* exec.c (xfer_memory): Add attrib argument.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991-2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* See the GDB User Guide for details of the GDB remote protocol. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <fcntl.h>
27 #include "frame.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 #include "gdb_wait.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39
40 #include <ctype.h>
41 #include <sys/time.h>
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include "event-loop.h"
47 #include "event-top.h"
48 #include "inf-loop.h"
49
50 #include <signal.h>
51 #include "serial.h"
52
53 /* Prototypes for local functions */
54 static void cleanup_sigint_signal_handler (void *dummy);
55 static void initialize_sigint_signal_handler (void);
56 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
57
58 static void handle_remote_sigint (int);
59 static void handle_remote_sigint_twice (int);
60 static void async_remote_interrupt (gdb_client_data);
61 void async_remote_interrupt_twice (gdb_client_data);
62
63 static void build_remote_gdbarch_data (void);
64
65 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
66
67 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
68
69 static void remote_files_info (struct target_ops *ignore);
70
71 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
72 int len, int should_write,
73 struct mem_attrib *attrib,
74 struct target_ops *target);
75
76 static void remote_prepare_to_store (void);
77
78 static void remote_fetch_registers (int regno);
79
80 static void remote_resume (int pid, int step, enum target_signal siggnal);
81 static void remote_async_resume (int pid, int step,
82 enum target_signal siggnal);
83 static int remote_start_remote (PTR);
84
85 static void remote_open (char *name, int from_tty);
86 static void remote_async_open (char *name, int from_tty);
87
88 static void extended_remote_open (char *name, int from_tty);
89 static void extended_remote_async_open (char *name, int from_tty);
90
91 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
92 static void remote_async_open_1 (char *, int, struct target_ops *,
93 int extended_p);
94
95 static void remote_close (int quitting);
96
97 static void remote_store_registers (int regno);
98
99 static void remote_mourn (void);
100 static void remote_async_mourn (void);
101
102 static void extended_remote_restart (void);
103
104 static void extended_remote_mourn (void);
105
106 static void extended_remote_create_inferior (char *, char *, char **);
107 static void extended_remote_async_create_inferior (char *, char *, char **);
108
109 static void remote_mourn_1 (struct target_ops *);
110
111 static void remote_send (char *buf, long sizeof_buf);
112
113 static int readchar (int timeout);
114
115 static int remote_wait (int pid, struct target_waitstatus *status);
116 static int remote_async_wait (int pid, struct target_waitstatus *status);
117
118 static void remote_kill (void);
119 static void remote_async_kill (void);
120
121 static int tohex (int nib);
122
123 static void remote_detach (char *args, int from_tty);
124 static void remote_async_detach (char *args, int from_tty);
125
126 static void remote_interrupt (int signo);
127
128 static void remote_interrupt_twice (int signo);
129
130 static void interrupt_query (void);
131
132 static void set_thread (int, int);
133
134 static int remote_thread_alive (int);
135
136 static void get_offsets (void);
137
138 static long read_frame (char *buf, long sizeof_buf);
139
140 static int remote_insert_breakpoint (CORE_ADDR, char *);
141
142 static int remote_remove_breakpoint (CORE_ADDR, char *);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void init_remote_cisco_ops (void);
151
152 static struct target_ops remote_cisco_ops;
153
154 static void remote_stop (void);
155
156 static int ishex (int ch, int *val);
157
158 static int stubhex (int ch);
159
160 static int remote_query (int /*char */ , char *, char *, int *);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static int remote_current_thread (int oldpid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (int currthread);
183
184 /* exported functions */
185
186 extern int fromhex (int a);
187
188 static int putpkt_binary (char *buf, int cnt);
189
190 static void check_binary_download (CORE_ADDR addr);
191
192 struct packet_config;
193
194 static void show_packet_config_cmd (struct packet_config *config);
195
196 static void update_packet_config (struct packet_config *config);
197
198 /* Define the target subroutine names */
199
200 void open_remote_target (char *, int, struct target_ops *, int);
201
202 void _initialize_remote (void);
203
204 /* */
205
206 static struct target_ops remote_ops;
207
208 static struct target_ops extended_remote_ops;
209
210 /* Temporary target ops. Just like the remote_ops and
211 extended_remote_ops, but with asynchronous support. */
212 static struct target_ops remote_async_ops;
213
214 static struct target_ops extended_async_remote_ops;
215
216 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
217 ``forever'' still use the normal timeout mechanism. This is
218 currently used by the ASYNC code to guarentee that target reads
219 during the initial connect always time-out. Once getpkt has been
220 modified to return a timeout indication and, in turn
221 remote_wait()/wait_for_inferior() have gained a timeout parameter
222 this can go away. */
223 static int wait_forever_enabled_p = 1;
224
225
226 /* This variable chooses whether to send a ^C or a break when the user
227 requests program interruption. Although ^C is usually what remote
228 systems expect, and that is the default here, sometimes a break is
229 preferable instead. */
230
231 static int remote_break;
232
233 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
234 remote_open knows that we don't have a file open when the program
235 starts. */
236 static serial_t remote_desc = NULL;
237
238 /* This is set by the target (thru the 'S' message)
239 to denote that the target is in kernel mode. */
240 static int cisco_kernel_mode = 0;
241
242 /* This variable sets the number of bits in an address that are to be
243 sent in a memory ("M" or "m") packet. Normally, after stripping
244 leading zeros, the entire address would be sent. This variable
245 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
246 initial implementation of remote.c restricted the address sent in
247 memory packets to ``host::sizeof long'' bytes - (typically 32
248 bits). Consequently, for 64 bit targets, the upper 32 bits of an
249 address was never sent. Since fixing this bug may cause a break in
250 some remote targets this variable is principly provided to
251 facilitate backward compatibility. */
252
253 static int remote_address_size;
254
255 /* Tempoary to track who currently owns the terminal. See
256 target_async_terminal_* for more details. */
257
258 static int remote_async_terminal_ours_p;
259
260 \f
261 /* This is the size (in chars) of the first response to the ``g''
262 packet. It is used as a heuristic when determining the maximum
263 size of memory-read and memory-write packets. A target will
264 typically only reserve a buffer large enough to hold the ``g''
265 packet. The size does not include packet overhead (headers and
266 trailers). */
267
268 static long actual_register_packet_size;
269
270 /* This is the maximum size (in chars) of a non read/write packet. It
271 is also used as a cap on the size of read/write packets. */
272
273 static long remote_packet_size;
274 /* compatibility. */
275 #define PBUFSIZ (remote_packet_size)
276
277 /* User configurable variables for the number of characters in a
278 memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the
279 default. Some targets need smaller values (fifo overruns, et.al.)
280 and some users need larger values (speed up transfers). The
281 variables ``preferred_*'' (the user request), ``current_*'' (what
282 was actually set) and ``forced_*'' (Positive - a soft limit,
283 negative - a hard limit). */
284
285 struct memory_packet_config
286 {
287 char *name;
288 long size;
289 int fixed_p;
290 };
291
292 /* Compute the current size of a read/write packet. Since this makes
293 use of ``actual_register_packet_size'' the computation is dynamic. */
294
295 static long
296 get_memory_packet_size (struct memory_packet_config *config)
297 {
298 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
299 law?) that some hosts don't cope very well with large alloca()
300 calls. Eventually the alloca() code will be replaced by calls to
301 xmalloc() and make_cleanups() allowing this restriction to either
302 be lifted or removed. */
303 #ifndef MAX_REMOTE_PACKET_SIZE
304 #define MAX_REMOTE_PACKET_SIZE 16384
305 #endif
306 /* NOTE: 16 is just chosen at random. */
307 #ifndef MIN_REMOTE_PACKET_SIZE
308 #define MIN_REMOTE_PACKET_SIZE 16
309 #endif
310 long what_they_get;
311 if (config->fixed_p)
312 {
313 if (config->size <= 0)
314 what_they_get = MAX_REMOTE_PACKET_SIZE;
315 else
316 what_they_get = config->size;
317 }
318 else
319 {
320 what_they_get = remote_packet_size;
321 /* Limit the packet to the size specified by the user. */
322 if (config->size > 0
323 && what_they_get > config->size)
324 what_they_get = config->size;
325 /* Limit it to the size of the targets ``g'' response. */
326 if (actual_register_packet_size > 0
327 && what_they_get > actual_register_packet_size)
328 what_they_get = actual_register_packet_size;
329 }
330 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
331 what_they_get = MAX_REMOTE_PACKET_SIZE;
332 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
333 what_they_get = MIN_REMOTE_PACKET_SIZE;
334 return what_they_get;
335 }
336
337 /* Update the size of a read/write packet. If they user wants
338 something really big then do a sanity check. */
339
340 static void
341 set_memory_packet_size (char *args, struct memory_packet_config *config)
342 {
343 int fixed_p = config->fixed_p;
344 long size = config->size;
345 if (args == NULL)
346 error ("Argument required (integer, `fixed' or `limited').");
347 else if (strcmp (args, "hard") == 0
348 || strcmp (args, "fixed") == 0)
349 fixed_p = 1;
350 else if (strcmp (args, "soft") == 0
351 || strcmp (args, "limit") == 0)
352 fixed_p = 0;
353 else
354 {
355 char *end;
356 size = strtoul (args, &end, 0);
357 if (args == end)
358 error ("Invalid %s (bad syntax).", config->name);
359 #if 0
360 /* Instead of explicitly capping the size of a packet to
361 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
362 instead allowed to set the size to something arbitrarily
363 large. */
364 if (size > MAX_REMOTE_PACKET_SIZE)
365 error ("Invalid %s (too large).", config->name);
366 #endif
367 }
368 /* Extra checks? */
369 if (fixed_p && !config->fixed_p)
370 {
371 if (! query ("The target may not be able to correctly handle a %s\n"
372 "of %ld bytes. Change the packet size? ",
373 config->name, size))
374 error ("Packet size not changed.");
375 }
376 /* Update the config. */
377 config->fixed_p = fixed_p;
378 config->size = size;
379 }
380
381 static void
382 show_memory_packet_size (struct memory_packet_config *config)
383 {
384 printf_filtered ("The %s is %ld. ", config->name, config->size);
385 if (config->fixed_p)
386 printf_filtered ("Packets are fixed at %ld bytes.\n",
387 get_memory_packet_size (config));
388 else
389 printf_filtered ("Packets are limited to %ld bytes.\n",
390 get_memory_packet_size (config));
391 }
392
393 static struct memory_packet_config memory_write_packet_config =
394 {
395 "memory-write-packet-size",
396 };
397
398 static void
399 set_memory_write_packet_size (char *args, int from_tty)
400 {
401 set_memory_packet_size (args, &memory_write_packet_config);
402 }
403
404 static void
405 show_memory_write_packet_size (char *args, int from_tty)
406 {
407 show_memory_packet_size (&memory_write_packet_config);
408 }
409
410 static long
411 get_memory_write_packet_size (void)
412 {
413 return get_memory_packet_size (&memory_write_packet_config);
414 }
415
416 static struct memory_packet_config memory_read_packet_config =
417 {
418 "memory-read-packet-size",
419 };
420
421 static void
422 set_memory_read_packet_size (char *args, int from_tty)
423 {
424 set_memory_packet_size (args, &memory_read_packet_config);
425 }
426
427 static void
428 show_memory_read_packet_size (char *args, int from_tty)
429 {
430 show_memory_packet_size (&memory_read_packet_config);
431 }
432
433 static long
434 get_memory_read_packet_size (void)
435 {
436 long size = get_memory_packet_size (&memory_read_packet_config);
437 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
438 extra buffer size argument before the memory read size can be
439 increased beyond PBUFSIZ. */
440 if (size > PBUFSIZ)
441 size = PBUFSIZ;
442 return size;
443 }
444
445 /* Register packet size initialization. Since the bounds change when
446 the architecture changes (namely REGISTER_BYTES) this all needs to
447 be multi-arched. */
448
449 static void
450 register_remote_packet_sizes (void)
451 {
452 REGISTER_GDBARCH_SWAP (remote_packet_size);
453 REGISTER_GDBARCH_SWAP (actual_register_packet_size);
454 }
455
456 static void
457 build_remote_packet_sizes (void)
458 {
459 /* Default maximum number of characters in a packet body. Many
460 remote stubs have a hardwired buffer size of 400 bytes
461 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
462 as the maximum packet-size to ensure that the packet and an extra
463 NUL character can always fit in the buffer. This stops GDB
464 trashing stubs that try to squeeze an extra NUL into what is
465 already a full buffer (As of 1999-12-04 that was most stubs. */
466 remote_packet_size = 400 - 1;
467 /* Should REGISTER_BYTES needs more space than the default, adjust
468 the size accordingly. Remember that each byte is encoded as two
469 characters. 32 is the overhead for the packet header /
470 footer. NOTE: cagney/1999-10-26: I suspect that 8
471 (``$NN:G...#NN'') is a better guess, the below has been padded a
472 little. */
473 if (REGISTER_BYTES > ((remote_packet_size - 32) / 2))
474 remote_packet_size = (REGISTER_BYTES * 2 + 32);
475
476 /* This one is filled in when a ``g'' packet is received. */
477 actual_register_packet_size = 0;
478 }
479 \f
480 /* Generic configuration support for packets the stub optionally
481 supports. Allows the user to specify the use of the packet as well
482 as allowing GDB to auto-detect support in the remote stub. */
483
484 enum packet_support
485 {
486 PACKET_SUPPORT_UNKNOWN = 0,
487 PACKET_ENABLE,
488 PACKET_DISABLE
489 };
490
491 struct packet_config
492 {
493 char *name;
494 char *title;
495 enum cmd_auto_boolean detect;
496 enum packet_support support;
497 };
498
499 /* Analyze a packet's return value and update the packet config
500 accordingly. */
501
502 enum packet_result
503 {
504 PACKET_ERROR,
505 PACKET_OK,
506 PACKET_UNKNOWN
507 };
508
509 static void
510 update_packet_config (struct packet_config *config)
511 {
512 switch (config->detect)
513 {
514 case CMD_AUTO_BOOLEAN_TRUE:
515 config->support = PACKET_ENABLE;
516 break;
517 case CMD_AUTO_BOOLEAN_FALSE:
518 config->support = PACKET_DISABLE;
519 break;
520 case CMD_AUTO_BOOLEAN_AUTO:
521 config->support = PACKET_SUPPORT_UNKNOWN;
522 break;
523 }
524 }
525
526 static void
527 show_packet_config_cmd (struct packet_config *config)
528 {
529 char *support = "internal-error";
530 switch (config->support)
531 {
532 case PACKET_ENABLE:
533 support = "enabled";
534 break;
535 case PACKET_DISABLE:
536 support = "disabled";
537 break;
538 case PACKET_SUPPORT_UNKNOWN:
539 support = "unknown";
540 break;
541 }
542 switch (config->detect)
543 {
544 case CMD_AUTO_BOOLEAN_AUTO:
545 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
546 config->name, config->title, support);
547 break;
548 case CMD_AUTO_BOOLEAN_TRUE:
549 case CMD_AUTO_BOOLEAN_FALSE:
550 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
551 config->name, config->title, support);
552 break;
553 }
554 }
555
556 static void
557 add_packet_config_cmd (struct packet_config *config,
558 char *name,
559 char *title,
560 void (*set_func) (char *args, int from_tty,
561 struct cmd_list_element *
562 c),
563 void (*show_func) (char *name,
564 int from_tty),
565 struct cmd_list_element **set_remote_list,
566 struct cmd_list_element **show_remote_list,
567 int legacy)
568 {
569 struct cmd_list_element *set_cmd;
570 struct cmd_list_element *show_cmd;
571 char *set_doc;
572 char *show_doc;
573 char *cmd_name;
574 config->name = name;
575 config->title = title;
576 config->detect = CMD_AUTO_BOOLEAN_AUTO;
577 config->support = PACKET_SUPPORT_UNKNOWN;
578 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
579 name, title);
580 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
581 name, title);
582 /* set/show TITLE-packet {auto,on,off} */
583 xasprintf (&cmd_name, "%s-packet", title);
584 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
585 &config->detect, set_doc,
586 set_remote_list);
587 set_cmd->function.sfunc = set_func;
588 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
589 show_remote_list);
590 /* set/show remote NAME-packet {auto,on,off} -- legacy */
591 if (legacy)
592 {
593 char *legacy_name;
594 xasprintf (&legacy_name, "%s-packet", name);
595 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
596 set_remote_list);
597 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
598 show_remote_list);
599 }
600 }
601
602 static enum packet_result
603 packet_ok (const char *buf, struct packet_config *config)
604 {
605 if (buf[0] != '\0')
606 {
607 /* The stub recognized the packet request. Check that the
608 operation succeeded. */
609 switch (config->support)
610 {
611 case PACKET_SUPPORT_UNKNOWN:
612 if (remote_debug)
613 fprintf_unfiltered (gdb_stdlog,
614 "Packet %s (%s) is supported\n",
615 config->name, config->title);
616 config->support = PACKET_ENABLE;
617 break;
618 case PACKET_DISABLE:
619 internal_error ("packet_ok: attempt to use a disabled packet");
620 break;
621 case PACKET_ENABLE:
622 break;
623 }
624 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
625 /* "OK" - definitly OK. */
626 return PACKET_OK;
627 if (buf[0] == 'E'
628 && isxdigit (buf[1]) && isxdigit (buf[2])
629 && buf[3] == '\0')
630 /* "Enn" - definitly an error. */
631 return PACKET_ERROR;
632 /* The packet may or may not be OK. Just assume it is */
633 return PACKET_OK;
634 }
635 else
636 {
637 /* The stub does not support the packet. */
638 switch (config->support)
639 {
640 case PACKET_ENABLE:
641 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
642 /* If the stub previously indicated that the packet was
643 supported then there is a protocol error.. */
644 error ("Protocol error: %s (%s) conflicting enabled responses.",
645 config->name, config->title);
646 else
647 /* The user set it wrong. */
648 error ("Enabled packet %s (%s) not recognized by stub",
649 config->name, config->title);
650 break;
651 case PACKET_SUPPORT_UNKNOWN:
652 if (remote_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "Packet %s (%s) is NOT supported\n",
655 config->name, config->title);
656 config->support = PACKET_DISABLE;
657 break;
658 case PACKET_DISABLE:
659 break;
660 }
661 return PACKET_UNKNOWN;
662 }
663 }
664
665 /* Should we try the 'P' (set register) request? */
666
667 static struct packet_config remote_protocol_P;
668
669 static void
670 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
671 struct cmd_list_element *c)
672 {
673 update_packet_config (&remote_protocol_P);
674 }
675
676 static void
677 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
678 {
679 show_packet_config_cmd (&remote_protocol_P);
680 }
681
682 /* Should we try one of the 'Z' requests? */
683
684 enum Z_packet_type
685 {
686 Z_PACKET_SOFTWARE_BP,
687 Z_PACKET_HARDWARE_BP,
688 Z_PACKET_WRITE_WP,
689 Z_PACKET_READ_WP,
690 Z_PACKET_ACCESS_WP,
691 NR_Z_PACKET_TYPES
692 };
693
694 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
695
696 /* FIXME: Instead of having all these boiler plate functions, the
697 command callback should include a context argument. */
698
699 static void
700 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
701 struct cmd_list_element *c)
702 {
703 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
704 }
705
706 static void
707 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
708 {
709 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
710 }
711
712 static void
713 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
717 }
718
719 static void
720 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
721 {
722 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
723 }
724
725 static void
726 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
727 struct cmd_list_element *c)
728 {
729 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
730 }
731
732 static void
733 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
734 {
735 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
736 }
737
738 static void
739 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
740 struct cmd_list_element *c)
741 {
742 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
743 }
744
745 static void
746 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
747 {
748 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
749 }
750
751 static void
752 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
753 struct cmd_list_element *c)
754 {
755 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
756 }
757
758 static void
759 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
760 {
761 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
762 }
763
764 /* For compatibility with older distributions. Provide a ``set remote
765 Z-packet ...'' command that updates all the Z packet types. */
766
767 static enum cmd_auto_boolean remote_Z_packet_detect;
768
769 static void
770 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
771 struct cmd_list_element *c)
772 {
773 int i;
774 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
775 {
776 remote_protocol_Z[i].detect = remote_Z_packet_detect;
777 update_packet_config (&remote_protocol_Z[i]);
778 }
779 }
780
781 static void
782 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
783 {
784 int i;
785 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
786 {
787 show_packet_config_cmd (&remote_protocol_Z[i]);
788 }
789 }
790
791 /* Should we try the 'X' (remote binary download) packet?
792
793 This variable (available to the user via "set remote X-packet")
794 dictates whether downloads are sent in binary (via the 'X' packet).
795 We assume that the stub can, and attempt to do it. This will be
796 cleared if the stub does not understand it. This switch is still
797 needed, though in cases when the packet is supported in the stub,
798 but the connection does not allow it (i.e., 7-bit serial connection
799 only). */
800
801 static struct packet_config remote_protocol_binary_download;
802
803 /* Should we try the 'ThreadInfo' query packet?
804
805 This variable (NOT available to the user: auto-detect only!)
806 determines whether GDB will use the new, simpler "ThreadInfo"
807 query or the older, more complex syntax for thread queries.
