGEST pattern_len,
11233 CORE_ADDR *found_addrp)
11234 {
11235 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11236 struct remote_state *rs = get_remote_state ();
11237 int max_size = get_memory_write_packet_size ();
11238 struct packet_config *packet =
11239 &remote_protocol_packets[PACKET_qSearch_memory];
11240 /* Number of packet bytes used to encode the pattern;
11241 this could be more than PATTERN_LEN due to escape characters. */
11242 int escaped_pattern_len;
11243 /* Amount of pattern that was encodable in the packet. */
11244 int used_pattern_len;
11245 int i;
11246 int found;
11247 ULONGEST found_addr;
11248
11249 /* Don't go to the target if we don't have to. This is done before
11250 checking packet_config_support to avoid the possibility that a
11251 success for this edge case means the facility works in
11252 general. */
11253 if (pattern_len > search_space_len)
11254 return 0;
11255 if (pattern_len == 0)
11256 {
11257 *found_addrp = start_addr;
11258 return 1;
11259 }
11260
11261 /* If we already know the packet isn't supported, fall back to the simple
11262 way of searching memory. */
11263
11264 if (packet_config_support (packet) == PACKET_DISABLE)
11265 {
11266 /* Target doesn't provided special support, fall back and use the
11267 standard support (copy memory and do the search here). */
11268 return simple_search_memory (this, start_addr, search_space_len,
11269 pattern, pattern_len, found_addrp);
11270 }
11271
11272 /* Make sure the remote is pointing at the right process. */
11273 set_general_process ();
11274
11275 /* Insert header. */
11276 i = snprintf (rs->buf, max_size,
11277 "qSearch:memory:%s;%s;",
11278 phex_nz (start_addr, addr_size),
11279 phex_nz (search_space_len, sizeof (search_space_len)));
11280 max_size -= (i + 1);
11281
11282 /* Escape as much data as fits into rs->buf. */
11283 escaped_pattern_len =
11284 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11285 &used_pattern_len, max_size);
11286
11287 /* Bail if the pattern is too large. */
11288 if (used_pattern_len != pattern_len)
11289 error (_("Pattern is too large to transmit to remote target."));
11290
11291 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11292 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11293 || packet_ok (rs->buf, packet) != PACKET_OK)
11294 {
11295 /* The request may not have worked because the command is not
11296 supported. If so, fall back to the simple way. */
11297 if (packet_config_support (packet) == PACKET_DISABLE)
11298 {
11299 return simple_search_memory (this, start_addr, search_space_len,
11300 pattern, pattern_len, found_addrp);
11301 }
11302 return -1;
11303 }
11304
11305 if (rs->buf[0] == '0')
11306 found = 0;
11307 else if (rs->buf[0] == '1')
11308 {
11309 found = 1;
11310 if (rs->buf[1] != ',')
11311 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11312 unpack_varlen_hex (rs->buf + 2, &found_addr);
11313 *found_addrp = found_addr;
11314 }
11315 else
11316 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11317
11318 return found;
11319 }
11320
11321 void
11322 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11323 {
11324 struct remote_state *rs = get_remote_state ();
11325 char *p = rs->buf;
11326
11327 if (!rs->remote_desc)
11328 error (_("remote rcmd is only available after target open"));
11329
11330 /* Send a NULL command across as an empty command. */
11331 if (command == NULL)
11332 command = "";
11333
11334 /* The query prefix. */
11335 strcpy (rs->buf, "qRcmd,");
11336 p = strchr (rs->buf, '\0');
11337
11338 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11339 > get_remote_packet_size ())
11340 error (_("\"monitor\" command ``%s'' is too long."), command);
11341
11342 /* Encode the actual command. */
11343 bin2hex ((const gdb_byte *) command, p, strlen (command));
11344
11345 if (putpkt (rs->buf) < 0)
11346 error (_("Communication problem with target."));
11347
11348 /* get/display the response */
11349 while (1)
11350 {
11351 char *buf;
11352
11353 /* XXX - see also remote_get_noisy_reply(). */
11354 QUIT; /* Allow user to bail out with ^C. */
11355 rs->buf[0] = '\0';
11356 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11357 {
11358 /* Timeout. Continue to (try to) read responses.
11359 This is better than stopping with an error, assuming the stub
11360 is still executing the (long) monitor command.
11361 If needed, the user can interrupt gdb using C-c, obtaining
11362 an effect similar to stop on timeout. */
11363 continue;
11364 }
11365 buf = rs->buf;
11366 if (buf[0] == '\0')
11367 error (_("Target does not support this command."));
11368 if (buf[0] == 'O' && buf[1] != 'K')
11369 {
11370 remote_console_output (buf + 1); /* 'O' message from stub. */
11371 continue;
11372 }
11373 if (strcmp (buf, "OK") == 0)
11374 break;
11375 if (strlen (buf) == 3 && buf[0] == 'E'
11376 && isdigit (buf[1]) && isdigit (buf[2]))
11377 {
11378 error (_("Protocol error with Rcmd"));
11379 }
11380 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11381 {
11382 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11383
11384 fputc_unfiltered (c, outbuf);
11385 }
11386 break;
11387 }
11388 }
11389
11390 std::vector<mem_region>
11391 remote_target::memory_map ()
11392 {
11393 std::vector<mem_region> result;
11394 gdb::optional<gdb::char_vector> text
11395 = target_read_stralloc (target_stack, TARGET_OBJECT_MEMORY_MAP, NULL);
11396
11397 if (text)
11398 result = parse_memory_map (text->data ());
11399
11400 return result;
11401 }
11402
11403 static void
11404 packet_command (const char *args, int from_tty)
11405 {
11406 remote_target *remote = get_current_remote_target ();
11407
11408 if (remote == nullptr)
11409 error (_("command can only be used with remote target"));
11410
11411 remote->packet_command (args, from_tty);
11412 }
11413
11414 void
11415 remote_target::packet_command (const char *args, int from_tty)
11416 {
11417 if (!args)
11418 error (_("remote-packet command requires packet text as argument"));
11419
11420 puts_filtered ("sending: ");
11421 print_packet (args);
11422 puts_filtered ("\n");
11423 putpkt (args);
11424
11425 remote_state *rs = get_remote_state ();
11426
11427 getpkt (&rs->buf, &rs->buf_size, 0);
11428 puts_filtered ("received: ");
11429 print_packet (rs->buf);
11430 puts_filtered ("\n");
11431 }
11432
11433 #if 0
11434 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11435
11436 static void display_thread_info (struct gdb_ext_thread_info *info);
11437
11438 static void threadset_test_cmd (char *cmd, int tty);
11439
11440 static void threadalive_test (char *cmd, int tty);
11441
11442 static void threadlist_test_cmd (char *cmd, int tty);
11443
11444 int get_and_display_threadinfo (threadref *ref);
11445
11446 static void threadinfo_test_cmd (char *cmd, int tty);
11447
11448 static int thread_display_step (threadref *ref, void *context);
11449
11450 static void threadlist_update_test_cmd (char *cmd, int tty);
11451
11452 static void init_remote_threadtests (void);
11453
11454 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11455
11456 static void
11457 threadset_test_cmd (const char *cmd, int tty)
11458 {
11459 int sample_thread = SAMPLE_THREAD;
11460
11461 printf_filtered (_("Remote threadset test\n"));
11462 set_general_thread (sample_thread);
11463 }
11464
11465
11466 static void
11467 threadalive_test (const char *cmd, int tty)
11468 {
11469 int sample_thread = SAMPLE_THREAD;
11470 int pid = ptid_get_pid (inferior_ptid);
11471 ptid_t ptid = ptid_build (pid, sample_thread, 0);
11472
11473 if (remote_thread_alive (ptid))
11474 printf_filtered ("PASS: Thread alive test\n");
11475 else
11476 printf_filtered ("FAIL: Thread alive test\n");
11477 }
11478
11479 void output_threadid (char *title, threadref *ref);
11480
11481 void
11482 output_threadid (char *title, threadref *ref)
11483 {
11484 char hexid[20];
11485
11486 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11487 hexid[16] = 0;
11488 printf_filtered ("%s %s\n", title, (&hexid[0]));
11489 }
11490
11491 static void
11492 threadlist_test_cmd (const char *cmd, int tty)
11493 {
11494 int startflag = 1;
11495 threadref nextthread;
11496 int done, result_count;
11497 threadref threadlist[3];
11498
11499 printf_filtered ("Remote Threadlist test\n");
11500 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11501 &result_count, &threadlist[0]))
11502 printf_filtered ("FAIL: threadlist test\n");
11503 else
11504 {
11505 threadref *scan = threadlist;
11506 threadref *limit = scan + result_count;
11507
11508 while (scan < limit)
11509 output_threadid (" thread ", scan++);
11510 }
11511 }
11512
11513 void
11514 display_thread_info (struct gdb_ext_thread_info *info)
11515 {
11516 output_threadid ("Threadid: ", &info->threadid);
11517 printf_filtered ("Name: %s\n ", info->shortname);
11518 printf_filtered ("State: %s\n", info->display);
11519 printf_filtered ("other: %s\n\n", info->more_display);
11520 }
11521
11522 int
11523 get_and_display_threadinfo (threadref *ref)
11524 {
11525 int result;
11526 int set;
11527 struct gdb_ext_thread_info threadinfo;
11528
11529 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11530 | TAG_MOREDISPLAY | TAG_DISPLAY;
11531 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11532 display_thread_info (&threadinfo);
11533 return result;
11534 }
11535
11536 static void
11537 threadinfo_test_cmd (const char *cmd, int tty)
11538 {
11539 int athread = SAMPLE_THREAD;
11540 threadref thread;
11541 int set;
11542
11543 int_to_threadref (&thread, athread);
11544 printf_filtered ("Remote Threadinfo test\n");
11545 if (!get_and_display_threadinfo (&thread))
11546 printf_filtered ("FAIL cannot get thread info\n");
11547 }
11548
11549 static int
11550 thread_display_step (threadref *ref, void *context)
11551 {
11552 /* output_threadid(" threadstep ",ref); *//* simple test */
11553 return get_and_display_threadinfo (ref);
11554 }
11555
11556 static void
11557 threadlist_update_test_cmd (const char *cmd, int tty)
11558 {
11559 printf_filtered ("Remote Threadlist update test\n");
11560 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11561 }
11562
11563 static void
11564 init_remote_threadtests (void)
11565 {
11566 add_com ("tlist", class_obscure, threadlist_test_cmd,
11567 _("Fetch and print the remote list of "
11568 "thread identifiers, one pkt only"));
11569 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11570 _("Fetch and display info about one thread"));
11571 add_com ("tset", class_obscure, threadset_test_cmd,
11572 _("Test setting to a different thread"));
11573 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11574 _("Iterate through updating all remote thread info"));
11575 add_com ("talive", class_obscure, threadalive_test,
11576 _(" Remote thread alive test "));
11577 }
11578
11579 #endif /* 0 */
11580
11581 /* Convert a thread ID to a string. Returns the string in a static
11582 buffer. */
11583
11584 const char *
11585 remote_target::pid_to_str (ptid_t ptid)
11586 {
11587 static char buf[64];
11588 struct remote_state *rs = get_remote_state ();
11589
11590 if (ptid_equal (ptid, null_ptid))
11591 return normal_pid_to_str (ptid);
11592 else if (ptid_is_pid (ptid))
11593 {
11594 /* Printing an inferior target id. */
11595
11596 /* When multi-process extensions are off, there's no way in the
11597 remote protocol to know the remote process id, if there's any
11598 at all. There's one exception --- when we're connected with
11599 target extended-remote, and we manually attached to a process
11600 with "attach PID". We don't record anywhere a flag that
11601 allows us to distinguish that case from the case of
11602 connecting with extended-remote and the stub already being
11603 attached to a process, and reporting yes to qAttached, hence
11604 no smart special casing here. */
11605 if (!remote_multi_process_p (rs))
11606 {
11607 xsnprintf (buf, sizeof buf, "Remote target");
11608 return buf;
11609 }
11610
11611 return normal_pid_to_str (ptid);
11612 }
11613 else
11614 {
11615 if (ptid_equal (magic_null_ptid, ptid))
11616 xsnprintf (buf, sizeof buf, "Thread <main>");
11617 else if (remote_multi_process_p (rs))
11618 if (ptid_get_lwp (ptid) == 0)
11619 return normal_pid_to_str (ptid);
11620 else
11621 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11622 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11623 else
11624 xsnprintf (buf, sizeof buf, "Thread %ld",
11625 ptid_get_lwp (ptid));
11626 return buf;
11627 }
11628 }
11629
11630 /* Get the address of the thread local variable in OBJFILE which is
11631 stored at OFFSET within the thread local storage for thread PTID. */
11632
11633 CORE_ADDR
11634 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11635 CORE_ADDR offset)
11636 {
11637 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11638 {
11639 struct remote_state *rs = get_remote_state ();
11640 char *p = rs->buf;
11641 char *endp = rs->buf + get_remote_packet_size ();
11642 enum packet_result result;
11643
11644 strcpy (p, "qGetTLSAddr:");
11645 p += strlen (p);
11646 p = write_ptid (p, endp, ptid);
11647 *p++ = ',';
11648 p += hexnumstr (p, offset);
11649 *p++ = ',';
11650 p += hexnumstr (p, lm);
11651 *p++ = '\0';
11652
11653 putpkt (rs->buf);
11654 getpkt (&rs->buf, &rs->buf_size, 0);
11655 result = packet_ok (rs->buf,
11656 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11657 if (result == PACKET_OK)
11658 {
11659 ULONGEST result;
11660
11661 unpack_varlen_hex (rs->buf, &result);
11662 return result;
11663 }
11664 else if (result == PACKET_UNKNOWN)
11665 throw_error (TLS_GENERIC_ERROR,
11666 _("Remote target doesn't support qGetTLSAddr packet"));
11667 else
11668 throw_error (TLS_GENERIC_ERROR,
11669 _("Remote target failed to process qGetTLSAddr request"));
11670 }
11671 else
11672 throw_error (TLS_GENERIC_ERROR,
11673 _("TLS not supported or disabled on this target"));
11674 /* Not reached. */
11675 return 0;
11676 }
11677
11678 /* Provide thread local base, i.e. Thread Information Block address.
