remote: C++ify thread_item and threads_listing_context
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->private. */
443 struct private_thread_info
444 {
445 char *extra;
446 char *name;
447 int core;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector *thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 enum gdb_signal last_resume_sig;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed;
477 };
478
479 static void
480 free_private_thread_info (struct private_thread_info *info)
481 {
482 xfree (info->extra);
483 xfree (info->name);
484 delete info->thread_handle;
485 xfree (info);
486 }
487
488 /* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492 static struct remote_state *remote_state;
493
494 static struct remote_state *
495 get_remote_state_raw (void)
496 {
497 return remote_state;
498 }
499
500 /* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503 static struct remote_state *
504 new_remote_state (void)
505 {
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518 }
519
520 /* Description of the remote protocol for a given architecture. */
521
522 struct packet_reg
523 {
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532 };
533
534 struct remote_arch_state
535 {
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554 };
555
556 /* Utility: generate error from an incoming stub packet. */
557 static void
558 trace_error (char *buf)
559 {
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573 }
574
575 /* Utility: wait for reply from stub, while accepting "O" packets. */
576
577 static char *
578 remote_get_noisy_reply ()
579 {
580 struct remote_state *rs = get_remote_state ();
581
582 do /* Loop on reply from remote stub. */
583 {
584 char *buf;
585
586 QUIT; /* Allow user to bail out with ^C. */
587 getpkt (&rs->buf, &rs->buf_size, 0);
588 buf = rs->buf;
589 if (buf[0] == 'E')
590 trace_error (buf);
591 else if (startswith (buf, "qRelocInsn:"))
592 {
593 ULONGEST ul;
594 CORE_ADDR from, to, org_to;
595 const char *p, *pp;
596 int adjusted_size = 0;
597 int relocated = 0;
598
599 p = buf + strlen ("qRelocInsn:");
600 pp = unpack_varlen_hex (p, &ul);
601 if (*pp != ';')
602 error (_("invalid qRelocInsn packet: %s"), buf);
603 from = ul;
604
605 p = pp + 1;
606 unpack_varlen_hex (p, &ul);
607 to = ul;
608
609 org_to = to;
610
611 TRY
612 {
613 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
614 relocated = 1;
615 }
616 CATCH (ex, RETURN_MASK_ALL)
617 {
618 if (ex.error == MEMORY_ERROR)
619 {
620 /* Propagate memory errors silently back to the
621 target. The stub may have limited the range of
622 addresses we can write to, for example. */
623 }
624 else
625 {
626 /* Something unexpectedly bad happened. Be verbose
627 so we can tell what, and propagate the error back
628 to the stub, so it doesn't get stuck waiting for
629 a response. */
630 exception_fprintf (gdb_stderr, ex,
631 _("warning: relocating instruction: "));
632 }
633 putpkt ("E01");
634 }
635 END_CATCH
636
637 if (relocated)
638 {
639 adjusted_size = to - org_to;
640
641 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
642 putpkt (buf);
643 }
644 }
645 else if (buf[0] == 'O' && buf[1] != 'K')
646 remote_console_output (buf + 1); /* 'O' message from stub */
647 else
648 return buf; /* Here's the actual reply. */
649 }
650 while (1);
651 }
652
653 /* Handle for retreving the remote protocol data from gdbarch. */
654 static struct gdbarch_data *remote_gdbarch_data_handle;
655
656 static struct remote_arch_state *
657 get_remote_arch_state (struct gdbarch *gdbarch)
658 {
659 gdb_assert (gdbarch != NULL);
660 return ((struct remote_arch_state *)
661 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
662 }
663
664 /* Fetch the global remote target state. */
665
666 static struct remote_state *
667 get_remote_state (void)
668 {
669 /* Make sure that the remote architecture state has been
670 initialized, because doing so might reallocate rs->buf. Any
671 function which calls getpkt also needs to be mindful of changes
672 to rs->buf, but this call limits the number of places which run
673 into trouble. */
674 get_remote_arch_state (target_gdbarch ());
675
676 return get_remote_state_raw ();
677 }
678
679 /* Cleanup routine for the remote module's pspace data. */
680
681 static void
682 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
683 {
684 char *remote_exec_file = (char *) arg;
685
686 xfree (remote_exec_file);
687 }
688
689 /* Fetch the remote exec-file from the current program space. */
690
691 static const char *
692 get_remote_exec_file (void)
693 {
694 char *remote_exec_file;
695
696 remote_exec_file
697 = (char *) program_space_data (current_program_space,
698 remote_pspace_data);
699 if (remote_exec_file == NULL)
700 return "";
701
702 return remote_exec_file;
703 }
704
705 /* Set the remote exec file for PSPACE. */
706
707 static void
708 set_pspace_remote_exec_file (struct program_space *pspace,
709 char *remote_exec_file)
710 {
711 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
712
713 xfree (old_file);
714 set_program_space_data (pspace, remote_pspace_data,
715 xstrdup (remote_exec_file));
716 }
717
718 /* The "set/show remote exec-file" set command hook. */
719
720 static void
721 set_remote_exec_file (const char *ignored, int from_tty,
722 struct cmd_list_element *c)
723 {
724 gdb_assert (remote_exec_file_var != NULL);
725 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
726 }
727
728 /* The "set/show remote exec-file" show command hook. */
729
730 static void
731 show_remote_exec_file (struct ui_file *file, int from_tty,
732 struct cmd_list_element *cmd, const char *value)
733 {
734 fprintf_filtered (file, "%s\n", remote_exec_file_var);
735 }
736
737 static int
738 compare_pnums (const void *lhs_, const void *rhs_)
739 {
740 const struct packet_reg * const *lhs
741 = (const struct packet_reg * const *) lhs_;
742 const struct packet_reg * const *rhs
743 = (const struct packet_reg * const *) rhs_;
744
745 if ((*lhs)->pnum < (*rhs)->pnum)
746 return -1;
747 else if ((*lhs)->pnum == (*rhs)->pnum)
748 return 0;
749 else
750 return 1;
751 }
752
753 static int
754 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
755 {
756 int regnum, num_remote_regs, offset;
757 struct packet_reg **remote_regs;
758
759 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
760 {
761 struct packet_reg *r = &regs[regnum];
762
763 if (register_size (gdbarch, regnum) == 0)
764 /* Do not try to fetch zero-sized (placeholder) registers. */
765 r->pnum = -1;
766 else
767 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
768
769 r->regnum = regnum;
770 }
771
772 /* Define the g/G packet format as the contents of each register
773 with a remote protocol number, in order of ascending protocol
774 number. */
775
776 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
777 for (num_remote_regs = 0, regnum = 0;
778 regnum < gdbarch_num_regs (gdbarch);
779 regnum++)
780 if (regs[regnum].pnum != -1)
781 remote_regs[num_remote_regs++] = &regs[regnum];
782
783 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
784 compare_pnums);
785
786 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
787 {
788 remote_regs[regnum]->in_g_packet = 1;
789 remote_regs[regnum]->offset = offset;
790 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
791 }
792
793 return offset;
794 }
795
796 /* Given the architecture described by GDBARCH, return the remote
797 protocol register's number and the register's offset in the g/G
798 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
799 If the target does not have a mapping for REGNUM, return false,
800 otherwise, return true. */
801
802 int
803 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
804 int *pnum, int *poffset)
805 {
806 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
807
808 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
809
810 map_regcache_remote_table (gdbarch, regs.data ());
811
812 *pnum = regs[regnum].pnum;
813 *poffset = regs[regnum].offset;
814
815 return *pnum != -1;
816 }
817
818 static void *
819 init_remote_state (struct gdbarch *gdbarch)
820 {
821 struct remote_state *rs = get_remote_state_raw ();
822 struct remote_arch_state *rsa;
823
824 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
825
826 /* Use the architecture to build a regnum<->pnum table, which will be
827 1:1 unless a feature set specifies otherwise. */
828 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
829 gdbarch_num_regs (gdbarch),
830 struct packet_reg);
831
832 /* Record the maximum possible size of the g packet - it may turn out
833 to be smaller. */
834 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
835
836 /* Default maximum number of characters in a packet body. Many
837 remote stubs have a hardwired buffer size of 400 bytes
838 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
839 as the maximum packet-size to ensure that the packet and an extra
840 NUL character can always fit in the buffer. This stops GDB
841 trashing stubs that try to squeeze an extra NUL into what is
842 already a full buffer (As of 1999-12-04 that was most stubs). */
843 rsa->remote_packet_size = 400 - 1;
844
845 /* This one is filled in when a ``g'' packet is received. */
846 rsa->actual_register_packet_size = 0;
847
848 /* Should rsa->sizeof_g_packet needs more space than the
849 default, adjust the size accordingly. Remember that each byte is
850 encoded as two characters. 32 is the overhead for the packet
851 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
852 (``$NN:G...#NN'') is a better guess, the below has been padded a
853 little. */
854 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
855 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
856
857 /* Make sure that the packet buffer is plenty big enough for
858 this architecture. */
859 if (rs->buf_size < rsa->remote_packet_size)
860 {
861 rs->buf_size = 2 * rsa->remote_packet_size;
862 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
863 }
864
865 return rsa;
866 }
867
868 /* Return the current allowed size of a remote packet. This is
869 inferred from the current architecture, and should be used to
870 limit the length of outgoing packets. */
871 static long
872 get_remote_packet_size (void)
873 {
874 struct remote_state *rs = get_remote_state ();
875 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
876
877 if (rs->explicit_packet_size)
878 return rs->explicit_packet_size;
879
880 return rsa->remote_packet_size;
881 }
882
883 static struct packet_reg *
884 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
885 long regnum)
886 {
887 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
888 return NULL;
889 else
890 {
891 struct packet_reg *r = &rsa->regs[regnum];
892
893 gdb_assert (r->regnum == regnum);
894 return r;
895 }
896 }
897
898 static struct packet_reg *
899 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
900 LONGEST pnum)
901 {
902 int i;
903
904 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
905 {
906 struct packet_reg *r = &rsa->regs[i];
907
908 if (r->pnum == pnum)
909 return r;
910 }
911 return NULL;
912 }
913
914 static struct target_ops remote_ops;
915
916 static struct target_ops extended_remote_ops;
917
918 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
919 ``forever'' still use the normal timeout mechanism. This is
920 currently used by the ASYNC code to guarentee that target reads
921 during the initial connect always time-out. Once getpkt has been
922 modified to return a timeout indication and, in turn
923 remote_wait()/wait_for_inferior() have gained a timeout parameter
924 this can go away. */
925 static int wait_forever_enabled_p = 1;
926
927 /* Allow the user to specify what sequence to send to the remote
928 when he requests a program interruption: Although ^C is usually
929 what remote systems expect (this is the default, here), it is
930 sometimes preferable to send a break. On other systems such
931 as the Linux kernel, a break followed by g, which is Magic SysRq g
932 is required in order to interrupt the execution. */
933 const char interrupt_sequence_control_c[] = "Ctrl-C";
934 const char interrupt_sequence_break[] = "BREAK";
935 const char interrupt_sequence_break_g[] = "BREAK-g";
936 static const char *const interrupt_sequence_modes[] =
937 {
938 interrupt_sequence_control_c,
939 interrupt_sequence_break,
940 interrupt_sequence_break_g,
941 NULL
942 };
943 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
944
945 static void
946 show_interrupt_sequence (struct ui_file *file, int from_tty,
947 struct cmd_list_element *c,
948 const char *value)
949 {
950 if (interrupt_sequence_mode == interrupt_sequence_control_c)
951 fprintf_filtered (file,
952 _("Send the ASCII ETX character (Ctrl-c) "
953 "to the remote target to interrupt the "
954 "execution of the program.\n"));
955 else if (interrupt_sequence_mode == interrupt_sequence_break)
956 fprintf_filtered (file,
957 _("send a break signal to the remote target "
958 "to interrupt the execution of the program.\n"));
959 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
960 fprintf_filtered (file,
961 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
962 "the remote target to interrupt the execution "
963 "of Linux kernel.\n"));
964 else
965 internal_error (__FILE__, __LINE__,
966 _("Invalid value for interrupt_sequence_mode: %s."),
967 interrupt_sequence_mode);
968 }
969
970 /* This boolean variable specifies whether interrupt_sequence is sent
971 to the remote target when gdb connects to it.
972 This is mostly needed when you debug the Linux kernel: The Linux kernel
973 expects BREAK g which is Magic SysRq g for connecting gdb. */
974 static int interrupt_on_connect = 0;
975
976 /* This variable is used to implement the "set/show remotebreak" commands.
977 Since these commands are now deprecated in favor of "set/show remote
978 interrupt-sequence", it no longer has any effect on the code. */
979 static int remote_break;
980
981 static void
982 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
983 {
984 if (remote_break)
985 interrupt_sequence_mode = interrupt_sequence_break;
986 else
987 interrupt_sequence_mode = interrupt_sequence_control_c;
988 }
989
990 static void
991 show_remotebreak (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 }
996
997 /* This variable sets the number of bits in an address that are to be
998 sent in a memory ("M" or "m") packet. Normally, after stripping
999 leading zeros, the entire address would be sent. This variable
1000 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1001 initial implementation of remote.c restricted the address sent in
1002 memory packets to ``host::sizeof long'' bytes - (typically 32
1003 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1004 address was never sent. Since fixing this bug may cause a break in
1005 some remote targets this variable is principly provided to
1006 facilitate backward compatibility. */
1007
1008 static unsigned int remote_address_size;
1009
1010 \f
1011 /* User configurable variables for the number of characters in a
1012 memory read/write packet. MIN (rsa->remote_packet_size,
1013 rsa->sizeof_g_packet) is the default. Some targets need smaller
1014 values (fifo overruns, et.al.) and some users need larger values
1015 (speed up transfers). The variables ``preferred_*'' (the user
1016 request), ``current_*'' (what was actually set) and ``forced_*''
1017 (Positive - a soft limit, negative - a hard limit). */
1018
1019 struct memory_packet_config
1020 {
1021 const char *name;
1022 long size;
1023 int fixed_p;
1024 };
1025
1026 /* The default max memory-write-packet-size. The 16k is historical.
1027 (It came from older GDB's using alloca for buffers and the
1028 knowledge (folklore?) that some hosts don't cope very well with
1029 large alloca calls.) */
1030 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1031
1032 /* The minimum remote packet size for memory transfers. Ensures we
1033 can write at least one byte. */
1034 #define MIN_MEMORY_PACKET_SIZE 20
1035
1036 /* Compute the current size of a read/write packet. Since this makes
1037 use of ``actual_register_packet_size'' the computation is dynamic. */
1038
1039 static long
1040 get_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 struct remote_state *rs = get_remote_state ();
1043 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1044
1045 long what_they_get;
1046 if (config->fixed_p)
1047 {
1048 if (config->size <= 0)
1049 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1050 else
1051 what_they_get = config->size;
1052 }
1053 else
1054 {
1055 what_they_get = get_remote_packet_size ();
1056 /* Limit the packet to the size specified by the user. */
1057 if (config->size > 0
1058 && what_they_get > config->size)
1059 what_they_get = config->size;
1060
1061 /* Limit it to the size of the targets ``g'' response unless we have
1062 permission from the stub to use a larger packet size. */
1063 if (rs->explicit_packet_size == 0
1064 && rsa->actual_register_packet_size > 0
1065 && what_they_get > rsa->actual_register_packet_size)
1066 what_they_get = rsa->actual_register_packet_size;
1067 }
1068 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1069 what_they_get = MIN_MEMORY_PACKET_SIZE;
1070
1071 /* Make sure there is room in the global buffer for this packet
1072 (including its trailing NUL byte). */
1073 if (rs->buf_size < what_they_get + 1)
1074 {
1075 rs->buf_size = 2 * what_they_get;
1076 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1077 }
1078
1079 return what_they_get;
1080 }
1081
1082 /* Update the size of a read/write packet. If they user wants
1083 something really big then do a sanity check. */
1084
1085 static void
1086 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1087 {
1088 int fixed_p = config->fixed_p;
1089 long size = config->size;
1090
1091 if (args == NULL)
1092 error (_("Argument required (integer, `fixed' or `limited')."));
1093 else if (strcmp (args, "hard") == 0
1094 || strcmp (args, "fixed") == 0)
1095 fixed_p = 1;
1096 else if (strcmp (args, "soft") == 0
1097 || strcmp (args, "limit") == 0)
1098 fixed_p = 0;
1099 else
1100 {
1101 char *end;
1102
1103 size = strtoul (args, &end, 0);
1104 if (args == end)
1105 error (_("Invalid %s (bad syntax)."), config->name);
1106
1107 /* Instead of explicitly capping the size of a packet to or
1108 disallowing it, the user is allowed to set the size to
1109 something arbitrarily large. */
1110 }
1111
1112 /* So that the query shows the correct value. */
1113 if (size <= 0)
1114 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1115
1116 /* Extra checks? */
1117 if (fixed_p && !config->fixed_p)
1118 {
1119 if (! query (_("The target may not be able to correctly handle a %s\n"
1120 "of %ld bytes. Change the packet size? "),
1121 config->name, size))
1122 error (_("Packet size not changed."));
1123 }
1124 /* Update the config. */
1125 config->fixed_p = fixed_p;
1126 config->size = size;
1127 }
1128
1129 static void
1130 show_memory_packet_size (struct memory_packet_config *config)
1131 {
1132 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1133 if (config->fixed_p)
1134 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1135 get_memory_packet_size (config));
1136 else
1137 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1138 get_memory_packet_size (config));
1139 }
1140
1141 static struct memory_packet_config memory_write_packet_config =
1142 {
1143 "memory-write-packet-size",
1144 };
1145
1146 static void
1147 set_memory_write_packet_size (const char *args, int from_tty)
1148 {
1149 set_memory_packet_size (args, &memory_write_packet_config);
1150 }
1151
1152 static void
1153 show_memory_write_packet_size (const char *args, int from_tty)
1154 {
1155 show_memory_packet_size (&memory_write_packet_config);
1156 }
1157
1158 static long
1159 get_memory_write_packet_size (void)
1160 {
1161 return get_memory_packet_size (&memory_write_packet_config);
1162 }
1163
1164 static struct memory_packet_config memory_read_packet_config =
1165 {
1166 "memory-read-packet-size",
1167 };
1168
1169 static void
1170 set_memory_read_packet_size (const char *args, int from_tty)
1171 {
1172 set_memory_packet_size (args, &memory_read_packet_config);
1173 }
1174
1175 static void
1176 show_memory_read_packet_size (const char *args, int from_tty)
1177 {
1178 show_memory_packet_size (&memory_read_packet_config);
1179 }
1180
1181 static long
1182 get_memory_read_packet_size (void)
1183 {
1184 long size = get_memory_packet_size (&memory_read_packet_config);
1185
1186 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1187 extra buffer size argument before the memory read size can be
1188 increased beyond this. */
1189 if (size > get_remote_packet_size ())
1190 size = get_remote_packet_size ();
1191 return size;
1192 }
1193
1194 \f
1195 /* Generic configuration support for packets the stub optionally
1196 supports. Allows the user to specify the use of the packet as well
1197 as allowing GDB to auto-detect support in the remote stub. */
1198
1199 enum packet_support
1200 {
1201 PACKET_SUPPORT_UNKNOWN = 0,
1202 PACKET_ENABLE,
1203 PACKET_DISABLE
1204 };
1205
1206 struct packet_config
1207 {
1208 const char *name;
1209 const char *title;
1210
1211 /* If auto, GDB auto-detects support for this packet or feature,
1212 either through qSupported, or by trying the packet and looking
1213 at the response. If true, GDB assumes the target supports this
1214 packet. If false, the packet is disabled. Configs that don't
1215 have an associated command always have this set to auto. */
1216 enum auto_boolean detect;
1217
1218 /* Does the target support this packet? */
1219 enum packet_support support;
1220 };
1221
1222 /* Analyze a packet's return value and update the packet config
1223 accordingly. */
1224
1225 enum packet_result
1226 {
1227 PACKET_ERROR,
1228 PACKET_OK,
1229 PACKET_UNKNOWN
1230 };
1231
1232 static enum packet_support packet_config_support (struct packet_config *config);
1233 static enum packet_support packet_support (int packet);
1234
1235 static void
1236 show_packet_config_cmd (struct packet_config *config)
1237 {
1238 const char *support = "internal-error";
1239
1240 switch (packet_config_support (config))
1241 {
1242 case PACKET_ENABLE:
1243 support = "enabled";
1244 break;
1245 case PACKET_DISABLE:
1246 support = "disabled";
1247 break;
1248 case PACKET_SUPPORT_UNKNOWN:
1249 support = "unknown";
1250 break;
1251 }
1252 switch (config->detect)
1253 {
1254 case AUTO_BOOLEAN_AUTO:
1255 printf_filtered (_("Support for the `%s' packet "
1256 "is auto-detected, currently %s.\n"),
1257 config->name, support);
1258 break;
1259 case AUTO_BOOLEAN_TRUE:
1260 case AUTO_BOOLEAN_FALSE:
1261 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1262 config->name, support);
1263 break;
1264 }
1265 }
1266
1267 static void
1268 add_packet_config_cmd (struct packet_config *config, const char *name,
1269 const char *title, int legacy)
1270 {
1271 char *set_doc;
1272 char *show_doc;
1273 char *cmd_name;
1274
1275 config->name = name;
1276 config->title = title;
1277 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1278 name, title);
1279 show_doc = xstrprintf ("Show current use of remote "
1280 "protocol `%s' (%s) packet",
1281 name, title);
1282 /* set/show TITLE-packet {auto,on,off} */
1283 cmd_name = xstrprintf ("%s-packet", title);
1284 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1285 &config->detect, set_doc,
1286 show_doc, NULL, /* help_doc */
1287 NULL,
1288 show_remote_protocol_packet_cmd,
1289 &remote_set_cmdlist, &remote_show_cmdlist);
1290 /* The command code copies the documentation strings. */
1291 xfree (set_doc);
1292 xfree (show_doc);
1293 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1294 if (legacy)
1295 {
1296 char *legacy_name;
1297
1298 legacy_name = xstrprintf ("%s-packet", name);
1299 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1300 &remote_set_cmdlist);
1301 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1302 &remote_show_cmdlist);
1303 }
1304 }
1305
1306 static enum packet_result
1307 packet_check_result (const char *buf)
1308 {
1309 if (buf[0] != '\0')
1310 {
1311 /* The stub recognized the packet request. Check that the
1312 operation succeeded. */
1313 if (buf[0] == 'E'
1314 && isxdigit (buf[1]) && isxdigit (buf[2])
1315 && buf[3] == '\0')
1316 /* "Enn" - definitly an error. */
1317 return PACKET_ERROR;
1318
1319 /* Always treat "E." as an error. This will be used for
1320 more verbose error messages, such as E.memtypes. */
1321 if (buf[0] == 'E' && buf[1] == '.')
1322 return PACKET_ERROR;
1323
1324 /* The packet may or may not be OK. Just assume it is. */
1325 return PACKET_OK;
1326 }
1327 else
1328 /* The stub does not support the packet. */
1329 return PACKET_UNKNOWN;
1330 }
1331
1332 static enum packet_result
1333 packet_ok (const char *buf, struct packet_config *config)
1334 {
1335 enum packet_result result;
1336
1337 if (config->detect != AUTO_BOOLEAN_TRUE
1338 && config->support == PACKET_DISABLE)
1339 internal_error (__FILE__, __LINE__,
1340 _("packet_ok: attempt to use a disabled packet"));
1341
1342 result = packet_check_result (buf);
1343 switch (result)
1344 {
1345 case PACKET_OK:
1346 case PACKET_ERROR:
1347 /* The stub recognized the packet request. */
1348 if (config->support == PACKET_SUPPORT_UNKNOWN)
1349 {
1350 if (remote_debug)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "Packet %s (%s) is supported\n",
1353 config->name, config->title);
1354 config->support = PACKET_ENABLE;
1355 }
1356 break;
1357 case PACKET_UNKNOWN:
1358 /* The stub does not support the packet. */
1359 if (config->detect == AUTO_BOOLEAN_AUTO
1360 && config->support == PACKET_ENABLE)
1361 {
1362 /* If the stub previously indicated that the packet was
1363 supported then there is a protocol error. */
1364 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1365 config->name, config->title);
1366 }
1367 else if (config->detect == AUTO_BOOLEAN_TRUE)
1368 {
1369 /* The user set it wrong. */
1370 error (_("Enabled packet %s (%s) not recognized by stub"),
1371 config->name, config->title);
1372 }
1373
1374 if (remote_debug)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "Packet %s (%s) is NOT supported\n",
1377 config->name, config->title);
1378 config->support = PACKET_DISABLE;
1379 break;
1380 }
1381
1382 return result;
1383 }
1384
1385 enum {
1386 PACKET_vCont = 0,
1387 PACKET_X,
1388 PACKET_qSymbol,
1389 PACKET_P,
1390 PACKET_p,
1391 PACKET_Z0,
1392 PACKET_Z1,
1393 PACKET_Z2,
1394 PACKET_Z3,
1395 PACKET_Z4,
1396 PACKET_vFile_setfs,
1397 PACKET_vFile_open,
1398 PACKET_vFile_pread,
1399 PACKET_vFile_pwrite,
1400 PACKET_vFile_close,
1401 PACKET_vFile_unlink,
1402 PACKET_vFile_readlink,
1403 PACKET_vFile_fstat,
1404 PACKET_qXfer_auxv,
1405 PACKET_qXfer_features,
1406 PACKET_qXfer_exec_file,
1407 PACKET_qXfer_libraries,
1408 PACKET_qXfer_libraries_svr4,
1409 PACKET_qXfer_memory_map,
1410 PACKET_qXfer_spu_read,
1411 PACKET_qXfer_spu_write,
1412 PACKET_qXfer_osdata,
1413 PACKET_qXfer_threads,
1414 PACKET_qXfer_statictrace_read,
1415 PACKET_qXfer_traceframe_info,
1416 PACKET_qXfer_uib,
1417 PACKET_qGetTIBAddr,
1418 PACKET_qGetTLSAddr,
1419 PACKET_qSupported,
1420 PACKET_qTStatus,
1421 PACKET_QPassSignals,
1422 PACKET_QCatchSyscalls,
1423 PACKET_QProgramSignals,
1424 PACKET_QSetWorkingDir,
1425 PACKET_QStartupWithShell,
1426 PACKET_QEnvironmentHexEncoded,
1427 PACKET_QEnvironmentReset,
1428 PACKET_QEnvironmentUnset,
1429 PACKET_qCRC,
1430 PACKET_qSearch_memory,
1431 PACKET_vAttach,
1432 PACKET_vRun,
1433 PACKET_QStartNoAckMode,
1434 PACKET_vKill,
1435 PACKET_qXfer_siginfo_read,
1436 PACKET_qXfer_siginfo_write,
1437 PACKET_qAttached,
1438
1439 /* Support for conditional tracepoints. */
1440 PACKET_ConditionalTracepoints,
1441
1442 /* Support for target-side breakpoint conditions. */
1443 PACKET_ConditionalBreakpoints,
1444
1445 /* Support for target-side breakpoint commands. */
1446 PACKET_BreakpointCommands,
1447
1448 /* Support for fast tracepoints. */
1449 PACKET_FastTracepoints,
1450
1451 /* Support for static tracepoints. */
1452 PACKET_StaticTracepoints,
1453
1454 /* Support for installing tracepoints while a trace experiment is
1455 running. */
1456 PACKET_InstallInTrace,
1457
1458 PACKET_bc,
1459 PACKET_bs,
1460 PACKET_TracepointSource,
1461 PACKET_QAllow,
1462 PACKET_qXfer_fdpic,
1463 PACKET_QDisableRandomization,
1464 PACKET_QAgent,
1465 PACKET_QTBuffer_size,
1466 PACKET_Qbtrace_off,
1467 PACKET_Qbtrace_bts,
1468 PACKET_Qbtrace_pt,
1469 PACKET_qXfer_btrace,
1470
1471 /* Support for the QNonStop packet. */
1472 PACKET_QNonStop,
1473
1474 /* Support for the QThreadEvents packet. */
1475 PACKET_QThreadEvents,
1476
1477 /* Support for multi-process extensions. */
1478 PACKET_multiprocess_feature,
1479
1480 /* Support for enabling and disabling tracepoints while a trace
1481 experiment is running. */
1482 PACKET_EnableDisableTracepoints_feature,
1483
1484 /* Support for collecting strings using the tracenz bytecode. */
1485 PACKET_tracenz_feature,
1486
1487 /* Support for continuing to run a trace experiment while GDB is
1488 disconnected. */
1489 PACKET_DisconnectedTracing_feature,
1490
1491 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1492 PACKET_augmented_libraries_svr4_read_feature,
1493
1494 /* Support for the qXfer:btrace-conf:read packet. */
1495 PACKET_qXfer_btrace_conf,
1496
1497 /* Support for the Qbtrace-conf:bts:size packet. */
1498 PACKET_Qbtrace_conf_bts_size,
1499
1500 /* Support for swbreak+ feature. */
1501 PACKET_swbreak_feature,
1502
1503 /* Support for hwbreak+ feature. */
1504 PACKET_hwbreak_feature,
1505
1506 /* Support for fork events. */
1507 PACKET_fork_event_feature,
1508
1509 /* Support for vfork events. */
1510 PACKET_vfork_event_feature,
1511
1512 /* Support for the Qbtrace-conf:pt:size packet. */
1513 PACKET_Qbtrace_conf_pt_size,
1514
1515 /* Support for exec events. */
1516 PACKET_exec_event_feature,
1517
1518 /* Support for query supported vCont actions. */
1519 PACKET_vContSupported,
1520
1521 /* Support remote CTRL-C. */
1522 PACKET_vCtrlC,
1523
1524 /* Support TARGET_WAITKIND_NO_RESUMED. */
1525 PACKET_no_resumed,
1526
1527 PACKET_MAX
1528 };
1529
1530 static struct packet_config remote_protocol_packets[PACKET_MAX];
1531
1532 /* Returns the packet's corresponding "set remote foo-packet" command
1533 state. See struct packet_config for more details. */
1534
1535 static enum auto_boolean
1536 packet_set_cmd_state (int packet)
1537 {
1538 return remote_protocol_packets[packet].detect;
1539 }
1540
1541 /* Returns whether a given packet or feature is supported. This takes
1542 into account the state of the corresponding "set remote foo-packet"
1543 command, which may be used to bypass auto-detection. */
1544
1545 static enum packet_support
1546 packet_config_support (struct packet_config *config)
1547 {
1548 switch (config->detect)
1549 {
1550 case AUTO_BOOLEAN_TRUE:
1551 return PACKET_ENABLE;
1552 case AUTO_BOOLEAN_FALSE:
1553 return PACKET_DISABLE;
1554 case AUTO_BOOLEAN_AUTO:
1555 return config->support;
1556 default:
1557 gdb_assert_not_reached (_("bad switch"));
1558 }
1559 }
1560
1561 /* Same as packet_config_support, but takes the packet's enum value as
1562 argument. */
1563
1564 static enum packet_support
1565 packet_support (int packet)
1566 {
1567 struct packet_config *config = &remote_protocol_packets[packet];
1568
1569 return packet_config_support (config);
1570 }
1571
1572 static void
1573 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1574 struct cmd_list_element *c,
1575 const char *value)
1576 {
1577 struct packet_config *packet;
1578
1579 for (packet = remote_protocol_packets;
1580 packet < &remote_protocol_packets[PACKET_MAX];
1581 packet++)
1582 {
1583 if (&packet->detect == c->var)
1584 {
1585 show_packet_config_cmd (packet);
1586 return;
1587 }
1588 }
1589 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1590 c->name);
1591 }
1592
1593 /* Should we try one of the 'Z' requests? */
1594
1595 enum Z_packet_type
1596 {
1597 Z_PACKET_SOFTWARE_BP,
1598 Z_PACKET_HARDWARE_BP,
1599 Z_PACKET_WRITE_WP,
1600 Z_PACKET_READ_WP,
1601 Z_PACKET_ACCESS_WP,
1602 NR_Z_PACKET_TYPES
1603 };
1604
1605 /* For compatibility with older distributions. Provide a ``set remote
1606 Z-packet ...'' command that updates all the Z packet types. */
1607
1608 static enum auto_boolean remote_Z_packet_detect;
1609
1610 static void
1611 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1612 struct cmd_list_element *c)
1613 {
1614 int i;
1615
1616 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1617 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1618 }
1619
1620 static void
1621 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1622 struct cmd_list_element *c,
1623 const char *value)
1624 {
1625 int i;
1626
1627 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1628 {
1629 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1630 }
1631 }
1632
1633 /* Returns true if the multi-process extensions are in effect. */
1634
1635 static int
1636 remote_multi_process_p (struct remote_state *rs)
1637 {
1638 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1639 }
1640
1641 /* Returns true if fork events are supported. */
1642
1643 static int
1644 remote_fork_event_p (struct remote_state *rs)
1645 {
1646 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1647 }
1648
1649 /* Returns true if vfork events are supported. */
1650
1651 static int
1652 remote_vfork_event_p (struct remote_state *rs)
1653 {
1654 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1655 }
1656
1657 /* Returns true if exec events are supported. */
1658
1659 static int
1660 remote_exec_event_p (struct remote_state *rs)
1661 {
1662 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1663 }
1664
1665 /* Insert fork catchpoint target routine. If fork events are enabled
1666 then return success, nothing more to do. */
1667
1668 static int
1669 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672
1673 return !remote_fork_event_p (rs);
1674 }
1675
1676 /* Remove fork catchpoint target routine. Nothing to do, just
1677 return success. */
1678
1679 static int
1680 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 return 0;
1683 }
1684
1685 /* Insert vfork catchpoint target routine. If vfork events are enabled
1686 then return success, nothing more to do. */
1687
1688 static int
1689 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1690 {
1691 struct remote_state *rs = get_remote_state ();
1692
1693 return !remote_vfork_event_p (rs);
1694 }
1695
1696 /* Remove vfork catchpoint target routine. Nothing to do, just
1697 return success. */
1698
1699 static int
1700 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 return 0;
1703 }
1704
1705 /* Insert exec catchpoint target routine. If exec events are
1706 enabled, just return success. */
1707
1708 static int
1709 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712
1713 return !remote_exec_event_p (rs);
1714 }
1715
1716 /* Remove exec catchpoint target routine. Nothing to do, just
1717 return success. */
1718
1719 static int
1720 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1721 {
1722 return 0;
1723 }
1724
1725 \f
1726 /* Asynchronous signal handle registered as event loop source for
1727 when we have pending events ready to be passed to the core. */
1728
1729 static struct async_event_handler *remote_async_inferior_event_token;
1730
1731 \f
1732
1733 static ptid_t magic_null_ptid;
1734 static ptid_t not_sent_ptid;
1735 static ptid_t any_thread_ptid;
1736
1737 /* Find out if the stub attached to PID (and hence GDB should offer to
1738 detach instead of killing it when bailing out). */
1739
1740 static int
1741 remote_query_attached (int pid)
1742 {
1743 struct remote_state *rs = get_remote_state ();
1744 size_t size = get_remote_packet_size ();
1745
1746 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1747 return 0;
1748
1749 if (remote_multi_process_p (rs))
1750 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1751 else
1752 xsnprintf (rs->buf, size, "qAttached");
1753
1754 putpkt (rs->buf);
1755 getpkt (&rs->buf, &rs->buf_size, 0);
1756
1757 switch (packet_ok (rs->buf,
1758 &remote_protocol_packets[PACKET_qAttached]))
1759 {
1760 case PACKET_OK:
1761 if (strcmp (rs->buf, "1") == 0)
1762 return 1;
1763 break;
1764 case PACKET_ERROR:
1765 warning (_("Remote failure reply: %s"), rs->buf);
1766 break;
1767 case PACKET_UNKNOWN:
1768 break;
1769 }
1770
1771 return 0;
1772 }
1773
1774 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1775 has been invented by GDB, instead of reported by the target. Since
1776 we can be connected to a remote system before before knowing about
1777 any inferior, mark the target with execution when we find the first
1778 inferior. If ATTACHED is 1, then we had just attached to this
1779 inferior. If it is 0, then we just created this inferior. If it
1780 is -1, then try querying the remote stub to find out if it had
1781 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1782 attempt to open this inferior's executable as the main executable
1783 if no main executable is open already. */
1784
1785 static struct inferior *
1786 remote_add_inferior (int fake_pid_p, int pid, int attached,
1787 int try_open_exec)
1788 {
1789 struct inferior *inf;
1790
1791 /* Check whether this process we're learning about is to be
1792 considered attached, or if is to be considered to have been
1793 spawned by the stub. */
1794 if (attached == -1)
1795 attached = remote_query_attached (pid);
1796
1797 if (gdbarch_has_global_solist (target_gdbarch ()))
1798 {
1799 /* If the target shares code across all inferiors, then every
1800 attach adds a new inferior. */
1801 inf = add_inferior (pid);
1802
1803 /* ... and every inferior is bound to the same program space.
1804 However, each inferior may still have its own address
1805 space. */
1806 inf->aspace = maybe_new_address_space ();
1807 inf->pspace = current_program_space;
1808 }
1809 else
1810 {
1811 /* In the traditional debugging scenario, there's a 1-1 match
1812 between program/address spaces. We simply bind the inferior
1813 to the program space's address space. */
1814 inf = current_inferior ();
1815 inferior_appeared (inf, pid);
1816 }
1817
1818 inf->attach_flag = attached;
1819 inf->fake_pid_p = fake_pid_p;
1820
1821 /* If no main executable is currently open then attempt to
1822 open the file that was executed to create this inferior. */
1823 if (try_open_exec && get_exec_file (0) == NULL)
1824 exec_file_locate_attach (pid, 0, 1);
1825
1826 return inf;
1827 }
1828
1829 static struct private_thread_info *
1830 get_private_info_thread (struct thread_info *info);
1831
1832 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1833 according to RUNNING. */
1834
1835 static void
1836 remote_add_thread (ptid_t ptid, int running, int executing)
1837 {
1838 struct remote_state *rs = get_remote_state ();
1839 struct thread_info *thread;
1840
1841 /* GDB historically didn't pull threads in the initial connection
1842 setup. If the remote target doesn't even have a concept of
1843 threads (e.g., a bare-metal target), even if internally we
1844 consider that a single-threaded target, mentioning a new thread
1845 might be confusing to the user. Be silent then, preserving the
1846 age old behavior. */
1847 if (rs->starting_up)
1848 thread = add_thread_silent (ptid);
1849 else
1850 thread = add_thread (ptid);
1851
1852 get_private_info_thread (thread)->vcont_resumed = executing;
1853 set_executing (ptid, executing);
1854 set_running (ptid, running);
1855 }
1856
1857 /* Come here when we learn about a thread id from the remote target.
1858 It may be the first time we hear about such thread, so take the
1859 opportunity to add it to GDB's thread list. In case this is the
1860 first time we're noticing its corresponding inferior, add it to
1861 GDB's inferior list as well. EXECUTING indicates whether the
1862 thread is (internally) executing or stopped. */
1863
1864 static void
1865 remote_notice_new_inferior (ptid_t currthread, int executing)
1866 {
1867 /* In non-stop mode, we assume new found threads are (externally)
1868 running until proven otherwise with a stop reply. In all-stop,
1869 we can only get here if all threads are stopped. */
1870 int running = target_is_non_stop_p () ? 1 : 0;
1871
1872 /* If this is a new thread, add it to GDB's thread list.
1873 If we leave it up to WFI to do this, bad things will happen. */
1874
1875 if (in_thread_list (currthread) && is_exited (currthread))
1876 {
1877 /* We're seeing an event on a thread id we knew had exited.
1878 This has to be a new thread reusing the old id. Add it. */
1879 remote_add_thread (currthread, running, executing);
1880 return;
1881 }
1882
1883 if (!in_thread_list (currthread))
1884 {
1885 struct inferior *inf = NULL;
1886 int pid = ptid_get_pid (currthread);
1887
1888 if (ptid_is_pid (inferior_ptid)
1889 && pid == ptid_get_pid (inferior_ptid))
1890 {
1891 /* inferior_ptid has no thread member yet. This can happen
1892 with the vAttach -> remote_wait,"TAAthread:" path if the
1893 stub doesn't support qC. This is the first stop reported
1894 after an attach, so this is the main thread. Update the
1895 ptid in the thread list. */
1896 if (in_thread_list (pid_to_ptid (pid)))
1897 thread_change_ptid (inferior_ptid, currthread);
1898 else
1899 {
1900 remote_add_thread (currthread, running, executing);
1901 inferior_ptid = currthread;
1902 }
1903 return;
1904 }
1905
1906 if (ptid_equal (magic_null_ptid, inferior_ptid))
1907 {
1908 /* inferior_ptid is not set yet. This can happen with the
1909 vRun -> remote_wait,"TAAthread:" path if the stub
1910 doesn't support qC. This is the first stop reported
1911 after an attach, so this is the main thread. Update the
1912 ptid in the thread list. */
1913 thread_change_ptid (inferior_ptid, currthread);
1914 return;
1915 }
1916
1917 /* When connecting to a target remote, or to a target
1918 extended-remote which already was debugging an inferior, we
1919 may not know about it yet. Add it before adding its child
1920 thread, so notifications are emitted in a sensible order. */
1921 if (!in_inferior_list (ptid_get_pid (currthread)))
1922 {
1923 struct remote_state *rs = get_remote_state ();
1924 int fake_pid_p = !remote_multi_process_p (rs);
1925
1926 inf = remote_add_inferior (fake_pid_p,
1927 ptid_get_pid (currthread), -1, 1);
1928 }
1929
1930 /* This is really a new thread. Add it. */
1931 remote_add_thread (currthread, running, executing);
1932
1933 /* If we found a new inferior, let the common code do whatever
1934 it needs to with it (e.g., read shared libraries, insert
1935 breakpoints), unless we're just setting up an all-stop
1936 connection. */
1937 if (inf != NULL)
1938 {
1939 struct remote_state *rs = get_remote_state ();
1940
1941 if (!rs->starting_up)
1942 notice_new_inferior (currthread, executing, 0);
1943 }
1944 }
1945 }
1946
1947 /* Return THREAD's private thread data, creating it if necessary. */
1948
1949 static struct private_thread_info *
1950 get_private_info_thread (struct thread_info *thread)
1951 {
1952 gdb_assert (thread != NULL);
1953
1954 if (thread->priv == NULL)
1955 {
1956 struct private_thread_info *priv = XNEW (struct private_thread_info);
1957
1958 thread->private_dtor = free_private_thread_info;
1959 thread->priv = priv;
1960
1961 priv->core = -1;
1962 priv->extra = NULL;
1963 priv->name = NULL;
1964 priv->name = NULL;
1965 priv->last_resume_step = 0;
1966 priv->last_resume_sig = GDB_SIGNAL_0;
1967 priv->vcont_resumed = 0;
1968 priv->thread_handle = nullptr;
1969 }
1970
1971 return thread->priv;
1972 }
1973
1974 /* Return PTID's private thread data, creating it if necessary. */
1975
1976 static struct private_thread_info *
1977 get_private_info_ptid (ptid_t ptid)
1978 {
1979 struct thread_info *info = find_thread_ptid (ptid);
1980
1981 return get_private_info_thread (info);
1982 }
1983
1984 /* Call this function as a result of
1985 1) A halt indication (T packet) containing a thread id
1986 2) A direct query of currthread
1987 3) Successful execution of set thread */
1988
1989 static void
1990 record_currthread (struct remote_state *rs, ptid_t currthread)
1991 {
1992 rs->general_thread = currthread;
1993 }
1994
1995 /* If 'QPassSignals' is supported, tell the remote stub what signals
1996 it can simply pass through to the inferior without reporting. */
1997
1998 static void
1999 remote_pass_signals (struct target_ops *self,
2000 int numsigs, unsigned char *pass_signals)
2001 {
2002 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2003 {
2004 char *pass_packet, *p;
2005 int count = 0, i;
2006 struct remote_state *rs = get_remote_state ();
2007
2008 gdb_assert (numsigs < 256);
2009 for (i = 0; i < numsigs; i++)
2010 {
2011 if (pass_signals[i])
2012 count++;
2013 }
2014 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2015 strcpy (pass_packet, "QPassSignals:");
2016 p = pass_packet + strlen (pass_packet);
2017 for (i = 0; i < numsigs; i++)
2018 {
2019 if (pass_signals[i])
2020 {
2021 if (i >= 16)
2022 *p++ = tohex (i >> 4);
2023 *p++ = tohex (i & 15);
2024 if (count)
2025 *p++ = ';';
2026 else
2027 break;
2028 count--;
2029 }
2030 }
2031 *p = 0;
2032 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2033 {
2034 putpkt (pass_packet);
2035 getpkt (&rs->buf, &rs->buf_size, 0);
2036 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2037 if (rs->last_pass_packet)
2038 xfree (rs->last_pass_packet);
2039 rs->last_pass_packet = pass_packet;
2040 }
2041 else
2042 xfree (pass_packet);
2043 }
2044 }
2045
2046 /* If 'QCatchSyscalls' is supported, tell the remote stub
2047 to report syscalls to GDB. */
2048
2049 static int
2050 remote_set_syscall_catchpoint (struct target_ops *self,
2051 int pid, int needed, int any_count,
2052 int table_size, int *table)
2053 {
2054 const char *catch_packet;
2055 enum packet_result result;
2056 int n_sysno = 0;
2057
2058 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2059 {
2060 /* Not supported. */
2061 return 1;
2062 }
2063
2064 if (needed && !any_count)
2065 {
2066 int i;
2067
2068 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2069 for (i = 0; i < table_size; i++)
2070 {
2071 if (table[i] != 0)
2072 n_sysno++;
2073 }
2074 }
2075
2076 if (remote_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "remote_set_syscall_catchpoint "
2080 "pid %d needed %d any_count %d n_sysno %d\n",
2081 pid, needed, any_count, n_sysno);
2082 }
2083
2084 std::string built_packet;
2085 if (needed)
2086 {
2087 /* Prepare a packet with the sysno list, assuming max 8+1
2088 characters for a sysno. If the resulting packet size is too
2089 big, fallback on the non-selective packet. */
2090 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2091 built_packet.reserve (maxpktsz);
2092 built_packet = "QCatchSyscalls:1";
2093 if (!any_count)
2094 {
2095 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2096 for (int i = 0; i < table_size; i++)
2097 {
2098 if (table[i] != 0)
2099 string_appendf (built_packet, ";%x", i);
2100 }
2101 }
2102 if (built_packet.size () > get_remote_packet_size ())
2103 {
2104 /* catch_packet too big. Fallback to less efficient
2105 non selective mode, with GDB doing the filtering. */
2106 catch_packet = "QCatchSyscalls:1";
2107 }
2108 else
2109 catch_packet = built_packet.c_str ();
2110 }
2111 else
2112 catch_packet = "QCatchSyscalls:0";
2113
2114 struct remote_state *rs = get_remote_state ();
2115
2116 putpkt (catch_packet);
2117 getpkt (&rs->buf, &rs->buf_size, 0);
2118 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2119 if (result == PACKET_OK)
2120 return 0;
2121 else
2122 return -1;
2123 }
2124
2125 /* If 'QProgramSignals' is supported, tell the remote stub what
2126 signals it should pass through to the inferior when detaching. */
2127
2128 static void
2129 remote_program_signals (struct target_ops *self,
2130 int numsigs, unsigned char *signals)
2131 {
2132 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2133 {
2134 char *packet, *p;
2135 int count = 0, i;
2136 struct remote_state *rs = get_remote_state ();
2137
2138 gdb_assert (numsigs < 256);
2139 for (i = 0; i < numsigs; i++)
2140 {
2141 if (signals[i])
2142 count++;
2143 }
2144 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2145 strcpy (packet, "QProgramSignals:");
2146 p = packet + strlen (packet);
2147 for (i = 0; i < numsigs; i++)
2148 {
2149 if (signal_pass_state (i))
2150 {
2151 if (i >= 16)
2152 *p++ = tohex (i >> 4);
2153 *p++ = tohex (i & 15);
2154 if (count)
2155 *p++ = ';';
2156 else
2157 break;
2158 count--;
2159 }
2160 }
2161 *p = 0;
2162 if (!rs->last_program_signals_packet
2163 || strcmp (rs->last_program_signals_packet, packet) != 0)
2164 {
2165 putpkt (packet);
2166 getpkt (&rs->buf, &rs->buf_size, 0);
2167 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2168 xfree (rs->last_program_signals_packet);
2169 rs->last_program_signals_packet = packet;
2170 }
2171 else
2172 xfree (packet);
2173 }
2174 }
2175
2176 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2177 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2178 thread. If GEN is set, set the general thread, if not, then set
2179 the step/continue thread. */
2180 static void
2181 set_thread (ptid_t ptid, int gen)
2182 {
2183 struct remote_state *rs = get_remote_state ();
2184 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2185 char *buf = rs->buf;
2186 char *endbuf = rs->buf + get_remote_packet_size ();
2187
2188 if (ptid_equal (state, ptid))
2189 return;
2190
2191 *buf++ = 'H';
2192 *buf++ = gen ? 'g' : 'c';
2193 if (ptid_equal (ptid, magic_null_ptid))
2194 xsnprintf (buf, endbuf - buf, "0");
2195 else if (ptid_equal (ptid, any_thread_ptid))
2196 xsnprintf (buf, endbuf - buf, "0");
2197 else if (ptid_equal (ptid, minus_one_ptid))
2198 xsnprintf (buf, endbuf - buf, "-1");
2199 else
2200 write_ptid (buf, endbuf, ptid);
2201 putpkt (rs->buf);
2202 getpkt (&rs->buf, &rs->buf_size, 0);
2203 if (gen)
2204 rs->general_thread = ptid;
2205 else
2206 rs->continue_thread = ptid;
2207 }
2208
2209 static void
2210 set_general_thread (ptid_t ptid)
2211 {
2212 set_thread (ptid, 1);
2213 }
2214
2215 static void
2216 set_continue_thread (ptid_t ptid)
2217 {
2218 set_thread (ptid, 0);
2219 }
2220
2221 /* Change the remote current process. Which thread within the process
2222 ends up selected isn't important, as long as it is the same process
2223 as what INFERIOR_PTID points to.
2224
2225 This comes from that fact that there is no explicit notion of
2226 "selected process" in the protocol. The selected process for
2227 general operations is the process the selected general thread
2228 belongs to. */
2229
2230 static void
2231 set_general_process (void)
2232 {
2233 struct remote_state *rs = get_remote_state ();
2234
2235 /* If the remote can't handle multiple processes, don't bother. */
2236 if (!remote_multi_process_p (rs))
2237 return;
2238
2239 /* We only need to change the remote current thread if it's pointing
2240 at some other process. */
2241 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2242 set_general_thread (inferior_ptid);
2243 }
2244
2245 \f
2246 /* Return nonzero if this is the main thread that we made up ourselves
2247 to model non-threaded targets as single-threaded. */
2248
2249 static int
2250 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2251 {
2252 if (ptid_equal (ptid, magic_null_ptid))
2253 /* The main thread is always alive. */
2254 return 1;
2255
2256 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2257 /* The main thread is always alive. This can happen after a
2258 vAttach, if the remote side doesn't support
2259 multi-threading. */
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 /* Return nonzero if the thread PTID is still alive on the remote
2266 system. */
2267
2268 static int
2269 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2270 {
2271 struct remote_state *rs = get_remote_state ();
2272 char *p, *endp;
2273
2274 /* Check if this is a thread that we made up ourselves to model
2275 non-threaded targets as single-threaded. */
2276 if (remote_thread_always_alive (ops, ptid))
2277 return 1;
2278
2279 p = rs->buf;
2280 endp = rs->buf + get_remote_packet_size ();
2281
2282 *p++ = 'T';
2283 write_ptid (p, endp, ptid);
2284
2285 putpkt (rs->buf);
2286 getpkt (&rs->buf, &rs->buf_size, 0);
2287 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2288 }
2289
2290 /* Return a pointer to a thread name if we know it and NULL otherwise.