808 This is an auto-detect variable (set to true at each connect,
809 and set to false when the target fails to recognize it). */
810
811 static int use_threadinfo_query;
812 static int use_threadextra_query;
813
814 static void
815 set_remote_protocol_binary_download_cmd (char *args,
816 int from_tty,
817 struct cmd_list_element *c)
818 {
819 update_packet_config (&remote_protocol_binary_download);
820 }
821
822 static void
823 show_remote_protocol_binary_download_cmd (char *args,
824 int from_tty)
825 {
826 show_packet_config_cmd (&remote_protocol_binary_download);
827 }
828
829
830 /* Tokens for use by the asynchronous signal handlers for SIGINT */
831 PTR sigint_remote_twice_token;
832 PTR sigint_remote_token;
833
834 /* These are pointers to hook functions that may be set in order to
835 modify resume/wait behavior for a particular architecture. */
836
837 void (*target_resume_hook) (void);
838 void (*target_wait_loop_hook) (void);
839 \f
840
841
842 /* These are the threads which we last sent to the remote system.
843 -1 for all or -2 for not sent yet. */
844 static int general_thread;
845 static int continue_thread;
846
847 /* Call this function as a result of
848 1) A halt indication (T packet) containing a thread id
849 2) A direct query of currthread
850 3) Successful execution of set thread
851 */
852
853 static void
854 record_currthread (int currthread)
855 {
856 general_thread = currthread;
857
858 /* If this is a new thread, add it to GDB's thread list.
859 If we leave it up to WFI to do this, bad things will happen. */
860 if (!in_thread_list (currthread))
861 {
862 add_thread (currthread);
863 #ifdef UI_OUT
864 ui_out_text (uiout, "[New ");
865 ui_out_text (uiout, target_pid_to_str (currthread));
866 ui_out_text (uiout, "]\n");
867 #else
868 printf_filtered ("[New %s]\n", target_pid_to_str (currthread));
869 #endif
870 }
871 }
872
873 #define MAGIC_NULL_PID 42000
874
875 static void
876 set_thread (int th, int gen)
877 {
878 char *buf = alloca (PBUFSIZ);
879 int state = gen ? general_thread : continue_thread;
880
881 if (state == th)
882 return;
883
884 buf[0] = 'H';
885 buf[1] = gen ? 'g' : 'c';
886 if (th == MAGIC_NULL_PID)
887 {
888 buf[2] = '0';
889 buf[3] = '\0';
890 }
891 else if (th < 0)
892 sprintf (&buf[2], "-%x", -th);
893 else
894 sprintf (&buf[2], "%x", th);
895 putpkt (buf);
896 getpkt (buf, PBUFSIZ, 0);
897 if (gen)
898 general_thread = th;
899 else
900 continue_thread = th;
901 }
902 \f
903 /* Return nonzero if the thread TH is still alive on the remote system. */
904
905 static int
906 remote_thread_alive (int tid)
907 {
908 char buf[16];
909
910 if (tid < 0)
911 sprintf (buf, "T-%08x", -tid);
912 else
913 sprintf (buf, "T%08x", tid);
914 putpkt (buf);
915 getpkt (buf, sizeof (buf), 0);
916 return (buf[0] == 'O' && buf[1] == 'K');
917 }
918
919 /* About these extended threadlist and threadinfo packets. They are
920 variable length packets but, the fields within them are often fixed
921 length. They are redundent enough to send over UDP as is the
922 remote protocol in general. There is a matching unit test module
923 in libstub. */
924
925 #define OPAQUETHREADBYTES 8
926
927 /* a 64 bit opaque identifier */
928 typedef unsigned char threadref[OPAQUETHREADBYTES];
929
930 /* WARNING: This threadref data structure comes from the remote O.S., libstub
931 protocol encoding, and remote.c. it is not particularly changable */
932
933 /* Right now, the internal structure is int. We want it to be bigger.
934 Plan to fix this.
935 */
936
937 typedef int gdb_threadref; /* internal GDB thread reference */
938
939 /* gdb_ext_thread_info is an internal GDB data structure which is
940 equivalint to the reply of the remote threadinfo packet */
941
942 struct gdb_ext_thread_info
943 {
944 threadref threadid; /* External form of thread reference */
945 int active; /* Has state interesting to GDB? , regs, stack */
946 char display[256]; /* Brief state display, name, blocked/syspended */
947 char shortname[32]; /* To be used to name threads */
948 char more_display[256]; /* Long info, statistics, queue depth, whatever */
949 };
950
951 /* The volume of remote transfers can be limited by submitting
952 a mask containing bits specifying the desired information.
953 Use a union of these values as the 'selection' parameter to
954 get_thread_info. FIXME: Make these TAG names more thread specific.
955 */
956
957 #define TAG_THREADID 1
958 #define TAG_EXISTS 2
959 #define TAG_DISPLAY 4
960 #define TAG_THREADNAME 8
961 #define TAG_MOREDISPLAY 16
962
963 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
964
965 char *unpack_varlen_hex (char *buff, int *result);
966
967 static char *unpack_nibble (char *buf, int *val);
968
969 static char *pack_nibble (char *buf, int nibble);
970
971 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
972
973 static char *unpack_byte (char *buf, int *value);
974
975 static char *pack_int (char *buf, int value);
976
977 static char *unpack_int (char *buf, int *value);
978
979 static char *unpack_string (char *src, char *dest, int length);
980
981 static char *pack_threadid (char *pkt, threadref * id);
982
983 static char *unpack_threadid (char *inbuf, threadref * id);
984
985 void int_to_threadref (threadref * id, int value);
986
987 static int threadref_to_int (threadref * ref);
988
989 static void copy_threadref (threadref * dest, threadref * src);
990
991 static int threadmatch (threadref * dest, threadref * src);
992
993 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
994
995 static int remote_unpack_thread_info_response (char *pkt,
996 threadref * expectedref,
997 struct gdb_ext_thread_info
998 *info);
999
1000
1001 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1002 struct gdb_ext_thread_info *info);
1003
1004 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1005 int selection,
1006 struct gdb_ext_thread_info *info);
1007
1008 static char *pack_threadlist_request (char *pkt, int startflag,
1009 int threadcount,
1010 threadref * nextthread);
1011
1012 static int parse_threadlist_response (char *pkt,
1013 int result_limit,
1014 threadref * original_echo,
1015 threadref * resultlist, int *doneflag);
1016
1017 static int remote_get_threadlist (int startflag,
1018 threadref * nextthread,
1019 int result_limit,
1020 int *done,
1021 int *result_count, threadref * threadlist);
1022
1023 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1024
1025 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1026 void *context, int looplimit);
1027
1028 static int remote_newthread_step (threadref * ref, void *context);
1029
1030 /* encode 64 bits in 16 chars of hex */
1031
1032 static const char hexchars[] = "0123456789abcdef";
1033
1034 static int
1035 ishex (int ch, int *val)
1036 {
1037 if ((ch >= 'a') && (ch <= 'f'))
1038 {
1039 *val = ch - 'a' + 10;
1040 return 1;
1041 }
1042 if ((ch >= 'A') && (ch <= 'F'))
1043 {
1044 *val = ch - 'A' + 10;
1045 return 1;
1046 }
1047 if ((ch >= '0') && (ch <= '9'))
1048 {
1049 *val = ch - '0';
1050 return 1;
1051 }
1052 return 0;
1053 }
1054
1055 static int
1056 stubhex (int ch)
1057 {
1058 if (ch >= 'a' && ch <= 'f')
1059 return ch - 'a' + 10;
1060 if (ch >= '0' && ch <= '9')
1061 return ch - '0';
1062 if (ch >= 'A' && ch <= 'F')
1063 return ch - 'A' + 10;
1064 return -1;
1065 }
1066
1067 static int
1068 stub_unpack_int (char *buff, int fieldlength)
1069 {
1070 int nibble;
1071 int retval = 0;
1072
1073 while (fieldlength)
1074 {
1075 nibble = stubhex (*buff++);
1076 retval |= nibble;
1077 fieldlength--;
1078 if (fieldlength)
1079 retval = retval << 4;
1080 }
1081 return retval;
1082 }
1083
1084 char *
1085 unpack_varlen_hex (char *buff, /* packet to parse */
1086 int *result)
1087 {
1088 int nibble;
1089 int retval = 0;
1090
1091 while (ishex (*buff, &nibble))
1092 {
1093 buff++;
1094 retval = retval << 4;
1095 retval |= nibble & 0x0f;
1096 }
1097 *result = retval;
1098 return buff;
1099 }
1100
1101 static char *
1102 unpack_nibble (char *buf, int *val)
1103 {
1104 ishex (*buf++, val);
1105 return buf;
1106 }
1107
1108 static char *
1109 pack_nibble (char *buf, int nibble)
1110 {
1111 *buf++ = hexchars[(nibble & 0x0f)];
1112 return buf;
1113 }
1114
1115 static char *
1116 pack_hex_byte (char *pkt, int byte)
1117 {
1118 *pkt++ = hexchars[(byte >> 4) & 0xf];
1119 *pkt++ = hexchars[(byte & 0xf)];
1120 return pkt;
1121 }
1122
1123 static char *
1124 unpack_byte (char *buf, int *value)
1125 {
1126 *value = stub_unpack_int (buf, 2);
1127 return buf + 2;
1128 }
1129
1130 static char *
1131 pack_int (char *buf, int value)
1132 {
1133 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1134 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1135 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1136 buf = pack_hex_byte (buf, (value & 0xff));
1137 return buf;
1138 }
1139
1140 static char *
1141 unpack_int (char *buf, int *value)
1142 {
1143 *value = stub_unpack_int (buf, 8);
1144 return buf + 8;
1145 }
1146
1147 #if 0 /* currently unused, uncomment when needed */
1148 static char *pack_string (char *pkt, char *string);
1149
1150 static char *
1151 pack_string (char *pkt, char *string)
1152 {
1153 char ch;
1154 int len;
1155
1156 len = strlen (string);
1157 if (len > 200)
1158 len = 200; /* Bigger than most GDB packets, junk??? */
1159 pkt = pack_hex_byte (pkt, len);
1160 while (len-- > 0)
1161 {
1162 ch = *string++;
1163 if ((ch == '\0') || (ch == '#'))
1164 ch = '*'; /* Protect encapsulation */
1165 *pkt++ = ch;
1166 }
1167 return pkt;
1168 }
1169 #endif /* 0 (unused) */
1170
1171 static char *
1172 unpack_string (char *src, char *dest, int length)
1173 {
1174 while (length--)
1175 *dest++ = *src++;
1176 *dest = '\0';
1177 return src;
1178 }
1179
1180 static char *
1181 pack_threadid (char *pkt, threadref *id)
1182 {
1183 char *limit;
1184 unsigned char *altid;
1185
1186 altid = (unsigned char *) id;
1187 limit = pkt + BUF_THREAD_ID_SIZE;
1188 while (pkt < limit)
1189 pkt = pack_hex_byte (pkt, *altid++);
1190 return pkt;
1191 }
1192
1193
1194 static char *
1195 unpack_threadid (char *inbuf, threadref *id)
1196 {
1197 char *altref;
1198 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1199 int x, y;
1200
1201 altref = (char *) id;
1202
1203 while (inbuf < limit)
1204 {
1205 x = stubhex (*inbuf++);
1206 y = stubhex (*inbuf++);
1207 *altref++ = (x << 4) | y;
1208 }
1209 return inbuf;
1210 }
1211
1212 /* Externally, threadrefs are 64 bits but internally, they are still
1213 ints. This is due to a mismatch of specifications. We would like
1214 to use 64bit thread references internally. This is an adapter
1215 function. */
1216
1217 void
1218 int_to_threadref (threadref *id, int value)
1219 {
1220 unsigned char *scan;
1221
1222 scan = (unsigned char *) id;
1223 {
1224 int i = 4;
1225 while (i--)
1226 *scan++ = 0;
1227 }
1228 *scan++ = (value >> 24) & 0xff;
1229 *scan++ = (value >> 16) & 0xff;
1230 *scan++ = (value >> 8) & 0xff;
1231 *scan++ = (value & 0xff);
1232 }
1233
1234 static int
1235 threadref_to_int (threadref *ref)
1236 {
1237 int i, value = 0;
1238 unsigned char *scan;
1239
1240 scan = (char *) ref;
1241 scan += 4;
1242 i = 4;
1243 while (i-- > 0)
1244 value = (value << 8) | ((*scan++) & 0xff);
1245 return value;
1246 }
1247
1248 static void
1249 copy_threadref (threadref *dest, threadref *src)
1250 {
1251 int i;
1252 unsigned char *csrc, *cdest;
1253
1254 csrc = (unsigned char *) src;
1255 cdest = (unsigned char *) dest;
1256 i = 8;
1257 while (i--)
1258 *cdest++ = *csrc++;
1259 }
1260
1261 static int
1262 threadmatch (threadref *dest, threadref *src)
1263 {
1264 /* things are broken right now, so just assume we got a match */
1265 #if 0
1266 unsigned char *srcp, *destp;
1267 int i, result;
1268 srcp = (char *) src;
1269 destp = (char *) dest;
1270
1271 result = 1;
1272 while (i-- > 0)
1273 result &= (*srcp++ == *destp++) ? 1 : 0;
1274 return result;
1275 #endif
1276 return 1;
1277 }
1278
1279 /*
1280 threadid:1, # always request threadid
1281 context_exists:2,
1282 display:4,
1283 unique_name:8,
1284 more_display:16
1285 */
1286
1287 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1288
1289 static char *
1290 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1291 {
1292 *pkt++ = 'q'; /* Info Query */
1293 *pkt++ = 'P'; /* process or thread info */
1294 pkt = pack_int (pkt, mode); /* mode */
1295 pkt = pack_threadid (pkt, id); /* threadid */
1296 *pkt = '\0'; /* terminate */
1297 return pkt;
1298 }
1299
1300 /* These values tag the fields in a thread info response packet */
1301 /* Tagging the fields allows us to request specific fields and to
1302 add more fields as time goes by */
1303
1304 #define TAG_THREADID 1 /* Echo the thread identifier */
1305 #define TAG_EXISTS 2 /* Is this process defined enough to
1306 fetch registers and its stack */
1307 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1308 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1309 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1310 the process */
1311
1312 static int
1313 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1314 struct gdb_ext_thread_info *info)
1315 {
1316 int mask, length;
1317 unsigned int tag;
1318 threadref ref;
1319 char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
1320 int retval = 1;
1321
1322 /* info->threadid = 0; FIXME: implement zero_threadref */
1323 info->active = 0;
1324 info->display[0] = '\0';
1325 info->shortname[0] = '\0';
1326 info->more_display[0] = '\0';
1327
1328 /* Assume the characters indicating the packet type have been stripped */
1329 pkt = unpack_int (pkt, &mask); /* arg mask */
1330 pkt = unpack_threadid (pkt, &ref);
1331
1332 if (mask == 0)
1333 warning ("Incomplete response to threadinfo request\n");
1334 if (!threadmatch (&ref, expectedref))
1335 { /* This is an answer to a different request */
1336 warning ("ERROR RMT Thread info mismatch\n");
1337 return 0;
1338 }
1339 copy_threadref (&info->threadid, &ref);
1340
1341 /* Loop on tagged fields , try to bail if somthing goes wrong */
1342
1343 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1344 {
1345 pkt = unpack_int (pkt, &tag); /* tag */
1346 pkt = unpack_byte (pkt, &length); /* length */
1347 if (!(tag & mask)) /* tags out of synch with mask */
1348 {
1349 warning ("ERROR RMT: threadinfo tag mismatch\n");
1350 retval = 0;
1351 break;
1352 }
1353 if (tag == TAG_THREADID)
1354 {
1355 if (length != 16)
1356 {
1357 warning ("ERROR RMT: length of threadid is not 16\n");
1358 retval = 0;
1359 break;
1360 }
1361 pkt = unpack_threadid (pkt, &ref);
1362 mask = mask & ~TAG_THREADID;
1363 continue;
1364 }
1365 if (tag == TAG_EXISTS)
1366 {
1367 info->active = stub_unpack_int (pkt, length);
1368 pkt += length;
1369 mask = mask & ~(TAG_EXISTS);
1370 if (length > 8)
1371 {
1372 warning ("ERROR RMT: 'exists' length too long\n");
1373 retval = 0;
1374 break;
1375 }
1376 continue;
1377 }
1378 if (tag == TAG_THREADNAME)
1379 {
1380 pkt = unpack_string (pkt, &info->shortname[0], length);
1381 mask = mask & ~TAG_THREADNAME;
1382 continue;
1383 }
1384 if (tag == TAG_DISPLAY)
1385 {
1386 pkt = unpack_string (pkt, &info->display[0], length);
1387 mask = mask & ~TAG_DISPLAY;
1388 continue;
1389 }
1390 if (tag == TAG_MOREDISPLAY)
1391 {
1392 pkt = unpack_string (pkt, &info->more_display[0], length);
1393 mask = mask & ~TAG_MOREDISPLAY;
1394 continue;
1395 }
1396 warning ("ERROR RMT: unknown thread info tag\n");
1397 break; /* Not a tag we know about */
1398 }
1399 return retval;
1400 }
1401
1402 static int
1403 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1404 struct gdb_ext_thread_info *info)
1405 {
1406 int result;
1407 char *threadinfo_pkt = alloca (PBUFSIZ);
1408
1409 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1410 putpkt (threadinfo_pkt);
1411 getpkt (threadinfo_pkt, PBUFSIZ, 0);
1412 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1413 info);
1414 return result;
1415 }
1416
1417 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1418 representation of a threadid. */
1419
1420 static int
1421 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1422 struct gdb_ext_thread_info *info)
1423 {
1424 threadref lclref;
1425
1426 int_to_threadref (&lclref, *ref);
1427 return remote_get_threadinfo (&lclref, selection, info);
1428 }
1429
1430 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1431
1432 static char *
1433 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1434 threadref *nextthread)
1435 {
1436 *pkt++ = 'q'; /* info query packet */
1437 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1438 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1439 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1440 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1441 *pkt = '\0';
1442 return pkt;
1443 }
1444
1445 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1446
1447 static int
1448 parse_threadlist_response (char *pkt, int result_limit,
1449 threadref *original_echo, threadref *resultlist,
1450 int *doneflag)
1451 {
1452 char *limit;
1453 int count, resultcount, done;
1454
1455 resultcount = 0;
1456 /* Assume the 'q' and 'M chars have been stripped. */
1457 limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
1458 pkt = unpack_byte (pkt, &count); /* count field */
1459 pkt = unpack_nibble (pkt, &done);
1460 /* The first threadid is the argument threadid. */
1461 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1462 while ((count-- > 0) && (pkt < limit))
1463 {
1464 pkt = unpack_threadid (pkt, resultlist++);
1465 if (resultcount++ >= result_limit)
1466 break;
1467 }
1468 if (doneflag)
1469 *doneflag = done;
1470 return resultcount;
1471 }
1472
1473 static int
1474 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1475 int *done, int *result_count, threadref *threadlist)
1476 {
1477 static threadref echo_nextthread;
1478 char *threadlist_packet = alloca (PBUFSIZ);
1479 char *t_response = alloca (PBUFSIZ);
1480 int result = 1;
1481
1482 /* Trancate result limit to be smaller than the packet size */
1483 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
1484 result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
1485
1486 pack_threadlist_request (threadlist_packet,
1487 startflag, result_limit, nextthread);
1488 putpkt (threadlist_packet);
1489 getpkt (t_response, PBUFSIZ, 0);
1490
1491 *result_count =
1492 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1493 threadlist, done);
1494
1495 if (!threadmatch (&echo_nextthread, nextthread))
1496 {
1497 /* FIXME: This is a good reason to drop the packet */
1498 /* Possably, there is a duplicate response */
1499 /* Possabilities :
1500 retransmit immediatly - race conditions
1501 retransmit after timeout - yes
1502 exit
1503 wait for packet, then exit
1504 */
1505 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1506 return 0; /* I choose simply exiting */
1507 }
1508 if (*result_count <= 0)
1509 {
1510 if (*done != 1)
1511 {
1512 warning ("RMT ERROR : failed to get remote thread list\n");
1513 result = 0;
1514 }
1515 return result; /* break; */
1516 }
1517 if (*result_count > result_limit)
1518 {
1519 *result_count = 0;
1520 warning ("RMT ERROR: threadlist response longer than requested\n");
1521 return 0;
1522 }
1523 return result;
1524 }
1525
1526 /* This is the interface between remote and threads, remotes upper interface */
1527
1528 /* remote_find_new_threads retrieves the thread list and for each
1529 thread in the list, looks up the thread in GDB's internal list,
1530 ading the thread if it does not already exist. This involves
1531 getting partial thread lists from the remote target so, polling the
1532 quit_flag is required. */
1533
1534
1535 /* About this many threadisds fit in a packet. */
1536
1537 #define MAXTHREADLISTRESULTS 32
1538
1539 static int
1540 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1541 int looplimit)
1542 {
1543 int done, i, result_count;
1544 int startflag = 1;
1545 int result = 1;
1546 int loopcount = 0;
1547 static threadref nextthread;
1548 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1549
1550 done = 0;
1551 while (!done)
1552 {
1553 if (loopcount++ > looplimit)
1554 {
1555 result = 0;
1556 warning ("Remote fetch threadlist -infinite loop-\n");
1557 break;
1558 }
1559 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1560 &done, &result_count, resultthreadlist))
1561 {
1562 result = 0;
1563 break;
1564 }
1565 /* clear for later iterations */
1566 startflag = 0;
1567 /* Setup to resume next batch of thread references, set nextthread. */
1568 if (result_count >= 1)
1569 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1570 i = 0;
1571 while (result_count--)
1572 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1573 break;
1574 }
1575 return result;
1576 }
1577
1578 static int
1579 remote_newthread_step (threadref *ref, void *context)
1580 {
1581 int pid;
1582
1583 pid = threadref_to_int (ref);
1584 if (!in_thread_list (pid))
1585 add_thread (pid);
1586 return 1; /* continue iterator */
1587 }
1588
1589 #define CRAZY_MAX_THREADS 1000
1590
1591 static int
1592 remote_current_thread (int oldpid)
1593 {
1594 char *buf = alloca (PBUFSIZ);
1595
1596 putpkt ("qC");
1597 getpkt (buf, PBUFSIZ, 0);
1598 if (buf[0] == 'Q' && buf[1] == 'C')
1599 return strtol (&buf[2], NULL, 16);
1600 else
1601 return oldpid;
1602 }
1603
1604 /* Find new threads for info threads command.
