C++ify remote notification code
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 const char *pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 void stop (ptid_t) override;
489
490 void interrupt () override;
491
492 void pass_ctrlc () override;
493
494 enum target_xfer_status xfer_partial (enum target_object object,
495 const char *annex,
496 gdb_byte *readbuf,
497 const gdb_byte *writebuf,
498 ULONGEST offset, ULONGEST len,
499 ULONGEST *xfered_len) override;
500
501 ULONGEST get_memory_xfer_limit () override;
502
503 void rcmd (const char *command, struct ui_file *output) override;
504
505 char *pid_to_exec_file (int pid) override;
506
507 void log_command (const char *cmd) override
508 {
509 serial_log_command (this, cmd);
510 }
511
512 CORE_ADDR get_thread_local_address (ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset) override;
515
516 bool can_execute_reverse () override;
517
518 std::vector<mem_region> memory_map () override;
519
520 void flash_erase (ULONGEST address, LONGEST length) override;
521
522 void flash_done () override;
523
524 const struct target_desc *read_description () override;
525
526 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
527 const gdb_byte *pattern, ULONGEST pattern_len,
528 CORE_ADDR *found_addrp) override;
529
530 bool can_async_p () override;
531
532 bool is_async_p () override;
533
534 void async (int) override;
535
536 void thread_events (int) override;
537
538 int can_do_single_step () override;
539
540 void terminal_inferior () override;
541
542 void terminal_ours () override;
543
544 bool supports_non_stop () override;
545
546 bool supports_multi_process () override;
547
548 bool supports_disable_randomization () override;
549
550 bool filesystem_is_local () override;
551
552
553 int fileio_open (struct inferior *inf, const char *filename,
554 int flags, int mode, int warn_if_slow,
555 int *target_errno) override;
556
557 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
558 ULONGEST offset, int *target_errno) override;
559
560 int fileio_pread (int fd, gdb_byte *read_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
564
565 int fileio_close (int fd, int *target_errno) override;
566
567 int fileio_unlink (struct inferior *inf,
568 const char *filename,
569 int *target_errno) override;
570
571 gdb::optional<std::string>
572 fileio_readlink (struct inferior *inf,
573 const char *filename,
574 int *target_errno) override;
575
576 bool supports_enable_disable_tracepoint () override;
577
578 bool supports_string_tracing () override;
579
580 bool supports_evaluation_of_breakpoint_conditions () override;
581
582 bool can_run_breakpoint_commands () override;
583
584 void trace_init () override;
585
586 void download_tracepoint (struct bp_location *location) override;
587
588 bool can_download_tracepoint () override;
589
590 void download_trace_state_variable (const trace_state_variable &tsv) override;
591
592 void enable_tracepoint (struct bp_location *location) override;
593
594 void disable_tracepoint (struct bp_location *location) override;
595
596 void trace_set_readonly_regions () override;
597
598 void trace_start () override;
599
600 int get_trace_status (struct trace_status *ts) override;
601
602 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
603 override;
604
605 void trace_stop () override;
606
607 int trace_find (enum trace_find_type type, int num,
608 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
609
610 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
611
612 int save_trace_data (const char *filename) override;
613
614 int upload_tracepoints (struct uploaded_tp **utpp) override;
615
616 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
617
618 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
619
620 int get_min_fast_tracepoint_insn_len () override;
621
622 void set_disconnected_tracing (int val) override;
623
624 void set_circular_trace_buffer (int val) override;
625
626 void set_trace_buffer_size (LONGEST val) override;
627
628 bool set_trace_notes (const char *user, const char *notes,
629 const char *stopnotes) override;
630
631 int core_of_thread (ptid_t ptid) override;
632
633 int verify_memory (const gdb_byte *data,
634 CORE_ADDR memaddr, ULONGEST size) override;
635
636
637 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
638
639 void set_permissions () override;
640
641 bool static_tracepoint_marker_at (CORE_ADDR,
642 struct static_tracepoint_marker *marker)
643 override;
644
645 std::vector<static_tracepoint_marker>
646 static_tracepoint_markers_by_strid (const char *id) override;
647
648 traceframe_info_up traceframe_info () override;
649
650 bool use_agent (bool use) override;
651 bool can_use_agent () override;
652
653 struct btrace_target_info *enable_btrace (ptid_t ptid,
654 const struct btrace_config *conf) override;
655
656 void disable_btrace (struct btrace_target_info *tinfo) override;
657
658 void teardown_btrace (struct btrace_target_info *tinfo) override;
659
660 enum btrace_error read_btrace (struct btrace_data *data,
661 struct btrace_target_info *btinfo,
662 enum btrace_read_type type) override;
663
664 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
665 bool augmented_libraries_svr4_read () override;
666 int follow_fork (int, int) override;
667 void follow_exec (struct inferior *, char *) override;
668 int insert_fork_catchpoint (int) override;
669 int remove_fork_catchpoint (int) override;
670 int insert_vfork_catchpoint (int) override;
671 int remove_vfork_catchpoint (int) override;
672 int insert_exec_catchpoint (int) override;
673 int remove_exec_catchpoint (int) override;
674 enum exec_direction_kind execution_direction () override;
675
676 public: /* Remote specific methods. */
677
678 void remote_download_command_source (int num, ULONGEST addr,
679 struct command_line *cmds);
680
681 void remote_file_put (const char *local_file, const char *remote_file,
682 int from_tty);
683 void remote_file_get (const char *remote_file, const char *local_file,
684 int from_tty);
685 void remote_file_delete (const char *remote_file, int from_tty);
686
687 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