2291 The thread_info object owns the memory for the name. */
2292
2293 static const char *
2294 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2295 {
2296 if (info->priv != NULL)
2297 return info->priv->name;
2298
2299 return NULL;
2300 }
2301
2302 /* About these extended threadlist and threadinfo packets. They are
2303 variable length packets but, the fields within them are often fixed
2304 length. They are redundent enough to send over UDP as is the
2305 remote protocol in general. There is a matching unit test module
2306 in libstub. */
2307
2308 /* WARNING: This threadref data structure comes from the remote O.S.,
2309 libstub protocol encoding, and remote.c. It is not particularly
2310 changable. */
2311
2312 /* Right now, the internal structure is int. We want it to be bigger.
2313 Plan to fix this. */
2314
2315 typedef int gdb_threadref; /* Internal GDB thread reference. */
2316
2317 /* gdb_ext_thread_info is an internal GDB data structure which is
2318 equivalent to the reply of the remote threadinfo packet. */
2319
2320 struct gdb_ext_thread_info
2321 {
2322 threadref threadid; /* External form of thread reference. */
2323 int active; /* Has state interesting to GDB?
2324 regs, stack. */
2325 char display[256]; /* Brief state display, name,
2326 blocked/suspended. */
2327 char shortname[32]; /* To be used to name threads. */
2328 char more_display[256]; /* Long info, statistics, queue depth,
2329 whatever. */
2330 };
2331
2332 /* The volume of remote transfers can be limited by submitting
2333 a mask containing bits specifying the desired information.
2334 Use a union of these values as the 'selection' parameter to
2335 get_thread_info. FIXME: Make these TAG names more thread specific. */
2336
2337 #define TAG_THREADID 1
2338 #define TAG_EXISTS 2
2339 #define TAG_DISPLAY 4
2340 #define TAG_THREADNAME 8
2341 #define TAG_MOREDISPLAY 16
2342
2343 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2344
2345 static char *unpack_nibble (char *buf, int *val);
2346
2347 static char *unpack_byte (char *buf, int *value);
2348
2349 static char *pack_int (char *buf, int value);
2350
2351 static char *unpack_int (char *buf, int *value);
2352
2353 static char *unpack_string (char *src, char *dest, int length);
2354
2355 static char *pack_threadid (char *pkt, threadref *id);
2356
2357 static char *unpack_threadid (char *inbuf, threadref *id);
2358
2359 void int_to_threadref (threadref *id, int value);
2360
2361 static int threadref_to_int (threadref *ref);
2362
2363 static void copy_threadref (threadref *dest, threadref *src);
2364
2365 static int threadmatch (threadref *dest, threadref *src);
2366
2367 static char *pack_threadinfo_request (char *pkt, int mode,
2368 threadref *id);
2369
2370 static int remote_unpack_thread_info_response (char *pkt,
2371 threadref *expectedref,
2372 struct gdb_ext_thread_info
2373 *info);
2374
2375
2376 static int remote_get_threadinfo (threadref *threadid,
2377 int fieldset, /*TAG mask */
2378 struct gdb_ext_thread_info *info);
2379
2380 static char *pack_threadlist_request (char *pkt, int startflag,
2381 int threadcount,
2382 threadref *nextthread);
2383
2384 static int parse_threadlist_response (char *pkt,
2385 int result_limit,
2386 threadref *original_echo,
2387 threadref *resultlist,
2388 int *doneflag);
2389
2390 static int remote_get_threadlist (int startflag,
2391 threadref *nextthread,
2392 int result_limit,
2393 int *done,
2394 int *result_count,
2395 threadref *threadlist);
2396
2397 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2398
2399 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2400 void *context, int looplimit);
2401
2402 static int remote_newthread_step (threadref *ref, void *context);
2403
2404
2405 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2406 buffer we're allowed to write to. Returns
2407 BUF+CHARACTERS_WRITTEN. */
2408
2409 static char *
2410 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2411 {
2412 int pid, tid;
2413 struct remote_state *rs = get_remote_state ();
2414
2415 if (remote_multi_process_p (rs))
2416 {
2417 pid = ptid_get_pid (ptid);
2418 if (pid < 0)
2419 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2420 else
2421 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2422 }
2423 tid = ptid_get_lwp (ptid);
2424 if (tid < 0)
2425 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2426 else
2427 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2428
2429 return buf;
2430 }
2431
2432 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2433 last parsed char. Returns null_ptid if no thread id is found, and
2434 throws an error if the thread id has an invalid format. */
2435
2436 static ptid_t
2437 read_ptid (const char *buf, const char **obuf)
2438 {
2439 const char *p = buf;
2440 const char *pp;
2441 ULONGEST pid = 0, tid = 0;
2442
2443 if (*p == 'p')
2444 {
2445 /* Multi-process ptid. */
2446 pp = unpack_varlen_hex (p + 1, &pid);
2447 if (*pp != '.')
2448 error (_("invalid remote ptid: %s"), p);
2449
2450 p = pp;
2451 pp = unpack_varlen_hex (p + 1, &tid);
2452 if (obuf)
2453 *obuf = pp;
2454 return ptid_build (pid, tid, 0);
2455 }
2456
2457 /* No multi-process. Just a tid. */
2458 pp = unpack_varlen_hex (p, &tid);
2459
2460 /* Return null_ptid when no thread id is found. */
2461 if (p == pp)
2462 {
2463 if (obuf)
2464 *obuf = pp;
2465 return null_ptid;
2466 }
2467
2468 /* Since the stub is not sending a process id, then default to
2469 what's in inferior_ptid, unless it's null at this point. If so,
2470 then since there's no way to know the pid of the reported
2471 threads, use the magic number. */
2472 if (ptid_equal (inferior_ptid, null_ptid))
2473 pid = ptid_get_pid (magic_null_ptid);
2474 else
2475 pid = ptid_get_pid (inferior_ptid);
2476
2477 if (obuf)
2478 *obuf = pp;
2479 return ptid_build (pid, tid, 0);
2480 }
2481
2482 static int
2483 stubhex (int ch)
2484 {
2485 if (ch >= 'a' && ch <= 'f')
2486 return ch - 'a' + 10;
2487 if (ch >= '0' && ch <= '9')
2488 return ch - '0';
2489 if (ch >= 'A' && ch <= 'F')
2490 return ch - 'A' + 10;
2491 return -1;
2492 }
2493
2494 static int
2495 stub_unpack_int (char *buff, int fieldlength)
2496 {
2497 int nibble;
2498 int retval = 0;
2499
2500 while (fieldlength)
2501 {
2502 nibble = stubhex (*buff++);
2503 retval |= nibble;
2504 fieldlength--;
2505 if (fieldlength)
2506 retval = retval << 4;
2507 }
2508 return retval;
2509 }
2510
2511 static char *
2512 unpack_nibble (char *buf, int *val)
2513 {
2514 *val = fromhex (*buf++);
2515 return buf;
2516 }
2517
2518 static char *
2519 unpack_byte (char *buf, int *value)
2520 {
2521 *value = stub_unpack_int (buf, 2);
2522 return buf + 2;
2523 }
2524
2525 static char *
2526 pack_int (char *buf, int value)
2527 {
2528 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2529 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2530 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2531 buf = pack_hex_byte (buf, (value & 0xff));
2532 return buf;
2533 }
2534
2535 static char *
2536 unpack_int (char *buf, int *value)
2537 {
2538 *value = stub_unpack_int (buf, 8);
2539 return buf + 8;
2540 }
2541
2542 #if 0 /* Currently unused, uncomment when needed. */
2543 static char *pack_string (char *pkt, char *string);
2544
2545 static char *
2546 pack_string (char *pkt, char *string)
2547 {
2548 char ch;
2549 int len;
2550
2551 len = strlen (string);
2552 if (len > 200)
2553 len = 200; /* Bigger than most GDB packets, junk??? */
2554 pkt = pack_hex_byte (pkt, len);
2555 while (len-- > 0)
2556 {
2557 ch = *string++;
2558 if ((ch == '\0') || (ch == '#'))
2559 ch = '*'; /* Protect encapsulation. */
2560 *pkt++ = ch;
2561 }
2562 return pkt;
2563 }
2564 #endif /* 0 (unused) */
2565
2566 static char *
2567 unpack_string (char *src, char *dest, int length)
2568 {
2569 while (length--)
2570 *dest++ = *src++;
2571 *dest = '\0';
2572 return src;
2573 }
2574
2575 static char *
2576 pack_threadid (char *pkt, threadref *id)
2577 {
2578 char *limit;
2579 unsigned char *altid;
2580
2581 altid = (unsigned char *) id;
2582 limit = pkt + BUF_THREAD_ID_SIZE;
2583 while (pkt < limit)
2584 pkt = pack_hex_byte (pkt, *altid++);
2585 return pkt;
2586 }
2587
2588
2589 static char *
2590 unpack_threadid (char *inbuf, threadref *id)
2591 {
2592 char *altref;
2593 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2594 int x, y;
2595
2596 altref = (char *) id;
2597
2598 while (inbuf < limit)
2599 {
2600 x = stubhex (*inbuf++);
2601 y = stubhex (*inbuf++);
2602 *altref++ = (x << 4) | y;
2603 }
2604 return inbuf;
2605 }
2606
2607 /* Externally, threadrefs are 64 bits but internally, they are still
2608 ints. This is due to a mismatch of specifications. We would like
2609 to use 64bit thread references internally. This is an adapter
2610 function. */
2611
2612 void
2613 int_to_threadref (threadref *id, int value)
2614 {
2615 unsigned char *scan;
2616
2617 scan = (unsigned char *) id;
2618 {
2619 int i = 4;
2620 while (i--)
2621 *scan++ = 0;
2622 }
2623 *scan++ = (value >> 24) & 0xff;
2624 *scan++ = (value >> 16) & 0xff;
2625 *scan++ = (value >> 8) & 0xff;
2626 *scan++ = (value & 0xff);
2627 }
2628
2629 static int
2630 threadref_to_int (threadref *ref)
2631 {
2632 int i, value = 0;
2633 unsigned char *scan;
2634
2635 scan = *ref;
2636 scan += 4;
2637 i = 4;
2638 while (i-- > 0)
2639 value = (value << 8) | ((*scan++) & 0xff);
2640 return value;
2641 }
2642
2643 static void
2644 copy_threadref (threadref *dest, threadref *src)
2645 {
2646 int i;
2647 unsigned char *csrc, *cdest;
2648
2649 csrc = (unsigned char *) src;
2650 cdest = (unsigned char *) dest;
2651 i = 8;
2652 while (i--)
2653 *cdest++ = *csrc++;
2654 }
2655
2656 static int
2657 threadmatch (threadref *dest, threadref *src)
2658 {
2659 /* Things are broken right now, so just assume we got a match. */
2660 #if 0
2661 unsigned char *srcp, *destp;
2662 int i, result;
2663 srcp = (char *) src;
2664 destp = (char *) dest;
2665
2666 result = 1;
2667 while (i-- > 0)
2668 result &= (*srcp++ == *destp++) ? 1 : 0;
2669 return result;
2670 #endif
2671 return 1;
2672 }
2673
2674 /*
2675 threadid:1, # always request threadid
2676 context_exists:2,
2677 display:4,
2678 unique_name:8,
2679 more_display:16
2680 */
2681
2682 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2683
2684 static char *
2685 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2686 {
2687 *pkt++ = 'q'; /* Info Query */
2688 *pkt++ = 'P'; /* process or thread info */
2689 pkt = pack_int (pkt, mode); /* mode */
2690 pkt = pack_threadid (pkt, id); /* threadid */
2691 *pkt = '\0'; /* terminate */
2692 return pkt;
2693 }
2694
2695 /* These values tag the fields in a thread info response packet. */
2696 /* Tagging the fields allows us to request specific fields and to
2697 add more fields as time goes by. */
2698
2699 #define TAG_THREADID 1 /* Echo the thread identifier. */
2700 #define TAG_EXISTS 2 /* Is this process defined enough to
2701 fetch registers and its stack? */
2702 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2703 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2704 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2705 the process. */
2706
2707 static int
2708 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2709 struct gdb_ext_thread_info *info)
2710 {
2711 struct remote_state *rs = get_remote_state ();
2712 int mask, length;
2713 int tag;
2714 threadref ref;
2715 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2716 int retval = 1;
2717
2718 /* info->threadid = 0; FIXME: implement zero_threadref. */
2719 info->active = 0;
2720 info->display[0] = '\0';
2721 info->shortname[0] = '\0';
2722 info->more_display[0] = '\0';
2723
2724 /* Assume the characters indicating the packet type have been
2725 stripped. */
2726 pkt = unpack_int (pkt, &mask); /* arg mask */
2727 pkt = unpack_threadid (pkt, &ref);
2728
2729 if (mask == 0)
2730 warning (_("Incomplete response to threadinfo request."));
2731 if (!threadmatch (&ref, expectedref))
2732 { /* This is an answer to a different request. */
2733 warning (_("ERROR RMT Thread info mismatch."));
2734 return 0;
2735 }
2736 copy_threadref (&info->threadid, &ref);
2737
2738 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2739
2740 /* Packets are terminated with nulls. */
2741 while ((pkt < limit) && mask && *pkt)
2742 {
2743 pkt = unpack_int (pkt, &tag); /* tag */
2744 pkt = unpack_byte (pkt, &length); /* length */
2745 if (!(tag & mask)) /* Tags out of synch with mask. */
2746 {
2747 warning (_("ERROR RMT: threadinfo tag mismatch."));
2748 retval = 0;
2749 break;
2750 }
2751 if (tag == TAG_THREADID)
2752 {
2753 if (length != 16)
2754 {
2755 warning (_("ERROR RMT: length of threadid is not 16."));
2756 retval = 0;
2757 break;
2758 }
2759 pkt = unpack_threadid (pkt, &ref);
2760 mask = mask & ~TAG_THREADID;
2761 continue;
2762 }
2763 if (tag == TAG_EXISTS)
2764 {
2765 info->active = stub_unpack_int (pkt, length);
2766 pkt += length;
2767 mask = mask & ~(TAG_EXISTS);
2768 if (length > 8)
2769 {
2770 warning (_("ERROR RMT: 'exists' length too long."));
2771 retval = 0;
2772 break;
2773 }
2774 continue;
2775 }
2776 if (tag == TAG_THREADNAME)
2777 {
2778 pkt = unpack_string (pkt, &info->shortname[0], length);
2779 mask = mask & ~TAG_THREADNAME;
2780 continue;
2781 }
2782 if (tag == TAG_DISPLAY)
2783 {
2784 pkt = unpack_string (pkt, &info->display[0], length);
2785 mask = mask & ~TAG_DISPLAY;
2786 continue;
2787 }
2788 if (tag == TAG_MOREDISPLAY)
2789 {
2790 pkt = unpack_string (pkt, &info->more_display[0], length);
2791 mask = mask & ~TAG_MOREDISPLAY;
2792 continue;
2793 }
2794 warning (_("ERROR RMT: unknown thread info tag."));
2795 break; /* Not a tag we know about. */
2796 }
2797 return retval;
2798 }
2799
2800 static int
2801 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2802 struct gdb_ext_thread_info *info)
2803 {
2804 struct remote_state *rs = get_remote_state ();
2805 int result;
2806
2807 pack_threadinfo_request (rs->buf, fieldset, threadid);
2808 putpkt (rs->buf);
2809 getpkt (&rs->buf, &rs->buf_size, 0);
2810
2811 if (rs->buf[0] == '\0')
2812 return 0;
2813
2814 result = remote_unpack_thread_info_response (rs->buf + 2,
2815 threadid, info);
2816 return result;
2817 }
2818
2819 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2820
2821 static char *
2822 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2823 threadref *nextthread)
2824 {
2825 *pkt++ = 'q'; /* info query packet */
2826 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2827 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2828 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2829 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2830 *pkt = '\0';
2831 return pkt;
2832 }
2833
2834 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2835
2836 static int
2837 parse_threadlist_response (char *pkt, int result_limit,
2838 threadref *original_echo, threadref *resultlist,
2839 int *doneflag)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 char *limit;
2843 int count, resultcount, done;
2844
2845 resultcount = 0;
2846 /* Assume the 'q' and 'M chars have been stripped. */
2847 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2848 /* done parse past here */
2849 pkt = unpack_byte (pkt, &count); /* count field */
2850 pkt = unpack_nibble (pkt, &done);
2851 /* The first threadid is the argument threadid. */
2852 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2853 while ((count-- > 0) && (pkt < limit))
2854 {
2855 pkt = unpack_threadid (pkt, resultlist++);
2856 if (resultcount++ >= result_limit)
2857 break;
2858 }
2859 if (doneflag)
2860 *doneflag = done;
2861 return resultcount;
2862 }
2863
2864 /* Fetch the next batch of threads from the remote. Returns -1 if the
2865 qL packet is not supported, 0 on error and 1 on success. */
2866
2867 static int
2868 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2869 int *done, int *result_count, threadref *threadlist)
2870 {
2871 struct remote_state *rs = get_remote_state ();
2872 int result = 1;
2873
2874 /* Trancate result limit to be smaller than the packet size. */
2875 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2876 >= get_remote_packet_size ())
2877 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2878
2879 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2880 putpkt (rs->buf);
2881 getpkt (&rs->buf, &rs->buf_size, 0);
2882 if (*rs->buf == '\0')
2883 {
2884 /* Packet not supported. */
2885 return -1;
2886 }
2887
2888 *result_count =
2889 parse_threadlist_response (rs->buf + 2, result_limit,
2890 &rs->echo_nextthread, threadlist, done);
2891
2892 if (!threadmatch (&rs->echo_nextthread, nextthread))
2893 {
2894 /* FIXME: This is a good reason to drop the packet. */
2895 /* Possably, there is a duplicate response. */
2896 /* Possabilities :
2897 retransmit immediatly - race conditions
2898 retransmit after timeout - yes
2899 exit
2900 wait for packet, then exit
2901 */
2902 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2903 return 0; /* I choose simply exiting. */
2904 }
2905 if (*result_count <= 0)
2906 {
2907 if (*done != 1)
2908 {
2909 warning (_("RMT ERROR : failed to get remote thread list."));
2910 result = 0;
2911 }
2912 return result; /* break; */
2913 }
2914 if (*result_count > result_limit)
2915 {
2916 *result_count = 0;
2917 warning (_("RMT ERROR: threadlist response longer than requested."));
2918 return 0;
2919 }
2920 return result;
2921 }
2922
2923 /* Fetch the list of remote threads, with the qL packet, and call
2924 STEPFUNCTION for each thread found. Stops iterating and returns 1
2925 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2926 STEPFUNCTION returns false. If the packet is not supported,
2927 returns -1. */
2928
2929 static int
2930 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2931 int looplimit)
2932 {
2933 struct remote_state *rs = get_remote_state ();
2934 int done, i, result_count;
2935 int startflag = 1;
2936 int result = 1;
2937 int loopcount = 0;
2938
2939 done = 0;
2940 while (!done)
2941 {
2942 if (loopcount++ > looplimit)
2943 {
2944 result = 0;
2945 warning (_("Remote fetch threadlist -infinite loop-."));
2946 break;
2947 }
2948 result = remote_get_threadlist (startflag, &rs->nextthread,
2949 MAXTHREADLISTRESULTS,
2950 &done, &result_count,
2951 rs->resultthreadlist);
2952 if (result <= 0)
2953 break;
2954 /* Clear for later iterations. */
2955 startflag = 0;
2956 /* Setup to resume next batch of thread references, set nextthread. */
2957 if (result_count >= 1)
2958 copy_threadref (&rs->nextthread,
2959 &rs->resultthreadlist[result_count - 1]);
2960 i = 0;
2961 while (result_count--)
2962 {
2963 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2964 {
2965 result = 0;
2966 break;
2967 }
2968 }
2969 }
2970 return result;
2971 }
2972
2973 /* A thread found on the remote target. */
2974
2975 struct thread_item
2976 {
2977 explicit thread_item (ptid_t ptid_)
2978 : ptid (ptid_)
2979 {}
2980
2981 thread_item (thread_item &&other) = default;
2982 thread_item &operator= (thread_item &&other) = default;
2983
2984 DISABLE_COPY_AND_ASSIGN (thread_item);
2985
2986 /* The thread's PTID. */
2987 ptid_t ptid;
2988
2989 /* The thread's extra info. */
2990 std::string extra;
2991
2992 /* The thread's name. */
2993 std::string name;
2994
2995 /* The core the thread was running on. -1 if not known. */
2996 int core = -1;
2997
2998 /* The thread handle associated with the thread. */
2999 gdb::byte_vector thread_handle;
3000
3001 };
3002
3003 /* Context passed around to the various methods listing remote
3004 threads. As new threads are found, they're added to the ITEMS
3005 vector. */
3006
3007 struct threads_listing_context
3008 {
3009 /* Return true if this object contains an entry for a thread with ptid
3010 PTID. */
3011
3012 bool contains_thread (ptid_t ptid) const
3013 {
3014 auto match_ptid = [&] (const thread_item &item)
3015 {
3016 return item.ptid == ptid;
3017 };
3018
3019 auto it = std::find_if (this->items.begin (),
3020 this->items.end (),
3021 match_ptid);
3022
3023 return it != this->items.end ();
3024 }
3025
3026 /* Remove the thread with ptid PTID. */
3027
3028 void remove_thread (ptid_t ptid)
3029 {
3030 auto match_ptid = [&] (const thread_item &item)
3031 {
3032 return item.ptid == ptid;
3033 };
3034
3035 auto it = std::remove_if (this->items.begin (),
3036 this->items.end (),
3037 match_ptid);
3038
3039 if (it != this->items.end ())
3040 this->items.erase (it);
3041 }
3042
3043 /* The threads found on the remote target. */
3044 std::vector<thread_item> items;
3045 };
3046
3047 static int
3048 remote_newthread_step (threadref *ref, void *data)
3049 {
3050 struct threads_listing_context *context
3051 = (struct threads_listing_context *) data;
3052 int pid = inferior_ptid.pid ();
3053 int lwp = threadref_to_int (ref);
3054 ptid_t ptid (pid, lwp);
3055
3056 context->items.emplace_back (ptid);
3057
3058 return 1; /* continue iterator */
3059 }
3060
3061 #define CRAZY_MAX_THREADS 1000
3062
3063 static ptid_t
3064 remote_current_thread (ptid_t oldpid)
3065 {
3066 struct remote_state *rs = get_remote_state ();
3067
3068 putpkt ("qC");
3069 getpkt (&rs->buf, &rs->buf_size, 0);
3070 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3071 {
3072 const char *obuf;
3073 ptid_t result;
3074
3075 result = read_ptid (&rs->buf[2], &obuf);
3076 if (*obuf != '\0' && remote_debug)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "warning: garbage in qC reply\n");
3079
3080 return result;
3081 }
3082 else
3083 return oldpid;
3084 }
3085
3086 /* List remote threads using the deprecated qL packet. */
3087
3088 static int
3089 remote_get_threads_with_ql (struct target_ops *ops,
3090 struct threads_listing_context *context)
3091 {
3092 if (remote_threadlist_iterator (remote_newthread_step, context,
3093 CRAZY_MAX_THREADS) >= 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 #if defined(HAVE_LIBEXPAT)
3100
3101 static void
3102 start_thread (struct gdb_xml_parser *parser,
3103 const struct gdb_xml_element *element,
3104 void *user_data, VEC(gdb_xml_value_s) *attributes)
3105 {
3106 struct threads_listing_context *data
3107 = (struct threads_listing_context *) user_data;
3108 struct gdb_xml_value *attr;
3109
3110 char *id = (char *) xml_find_attribute (attributes, "id")->value;
3111 ptid_t ptid = read_ptid (id, NULL);
3112
3113 data->items.emplace_back (ptid);
3114 thread_item &item = data->items.back ();
3115
3116 attr = xml_find_attribute (attributes, "core");
3117 if (attr != NULL)
3118 item.core = *(ULONGEST *) attr->value;
3119
3120 attr = xml_find_attribute (attributes, "name");
3121 if (attr != NULL)
3122 item.name = (const char *) attr->value;
3123
3124 attr = xml_find_attribute (attributes, "handle");
3125 if (attr != NULL)
3126 item.thread_handle = hex2bin ((const char *) attr->value);
3127 }
3128
3129 static void
3130 end_thread (struct gdb_xml_parser *parser,
3131 const struct gdb_xml_element *element,
3132 void *user_data, const char *body_text)
3133 {
3134 struct threads_listing_context *data
3135 = (struct threads_listing_context *) user_data;
3136
3137 if (body_text != NULL && *body_text != '\0')
3138 data->items.back ().extra = body_text;
3139 }
3140
3141 const struct gdb_xml_attribute thread_attributes[] = {
3142 { "id", GDB_XML_AF_NONE, NULL, NULL },
3143 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3144 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3145 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3146 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3147 };
3148
3149 const struct gdb_xml_element thread_children[] = {
3150 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3151 };
3152
3153 const struct gdb_xml_element threads_children[] = {
3154 { "thread", thread_attributes, thread_children,
3155 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3156 start_thread, end_thread },
3157 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3158 };
3159
3160 const struct gdb_xml_element threads_elements[] = {
3161 { "threads", NULL, threads_children,
3162 GDB_XML_EF_NONE, NULL, NULL },
3163 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3164 };
3165
3166 #endif
3167
3168 /* List remote threads using qXfer:threads:read. */
3169
3170 static int
3171 remote_get_threads_with_qxfer (struct target_ops *ops,
3172 struct threads_listing_context *context)
3173 {
3174 #if defined(HAVE_LIBEXPAT)
3175 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3176 {
3177 gdb::unique_xmalloc_ptr<char> xml
3178 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3179
3180 if (xml != NULL && *xml != '\0')
3181 {
3182 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3183 threads_elements, xml.get (), context);
3184 }
3185
3186 return 1;
3187 }
3188 #endif
3189
3190 return 0;
3191 }
3192
3193 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3194
3195 static int
3196 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3197 struct threads_listing_context *context)
3198 {
3199 struct remote_state *rs = get_remote_state ();
3200
3201 if (rs->use_threadinfo_query)
3202 {
3203 const char *bufp;
3204
3205 putpkt ("qfThreadInfo");
3206 getpkt (&rs->buf, &rs->buf_size, 0);
3207 bufp = rs->buf;
3208 if (bufp[0] != '\0') /* q packet recognized */
3209 {
3210 while (*bufp++ == 'm') /* reply contains one or more TID */
3211 {
3212 do
3213 {
3214 ptid_t ptid = read_ptid (bufp, &bufp);
3215 context->items.emplace_back (ptid);
3216 }
3217 while (*bufp++ == ','); /* comma-separated list */
3218 putpkt ("qsThreadInfo");
3219 getpkt (&rs->buf, &rs->buf_size, 0);
3220 bufp = rs->buf;
3221 }
3222 return 1;
3223 }
3224 else
3225 {
3226 /* Packet not recognized. */
3227 rs->use_threadinfo_query = 0;
3228 }
3229 }
3230
3231 return 0;
3232 }
3233
3234 /* Implement the to_update_thread_list function for the remote
3235 targets. */
3236
3237 static void
3238 remote_update_thread_list (struct target_ops *ops)
3239 {
3240 struct threads_listing_context context;
3241 int got_list = 0;
3242
3243 /* We have a few different mechanisms to fetch the thread list. Try
3244 them all, starting with the most preferred one first, falling
3245 back to older methods. */
3246 if (remote_get_threads_with_qxfer (ops, &context)
3247 || remote_get_threads_with_qthreadinfo (ops, &context)
3248 || remote_get_threads_with_ql (ops, &context))
3249 {
3250 int i;
3251 struct thread_info *tp, *tmp;
3252
3253 got_list = 1;
3254
3255 if (context.items.empty ()
3256 && remote_thread_always_alive (ops, inferior_ptid))
3257 {
3258 /* Some targets don't really support threads, but still
3259 reply an (empty) thread list in response to the thread
3260 listing packets, instead of replying "packet not
3261 supported". Exit early so we don't delete the main
3262 thread. */
3263 return;
3264 }
3265
3266 /* CONTEXT now holds the current thread list on the remote
3267 target end. Delete GDB-side threads no longer found on the
3268 target. */
3269 ALL_THREADS_SAFE (tp, tmp)
3270 {
3271 if (!context.contains_thread (tp->ptid))
3272 {
3273 /* Not found. */
3274 delete_thread (tp->ptid);
3275 }
3276 }
3277
3278 /* Remove any unreported fork child threads from CONTEXT so
3279 that we don't interfere with follow fork, which is where
3280 creation of such threads is handled. */
3281 remove_new_fork_children (&context);
3282
3283 /* And now add threads we don't know about yet to our list. */
3284 for (thread_item &item : context.items)
3285 {
3286 if (item.ptid != null_ptid)
3287 {
3288 struct private_thread_info *info;
3289 /* In non-stop mode, we assume new found threads are
3290 executing until proven otherwise with a stop reply.
3291 In all-stop, we can only get here if all threads are
3292 stopped. */
3293 int executing = target_is_non_stop_p () ? 1 : 0;
3294
3295 remote_notice_new_inferior (item.ptid, executing);
3296
3297 info = get_private_info_ptid (item.ptid);
3298 info->core = item.core;
3299 info->extra = xstrdup (item.extra.c_str ());
3300 info->name = xstrdup (item.name.c_str ());
3301 info->thread_handle
3302 = new gdb::byte_vector (std::move (item.thread_handle));
3303 }
3304 }
3305 }
3306
3307 if (!got_list)
3308 {
3309 /* If no thread listing method is supported, then query whether
3310 each known thread is alive, one by one, with the T packet.
3311 If the target doesn't support threads at all, then this is a
3312 no-op. See remote_thread_alive. */
3313 prune_threads ();
3314 }
3315 }
3316
3317 /*
3318 * Collect a descriptive string about the given thread.
3319 * The target may say anything it wants to about the thread
3320 * (typically info about its blocked / runnable state, name, etc.).
3321 * This string will appear in the info threads display.
3322 *
3323 * Optional: targets are not required to implement this function.
3324 */
3325
3326 static const char *
3327 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3328 {
3329 struct remote_state *rs = get_remote_state ();
3330 int result;
3331 int set;
3332 threadref id;
3333 struct gdb_ext_thread_info threadinfo;
3334 static char display_buf[100]; /* arbitrary... */
3335 int n = 0; /* position in display_buf */
3336
3337 if (rs->remote_desc == 0) /* paranoia */
3338 internal_error (__FILE__, __LINE__,
3339 _("remote_threads_extra_info"));
3340
3341 if (ptid_equal (tp->ptid, magic_null_ptid)
3342 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3343 /* This is the main thread which was added by GDB. The remote
3344 server doesn't know about it. */
3345 return NULL;
3346
3347 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3348 {
3349 struct thread_info *info = find_thread_ptid (tp->ptid);
3350
3351 if (info && info->priv)
3352 return info->priv->extra;
3353 else
3354 return NULL;
3355 }
3356
3357 if (rs->use_threadextra_query)
3358 {
3359 char *b = rs->buf;
3360 char *endb = rs->buf + get_remote_packet_size ();
3361
3362 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3363 b += strlen (b);
3364 write_ptid (b, endb, tp->ptid);
3365
3366 putpkt (rs->buf);
3367 getpkt (&rs->buf, &rs->buf_size, 0);
3368 if (rs->buf[0] != 0)
3369 {
3370 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3371 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3372 display_buf [result] = '\0';
3373 return display_buf;
3374 }
3375 }
3376
3377 /* If the above query fails, fall back to the old method. */
3378 rs->use_threadextra_query = 0;
3379 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3380 | TAG_MOREDISPLAY | TAG_DISPLAY;
3381 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3382 if (remote_get_threadinfo (&id, set, &threadinfo))
3383 if (threadinfo.active)
3384 {
3385 if (*threadinfo.shortname)
3386 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3387 " Name: %s,", threadinfo.shortname);
3388 if (*threadinfo.display)
3389 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3390 " State: %s,", threadinfo.display);
3391 if (*threadinfo.more_display)
3392 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3393 " Priority: %s", threadinfo.more_display);
3394
3395 if (n > 0)
3396 {
3397 /* For purely cosmetic reasons, clear up trailing commas. */
3398 if (',' == display_buf[n-1])
3399 display_buf[n-1] = ' ';
3400 return display_buf;
3401 }
3402 }
3403 return NULL;
3404 }
3405 \f
3406
3407 static int
3408 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3409 struct static_tracepoint_marker *marker)
3410 {
3411 struct remote_state *rs = get_remote_state ();
3412 char *p = rs->buf;
3413
3414 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3415 p += strlen (p);
3416 p += hexnumstr (p, addr);
3417 putpkt (rs->buf);
3418 getpkt (&rs->buf, &rs->buf_size, 0);
3419 p = rs->buf;
3420
3421 if (*p == 'E')
3422 error (_("Remote failure reply: %s"), p);
3423
3424 if (*p++ == 'm')
3425 {
3426 parse_static_tracepoint_marker_definition (p, NULL, marker);
3427 return 1;
3428 }
3429
3430 return 0;
3431 }
3432
3433 static VEC(static_tracepoint_marker_p) *
3434 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3435 const char *strid)
3436 {
3437 struct remote_state *rs = get_remote_state ();
3438 VEC(static_tracepoint_marker_p) *markers = NULL;
3439 struct static_tracepoint_marker *marker = NULL;
3440 struct cleanup *old_chain;
3441 const char *p;
3442
3443 /* Ask for a first packet of static tracepoint marker
3444 definition. */
3445 putpkt ("qTfSTM");
3446 getpkt (&rs->buf, &rs->buf_size, 0);
3447 p = rs->buf;
3448 if (*p == 'E')
3449 error (_("Remote failure reply: %s"), p);
3450
3451 old_chain = make_cleanup (free_current_marker, &marker);
3452
3453 while (*p++ == 'm')
3454 {
3455 if (marker == NULL)
3456 marker = XCNEW (struct static_tracepoint_marker);
3457
3458 do
3459 {
3460 parse_static_tracepoint_marker_definition (p, &p, marker);
3461
3462 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3463 {
3464 VEC_safe_push (static_tracepoint_marker_p,
3465 markers, marker);
3466 marker = NULL;
3467 }
3468 else
3469 {
3470 release_static_tracepoint_marker (marker);
3471 memset (marker, 0, sizeof (*marker));
3472 }
3473 }
3474 while (*p++ == ','); /* comma-separated list */
3475 /* Ask for another packet of static tracepoint definition. */
3476 putpkt ("qTsSTM");
3477 getpkt (&rs->buf, &rs->buf_size, 0);
3478 p = rs->buf;
3479 }
3480
3481 do_cleanups (old_chain);
3482 return markers;
3483 }
3484
3485 \f
3486 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3487
3488 static ptid_t
3489 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3490 {
3491 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3492 }
3493 \f
3494
3495 /* Restart the remote side; this is an extended protocol operation. */
3496
3497 static void
3498 extended_remote_restart (void)
3499 {
3500 struct remote_state *rs = get_remote_state ();
3501
3502 /* Send the restart command; for reasons I don't understand the
3503 remote side really expects a number after the "R". */
3504 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3505 putpkt (rs->buf);
3506
3507 remote_fileio_reset ();
3508 }
3509 \f
3510 /* Clean up connection to a remote debugger. */
3511
3512 static void
3513 remote_close (struct target_ops *self)
3514 {
3515 struct remote_state *rs = get_remote_state ();
3516
3517 if (rs->remote_desc == NULL)
3518 return; /* already closed */
3519
3520 /* Make sure we leave stdin registered in the event loop. */
3521 remote_terminal_ours (self);
3522
3523 serial_close (rs->remote_desc);
3524 rs->remote_desc = NULL;
3525
3526 /* We don't have a connection to the remote stub anymore. Get rid
3527 of all the inferiors and their threads we were controlling.
3528 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3529 will be unable to find the thread corresponding to (pid, 0, 0). */
3530 inferior_ptid = null_ptid;
3531 discard_all_inferiors ();
3532
3533 /* We are closing the remote target, so we should discard
3534 everything of this target. */
3535 discard_pending_stop_replies_in_queue (rs);
3536
3537 if (remote_async_inferior_event_token)
3538 delete_async_event_handler (&remote_async_inferior_event_token);
3539
3540 remote_notif_state_xfree (rs->notif_state);
3541
3542 trace_reset_local_state ();
3543 }
3544
3545 /* Query the remote side for the text, data and bss offsets. */
3546
3547 static void
3548 get_offsets (void)
3549 {
3550 struct remote_state *rs = get_remote_state ();
3551 char *buf;
3552 char *ptr;
3553 int lose, num_segments = 0, do_sections, do_segments;
3554 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3555 struct section_offsets *offs;
3556 struct symfile_segment_data *data;
3557
3558 if (symfile_objfile == NULL)
3559 return;
3560
3561 putpkt ("qOffsets");
3562 getpkt (&rs->buf, &rs->buf_size, 0);
3563 buf = rs->buf;
3564
3565 if (buf[0] == '\000')
3566 return; /* Return silently. Stub doesn't support
3567 this command. */
3568 if (buf[0] == 'E')
3569 {
3570 warning (_("Remote failure reply: %s"), buf);
3571 return;
3572 }
3573
3574 /* Pick up each field in turn. This used to be done with scanf, but
3575 scanf will make trouble if CORE_ADDR size doesn't match
3576 conversion directives correctly. The following code will work
3577 with any size of CORE_ADDR. */
3578 text_addr = data_addr = bss_addr = 0;
3579 ptr = buf;
3580 lose = 0;
3581
3582 if (startswith (ptr, "Text="))
3583 {
3584 ptr += 5;
3585 /* Don't use strtol, could lose on big values. */
3586 while (*ptr && *ptr != ';')
3587 text_addr = (text_addr << 4) + fromhex (*ptr++);
3588
3589 if (startswith (ptr, ";Data="))
3590 {
3591 ptr += 6;
3592 while (*ptr && *ptr != ';')
3593 data_addr = (data_addr << 4) + fromhex (*ptr++);
3594 }
3595 else
3596 lose = 1;
3597
3598 if (!lose && startswith (ptr, ";Bss="))
3599 {
3600 ptr += 5;
3601 while (*ptr && *ptr != ';')
3602 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3603
3604 if (bss_addr != data_addr)
3605 warning (_("Target reported unsupported offsets: %s"), buf);
3606 }
3607 else
3608 lose = 1;
3609 }
3610 else if (startswith (ptr, "TextSeg="))
3611 {
3612 ptr += 8;
3613 /* Don't use strtol, could lose on big values. */
3614 while (*ptr && *ptr != ';')
3615 text_addr = (text_addr << 4) + fromhex (*ptr++);
3616 num_segments = 1;
3617
3618 if (startswith (ptr, ";DataSeg="))
3619 {
3620 ptr += 9;
3621 while (*ptr && *ptr != ';')
3622 data_addr = (data_addr << 4) + fromhex (*ptr++);
3623 num_segments++;
3624 }
3625 }
3626 else
3627 lose = 1;
3628
3629 if (lose)
3630 error (_("Malformed response to offset query, %s"), buf);
3631 else if (*ptr != '\0')
3632 warning (_("Target reported unsupported offsets: %s"), buf);
3633
3634 offs = ((struct section_offsets *)
3635 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3636 memcpy (offs, symfile_objfile->section_offsets,
3637 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3638
3639 data = get_symfile_segment_data (symfile_objfile->obfd);
3640 do_segments = (data != NULL);
3641 do_sections = num_segments == 0;
3642
3643 if (num_segments > 0)
3644 {
3645 segments[0] = text_addr;
3646 segments[1] = data_addr;
3647 }
3648 /* If we have two segments, we can still try to relocate everything
3649 by assuming that the .text and .data offsets apply to the whole
3650 text and data segments. Convert the offsets given in the packet
3651 to base addresses for symfile_map_offsets_to_segments. */
3652 else if (data && data->num_segments == 2)
3653 {
3654 segments[0] = data->segment_bases[0] + text_addr;
3655 segments[1] = data->segment_bases[1] + data_addr;
3656 num_segments = 2;
3657 }
3658 /* If the object file has only one segment, assume that it is text
3659 rather than data; main programs with no writable data are rare,
3660 but programs with no code are useless. Of course the code might
3661 have ended up in the data segment... to detect that we would need
3662 the permissions here. */
3663 else if (data && data->num_segments == 1)
3664 {
3665 segments[0] = data->segment_bases[0] + text_addr;
3666 num_segments = 1;
3667 }
3668 /* There's no way to relocate by segment. */
3669 else
3670 do_segments = 0;
3671
3672 if (do_segments)
3673 {
3674 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3675 offs, num_segments, segments);
3676
3677 if (ret == 0 && !do_sections)
3678 error (_("Can not handle qOffsets TextSeg "
3679 "response with this symbol file"));
3680
3681 if (ret > 0)
3682 do_sections = 0;
3683 }
3684
3685 if (data)
3686 free_symfile_segment_data (data);
3687
3688 if (do_sections)
3689 {
3690 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3691
3692 /* This is a temporary kludge to force data and bss to use the
3693 same offsets because that's what nlmconv does now. The real
3694 solution requires changes to the stub and remote.c that I
3695 don't have time to do right now. */
3696
3697 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3698 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3699 }
3700
3701 objfile_relocate (symfile_objfile, offs);
3702 }
3703
3704 /* Send interrupt_sequence to remote target. */
3705 static void
3706 send_interrupt_sequence (void)
3707 {
3708 struct remote_state *rs = get_remote_state ();
3709
3710 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3711 remote_serial_write ("\x03", 1);
3712 else if (interrupt_sequence_mode == interrupt_sequence_break)
3713 serial_send_break (rs->remote_desc);
3714 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3715 {
3716 serial_send_break (rs->remote_desc);
3717 remote_serial_write ("g", 1);
3718 }
3719 else
3720 internal_error (__FILE__, __LINE__,
3721 _("Invalid value for interrupt_sequence_mode: %s."),
3722 interrupt_sequence_mode);
3723 }
3724
3725
3726 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3727 and extract the PTID. Returns NULL_PTID if not found. */
3728
3729 static ptid_t
3730 stop_reply_extract_thread (char *stop_reply)
3731 {
3732 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3733 {
3734 const char *p;
3735
3736 /* Txx r:val ; r:val (...) */
3737 p = &stop_reply[3];
3738
3739 /* Look for "register" named "thread". */
3740 while (*p != '\0')
3741 {
3742 const char *p1;
3743
3744 p1 = strchr (p, ':');
3745 if (p1 == NULL)
3746 return null_ptid;
3747
3748 if (strncmp (p, "thread", p1 - p) == 0)
3749 return read_ptid (++p1, &p);
3750
3751 p1 = strchr (p, ';');
3752 if (p1 == NULL)
3753 return null_ptid;
3754 p1++;
3755
3756 p = p1;
3757 }
3758 }
3759
3760 return null_ptid;
3761 }
3762
3763 /* Determine the remote side's current thread. If we have a stop
3764 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3765 "thread" register we can extract the current thread from. If not,
3766 ask the remote which is the current thread with qC. The former
3767 method avoids a roundtrip. */
3768
3769 static ptid_t
3770 get_current_thread (char *wait_status)
3771 {
3772 ptid_t ptid = null_ptid;
3773
3774 /* Note we don't use remote_parse_stop_reply as that makes use of
3775 the target architecture, which we haven't yet fully determined at
3776 this point. */
3777 if (wait_status != NULL)
3778 ptid = stop_reply_extract_thread (wait_status);
3779 if (ptid_equal (ptid, null_ptid))
3780 ptid = remote_current_thread (inferior_ptid);
3781
3782 return ptid;
3783 }
3784
3785 /* Query the remote target for which is the current thread/process,
3786 add it to our tables, and update INFERIOR_PTID. The caller is
3787 responsible for setting the state such that the remote end is ready
3788 to return the current thread.
3789
3790 This function is called after handling the '?' or 'vRun' packets,
3791 whose response is a stop reply from which we can also try
3792 extracting the thread. If the target doesn't support the explicit
3793 qC query, we infer the current thread from that stop reply, passed
3794 in in WAIT_STATUS, which may be NULL. */
3795
3796 static void
3797 add_current_inferior_and_thread (char *wait_status)
3798 {
3799 struct remote_state *rs = get_remote_state ();
3800 int fake_pid_p = 0;
3801
3802 inferior_ptid = null_ptid;
3803
3804 /* Now, if we have thread information, update inferior_ptid. */
3805 ptid_t curr_ptid = get_current_thread (wait_status);
3806
3807 if (curr_ptid != null_ptid)
3808 {
3809 if (!remote_multi_process_p (rs))
3810 fake_pid_p = 1;
3811 }
3812 else
3813 {
3814 /* Without this, some commands which require an active target
3815 (such as kill) won't work. This variable serves (at least)
3816 double duty as both the pid of the target process (if it has
3817 such), and as a flag indicating that a target is active. */
3818 curr_ptid = magic_null_ptid;
3819 fake_pid_p = 1;
3820 }
3821
3822 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3823
3824 /* Add the main thread and switch to it. Don't try reading
3825 registers yet, since we haven't fetched the target description
3826 yet. */
3827 thread_info *tp = add_thread_silent (curr_ptid);
3828 switch_to_thread_no_regs (tp);
3829 }
3830
3831 /* Print info about a thread that was found already stopped on
3832 connection. */
3833
3834 static void
3835 print_one_stopped_thread (struct thread_info *thread)
3836 {
3837 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3838
3839 switch_to_thread (thread->ptid);
3840 stop_pc = get_frame_pc (get_current_frame ());
3841 set_current_sal_from_frame (get_current_frame ());
3842
3843 thread->suspend.waitstatus_pending_p = 0;
3844
3845 if (ws->kind == TARGET_WAITKIND_STOPPED)
3846 {
3847 enum gdb_signal sig = ws->value.sig;
3848
3849 if (signal_print_state (sig))
3850 observer_notify_signal_received (sig);
3851 }
3852 observer_notify_normal_stop (NULL, 1);
3853 }
3854
3855 /* Process all initial stop replies the remote side sent in response
3856 to the ? packet. These indicate threads that were already stopped
3857 on initial connection. We mark these threads as stopped and print
3858 their current frame before giving the user the prompt. */
3859
3860 static void
3861 process_initial_stop_replies (int from_tty)
3862 {
3863 int pending_stop_replies = stop_reply_queue_length ();
3864 struct inferior *inf;
3865 struct thread_info *thread;
3866 struct thread_info *selected = NULL;
3867 struct thread_info *lowest_stopped = NULL;
3868 struct thread_info *first = NULL;
3869
3870 /* Consume the initial pending events. */
3871 while (pending_stop_replies-- > 0)
3872 {
3873 ptid_t waiton_ptid = minus_one_ptid;
3874 ptid_t event_ptid;
3875 struct target_waitstatus ws;
3876 int ignore_event = 0;
3877 struct thread_info *thread;
3878
3879 memset (&ws, 0, sizeof (ws));
3880 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3881 if (remote_debug)
3882 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3883
3884 switch (ws.kind)
3885 {
3886 case TARGET_WAITKIND_IGNORE:
3887 case TARGET_WAITKIND_NO_RESUMED:
3888 case TARGET_WAITKIND_SIGNALLED:
3889 case TARGET_WAITKIND_EXITED:
3890 /* We shouldn't see these, but if we do, just ignore. */
3891 if (remote_debug)
3892 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3893 ignore_event = 1;
3894 break;
3895
3896 case TARGET_WAITKIND_EXECD:
3897 xfree (ws.value.execd_pathname);
3898 break;
3899 default:
3900 break;
3901 }
3902
3903 if (ignore_event)
3904 continue;
3905
3906 thread = find_thread_ptid (event_ptid);
3907
3908 if (ws.kind == TARGET_WAITKIND_STOPPED)
3909 {
3910 enum gdb_signal sig = ws.value.sig;
3911
3912 /* Stubs traditionally report SIGTRAP as initial signal,
3913 instead of signal 0. Suppress it. */
3914 if (sig == GDB_SIGNAL_TRAP)
3915 sig = GDB_SIGNAL_0;
3916 thread->suspend.stop_signal = sig;
3917 ws.value.sig = sig;
3918 }
3919
3920 thread->suspend.waitstatus = ws;
3921
3922 if (ws.kind != TARGET_WAITKIND_STOPPED
3923 || ws.value.sig != GDB_SIGNAL_0)
3924 thread->suspend.waitstatus_pending_p = 1;
3925
3926 set_executing (event_ptid, 0);
3927 set_running (event_ptid, 0);
3928 thread->priv->vcont_resumed = 0;
3929 }
3930
3931 /* "Notice" the new inferiors before anything related to
3932 registers/memory. */
3933 ALL_INFERIORS (inf)
3934 {
3935 if (inf->pid == 0)
3936 continue;
3937
3938 inf->needs_setup = 1;
3939
3940 if (non_stop)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 notice_new_inferior (thread->ptid,
3944 thread->state == THREAD_RUNNING,
3945 from_tty);
3946 }
3947 }
3948
3949 /* If all-stop on top of non-stop, pause all threads. Note this
3950 records the threads' stop pc, so must be done after "noticing"
3951 the inferiors. */
3952 if (!non_stop)
3953 {
3954 stop_all_threads ();
3955
3956 /* If all threads of an inferior were already stopped, we
3957 haven't setup the inferior yet. */
3958 ALL_INFERIORS (inf)
3959 {
3960 if (inf->pid == 0)
3961 continue;
3962
3963 if (inf->needs_setup)
3964 {
3965 thread = any_live_thread_of_process (inf->pid);
3966 switch_to_thread_no_regs (thread);
3967 setup_inferior (0);
3968 }
3969 }
3970 }
3971
3972 /* Now go over all threads that are stopped, and print their current
3973 frame. If all-stop, then if there's a signalled thread, pick
3974 that as current. */
3975 ALL_NON_EXITED_THREADS (thread)
3976 {
3977 if (first == NULL)
3978 first = thread;
3979
3980 if (!non_stop)
3981 set_running (thread->ptid, 0);
3982 else if (thread->state != THREAD_STOPPED)
3983 continue;
3984
3985 if (selected == NULL
3986 && thread->suspend.waitstatus_pending_p)
3987 selected = thread;
3988
3989 if (lowest_stopped == NULL
3990 || thread->inf->num < lowest_stopped->inf->num
3991 || thread->per_inf_num < lowest_stopped->per_inf_num)
3992 lowest_stopped = thread;
3993
3994 if (non_stop)
3995 print_one_stopped_thread (thread);
3996 }
3997
3998 /* In all-stop, we only print the status of one thread, and leave
3999 others with their status pending. */
4000 if (!non_stop)
4001 {
4002 thread = selected;
4003 if (thread == NULL)
4004 thread = lowest_stopped;
4005 if (thread == NULL)
4006 thread = first;
4007
4008 print_one_stopped_thread (thread);
4009 }
4010
4011 /* For "info program". */
4012 thread = inferior_thread ();
4013 if (thread->state == THREAD_STOPPED)
4014 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4015 }
4016
4017 /* Start the remote connection and sync state. */
4018
4019 static void
4020 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4021 {
4022 struct remote_state *rs = get_remote_state ();
4023 struct packet_config *noack_config;
4024 char *wait_status = NULL;
4025
4026 /* Signal other parts that we're going through the initial setup,
4027 and so things may not be stable yet. E.g., we don't try to
4028 install tracepoints until we've relocated symbols. Also, a
4029 Ctrl-C before we're connected and synced up can't interrupt the
4030 target. Instead, it offers to drop the (potentially wedged)
4031 connection. */
4032 rs->starting_up = 1;
4033
4034 QUIT;
4035
4036 if (interrupt_on_connect)
4037 send_interrupt_sequence ();
4038
4039 /* Ack any packet which the remote side has already sent. */
4040 remote_serial_write ("+", 1);
4041
4042 /* The first packet we send to the target is the optional "supported
4043 packets" request. If the target can answer this, it will tell us
4044 which later probes to skip. */
4045 remote_query_supported ();
4046
4047 /* If the stub wants to get a QAllow, compose one and send it. */
4048 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4049 remote_set_permissions (target);
4050
4051 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4052 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4053 as a reply to known packet. For packet "vFile:setfs:" it is an
4054 invalid reply and GDB would return error in
4055 remote_hostio_set_filesystem, making remote files access impossible.