11679 Returns 1 if ptid is found and thread_local_base is non zero. */
11680
11681 bool
11682 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11683 {
11684 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11685 {
11686 struct remote_state *rs = get_remote_state ();
11687 char *p = rs->buf;
11688 char *endp = rs->buf + get_remote_packet_size ();
11689 enum packet_result result;
11690
11691 strcpy (p, "qGetTIBAddr:");
11692 p += strlen (p);
11693 p = write_ptid (p, endp, ptid);
11694 *p++ = '\0';
11695
11696 putpkt (rs->buf);
11697 getpkt (&rs->buf, &rs->buf_size, 0);
11698 result = packet_ok (rs->buf,
11699 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11700 if (result == PACKET_OK)
11701 {
11702 ULONGEST result;
11703
11704 unpack_varlen_hex (rs->buf, &result);
11705 if (addr)
11706 *addr = (CORE_ADDR) result;
11707 return true;
11708 }
11709 else if (result == PACKET_UNKNOWN)
11710 error (_("Remote target doesn't support qGetTIBAddr packet"));
11711 else
11712 error (_("Remote target failed to process qGetTIBAddr request"));
11713 }
11714 else
11715 error (_("qGetTIBAddr not supported or disabled on this target"));
11716 /* Not reached. */
11717 return false;
11718 }
11719
11720 /* Support for inferring a target description based on the current
11721 architecture and the size of a 'g' packet. While the 'g' packet
11722 can have any size (since optional registers can be left off the
11723 end), some sizes are easily recognizable given knowledge of the
11724 approximate architecture. */
11725
11726 struct remote_g_packet_guess
11727 {
11728 int bytes;
11729 const struct target_desc *tdesc;
11730 };
11731 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11732 DEF_VEC_O(remote_g_packet_guess_s);
11733
11734 struct remote_g_packet_data
11735 {
11736 VEC(remote_g_packet_guess_s) *guesses;
11737 };
11738
11739 static struct gdbarch_data *remote_g_packet_data_handle;
11740
11741 static void *
11742 remote_g_packet_data_init (struct obstack *obstack)
11743 {
11744 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11745 }
11746
11747 void
11748 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11749 const struct target_desc *tdesc)
11750 {
11751 struct remote_g_packet_data *data
11752 = ((struct remote_g_packet_data *)
11753 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11754 struct remote_g_packet_guess new_guess, *guess;
11755 int ix;
11756
11757 gdb_assert (tdesc != NULL);
11758
11759 for (ix = 0;
11760 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11761 ix++)
11762 if (guess->bytes == bytes)
11763 internal_error (__FILE__, __LINE__,
11764 _("Duplicate g packet description added for size %d"),
11765 bytes);
11766
11767 new_guess.bytes = bytes;
11768 new_guess.tdesc = tdesc;
11769 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11770 }
11771
11772 /* Return 1 if remote_read_description would do anything on this target
11773 and architecture, 0 otherwise. */
11774
11775 static int
11776 remote_read_description_p (struct target_ops *target)
11777 {
11778 struct remote_g_packet_data *data
11779 = ((struct remote_g_packet_data *)
11780 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11781
11782 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11783 return 1;
11784
11785 return 0;
11786 }
11787
11788 const struct target_desc *
11789 remote_target::read_description ()
11790 {
11791 struct remote_g_packet_data *data
11792 = ((struct remote_g_packet_data *)
11793 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11794
11795 /* Do not try this during initial connection, when we do not know
11796 whether there is a running but stopped thread. */
11797 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11798 return beneath->read_description ();
11799
11800 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11801 {
11802 struct remote_g_packet_guess *guess;
11803 int ix;
11804 int bytes = send_g_packet ();
11805
11806 for (ix = 0;
11807 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11808 ix++)
11809 if (guess->bytes == bytes)
11810 return guess->tdesc;
11811
11812 /* We discard the g packet. A minor optimization would be to
11813 hold on to it, and fill the register cache once we have selected
11814 an architecture, but it's too tricky to do safely. */
11815 }
11816
11817 return beneath->read_description ();
11818 }
11819
11820 /* Remote file transfer support. This is host-initiated I/O, not
11821 target-initiated; for target-initiated, see remote-fileio.c. */
11822
11823 /* If *LEFT is at least the length of STRING, copy STRING to
11824 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11825 decrease *LEFT. Otherwise raise an error. */
11826
11827 static void
11828 remote_buffer_add_string (char **buffer, int *left, const char *string)
11829 {
11830 int len = strlen (string);
11831
11832 if (len > *left)
11833 error (_("Packet too long for target."));
11834
11835 memcpy (*buffer, string, len);
11836 *buffer += len;
11837 *left -= len;
11838
11839 /* NUL-terminate the buffer as a convenience, if there is
11840 room. */
11841 if (*left)
11842 **buffer = '\0';
11843 }
11844
11845 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11846 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11847 decrease *LEFT. Otherwise raise an error. */
11848
11849 static void
11850 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11851 int len)
11852 {
11853 if (2 * len > *left)
11854 error (_("Packet too long for target."));
11855
11856 bin2hex (bytes, *buffer, len);
11857 *buffer += 2 * len;
11858 *left -= 2 * len;
11859
11860 /* NUL-terminate the buffer as a convenience, if there is
11861 room. */
11862 if (*left)
11863 **buffer = '\0';
11864 }
11865
11866 /* If *LEFT is large enough, convert VALUE to hex and add it to
11867 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11868 decrease *LEFT. Otherwise raise an error. */
11869
11870 static void
11871 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11872 {
11873 int len = hexnumlen (value);
11874
11875 if (len > *left)
11876 error (_("Packet too long for target."));
11877
11878 hexnumstr (*buffer, value);
11879 *buffer += len;
11880 *left -= len;
11881
11882 /* NUL-terminate the buffer as a convenience, if there is
11883 room. */
11884 if (*left)
11885 **buffer = '\0';
11886 }
11887
11888 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11889 value, *REMOTE_ERRNO to the remote error number or zero if none
11890 was included, and *ATTACHMENT to point to the start of the annex
11891 if any. The length of the packet isn't needed here; there may
11892 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11893
11894 Return 0 if the packet could be parsed, -1 if it could not. If
11895 -1 is returned, the other variables may not be initialized. */
11896
11897 static int
11898 remote_hostio_parse_result (char *buffer, int *retcode,
11899 int *remote_errno, char **attachment)
11900 {
11901 char *p, *p2;
11902
11903 *remote_errno = 0;
11904 *attachment = NULL;
11905
11906 if (buffer[0] != 'F')
11907 return -1;
11908
11909 errno = 0;
11910 *retcode = strtol (&buffer[1], &p, 16);
11911 if (errno != 0 || p == &buffer[1])
11912 return -1;
11913
11914 /* Check for ",errno". */
11915 if (*p == ',')
11916 {
11917 errno = 0;
11918 *remote_errno = strtol (p + 1, &p2, 16);
11919 if (errno != 0 || p + 1 == p2)
11920 return -1;
11921 p = p2;
11922 }
11923
11924 /* Check for ";attachment". If there is no attachment, the
11925 packet should end here. */
11926 if (*p == ';')
11927 {
11928 *attachment = p + 1;
11929 return 0;
11930 }
11931 else if (*p == '\0')
11932 return 0;
11933 else
11934 return -1;
11935 }
11936
11937 /* Send a prepared I/O packet to the target and read its response.
11938 The prepared packet is in the global RS->BUF before this function
11939 is called, and the answer is there when we return.
11940
11941 COMMAND_BYTES is the length of the request to send, which may include
11942 binary data. WHICH_PACKET is the packet configuration to check
11943 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11944 is set to the error number and -1 is returned. Otherwise the value
11945 returned by the function is returned.
11946
11947 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11948 attachment is expected; an error will be reported if there's a
11949 mismatch. If one is found, *ATTACHMENT will be set to point into
11950 the packet buffer and *ATTACHMENT_LEN will be set to the
11951 attachment's length. */
11952
11953 int
11954 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11955 int *remote_errno, char **attachment,
11956 int *attachment_len)
11957 {
11958 struct remote_state *rs = get_remote_state ();
11959 int ret, bytes_read;
11960 char *attachment_tmp;
11961
11962 if (packet_support (which_packet) == PACKET_DISABLE)
11963 {
11964 *remote_errno = FILEIO_ENOSYS;
11965 return -1;
11966 }
11967
11968 putpkt_binary (rs->buf, command_bytes);
11969 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11970
11971 /* If it timed out, something is wrong. Don't try to parse the
11972 buffer. */
11973 if (bytes_read < 0)
11974 {
11975 *remote_errno = FILEIO_EINVAL;
11976 return -1;
11977 }
11978
11979 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11980 {
11981 case PACKET_ERROR:
11982 *remote_errno = FILEIO_EINVAL;
11983 return -1;
11984 case PACKET_UNKNOWN:
11985 *remote_errno = FILEIO_ENOSYS;
11986 return -1;
11987 case PACKET_OK:
11988 break;
11989 }
11990
11991 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11992 &attachment_tmp))
11993 {
11994 *remote_errno = FILEIO_EINVAL;
11995 return -1;
11996 }
11997
11998 /* Make sure we saw an attachment if and only if we expected one. */
11999 if ((attachment_tmp == NULL && attachment != NULL)
12000 || (attachment_tmp != NULL && attachment == NULL))
12001 {
12002 *remote_errno = FILEIO_EINVAL;
12003 return -1;
12004 }
12005
12006 /* If an attachment was found, it must point into the packet buffer;
12007 work out how many bytes there were. */
12008 if (attachment_tmp != NULL)
12009 {
12010 *attachment = attachment_tmp;
12011 *attachment_len = bytes_read - (*attachment - rs->buf);
12012 }
12013
12014 return ret;
12015 }
12016
12017 /* See declaration.h. */
12018
12019 void
12020 readahead_cache::invalidate ()
12021 {
12022 this->fd = -1;
12023 }
12024
12025 /* See declaration.h. */
12026
12027 void
12028 readahead_cache::invalidate_fd (int fd)
12029 {
12030 if (this->fd == fd)
12031 this->fd = -1;
12032 }
12033
12034 /* Set the filesystem remote_hostio functions that take FILENAME
12035 arguments will use. Return 0 on success, or -1 if an error
12036 occurs (and set *REMOTE_ERRNO). */
12037
12038 int
12039 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12040 int *remote_errno)
12041 {
12042 struct remote_state *rs = get_remote_state ();
12043 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12044 char *p = rs->buf;
12045 int left = get_remote_packet_size () - 1;
12046 char arg[9];
12047 int ret;
12048
12049 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12050 return 0;
12051
12052 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12053 return 0;
12054
12055 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12056
12057 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12058 remote_buffer_add_string (&p, &left, arg);
12059
12060 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
12061 remote_errno, NULL, NULL);
12062
12063 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12064 return 0;
12065
12066 if (ret == 0)
12067 rs->fs_pid = required_pid;
12068
12069 return ret;
12070 }
12071
12072 /* Implementation of to_fileio_open. */
12073
12074 int
12075 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12076 int flags, int mode, int warn_if_slow,
12077 int *remote_errno)
12078 {
12079 struct remote_state *rs = get_remote_state ();
12080 char *p = rs->buf;
12081 int left = get_remote_packet_size () - 1;
12082
12083 if (warn_if_slow)
12084 {
12085 static int warning_issued = 0;
12086
12087 printf_unfiltered (_("Reading %s from remote target...\n"),
12088 filename);
12089
12090 if (!warning_issued)
12091 {
12092 warning (_("File transfers from remote targets can be slow."