688 ULONGEST offset, int *remote_errno);
689 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
690 ULONGEST offset, int *remote_errno);
691 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693
694 int remote_hostio_send_command (int command_bytes, int which_packet,
695 int *remote_errno, char **attachment,
696 int *attachment_len);
697 int remote_hostio_set_filesystem (struct inferior *inf,
698 int *remote_errno);
699 /* We should get rid of this and use fileio_open directly. */
700 int remote_hostio_open (struct inferior *inf, const char *filename,
701 int flags, int mode, int warn_if_slow,
702 int *remote_errno);
703 int remote_hostio_close (int fd, int *remote_errno);
704
705 int remote_hostio_unlink (inferior *inf, const char *filename,
706 int *remote_errno);
707
708 struct remote_state *get_remote_state ();
709
710 long get_remote_packet_size (void);
711 long get_memory_packet_size (struct memory_packet_config *config);
712
713 long get_memory_write_packet_size ();
714 long get_memory_read_packet_size ();
715
716 char *append_pending_thread_resumptions (char *p, char *endp,
717 ptid_t ptid);
718 static void open_1 (const char *name, int from_tty, int extended_p);
719 void start_remote (int from_tty, int extended_p);
720 void remote_detach_1 (struct inferior *inf, int from_tty);
721
722 char *append_resumption (char *p, char *endp,
723 ptid_t ptid, int step, gdb_signal siggnal);
724 int remote_resume_with_vcont (ptid_t ptid, int step,
725 gdb_signal siggnal);
726
727 void add_current_inferior_and_thread (char *wait_status);
728
729 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
730 int options);
731 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
732 int options);
733
734 ptid_t process_stop_reply (struct stop_reply *stop_reply,
735 target_waitstatus *status);
736
737 void remote_notice_new_inferior (ptid_t currthread, int executing);
738
739 void process_initial_stop_replies (int from_tty);
740
741 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
742
743 void btrace_sync_conf (const btrace_config *conf);
744
745 void remote_btrace_maybe_reopen ();
746
747 void remove_new_fork_children (threads_listing_context *context);
748 void kill_new_fork_children (int pid);
749 void discard_pending_stop_replies (struct inferior *inf);
750 int stop_reply_queue_length ();
751
752 void check_pending_events_prevent_wildcard_vcont
753 (int *may_global_wildcard_vcont);
754
755 void discard_pending_stop_replies_in_queue ();
756 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
757 struct stop_reply *queued_stop_reply (ptid_t ptid);
758 int peek_stop_reply (ptid_t ptid);
759 void remote_parse_stop_reply (const char *buf, stop_reply *event);
760
761 void remote_stop_ns (ptid_t ptid);
762 void remote_interrupt_as ();
763 void remote_interrupt_ns ();
764
765 char *remote_get_noisy_reply ();
766 int remote_query_attached (int pid);
767 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
768 int try_open_exec);
769
770 ptid_t remote_current_thread (ptid_t oldpid);
771 ptid_t get_current_thread (char *wait_status);
772
773 void set_thread (ptid_t ptid, int gen);
774 void set_general_thread (ptid_t ptid);
775 void set_continue_thread (ptid_t ptid);
776 void set_general_process ();
777
778 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
779
780 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
781 gdb_ext_thread_info *info);
782 int remote_get_threadinfo (threadref *threadid, int fieldset,
783 gdb_ext_thread_info *info);
784
785 int parse_threadlist_response (char *pkt, int result_limit,
786 threadref *original_echo,
787 threadref *resultlist,
788 int *doneflag);
789 int remote_get_threadlist (int startflag, threadref *nextthread,
790 int result_limit, int *done, int *result_count,
791 threadref *threadlist);
792
793 int remote_threadlist_iterator (rmt_thread_action stepfunction,
794 void *context, int looplimit);
795
796 int remote_get_threads_with_ql (threads_listing_context *context);
797 int remote_get_threads_with_qxfer (threads_listing_context *context);
798 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
799
800 void extended_remote_restart ();
801
802 void get_offsets ();
803
804 void remote_check_symbols ();
805
806 void remote_supported_packet (const struct protocol_feature *feature,
807 enum packet_support support,
808 const char *argument);
809
810 void remote_query_supported ();
811
812 void remote_packet_size (const protocol_feature *feature,
813 packet_support support, const char *value);
814
815 void remote_serial_quit_handler ();
816
817 void remote_detach_pid (int pid);
818
819 void remote_vcont_probe ();
820
821 void remote_resume_with_hc (ptid_t ptid, int step,
822 gdb_signal siggnal);
823
824 void send_interrupt_sequence ();
825 void interrupt_query ();
826
827 void remote_notif_get_pending_events (notif_client *nc);
828
829 int fetch_register_using_p (struct regcache *regcache,
830 packet_reg *reg);
831 int send_g_packet ();
832 void process_g_packet (struct regcache *regcache);
833 void fetch_registers_using_g (struct regcache *regcache);
834 int store_register_using_P (const struct regcache *regcache,
835 packet_reg *reg);
836 void store_registers_using_G (const struct regcache *regcache);
837
838 void set_remote_traceframe ();
839
840 void check_binary_download (CORE_ADDR addr);
841
842 target_xfer_status remote_write_bytes_aux (const char *header,
843 CORE_ADDR memaddr,
844 const gdb_byte *myaddr,
845 ULONGEST len_units,
846 int unit_size,
847 ULONGEST *xfered_len_units,
848 char packet_format,
849 int use_length);
850
851 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
852 const gdb_byte *myaddr, ULONGEST len,
853 int unit_size, ULONGEST *xfered_len);
854
855 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size, ULONGEST *xfered_len_units);
858
859 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
860 ULONGEST memaddr,
861 ULONGEST len,
862 int unit_size,
863 ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
866 gdb_byte *myaddr, ULONGEST len,
867 int unit_size,
868 ULONGEST *xfered_len);
869
870 packet_result remote_send_printf (const char *format, ...)