4056 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4057 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4058 {
4059 const char v_mustreplyempty[] = "vMustReplyEmpty";
4060
4061 putpkt (v_mustreplyempty);
4062 getpkt (&rs->buf, &rs->buf_size, 0);
4063 if (strcmp (rs->buf, "OK") == 0)
4064 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4065 else if (strcmp (rs->buf, "") != 0)
4066 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4067 rs->buf);
4068 }
4069
4070 /* Next, we possibly activate noack mode.
4071
4072 If the QStartNoAckMode packet configuration is set to AUTO,
4073 enable noack mode if the stub reported a wish for it with
4074 qSupported.
4075
4076 If set to TRUE, then enable noack mode even if the stub didn't
4077 report it in qSupported. If the stub doesn't reply OK, the
4078 session ends with an error.
4079
4080 If FALSE, then don't activate noack mode, regardless of what the
4081 stub claimed should be the default with qSupported. */
4082
4083 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4084 if (packet_config_support (noack_config) != PACKET_DISABLE)
4085 {
4086 putpkt ("QStartNoAckMode");
4087 getpkt (&rs->buf, &rs->buf_size, 0);
4088 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4089 rs->noack_mode = 1;
4090 }
4091
4092 if (extended_p)
4093 {
4094 /* Tell the remote that we are using the extended protocol. */
4095 putpkt ("!");
4096 getpkt (&rs->buf, &rs->buf_size, 0);
4097 }
4098
4099 /* Let the target know which signals it is allowed to pass down to
4100 the program. */
4101 update_signals_program_target ();
4102
4103 /* Next, if the target can specify a description, read it. We do
4104 this before anything involving memory or registers. */
4105 target_find_description ();
4106
4107 /* Next, now that we know something about the target, update the
4108 address spaces in the program spaces. */
4109 update_address_spaces ();
4110
4111 /* On OSs where the list of libraries is global to all
4112 processes, we fetch them early. */
4113 if (gdbarch_has_global_solist (target_gdbarch ()))
4114 solib_add (NULL, from_tty, auto_solib_add);
4115
4116 if (target_is_non_stop_p ())
4117 {
4118 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4119 error (_("Non-stop mode requested, but remote "
4120 "does not support non-stop"));
4121
4122 putpkt ("QNonStop:1");
4123 getpkt (&rs->buf, &rs->buf_size, 0);
4124
4125 if (strcmp (rs->buf, "OK") != 0)
4126 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4127
4128 /* Find about threads and processes the stub is already
4129 controlling. We default to adding them in the running state.
4130 The '?' query below will then tell us about which threads are
4131 stopped. */
4132 remote_update_thread_list (target);
4133 }
4134 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4135 {
4136 /* Don't assume that the stub can operate in all-stop mode.
4137 Request it explicitly. */
4138 putpkt ("QNonStop:0");
4139 getpkt (&rs->buf, &rs->buf_size, 0);
4140
4141 if (strcmp (rs->buf, "OK") != 0)
4142 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4143 }
4144
4145 /* Upload TSVs regardless of whether the target is running or not. The
4146 remote stub, such as GDBserver, may have some predefined or builtin
4147 TSVs, even if the target is not running. */
4148 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4149 {
4150 struct uploaded_tsv *uploaded_tsvs = NULL;
4151
4152 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4153 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4154 }
4155
4156 /* Check whether the target is running now. */
4157 putpkt ("?");
4158 getpkt (&rs->buf, &rs->buf_size, 0);
4159
4160 if (!target_is_non_stop_p ())
4161 {
4162 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4163 {
4164 if (!extended_p)
4165 error (_("The target is not running (try extended-remote?)"));
4166
4167 /* We're connected, but not running. Drop out before we
4168 call start_remote. */
4169 rs->starting_up = 0;
4170 return;
4171 }
4172 else
4173 {
4174 /* Save the reply for later. */
4175 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4176 strcpy (wait_status, rs->buf);
4177 }
4178
4179 /* Fetch thread list. */
4180 target_update_thread_list ();
4181
4182 /* Let the stub know that we want it to return the thread. */
4183 set_continue_thread (minus_one_ptid);
4184
4185 if (thread_count () == 0)
4186 {
4187 /* Target has no concept of threads at all. GDB treats
4188 non-threaded target as single-threaded; add a main
4189 thread. */
4190 add_current_inferior_and_thread (wait_status);
4191 }
4192 else
4193 {
4194 /* We have thread information; select the thread the target
4195 says should be current. If we're reconnecting to a
4196 multi-threaded program, this will ideally be the thread
4197 that last reported an event before GDB disconnected. */
4198 inferior_ptid = get_current_thread (wait_status);
4199 if (ptid_equal (inferior_ptid, null_ptid))
4200 {
4201 /* Odd... The target was able to list threads, but not
4202 tell us which thread was current (no "thread"
4203 register in T stop reply?). Just pick the first
4204 thread in the thread list then. */
4205
4206 if (remote_debug)
4207 fprintf_unfiltered (gdb_stdlog,
4208 "warning: couldn't determine remote "
4209 "current thread; picking first in list.\n");
4210
4211 inferior_ptid = thread_list->ptid;
4212 }
4213 }
4214
4215 /* init_wait_for_inferior should be called before get_offsets in order
4216 to manage `inserted' flag in bp loc in a correct state.
4217 breakpoint_init_inferior, called from init_wait_for_inferior, set
4218 `inserted' flag to 0, while before breakpoint_re_set, called from
4219 start_remote, set `inserted' flag to 1. In the initialization of
4220 inferior, breakpoint_init_inferior should be called first, and then
4221 breakpoint_re_set can be called. If this order is broken, state of
4222 `inserted' flag is wrong, and cause some problems on breakpoint
4223 manipulation. */
4224 init_wait_for_inferior ();
4225
4226 get_offsets (); /* Get text, data & bss offsets. */
4227
4228 /* If we could not find a description using qXfer, and we know
4229 how to do it some other way, try again. This is not
4230 supported for non-stop; it could be, but it is tricky if
4231 there are no stopped threads when we connect. */
4232 if (remote_read_description_p (target)
4233 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4234 {
4235 target_clear_description ();
4236 target_find_description ();
4237 }
4238
4239 /* Use the previously fetched status. */
4240 gdb_assert (wait_status != NULL);
4241 strcpy (rs->buf, wait_status);
4242 rs->cached_wait_status = 1;
4243
4244 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4245 }
4246 else
4247 {
4248 /* Clear WFI global state. Do this before finding about new
4249 threads and inferiors, and setting the current inferior.
4250 Otherwise we would clear the proceed status of the current
4251 inferior when we want its stop_soon state to be preserved
4252 (see notice_new_inferior). */
4253 init_wait_for_inferior ();
4254
4255 /* In non-stop, we will either get an "OK", meaning that there
4256 are no stopped threads at this time; or, a regular stop
4257 reply. In the latter case, there may be more than one thread
4258 stopped --- we pull them all out using the vStopped
4259 mechanism. */
4260 if (strcmp (rs->buf, "OK") != 0)
4261 {
4262 struct notif_client *notif = &notif_client_stop;
4263
4264 /* remote_notif_get_pending_replies acks this one, and gets
4265 the rest out. */
4266 rs->notif_state->pending_event[notif_client_stop.id]
4267 = remote_notif_parse (notif, rs->buf);
4268 remote_notif_get_pending_events (notif);
4269 }
4270
4271 if (thread_count () == 0)
4272 {
4273 if (!extended_p)
4274 error (_("The target is not running (try extended-remote?)"));
4275
4276 /* We're connected, but not running. Drop out before we
4277 call start_remote. */
4278 rs->starting_up = 0;
4279 return;
4280 }
4281
4282 /* In non-stop mode, any cached wait status will be stored in
4283 the stop reply queue. */
4284 gdb_assert (wait_status == NULL);
4285
4286 /* Report all signals during attach/startup. */
4287 remote_pass_signals (target, 0, NULL);
4288
4289 /* If there are already stopped threads, mark them stopped and
4290 report their stops before giving the prompt to the user. */
4291 process_initial_stop_replies (from_tty);
4292
4293 if (target_can_async_p ())
4294 target_async (1);
4295 }
4296
4297 /* If we connected to a live target, do some additional setup. */
4298 if (target_has_execution)
4299 {
4300 if (symfile_objfile) /* No use without a symbol-file. */
4301 remote_check_symbols ();
4302 }
4303
4304 /* Possibly the target has been engaged in a trace run started
4305 previously; find out where things are at. */
4306 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4307 {
4308 struct uploaded_tp *uploaded_tps = NULL;
4309
4310 if (current_trace_status ()->running)
4311 printf_filtered (_("Trace is already running on the target.\n"));
4312
4313 remote_upload_tracepoints (target, &uploaded_tps);
4314
4315 merge_uploaded_tracepoints (&uploaded_tps);
4316 }
4317
4318 /* Possibly the target has been engaged in a btrace record started
4319 previously; find out where things are at. */
4320 remote_btrace_maybe_reopen ();
4321
4322 /* The thread and inferior lists are now synchronized with the
4323 target, our symbols have been relocated, and we're merged the
4324 target's tracepoints with ours. We're done with basic start
4325 up. */
4326 rs->starting_up = 0;
4327
4328 /* Maybe breakpoints are global and need to be inserted now. */
4329 if (breakpoints_should_be_inserted_now ())
4330 insert_breakpoints ();
4331 }
4332
4333 /* Open a connection to a remote debugger.
4334 NAME is the filename used for communication. */
4335
4336 static void
4337 remote_open (const char *name, int from_tty)
4338 {
4339 remote_open_1 (name, from_tty, &remote_ops, 0);
4340 }
4341
4342 /* Open a connection to a remote debugger using the extended
4343 remote gdb protocol. NAME is the filename used for communication. */
4344
4345 static void
4346 extended_remote_open (const char *name, int from_tty)
4347 {
4348 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4349 }
4350
4351 /* Reset all packets back to "unknown support". Called when opening a
4352 new connection to a remote target. */
4353
4354 static void
4355 reset_all_packet_configs_support (void)
4356 {
4357 int i;
4358
4359 for (i = 0; i < PACKET_MAX; i++)
4360 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4361 }
4362
4363 /* Initialize all packet configs. */
4364
4365 static void
4366 init_all_packet_configs (void)
4367 {
4368 int i;
4369
4370 for (i = 0; i < PACKET_MAX; i++)
4371 {
4372 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4373 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4374 }
4375 }
4376
4377 /* Symbol look-up. */
4378
4379 static void
4380 remote_check_symbols (void)
4381 {
4382 struct remote_state *rs = get_remote_state ();
4383 char *msg, *reply, *tmp;
4384 int end;
4385 long reply_size;
4386 struct cleanup *old_chain;
4387
4388 /* The remote side has no concept of inferiors that aren't running
4389 yet, it only knows about running processes. If we're connected
4390 but our current inferior is not running, we should not invite the
4391 remote target to request symbol lookups related to its
4392 (unrelated) current process. */
4393 if (!target_has_execution)
4394 return;
4395
4396 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4397 return;
4398
4399 /* Make sure the remote is pointing at the right process. Note
4400 there's no way to select "no process". */
4401 set_general_process ();
4402
4403 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4404 because we need both at the same time. */
4405 msg = (char *) xmalloc (get_remote_packet_size ());
4406 old_chain = make_cleanup (xfree, msg);
4407 reply = (char *) xmalloc (get_remote_packet_size ());
4408 make_cleanup (free_current_contents, &reply);
4409 reply_size = get_remote_packet_size ();
4410
4411 /* Invite target to request symbol lookups. */
4412
4413 putpkt ("qSymbol::");
4414 getpkt (&reply, &reply_size, 0);
4415 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4416
4417 while (startswith (reply, "qSymbol:"))
4418 {
4419 struct bound_minimal_symbol sym;
4420
4421 tmp = &reply[8];
4422 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4423 msg[end] = '\0';
4424 sym = lookup_minimal_symbol (msg, NULL, NULL);
4425 if (sym.minsym == NULL)
4426 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4427 else
4428 {
4429 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4430 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4431
4432 /* If this is a function address, return the start of code
4433 instead of any data function descriptor. */
4434 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4435 sym_addr,
4436 &current_target);
4437
4438 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4439 phex_nz (sym_addr, addr_size), &reply[8]);
4440 }
4441
4442 putpkt (msg);
4443 getpkt (&reply, &reply_size, 0);
4444 }
4445
4446 do_cleanups (old_chain);
4447 }
4448
4449 static struct serial *
4450 remote_serial_open (const char *name)
4451 {
4452 static int udp_warning = 0;
4453
4454 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4455 of in ser-tcp.c, because it is the remote protocol assuming that the
4456 serial connection is reliable and not the serial connection promising
4457 to be. */
4458 if (!udp_warning && startswith (name, "udp:"))
4459 {
4460 warning (_("The remote protocol may be unreliable over UDP.\n"
4461 "Some events may be lost, rendering further debugging "
4462 "impossible."));
4463 udp_warning = 1;
4464 }
4465
4466 return serial_open (name);
4467 }
4468
4469 /* Inform the target of our permission settings. The permission flags
4470 work without this, but if the target knows the settings, it can do
4471 a couple things. First, it can add its own check, to catch cases
4472 that somehow manage to get by the permissions checks in target
4473 methods. Second, if the target is wired to disallow particular
4474 settings (for instance, a system in the field that is not set up to
4475 be able to stop at a breakpoint), it can object to any unavailable
4476 permissions. */
4477
4478 void
4479 remote_set_permissions (struct target_ops *self)
4480 {
4481 struct remote_state *rs = get_remote_state ();
4482
4483 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4484 "WriteReg:%x;WriteMem:%x;"
4485 "InsertBreak:%x;InsertTrace:%x;"
4486 "InsertFastTrace:%x;Stop:%x",
4487 may_write_registers, may_write_memory,
4488 may_insert_breakpoints, may_insert_tracepoints,
4489 may_insert_fast_tracepoints, may_stop);
4490 putpkt (rs->buf);
4491 getpkt (&rs->buf, &rs->buf_size, 0);
4492
4493 /* If the target didn't like the packet, warn the user. Do not try
4494 to undo the user's settings, that would just be maddening. */
4495 if (strcmp (rs->buf, "OK") != 0)
4496 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4497 }
4498
4499 /* This type describes each known response to the qSupported
4500 packet. */
4501 struct protocol_feature
4502 {
4503 /* The name of this protocol feature. */
4504 const char *name;
4505
4506 /* The default for this protocol feature. */
4507 enum packet_support default_support;
4508
4509 /* The function to call when this feature is reported, or after
4510 qSupported processing if the feature is not supported.
4511 The first argument points to this structure. The second
4512 argument indicates whether the packet requested support be
4513 enabled, disabled, or probed (or the default, if this function
4514 is being called at the end of processing and this feature was
4515 not reported). The third argument may be NULL; if not NULL, it
4516 is a NUL-terminated string taken from the packet following
4517 this feature's name and an equals sign. */
4518 void (*func) (const struct protocol_feature *, enum packet_support,
4519 const char *);
4520
4521 /* The corresponding packet for this feature. Only used if
4522 FUNC is remote_supported_packet. */
4523 int packet;
4524 };
4525
4526 static void
4527 remote_supported_packet (const struct protocol_feature *feature,
4528 enum packet_support support,
4529 const char *argument)
4530 {
4531 if (argument)
4532 {
4533 warning (_("Remote qSupported response supplied an unexpected value for"
4534 " \"%s\"."), feature->name);
4535 return;
4536 }
4537
4538 remote_protocol_packets[feature->packet].support = support;
4539 }
4540
4541 static void
4542 remote_packet_size (const struct protocol_feature *feature,
4543 enum packet_support support, const char *value)
4544 {
4545 struct remote_state *rs = get_remote_state ();
4546
4547 int packet_size;
4548 char *value_end;
4549
4550 if (support != PACKET_ENABLE)
4551 return;
4552
4553 if (value == NULL || *value == '\0')
4554 {
4555 warning (_("Remote target reported \"%s\" without a size."),
4556 feature->name);
4557 return;
4558 }
4559
4560 errno = 0;
4561 packet_size = strtol (value, &value_end, 16);
4562 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4563 {
4564 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4565 feature->name, value);
4566 return;
4567 }
4568
4569 /* Record the new maximum packet size. */
4570 rs->explicit_packet_size = packet_size;
4571 }
4572
4573 static const struct protocol_feature remote_protocol_features[] = {
4574 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4575 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_qXfer_auxv },
4577 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_qXfer_exec_file },
4579 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_qXfer_features },
4581 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_qXfer_libraries },
4583 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_qXfer_libraries_svr4 },
4585 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4586 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4587 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_qXfer_memory_map },
4589 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_qXfer_spu_read },
4591 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_qXfer_spu_write },
4593 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_qXfer_osdata },
4595 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4596 PACKET_qXfer_threads },
4597 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4598 PACKET_qXfer_traceframe_info },
4599 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4600 PACKET_QPassSignals },
4601 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4602 PACKET_QCatchSyscalls },
4603 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4604 PACKET_QProgramSignals },
4605 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4606 PACKET_QSetWorkingDir },
4607 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4608 PACKET_QStartupWithShell },
4609 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4610 PACKET_QEnvironmentHexEncoded },
4611 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4612 PACKET_QEnvironmentReset },
4613 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4614 PACKET_QEnvironmentUnset },
4615 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4616 PACKET_QStartNoAckMode },
4617 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4618 PACKET_multiprocess_feature },
4619 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4620 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_qXfer_siginfo_read },
4622 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_qXfer_siginfo_write },
4624 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_ConditionalTracepoints },
4626 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_ConditionalBreakpoints },
4628 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_BreakpointCommands },
4630 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4631 PACKET_FastTracepoints },
4632 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_StaticTracepoints },
4634 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_InstallInTrace},
4636 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_DisconnectedTracing_feature },
4638 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_bc },
4640 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_bs },
4642 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_TracepointSource },
4644 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_QAllow },
4646 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_EnableDisableTracepoints_feature },
4648 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_qXfer_fdpic },
4650 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_qXfer_uib },
4652 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4653 PACKET_QDisableRandomization },
4654 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4655 { "QTBuffer:size", PACKET_DISABLE,
4656 remote_supported_packet, PACKET_QTBuffer_size},
4657 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4658 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4659 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4660 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4661 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4662 PACKET_qXfer_btrace },
4663 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4664 PACKET_qXfer_btrace_conf },
4665 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4666 PACKET_Qbtrace_conf_bts_size },
4667 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4668 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4669 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4670 PACKET_fork_event_feature },
4671 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4672 PACKET_vfork_event_feature },
4673 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4674 PACKET_exec_event_feature },
4675 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4676 PACKET_Qbtrace_conf_pt_size },
4677 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4678 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4679 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4680 };
4681
4682 static char *remote_support_xml;
4683
4684 /* Register string appended to "xmlRegisters=" in qSupported query. */
4685
4686 void
4687 register_remote_support_xml (const char *xml)
4688 {
4689 #if defined(HAVE_LIBEXPAT)
4690 if (remote_support_xml == NULL)
4691 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4692 else
4693 {
4694 char *copy = xstrdup (remote_support_xml + 13);
4695 char *p = strtok (copy, ",");
4696
4697 do
4698 {
4699 if (strcmp (p, xml) == 0)
4700 {
4701 /* already there */
4702 xfree (copy);
4703 return;
4704 }
4705 }
4706 while ((p = strtok (NULL, ",")) != NULL);
4707 xfree (copy);
4708
4709 remote_support_xml = reconcat (remote_support_xml,
4710 remote_support_xml, ",", xml,
4711 (char *) NULL);
4712 }
4713 #endif
4714 }
4715
4716 static char *
4717 remote_query_supported_append (char *msg, const char *append)
4718 {
4719 if (msg)
4720 return reconcat (msg, msg, ";", append, (char *) NULL);
4721 else
4722 return xstrdup (append);
4723 }
4724
4725 static void
4726 remote_query_supported (void)
4727 {
4728 struct remote_state *rs = get_remote_state ();
4729 char *next;
4730 int i;
4731 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4732
4733 /* The packet support flags are handled differently for this packet
4734 than for most others. We treat an error, a disabled packet, and
4735 an empty response identically: any features which must be reported
4736 to be used will be automatically disabled. An empty buffer
4737 accomplishes this, since that is also the representation for a list
4738 containing no features. */
4739
4740 rs->buf[0] = 0;
4741 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4742 {
4743 char *q = NULL;
4744 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4745
4746 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4747 q = remote_query_supported_append (q, "multiprocess+");
4748
4749 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4750 q = remote_query_supported_append (q, "swbreak+");
4751 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4752 q = remote_query_supported_append (q, "hwbreak+");
4753
4754 q = remote_query_supported_append (q, "qRelocInsn+");
4755
4756 if (packet_set_cmd_state (PACKET_fork_event_feature)
4757 != AUTO_BOOLEAN_FALSE)
4758 q = remote_query_supported_append (q, "fork-events+");
4759 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4760 != AUTO_BOOLEAN_FALSE)
4761 q = remote_query_supported_append (q, "vfork-events+");
4762 if (packet_set_cmd_state (PACKET_exec_event_feature)
4763 != AUTO_BOOLEAN_FALSE)
4764 q = remote_query_supported_append (q, "exec-events+");
4765
4766 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4767 q = remote_query_supported_append (q, "vContSupported+");
4768
4769 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4770 q = remote_query_supported_append (q, "QThreadEvents+");
4771
4772 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4773 q = remote_query_supported_append (q, "no-resumed+");
4774
4775 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4776 the qSupported:xmlRegisters=i386 handling. */
4777 if (remote_support_xml != NULL)
4778 q = remote_query_supported_append (q, remote_support_xml);
4779
4780 q = reconcat (q, "qSupported:", q, (char *) NULL);
4781 putpkt (q);
4782
4783 do_cleanups (old_chain);
4784
4785 getpkt (&rs->buf, &rs->buf_size, 0);
4786
4787 /* If an error occured, warn, but do not return - just reset the
4788 buffer to empty and go on to disable features. */
4789 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4790 == PACKET_ERROR)
4791 {
4792 warning (_("Remote failure reply: %s"), rs->buf);
4793 rs->buf[0] = 0;
4794 }
4795 }
4796
4797 memset (seen, 0, sizeof (seen));
4798
4799 next = rs->buf;
4800 while (*next)
4801 {
4802 enum packet_support is_supported;
4803 char *p, *end, *name_end, *value;
4804
4805 /* First separate out this item from the rest of the packet. If
4806 there's another item after this, we overwrite the separator
4807 (terminated strings are much easier to work with). */
4808 p = next;
4809 end = strchr (p, ';');
4810 if (end == NULL)
4811 {
4812 end = p + strlen (p);
4813 next = end;
4814 }
4815 else
4816 {
4817 *end = '\0';
4818 next = end + 1;
4819
4820 if (end == p)
4821 {
4822 warning (_("empty item in \"qSupported\" response"));
4823 continue;
4824 }
4825 }
4826
4827 name_end = strchr (p, '=');
4828 if (name_end)
4829 {
4830 /* This is a name=value entry. */
4831 is_supported = PACKET_ENABLE;
4832 value = name_end + 1;
4833 *name_end = '\0';
4834 }
4835 else
4836 {
4837 value = NULL;
4838 switch (end[-1])
4839 {
4840 case '+':
4841 is_supported = PACKET_ENABLE;
4842 break;
4843
4844 case '-':
4845 is_supported = PACKET_DISABLE;
4846 break;
4847
4848 case '?':
4849 is_supported = PACKET_SUPPORT_UNKNOWN;
4850 break;
4851
4852 default:
4853 warning (_("unrecognized item \"%s\" "
4854 "in \"qSupported\" response"), p);
4855 continue;
4856 }
4857 end[-1] = '\0';
4858 }
4859
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (strcmp (remote_protocol_features[i].name, p) == 0)
4862 {
4863 const struct protocol_feature *feature;
4864
4865 seen[i] = 1;
4866 feature = &remote_protocol_features[i];
4867 feature->func (feature, is_supported, value);
4868 break;
4869 }
4870 }
4871
4872 /* If we increased the packet size, make sure to increase the global
4873 buffer size also. We delay this until after parsing the entire
4874 qSupported packet, because this is the same buffer we were
4875 parsing. */
4876 if (rs->buf_size < rs->explicit_packet_size)
4877 {
4878 rs->buf_size = rs->explicit_packet_size;
4879 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4880 }
4881
4882 /* Handle the defaults for unmentioned features. */
4883 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4884 if (!seen[i])
4885 {
4886 const struct protocol_feature *feature;
4887
4888 feature = &remote_protocol_features[i];
4889 feature->func (feature, feature->default_support, NULL);
4890 }
4891 }
4892
4893 /* Serial QUIT handler for the remote serial descriptor.
4894
4895 Defers handling a Ctrl-C until we're done with the current
4896 command/response packet sequence, unless:
4897
4898 - We're setting up the connection. Don't send a remote interrupt
4899 request, as we're not fully synced yet. Quit immediately
4900 instead.
4901
4902 - The target has been resumed in the foreground
4903 (target_terminal::is_ours is false) with a synchronous resume
4904 packet, and we're blocked waiting for the stop reply, thus a
4905 Ctrl-C should be immediately sent to the target.
4906
4907 - We get a second Ctrl-C while still within the same serial read or
4908 write. In that case the serial is seemingly wedged --- offer to
4909 quit/disconnect.
4910
4911 - We see a second Ctrl-C without target response, after having
4912 previously interrupted the target. In that case the target/stub
4913 is probably wedged --- offer to quit/disconnect.
4914 */
4915
4916 static void
4917 remote_serial_quit_handler (void)
4918 {
4919 struct remote_state *rs = get_remote_state ();
4920
4921 if (check_quit_flag ())
4922 {
4923 /* If we're starting up, we're not fully synced yet. Quit
4924 immediately. */
4925 if (rs->starting_up)
4926 quit ();
4927 else if (rs->got_ctrlc_during_io)
4928 {
4929 if (query (_("The target is not responding to GDB commands.\n"
4930 "Stop debugging it? ")))
4931 remote_unpush_and_throw ();
4932 }
4933 /* If ^C has already been sent once, offer to disconnect. */
4934 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4935 interrupt_query ();
4936 /* All-stop protocol, and blocked waiting for stop reply. Send
4937 an interrupt request. */
4938 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4939 target_interrupt (inferior_ptid);
4940 else
4941 rs->got_ctrlc_during_io = 1;
4942 }
4943 }
4944
4945 /* Remove any of the remote.c targets from target stack. Upper targets depend
4946 on it so remove them first. */
4947
4948 static void
4949 remote_unpush_target (void)
4950 {
4951 pop_all_targets_at_and_above (process_stratum);
4952 }
4953
4954 static void
4955 remote_unpush_and_throw (void)
4956 {
4957 remote_unpush_target ();
4958 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4959 }
4960
4961 static void
4962 remote_open_1 (const char *name, int from_tty,
4963 struct target_ops *target, int extended_p)
4964 {
4965 struct remote_state *rs = get_remote_state ();
4966
4967 if (name == 0)
4968 error (_("To open a remote debug connection, you need to specify what\n"
4969 "serial device is attached to the remote system\n"
4970 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4971
4972 /* See FIXME above. */
4973 if (!target_async_permitted)
4974 wait_forever_enabled_p = 1;
4975
4976 /* If we're connected to a running target, target_preopen will kill it.
4977 Ask this question first, before target_preopen has a chance to kill
4978 anything. */
4979 if (rs->remote_desc != NULL && !have_inferiors ())
4980 {
4981 if (from_tty
4982 && !query (_("Already connected to a remote target. Disconnect? ")))
4983 error (_("Still connected."));
4984 }
4985
4986 /* Here the possibly existing remote target gets unpushed. */
4987 target_preopen (from_tty);
4988
4989 /* Make sure we send the passed signals list the next time we resume. */
4990 xfree (rs->last_pass_packet);
4991 rs->last_pass_packet = NULL;
4992
4993 /* Make sure we send the program signals list the next time we
4994 resume. */
4995 xfree (rs->last_program_signals_packet);
4996 rs->last_program_signals_packet = NULL;
4997
4998 remote_fileio_reset ();
4999 reopen_exec_file ();
5000 reread_symbols ();
5001
5002 rs->remote_desc = remote_serial_open (name);
5003 if (!rs->remote_desc)
5004 perror_with_name (name);
5005
5006 if (baud_rate != -1)
5007 {
5008 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5009 {
5010 /* The requested speed could not be set. Error out to
5011 top level after closing remote_desc. Take care to
5012 set remote_desc to NULL to avoid closing remote_desc
5013 more than once. */
5014 serial_close (rs->remote_desc);
5015 rs->remote_desc = NULL;
5016 perror_with_name (name);
5017 }
5018 }
5019
5020 serial_setparity (rs->remote_desc, serial_parity);
5021 serial_raw (rs->remote_desc);
5022
5023 /* If there is something sitting in the buffer we might take it as a
5024 response to a command, which would be bad. */
5025 serial_flush_input (rs->remote_desc);
5026
5027 if (from_tty)
5028 {
5029 puts_filtered ("Remote debugging using ");
5030 puts_filtered (name);
5031 puts_filtered ("\n");
5032 }
5033 push_target (target); /* Switch to using remote target now. */
5034
5035 /* Register extra event sources in the event loop. */
5036 remote_async_inferior_event_token
5037 = create_async_event_handler (remote_async_inferior_event_handler,
5038 NULL);
5039 rs->notif_state = remote_notif_state_allocate ();
5040
5041 /* Reset the target state; these things will be queried either by
5042 remote_query_supported or as they are needed. */
5043 reset_all_packet_configs_support ();
5044 rs->cached_wait_status = 0;
5045 rs->explicit_packet_size = 0;
5046 rs->noack_mode = 0;
5047 rs->extended = extended_p;
5048 rs->waiting_for_stop_reply = 0;
5049 rs->ctrlc_pending_p = 0;
5050 rs->got_ctrlc_during_io = 0;
5051
5052 rs->general_thread = not_sent_ptid;
5053 rs->continue_thread = not_sent_ptid;
5054 rs->remote_traceframe_number = -1;
5055
5056 rs->last_resume_exec_dir = EXEC_FORWARD;
5057
5058 /* Probe for ability to use "ThreadInfo" query, as required. */
5059 rs->use_threadinfo_query = 1;
5060 rs->use_threadextra_query = 1;
5061
5062 readahead_cache_invalidate ();
5063
5064 if (target_async_permitted)
5065 {
5066 /* FIXME: cagney/1999-09-23: During the initial connection it is
5067 assumed that the target is already ready and able to respond to
5068 requests. Unfortunately remote_start_remote() eventually calls
5069 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5070 around this. Eventually a mechanism that allows
5071 wait_for_inferior() to expect/get timeouts will be
5072 implemented. */
5073 wait_forever_enabled_p = 0;
5074 }
5075
5076 /* First delete any symbols previously loaded from shared libraries. */
5077 no_shared_libraries (NULL, 0);
5078
5079 /* Start afresh. */
5080 init_thread_list ();
5081
5082 /* Start the remote connection. If error() or QUIT, discard this
5083 target (we'd otherwise be in an inconsistent state) and then
5084 propogate the error on up the exception chain. This ensures that
5085 the caller doesn't stumble along blindly assuming that the
5086 function succeeded. The CLI doesn't have this problem but other
5087 UI's, such as MI do.
5088
5089 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5090 this function should return an error indication letting the
5091 caller restore the previous state. Unfortunately the command
5092 ``target remote'' is directly wired to this function making that
5093 impossible. On a positive note, the CLI side of this problem has
5094 been fixed - the function set_cmd_context() makes it possible for
5095 all the ``target ....'' commands to share a common callback
5096 function. See cli-dump.c. */
5097 {
5098
5099 TRY
5100 {
5101 remote_start_remote (from_tty, target, extended_p);
5102 }
5103 CATCH (ex, RETURN_MASK_ALL)
5104 {
5105 /* Pop the partially set up target - unless something else did
5106 already before throwing the exception. */
5107 if (rs->remote_desc != NULL)
5108 remote_unpush_target ();
5109 if (target_async_permitted)
5110 wait_forever_enabled_p = 1;
5111 throw_exception (ex);
5112 }
5113 END_CATCH
5114 }
5115
5116 remote_btrace_reset ();
5117
5118 if (target_async_permitted)
5119 wait_forever_enabled_p = 1;
5120 }
5121
5122 /* Detach the specified process. */
5123
5124 static void
5125 remote_detach_pid (int pid)
5126 {
5127 struct remote_state *rs = get_remote_state ();
5128
5129 if (remote_multi_process_p (rs))
5130 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5131 else
5132 strcpy (rs->buf, "D");
5133
5134 putpkt (rs->buf);
5135 getpkt (&rs->buf, &rs->buf_size, 0);
5136
5137 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5138 ;
5139 else if (rs->buf[0] == '\0')
5140 error (_("Remote doesn't know how to detach"));
5141 else
5142 error (_("Can't detach process."));
5143 }
5144
5145 /* This detaches a program to which we previously attached, using
5146 inferior_ptid to identify the process. After this is done, GDB
5147 can be used to debug some other program. We better not have left
5148 any breakpoints in the target program or it'll die when it hits
5149 one. */
5150
5151 static void
5152 remote_detach_1 (const char *args, int from_tty)
5153 {
5154 int pid = ptid_get_pid (inferior_ptid);
5155 struct remote_state *rs = get_remote_state ();
5156 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5157 int is_fork_parent;
5158
5159 if (args)
5160 error (_("Argument given to \"detach\" when remotely debugging."));
5161
5162 if (!target_has_execution)
5163 error (_("No process to detach from."));
5164
5165 target_announce_detach (from_tty);
5166
5167 /* Tell the remote target to detach. */
5168 remote_detach_pid (pid);
5169
5170 /* Exit only if this is the only active inferior. */
5171 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5172 puts_filtered (_("Ending remote debugging.\n"));
5173
5174 /* Check to see if we are detaching a fork parent. Note that if we
5175 are detaching a fork child, tp == NULL. */
5176 is_fork_parent = (tp != NULL
5177 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5178
5179 /* If doing detach-on-fork, we don't mourn, because that will delete
5180 breakpoints that should be available for the followed inferior. */
5181 if (!is_fork_parent)
5182 target_mourn_inferior (inferior_ptid);
5183 else
5184 {
5185 inferior_ptid = null_ptid;
5186 detach_inferior (pid);
5187 }
5188 }
5189
5190 static void
5191 remote_detach (struct target_ops *ops, const char *args, int from_tty)
5192 {
5193 remote_detach_1 (args, from_tty);
5194 }
5195
5196 static void
5197 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5198 {
5199 remote_detach_1 (args, from_tty);
5200 }
5201
5202 /* Target follow-fork function for remote targets. On entry, and
5203 at return, the current inferior is the fork parent.
5204
5205 Note that although this is currently only used for extended-remote,
5206 it is named remote_follow_fork in anticipation of using it for the
5207 remote target as well. */
5208
5209 static int
5210 remote_follow_fork (struct target_ops *ops, int follow_child,
5211 int detach_fork)
5212 {
5213 struct remote_state *rs = get_remote_state ();
5214 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5215
5216 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5217 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5218 {
5219 /* When following the parent and detaching the child, we detach
5220 the child here. For the case of following the child and
5221 detaching the parent, the detach is done in the target-
5222 independent follow fork code in infrun.c. We can't use
5223 target_detach when detaching an unfollowed child because
5224 the client side doesn't know anything about the child. */
5225 if (detach_fork && !follow_child)
5226 {
5227 /* Detach the fork child. */
5228 ptid_t child_ptid;
5229 pid_t child_pid;
5230
5231 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5232 child_pid = ptid_get_pid (child_ptid);
5233
5234 remote_detach_pid (child_pid);
5235 detach_inferior (child_pid);
5236 }
5237 }
5238 return 0;
5239 }
5240
5241 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5242 in the program space of the new inferior. On entry and at return the
5243 current inferior is the exec'ing inferior. INF is the new exec'd
5244 inferior, which may be the same as the exec'ing inferior unless
5245 follow-exec-mode is "new". */
5246
5247 static void
5248 remote_follow_exec (struct target_ops *ops,
5249 struct inferior *inf, char *execd_pathname)
5250 {
5251 /* We know that this is a target file name, so if it has the "target:"
5252 prefix we strip it off before saving it in the program space. */
5253 if (is_target_filename (execd_pathname))
5254 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5255
5256 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5257 }
5258
5259 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5260
5261 static void
5262 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5263 {
5264 if (args)
5265 error (_("Argument given to \"disconnect\" when remotely debugging."));
5266
5267 /* Make sure we unpush even the extended remote targets. Calling
5268 target_mourn_inferior won't unpush, and remote_mourn won't
5269 unpush if there is more than one inferior left. */
5270 unpush_target (target);
5271 generic_mourn_inferior ();
5272
5273 if (from_tty)
5274 puts_filtered ("Ending remote debugging.\n");
5275 }
5276
5277 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5278 be chatty about it. */
5279
5280 static void
5281 extended_remote_attach (struct target_ops *target, const char *args,
5282 int from_tty)
5283 {
5284 struct remote_state *rs = get_remote_state ();
5285 int pid;
5286 char *wait_status = NULL;
5287
5288 pid = parse_pid_to_attach (args);
5289
5290 /* Remote PID can be freely equal to getpid, do not check it here the same
5291 way as in other targets. */
5292
5293 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5294 error (_("This target does not support attaching to a process"));
5295
5296 if (from_tty)
5297 {
5298 char *exec_file = get_exec_file (0);
5299
5300 if (exec_file)
5301 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5302 target_pid_to_str (pid_to_ptid (pid)));
5303 else
5304 printf_unfiltered (_("Attaching to %s\n"),
5305 target_pid_to_str (pid_to_ptid (pid)));
5306
5307 gdb_flush (gdb_stdout);
5308 }
5309
5310 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5311 putpkt (rs->buf);
5312 getpkt (&rs->buf, &rs->buf_size, 0);
5313
5314 switch (packet_ok (rs->buf,
5315 &remote_protocol_packets[PACKET_vAttach]))
5316 {
5317 case PACKET_OK:
5318 if (!target_is_non_stop_p ())
5319 {
5320 /* Save the reply for later. */
5321 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5322 strcpy (wait_status, rs->buf);
5323 }
5324 else if (strcmp (rs->buf, "OK") != 0)
5325 error (_("Attaching to %s failed with: %s"),
5326 target_pid_to_str (pid_to_ptid (pid)),
5327 rs->buf);
5328 break;
5329 case PACKET_UNKNOWN:
5330 error (_("This target does not support attaching to a process"));
5331 default:
5332 error (_("Attaching to %s failed"),
5333 target_pid_to_str (pid_to_ptid (pid)));
5334 }
5335
5336 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5337
5338 inferior_ptid = pid_to_ptid (pid);
5339
5340 if (target_is_non_stop_p ())
5341 {
5342 struct thread_info *thread;
5343
5344 /* Get list of threads. */
5345 remote_update_thread_list (target);
5346
5347 thread = first_thread_of_process (pid);
5348 if (thread)
5349 inferior_ptid = thread->ptid;
5350 else
5351 inferior_ptid = pid_to_ptid (pid);
5352
5353 /* Invalidate our notion of the remote current thread. */
5354 record_currthread (rs, minus_one_ptid);
5355 }
5356 else
5357 {
5358 /* Now, if we have thread information, update inferior_ptid. */
5359 inferior_ptid = remote_current_thread (inferior_ptid);
5360
5361 /* Add the main thread to the thread list. */
5362 add_thread_silent (inferior_ptid);
5363 }
5364
5365 /* Next, if the target can specify a description, read it. We do
5366 this before anything involving memory or registers. */
5367 target_find_description ();
5368
5369 if (!target_is_non_stop_p ())
5370 {
5371 /* Use the previously fetched status. */
5372 gdb_assert (wait_status != NULL);
5373
5374 if (target_can_async_p ())
5375 {
5376 struct notif_event *reply
5377 = remote_notif_parse (&notif_client_stop, wait_status);
5378
5379 push_stop_reply ((struct stop_reply *) reply);
5380
5381 target_async (1);
5382 }
5383 else
5384 {
5385 gdb_assert (wait_status != NULL);
5386 strcpy (rs->buf, wait_status);
5387 rs->cached_wait_status = 1;
5388 }
5389 }
5390 else
5391 gdb_assert (wait_status == NULL);
5392 }
5393
5394 /* Implementation of the to_post_attach method. */
5395
5396 static void
5397 extended_remote_post_attach (struct target_ops *ops, int pid)
5398 {
5399 /* Get text, data & bss offsets. */
5400 get_offsets ();
5401
5402 /* In certain cases GDB might not have had the chance to start
5403 symbol lookup up until now. This could happen if the debugged
5404 binary is not using shared libraries, the vsyscall page is not
5405 present (on Linux) and the binary itself hadn't changed since the
5406 debugging process was started. */
5407 if (symfile_objfile != NULL)
5408 remote_check_symbols();
5409 }
5410
5411 \f
5412 /* Check for the availability of vCont. This function should also check
5413 the response. */
5414
5415 static void
5416 remote_vcont_probe (struct remote_state *rs)
5417 {
5418 char *buf;
5419
5420 strcpy (rs->buf, "vCont?");
5421 putpkt (rs->buf);
5422 getpkt (&rs->buf, &rs->buf_size, 0);
5423 buf = rs->buf;
5424
5425 /* Make sure that the features we assume are supported. */
5426 if (startswith (buf, "vCont"))
5427 {
5428 char *p = &buf[5];
5429 int support_c, support_C;
5430
5431 rs->supports_vCont.s = 0;
5432 rs->supports_vCont.S = 0;
5433 support_c = 0;
5434 support_C = 0;
5435 rs->supports_vCont.t = 0;
5436 rs->supports_vCont.r = 0;
5437 while (p && *p == ';')
5438 {
5439 p++;
5440 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5441 rs->supports_vCont.s = 1;
5442 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5443 rs->supports_vCont.S = 1;
5444 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5445 support_c = 1;
5446 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5447 support_C = 1;
5448 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5449 rs->supports_vCont.t = 1;
5450 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5451 rs->supports_vCont.r = 1;
5452
5453 p = strchr (p, ';');
5454 }
5455
5456 /* If c, and C are not all supported, we can't use vCont. Clearing
5457 BUF will make packet_ok disable the packet. */
5458 if (!support_c || !support_C)
5459 buf[0] = 0;
5460 }
5461
5462 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5463 }
5464
5465 /* Helper function for building "vCont" resumptions. Write a
5466 resumption to P. ENDP points to one-passed-the-end of the buffer
5467 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5468 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5469 resumed thread should be single-stepped and/or signalled. If PTID
5470 equals minus_one_ptid, then all threads are resumed; if PTID
5471 represents a process, then all threads of the process are resumed;
5472 the thread to be stepped and/or signalled is given in the global
5473 INFERIOR_PTID. */
5474
5475 static char *
5476 append_resumption (char *p, char *endp,
5477 ptid_t ptid, int step, enum gdb_signal siggnal)
5478 {
5479 struct remote_state *rs = get_remote_state ();
5480
5481 if (step && siggnal != GDB_SIGNAL_0)
5482 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5483 else if (step
5484 /* GDB is willing to range step. */
5485 && use_range_stepping
5486 /* Target supports range stepping. */
5487 && rs->supports_vCont.r
5488 /* We don't currently support range stepping multiple
5489 threads with a wildcard (though the protocol allows it,
5490 so stubs shouldn't make an active effort to forbid
5491 it). */
5492 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5493 {
5494 struct thread_info *tp;
5495
5496 if (ptid_equal (ptid, minus_one_ptid))
5497 {
5498 /* If we don't know about the target thread's tid, then
5499 we're resuming magic_null_ptid (see caller). */
5500 tp = find_thread_ptid (magic_null_ptid);
5501 }
5502 else
5503 tp = find_thread_ptid (ptid);
5504 gdb_assert (tp != NULL);
5505
5506 if (tp->control.may_range_step)
5507 {
5508 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5509
5510 p += xsnprintf (p, endp - p, ";r%s,%s",
5511 phex_nz (tp->control.step_range_start,
5512 addr_size),
5513 phex_nz (tp->control.step_range_end,
5514 addr_size));
5515 }
5516 else
5517 p += xsnprintf (p, endp - p, ";s");
5518 }
5519 else if (step)
5520 p += xsnprintf (p, endp - p, ";s");
5521 else if (siggnal != GDB_SIGNAL_0)
5522 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5523 else
5524 p += xsnprintf (p, endp - p, ";c");
5525
5526 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5527 {
5528 ptid_t nptid;
5529
5530 /* All (-1) threads of process. */
5531 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5532
5533 p += xsnprintf (p, endp - p, ":");
5534 p = write_ptid (p, endp, nptid);
5535 }
5536 else if (!ptid_equal (ptid, minus_one_ptid))
5537 {
5538 p += xsnprintf (p, endp - p, ":");
5539 p = write_ptid (p, endp, ptid);
5540 }
5541
5542 return p;
5543 }
5544
5545 /* Clear the thread's private info on resume. */
5546
5547 static void
5548 resume_clear_thread_private_info (struct thread_info *thread)
5549 {
5550 if (thread->priv != NULL)
5551 {
5552 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5553 thread->priv->watch_data_address = 0;
5554 }
5555 }
5556
5557 /* Append a vCont continue-with-signal action for threads that have a
5558 non-zero stop signal. */
5559
5560 static char *
5561 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5562 {
5563 struct thread_info *thread;
5564
5565 ALL_NON_EXITED_THREADS (thread)
5566 if (ptid_match (thread->ptid, ptid)
5567 && !ptid_equal (inferior_ptid, thread->ptid)
5568 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5569 {
5570 p = append_resumption (p, endp, thread->ptid,
5571 0, thread->suspend.stop_signal);
5572 thread->suspend.stop_signal = GDB_SIGNAL_0;
5573 resume_clear_thread_private_info (thread);
5574 }
5575
5576 return p;
5577 }
5578
5579 /* Set the target running, using the packets that use Hc
5580 (c/s/C/S). */
5581
5582 static void
5583 remote_resume_with_hc (struct target_ops *ops,
5584 ptid_t ptid, int step, enum gdb_signal siggnal)
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587 struct thread_info *thread;
5588 char *buf;
5589
5590 rs->last_sent_signal = siggnal;
5591 rs->last_sent_step = step;
5592
5593 /* The c/s/C/S resume packets use Hc, so set the continue
5594 thread. */
5595 if (ptid_equal (ptid, minus_one_ptid))
5596 set_continue_thread (any_thread_ptid);
5597 else
5598 set_continue_thread (ptid);
5599
5600 ALL_NON_EXITED_THREADS (thread)
5601 resume_clear_thread_private_info (thread);
5602
5603 buf = rs->buf;
5604 if (execution_direction == EXEC_REVERSE)
5605 {
5606 /* We don't pass signals to the target in reverse exec mode. */
5607 if (info_verbose && siggnal != GDB_SIGNAL_0)
5608 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5609 siggnal);
5610
5611 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5612 error (_("Remote reverse-step not supported."));
5613 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5614 error (_("Remote reverse-continue not supported."));
5615
5616 strcpy (buf, step ? "bs" : "bc");
5617 }
5618 else if (siggnal != GDB_SIGNAL_0)
5619 {
5620 buf[0] = step ? 'S' : 'C';
5621 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5622 buf[2] = tohex (((int) siggnal) & 0xf);
5623 buf[3] = '\0';
5624 }
5625 else
5626 strcpy (buf, step ? "s" : "c");
5627
5628 putpkt (buf);
5629 }
5630
5631 /* Resume the remote inferior by using a "vCont" packet. The thread
5632 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5633 resumed thread should be single-stepped and/or signalled. If PTID
5634 equals minus_one_ptid, then all threads are resumed; the thread to
5635 be stepped and/or signalled is given in the global INFERIOR_PTID.