12093 " Use \"set sysroot\" to access files locally"
12094 " instead."));
12095 warning_issued = 1;
12096 }
12097 }
12098
12099 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12100 return -1;
12101
12102 remote_buffer_add_string (&p, &left, "vFile:open:");
12103
12104 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12105 strlen (filename));
12106 remote_buffer_add_string (&p, &left, ",");
12107
12108 remote_buffer_add_int (&p, &left, flags);
12109 remote_buffer_add_string (&p, &left, ",");
12110
12111 remote_buffer_add_int (&p, &left, mode);
12112
12113 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
12114 remote_errno, NULL, NULL);
12115 }
12116
12117 int
12118 remote_target::fileio_open (struct inferior *inf, const char *filename,
12119 int flags, int mode, int warn_if_slow,
12120 int *remote_errno)
12121 {
12122 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12123 remote_errno);
12124 }
12125
12126 /* Implementation of to_fileio_pwrite. */
12127
12128 int
12129 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12130 ULONGEST offset, int *remote_errno)
12131 {
12132 struct remote_state *rs = get_remote_state ();
12133 char *p = rs->buf;
12134 int left = get_remote_packet_size ();
12135 int out_len;
12136
12137 rs->readahead_cache.invalidate_fd (fd);
12138
12139 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12140
12141 remote_buffer_add_int (&p, &left, fd);
12142 remote_buffer_add_string (&p, &left, ",");
12143
12144 remote_buffer_add_int (&p, &left, offset);
12145 remote_buffer_add_string (&p, &left, ",");
12146
12147 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12148 get_remote_packet_size () - (p - rs->buf));
12149
12150 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
12151 remote_errno, NULL, NULL);
12152 }
12153
12154 int
12155 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12156 ULONGEST offset, int *remote_errno)
12157 {
12158 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12159 }
12160
12161 /* Helper for the implementation of to_fileio_pread. Read the file
12162 from the remote side with vFile:pread. */
12163
12164 int
12165 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12166 ULONGEST offset, int *remote_errno)
12167 {
12168 struct remote_state *rs = get_remote_state ();
12169 char *p = rs->buf;
12170 char *attachment;
12171 int left = get_remote_packet_size ();
12172 int ret, attachment_len;
12173 int read_len;
12174
12175 remote_buffer_add_string (&p, &left, "vFile:pread:");
12176
12177 remote_buffer_add_int (&p, &left, fd);
12178 remote_buffer_add_string (&p, &left, ",");
12179
12180 remote_buffer_add_int (&p, &left, len);
12181 remote_buffer_add_string (&p, &left, ",");
12182
12183 remote_buffer_add_int (&p, &left, offset);
12184
12185 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12186 remote_errno, &attachment,
12187 &attachment_len);
12188
12189 if (ret < 0)
12190 return ret;
12191
12192 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12193 read_buf, len);
12194 if (read_len != ret)
12195 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12196
12197 return ret;
12198 }
12199
12200 /* See declaration.h. */
12201
12202 int
12203 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12204 ULONGEST offset)
12205 {
12206 if (this->fd == fd
12207 && this->offset <= offset
12208 && offset < this->offset + this->bufsize)
12209 {
12210 ULONGEST max = this->offset + this->bufsize;
12211
12212 if (offset + len > max)
12213 len = max - offset;
12214
12215 memcpy (read_buf, this->buf + offset - this->offset, len);
12216 return len;
12217 }
12218
12219 return 0;
12220 }
12221
12222 /* Implementation of to_fileio_pread. */
12223
12224 int
12225 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12226 ULONGEST offset, int *remote_errno)
12227 {
12228 int ret;
12229 struct remote_state *rs = get_remote_state ();
12230 readahead_cache *cache = &rs->readahead_cache;
12231
12232 ret = cache->pread (fd, read_buf, len, offset);
12233 if (ret > 0)
12234 {
12235 cache->hit_count++;
12236
12237 if (remote_debug)
12238 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12239 pulongest (cache->hit_count));
12240 return ret;
12241 }
12242
12243 cache->miss_count++;
12244 if (remote_debug)
12245 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12246 pulongest (cache->miss_count));
12247
12248 cache->fd = fd;
12249 cache->offset = offset;
12250 cache->bufsize = get_remote_packet_size ();
12251 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12252
12253 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12254 cache->offset, remote_errno);
12255 if (ret <= 0)
12256 {
12257 cache->invalidate_fd (fd);
12258 return ret;
12259 }
12260
12261 cache->bufsize = ret;
12262 return cache->pread (fd, read_buf, len, offset);
12263 }
12264
12265 int
12266 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12267 ULONGEST offset, int *remote_errno)
12268 {
12269 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12270 }
12271
12272 /* Implementation of to_fileio_close. */
12273
12274 int
12275 remote_target::remote_hostio_close (int fd, int *remote_errno)
12276 {
12277 struct remote_state *rs = get_remote_state ();
12278 char *p = rs->buf;
12279 int left = get_remote_packet_size () - 1;
12280
12281 rs->readahead_cache.invalidate_fd (fd);
12282
12283 remote_buffer_add_string (&p, &left, "vFile:close:");
12284
12285 remote_buffer_add_int (&p, &left, fd);
12286
12287 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12288 remote_errno, NULL, NULL);
12289 }
12290
12291 int
12292 remote_target::fileio_close (int fd, int *remote_errno)
12293 {
12294 return remote_hostio_close (fd, remote_errno);
12295 }
12296
12297 /* Implementation of to_fileio_unlink. */
12298
12299 int
12300 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12301 int *remote_errno)
12302 {
12303 struct remote_state *rs = get_remote_state ();
12304 char *p = rs->buf;
12305 int left = get_remote_packet_size () - 1;
12306
12307 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12308 return -1;
12309
12310 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12311
12312 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12313 strlen (filename));
12314
12315 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12316 remote_errno, NULL, NULL);
12317 }
12318
12319 int
12320 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12321 int *remote_errno)
12322 {
12323 return remote_hostio_unlink (inf, filename, remote_errno);
12324 }
12325
12326 /* Implementation of to_fileio_readlink. */
12327
12328 gdb::optional<std::string>
12329 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12330 int *remote_errno)
12331 {
12332 struct remote_state *rs = get_remote_state ();
12333 char *p = rs->buf;
12334 char *attachment;
12335 int left = get_remote_packet_size ();
12336 int len, attachment_len;
12337 int read_len;
12338
12339 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12340 return {};
12341
12342 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12343
12344 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12345 strlen (filename));
12346
12347 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12348 remote_errno, &attachment,
12349 &attachment_len);
12350
12351 if (len < 0)
12352 return {};
12353
12354 std::string ret (len, '\0');
12355
12356 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12357 (gdb_byte *) &ret[0], len);
12358 if (read_len != len)
12359 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12360
12361 return ret;
12362 }
12363
12364 /* Implementation of to_fileio_fstat. */
12365
12366 int
12367 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12368 {
12369 struct remote_state *rs = get_remote_state ();
12370 char *p = rs->buf;
12371 int left = get_remote_packet_size ();
12372 int attachment_len, ret;
12373 char *attachment;
12374 struct fio_stat fst;
12375 int read_len;
12376
12377 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12378
12379 remote_buffer_add_int (&p, &left, fd);
12380
12381 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12382 remote_errno, &attachment,
12383 &attachment_len);
12384 if (ret < 0)
12385 {
12386 if (*remote_errno != FILEIO_ENOSYS)
12387 return ret;
12388
12389 /* Strictly we should return -1, ENOSYS here, but when
12390 "set sysroot remote:" was implemented in August 2008
12391 BFD's need for a stat function was sidestepped with
12392 this hack. This was not remedied until March 2015
12393 so we retain the previous behavior to avoid breaking
12394 compatibility.
12395
12396 Note that the memset is a March 2015 addition; older
12397 GDBs set st_size *and nothing else* so the structure
12398 would have garbage in all other fields. This might
12399 break something but retaining the previous behavior
12400 here would be just too wrong. */
12401
12402 memset (st, 0, sizeof (struct stat));
12403 st->st_size = INT_MAX;
12404 return 0;
12405 }
12406
12407 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12408 (gdb_byte *) &fst, sizeof (fst));
12409
12410 if (read_len != ret)
12411 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12412
12413 if (read_len != sizeof (fst))
12414 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12415 read_len, (int) sizeof (fst));
12416
12417 remote_fileio_to_host_stat (&fst, st);
12418
12419 return 0;
12420 }
12421
12422 /* Implementation of to_filesystem_is_local. */
12423
12424 bool
12425 remote_target::filesystem_is_local ()
12426 {
12427 /* Valgrind GDB presents itself as a remote target but works
12428 on the local filesystem: it does not implement remote get
12429 and users are not expected to set a sysroot. To handle
12430 this case we treat the remote filesystem as local if the
12431 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12432 does not support vFile:open. */
12433 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12434 {
12435 enum packet_support ps = packet_support (PACKET_vFile_open);
12436
12437 if (ps == PACKET_SUPPORT_UNKNOWN)
12438 {
12439 int fd, remote_errno;
12440
12441 /* Try opening a file to probe support. The supplied
12442 filename is irrelevant, we only care about whether
12443 the stub recognizes the packet or not. */
12444 fd = remote_hostio_open (NULL, "just probing",
12445 FILEIO_O_RDONLY, 0700, 0,
12446 &remote_errno);
12447
12448 if (fd >= 0)
12449 remote_hostio_close (fd, &remote_errno);
12450
12451 ps = packet_support (PACKET_vFile_open);
12452 }
12453
12454 if (ps == PACKET_DISABLE)
12455 {
12456 static int warning_issued = 0;
12457
12458 if (!warning_issued)
12459 {
12460 warning (_("remote target does not support file"
12461 " transfer, attempting to access files"
12462 " from local filesystem."));
12463 warning_issued = 1;
12464 }
12465
12466 return true;
12467 }
12468 }
12469
12470 return false;
12471 }
12472
12473 static int
12474 remote_fileio_errno_to_host (int errnum)
12475 {
12476 switch (errnum)
12477 {
12478 case FILEIO_EPERM:
12479 return EPERM;
12480 case FILEIO_ENOENT:
12481 return ENOENT;
12482 case FILEIO_EINTR:
12483 return EINTR;
12484 case FILEIO_EIO:
12485 return EIO;
12486 case FILEIO_EBADF:
12487 return EBADF;
12488 case FILEIO_EACCES:
12489 return EACCES;
12490 case FILEIO_EFAULT:
12491 return EFAULT;
12492 case FILEIO_EBUSY:
12493 return EBUSY;
12494 case FILEIO_EEXIST:
12495 return EEXIST;
12496 case FILEIO_ENODEV:
12497 return ENODEV;
12498 case FILEIO_ENOTDIR:
12499 return ENOTDIR;
12500 case FILEIO_EISDIR:
12501 return EISDIR;
12502 case FILEIO_EINVAL:
12503 return EINVAL;
12504 case FILEIO_ENFILE:
12505 return ENFILE;
12506 case FILEIO_EMFILE:
12507 return EMFILE;
12508 case FILEIO_EFBIG:
12509 return EFBIG;
12510 case FILEIO_ENOSPC:
12511 return ENOSPC;
12512 case FILEIO_ESPIPE:
12513 return ESPIPE;
12514 case FILEIO_EROFS:
12515 return EROFS;
12516 case FILEIO_ENOSYS:
12517 return ENOSYS;
12518 case FILEIO_ENAMETOOLONG:
12519 return ENAMETOOLONG;
12520 }
12521 return -1;
12522 }
12523
12524 static char *
12525 remote_hostio_error (int errnum)
12526 {
12527 int host_error = remote_fileio_errno_to_host (errnum);
12528
12529 if (host_error == -1)
12530 error (_("Unknown remote I/O error %d"), errnum);
12531 else
12532 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12533 }
12534
12535 /* A RAII wrapper around a remote file descriptor. */
12536
12537 class scoped_remote_fd
12538 {
12539 public:
12540 scoped_remote_fd (remote_target *remote, int fd)
12541 : m_remote (remote), m_fd (fd)
12542 {
12543 }
12544
12545 ~scoped_remote_fd ()
12546 {
12547 if (m_fd != -1)
12548 {
12549 try
12550 {
12551 int remote_errno;
12552 m_remote->remote_hostio_close (m_fd, &remote_errno);
12553 }
12554 catch (...)