871 ATTRIBUTE_PRINTF (2, 3);
872
873 target_xfer_status remote_flash_write (ULONGEST address,
874 ULONGEST length, ULONGEST *xfered_len,
875 const gdb_byte *data);
876
877 int readchar (int timeout);
878
879 void remote_serial_write (const char *str, int len);
880
881 int putpkt (const char *buf);
882 int putpkt_binary (const char *buf, int cnt);
883
884 int putpkt (const gdb::char_vector &buf)
885 {
886 return putpkt (buf.data ());
887 }
888
889 void skip_frame ();
890 long read_frame (gdb::char_vector *buf_p);
891 void getpkt (gdb::char_vector *buf, int forever);
892 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
893 int expecting_notif, int *is_notif);
894 int getpkt_sane (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
896 int *is_notif);
897 int remote_vkill (int pid);
898 void remote_kill_k ();
899
900 void extended_remote_disable_randomization (int val);
901 int extended_remote_run (const std::string &args);
902
903 void send_environment_packet (const char *action,
904 const char *packet,
905 const char *value);
906
907 void extended_remote_environment_support ();
908 void extended_remote_set_inferior_cwd ();
909
910 target_xfer_status remote_write_qxfer (const char *object_name,
911 const char *annex,
912 const gdb_byte *writebuf,
913 ULONGEST offset, LONGEST len,
914 ULONGEST *xfered_len,
915 struct packet_config *packet);
916
917 target_xfer_status remote_read_qxfer (const char *object_name,
918 const char *annex,
919 gdb_byte *readbuf, ULONGEST offset,
920 LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 void push_stop_reply (struct stop_reply *new_event);
925
926 bool vcont_r_supported ();
927
928 void packet_command (const char *args, int from_tty);
929
930 private: /* data fields */
931
932 /* The remote state. Don't reference this directly. Use the
933 get_remote_state method instead. */
934 remote_state m_remote_state;
935 };
936
937 static const target_info extended_remote_target_info = {
938 "extended-remote",
939 N_("Extended remote serial target in gdb-specific protocol"),
940 remote_doc
941 };
942
943 /* Set up the extended remote target by extending the standard remote
944 target and adding to it. */
945
946 class extended_remote_target final : public remote_target
947 {
948 public:
949 const target_info &info () const override
950 { return extended_remote_target_info; }
951
952 /* Open an extended-remote connection. */
953 static void open (const char *, int);
954
955 bool can_create_inferior () override { return true; }
956 void create_inferior (const char *, const std::string &,
957 char **, int) override;
958
959 void detach (inferior *, int) override;
960
961 bool can_attach () override { return true; }
962 void attach (const char *, int) override;
963
964 void post_attach (int) override;
965 bool supports_disable_randomization () override;
966 };
967
968 /* Per-program-space data key. */
969 static const struct program_space_data *remote_pspace_data;
970
971 /* The variable registered as the control variable used by the
972 remote exec-file commands. While the remote exec-file setting is
973 per-program-space, the set/show machinery uses this as the
974 location of the remote exec-file value. */
975 static char *remote_exec_file_var;
976
977 /* The size to align memory write packets, when practical. The protocol
978 does not guarantee any alignment, and gdb will generate short
979 writes and unaligned writes, but even as a best-effort attempt this
980 can improve bulk transfers. For instance, if a write is misaligned
981 relative to the target's data bus, the stub may need to make an extra
982 round trip fetching data from the target. This doesn't make a
983 huge difference, but it's easy to do, so we try to be helpful.
984
985 The alignment chosen is arbitrary; usually data bus width is
986 important here, not the possibly larger cache line size. */
987 enum { REMOTE_ALIGN_WRITES = 16 };
988
989 /* Prototypes for local functions. */
990
991 static int hexnumlen (ULONGEST num);
992
993 static int stubhex (int ch);
994
995 static int hexnumstr (char *, ULONGEST);
996
997 static int hexnumnstr (char *, ULONGEST, int);
998
999 static CORE_ADDR remote_address_masked (CORE_ADDR);
1000
1001 static void print_packet (const char *);
1002
1003 static int stub_unpack_int (char *buff, int fieldlength);
1004
1005 struct packet_config;
1006
1007 static void show_packet_config_cmd (struct packet_config *config);
1008
1009 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1010 int from_tty,
1011 struct cmd_list_element *c,
1012 const char *value);
1013
1014 static ptid_t read_ptid (const char *buf, const char **obuf);
1015
1016 static void remote_async_inferior_event_handler (gdb_client_data);
1017
1018 static bool remote_read_description_p (struct target_ops *target);
1019
1020 static void remote_console_output (const char *msg);
1021
1022 static void remote_btrace_reset (remote_state *rs);
1023
1024 static void remote_unpush_and_throw (void);
1025
1026 /* For "remote". */
1027
1028 static struct cmd_list_element *remote_cmdlist;
1029
1030 /* For "set remote" and "show remote". */
1031
1032 static struct cmd_list_element *remote_set_cmdlist;
1033 static struct cmd_list_element *remote_show_cmdlist;
1034
1035 /* Controls whether GDB is willing to use range stepping. */
1036
1037 static int use_range_stepping = 1;
1038
1039 /* The max number of chars in debug output. The rest of chars are
1040 omitted. */
1041
1042 #define REMOTE_DEBUG_MAX_CHAR 512
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 TRY
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 CATCH (ex, RETURN_MASK_ALL)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173 END_CATCH
1174
1175 if (relocated)
1176 {
1177 adjusted_size = to - org_to;
1178
1179 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1180 putpkt (buf);
1181 }
1182 }
1183 else if (buf[0] == 'O' && buf[1] != 'K')
1184 remote_console_output (buf + 1); /* 'O' message from stub */
1185 else
1186 return buf; /* Here's the actual reply. */
1187 }
1188 while (1);
1189 }
1190
1191 struct remote_arch_state *
1192 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1193 {
1194 remote_arch_state *rsa;
1195
1196 auto it = this->m_arch_states.find (gdbarch);
1197 if (it == this->m_arch_states.end ())
1198 {
1199 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1200 std::forward_as_tuple (gdbarch),
1201 std::forward_as_tuple (gdbarch));
1202 rsa = &p.first->second;
1203
1204 /* Make sure that the packet buffer is plenty big enough for
1205 this architecture. */
1206 if (this->buf.size () < rsa->remote_packet_size)
1207 this->buf.resize (2 * rsa->remote_packet_size);
1208 }
1209 else
1210 rsa = &it->second;
1211
1212 return rsa;
1213 }
1214
1215 /* Fetch the global remote target state. */
1216
1217 remote_state *
1218 remote_target::get_remote_state ()
1219 {
1220 /* Make sure that the remote architecture state has been
1221 initialized, because doing so might reallocate rs->buf. Any
1222 function which calls getpkt also needs to be mindful of changes