5636 This function returns non-zero iff it resumes the inferior.
5637
5638 This function issues a strict subset of all possible vCont commands
5639 at the moment. */
5640
5641 static int
5642 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5643 {
5644 struct remote_state *rs = get_remote_state ();
5645 char *p;
5646 char *endp;
5647
5648 /* No reverse execution actions defined for vCont. */
5649 if (execution_direction == EXEC_REVERSE)
5650 return 0;
5651
5652 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5653 remote_vcont_probe (rs);
5654
5655 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5656 return 0;
5657
5658 p = rs->buf;
5659 endp = rs->buf + get_remote_packet_size ();
5660
5661 /* If we could generate a wider range of packets, we'd have to worry
5662 about overflowing BUF. Should there be a generic
5663 "multi-part-packet" packet? */
5664
5665 p += xsnprintf (p, endp - p, "vCont");
5666
5667 if (ptid_equal (ptid, magic_null_ptid))
5668 {
5669 /* MAGIC_NULL_PTID means that we don't have any active threads,
5670 so we don't have any TID numbers the inferior will
5671 understand. Make sure to only send forms that do not specify
5672 a TID. */
5673 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5674 }
5675 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5676 {
5677 /* Resume all threads (of all processes, or of a single
5678 process), with preference for INFERIOR_PTID. This assumes
5679 inferior_ptid belongs to the set of all threads we are about
5680 to resume. */
5681 if (step || siggnal != GDB_SIGNAL_0)
5682 {
5683 /* Step inferior_ptid, with or without signal. */
5684 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5685 }
5686
5687 /* Also pass down any pending signaled resumption for other
5688 threads not the current. */
5689 p = append_pending_thread_resumptions (p, endp, ptid);
5690
5691 /* And continue others without a signal. */
5692 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5693 }
5694 else
5695 {
5696 /* Scheduler locking; resume only PTID. */
5697 append_resumption (p, endp, ptid, step, siggnal);
5698 }
5699
5700 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5701 putpkt (rs->buf);
5702
5703 if (target_is_non_stop_p ())
5704 {
5705 /* In non-stop, the stub replies to vCont with "OK". The stop
5706 reply will be reported asynchronously by means of a `%Stop'
5707 notification. */
5708 getpkt (&rs->buf, &rs->buf_size, 0);
5709 if (strcmp (rs->buf, "OK") != 0)
5710 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5711 }
5712
5713 return 1;
5714 }
5715
5716 /* Tell the remote machine to resume. */
5717
5718 static void
5719 remote_resume (struct target_ops *ops,
5720 ptid_t ptid, int step, enum gdb_signal siggnal)
5721 {
5722 struct remote_state *rs = get_remote_state ();
5723
5724 /* When connected in non-stop mode, the core resumes threads
5725 individually. Resuming remote threads directly in target_resume
5726 would thus result in sending one packet per thread. Instead, to
5727 minimize roundtrip latency, here we just store the resume
5728 request; the actual remote resumption will be done in
5729 target_commit_resume / remote_commit_resume, where we'll be able
5730 to do vCont action coalescing. */
5731 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5732 {
5733 struct private_thread_info *remote_thr;
5734
5735 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5736 remote_thr = get_private_info_ptid (inferior_ptid);
5737 else
5738 remote_thr = get_private_info_ptid (ptid);
5739 remote_thr->last_resume_step = step;
5740 remote_thr->last_resume_sig = siggnal;
5741 return;
5742 }
5743
5744 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5745 (explained in remote-notif.c:handle_notification) so
5746 remote_notif_process is not called. We need find a place where
5747 it is safe to start a 'vNotif' sequence. It is good to do it
5748 before resuming inferior, because inferior was stopped and no RSP
5749 traffic at that moment. */
5750 if (!target_is_non_stop_p ())
5751 remote_notif_process (rs->notif_state, &notif_client_stop);
5752
5753 rs->last_resume_exec_dir = execution_direction;
5754
5755 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5756 if (!remote_resume_with_vcont (ptid, step, siggnal))
5757 remote_resume_with_hc (ops, ptid, step, siggnal);
5758
5759 /* We are about to start executing the inferior, let's register it
5760 with the event loop. NOTE: this is the one place where all the
5761 execution commands end up. We could alternatively do this in each
5762 of the execution commands in infcmd.c. */
5763 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5764 into infcmd.c in order to allow inferior function calls to work
5765 NOT asynchronously. */
5766 if (target_can_async_p ())
5767 target_async (1);
5768
5769 /* We've just told the target to resume. The remote server will
5770 wait for the inferior to stop, and then send a stop reply. In
5771 the mean time, we can't start another command/query ourselves
5772 because the stub wouldn't be ready to process it. This applies
5773 only to the base all-stop protocol, however. In non-stop (which
5774 only supports vCont), the stub replies with an "OK", and is
5775 immediate able to process further serial input. */
5776 if (!target_is_non_stop_p ())
5777 rs->waiting_for_stop_reply = 1;
5778 }
5779
5780 static void check_pending_events_prevent_wildcard_vcont
5781 (int *may_global_wildcard_vcont);
5782 static int is_pending_fork_parent_thread (struct thread_info *thread);
5783
5784 /* Private per-inferior info for target remote processes. */
5785
5786 struct remote_inferior : public private_inferior
5787 {
5788 /* Whether we can send a wildcard vCont for this process. */
5789 bool may_wildcard_vcont = true;
5790 };
5791
5792 /* Get the remote private inferior data associated to INF. */
5793
5794 static remote_inferior *
5795 get_remote_inferior (inferior *inf)
5796 {
5797 if (inf->priv == NULL)
5798 inf->priv.reset (new remote_inferior);
5799
5800 return static_cast<remote_inferior *> (inf->priv.get ());
5801 }
5802
5803 /* Structure used to track the construction of a vCont packet in the
5804 outgoing packet buffer. This is used to send multiple vCont
5805 packets if we have more actions than would fit a single packet. */
5806
5807 struct vcont_builder
5808 {
5809 /* Pointer to the first action. P points here if no action has been
5810 appended yet. */
5811 char *first_action;
5812
5813 /* Where the next action will be appended. */
5814 char *p;
5815
5816 /* The end of the buffer. Must never write past this. */
5817 char *endp;
5818 };
5819
5820 /* Prepare the outgoing buffer for a new vCont packet. */
5821
5822 static void
5823 vcont_builder_restart (struct vcont_builder *builder)
5824 {
5825 struct remote_state *rs = get_remote_state ();
5826
5827 builder->p = rs->buf;
5828 builder->endp = rs->buf + get_remote_packet_size ();
5829 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5830 builder->first_action = builder->p;
5831 }
5832
5833 /* If the vCont packet being built has any action, send it to the
5834 remote end. */
5835
5836 static void
5837 vcont_builder_flush (struct vcont_builder *builder)
5838 {
5839 struct remote_state *rs;
5840
5841 if (builder->p == builder->first_action)
5842 return;
5843
5844 rs = get_remote_state ();
5845 putpkt (rs->buf);
5846 getpkt (&rs->buf, &rs->buf_size, 0);
5847 if (strcmp (rs->buf, "OK") != 0)
5848 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5849 }
5850
5851 /* The largest action is range-stepping, with its two addresses. This
5852 is more than sufficient. If a new, bigger action is created, it'll
5853 quickly trigger a failed assertion in append_resumption (and we'll
5854 just bump this). */
5855 #define MAX_ACTION_SIZE 200
5856
5857 /* Append a new vCont action in the outgoing packet being built. If
5858 the action doesn't fit the packet along with previous actions, push
5859 what we've got so far to the remote end and start over a new vCont
5860 packet (with the new action). */
5861
5862 static void
5863 vcont_builder_push_action (struct vcont_builder *builder,
5864 ptid_t ptid, int step, enum gdb_signal siggnal)
5865 {
5866 char buf[MAX_ACTION_SIZE + 1];
5867 char *endp;
5868 size_t rsize;
5869
5870 endp = append_resumption (buf, buf + sizeof (buf),
5871 ptid, step, siggnal);
5872
5873 /* Check whether this new action would fit in the vCont packet along
5874 with previous actions. If not, send what we've got so far and
5875 start a new vCont packet. */
5876 rsize = endp - buf;
5877 if (rsize > builder->endp - builder->p)
5878 {
5879 vcont_builder_flush (builder);
5880 vcont_builder_restart (builder);
5881
5882 /* Should now fit. */
5883 gdb_assert (rsize <= builder->endp - builder->p);
5884 }
5885
5886 memcpy (builder->p, buf, rsize);
5887 builder->p += rsize;
5888 *builder->p = '\0';
5889 }
5890
5891 /* to_commit_resume implementation. */
5892
5893 static void
5894 remote_commit_resume (struct target_ops *ops)
5895 {
5896 struct remote_state *rs = get_remote_state ();
5897 struct inferior *inf;
5898 struct thread_info *tp;
5899 int any_process_wildcard;
5900 int may_global_wildcard_vcont;
5901 struct vcont_builder vcont_builder;
5902
5903 /* If connected in all-stop mode, we'd send the remote resume
5904 request directly from remote_resume. Likewise if
5905 reverse-debugging, as there are no defined vCont actions for
5906 reverse execution. */
5907 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5908 return;
5909
5910 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5911 instead of resuming all threads of each process individually.
5912 However, if any thread of a process must remain halted, we can't
5913 send wildcard resumes and must send one action per thread.
5914
5915 Care must be taken to not resume threads/processes the server
5916 side already told us are stopped, but the core doesn't know about
5917 yet, because the events are still in the vStopped notification
5918 queue. For example:
5919
5920 #1 => vCont s:p1.1;c
5921 #2 <= OK
5922 #3 <= %Stopped T05 p1.1
5923 #4 => vStopped
5924 #5 <= T05 p1.2
5925 #6 => vStopped
5926 #7 <= OK
5927 #8 (infrun handles the stop for p1.1 and continues stepping)
5928 #9 => vCont s:p1.1;c
5929
5930 The last vCont above would resume thread p1.2 by mistake, because
5931 the server has no idea that the event for p1.2 had not been
5932 handled yet.
5933
5934 The server side must similarly ignore resume actions for the
5935 thread that has a pending %Stopped notification (and any other
5936 threads with events pending), until GDB acks the notification
5937 with vStopped. Otherwise, e.g., the following case is
5938 mishandled:
5939
5940 #1 => g (or any other packet)
5941 #2 <= [registers]
5942 #3 <= %Stopped T05 p1.2
5943 #4 => vCont s:p1.1;c
5944 #5 <= OK
5945
5946 Above, the server must not resume thread p1.2. GDB can't know
5947 that p1.2 stopped until it acks the %Stopped notification, and
5948 since from GDB's perspective all threads should be running, it
5949 sends a "c" action.
5950
5951 Finally, special care must also be given to handling fork/vfork
5952 events. A (v)fork event actually tells us that two processes
5953 stopped -- the parent and the child. Until we follow the fork,
5954 we must not resume the child. Therefore, if we have a pending
5955 fork follow, we must not send a global wildcard resume action
5956 (vCont;c). We can still send process-wide wildcards though. */
5957
5958 /* Start by assuming a global wildcard (vCont;c) is possible. */
5959 may_global_wildcard_vcont = 1;
5960
5961 /* And assume every process is individually wildcard-able too. */
5962 ALL_NON_EXITED_INFERIORS (inf)
5963 {
5964 remote_inferior *priv = get_remote_inferior (inf);
5965
5966 priv->may_wildcard_vcont = true;
5967 }
5968
5969 /* Check for any pending events (not reported or processed yet) and
5970 disable process and global wildcard resumes appropriately. */
5971 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5972
5973 ALL_NON_EXITED_THREADS (tp)
5974 {
5975 /* If a thread of a process is not meant to be resumed, then we
5976 can't wildcard that process. */
5977 if (!tp->executing)
5978 {
5979 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5980
5981 /* And if we can't wildcard a process, we can't wildcard
5982 everything either. */
5983 may_global_wildcard_vcont = 0;
5984 continue;
5985 }
5986
5987 /* If a thread is the parent of an unfollowed fork, then we
5988 can't do a global wildcard, as that would resume the fork
5989 child. */
5990 if (is_pending_fork_parent_thread (tp))
5991 may_global_wildcard_vcont = 0;
5992 }
5993
5994 /* Now let's build the vCont packet(s). Actions must be appended
5995 from narrower to wider scopes (thread -> process -> global). If
5996 we end up with too many actions for a single packet vcont_builder
5997 flushes the current vCont packet to the remote side and starts a
5998 new one. */
5999 vcont_builder_restart (&vcont_builder);
6000
6001 /* Threads first. */
6002 ALL_NON_EXITED_THREADS (tp)
6003 {
6004 struct private_thread_info *remote_thr = tp->priv;
6005
6006 if (!tp->executing || remote_thr->vcont_resumed)
6007 continue;
6008
6009 gdb_assert (!thread_is_in_step_over_chain (tp));
6010
6011 if (!remote_thr->last_resume_step
6012 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6013 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6014 {
6015 /* We'll send a wildcard resume instead. */
6016 remote_thr->vcont_resumed = 1;
6017 continue;
6018 }
6019
6020 vcont_builder_push_action (&vcont_builder, tp->ptid,
6021 remote_thr->last_resume_step,
6022 remote_thr->last_resume_sig);
6023 remote_thr->vcont_resumed = 1;
6024 }
6025
6026 /* Now check whether we can send any process-wide wildcard. This is
6027 to avoid sending a global wildcard in the case nothing is
6028 supposed to be resumed. */
6029 any_process_wildcard = 0;
6030
6031 ALL_NON_EXITED_INFERIORS (inf)
6032 {
6033 if (get_remote_inferior (inf)->may_wildcard_vcont)
6034 {
6035 any_process_wildcard = 1;
6036 break;
6037 }
6038 }
6039
6040 if (any_process_wildcard)
6041 {
6042 /* If all processes are wildcard-able, then send a single "c"
6043 action, otherwise, send an "all (-1) threads of process"
6044 continue action for each running process, if any. */
6045 if (may_global_wildcard_vcont)
6046 {
6047 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6048 0, GDB_SIGNAL_0);
6049 }
6050 else
6051 {
6052 ALL_NON_EXITED_INFERIORS (inf)
6053 {
6054 if (get_remote_inferior (inf)->may_wildcard_vcont)
6055 {
6056 vcont_builder_push_action (&vcont_builder,
6057 pid_to_ptid (inf->pid),
6058 0, GDB_SIGNAL_0);
6059 }
6060 }
6061 }
6062 }
6063
6064 vcont_builder_flush (&vcont_builder);
6065 }
6066
6067 \f
6068
6069 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6070 thread, all threads of a remote process, or all threads of all
6071 processes. */
6072
6073 static void
6074 remote_stop_ns (ptid_t ptid)
6075 {
6076 struct remote_state *rs = get_remote_state ();
6077 char *p = rs->buf;
6078 char *endp = rs->buf + get_remote_packet_size ();
6079
6080 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6081 remote_vcont_probe (rs);
6082
6083 if (!rs->supports_vCont.t)
6084 error (_("Remote server does not support stopping threads"));
6085
6086 if (ptid_equal (ptid, minus_one_ptid)
6087 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6088 p += xsnprintf (p, endp - p, "vCont;t");
6089 else
6090 {
6091 ptid_t nptid;
6092
6093 p += xsnprintf (p, endp - p, "vCont;t:");
6094
6095 if (ptid_is_pid (ptid))
6096 /* All (-1) threads of process. */
6097 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6098 else
6099 {
6100 /* Small optimization: if we already have a stop reply for
6101 this thread, no use in telling the stub we want this
6102 stopped. */
6103 if (peek_stop_reply (ptid))
6104 return;
6105
6106 nptid = ptid;
6107 }
6108
6109 write_ptid (p, endp, nptid);
6110 }
6111
6112 /* In non-stop, we get an immediate OK reply. The stop reply will
6113 come in asynchronously by notification. */
6114 putpkt (rs->buf);
6115 getpkt (&rs->buf, &rs->buf_size, 0);
6116 if (strcmp (rs->buf, "OK") != 0)
6117 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6118 }
6119
6120 /* All-stop version of target_interrupt. Sends a break or a ^C to
6121 interrupt the remote target. It is undefined which thread of which
6122 process reports the interrupt. */
6123
6124 static void
6125 remote_interrupt_as (void)
6126 {
6127 struct remote_state *rs = get_remote_state ();
6128
6129 rs->ctrlc_pending_p = 1;
6130
6131 /* If the inferior is stopped already, but the core didn't know
6132 about it yet, just ignore the request. The cached wait status
6133 will be collected in remote_wait. */
6134 if (rs->cached_wait_status)
6135 return;
6136
6137 /* Send interrupt_sequence to remote target. */
6138 send_interrupt_sequence ();
6139 }
6140
6141 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6142 the remote target. It is undefined which thread of which process
6143 reports the interrupt. Throws an error if the packet is not
6144 supported by the server. */
6145
6146 static void
6147 remote_interrupt_ns (void)
6148 {
6149 struct remote_state *rs = get_remote_state ();
6150 char *p = rs->buf;
6151 char *endp = rs->buf + get_remote_packet_size ();
6152
6153 xsnprintf (p, endp - p, "vCtrlC");
6154
6155 /* In non-stop, we get an immediate OK reply. The stop reply will
6156 come in asynchronously by notification. */
6157 putpkt (rs->buf);
6158 getpkt (&rs->buf, &rs->buf_size, 0);
6159
6160 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6161 {
6162 case PACKET_OK:
6163 break;
6164 case PACKET_UNKNOWN:
6165 error (_("No support for interrupting the remote target."));
6166 case PACKET_ERROR:
6167 error (_("Interrupting target failed: %s"), rs->buf);
6168 }
6169 }
6170
6171 /* Implement the to_stop function for the remote targets. */
6172
6173 static void
6174 remote_stop (struct target_ops *self, ptid_t ptid)
6175 {
6176 if (remote_debug)
6177 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6178
6179 if (target_is_non_stop_p ())
6180 remote_stop_ns (ptid);
6181 else
6182 {
6183 /* We don't currently have a way to transparently pause the
6184 remote target in all-stop mode. Interrupt it instead. */
6185 remote_interrupt_as ();
6186 }
6187 }
6188
6189 /* Implement the to_interrupt function for the remote targets. */
6190
6191 static void
6192 remote_interrupt (struct target_ops *self, ptid_t ptid)
6193 {
6194 struct remote_state *rs = get_remote_state ();
6195
6196 if (remote_debug)
6197 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6198
6199 if (target_is_non_stop_p ())
6200 remote_interrupt_ns ();
6201 else
6202 remote_interrupt_as ();
6203 }
6204
6205 /* Implement the to_pass_ctrlc function for the remote targets. */
6206
6207 static void
6208 remote_pass_ctrlc (struct target_ops *self)
6209 {
6210 struct remote_state *rs = get_remote_state ();
6211
6212 if (remote_debug)
6213 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6214
6215 /* If we're starting up, we're not fully synced yet. Quit
6216 immediately. */
6217 if (rs->starting_up)
6218 quit ();
6219 /* If ^C has already been sent once, offer to disconnect. */
6220 else if (rs->ctrlc_pending_p)
6221 interrupt_query ();
6222 else
6223 target_interrupt (inferior_ptid);
6224 }
6225
6226 /* Ask the user what to do when an interrupt is received. */
6227
6228 static void
6229 interrupt_query (void)
6230 {
6231 struct remote_state *rs = get_remote_state ();
6232
6233 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6234 {
6235 if (query (_("The target is not responding to interrupt requests.\n"
6236 "Stop debugging it? ")))
6237 {
6238 remote_unpush_target ();
6239 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6240 }
6241 }
6242 else
6243 {
6244 if (query (_("Interrupted while waiting for the program.\n"
6245 "Give up waiting? ")))
6246 quit ();
6247 }
6248 }
6249
6250 /* Enable/disable target terminal ownership. Most targets can use
6251 terminal groups to control terminal ownership. Remote targets are
6252 different in that explicit transfer of ownership to/from GDB/target
6253 is required. */
6254
6255 static void
6256 remote_terminal_inferior (struct target_ops *self)
6257 {
6258 /* NOTE: At this point we could also register our selves as the
6259 recipient of all input. Any characters typed could then be
6260 passed on down to the target. */
6261 }
6262
6263 static void
6264 remote_terminal_ours (struct target_ops *self)
6265 {
6266 }
6267
6268 static void
6269 remote_console_output (char *msg)
6270 {
6271 char *p;
6272
6273 for (p = msg; p[0] && p[1]; p += 2)
6274 {
6275 char tb[2];
6276 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6277
6278 tb[0] = c;
6279 tb[1] = 0;
6280 fputs_unfiltered (tb, gdb_stdtarg);
6281 }
6282 gdb_flush (gdb_stdtarg);
6283 }
6284
6285 DEF_VEC_O(cached_reg_t);
6286
6287 typedef struct stop_reply
6288 {
6289 struct notif_event base;
6290
6291 /* The identifier of the thread about this event */
6292 ptid_t ptid;
6293
6294 /* The remote state this event is associated with. When the remote
6295 connection, represented by a remote_state object, is closed,
6296 all the associated stop_reply events should be released. */
6297 struct remote_state *rs;
6298
6299 struct target_waitstatus ws;
6300
6301 /* The architecture associated with the expedited registers. */
6302 gdbarch *arch;
6303
6304 /* Expedited registers. This makes remote debugging a bit more
6305 efficient for those targets that provide critical registers as
6306 part of their normal status mechanism (as another roundtrip to
6307 fetch them is avoided). */
6308 VEC(cached_reg_t) *regcache;
6309
6310 enum target_stop_reason stop_reason;
6311
6312 CORE_ADDR watch_data_address;
6313
6314 int core;
6315 } *stop_reply_p;
6316
6317 DECLARE_QUEUE_P (stop_reply_p);
6318 DEFINE_QUEUE_P (stop_reply_p);
6319 /* The list of already fetched and acknowledged stop events. This
6320 queue is used for notification Stop, and other notifications
6321 don't need queue for their events, because the notification events
6322 of Stop can't be consumed immediately, so that events should be
6323 queued first, and be consumed by remote_wait_{ns,as} one per
6324 time. Other notifications can consume their events immediately,
6325 so queue is not needed for them. */
6326 static QUEUE (stop_reply_p) *stop_reply_queue;
6327
6328 static void
6329 stop_reply_xfree (struct stop_reply *r)
6330 {
6331 notif_event_xfree ((struct notif_event *) r);
6332 }
6333
6334 /* Return the length of the stop reply queue. */
6335
6336 static int
6337 stop_reply_queue_length (void)
6338 {
6339 return QUEUE_length (stop_reply_p, stop_reply_queue);
6340 }
6341
6342 static void
6343 remote_notif_stop_parse (struct notif_client *self, char *buf,
6344 struct notif_event *event)
6345 {
6346 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6347 }
6348
6349 static void
6350 remote_notif_stop_ack (struct notif_client *self, char *buf,
6351 struct notif_event *event)
6352 {
6353 struct stop_reply *stop_reply = (struct stop_reply *) event;
6354
6355 /* acknowledge */
6356 putpkt (self->ack_command);
6357
6358 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6359 /* We got an unknown stop reply. */
6360 error (_("Unknown stop reply"));
6361
6362 push_stop_reply (stop_reply);
6363 }
6364
6365 static int
6366 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6367 {
6368 /* We can't get pending events in remote_notif_process for
6369 notification stop, and we have to do this in remote_wait_ns
6370 instead. If we fetch all queued events from stub, remote stub
6371 may exit and we have no chance to process them back in
6372 remote_wait_ns. */
6373 mark_async_event_handler (remote_async_inferior_event_token);
6374 return 0;
6375 }
6376
6377 static void
6378 stop_reply_dtr (struct notif_event *event)
6379 {
6380 struct stop_reply *r = (struct stop_reply *) event;
6381 cached_reg_t *reg;
6382 int ix;
6383
6384 for (ix = 0;
6385 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6386 ix++)
6387 xfree (reg->data);
6388
6389 VEC_free (cached_reg_t, r->regcache);
6390 }
6391
6392 static struct notif_event *
6393 remote_notif_stop_alloc_reply (void)
6394 {
6395 /* We cast to a pointer to the "base class". */
6396 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6397
6398 r->dtr = stop_reply_dtr;
6399
6400 return r;
6401 }
6402
6403 /* A client of notification Stop. */
6404
6405 struct notif_client notif_client_stop =
6406 {
6407 "Stop",
6408 "vStopped",
6409 remote_notif_stop_parse,
6410 remote_notif_stop_ack,
6411 remote_notif_stop_can_get_pending_events,
6412 remote_notif_stop_alloc_reply,
6413 REMOTE_NOTIF_STOP,
6414 };
6415
6416 /* A parameter to pass data in and out. */
6417
6418 struct queue_iter_param
6419 {
6420 void *input;
6421 struct stop_reply *output;
6422 };
6423
6424 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6425 the pid of the process that owns the threads we want to check, or
6426 -1 if we want to check all threads. */
6427
6428 static int
6429 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6430 ptid_t thread_ptid)
6431 {
6432 if (ws->kind == TARGET_WAITKIND_FORKED
6433 || ws->kind == TARGET_WAITKIND_VFORKED)
6434 {
6435 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6436 return 1;
6437 }
6438
6439 return 0;
6440 }
6441
6442 /* Return the thread's pending status used to determine whether the
6443 thread is a fork parent stopped at a fork event. */
6444
6445 static struct target_waitstatus *
6446 thread_pending_fork_status (struct thread_info *thread)
6447 {
6448 if (thread->suspend.waitstatus_pending_p)
6449 return &thread->suspend.waitstatus;
6450 else
6451 return &thread->pending_follow;
6452 }
6453
6454 /* Determine if THREAD is a pending fork parent thread. */
6455
6456 static int
6457 is_pending_fork_parent_thread (struct thread_info *thread)
6458 {
6459 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6460 int pid = -1;
6461
6462 return is_pending_fork_parent (ws, pid, thread->ptid);
6463 }
6464
6465 /* Check whether EVENT is a fork event, and if it is, remove the
6466 fork child from the context list passed in DATA. */
6467
6468 static int
6469 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6470 QUEUE_ITER (stop_reply_p) *iter,
6471 stop_reply_p event,
6472 void *data)
6473 {
6474 struct queue_iter_param *param = (struct queue_iter_param *) data;
6475 struct threads_listing_context *context
6476 = (struct threads_listing_context *) param->input;
6477
6478 if (event->ws.kind == TARGET_WAITKIND_FORKED
6479 || event->ws.kind == TARGET_WAITKIND_VFORKED
6480 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6481 context->remove_thread (event->ws.value.related_pid);
6482
6483 return 1;
6484 }
6485
6486 /* If CONTEXT contains any fork child threads that have not been
6487 reported yet, remove them from the CONTEXT list. If such a
6488 thread exists it is because we are stopped at a fork catchpoint
6489 and have not yet called follow_fork, which will set up the
6490 host-side data structures for the new process. */
6491
6492 static void
6493 remove_new_fork_children (struct threads_listing_context *context)
6494 {
6495 struct thread_info * thread;
6496 int pid = -1;
6497 struct notif_client *notif = &notif_client_stop;
6498 struct queue_iter_param param;
6499
6500 /* For any threads stopped at a fork event, remove the corresponding
6501 fork child threads from the CONTEXT list. */
6502 ALL_NON_EXITED_THREADS (thread)
6503 {
6504 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6505
6506 if (is_pending_fork_parent (ws, pid, thread->ptid))
6507 context->remove_thread (ws->value.related_pid);
6508 }
6509
6510 /* Check for any pending fork events (not reported or processed yet)
6511 in process PID and remove those fork child threads from the
6512 CONTEXT list as well. */
6513 remote_notif_get_pending_events (notif);
6514 param.input = context;
6515 param.output = NULL;
6516 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6517 remove_child_of_pending_fork, &param);
6518 }
6519
6520 /* Check whether EVENT would prevent a global or process wildcard
6521 vCont action. */
6522
6523 static int
6524 check_pending_event_prevents_wildcard_vcont_callback
6525 (QUEUE (stop_reply_p) *q,
6526 QUEUE_ITER (stop_reply_p) *iter,
6527 stop_reply_p event,
6528 void *data)
6529 {
6530 struct inferior *inf;
6531 int *may_global_wildcard_vcont = (int *) data;
6532
6533 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6534 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6535 return 1;
6536
6537 if (event->ws.kind == TARGET_WAITKIND_FORKED
6538 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6539 *may_global_wildcard_vcont = 0;
6540
6541 inf = find_inferior_ptid (event->ptid);
6542
6543 /* This may be the first time we heard about this process.
6544 Regardless, we must not do a global wildcard resume, otherwise
6545 we'd resume this process too. */
6546 *may_global_wildcard_vcont = 0;
6547 if (inf != NULL)
6548 get_remote_inferior (inf)->may_wildcard_vcont = false;
6549
6550 return 1;
6551 }
6552
6553 /* Check whether any event pending in the vStopped queue would prevent
6554 a global or process wildcard vCont action. Clear
6555 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6556 and clear the event inferior's may_wildcard_vcont flag if we can't
6557 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6558
6559 static void
6560 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6561 {
6562 struct notif_client *notif = &notif_client_stop;
6563
6564 remote_notif_get_pending_events (notif);
6565 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6566 check_pending_event_prevents_wildcard_vcont_callback,
6567 may_global_wildcard);
6568 }
6569
6570 /* Remove stop replies in the queue if its pid is equal to the given
6571 inferior's pid. */
6572
6573 static int
6574 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6575 QUEUE_ITER (stop_reply_p) *iter,
6576 stop_reply_p event,
6577 void *data)
6578 {
6579 struct queue_iter_param *param = (struct queue_iter_param *) data;
6580 struct inferior *inf = (struct inferior *) param->input;
6581
6582 if (ptid_get_pid (event->ptid) == inf->pid)
6583 {
6584 stop_reply_xfree (event);
6585 QUEUE_remove_elem (stop_reply_p, q, iter);
6586 }
6587
6588 return 1;
6589 }
6590
6591 /* Discard all pending stop replies of inferior INF. */
6592
6593 static void
6594 discard_pending_stop_replies (struct inferior *inf)
6595 {
6596 struct queue_iter_param param;
6597 struct stop_reply *reply;
6598 struct remote_state *rs = get_remote_state ();
6599 struct remote_notif_state *rns = rs->notif_state;
6600
6601 /* This function can be notified when an inferior exists. When the
6602 target is not remote, the notification state is NULL. */
6603 if (rs->remote_desc == NULL)
6604 return;
6605
6606 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6607
6608 /* Discard the in-flight notification. */
6609 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6610 {
6611 stop_reply_xfree (reply);
6612 rns->pending_event[notif_client_stop.id] = NULL;
6613 }
6614
6615 param.input = inf;
6616 param.output = NULL;
6617 /* Discard the stop replies we have already pulled with
6618 vStopped. */
6619 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6620 remove_stop_reply_for_inferior, &param);
6621 }
6622
6623 /* If its remote state is equal to the given remote state,
6624 remove EVENT from the stop reply queue. */
6625
6626 static int
6627 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6628 QUEUE_ITER (stop_reply_p) *iter,
6629 stop_reply_p event,
6630 void *data)
6631 {
6632 struct queue_iter_param *param = (struct queue_iter_param *) data;
6633 struct remote_state *rs = (struct remote_state *) param->input;
6634
6635 if (event->rs == rs)
6636 {
6637 stop_reply_xfree (event);
6638 QUEUE_remove_elem (stop_reply_p, q, iter);
6639 }
6640
6641 return 1;
6642 }
6643
6644 /* Discard the stop replies for RS in stop_reply_queue. */
6645
6646 static void
6647 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6648 {
6649 struct queue_iter_param param;
6650
6651 param.input = rs;
6652 param.output = NULL;
6653 /* Discard the stop replies we have already pulled with
6654 vStopped. */
6655 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6656 remove_stop_reply_of_remote_state, &param);
6657 }
6658
6659 /* A parameter to pass data in and out. */
6660
6661 static int
6662 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6663 QUEUE_ITER (stop_reply_p) *iter,
6664 stop_reply_p event,
6665 void *data)
6666 {
6667 struct queue_iter_param *param = (struct queue_iter_param *) data;
6668 ptid_t *ptid = (ptid_t *) param->input;
6669
6670 if (ptid_match (event->ptid, *ptid))
6671 {
6672 param->output = event;
6673 QUEUE_remove_elem (stop_reply_p, q, iter);
6674 return 0;
6675 }
6676
6677 return 1;
6678 }
6679
6680 /* Remove the first reply in 'stop_reply_queue' which matches
6681 PTID. */
6682
6683 static struct stop_reply *
6684 remote_notif_remove_queued_reply (ptid_t ptid)
6685 {
6686 struct queue_iter_param param;
6687
6688 param.input = &ptid;
6689 param.output = NULL;
6690
6691 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6692 remote_notif_remove_once_on_match, &param);
6693 if (notif_debug)
6694 fprintf_unfiltered (gdb_stdlog,
6695 "notif: discard queued event: 'Stop' in %s\n",
6696 target_pid_to_str (ptid));
6697
6698 return param.output;
6699 }
6700
6701 /* Look for a queued stop reply belonging to PTID. If one is found,
6702 remove it from the queue, and return it. Returns NULL if none is
6703 found. If there are still queued events left to process, tell the
6704 event loop to get back to target_wait soon. */
6705
6706 static struct stop_reply *
6707 queued_stop_reply (ptid_t ptid)
6708 {
6709 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6710
6711 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6712 /* There's still at least an event left. */
6713 mark_async_event_handler (remote_async_inferior_event_token);
6714
6715 return r;
6716 }
6717
6718 /* Push a fully parsed stop reply in the stop reply queue. Since we
6719 know that we now have at least one queued event left to pass to the
6720 core side, tell the event loop to get back to target_wait soon. */
6721
6722 static void
6723 push_stop_reply (struct stop_reply *new_event)
6724 {
6725 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6726
6727 if (notif_debug)
6728 fprintf_unfiltered (gdb_stdlog,
6729 "notif: push 'Stop' %s to queue %d\n",
6730 target_pid_to_str (new_event->ptid),
6731 QUEUE_length (stop_reply_p,
6732 stop_reply_queue));
6733
6734 mark_async_event_handler (remote_async_inferior_event_token);
6735 }
6736
6737 static int
6738 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6739 QUEUE_ITER (stop_reply_p) *iter,
6740 struct stop_reply *event,
6741 void *data)
6742 {
6743 ptid_t *ptid = (ptid_t *) data;
6744
6745 return !(ptid_equal (*ptid, event->ptid)
6746 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6747 }
6748
6749 /* Returns true if we have a stop reply for PTID. */
6750
6751 static int
6752 peek_stop_reply (ptid_t ptid)
6753 {
6754 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6755 stop_reply_match_ptid_and_ws, &ptid);
6756 }
6757
6758 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6759 starting with P and ending with PEND matches PREFIX. */
6760
6761 static int
6762 strprefix (const char *p, const char *pend, const char *prefix)
6763 {
6764 for ( ; p < pend; p++, prefix++)
6765 if (*p != *prefix)
6766 return 0;
6767 return *prefix == '\0';
6768 }
6769
6770 /* Parse the stop reply in BUF. Either the function succeeds, and the
6771 result is stored in EVENT, or throws an error. */
6772
6773 static void
6774 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6775 {
6776 remote_arch_state *rsa = NULL;
6777 ULONGEST addr;
6778 const char *p;
6779 int skipregs = 0;
6780
6781 event->ptid = null_ptid;
6782 event->rs = get_remote_state ();
6783 event->ws.kind = TARGET_WAITKIND_IGNORE;
6784 event->ws.value.integer = 0;
6785 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6786 event->regcache = NULL;
6787 event->core = -1;
6788
6789 switch (buf[0])
6790 {
6791 case 'T': /* Status with PC, SP, FP, ... */
6792 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6793 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6794 ss = signal number
6795 n... = register number
6796 r... = register contents
6797 */
6798
6799 p = &buf[3]; /* after Txx */
6800 while (*p)
6801 {
6802 const char *p1;
6803 int fieldsize;
6804
6805 p1 = strchr (p, ':');
6806 if (p1 == NULL)
6807 error (_("Malformed packet(a) (missing colon): %s\n\
6808 Packet: '%s'\n"),
6809 p, buf);
6810 if (p == p1)
6811 error (_("Malformed packet(a) (missing register number): %s\n\
6812 Packet: '%s'\n"),
6813 p, buf);
6814
6815 /* Some "registers" are actually extended stop information.
6816 Note if you're adding a new entry here: GDB 7.9 and
6817 earlier assume that all register "numbers" that start
6818 with an hex digit are real register numbers. Make sure
6819 the server only sends such a packet if it knows the
6820 client understands it. */
6821
6822 if (strprefix (p, p1, "thread"))
6823 event->ptid = read_ptid (++p1, &p);
6824 else if (strprefix (p, p1, "syscall_entry"))
6825 {
6826 ULONGEST sysno;
6827
6828 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6829 p = unpack_varlen_hex (++p1, &sysno);
6830 event->ws.value.syscall_number = (int) sysno;
6831 }
6832 else if (strprefix (p, p1, "syscall_return"))
6833 {
6834 ULONGEST sysno;
6835
6836 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6837 p = unpack_varlen_hex (++p1, &sysno);
6838 event->ws.value.syscall_number = (int) sysno;
6839 }
6840 else if (strprefix (p, p1, "watch")
6841 || strprefix (p, p1, "rwatch")
6842 || strprefix (p, p1, "awatch"))
6843 {
6844 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6845 p = unpack_varlen_hex (++p1, &addr);
6846 event->watch_data_address = (CORE_ADDR) addr;
6847 }
6848 else if (strprefix (p, p1, "swbreak"))
6849 {
6850 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6851
6852 /* Make sure the stub doesn't forget to indicate support
6853 with qSupported. */
6854 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6855 error (_("Unexpected swbreak stop reason"));
6856
6857 /* The value part is documented as "must be empty",
6858 though we ignore it, in case we ever decide to make
6859 use of it in a backward compatible way. */
6860 p = strchrnul (p1 + 1, ';');
6861 }
6862 else if (strprefix (p, p1, "hwbreak"))
6863 {
6864 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6865
6866 /* Make sure the stub doesn't forget to indicate support
6867 with qSupported. */
6868 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6869 error (_("Unexpected hwbreak stop reason"));
6870
6871 /* See above. */
6872 p = strchrnul (p1 + 1, ';');
6873 }
6874 else if (strprefix (p, p1, "library"))
6875 {
6876 event->ws.kind = TARGET_WAITKIND_LOADED;
6877 p = strchrnul (p1 + 1, ';');
6878 }
6879 else if (strprefix (p, p1, "replaylog"))
6880 {
6881 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6882 /* p1 will indicate "begin" or "end", but it makes
6883 no difference for now, so ignore it. */
6884 p = strchrnul (p1 + 1, ';');
6885 }
6886 else if (strprefix (p, p1, "core"))
6887 {
6888 ULONGEST c;
6889
6890 p = unpack_varlen_hex (++p1, &c);
6891 event->core = c;
6892 }
6893 else if (strprefix (p, p1, "fork"))
6894 {
6895 event->ws.value.related_pid = read_ptid (++p1, &p);
6896 event->ws.kind = TARGET_WAITKIND_FORKED;
6897 }
6898 else if (strprefix (p, p1, "vfork"))
6899 {
6900 event->ws.value.related_pid = read_ptid (++p1, &p);
6901 event->ws.kind = TARGET_WAITKIND_VFORKED;
6902 }
6903 else if (strprefix (p, p1, "vforkdone"))
6904 {
6905 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6906 p = strchrnul (p1 + 1, ';');
6907 }
6908 else if (strprefix (p, p1, "exec"))
6909 {
6910 ULONGEST ignored;
6911 char pathname[PATH_MAX];
6912 int pathlen;
6913
6914 /* Determine the length of the execd pathname. */
6915 p = unpack_varlen_hex (++p1, &ignored);
6916 pathlen = (p - p1) / 2;
6917
6918 /* Save the pathname for event reporting and for
6919 the next run command. */
6920 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6921 pathname[pathlen] = '\0';
6922
6923 /* This is freed during event handling. */
6924 event->ws.value.execd_pathname = xstrdup (pathname);
6925 event->ws.kind = TARGET_WAITKIND_EXECD;
6926
6927 /* Skip the registers included in this packet, since
6928 they may be for an architecture different from the
6929 one used by the original program. */
6930 skipregs = 1;
6931 }
6932 else if (strprefix (p, p1, "create"))
6933 {
6934 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6935 p = strchrnul (p1 + 1, ';');
6936 }
6937 else
6938 {
6939 ULONGEST pnum;
6940 const char *p_temp;
6941
6942 if (skipregs)
6943 {
6944 p = strchrnul (p1 + 1, ';');
6945 p++;
6946 continue;
6947 }
6948
6949 /* Maybe a real ``P'' register number. */
6950 p_temp = unpack_varlen_hex (p, &pnum);
6951 /* If the first invalid character is the colon, we got a
6952 register number. Otherwise, it's an unknown stop
6953 reason. */
6954 if (p_temp == p1)
6955 {
6956 /* If we haven't parsed the event's thread yet, find
6957 it now, in order to find the architecture of the
6958 reported expedited registers. */
6959 if (event->ptid == null_ptid)
6960 {
6961 const char *thr = strstr (p1 + 1, ";thread:");
6962 if (thr != NULL)
6963 event->ptid = read_ptid (thr + strlen (";thread:"),
6964 NULL);
6965 else
6966 event->ptid = magic_null_ptid;
6967 }
6968
6969 if (rsa == NULL)
6970 {
6971 inferior *inf = (event->ptid == null_ptid
6972 ? NULL
6973 : find_inferior_ptid (event->ptid));
6974 /* If this is the first time we learn anything
6975 about this process, skip the registers
6976 included in this packet, since we don't yet
6977 know which architecture to use to parse them.
6978 We'll determine the architecture later when
6979 we process the stop reply and retrieve the
6980 target description, via
6981 remote_notice_new_inferior ->
6982 post_create_inferior. */
6983 if (inf == NULL)
6984 {
6985 p = strchrnul (p1 + 1, ';');
6986 p++;
6987 continue;
6988 }
6989
6990 event->arch = inf->gdbarch;
6991 rsa = get_remote_arch_state (event->arch);
6992 }
6993
6994 packet_reg *reg
6995 = packet_reg_from_pnum (event->arch, rsa, pnum);
6996 cached_reg_t cached_reg;
6997
6998 if (reg == NULL)
6999 error (_("Remote sent bad register number %s: %s\n\
7000 Packet: '%s'\n"),
7001 hex_string (pnum), p, buf);
7002
7003 cached_reg.num = reg->regnum;
7004 cached_reg.data = (gdb_byte *)
7005 xmalloc (register_size (event->arch, reg->regnum));
7006
7007 p = p1 + 1;
7008 fieldsize = hex2bin (p, cached_reg.data,
7009 register_size (event->arch, reg->regnum));
7010 p += 2 * fieldsize;
7011 if (fieldsize < register_size (event->arch, reg->regnum))
7012 warning (_("Remote reply is too short: %s"), buf);
7013
7014 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7015 }
7016 else
7017 {
7018 /* Not a number. Silently skip unknown optional
7019 info. */
7020 p = strchrnul (p1 + 1, ';');
7021 }
7022 }
7023
7024 if (*p != ';')
7025 error (_("Remote register badly formatted: %s\nhere: %s"),
7026 buf, p);
7027 ++p;
7028 }
7029
7030 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7031 break;
7032
7033 /* fall through */
7034 case 'S': /* Old style status, just signal only. */
7035 {
7036 int sig;
7037
7038 event->ws.kind = TARGET_WAITKIND_STOPPED;
7039 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7040 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7041 event->ws.value.sig = (enum gdb_signal) sig;
7042 else
7043 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7044 }
7045 break;
7046 case 'w': /* Thread exited. */
7047 {
7048 const char *p;
7049 ULONGEST value;
7050
7051 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7052 p = unpack_varlen_hex (&buf[1], &value);
7053 event->ws.value.integer = value;
7054 if (*p != ';')
7055 error (_("stop reply packet badly formatted: %s"), buf);
7056 event->ptid = read_ptid (++p, NULL);
7057 break;
7058 }
7059 case 'W': /* Target exited. */
7060 case 'X':
7061 {
7062 const char *p;
7063 int pid;
7064 ULONGEST value;
7065
7066 /* GDB used to accept only 2 hex chars here. Stubs should
7067 only send more if they detect GDB supports multi-process
7068 support. */
7069 p = unpack_varlen_hex (&buf[1], &value);
7070
7071 if (buf[0] == 'W')
7072 {
7073 /* The remote process exited. */
7074 event->ws.kind = TARGET_WAITKIND_EXITED;
7075 event->ws.value.integer = value;
7076 }
7077 else
7078 {
7079 /* The remote process exited with a signal. */
7080 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7081 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7082 event->ws.value.sig = (enum gdb_signal) value;
7083 else
7084 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7085 }
7086
7087 /* If no process is specified, assume inferior_ptid. */
7088 pid = ptid_get_pid (inferior_ptid);
7089 if (*p == '\0')
7090 ;
7091 else if (*p == ';')
7092 {
7093 p++;
7094
7095 if (*p == '\0')
7096 ;
7097 else if (startswith (p, "process:"))
7098 {
7099 ULONGEST upid;
7100
7101 p += sizeof ("process:") - 1;
7102 unpack_varlen_hex (p, &upid);
7103 pid = upid;
7104 }
7105 else
7106 error (_("unknown stop reply packet: %s"), buf);
7107 }
7108 else
7109 error (_("unknown stop reply packet: %s"), buf);
7110 event->ptid = pid_to_ptid (pid);
7111 }
7112 break;
7113 case 'N':
7114 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7115 event->ptid = minus_one_ptid;
7116 break;
7117 }
7118
7119 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7120 error (_("No process or thread specified in stop reply: %s"), buf);
7121 }
7122
7123 /* When the stub wants to tell GDB about a new notification reply, it
7124 sends a notification (%Stop, for example). Those can come it at
7125 any time, hence, we have to make sure that any pending
7126 putpkt/getpkt sequence we're making is finished, before querying
7127 the stub for more events with the corresponding ack command
7128 (vStopped, for example). E.g., if we started a vStopped sequence
7129 immediately upon receiving the notification, something like this
7130 could happen:
7131
7132 1.1) --> Hg 1
7133 1.2) <-- OK
7134 1.3) --> g
7135 1.4) <-- %Stop
7136 1.5) --> vStopped
7137 1.6) <-- (registers reply to step #1.3)
7138
7139 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7140 query.
7141
7142 To solve this, whenever we parse a %Stop notification successfully,
7143 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7144 doing whatever we were doing:
7145
7146 2.1) --> Hg 1
7147 2.2) <-- OK
7148 2.3) --> g
7149 2.4) <-- %Stop
7150 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7151 2.5) <-- (registers reply to step #2.3)
7152
7153 Eventualy after step #2.5, we return to the event loop, which
7154 notices there's an event on the
7155 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7156 associated callback --- the function below. At this point, we're
7157 always safe to start a vStopped sequence. :
7158
7159 2.6) --> vStopped
7160 2.7) <-- T05 thread:2
7161 2.8) --> vStopped
7162 2.9) --> OK
7163 */
7164
7165 void
7166 remote_notif_get_pending_events (struct notif_client *nc)
7167 {
7168 struct remote_state *rs = get_remote_state ();
7169
7170 if (rs->notif_state->pending_event[nc->id] != NULL)
7171 {
7172 if (notif_debug)
7173 fprintf_unfiltered (gdb_stdlog,
7174 "notif: process: '%s' ack pending event\n",
7175 nc->name);
7176
7177 /* acknowledge */
7178 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7179 rs->notif_state->pending_event[nc->id] = NULL;
7180
7181 while (1)
7182 {
7183 getpkt (&rs->buf, &rs->buf_size, 0);
7184 if (strcmp (rs->buf, "OK") == 0)
7185 break;
7186 else
7187 remote_notif_ack (nc, rs->buf);
7188 }
7189 }
7190 else
7191 {
7192 if (notif_debug)
7193 fprintf_unfiltered (gdb_stdlog,
7194 "notif: process: '%s' no pending reply\n",
7195 nc->name);
7196 }
7197 }
7198
7199 /* Called when it is decided that STOP_REPLY holds the info of the
7200 event that is to be returned to the core. This function always
7201 destroys STOP_REPLY. */
7202
7203 static ptid_t
7204 process_stop_reply (struct stop_reply *stop_reply,
7205 struct target_waitstatus *status)
7206 {
7207 ptid_t ptid;
7208
7209 *status = stop_reply->ws;
7210 ptid = stop_reply->ptid;
7211
7212 /* If no thread/process was reported by the stub, assume the current
7213 inferior. */
7214 if (ptid_equal (ptid, null_ptid))
7215 ptid = inferior_ptid;
7216
7217 if (status->kind != TARGET_WAITKIND_EXITED
7218 && status->kind != TARGET_WAITKIND_SIGNALLED
7219 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7220 {
7221 struct private_thread_info *remote_thr;
7222
7223 /* Expedited registers. */
7224 if (stop_reply->regcache)
7225 {
7226 struct regcache *regcache
7227 = get_thread_arch_regcache (ptid, stop_reply->arch);
7228 cached_reg_t *reg;
7229 int ix;
7230
7231 for (ix = 0;
7232 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7233 ix++)
7234 {
7235 regcache_raw_supply (regcache, reg->num, reg->data);
7236 xfree (reg->data);
7237 }
7238
7239 VEC_free (cached_reg_t, stop_reply->regcache);
7240 }
7241
7242 remote_notice_new_inferior (ptid, 0);
7243 remote_thr = get_private_info_ptid (ptid);
7244 remote_thr->core = stop_reply->core;
7245 remote_thr->stop_reason = stop_reply->stop_reason;
7246 remote_thr->watch_data_address = stop_reply->watch_data_address;
7247 remote_thr->vcont_resumed = 0;
7248 }
7249
7250 stop_reply_xfree (stop_reply);
7251 return ptid;
7252 }
7253
7254 /* The non-stop mode version of target_wait. */
7255
7256 static ptid_t
7257 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7258 {
7259 struct remote_state *rs = get_remote_state ();
7260 struct stop_reply *stop_reply;
7261 int ret;
7262 int is_notif = 0;
7263
7264 /* If in non-stop mode, get out of getpkt even if a
7265 notification is received. */
7266
7267 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7268 0 /* forever */, &is_notif);
7269 while (1)
7270 {
7271 if (ret != -1 && !is_notif)
7272 switch (rs->buf[0])
7273 {
7274 case 'E': /* Error of some sort. */
7275 /* We're out of sync with the target now. Did it continue
7276 or not? We can't tell which thread it was in non-stop,
7277 so just ignore this. */
7278 warning (_("Remote failure reply: %s"), rs->buf);
7279 break;
7280 case 'O': /* Console output. */
7281 remote_console_output (rs->buf + 1);
7282 break;
7283 default:
7284 warning (_("Invalid remote reply: %s"), rs->buf);
7285 break;
7286 }
7287
7288 /* Acknowledge a pending stop reply that may have arrived in the
7289 mean time. */
7290 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7291 remote_notif_get_pending_events (&notif_client_stop);
7292
7293 /* If indeed we noticed a stop reply, we're done. */
7294 stop_reply = queued_stop_reply (ptid);
7295 if (stop_reply != NULL)
7296 return process_stop_reply (stop_reply, status);
7297
7298 /* Still no event. If we're just polling for an event, then
7299 return to the event loop. */
7300 if (options & TARGET_WNOHANG)
7301 {
7302 status->kind = TARGET_WAITKIND_IGNORE;
7303 return minus_one_ptid;
7304 }
7305
7306 /* Otherwise do a blocking wait. */
7307 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7308 1 /* forever */, &is_notif);
7309 }
7310 }
7311
7312 /* Wait until the remote machine stops, then return, storing status in
7313 STATUS just as `wait' would. */
7314
7315 static ptid_t
7316 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7317 {
7318 struct remote_state *rs = get_remote_state ();
7319 ptid_t event_ptid = null_ptid;
7320 char *buf;
7321 struct stop_reply *stop_reply;
7322
7323 again:
7324
7325 status->kind = TARGET_WAITKIND_IGNORE;
7326 status->value.integer = 0;
7327
7328 stop_reply = queued_stop_reply (ptid);
7329 if (stop_reply != NULL)
7330 return process_stop_reply (stop_reply, status);
7331
7332 if (rs->cached_wait_status)
7333 /* Use the cached wait status, but only once. */
7334 rs->cached_wait_status = 0;
7335 else
7336 {
7337 int ret;
7338 int is_notif;
7339 int forever = ((options & TARGET_WNOHANG) == 0
7340 && wait_forever_enabled_p);
7341
7342 if (!rs->waiting_for_stop_reply)
7343 {
7344 status->kind = TARGET_WAITKIND_NO_RESUMED;
7345 return minus_one_ptid;
7346 }
7347
7348 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7349 _never_ wait for ever -> test on target_is_async_p().