12555 {
12556 /* Swallow exception before it escapes the dtor. If
12557 something goes wrong, likely the connection is gone,
12558 and there's nothing else that can be done. */
12559 }
12560 }
12561 }
12562
12563 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12564
12565 /* Release ownership of the file descriptor, and return it. */
12566 int release () noexcept
12567 {
12568 int fd = m_fd;
12569 m_fd = -1;
12570 return fd;
12571 }
12572
12573 /* Return the owned file descriptor. */
12574 int get () const noexcept
12575 {
12576 return m_fd;
12577 }
12578
12579 private:
12580 /* The remote target. */
12581 remote_target *m_remote;
12582
12583 /* The owned remote I/O file descriptor. */
12584 int m_fd;
12585 };
12586
12587 void
12588 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12589 {
12590 remote_target *remote = get_current_remote_target ();
12591
12592 if (remote == nullptr)
12593 error (_("command can only be used with remote target"));
12594
12595 remote->remote_file_put (local_file, remote_file, from_tty);
12596 }
12597
12598 void
12599 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12600 int from_tty)
12601 {
12602 int retcode, remote_errno, bytes, io_size;
12603 int bytes_in_buffer;
12604 int saw_eof;
12605 ULONGEST offset;
12606
12607 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12608 if (file == NULL)
12609 perror_with_name (local_file);
12610
12611 scoped_remote_fd fd
12612 (this, remote_hostio_open (NULL,
12613 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12614 | FILEIO_O_TRUNC),
12615 0700, 0, &remote_errno));
12616 if (fd.get () == -1)
12617 remote_hostio_error (remote_errno);
12618
12619 /* Send up to this many bytes at once. They won't all fit in the
12620 remote packet limit, so we'll transfer slightly fewer. */
12621 io_size = get_remote_packet_size ();
12622 gdb::byte_vector buffer (io_size);
12623
12624 bytes_in_buffer = 0;
12625 saw_eof = 0;
12626 offset = 0;
12627 while (bytes_in_buffer || !saw_eof)
12628 {
12629 if (!saw_eof)
12630 {
12631 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12632 io_size - bytes_in_buffer,
12633 file.get ());
12634 if (bytes == 0)
12635 {
12636 if (ferror (file.get ()))
12637 error (_("Error reading %s."), local_file);
12638 else
12639 {
12640 /* EOF. Unless there is something still in the
12641 buffer from the last iteration, we are done. */
12642 saw_eof = 1;
12643 if (bytes_in_buffer == 0)
12644 break;
12645 }
12646 }
12647 }
12648 else
12649 bytes = 0;
12650
12651 bytes += bytes_in_buffer;
12652 bytes_in_buffer = 0;
12653
12654 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12655 offset, &remote_errno);
12656
12657 if (retcode < 0)
12658 remote_hostio_error (remote_errno);
12659 else if (retcode == 0)
12660 error (_("Remote write of %d bytes returned 0!"), bytes);
12661 else if (retcode < bytes)
12662 {
12663 /* Short write. Save the rest of the read data for the next
12664 write. */
12665 bytes_in_buffer = bytes - retcode;
12666 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12667 }
12668
12669 offset += retcode;
12670 }
12671
12672 if (remote_hostio_close (fd.release (), &remote_errno))
12673 remote_hostio_error (remote_errno);
12674
12675 if (from_tty)
12676 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12677 }
12678
12679 void
12680 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12681 {
12682 remote_target *remote = get_current_remote_target ();
12683
12684 if (remote == nullptr)
12685 error (_("command can only be used with remote target"));
12686
12687 remote->remote_file_get (remote_file, local_file, from_tty);
12688 }
12689
12690 void
12691 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12692 int from_tty)
12693 {
12694 int remote_errno, bytes, io_size;
12695 ULONGEST offset;
12696
12697 scoped_remote_fd fd
12698 (this, remote_hostio_open (NULL,
12699 remote_file, FILEIO_O_RDONLY, 0, 0,
12700 &remote_errno));
12701 if (fd.get () == -1)
12702 remote_hostio_error (remote_errno);
12703
12704 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12705 if (file == NULL)
12706 perror_with_name (local_file);
12707
12708 /* Send up to this many bytes at once. They won't all fit in the
12709 remote packet limit, so we'll transfer slightly fewer. */
12710 io_size = get_remote_packet_size ();
12711 gdb::byte_vector buffer (io_size);
12712
12713 offset = 0;
12714 while (1)
12715 {
12716 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12717 &remote_errno);
12718 if (bytes == 0)
12719 /* Success, but no bytes, means end-of-file. */
12720 break;
12721 if (bytes == -1)
12722 remote_hostio_error (remote_errno);
12723
12724 offset += bytes;
12725
12726 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12727 if (bytes == 0)
12728 perror_with_name (local_file);
12729 }
12730
12731 if (remote_hostio_close (fd.release (), &remote_errno))
12732 remote_hostio_error (remote_errno);
12733
12734 if (from_tty)
12735 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12736 }
12737
12738 void
12739 remote_file_delete (const char *remote_file, int from_tty)
12740 {
12741 remote_target *remote = get_current_remote_target ();
12742
12743 if (remote == nullptr)
12744 error (_("command can only be used with remote target"));
12745
12746 remote->remote_file_delete (remote_file, from_tty);
12747 }
12748
12749 void
12750 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12751 {
12752 int retcode, remote_errno;
12753
12754 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12755 if (retcode == -1)
12756 remote_hostio_error (remote_errno);
12757
12758 if (from_tty)
12759 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12760 }
12761
12762 static void
12763 remote_put_command (const char *args, int from_tty)
12764 {
12765 if (args == NULL)
12766 error_no_arg (_("file to put"));
12767
12768 gdb_argv argv (args);
12769 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12770 error (_("Invalid parameters to remote put"));
12771
12772 remote_file_put (argv[0], argv[1], from_tty);
12773 }
12774
12775 static void
12776 remote_get_command (const char *args, int from_tty)
12777 {
12778 if (args == NULL)
12779 error_no_arg (_("file to get"));
12780
12781 gdb_argv argv (args);
12782 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12783 error (_("Invalid parameters to remote get"));
12784
12785 remote_file_get (argv[0], argv[1], from_tty);
12786 }
12787
12788 static void
12789 remote_delete_command (const char *args, int from_tty)
12790 {
12791 if (args == NULL)
12792 error_no_arg (_("file to delete"));
12793
12794 gdb_argv argv (args);
12795 if (argv[0] == NULL || argv[1] != NULL)
12796 error (_("Invalid parameters to remote delete"));
12797
12798 remote_file_delete (argv[0], from_tty);
12799 }
12800
12801 static void
12802 remote_command (const char *args, int from_tty)
12803 {
12804 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12805 }
12806
12807 bool
12808 remote_target::can_execute_reverse ()
12809 {
12810 if (packet_support (PACKET_bs) == PACKET_ENABLE
12811 || packet_support (PACKET_bc) == PACKET_ENABLE)
12812 return true;
12813 else
12814 return false;
12815 }
12816
12817 bool
12818 remote_target::supports_non_stop ()
12819 {
12820 return true;
12821 }
12822
12823 bool
12824 remote_target::supports_disable_randomization ()
12825 {
12826 /* Only supported in extended mode. */
12827 return false;
12828 }
12829
12830 bool
12831 remote_target::supports_multi_process ()
12832 {
12833 struct remote_state *rs = get_remote_state ();
12834
12835 return remote_multi_process_p (rs);
12836 }
12837
12838 static int
12839 remote_supports_cond_tracepoints ()
12840 {
12841 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12842 }
12843
12844 bool
12845 remote_target::supports_evaluation_of_breakpoint_conditions ()
12846 {
12847 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12848 }
12849
12850 static int
12851 remote_supports_fast_tracepoints ()
12852 {
12853 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12854 }
12855
12856 static int
12857 remote_supports_static_tracepoints ()
12858 {
12859 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12860 }
12861
12862 static int
12863 remote_supports_install_in_trace ()
12864 {
12865 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12866 }
12867
12868 bool
12869 remote_target::supports_enable_disable_tracepoint ()
12870 {
12871 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12872 == PACKET_ENABLE);
12873 }
12874
12875 bool
12876 remote_target::supports_string_tracing ()
12877 {
12878 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12879 }
12880
12881 bool
12882 remote_target::can_run_breakpoint_commands ()
12883 {
12884 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12885 }
12886
12887 void
12888 remote_target::trace_init ()
12889 {
12890 struct remote_state *rs = get_remote_state ();
12891
12892 putpkt ("QTinit");
12893 remote_get_noisy_reply ();
12894 if (strcmp (rs->buf, "OK") != 0)
12895 error (_("Target does not support this command."));
12896 }
12897
12898 /* Recursive routine to walk through command list including loops, and
12899 download packets for each command. */
12900
12901 void
12902 remote_target::remote_download_command_source (int num, ULONGEST addr,
12903 struct command_line *cmds)
12904 {
12905 struct remote_state *rs = get_remote_state ();
12906 struct command_line *cmd;
12907
12908 for (cmd = cmds; cmd; cmd = cmd->next)
12909 {
12910 QUIT; /* Allow user to bail out with ^C. */
12911 strcpy (rs->buf, "QTDPsrc:");
12912 encode_source_string (num, addr, "cmd", cmd->line,
12913 rs->buf + strlen (rs->buf),
12914 rs->buf_size - strlen (rs->buf));
12915 putpkt (rs->buf);
12916 remote_get_noisy_reply ();
12917 if (strcmp (rs->buf, "OK"))
12918 warning (_("Target does not support source download."));
12919
12920 if (cmd->control_type == while_control
12921 || cmd->control_type == while_stepping_control)
12922 {
12923 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12924
12925 QUIT; /* Allow user to bail out with ^C. */
12926 strcpy (rs->buf, "QTDPsrc:");
12927 encode_source_string (num, addr, "cmd", "end",
12928 rs->buf + strlen (rs->buf),
12929 rs->buf_size - strlen (rs->buf));
12930 putpkt (rs->buf);
12931 remote_get_noisy_reply ();
12932 if (strcmp (rs->buf, "OK"))
12933 warning (_("Target does not support source download."));
12934 }
12935 }
12936 }
12937
12938 void
12939 remote_target::download_tracepoint (struct bp_location *loc)
12940 {
12941 #define BUF_SIZE 2048
12942
12943 CORE_ADDR tpaddr;
12944 char addrbuf[40];
12945 char buf[BUF_SIZE];
12946 std::vector<std::string> tdp_actions;
12947 std::vector<std::string> stepping_actions;
12948 char *pkt;
12949 struct breakpoint *b = loc->owner;
12950 struct tracepoint *t = (struct tracepoint *) b;
12951 struct remote_state *rs = get_remote_state ();
12952
12953 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12954
12955 tpaddr = loc->address;
12956 sprintf_vma (addrbuf, tpaddr);
12957 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12958 addrbuf, /* address */
12959 (b->enable_state == bp_enabled ? 'E' : 'D'),
12960 t->step_count, t->pass_count);
12961 /* Fast tracepoints are mostly handled by the target, but we can
12962 tell the target how big of an instruction block should be moved
12963 around. */
12964 if (b->type == bp_fast_tracepoint)
12965 {
12966 /* Only test for support at download time; we may not know
12967 target capabilities at definition time. */
12968 if (remote_supports_fast_tracepoints ())
12969 {
12970 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12971 NULL))
12972 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12973 gdb_insn_length (loc->gdbarch, tpaddr));
12974 else
12975 /* If it passed validation at definition but fails now,
12976 something is very wrong. */
12977 internal_error (__FILE__, __LINE__,
12978 _("Fast tracepoint not "
12979 "valid during download"));
12980 }
12981 else
12982 /* Fast tracepoints are functionally identical to regular
12983 tracepoints, so don't take lack of support as a reason to
12984 give up on the trace run. */
12985 warning (_("Target does not support fast tracepoints, "
12986 "downloading %d as regular tracepoint"), b->number);
12987 }
12988 else if (b->type == bp_static_tracepoint)
12989 {
12990 /* Only test for support at download time; we may not know
12991 target capabilities at definition time. */
12992 if (remote_supports_static_tracepoints ())
12993 {
12994 struct static_tracepoint_marker marker;
12995
12996 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12997 strcat (buf, ":S");
12998 else
12999 error (_("Static tracepoint not valid during download"));
13000 }
13001 else
13002 /* Fast tracepoints are functionally identical to regular
13003 tracepoints, so don't take lack of support as a reason
13004 to give up on the trace run. */
13005 error (_("Target does not support static tracepoints"));
13006 }
13007 /* If the tracepoint has a conditional, make it into an agent
13008 expression and append to the definition. */
13009 if (loc->cond)
13010 {
13011 /* Only test support at download time, we may not know target
13012 capabilities at definition time. */
13013 if (remote_supports_cond_tracepoints ())
13014 {
13015 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
13016 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
13017 aexpr->len);
13018 pkt = buf + strlen (buf);
13019 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13020 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13021 *pkt = '\0';
13022 }
13023 else
13024 warning (_("Target does not support conditional tracepoints, "
13025 "ignoring tp %d cond"), b->number);
13026 }
13027
13028 if (b->commands || *default_collect)
13029 strcat (buf, "-");
13030 putpkt (buf);
13031 remote_get_noisy_reply ();
13032 if (strcmp (rs->buf, "OK"))
13033 error (_("Target does not support tracepoints."));
13034
13035 /* do_single_steps (t); */
13036 for (auto action_it = tdp_actions.begin ();
13037 action_it != tdp_actions.end (); action_it++)
13038 {
13039 QUIT; /* Allow user to bail out with ^C. */
13040
13041 bool has_more = (action_it != tdp_actions.end ()
13042 || !stepping_actions.empty ());
13043
13044 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
13045 b->number, addrbuf, /* address */
13046 action_it->c_str (),
13047 has_more ? '-' : 0);
13048 putpkt (buf);
13049 remote_get_noisy_reply ();