1605 * Original version, using John Metzler's thread protocol.
1606 */
1607
1608 static void
1609 remote_find_new_threads (void)
1610 {
1611 remote_threadlist_iterator (remote_newthread_step, 0,
1612 CRAZY_MAX_THREADS);
1613 if (inferior_pid == MAGIC_NULL_PID) /* ack ack ack */
1614 inferior_pid = remote_current_thread (inferior_pid);
1615 }
1616
1617 /*
1618 * Find all threads for info threads command.
1619 * Uses new thread protocol contributed by Cisco.
1620 * Falls back and attempts to use the older method (above)
1621 * if the target doesn't respond to the new method.
1622 */
1623
1624 static void
1625 remote_threads_info (void)
1626 {
1627 char *buf = alloca (PBUFSIZ);
1628 char *bufp;
1629 int tid;
1630
1631 if (remote_desc == 0) /* paranoia */
1632 error ("Command can only be used when connected to the remote target.");
1633
1634 if (use_threadinfo_query)
1635 {
1636 putpkt ("qfThreadInfo");
1637 bufp = buf;
1638 getpkt (bufp, PBUFSIZ, 0);
1639 if (bufp[0] != '\0') /* q packet recognized */
1640 {
1641 while (*bufp++ == 'm') /* reply contains one or more TID */
1642 {
1643 do
1644 {
1645 tid = strtol (bufp, &bufp, 16);
1646 if (tid != 0 && !in_thread_list (tid))
1647 add_thread (tid);
1648 }
1649 while (*bufp++ == ','); /* comma-separated list */
1650 putpkt ("qsThreadInfo");
1651 bufp = buf;
1652 getpkt (bufp, PBUFSIZ, 0);
1653 }
1654 return; /* done */
1655 }
1656 }
1657
1658 /* Else fall back to old method based on jmetzler protocol. */
1659 use_threadinfo_query = 0;
1660 remote_find_new_threads ();
1661 return;
1662 }
1663
1664 /*
1665 * Collect a descriptive string about the given thread.
1666 * The target may say anything it wants to about the thread
1667 * (typically info about its blocked / runnable state, name, etc.).
1668 * This string will appear in the info threads display.
1669 *
1670 * Optional: targets are not required to implement this function.
1671 */
1672
1673 static char *
1674 remote_threads_extra_info (struct thread_info *tp)
1675 {
1676 int result;
1677 int set;
1678 threadref id;
1679 struct gdb_ext_thread_info threadinfo;
1680 static char display_buf[100]; /* arbitrary... */
1681 char *bufp = alloca (PBUFSIZ);
1682 int n = 0; /* position in display_buf */
1683
1684 if (remote_desc == 0) /* paranoia */
1685 internal_error ("remote_threads_extra_info");
1686
1687 if (use_threadextra_query)
1688 {
1689 sprintf (bufp, "qThreadExtraInfo,%x", tp->pid);
1690 putpkt (bufp);
1691 getpkt (bufp, PBUFSIZ, 0);
1692 if (bufp[0] != 0)
1693 {
1694 char *p;
1695
1696 for (p = display_buf;
1697 p < display_buf + sizeof(display_buf) - 1 &&
1698 bufp[0] != 0 &&
1699 bufp[1] != 0;
1700 p++, bufp+=2)
1701 {
1702 *p = fromhex (bufp[0]) * 16 + fromhex (bufp[1]);
1703 }
1704 *p = 0;
1705 return display_buf;
1706 }
1707 }
1708
1709 /* If the above query fails, fall back to the old method. */
1710 use_threadextra_query = 0;
1711 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1712 | TAG_MOREDISPLAY | TAG_DISPLAY;
1713 int_to_threadref (&id, tp->pid);
1714 if (remote_get_threadinfo (&id, set, &threadinfo))
1715 if (threadinfo.active)
1716 {
1717 if (*threadinfo.shortname)
1718 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1719 if (*threadinfo.display)
1720 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1721 if (*threadinfo.more_display)
1722 n += sprintf(&display_buf[n], " Priority: %s",
1723 threadinfo.more_display);
1724
1725 if (n > 0)
1726 {
1727 /* for purely cosmetic reasons, clear up trailing commas */
1728 if (',' == display_buf[n-1])
1729 display_buf[n-1] = ' ';
1730 return display_buf;
1731 }
1732 }
1733 return NULL;
1734 }
1735
1736 \f
1737
1738 /* Restart the remote side; this is an extended protocol operation. */
1739
1740 static void
1741 extended_remote_restart (void)
1742 {
1743 char *buf = alloca (PBUFSIZ);
1744
1745 /* Send the restart command; for reasons I don't understand the
1746 remote side really expects a number after the "R". */
1747 buf[0] = 'R';
1748 sprintf (&buf[1], "%x", 0);
1749 putpkt (buf);
1750
1751 /* Now query for status so this looks just like we restarted
1752 gdbserver from scratch. */
1753 putpkt ("?");
1754 getpkt (buf, PBUFSIZ, 0);
1755 }
1756 \f
1757 /* Clean up connection to a remote debugger. */
1758
1759 /* ARGSUSED */
1760 static void
1761 remote_close (int quitting)
1762 {
1763 if (remote_desc)
1764 SERIAL_CLOSE (remote_desc);
1765 remote_desc = NULL;
1766 }
1767
1768 /* Query the remote side for the text, data and bss offsets. */
1769
1770 static void
1771 get_offsets (void)
1772 {
1773 char *buf = alloca (PBUFSIZ);
1774 char *ptr;
1775 int lose;
1776 CORE_ADDR text_addr, data_addr, bss_addr;
1777 struct section_offsets *offs;
1778
1779 putpkt ("qOffsets");
1780
1781 getpkt (buf, PBUFSIZ, 0);
1782
1783 if (buf[0] == '\000')
1784 return; /* Return silently. Stub doesn't support
1785 this command. */
1786 if (buf[0] == 'E')
1787 {
1788 warning ("Remote failure reply: %s", buf);
1789 return;
1790 }
1791
1792 /* Pick up each field in turn. This used to be done with scanf, but
1793 scanf will make trouble if CORE_ADDR size doesn't match
1794 conversion directives correctly. The following code will work
1795 with any size of CORE_ADDR. */
1796 text_addr = data_addr = bss_addr = 0;
1797 ptr = buf;
1798 lose = 0;
1799
1800 if (strncmp (ptr, "Text=", 5) == 0)
1801 {
1802 ptr += 5;
1803 /* Don't use strtol, could lose on big values. */
1804 while (*ptr && *ptr != ';')
1805 text_addr = (text_addr << 4) + fromhex (*ptr++);
1806 }
1807 else
1808 lose = 1;
1809
1810 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1811 {
1812 ptr += 6;
1813 while (*ptr && *ptr != ';')
1814 data_addr = (data_addr << 4) + fromhex (*ptr++);
1815 }
1816 else
1817 lose = 1;
1818
1819 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1820 {
1821 ptr += 5;
1822 while (*ptr && *ptr != ';')
1823 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1824 }
1825 else
1826 lose = 1;
1827
1828 if (lose)
1829 error ("Malformed response to offset query, %s", buf);
1830
1831 if (symfile_objfile == NULL)
1832 return;
1833
1834 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1835 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1836
1837 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1838
1839 /* This is a temporary kludge to force data and bss to use the same offsets
1840 because that's what nlmconv does now. The real solution requires changes
1841 to the stub and remote.c that I don't have time to do right now. */
1842
1843 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1844 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1845
1846 objfile_relocate (symfile_objfile, offs);
1847 }
1848
1849 /*
1850 * Cisco version of section offsets:
1851 *
1852 * Instead of having GDB query the target for the section offsets,
1853 * Cisco lets the target volunteer the information! It's also in
1854 * a different format, so here are the functions that will decode
1855 * a section offset packet from a Cisco target.
1856 */
1857
1858 /*
1859 * Function: remote_cisco_section_offsets
1860 *
1861 * Returns: zero for success, non-zero for failure
1862 */
1863
1864 static int
1865 remote_cisco_section_offsets (bfd_vma text_addr,
1866 bfd_vma data_addr,
1867 bfd_vma bss_addr,
1868 bfd_signed_vma *text_offs,
1869 bfd_signed_vma *data_offs,
1870 bfd_signed_vma *bss_offs)
1871 {
1872 bfd_vma text_base, data_base, bss_base;
1873 struct minimal_symbol *start;
1874 asection *sect;
1875 bfd *abfd;
1876 int len;
1877 char *p;
1878
1879 if (symfile_objfile == NULL)
1880 return -1; /* no can do nothin' */
1881
1882 start = lookup_minimal_symbol ("_start", NULL, NULL);
1883 if (start == NULL)
1884 return -1; /* Can't find "_start" symbol */
1885
1886 data_base = bss_base = 0;
1887 text_base = SYMBOL_VALUE_ADDRESS (start);
1888
1889 abfd = symfile_objfile->obfd;
1890 for (sect = abfd->sections;
1891 sect != 0;
1892 sect = sect->next)
1893 {
1894 p = (unsigned char *) bfd_get_section_name (abfd, sect);
1895 len = strlen (p);
1896 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
1897 if (data_base == 0 ||
1898 data_base > bfd_get_section_vma (abfd, sect))
1899 data_base = bfd_get_section_vma (abfd, sect);
1900 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
1901 if (bss_base == 0 ||
1902 bss_base > bfd_get_section_vma (abfd, sect))
1903 bss_base = bfd_get_section_vma (abfd, sect);
1904 }
1905 *text_offs = text_addr - text_base;
1906 *data_offs = data_addr - data_base;
1907 *bss_offs = bss_addr - bss_base;
1908 if (remote_debug)
1909 {
1910 char tmp[128];
1911
1912 sprintf (tmp, "VMA: text = 0x");
1913 sprintf_vma (tmp + strlen (tmp), text_addr);
1914 sprintf (tmp + strlen (tmp), " data = 0x");
1915 sprintf_vma (tmp + strlen (tmp), data_addr);
1916 sprintf (tmp + strlen (tmp), " bss = 0x");
1917 sprintf_vma (tmp + strlen (tmp), bss_addr);
1918 fprintf_filtered (gdb_stdlog, tmp);
1919 fprintf_filtered (gdb_stdlog,
1920 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
1921 paddr_nz (*text_offs),
1922 paddr_nz (*data_offs),
1923 paddr_nz (*bss_offs));
1924 }
1925
1926 return 0;
1927 }
1928
1929 /*
1930 * Function: remote_cisco_objfile_relocate
1931 *
1932 * Relocate the symbol file for a remote target.
1933 */
1934
1935 void
1936 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
1937 bfd_signed_vma bss_off)
1938 {
1939 struct section_offsets *offs;
1940
1941 if (text_off != 0 || data_off != 0 || bss_off != 0)
1942 {
1943 /* FIXME: This code assumes gdb-stabs.h is being used; it's
1944 broken for xcoff, dwarf, sdb-coff, etc. But there is no
1945 simple canonical representation for this stuff. */
1946
1947 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1948 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1949
1950 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
1951 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
1952 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
1953
1954 /* First call the standard objfile_relocate. */
1955 objfile_relocate (symfile_objfile, offs);
1956
1957 /* Now we need to fix up the section entries already attached to
1958 the exec target. These entries will control memory transfers
1959 from the exec file. */
1960
1961 exec_set_section_offsets (text_off, data_off, bss_off);
1962 }
1963 }
1964
1965 /* Stub for catch_errors. */
1966
1967 static int
1968 remote_start_remote_dummy (void *dummy)
1969 {
1970 start_remote (); /* Initialize gdb process mechanisms */
1971 return 1;
1972 }
1973
1974 static int
1975 remote_start_remote (PTR dummy)
1976 {
1977 immediate_quit++; /* Allow user to interrupt it */
1978
1979 /* Ack any packet which the remote side has already sent. */
1980 SERIAL_WRITE (remote_desc, "+", 1);
1981
1982 /* Let the stub know that we want it to return the thread. */
1983 set_thread (-1, 0);
1984
1985 inferior_pid = remote_current_thread (inferior_pid);
1986
1987 get_offsets (); /* Get text, data & bss offsets */
1988
1989 putpkt ("?"); /* initiate a query from remote machine */
1990 immediate_quit--;
1991
1992 return remote_start_remote_dummy (dummy);
1993 }
1994
1995 /* Open a connection to a remote debugger.
1996 NAME is the filename used for communication. */
1997
1998 static void
1999 remote_open (char *name, int from_tty)
2000 {
2001 remote_open_1 (name, from_tty, &remote_ops, 0);
2002 }
2003
2004 /* Just like remote_open, but with asynchronous support. */
2005 static void
2006 remote_async_open (char *name, int from_tty)
2007 {
2008 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2009 }
2010
2011 /* Open a connection to a remote debugger using the extended
2012 remote gdb protocol. NAME is the filename used for communication. */
2013
2014 static void
2015 extended_remote_open (char *name, int from_tty)
2016 {
2017 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2018 }
2019
2020 /* Just like extended_remote_open, but with asynchronous support. */
2021 static void
2022 extended_remote_async_open (char *name, int from_tty)
2023 {
2024 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2025 }
2026
2027 /* Generic code for opening a connection to a remote target. */
2028
2029 static void
2030 init_all_packet_configs (void)
2031 {
2032 int i;
2033 update_packet_config (&remote_protocol_P);
2034 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2035 update_packet_config (&remote_protocol_Z[i]);
2036 /* Force remote_write_bytes to check whether target supports binary
2037 downloading. */
2038 update_packet_config (&remote_protocol_binary_download);
2039 }
2040
2041 static void
2042 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2043 int extended_p)
2044 {
2045 if (name == 0)
2046 error ("To open a remote debug connection, you need to specify what\n\
2047 serial device is attached to the remote system\n\
2048 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2049
2050 /* See FIXME above */
2051 wait_forever_enabled_p = 1;
2052
2053 target_preopen (from_tty);
2054
2055 unpush_target (target);
2056
2057 remote_desc = SERIAL_OPEN (name);
2058 if (!remote_desc)
2059 perror_with_name (name);
2060
2061 if (baud_rate != -1)
2062 {
2063 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2064 {
2065 SERIAL_CLOSE (remote_desc);
2066 perror_with_name (name);
2067 }
2068 }
2069
2070 SERIAL_RAW (remote_desc);
2071
2072 /* If there is something sitting in the buffer we might take it as a
2073 response to a command, which would be bad. */
2074 SERIAL_FLUSH_INPUT (remote_desc);
2075
2076 if (from_tty)
2077 {
2078 puts_filtered ("Remote debugging using ");
2079 puts_filtered (name);
2080 puts_filtered ("\n");
2081 }
2082 push_target (target); /* Switch to using remote target now */
2083
2084 init_all_packet_configs ();
2085
2086 general_thread = -2;
2087 continue_thread = -2;
2088
2089 /* Probe for ability to use "ThreadInfo" query, as required. */
2090 use_threadinfo_query = 1;
2091 use_threadextra_query = 1;
2092
2093 /* Without this, some commands which require an active target (such
2094 as kill) won't work. This variable serves (at least) double duty
2095 as both the pid of the target process (if it has such), and as a
2096 flag indicating that a target is active. These functions should
2097 be split out into seperate variables, especially since GDB will
2098 someday have a notion of debugging several processes. */
2099
2100 inferior_pid = MAGIC_NULL_PID;
2101 /* Start the remote connection; if error (0), discard this target.
2102 In particular, if the user quits, be sure to discard it
2103 (we'd be in an inconsistent state otherwise). */
2104 if (!catch_errors (remote_start_remote, NULL,
2105 "Couldn't establish connection to remote target\n",
2106 RETURN_MASK_ALL))
2107 {
2108 pop_target ();
2109 return;
2110 }
2111
2112 if (extended_p)
2113 {
2114 /* tell the remote that we're using the extended protocol. */
2115 char *buf = alloca (PBUFSIZ);
2116 putpkt ("!");
2117 getpkt (buf, PBUFSIZ, 0);
2118 }
2119 }
2120
2121 /* Just like remote_open but with asynchronous support. */
2122 static void
2123 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2124 int extended_p)
2125 {
2126 if (name == 0)
2127 error ("To open a remote debug connection, you need to specify what\n\
2128 serial device is attached to the remote system\n\
2129 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2130
2131 target_preopen (from_tty);
2132
2133 unpush_target (target);
2134
2135 remote_desc = SERIAL_OPEN (name);
2136 if (!remote_desc)
2137 perror_with_name (name);
2138
2139 if (baud_rate != -1)
2140 {
2141 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2142 {
2143 SERIAL_CLOSE (remote_desc);
2144 perror_with_name (name);
2145 }
2146 }
2147
2148 SERIAL_RAW (remote_desc);
2149
2150 /* If there is something sitting in the buffer we might take it as a
2151 response to a command, which would be bad. */
2152 SERIAL_FLUSH_INPUT (remote_desc);
2153
2154 if (from_tty)
2155 {
2156 puts_filtered ("Remote debugging using ");
2157 puts_filtered (name);
2158 puts_filtered ("\n");
2159 }
2160
2161 push_target (target); /* Switch to using remote target now */
2162
2163 init_all_packet_configs ();
2164
2165 general_thread = -2;
2166 continue_thread = -2;
2167
2168 /* Probe for ability to use "ThreadInfo" query, as required. */
2169 use_threadinfo_query = 1;
2170 use_threadextra_query = 1;
2171
2172 /* Without this, some commands which require an active target (such
2173 as kill) won't work. This variable serves (at least) double duty
2174 as both the pid of the target process (if it has such), and as a
2175 flag indicating that a target is active. These functions should
2176 be split out into seperate variables, especially since GDB will
2177 someday have a notion of debugging several processes. */
2178 inferior_pid = MAGIC_NULL_PID;
2179
2180 /* With this target we start out by owning the terminal. */
2181 remote_async_terminal_ours_p = 1;
2182
2183 /* FIXME: cagney/1999-09-23: During the initial connection it is
2184 assumed that the target is already ready and able to respond to
2185 requests. Unfortunately remote_start_remote() eventually calls
2186 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2187 around this. Eventually a mechanism that allows
2188 wait_for_inferior() to expect/get timeouts will be
2189 implemented. */
2190 wait_forever_enabled_p = 0;
2191
2192 /* Start the remote connection; if error (0), discard this target.