7350 However, before we do that we need to ensure that the caller
7351 knows how to take the target into/out of async mode. */
7352 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7353 forever, &is_notif);
7354
7355 /* GDB gets a notification. Return to core as this event is
7356 not interesting. */
7357 if (ret != -1 && is_notif)
7358 return minus_one_ptid;
7359
7360 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7361 return minus_one_ptid;
7362 }
7363
7364 buf = rs->buf;
7365
7366 /* Assume that the target has acknowledged Ctrl-C unless we receive
7367 an 'F' or 'O' packet. */
7368 if (buf[0] != 'F' && buf[0] != 'O')
7369 rs->ctrlc_pending_p = 0;
7370
7371 switch (buf[0])
7372 {
7373 case 'E': /* Error of some sort. */
7374 /* We're out of sync with the target now. Did it continue or
7375 not? Not is more likely, so report a stop. */
7376 rs->waiting_for_stop_reply = 0;
7377
7378 warning (_("Remote failure reply: %s"), buf);
7379 status->kind = TARGET_WAITKIND_STOPPED;
7380 status->value.sig = GDB_SIGNAL_0;
7381 break;
7382 case 'F': /* File-I/O request. */
7383 /* GDB may access the inferior memory while handling the File-I/O
7384 request, but we don't want GDB accessing memory while waiting
7385 for a stop reply. See the comments in putpkt_binary. Set
7386 waiting_for_stop_reply to 0 temporarily. */
7387 rs->waiting_for_stop_reply = 0;
7388 remote_fileio_request (buf, rs->ctrlc_pending_p);
7389 rs->ctrlc_pending_p = 0;
7390 /* GDB handled the File-I/O request, and the target is running
7391 again. Keep waiting for events. */
7392 rs->waiting_for_stop_reply = 1;
7393 break;
7394 case 'N': case 'T': case 'S': case 'X': case 'W':
7395 {
7396 struct stop_reply *stop_reply;
7397
7398 /* There is a stop reply to handle. */
7399 rs->waiting_for_stop_reply = 0;
7400
7401 stop_reply
7402 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7403 rs->buf);
7404
7405 event_ptid = process_stop_reply (stop_reply, status);
7406 break;
7407 }
7408 case 'O': /* Console output. */
7409 remote_console_output (buf + 1);
7410 break;
7411 case '\0':
7412 if (rs->last_sent_signal != GDB_SIGNAL_0)
7413 {
7414 /* Zero length reply means that we tried 'S' or 'C' and the
7415 remote system doesn't support it. */
7416 target_terminal::ours_for_output ();
7417 printf_filtered
7418 ("Can't send signals to this remote system. %s not sent.\n",
7419 gdb_signal_to_name (rs->last_sent_signal));
7420 rs->last_sent_signal = GDB_SIGNAL_0;
7421 target_terminal::inferior ();
7422
7423 strcpy (buf, rs->last_sent_step ? "s" : "c");
7424 putpkt (buf);
7425 break;
7426 }
7427 /* else fallthrough */
7428 default:
7429 warning (_("Invalid remote reply: %s"), buf);
7430 break;
7431 }
7432
7433 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7434 return minus_one_ptid;
7435 else if (status->kind == TARGET_WAITKIND_IGNORE)
7436 {
7437 /* Nothing interesting happened. If we're doing a non-blocking
7438 poll, we're done. Otherwise, go back to waiting. */
7439 if (options & TARGET_WNOHANG)
7440 return minus_one_ptid;
7441 else
7442 goto again;
7443 }
7444 else if (status->kind != TARGET_WAITKIND_EXITED
7445 && status->kind != TARGET_WAITKIND_SIGNALLED)
7446 {
7447 if (!ptid_equal (event_ptid, null_ptid))
7448 record_currthread (rs, event_ptid);
7449 else
7450 event_ptid = inferior_ptid;
7451 }
7452 else
7453 /* A process exit. Invalidate our notion of current thread. */
7454 record_currthread (rs, minus_one_ptid);
7455
7456 return event_ptid;
7457 }
7458
7459 /* Wait until the remote machine stops, then return, storing status in
7460 STATUS just as `wait' would. */
7461
7462 static ptid_t
7463 remote_wait (struct target_ops *ops,
7464 ptid_t ptid, struct target_waitstatus *status, int options)
7465 {
7466 ptid_t event_ptid;
7467
7468 if (target_is_non_stop_p ())
7469 event_ptid = remote_wait_ns (ptid, status, options);
7470 else
7471 event_ptid = remote_wait_as (ptid, status, options);
7472
7473 if (target_is_async_p ())
7474 {
7475 /* If there are are events left in the queue tell the event loop
7476 to return here. */
7477 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7478 mark_async_event_handler (remote_async_inferior_event_token);
7479 }
7480
7481 return event_ptid;
7482 }
7483
7484 /* Fetch a single register using a 'p' packet. */
7485
7486 static int
7487 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7488 {
7489 struct gdbarch *gdbarch = regcache->arch ();
7490 struct remote_state *rs = get_remote_state ();
7491 char *buf, *p;
7492 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7493 int i;
7494
7495 if (packet_support (PACKET_p) == PACKET_DISABLE)
7496 return 0;
7497
7498 if (reg->pnum == -1)
7499 return 0;
7500
7501 p = rs->buf;
7502 *p++ = 'p';
7503 p += hexnumstr (p, reg->pnum);
7504 *p++ = '\0';
7505 putpkt (rs->buf);
7506 getpkt (&rs->buf, &rs->buf_size, 0);
7507
7508 buf = rs->buf;
7509
7510 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7511 {
7512 case PACKET_OK:
7513 break;
7514 case PACKET_UNKNOWN:
7515 return 0;
7516 case PACKET_ERROR:
7517 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7518 gdbarch_register_name (regcache->arch (),
7519 reg->regnum),
7520 buf);
7521 }
7522
7523 /* If this register is unfetchable, tell the regcache. */
7524 if (buf[0] == 'x')
7525 {
7526 regcache_raw_supply (regcache, reg->regnum, NULL);
7527 return 1;
7528 }
7529
7530 /* Otherwise, parse and supply the value. */
7531 p = buf;
7532 i = 0;
7533 while (p[0] != 0)
7534 {
7535 if (p[1] == 0)
7536 error (_("fetch_register_using_p: early buf termination"));
7537
7538 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7539 p += 2;
7540 }
7541 regcache_raw_supply (regcache, reg->regnum, regp);
7542 return 1;
7543 }
7544
7545 /* Fetch the registers included in the target's 'g' packet. */
7546
7547 static int
7548 send_g_packet (void)
7549 {
7550 struct remote_state *rs = get_remote_state ();
7551 int buf_len;
7552
7553 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7554 remote_send (&rs->buf, &rs->buf_size);
7555
7556 /* We can get out of synch in various cases. If the first character
7557 in the buffer is not a hex character, assume that has happened
7558 and try to fetch another packet to read. */
7559 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7560 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7561 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7562 && rs->buf[0] != 'x') /* New: unavailable register value. */
7563 {
7564 if (remote_debug)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "Bad register packet; fetching a new packet\n");
7567 getpkt (&rs->buf, &rs->buf_size, 0);
7568 }
7569
7570 buf_len = strlen (rs->buf);
7571
7572 /* Sanity check the received packet. */
7573 if (buf_len % 2 != 0)
7574 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7575
7576 return buf_len / 2;
7577 }
7578
7579 static void
7580 process_g_packet (struct regcache *regcache)
7581 {
7582 struct gdbarch *gdbarch = regcache->arch ();
7583 struct remote_state *rs = get_remote_state ();
7584 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7585 int i, buf_len;
7586 char *p;
7587 char *regs;
7588
7589 buf_len = strlen (rs->buf);
7590
7591 /* Further sanity checks, with knowledge of the architecture. */
7592 if (buf_len > 2 * rsa->sizeof_g_packet)
7593 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7594 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7595
7596 /* Save the size of the packet sent to us by the target. It is used
7597 as a heuristic when determining the max size of packets that the
7598 target can safely receive. */
7599 if (rsa->actual_register_packet_size == 0)
7600 rsa->actual_register_packet_size = buf_len;
7601
7602 /* If this is smaller than we guessed the 'g' packet would be,
7603 update our records. A 'g' reply that doesn't include a register's
7604 value implies either that the register is not available, or that
7605 the 'p' packet must be used. */
7606 if (buf_len < 2 * rsa->sizeof_g_packet)
7607 {
7608 long sizeof_g_packet = buf_len / 2;
7609
7610 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7611 {
7612 long offset = rsa->regs[i].offset;
7613 long reg_size = register_size (gdbarch, i);
7614
7615 if (rsa->regs[i].pnum == -1)
7616 continue;
7617
7618 if (offset >= sizeof_g_packet)
7619 rsa->regs[i].in_g_packet = 0;
7620 else if (offset + reg_size > sizeof_g_packet)
7621 error (_("Truncated register %d in remote 'g' packet"), i);
7622 else
7623 rsa->regs[i].in_g_packet = 1;
7624 }
7625
7626 /* Looks valid enough, we can assume this is the correct length
7627 for a 'g' packet. It's important not to adjust
7628 rsa->sizeof_g_packet if we have truncated registers otherwise
7629 this "if" won't be run the next time the method is called
7630 with a packet of the same size and one of the internal errors
7631 below will trigger instead. */
7632 rsa->sizeof_g_packet = sizeof_g_packet;
7633 }
7634
7635 regs = (char *) alloca (rsa->sizeof_g_packet);
7636
7637 /* Unimplemented registers read as all bits zero. */
7638 memset (regs, 0, rsa->sizeof_g_packet);
7639
7640 /* Reply describes registers byte by byte, each byte encoded as two
7641 hex characters. Suck them all up, then supply them to the
7642 register cacheing/storage mechanism. */
7643
7644 p = rs->buf;
7645 for (i = 0; i < rsa->sizeof_g_packet; i++)
7646 {
7647 if (p[0] == 0 || p[1] == 0)
7648 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7649 internal_error (__FILE__, __LINE__,
7650 _("unexpected end of 'g' packet reply"));
7651
7652 if (p[0] == 'x' && p[1] == 'x')
7653 regs[i] = 0; /* 'x' */
7654 else
7655 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7656 p += 2;
7657 }
7658
7659 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7660 {
7661 struct packet_reg *r = &rsa->regs[i];
7662 long reg_size = register_size (gdbarch, i);
7663
7664 if (r->in_g_packet)
7665 {
7666 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7667 /* This shouldn't happen - we adjusted in_g_packet above. */
7668 internal_error (__FILE__, __LINE__,
7669 _("unexpected end of 'g' packet reply"));
7670 else if (rs->buf[r->offset * 2] == 'x')
7671 {
7672 gdb_assert (r->offset * 2 < strlen (rs->buf));
7673 /* The register isn't available, mark it as such (at
7674 the same time setting the value to zero). */
7675 regcache_raw_supply (regcache, r->regnum, NULL);
7676 }
7677 else
7678 regcache_raw_supply (regcache, r->regnum,
7679 regs + r->offset);
7680 }
7681 }
7682 }
7683
7684 static void
7685 fetch_registers_using_g (struct regcache *regcache)
7686 {
7687 send_g_packet ();
7688 process_g_packet (regcache);
7689 }
7690
7691 /* Make the remote selected traceframe match GDB's selected
7692 traceframe. */
7693
7694 static void
7695 set_remote_traceframe (void)
7696 {
7697 int newnum;
7698 struct remote_state *rs = get_remote_state ();
7699
7700 if (rs->remote_traceframe_number == get_traceframe_number ())
7701 return;
7702
7703 /* Avoid recursion, remote_trace_find calls us again. */
7704 rs->remote_traceframe_number = get_traceframe_number ();
7705
7706 newnum = target_trace_find (tfind_number,
7707 get_traceframe_number (), 0, 0, NULL);
7708
7709 /* Should not happen. If it does, all bets are off. */
7710 if (newnum != get_traceframe_number ())
7711 warning (_("could not set remote traceframe"));
7712 }
7713
7714 static void
7715 remote_fetch_registers (struct target_ops *ops,
7716 struct regcache *regcache, int regnum)
7717 {
7718 struct gdbarch *gdbarch = regcache->arch ();
7719 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7720 int i;
7721
7722 set_remote_traceframe ();
7723 set_general_thread (regcache_get_ptid (regcache));
7724
7725 if (regnum >= 0)
7726 {
7727 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7728
7729 gdb_assert (reg != NULL);
7730
7731 /* If this register might be in the 'g' packet, try that first -
7732 we are likely to read more than one register. If this is the
7733 first 'g' packet, we might be overly optimistic about its
7734 contents, so fall back to 'p'. */
7735 if (reg->in_g_packet)
7736 {
7737 fetch_registers_using_g (regcache);
7738 if (reg->in_g_packet)
7739 return;
7740 }
7741
7742 if (fetch_register_using_p (regcache, reg))
7743 return;
7744
7745 /* This register is not available. */
7746 regcache_raw_supply (regcache, reg->regnum, NULL);
7747
7748 return;
7749 }
7750
7751 fetch_registers_using_g (regcache);
7752
7753 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7754 if (!rsa->regs[i].in_g_packet)
7755 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7756 {
7757 /* This register is not available. */
7758 regcache_raw_supply (regcache, i, NULL);
7759 }
7760 }
7761
7762 /* Prepare to store registers. Since we may send them all (using a
7763 'G' request), we have to read out the ones we don't want to change
7764 first. */
7765
7766 static void
7767 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7768 {
7769 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7770 int i;
7771
7772 /* Make sure the entire registers array is valid. */
7773 switch (packet_support (PACKET_P))
7774 {
7775 case PACKET_DISABLE:
7776 case PACKET_SUPPORT_UNKNOWN:
7777 /* Make sure all the necessary registers are cached. */
7778 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7779 if (rsa->regs[i].in_g_packet)
7780 regcache_raw_update (regcache, rsa->regs[i].regnum);
7781 break;
7782 case PACKET_ENABLE:
7783 break;
7784 }
7785 }
7786
7787 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7788 packet was not recognized. */
7789
7790 static int
7791 store_register_using_P (const struct regcache *regcache,
7792 struct packet_reg *reg)
7793 {
7794 struct gdbarch *gdbarch = regcache->arch ();
7795 struct remote_state *rs = get_remote_state ();
7796 /* Try storing a single register. */
7797 char *buf = rs->buf;
7798 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7799 char *p;
7800
7801 if (packet_support (PACKET_P) == PACKET_DISABLE)
7802 return 0;
7803
7804 if (reg->pnum == -1)
7805 return 0;
7806
7807 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7808 p = buf + strlen (buf);
7809 regcache_raw_collect (regcache, reg->regnum, regp);
7810 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7811 putpkt (rs->buf);
7812 getpkt (&rs->buf, &rs->buf_size, 0);
7813
7814 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7815 {
7816 case PACKET_OK:
7817 return 1;
7818 case PACKET_ERROR:
7819 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7820 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7821 case PACKET_UNKNOWN:
7822 return 0;
7823 default:
7824 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7825 }
7826 }
7827
7828 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7829 contents of the register cache buffer. FIXME: ignores errors. */
7830
7831 static void
7832 store_registers_using_G (const struct regcache *regcache)
7833 {
7834 struct remote_state *rs = get_remote_state ();
7835 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7836 gdb_byte *regs;
7837 char *p;
7838
7839 /* Extract all the registers in the regcache copying them into a
7840 local buffer. */
7841 {
7842 int i;
7843
7844 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7845 memset (regs, 0, rsa->sizeof_g_packet);
7846 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7847 {
7848 struct packet_reg *r = &rsa->regs[i];
7849
7850 if (r->in_g_packet)
7851 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7852 }
7853 }
7854
7855 /* Command describes registers byte by byte,
7856 each byte encoded as two hex characters. */
7857 p = rs->buf;
7858 *p++ = 'G';
7859 bin2hex (regs, p, rsa->sizeof_g_packet);
7860 putpkt (rs->buf);
7861 getpkt (&rs->buf, &rs->buf_size, 0);
7862 if (packet_check_result (rs->buf) == PACKET_ERROR)
7863 error (_("Could not write registers; remote failure reply '%s'"),
7864 rs->buf);
7865 }
7866
7867 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7868 of the register cache buffer. FIXME: ignores errors. */
7869
7870 static void
7871 remote_store_registers (struct target_ops *ops,
7872 struct regcache *regcache, int regnum)
7873 {
7874 struct gdbarch *gdbarch = regcache->arch ();
7875 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7876 int i;
7877
7878 set_remote_traceframe ();
7879 set_general_thread (regcache_get_ptid (regcache));
7880
7881 if (regnum >= 0)
7882 {
7883 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7884
7885 gdb_assert (reg != NULL);
7886
7887 /* Always prefer to store registers using the 'P' packet if
7888 possible; we often change only a small number of registers.
7889 Sometimes we change a larger number; we'd need help from a
7890 higher layer to know to use 'G'. */
7891 if (store_register_using_P (regcache, reg))
7892 return;
7893
7894 /* For now, don't complain if we have no way to write the
7895 register. GDB loses track of unavailable registers too
7896 easily. Some day, this may be an error. We don't have
7897 any way to read the register, either... */
7898 if (!reg->in_g_packet)
7899 return;
7900
7901 store_registers_using_G (regcache);
7902 return;
7903 }
7904
7905 store_registers_using_G (regcache);
7906
7907 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7908 if (!rsa->regs[i].in_g_packet)
7909 if (!store_register_using_P (regcache, &rsa->regs[i]))
7910 /* See above for why we do not issue an error here. */
7911 continue;
7912 }
7913 \f
7914
7915 /* Return the number of hex digits in num. */
7916
7917 static int
7918 hexnumlen (ULONGEST num)
7919 {
7920 int i;
7921
7922 for (i = 0; num != 0; i++)
7923 num >>= 4;
7924
7925 return std::max (i, 1);
7926 }
7927
7928 /* Set BUF to the minimum number of hex digits representing NUM. */
7929
7930 static int
7931 hexnumstr (char *buf, ULONGEST num)
7932 {
7933 int len = hexnumlen (num);
7934
7935 return hexnumnstr (buf, num, len);
7936 }
7937
7938
7939 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7940
7941 static int
7942 hexnumnstr (char *buf, ULONGEST num, int width)
7943 {
7944 int i;
7945
7946 buf[width] = '\0';
7947
7948 for (i = width - 1; i >= 0; i--)
7949 {
7950 buf[i] = "0123456789abcdef"[(num & 0xf)];
7951 num >>= 4;
7952 }
7953
7954 return width;
7955 }
7956
7957 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7958
7959 static CORE_ADDR
7960 remote_address_masked (CORE_ADDR addr)
7961 {
7962 unsigned int address_size = remote_address_size;
7963
7964 /* If "remoteaddresssize" was not set, default to target address size. */
7965 if (!address_size)
7966 address_size = gdbarch_addr_bit (target_gdbarch ());
7967
7968 if (address_size > 0
7969 && address_size < (sizeof (ULONGEST) * 8))
7970 {
7971 /* Only create a mask when that mask can safely be constructed
7972 in a ULONGEST variable. */
7973 ULONGEST mask = 1;
7974
7975 mask = (mask << address_size) - 1;
7976 addr &= mask;
7977 }
7978 return addr;
7979 }
7980
7981 /* Determine whether the remote target supports binary downloading.
7982 This is accomplished by sending a no-op memory write of zero length
7983 to the target at the specified address. It does not suffice to send
7984 the whole packet, since many stubs strip the eighth bit and
7985 subsequently compute a wrong checksum, which causes real havoc with
7986 remote_write_bytes.
7987
7988 NOTE: This can still lose if the serial line is not eight-bit
7989 clean. In cases like this, the user should clear "remote
7990 X-packet". */
7991
7992 static void
7993 check_binary_download (CORE_ADDR addr)
7994 {
7995 struct remote_state *rs = get_remote_state ();
7996
7997 switch (packet_support (PACKET_X))
7998 {
7999 case PACKET_DISABLE:
8000 break;
8001 case PACKET_ENABLE:
8002 break;
8003 case PACKET_SUPPORT_UNKNOWN:
8004 {
8005 char *p;
8006
8007 p = rs->buf;
8008 *p++ = 'X';
8009 p += hexnumstr (p, (ULONGEST) addr);
8010 *p++ = ',';
8011 p += hexnumstr (p, (ULONGEST) 0);
8012 *p++ = ':';
8013 *p = '\0';
8014
8015 putpkt_binary (rs->buf, (int) (p - rs->buf));
8016 getpkt (&rs->buf, &rs->buf_size, 0);
8017
8018 if (rs->buf[0] == '\0')
8019 {
8020 if (remote_debug)
8021 fprintf_unfiltered (gdb_stdlog,
8022 "binary downloading NOT "
8023 "supported by target\n");
8024 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8025 }
8026 else
8027 {
8028 if (remote_debug)
8029 fprintf_unfiltered (gdb_stdlog,
8030 "binary downloading supported by target\n");
8031 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8032 }
8033 break;
8034 }
8035 }
8036 }
8037
8038 /* Helper function to resize the payload in order to try to get a good
8039 alignment. We try to write an amount of data such that the next write will
8040 start on an address aligned on REMOTE_ALIGN_WRITES. */
8041
8042 static int
8043 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8044 {
8045 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8046 }
8047
8048 /* Write memory data directly to the remote machine.
8049 This does not inform the data cache; the data cache uses this.
8050 HEADER is the starting part of the packet.
8051 MEMADDR is the address in the remote memory space.
8052 MYADDR is the address of the buffer in our space.
8053 LEN_UNITS is the number of addressable units to write.
8054 UNIT_SIZE is the length in bytes of an addressable unit.
8055 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8056 should send data as binary ('X'), or hex-encoded ('M').
8057
8058 The function creates packet of the form
8059 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8060
8061 where encoding of <DATA> is terminated by PACKET_FORMAT.
8062
8063 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8064 are omitted.
8065
8066 Return the transferred status, error or OK (an
8067 'enum target_xfer_status' value). Save the number of addressable units
8068 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8069
8070 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8071 exchange between gdb and the stub could look like (?? in place of the
8072 checksum):
8073
8074 -> $m1000,4#??
8075 <- aaaabbbbccccdddd
8076
8077 -> $M1000,3:eeeeffffeeee#??
8078 <- OK
8079
8080 -> $m1000,4#??
8081 <- eeeeffffeeeedddd */
8082
8083 static enum target_xfer_status
8084 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8085 const gdb_byte *myaddr, ULONGEST len_units,
8086 int unit_size, ULONGEST *xfered_len_units,
8087 char packet_format, int use_length)
8088 {
8089 struct remote_state *rs = get_remote_state ();
8090 char *p;
8091 char *plen = NULL;
8092 int plenlen = 0;
8093 int todo_units;
8094 int units_written;
8095 int payload_capacity_bytes;
8096 int payload_length_bytes;
8097
8098 if (packet_format != 'X' && packet_format != 'M')
8099 internal_error (__FILE__, __LINE__,
8100 _("remote_write_bytes_aux: bad packet format"));
8101
8102 if (len_units == 0)
8103 return TARGET_XFER_EOF;
8104
8105 payload_capacity_bytes = get_memory_write_packet_size ();
8106
8107 /* The packet buffer will be large enough for the payload;
8108 get_memory_packet_size ensures this. */
8109 rs->buf[0] = '\0';
8110
8111 /* Compute the size of the actual payload by subtracting out the
8112 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8113
8114 payload_capacity_bytes -= strlen ("$,:#NN");
8115 if (!use_length)
8116 /* The comma won't be used. */
8117 payload_capacity_bytes += 1;
8118 payload_capacity_bytes -= strlen (header);
8119 payload_capacity_bytes -= hexnumlen (memaddr);
8120
8121 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8122
8123 strcat (rs->buf, header);
8124 p = rs->buf + strlen (header);
8125
8126 /* Compute a best guess of the number of bytes actually transfered. */
8127 if (packet_format == 'X')
8128 {
8129 /* Best guess at number of bytes that will fit. */
8130 todo_units = std::min (len_units,
8131 (ULONGEST) payload_capacity_bytes / unit_size);
8132 if (use_length)
8133 payload_capacity_bytes -= hexnumlen (todo_units);
8134 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8135 }
8136 else
8137 {
8138 /* Number of bytes that will fit. */
8139 todo_units
8140 = std::min (len_units,
8141 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8142 if (use_length)
8143 payload_capacity_bytes -= hexnumlen (todo_units);
8144 todo_units = std::min (todo_units,
8145 (payload_capacity_bytes / unit_size) / 2);
8146 }
8147
8148 if (todo_units <= 0)
8149 internal_error (__FILE__, __LINE__,
8150 _("minimum packet size too small to write data"));
8151
8152 /* If we already need another packet, then try to align the end
8153 of this packet to a useful boundary. */
8154 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8155 todo_units = align_for_efficient_write (todo_units, memaddr);
8156
8157 /* Append "<memaddr>". */
8158 memaddr = remote_address_masked (memaddr);
8159 p += hexnumstr (p, (ULONGEST) memaddr);
8160
8161 if (use_length)
8162 {
8163 /* Append ",". */
8164 *p++ = ',';
8165
8166 /* Append the length and retain its location and size. It may need to be
8167 adjusted once the packet body has been created. */
8168 plen = p;
8169 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8170 p += plenlen;
8171 }
8172
8173 /* Append ":". */
8174 *p++ = ':';
8175 *p = '\0';
8176
8177 /* Append the packet body. */
8178 if (packet_format == 'X')
8179 {
8180 /* Binary mode. Send target system values byte by byte, in
8181 increasing byte addresses. Only escape certain critical
8182 characters. */
8183 payload_length_bytes =
8184 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8185 &units_written, payload_capacity_bytes);
8186
8187 /* If not all TODO units fit, then we'll need another packet. Make
8188 a second try to keep the end of the packet aligned. Don't do
8189 this if the packet is tiny. */
8190 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8191 {
8192 int new_todo_units;
8193
8194 new_todo_units = align_for_efficient_write (units_written, memaddr);
8195
8196 if (new_todo_units != units_written)
8197 payload_length_bytes =
8198 remote_escape_output (myaddr, new_todo_units, unit_size,
8199 (gdb_byte *) p, &units_written,
8200 payload_capacity_bytes);
8201 }
8202
8203 p += payload_length_bytes;
8204 if (use_length && units_written < todo_units)
8205 {
8206 /* Escape chars have filled up the buffer prematurely,
8207 and we have actually sent fewer units than planned.
8208 Fix-up the length field of the packet. Use the same
8209 number of characters as before. */
8210 plen += hexnumnstr (plen, (ULONGEST) units_written,
8211 plenlen);
8212 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8213 }
8214 }
8215 else
8216 {
8217 /* Normal mode: Send target system values byte by byte, in
8218 increasing byte addresses. Each byte is encoded as a two hex
8219 value. */
8220 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8221 units_written = todo_units;
8222 }
8223
8224 putpkt_binary (rs->buf, (int) (p - rs->buf));
8225 getpkt (&rs->buf, &rs->buf_size, 0);
8226
8227 if (rs->buf[0] == 'E')
8228 return TARGET_XFER_E_IO;
8229
8230 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8231 send fewer units than we'd planned. */
8232 *xfered_len_units = (ULONGEST) units_written;
8233 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8234 }
8235
8236 /* Write memory data directly to the remote machine.
8237 This does not inform the data cache; the data cache uses this.
8238 MEMADDR is the address in the remote memory space.
8239 MYADDR is the address of the buffer in our space.
8240 LEN is the number of bytes.
8241
8242 Return the transferred status, error or OK (an
8243 'enum target_xfer_status' value). Save the number of bytes
8244 transferred in *XFERED_LEN. Only transfer a single packet. */
8245
8246 static enum target_xfer_status
8247 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8248 int unit_size, ULONGEST *xfered_len)
8249 {
8250 const char *packet_format = NULL;
8251
8252 /* Check whether the target supports binary download. */
8253 check_binary_download (memaddr);
8254
8255 switch (packet_support (PACKET_X))
8256 {
8257 case PACKET_ENABLE:
8258 packet_format = "X";
8259 break;
8260 case PACKET_DISABLE:
8261 packet_format = "M";
8262 break;
8263 case PACKET_SUPPORT_UNKNOWN:
8264 internal_error (__FILE__, __LINE__,
8265 _("remote_write_bytes: bad internal state"));
8266 default:
8267 internal_error (__FILE__, __LINE__, _("bad switch"));
8268 }
8269
8270 return remote_write_bytes_aux (packet_format,
8271 memaddr, myaddr, len, unit_size, xfered_len,
8272 packet_format[0], 1);
8273 }
8274
8275 /* Read memory data directly from the remote machine.
8276 This does not use the data cache; the data cache uses this.
8277 MEMADDR is the address in the remote memory space.
8278 MYADDR is the address of the buffer in our space.
8279 LEN_UNITS is the number of addressable memory units to read..
8280 UNIT_SIZE is the length in bytes of an addressable unit.
8281
8282 Return the transferred status, error or OK (an
8283 'enum target_xfer_status' value). Save the number of bytes
8284 transferred in *XFERED_LEN_UNITS.
8285
8286 See the comment of remote_write_bytes_aux for an example of
8287 memory read/write exchange between gdb and the stub. */
8288
8289 static enum target_xfer_status
8290 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8291 int unit_size, ULONGEST *xfered_len_units)
8292 {
8293 struct remote_state *rs = get_remote_state ();
8294 int buf_size_bytes; /* Max size of packet output buffer. */
8295 char *p;
8296 int todo_units;
8297 int decoded_bytes;
8298
8299 buf_size_bytes = get_memory_read_packet_size ();
8300 /* The packet buffer will be large enough for the payload;
8301 get_memory_packet_size ensures this. */
8302
8303 /* Number of units that will fit. */
8304 todo_units = std::min (len_units,
8305 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8306
8307 /* Construct "m"<memaddr>","<len>". */
8308 memaddr = remote_address_masked (memaddr);
8309 p = rs->buf;
8310 *p++ = 'm';
8311 p += hexnumstr (p, (ULONGEST) memaddr);
8312 *p++ = ',';
8313 p += hexnumstr (p, (ULONGEST) todo_units);
8314 *p = '\0';
8315 putpkt (rs->buf);
8316 getpkt (&rs->buf, &rs->buf_size, 0);
8317 if (rs->buf[0] == 'E'
8318 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8319 && rs->buf[3] == '\0')
8320 return TARGET_XFER_E_IO;
8321 /* Reply describes memory byte by byte, each byte encoded as two hex
8322 characters. */
8323 p = rs->buf;
8324 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8325 /* Return what we have. Let higher layers handle partial reads. */
8326 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8327 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8328 }
8329
8330 /* Using the set of read-only target sections of remote, read live
8331 read-only memory.
8332
8333 For interface/parameters/return description see target.h,
8334 to_xfer_partial. */
8335
8336 static enum target_xfer_status
8337 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8338 ULONGEST memaddr, ULONGEST len,
8339 int unit_size, ULONGEST *xfered_len)
8340 {
8341 struct target_section *secp;
8342 struct target_section_table *table;
8343
8344 secp = target_section_by_addr (ops, memaddr);
8345 if (secp != NULL
8346 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8347 secp->the_bfd_section)
8348 & SEC_READONLY))
8349 {
8350 struct target_section *p;
8351 ULONGEST memend = memaddr + len;
8352
8353 table = target_get_section_table (ops);
8354
8355 for (p = table->sections; p < table->sections_end; p++)
8356 {
8357 if (memaddr >= p->addr)
8358 {
8359 if (memend <= p->endaddr)
8360 {
8361 /* Entire transfer is within this section. */
8362 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8363 xfered_len);
8364 }
8365 else if (memaddr >= p->endaddr)
8366 {
8367 /* This section ends before the transfer starts. */
8368 continue;
8369 }
8370 else
8371 {
8372 /* This section overlaps the transfer. Just do half. */
8373 len = p->endaddr - memaddr;
8374 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8375 xfered_len);
8376 }
8377 }
8378 }
8379 }
8380
8381 return TARGET_XFER_EOF;
8382 }
8383
8384 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8385 first if the requested memory is unavailable in traceframe.
8386 Otherwise, fall back to remote_read_bytes_1. */
8387
8388 static enum target_xfer_status
8389 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8390 gdb_byte *myaddr, ULONGEST len, int unit_size,
8391 ULONGEST *xfered_len)
8392 {
8393 if (len == 0)
8394 return TARGET_XFER_EOF;
8395
8396 if (get_traceframe_number () != -1)
8397 {
8398 std::vector<mem_range> available;
8399
8400 /* If we fail to get the set of available memory, then the
8401 target does not support querying traceframe info, and so we
8402 attempt reading from the traceframe anyway (assuming the
8403 target implements the old QTro packet then). */
8404 if (traceframe_available_memory (&available, memaddr, len))
8405 {
8406 if (available.empty () || available[0].start != memaddr)
8407 {
8408 enum target_xfer_status res;
8409
8410 /* Don't read into the traceframe's available
8411 memory. */
8412 if (!available.empty ())
8413 {
8414 LONGEST oldlen = len;
8415
8416 len = available[0].start - memaddr;
8417 gdb_assert (len <= oldlen);
8418 }
8419
8420 /* This goes through the topmost target again. */
8421 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8422 len, unit_size, xfered_len);
8423 if (res == TARGET_XFER_OK)
8424 return TARGET_XFER_OK;
8425 else
8426 {
8427 /* No use trying further, we know some memory starting
8428 at MEMADDR isn't available. */
8429 *xfered_len = len;
8430 return (*xfered_len != 0) ?
8431 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8432 }
8433 }
8434
8435 /* Don't try to read more than how much is available, in
8436 case the target implements the deprecated QTro packet to
8437 cater for older GDBs (the target's knowledge of read-only
8438 sections may be outdated by now). */
8439 len = available[0].length;
8440 }
8441 }
8442
8443 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8444 }
8445
8446 \f
8447
8448 /* Sends a packet with content determined by the printf format string
8449 FORMAT and the remaining arguments, then gets the reply. Returns
8450 whether the packet was a success, a failure, or unknown. */
8451
8452 static enum packet_result remote_send_printf (const char *format, ...)
8453 ATTRIBUTE_PRINTF (1, 2);
8454
8455 static enum packet_result
8456 remote_send_printf (const char *format, ...)
8457 {
8458 struct remote_state *rs = get_remote_state ();
8459 int max_size = get_remote_packet_size ();
8460 va_list ap;
8461
8462 va_start (ap, format);
8463
8464 rs->buf[0] = '\0';
8465 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8466 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8467
8468 if (putpkt (rs->buf) < 0)
8469 error (_("Communication problem with target."));
8470
8471 rs->buf[0] = '\0';
8472 getpkt (&rs->buf, &rs->buf_size, 0);
8473
8474 return packet_check_result (rs->buf);
8475 }
8476
8477 /* Flash writing can take quite some time. We'll set
8478 effectively infinite timeout for flash operations.
8479 In future, we'll need to decide on a better approach. */
8480 static const int remote_flash_timeout = 1000;
8481
8482 static void
8483 remote_flash_erase (struct target_ops *ops,
8484 ULONGEST address, LONGEST length)
8485 {
8486 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8487 enum packet_result ret;
8488 scoped_restore restore_timeout
8489 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8490
8491 ret = remote_send_printf ("vFlashErase:%s,%s",
8492 phex (address, addr_size),
8493 phex (length, 4));
8494 switch (ret)
8495 {
8496 case PACKET_UNKNOWN:
8497 error (_("Remote target does not support flash erase"));
8498 case PACKET_ERROR:
8499 error (_("Error erasing flash with vFlashErase packet"));
8500 default:
8501 break;
8502 }
8503 }
8504
8505 static enum target_xfer_status
8506 remote_flash_write (struct target_ops *ops, ULONGEST address,
8507 ULONGEST length, ULONGEST *xfered_len,
8508 const gdb_byte *data)
8509 {
8510 scoped_restore restore_timeout
8511 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8512 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8513 xfered_len,'X', 0);
8514 }
8515
8516 static void
8517 remote_flash_done (struct target_ops *ops)
8518 {
8519 int ret;
8520
8521 scoped_restore restore_timeout
8522 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8523
8524 ret = remote_send_printf ("vFlashDone");
8525
8526 switch (ret)
8527 {
8528 case PACKET_UNKNOWN:
8529 error (_("Remote target does not support vFlashDone"));
8530 case PACKET_ERROR:
8531 error (_("Error finishing flash operation"));
8532 default:
8533 break;
8534 }
8535 }
8536
8537 static void
8538 remote_files_info (struct target_ops *ignore)
8539 {
8540 puts_filtered ("Debugging a target over a serial line.\n");
8541 }
8542 \f
8543 /* Stuff for dealing with the packets which are part of this protocol.
8544 See comment at top of file for details. */
8545
8546 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8547 error to higher layers. Called when a serial error is detected.
8548 The exception message is STRING, followed by a colon and a blank,
8549 the system error message for errno at function entry and final dot
8550 for output compatibility with throw_perror_with_name. */
8551
8552 static void
8553 unpush_and_perror (const char *string)
8554 {
8555 int saved_errno = errno;
8556
8557 remote_unpush_target ();
8558 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8559 safe_strerror (saved_errno));
8560 }
8561
8562 /* Read a single character from the remote end. The current quit
8563 handler is overridden to avoid quitting in the middle of packet
8564 sequence, as that would break communication with the remote server.
8565 See remote_serial_quit_handler for more detail. */
8566
8567 static int
8568 readchar (int timeout)
8569 {
8570 int ch;
8571 struct remote_state *rs = get_remote_state ();
8572
8573 {
8574 scoped_restore restore_quit
8575 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8576
8577 rs->got_ctrlc_during_io = 0;
8578
8579 ch = serial_readchar (rs->remote_desc, timeout);
8580
8581 if (rs->got_ctrlc_during_io)
8582 set_quit_flag ();
8583 }
8584
8585 if (ch >= 0)
8586 return ch;
8587
8588 switch ((enum serial_rc) ch)
8589 {
8590 case SERIAL_EOF:
8591 remote_unpush_target ();
8592 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8593 /* no return */
8594 case SERIAL_ERROR:
8595 unpush_and_perror (_("Remote communication error. "
8596 "Target disconnected."));
8597 /* no return */
8598 case SERIAL_TIMEOUT:
8599 break;
8600 }
8601 return ch;
8602 }
8603
8604 /* Wrapper for serial_write that closes the target and throws if
8605 writing fails. The current quit handler is overridden to avoid
8606 quitting in the middle of packet sequence, as that would break
8607 communication with the remote server. See
8608 remote_serial_quit_handler for more detail. */
8609
8610 static void
8611 remote_serial_write (const char *str, int len)
8612 {
8613 struct remote_state *rs = get_remote_state ();
8614
8615 scoped_restore restore_quit
8616 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8617
8618 rs->got_ctrlc_during_io = 0;
8619
8620 if (serial_write (rs->remote_desc, str, len))
8621 {
8622 unpush_and_perror (_("Remote communication error. "
8623 "Target disconnected."));
8624 }
8625
8626 if (rs->got_ctrlc_during_io)
8627 set_quit_flag ();
8628 }
8629
8630 /* Send the command in *BUF to the remote machine, and read the reply
8631 into *BUF. Report an error if we get an error reply. Resize
8632 *BUF using xrealloc if necessary to hold the result, and update
8633 *SIZEOF_BUF. */
8634
8635 static void
8636 remote_send (char **buf,
8637 long *sizeof_buf)
8638 {
8639 putpkt (*buf);
8640 getpkt (buf, sizeof_buf, 0);
8641
8642 if ((*buf)[0] == 'E')
8643 error (_("Remote failure reply: %s"), *buf);
8644 }
8645
8646 /* Return a string representing an escaped version of BUF, of len N.
8647 E.g. \n is converted to \\n, \t to \\t, etc. */
8648
8649 static std::string
8650 escape_buffer (const char *buf, int n)
8651 {
8652 string_file stb;
8653
8654 stb.putstrn (buf, n, '\\');
8655 return std::move (stb.string ());
8656 }
8657
8658 /* Display a null-terminated packet on stdout, for debugging, using C
8659 string notation. */
8660
8661 static void
8662 print_packet (const char *buf)
8663 {
8664 puts_filtered ("\"");
8665 fputstr_filtered (buf, '"', gdb_stdout);
8666 puts_filtered ("\"");
8667 }
8668
8669 int
8670 putpkt (const char *buf)
8671 {
8672 return putpkt_binary (buf, strlen (buf));
8673 }
8674
8675 /* Send a packet to the remote machine, with error checking. The data
8676 of the packet is in BUF. The string in BUF can be at most
8677 get_remote_packet_size () - 5 to account for the $, # and checksum,
8678 and for a possible /0 if we are debugging (remote_debug) and want
8679 to print the sent packet as a string. */
8680
8681 static int
8682 putpkt_binary (const char *buf, int cnt)
8683 {
8684 struct remote_state *rs = get_remote_state ();
8685 int i;
8686 unsigned char csum = 0;
8687 gdb::def_vector<char> data (cnt + 6);
8688 char *buf2 = data.data ();
8689
8690 int ch;
8691 int tcount = 0;
8692 char *p;
8693
8694 /* Catch cases like trying to read memory or listing threads while
8695 we're waiting for a stop reply. The remote server wouldn't be
8696 ready to handle this request, so we'd hang and timeout. We don't
8697 have to worry about this in synchronous mode, because in that
8698 case it's not possible to issue a command while the target is
8699 running. This is not a problem in non-stop mode, because in that
8700 case, the stub is always ready to process serial input. */
8701 if (!target_is_non_stop_p ()
8702 && target_is_async_p ()
8703 && rs->waiting_for_stop_reply)
8704 {
8705 error (_("Cannot execute this command while the target is running.\n"
8706 "Use the \"interrupt\" command to stop the target\n"
8707 "and then try again."));
8708 }
8709
8710 /* We're sending out a new packet. Make sure we don't look at a
8711 stale cached response. */
8712 rs->cached_wait_status = 0;
8713
8714 /* Copy the packet into buffer BUF2, encapsulating it
8715 and giving it a checksum. */
8716
8717 p = buf2;
8718 *p++ = '$';
8719
8720 for (i = 0; i < cnt; i++)
8721 {
8722 csum += buf[i];
8723 *p++ = buf[i];
8724 }
8725 *p++ = '#';
8726 *p++ = tohex ((csum >> 4) & 0xf);
8727 *p++ = tohex (csum & 0xf);
8728
8729 /* Send it over and over until we get a positive ack. */
8730
8731 while (1)
8732 {
8733 int started_error_output = 0;
8734
8735 if (remote_debug)
8736 {
8737 *p = '\0';
8738
8739 int len = (int) (p - buf2);
8740
8741 std::string str
8742 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8743
8744 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8745
8746 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8747 {
8748 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8749 str.length () - REMOTE_DEBUG_MAX_CHAR);
8750 }
8751
8752 fprintf_unfiltered (gdb_stdlog, "...");
8753
8754 gdb_flush (gdb_stdlog);
8755 }
8756 remote_serial_write (buf2, p - buf2);
8757
8758 /* If this is a no acks version of the remote protocol, send the
8759 packet and move on. */
8760 if (rs->noack_mode)
8761 break;
8762
8763 /* Read until either a timeout occurs (-2) or '+' is read.
8764 Handle any notification that arrives in the mean time. */
8765 while (1)
8766 {
8767 ch = readchar (remote_timeout);
8768
8769 if (remote_debug)
8770 {
8771 switch (ch)
8772 {
8773 case '+':
8774 case '-':
8775 case SERIAL_TIMEOUT:
8776 case '$':
8777 case '%':
8778 if (started_error_output)
8779 {
8780 putchar_unfiltered ('\n');
8781 started_error_output = 0;
8782 }
8783 }
8784 }
8785
8786 switch (ch)
8787 {
8788 case '+':
8789 if (remote_debug)
8790 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8791 return 1;
8792 case '-':
8793 if (remote_debug)
8794 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8795 /* FALLTHROUGH */
8796 case SERIAL_TIMEOUT:
8797 tcount++;
8798 if (tcount > 3)
8799 return 0;
8800 break; /* Retransmit buffer. */
8801 case '$':
8802 {
8803 if (remote_debug)
8804 fprintf_unfiltered (gdb_stdlog,
8805 "Packet instead of Ack, ignoring it\n");
8806 /* It's probably an old response sent because an ACK
8807 was lost. Gobble up the packet and ack it so it
8808 doesn't get retransmitted when we resend this
8809 packet. */
8810 skip_frame ();
8811 remote_serial_write ("+", 1);
8812 continue; /* Now, go look for +. */
8813 }
8814
8815 case '%':
8816 {
8817 int val;
8818
8819 /* If we got a notification, handle it, and go back to looking
8820 for an ack. */
8821 /* We've found the start of a notification. Now
8822 collect the data. */
8823 val = read_frame (&rs->buf, &rs->buf_size);
8824 if (val >= 0)
8825 {
8826 if (remote_debug)
8827 {
8828 std::string str = escape_buffer (rs->buf, val);
8829
8830 fprintf_unfiltered (gdb_stdlog,
8831 " Notification received: %s\n",
8832 str.c_str ());
8833 }
8834 handle_notification (rs->notif_state, rs->buf);
8835 /* We're in sync now, rewait for the ack. */
8836 tcount = 0;
8837 }
8838 else
8839 {
8840 if (remote_debug)
8841 {
8842 if (!started_error_output)
8843 {
8844 started_error_output = 1;
8845 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8846 }
8847 fputc_unfiltered (ch & 0177, gdb_stdlog);
8848 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8849 }
8850 }
8851 continue;
8852 }
8853 /* fall-through */
8854 default:
8855 if (remote_debug)
8856 {
8857 if (!started_error_output)
8858 {
8859 started_error_output = 1;
8860 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8861 }
8862 fputc_unfiltered (ch & 0177, gdb_stdlog);
8863 }
8864 continue;
8865 }
8866 break; /* Here to retransmit. */
8867 }
8868
8869 #if 0
8870 /* This is wrong. If doing a long backtrace, the user should be
8871 able to get out next time we call QUIT, without anything as
8872 violent as interrupt_query. If we want to provide a way out of
8873 here without getting to the next QUIT, it should be based on
8874 hitting ^C twice as in remote_wait. */
8875 if (quit_flag)
8876 {
8877 quit_flag = 0;
8878 interrupt_query ();
8879 }
8880 #endif
8881 }
8882
8883 return 0;
8884 }
8885
8886 /* Come here after finding the start of a frame when we expected an
8887 ack. Do our best to discard the rest of this packet. */
8888
8889 static void
8890 skip_frame (void)
8891 {
8892 int c;
8893
8894 while (1)
8895 {
8896 c = readchar (remote_timeout);
8897 switch (c)
8898 {
8899 case SERIAL_TIMEOUT:
8900 /* Nothing we can do. */
8901 return;
8902 case '#':
8903 /* Discard the two bytes of checksum and stop. */
8904 c = readchar (remote_timeout);
8905 if (c >= 0)
8906 c = readchar (remote_timeout);
8907
8908 return;
8909 case '*': /* Run length encoding. */
8910 /* Discard the repeat count. */
8911 c = readchar (remote_timeout);
8912 if (c < 0)
8913 return;
8914 break;
8915 default:
8916 /* A regular character. */
8917 break;
8918 }
8919 }
8920 }
8921
8922 /* Come here after finding the start of the frame. Collect the rest
8923 into *BUF, verifying the checksum, length, and handling run-length
8924 compression. NUL terminate the buffer. If there is not enough room,
8925 expand *BUF using xrealloc.
8926
8927 Returns -1 on error, number of characters in buffer (ignoring the
8928 trailing NULL) on success. (could be extended to return one of the
8929 SERIAL status indications). */
8930
8931 static long
8932 read_frame (char **buf_p,
8933 long *sizeof_buf)
8934 {
8935 unsigned char csum;
8936 long bc;
8937 int c;
8938 char *buf = *buf_p;
8939 struct remote_state *rs = get_remote_state ();
8940
8941 csum = 0;
8942 bc = 0;
8943
8944 while (1)
8945 {
8946 c = readchar (remote_timeout);
8947 switch (c)
8948 {
8949 case SERIAL_TIMEOUT:
8950 if (remote_debug)
8951 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8952 return -1;
8953 case '$':
8954 if (remote_debug)
8955 fputs_filtered ("Saw new packet start in middle of old one\n",
8956 gdb_stdlog);
8957 return -1; /* Start a new packet, count retries. */
8958 case '#':
8959 {
8960 unsigned char pktcsum;
8961 int check_0 = 0;
8962 int check_1 = 0;
8963
8964 buf[bc] = '\0';
8965
8966 check_0 = readchar (remote_timeout);
8967 if (check_0 >= 0)
8968 check_1 = readchar (remote_timeout);
8969
8970 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8971 {
8972 if (remote_debug)
8973 fputs_filtered ("Timeout in checksum, retrying\n",
8974 gdb_stdlog);
8975 return -1;
8976 }
8977 else if (check_0 < 0 || check_1 < 0)
8978 {
8979 if (remote_debug)
8980 fputs_filtered ("Communication error in checksum\n",
8981 gdb_stdlog);
8982 return -1;
8983 }
8984
8985 /* Don't recompute the checksum; with no ack packets we
8986 don't have any way to indicate a packet retransmission
8987 is necessary. */
8988 if (rs->noack_mode)
8989 return bc;
8990
8991 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8992 if (csum == pktcsum)
8993 return bc;
8994
8995 if (remote_debug)
8996 {
8997 std::string str = escape_buffer (buf, bc);
8998
8999 fprintf_unfiltered (gdb_stdlog,
9000 "Bad checksum, sentsum=0x%x, "
9001 "csum=0x%x, buf=%s\n",
9002 pktcsum, csum, str.c_str ());
9003 }
9004 /* Number of characters in buffer ignoring trailing
9005 NULL. */
9006 return -1;
9007 }
9008 case '*': /* Run length encoding. */
9009 {
9010 int repeat;
9011
9012 csum += c;
9013 c = readchar (remote_timeout);
9014 csum += c;
9015 repeat = c - ' ' + 3; /* Compute repeat count. */
9016
9017 /* The character before ``*'' is repeated. */
9018
9019 if (repeat > 0 && repeat <= 255 && bc > 0)
9020 {
9021 if (bc + repeat - 1 >= *sizeof_buf - 1)
9022 {
9023 /* Make some more room in the buffer. */
9024 *sizeof_buf += repeat;
9025 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9026 buf = *buf_p;
9027 }
9028
9029 memset (&buf[bc], buf[bc - 1], repeat);
9030 bc += repeat;
9031 continue;
9032 }
9033
9034 buf[bc] = '\0';
9035 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9036 return -1;
9037 }
9038 default:
9039 if (bc >= *sizeof_buf - 1)
9040 {
9041 /* Make some more room in the buffer. */
9042 *sizeof_buf *= 2;
9043 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9044 buf = *buf_p;
9045 }
9046
9047 buf[bc++] = c;
9048 csum += c;
9049 continue;
9050 }
9051 }
9052 }
9053
9054 /* Read a packet from the remote machine, with error checking, and
9055 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9056 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9057 rather than timing out; this is used (in synchronous mode) to wait
9058 for a target that is is executing user code to stop. */
9059 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9060 don't have to change all the calls to getpkt to deal with the
9061 return value, because at the moment I don't know what the right
9062 thing to do it for those. */
9063 void
9064 getpkt (char **buf,
9065 long *sizeof_buf,
9066 int forever)
9067 {
9068 getpkt_sane (buf, sizeof_buf, forever);
9069 }
9070
9071
9072 /* Read a packet from the remote machine, with error checking, and
9073 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9074 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9075 rather than timing out; this is used (in synchronous mode) to wait
9076 for a target that is is executing user code to stop. If FOREVER ==
9077 0, this function is allowed to time out gracefully and return an
9078 indication of this to the caller. Otherwise return the number of
9079 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9080 enough reason to return to the caller. *IS_NOTIF is an output
9081 boolean that indicates whether *BUF holds a notification or not
9082 (a regular packet). */
9083
9084 static int
9085 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9086 int expecting_notif, int *is_notif)
9087 {
9088 struct remote_state *rs = get_remote_state ();
9089 int c;
9090 int tries;
9091 int timeout;
9092 int val = -1;
9093
9094 /* We're reading a new response. Make sure we don't look at a
9095 previously cached response. */
9096 rs->cached_wait_status = 0;
9097
9098 strcpy (*buf, "timeout");
9099
9100 if (forever)
9101 timeout = watchdog > 0 ? watchdog : -1;
9102 else if (expecting_notif)
9103 timeout = 0; /* There should already be a char in the buffer. If
9104 not, bail out. */
9105 else
9106 timeout = remote_timeout;
9107
9108 #define MAX_TRIES 3
9109
9110 /* Process any number of notifications, and then return when
9111 we get a packet. */
9112 for (;;)
9113 {
9114 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9115 times. */
9116 for (tries = 1; tries <= MAX_TRIES; tries++)
9117 {
9118 /* This can loop forever if the remote side sends us
9119 characters continuously, but if it pauses, we'll get
9120 SERIAL_TIMEOUT from readchar because of timeout. Then
9121 we'll count that as a retry.
9122
9123 Note that even when forever is set, we will only wait
9124 forever prior to the start of a packet. After that, we
9125 expect characters to arrive at a brisk pace. They should
9126 show up within remote_timeout intervals. */
9127 do
9128 c = readchar (timeout);
9129 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9130
9131 if (c == SERIAL_TIMEOUT)
9132 {
9133 if (expecting_notif)
9134 return -1; /* Don't complain, it's normal to not get
9135 anything in this case. */
9136
9137 if (forever) /* Watchdog went off? Kill the target. */
9138 {
9139 remote_unpush_target ();
9140 throw_error (TARGET_CLOSE_ERROR,
9141 _("Watchdog timeout has expired. "
9142 "Target detached."));
9143 }
9144 if (remote_debug)
9145 fputs_filtered ("Timed out.\n", gdb_stdlog);
9146 }
9147 else
9148 {
9149 /* We've found the start of a packet or notification.