13050 if (strcmp (rs->buf, "OK"))
13051 error (_("Error on target while setting tracepoints."));
13052 }
13053
13054 for (auto action_it = stepping_actions.begin ();
13055 action_it != stepping_actions.end (); action_it++)
13056 {
13057 QUIT; /* Allow user to bail out with ^C. */
13058
13059 bool is_first = action_it == stepping_actions.begin ();
13060 bool has_more = action_it != stepping_actions.end ();
13061
13062 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
13063 b->number, addrbuf, /* address */
13064 is_first ? "S" : "",
13065 action_it->c_str (),
13066 has_more ? "-" : "");
13067 putpkt (buf);
13068 remote_get_noisy_reply ();
13069 if (strcmp (rs->buf, "OK"))
13070 error (_("Error on target while setting tracepoints."));
13071 }
13072
13073 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13074 {
13075 if (b->location != NULL)
13076 {
13077 strcpy (buf, "QTDPsrc:");
13078 encode_source_string (b->number, loc->address, "at",
13079 event_location_to_string (b->location.get ()),
13080 buf + strlen (buf), 2048 - strlen (buf));
13081 putpkt (buf);
13082 remote_get_noisy_reply ();
13083 if (strcmp (rs->buf, "OK"))
13084 warning (_("Target does not support source download."));
13085 }
13086 if (b->cond_string)
13087 {
13088 strcpy (buf, "QTDPsrc:");
13089 encode_source_string (b->number, loc->address,
13090 "cond", b->cond_string, buf + strlen (buf),
13091 2048 - strlen (buf));
13092 putpkt (buf);
13093 remote_get_noisy_reply ();
13094 if (strcmp (rs->buf, "OK"))
13095 warning (_("Target does not support source download."));
13096 }
13097 remote_download_command_source (b->number, loc->address,
13098 breakpoint_commands (b));
13099 }
13100 }
13101
13102 bool
13103 remote_target::can_download_tracepoint ()
13104 {
13105 struct remote_state *rs = get_remote_state ();
13106 struct trace_status *ts;
13107 int status;
13108
13109 /* Don't try to install tracepoints until we've relocated our
13110 symbols, and fetched and merged the target's tracepoint list with
13111 ours. */
13112 if (rs->starting_up)
13113 return false;
13114
13115 ts = current_trace_status ();
13116 status = get_trace_status (ts);
13117
13118 if (status == -1 || !ts->running_known || !ts->running)
13119 return false;
13120
13121 /* If we are in a tracing experiment, but remote stub doesn't support
13122 installing tracepoint in trace, we have to return. */
13123 if (!remote_supports_install_in_trace ())
13124 return false;
13125
13126 return true;
13127 }
13128
13129
13130 void
13131 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13132 {
13133 struct remote_state *rs = get_remote_state ();
13134 char *p;
13135
13136 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13137 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13138 tsv.builtin);
13139 p = rs->buf + strlen (rs->buf);
13140 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13141 error (_("Trace state variable name too long for tsv definition packet"));
13142 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13143 *p++ = '\0';
13144 putpkt (rs->buf);
13145 remote_get_noisy_reply ();
13146 if (*rs->buf == '\0')
13147 error (_("Target does not support this command."));
13148 if (strcmp (rs->buf, "OK") != 0)
13149 error (_("Error on target while downloading trace state variable."));
13150 }
13151
13152 void
13153 remote_target::enable_tracepoint (struct bp_location *location)
13154 {
13155 struct remote_state *rs = get_remote_state ();
13156 char addr_buf[40];
13157
13158 sprintf_vma (addr_buf, location->address);
13159 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13160 location->owner->number, addr_buf);
13161 putpkt (rs->buf);
13162 remote_get_noisy_reply ();
13163 if (*rs->buf == '\0')
13164 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13165 if (strcmp (rs->buf, "OK") != 0)
13166 error (_("Error on target while enabling tracepoint."));
13167 }
13168
13169 void
13170 remote_target::disable_tracepoint (struct bp_location *location)
13171 {
13172 struct remote_state *rs = get_remote_state ();
13173 char addr_buf[40];
13174
13175 sprintf_vma (addr_buf, location->address);
13176 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13177 location->owner->number, addr_buf);
13178 putpkt (rs->buf);
13179 remote_get_noisy_reply ();
13180 if (*rs->buf == '\0')
13181 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13182 if (strcmp (rs->buf, "OK") != 0)
13183 error (_("Error on target while disabling tracepoint."));
13184 }
13185
13186 void
13187 remote_target::trace_set_readonly_regions ()
13188 {
13189 asection *s;
13190 bfd *abfd = NULL;
13191 bfd_size_type size;
13192 bfd_vma vma;
13193 int anysecs = 0;
13194 int offset = 0;
13195
13196 if (!exec_bfd)
13197 return; /* No information to give. */
13198
13199 struct remote_state *rs = get_remote_state ();
13200
13201 strcpy (rs->buf, "QTro");
13202 offset = strlen (rs->buf);
13203 for (s = exec_bfd->sections; s; s = s->next)
13204 {
13205 char tmp1[40], tmp2[40];
13206 int sec_length;
13207
13208 if ((s->flags & SEC_LOAD) == 0 ||
13209 /* (s->flags & SEC_CODE) == 0 || */
13210 (s->flags & SEC_READONLY) == 0)
13211 continue;
13212
13213 anysecs = 1;
13214 vma = bfd_get_section_vma (abfd, s);
13215 size = bfd_get_section_size (s);
13216 sprintf_vma (tmp1, vma);
13217 sprintf_vma (tmp2, vma + size);
13218 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13219 if (offset + sec_length + 1 > rs->buf_size)
13220 {
13221 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13222 warning (_("\
13223 Too many sections for read-only sections definition packet."));
13224 break;
13225 }
13226 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13227 tmp1, tmp2);
13228 offset += sec_length;
13229 }
13230 if (anysecs)
13231 {
13232 putpkt (rs->buf);
13233 getpkt (&rs->buf, &rs->buf_size, 0);
13234 }
13235 }
13236
13237 void
13238 remote_target::trace_start ()
13239 {
13240 struct remote_state *rs = get_remote_state ();
13241
13242 putpkt ("QTStart");
13243 remote_get_noisy_reply ();
13244 if (*rs->buf == '\0')
13245 error (_("Target does not support this command."));
13246 if (strcmp (rs->buf, "OK") != 0)
13247 error (_("Bogus reply from target: %s"), rs->buf);
13248 }
13249
13250 int
13251 remote_target::get_trace_status (struct trace_status *ts)
13252 {
13253 /* Initialize it just to avoid a GCC false warning. */
13254 char *p = NULL;
13255 /* FIXME we need to get register block size some other way. */
13256 extern int trace_regblock_size;
13257 enum packet_result result;
13258 struct remote_state *rs = get_remote_state ();
13259
13260 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13261 return -1;
13262
13263 trace_regblock_size
13264 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13265
13266 putpkt ("qTStatus");
13267
13268 TRY
13269 {
13270 p = remote_get_noisy_reply ();
13271 }
13272 CATCH (ex, RETURN_MASK_ERROR)
13273 {
13274 if (ex.error != TARGET_CLOSE_ERROR)
13275 {
13276 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13277 return -1;
13278 }
13279 throw_exception (ex);
13280 }
13281 END_CATCH
13282
13283 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13284
13285 /* If the remote target doesn't do tracing, flag it. */
13286 if (result == PACKET_UNKNOWN)
13287 return -1;
13288
13289 /* We're working with a live target. */
13290 ts->filename = NULL;
13291
13292 if (*p++ != 'T')
13293 error (_("Bogus trace status reply from target: %s"), rs->buf);
13294
13295 /* Function 'parse_trace_status' sets default value of each field of
13296 'ts' at first, so we don't have to do it here. */
13297 parse_trace_status (p, ts);
13298
13299 return ts->running;
13300 }
13301
13302 void
13303 remote_target::get_tracepoint_status (struct breakpoint *bp,
13304 struct uploaded_tp *utp)
13305 {
13306 struct remote_state *rs = get_remote_state ();
13307 char *reply;
13308 struct bp_location *loc;
13309 struct tracepoint *tp = (struct tracepoint *) bp;
13310 size_t size = get_remote_packet_size ();
13311
13312 if (tp)
13313 {
13314 tp->hit_count = 0;
13315 tp->traceframe_usage = 0;
13316 for (loc = tp->loc; loc; loc = loc->next)
13317 {
13318 /* If the tracepoint was never downloaded, don't go asking for
13319 any status. */
13320 if (tp->number_on_target == 0)
13321 continue;
13322 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13323 phex_nz (loc->address, 0));
13324 putpkt (rs->buf);
13325 reply = remote_get_noisy_reply ();
13326 if (reply && *reply)
13327 {
13328 if (*reply == 'V')
13329 parse_tracepoint_status (reply + 1, bp, utp);
13330 }
13331 }
13332 }
13333 else if (utp)
13334 {
13335 utp->hit_count = 0;
13336 utp->traceframe_usage = 0;
13337 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13338 phex_nz (utp->addr, 0));
13339 putpkt (rs->buf);
13340 reply = remote_get_noisy_reply ();
13341 if (reply && *reply)
13342 {
13343 if (*reply == 'V')
13344 parse_tracepoint_status (reply + 1, bp, utp);
13345 }
13346 }
13347 }
13348
13349 void
13350 remote_target::trace_stop ()
13351 {
13352 struct remote_state *rs = get_remote_state ();
13353
13354 putpkt ("QTStop");
13355 remote_get_noisy_reply ();
13356 if (*rs->buf == '\0')
13357 error (_("Target does not support this command."));
13358 if (strcmp (rs->buf, "OK") != 0)
13359 error (_("Bogus reply from target: %s"), rs->buf);
13360 }
13361
13362 int
13363 remote_target::trace_find (enum trace_find_type type, int num,
13364 CORE_ADDR addr1, CORE_ADDR addr2,
13365 int *tpp)
13366 {
13367 struct remote_state *rs = get_remote_state ();
13368 char *endbuf = rs->buf + get_remote_packet_size ();
13369 char *p, *reply;
13370 int target_frameno = -1, target_tracept = -1;
13371
13372 /* Lookups other than by absolute frame number depend on the current
13373 trace selected, so make sure it is correct on the remote end
13374 first. */
13375 if (type != tfind_number)
13376 set_remote_traceframe ();
13377
13378 p = rs->buf;
13379 strcpy (p, "QTFrame:");
13380 p = strchr (p, '\0');
13381 switch (type)
13382 {
13383 case tfind_number:
13384 xsnprintf (p, endbuf - p, "%x", num);
13385 break;
13386 case tfind_pc:
13387 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13388 break;
13389 case tfind_tp:
13390 xsnprintf (p, endbuf - p, "tdp:%x", num);
13391 break;
13392 case tfind_range:
13393 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13394 phex_nz (addr2, 0));
13395 break;
13396 case tfind_outside:
13397 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13398 phex_nz (addr2, 0));
13399 break;
13400 default:
13401 error (_("Unknown trace find type %d"), type);
13402 }
13403
13404 putpkt (rs->buf);
13405 reply = remote_get_noisy_reply ();
13406 if (*reply == '\0')
13407 error (_("Target does not support this command."));
13408
13409 while (reply && *reply)
13410 switch (*reply)
13411 {
13412 case 'F':
13413 p = ++reply;
13414 target_frameno = (int) strtol (p, &reply, 16);
13415 if (reply == p)
13416 error (_("Unable to parse trace frame number"));
13417 /* Don't update our remote traceframe number cache on failure
13418 to select a remote traceframe. */
13419 if (target_frameno == -1)
13420 return -1;
13421 break;
13422 case 'T':
13423 p = ++reply;
13424 target_tracept = (int) strtol (p, &reply, 16);
13425 if (reply == p)
13426 error (_("Unable to parse tracepoint number"));
13427 break;
13428 case 'O': /* "OK"? */
13429 if (reply[1] == 'K' && reply[2] == '\0')
13430 reply += 2;
13431 else
13432 error (_("Bogus reply from target: %s"), reply);
13433 break;
13434 default:
13435 error (_("Bogus reply from target: %s"), reply);
13436 }
13437 if (tpp)
13438 *tpp = target_tracept;
13439
13440 rs->remote_traceframe_number = target_frameno;
13441 return target_frameno;
13442 }
13443
13444 bool
13445 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13446 {
13447 struct remote_state *rs = get_remote_state ();
13448 char *reply;
13449 ULONGEST uval;
13450
13451 set_remote_traceframe ();
13452
13453 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13454 putpkt (rs->buf);
13455 reply = remote_get_noisy_reply ();
13456 if (reply && *reply)
13457 {
13458 if (*reply == 'V')
13459 {
13460 unpack_varlen_hex (reply + 1, &uval);
13461 *val = (LONGEST) uval;
13462 return true;
13463 }
13464 }
13465 return false;
13466 }
13467
13468 int
13469 remote_target::save_trace_data (const char *filename)
13470 {
13471 struct remote_state *rs = get_remote_state ();
13472 char *p, *reply;
13473
13474 p = rs->buf;
13475 strcpy (p, "QTSave:");
13476 p += strlen (p);
13477 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13478 error (_("Remote file name too long for trace save packet"));
13479 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13480 *p++ = '\0';
13481 putpkt (rs->buf);
13482 reply = remote_get_noisy_reply ();
13483 if (*reply == '\0')
13484 error (_("Target does not support this command."));
13485 if (strcmp (reply, "OK") != 0)
13486 error (_("Bogus reply from target: %s"), reply);
13487 return 0;
13488 }
13489
13490 /* This is basically a memory transfer, but needs to be its own packet
13491 because we don't know how the target actually organizes its trace
13492 memory, plus we want to be able to ask for as much as possible, but
13493 not be unhappy if we don't get as much as we ask for. */
13494
13495 LONGEST
13496 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13497 {
13498 struct remote_state *rs = get_remote_state ();
13499 char *reply;
13500 char *p;
13501 int rslt;
13502
13503 p = rs->buf;
13504 strcpy (p, "qTBuffer:");
13505 p += strlen (p);
13506 p += hexnumstr (p, offset);
13507 *p++ = ',';
13508 p += hexnumstr (p, len);
13509 *p++ = '\0';
13510
13511 putpkt (rs->buf);
13512 reply = remote_get_noisy_reply ();
13513 if (reply && *reply)
13514 {
13515 /* 'l' by itself means we're at the end of the buffer and
13516 there is nothing more to get. */
13517 if (*reply == 'l')
13518 return 0;
13519
13520 /* Convert the reply into binary. Limit the number of bytes to
13521 convert according to our passed-in buffer size, rather than
13522 what was returned in the packet; if the target is
13523 unexpectedly generous and gives us a bigger reply than we
13524 asked for, we don't want to crash. */
13525 rslt = hex2bin (reply, buf, len);
13526 return rslt;
13527 }
13528
13529 /* Something went wrong, flag as an error. */
13530 return -1;
13531 }
13532
13533 void
13534 remote_target::set_disconnected_tracing (int val)
13535 {
13536 struct remote_state *rs = get_remote_state ();