1223 to rs->buf, but this call limits the number of places which run
1224 into trouble. */
1225 m_remote_state.get_remote_arch_state (target_gdbarch ());
1226
1227 return &m_remote_state;
1228 }
1229
1230 /* Cleanup routine for the remote module's pspace data. */
1231
1232 static void
1233 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1234 {
1235 char *remote_exec_file = (char *) arg;
1236
1237 xfree (remote_exec_file);
1238 }
1239
1240 /* Fetch the remote exec-file from the current program space. */
1241
1242 static const char *
1243 get_remote_exec_file (void)
1244 {
1245 char *remote_exec_file;
1246
1247 remote_exec_file
1248 = (char *) program_space_data (current_program_space,
1249 remote_pspace_data);
1250 if (remote_exec_file == NULL)
1251 return "";
1252
1253 return remote_exec_file;
1254 }
1255
1256 /* Set the remote exec file for PSPACE. */
1257
1258 static void
1259 set_pspace_remote_exec_file (struct program_space *pspace,
1260 char *remote_exec_file)
1261 {
1262 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1263
1264 xfree (old_file);
1265 set_program_space_data (pspace, remote_pspace_data,
1266 xstrdup (remote_exec_file));
1267 }
1268
1269 /* The "set/show remote exec-file" set command hook. */
1270
1271 static void
1272 set_remote_exec_file (const char *ignored, int from_tty,
1273 struct cmd_list_element *c)
1274 {
1275 gdb_assert (remote_exec_file_var != NULL);
1276 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1277 }
1278
1279 /* The "set/show remote exec-file" show command hook. */
1280
1281 static void
1282 show_remote_exec_file (struct ui_file *file, int from_tty,
1283 struct cmd_list_element *cmd, const char *value)
1284 {
1285 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1286 }
1287
1288 static int
1289 compare_pnums (const void *lhs_, const void *rhs_)
1290 {
1291 const struct packet_reg * const *lhs
1292 = (const struct packet_reg * const *) lhs_;
1293 const struct packet_reg * const *rhs
1294 = (const struct packet_reg * const *) rhs_;
1295
1296 if ((*lhs)->pnum < (*rhs)->pnum)
1297 return -1;
1298 else if ((*lhs)->pnum == (*rhs)->pnum)
1299 return 0;
1300 else
1301 return 1;
1302 }
1303
1304 static int
1305 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1306 {
1307 int regnum, num_remote_regs, offset;
1308 struct packet_reg **remote_regs;
1309
1310 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1311 {
1312 struct packet_reg *r = &regs[regnum];
1313
1314 if (register_size (gdbarch, regnum) == 0)
1315 /* Do not try to fetch zero-sized (placeholder) registers. */
1316 r->pnum = -1;
1317 else
1318 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1319
1320 r->regnum = regnum;
1321 }
1322
1323 /* Define the g/G packet format as the contents of each register
1324 with a remote protocol number, in order of ascending protocol
1325 number. */
1326
1327 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1328 for (num_remote_regs = 0, regnum = 0;
1329 regnum < gdbarch_num_regs (gdbarch);
1330 regnum++)
1331 if (regs[regnum].pnum != -1)
1332 remote_regs[num_remote_regs++] = &regs[regnum];
1333
1334 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1335 compare_pnums);
1336
1337 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1338 {
1339 remote_regs[regnum]->in_g_packet = 1;
1340 remote_regs[regnum]->offset = offset;
1341 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1342 }
1343
1344 return offset;
1345 }
1346
1347 /* Given the architecture described by GDBARCH, return the remote
1348 protocol register's number and the register's offset in the g/G
1349 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1350 If the target does not have a mapping for REGNUM, return false,
1351 otherwise, return true. */
1352
1353 int
1354 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1355 int *pnum, int *poffset)
1356 {
1357 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1358
1359 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1360
1361 map_regcache_remote_table (gdbarch, regs.data ());
1362
1363 *pnum = regs[regnum].pnum;
1364 *poffset = regs[regnum].offset;
1365
1366 return *pnum != -1;
1367 }
1368
1369 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1370 {
1371 /* Use the architecture to build a regnum<->pnum table, which will be
1372 1:1 unless a feature set specifies otherwise. */
1373 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1374
1375 /* Record the maximum possible size of the g packet - it may turn out
1376 to be smaller. */
1377 this->sizeof_g_packet
1378 = map_regcache_remote_table (gdbarch, this->regs.get ());
1379
1380 /* Default maximum number of characters in a packet body. Many
1381 remote stubs have a hardwired buffer size of 400 bytes
1382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1383 as the maximum packet-size to ensure that the packet and an extra
1384 NUL character can always fit in the buffer. This stops GDB
1385 trashing stubs that try to squeeze an extra NUL into what is
1386 already a full buffer (As of 1999-12-04 that was most stubs). */
1387 this->remote_packet_size = 400 - 1;
1388
1389 /* This one is filled in when a ``g'' packet is received. */
1390 this->actual_register_packet_size = 0;
1391
1392 /* Should rsa->sizeof_g_packet needs more space than the
1393 default, adjust the size accordingly. Remember that each byte is
1394 encoded as two characters. 32 is the overhead for the packet
1395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1396 (``$NN:G...#NN'') is a better guess, the below has been padded a
1397 little. */
1398 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1399 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1400 }
1401
1402 /* Get a pointer to the current remote target. If not connected to a
1403 remote target, return NULL. */
1404
1405 static remote_target *
1406 get_current_remote_target ()
1407 {
1408 target_ops *proc_target = find_target_at (process_stratum);
1409 return dynamic_cast<remote_target *> (proc_target);
1410 }
1411
1412 /* Return the current allowed size of a remote packet. This is
1413 inferred from the current architecture, and should be used to
1414 limit the length of outgoing packets. */
1415 long
1416 remote_target::get_remote_packet_size ()
1417 {
1418 struct remote_state *rs = get_remote_state ();
1419 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1420
1421 if (rs->explicit_packet_size)
1422 return rs->explicit_packet_size;
1423
1424 return rsa->remote_packet_size;
1425 }
1426
1427 static struct packet_reg *
1428 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1429 long regnum)
1430 {
1431 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1432 return NULL;
1433 else
1434 {
1435 struct packet_reg *r = &rsa->regs[regnum];
1436
1437 gdb_assert (r->regnum == regnum);
1438 return r;
1439 }
1440 }
1441
1442 static struct packet_reg *
1443 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1444 LONGEST pnum)
1445 {
1446 int i;
1447
1448 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1449 {
1450 struct packet_reg *r = &rsa->regs[i];
1451