9150 Now collect the data. */
9151 val = read_frame (buf, sizeof_buf);
9152 if (val >= 0)
9153 break;
9154 }
9155
9156 remote_serial_write ("-", 1);
9157 }
9158
9159 if (tries > MAX_TRIES)
9160 {
9161 /* We have tried hard enough, and just can't receive the
9162 packet/notification. Give up. */
9163 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9164
9165 /* Skip the ack char if we're in no-ack mode. */
9166 if (!rs->noack_mode)
9167 remote_serial_write ("+", 1);
9168 return -1;
9169 }
9170
9171 /* If we got an ordinary packet, return that to our caller. */
9172 if (c == '$')
9173 {
9174 if (remote_debug)
9175 {
9176 std::string str
9177 = escape_buffer (*buf,
9178 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9179
9180 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9181 str.c_str ());
9182
9183 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9184 {
9185 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9186 str.length () - REMOTE_DEBUG_MAX_CHAR);
9187 }
9188
9189 fprintf_unfiltered (gdb_stdlog, "\n");
9190 }
9191
9192 /* Skip the ack char if we're in no-ack mode. */
9193 if (!rs->noack_mode)
9194 remote_serial_write ("+", 1);
9195 if (is_notif != NULL)
9196 *is_notif = 0;
9197 return val;
9198 }
9199
9200 /* If we got a notification, handle it, and go back to looking
9201 for a packet. */
9202 else
9203 {
9204 gdb_assert (c == '%');
9205
9206 if (remote_debug)
9207 {
9208 std::string str = escape_buffer (*buf, val);
9209
9210 fprintf_unfiltered (gdb_stdlog,
9211 " Notification received: %s\n",
9212 str.c_str ());
9213 }
9214 if (is_notif != NULL)
9215 *is_notif = 1;
9216
9217 handle_notification (rs->notif_state, *buf);
9218
9219 /* Notifications require no acknowledgement. */
9220
9221 if (expecting_notif)
9222 return val;
9223 }
9224 }
9225 }
9226
9227 static int
9228 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9229 {
9230 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9231 }
9232
9233 static int
9234 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9235 int *is_notif)
9236 {
9237 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9238 is_notif);
9239 }
9240
9241 /* Check whether EVENT is a fork event for the process specified
9242 by the pid passed in DATA, and if it is, kill the fork child. */
9243
9244 static int
9245 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9246 QUEUE_ITER (stop_reply_p) *iter,
9247 stop_reply_p event,
9248 void *data)
9249 {
9250 struct queue_iter_param *param = (struct queue_iter_param *) data;
9251 int parent_pid = *(int *) param->input;
9252
9253 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9254 {
9255 struct remote_state *rs = get_remote_state ();
9256 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9257 int res;
9258
9259 res = remote_vkill (child_pid, rs);
9260 if (res != 0)
9261 error (_("Can't kill fork child process %d"), child_pid);
9262 }
9263
9264 return 1;
9265 }
9266
9267 /* Kill any new fork children of process PID that haven't been
9268 processed by follow_fork. */
9269
9270 static void
9271 kill_new_fork_children (int pid, struct remote_state *rs)
9272 {
9273 struct thread_info *thread;
9274 struct notif_client *notif = &notif_client_stop;
9275 struct queue_iter_param param;
9276
9277 /* Kill the fork child threads of any threads in process PID
9278 that are stopped at a fork event. */
9279 ALL_NON_EXITED_THREADS (thread)
9280 {
9281 struct target_waitstatus *ws = &thread->pending_follow;
9282
9283 if (is_pending_fork_parent (ws, pid, thread->ptid))
9284 {
9285 struct remote_state *rs = get_remote_state ();
9286 int child_pid = ptid_get_pid (ws->value.related_pid);
9287 int res;
9288
9289 res = remote_vkill (child_pid, rs);
9290 if (res != 0)
9291 error (_("Can't kill fork child process %d"), child_pid);
9292 }
9293 }
9294
9295 /* Check for any pending fork events (not reported or processed yet)
9296 in process PID and kill those fork child threads as well. */
9297 remote_notif_get_pending_events (notif);
9298 param.input = &pid;
9299 param.output = NULL;
9300 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9301 kill_child_of_pending_fork, &param);
9302 }
9303
9304 \f
9305 /* Target hook to kill the current inferior. */
9306
9307 static void
9308 remote_kill (struct target_ops *ops)
9309 {
9310 int res = -1;
9311 int pid = ptid_get_pid (inferior_ptid);
9312 struct remote_state *rs = get_remote_state ();
9313
9314 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9315 {
9316 /* If we're stopped while forking and we haven't followed yet,
9317 kill the child task. We need to do this before killing the
9318 parent task because if this is a vfork then the parent will
9319 be sleeping. */
9320 kill_new_fork_children (pid, rs);
9321
9322 res = remote_vkill (pid, rs);
9323 if (res == 0)
9324 {
9325 target_mourn_inferior (inferior_ptid);
9326 return;
9327 }
9328 }
9329
9330 /* If we are in 'target remote' mode and we are killing the only
9331 inferior, then we will tell gdbserver to exit and unpush the
9332 target. */
9333 if (res == -1 && !remote_multi_process_p (rs)
9334 && number_of_live_inferiors () == 1)
9335 {
9336 remote_kill_k ();
9337
9338 /* We've killed the remote end, we get to mourn it. If we are
9339 not in extended mode, mourning the inferior also unpushes
9340 remote_ops from the target stack, which closes the remote
9341 connection. */
9342 target_mourn_inferior (inferior_ptid);
9343
9344 return;
9345 }
9346
9347 error (_("Can't kill process"));
9348 }
9349
9350 /* Send a kill request to the target using the 'vKill' packet. */
9351
9352 static int
9353 remote_vkill (int pid, struct remote_state *rs)
9354 {
9355 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9356 return -1;
9357
9358 /* Tell the remote target to detach. */
9359 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9360 putpkt (rs->buf);
9361 getpkt (&rs->buf, &rs->buf_size, 0);
9362
9363 switch (packet_ok (rs->buf,
9364 &remote_protocol_packets[PACKET_vKill]))
9365 {
9366 case PACKET_OK:
9367 return 0;
9368 case PACKET_ERROR:
9369 return 1;
9370 case PACKET_UNKNOWN:
9371 return -1;
9372 default:
9373 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9374 }
9375 }
9376
9377 /* Send a kill request to the target using the 'k' packet. */
9378
9379 static void
9380 remote_kill_k (void)
9381 {
9382 /* Catch errors so the user can quit from gdb even when we
9383 aren't on speaking terms with the remote system. */
9384 TRY
9385 {
9386 putpkt ("k");
9387 }
9388 CATCH (ex, RETURN_MASK_ERROR)
9389 {
9390 if (ex.error == TARGET_CLOSE_ERROR)
9391 {
9392 /* If we got an (EOF) error that caused the target
9393 to go away, then we're done, that's what we wanted.
9394 "k" is susceptible to cause a premature EOF, given
9395 that the remote server isn't actually required to
9396 reply to "k", and it can happen that it doesn't
9397 even get to reply ACK to the "k". */
9398 return;
9399 }
9400
9401 /* Otherwise, something went wrong. We didn't actually kill
9402 the target. Just propagate the exception, and let the
9403 user or higher layers decide what to do. */
9404 throw_exception (ex);
9405 }
9406 END_CATCH
9407 }
9408
9409 static void
9410 remote_mourn (struct target_ops *target)
9411 {
9412 struct remote_state *rs = get_remote_state ();
9413
9414 /* In 'target remote' mode with one inferior, we close the connection. */
9415 if (!rs->extended && number_of_live_inferiors () <= 1)
9416 {
9417 unpush_target (target);
9418
9419 /* remote_close takes care of doing most of the clean up. */
9420 generic_mourn_inferior ();
9421 return;
9422 }
9423
9424 /* In case we got here due to an error, but we're going to stay
9425 connected. */
9426 rs->waiting_for_stop_reply = 0;
9427
9428 /* If the current general thread belonged to the process we just
9429 detached from or has exited, the remote side current general
9430 thread becomes undefined. Considering a case like this:
9431
9432 - We just got here due to a detach.
9433 - The process that we're detaching from happens to immediately
9434 report a global breakpoint being hit in non-stop mode, in the
9435 same thread we had selected before.
9436 - GDB attaches to this process again.
9437 - This event happens to be the next event we handle.
9438
9439 GDB would consider that the current general thread didn't need to
9440 be set on the stub side (with Hg), since for all it knew,
9441 GENERAL_THREAD hadn't changed.
9442
9443 Notice that although in all-stop mode, the remote server always
9444 sets the current thread to the thread reporting the stop event,
9445 that doesn't happen in non-stop mode; in non-stop, the stub *must
9446 not* change the current thread when reporting a breakpoint hit,
9447 due to the decoupling of event reporting and event handling.
9448
9449 To keep things simple, we always invalidate our notion of the
9450 current thread. */
9451 record_currthread (rs, minus_one_ptid);
9452
9453 /* Call common code to mark the inferior as not running. */
9454 generic_mourn_inferior ();
9455
9456 if (!have_inferiors ())
9457 {
9458 if (!remote_multi_process_p (rs))
9459 {
9460 /* Check whether the target is running now - some remote stubs
9461 automatically restart after kill. */
9462 putpkt ("?");
9463 getpkt (&rs->buf, &rs->buf_size, 0);
9464
9465 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9466 {
9467 /* Assume that the target has been restarted. Set
9468 inferior_ptid so that bits of core GDB realizes
9469 there's something here, e.g., so that the user can
9470 say "kill" again. */
9471 inferior_ptid = magic_null_ptid;
9472 }
9473 }
9474 }
9475 }
9476
9477 static int
9478 extended_remote_supports_disable_randomization (struct target_ops *self)
9479 {
9480 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9481 }
9482
9483 static void
9484 extended_remote_disable_randomization (int val)
9485 {
9486 struct remote_state *rs = get_remote_state ();
9487 char *reply;
9488
9489 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9490 val);
9491 putpkt (rs->buf);
9492 reply = remote_get_noisy_reply ();
9493 if (*reply == '\0')
9494 error (_("Target does not support QDisableRandomization."));
9495 if (strcmp (reply, "OK") != 0)
9496 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9497 }
9498
9499 static int
9500 extended_remote_run (const std::string &args)
9501 {
9502 struct remote_state *rs = get_remote_state ();
9503 int len;
9504 const char *remote_exec_file = get_remote_exec_file ();
9505
9506 /* If the user has disabled vRun support, or we have detected that
9507 support is not available, do not try it. */
9508 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9509 return -1;
9510
9511 strcpy (rs->buf, "vRun;");
9512 len = strlen (rs->buf);
9513
9514 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9515 error (_("Remote file name too long for run packet"));
9516 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9517 strlen (remote_exec_file));
9518
9519 if (!args.empty ())
9520 {
9521 int i;
9522
9523 gdb_argv argv (args.c_str ());
9524 for (i = 0; argv[i] != NULL; i++)
9525 {
9526 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9527 error (_("Argument list too long for run packet"));
9528 rs->buf[len++] = ';';
9529 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9530 strlen (argv[i]));
9531 }
9532 }
9533
9534 rs->buf[len++] = '\0';
9535
9536 putpkt (rs->buf);
9537 getpkt (&rs->buf, &rs->buf_size, 0);
9538
9539 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9540 {
9541 case PACKET_OK:
9542 /* We have a wait response. All is well. */
9543 return 0;
9544 case PACKET_UNKNOWN:
9545 return -1;
9546 case PACKET_ERROR:
9547 if (remote_exec_file[0] == '\0')
9548 error (_("Running the default executable on the remote target failed; "
9549 "try \"set remote exec-file\"?"));
9550 else
9551 error (_("Running \"%s\" on the remote target failed"),
9552 remote_exec_file);
9553 default:
9554 gdb_assert_not_reached (_("bad switch"));
9555 }
9556 }
9557
9558 /* Helper function to send set/unset environment packets. ACTION is
9559 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9560 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9561 sent. */
9562
9563 static void
9564 send_environment_packet (struct remote_state *rs,
9565 const char *action,
9566 const char *packet,
9567 const char *value)
9568 {
9569 /* Convert the environment variable to an hex string, which
9570 is the best format to be transmitted over the wire. */
9571 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9572 strlen (value));
9573
9574 xsnprintf (rs->buf, get_remote_packet_size (),
9575 "%s:%s", packet, encoded_value.c_str ());
9576
9577 putpkt (rs->buf);
9578 getpkt (&rs->buf, &rs->buf_size, 0);
9579 if (strcmp (rs->buf, "OK") != 0)
9580 warning (_("Unable to %s environment variable '%s' on remote."),
9581 action, value);
9582 }
9583
9584 /* Helper function to handle the QEnvironment* packets. */
9585
9586 static void
9587 extended_remote_environment_support (struct remote_state *rs)
9588 {
9589 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9590 {
9591 putpkt ("QEnvironmentReset");
9592 getpkt (&rs->buf, &rs->buf_size, 0);
9593 if (strcmp (rs->buf, "OK") != 0)
9594 warning (_("Unable to reset environment on remote."));
9595 }
9596
9597 gdb_environ *e = &current_inferior ()->environment;
9598
9599 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9600 for (const std::string &el : e->user_set_env ())
9601 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9602 el.c_str ());
9603
9604 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9605 for (const std::string &el : e->user_unset_env ())
9606 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9607 }
9608
9609 /* Helper function to set the current working directory for the
9610 inferior in the remote target. */
9611
9612 static void
9613 extended_remote_set_inferior_cwd (struct remote_state *rs)
9614 {
9615 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9616 {
9617 const char *inferior_cwd = get_inferior_cwd ();
9618
9619 if (inferior_cwd != NULL)
9620 {
9621 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9622 strlen (inferior_cwd));
9623
9624 xsnprintf (rs->buf, get_remote_packet_size (),
9625 "QSetWorkingDir:%s", hexpath.c_str ());
9626 }
9627 else
9628 {
9629 /* An empty inferior_cwd means that the user wants us to
9630 reset the remote server's inferior's cwd. */
9631 xsnprintf (rs->buf, get_remote_packet_size (),
9632 "QSetWorkingDir:");
9633 }
9634
9635 putpkt (rs->buf);
9636 getpkt (&rs->buf, &rs->buf_size, 0);
9637 if (packet_ok (rs->buf,
9638 &remote_protocol_packets[PACKET_QSetWorkingDir])
9639 != PACKET_OK)
9640 error (_("\
9641 Remote replied unexpectedly while setting the inferior's working\n\
9642 directory: %s"),
9643 rs->buf);
9644
9645 }
9646 }
9647
9648 /* In the extended protocol we want to be able to do things like
9649 "run" and have them basically work as expected. So we need
9650 a special create_inferior function. We support changing the
9651 executable file and the command line arguments, but not the
9652 environment. */
9653
9654 static void
9655 extended_remote_create_inferior (struct target_ops *ops,
9656 const char *exec_file,
9657 const std::string &args,
9658 char **env, int from_tty)
9659 {
9660 int run_worked;
9661 char *stop_reply;
9662 struct remote_state *rs = get_remote_state ();
9663 const char *remote_exec_file = get_remote_exec_file ();
9664
9665 /* If running asynchronously, register the target file descriptor
9666 with the event loop. */
9667 if (target_can_async_p ())
9668 target_async (1);
9669
9670 /* Disable address space randomization if requested (and supported). */
9671 if (extended_remote_supports_disable_randomization (ops))
9672 extended_remote_disable_randomization (disable_randomization);
9673
9674 /* If startup-with-shell is on, we inform gdbserver to start the
9675 remote inferior using a shell. */
9676 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9677 {
9678 xsnprintf (rs->buf, get_remote_packet_size (),
9679 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9680 putpkt (rs->buf);
9681 getpkt (&rs->buf, &rs->buf_size, 0);
9682 if (strcmp (rs->buf, "OK") != 0)
9683 error (_("\
9684 Remote replied unexpectedly while setting startup-with-shell: %s"),
9685 rs->buf);
9686 }
9687
9688 extended_remote_environment_support (rs);
9689
9690 extended_remote_set_inferior_cwd (rs);
9691
9692 /* Now restart the remote server. */
9693 run_worked = extended_remote_run (args) != -1;
9694 if (!run_worked)
9695 {
9696 /* vRun was not supported. Fail if we need it to do what the
9697 user requested. */
9698 if (remote_exec_file[0])
9699 error (_("Remote target does not support \"set remote exec-file\""));
9700 if (!args.empty ())
9701 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9702
9703 /* Fall back to "R". */
9704 extended_remote_restart ();
9705 }
9706
9707 if (!have_inferiors ())
9708 {
9709 /* Clean up from the last time we ran, before we mark the target
9710 running again. This will mark breakpoints uninserted, and
9711 get_offsets may insert breakpoints. */
9712 init_thread_list ();
9713 init_wait_for_inferior ();
9714 }
9715
9716 /* vRun's success return is a stop reply. */
9717 stop_reply = run_worked ? rs->buf : NULL;
9718 add_current_inferior_and_thread (stop_reply);
9719
9720 /* Get updated offsets, if the stub uses qOffsets. */
9721 get_offsets ();
9722 }
9723 \f
9724
9725 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9726 the list of conditions (in agent expression bytecode format), if any, the
9727 target needs to evaluate. The output is placed into the packet buffer
9728 started from BUF and ended at BUF_END. */
9729
9730 static int
9731 remote_add_target_side_condition (struct gdbarch *gdbarch,
9732 struct bp_target_info *bp_tgt, char *buf,
9733 char *buf_end)
9734 {
9735 if (bp_tgt->conditions.empty ())
9736 return 0;
9737
9738 buf += strlen (buf);
9739 xsnprintf (buf, buf_end - buf, "%s", ";");
9740 buf++;
9741
9742 /* Send conditions to the target. */
9743 for (agent_expr *aexpr : bp_tgt->conditions)
9744 {
9745 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9746 buf += strlen (buf);
9747 for (int i = 0; i < aexpr->len; ++i)
9748 buf = pack_hex_byte (buf, aexpr->buf[i]);
9749 *buf = '\0';
9750 }
9751 return 0;
9752 }
9753
9754 static void
9755 remote_add_target_side_commands (struct gdbarch *gdbarch,
9756 struct bp_target_info *bp_tgt, char *buf)
9757 {
9758 if (bp_tgt->tcommands.empty ())
9759 return;
9760
9761 buf += strlen (buf);
9762
9763 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9764 buf += strlen (buf);
9765
9766 /* Concatenate all the agent expressions that are commands into the
9767 cmds parameter. */
9768 for (agent_expr *aexpr : bp_tgt->tcommands)
9769 {
9770 sprintf (buf, "X%x,", aexpr->len);
9771 buf += strlen (buf);
9772 for (int i = 0; i < aexpr->len; ++i)
9773 buf = pack_hex_byte (buf, aexpr->buf[i]);
9774 *buf = '\0';
9775 }
9776 }
9777
9778 /* Insert a breakpoint. On targets that have software breakpoint
9779 support, we ask the remote target to do the work; on targets
9780 which don't, we insert a traditional memory breakpoint. */
9781
9782 static int
9783 remote_insert_breakpoint (struct target_ops *ops,
9784 struct gdbarch *gdbarch,
9785 struct bp_target_info *bp_tgt)
9786 {
9787 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9788 If it succeeds, then set the support to PACKET_ENABLE. If it
9789 fails, and the user has explicitly requested the Z support then
9790 report an error, otherwise, mark it disabled and go on. */
9791
9792 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9793 {
9794 CORE_ADDR addr = bp_tgt->reqstd_address;
9795 struct remote_state *rs;
9796 char *p, *endbuf;
9797 int bpsize;
9798
9799 /* Make sure the remote is pointing at the right process, if
9800 necessary. */
9801 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9802 set_general_process ();
9803
9804 rs = get_remote_state ();
9805 p = rs->buf;
9806 endbuf = rs->buf + get_remote_packet_size ();
9807
9808 *(p++) = 'Z';
9809 *(p++) = '0';
9810 *(p++) = ',';
9811 addr = (ULONGEST) remote_address_masked (addr);
9812 p += hexnumstr (p, addr);
9813 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9814
9815 if (remote_supports_cond_breakpoints (ops))
9816 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9817
9818 if (remote_can_run_breakpoint_commands (ops))
9819 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9820
9821 putpkt (rs->buf);
9822 getpkt (&rs->buf, &rs->buf_size, 0);
9823
9824 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9825 {
9826 case PACKET_ERROR:
9827 return -1;
9828 case PACKET_OK:
9829 return 0;
9830 case PACKET_UNKNOWN:
9831 break;
9832 }
9833 }
9834
9835 /* If this breakpoint has target-side commands but this stub doesn't
9836 support Z0 packets, throw error. */
9837 if (!bp_tgt->tcommands.empty ())
9838 throw_error (NOT_SUPPORTED_ERROR, _("\
9839 Target doesn't support breakpoints that have target side commands."));
9840
9841 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9842 }
9843
9844 static int
9845 remote_remove_breakpoint (struct target_ops *ops,
9846 struct gdbarch *gdbarch,
9847 struct bp_target_info *bp_tgt,
9848 enum remove_bp_reason reason)
9849 {
9850 CORE_ADDR addr = bp_tgt->placed_address;
9851 struct remote_state *rs = get_remote_state ();
9852
9853 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9854 {
9855 char *p = rs->buf;
9856 char *endbuf = rs->buf + get_remote_packet_size ();
9857
9858 /* Make sure the remote is pointing at the right process, if
9859 necessary. */
9860 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9861 set_general_process ();
9862
9863 *(p++) = 'z';
9864 *(p++) = '0';
9865 *(p++) = ',';
9866
9867 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9868 p += hexnumstr (p, addr);
9869 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9870
9871 putpkt (rs->buf);
9872 getpkt (&rs->buf, &rs->buf_size, 0);
9873
9874 return (rs->buf[0] == 'E');
9875 }
9876
9877 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9878 }
9879
9880 static enum Z_packet_type
9881 watchpoint_to_Z_packet (int type)
9882 {
9883 switch (type)
9884 {
9885 case hw_write:
9886 return Z_PACKET_WRITE_WP;
9887 break;
9888 case hw_read:
9889 return Z_PACKET_READ_WP;
9890 break;
9891 case hw_access:
9892 return Z_PACKET_ACCESS_WP;
9893 break;
9894 default:
9895 internal_error (__FILE__, __LINE__,
9896 _("hw_bp_to_z: bad watchpoint type %d"), type);
9897 }
9898 }
9899
9900 static int
9901 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9902 enum target_hw_bp_type type, struct expression *cond)
9903 {
9904 struct remote_state *rs = get_remote_state ();
9905 char *endbuf = rs->buf + get_remote_packet_size ();
9906 char *p;
9907 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9908
9909 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9910 return 1;
9911
9912 /* Make sure the remote is pointing at the right process, if
9913 necessary. */
9914 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9915 set_general_process ();
9916
9917 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9918 p = strchr (rs->buf, '\0');
9919 addr = remote_address_masked (addr);
9920 p += hexnumstr (p, (ULONGEST) addr);
9921 xsnprintf (p, endbuf - p, ",%x", len);
9922
9923 putpkt (rs->buf);
9924 getpkt (&rs->buf, &rs->buf_size, 0);
9925
9926 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9927 {
9928 case PACKET_ERROR:
9929 return -1;
9930 case PACKET_UNKNOWN:
9931 return 1;
9932 case PACKET_OK:
9933 return 0;
9934 }
9935 internal_error (__FILE__, __LINE__,
9936 _("remote_insert_watchpoint: reached end of function"));
9937 }
9938
9939 static int
9940 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9941 CORE_ADDR start, int length)
9942 {
9943 CORE_ADDR diff = remote_address_masked (addr - start);
9944
9945 return diff < length;
9946 }
9947
9948
9949 static int
9950 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9951 enum target_hw_bp_type type, struct expression *cond)
9952 {
9953 struct remote_state *rs = get_remote_state ();
9954 char *endbuf = rs->buf + get_remote_packet_size ();
9955 char *p;
9956 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9957
9958 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9959 return -1;
9960
9961 /* Make sure the remote is pointing at the right process, if
9962 necessary. */
9963 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9964 set_general_process ();
9965
9966 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9967 p = strchr (rs->buf, '\0');
9968 addr = remote_address_masked (addr);
9969 p += hexnumstr (p, (ULONGEST) addr);
9970 xsnprintf (p, endbuf - p, ",%x", len);
9971 putpkt (rs->buf);
9972 getpkt (&rs->buf, &rs->buf_size, 0);
9973
9974 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9975 {
9976 case PACKET_ERROR:
9977 case PACKET_UNKNOWN:
9978 return -1;
9979 case PACKET_OK:
9980 return 0;
9981 }
9982 internal_error (__FILE__, __LINE__,
9983 _("remote_remove_watchpoint: reached end of function"));
9984 }
9985
9986
9987 int remote_hw_watchpoint_limit = -1;
9988 int remote_hw_watchpoint_length_limit = -1;
9989 int remote_hw_breakpoint_limit = -1;
9990
9991 static int
9992 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9993 CORE_ADDR addr, int len)
9994 {
9995 if (remote_hw_watchpoint_length_limit == 0)
9996 return 0;
9997 else if (remote_hw_watchpoint_length_limit < 0)
9998 return 1;
9999 else if (len <= remote_hw_watchpoint_length_limit)
10000 return 1;
10001 else
10002 return 0;
10003 }
10004
10005 static int
10006 remote_check_watch_resources (struct target_ops *self,
10007 enum bptype type, int cnt, int ot)
10008 {
10009 if (type == bp_hardware_breakpoint)
10010 {
10011 if (remote_hw_breakpoint_limit == 0)
10012 return 0;
10013 else if (remote_hw_breakpoint_limit < 0)
10014 return 1;
10015 else if (cnt <= remote_hw_breakpoint_limit)
10016 return 1;
10017 }
10018 else
10019 {
10020 if (remote_hw_watchpoint_limit == 0)
10021 return 0;
10022 else if (remote_hw_watchpoint_limit < 0)
10023 return 1;
10024 else if (ot)
10025 return -1;
10026 else if (cnt <= remote_hw_watchpoint_limit)
10027 return 1;
10028 }
10029 return -1;
10030 }
10031
10032 /* The to_stopped_by_sw_breakpoint method of target remote. */
10033
10034 static int
10035 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10036 {
10037 struct thread_info *thread = inferior_thread ();
10038
10039 return (thread->priv != NULL
10040 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
10041 }
10042
10043 /* The to_supports_stopped_by_sw_breakpoint method of target
10044 remote. */
10045
10046 static int
10047 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10048 {
10049 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10050 }
10051
10052 /* The to_stopped_by_hw_breakpoint method of target remote. */
10053
10054 static int
10055 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10056 {
10057 struct thread_info *thread = inferior_thread ();
10058
10059 return (thread->priv != NULL
10060 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
10061 }
10062
10063 /* The to_supports_stopped_by_hw_breakpoint method of target
10064 remote. */
10065
10066 static int
10067 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10068 {
10069 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10070 }
10071
10072 static int
10073 remote_stopped_by_watchpoint (struct target_ops *ops)
10074 {
10075 struct thread_info *thread = inferior_thread ();
10076
10077 return (thread->priv != NULL
10078 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10079 }
10080
10081 static int
10082 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10083 {
10084 struct thread_info *thread = inferior_thread ();
10085
10086 if (thread->priv != NULL
10087 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10088 {
10089 *addr_p = thread->priv->watch_data_address;
10090 return 1;
10091 }
10092
10093 return 0;
10094 }
10095
10096
10097 static int
10098 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10099 struct bp_target_info *bp_tgt)
10100 {
10101 CORE_ADDR addr = bp_tgt->reqstd_address;
10102 struct remote_state *rs;
10103 char *p, *endbuf;
10104 char *message;
10105
10106 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10107 return -1;
10108
10109 /* Make sure the remote is pointing at the right process, if
10110 necessary. */
10111 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10112 set_general_process ();
10113
10114 rs = get_remote_state ();
10115 p = rs->buf;
10116 endbuf = rs->buf + get_remote_packet_size ();
10117
10118 *(p++) = 'Z';
10119 *(p++) = '1';
10120 *(p++) = ',';
10121
10122 addr = remote_address_masked (addr);
10123 p += hexnumstr (p, (ULONGEST) addr);
10124 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10125
10126 if (remote_supports_cond_breakpoints (self))
10127 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10128
10129 if (remote_can_run_breakpoint_commands (self))
10130 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10131
10132 putpkt (rs->buf);
10133 getpkt (&rs->buf, &rs->buf_size, 0);
10134
10135 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10136 {
10137 case PACKET_ERROR:
10138 if (rs->buf[1] == '.')
10139 {
10140 message = strchr (rs->buf + 2, '.');
10141 if (message)
10142 error (_("Remote failure reply: %s"), message + 1);
10143 }
10144 return -1;
10145 case PACKET_UNKNOWN:
10146 return -1;
10147 case PACKET_OK:
10148 return 0;
10149 }
10150 internal_error (__FILE__, __LINE__,
10151 _("remote_insert_hw_breakpoint: reached end of function"));
10152 }
10153
10154
10155 static int
10156 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10157 struct bp_target_info *bp_tgt)
10158 {
10159 CORE_ADDR addr;
10160 struct remote_state *rs = get_remote_state ();
10161 char *p = rs->buf;
10162 char *endbuf = rs->buf + get_remote_packet_size ();
10163
10164 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10165 return -1;
10166
10167 /* Make sure the remote is pointing at the right process, if
10168 necessary. */
10169 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10170 set_general_process ();
10171
10172 *(p++) = 'z';
10173 *(p++) = '1';
10174 *(p++) = ',';
10175
10176 addr = remote_address_masked (bp_tgt->placed_address);
10177 p += hexnumstr (p, (ULONGEST) addr);
10178 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10179
10180 putpkt (rs->buf);
10181 getpkt (&rs->buf, &rs->buf_size, 0);
10182
10183 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10184 {
10185 case PACKET_ERROR:
10186 case PACKET_UNKNOWN:
10187 return -1;
10188 case PACKET_OK:
10189 return 0;
10190 }
10191 internal_error (__FILE__, __LINE__,
10192 _("remote_remove_hw_breakpoint: reached end of function"));
10193 }
10194
10195 /* Verify memory using the "qCRC:" request. */
10196
10197 static int
10198 remote_verify_memory (struct target_ops *ops,
10199 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10200 {
10201 struct remote_state *rs = get_remote_state ();
10202 unsigned long host_crc, target_crc;
10203 char *tmp;
10204
10205 /* It doesn't make sense to use qCRC if the remote target is
10206 connected but not running. */
10207 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10208 {
10209 enum packet_result result;
10210
10211 /* Make sure the remote is pointing at the right process. */
10212 set_general_process ();
10213
10214 /* FIXME: assumes lma can fit into long. */
10215 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10216 (long) lma, (long) size);
10217 putpkt (rs->buf);
10218
10219 /* Be clever; compute the host_crc before waiting for target
10220 reply. */
10221 host_crc = xcrc32 (data, size, 0xffffffff);
10222
10223 getpkt (&rs->buf, &rs->buf_size, 0);
10224
10225 result = packet_ok (rs->buf,
10226 &remote_protocol_packets[PACKET_qCRC]);
10227 if (result == PACKET_ERROR)
10228 return -1;
10229 else if (result == PACKET_OK)
10230 {
10231 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10232 target_crc = target_crc * 16 + fromhex (*tmp);
10233
10234 return (host_crc == target_crc);
10235 }
10236 }
10237
10238 return simple_verify_memory (ops, data, lma, size);
10239 }
10240
10241 /* compare-sections command
10242
10243 With no arguments, compares each loadable section in the exec bfd
10244 with the same memory range on the target, and reports mismatches.
10245 Useful for verifying the image on the target against the exec file. */
10246
10247 static void
10248 compare_sections_command (const char *args, int from_tty)
10249 {
10250 asection *s;
10251 gdb_byte *sectdata;
10252 const char *sectname;
10253 bfd_size_type size;
10254 bfd_vma lma;
10255 int matched = 0;
10256 int mismatched = 0;
10257 int res;
10258 int read_only = 0;
10259
10260 if (!exec_bfd)
10261 error (_("command cannot be used without an exec file"));
10262
10263 /* Make sure the remote is pointing at the right process. */
10264 set_general_process ();
10265
10266 if (args != NULL && strcmp (args, "-r") == 0)
10267 {
10268 read_only = 1;
10269 args = NULL;
10270 }
10271
10272 for (s = exec_bfd->sections; s; s = s->next)
10273 {
10274 if (!(s->flags & SEC_LOAD))
10275 continue; /* Skip non-loadable section. */
10276
10277 if (read_only && (s->flags & SEC_READONLY) == 0)
10278 continue; /* Skip writeable sections */
10279
10280 size = bfd_get_section_size (s);
10281 if (size == 0)
10282 continue; /* Skip zero-length section. */
10283
10284 sectname = bfd_get_section_name (exec_bfd, s);
10285 if (args && strcmp (args, sectname) != 0)
10286 continue; /* Not the section selected by user. */
10287
10288 matched = 1; /* Do this section. */
10289 lma = s->lma;
10290
10291 gdb::byte_vector sectdata (size);
10292 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10293
10294 res = target_verify_memory (sectdata.data (), lma, size);
10295
10296 if (res == -1)
10297 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10298 paddress (target_gdbarch (), lma),
10299 paddress (target_gdbarch (), lma + size));
10300
10301 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10302 paddress (target_gdbarch (), lma),
10303 paddress (target_gdbarch (), lma + size));
10304 if (res)
10305 printf_filtered ("matched.\n");
10306 else
10307 {
10308 printf_filtered ("MIS-MATCHED!\n");
10309 mismatched++;
10310 }
10311 }
10312 if (mismatched > 0)
10313 warning (_("One or more sections of the target image does not match\n\
10314 the loaded file\n"));
10315 if (args && !matched)
10316 printf_filtered (_("No loaded section named '%s'.\n"), args);
10317 }
10318
10319 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10320 into remote target. The number of bytes written to the remote
10321 target is returned, or -1 for error. */
10322
10323 static enum target_xfer_status
10324 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10325 const char *annex, const gdb_byte *writebuf,
10326 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10327 struct packet_config *packet)
10328 {
10329 int i, buf_len;
10330 ULONGEST n;
10331 struct remote_state *rs = get_remote_state ();
10332 int max_size = get_memory_write_packet_size ();
10333
10334 if (packet->support == PACKET_DISABLE)
10335 return TARGET_XFER_E_IO;
10336
10337 /* Insert header. */
10338 i = snprintf (rs->buf, max_size,
10339 "qXfer:%s:write:%s:%s:",
10340 object_name, annex ? annex : "",
10341 phex_nz (offset, sizeof offset));
10342 max_size -= (i + 1);
10343
10344 /* Escape as much data as fits into rs->buf. */
10345 buf_len = remote_escape_output
10346 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10347
10348 if (putpkt_binary (rs->buf, i + buf_len) < 0
10349 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10350 || packet_ok (rs->buf, packet) != PACKET_OK)
10351 return TARGET_XFER_E_IO;
10352
10353 unpack_varlen_hex (rs->buf, &n);
10354
10355 *xfered_len = n;
10356 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10357 }
10358
10359 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10360 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10361 number of bytes read is returned, or 0 for EOF, or -1 for error.
10362 The number of bytes read may be less than LEN without indicating an
10363 EOF. PACKET is checked and updated to indicate whether the remote
10364 target supports this object. */
10365
10366 static enum target_xfer_status
10367 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10368 const char *annex,
10369 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10370 ULONGEST *xfered_len,
10371 struct packet_config *packet)
10372 {
10373 struct remote_state *rs = get_remote_state ();
10374 LONGEST i, n, packet_len;
10375
10376 if (packet->support == PACKET_DISABLE)
10377 return TARGET_XFER_E_IO;
10378
10379 /* Check whether we've cached an end-of-object packet that matches
10380 this request. */
10381 if (rs->finished_object)
10382 {
10383 if (strcmp (object_name, rs->finished_object) == 0
10384 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10385 && offset == rs->finished_offset)
10386 return TARGET_XFER_EOF;
10387
10388
10389 /* Otherwise, we're now reading something different. Discard
10390 the cache. */
10391 xfree (rs->finished_object);
10392 xfree (rs->finished_annex);
10393 rs->finished_object = NULL;
10394 rs->finished_annex = NULL;
10395 }
10396
10397 /* Request only enough to fit in a single packet. The actual data
10398 may not, since we don't know how much of it will need to be escaped;
10399 the target is free to respond with slightly less data. We subtract
10400 five to account for the response type and the protocol frame. */
10401 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10402 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10403 object_name, annex ? annex : "",
10404 phex_nz (offset, sizeof offset),
10405 phex_nz (n, sizeof n));
10406 i = putpkt (rs->buf);
10407 if (i < 0)
10408 return TARGET_XFER_E_IO;
10409
10410 rs->buf[0] = '\0';
10411 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10412 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10413 return TARGET_XFER_E_IO;
10414
10415 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10416 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10417
10418 /* 'm' means there is (or at least might be) more data after this
10419 batch. That does not make sense unless there's at least one byte
10420 of data in this reply. */
10421 if (rs->buf[0] == 'm' && packet_len == 1)
10422 error (_("Remote qXfer reply contained no data."));
10423
10424 /* Got some data. */
10425 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10426 packet_len - 1, readbuf, n);
10427
10428 /* 'l' is an EOF marker, possibly including a final block of data,
10429 or possibly empty. If we have the final block of a non-empty
10430 object, record this fact to bypass a subsequent partial read. */
10431 if (rs->buf[0] == 'l' && offset + i > 0)
10432 {
10433 rs->finished_object = xstrdup (object_name);
10434 rs->finished_annex = xstrdup (annex ? annex : "");
10435 rs->finished_offset = offset + i;
10436 }
10437
10438 if (i == 0)
10439 return TARGET_XFER_EOF;
10440 else
10441 {
10442 *xfered_len = i;
10443 return TARGET_XFER_OK;
10444 }
10445 }
10446
10447 static enum target_xfer_status
10448 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10449 const char *annex, gdb_byte *readbuf,
10450 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10451 ULONGEST *xfered_len)
10452 {
10453 struct remote_state *rs;
10454 int i;
10455 char *p2;
10456 char query_type;
10457 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10458
10459 set_remote_traceframe ();
10460 set_general_thread (inferior_ptid);
10461
10462 rs = get_remote_state ();
10463
10464 /* Handle memory using the standard memory routines. */
10465 if (object == TARGET_OBJECT_MEMORY)
10466 {
10467 /* If the remote target is connected but not running, we should
10468 pass this request down to a lower stratum (e.g. the executable
10469 file). */
10470 if (!target_has_execution)
10471 return TARGET_XFER_EOF;
10472
10473 if (writebuf != NULL)
10474 return remote_write_bytes (offset, writebuf, len, unit_size,
10475 xfered_len);
10476 else
10477 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10478 xfered_len);
10479 }
10480
10481 /* Handle SPU memory using qxfer packets. */
10482 if (object == TARGET_OBJECT_SPU)
10483 {
10484 if (readbuf)
10485 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10486 xfered_len, &remote_protocol_packets
10487 [PACKET_qXfer_spu_read]);
10488 else
10489 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10490 xfered_len, &remote_protocol_packets
10491 [PACKET_qXfer_spu_write]);
10492 }
10493
10494 /* Handle extra signal info using qxfer packets. */
10495 if (object == TARGET_OBJECT_SIGNAL_INFO)
10496 {
10497 if (readbuf)
10498 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10499 xfered_len, &remote_protocol_packets
10500 [PACKET_qXfer_siginfo_read]);
10501 else
10502 return remote_write_qxfer (ops, "siginfo", annex,
10503 writebuf, offset, len, xfered_len,
10504 &remote_protocol_packets
10505 [PACKET_qXfer_siginfo_write]);
10506 }
10507
10508 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10509 {
10510 if (readbuf)
10511 return remote_read_qxfer (ops, "statictrace", annex,
10512 readbuf, offset, len, xfered_len,
10513 &remote_protocol_packets
10514 [PACKET_qXfer_statictrace_read]);
10515 else
10516 return TARGET_XFER_E_IO;
10517 }
10518
10519 /* Only handle flash writes. */
10520 if (writebuf != NULL)
10521 {
10522 switch (object)
10523 {
10524 case TARGET_OBJECT_FLASH:
10525 return remote_flash_write (ops, offset, len, xfered_len,
10526 writebuf);
10527
10528 default:
10529 return TARGET_XFER_E_IO;
10530 }
10531 }
10532
10533 /* Map pre-existing objects onto letters. DO NOT do this for new
10534 objects!!! Instead specify new query packets. */
10535 switch (object)
10536 {
10537 case TARGET_OBJECT_AVR:
10538 query_type = 'R';
10539 break;
10540
10541 case TARGET_OBJECT_AUXV:
10542 gdb_assert (annex == NULL);
10543 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10544 xfered_len,
10545 &remote_protocol_packets[PACKET_qXfer_auxv]);
10546
10547 case TARGET_OBJECT_AVAILABLE_FEATURES:
10548 return remote_read_qxfer
10549 (ops, "features", annex, readbuf, offset, len, xfered_len,
10550 &remote_protocol_packets[PACKET_qXfer_features]);
10551
10552 case TARGET_OBJECT_LIBRARIES:
10553 return remote_read_qxfer
10554 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10555 &remote_protocol_packets[PACKET_qXfer_libraries]);
10556
10557 case TARGET_OBJECT_LIBRARIES_SVR4:
10558 return remote_read_qxfer
10559 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10560 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10561
10562 case TARGET_OBJECT_MEMORY_MAP:
10563 gdb_assert (annex == NULL);
10564 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10565 xfered_len,
10566 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10567
10568 case TARGET_OBJECT_OSDATA:
10569 /* Should only get here if we're connected. */
10570 gdb_assert (rs->remote_desc);
10571 return remote_read_qxfer
10572 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10573 &remote_protocol_packets[PACKET_qXfer_osdata]);
10574
10575 case TARGET_OBJECT_THREADS:
10576 gdb_assert (annex == NULL);
10577 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10578 xfered_len,
10579 &remote_protocol_packets[PACKET_qXfer_threads]);
10580
10581 case TARGET_OBJECT_TRACEFRAME_INFO:
10582 gdb_assert (annex == NULL);
10583 return remote_read_qxfer
10584 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10585 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10586
10587 case TARGET_OBJECT_FDPIC:
10588 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10589 xfered_len,
10590 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10591
10592 case TARGET_OBJECT_OPENVMS_UIB:
10593 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10594 xfered_len,
10595 &remote_protocol_packets[PACKET_qXfer_uib]);
10596
10597 case TARGET_OBJECT_BTRACE:
10598 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10599 xfered_len,
10600 &remote_protocol_packets[PACKET_qXfer_btrace]);
10601
10602 case TARGET_OBJECT_BTRACE_CONF:
10603 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10604 len, xfered_len,
10605 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10606
10607 case TARGET_OBJECT_EXEC_FILE:
10608 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10609 len, xfered_len,
10610 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10611
10612 default:
10613 return TARGET_XFER_E_IO;
10614 }
10615
10616 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10617 large enough let the caller deal with it. */
10618 if (len < get_remote_packet_size ())
10619 return TARGET_XFER_E_IO;
10620 len = get_remote_packet_size ();
10621
10622 /* Except for querying the minimum buffer size, target must be open. */
10623 if (!rs->remote_desc)
10624 error (_("remote query is only available after target open"));
10625
10626 gdb_assert (annex != NULL);
10627 gdb_assert (readbuf != NULL);
10628
10629 p2 = rs->buf;
10630 *p2++ = 'q';
10631 *p2++ = query_type;
10632
10633 /* We used one buffer char for the remote protocol q command and
10634 another for the query type. As the remote protocol encapsulation
10635 uses 4 chars plus one extra in case we are debugging
10636 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10637 string. */
10638 i = 0;
10639 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10640 {
10641 /* Bad caller may have sent forbidden characters. */
10642 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10643 *p2++ = annex[i];
10644 i++;
10645 }
10646 *p2 = '\0';
10647 gdb_assert (annex[i] == '\0');
10648
10649 i = putpkt (rs->buf);
10650 if (i < 0)
10651 return TARGET_XFER_E_IO;
10652
10653 getpkt (&rs->buf, &rs->buf_size, 0);
10654 strcpy ((char *) readbuf, rs->buf);
10655
10656 *xfered_len = strlen ((char *) readbuf);
10657 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10658 }
10659
10660 /* Implementation of to_get_memory_xfer_limit. */
10661
10662 static ULONGEST
10663 remote_get_memory_xfer_limit (struct target_ops *ops)
10664 {
10665 return get_memory_write_packet_size ();
10666 }
10667
10668 static int
10669 remote_search_memory (struct target_ops* ops,
10670 CORE_ADDR start_addr, ULONGEST search_space_len,
10671 const gdb_byte *pattern, ULONGEST pattern_len,
10672 CORE_ADDR *found_addrp)
10673 {
10674 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10675 struct remote_state *rs = get_remote_state ();
10676 int max_size = get_memory_write_packet_size ();
10677 struct packet_config *packet =
10678 &remote_protocol_packets[PACKET_qSearch_memory];
10679 /* Number of packet bytes used to encode the pattern;
10680 this could be more than PATTERN_LEN due to escape characters. */
10681 int escaped_pattern_len;
10682 /* Amount of pattern that was encodable in the packet. */
10683 int used_pattern_len;
10684 int i;
10685 int found;
10686 ULONGEST found_addr;
10687
10688 /* Don't go to the target if we don't have to.
10689 This is done before checking packet->support to avoid the possibility that
10690 a success for this edge case means the facility works in general. */
10691 if (pattern_len > search_space_len)
10692 return 0;
10693 if (pattern_len == 0)
10694 {
10695 *found_addrp = start_addr;
10696 return 1;
10697 }
10698
10699 /* If we already know the packet isn't supported, fall back to the simple
10700 way of searching memory. */
10701
10702 if (packet_config_support (packet) == PACKET_DISABLE)
10703 {
10704 /* Target doesn't provided special support, fall back and use the
10705 standard support (copy memory and do the search here). */
10706 return simple_search_memory (ops, start_addr, search_space_len,
10707 pattern, pattern_len, found_addrp);
10708 }
10709
10710 /* Make sure the remote is pointing at the right process. */
10711 set_general_process ();
10712
10713 /* Insert header. */
10714 i = snprintf (rs->buf, max_size,
10715 "qSearch:memory:%s;%s;",
10716 phex_nz (start_addr, addr_size),
10717 phex_nz (search_space_len, sizeof (search_space_len)));
10718 max_size -= (i + 1);
10719
10720 /* Escape as much data as fits into rs->buf. */
10721 escaped_pattern_len =
10722 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10723 &used_pattern_len, max_size);
10724
10725 /* Bail if the pattern is too large. */
10726 if (used_pattern_len != pattern_len)
10727 error (_("Pattern is too large to transmit to remote target."));
10728
10729 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10730 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10731 || packet_ok (rs->buf, packet) != PACKET_OK)
10732 {
10733 /* The request may not have worked because the command is not
10734 supported. If so, fall back to the simple way. */
10735 if (packet->support == PACKET_DISABLE)
10736 {
10737 return simple_search_memory (ops, start_addr, search_space_len,
10738 pattern, pattern_len, found_addrp);
10739 }
10740 return -1;
10741 }
10742
10743 if (rs->buf[0] == '0')
10744 found = 0;
10745 else if (rs->buf[0] == '1')
10746 {
10747 found = 1;
10748 if (rs->buf[1] != ',')
10749 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10750 unpack_varlen_hex (rs->buf + 2, &found_addr);
10751 *found_addrp = found_addr;
10752 }
10753 else
10754 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10755
10756 return found;
10757 }
10758
10759 static void
10760 remote_rcmd (struct target_ops *self, const char *command,
10761 struct ui_file *outbuf)
10762 {
10763 struct remote_state *rs = get_remote_state ();
10764 char *p = rs->buf;
10765
10766 if (!rs->remote_desc)
10767 error (_("remote rcmd is only available after target open"));
10768
10769 /* Send a NULL command across as an empty command. */
10770 if (command == NULL)
10771 command = "";
10772
10773 /* The query prefix. */
10774 strcpy (rs->buf, "qRcmd,");
10775 p = strchr (rs->buf, '\0');
10776
10777 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10778 > get_remote_packet_size ())
10779 error (_("\"monitor\" command ``%s'' is too long."), command);
10780
10781 /* Encode the actual command. */
10782 bin2hex ((const gdb_byte *) command, p, strlen (command));
10783
10784 if (putpkt (rs->buf) < 0)
10785 error (_("Communication problem with target."));
10786
10787 /* get/display the response */
10788 while (1)
10789 {
10790 char *buf;
10791
10792 /* XXX - see also remote_get_noisy_reply(). */
10793 QUIT; /* Allow user to bail out with ^C. */
10794 rs->buf[0] = '\0';
10795 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10796 {
10797 /* Timeout. Continue to (try to) read responses.
10798 This is better than stopping with an error, assuming the stub
10799 is still executing the (long) monitor command.