13537
13538 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13539 {
13540 char *reply;
13541
13542 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13543 putpkt (rs->buf);
13544 reply = remote_get_noisy_reply ();
13545 if (*reply == '\0')
13546 error (_("Target does not support this command."));
13547 if (strcmp (reply, "OK") != 0)
13548 error (_("Bogus reply from target: %s"), reply);
13549 }
13550 else if (val)
13551 warning (_("Target does not support disconnected tracing."));
13552 }
13553
13554 int
13555 remote_target::core_of_thread (ptid_t ptid)
13556 {
13557 struct thread_info *info = find_thread_ptid (ptid);
13558
13559 if (info != NULL && info->priv != NULL)
13560 return get_remote_thread_info (info)->core;
13561
13562 return -1;
13563 }
13564
13565 void
13566 remote_target::set_circular_trace_buffer (int val)
13567 {
13568 struct remote_state *rs = get_remote_state ();
13569 char *reply;
13570
13571 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13572 putpkt (rs->buf);
13573 reply = remote_get_noisy_reply ();
13574 if (*reply == '\0')
13575 error (_("Target does not support this command."));
13576 if (strcmp (reply, "OK") != 0)
13577 error (_("Bogus reply from target: %s"), reply);
13578 }
13579
13580 traceframe_info_up
13581 remote_target::traceframe_info ()
13582 {
13583 gdb::optional<gdb::char_vector> text
13584 = target_read_stralloc (target_stack, TARGET_OBJECT_TRACEFRAME_INFO,
13585 NULL);
13586 if (text)
13587 return parse_traceframe_info (text->data ());
13588
13589 return NULL;
13590 }
13591
13592 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13593 instruction on which a fast tracepoint may be placed. Returns -1
13594 if the packet is not supported, and 0 if the minimum instruction
13595 length is unknown. */
13596
13597 int
13598 remote_target::get_min_fast_tracepoint_insn_len ()
13599 {
13600 struct remote_state *rs = get_remote_state ();
13601 char *reply;
13602
13603 /* If we're not debugging a process yet, the IPA can't be
13604 loaded. */
13605 if (!target_has_execution)
13606 return 0;
13607
13608 /* Make sure the remote is pointing at the right process. */
13609 set_general_process ();
13610
13611 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13612 putpkt (rs->buf);
13613 reply = remote_get_noisy_reply ();
13614 if (*reply == '\0')
13615 return -1;
13616 else
13617 {
13618 ULONGEST min_insn_len;
13619
13620 unpack_varlen_hex (reply, &min_insn_len);
13621
13622 return (int) min_insn_len;
13623 }
13624 }
13625
13626 void
13627 remote_target::set_trace_buffer_size (LONGEST val)
13628 {
13629 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13630 {
13631 struct remote_state *rs = get_remote_state ();
13632 char *buf = rs->buf;
13633 char *endbuf = rs->buf + get_remote_packet_size ();
13634 enum packet_result result;
13635
13636 gdb_assert (val >= 0 || val == -1);
13637 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13638 /* Send -1 as literal "-1" to avoid host size dependency. */
13639 if (val < 0)
13640 {
13641 *buf++ = '-';
13642 buf += hexnumstr (buf, (ULONGEST) -val);
13643 }
13644 else
13645 buf += hexnumstr (buf, (ULONGEST) val);
13646
13647 putpkt (rs->buf);
13648 remote_get_noisy_reply ();
13649 result = packet_ok (rs->buf,
13650 &remote_protocol_packets[PACKET_QTBuffer_size]);
13651
13652 if (result != PACKET_OK)
13653 warning (_("Bogus reply from target: %s"), rs->buf);
13654 }
13655 }
13656
13657 bool
13658 remote_target::set_trace_notes (const char *user, const char *notes,
13659 const char *stop_notes)
13660 {
13661 struct remote_state *rs = get_remote_state ();
13662 char *reply;
13663 char *buf = rs->buf;
13664 char *endbuf = rs->buf + get_remote_packet_size ();
13665 int nbytes;
13666
13667 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13668 if (user)
13669 {
13670 buf += xsnprintf (buf, endbuf - buf, "user:");
13671 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13672 buf += 2 * nbytes;
13673 *buf++ = ';';
13674 }
13675 if (notes)
13676 {
13677 buf += xsnprintf (buf, endbuf - buf, "notes:");
13678 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13679 buf += 2 * nbytes;
13680 *buf++ = ';';
13681 }
13682 if (stop_notes)
13683 {
13684 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13685 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13686 buf += 2 * nbytes;
13687 *buf++ = ';';
13688 }
13689 /* Ensure the buffer is terminated. */
13690 *buf = '\0';
13691
13692 putpkt (rs->buf);
13693 reply = remote_get_noisy_reply ();
13694 if (*reply == '\0')
13695 return false;
13696
13697 if (strcmp (reply, "OK") != 0)
13698 error (_("Bogus reply from target: %s"), reply);
13699
13700 return true;
13701 }
13702
13703 bool
13704 remote_target::use_agent (bool use)
13705 {
13706 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13707 {
13708 struct remote_state *rs = get_remote_state ();
13709
13710 /* If the stub supports QAgent. */
13711 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13712 putpkt (rs->buf);
13713 getpkt (&rs->buf, &rs->buf_size, 0);
13714
13715 if (strcmp (rs->buf, "OK") == 0)
13716 {
13717 ::use_agent = use;
13718 return true;
13719 }
13720 }
13721
13722 return false;
13723 }
13724
13725 bool
13726 remote_target::can_use_agent ()
13727 {
13728 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13729 }
13730
13731 struct btrace_target_info
13732 {
13733 /* The ptid of the traced thread. */
13734 ptid_t ptid;
13735
13736 /* The obtained branch trace configuration. */
13737 struct btrace_config conf;
13738 };
13739
13740 /* Reset our idea of our target's btrace configuration. */
13741
13742 static void
13743 remote_btrace_reset (remote_state *rs)
13744 {
13745 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13746 }
13747
13748 /* Synchronize the configuration with the target. */
13749
13750 void
13751 remote_target::btrace_sync_conf (const btrace_config *conf)
13752 {
13753 struct packet_config *packet;
13754 struct remote_state *rs;
13755 char *buf, *pos, *endbuf;
13756
13757 rs = get_remote_state ();
13758 buf = rs->buf;
13759 endbuf = buf + get_remote_packet_size ();
13760
13761 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13762 if (packet_config_support (packet) == PACKET_ENABLE
13763 && conf->bts.size != rs->btrace_config.bts.size)
13764 {
13765 pos = buf;
13766 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13767 conf->bts.size);
13768
13769 putpkt (buf);
13770 getpkt (&buf, &rs->buf_size, 0);
13771
13772 if (packet_ok (buf, packet) == PACKET_ERROR)
13773 {
13774 if (buf[0] == 'E' && buf[1] == '.')
13775 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13776 else
13777 error (_("Failed to configure the BTS buffer size."));
13778 }
13779
13780 rs->btrace_config.bts.size = conf->bts.size;
13781 }
13782
13783 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13784 if (packet_config_support (packet) == PACKET_ENABLE
13785 && conf->pt.size != rs->btrace_config.pt.size)
13786 {
13787 pos = buf;
13788 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13789 conf->pt.size);
13790
13791 putpkt (buf);
13792 getpkt (&buf, &rs->buf_size, 0);
13793
13794 if (packet_ok (buf, packet) == PACKET_ERROR)
13795 {
13796 if (buf[0] == 'E' && buf[1] == '.')
13797 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13798 else
13799 error (_("Failed to configure the trace buffer size."));
13800 }
13801
13802 rs->btrace_config.pt.size = conf->pt.size;
13803 }
13804 }
13805
13806 /* Read the current thread's btrace configuration from the target and
13807 store it into CONF. */
13808
13809 static void
13810 btrace_read_config (struct btrace_config *conf)
13811 {
13812 gdb::optional<gdb::char_vector> xml
13813 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE_CONF, "");
13814 if (xml)
13815 parse_xml_btrace_conf (conf, xml->data ());
13816 }
13817
13818 /* Maybe reopen target btrace. */
13819
13820 void
13821 remote_target::remote_btrace_maybe_reopen ()
13822 {
13823 struct remote_state *rs = get_remote_state ();
13824 struct thread_info *tp;
13825 int btrace_target_pushed = 0;
13826 int warned = 0;
13827
13828 scoped_restore_current_thread restore_thread;
13829
13830 ALL_NON_EXITED_THREADS (tp)
13831 {
13832 set_general_thread (tp->ptid);
13833
13834 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13835 btrace_read_config (&rs->btrace_config);
13836
13837 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13838 continue;
13839
13840 #if !defined (HAVE_LIBIPT)
13841 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13842 {
13843 if (!warned)
13844 {
13845 warned = 1;
13846 warning (_("Target is recording using Intel Processor Trace "
13847 "but support was disabled at compile time."));
13848 }
13849
13850 continue;
13851 }
13852 #endif /* !defined (HAVE_LIBIPT) */
13853
13854 /* Push target, once, but before anything else happens. This way our
13855 changes to the threads will be cleaned up by unpushing the target
13856 in case btrace_read_config () throws. */
13857 if (!btrace_target_pushed)
13858 {
13859 btrace_target_pushed = 1;
13860 record_btrace_push_target ();
13861 printf_filtered (_("Target is recording using %s.\n"),
13862 btrace_format_string (rs->btrace_config.format));
13863 }
13864
13865 tp->btrace.target = XCNEW (struct btrace_target_info);
13866 tp->btrace.target->ptid = tp->ptid;
13867 tp->btrace.target->conf = rs->btrace_config;
13868 }
13869 }
13870
13871 /* Enable branch tracing. */
13872
13873 struct btrace_target_info *
13874 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13875 {
13876 struct btrace_target_info *tinfo = NULL;
13877 struct packet_config *packet = NULL;
13878 struct remote_state *rs = get_remote_state ();
13879 char *buf = rs->buf;
13880 char *endbuf = rs->buf + get_remote_packet_size ();
13881
13882 switch (conf->format)
13883 {
13884 case BTRACE_FORMAT_BTS:
13885 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13886 break;
13887
13888 case BTRACE_FORMAT_PT:
13889 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13890 break;
13891 }
13892
13893 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13894 error (_("Target does not support branch tracing."));
13895
13896 btrace_sync_conf (conf);
13897
13898 set_general_thread (ptid);
13899
13900 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13901 putpkt (rs->buf);
13902 getpkt (&rs->buf, &rs->buf_size, 0);
13903
13904 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13905 {
13906 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13907 error (_("Could not enable branch tracing for %s: %s"),
13908 target_pid_to_str (ptid), rs->buf + 2);
13909 else
13910 error (_("Could not enable branch tracing for %s."),
13911 target_pid_to_str (ptid));
13912 }
13913
13914 tinfo = XCNEW (struct btrace_target_info);
13915 tinfo->ptid = ptid;
13916
13917 /* If we fail to read the configuration, we lose some information, but the
13918 tracing itself is not impacted. */
13919 TRY
13920 {
13921 btrace_read_config (&tinfo->conf);
13922 }
13923 CATCH (err, RETURN_MASK_ERROR)
13924 {
13925 if (err.message != NULL)
13926 warning ("%s", err.message);
13927 }
13928 END_CATCH
13929
13930 return tinfo;
13931 }
13932
13933 /* Disable branch tracing. */
13934
13935 void
13936 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13937 {
13938 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13939 struct remote_state *rs = get_remote_state ();
13940 char *buf = rs->buf;
13941 char *endbuf = rs->buf + get_remote_packet_size ();
13942
13943 if (packet_config_support (packet) != PACKET_ENABLE)
13944 error (_("Target does not support branch tracing."));
13945
13946 set_general_thread (tinfo->ptid);
13947
13948 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13949 putpkt (rs->buf);
13950 getpkt (&rs->buf, &rs->buf_size, 0);
13951
13952 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13953 {
13954 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13955 error (_("Could not disable branch tracing for %s: %s"),
13956 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13957 else
13958 error (_("Could not disable branch tracing for %s."),
13959 target_pid_to_str (tinfo->ptid));
13960 }
13961
13962 xfree (tinfo);
13963 }
13964
13965 /* Teardown branch tracing. */
13966
13967 void
13968 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13969 {
13970 /* We must not talk to the target during teardown. */
13971 xfree (tinfo);
13972 }
13973
13974 /* Read the branch trace. */
13975
13976 enum btrace_error
13977 remote_target::read_btrace (struct btrace_data *btrace,
13978 struct btrace_target_info *tinfo,
13979 enum btrace_read_type type)
13980 {
13981 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13982 const char *annex;
13983
13984 if (packet_config_support (packet) != PACKET_ENABLE)
13985 error (_("Target does not support branch tracing."));
13986
13987 #if !defined(HAVE_LIBEXPAT)
13988 error (_("Cannot process branch tracing result. XML parsing not supported."));
13989 #endif
13990
13991 switch (type)
13992 {
13993 case BTRACE_READ_ALL:
13994 annex = "all";
13995 break;
13996 case BTRACE_READ_NEW:
13997 annex = "new";
13998 break;
13999 case BTRACE_READ_DELTA:
14000 annex = "delta";
14001 break;
14002 default:
14003 internal_error (__FILE__, __LINE__,
14004 _("Bad branch tracing read type: %u."),
14005 (unsigned int) type);
14006 }
14007
14008 gdb::optional<gdb::char_vector> xml
14009 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE, annex);
14010 if (!xml)
14011 return BTRACE_ERR_UNKNOWN;
14012
14013 parse_xml_btrace (btrace, xml->data ());
14014
14015 return BTRACE_ERR_NONE;
14016 }
14017
14018 const struct btrace_config *
14019 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14020 {
14021 return &tinfo->conf;
14022 }
14023
14024 bool
14025 remote_target::augmented_libraries_svr4_read ()
14026 {
14027 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14028 == PACKET_ENABLE);
14029 }
14030
14031 /* Implementation of to_load. */
14032
14033 void
14034 remote_target::load (const char *name, int from_tty)
14035 {
14036 generic_load (name, from_tty);
14037 }
14038
14039 /* Accepts an integer PID; returns a string representing a file that
14040 can be opened on the remote side to get the symbols for the child
14041 process. Returns NULL if the operation is not supported. */
14042
14043 char *
14044 remote_target::pid_to_exec_file (int pid)
14045 {
14046 static gdb::optional<gdb::char_vector> filename;