1452 if (r->pnum == pnum)
1453 return r;
1454 }
1455 return NULL;
1456 }
1457
1458 /* Allow the user to specify what sequence to send to the remote
1459 when he requests a program interruption: Although ^C is usually
1460 what remote systems expect (this is the default, here), it is
1461 sometimes preferable to send a break. On other systems such
1462 as the Linux kernel, a break followed by g, which is Magic SysRq g
1463 is required in order to interrupt the execution. */
1464 const char interrupt_sequence_control_c[] = "Ctrl-C";
1465 const char interrupt_sequence_break[] = "BREAK";
1466 const char interrupt_sequence_break_g[] = "BREAK-g";
1467 static const char *const interrupt_sequence_modes[] =
1468 {
1469 interrupt_sequence_control_c,
1470 interrupt_sequence_break,
1471 interrupt_sequence_break_g,
1472 NULL
1473 };
1474 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1475
1476 static void
1477 show_interrupt_sequence (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c,
1479 const char *value)
1480 {
1481 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1482 fprintf_filtered (file,
1483 _("Send the ASCII ETX character (Ctrl-c) "
1484 "to the remote target to interrupt the "
1485 "execution of the program.\n"));
1486 else if (interrupt_sequence_mode == interrupt_sequence_break)
1487 fprintf_filtered (file,
1488 _("send a break signal to the remote target "
1489 "to interrupt the execution of the program.\n"));
1490 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1491 fprintf_filtered (file,
1492 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1493 "the remote target to interrupt the execution "
1494 "of Linux kernel.\n"));
1495 else
1496 internal_error (__FILE__, __LINE__,
1497 _("Invalid value for interrupt_sequence_mode: %s."),
1498 interrupt_sequence_mode);
1499 }
1500
1501 /* This boolean variable specifies whether interrupt_sequence is sent
1502 to the remote target when gdb connects to it.
1503 This is mostly needed when you debug the Linux kernel: The Linux kernel
1504 expects BREAK g which is Magic SysRq g for connecting gdb. */
1505 static int interrupt_on_connect = 0;
1506
1507 /* This variable is used to implement the "set/show remotebreak" commands.
1508 Since these commands are now deprecated in favor of "set/show remote
1509 interrupt-sequence", it no longer has any effect on the code. */
1510 static int remote_break;
1511
1512 static void
1513 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1514 {
1515 if (remote_break)
1516 interrupt_sequence_mode = interrupt_sequence_break;
1517 else
1518 interrupt_sequence_mode = interrupt_sequence_control_c;
1519 }
1520
1521 static void
1522 show_remotebreak (struct ui_file *file, int from_tty,
1523 struct cmd_list_element *c,
1524 const char *value)
1525 {
1526 }
1527
1528 /* This variable sets the number of bits in an address that are to be
1529 sent in a memory ("M" or "m") packet. Normally, after stripping
1530 leading zeros, the entire address would be sent. This variable
1531 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1532 initial implementation of remote.c restricted the address sent in
1533 memory packets to ``host::sizeof long'' bytes - (typically 32
1534 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1535 address was never sent. Since fixing this bug may cause a break in
1536 some remote targets this variable is principly provided to
1537 facilitate backward compatibility. */
1538
1539 static unsigned int remote_address_size;
1540
1541 \f
1542 /* User configurable variables for the number of characters in a
1543 memory read/write packet. MIN (rsa->remote_packet_size,
1544 rsa->sizeof_g_packet) is the default. Some targets need smaller
1545 values (fifo overruns, et.al.) and some users need larger values
1546 (speed up transfers). The variables ``preferred_*'' (the user
1547 request), ``current_*'' (what was actually set) and ``forced_*''
1548 (Positive - a soft limit, negative - a hard limit). */
1549
1550 struct memory_packet_config
1551 {
1552 const char *name;
1553 long size;
1554 int fixed_p;
1555 };
1556
1557 /* The default max memory-write-packet-size, when the setting is
1558 "fixed". The 16k is historical. (It came from older GDB's using
1559 alloca for buffers and the knowledge (folklore?) that some hosts
1560 don't cope very well with large alloca calls.) */
1561 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1562
1563 /* The minimum remote packet size for memory transfers. Ensures we
1564 can write at least one byte. */
1565 #define MIN_MEMORY_PACKET_SIZE 20
1566
1567 /* Get the memory packet size, assuming it is fixed. */
1568
1569 static long
1570 get_fixed_memory_packet_size (struct memory_packet_config *config)
1571 {
1572 gdb_assert (config->fixed_p);
1573
1574 if (config->size <= 0)
1575 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1576 else
1577 return config->size;
1578 }
1579
1580 /* Compute the current size of a read/write packet. Since this makes
1581 use of ``actual_register_packet_size'' the computation is dynamic. */
1582
1583 long
1584 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1585 {
1586 struct remote_state *rs = get_remote_state ();
1587 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1588
1589 long what_they_get;
1590 if (config->fixed_p)
1591 what_they_get = get_fixed_memory_packet_size (config);
1592 else
1593 {
1594 what_they_get = get_remote_packet_size ();
1595 /* Limit the packet to the size specified by the user. */
1596 if (config->size > 0
1597 && what_they_get > config->size)
1598 what_they_get = config->size;
1599
1600 /* Limit it to the size of the targets ``g'' response unless we have
1601 permission from the stub to use a larger packet size. */
1602 if (rs->explicit_packet_size == 0
1603 && rsa->actual_register_packet_size > 0
1604 && what_they_get > rsa->actual_register_packet_size)
1605 what_they_get = rsa->actual_register_packet_size;
1606 }
1607 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1608 what_they_get = MIN_MEMORY_PACKET_SIZE;
1609
1610 /* Make sure there is room in the global buffer for this packet
1611 (including its trailing NUL byte). */
1612 if (rs->buf.size () < what_they_get + 1)
1613 rs->buf.resize (2 * what_they_get);
1614
1615 return what_they_get;
1616 }
1617
1618 /* Update the size of a read/write packet. If they user wants
1619 something really big then do a sanity check. */
1620
1621 static void
1622 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1623 {
1624 int fixed_p = config->fixed_p;
1625 long size = config->size;
1626
1627 if (args == NULL)
1628 error (_("Argument required (integer, `fixed' or `limited')."));
1629 else if (strcmp (args, "hard") == 0
1630 || strcmp (args, "fixed") == 0)
1631 fixed_p = 1;
1632 else if (strcmp (args, "soft") == 0
1633 || strcmp (args, "limit") == 0)
1634 fixed_p = 0;
1635 else
1636 {
1637 char *end;
1638
1639 size = strtoul (args, &end, 0);
1640 if (args == end)
1641 error (_("Invalid %s (bad syntax)."), config->name);
1642
1643 /* Instead of explicitly capping the size of a packet to or