2193 In particular, if the user quits, be sure to discard it
2194 (we'd be in an inconsistent state otherwise). */
2195 if (!catch_errors (remote_start_remote, NULL,
2196 "Couldn't establish connection to remote target\n",
2197 RETURN_MASK_ALL))
2198 {
2199 pop_target ();
2200 wait_forever_enabled_p = 1;
2201 return;
2202 }
2203
2204 wait_forever_enabled_p = 1;
2205
2206 if (extended_p)
2207 {
2208 /* tell the remote that we're using the extended protocol. */
2209 char *buf = alloca (PBUFSIZ);
2210 putpkt ("!");
2211 getpkt (buf, PBUFSIZ, 0);
2212 }
2213 }
2214
2215 /* This takes a program previously attached to and detaches it. After
2216 this is done, GDB can be used to debug some other program. We
2217 better not have left any breakpoints in the target program or it'll
2218 die when it hits one. */
2219
2220 static void
2221 remote_detach (char *args, int from_tty)
2222 {
2223 char *buf = alloca (PBUFSIZ);
2224
2225 if (args)
2226 error ("Argument given to \"detach\" when remotely debugging.");
2227
2228 /* Tell the remote target to detach. */
2229 strcpy (buf, "D");
2230 remote_send (buf, PBUFSIZ);
2231
2232 target_mourn_inferior ();
2233 if (from_tty)
2234 puts_filtered ("Ending remote debugging.\n");
2235
2236 }
2237
2238 /* Same as remote_detach, but with async support. */
2239 static void
2240 remote_async_detach (char *args, int from_tty)
2241 {
2242 char *buf = alloca (PBUFSIZ);
2243
2244 if (args)
2245 error ("Argument given to \"detach\" when remotely debugging.");
2246
2247 /* Tell the remote target to detach. */
2248 strcpy (buf, "D");
2249 remote_send (buf, PBUFSIZ);
2250
2251 /* Unregister the file descriptor from the event loop. */
2252 if (target_is_async_p ())
2253 SERIAL_ASYNC (remote_desc, NULL, 0);
2254
2255 target_mourn_inferior ();
2256 if (from_tty)
2257 puts_filtered ("Ending remote debugging.\n");
2258 }
2259
2260 /* Convert hex digit A to a number. */
2261
2262 int
2263 fromhex (int a)
2264 {
2265 if (a >= '0' && a <= '9')
2266 return a - '0';
2267 else if (a >= 'a' && a <= 'f')
2268 return a - 'a' + 10;
2269 else if (a >= 'A' && a <= 'F')
2270 return a - 'A' + 10;
2271 else
2272 error ("Reply contains invalid hex digit %d", a);
2273 }
2274
2275 /* Convert number NIB to a hex digit. */
2276
2277 static int
2278 tohex (int nib)
2279 {
2280 if (nib < 10)
2281 return '0' + nib;
2282 else
2283 return 'a' + nib - 10;
2284 }
2285 \f
2286 /* Tell the remote machine to resume. */
2287
2288 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2289
2290 static int last_sent_step;
2291
2292 static void
2293 remote_resume (int pid, int step, enum target_signal siggnal)
2294 {
2295 char *buf = alloca (PBUFSIZ);
2296
2297 if (pid == -1)
2298 set_thread (0, 0); /* run any thread */
2299 else
2300 set_thread (pid, 0); /* run this thread */
2301
2302 last_sent_signal = siggnal;
2303 last_sent_step = step;
2304
2305 /* A hook for when we need to do something at the last moment before
2306 resumption. */
2307 if (target_resume_hook)
2308 (*target_resume_hook) ();
2309
2310 if (siggnal != TARGET_SIGNAL_0)
2311 {
2312 buf[0] = step ? 'S' : 'C';
2313 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2314 buf[2] = tohex ((int) siggnal & 0xf);
2315 buf[3] = '\0';
2316 }
2317 else
2318 strcpy (buf, step ? "s" : "c");
2319
2320 putpkt (buf);
2321 }
2322
2323 /* Same as remote_resume, but with async support. */
2324 static void
2325 remote_async_resume (int pid, int step, enum target_signal siggnal)
2326 {
2327 char *buf = alloca (PBUFSIZ);
2328
2329 if (pid == -1)
2330 set_thread (0, 0); /* run any thread */
2331 else
2332 set_thread (pid, 0); /* run this thread */
2333
2334 last_sent_signal = siggnal;
2335 last_sent_step = step;
2336
2337 /* A hook for when we need to do something at the last moment before
2338 resumption. */
2339 if (target_resume_hook)
2340 (*target_resume_hook) ();
2341
2342 if (siggnal != TARGET_SIGNAL_0)
2343 {
2344 buf[0] = step ? 'S' : 'C';
2345 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2346 buf[2] = tohex ((int) siggnal & 0xf);
2347 buf[3] = '\0';
2348 }
2349 else
2350 strcpy (buf, step ? "s" : "c");
2351
2352 /* We are about to start executing the inferior, let's register it
2353 with the event loop. NOTE: this is the one place where all the
2354 execution commands end up. We could alternatively do this in each
2355 of the execution commands in infcmd.c.*/
2356 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2357 into infcmd.c in order to allow inferior function calls to work
2358 NOT asynchronously. */
2359 if (event_loop_p && target_can_async_p ())
2360 target_async (inferior_event_handler, 0);
2361 /* Tell the world that the target is now executing. */
2362 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2363 this? Instead, should the client of target just assume (for
2364 async targets) that the target is going to start executing? Is
2365 this information already found in the continuation block? */
2366 if (target_is_async_p ())
2367 target_executing = 1;
2368 putpkt (buf);
2369 }
2370 \f
2371
2372 /* Set up the signal handler for SIGINT, while the target is
2373 executing, ovewriting the 'regular' SIGINT signal handler. */
2374 static void
2375 initialize_sigint_signal_handler (void)
2376 {
2377 sigint_remote_token =
2378 create_async_signal_handler (async_remote_interrupt, NULL);
2379 signal (SIGINT, handle_remote_sigint);
2380 }
2381
2382 /* Signal handler for SIGINT, while the target is executing. */
2383 static void
2384 handle_remote_sigint (int sig)
2385 {
2386 signal (sig, handle_remote_sigint_twice);
2387 sigint_remote_twice_token =
2388 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2389 mark_async_signal_handler_wrapper (sigint_remote_token);
2390 }
2391
2392 /* Signal handler for SIGINT, installed after SIGINT has already been
2393 sent once. It will take effect the second time that the user sends
2394 a ^C. */
2395 static void
2396 handle_remote_sigint_twice (int sig)
2397 {
2398 signal (sig, handle_sigint);
2399 sigint_remote_twice_token =
2400 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2401 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2402 }
2403
2404 /* Perform the real interruption of the target execution, in response
2405 to a ^C. */
2406 static void
2407 async_remote_interrupt (gdb_client_data arg)
2408 {
2409 if (remote_debug)
2410 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2411
2412 target_stop ();
2413 }
2414
2415 /* Perform interrupt, if the first attempt did not succeed. Just give
2416 up on the target alltogether. */
2417 void
2418 async_remote_interrupt_twice (gdb_client_data arg)
2419 {
2420 if (remote_debug)
2421 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2422 /* Do something only if the target was not killed by the previous
2423 cntl-C. */
2424 if (target_executing)
2425 {
2426 interrupt_query ();
2427 signal (SIGINT, handle_remote_sigint);
2428 }
2429 }
2430
2431 /* Reinstall the usual SIGINT handlers, after the target has
2432 stopped. */
2433 static void
2434 cleanup_sigint_signal_handler (void *dummy)
2435 {
2436 signal (SIGINT, handle_sigint);
2437 if (sigint_remote_twice_token)
2438 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2439 if (sigint_remote_token)
2440 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2441 }
2442
2443 /* Send ^C to target to halt it. Target will respond, and send us a
2444 packet. */
2445 static void (*ofunc) (int);
2446
2447 /* The command line interface's stop routine. This function is installed
2448 as a signal handler for SIGINT. The first time a user requests a
2449 stop, we call remote_stop to send a break or ^C. If there is no
2450 response from the target (it didn't stop when the user requested it),
2451 we ask the user if he'd like to detach from the target. */
2452 static void
2453 remote_interrupt (int signo)
2454 {
2455 /* If this doesn't work, try more severe steps. */
2456 signal (signo, remote_interrupt_twice);
2457
2458 if (remote_debug)
2459 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2460
2461 target_stop ();
2462 }
2463
2464 /* The user typed ^C twice. */
2465
2466 static void
2467 remote_interrupt_twice (int signo)
2468 {
2469 signal (signo, ofunc);
2470 interrupt_query ();
2471 signal (signo, remote_interrupt);
2472 }
2473
2474 /* This is the generic stop called via the target vector. When a target
2475 interrupt is requested, either by the command line or the GUI, we
2476 will eventually end up here. */
2477 static void
2478 remote_stop (void)
2479 {
2480 /* Send a break or a ^C, depending on user preference. */
2481 if (remote_debug)
2482 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2483
2484 if (remote_break)
2485 SERIAL_SEND_BREAK (remote_desc);
2486 else
2487 SERIAL_WRITE (remote_desc, "\003", 1);
2488 }
2489
2490 /* Ask the user what to do when an interrupt is received. */
2491
2492 static void
2493 interrupt_query (void)
2494 {
2495 target_terminal_ours ();
2496
2497 if (query ("Interrupted while waiting for the program.\n\
2498 Give up (and stop debugging it)? "))
2499 {
2500 target_mourn_inferior ();
2501 return_to_top_level (RETURN_QUIT);
2502 }
2503
2504 target_terminal_inferior ();
2505 }
2506
2507 /* Enable/disable target terminal ownership. Most targets can use
2508 terminal groups to control terminal ownership. Remote targets are
2509 different in that explicit transfer of ownership to/from GDB/target
2510 is required. */
2511
2512 static void
2513 remote_async_terminal_inferior (void)
2514 {
2515 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2516 sync_execution here. This function should only be called when
2517 GDB is resuming the inferior in the forground. A background
2518 resume (``run&'') should leave GDB in control of the terminal and
2519 consequently should not call this code. */
2520 if (!sync_execution)
2521 return;
2522 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2523 calls target_terminal_*() idenpotent. The event-loop GDB talking
2524 to an asynchronous target with a synchronous command calls this
2525 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2526 stops trying to transfer the terminal to the target when it
2527 shouldn't this guard can go away. */
2528 if (!remote_async_terminal_ours_p)
2529 return;
2530 delete_file_handler (input_fd);
2531 remote_async_terminal_ours_p = 0;
2532 initialize_sigint_signal_handler ();
2533 /* NOTE: At this point we could also register our selves as the
2534 recipient of all input. Any characters typed could then be
2535 passed on down to the target. */
2536 }
2537
2538 static void
2539 remote_async_terminal_ours (void)
2540 {
2541 /* See FIXME in remote_async_terminal_inferior. */
2542 if (!sync_execution)
2543 return;
2544 /* See FIXME in remote_async_terminal_inferior. */
2545 if (remote_async_terminal_ours_p)
2546 return;
2547 cleanup_sigint_signal_handler (NULL);
2548 add_file_handler (input_fd, stdin_event_handler, 0);
2549 remote_async_terminal_ours_p = 1;
2550 }
2551
2552 /* If nonzero, ignore the next kill. */
2553
2554 int kill_kludge;
2555
2556 void
2557 remote_console_output (char *msg)
2558 {
2559 char *p;
2560
2561 for (p = msg; p[0] && p[1]; p += 2)
2562 {
2563 char tb[2];
2564 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2565 tb[0] = c;
2566 tb[1] = 0;
2567 fputs_unfiltered (tb, gdb_stdtarg);
2568 }
2569 gdb_flush (gdb_stdtarg);
2570 }
2571
2572 /* Wait until the remote machine stops, then return,
2573 storing status in STATUS just as `wait' would.
2574 Returns "pid", which in the case of a multi-threaded
2575 remote OS, is the thread-id. */
2576
2577 static int
2578 remote_wait (int pid, struct target_waitstatus *status)
2579 {
2580 unsigned char *buf = alloca (PBUFSIZ);
2581 int thread_num = -1;
2582
2583 status->kind = TARGET_WAITKIND_EXITED;
2584 status->value.integer = 0;
2585
2586 while (1)
2587 {
2588 unsigned char *p;
2589
2590 ofunc = signal (SIGINT, remote_interrupt);
2591 getpkt (buf, PBUFSIZ, 1);
2592 signal (SIGINT, ofunc);
2593
2594 /* This is a hook for when we need to do something (perhaps the
2595 collection of trace data) every time the target stops. */
2596 if (target_wait_loop_hook)
2597 (*target_wait_loop_hook) ();
2598
2599 switch (buf[0])
2600 {
2601 case 'E': /* Error of some sort */
2602 warning ("Remote failure reply: %s", buf);
2603 continue;
2604 case 'T': /* Status with PC, SP, FP, ... */
2605 {
2606 int i;
2607 long regno;
2608 char regs[MAX_REGISTER_RAW_SIZE];
2609
2610 /* Expedited reply, containing Signal, {regno, reg} repeat */
2611 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2612 ss = signal number
2613 n... = register number
2614 r... = register contents
2615 */
2616 p = &buf[3]; /* after Txx */
2617
2618 while (*p)
2619 {
2620 unsigned char *p1;
2621 char *p_temp;
2622
2623 /* Read the register number */
2624 regno = strtol ((const char *) p, &p_temp, 16);
2625 p1 = (unsigned char *) p_temp;
2626
2627 if (p1 == p) /* No register number present here */
2628 {
2629 p1 = (unsigned char *) strchr ((const char *) p, ':');
2630 if (p1 == NULL)
2631 warning ("Malformed packet(a) (missing colon): %s\n\
2632 Packet: '%s'\n",
2633 p, buf);
2634 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2635 {
2636 p_temp = unpack_varlen_hex (++p1, &thread_num);
2637 record_currthread (thread_num);
2638 p = (unsigned char *) p_temp;
2639 }
2640 }
2641 else
2642 {
2643 p = p1;
2644
2645 if (*p++ != ':')
2646 warning ("Malformed packet(b) (missing colon): %s\n\
2647 Packet: '%s'\n",
2648 p, buf);
2649
2650 if (regno >= NUM_REGS)
2651 warning ("Remote sent bad register number %ld: %s\n\
2652 Packet: '%s'\n",
2653 regno, p, buf);
2654
2655 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2656 {
2657 if (p[0] == 0 || p[1] == 0)
2658 warning ("Remote reply is too short: %s", buf);
2659 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2660 p += 2;
2661 }
2662 supply_register (regno, regs);
2663 }
2664
2665 if (*p++ != ';')
2666 {
2667 warning ("Remote register badly formatted: %s", buf);
2668 warning (" here: %s", p);
2669 }
2670 }
2671 }
2672 /* fall through */
2673 case 'S': /* Old style status, just signal only */
2674 status->kind = TARGET_WAITKIND_STOPPED;
2675 status->value.sig = (enum target_signal)
2676 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2677
2678 if (buf[3] == 'p')
2679 {
2680 /* Export Cisco kernel mode as a convenience variable
2681 (so that it can be used in the GDB prompt if desired). */
2682
2683 if (cisco_kernel_mode == 1)
2684 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2685 value_from_string ("PDEBUG-"));
2686 cisco_kernel_mode = 0;
2687 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2688 record_currthread (thread_num);
2689 }
2690 else if (buf[3] == 'k')
2691 {
2692 /* Export Cisco kernel mode as a convenience variable
2693 (so that it can be used in the GDB prompt if desired). */
2694
2695 if (cisco_kernel_mode == 1)
2696 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2697 value_from_string ("KDEBUG-"));
2698 cisco_kernel_mode = 1;
2699 }
2700 goto got_status;
2701 case 'N': /* Cisco special: status and offsets */
2702 {
2703 bfd_vma text_addr, data_addr, bss_addr;
2704 bfd_signed_vma text_off, data_off, bss_off;
2705 unsigned char *p1;
2706
2707 status->kind = TARGET_WAITKIND_STOPPED;
2708 status->value.sig = (enum target_signal)
2709 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2710
2711 if (symfile_objfile == NULL)
2712 {
2713 warning ("Relocation packet received with no symbol file. \
2714 Packet Dropped");
2715 goto got_status;
2716 }
2717
2718 /* Relocate object file. Buffer format is NAATT;DD;BB
2719 * where AA is the signal number, TT is the new text
2720 * address, DD * is the new data address, and BB is the
2721 * new bss address. */
2722
2723 p = &buf[3];
2724 text_addr = strtoul (p, (char **) &p1, 16);
2725 if (p1 == p || *p1 != ';')
2726 warning ("Malformed relocation packet: Packet '%s'", buf);
2727 p = p1 + 1;
2728 data_addr = strtoul (p, (char **) &p1, 16);
2729 if (p1 == p || *p1 != ';')
2730 warning ("Malformed relocation packet: Packet '%s'", buf);
2731 p = p1 + 1;
2732 bss_addr = strtoul (p, (char **) &p1, 16);
2733 if (p1 == p)
2734 warning ("Malformed relocation packet: Packet '%s'", buf);
2735
2736 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2737 &text_off, &data_off, &bss_off)
2738 == 0)
2739 if (text_off != 0 || data_off != 0 || bss_off != 0)
2740 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2741
2742 goto got_status;
2743 }
2744 case 'W': /* Target exited */
2745 {
2746 /* The remote process exited. */
2747 status->kind = TARGET_WAITKIND_EXITED;
2748 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2749 goto got_status;
2750 }
2751 case 'X':
2752 status->kind = TARGET_WAITKIND_SIGNALLED;
2753 status->value.sig = (enum target_signal)
2754 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2755 kill_kludge = 1;
2756
2757 goto got_status;
2758 case 'O': /* Console output */
2759 remote_console_output (buf + 1);
2760 continue;
2761 case '\0':
2762 if (last_sent_signal != TARGET_SIGNAL_0)
2763 {
2764 /* Zero length reply means that we tried 'S' or 'C' and
2765 the remote system doesn't support it. */
2766 target_terminal_ours_for_output ();
2767 printf_filtered
2768 ("Can't send signals to this remote system. %s not sent.\n",
2769 target_signal_to_name (last_sent_signal));
2770 last_sent_signal = TARGET_SIGNAL_0;
2771 target_terminal_inferior ();
2772
2773 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2774 putpkt ((char *) buf);
2775 continue;
2776 }
2777 /* else fallthrough */
2778 default:
2779 warning ("Invalid remote reply: %s", buf);
2780 continue;
2781 }
2782 }
2783 got_status:
2784 if (thread_num != -1)
2785 {
2786 return thread_num;
2787 }
2788 return inferior_pid;
2789 }
2790
2791 /* Async version of remote_wait. */
2792 static int
2793 remote_async_wait (int pid, struct target_waitstatus *status)
2794 {
2795 unsigned char *buf = alloca (PBUFSIZ);
2796 int thread_num = -1;
2797
2798 status->kind = TARGET_WAITKIND_EXITED;
2799 status->value.integer = 0;
2800
2801 while (1)
2802 {
2803 unsigned char *p;
2804
2805 if (!target_is_async_p ())
2806 ofunc = signal (SIGINT, remote_interrupt);
2807 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2808 _never_ wait for ever -> test on target_is_async_p().