10800 If needed, the user can interrupt gdb using C-c, obtaining
10801 an effect similar to stop on timeout. */
10802 continue;
10803 }
10804 buf = rs->buf;
10805 if (buf[0] == '\0')
10806 error (_("Target does not support this command."));
10807 if (buf[0] == 'O' && buf[1] != 'K')
10808 {
10809 remote_console_output (buf + 1); /* 'O' message from stub. */
10810 continue;
10811 }
10812 if (strcmp (buf, "OK") == 0)
10813 break;
10814 if (strlen (buf) == 3 && buf[0] == 'E'
10815 && isdigit (buf[1]) && isdigit (buf[2]))
10816 {
10817 error (_("Protocol error with Rcmd"));
10818 }
10819 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10820 {
10821 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10822
10823 fputc_unfiltered (c, outbuf);
10824 }
10825 break;
10826 }
10827 }
10828
10829 static std::vector<mem_region>
10830 remote_memory_map (struct target_ops *ops)
10831 {
10832 std::vector<mem_region> result;
10833 gdb::unique_xmalloc_ptr<char> text
10834 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10835
10836 if (text)
10837 result = parse_memory_map (text.get ());
10838
10839 return result;
10840 }
10841
10842 static void
10843 packet_command (const char *args, int from_tty)
10844 {
10845 struct remote_state *rs = get_remote_state ();
10846
10847 if (!rs->remote_desc)
10848 error (_("command can only be used with remote target"));
10849
10850 if (!args)
10851 error (_("remote-packet command requires packet text as argument"));
10852
10853 puts_filtered ("sending: ");
10854 print_packet (args);
10855 puts_filtered ("\n");
10856 putpkt (args);
10857
10858 getpkt (&rs->buf, &rs->buf_size, 0);
10859 puts_filtered ("received: ");
10860 print_packet (rs->buf);
10861 puts_filtered ("\n");
10862 }
10863
10864 #if 0
10865 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10866
10867 static void display_thread_info (struct gdb_ext_thread_info *info);
10868
10869 static void threadset_test_cmd (char *cmd, int tty);
10870
10871 static void threadalive_test (char *cmd, int tty);
10872
10873 static void threadlist_test_cmd (char *cmd, int tty);
10874
10875 int get_and_display_threadinfo (threadref *ref);
10876
10877 static void threadinfo_test_cmd (char *cmd, int tty);
10878
10879 static int thread_display_step (threadref *ref, void *context);
10880
10881 static void threadlist_update_test_cmd (char *cmd, int tty);
10882
10883 static void init_remote_threadtests (void);
10884
10885 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10886
10887 static void
10888 threadset_test_cmd (const char *cmd, int tty)
10889 {
10890 int sample_thread = SAMPLE_THREAD;
10891
10892 printf_filtered (_("Remote threadset test\n"));
10893 set_general_thread (sample_thread);
10894 }
10895
10896
10897 static void
10898 threadalive_test (const char *cmd, int tty)
10899 {
10900 int sample_thread = SAMPLE_THREAD;
10901 int pid = ptid_get_pid (inferior_ptid);
10902 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10903
10904 if (remote_thread_alive (ptid))
10905 printf_filtered ("PASS: Thread alive test\n");
10906 else
10907 printf_filtered ("FAIL: Thread alive test\n");
10908 }
10909
10910 void output_threadid (char *title, threadref *ref);
10911
10912 void
10913 output_threadid (char *title, threadref *ref)
10914 {
10915 char hexid[20];
10916
10917 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10918 hexid[16] = 0;
10919 printf_filtered ("%s %s\n", title, (&hexid[0]));
10920 }
10921
10922 static void
10923 threadlist_test_cmd (const char *cmd, int tty)
10924 {
10925 int startflag = 1;
10926 threadref nextthread;
10927 int done, result_count;
10928 threadref threadlist[3];
10929
10930 printf_filtered ("Remote Threadlist test\n");
10931 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10932 &result_count, &threadlist[0]))
10933 printf_filtered ("FAIL: threadlist test\n");
10934 else
10935 {
10936 threadref *scan = threadlist;
10937 threadref *limit = scan + result_count;
10938
10939 while (scan < limit)
10940 output_threadid (" thread ", scan++);
10941 }
10942 }
10943
10944 void
10945 display_thread_info (struct gdb_ext_thread_info *info)
10946 {
10947 output_threadid ("Threadid: ", &info->threadid);
10948 printf_filtered ("Name: %s\n ", info->shortname);
10949 printf_filtered ("State: %s\n", info->display);
10950 printf_filtered ("other: %s\n\n", info->more_display);
10951 }
10952
10953 int
10954 get_and_display_threadinfo (threadref *ref)
10955 {
10956 int result;
10957 int set;
10958 struct gdb_ext_thread_info threadinfo;
10959
10960 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10961 | TAG_MOREDISPLAY | TAG_DISPLAY;
10962 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10963 display_thread_info (&threadinfo);
10964 return result;
10965 }
10966
10967 static void
10968 threadinfo_test_cmd (const char *cmd, int tty)
10969 {
10970 int athread = SAMPLE_THREAD;
10971 threadref thread;
10972 int set;
10973
10974 int_to_threadref (&thread, athread);
10975 printf_filtered ("Remote Threadinfo test\n");
10976 if (!get_and_display_threadinfo (&thread))
10977 printf_filtered ("FAIL cannot get thread info\n");
10978 }
10979
10980 static int
10981 thread_display_step (threadref *ref, void *context)
10982 {
10983 /* output_threadid(" threadstep ",ref); *//* simple test */
10984 return get_and_display_threadinfo (ref);
10985 }
10986
10987 static void
10988 threadlist_update_test_cmd (const char *cmd, int tty)
10989 {
10990 printf_filtered ("Remote Threadlist update test\n");
10991 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10992 }
10993
10994 static void
10995 init_remote_threadtests (void)
10996 {
10997 add_com ("tlist", class_obscure, threadlist_test_cmd,
10998 _("Fetch and print the remote list of "
10999 "thread identifiers, one pkt only"));
11000 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11001 _("Fetch and display info about one thread"));
11002 add_com ("tset", class_obscure, threadset_test_cmd,
11003 _("Test setting to a different thread"));
11004 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11005 _("Iterate through updating all remote thread info"));
11006 add_com ("talive", class_obscure, threadalive_test,
11007 _(" Remote thread alive test "));
11008 }
11009
11010 #endif /* 0 */
11011
11012 /* Convert a thread ID to a string. Returns the string in a static
11013 buffer. */
11014
11015 static const char *
11016 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
11017 {
11018 static char buf[64];
11019 struct remote_state *rs = get_remote_state ();
11020
11021 if (ptid_equal (ptid, null_ptid))
11022 return normal_pid_to_str (ptid);
11023 else if (ptid_is_pid (ptid))
11024 {
11025 /* Printing an inferior target id. */
11026
11027 /* When multi-process extensions are off, there's no way in the
11028 remote protocol to know the remote process id, if there's any
11029 at all. There's one exception --- when we're connected with
11030 target extended-remote, and we manually attached to a process
11031 with "attach PID". We don't record anywhere a flag that
11032 allows us to distinguish that case from the case of
11033 connecting with extended-remote and the stub already being
11034 attached to a process, and reporting yes to qAttached, hence
11035 no smart special casing here. */
11036 if (!remote_multi_process_p (rs))
11037 {
11038 xsnprintf (buf, sizeof buf, "Remote target");
11039 return buf;
11040 }
11041
11042 return normal_pid_to_str (ptid);
11043 }
11044 else
11045 {
11046 if (ptid_equal (magic_null_ptid, ptid))
11047 xsnprintf (buf, sizeof buf, "Thread <main>");
11048 else if (remote_multi_process_p (rs))
11049 if (ptid_get_lwp (ptid) == 0)
11050 return normal_pid_to_str (ptid);
11051 else
11052 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11053 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11054 else
11055 xsnprintf (buf, sizeof buf, "Thread %ld",
11056 ptid_get_lwp (ptid));
11057 return buf;
11058 }
11059 }
11060
11061 /* Get the address of the thread local variable in OBJFILE which is
11062 stored at OFFSET within the thread local storage for thread PTID. */
11063
11064 static CORE_ADDR
11065 remote_get_thread_local_address (struct target_ops *ops,
11066 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11067 {
11068 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11069 {
11070 struct remote_state *rs = get_remote_state ();
11071 char *p = rs->buf;
11072 char *endp = rs->buf + get_remote_packet_size ();
11073 enum packet_result result;
11074
11075 strcpy (p, "qGetTLSAddr:");
11076 p += strlen (p);
11077 p = write_ptid (p, endp, ptid);
11078 *p++ = ',';
11079 p += hexnumstr (p, offset);
11080 *p++ = ',';
11081 p += hexnumstr (p, lm);
11082 *p++ = '\0';
11083
11084 putpkt (rs->buf);
11085 getpkt (&rs->buf, &rs->buf_size, 0);
11086 result = packet_ok (rs->buf,
11087 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11088 if (result == PACKET_OK)
11089 {
11090 ULONGEST result;
11091
11092 unpack_varlen_hex (rs->buf, &result);
11093 return result;
11094 }
11095 else if (result == PACKET_UNKNOWN)
11096 throw_error (TLS_GENERIC_ERROR,
11097 _("Remote target doesn't support qGetTLSAddr packet"));
11098 else
11099 throw_error (TLS_GENERIC_ERROR,
11100 _("Remote target failed to process qGetTLSAddr request"));
11101 }
11102 else
11103 throw_error (TLS_GENERIC_ERROR,
11104 _("TLS not supported or disabled on this target"));
11105 /* Not reached. */
11106 return 0;
11107 }
11108
11109 /* Provide thread local base, i.e. Thread Information Block address.
11110 Returns 1 if ptid is found and thread_local_base is non zero. */
11111
11112 static int
11113 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11114 {
11115 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11116 {
11117 struct remote_state *rs = get_remote_state ();
11118 char *p = rs->buf;
11119 char *endp = rs->buf + get_remote_packet_size ();
11120 enum packet_result result;
11121
11122 strcpy (p, "qGetTIBAddr:");
11123 p += strlen (p);
11124 p = write_ptid (p, endp, ptid);
11125 *p++ = '\0';
11126
11127 putpkt (rs->buf);
11128 getpkt (&rs->buf, &rs->buf_size, 0);
11129 result = packet_ok (rs->buf,
11130 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11131 if (result == PACKET_OK)
11132 {
11133 ULONGEST result;
11134
11135 unpack_varlen_hex (rs->buf, &result);
11136 if (addr)
11137 *addr = (CORE_ADDR) result;
11138 return 1;
11139 }
11140 else if (result == PACKET_UNKNOWN)
11141 error (_("Remote target doesn't support qGetTIBAddr packet"));
11142 else
11143 error (_("Remote target failed to process qGetTIBAddr request"));
11144 }
11145 else
11146 error (_("qGetTIBAddr not supported or disabled on this target"));
11147 /* Not reached. */
11148 return 0;
11149 }
11150
11151 /* Support for inferring a target description based on the current
11152 architecture and the size of a 'g' packet. While the 'g' packet
11153 can have any size (since optional registers can be left off the
11154 end), some sizes are easily recognizable given knowledge of the
11155 approximate architecture. */
11156
11157 struct remote_g_packet_guess
11158 {
11159 int bytes;
11160 const struct target_desc *tdesc;
11161 };
11162 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11163 DEF_VEC_O(remote_g_packet_guess_s);
11164
11165 struct remote_g_packet_data
11166 {
11167 VEC(remote_g_packet_guess_s) *guesses;
11168 };
11169
11170 static struct gdbarch_data *remote_g_packet_data_handle;
11171
11172 static void *
11173 remote_g_packet_data_init (struct obstack *obstack)
11174 {
11175 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11176 }
11177
11178 void
11179 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11180 const struct target_desc *tdesc)
11181 {
11182 struct remote_g_packet_data *data
11183 = ((struct remote_g_packet_data *)
11184 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11185 struct remote_g_packet_guess new_guess, *guess;
11186 int ix;
11187
11188 gdb_assert (tdesc != NULL);
11189
11190 for (ix = 0;
11191 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11192 ix++)
11193 if (guess->bytes == bytes)
11194 internal_error (__FILE__, __LINE__,
11195 _("Duplicate g packet description added for size %d"),
11196 bytes);
11197
11198 new_guess.bytes = bytes;
11199 new_guess.tdesc = tdesc;
11200 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11201 }
11202
11203 /* Return 1 if remote_read_description would do anything on this target
11204 and architecture, 0 otherwise. */
11205
11206 static int
11207 remote_read_description_p (struct target_ops *target)
11208 {
11209 struct remote_g_packet_data *data
11210 = ((struct remote_g_packet_data *)
11211 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11212
11213 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11214 return 1;
11215
11216 return 0;
11217 }
11218
11219 static const struct target_desc *
11220 remote_read_description (struct target_ops *target)
11221 {
11222 struct remote_g_packet_data *data
11223 = ((struct remote_g_packet_data *)
11224 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11225
11226 /* Do not try this during initial connection, when we do not know
11227 whether there is a running but stopped thread. */
11228 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11229 return target->beneath->to_read_description (target->beneath);
11230
11231 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11232 {
11233 struct remote_g_packet_guess *guess;
11234 int ix;
11235 int bytes = send_g_packet ();
11236
11237 for (ix = 0;
11238 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11239 ix++)
11240 if (guess->bytes == bytes)
11241 return guess->tdesc;
11242
11243 /* We discard the g packet. A minor optimization would be to
11244 hold on to it, and fill the register cache once we have selected
11245 an architecture, but it's too tricky to do safely. */
11246 }
11247
11248 return target->beneath->to_read_description (target->beneath);
11249 }
11250
11251 /* Remote file transfer support. This is host-initiated I/O, not
11252 target-initiated; for target-initiated, see remote-fileio.c. */
11253
11254 /* If *LEFT is at least the length of STRING, copy STRING to
11255 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11256 decrease *LEFT. Otherwise raise an error. */
11257
11258 static void
11259 remote_buffer_add_string (char **buffer, int *left, const char *string)
11260 {
11261 int len = strlen (string);
11262
11263 if (len > *left)
11264 error (_("Packet too long for target."));
11265
11266 memcpy (*buffer, string, len);
11267 *buffer += len;
11268 *left -= len;
11269
11270 /* NUL-terminate the buffer as a convenience, if there is
11271 room. */
11272 if (*left)
11273 **buffer = '\0';
11274 }
11275
11276 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11277 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11278 decrease *LEFT. Otherwise raise an error. */
11279
11280 static void
11281 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11282 int len)
11283 {
11284 if (2 * len > *left)
11285 error (_("Packet too long for target."));
11286
11287 bin2hex (bytes, *buffer, len);
11288 *buffer += 2 * len;
11289 *left -= 2 * len;
11290
11291 /* NUL-terminate the buffer as a convenience, if there is
11292 room. */
11293 if (*left)
11294 **buffer = '\0';
11295 }
11296
11297 /* If *LEFT is large enough, convert VALUE to hex and add it to
11298 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11299 decrease *LEFT. Otherwise raise an error. */
11300
11301 static void
11302 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11303 {
11304 int len = hexnumlen (value);
11305
11306 if (len > *left)
11307 error (_("Packet too long for target."));
11308
11309 hexnumstr (*buffer, value);
11310 *buffer += len;
11311 *left -= len;
11312
11313 /* NUL-terminate the buffer as a convenience, if there is
11314 room. */
11315 if (*left)
11316 **buffer = '\0';
11317 }
11318
11319 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11320 value, *REMOTE_ERRNO to the remote error number or zero if none
11321 was included, and *ATTACHMENT to point to the start of the annex
11322 if any. The length of the packet isn't needed here; there may
11323 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11324
11325 Return 0 if the packet could be parsed, -1 if it could not. If
11326 -1 is returned, the other variables may not be initialized. */
11327
11328 static int
11329 remote_hostio_parse_result (char *buffer, int *retcode,
11330 int *remote_errno, char **attachment)
11331 {
11332 char *p, *p2;
11333
11334 *remote_errno = 0;
11335 *attachment = NULL;
11336
11337 if (buffer[0] != 'F')
11338 return -1;
11339
11340 errno = 0;
11341 *retcode = strtol (&buffer[1], &p, 16);
11342 if (errno != 0 || p == &buffer[1])
11343 return -1;
11344
11345 /* Check for ",errno". */
11346 if (*p == ',')
11347 {
11348 errno = 0;
11349 *remote_errno = strtol (p + 1, &p2, 16);
11350 if (errno != 0 || p + 1 == p2)
11351 return -1;
11352 p = p2;
11353 }
11354
11355 /* Check for ";attachment". If there is no attachment, the
11356 packet should end here. */
11357 if (*p == ';')
11358 {
11359 *attachment = p + 1;
11360 return 0;
11361 }
11362 else if (*p == '\0')
11363 return 0;
11364 else
11365 return -1;
11366 }
11367
11368 /* Send a prepared I/O packet to the target and read its response.
11369 The prepared packet is in the global RS->BUF before this function
11370 is called, and the answer is there when we return.
11371
11372 COMMAND_BYTES is the length of the request to send, which may include
11373 binary data. WHICH_PACKET is the packet configuration to check
11374 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11375 is set to the error number and -1 is returned. Otherwise the value
11376 returned by the function is returned.
11377
11378 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11379 attachment is expected; an error will be reported if there's a
11380 mismatch. If one is found, *ATTACHMENT will be set to point into
11381 the packet buffer and *ATTACHMENT_LEN will be set to the
11382 attachment's length. */
11383
11384 static int
11385 remote_hostio_send_command (int command_bytes, int which_packet,
11386 int *remote_errno, char **attachment,
11387 int *attachment_len)
11388 {
11389 struct remote_state *rs = get_remote_state ();
11390 int ret, bytes_read;
11391 char *attachment_tmp;
11392
11393 if (!rs->remote_desc
11394 || packet_support (which_packet) == PACKET_DISABLE)
11395 {
11396 *remote_errno = FILEIO_ENOSYS;
11397 return -1;
11398 }
11399
11400 putpkt_binary (rs->buf, command_bytes);
11401 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11402
11403 /* If it timed out, something is wrong. Don't try to parse the
11404 buffer. */
11405 if (bytes_read < 0)
11406 {
11407 *remote_errno = FILEIO_EINVAL;
11408 return -1;
11409 }
11410
11411 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11412 {
11413 case PACKET_ERROR:
11414 *remote_errno = FILEIO_EINVAL;
11415 return -1;
11416 case PACKET_UNKNOWN:
11417 *remote_errno = FILEIO_ENOSYS;
11418 return -1;
11419 case PACKET_OK:
11420 break;
11421 }
11422
11423 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11424 &attachment_tmp))
11425 {
11426 *remote_errno = FILEIO_EINVAL;
11427 return -1;
11428 }
11429
11430 /* Make sure we saw an attachment if and only if we expected one. */
11431 if ((attachment_tmp == NULL && attachment != NULL)
11432 || (attachment_tmp != NULL && attachment == NULL))
11433 {
11434 *remote_errno = FILEIO_EINVAL;
11435 return -1;
11436 }
11437
11438 /* If an attachment was found, it must point into the packet buffer;
11439 work out how many bytes there were. */
11440 if (attachment_tmp != NULL)
11441 {
11442 *attachment = attachment_tmp;
11443 *attachment_len = bytes_read - (*attachment - rs->buf);
11444 }
11445
11446 return ret;
11447 }
11448
11449 /* Invalidate the readahead cache. */
11450
11451 static void
11452 readahead_cache_invalidate (void)
11453 {
11454 struct remote_state *rs = get_remote_state ();
11455
11456 rs->readahead_cache.fd = -1;
11457 }
11458
11459 /* Invalidate the readahead cache if it is holding data for FD. */
11460
11461 static void
11462 readahead_cache_invalidate_fd (int fd)
11463 {
11464 struct remote_state *rs = get_remote_state ();
11465
11466 if (rs->readahead_cache.fd == fd)
11467 rs->readahead_cache.fd = -1;
11468 }
11469
11470 /* Set the filesystem remote_hostio functions that take FILENAME
11471 arguments will use. Return 0 on success, or -1 if an error
11472 occurs (and set *REMOTE_ERRNO). */
11473
11474 static int
11475 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11476 {
11477 struct remote_state *rs = get_remote_state ();
11478 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11479 char *p = rs->buf;
11480 int left = get_remote_packet_size () - 1;
11481 char arg[9];
11482 int ret;
11483
11484 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11485 return 0;
11486
11487 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11488 return 0;
11489
11490 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11491
11492 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11493 remote_buffer_add_string (&p, &left, arg);
11494
11495 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11496 remote_errno, NULL, NULL);
11497
11498 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11499 return 0;
11500
11501 if (ret == 0)
11502 rs->fs_pid = required_pid;
11503
11504 return ret;
11505 }
11506
11507 /* Implementation of to_fileio_open. */
11508
11509 static int
11510 remote_hostio_open (struct target_ops *self,
11511 struct inferior *inf, const char *filename,
11512 int flags, int mode, int warn_if_slow,
11513 int *remote_errno)
11514 {
11515 struct remote_state *rs = get_remote_state ();
11516 char *p = rs->buf;
11517 int left = get_remote_packet_size () - 1;
11518
11519 if (warn_if_slow)
11520 {
11521 static int warning_issued = 0;
11522
11523 printf_unfiltered (_("Reading %s from remote target...\n"),
11524 filename);
11525
11526 if (!warning_issued)
11527 {
11528 warning (_("File transfers from remote targets can be slow."
11529 " Use \"set sysroot\" to access files locally"
11530 " instead."));
11531 warning_issued = 1;
11532 }
11533 }
11534
11535 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11536 return -1;
11537
11538 remote_buffer_add_string (&p, &left, "vFile:open:");
11539
11540 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11541 strlen (filename));
11542 remote_buffer_add_string (&p, &left, ",");
11543
11544 remote_buffer_add_int (&p, &left, flags);
11545 remote_buffer_add_string (&p, &left, ",");
11546
11547 remote_buffer_add_int (&p, &left, mode);
11548
11549 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11550 remote_errno, NULL, NULL);
11551 }
11552
11553 /* Implementation of to_fileio_pwrite. */
11554
11555 static int
11556 remote_hostio_pwrite (struct target_ops *self,
11557 int fd, const gdb_byte *write_buf, int len,
11558 ULONGEST offset, int *remote_errno)
11559 {
11560 struct remote_state *rs = get_remote_state ();
11561 char *p = rs->buf;
11562 int left = get_remote_packet_size ();
11563 int out_len;
11564
11565 readahead_cache_invalidate_fd (fd);
11566
11567 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11568
11569 remote_buffer_add_int (&p, &left, fd);
11570 remote_buffer_add_string (&p, &left, ",");
11571
11572 remote_buffer_add_int (&p, &left, offset);
11573 remote_buffer_add_string (&p, &left, ",");
11574
11575 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11576 get_remote_packet_size () - (p - rs->buf));
11577
11578 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11579 remote_errno, NULL, NULL);
11580 }
11581
11582 /* Helper for the implementation of to_fileio_pread. Read the file
11583 from the remote side with vFile:pread. */
11584
11585 static int
11586 remote_hostio_pread_vFile (struct target_ops *self,
11587 int fd, gdb_byte *read_buf, int len,
11588 ULONGEST offset, int *remote_errno)
11589 {
11590 struct remote_state *rs = get_remote_state ();
11591 char *p = rs->buf;
11592 char *attachment;
11593 int left = get_remote_packet_size ();
11594 int ret, attachment_len;
11595 int read_len;
11596
11597 remote_buffer_add_string (&p, &left, "vFile:pread:");
11598
11599 remote_buffer_add_int (&p, &left, fd);
11600 remote_buffer_add_string (&p, &left, ",");
11601
11602 remote_buffer_add_int (&p, &left, len);
11603 remote_buffer_add_string (&p, &left, ",");
11604
11605 remote_buffer_add_int (&p, &left, offset);
11606
11607 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11608 remote_errno, &attachment,
11609 &attachment_len);
11610
11611 if (ret < 0)
11612 return ret;
11613
11614 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11615 read_buf, len);
11616 if (read_len != ret)
11617 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11618
11619 return ret;
11620 }
11621
11622 /* Serve pread from the readahead cache. Returns number of bytes
11623 read, or 0 if the request can't be served from the cache. */
11624
11625 static int
11626 remote_hostio_pread_from_cache (struct remote_state *rs,
11627 int fd, gdb_byte *read_buf, size_t len,
11628 ULONGEST offset)
11629 {
11630 struct readahead_cache *cache = &rs->readahead_cache;
11631
11632 if (cache->fd == fd
11633 && cache->offset <= offset
11634 && offset < cache->offset + cache->bufsize)
11635 {
11636 ULONGEST max = cache->offset + cache->bufsize;
11637
11638 if (offset + len > max)
11639 len = max - offset;
11640
11641 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11642 return len;
11643 }
11644
11645 return 0;
11646 }
11647
11648 /* Implementation of to_fileio_pread. */
11649
11650 static int
11651 remote_hostio_pread (struct target_ops *self,
11652 int fd, gdb_byte *read_buf, int len,
11653 ULONGEST offset, int *remote_errno)
11654 {
11655 int ret;
11656 struct remote_state *rs = get_remote_state ();
11657 struct readahead_cache *cache = &rs->readahead_cache;
11658
11659 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11660 if (ret > 0)
11661 {
11662 cache->hit_count++;
11663
11664 if (remote_debug)
11665 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11666 pulongest (cache->hit_count));
11667 return ret;
11668 }
11669
11670 cache->miss_count++;
11671 if (remote_debug)
11672 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11673 pulongest (cache->miss_count));
11674
11675 cache->fd = fd;
11676 cache->offset = offset;
11677 cache->bufsize = get_remote_packet_size ();
11678 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11679
11680 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11681 cache->offset, remote_errno);
11682 if (ret <= 0)
11683 {
11684 readahead_cache_invalidate_fd (fd);
11685 return ret;
11686 }
11687
11688 cache->bufsize = ret;
11689 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11690 }
11691
11692 /* Implementation of to_fileio_close. */
11693
11694 static int
11695 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11696 {
11697 struct remote_state *rs = get_remote_state ();
11698 char *p = rs->buf;
11699 int left = get_remote_packet_size () - 1;
11700
11701 readahead_cache_invalidate_fd (fd);
11702
11703 remote_buffer_add_string (&p, &left, "vFile:close:");
11704
11705 remote_buffer_add_int (&p, &left, fd);
11706
11707 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11708 remote_errno, NULL, NULL);
11709 }
11710
11711 /* Implementation of to_fileio_unlink. */
11712
11713 static int
11714 remote_hostio_unlink (struct target_ops *self,
11715 struct inferior *inf, const char *filename,
11716 int *remote_errno)
11717 {
11718 struct remote_state *rs = get_remote_state ();
11719 char *p = rs->buf;
11720 int left = get_remote_packet_size () - 1;
11721
11722 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11723 return -1;
11724
11725 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11726
11727 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11728 strlen (filename));
11729
11730 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11731 remote_errno, NULL, NULL);
11732 }
11733
11734 /* Implementation of to_fileio_readlink. */
11735
11736 static char *
11737 remote_hostio_readlink (struct target_ops *self,
11738 struct inferior *inf, const char *filename,
11739 int *remote_errno)
11740 {
11741 struct remote_state *rs = get_remote_state ();
11742 char *p = rs->buf;
11743 char *attachment;
11744 int left = get_remote_packet_size ();
11745 int len, attachment_len;
11746 int read_len;
11747 char *ret;
11748
11749 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11750 return NULL;
11751
11752 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11753
11754 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11755 strlen (filename));
11756
11757 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11758 remote_errno, &attachment,
11759 &attachment_len);
11760
11761 if (len < 0)
11762 return NULL;
11763
11764 ret = (char *) xmalloc (len + 1);
11765
11766 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11767 (gdb_byte *) ret, len);
11768 if (read_len != len)
11769 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11770
11771 ret[len] = '\0';
11772 return ret;
11773 }
11774
11775 /* Implementation of to_fileio_fstat. */
11776
11777 static int
11778 remote_hostio_fstat (struct target_ops *self,
11779 int fd, struct stat *st,
11780 int *remote_errno)
11781 {
11782 struct remote_state *rs = get_remote_state ();
11783 char *p = rs->buf;
11784 int left = get_remote_packet_size ();
11785 int attachment_len, ret;
11786 char *attachment;
11787 struct fio_stat fst;
11788 int read_len;
11789
11790 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11791
11792 remote_buffer_add_int (&p, &left, fd);
11793
11794 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11795 remote_errno, &attachment,
11796 &attachment_len);
11797 if (ret < 0)
11798 {
11799 if (*remote_errno != FILEIO_ENOSYS)
11800 return ret;
11801
11802 /* Strictly we should return -1, ENOSYS here, but when
11803 "set sysroot remote:" was implemented in August 2008
11804 BFD's need for a stat function was sidestepped with
11805 this hack. This was not remedied until March 2015
11806 so we retain the previous behavior to avoid breaking
11807 compatibility.
11808
11809 Note that the memset is a March 2015 addition; older
11810 GDBs set st_size *and nothing else* so the structure
11811 would have garbage in all other fields. This might
11812 break something but retaining the previous behavior
11813 here would be just too wrong. */
11814
11815 memset (st, 0, sizeof (struct stat));
11816 st->st_size = INT_MAX;
11817 return 0;
11818 }
11819
11820 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11821 (gdb_byte *) &fst, sizeof (fst));
11822
11823 if (read_len != ret)
11824 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11825
11826 if (read_len != sizeof (fst))
11827 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11828 read_len, (int) sizeof (fst));
11829
11830 remote_fileio_to_host_stat (&fst, st);
11831
11832 return 0;
11833 }
11834
11835 /* Implementation of to_filesystem_is_local. */
11836
11837 static int
11838 remote_filesystem_is_local (struct target_ops *self)
11839 {
11840 /* Valgrind GDB presents itself as a remote target but works
11841 on the local filesystem: it does not implement remote get
11842 and users are not expected to set a sysroot. To handle
11843 this case we treat the remote filesystem as local if the
11844 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11845 does not support vFile:open. */
11846 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11847 {
11848 enum packet_support ps = packet_support (PACKET_vFile_open);
11849
11850 if (ps == PACKET_SUPPORT_UNKNOWN)
11851 {
11852 int fd, remote_errno;
11853
11854 /* Try opening a file to probe support. The supplied
11855 filename is irrelevant, we only care about whether
11856 the stub recognizes the packet or not. */
11857 fd = remote_hostio_open (self, NULL, "just probing",
11858 FILEIO_O_RDONLY, 0700, 0,
11859 &remote_errno);
11860
11861 if (fd >= 0)
11862 remote_hostio_close (self, fd, &remote_errno);
11863
11864 ps = packet_support (PACKET_vFile_open);
11865 }
11866
11867 if (ps == PACKET_DISABLE)
11868 {
11869 static int warning_issued = 0;
11870
11871 if (!warning_issued)
11872 {
11873 warning (_("remote target does not support file"
11874 " transfer, attempting to access files"
11875 " from local filesystem."));
11876 warning_issued = 1;
11877 }
11878
11879 return 1;
11880 }
11881 }
11882
11883 return 0;
11884 }
11885
11886 static int
11887 remote_fileio_errno_to_host (int errnum)
11888 {
11889 switch (errnum)
11890 {
11891 case FILEIO_EPERM:
11892 return EPERM;
11893 case FILEIO_ENOENT:
11894 return ENOENT;
11895 case FILEIO_EINTR:
11896 return EINTR;
11897 case FILEIO_EIO:
11898 return EIO;
11899 case FILEIO_EBADF:
11900 return EBADF;
11901 case FILEIO_EACCES:
11902 return EACCES;
11903 case FILEIO_EFAULT:
11904 return EFAULT;
11905 case FILEIO_EBUSY:
11906 return EBUSY;
11907 case FILEIO_EEXIST:
11908 return EEXIST;
11909 case FILEIO_ENODEV:
11910 return ENODEV;
11911 case FILEIO_ENOTDIR:
11912 return ENOTDIR;
11913 case FILEIO_EISDIR:
11914 return EISDIR;
11915 case FILEIO_EINVAL:
11916 return EINVAL;
11917 case FILEIO_ENFILE:
11918 return ENFILE;
11919 case FILEIO_EMFILE:
11920 return EMFILE;
11921 case FILEIO_EFBIG:
11922 return EFBIG;
11923 case FILEIO_ENOSPC:
11924 return ENOSPC;
11925 case FILEIO_ESPIPE:
11926 return ESPIPE;
11927 case FILEIO_EROFS:
11928 return EROFS;
11929 case FILEIO_ENOSYS:
11930 return ENOSYS;
11931 case FILEIO_ENAMETOOLONG:
11932 return ENAMETOOLONG;
11933 }
11934 return -1;
11935 }
11936
11937 static char *
11938 remote_hostio_error (int errnum)
11939 {
11940 int host_error = remote_fileio_errno_to_host (errnum);
11941
11942 if (host_error == -1)
11943 error (_("Unknown remote I/O error %d"), errnum);
11944 else
11945 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11946 }
11947
11948 static void
11949 remote_hostio_close_cleanup (void *opaque)
11950 {
11951 int fd = *(int *) opaque;
11952 int remote_errno;
11953
11954 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11955 }
11956
11957 void
11958 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11959 {
11960 struct cleanup *back_to, *close_cleanup;
11961 int retcode, fd, remote_errno, bytes, io_size;
11962 gdb_byte *buffer;
11963 int bytes_in_buffer;
11964 int saw_eof;
11965 ULONGEST offset;
11966 struct remote_state *rs = get_remote_state ();
11967
11968 if (!rs->remote_desc)
11969 error (_("command can only be used with remote target"));
11970
11971 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11972 if (file == NULL)
11973 perror_with_name (local_file);
11974
11975 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11976 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11977 | FILEIO_O_TRUNC),
11978 0700, 0, &remote_errno);
11979 if (fd == -1)
11980 remote_hostio_error (remote_errno);
11981
11982 /* Send up to this many bytes at once. They won't all fit in the
11983 remote packet limit, so we'll transfer slightly fewer. */
11984 io_size = get_remote_packet_size ();
11985 buffer = (gdb_byte *) xmalloc (io_size);
11986 back_to = make_cleanup (xfree, buffer);
11987
11988 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11989
11990 bytes_in_buffer = 0;
11991 saw_eof = 0;
11992 offset = 0;
11993 while (bytes_in_buffer || !saw_eof)
11994 {
11995 if (!saw_eof)
11996 {
11997 bytes = fread (buffer + bytes_in_buffer, 1,
11998 io_size - bytes_in_buffer,
11999 file.get ());
12000 if (bytes == 0)
12001 {
12002 if (ferror (file.get ()))
12003 error (_("Error reading %s."), local_file);
12004 else
12005 {
12006 /* EOF. Unless there is something still in the
12007 buffer from the last iteration, we are done. */
12008 saw_eof = 1;
12009 if (bytes_in_buffer == 0)
12010 break;
12011 }
12012 }
12013 }
12014 else
12015 bytes = 0;
12016
12017 bytes += bytes_in_buffer;
12018 bytes_in_buffer = 0;
12019
12020 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12021 fd, buffer, bytes,
12022 offset, &remote_errno);
12023
12024 if (retcode < 0)
12025 remote_hostio_error (remote_errno);
12026 else if (retcode == 0)
12027 error (_("Remote write of %d bytes returned 0!"), bytes);
12028 else if (retcode < bytes)
12029 {
12030 /* Short write. Save the rest of the read data for the next
12031 write. */
12032 bytes_in_buffer = bytes - retcode;
12033 memmove (buffer, buffer + retcode, bytes_in_buffer);
12034 }
12035
12036 offset += retcode;
12037 }
12038
12039 discard_cleanups (close_cleanup);
12040 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12041 remote_hostio_error (remote_errno);
12042
12043 if (from_tty)
12044 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12045 do_cleanups (back_to);
12046 }
12047
12048 void
12049 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12050 {
12051 struct cleanup *back_to, *close_cleanup;
12052 int fd, remote_errno, bytes, io_size;
12053 gdb_byte *buffer;
12054 ULONGEST offset;
12055 struct remote_state *rs = get_remote_state ();
12056
12057 if (!rs->remote_desc)
12058 error (_("command can only be used with remote target"));
12059
12060 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12061 remote_file, FILEIO_O_RDONLY, 0, 0,
12062 &remote_errno);
12063 if (fd == -1)
12064 remote_hostio_error (remote_errno);
12065
12066 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12067 if (file == NULL)
12068 perror_with_name (local_file);
12069
12070 /* Send up to this many bytes at once. They won't all fit in the
12071 remote packet limit, so we'll transfer slightly fewer. */
12072 io_size = get_remote_packet_size ();
12073 buffer = (gdb_byte *) xmalloc (io_size);
12074 back_to = make_cleanup (xfree, buffer);
12075
12076 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12077
12078 offset = 0;
12079 while (1)
12080 {
12081 bytes = remote_hostio_pread (find_target_at (process_stratum),
12082 fd, buffer, io_size, offset, &remote_errno);
12083 if (bytes == 0)
12084 /* Success, but no bytes, means end-of-file. */
12085 break;
12086 if (bytes == -1)
12087 remote_hostio_error (remote_errno);
12088
12089 offset += bytes;
12090
12091 bytes = fwrite (buffer, 1, bytes, file.get ());
12092 if (bytes == 0)
12093 perror_with_name (local_file);
12094 }
12095
12096 discard_cleanups (close_cleanup);
12097 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12098 remote_hostio_error (remote_errno);
12099
12100 if (from_tty)
12101 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12102 do_cleanups (back_to);
12103 }
12104
12105 void
12106 remote_file_delete (const char *remote_file, int from_tty)
12107 {
12108 int retcode, remote_errno;
12109 struct remote_state *rs = get_remote_state ();
12110
12111 if (!rs->remote_desc)
12112 error (_("command can only be used with remote target"));
12113
12114 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12115 NULL, remote_file, &remote_errno);
12116 if (retcode == -1)
12117 remote_hostio_error (remote_errno);
12118
12119 if (from_tty)
12120 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12121 }
12122
12123 static void
12124 remote_put_command (const char *args, int from_tty)
12125 {
12126 if (args == NULL)
12127 error_no_arg (_("file to put"));
12128
12129 gdb_argv argv (args);
12130 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12131 error (_("Invalid parameters to remote put"));
12132
12133 remote_file_put (argv[0], argv[1], from_tty);
12134 }
12135
12136 static void
12137 remote_get_command (const char *args, int from_tty)
12138 {
12139 if (args == NULL)
12140 error_no_arg (_("file to get"));
12141
12142 gdb_argv argv (args);
12143 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12144 error (_("Invalid parameters to remote get"));
12145
12146 remote_file_get (argv[0], argv[1], from_tty);
12147 }
12148
12149 static void
12150 remote_delete_command (const char *args, int from_tty)
12151 {
12152 if (args == NULL)
12153 error_no_arg (_("file to delete"));
12154
12155 gdb_argv argv (args);
12156 if (argv[0] == NULL || argv[1] != NULL)
12157 error (_("Invalid parameters to remote delete"));
12158
12159 remote_file_delete (argv[0], from_tty);
12160 }
12161
12162 static void
12163 remote_command (const char *args, int from_tty)
12164 {
12165 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12166 }
12167
12168 static int
12169 remote_can_execute_reverse (struct target_ops *self)
12170 {
12171 if (packet_support (PACKET_bs) == PACKET_ENABLE
12172 || packet_support (PACKET_bc) == PACKET_ENABLE)
12173 return 1;
12174 else
12175 return 0;
12176 }
12177
12178 static int
12179 remote_supports_non_stop (struct target_ops *self)
12180 {
12181 return 1;
12182 }
12183
12184 static int
12185 remote_supports_disable_randomization (struct target_ops *self)
12186 {
12187 /* Only supported in extended mode. */
12188 return 0;
12189 }
12190
12191 static int
12192 remote_supports_multi_process (struct target_ops *self)
12193 {
12194 struct remote_state *rs = get_remote_state ();
12195
12196 return remote_multi_process_p (rs);
12197 }
12198
12199 static int
12200 remote_supports_cond_tracepoints (void)
12201 {
12202 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12203 }
12204
12205 static int
12206 remote_supports_cond_breakpoints (struct target_ops *self)
12207 {
12208 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12209 }
12210
12211 static int
12212 remote_supports_fast_tracepoints (void)
12213 {
12214 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12215 }
12216
12217 static int
12218 remote_supports_static_tracepoints (void)
12219 {
12220 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12221 }
12222
12223 static int
12224 remote_supports_install_in_trace (void)
12225 {
12226 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12227 }
12228
12229 static int
12230 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12231 {
12232 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12233 == PACKET_ENABLE);
12234 }
12235
12236 static int
12237 remote_supports_string_tracing (struct target_ops *self)
12238 {
12239 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12240 }
12241
12242 static int
12243 remote_can_run_breakpoint_commands (struct target_ops *self)
12244 {
12245 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12246 }
12247
12248 static void
12249 remote_trace_init (struct target_ops *self)
12250 {
12251 struct remote_state *rs = get_remote_state ();
12252
12253 putpkt ("QTinit");
12254 remote_get_noisy_reply ();
12255 if (strcmp (rs->buf, "OK") != 0)
12256 error (_("Target does not support this command."));
12257 }
12258
12259 /* Recursive routine to walk through command list including loops, and
12260 download packets for each command. */
12261
12262 static void
12263 remote_download_command_source (int num, ULONGEST addr,
12264 struct command_line *cmds)
12265 {
12266 struct remote_state *rs = get_remote_state ();
12267 struct command_line *cmd;
12268
12269 for (cmd = cmds; cmd; cmd = cmd->next)
12270 {
12271 QUIT; /* Allow user to bail out with ^C. */
12272 strcpy (rs->buf, "QTDPsrc:");
12273 encode_source_string (num, addr, "cmd", cmd->line,
12274 rs->buf + strlen (rs->buf),
12275 rs->buf_size - strlen (rs->buf));
12276 putpkt (rs->buf);
12277 remote_get_noisy_reply ();
12278 if (strcmp (rs->buf, "OK"))
12279 warning (_("Target does not support source download."));
12280
12281 if (cmd->control_type == while_control
12282 || cmd->control_type == while_stepping_control)
12283 {
12284 remote_download_command_source (num, addr, *cmd->body_list);
12285
12286 QUIT; /* Allow user to bail out with ^C. */
12287 strcpy (rs->buf, "QTDPsrc:");
12288 encode_source_string (num, addr, "cmd", "end",
12289 rs->buf + strlen (rs->buf),
12290 rs->buf_size - strlen (rs->buf));
12291 putpkt (rs->buf);
12292 remote_get_noisy_reply ();
12293 if (strcmp (rs->buf, "OK"))
12294 warning (_("Target does not support source download."));
12295 }
12296 }
12297 }
12298
12299 static void
12300 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12301 {
12302 #define BUF_SIZE 2048
12303
12304 CORE_ADDR tpaddr;
12305 char addrbuf[40];
12306 char buf[BUF_SIZE];
12307 std::vector<std::string> tdp_actions;
12308 std::vector<std::string> stepping_actions;
12309 char *pkt;
12310 struct breakpoint *b = loc->owner;
12311 struct tracepoint *t = (struct tracepoint *) b;
12312 struct remote_state *rs = get_remote_state ();
12313
12314 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12315
12316 tpaddr = loc->address;
12317 sprintf_vma (addrbuf, tpaddr);
12318 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12319 addrbuf, /* address */
12320 (b->enable_state == bp_enabled ? 'E' : 'D'),
12321 t->step_count, t->pass_count);
12322 /* Fast tracepoints are mostly handled by the target, but we can
12323 tell the target how big of an instruction block should be moved
12324 around. */
12325 if (b->type == bp_fast_tracepoint)
12326 {
12327 /* Only test for support at download time; we may not know
12328 target capabilities at definition time. */
12329 if (remote_supports_fast_tracepoints ())
12330 {
12331 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12332 NULL))
12333 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12334 gdb_insn_length (loc->gdbarch, tpaddr));
12335 else
12336 /* If it passed validation at definition but fails now,
12337 something is very wrong. */
12338 internal_error (__FILE__, __LINE__,
12339 _("Fast tracepoint not "
12340 "valid during download"));
12341 }
12342 else
12343 /* Fast tracepoints are functionally identical to regular
12344 tracepoints, so don't take lack of support as a reason to
12345 give up on the trace run. */
12346 warning (_("Target does not support fast tracepoints, "
12347 "downloading %d as regular tracepoint"), b->number);
12348 }
12349 else if (b->type == bp_static_tracepoint)
12350 {
12351 /* Only test for support at download time; we may not know
12352 target capabilities at definition time. */
12353 if (remote_supports_static_tracepoints ())
12354 {
12355 struct static_tracepoint_marker marker;
12356
12357 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12358 strcat (buf, ":S");
12359 else
12360 error (_("Static tracepoint not valid during download"));
12361 }
12362 else
12363 /* Fast tracepoints are functionally identical to regular
12364 tracepoints, so don't take lack of support as a reason
12365 to give up on the trace run. */
12366 error (_("Target does not support static tracepoints"));
12367 }
12368 /* If the tracepoint has a conditional, make it into an agent
12369 expression and append to the definition. */
12370 if (loc->cond)
12371 {
12372 /* Only test support at download time, we may not know target
12373 capabilities at definition time. */
12374 if (remote_supports_cond_tracepoints ())
12375 {
12376 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12377 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12378 aexpr->len);
12379 pkt = buf + strlen (buf);
12380 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12381 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12382 *pkt = '\0';
12383 }
12384 else
12385 warning (_("Target does not support conditional tracepoints, "
12386 "ignoring tp %d cond"), b->number);
12387 }
12388
12389 if (b->commands || *default_collect)
12390 strcat (buf, "-");
12391 putpkt (buf);
12392 remote_get_noisy_reply ();
12393 if (strcmp (rs->buf, "OK"))
12394 error (_("Target does not support tracepoints."));
12395
12396 /* do_single_steps (t); */
12397 for (auto action_it = tdp_actions.begin ();
12398 action_it != tdp_actions.end (); action_it++)
12399 {
12400 QUIT; /* Allow user to bail out with ^C. */
12401
12402 bool has_more = (action_it != tdp_actions.end ()
12403 || !stepping_actions.empty ());
12404
12405 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12406 b->number, addrbuf, /* address */
12407 action_it->c_str (),
12408 has_more ? '-' : 0);
12409 putpkt (buf);
12410 remote_get_noisy_reply ();
12411 if (strcmp (rs->buf, "OK"))
12412 error (_("Error on target while setting tracepoints."));
12413 }
12414
12415 for (auto action_it = stepping_actions.begin ();
12416 action_it != stepping_actions.end (); action_it++)
12417 {
12418 QUIT; /* Allow user to bail out with ^C. */
12419
12420 bool is_first = action_it == stepping_actions.begin ();
12421 bool has_more = action_it != stepping_actions.end ();
12422
12423 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12424 b->number, addrbuf, /* address */
12425 is_first ? "S" : "",
12426 action_it->c_str (),
12427 has_more ? "-" : "");
12428 putpkt (buf);
12429 remote_get_noisy_reply ();
12430 if (strcmp (rs->buf, "OK"))
12431 error (_("Error on target while setting tracepoints."));
12432 }
12433
12434 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12435 {
12436 if (b->location != NULL)
12437 {
12438 strcpy (buf, "QTDPsrc:");
12439 encode_source_string (b->number, loc->address, "at",
12440 event_location_to_string (b->location.get ()),
12441 buf + strlen (buf), 2048 - strlen (buf));
12442 putpkt (buf);
12443 remote_get_noisy_reply ();
12444 if (strcmp (rs->buf, "OK"))
12445 warning (_("Target does not support source download."));
12446 }
12447 if (b->cond_string)
12448 {
12449 strcpy (buf, "QTDPsrc:");
12450 encode_source_string (b->number, loc->address,
12451 "cond", b->cond_string, buf + strlen (buf),
12452 2048 - strlen (buf));
12453 putpkt (buf);
12454 remote_get_noisy_reply ();
12455 if (strcmp (rs->buf, "OK"))
12456 warning (_("Target does not support source download."));
12457 }
12458 remote_download_command_source (b->number, loc->address,
12459 breakpoint_commands (b));
12460 }
12461 }
12462
12463 static int
12464 remote_can_download_tracepoint (struct target_ops *self)
12465 {
12466 struct remote_state *rs = get_remote_state ();
12467 struct trace_status *ts;
12468 int status;
12469
12470 /* Don't try to install tracepoints until we've relocated our
12471 symbols, and fetched and merged the target's tracepoint list with
12472 ours. */
12473 if (rs->starting_up)
12474 return 0;
12475
12476 ts = current_trace_status ();
12477 status = remote_get_trace_status (self, ts);
12478
12479 if (status == -1 || !ts->running_known || !ts->running)
12480 return 0;
12481
12482 /* If we are in a tracing experiment, but remote stub doesn't support
12483 installing tracepoint in trace, we have to return. */
12484 if (!remote_supports_install_in_trace ())
12485 return 0;
12486
12487 return 1;
12488 }
12489
12490
12491 static void
12492 remote_download_trace_state_variable (struct target_ops *self,
12493 struct trace_state_variable *tsv)
12494 {
12495 struct remote_state *rs = get_remote_state ();
12496 char *p;
12497
12498 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12499 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12500 tsv->builtin);
12501 p = rs->buf + strlen (rs->buf);
12502 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12503 error (_("Trace state variable name too long for tsv definition packet"));
12504 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12505 *p++ = '\0';
12506 putpkt (rs->buf);
12507 remote_get_noisy_reply ();
12508 if (*rs->buf == '\0')
12509 error (_("Target does not support this command."));
12510 if (strcmp (rs->buf, "OK") != 0)
12511 error (_("Error on target while downloading trace state variable."));
12512 }
12513
12514 static void
12515 remote_enable_tracepoint (struct target_ops *self,
12516 struct bp_location *location)
12517 {
12518 struct remote_state *rs = get_remote_state ();
12519 char addr_buf[40];
12520
12521 sprintf_vma (addr_buf, location->address);
12522 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12523 location->owner->number, addr_buf);
12524 putpkt (rs->buf);
12525 remote_get_noisy_reply ();
12526 if (*rs->buf == '\0')
12527 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12528 if (strcmp (rs->buf, "OK") != 0)
12529 error (_("Error on target while enabling tracepoint."));
12530 }
12531
12532 static void
12533 remote_disable_tracepoint (struct target_ops *self,
12534 struct bp_location *location)
12535 {
12536 struct remote_state *rs = get_remote_state ();
12537 char addr_buf[40];
12538
12539 sprintf_vma (addr_buf, location->address);
12540 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12541 location->owner->number, addr_buf);
12542 putpkt (rs->buf);
12543 remote_get_noisy_reply ();
12544 if (*rs->buf == '\0')
12545 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12546 if (strcmp (rs->buf, "OK") != 0)
12547 error (_("Error on target while disabling tracepoint."));
12548 }
12549
12550 static void
12551 remote_trace_set_readonly_regions (struct target_ops *self)
12552 {
12553 asection *s;
12554 bfd *abfd = NULL;
12555 bfd_size_type size;
12556 bfd_vma vma;
12557 int anysecs = 0;
12558 int offset = 0;
12559
12560 if (!exec_bfd)
12561 return; /* No information to give. */
12562
12563 struct remote_state *rs = get_remote_state ();
12564
12565 strcpy (rs->buf, "QTro");
12566 offset = strlen (rs->buf);
12567 for (s = exec_bfd->sections; s; s = s->next)
12568 {
12569 char tmp1[40], tmp2[40];
12570 int sec_length;
12571
12572 if ((s->flags & SEC_LOAD) == 0 ||
12573 /* (s->flags & SEC_CODE) == 0 || */
12574 (s->flags & SEC_READONLY) == 0)
12575 continue;
12576
12577 anysecs = 1;
12578 vma = bfd_get_section_vma (abfd, s);
12579 size = bfd_get_section_size (s);
12580 sprintf_vma (tmp1, vma);
12581 sprintf_vma (tmp2, vma + size);
12582 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12583 if (offset + sec_length + 1 > rs->buf_size)
12584 {
12585 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12586 warning (_("\
12587 Too many sections for read-only sections definition packet."));
12588 break;
12589 }
12590 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12591 tmp1, tmp2);
12592 offset += sec_length;
12593 }
12594 if (anysecs)
12595 {
12596 putpkt (rs->buf);
12597 getpkt (&rs->buf, &rs->buf_size, 0);
12598 }
12599 }
12600
12601 static void
12602 remote_trace_start (struct target_ops *self)
12603 {
12604 struct remote_state *rs = get_remote_state ();
12605
12606 putpkt ("QTStart");
12607 remote_get_noisy_reply ();
12608 if (*rs->buf == '\0')
12609 error (_("Target does not support this command."));
12610 if (strcmp (rs->buf, "OK") != 0)
12611 error (_("Bogus reply from target: %s"), rs->buf);
12612 }
12613
12614 static int
12615 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12616 {
12617 /* Initialize it just to avoid a GCC false warning. */
12618 char *p = NULL;
12619 /* FIXME we need to get register block size some other way. */
12620 extern int trace_regblock_size;
12621 enum packet_result result;
12622 struct remote_state *rs = get_remote_state ();
12623
12624 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12625 return -1;
12626
12627 trace_regblock_size
12628 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12629
12630 putpkt ("qTStatus");
12631
12632 TRY
12633 {
12634 p = remote_get_noisy_reply ();
12635 }
12636 CATCH (ex, RETURN_MASK_ERROR)
12637 {
12638 if (ex.error != TARGET_CLOSE_ERROR)
12639 {
12640 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12641 return -1;
12642 }
12643 throw_exception (ex);
12644 }
12645 END_CATCH
12646
12647 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12648
12649 /* If the remote target doesn't do tracing, flag it. */
12650 if (result == PACKET_UNKNOWN)
12651 return -1;
12652
12653 /* We're working with a live target. */
12654 ts->filename = NULL;
12655
12656 if (*p++ != 'T')
12657 error (_("Bogus trace status reply from target: %s"), rs->buf);
12658
12659 /* Function 'parse_trace_status' sets default value of each field of
12660 'ts' at first, so we don't have to do it here. */
12661 parse_trace_status (p, ts);
12662
12663 return ts->running;
12664 }
12665
12666 static void
12667 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12668 struct uploaded_tp *utp)
12669 {
12670 struct remote_state *rs = get_remote_state ();
12671 char *reply;
12672 struct bp_location *loc;
12673 struct tracepoint *tp = (struct tracepoint *) bp;
12674 size_t size = get_remote_packet_size ();
12675
12676 if (tp)
12677 {
12678 tp->hit_count = 0;
12679 tp->traceframe_usage = 0;
12680 for (loc = tp->loc; loc; loc = loc->next)
12681 {
12682 /* If the tracepoint was never downloaded, don't go asking for
12683 any status. */
12684 if (tp->number_on_target == 0)
12685 continue;
12686 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12687 phex_nz (loc->address, 0));
12688 putpkt (rs->buf);
12689 reply = remote_get_noisy_reply ();
12690 if (reply && *reply)
12691 {
12692 if (*reply == 'V')
12693 parse_tracepoint_status (reply + 1, bp, utp);
12694 }
12695 }
12696 }
12697 else if (utp)
12698 {
12699 utp->hit_count = 0;
12700 utp->traceframe_usage = 0;
12701 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12702 phex_nz (utp->addr, 0));
12703 putpkt (rs->buf);
12704 reply = remote_get_noisy_reply ();
12705 if (reply && *reply)
12706 {
12707 if (*reply == 'V')
12708 parse_tracepoint_status (reply + 1, bp, utp);
12709 }
12710 }
12711 }
12712
12713 static void
12714 remote_trace_stop (struct target_ops *self)
12715 {
12716 struct remote_state *rs = get_remote_state ();
12717
12718 putpkt ("QTStop");
12719 remote_get_noisy_reply ();
12720 if (*rs->buf == '\0')
12721 error (_("Target does not support this command."));
12722 if (strcmp (rs->buf, "OK") != 0)
12723 error (_("Bogus reply from target: %s"), rs->buf);
12724 }
12725
12726 static int
12727 remote_trace_find (struct target_ops *self,
12728 enum trace_find_type type, int num,
12729 CORE_ADDR addr1, CORE_ADDR addr2,
12730 int *tpp)
12731 {
12732 struct remote_state *rs = get_remote_state ();
12733 char *endbuf = rs->buf + get_remote_packet_size ();
12734 char *p, *reply;
12735 int target_frameno = -1, target_tracept = -1;
12736
12737 /* Lookups other than by absolute frame number depend on the current
12738 trace selected, so make sure it is correct on the remote end
12739 first. */
12740 if (type != tfind_number)
12741 set_remote_traceframe ();
12742
12743 p = rs->buf;
12744 strcpy (p, "QTFrame:");
12745 p = strchr (p, '\0');
12746 switch (type)
12747 {
12748 case tfind_number:
12749 xsnprintf (p, endbuf - p, "%x", num);
12750 break;
12751 case tfind_pc:
12752 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12753 break;
12754 case tfind_tp:
12755 xsnprintf (p, endbuf - p, "tdp:%x", num);
12756 break;
12757 case tfind_range:
12758 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12759 phex_nz (addr2, 0));
12760 break;
12761 case tfind_outside:
12762 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12763 phex_nz (addr2, 0));
12764 break;
12765 default:
12766 error (_("Unknown trace find type %d"), type);
12767 }
12768
12769 putpkt (rs->buf);
12770 reply = remote_get_noisy_reply ();
12771 if (*reply == '\0')
12772 error (_("Target does not support this command."));
12773
12774 while (reply && *reply)
12775 switch (*reply)
12776 {
12777 case 'F':
12778 p = ++reply;
12779 target_frameno = (int) strtol (p, &reply, 16);
12780 if (reply == p)
12781 error (_("Unable to parse trace frame number"));
12782 /* Don't update our remote traceframe number cache on failure
12783 to select a remote traceframe. */
12784 if (target_frameno == -1)
12785 return -1;
12786 break;
12787 case 'T':
12788 p = ++reply;
12789 target_tracept = (int) strtol (p, &reply, 16);
12790 if (reply == p)
12791 error (_("Unable to parse tracepoint number"));
12792 break;
12793 case 'O': /* "OK"? */
12794 if (reply[1] == 'K' && reply[2] == '\0')
12795 reply += 2;
12796 else
12797 error (_("Bogus reply from target: %s"), reply);
12798 break;
12799 default:
12800 error (_("Bogus reply from target: %s"), reply);
12801 }
12802 if (tpp)
12803 *tpp = target_tracept;
12804
12805 rs->remote_traceframe_number = target_frameno;
12806 return target_frameno;
12807 }
12808
12809 static int
12810 remote_get_trace_state_variable_value (struct target_ops *self,
12811 int tsvnum, LONGEST *val)
12812 {
12813 struct remote_state *rs = get_remote_state ();
12814 char *reply;
12815 ULONGEST uval;
12816
12817 set_remote_traceframe ();
12818
12819 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12820 putpkt (rs->buf);
12821 reply = remote_get_noisy_reply ();
12822 if (reply && *reply)
12823 {
12824 if (*reply == 'V')
12825 {
12826 unpack_varlen_hex (reply + 1, &uval);
12827 *val = (LONGEST) uval;
12828 return 1;
12829 }
12830 }
12831 return 0;
12832 }
12833
12834 static int
12835 remote_save_trace_data (struct target_ops *self, const char *filename)
12836 {
12837 struct remote_state *rs = get_remote_state ();
12838 char *p, *reply;
12839
12840 p = rs->buf;
12841 strcpy (p, "QTSave:");
12842 p += strlen (p);
12843 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12844 error (_("Remote file name too long for trace save packet"));
12845 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12846 *p++ = '\0';
12847 putpkt (rs->buf);
12848 reply = remote_get_noisy_reply ();
12849 if (*reply == '\0')
12850 error (_("Target does not support this command."));
12851 if (strcmp (reply, "OK") != 0)
12852 error (_("Bogus reply from target: %s"), reply);
12853 return 0;
12854 }
12855
12856 /* This is basically a memory transfer, but needs to be its own packet
12857 because we don't know how the target actually organizes its trace
12858 memory, plus we want to be able to ask for as much as possible, but
12859 not be unhappy if we don't get as much as we ask for. */
12860
12861 static LONGEST
12862 remote_get_raw_trace_data (struct target_ops *self,
12863 gdb_byte *buf, ULONGEST offset, LONGEST len)
12864 {
12865 struct remote_state *rs = get_remote_state ();
12866 char *reply;
12867 char *p;
12868 int rslt;
12869
12870 p = rs->buf;
12871 strcpy (p, "qTBuffer:");
12872 p += strlen (p);
12873 p += hexnumstr (p, offset);
12874 *p++ = ',';
12875 p += hexnumstr (p, len);
12876 *p++ = '\0';
12877
12878 putpkt (rs->buf);
12879 reply = remote_get_noisy_reply ();
12880 if (reply && *reply)
12881 {
12882 /* 'l' by itself means we're at the end of the buffer and
12883 there is nothing more to get. */
12884 if (*reply == 'l')
12885 return 0;
12886
12887 /* Convert the reply into binary. Limit the number of bytes to
12888 convert according to our passed-in buffer size, rather than
12889 what was returned in the packet; if the target is
12890 unexpectedly generous and gives us a bigger reply than we
12891 asked for, we don't want to crash. */
12892 rslt = hex2bin (reply, buf, len);
12893 return rslt;
12894 }
12895
12896 /* Something went wrong, flag as an error. */
12897 return -1;
12898 }
12899
12900 static void
12901 remote_set_disconnected_tracing (struct target_ops *self, int val)
12902 {
12903 struct remote_state *rs = get_remote_state ();
12904
12905 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12906 {
12907 char *reply;
12908
12909 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12910 putpkt (rs->buf);
12911 reply = remote_get_noisy_reply ();
12912 if (*reply == '\0')
12913 error (_("Target does not support this command."));
12914 if (strcmp (reply, "OK") != 0)
12915 error (_("Bogus reply from target: %s"), reply);
12916 }
12917 else if (val)
12918 warning (_("Target does not support disconnected tracing."));
12919 }
12920
12921 static int
12922 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12923 {
12924 struct thread_info *info = find_thread_ptid (ptid);
12925
12926 if (info && info->priv)
12927 return info->priv->core;
12928 return -1;
12929 }
12930
12931 static void
12932 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12933 {
12934 struct remote_state *rs = get_remote_state ();
12935 char *reply;
12936
12937 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12938 putpkt (rs->buf);
12939 reply = remote_get_noisy_reply ();
12940 if (*reply == '\0')
12941 error (_("Target does not support this command."));
12942 if (strcmp (reply, "OK") != 0)
12943 error (_("Bogus reply from target: %s"), reply);
12944 }
12945
12946 static traceframe_info_up
12947 remote_traceframe_info (struct target_ops *self)
12948 {
12949 gdb::unique_xmalloc_ptr<char> text
12950 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12951 NULL);
12952 if (text != NULL)
12953 return parse_traceframe_info (text.get ());
12954
12955 return NULL;
12956 }
12957
12958 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12959 instruction on which a fast tracepoint may be placed. Returns -1
12960 if the packet is not supported, and 0 if the minimum instruction
12961 length is unknown. */
12962
12963 static int
12964 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12965 {
12966 struct remote_state *rs = get_remote_state ();
12967 char *reply;
12968
12969 /* If we're not debugging a process yet, the IPA can't be
12970 loaded. */
12971 if (!target_has_execution)
12972 return 0;
12973
12974 /* Make sure the remote is pointing at the right process. */
12975 set_general_process ();
12976
12977 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12978 putpkt (rs->buf);
12979 reply = remote_get_noisy_reply ();
12980 if (*reply == '\0')
12981 return -1;
12982 else
12983 {
12984 ULONGEST min_insn_len;
12985
12986 unpack_varlen_hex (reply, &min_insn_len);
12987
12988 return (int) min_insn_len;
12989 }
12990 }
12991
12992 static void
12993 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12994 {
12995 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12996 {
12997 struct remote_state *rs = get_remote_state ();
12998 char *buf = rs->buf;
12999 char *endbuf = rs->buf + get_remote_packet_size ();
13000 enum packet_result result;
13001
13002 gdb_assert (val >= 0 || val == -1);
13003 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13004 /* Send -1 as literal "-1" to avoid host size dependency. */
13005 if (val < 0)
13006 {
13007 *buf++ = '-';
13008 buf += hexnumstr (buf, (ULONGEST) -val);
13009 }
13010 else
13011 buf += hexnumstr (buf, (ULONGEST) val);
13012
13013 putpkt (rs->buf);
13014 remote_get_noisy_reply ();
13015 result = packet_ok (rs->buf,
13016 &remote_protocol_packets[PACKET_QTBuffer_size]);
13017
13018 if (result != PACKET_OK)
13019 warning (_("Bogus reply from target: %s"), rs->buf);
13020 }
13021 }
13022
13023 static int
13024 remote_set_trace_notes (struct target_ops *self,
13025 const char *user, const char *notes,
13026 const char *stop_notes)
13027 {
13028 struct remote_state *rs = get_remote_state ();
13029 char *reply;
13030 char *buf = rs->buf;
13031 char *endbuf = rs->buf + get_remote_packet_size ();
13032 int nbytes;
13033
13034 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13035 if (user)
13036 {
13037 buf += xsnprintf (buf, endbuf - buf, "user:");
13038 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13039 buf += 2 * nbytes;
13040 *buf++ = ';';
13041 }
13042 if (notes)
13043 {
13044 buf += xsnprintf (buf, endbuf - buf, "notes:");
13045 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13046 buf += 2 * nbytes;
13047 *buf++ = ';';
13048 }
13049 if (stop_notes)
13050 {
13051 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13052 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13053 buf += 2 * nbytes;
13054 *buf++ = ';';
13055 }
13056 /* Ensure the buffer is terminated. */
13057 *buf = '\0';
13058
13059 putpkt (rs->buf);
13060 reply = remote_get_noisy_reply ();
13061 if (*reply == '\0')
13062 return 0;
13063
13064 if (strcmp (reply, "OK") != 0)
13065 error (_("Bogus reply from target: %s"), reply);
13066
13067 return 1;
13068 }
13069
13070 static int
13071 remote_use_agent (struct target_ops *self, int use)
13072 {
13073 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13074 {
13075 struct remote_state *rs = get_remote_state ();
13076
13077 /* If the stub supports QAgent. */
13078 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13079 putpkt (rs->buf);
13080 getpkt (&rs->buf, &rs->buf_size, 0);
13081
13082 if (strcmp (rs->buf, "OK") == 0)
13083 {
13084 use_agent = use;
13085 return 1;
13086 }
13087 }
13088
13089 return 0;
13090 }
13091
13092 static int
13093 remote_can_use_agent (struct target_ops *self)
13094 {
13095 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13096 }
13097
13098 struct btrace_target_info
13099 {
13100 /* The ptid of the traced thread. */
13101 ptid_t ptid;
13102
13103 /* The obtained branch trace configuration. */
13104 struct btrace_config conf;
13105 };
13106
13107 /* Reset our idea of our target's btrace configuration. */
13108
13109 static void
13110 remote_btrace_reset (void)
13111 {
13112 struct remote_state *rs = get_remote_state ();
13113
13114 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13115 }
13116
13117 /* Check whether the target supports branch tracing. */
13118
13119 static int
13120 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13121 {
13122 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13123 return 0;
13124 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13125 return 0;
13126
13127 switch (format)
13128 {
13129 case BTRACE_FORMAT_NONE:
13130 return 0;
13131
13132 case BTRACE_FORMAT_BTS:
13133 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13134
13135 case BTRACE_FORMAT_PT:
13136 /* The trace is decoded on the host. Even if our target supports it,
13137 we still need to have libipt to decode the trace. */
13138 #if defined (HAVE_LIBIPT)
13139 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13140 #else /* !defined (HAVE_LIBIPT) */
13141 return 0;
13142 #endif /* !defined (HAVE_LIBIPT) */
13143 }
13144
13145 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13146 }
13147
13148 /* Synchronize the configuration with the target. */
13149
13150 static void
13151 btrace_sync_conf (const struct btrace_config *conf)
13152 {
13153 struct packet_config *packet;
13154 struct remote_state *rs;
13155 char *buf, *pos, *endbuf;
13156
13157 rs = get_remote_state ();
13158 buf = rs->buf;
13159 endbuf = buf + get_remote_packet_size ();
13160
13161 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13162 if (packet_config_support (packet) == PACKET_ENABLE
13163 && conf->bts.size != rs->btrace_config.bts.size)
13164 {
13165 pos = buf;
13166 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13167 conf->bts.size);
13168
13169 putpkt (buf);
13170 getpkt (&buf, &rs->buf_size, 0);
13171
13172 if (packet_ok (buf, packet) == PACKET_ERROR)
13173 {
13174 if (buf[0] == 'E' && buf[1] == '.')