1644 disallowing it, the user is allowed to set the size to
1645 something arbitrarily large. */
1646 }
1647
1648 /* Extra checks? */
1649 if (fixed_p && !config->fixed_p)
1650 {
1651 /* So that the query shows the correct value. */
1652 long query_size = (size <= 0
1653 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1654 : size);
1655
1656 if (! query (_("The target may not be able to correctly handle a %s\n"
1657 "of %ld bytes. Change the packet size? "),
1658 config->name, query_size))
1659 error (_("Packet size not changed."));
1660 }
1661 /* Update the config. */
1662 config->fixed_p = fixed_p;
1663 config->size = size;
1664 }
1665
1666 static void
1667 show_memory_packet_size (struct memory_packet_config *config)
1668 {
1669 if (config->size == 0)
1670 printf_filtered (_("The %s is 0 (default). "), config->name);
1671 else
1672 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1673 if (config->fixed_p)
1674 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1675 get_fixed_memory_packet_size (config));
1676 else
1677 {
1678 remote_target *remote = get_current_remote_target ();
1679
1680 if (remote != NULL)
1681 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1682 remote->get_memory_packet_size (config));
1683 else
1684 puts_filtered ("The actual limit will be further reduced "
1685 "dependent on the target.\n");
1686 }
1687 }
1688
1689 static struct memory_packet_config memory_write_packet_config =
1690 {
1691 "memory-write-packet-size",
1692 };
1693
1694 static void
1695 set_memory_write_packet_size (const char *args, int from_tty)
1696 {
1697 set_memory_packet_size (args, &memory_write_packet_config);
1698 }
1699
1700 static void
1701 show_memory_write_packet_size (const char *args, int from_tty)
1702 {
1703 show_memory_packet_size (&memory_write_packet_config);
1704 }
1705
1706 /* Show the number of hardware watchpoints that can be used. */
1707
1708 static void
1709 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1710 struct cmd_list_element *c,
1711 const char *value)
1712 {
1713 fprintf_filtered (file, _("The maximum number of target hardware "
1714 "watchpoints is %s.\n"), value);
1715 }
1716
1717 /* Show the length limit (in bytes) for hardware watchpoints. */
1718
1719 static void
1720 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1721 struct cmd_list_element *c,
1722 const char *value)
1723 {
1724 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1725 "hardware watchpoint is %s.\n"), value);
1726 }
1727
1728 /* Show the number of hardware breakpoints that can be used. */
1729
1730 static void
1731 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1732 struct cmd_list_element *c,
1733 const char *value)
1734 {
1735 fprintf_filtered (file, _("The maximum number of target hardware "
1736 "breakpoints is %s.\n"), value);
1737 }
1738
1739 long
1740 remote_target::get_memory_write_packet_size ()
1741 {
1742 return get_memory_packet_size (&memory_write_packet_config);
1743 }
1744
1745 static struct memory_packet_config memory_read_packet_config =
1746 {
1747 "memory-read-packet-size",
1748 };
1749
1750 static void
1751 set_memory_read_packet_size (const char *args, int from_tty)
1752 {
1753 set_memory_packet_size (args, &memory_read_packet_config);
1754 }
1755
1756 static void
1757 show_memory_read_packet_size (const char *args, int from_tty)
1758 {
1759 show_memory_packet_size (&memory_read_packet_config);
1760 }
1761
1762 long
1763 remote_target::get_memory_read_packet_size ()
1764 {
1765 long size = get_memory_packet_size (&memory_read_packet_config);
1766
1767 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1768 extra buffer size argument before the memory read size can be
1769 increased beyond this. */
1770 if (size > get_remote_packet_size ())
1771 size = get_remote_packet_size ();
1772 return size;
1773 }
1774
1775 \f
1776
1777 struct packet_config
1778 {
1779 const char *name;
1780 const char *title;
1781
1782 /* If auto, GDB auto-detects support for this packet or feature,
1783 either through qSupported, or by trying the packet and looking
1784 at the response. If true, GDB assumes the target supports this
1785 packet. If false, the packet is disabled. Configs that don't
1786 have an associated command always have this set to auto. */
1787 enum auto_boolean detect;
1788
1789 /* Does the target support this packet? */
1790 enum packet_support support;
1791 };
1792
1793 static enum packet_support packet_config_support (struct packet_config *config);
1794 static enum packet_support packet_support (int packet);
1795
1796 static void
1797 show_packet_config_cmd (struct packet_config *config)
1798 {
1799 const char *support = "internal-error";
1800
1801 switch (packet_config_support (config))
1802 {
1803 case PACKET_ENABLE:
1804 support = "enabled";
1805 break;
1806 case PACKET_DISABLE:
1807 support = "disabled";
1808 break;
1809 case PACKET_SUPPORT_UNKNOWN:
1810 support = "unknown";
1811 break;
1812 }
1813 switch (config->detect)
1814 {
1815 case AUTO_BOOLEAN_AUTO:
1816 printf_filtered (_("Support for the `%s' packet "
1817 "is auto-detected, currently %s.\n"),
1818 config->name, support);
1819 break;
1820 case AUTO_BOOLEAN_TRUE:
1821 case AUTO_BOOLEAN_FALSE:
1822 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1823 config->name, support);
1824 break;
1825 }
1826 }
1827
1828 static void
1829 add_packet_config_cmd (struct packet_config *config, const char *name,
1830 const char *title, int legacy)
1831 {
1832 char *set_doc;
1833 char *show_doc;
1834 char *cmd_name;
1835
1836 config->name = name;
1837 config->title = title;
1838 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1839 name, title);
1840 show_doc = xstrprintf ("Show current use of remote "
1841 "protocol `%s' (%s) packet",
1842 name, title);
1843 /* set/show TITLE-packet {auto,on,off} */
1844 cmd_name = xstrprintf ("%s-packet", title);
1845 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1846 &config->detect, set_doc,
1847 show_doc, NULL, /* help_doc */
1848 NULL,
1849 show_remote_protocol_packet_cmd,
1850 &remote_set_cmdlist, &remote_show_cmdlist);
1851 /* The command code copies the documentation strings. */
1852 xfree (set_doc);
1853 xfree (show_doc);
1854 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1855 if (legacy)
1856 {
1857 char *legacy_name;
1858
1859 legacy_name = xstrprintf ("%s-packet", name);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_set_cmdlist);
1862 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1863 &remote_show_cmdlist);
1864 }
1865 }
1866
1867 static enum packet_result
1868 packet_check_result (const char *buf)
1869 {
1870 if (buf[0] != '\0')
1871 {
1872 /* The stub recognized the packet request. Check that the
1873 operation succeeded. */
1874 if (buf[0] == 'E'
1875 && isxdigit (buf[1]) && isxdigit (buf[2])
1876 && buf[3] == '\0')
1877 /* "Enn" - definitly an error. */
1878 return PACKET_ERROR;
1879
1880 /* Always treat "E." as an error. This will be used for
1881 more verbose error messages, such as E.memtypes. */
1882 if (buf[0] == 'E' && buf[1] == '.')