2809 However, before we do that we need to ensure that the caller
2810 knows how to take the target into/out of async mode. */
2811 getpkt (buf, PBUFSIZ, wait_forever_enabled_p);
2812 if (!target_is_async_p ())
2813 signal (SIGINT, ofunc);
2814
2815 /* This is a hook for when we need to do something (perhaps the
2816 collection of trace data) every time the target stops. */
2817 if (target_wait_loop_hook)
2818 (*target_wait_loop_hook) ();
2819
2820 switch (buf[0])
2821 {
2822 case 'E': /* Error of some sort */
2823 warning ("Remote failure reply: %s", buf);
2824 continue;
2825 case 'T': /* Status with PC, SP, FP, ... */
2826 {
2827 int i;
2828 long regno;
2829 char regs[MAX_REGISTER_RAW_SIZE];
2830
2831 /* Expedited reply, containing Signal, {regno, reg} repeat */
2832 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2833 ss = signal number
2834 n... = register number
2835 r... = register contents
2836 */
2837 p = &buf[3]; /* after Txx */
2838
2839 while (*p)
2840 {
2841 unsigned char *p1;
2842 char *p_temp;
2843
2844 /* Read the register number */
2845 regno = strtol ((const char *) p, &p_temp, 16);
2846 p1 = (unsigned char *) p_temp;
2847
2848 if (p1 == p) /* No register number present here */
2849 {
2850 p1 = (unsigned char *) strchr ((const char *) p, ':');
2851 if (p1 == NULL)
2852 warning ("Malformed packet(a) (missing colon): %s\n\
2853 Packet: '%s'\n",
2854 p, buf);
2855 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2856 {
2857 p_temp = unpack_varlen_hex (++p1, &thread_num);
2858 record_currthread (thread_num);
2859 p = (unsigned char *) p_temp;
2860 }
2861 }
2862 else
2863 {
2864 p = p1;
2865
2866 if (*p++ != ':')
2867 warning ("Malformed packet(b) (missing colon): %s\n\
2868 Packet: '%s'\n",
2869 p, buf);
2870
2871 if (regno >= NUM_REGS)
2872 warning ("Remote sent bad register number %ld: %s\n\
2873 Packet: '%s'\n",
2874 regno, p, buf);
2875
2876 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2877 {
2878 if (p[0] == 0 || p[1] == 0)
2879 warning ("Remote reply is too short: %s", buf);
2880 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2881 p += 2;
2882 }
2883 supply_register (regno, regs);
2884 }
2885
2886 if (*p++ != ';')
2887 {
2888 warning ("Remote register badly formatted: %s", buf);
2889 warning (" here: %s", p);
2890 }
2891 }
2892 }
2893 /* fall through */
2894 case 'S': /* Old style status, just signal only */
2895 status->kind = TARGET_WAITKIND_STOPPED;
2896 status->value.sig = (enum target_signal)
2897 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2898
2899 if (buf[3] == 'p')
2900 {
2901 /* Export Cisco kernel mode as a convenience variable
2902 (so that it can be used in the GDB prompt if desired). */
2903
2904 if (cisco_kernel_mode == 1)
2905 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2906 value_from_string ("PDEBUG-"));
2907 cisco_kernel_mode = 0;
2908 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2909 record_currthread (thread_num);
2910 }
2911 else if (buf[3] == 'k')
2912 {
2913 /* Export Cisco kernel mode as a convenience variable
2914 (so that it can be used in the GDB prompt if desired). */
2915
2916 if (cisco_kernel_mode == 1)
2917 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2918 value_from_string ("KDEBUG-"));
2919 cisco_kernel_mode = 1;
2920 }
2921 goto got_status;
2922 case 'N': /* Cisco special: status and offsets */
2923 {
2924 bfd_vma text_addr, data_addr, bss_addr;
2925 bfd_signed_vma text_off, data_off, bss_off;
2926 unsigned char *p1;
2927
2928 status->kind = TARGET_WAITKIND_STOPPED;
2929 status->value.sig = (enum target_signal)
2930 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2931
2932 if (symfile_objfile == NULL)
2933 {
2934 warning ("Relocation packet recieved with no symbol file. \
2935 Packet Dropped");
2936 goto got_status;
2937 }
2938
2939 /* Relocate object file. Buffer format is NAATT;DD;BB
2940 * where AA is the signal number, TT is the new text
2941 * address, DD * is the new data address, and BB is the
2942 * new bss address. */
2943
2944 p = &buf[3];
2945 text_addr = strtoul (p, (char **) &p1, 16);
2946 if (p1 == p || *p1 != ';')
2947 warning ("Malformed relocation packet: Packet '%s'", buf);
2948 p = p1 + 1;
2949 data_addr = strtoul (p, (char **) &p1, 16);
2950 if (p1 == p || *p1 != ';')
2951 warning ("Malformed relocation packet: Packet '%s'", buf);
2952 p = p1 + 1;
2953 bss_addr = strtoul (p, (char **) &p1, 16);
2954 if (p1 == p)
2955 warning ("Malformed relocation packet: Packet '%s'", buf);
2956
2957 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2958 &text_off, &data_off, &bss_off)
2959 == 0)
2960 if (text_off != 0 || data_off != 0 || bss_off != 0)
2961 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2962
2963 goto got_status;
2964 }
2965 case 'W': /* Target exited */
2966 {
2967 /* The remote process exited. */
2968 status->kind = TARGET_WAITKIND_EXITED;
2969 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2970 goto got_status;
2971 }
2972 case 'X':
2973 status->kind = TARGET_WAITKIND_SIGNALLED;
2974 status->value.sig = (enum target_signal)
2975 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2976 kill_kludge = 1;
2977
2978 goto got_status;
2979 case 'O': /* Console output */
2980 remote_console_output (buf + 1);
2981 /* Return immediately to the event loop. The event loop will
2982 still be waiting on the inferior afterwards. */
2983 status->kind = TARGET_WAITKIND_IGNORE;
2984 goto got_status;
2985 case '\0':
2986 if (last_sent_signal != TARGET_SIGNAL_0)
2987 {
2988 /* Zero length reply means that we tried 'S' or 'C' and
2989 the remote system doesn't support it. */
2990 target_terminal_ours_for_output ();
2991 printf_filtered
2992 ("Can't send signals to this remote system. %s not sent.\n",
2993 target_signal_to_name (last_sent_signal));
2994 last_sent_signal = TARGET_SIGNAL_0;
2995 target_terminal_inferior ();
2996
2997 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2998 putpkt ((char *) buf);
2999 continue;
3000 }
3001 /* else fallthrough */
3002 default:
3003 warning ("Invalid remote reply: %s", buf);
3004 continue;
3005 }
3006 }
3007 got_status:
3008 if (thread_num != -1)
3009 {
3010 return thread_num;
3011 }
3012 return inferior_pid;
3013 }
3014
3015 /* Number of bytes of registers this stub implements. */
3016
3017 static int register_bytes_found;
3018
3019 /* Read the remote registers into the block REGS. */
3020 /* Currently we just read all the registers, so we don't use regno. */
3021
3022 /* ARGSUSED */
3023 static void
3024 remote_fetch_registers (int regno)
3025 {
3026 char *buf = alloca (PBUFSIZ);
3027 int i;
3028 char *p;
3029 char *regs = alloca (REGISTER_BYTES);
3030
3031 set_thread (inferior_pid, 1);
3032
3033 sprintf (buf, "g");
3034 remote_send (buf, PBUFSIZ);
3035
3036 /* Save the size of the packet sent to us by the target. Its used
3037 as a heuristic when determining the max size of packets that the
3038 target can safely receive. */
3039 if (actual_register_packet_size == 0)
3040 actual_register_packet_size = strlen (buf);
3041
3042 /* Unimplemented registers read as all bits zero. */
3043 memset (regs, 0, REGISTER_BYTES);
3044
3045 /* We can get out of synch in various cases. If the first character
3046 in the buffer is not a hex character, assume that has happened
3047 and try to fetch another packet to read. */
3048 while ((buf[0] < '0' || buf[0] > '9')
3049 && (buf[0] < 'a' || buf[0] > 'f')
3050 && buf[0] != 'x') /* New: unavailable register value */
3051 {
3052 if (remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "Bad register packet; fetching a new packet\n");
3055 getpkt (buf, PBUFSIZ, 0);
3056 }
3057
3058 /* Reply describes registers byte by byte, each byte encoded as two
3059 hex characters. Suck them all up, then supply them to the
3060 register cacheing/storage mechanism. */
3061
3062 p = buf;
3063 for (i = 0; i < REGISTER_BYTES; i++)
3064 {
3065 if (p[0] == 0)
3066 break;
3067 if (p[1] == 0)
3068 {
3069 warning ("Remote reply is of odd length: %s", buf);
3070 /* Don't change register_bytes_found in this case, and don't
3071 print a second warning. */
3072 goto supply_them;
3073 }
3074 if (p[0] == 'x' && p[1] == 'x')
3075 regs[i] = 0; /* 'x' */
3076 else
3077 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3078 p += 2;
3079 }
3080
3081 if (i != register_bytes_found)
3082 {
3083 register_bytes_found = i;
3084 if (REGISTER_BYTES_OK_P ()
3085 && !REGISTER_BYTES_OK (i))
3086 warning ("Remote reply is too short: %s", buf);
3087 }
3088
3089 supply_them:
3090 for (i = 0; i < NUM_REGS; i++)
3091 {
3092 supply_register (i, &regs[REGISTER_BYTE (i)]);
3093 if (buf[REGISTER_BYTE (i) * 2] == 'x')
3094 set_register_cached (i, -1);
3095 }
3096 }
3097
3098 /* Prepare to store registers. Since we may send them all (using a
3099 'G' request), we have to read out the ones we don't want to change
3100 first. */
3101
3102 static void
3103 remote_prepare_to_store (void)
3104 {
3105 /* Make sure the entire registers array is valid. */
3106 switch (remote_protocol_P.support)
3107 {
3108 case PACKET_DISABLE:
3109 case PACKET_SUPPORT_UNKNOWN:
3110 read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
3111 break;
3112 case PACKET_ENABLE:
3113 break;
3114 }
3115 }
3116
3117 /* Helper: Attempt to store REGNO using the P packet. Return fail IFF
3118 packet was not recognized. */
3119
3120 static int
3121 store_register_using_P (int regno)
3122 {
3123 /* Try storing a single register. */
3124 char *buf = alloca (PBUFSIZ);
3125 char *regp;
3126 char *p;
3127 int i;
3128
3129 sprintf (buf, "P%x=", regno);
3130 p = buf + strlen (buf);
3131 regp = register_buffer (regno);
3132 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
3133 {
3134 *p++ = tohex ((regp[i] >> 4) & 0xf);
3135 *p++ = tohex (regp[i] & 0xf);
3136 }
3137 *p = '\0';
3138 remote_send (buf, PBUFSIZ);
3139
3140 return buf[0] != '\0';
3141 }
3142
3143
3144 /* Store register REGNO, or all registers if REGNO == -1, from the contents
3145 of the register cache buffer. FIXME: ignores errors. */
3146
3147 static void
3148 remote_store_registers (int regno)
3149 {
3150 char *buf = alloca (PBUFSIZ);
3151 int i;
3152 char *p;
3153 char *regs;
3154
3155 set_thread (inferior_pid, 1);
3156
3157 if (regno >= 0)
3158 {
3159 switch (remote_protocol_P.support)
3160 {
3161 case PACKET_DISABLE:
3162 break;
3163 case PACKET_ENABLE:
3164 if (store_register_using_P (regno))
3165 return;
3166 else
3167 error ("Protocol error: P packet not recognized by stub");
3168 case PACKET_SUPPORT_UNKNOWN:
3169 if (store_register_using_P (regno))
3170 {
3171 /* The stub recognized the 'P' packet. Remember this. */
3172 remote_protocol_P.support = PACKET_ENABLE;
3173 return;
3174 }
3175 else
3176 {
3177 /* The stub does not support the 'P' packet. Use 'G'
3178 instead, and don't try using 'P' in the future (it
3179 will just waste our time). */
3180 remote_protocol_P.support = PACKET_DISABLE;
3181 break;
3182 }
3183 }
3184 }
3185
3186 buf[0] = 'G';
3187
3188 /* Command describes registers byte by byte,
3189 each byte encoded as two hex characters. */
3190
3191 regs = register_buffer (-1);
3192 p = buf + 1;
3193 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3194 for (i = 0; i < register_bytes_found; i++)
3195 {
3196 *p++ = tohex ((regs[i] >> 4) & 0xf);
3197 *p++ = tohex (regs[i] & 0xf);
3198 }
3199 *p = '\0';
3200
3201 remote_send (buf, PBUFSIZ);
3202 }
3203 \f
3204
3205 /* Return the number of hex digits in num. */
3206
3207 static int
3208 hexnumlen (ULONGEST num)
3209 {
3210 int i;
3211
3212 for (i = 0; num != 0; i++)
3213 num >>= 4;
3214
3215 return max (i, 1);
3216 }
3217
3218 /* Set BUF to the minimum number of hex digits representing NUM. */
3219
3220 static int
3221 hexnumstr (char *buf, ULONGEST num)
3222 {
3223 int len = hexnumlen (num);
3224 return hexnumnstr (buf, num, len);
3225 }
3226
3227
3228 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3229
3230 static int
3231 hexnumnstr (char *buf, ULONGEST num, int width)
3232 {
3233 int i;
3234
3235 buf[width] = '\0';
3236
3237 for (i = width - 1; i >= 0; i--)
3238 {
3239 buf[i] = "0123456789abcdef"[(num & 0xf)];
3240 num >>= 4;
3241 }
3242
3243 return width;
3244 }
3245
3246 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3247
3248 static CORE_ADDR
3249 remote_address_masked (CORE_ADDR addr)
3250 {
3251 if (remote_address_size > 0
3252 && remote_address_size < (sizeof (ULONGEST) * 8))
3253 {
3254 /* Only create a mask when that mask can safely be constructed
3255 in a ULONGEST variable. */
3256 ULONGEST mask = 1;
3257 mask = (mask << remote_address_size) - 1;
3258 addr &= mask;
3259 }
3260 return addr;
3261 }
3262
3263 /* Determine whether the remote target supports binary downloading.
3264 This is accomplished by sending a no-op memory write of zero length
3265 to the target at the specified address. It does not suffice to send
3266 the whole packet, since many stubs strip the eighth bit and subsequently
3267 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3268
3269 NOTE: This can still lose if the serial line is not eight-bit
3270 clean. In cases like this, the user should clear "remote
3271 X-packet". */
3272
3273 static void
3274 check_binary_download (CORE_ADDR addr)
3275 {
3276 switch (remote_protocol_binary_download.support)
3277 {
3278 case PACKET_DISABLE:
3279 break;
3280 case PACKET_ENABLE:
3281 break;
3282 case PACKET_SUPPORT_UNKNOWN:
3283 {
3284 char *buf = alloca (PBUFSIZ);
3285 char *p;
3286
3287 p = buf;
3288 *p++ = 'X';
3289 p += hexnumstr (p, (ULONGEST) addr);
3290 *p++ = ',';
3291 p += hexnumstr (p, (ULONGEST) 0);
3292 *p++ = ':';
3293 *p = '\0';
3294
3295 putpkt_binary (buf, (int) (p - buf));
3296 getpkt (buf, PBUFSIZ, 0);
3297
3298 if (buf[0] == '\0')
3299 {
3300 if (remote_debug)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "binary downloading NOT suppported by target\n");
3303 remote_protocol_binary_download.support = PACKET_DISABLE;
3304 }
3305 else
3306 {
3307 if (remote_debug)
3308 fprintf_unfiltered (gdb_stdlog,
3309 "binary downloading suppported by target\n");
3310 remote_protocol_binary_download.support = PACKET_ENABLE;
3311 }
3312 break;
3313 }
3314 }
3315 }
3316
3317 /* Write memory data directly to the remote machine.
3318 This does not inform the data cache; the data cache uses this.
3319 MEMADDR is the address in the remote memory space.
3320 MYADDR is the address of the buffer in our space.
3321 LEN is the number of bytes.
3322
3323 Returns number of bytes transferred, or 0 (setting errno) for
3324 error. Only transfer a single packet. */
3325
3326 static int
3327 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3328 {
3329 unsigned char *buf;
3330 int max_buf_size; /* Max size of packet output buffer */
3331 unsigned char *p;
3332 unsigned char *plen;
3333 long sizeof_buf;
3334 int plenlen;
3335 int todo;
3336 int nr_bytes;
3337
3338 /* Verify that the target can support a binary download */
3339 check_binary_download (memaddr);
3340
3341 /* Determine the max packet size. */
3342 max_buf_size = get_memory_write_packet_size ();
3343 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3344 buf = alloca (sizeof_buf);
3345
3346 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3347 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3348
3349 /* construct "M"<memaddr>","<len>":" */
3350 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3351 p = buf;
3352
3353 /* Append [XM]. Compute a best guess of the number of bytes
3354 actually transfered. */
3355 switch (remote_protocol_binary_download.support)
3356 {
3357 case PACKET_ENABLE:
3358 *p++ = 'X';
3359 /* Best guess at number of bytes that will fit. */
3360 todo = min (len, max_buf_size);
3361 break;
3362 case PACKET_DISABLE:
3363 *p++ = 'M';
3364 /* num bytes that will fit */
3365 todo = min (len, max_buf_size / 2);
3366 break;
3367 case PACKET_SUPPORT_UNKNOWN:
3368 internal_error ("%s:%d: remote_write_bytes: bad internal state",
3369 __FILE__, __LINE__);
3370 default:
3371 internal_error ("%s:%d: bad switch", __FILE__, __LINE__);
3372 }
3373
3374 /* Append <memaddr> */
3375 memaddr = remote_address_masked (memaddr);
3376 p += hexnumstr (p, (ULONGEST) memaddr);
3377 *p++ = ',';
3378
3379 /* Append <len>. Retain the location/size of <len>. It may
3380 need to be adjusted once the packet body has been created. */
3381 plen = p;
3382 plenlen = hexnumstr (p, (ULONGEST) todo);
3383 p += plenlen;
3384 *p++ = ':';
3385 *p = '\0';
3386
3387 /* Append the packet body. */
3388 switch (remote_protocol_binary_download.support)
3389 {
3390 case PACKET_ENABLE:
3391 /* Binary mode. Send target system values byte by byte, in
3392 increasing byte addresses. Only escape certain critical
3393 characters. */
3394 for (nr_bytes = 0;
3395 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3396 nr_bytes++)
3397 {
3398 switch (myaddr[nr_bytes] & 0xff)
3399 {
3400 case '$':
3401 case '#':
3402 case 0x7d:
3403 /* These must be escaped */
3404 *p++ = 0x7d;
3405 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3406 break;
3407 default:
3408 *p++ = myaddr[nr_bytes] & 0xff;
3409 break;
3410 }
3411 }
3412 if (nr_bytes < todo)
3413 {
3414 /* Escape chars have filled up the buffer prematurely,
3415 and we have actually sent fewer bytes than planned.
3416 Fix-up the length field of the packet. Use the same
3417 number of characters as before. */
3418
3419 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3420 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3421 }
3422 break;
3423 case PACKET_DISABLE:
3424 /* Normal mode: Send target system values byte by byte, in
3425 increasing byte addresses. Each byte is encoded as a two hex
3426 value. */
3427 for (nr_bytes = 0; nr_bytes < todo; nr_bytes++)
3428 {
3429 *p++ = tohex ((myaddr[nr_bytes] >> 4) & 0xf);
3430 *p++ = tohex (myaddr[nr_bytes] & 0xf);
3431 }
3432 *p = '\0';
3433 break;
3434 case PACKET_SUPPORT_UNKNOWN:
3435 internal_error ("%s:%d: remote_write_bytes: bad internal state",
3436 __FILE__, __LINE__);
3437 default:
3438 internal_error ("%s:%d: bad switch", __FILE__, __LINE__);
3439 }
3440
3441 putpkt_binary (buf, (int) (p - buf));
3442 getpkt (buf, sizeof_buf, 0);
3443
3444 if (buf[0] == 'E')
3445 {
3446 /* There is no correspondance between what the remote protocol
3447 uses for errors and errno codes. We would like a cleaner way
3448 of representing errors (big enough to include errno codes,
3449 bfd_error codes, and others). But for now just return EIO. */
3450 errno = EIO;
3451 return 0;
3452 }
3453
3454 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3455 bytes than we'd planned. */
3456 return nr_bytes;
3457 }
3458
3459 /* Read memory data directly from the remote machine.
3460 This does not use the data cache; the data cache uses this.
3461 MEMADDR is the address in the remote memory space.
3462 MYADDR is the address of the buffer in our space.
3463 LEN is the number of bytes.
3464
3465 Returns number of bytes transferred, or 0 for error. */
3466
3467 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3468 remote targets) shouldn't attempt to read the entire buffer.
3469 Instead it should read a single packet worth of data and then
3470 return the byte size of that packet to the caller. The caller (its
3471 caller and its callers caller ;-) already contains code for
3472 handling partial reads. */
3473
3474 static int
3475 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3476 {
3477 char *buf;
3478 int max_buf_size; /* Max size of packet output buffer */
3479 long sizeof_buf;
3480 int origlen;
3481
3482 /* Create a buffer big enough for this packet. */
3483 max_buf_size = get_memory_read_packet_size ();
3484 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3485 buf = alloca (sizeof_buf);
3486
3487 origlen = len;
3488 while (len > 0)
3489 {
3490 char *p;
3491 int todo;
3492 int i;
3493
3494 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3495
3496 /* construct "m"<memaddr>","<len>" */
3497 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3498 memaddr = remote_address_masked (memaddr);
3499 p = buf;
3500 *p++ = 'm';
3501 p += hexnumstr (p, (ULONGEST) memaddr);
3502 *p++ = ',';
3503 p += hexnumstr (p, (ULONGEST) todo);
3504 *p = '\0';
3505
3506 putpkt (buf);
3507 getpkt (buf, sizeof_buf, 0);
3508
3509 if (buf[0] == 'E')
3510 {
3511 /* There is no correspondance between what the remote protocol uses
3512 for errors and errno codes. We would like a cleaner way of
3513 representing errors (big enough to include errno codes, bfd_error
3514 codes, and others). But for now just return EIO. */
3515 errno = EIO;
3516 return 0;
3517 }
3518
3519 /* Reply describes memory byte by byte,
3520 each byte encoded as two hex characters. */
3521
3522 p = buf;
3523 for (i = 0; i < todo; i++)
3524 {
3525 if (p[0] == 0 || p[1] == 0)
3526 /* Reply is short. This means that we were able to read
3527 only part of what we wanted to. */
3528 return i + (origlen - len);
3529 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3530 p += 2;
3531 }
3532 myaddr += todo;
3533 memaddr += todo;
3534 len -= todo;
3535 }
3536 return origlen;
3537 }
3538 \f
3539 /* Read or write LEN bytes from inferior memory at MEMADDR,
3540 transferring to or from debugger address BUFFER. Write to inferior if
3541 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3542 for error. TARGET is unused. */
3543
3544 /* ARGSUSED */
3545 static int
3546 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3547 int should_write,
3548 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3549 struct target_ops *target)
3550 {
3551 CORE_ADDR targ_addr;
3552 int targ_len;
3553 int res;
3554
3555 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3556 if (targ_len <= 0)
3557 return 0;
3558
3559 if (should_write)
3560 res = remote_write_bytes (targ_addr, buffer, targ_len);
3561 else
3562 res = remote_read_bytes (targ_addr, buffer, targ_len);
3563
3564 return res;
3565 }
3566
3567
3568 #if 0
3569 /* Enable after 4.12. */
3570
3571 void
3572 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3573 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3574 CORE_ADDR *addr_found, char *data_found)
3575 {
3576 if (increment == -4 && len == 4)
3577 {
3578 long mask_long, data_long;
3579 long data_found_long;
3580 CORE_ADDR addr_we_found;
3581 char *buf = alloca (PBUFSIZ);
3582 long returned_long[2];
3583 char *p;
3584
3585 mask_long = extract_unsigned_integer (mask, len);
3586 data_long = extract_unsigned_integer (data, len);
3587 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3588 putpkt (buf);
3589 getpkt (buf, PBUFSIZ, 0);
3590 if (buf[0] == '\0')
3591 {
3592 /* The stub doesn't support the 't' request. We might want to
3593 remember this fact, but on the other hand the stub could be
3594 switched on us. Maybe we should remember it only until
3595 the next "target remote". */
3596 generic_search (len, data, mask, startaddr, increment, lorange,
3597 hirange, addr_found, data_found);
3598 return;
3599 }
3600
3601 if (buf[0] == 'E')
3602 /* There is no correspondance between what the remote protocol uses
3603 for errors and errno codes. We would like a cleaner way of
3604 representing errors (big enough to include errno codes, bfd_error
3605 codes, and others). But for now just use EIO. */
3606 memory_error (EIO, startaddr);
3607 p = buf;
3608 addr_we_found = 0;
3609 while (*p != '\0' && *p != ',')
3610 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3611 if (*p == '\0')
3612 error ("Protocol error: short return for search");
3613
3614 data_found_long = 0;
3615 while (*p != '\0' && *p != ',')
3616 data_found_long = (data_found_long << 4) + fromhex (*p++);
3617 /* Ignore anything after this comma, for future extensions. */
3618
3619 if (addr_we_found < lorange || addr_we_found >= hirange)
3620 {
3621 *addr_found = 0;
3622 return;
3623 }
3624
3625 *addr_found = addr_we_found;
3626 *data_found = store_unsigned_integer (data_we_found, len);
3627 return;
3628 }
3629 generic_search (len, data, mask, startaddr, increment, lorange,
3630 hirange, addr_found, data_found);
3631 }
3632 #endif /* 0 */
3633 \f
3634 static void
3635 remote_files_info (struct target_ops *ignore)
3636 {
3637 puts_filtered ("Debugging a target over a serial line.\n");
3638 }
3639 \f
3640 /* Stuff for dealing with the packets which are part of this protocol.