14047 struct inferior *inf;
14048 char *annex = NULL;
14049
14050 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14051 return NULL;
14052
14053 inf = find_inferior_pid (pid);
14054 if (inf == NULL)
14055 internal_error (__FILE__, __LINE__,
14056 _("not currently attached to process %d"), pid);
14057
14058 if (!inf->fake_pid_p)
14059 {
14060 const int annex_size = 9;
14061
14062 annex = (char *) alloca (annex_size);
14063 xsnprintf (annex, annex_size, "%x", pid);
14064 }
14065
14066 filename = target_read_stralloc (target_stack,
14067 TARGET_OBJECT_EXEC_FILE, annex);
14068
14069 return filename ? filename->data () : nullptr;
14070 }
14071
14072 /* Implement the to_can_do_single_step target_ops method. */
14073
14074 int
14075 remote_target::can_do_single_step ()
14076 {
14077 /* We can only tell whether target supports single step or not by
14078 supported s and S vCont actions if the stub supports vContSupported
14079 feature. If the stub doesn't support vContSupported feature,
14080 we have conservatively to think target doesn't supports single
14081 step. */
14082 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14083 {
14084 struct remote_state *rs = get_remote_state ();
14085
14086 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14087 remote_vcont_probe ();
14088
14089 return rs->supports_vCont.s && rs->supports_vCont.S;
14090 }
14091 else
14092 return 0;
14093 }
14094
14095 /* Implementation of the to_execution_direction method for the remote
14096 target. */
14097
14098 enum exec_direction_kind
14099 remote_target::execution_direction ()
14100 {
14101 struct remote_state *rs = get_remote_state ();
14102
14103 return rs->last_resume_exec_dir;
14104 }
14105
14106 /* Return pointer to the thread_info struct which corresponds to
14107 THREAD_HANDLE (having length HANDLE_LEN). */
14108
14109 thread_info *
14110 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14111 int handle_len,
14112 inferior *inf)
14113 {
14114 struct thread_info *tp;
14115
14116 ALL_NON_EXITED_THREADS (tp)
14117 {
14118 remote_thread_info *priv = get_remote_thread_info (tp);
14119
14120 if (tp->inf == inf && priv != NULL)
14121 {
14122 if (handle_len != priv->thread_handle.size ())
14123 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14124 handle_len, priv->thread_handle.size ());
14125 if (memcmp (thread_handle, priv->thread_handle.data (),
14126 handle_len) == 0)
14127 return tp;
14128 }
14129 }
14130
14131 return NULL;
14132 }
14133
14134 bool
14135 remote_target::can_async_p ()
14136 {
14137 struct remote_state *rs = get_remote_state ();
14138
14139 /* We don't go async if the user has explicitly prevented it with the
14140 "maint set target-async" command. */
14141 if (!target_async_permitted)
14142 return false;
14143
14144 /* We're async whenever the serial device is. */
14145 return serial_can_async_p (rs->remote_desc);
14146 }
14147
14148 bool
14149 remote_target::is_async_p ()
14150 {
14151 struct remote_state *rs = get_remote_state ();
14152
14153 if (!target_async_permitted)
14154 /* We only enable async when the user specifically asks for it. */
14155 return false;
14156
14157 /* We're async whenever the serial device is. */
14158 return serial_is_async_p (rs->remote_desc);
14159 }
14160
14161 /* Pass the SERIAL event on and up to the client. One day this code
14162 will be able to delay notifying the client of an event until the
14163 point where an entire packet has been received. */
14164
14165 static serial_event_ftype remote_async_serial_handler;
14166
14167 static void
14168 remote_async_serial_handler (struct serial *scb, void *context)
14169 {
14170 /* Don't propogate error information up to the client. Instead let
14171 the client find out about the error by querying the target. */
14172 inferior_event_handler (INF_REG_EVENT, NULL);
14173 }
14174
14175 static void
14176 remote_async_inferior_event_handler (gdb_client_data data)
14177 {
14178 inferior_event_handler (INF_REG_EVENT, data);
14179 }
14180
14181 void
14182 remote_target::async (int enable)
14183 {
14184 struct remote_state *rs = get_remote_state ();
14185
14186 if (enable)
14187 {
14188 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14189
14190 /* If there are pending events in the stop reply queue tell the
14191 event loop to process them. */
14192 if (!QUEUE_is_empty (stop_reply_p, rs->stop_reply_queue))
14193 mark_async_event_handler (rs->remote_async_inferior_event_token);
14194 /* For simplicity, below we clear the pending events token
14195 without remembering whether it is marked, so here we always
14196 mark it. If there's actually no pending notification to
14197 process, this ends up being a no-op (other than a spurious
14198 event-loop wakeup). */
14199 if (target_is_non_stop_p ())
14200 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14201 }
14202 else
14203 {
14204 serial_async (rs->remote_desc, NULL, NULL);
14205 /* If the core is disabling async, it doesn't want to be
14206 disturbed with target events. Clear all async event sources
14207 too. */
14208 clear_async_event_handler (rs->remote_async_inferior_event_token);
14209 if (target_is_non_stop_p ())
14210 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14211 }
14212 }
14213
14214 /* Implementation of the to_thread_events method. */
14215
14216 void
14217 remote_target::thread_events (int enable)
14218 {
14219 struct remote_state *rs = get_remote_state ();
14220 size_t size = get_remote_packet_size ();
14221
14222 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14223 return;
14224
14225 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14226 putpkt (rs->buf);
14227 getpkt (&rs->buf, &rs->buf_size, 0);
14228
14229 switch (packet_ok (rs->buf,
14230 &remote_protocol_packets[PACKET_QThreadEvents]))
14231 {
14232 case PACKET_OK:
14233 if (strcmp (rs->buf, "OK") != 0)
14234 error (_("Remote refused setting thread events: %s"), rs->buf);
14235 break;
14236 case PACKET_ERROR:
14237 warning (_("Remote failure reply: %s"), rs->buf);
14238 break;
14239 case PACKET_UNKNOWN:
14240 break;
14241 }
14242 }
14243
14244 static void
14245 set_remote_cmd (const char *args, int from_tty)
14246 {
14247 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14248 }
14249
14250 static void
14251 show_remote_cmd (const char *args, int from_tty)
14252 {
14253 /* We can't just use cmd_show_list here, because we want to skip
14254 the redundant "show remote Z-packet" and the legacy aliases. */
14255 struct cmd_list_element *list = remote_show_cmdlist;
14256 struct ui_out *uiout = current_uiout;
14257
14258 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14259 for (; list != NULL; list = list->next)
14260 if (strcmp (list->name, "Z-packet") == 0)
14261 continue;
14262 else if (list->type == not_set_cmd)
14263 /* Alias commands are exactly like the original, except they
14264 don't have the normal type. */
14265 continue;
14266 else
14267 {
14268 ui_out_emit_tuple option_emitter (uiout, "option");
14269
14270 uiout->field_string ("name", list->name);
14271 uiout->text (": ");
14272 if (list->type == show_cmd)
14273 do_show_command (NULL, from_tty, list);
14274 else
14275 cmd_func (list, NULL, from_tty);
14276 }
14277 }
14278
14279
14280 /* Function to be called whenever a new objfile (shlib) is detected. */
14281 static void
14282 remote_new_objfile (struct objfile *objfile)
14283 {
14284 remote_target *remote = get_current_remote_target ();
14285
14286 if (remote != NULL) /* Have a remote connection. */
14287 remote->remote_check_symbols ();
14288 }
14289
14290 /* Pull all the tracepoints defined on the target and create local
14291 data structures representing them. We don't want to create real
14292 tracepoints yet, we don't want to mess up the user's existing
14293 collection. */
14294
14295 int
14296 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14297 {
14298 struct remote_state *rs = get_remote_state ();
14299 char *p;
14300
14301 /* Ask for a first packet of tracepoint definition. */
14302 putpkt ("qTfP");
14303 getpkt (&rs->buf, &rs->buf_size, 0);
14304 p = rs->buf;
14305 while (*p && *p != 'l')
14306 {
14307 parse_tracepoint_definition (p, utpp);
14308 /* Ask for another packet of tracepoint definition. */
14309 putpkt ("qTsP");
14310 getpkt (&rs->buf, &rs->buf_size, 0);
14311 p = rs->buf;
14312 }
14313 return 0;
14314 }
14315
14316 int
14317 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14318 {
14319 struct remote_state *rs = get_remote_state ();
14320 char *p;
14321
14322 /* Ask for a first packet of variable definition. */
14323 putpkt ("qTfV");
14324 getpkt (&rs->buf, &rs->buf_size, 0);
14325 p = rs->buf;
14326 while (*p && *p != 'l')
14327 {
14328 parse_tsv_definition (p, utsvp);
14329 /* Ask for another packet of variable definition. */
14330 putpkt ("qTsV");
14331 getpkt (&rs->buf, &rs->buf_size, 0);
14332 p = rs->buf;
14333 }
14334 return 0;
14335 }
14336
14337 /* The "set/show range-stepping" show hook. */
14338
14339 static void
14340 show_range_stepping (struct ui_file *file, int from_tty,
14341 struct cmd_list_element *c,
14342 const char *value)
14343 {
14344 fprintf_filtered (file,
14345 _("Debugger's willingness to use range stepping "
14346 "is %s.\n"), value);
14347 }
14348
14349 /* Return true if the vCont;r action is supported by the remote
14350 stub. */
14351
14352 bool
14353 remote_target::vcont_r_supported ()
14354 {
14355 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14356 remote_vcont_probe ();
14357
14358 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14359 && get_remote_state ()->supports_vCont.r);
14360 }
14361
14362 /* The "set/show range-stepping" set hook. */
14363
14364 static void
14365 set_range_stepping (const char *ignore_args, int from_tty,
14366 struct cmd_list_element *c)
14367 {
14368 /* When enabling, check whether range stepping is actually supported
14369 by the target, and warn if not. */
14370 if (use_range_stepping)
14371 {
14372 remote_target *remote = get_current_remote_target ();
14373 if (remote == NULL
14374 || !remote->vcont_r_supported ())
14375 warning (_("Range stepping is not supported by the current target"));
14376 }
14377 }
14378
14379 void
14380 _initialize_remote (void)
14381 {
14382 struct cmd_list_element *cmd;
14383 const char *cmd_name;
14384
14385 /* architecture specific data */
14386 remote_g_packet_data_handle =
14387 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14388
14389 remote_pspace_data
14390 = register_program_space_data_with_cleanup (NULL,
14391 remote_pspace_data_cleanup);
14392
14393 add_target (remote_target_info, remote_target::open);
14394 add_target (extended_remote_target_info, extended_remote_target::open);
14395
14396 /* Hook into new objfile notification. */
14397 gdb::observers::new_objfile.attach (remote_new_objfile);
14398
14399 #if 0
14400 init_remote_threadtests ();
14401 #endif
14402
14403 /* set/show remote ... */
14404
14405 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14406 Remote protocol specific variables\n\
14407 Configure various remote-protocol specific variables such as\n\
14408 the packets being used"),
14409 &remote_set_cmdlist, "set remote ",
14410 0 /* allow-unknown */, &setlist);
14411 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14412 Remote protocol specific variables\n\
14413 Configure various remote-protocol specific variables such as\n\
14414 the packets being used"),
14415 &remote_show_cmdlist, "show remote ",
14416 0 /* allow-unknown */, &showlist);
14417
14418 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14419 Compare section data on target to the exec file.\n\
14420 Argument is a single section name (default: all loaded sections).\n\
14421 To compare only read-only loaded sections, specify the -r option."),
14422 &cmdlist);
14423
14424 add_cmd ("packet", class_maintenance, packet_command, _("\
14425 Send an arbitrary packet to a remote target.\n\
14426 maintenance packet TEXT\n\
14427 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14428 this command sends the string TEXT to the inferior, and displays the\n\
14429 response packet. GDB supplies the initial `$' character, and the\n\
14430 terminating `#' character and checksum."),
14431 &maintenancelist);
14432
14433 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14434 Set whether to send break if interrupted."), _("\
14435 Show whether to send break if interrupted."), _("\
14436 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14437 set_remotebreak, show_remotebreak,
14438 &setlist, &showlist);
14439 cmd_name = "remotebreak";
14440 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14441 deprecate_cmd (cmd, "set remote interrupt-sequence");
14442 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14443 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14444 deprecate_cmd (cmd, "show remote interrupt-sequence");
14445
14446 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14447 interrupt_sequence_modes, &interrupt_sequence_mode,
14448 _("\
14449 Set interrupt sequence to remote target."), _("\
14450 Show interrupt sequence to remote target."), _("\
14451 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14452 NULL, show_interrupt_sequence,
14453 &remote_set_cmdlist,
14454 &remote_show_cmdlist);
14455
14456 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14457 &interrupt_on_connect, _("\
14458 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14459 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14460 If set, interrupt sequence is sent to remote target."),
14461 NULL, NULL,
14462 &remote_set_cmdlist, &remote_show_cmdlist);
14463
14464 /* Install commands for configuring memory read/write packets. */
14465
14466 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14467 Set the maximum number of bytes per memory write packet (deprecated)."),
14468 &setlist);
14469 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14470 Show the maximum number of bytes per memory write packet (deprecated)."),
14471 &showlist);
14472 add_cmd ("memory-write-packet-size", no_class,
14473 set_memory_write_packet_size, _("\
14474 Set the maximum number of bytes per memory-write packet.\n\
14475 Specify the number of bytes in a packet or 0 (zero) for the\n\
14476 default packet size. The actual limit is further reduced\n\
14477 dependent on the target. Specify ``fixed'' to disable the\n\