1883 return PACKET_ERROR;
1884
1885 /* The packet may or may not be OK. Just assume it is. */
1886 return PACKET_OK;
1887 }
1888 else
1889 /* The stub does not support the packet. */
1890 return PACKET_UNKNOWN;
1891 }
1892
1893 static enum packet_result
1894 packet_check_result (const gdb::char_vector &buf)
1895 {
1896 return packet_check_result (buf.data ());
1897 }
1898
1899 static enum packet_result
1900 packet_ok (const char *buf, struct packet_config *config)
1901 {
1902 enum packet_result result;
1903
1904 if (config->detect != AUTO_BOOLEAN_TRUE
1905 && config->support == PACKET_DISABLE)
1906 internal_error (__FILE__, __LINE__,
1907 _("packet_ok: attempt to use a disabled packet"));
1908
1909 result = packet_check_result (buf);
1910 switch (result)
1911 {
1912 case PACKET_OK:
1913 case PACKET_ERROR:
1914 /* The stub recognized the packet request. */
1915 if (config->support == PACKET_SUPPORT_UNKNOWN)
1916 {
1917 if (remote_debug)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "Packet %s (%s) is supported\n",
1920 config->name, config->title);
1921 config->support = PACKET_ENABLE;
1922 }
1923 break;
1924 case PACKET_UNKNOWN:
1925 /* The stub does not support the packet. */
1926 if (config->detect == AUTO_BOOLEAN_AUTO
1927 && config->support == PACKET_ENABLE)
1928 {
1929 /* If the stub previously indicated that the packet was
1930 supported then there is a protocol error. */
1931 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1932 config->name, config->title);
1933 }
1934 else if (config->detect == AUTO_BOOLEAN_TRUE)
1935 {
1936 /* The user set it wrong. */
1937 error (_("Enabled packet %s (%s) not recognized by stub"),
1938 config->name, config->title);
1939 }
1940
1941 if (remote_debug)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "Packet %s (%s) is NOT supported\n",
1944 config->name, config->title);
1945 config->support = PACKET_DISABLE;
1946 break;
1947 }
1948
1949 return result;
1950 }
1951
1952 static enum packet_result
1953 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1954 {
1955 return packet_ok (buf.data (), config);
1956 }
1957
1958 enum {
1959 PACKET_vCont = 0,
1960 PACKET_X,
1961 PACKET_qSymbol,
1962 PACKET_P,
1963 PACKET_p,
1964 PACKET_Z0,
1965 PACKET_Z1,
1966 PACKET_Z2,
1967 PACKET_Z3,
1968 PACKET_Z4,
1969 PACKET_vFile_setfs,
1970 PACKET_vFile_open,
1971 PACKET_vFile_pread,
1972 PACKET_vFile_pwrite,
1973 PACKET_vFile_close,
1974 PACKET_vFile_unlink,
1975 PACKET_vFile_readlink,
1976 PACKET_vFile_fstat,
1977 PACKET_qXfer_auxv,
1978 PACKET_qXfer_features,
1979 PACKET_qXfer_exec_file,
1980 PACKET_qXfer_libraries,
1981 PACKET_qXfer_libraries_svr4,
1982 PACKET_qXfer_memory_map,
1983 PACKET_qXfer_spu_read,
1984 PACKET_qXfer_spu_write,
1985 PACKET_qXfer_osdata,
1986 PACKET_qXfer_threads,
1987 PACKET_qXfer_statictrace_read,
1988 PACKET_qXfer_traceframe_info,
1989 PACKET_qXfer_uib,
1990 PACKET_qGetTIBAddr,
1991 PACKET_qGetTLSAddr,
1992 PACKET_qSupported,
1993 PACKET_qTStatus,
1994 PACKET_QPassSignals,
1995 PACKET_QCatchSyscalls,
1996 PACKET_QProgramSignals,
1997 PACKET_QSetWorkingDir,
1998 PACKET_QStartupWithShell,
1999 PACKET_QEnvironmentHexEncoded,
2000 PACKET_QEnvironmentReset,
2001 PACKET_QEnvironmentUnset,
2002 PACKET_qCRC,
2003 PACKET_qSearch_memory,
2004 PACKET_vAttach,
2005 PACKET_vRun,
2006 PACKET_QStartNoAckMode,
2007 PACKET_vKill,
2008 PACKET_qXfer_siginfo_read,
2009 PACKET_qXfer_siginfo_write,
2010 PACKET_qAttached,
2011
2012 /* Support for conditional tracepoints. */
2013 PACKET_ConditionalTracepoints,
2014
2015 /* Support for target-side breakpoint conditions. */
2016 PACKET_ConditionalBreakpoints,
2017
2018 /* Support for target-side breakpoint commands. */
2019 PACKET_BreakpointCommands,
2020
2021 /* Support for fast tracepoints. */
2022 PACKET_FastTracepoints,
2023
2024 /* Support for static tracepoints. */
2025 PACKET_StaticTracepoints,
2026
2027 /* Support for installing tracepoints while a trace experiment is
2028 running. */
2029 PACKET_InstallInTrace,
2030
2031 PACKET_bc,
2032 PACKET_bs,
2033 PACKET_TracepointSource,
2034 PACKET_QAllow,
2035 PACKET_qXfer_fdpic,
2036 PACKET_QDisableRandomization,
2037 PACKET_QAgent,
2038 PACKET_QTBuffer_size,
2039 PACKET_Qbtrace_off,
2040 PACKET_Qbtrace_bts,
2041 PACKET_Qbtrace_pt,
2042 PACKET_qXfer_btrace,
2043
2044 /* Support for the QNonStop packet. */
2045 PACKET_QNonStop,
2046
2047 /* Support for the QThreadEvents packet. */
2048 PACKET_QThreadEvents,
2049
2050 /* Support for multi-process extensions. */
2051 PACKET_multiprocess_feature,
2052
2053 /* Support for enabling and disabling tracepoints while a trace
2054 experiment is running. */
2055 PACKET_EnableDisableTracepoints_feature,
2056