3641 See comment at top of file for details. */
3642
3643 /* Read a single character from the remote end, masking it down to 7 bits. */
3644
3645 static int
3646 readchar (int timeout)
3647 {
3648 int ch;
3649
3650 ch = SERIAL_READCHAR (remote_desc, timeout);
3651
3652 if (ch >= 0)
3653 return (ch & 0x7f);
3654
3655 switch ((enum serial_rc) ch)
3656 {
3657 case SERIAL_EOF:
3658 target_mourn_inferior ();
3659 error ("Remote connection closed");
3660 /* no return */
3661 case SERIAL_ERROR:
3662 perror_with_name ("Remote communication error");
3663 /* no return */
3664 case SERIAL_TIMEOUT:
3665 break;
3666 }
3667 return ch;
3668 }
3669
3670 /* Send the command in BUF to the remote machine, and read the reply
3671 into BUF. Report an error if we get an error reply. */
3672
3673 static void
3674 remote_send (char *buf,
3675 long sizeof_buf)
3676 {
3677 putpkt (buf);
3678 getpkt (buf, sizeof_buf, 0);
3679
3680 if (buf[0] == 'E')
3681 error ("Remote failure reply: %s", buf);
3682 }
3683
3684 /* Display a null-terminated packet on stdout, for debugging, using C
3685 string notation. */
3686
3687 static void
3688 print_packet (char *buf)
3689 {
3690 puts_filtered ("\"");
3691 fputstr_filtered (buf, '"', gdb_stdout);
3692 puts_filtered ("\"");
3693 }
3694
3695 int
3696 putpkt (char *buf)
3697 {
3698 return putpkt_binary (buf, strlen (buf));
3699 }
3700
3701 /* Send a packet to the remote machine, with error checking. The data
3702 of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
3703 to account for the $, # and checksum, and for a possible /0 if we are
3704 debugging (remote_debug) and want to print the sent packet as a string */
3705
3706 static int
3707 putpkt_binary (char *buf, int cnt)
3708 {
3709 int i;
3710 unsigned char csum = 0;
3711 char *buf2 = alloca (cnt + 6);
3712 long sizeof_junkbuf = PBUFSIZ;
3713 char *junkbuf = alloca (sizeof_junkbuf);
3714
3715 int ch;
3716 int tcount = 0;
3717 char *p;
3718
3719 /* Copy the packet into buffer BUF2, encapsulating it
3720 and giving it a checksum. */
3721
3722 p = buf2;
3723 *p++ = '$';
3724
3725 for (i = 0; i < cnt; i++)
3726 {
3727 csum += buf[i];
3728 *p++ = buf[i];
3729 }
3730 *p++ = '#';
3731 *p++ = tohex ((csum >> 4) & 0xf);
3732 *p++ = tohex (csum & 0xf);
3733
3734 /* Send it over and over until we get a positive ack. */
3735
3736 while (1)
3737 {
3738 int started_error_output = 0;
3739
3740 if (remote_debug)
3741 {
3742 *p = '\0';
3743 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3744 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3745 fprintf_unfiltered (gdb_stdlog, "...");
3746 gdb_flush (gdb_stdlog);
3747 }
3748 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
3749 perror_with_name ("putpkt: write failed");
3750
3751 /* read until either a timeout occurs (-2) or '+' is read */
3752 while (1)
3753 {
3754 ch = readchar (remote_timeout);
3755
3756 if (remote_debug)
3757 {
3758 switch (ch)
3759 {
3760 case '+':
3761 case '-':
3762 case SERIAL_TIMEOUT:
3763 case '$':
3764 if (started_error_output)
3765 {
3766 putchar_unfiltered ('\n');
3767 started_error_output = 0;
3768 }
3769 }
3770 }
3771
3772 switch (ch)
3773 {
3774 case '+':
3775 if (remote_debug)
3776 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3777 return 1;
3778 case '-':
3779 if (remote_debug)
3780 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3781 case SERIAL_TIMEOUT:
3782 tcount++;
3783 if (tcount > 3)
3784 return 0;
3785 break; /* Retransmit buffer */
3786 case '$':
3787 {
3788 if (remote_debug)
3789 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3790 /* It's probably an old response, and we're out of sync.
3791 Just gobble up the packet and ignore it. */
3792 read_frame (junkbuf, sizeof_junkbuf);
3793 continue; /* Now, go look for + */
3794 }
3795 default:
3796 if (remote_debug)
3797 {
3798 if (!started_error_output)
3799 {
3800 started_error_output = 1;
3801 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3802 }
3803 fputc_unfiltered (ch & 0177, gdb_stdlog);
3804 }
3805 continue;
3806 }
3807 break; /* Here to retransmit */
3808 }
3809
3810 #if 0
3811 /* This is wrong. If doing a long backtrace, the user should be
3812 able to get out next time we call QUIT, without anything as
3813 violent as interrupt_query. If we want to provide a way out of
3814 here without getting to the next QUIT, it should be based on
3815 hitting ^C twice as in remote_wait. */
3816 if (quit_flag)
3817 {
3818 quit_flag = 0;
3819 interrupt_query ();
3820 }
3821 #endif
3822 }
3823 }
3824
3825 static int remote_cisco_mode;
3826
3827 /* Come here after finding the start of the frame. Collect the rest
3828 into BUF, verifying the checksum, length, and handling run-length
3829 compression. No more than sizeof_buf-1 characters are read so that
3830 the buffer can be NUL terminated.
3831
3832 Returns -1 on error, number of characters in buffer (ignoring the
3833 trailing NULL) on success. (could be extended to return one of the
3834 SERIAL status indications). */
3835
3836 static long
3837 read_frame (char *buf,
3838 long sizeof_buf)
3839 {
3840 unsigned char csum;
3841 long bc;
3842 int c;
3843
3844 csum = 0;
3845 bc = 0;
3846
3847 while (1)
3848 {
3849 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
3850 c = readchar (remote_timeout);
3851 switch (c)
3852 {
3853 case SERIAL_TIMEOUT:
3854 if (remote_debug)
3855 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
3856 return -1;
3857 case '$':
3858 if (remote_debug)
3859 fputs_filtered ("Saw new packet start in middle of old one\n",
3860 gdb_stdlog);
3861 return -1; /* Start a new packet, count retries */
3862 case '#':
3863 {
3864 unsigned char pktcsum;
3865 int check_0 = 0;
3866 int check_1 = 0;
3867
3868 buf[bc] = '\0';
3869
3870 check_0 = readchar (remote_timeout);
3871 if (check_0 >= 0)
3872 check_1 = readchar (remote_timeout);
3873
3874 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
3875 {
3876 if (remote_debug)
3877 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
3878 return -1;
3879 }
3880 else if (check_0 < 0 || check_1 < 0)
3881 {
3882 if (remote_debug)
3883 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
3884 return -1;
3885 }
3886
3887 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
3888 if (csum == pktcsum)
3889 return bc;
3890
3891 if (remote_debug)
3892 {
3893 fprintf_filtered (gdb_stdlog,
3894 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
3895 pktcsum, csum);
3896 fputs_filtered (buf, gdb_stdlog);
3897 fputs_filtered ("\n", gdb_stdlog);
3898 }
3899 /* Number of characters in buffer ignoring trailing
3900 NUL. */
3901 return -1;
3902 }
3903 case '*': /* Run length encoding */
3904 {
3905 int repeat;
3906 csum += c;
3907
3908 if (remote_cisco_mode == 0)
3909 {
3910 c = readchar (remote_timeout);
3911 csum += c;
3912 repeat = c - ' ' + 3; /* Compute repeat count */
3913 }
3914 else
3915 {
3916 /* Cisco's run-length encoding variant uses two
3917 hex chars to represent the repeat count. */
3918
3919 c = readchar (remote_timeout);
3920 csum += c;
3921 repeat = fromhex (c) << 4;
3922 c = readchar (remote_timeout);
3923 csum += c;
3924 repeat += fromhex (c);
3925 }
3926
3927 /* The character before ``*'' is repeated. */
3928
3929 if (repeat > 0 && repeat <= 255
3930 && bc > 0
3931 && bc + repeat < sizeof_buf - 1)
3932 {
3933 memset (&buf[bc], buf[bc - 1], repeat);
3934 bc += repeat;
3935 continue;
3936 }
3937
3938 buf[bc] = '\0';
3939 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
3940 puts_filtered (buf);
3941 puts_filtered ("\n");
3942 return -1;
3943 }
3944 default:
3945 if (bc < sizeof_buf - 1)
3946 {
3947 buf[bc++] = c;
3948 csum += c;
3949 continue;
3950 }
3951
3952 buf[bc] = '\0';
3953 puts_filtered ("Remote packet too long: ");
3954 puts_filtered (buf);
3955 puts_filtered ("\n");
3956
3957 return -1;
3958 }
3959 }
3960 }
3961
3962 /* Read a packet from the remote machine, with error checking, and
3963 store it in BUF. If FOREVER, wait forever rather than timing out;
3964 this is used (in synchronous mode) to wait for a target that is is
3965 executing user code to stop. */
3966 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
3967 don't have to change all the calls to getpkt to deal with the
3968 return value, because at the moment I don't know what the right
3969 thing to do it for those. */
3970 void
3971 getpkt (char *buf,
3972 long sizeof_buf,
3973 int forever)
3974 {
3975 int timed_out;
3976
3977 timed_out = getpkt_sane (buf, sizeof_buf, forever);
3978 }
3979
3980
3981 /* Read a packet from the remote machine, with error checking, and
3982 store it in BUF. If FOREVER, wait forever rather than timing out;
3983 this is used (in synchronous mode) to wait for a target that is is
3984 executing user code to stop. If FOREVER == 0, this function is
3985 allowed to time out gracefully and return an indication of this to
3986 the caller. */
3987 int
3988 getpkt_sane (char *buf,
3989 long sizeof_buf,
3990 int forever)
3991 {
3992 int c;
3993 int tries;
3994 int timeout;
3995 int val;
3996
3997 strcpy (buf, "timeout");
3998
3999 if (forever)
4000 {
4001 timeout = watchdog > 0 ? watchdog : -1;
4002 }
4003
4004 else
4005 timeout = remote_timeout;
4006
4007 #define MAX_TRIES 3
4008
4009 for (tries = 1; tries <= MAX_TRIES; tries++)
4010 {
4011 /* This can loop forever if the remote side sends us characters
4012 continuously, but if it pauses, we'll get a zero from readchar
4013 because of timeout. Then we'll count that as a retry. */
4014
4015 /* Note that we will only wait forever prior to the start of a packet.
4016 After that, we expect characters to arrive at a brisk pace. They
4017 should show up within remote_timeout intervals. */
4018
4019 do
4020 {
4021 c = readchar (timeout);
4022
4023 if (c == SERIAL_TIMEOUT)
4024 {
4025 if (forever) /* Watchdog went off? Kill the target. */
4026 {
4027 QUIT;
4028 target_mourn_inferior ();
4029 error ("Watchdog has expired. Target detached.\n");
4030 }
4031 if (remote_debug)
4032 fputs_filtered ("Timed out.\n", gdb_stdlog);
4033 goto retry;
4034 }
4035 }
4036 while (c != '$');
4037
4038 /* We've found the start of a packet, now collect the data. */
4039
4040 val = read_frame (buf, sizeof_buf);
4041
4042 if (val >= 0)
4043 {
4044 if (remote_debug)
4045 {
4046 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4047 fputstr_unfiltered (buf, 0, gdb_stdlog);
4048 fprintf_unfiltered (gdb_stdlog, "\n");
4049 }
4050 SERIAL_WRITE (remote_desc, "+", 1);
4051 return 0;
4052 }
4053
4054 /* Try the whole thing again. */
4055 retry:
4056 SERIAL_WRITE (remote_desc, "-", 1);
4057 }
4058
4059 /* We have tried hard enough, and just can't receive the packet. Give up. */
4060
4061 printf_unfiltered ("Ignoring packet error, continuing...\n");
4062 SERIAL_WRITE (remote_desc, "+", 1);
4063 return 1;
4064 }
4065 \f
4066 static void
4067 remote_kill (void)
4068 {
4069 /* For some mysterious reason, wait_for_inferior calls kill instead of
4070 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4071 if (kill_kludge)
4072 {
4073 kill_kludge = 0;
4074 target_mourn_inferior ();
4075 return;
4076 }
4077
4078 /* Use catch_errors so the user can quit from gdb even when we aren't on
4079 speaking terms with the remote system. */
4080 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4081
4082 /* Don't wait for it to die. I'm not really sure it matters whether
4083 we do or not. For the existing stubs, kill is a noop. */
4084 target_mourn_inferior ();
4085 }
4086
4087 /* Async version of remote_kill. */
4088 static void
4089 remote_async_kill (void)
4090 {
4091 /* Unregister the file descriptor from the event loop. */
4092 if (target_is_async_p ())
4093 SERIAL_ASYNC (remote_desc, NULL, 0);
4094
4095 /* For some mysterious reason, wait_for_inferior calls kill instead of
4096 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4097 if (kill_kludge)
4098 {
4099 kill_kludge = 0;
4100 target_mourn_inferior ();
4101 return;
4102 }
4103
4104 /* Use catch_errors so the user can quit from gdb even when we aren't on
4105 speaking terms with the remote system. */
4106 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4107
4108 /* Don't wait for it to die. I'm not really sure it matters whether
4109 we do or not. For the existing stubs, kill is a noop. */
4110 target_mourn_inferior ();
4111 }
4112
4113 static void
4114 remote_mourn (void)
4115 {
4116 remote_mourn_1 (&remote_ops);
4117 }
4118
4119 static void
4120 remote_async_mourn (void)
4121 {
4122 remote_mourn_1 (&remote_async_ops);
4123 }
4124
4125 static void
4126 extended_remote_mourn (void)
4127 {
4128 /* We do _not_ want to mourn the target like this; this will
4129 remove the extended remote target from the target stack,
4130 and the next time the user says "run" it'll fail.
4131
4132 FIXME: What is the right thing to do here? */
4133 #if 0
4134 remote_mourn_1 (&extended_remote_ops);
4135 #endif
4136 }
4137
4138 /* Worker function for remote_mourn. */
4139 static void
4140 remote_mourn_1 (struct target_ops *target)
4141 {
4142 unpush_target (target);
4143 generic_mourn_inferior ();
4144 }
4145
4146 /* In the extended protocol we want to be able to do things like
4147 "run" and have them basically work as expected. So we need
4148 a special create_inferior function.
4149
4150 FIXME: One day add support for changing the exec file
4151 we're debugging, arguments and an environment. */
4152
4153 static void
4154 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4155 {
4156 /* Rip out the breakpoints; we'll reinsert them after restarting
4157 the remote server. */
4158 remove_breakpoints ();
4159
4160 /* Now restart the remote server. */
4161 extended_remote_restart ();
4162
4163 /* Now put the breakpoints back in. This way we're safe if the
4164 restart function works via a unix fork on the remote side. */
4165 insert_breakpoints ();
4166
4167 /* Clean up from the last time we were running. */
4168 clear_proceed_status ();
4169
4170 /* Let the remote process run. */
4171 proceed (-1, TARGET_SIGNAL_0, 0);
4172 }
4173
4174 /* Async version of extended_remote_create_inferior. */
4175 static void
4176 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4177 {
4178 /* Rip out the breakpoints; we'll reinsert them after restarting
4179 the remote server. */
4180 remove_breakpoints ();
4181
4182 /* If running asynchronously, register the target file descriptor
4183 with the event loop. */
4184 if (event_loop_p && target_can_async_p ())
4185 target_async (inferior_event_handler, 0);
4186
4187 /* Now restart the remote server. */
4188 extended_remote_restart ();
4189
4190 /* Now put the breakpoints back in. This way we're safe if the
4191 restart function works via a unix fork on the remote side. */
4192 insert_breakpoints ();
4193
4194 /* Clean up from the last time we were running. */
4195 clear_proceed_status ();
4196
4197 /* Let the remote process run. */
4198 proceed (-1, TARGET_SIGNAL_0, 0);
4199 }
4200 \f
4201
4202 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4203 than other targets; in those use REMOTE_BREAKPOINT instead of just
4204 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4205 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4206 the standard routines that are in mem-break.c. */
4207
4208 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4209 the choice of breakpoint instruction affects target program design and
4210 vice versa, and by making it user-tweakable, the special code here
4211 goes away and we need fewer special GDB configurations. */
4212
4213 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4214 #define REMOTE_BREAKPOINT
4215 #endif
4216
4217 #ifdef REMOTE_BREAKPOINT
4218
4219 /* If the target isn't bi-endian, just pretend it is. */
4220 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4221 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4222 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4223 #endif
4224
4225 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4226 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4227
4228 #endif /* REMOTE_BREAKPOINT */
4229
4230 /* Insert a breakpoint on targets that don't have any better breakpoint
4231 support. We read the contents of the target location and stash it,
4232 then overwrite it with a breakpoint instruction. ADDR is the target
4233 location in the target machine. CONTENTS_CACHE is a pointer to
4234 memory allocated for saving the target contents. It is guaranteed
4235 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4236 is accomplished via BREAKPOINT_MAX). */
4237
4238 static int
4239 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4240 {
4241 #ifdef REMOTE_BREAKPOINT
4242 int val;
4243 #endif
4244 int bp_size;
4245
4246 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4247 If it succeeds, then set the support to PACKET_ENABLE. If it
4248 fails, and the user has explicitly requested the Z support then
4249 report an error, otherwise, mark it disabled and go on. */
4250
4251 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4252 {
4253 char *buf = alloca (PBUFSIZ);
4254 char *p = buf;
4255
4256 addr = remote_address_masked (addr);
4257 *(p++) = 'Z';
4258 *(p++) = '0';
4259 *(p++) = ',';
4260 p += hexnumstr (p, (ULONGEST) addr);
4261 BREAKPOINT_FROM_PC (&addr, &bp_size);
4262 sprintf (p, ",%d", bp_size);
4263
4264 putpkt (buf);
4265 getpkt (buf, PBUFSIZ, 0);
4266
4267 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4268 {
4269 case PACKET_ERROR:
4270 return -1;
4271 case PACKET_OK:
4272 return 0;
4273 case PACKET_UNKNOWN:
4274 break;
4275 }
4276 }
4277
4278 #ifdef REMOTE_BREAKPOINT
4279 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4280
4281 if (val == 0)
4282 {
4283 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4284 val = target_write_memory (addr, (char *) big_break_insn,
4285 sizeof big_break_insn);
4286 else
4287 val = target_write_memory (addr, (char *) little_break_insn,
4288 sizeof little_break_insn);
4289 }
4290
4291 return val;
4292 #else
4293 return memory_insert_breakpoint (addr, contents_cache);
4294 #endif /* REMOTE_BREAKPOINT */
4295 }
4296
4297 static int
4298 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4299 {
4300 int bp_size;
4301
4302 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4303 {
4304 char *buf = alloca (PBUFSIZ);
4305 char *p = buf;
4306
4307 *(p++) = 'z';
4308 *(p++) = '0';
4309 *(p++) = ',';
4310
4311 addr = remote_address_masked (addr);
4312 p += hexnumstr (p, (ULONGEST) addr);
4313 BREAKPOINT_FROM_PC (&addr, &bp_size);
4314 sprintf (p, ",%d", bp_size);
4315
4316 putpkt (buf);
4317 getpkt (buf, PBUFSIZ, 0);
4318
4319 return (buf[0] == 'E');
4320 }
4321
4322 #ifdef REMOTE_BREAKPOINT
4323 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4324 #else
4325 return memory_remove_breakpoint (addr, contents_cache);
4326 #endif /* REMOTE_BREAKPOINT */
4327 }
4328
4329 static int
4330 watchpoint_to_Z_packet (int type)
4331 {
4332 switch (type)
4333 {
4334 case hw_write:
4335 return 2;
4336 break;
4337 case hw_read:
4338 return 3;
4339 break;
4340 case hw_access:
4341 return 4;
4342 break;
4343 default:
4344 internal_error ("hw_bp_to_z: bad watchpoint type %d", type);
4345 }
4346 }
4347
4348 /* FIXME: This function should be static and a member of the remote
4349 target vector. */
4350
4351 int
4352 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4353 {
4354 char *buf = alloca (PBUFSIZ);
4355 char *p;
4356 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4357
4358 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4359 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4360 remote_protocol_Z[packet].name,
4361 remote_protocol_Z[packet].title);
4362
4363 sprintf (buf, "Z%x,", packet);
4364 p = strchr (buf, '\0');
4365 addr = remote_address_masked (addr);
4366 p += hexnumstr (p, (ULONGEST) addr);
4367 sprintf (p, ",%x", len);
4368
4369 putpkt (buf);
4370 getpkt (buf, PBUFSIZ, 0);
4371
4372 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4373 {
4374 case PACKET_ERROR:
4375 case PACKET_UNKNOWN:
4376 return -1;
4377 case PACKET_OK:
4378 return 0;
4379 }
4380 internal_error ("remote_insert_watchpoint: reached end of function");
4381 }
4382
4383 /* FIXME: This function should be static and a member of the remote
4384 target vector. */
4385
4386 int
4387 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4388 {
4389 char *buf = alloca (PBUFSIZ);
4390 char *p;
4391 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4392
4393 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4394 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4395 remote_protocol_Z[packet].name,
4396 remote_protocol_Z[packet].title);
4397
4398 sprintf (buf, "z%x,", packet);
4399 p = strchr (buf, '\0');
4400 addr = remote_address_masked (addr);
4401 p += hexnumstr (p, (ULONGEST) addr);
4402 sprintf (p, ",%x", len);
4403 putpkt (buf);
4404 getpkt (buf, PBUFSIZ, 0);
4405
4406 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4407 {
4408 case PACKET_ERROR:
4409 case PACKET_UNKNOWN:
4410 return -1;
4411 case PACKET_OK:
4412 return 0;
4413 }
4414 internal_error ("remote_remove_watchpoint: reached end of function");
4415 }
4416
4417 /* FIXME: This function should be static and a member of the remote
4418 target vector. */
4419
4420 int
4421 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4422 {
4423 char *buf = alloca (PBUFSIZ);
4424 char *p = buf;
4425
4426 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4427 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4428 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4429 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4430
4431 *(p++) = 'Z';
4432 *(p++) = '1';
4433 *(p++) = ',';
4434
4435 addr = remote_address_masked (addr);
4436 p += hexnumstr (p, (ULONGEST) addr);
4437 sprintf (p, ",%x", len);
4438
4439 putpkt (buf);
4440 getpkt (buf, PBUFSIZ, 0);
4441
4442 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4443 {
4444 case PACKET_ERROR:
4445 case PACKET_UNKNOWN:
4446 return -1;
4447 case PACKET_OK:
4448 return 0;
4449 }
4450 internal_error ("remote_remove_watchpoint: reached end of function");
4451 }
4452
4453 /* FIXME: This function should be static and a member of the remote
4454 target vector. */
4455
4456 int
4457 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4458 {
4459 char *buf = alloca (PBUFSIZ);
4460 char *p = buf;
4461
4462 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4463 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4464 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4465 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4466
4467 *(p++) = 'z';
4468 *(p++) = '1';
4469 *(p++) = ',';
4470
4471 addr = remote_address_masked (addr);
4472 p += hexnumstr (p, (ULONGEST) addr);
4473 sprintf (p, ",%x", len);
4474
4475 putpkt(buf);
4476 getpkt (buf, PBUFSIZ, 0);
4477
4478 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4479 {
4480 case PACKET_ERROR:
4481 case PACKET_UNKNOWN:
4482 return -1;
4483 case PACKET_OK:
4484 return 0;
4485 }
4486 internal_error ("remote_remove_watchpoint: reached end of function");
4487 }
4488
4489 /* Some targets are only capable of doing downloads, and afterwards
4490 they switch to the remote serial protocol. This function provides
4491 a clean way to get from the download target to the remote target.