13175 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13176 else
13177 error (_("Failed to configure the BTS buffer size."));
13178 }
13179
13180 rs->btrace_config.bts.size = conf->bts.size;
13181 }
13182
13183 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13184 if (packet_config_support (packet) == PACKET_ENABLE
13185 && conf->pt.size != rs->btrace_config.pt.size)
13186 {
13187 pos = buf;
13188 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13189 conf->pt.size);
13190
13191 putpkt (buf);
13192 getpkt (&buf, &rs->buf_size, 0);
13193
13194 if (packet_ok (buf, packet) == PACKET_ERROR)
13195 {
13196 if (buf[0] == 'E' && buf[1] == '.')
13197 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13198 else
13199 error (_("Failed to configure the trace buffer size."));
13200 }
13201
13202 rs->btrace_config.pt.size = conf->pt.size;
13203 }
13204 }
13205
13206 /* Read the current thread's btrace configuration from the target and
13207 store it into CONF. */
13208
13209 static void
13210 btrace_read_config (struct btrace_config *conf)
13211 {
13212 gdb::unique_xmalloc_ptr<char> xml
13213 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13214 if (xml != NULL)
13215 parse_xml_btrace_conf (conf, xml.get ());
13216 }
13217
13218 /* Maybe reopen target btrace. */
13219
13220 static void
13221 remote_btrace_maybe_reopen (void)
13222 {
13223 struct remote_state *rs = get_remote_state ();
13224 struct thread_info *tp;
13225 int btrace_target_pushed = 0;
13226 int warned = 0;
13227
13228 scoped_restore_current_thread restore_thread;
13229
13230 ALL_NON_EXITED_THREADS (tp)
13231 {
13232 set_general_thread (tp->ptid);
13233
13234 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13235 btrace_read_config (&rs->btrace_config);
13236
13237 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13238 continue;
13239
13240 #if !defined (HAVE_LIBIPT)
13241 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13242 {
13243 if (!warned)
13244 {
13245 warned = 1;
13246 warning (_("GDB does not support Intel Processor Trace. "
13247 "\"record\" will not work in this session."));
13248 }
13249
13250 continue;
13251 }
13252 #endif /* !defined (HAVE_LIBIPT) */
13253
13254 /* Push target, once, but before anything else happens. This way our
13255 changes to the threads will be cleaned up by unpushing the target
13256 in case btrace_read_config () throws. */
13257 if (!btrace_target_pushed)
13258 {
13259 btrace_target_pushed = 1;
13260 record_btrace_push_target ();
13261 printf_filtered (_("Target is recording using %s.\n"),
13262 btrace_format_string (rs->btrace_config.format));
13263 }
13264
13265 tp->btrace.target = XCNEW (struct btrace_target_info);
13266 tp->btrace.target->ptid = tp->ptid;
13267 tp->btrace.target->conf = rs->btrace_config;
13268 }
13269 }
13270
13271 /* Enable branch tracing. */
13272
13273 static struct btrace_target_info *
13274 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13275 const struct btrace_config *conf)
13276 {
13277 struct btrace_target_info *tinfo = NULL;
13278 struct packet_config *packet = NULL;
13279 struct remote_state *rs = get_remote_state ();
13280 char *buf = rs->buf;
13281 char *endbuf = rs->buf + get_remote_packet_size ();
13282
13283 switch (conf->format)
13284 {
13285 case BTRACE_FORMAT_BTS:
13286 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13287 break;
13288
13289 case BTRACE_FORMAT_PT:
13290 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13291 break;
13292 }
13293
13294 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13295 error (_("Target does not support branch tracing."));
13296
13297 btrace_sync_conf (conf);
13298
13299 set_general_thread (ptid);
13300
13301 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13302 putpkt (rs->buf);
13303 getpkt (&rs->buf, &rs->buf_size, 0);
13304
13305 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13306 {
13307 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13308 error (_("Could not enable branch tracing for %s: %s"),
13309 target_pid_to_str (ptid), rs->buf + 2);
13310 else
13311 error (_("Could not enable branch tracing for %s."),
13312 target_pid_to_str (ptid));
13313 }
13314
13315 tinfo = XCNEW (struct btrace_target_info);
13316 tinfo->ptid = ptid;
13317
13318 /* If we fail to read the configuration, we lose some information, but the
13319 tracing itself is not impacted. */
13320 TRY
13321 {
13322 btrace_read_config (&tinfo->conf);
13323 }
13324 CATCH (err, RETURN_MASK_ERROR)
13325 {
13326 if (err.message != NULL)
13327 warning ("%s", err.message);
13328 }
13329 END_CATCH
13330
13331 return tinfo;
13332 }
13333
13334 /* Disable branch tracing. */
13335
13336 static void
13337 remote_disable_btrace (struct target_ops *self,
13338 struct btrace_target_info *tinfo)
13339 {
13340 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13341 struct remote_state *rs = get_remote_state ();
13342 char *buf = rs->buf;
13343 char *endbuf = rs->buf + get_remote_packet_size ();
13344
13345 if (packet_config_support (packet) != PACKET_ENABLE)
13346 error (_("Target does not support branch tracing."));
13347
13348 set_general_thread (tinfo->ptid);
13349
13350 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13351 putpkt (rs->buf);
13352 getpkt (&rs->buf, &rs->buf_size, 0);
13353
13354 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13355 {
13356 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13357 error (_("Could not disable branch tracing for %s: %s"),
13358 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13359 else
13360 error (_("Could not disable branch tracing for %s."),
13361 target_pid_to_str (tinfo->ptid));
13362 }
13363
13364 xfree (tinfo);
13365 }
13366
13367 /* Teardown branch tracing. */
13368
13369 static void
13370 remote_teardown_btrace (struct target_ops *self,
13371 struct btrace_target_info *tinfo)
13372 {
13373 /* We must not talk to the target during teardown. */
13374 xfree (tinfo);
13375 }
13376
13377 /* Read the branch trace. */
13378
13379 static enum btrace_error
13380 remote_read_btrace (struct target_ops *self,
13381 struct btrace_data *btrace,
13382 struct btrace_target_info *tinfo,
13383 enum btrace_read_type type)
13384 {
13385 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13386 const char *annex;
13387
13388 if (packet_config_support (packet) != PACKET_ENABLE)
13389 error (_("Target does not support branch tracing."));
13390
13391 #if !defined(HAVE_LIBEXPAT)
13392 error (_("Cannot process branch tracing result. XML parsing not supported."));
13393 #endif
13394
13395 switch (type)
13396 {
13397 case BTRACE_READ_ALL:
13398 annex = "all";
13399 break;
13400 case BTRACE_READ_NEW:
13401 annex = "new";
13402 break;
13403 case BTRACE_READ_DELTA:
13404 annex = "delta";
13405 break;
13406 default:
13407 internal_error (__FILE__, __LINE__,
13408 _("Bad branch tracing read type: %u."),
13409 (unsigned int) type);
13410 }
13411
13412 gdb::unique_xmalloc_ptr<char> xml
13413 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13414 if (xml == NULL)
13415 return BTRACE_ERR_UNKNOWN;
13416
13417 parse_xml_btrace (btrace, xml.get ());
13418
13419 return BTRACE_ERR_NONE;
13420 }
13421
13422 static const struct btrace_config *
13423 remote_btrace_conf (struct target_ops *self,
13424 const struct btrace_target_info *tinfo)
13425 {
13426 return &tinfo->conf;
13427 }
13428
13429 static int
13430 remote_augmented_libraries_svr4_read (struct target_ops *self)
13431 {
13432 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13433 == PACKET_ENABLE);
13434 }
13435
13436 /* Implementation of to_load. */
13437
13438 static void
13439 remote_load (struct target_ops *self, const char *name, int from_tty)
13440 {
13441 generic_load (name, from_tty);
13442 }
13443
13444 /* Accepts an integer PID; returns a string representing a file that
13445 can be opened on the remote side to get the symbols for the child
13446 process. Returns NULL if the operation is not supported. */
13447
13448 static char *
13449 remote_pid_to_exec_file (struct target_ops *self, int pid)
13450 {
13451 static gdb::unique_xmalloc_ptr<char> filename;
13452 struct inferior *inf;
13453 char *annex = NULL;
13454
13455 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13456 return NULL;
13457
13458 inf = find_inferior_pid (pid);
13459 if (inf == NULL)
13460 internal_error (__FILE__, __LINE__,
13461 _("not currently attached to process %d"), pid);
13462
13463 if (!inf->fake_pid_p)
13464 {
13465 const int annex_size = 9;
13466
13467 annex = (char *) alloca (annex_size);
13468 xsnprintf (annex, annex_size, "%x", pid);
13469 }
13470
13471 filename = target_read_stralloc (&current_target,
13472 TARGET_OBJECT_EXEC_FILE, annex);
13473
13474 return filename.get ();
13475 }
13476
13477 /* Implement the to_can_do_single_step target_ops method. */
13478
13479 static int
13480 remote_can_do_single_step (struct target_ops *ops)
13481 {
13482 /* We can only tell whether target supports single step or not by
13483 supported s and S vCont actions if the stub supports vContSupported
13484 feature. If the stub doesn't support vContSupported feature,
13485 we have conservatively to think target doesn't supports single
13486 step. */
13487 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13488 {
13489 struct remote_state *rs = get_remote_state ();
13490
13491 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13492 remote_vcont_probe (rs);
13493
13494 return rs->supports_vCont.s && rs->supports_vCont.S;
13495 }
13496 else
13497 return 0;
13498 }
13499
13500 /* Implementation of the to_execution_direction method for the remote
13501 target. */
13502
13503 static enum exec_direction_kind
13504 remote_execution_direction (struct target_ops *self)
13505 {
13506 struct remote_state *rs = get_remote_state ();
13507
13508 return rs->last_resume_exec_dir;
13509 }
13510
13511 /* Return pointer to the thread_info struct which corresponds to
13512 THREAD_HANDLE (having length HANDLE_LEN). */
13513
13514 static struct thread_info *
13515 remote_thread_handle_to_thread_info (struct target_ops *ops,
13516 const gdb_byte *thread_handle,
13517 int handle_len,
13518 struct inferior *inf)
13519 {
13520 struct thread_info *tp;
13521
13522 ALL_NON_EXITED_THREADS (tp)
13523 {
13524 struct private_thread_info *priv = get_private_info_thread (tp);
13525
13526 if (tp->inf == inf && priv != NULL)
13527 {
13528 if (handle_len != priv->thread_handle->size ())
13529 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13530 handle_len, priv->thread_handle->size ());
13531 if (memcmp (thread_handle, priv->thread_handle->data (),
13532 handle_len) == 0)
13533 return tp;
13534 }
13535 }
13536
13537 return NULL;
13538 }
13539
13540 static void
13541 init_remote_ops (void)
13542 {
13543 remote_ops.to_shortname = "remote";
13544 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13545 remote_ops.to_doc =
13546 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13547 Specify the serial device it is connected to\n\
13548 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13549 remote_ops.to_open = remote_open;
13550 remote_ops.to_close = remote_close;
13551 remote_ops.to_detach = remote_detach;
13552 remote_ops.to_disconnect = remote_disconnect;
13553 remote_ops.to_resume = remote_resume;
13554 remote_ops.to_commit_resume = remote_commit_resume;
13555 remote_ops.to_wait = remote_wait;
13556 remote_ops.to_fetch_registers = remote_fetch_registers;
13557 remote_ops.to_store_registers = remote_store_registers;
13558 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13559 remote_ops.to_files_info = remote_files_info;
13560 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13561 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13562 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13563 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13564 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13565 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13566 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13567 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13568 remote_ops.to_watchpoint_addr_within_range =
13569 remote_watchpoint_addr_within_range;
13570 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13571 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13572 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13573 remote_ops.to_region_ok_for_hw_watchpoint
13574 = remote_region_ok_for_hw_watchpoint;
13575 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13576 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13577 remote_ops.to_kill = remote_kill;
13578 remote_ops.to_load = remote_load;
13579 remote_ops.to_mourn_inferior = remote_mourn;
13580 remote_ops.to_pass_signals = remote_pass_signals;
13581 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13582 remote_ops.to_program_signals = remote_program_signals;
13583 remote_ops.to_thread_alive = remote_thread_alive;
13584 remote_ops.to_thread_name = remote_thread_name;
13585 remote_ops.to_update_thread_list = remote_update_thread_list;
13586 remote_ops.to_pid_to_str = remote_pid_to_str;
13587 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13588 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13589 remote_ops.to_stop = remote_stop;
13590 remote_ops.to_interrupt = remote_interrupt;
13591 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13592 remote_ops.to_xfer_partial = remote_xfer_partial;
13593 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13594 remote_ops.to_rcmd = remote_rcmd;
13595 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13596 remote_ops.to_log_command = serial_log_command;
13597 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13598 remote_ops.to_stratum = process_stratum;
13599 remote_ops.to_has_all_memory = default_child_has_all_memory;
13600 remote_ops.to_has_memory = default_child_has_memory;
13601 remote_ops.to_has_stack = default_child_has_stack;
13602 remote_ops.to_has_registers = default_child_has_registers;
13603 remote_ops.to_has_execution = default_child_has_execution;
13604 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13605 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13606 remote_ops.to_magic = OPS_MAGIC;
13607 remote_ops.to_memory_map = remote_memory_map;
13608 remote_ops.to_flash_erase = remote_flash_erase;
13609 remote_ops.to_flash_done = remote_flash_done;
13610 remote_ops.to_read_description = remote_read_description;
13611 remote_ops.to_search_memory = remote_search_memory;
13612 remote_ops.to_can_async_p = remote_can_async_p;
13613 remote_ops.to_is_async_p = remote_is_async_p;
13614 remote_ops.to_async = remote_async;
13615 remote_ops.to_thread_events = remote_thread_events;
13616 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13617 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13618 remote_ops.to_terminal_ours = remote_terminal_ours;
13619 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13620 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13621 remote_ops.to_supports_disable_randomization
13622 = remote_supports_disable_randomization;
13623 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13624 remote_ops.to_fileio_open = remote_hostio_open;
13625 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13626 remote_ops.to_fileio_pread = remote_hostio_pread;
13627 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13628 remote_ops.to_fileio_close = remote_hostio_close;
13629 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13630 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13631 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13632 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13633 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13634 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13635 remote_ops.to_trace_init = remote_trace_init;
13636 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13637 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13638 remote_ops.to_download_trace_state_variable
13639 = remote_download_trace_state_variable;
13640 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13641 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13642 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13643 remote_ops.to_trace_start = remote_trace_start;
13644 remote_ops.to_get_trace_status = remote_get_trace_status;
13645 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13646 remote_ops.to_trace_stop = remote_trace_stop;
13647 remote_ops.to_trace_find = remote_trace_find;
13648 remote_ops.to_get_trace_state_variable_value
13649 = remote_get_trace_state_variable_value;
13650 remote_ops.to_save_trace_data = remote_save_trace_data;
13651 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13652 remote_ops.to_upload_trace_state_variables
13653 = remote_upload_trace_state_variables;
13654 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13655 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13656 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13657 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13658 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13659 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13660 remote_ops.to_core_of_thread = remote_core_of_thread;
13661 remote_ops.to_verify_memory = remote_verify_memory;
13662 remote_ops.to_get_tib_address = remote_get_tib_address;
13663 remote_ops.to_set_permissions = remote_set_permissions;
13664 remote_ops.to_static_tracepoint_marker_at
13665 = remote_static_tracepoint_marker_at;
13666 remote_ops.to_static_tracepoint_markers_by_strid
13667 = remote_static_tracepoint_markers_by_strid;
13668 remote_ops.to_traceframe_info = remote_traceframe_info;
13669 remote_ops.to_use_agent = remote_use_agent;
13670 remote_ops.to_can_use_agent = remote_can_use_agent;
13671 remote_ops.to_supports_btrace = remote_supports_btrace;
13672 remote_ops.to_enable_btrace = remote_enable_btrace;
13673 remote_ops.to_disable_btrace = remote_disable_btrace;
13674 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13675 remote_ops.to_read_btrace = remote_read_btrace;
13676 remote_ops.to_btrace_conf = remote_btrace_conf;
13677 remote_ops.to_augmented_libraries_svr4_read =
13678 remote_augmented_libraries_svr4_read;
13679 remote_ops.to_follow_fork = remote_follow_fork;
13680 remote_ops.to_follow_exec = remote_follow_exec;
13681 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13682 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13683 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13684 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13685 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13686 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13687 remote_ops.to_execution_direction = remote_execution_direction;
13688 remote_ops.to_thread_handle_to_thread_info =
13689 remote_thread_handle_to_thread_info;
13690 }
13691
13692 /* Set up the extended remote vector by making a copy of the standard
13693 remote vector and adding to it. */
13694
13695 static void
13696 init_extended_remote_ops (void)
13697 {
13698 extended_remote_ops = remote_ops;
13699
13700 extended_remote_ops.to_shortname = "extended-remote";
13701 extended_remote_ops.to_longname =
13702 "Extended remote serial target in gdb-specific protocol";
13703 extended_remote_ops.to_doc =
13704 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13705 Specify the serial device it is connected to (e.g. /dev/ttya).";
13706 extended_remote_ops.to_open = extended_remote_open;
13707 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13708 extended_remote_ops.to_detach = extended_remote_detach;
13709 extended_remote_ops.to_attach = extended_remote_attach;
13710 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13711 extended_remote_ops.to_supports_disable_randomization
13712 = extended_remote_supports_disable_randomization;
13713 }
13714
13715 static int
13716 remote_can_async_p (struct target_ops *ops)
13717 {
13718 struct remote_state *rs = get_remote_state ();
13719
13720 /* We don't go async if the user has explicitly prevented it with the
13721 "maint set target-async" command. */
13722 if (!target_async_permitted)
13723 return 0;
13724
13725 /* We're async whenever the serial device is. */
13726 return serial_can_async_p (rs->remote_desc);
13727 }
13728
13729 static int
13730 remote_is_async_p (struct target_ops *ops)
13731 {
13732 struct remote_state *rs = get_remote_state ();
13733
13734 if (!target_async_permitted)
13735 /* We only enable async when the user specifically asks for it. */
13736 return 0;
13737
13738 /* We're async whenever the serial device is. */
13739 return serial_is_async_p (rs->remote_desc);
13740 }
13741
13742 /* Pass the SERIAL event on and up to the client. One day this code
13743 will be able to delay notifying the client of an event until the
13744 point where an entire packet has been received. */
13745
13746 static serial_event_ftype remote_async_serial_handler;
13747
13748 static void
13749 remote_async_serial_handler (struct serial *scb, void *context)
13750 {
13751 /* Don't propogate error information up to the client. Instead let
13752 the client find out about the error by querying the target. */
13753 inferior_event_handler (INF_REG_EVENT, NULL);
13754 }
13755
13756 static void
13757 remote_async_inferior_event_handler (gdb_client_data data)
13758 {
13759 inferior_event_handler (INF_REG_EVENT, NULL);
13760 }
13761
13762 static void
13763 remote_async (struct target_ops *ops, int enable)
13764 {
13765 struct remote_state *rs = get_remote_state ();
13766
13767 if (enable)
13768 {
13769 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13770
13771 /* If there are pending events in the stop reply queue tell the
13772 event loop to process them. */
13773 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13774 mark_async_event_handler (remote_async_inferior_event_token);
13775 /* For simplicity, below we clear the pending events token
13776 without remembering whether it is marked, so here we always
13777 mark it. If there's actually no pending notification to
13778 process, this ends up being a no-op (other than a spurious
13779 event-loop wakeup). */
13780 if (target_is_non_stop_p ())
13781 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13782 }
13783 else
13784 {
13785 serial_async (rs->remote_desc, NULL, NULL);
13786 /* If the core is disabling async, it doesn't want to be
13787 disturbed with target events. Clear all async event sources
13788 too. */
13789 clear_async_event_handler (remote_async_inferior_event_token);
13790 if (target_is_non_stop_p ())
13791 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13792 }
13793 }
13794
13795 /* Implementation of the to_thread_events method. */
13796
13797 static void
13798 remote_thread_events (struct target_ops *ops, int enable)
13799 {
13800 struct remote_state *rs = get_remote_state ();
13801 size_t size = get_remote_packet_size ();
13802
13803 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13804 return;
13805
13806 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13807 putpkt (rs->buf);
13808 getpkt (&rs->buf, &rs->buf_size, 0);
13809
13810 switch (packet_ok (rs->buf,
13811 &remote_protocol_packets[PACKET_QThreadEvents]))
13812 {
13813 case PACKET_OK:
13814 if (strcmp (rs->buf, "OK") != 0)
13815 error (_("Remote refused setting thread events: %s"), rs->buf);
13816 break;
13817 case PACKET_ERROR:
13818 warning (_("Remote failure reply: %s"), rs->buf);
13819 break;
13820 case PACKET_UNKNOWN:
13821 break;
13822 }
13823 }
13824
13825 static void
13826 set_remote_cmd (const char *args, int from_tty)
13827 {
13828 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13829 }
13830
13831 static void
13832 show_remote_cmd (const char *args, int from_tty)
13833 {
13834 /* We can't just use cmd_show_list here, because we want to skip
13835 the redundant "show remote Z-packet" and the legacy aliases. */
13836 struct cmd_list_element *list = remote_show_cmdlist;
13837 struct ui_out *uiout = current_uiout;
13838
13839 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13840 for (; list != NULL; list = list->next)
13841 if (strcmp (list->name, "Z-packet") == 0)
13842 continue;
13843 else if (list->type == not_set_cmd)
13844 /* Alias commands are exactly like the original, except they
13845 don't have the normal type. */
13846 continue;
13847 else
13848 {
13849 ui_out_emit_tuple option_emitter (uiout, "option");
13850
13851 uiout->field_string ("name", list->name);
13852 uiout->text (": ");
13853 if (list->type == show_cmd)
13854 do_show_command (NULL, from_tty, list);
13855 else
13856 cmd_func (list, NULL, from_tty);
13857 }
13858 }
13859
13860
13861 /* Function to be called whenever a new objfile (shlib) is detected. */
13862 static void
13863 remote_new_objfile (struct objfile *objfile)
13864 {
13865 struct remote_state *rs = get_remote_state ();
13866
13867 if (rs->remote_desc != 0) /* Have a remote connection. */
13868 remote_check_symbols ();
13869 }
13870
13871 /* Pull all the tracepoints defined on the target and create local
13872 data structures representing them. We don't want to create real
13873 tracepoints yet, we don't want to mess up the user's existing
13874 collection. */
13875
13876 static int
13877 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13878 {
13879 struct remote_state *rs = get_remote_state ();
13880 char *p;
13881
13882 /* Ask for a first packet of tracepoint definition. */
13883 putpkt ("qTfP");
13884 getpkt (&rs->buf, &rs->buf_size, 0);
13885 p = rs->buf;
13886 while (*p && *p != 'l')
13887 {
13888 parse_tracepoint_definition (p, utpp);
13889 /* Ask for another packet of tracepoint definition. */
13890 putpkt ("qTsP");
13891 getpkt (&rs->buf, &rs->buf_size, 0);
13892 p = rs->buf;
13893 }
13894 return 0;
13895 }
13896
13897 static int
13898 remote_upload_trace_state_variables (struct target_ops *self,
13899 struct uploaded_tsv **utsvp)
13900 {
13901 struct remote_state *rs = get_remote_state ();
13902 char *p;
13903
13904 /* Ask for a first packet of variable definition. */
13905 putpkt ("qTfV");
13906 getpkt (&rs->buf, &rs->buf_size, 0);
13907 p = rs->buf;
13908 while (*p && *p != 'l')
13909 {
13910 parse_tsv_definition (p, utsvp);
13911 /* Ask for another packet of variable definition. */
13912 putpkt ("qTsV");
13913 getpkt (&rs->buf, &rs->buf_size, 0);
13914 p = rs->buf;
13915 }
13916 return 0;
13917 }
13918
13919 /* The "set/show range-stepping" show hook. */
13920
13921 static void
13922 show_range_stepping (struct ui_file *file, int from_tty,
13923 struct cmd_list_element *c,
13924 const char *value)
13925 {
13926 fprintf_filtered (file,
13927 _("Debugger's willingness to use range stepping "
13928 "is %s.\n"), value);
13929 }
13930
13931 /* The "set/show range-stepping" set hook. */
13932
13933 static void
13934 set_range_stepping (const char *ignore_args, int from_tty,
13935 struct cmd_list_element *c)
13936 {
13937 struct remote_state *rs = get_remote_state ();
13938
13939 /* Whene enabling, check whether range stepping is actually
13940 supported by the target, and warn if not. */
13941 if (use_range_stepping)
13942 {
13943 if (rs->remote_desc != NULL)
13944 {
13945 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13946 remote_vcont_probe (rs);
13947
13948 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13949 && rs->supports_vCont.r)
13950 return;
13951 }
13952
13953 warning (_("Range stepping is not supported by the current target"));
13954 }
13955 }
13956
13957 void
13958 _initialize_remote (void)
13959 {
13960 struct cmd_list_element *cmd;
13961 const char *cmd_name;
13962
13963 /* architecture specific data */
13964 remote_gdbarch_data_handle =
13965 gdbarch_data_register_post_init (init_remote_state);
13966 remote_g_packet_data_handle =
13967 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13968
13969 remote_pspace_data
13970 = register_program_space_data_with_cleanup (NULL,
13971 remote_pspace_data_cleanup);
13972
13973 /* Initialize the per-target state. At the moment there is only one
13974 of these, not one per target. Only one target is active at a
13975 time. */
13976 remote_state = new_remote_state ();
13977
13978 init_remote_ops ();
13979 add_target (&remote_ops);
13980
13981 init_extended_remote_ops ();
13982 add_target (&extended_remote_ops);
13983
13984 /* Hook into new objfile notification. */
13985 observer_attach_new_objfile (remote_new_objfile);
13986 /* We're no longer interested in notification events of an inferior
13987 when it exits. */
13988 observer_attach_inferior_exit (discard_pending_stop_replies);
13989
13990 #if 0
13991 init_remote_threadtests ();
13992 #endif
13993
13994 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13995 /* set/show remote ... */
13996
13997 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13998 Remote protocol specific variables\n\
13999 Configure various remote-protocol specific variables such as\n\
14000 the packets being used"),
14001 &remote_set_cmdlist, "set remote ",
14002 0 /* allow-unknown */, &setlist);
14003 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14004 Remote protocol specific variables\n\
14005 Configure various remote-protocol specific variables such as\n\
14006 the packets being used"),
14007 &remote_show_cmdlist, "show remote ",
14008 0 /* allow-unknown */, &showlist);
14009
14010 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14011 Compare section data on target to the exec file.\n\
14012 Argument is a single section name (default: all loaded sections).\n\
14013 To compare only read-only loaded sections, specify the -r option."),
14014 &cmdlist);
14015
14016 add_cmd ("packet", class_maintenance, packet_command, _("\
14017 Send an arbitrary packet to a remote target.\n\
14018 maintenance packet TEXT\n\
14019 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14020 this command sends the string TEXT to the inferior, and displays the\n\
14021 response packet. GDB supplies the initial `$' character, and the\n\
14022 terminating `#' character and checksum."),
14023 &maintenancelist);
14024
14025 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14026 Set whether to send break if interrupted."), _("\
14027 Show whether to send break if interrupted."), _("\
14028 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14029 set_remotebreak, show_remotebreak,
14030 &setlist, &showlist);
14031 cmd_name = "remotebreak";
14032 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14033 deprecate_cmd (cmd, "set remote interrupt-sequence");
14034 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14035 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14036 deprecate_cmd (cmd, "show remote interrupt-sequence");
14037
14038 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14039 interrupt_sequence_modes, &interrupt_sequence_mode,
14040 _("\
14041 Set interrupt sequence to remote target."), _("\
14042 Show interrupt sequence to remote target."), _("\
14043 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14044 NULL, show_interrupt_sequence,
14045 &remote_set_cmdlist,
14046 &remote_show_cmdlist);
14047
14048 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14049 &interrupt_on_connect, _("\
14050 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14051 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14052 If set, interrupt sequence is sent to remote target."),
14053 NULL, NULL,
14054 &remote_set_cmdlist, &remote_show_cmdlist);
14055
14056 /* Install commands for configuring memory read/write packets. */
14057
14058 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14059 Set the maximum number of bytes per memory write packet (deprecated)."),
14060 &setlist);
14061 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14062 Show the maximum number of bytes per memory write packet (deprecated)."),
14063 &showlist);
14064 add_cmd ("memory-write-packet-size", no_class,
14065 set_memory_write_packet_size, _("\
14066 Set the maximum number of bytes per memory-write packet.\n\
14067 Specify the number of bytes in a packet or 0 (zero) for the\n\
14068 default packet size. The actual limit is further reduced\n\
14069 dependent on the target. Specify ``fixed'' to disable the\n\
14070 further restriction and ``limit'' to enable that restriction."),
14071 &remote_set_cmdlist);
14072 add_cmd ("memory-read-packet-size", no_class,
14073 set_memory_read_packet_size, _("\
14074 Set the maximum number of bytes per memory-read packet.\n\
14075 Specify the number of bytes in a packet or 0 (zero) for the\n\
14076 default packet size. The actual limit is further reduced\n\
14077 dependent on the target. Specify ``fixed'' to disable the\n\
14078 further restriction and ``limit'' to enable that restriction."),
14079 &remote_set_cmdlist);
14080 add_cmd ("memory-write-packet-size", no_class,
14081 show_memory_write_packet_size,
14082 _("Show the maximum number of bytes per memory-write packet."),
14083 &remote_show_cmdlist);
14084 add_cmd ("memory-read-packet-size", no_class,
14085 show_memory_read_packet_size,
14086 _("Show the maximum number of bytes per memory-read packet."),
14087 &remote_show_cmdlist);
14088
14089 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14090 &remote_hw_watchpoint_limit, _("\
14091 Set the maximum number of target hardware watchpoints."), _("\
14092 Show the maximum number of target hardware watchpoints."), _("\
14093 Specify a negative limit for unlimited."),
14094 NULL, NULL, /* FIXME: i18n: The maximum
14095 number of target hardware
14096 watchpoints is %s. */
14097 &remote_set_cmdlist, &remote_show_cmdlist);
14098 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14099 &remote_hw_watchpoint_length_limit, _("\
14100 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14101 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14102 Specify a negative limit for unlimited."),
14103 NULL, NULL, /* FIXME: i18n: The maximum
14104 length (in bytes) of a target
14105 hardware watchpoint is %s. */
14106 &remote_set_cmdlist, &remote_show_cmdlist);
14107 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14108 &remote_hw_breakpoint_limit, _("\
14109 Set the maximum number of target hardware breakpoints."), _("\
14110 Show the maximum number of target hardware breakpoints."), _("\
14111 Specify a negative limit for unlimited."),
14112 NULL, NULL, /* FIXME: i18n: The maximum
14113 number of target hardware
14114 breakpoints is %s. */
14115 &remote_set_cmdlist, &remote_show_cmdlist);
14116
14117 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14118 &remote_address_size, _("\
14119 Set the maximum size of the address (in bits) in a memory packet."), _("\
14120 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14121 NULL,
14122 NULL, /* FIXME: i18n: */
14123 &setlist, &showlist);
14124
14125 init_all_packet_configs ();
14126
14127 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14128 "X", "binary-download", 1);
14129
14130 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14131 "vCont", "verbose-resume", 0);
14132
14133 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14134 "QPassSignals", "pass-signals", 0);
14135
14136 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14137 "QCatchSyscalls", "catch-syscalls", 0);
14138
14139 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14140 "QProgramSignals", "program-signals", 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14143 "QSetWorkingDir", "set-working-dir", 0);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14146 "QStartupWithShell", "startup-with-shell", 0);
14147
14148 add_packet_config_cmd (&remote_protocol_packets
14149 [PACKET_QEnvironmentHexEncoded],
14150 "QEnvironmentHexEncoded", "environment-hex-encoded",
14151 0);
14152
14153 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14154 "QEnvironmentReset", "environment-reset",
14155 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14158 "QEnvironmentUnset", "environment-unset",
14159 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14162 "qSymbol", "symbol-lookup", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14165 "P", "set-register", 1);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14168 "p", "fetch-register", 1);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14171 "Z0", "software-breakpoint", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14174 "Z1", "hardware-breakpoint", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14177 "Z2", "write-watchpoint", 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14180 "Z3", "read-watchpoint", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14183 "Z4", "access-watchpoint", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14186 "qXfer:auxv:read", "read-aux-vector", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14189 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14192 "qXfer:features:read", "target-features", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14195 "qXfer:libraries:read", "library-info", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14198 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14199
14200 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14201 "qXfer:memory-map:read", "memory-map", 0);
14202
14203 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14204 "qXfer:spu:read", "read-spu-object", 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14207 "qXfer:spu:write", "write-spu-object", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14210 "qXfer:osdata:read", "osdata", 0);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14213 "qXfer:threads:read", "threads", 0);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14216 "qXfer:siginfo:read", "read-siginfo-object", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14219 "qXfer:siginfo:write", "write-siginfo-object", 0);
14220
14221 add_packet_config_cmd
14222 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14223 "qXfer:traceframe-info:read", "traceframe-info", 0);
14224
14225 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14226 "qXfer:uib:read", "unwind-info-block", 0);
14227
14228 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14229 "qGetTLSAddr", "get-thread-local-storage-address",
14230 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14233 "qGetTIBAddr", "get-thread-information-block-address",
14234 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14237 "bc", "reverse-continue", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14240 "bs", "reverse-step", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14243 "qSupported", "supported-packets", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14246 "qSearch:memory", "search-memory", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14249 "qTStatus", "trace-status", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14252 "vFile:setfs", "hostio-setfs", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14255 "vFile:open", "hostio-open", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14258 "vFile:pread", "hostio-pread", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14261 "vFile:pwrite", "hostio-pwrite", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14264 "vFile:close", "hostio-close", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14267 "vFile:unlink", "hostio-unlink", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14270 "vFile:readlink", "hostio-readlink", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14273 "vFile:fstat", "hostio-fstat", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14276 "vAttach", "attach", 0);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14279 "vRun", "run", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14282 "QStartNoAckMode", "noack", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14285 "vKill", "kill", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14288 "qAttached", "query-attached", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14291 "ConditionalTracepoints",
14292 "conditional-tracepoints", 0);
14293
14294 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14295 "ConditionalBreakpoints",
14296 "conditional-breakpoints", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14299 "BreakpointCommands",
14300 "breakpoint-commands", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14303 "FastTracepoints", "fast-tracepoints", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14306 "TracepointSource", "TracepointSource", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14309 "QAllow", "allow", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14312 "StaticTracepoints", "static-tracepoints", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14315 "InstallInTrace", "install-in-trace", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14318 "qXfer:statictrace:read", "read-sdata-object", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14321 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14324 "QDisableRandomization", "disable-randomization", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14327 "QAgent", "agent", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14330 "QTBuffer:size", "trace-buffer-size", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14333 "Qbtrace:off", "disable-btrace", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14336 "Qbtrace:bts", "enable-btrace-bts", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14339 "Qbtrace:pt", "enable-btrace-pt", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14342 "qXfer:btrace", "read-btrace", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14345 "qXfer:btrace-conf", "read-btrace-conf", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14348 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14351 "multiprocess-feature", "multiprocess-feature", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14354 "swbreak-feature", "swbreak-feature", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14357 "hwbreak-feature", "hwbreak-feature", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14360 "fork-event-feature", "fork-event-feature", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14363 "vfork-event-feature", "vfork-event-feature", 0);
14364
14365 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14366 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14367
14368 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14369 "vContSupported", "verbose-resume-supported", 0);
14370
14371 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14372 "exec-event-feature", "exec-event-feature", 0);
14373
14374 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14375 "vCtrlC", "ctrl-c", 0);
14376
14377 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14378 "QThreadEvents", "thread-events", 0);
14379
14380 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14381 "N stop reply", "no-resumed-stop-reply", 0);
14382
14383 /* Assert that we've registered "set remote foo-packet" commands
14384 for all packet configs. */
14385 {
14386 int i;
14387
14388 for (i = 0; i < PACKET_MAX; i++)
14389 {
14390 /* Ideally all configs would have a command associated. Some
14391 still don't though. */
14392 int excepted;
14393
14394 switch (i)
14395 {
14396 case PACKET_QNonStop:
14397 case PACKET_EnableDisableTracepoints_feature:
14398 case PACKET_tracenz_feature:
14399 case PACKET_DisconnectedTracing_feature:
14400 case PACKET_augmented_libraries_svr4_read_feature:
14401 case PACKET_qCRC:
14402 /* Additions to this list need to be well justified:
14403 pre-existing packets are OK; new packets are not. */
14404 excepted = 1;
14405 break;
14406 default:
14407 excepted = 0;
14408 break;
14409 }
14410
14411 /* This catches both forgetting to add a config command, and
14412 forgetting to remove a packet from the exception list. */
14413 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14414 }
14415 }
14416
14417 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14418 Z sub-packet has its own set and show commands, but users may
14419 have sets to this variable in their .gdbinit files (or in their
14420 documentation). */
14421 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14422 &remote_Z_packet_detect, _("\
14423 Set use of remote protocol `Z' packets"), _("\
14424 Show use of remote protocol `Z' packets "), _("\
14425 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14426 packets."),
14427 set_remote_protocol_Z_packet_cmd,
14428 show_remote_protocol_Z_packet_cmd,
14429 /* FIXME: i18n: Use of remote protocol
14430 `Z' packets is %s. */
14431 &remote_set_cmdlist, &remote_show_cmdlist);
14432
14433 add_prefix_cmd ("remote", class_files, remote_command, _("\
14434 Manipulate files on the remote system\n\
14435 Transfer files to and from the remote target system."),
14436 &remote_cmdlist, "remote ",
14437 0 /* allow-unknown */, &cmdlist);
14438
14439 add_cmd ("put", class_files, remote_put_command,
14440 _("Copy a local file to the remote system."),
14441 &remote_cmdlist);
14442
14443 add_cmd ("get", class_files, remote_get_command,
14444 _("Copy a remote file to the local system."),
14445 &remote_cmdlist);
14446
14447 add_cmd ("delete", class_files, remote_delete_command,
14448 _("Delete a remote file."),
14449 &remote_cmdlist);
14450
14451 add_setshow_string_noescape_cmd ("exec-file", class_files,
14452 &remote_exec_file_var, _("\
14453 Set the remote pathname for \"run\""), _("\
14454 Show the remote pathname for \"run\""), NULL,
14455 set_remote_exec_file,
14456 show_remote_exec_file,
14457 &remote_set_cmdlist,
14458 &remote_show_cmdlist);
14459
14460 add_setshow_boolean_cmd ("range-stepping", class_run,
14461 &use_range_stepping, _("\
14462 Enable or disable range stepping."), _("\
14463 Show whether target-assisted range stepping is enabled."), _("\
14464 If on, and the target supports it, when stepping a source line, GDB\n\
14465 tells the target to step the corresponding range of addresses itself instead\n\
14466 of issuing multiple single-steps. This speeds up source level\n\
14467 stepping. If off, GDB always issues single-steps, even if range\n\
14468 stepping is supported by the target. The default is on."),
14469 set_range_stepping,
14470 show_range_stepping,
14471 &setlist,
14472 &showlist);
14473
14474 /* Eventually initialize fileio. See fileio.c */
14475 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14476
14477 /* Take advantage of the fact that the TID field is not used, to tag
14478 special ptids with it set to != 0. */
14479 magic_null_ptid = ptid_build (42000, -1, 1);
14480 not_sent_ptid = ptid_build (42000, -2, 1);
14481 any_thread_ptid = ptid_build (42000, 0, 1);
14482 }
This page took 0.301367 seconds and 5 git commands to generate.