14478 further restriction and ``limit'' to enable that restriction."),
14479 &remote_set_cmdlist);
14480 add_cmd ("memory-read-packet-size", no_class,
14481 set_memory_read_packet_size, _("\
14482 Set the maximum number of bytes per memory-read packet.\n\
14483 Specify the number of bytes in a packet or 0 (zero) for the\n\
14484 default packet size. The actual limit is further reduced\n\
14485 dependent on the target. Specify ``fixed'' to disable the\n\
14486 further restriction and ``limit'' to enable that restriction."),
14487 &remote_set_cmdlist);
14488 add_cmd ("memory-write-packet-size", no_class,
14489 show_memory_write_packet_size,
14490 _("Show the maximum number of bytes per memory-write packet."),
14491 &remote_show_cmdlist);
14492 add_cmd ("memory-read-packet-size", no_class,
14493 show_memory_read_packet_size,
14494 _("Show the maximum number of bytes per memory-read packet."),
14495 &remote_show_cmdlist);
14496
14497 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14498 &remote_hw_watchpoint_limit, _("\
14499 Set the maximum number of target hardware watchpoints."), _("\
14500 Show the maximum number of target hardware watchpoints."), _("\
14501 Specify a negative limit for unlimited."),
14502 NULL, NULL, /* FIXME: i18n: The maximum
14503 number of target hardware
14504 watchpoints is %s. */
14505 &remote_set_cmdlist, &remote_show_cmdlist);
14506 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14507 &remote_hw_watchpoint_length_limit, _("\
14508 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14509 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14510 Specify a negative limit for unlimited."),
14511 NULL, NULL, /* FIXME: i18n: The maximum
14512 length (in bytes) of a target
14513 hardware watchpoint is %s. */
14514 &remote_set_cmdlist, &remote_show_cmdlist);
14515 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14516 &remote_hw_breakpoint_limit, _("\
14517 Set the maximum number of target hardware breakpoints."), _("\
14518 Show the maximum number of target hardware breakpoints."), _("\
14519 Specify a negative limit for unlimited."),
14520 NULL, NULL, /* FIXME: i18n: The maximum
14521 number of target hardware
14522 breakpoints is %s. */
14523 &remote_set_cmdlist, &remote_show_cmdlist);
14524
14525 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14526 &remote_address_size, _("\
14527 Set the maximum size of the address (in bits) in a memory packet."), _("\
14528 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14529 NULL,
14530 NULL, /* FIXME: i18n: */
14531 &setlist, &showlist);
14532
14533 init_all_packet_configs ();
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14536 "X", "binary-download", 1);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14539 "vCont", "verbose-resume", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14542 "QPassSignals", "pass-signals", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14545 "QCatchSyscalls", "catch-syscalls", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14548 "QProgramSignals", "program-signals", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14551 "QSetWorkingDir", "set-working-dir", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14554 "QStartupWithShell", "startup-with-shell", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets
14557 [PACKET_QEnvironmentHexEncoded],
14558 "QEnvironmentHexEncoded", "environment-hex-encoded",
14559 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14562 "QEnvironmentReset", "environment-reset",
14563 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14566 "QEnvironmentUnset", "environment-unset",
14567 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14570 "qSymbol", "symbol-lookup", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14573 "P", "set-register", 1);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14576 "p", "fetch-register", 1);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14579 "Z0", "software-breakpoint", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14582 "Z1", "hardware-breakpoint", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14585 "Z2", "write-watchpoint", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14588 "Z3", "read-watchpoint", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14591 "Z4", "access-watchpoint", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14594 "qXfer:auxv:read", "read-aux-vector", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14597 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14600 "qXfer:features:read", "target-features", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14603 "qXfer:libraries:read", "library-info", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14606 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14609 "qXfer:memory-map:read", "memory-map", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14612 "qXfer:spu:read", "read-spu-object", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14615 "qXfer:spu:write", "write-spu-object", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14618 "qXfer:osdata:read", "osdata", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14621 "qXfer:threads:read", "threads", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14624 "qXfer:siginfo:read", "read-siginfo-object", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14627 "qXfer:siginfo:write", "write-siginfo-object", 0);
14628
14629 add_packet_config_cmd
14630 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14631 "qXfer:traceframe-info:read", "traceframe-info", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14634 "qXfer:uib:read", "unwind-info-block", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14637 "qGetTLSAddr", "get-thread-local-storage-address",
14638 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14641 "qGetTIBAddr", "get-thread-information-block-address",
14642 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14645 "bc", "reverse-continue", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14648 "bs", "reverse-step", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14651 "qSupported", "supported-packets", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14654 "qSearch:memory", "search-memory", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14657 "qTStatus", "trace-status", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14660 "vFile:setfs", "hostio-setfs", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14663 "vFile:open", "hostio-open", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14666 "vFile:pread", "hostio-pread", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14669 "vFile:pwrite", "hostio-pwrite", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14672 "vFile:close", "hostio-close", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14675 "vFile:unlink", "hostio-unlink", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14678 "vFile:readlink", "hostio-readlink", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14681 "vFile:fstat", "hostio-fstat", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14684 "vAttach", "attach", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14687 "vRun", "run", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14690 "QStartNoAckMode", "noack", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14693 "vKill", "kill", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14696 "qAttached", "query-attached", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14699 "ConditionalTracepoints",
14700 "conditional-tracepoints", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14703 "ConditionalBreakpoints",
14704 "conditional-breakpoints", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14707 "BreakpointCommands",
14708 "breakpoint-commands", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14711 "FastTracepoints", "fast-tracepoints", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14714 "TracepointSource", "TracepointSource", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14717 "QAllow", "allow", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14720 "StaticTracepoints", "static-tracepoints", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14723 "InstallInTrace", "install-in-trace", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14726 "qXfer:statictrace:read", "read-sdata-object", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14729 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14732 "QDisableRandomization", "disable-randomization", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14735 "QAgent", "agent", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14738 "QTBuffer:size", "trace-buffer-size", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14741 "Qbtrace:off", "disable-btrace", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14744 "Qbtrace:bts", "enable-btrace-bts", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14747 "Qbtrace:pt", "enable-btrace-pt", 0);
14748
14749 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14750 "qXfer:btrace", "read-btrace", 0);
14751
14752 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14753 "qXfer:btrace-conf", "read-btrace-conf", 0);
14754
14755 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14756 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14757
14758 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14759 "multiprocess-feature", "multiprocess-feature", 0);
14760
14761 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14762 "swbreak-feature", "swbreak-feature", 0);
14763
14764 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14765 "hwbreak-feature", "hwbreak-feature", 0);
14766
14767 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14768 "fork-event-feature", "fork-event-feature", 0);
14769
14770 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14771 "vfork-event-feature", "vfork-event-feature", 0);
14772
14773 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14774 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14775
14776 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14777 "vContSupported", "verbose-resume-supported", 0);
14778
14779 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14780 "exec-event-feature", "exec-event-feature", 0);
14781
14782 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14783 "vCtrlC", "ctrl-c", 0);
14784
14785 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14786 "QThreadEvents", "thread-events", 0);
14787
14788 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14789 "N stop reply", "no-resumed-stop-reply", 0);
14790
14791 /* Assert that we've registered "set remote foo-packet" commands
14792 for all packet configs. */
14793 {
14794 int i;
14795
14796 for (i = 0; i < PACKET_MAX; i++)
14797 {
14798 /* Ideally all configs would have a command associated. Some
14799 still don't though. */
14800 int excepted;
14801
14802 switch (i)
14803 {
14804 case PACKET_QNonStop:
14805 case PACKET_EnableDisableTracepoints_feature:
14806 case PACKET_tracenz_feature:
14807 case PACKET_DisconnectedTracing_feature:
14808 case PACKET_augmented_libraries_svr4_read_feature:
14809 case PACKET_qCRC:
14810 /* Additions to this list need to be well justified:
14811 pre-existing packets are OK; new packets are not. */
14812 excepted = 1;
14813 break;
14814 default:
14815 excepted = 0;
14816 break;
14817 }
14818
14819 /* This catches both forgetting to add a config command, and
14820 forgetting to remove a packet from the exception list. */
14821 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14822 }
14823 }
14824
14825 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14826 Z sub-packet has its own set and show commands, but users may
14827 have sets to this variable in their .gdbinit files (or in their
14828 documentation). */
14829 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14830 &remote_Z_packet_detect, _("\
14831 Set use of remote protocol `Z' packets"), _("\
14832 Show use of remote protocol `Z' packets "), _("\
14833 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14834 packets."),
14835 set_remote_protocol_Z_packet_cmd,
14836 show_remote_protocol_Z_packet_cmd,
14837 /* FIXME: i18n: Use of remote protocol
14838 `Z' packets is %s. */
14839 &remote_set_cmdlist, &remote_show_cmdlist);
14840
14841 add_prefix_cmd ("remote", class_files, remote_command, _("\
14842 Manipulate files on the remote system\n\
14843 Transfer files to and from the remote target system."),
14844 &remote_cmdlist, "remote ",
14845 0 /* allow-unknown */, &cmdlist);
14846
14847 add_cmd ("put", class_files, remote_put_command,
14848 _("Copy a local file to the remote system."),
14849 &remote_cmdlist);
14850
14851 add_cmd ("get", class_files, remote_get_command,
14852 _("Copy a remote file to the local system."),
14853 &remote_cmdlist);
14854
14855 add_cmd ("delete", class_files, remote_delete_command,
14856 _("Delete a remote file."),
14857 &remote_cmdlist);
14858
14859 add_setshow_string_noescape_cmd ("exec-file", class_files,
14860 &remote_exec_file_var, _("\
14861 Set the remote pathname for \"run\""), _("\
14862 Show the remote pathname for \"run\""), NULL,
14863 set_remote_exec_file,
14864 show_remote_exec_file,
14865 &remote_set_cmdlist,
14866 &remote_show_cmdlist);
14867
14868 add_setshow_boolean_cmd ("range-stepping", class_run,
14869 &use_range_stepping, _("\
14870 Enable or disable range stepping."), _("\
14871 Show whether target-assisted range stepping is enabled."), _("\
14872 If on, and the target supports it, when stepping a source line, GDB\n\
14873 tells the target to step the corresponding range of addresses itself instead\n\
14874 of issuing multiple single-steps. This speeds up source level\n\
14875 stepping. If off, GDB always issues single-steps, even if range\n\
14876 stepping is supported by the target. The default is on."),
14877 set_range_stepping,
14878 show_range_stepping,
14879 &setlist,
14880 &showlist);
14881
14882 /* Eventually initialize fileio. See fileio.c */
14883 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14884
14885 /* Take advantage of the fact that the TID field is not used, to tag
14886 special ptids with it set to != 0. */
14887 magic_null_ptid = ptid_build (42000, -1, 1);
14888 not_sent_ptid = ptid_build (42000, -2, 1);
14889 any_thread_ptid = ptid_build (42000, 0, 1);
14890 }
This page took 0.336 seconds and 5 git commands to generate.