4492 It's basically just a wrapper so that we don't have to expose any
4493 of the internal workings of remote.c.
4494
4495 Prior to calling this routine, you should shutdown the current
4496 target code, else you will get the "A program is being debugged
4497 already..." message. Usually a call to pop_target() suffices. */
4498
4499 void
4500 push_remote_target (char *name, int from_tty)
4501 {
4502 printf_filtered ("Switching to remote protocol\n");
4503 remote_open (name, from_tty);
4504 }
4505
4506 /* Other targets want to use the entire remote serial module but with
4507 certain remote_ops overridden. */
4508
4509 void
4510 open_remote_target (char *name, int from_tty, struct target_ops *target,
4511 int extended_p)
4512 {
4513 printf_filtered ("Selecting the %sremote protocol\n",
4514 (extended_p ? "extended-" : ""));
4515 remote_open_1 (name, from_tty, target, extended_p);
4516 }
4517
4518 /* Table used by the crc32 function to calcuate the checksum. */
4519
4520 static unsigned long crc32_table[256] =
4521 {0, 0};
4522
4523 static unsigned long
4524 crc32 (unsigned char *buf, int len, unsigned int crc)
4525 {
4526 if (!crc32_table[1])
4527 {
4528 /* Initialize the CRC table and the decoding table. */
4529 int i, j;
4530 unsigned int c;
4531
4532 for (i = 0; i < 256; i++)
4533 {
4534 for (c = i << 24, j = 8; j > 0; --j)
4535 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4536 crc32_table[i] = c;
4537 }
4538 }
4539
4540 while (len--)
4541 {
4542 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4543 buf++;
4544 }
4545 return crc;
4546 }
4547
4548 /* compare-sections command
4549
4550 With no arguments, compares each loadable section in the exec bfd
4551 with the same memory range on the target, and reports mismatches.
4552 Useful for verifying the image on the target against the exec file.
4553 Depends on the target understanding the new "qCRC:" request. */
4554
4555 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4556 target method (target verify memory) and generic version of the
4557 actual command. This will allow other high-level code (especially
4558 generic_load()) to make use of this target functionality. */
4559
4560 static void
4561 compare_sections_command (char *args, int from_tty)
4562 {
4563 asection *s;
4564 unsigned long host_crc, target_crc;
4565 extern bfd *exec_bfd;
4566 struct cleanup *old_chain;
4567 char *tmp;
4568 char *sectdata;
4569 char *sectname;
4570 char *buf = alloca (PBUFSIZ);
4571 bfd_size_type size;
4572 bfd_vma lma;
4573 int matched = 0;
4574 int mismatched = 0;
4575
4576 if (!exec_bfd)
4577 error ("command cannot be used without an exec file");
4578 if (!current_target.to_shortname ||
4579 strcmp (current_target.to_shortname, "remote") != 0)
4580 error ("command can only be used with remote target");
4581
4582 for (s = exec_bfd->sections; s; s = s->next)
4583 {
4584 if (!(s->flags & SEC_LOAD))
4585 continue; /* skip non-loadable section */
4586
4587 size = bfd_get_section_size_before_reloc (s);
4588 if (size == 0)
4589 continue; /* skip zero-length section */
4590
4591 sectname = (char *) bfd_get_section_name (exec_bfd, s);
4592 if (args && strcmp (args, sectname) != 0)
4593 continue; /* not the section selected by user */
4594
4595 matched = 1; /* do this section */
4596 lma = s->lma;
4597 /* FIXME: assumes lma can fit into long */
4598 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4599 putpkt (buf);
4600
4601 /* be clever; compute the host_crc before waiting for target reply */
4602 sectdata = xmalloc (size);
4603 old_chain = make_cleanup (xfree, sectdata);
4604 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4605 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4606
4607 getpkt (buf, PBUFSIZ, 0);
4608 if (buf[0] == 'E')
4609 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
4610 sectname, lma, lma + size);
4611 if (buf[0] != 'C')
4612 error ("remote target does not support this operation");
4613
4614 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4615 target_crc = target_crc * 16 + fromhex (*tmp);
4616
4617 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4618 sectname, paddr (lma), paddr (lma + size));
4619 if (host_crc == target_crc)
4620 printf_filtered ("matched.\n");
4621 else
4622 {
4623 printf_filtered ("MIS-MATCHED!\n");
4624 mismatched++;
4625 }
4626
4627 do_cleanups (old_chain);
4628 }
4629 if (mismatched > 0)
4630 warning ("One or more sections of the remote executable does not match\n\
4631 the loaded file\n");
4632 if (args && !matched)
4633 printf_filtered ("No loaded section named '%s'.\n", args);
4634 }
4635
4636 static int
4637 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
4638 {
4639 int i;
4640 char *buf2 = alloca (PBUFSIZ);
4641 char *p2 = &buf2[0];
4642
4643 if (!bufsiz)
4644 error ("null pointer to remote bufer size specified");
4645
4646 /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
4647 the caller know and return what the minimum size is */
4648 /* Note: a zero bufsiz can be used to query the minimum buffer size */
4649 if (*bufsiz < PBUFSIZ)
4650 {
4651 *bufsiz = PBUFSIZ;
4652 return -1;
4653 }
4654
4655 /* except for querying the minimum buffer size, target must be open */
4656 if (!remote_desc)
4657 error ("remote query is only available after target open");
4658
4659 /* we only take uppercase letters as query types, at least for now */
4660 if ((query_type < 'A') || (query_type > 'Z'))
4661 error ("invalid remote query type");
4662
4663 if (!buf)
4664 error ("null remote query specified");
4665
4666 if (!outbuf)
4667 error ("remote query requires a buffer to receive data");
4668
4669 outbuf[0] = '\0';
4670
4671 *p2++ = 'q';
4672 *p2++ = query_type;
4673
4674 /* we used one buffer char for the remote protocol q command and another
4675 for the query type. As the remote protocol encapsulation uses 4 chars
4676 plus one extra in case we are debugging (remote_debug),
4677 we have PBUFZIZ - 7 left to pack the query string */
4678 i = 0;
4679 while (buf[i] && (i < (PBUFSIZ - 8)))
4680 {
4681 /* bad caller may have sent forbidden characters */
4682 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
4683 error ("illegal characters in query string");
4684
4685 *p2++ = buf[i];
4686 i++;
4687 }
4688 *p2 = buf[i];
4689
4690 if (buf[i])
4691 error ("query larger than available buffer");
4692
4693 i = putpkt (buf2);
4694 if (i < 0)
4695 return i;
4696
4697 getpkt (outbuf, *bufsiz, 0);
4698
4699 return 0;
4700 }
4701
4702 static void
4703 remote_rcmd (char *command,
4704 struct ui_file *outbuf)
4705 {
4706 int i;
4707 char *buf = alloca (PBUFSIZ);
4708 char *p = buf;
4709
4710 if (!remote_desc)
4711 error ("remote rcmd is only available after target open");
4712
4713 /* Send a NULL command across as an empty command */
4714 if (command == NULL)
4715 command = "";
4716
4717 /* The query prefix */
4718 strcpy (buf, "qRcmd,");
4719 p = strchr (buf, '\0');
4720
4721 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
4722 error ("\"monitor\" command ``%s'' is too long\n", command);
4723
4724 /* Encode the actual command */
4725 for (i = 0; command[i]; i++)
4726 {
4727 *p++ = tohex ((command[i] >> 4) & 0xf);
4728 *p++ = tohex (command[i] & 0xf);
4729 }
4730 *p = '\0';
4731
4732 if (putpkt (buf) < 0)
4733 error ("Communication problem with target\n");
4734
4735 /* get/display the response */
4736 while (1)
4737 {
4738 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4739 buf[0] = '\0';
4740 getpkt (buf, PBUFSIZ, 0);
4741 if (buf[0] == '\0')
4742 error ("Target does not support this command\n");
4743 if (buf[0] == 'O' && buf[1] != 'K')
4744 {
4745 remote_console_output (buf + 1); /* 'O' message from stub */
4746 continue;
4747 }
4748 if (strcmp (buf, "OK") == 0)
4749 break;
4750 if (strlen (buf) == 3 && buf[0] == 'E'
4751 && isdigit (buf[1]) && isdigit (buf[2]))
4752 {
4753 error ("Protocol error with Rcmd");
4754 }
4755 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4756 {
4757 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4758 fputc_unfiltered (c, outbuf);
4759 }
4760 break;
4761 }
4762 }
4763
4764 static void
4765 packet_command (char *args, int from_tty)
4766 {
4767 char *buf = alloca (PBUFSIZ);
4768
4769 if (!remote_desc)
4770 error ("command can only be used with remote target");
4771
4772 if (!args)
4773 error ("remote-packet command requires packet text as argument");
4774
4775 puts_filtered ("sending: ");
4776 print_packet (args);
4777 puts_filtered ("\n");
4778 putpkt (args);
4779
4780 getpkt (buf, PBUFSIZ, 0);
4781 puts_filtered ("received: ");
4782 print_packet (buf);
4783 puts_filtered ("\n");
4784 }
4785
4786 #if 0
4787 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4788
4789 static void display_thread_info (struct gdb_ext_thread_info *info);
4790
4791 static void threadset_test_cmd (char *cmd, int tty);
4792
4793 static void threadalive_test (char *cmd, int tty);
4794
4795 static void threadlist_test_cmd (char *cmd, int tty);
4796
4797 int get_and_display_threadinfo (threadref * ref);
4798
4799 static void threadinfo_test_cmd (char *cmd, int tty);
4800
4801 static int thread_display_step (threadref * ref, void *context);
4802
4803 static void threadlist_update_test_cmd (char *cmd, int tty);
4804
4805 static void init_remote_threadtests (void);
4806
4807 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4808
4809 static void
4810 threadset_test_cmd (char *cmd, int tty)
4811 {
4812 int sample_thread = SAMPLE_THREAD;
4813
4814 printf_filtered ("Remote threadset test\n");
4815 set_thread (sample_thread, 1);
4816 }
4817
4818
4819 static void
4820 threadalive_test (char *cmd, int tty)
4821 {
4822 int sample_thread = SAMPLE_THREAD;
4823
4824 if (remote_thread_alive (sample_thread))
4825 printf_filtered ("PASS: Thread alive test\n");
4826 else
4827 printf_filtered ("FAIL: Thread alive test\n");
4828 }
4829
4830 void output_threadid (char *title, threadref * ref);
4831
4832 void
4833 output_threadid (char *title, threadref *ref)
4834 {
4835 char hexid[20];
4836
4837 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
4838 hexid[16] = 0;
4839 printf_filtered ("%s %s\n", title, (&hexid[0]));
4840 }
4841
4842 static void
4843 threadlist_test_cmd (char *cmd, int tty)
4844 {
4845 int startflag = 1;
4846 threadref nextthread;
4847 int done, result_count;
4848 threadref threadlist[3];
4849
4850 printf_filtered ("Remote Threadlist test\n");
4851 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
4852 &result_count, &threadlist[0]))
4853 printf_filtered ("FAIL: threadlist test\n");
4854 else
4855 {
4856 threadref *scan = threadlist;
4857 threadref *limit = scan + result_count;
4858
4859 while (scan < limit)
4860 output_threadid (" thread ", scan++);
4861 }
4862 }
4863
4864 void
4865 display_thread_info (struct gdb_ext_thread_info *info)
4866 {
4867 output_threadid ("Threadid: ", &info->threadid);
4868 printf_filtered ("Name: %s\n ", info->shortname);
4869 printf_filtered ("State: %s\n", info->display);
4870 printf_filtered ("other: %s\n\n", info->more_display);
4871 }
4872
4873 int
4874 get_and_display_threadinfo (threadref *ref)
4875 {
4876 int result;
4877 int set;
4878 struct gdb_ext_thread_info threadinfo;
4879
4880 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4881 | TAG_MOREDISPLAY | TAG_DISPLAY;
4882 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
4883 display_thread_info (&threadinfo);
4884 return result;
4885 }
4886
4887 static void
4888 threadinfo_test_cmd (char *cmd, int tty)
4889 {
4890 int athread = SAMPLE_THREAD;
4891 threadref thread;
4892 int set;
4893
4894 int_to_threadref (&thread, athread);
4895 printf_filtered ("Remote Threadinfo test\n");
4896 if (!get_and_display_threadinfo (&thread))
4897 printf_filtered ("FAIL cannot get thread info\n");
4898 }
4899
4900 static int
4901 thread_display_step (threadref *ref, void *context)
4902 {
4903 /* output_threadid(" threadstep ",ref); *//* simple test */
4904 return get_and_display_threadinfo (ref);
4905 }
4906
4907 static void
4908 threadlist_update_test_cmd (char *cmd, int tty)
4909 {
4910 printf_filtered ("Remote Threadlist update test\n");
4911 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
4912 }
4913
4914 static void
4915 init_remote_threadtests (void)
4916 {
4917 add_com ("tlist", class_obscure, threadlist_test_cmd,
4918 "Fetch and print the remote list of thread identifiers, one pkt only");
4919 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
4920 "Fetch and display info about one thread");
4921 add_com ("tset", class_obscure, threadset_test_cmd,
4922 "Test setting to a different thread");
4923 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
4924 "Iterate through updating all remote thread info");
4925 add_com ("talive", class_obscure, threadalive_test,
4926 " Remote thread alive test ");
4927 }
4928
4929 #endif /* 0 */
4930
4931 static void
4932 init_remote_ops (void)
4933 {
4934 remote_ops.to_shortname = "remote";
4935 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
4936 remote_ops.to_doc =
4937 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4938 Specify the serial device it is connected to\n\
4939 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
4940 remote_ops.to_open = remote_open;
4941 remote_ops.to_close = remote_close;
4942 remote_ops.to_detach = remote_detach;
4943 remote_ops.to_resume = remote_resume;
4944 remote_ops.to_wait = remote_wait;
4945 remote_ops.to_fetch_registers = remote_fetch_registers;
4946 remote_ops.to_store_registers = remote_store_registers;
4947 remote_ops.to_prepare_to_store = remote_prepare_to_store;
4948 remote_ops.to_xfer_memory = remote_xfer_memory;
4949 remote_ops.to_files_info = remote_files_info;
4950 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
4951 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
4952 remote_ops.to_kill = remote_kill;
4953 remote_ops.to_load = generic_load;
4954 remote_ops.to_mourn_inferior = remote_mourn;
4955 remote_ops.to_thread_alive = remote_thread_alive;
4956 remote_ops.to_find_new_threads = remote_threads_info;
4957 remote_ops.to_extra_thread_info = remote_threads_extra_info;
4958 remote_ops.to_stop = remote_stop;
4959 remote_ops.to_query = remote_query;
4960 remote_ops.to_rcmd = remote_rcmd;
4961 remote_ops.to_stratum = process_stratum;
4962 remote_ops.to_has_all_memory = 1;
4963 remote_ops.to_has_memory = 1;
4964 remote_ops.to_has_stack = 1;
4965 remote_ops.to_has_registers = 1;
4966 remote_ops.to_has_execution = 1;
4967 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
4968 remote_ops.to_magic = OPS_MAGIC;
4969 }
4970
4971 /* Set up the extended remote vector by making a copy of the standard
4972 remote vector and adding to it. */
4973
4974 static void
4975 init_extended_remote_ops (void)
4976 {
4977 extended_remote_ops = remote_ops;
4978
4979 extended_remote_ops.to_shortname = "extended-remote";
4980 extended_remote_ops.to_longname =
4981 "Extended remote serial target in gdb-specific protocol";
4982 extended_remote_ops.to_doc =
4983 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4984 Specify the serial device it is connected to (e.g. /dev/ttya).",
4985 extended_remote_ops.to_open = extended_remote_open;
4986 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
4987 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
4988 }
4989
4990 /*
4991 * Command: info remote-process
4992 *
4993 * This implements Cisco's version of the "info proc" command.
4994 *
4995 * This query allows the target stub to return an arbitrary string
4996 * (or strings) giving arbitrary information about the target process.
4997 * This is optional; the target stub isn't required to implement it.
4998 *
4999 * Syntax: qfProcessInfo request first string
5000 * qsProcessInfo request subsequent string
5001 * reply: 'O'<hex-encoded-string>
5002 * 'l' last reply (empty)
5003 */
5004
5005 static void
5006 remote_info_process (char *args, int from_tty)
5007 {
5008 char *buf = alloca (PBUFSIZ);
5009
5010 if (remote_desc == 0)
5011 error ("Command can only be used when connected to the remote target.");
5012
5013 putpkt ("qfProcessInfo");
5014 getpkt (buf, PBUFSIZ, 0);
5015 if (buf[0] == 0)
5016 return; /* Silently: target does not support this feature. */
5017
5018 if (buf[0] == 'E')
5019 error ("info proc: target error.");
5020
5021 while (buf[0] == 'O') /* Capitol-O packet */
5022 {
5023 remote_console_output (&buf[1]);
5024 putpkt ("qsProcessInfo");
5025 getpkt (buf, PBUFSIZ, 0);
5026 }
5027 }
5028
5029 /*
5030 * Target Cisco
5031 */
5032
5033 static void
5034 remote_cisco_open (char *name, int from_tty)
5035 {
5036 if (name == 0)
5037 error (
5038 "To open a remote debug connection, you need to specify what \n\
5039 device is attached to the remote system (e.g. host:port).");
5040
5041 /* See FIXME above */
5042 wait_forever_enabled_p = 1;
5043
5044 target_preopen (from_tty);
5045
5046 unpush_target (&remote_cisco_ops);
5047
5048 remote_desc = SERIAL_OPEN (name);
5049 if (!remote_desc)
5050 perror_with_name (name);
5051
5052 /*
5053 * If a baud rate was specified on the gdb command line it will
5054 * be greater than the initial value of -1. If it is, use it otherwise
5055 * default to 9600
5056 */
5057
5058 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5059 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
5060 {
5061 SERIAL_CLOSE (remote_desc);
5062 perror_with_name (name);
5063 }
5064
5065 SERIAL_RAW (remote_desc);
5066
5067 /* If there is something sitting in the buffer we might take it as a
5068 response to a command, which would be bad. */
5069 SERIAL_FLUSH_INPUT (remote_desc);
5070
5071 if (from_tty)
5072 {
5073 puts_filtered ("Remote debugging using ");
5074 puts_filtered (name);
5075 puts_filtered ("\n");
5076 }
5077
5078 remote_cisco_mode = 1;
5079
5080 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5081
5082 init_all_packet_configs ();
5083
5084 general_thread = -2;
5085 continue_thread = -2;
5086
5087 /* Probe for ability to use "ThreadInfo" query, as required. */
5088 use_threadinfo_query = 1;
5089 use_threadextra_query = 1;
5090
5091 /* Without this, some commands which require an active target (such
5092 as kill) won't work. This variable serves (at least) double duty
5093 as both the pid of the target process (if it has such), and as a
5094 flag indicating that a target is active. These functions should
5095 be split out into seperate variables, especially since GDB will
5096 someday have a notion of debugging several processes. */
5097 inferior_pid = MAGIC_NULL_PID;
5098
5099 /* Start the remote connection; if error (0), discard this target. */
5100
5101 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5102 "Couldn't establish connection to remote target\n",
5103 RETURN_MASK_ALL))
5104 {
5105 pop_target ();
5106 return;
5107 }
5108 }
5109
5110 static void
5111 remote_cisco_close (int quitting)
5112 {
5113 remote_cisco_mode = 0;
5114 remote_close (quitting);
5115 }
5116
5117 static void
5118 remote_cisco_mourn (void)
5119 {
5120 remote_mourn_1 (&remote_cisco_ops);
5121 }
5122
5123 enum
5124 {
5125 READ_MORE,
5126 FATAL_ERROR,
5127 ENTER_DEBUG,
5128 DISCONNECT_TELNET
5129 }
5130 minitelnet_return;
5131
5132 /* shared between readsocket() and readtty() */
5133 static char *tty_input;
5134
5135 static int escape_count;
5136 static int echo_check;
5137 extern int quit_flag;
5138
5139 static int
5140 readsocket (void)
5141 {
5142 int data;
5143
5144 /* Loop until the socket doesn't have any more data */
5145
5146 while ((data = readchar (0)) >= 0)
5147 {
5148 /* Check for the escape sequence */
5149 if (data == '|')
5150 {
5151 /* If this is the fourth escape, get out */
5152 if (++escape_count == 4)
5153 {
5154 return ENTER_DEBUG;
5155 }
5156 else
5157 { /* This is a '|', but not the fourth in a row.
5158 Continue without echoing it. If it isn't actually
5159 one of four in a row, it'll be echoed later. */
5160 continue;
5161 }
5162 }
5163 else
5164 /* Not a '|' */
5165 {
5166 /* Ensure any pending '|'s are flushed. */
5167
5168 for (; escape_count > 0; escape_count--)
5169 putchar ('|');
5170 }
5171
5172 if (data == '\r') /* If this is a return character, */
5173 continue; /* - just supress it. */
5174
5175 if (echo_check != -1) /* Check for echo of user input. */
5176 {
5177 if (tty_input[echo_check] == data)
5178 {
5179 echo_check++; /* Character matched user input: */
5180 continue; /* Continue without echoing it. */
5181 }
5182 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5183 { /* End of the line (and of echo checking). */
5184 echo_check = -1; /* No more echo supression */
5185 continue; /* Continue without echoing. */
5186 }
5187 else
5188 { /* Failed check for echo of user input.
5189 We now have some suppressed output to flush! */
5190 int j;
5191
5192 for (j = 0; j < echo_check; j++)
5193 putchar (tty_input[j]);
5194 echo_check = -1;
5195 }
5196 }
5197 putchar (data); /* Default case: output the char. */
5198 }
5199
5200 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5201 return READ_MORE; /* Try to read some more */
5202 else
5203 return FATAL_ERROR; /* Trouble, bail out */
5204 }
5205
5206 static int
5207 readtty (void)
5208 {
5209 int tty_bytecount;
5210
5211 /* First, read a buffer full from the terminal */
5212 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5213 if (tty_bytecount == -1)
5214 {
5215 perror ("readtty: read failed");
5216 return FATAL_ERROR;
5217 }
5218
5219 /* Remove a quoted newline. */
5220 if (tty_input[tty_bytecount - 1] == '\n' &&
5221 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5222 {
5223 tty_input[--tty_bytecount] = 0; /* remove newline */
5224 tty_input[--tty_bytecount] = 0; /* remove backslash */
5225 }
5226
5227 /* Turn trailing newlines into returns */
5228 if (tty_input[tty_bytecount - 1] == '\n')
5229 tty_input[tty_bytecount - 1] = '\r';
5230
5231 /* If the line consists of a ~, enter debugging mode. */
5232 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5233 return ENTER_DEBUG;
5234
5235 /* Make this a zero terminated string and write it out */
5236 tty_input[tty_bytecount] = 0;
5237 if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount))
5238 {
5239 perror_with_name ("readtty: write failed");
5240 return FATAL_ERROR;
5241 }
5242
5243 return READ_MORE;
5244 }
5245
5246 static int
5247 minitelnet (void)
5248 {
5249 fd_set input; /* file descriptors for select */
5250 int tablesize; /* max number of FDs for select */
5251 int status;
5252 int quit_count = 0;
5253
5254 extern int escape_count; /* global shared by readsocket */
5255 extern int echo_check; /* ditto */
5256
5257 escape_count = 0;
5258 echo_check = -1;
5259
5260 tablesize = 8 * sizeof (input);
5261
5262 for (;;)
5263 {
5264 /* Check for anything from our socket - doesn't block. Note that
5265 this must be done *before* the select as there may be
5266 buffered I/O waiting to be processed. */
5267
5268 if ((status = readsocket ()) == FATAL_ERROR)
5269 {
5270 error ("Debugging terminated by communications error");
5271 }
5272 else if (status != READ_MORE)
5273 {
5274 return (status);
5275 }
5276
5277 fflush (stdout); /* Flush output before blocking */
5278
5279 /* Now block on more socket input or TTY input */
5280
5281 FD_ZERO (&input);
5282 FD_SET (fileno (stdin), &input);
5283 FD_SET (DEPRECATED_SERIAL_FD (remote_desc), &input);
5284
5285 status = select (tablesize, &input, 0, 0, 0);
5286 if ((status == -1) && (errno != EINTR))
5287 {
5288 error ("Communications error on select %d", errno);
5289 }
5290
5291 /* Handle Control-C typed */
5292
5293 if (quit_flag)
5294 {
5295 if ((++quit_count) == 2)
5296 {
5297 if (query ("Interrupt GDB? "))
5298 {
5299 printf_filtered ("Interrupted by user.\n");
5300 return_to_top_level (RETURN_QUIT);
5301 }
5302 quit_count = 0;
5303 }
5304 quit_flag = 0;
5305
5306 if (remote_break)
5307 SERIAL_SEND_BREAK (remote_desc);
5308 else
5309 SERIAL_WRITE (remote_desc, "\003", 1);
5310
5311 continue;
5312 }
5313
5314 /* Handle console input */
5315
5316 if (FD_ISSET (fileno (stdin), &input))
5317 {
5318 quit_count = 0;
5319 echo_check = 0;
5320 status = readtty ();
5321 if (status == READ_MORE)
5322 continue;
5323
5324 return status; /* telnet session ended */
5325 }
5326 }
5327 }
5328
5329 static int
5330 remote_cisco_wait (int pid, struct target_waitstatus *status)
5331 {
5332 if (minitelnet () != ENTER_DEBUG)
5333 {
5334 error ("Debugging session terminated by protocol error");
5335 }
5336 putpkt ("?");
5337 return remote_wait (pid, status);
5338 }
5339
5340 static void
5341 init_remote_cisco_ops (void)
5342 {
5343 remote_cisco_ops.to_shortname = "cisco";
5344 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5345 remote_cisco_ops.to_doc =
5346 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5347 Specify the serial device it is connected to (e.g. host:2020).";
5348 remote_cisco_ops.to_open = remote_cisco_open;
5349 remote_cisco_ops.to_close = remote_cisco_close;
5350 remote_cisco_ops.to_detach = remote_detach;
5351 remote_cisco_ops.to_resume = remote_resume;
5352 remote_cisco_ops.to_wait = remote_cisco_wait;
5353 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5354 remote_cisco_ops.to_store_registers = remote_store_registers;
5355 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5356 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5357 remote_cisco_ops.to_files_info = remote_files_info;
5358 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5359 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5360 remote_cisco_ops.to_kill = remote_kill;
5361 remote_cisco_ops.to_load = generic_load;
5362 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5363 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5364 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5365 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5366 remote_cisco_ops.to_stratum = process_stratum;
5367 remote_cisco_ops.to_has_all_memory = 1;
5368 remote_cisco_ops.to_has_memory = 1;
5369 remote_cisco_ops.to_has_stack = 1;
5370 remote_cisco_ops.to_has_registers = 1;
5371 remote_cisco_ops.to_has_execution = 1;
5372 remote_cisco_ops.to_magic = OPS_MAGIC;
5373 }
5374
5375 static int
5376 remote_can_async_p (void)
5377 {
5378 /* We're async whenever the serial device is. */
5379 return (current_target.to_async_mask_value) && SERIAL_CAN_ASYNC_P (remote_desc);
5380 }
5381
5382 static int
5383 remote_is_async_p (void)
5384 {
5385 /* We're async whenever the serial device is. */
5386 return (current_target.to_async_mask_value) && SERIAL_IS_ASYNC_P (remote_desc);
5387 }
5388
5389 /* Pass the SERIAL event on and up to the client. One day this code
5390 will be able to delay notifying the client of an event until the
5391 point where an entire packet has been received. */
5392
5393 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5394 static void *async_client_context;
5395 static serial_event_ftype remote_async_serial_handler;
5396
5397 static void
5398 remote_async_serial_handler (serial_t scb, void *context)
5399 {
5400 /* Don't propogate error information up to the client. Instead let
5401 the client find out about the error by querying the target. */
5402 async_client_callback (INF_REG_EVENT, async_client_context);
5403 }
5404
5405 static void
5406 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5407 {
5408 if (current_target.to_async_mask_value == 0)
5409 internal_error ("Calling remote_async when async is masked");
5410
5411 if (callback != NULL)
5412 {
5413 SERIAL_ASYNC (remote_desc, remote_async_serial_handler, NULL);
5414 async_client_callback = callback;
5415 async_client_context = context;
5416 }
5417 else
5418 SERIAL_ASYNC (remote_desc, NULL, NULL);
5419 }
5420
5421 /* Target async and target extended-async.
5422
5423 This are temporary targets, until it is all tested. Eventually
5424 async support will be incorporated int the usual 'remote'
5425 target. */
5426
5427 static void
5428 init_remote_async_ops (void)
5429 {
5430 remote_async_ops.to_shortname = "async";
5431 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5432 remote_async_ops.to_doc =
5433 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5434 Specify the serial device it is connected to (e.g. /dev/ttya).";
5435 remote_async_ops.to_open = remote_async_open;
5436 remote_async_ops.to_close = remote_close;
5437 remote_async_ops.to_detach = remote_async_detach;
5438 remote_async_ops.to_resume = remote_async_resume;
5439 remote_async_ops.to_wait = remote_async_wait;
5440 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5441 remote_async_ops.to_store_registers = remote_store_registers;
5442 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5443 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5444 remote_async_ops.to_files_info = remote_files_info;
5445 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5446 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5447 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5448 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5449 remote_async_ops.to_kill = remote_async_kill;
5450 remote_async_ops.to_load = generic_load;
5451 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5452 remote_async_ops.to_thread_alive = remote_thread_alive;
5453 remote_async_ops.to_find_new_threads = remote_threads_info;
5454 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5455 remote_async_ops.to_stop = remote_stop;
5456 remote_async_ops.to_query = remote_query;
5457 remote_async_ops.to_rcmd = remote_rcmd;
5458 remote_async_ops.to_stratum = process_stratum;
5459 remote_async_ops.to_has_all_memory = 1;
5460 remote_async_ops.to_has_memory = 1;
5461 remote_async_ops.to_has_stack = 1;
5462 remote_async_ops.to_has_registers = 1;
5463 remote_async_ops.to_has_execution = 1;
5464 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5465 remote_async_ops.to_can_async_p = remote_can_async_p;
5466 remote_async_ops.to_is_async_p = remote_is_async_p;
5467 remote_async_ops.to_async = remote_async;
5468 remote_async_ops.to_async_mask_value = 1;
5469 remote_async_ops.to_magic = OPS_MAGIC;
5470 }
5471
5472 /* Set up the async extended remote vector by making a copy of the standard
5473 remote vector and adding to it. */
5474
5475 static void
5476 init_extended_async_remote_ops (void)
5477 {
5478 extended_async_remote_ops = remote_async_ops;
5479
5480 extended_async_remote_ops.to_shortname = "extended-async";
5481 extended_async_remote_ops.to_longname =
5482 "Extended remote serial target in async gdb-specific protocol";
5483 extended_async_remote_ops.to_doc =
5484 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5485 Specify the serial device it is connected to (e.g. /dev/ttya).",
5486 extended_async_remote_ops.to_open = extended_remote_async_open;
5487 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5488 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5489 }
5490
5491 static void
5492 set_remote_cmd (char *args, int from_tty)
5493 {
5494
5495 }
5496
5497 static void
5498 show_remote_cmd (char *args, int from_tty)
5499 {
5500 show_remote_protocol_Z_packet_cmd (args, from_tty);
5501 show_remote_protocol_P_packet_cmd (args, from_tty);
5502 show_remote_protocol_binary_download_cmd (args, from_tty);
5503 }
5504
5505 static void
5506 build_remote_gdbarch_data (void)
5507 {
5508 build_remote_packet_sizes ();
5509
5510 /* Cisco stuff */
5511 tty_input = xmalloc (PBUFSIZ);
5512 remote_address_size = TARGET_PTR_BIT;
5513 }
5514
5515 void
5516 _initialize_remote (void)
5517 {
5518 static struct cmd_list_element *remote_set_cmdlist;
5519 static struct cmd_list_element *remote_show_cmdlist;
5520 struct cmd_list_element *tmpcmd;
5521
5522 /* architecture specific data */
5523 build_remote_gdbarch_data ();
5524 register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
5525 register_remote_packet_sizes ();
5526 register_gdbarch_swap (&remote_address_size,
5527 sizeof (&remote_address_size), NULL);
5528 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5529
5530 init_remote_ops ();
5531 add_target (&remote_ops);
5532
5533 init_extended_remote_ops ();
5534 add_target (&extended_remote_ops);
5535
5536 init_remote_async_ops ();
5537 add_target (&remote_async_ops);
5538
5539 init_extended_async_remote_ops ();
5540 add_target (&extended_async_remote_ops);
5541
5542 init_remote_cisco_ops ();
5543 add_target (&remote_cisco_ops);
5544
5545 #if 0
5546 init_remote_threadtests ();
5547 #endif
5548
5549 /* set/show remote ... */
5550
5551 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5552 Remote protocol specific variables\n\
5553 Configure various remote-protocol specific variables such as\n\
5554 the packets being used",
5555 &remote_set_cmdlist, "set remote ",
5556 0/*allow-unknown*/, &setlist);
5557 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5558 Remote protocol specific variables\n\
5559 Configure various remote-protocol specific variables such as\n\
5560 the packets being used",
5561 &remote_show_cmdlist, "show remote ",
5562 0/*allow-unknown*/, &showlist);
5563
5564 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5565 "Compare section data on target to the exec file.\n\
5566 Argument is a single section name (default: all loaded sections).",
5567 &cmdlist);
5568
5569 add_cmd ("packet", class_maintenance, packet_command,
5570 "Send an arbitrary packet to a remote target.\n\
5571 maintenance packet TEXT\n\
5572 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5573 this command sends the string TEXT to the inferior, and displays the\n\
5574 response packet. GDB supplies the initial `$' character, and the\n\
5575 terminating `#' character and checksum.",
5576 &maintenancelist);
5577
5578 add_show_from_set
5579 (add_set_cmd ("remotebreak", no_class,
5580 var_boolean, (char *) &remote_break,
5581 "Set whether to send break if interrupted.\n",
5582 &setlist),
5583 &showlist);
5584
5585 /* Install commands for configuring memory read/write packets. */
5586
5587 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5588 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5589 &setlist);
5590 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5591 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5592 &showlist);
5593 add_cmd ("memory-write-packet-size", no_class,
5594 set_memory_write_packet_size,
5595 "Set the maximum number of bytes per memory-write packet.\n"
5596 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5597 "default packet size. The actual limit is further reduced\n"
5598 "dependent on the target. Specify ``fixed'' to disable the\n"
5599 "further restriction and ``limit'' to enable that restriction\n",
5600 &remote_set_cmdlist);
5601 add_cmd ("memory-read-packet-size", no_class,
5602 set_memory_read_packet_size,
5603 "Set the maximum number of bytes per memory-read packet.\n"
5604 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5605 "default packet size. The actual limit is further reduced\n"
5606 "dependent on the target. Specify ``fixed'' to disable the\n"
5607 "further restriction and ``limit'' to enable that restriction\n",
5608 &remote_set_cmdlist);
5609 add_cmd ("memory-write-packet-size", no_class,
5610 show_memory_write_packet_size,
5611 "Show the maximum number of bytes per memory-write packet.\n",
5612 &remote_show_cmdlist);
5613 add_cmd ("memory-read-packet-size", no_class,
5614 show_memory_read_packet_size,
5615 "Show the maximum number of bytes per memory-read packet.\n",
5616 &remote_show_cmdlist);
5617
5618 add_show_from_set
5619 (add_set_cmd ("remoteaddresssize", class_obscure,
5620 var_integer, (char *) &remote_address_size,
5621 "Set the maximum size of the address (in bits) \
5622 in a memory packet.\n",
5623 &setlist),
5624 &showlist);
5625
5626 add_packet_config_cmd (&remote_protocol_binary_download,
5627 "X", "binary-download",
5628 set_remote_protocol_binary_download_cmd,
5629 show_remote_protocol_binary_download_cmd,
5630 &remote_set_cmdlist, &remote_show_cmdlist,
5631 1);
5632 #if 0
5633 /* XXXX - should ``set remotebinarydownload'' be retained for
5634 compatibility. */
5635 add_show_from_set
5636 (add_set_cmd ("remotebinarydownload", no_class,
5637 var_boolean, (char *) &remote_binary_download,
5638 "Set binary downloads.\n", &setlist),
5639 &showlist);
5640 #endif
5641
5642 add_info ("remote-process", remote_info_process,
5643 "Query the remote system for process info.");
5644
5645 add_packet_config_cmd (&remote_protocol_P,
5646 "P", "set-register",
5647 set_remote_protocol_P_packet_cmd,
5648 show_remote_protocol_P_packet_cmd,
5649 &remote_set_cmdlist, &remote_show_cmdlist,
5650 1);
5651
5652 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5653 "Z0", "software-breakpoint",
5654 set_remote_protocol_Z_software_bp_packet_cmd,
5655 show_remote_protocol_Z_software_bp_packet_cmd,
5656 &remote_set_cmdlist, &remote_show_cmdlist,
5657 0);
5658
5659 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5660 "Z1", "hardware-breakpoint",
5661 set_remote_protocol_Z_hardware_bp_packet_cmd,
5662 show_remote_protocol_Z_hardware_bp_packet_cmd,
5663 &remote_set_cmdlist, &remote_show_cmdlist,
5664 0);
5665
5666 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5667 "Z2", "write-watchpoint",
5668 set_remote_protocol_Z_write_wp_packet_cmd,
5669 show_remote_protocol_Z_write_wp_packet_cmd,
5670 &remote_set_cmdlist, &remote_show_cmdlist,
5671 0);
5672
5673 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5674 "Z3", "read-watchpoint",
5675 set_remote_protocol_Z_read_wp_packet_cmd,
5676 show_remote_protocol_Z_read_wp_packet_cmd,
5677 &remote_set_cmdlist, &remote_show_cmdlist,
5678 0);
5679
5680 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5681 "Z4", "access-watchpoint",
5682 set_remote_protocol_Z_access_wp_packet_cmd,
5683 show_remote_protocol_Z_access_wp_packet_cmd,
5684 &remote_set_cmdlist, &remote_show_cmdlist,
5685 0);
5686
5687 /* Keep the old ``set remote Z-packet ...'' working. */
5688 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
5689 &remote_Z_packet_detect,
5690 "\
5691 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
5692 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
5693 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
5694 "Show use of remote protocol `Z' packets ",
5695 &remote_show_cmdlist);
5696 }
This page took 0.153233 seconds and 5 git commands to generate.