2057 /* Support for collecting strings using the tracenz bytecode. */
2058 PACKET_tracenz_feature,
2059
2060 /* Support for continuing to run a trace experiment while GDB is
2061 disconnected. */
2062 PACKET_DisconnectedTracing_feature,
2063
2064 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2065 PACKET_augmented_libraries_svr4_read_feature,
2066
2067 /* Support for the qXfer:btrace-conf:read packet. */
2068 PACKET_qXfer_btrace_conf,
2069
2070 /* Support for the Qbtrace-conf:bts:size packet. */
2071 PACKET_Qbtrace_conf_bts_size,
2072
2073 /* Support for swbreak+ feature. */
2074 PACKET_swbreak_feature,
2075
2076 /* Support for hwbreak+ feature. */
2077 PACKET_hwbreak_feature,
2078
2079 /* Support for fork events. */
2080 PACKET_fork_event_feature,
2081
2082 /* Support for vfork events. */
2083 PACKET_vfork_event_feature,
2084
2085 /* Support for the Qbtrace-conf:pt:size packet. */
2086 PACKET_Qbtrace_conf_pt_size,
2087
2088 /* Support for exec events. */
2089 PACKET_exec_event_feature,
2090
2091 /* Support for query supported vCont actions. */
2092 PACKET_vContSupported,
2093
2094 /* Support remote CTRL-C. */
2095 PACKET_vCtrlC,
2096
2097 /* Support TARGET_WAITKIND_NO_RESUMED. */
2098 PACKET_no_resumed,
2099
2100 PACKET_MAX
2101 };
2102
2103 static struct packet_config remote_protocol_packets[PACKET_MAX];
2104
2105 /* Returns the packet's corresponding "set remote foo-packet" command
2106 state. See struct packet_config for more details. */
2107
2108 static enum auto_boolean
2109 packet_set_cmd_state (int packet)
2110 {
2111 return remote_protocol_packets[packet].detect;
2112 }
2113
2114 /* Returns whether a given packet or feature is supported. This takes
2115 into account the state of the corresponding "set remote foo-packet"
2116 command, which may be used to bypass auto-detection. */
2117
2118 static enum packet_support
2119 packet_config_support (struct packet_config *config)
2120 {
2121 switch (config->detect)
2122 {
2123 case AUTO_BOOLEAN_TRUE:
2124 return PACKET_ENABLE;
2125 case AUTO_BOOLEAN_FALSE:
2126 return PACKET_DISABLE;
2127 case AUTO_BOOLEAN_AUTO:
2128 return config->support;
2129 default:
2130 gdb_assert_not_reached (_("bad switch"));
2131 }
2132 }
2133
2134 /* Same as packet_config_support, but takes the packet's enum value as
2135 argument. */
2136
2137 static enum packet_support
2138 packet_support (int packet)
2139 {
2140 struct packet_config *config = &remote_protocol_packets[packet];
2141
2142 return packet_config_support (config);
2143 }
2144
2145 static void
2146 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2147 struct cmd_list_element *c,
2148 const char *value)
2149 {
2150 struct packet_config *packet;
2151
2152 for (packet = remote_protocol_packets;
2153 packet < &remote_protocol_packets[PACKET_MAX];
2154 packet++)
2155 {
2156 if (&packet->detect == c->var)
2157 {
2158 show_packet_config_cmd (packet);
2159 return;
2160 }
2161 }
2162 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2163 c->name);
2164 }
2165
2166 /* Should we try one of the 'Z' requests? */
2167
2168 enum Z_packet_type
2169 {
2170 Z_PACKET_SOFTWARE_BP,
2171 Z_PACKET_HARDWARE_BP,
2172 Z_PACKET_WRITE_WP,
2173 Z_PACKET_READ_WP,
2174 Z_PACKET_ACCESS_WP,
2175 NR_Z_PACKET_TYPES
2176 };
2177
2178 /* For compatibility with older distributions. Provide a ``set remote
2179 Z-packet ...'' command that updates all the Z packet types. */
2180
2181 static enum auto_boolean remote_Z_packet_detect;
2182
2183 static void
2184 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2185 struct cmd_list_element *c)
2186 {
2187 int i;
2188
2189 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2190 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2191 }
2192
2193 static void
2194 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2195 struct cmd_list_element *c,
2196 const char *value)
2197 {
2198 int i;
2199
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 {
2202 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2203 }
2204 }
2205
2206 /* Returns true if the multi-process extensions are in effect. */
2207
2208 static int
2209 remote_multi_process_p (struct remote_state *rs)
2210 {
2211 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2212 }
2213
2214 /* Returns true if fork events are supported. */
2215
2216 static int
2217 remote_fork_event_p (struct remote_state *rs)
2218 {
2219 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2220 }
2221
2222 /* Returns true if vfork events are supported. */
2223
2224 static int
2225 remote_vfork_event_p (struct remote_state *rs)
2226 {
2227 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2228 }
2229
2230 /* Returns true if exec events are supported. */
2231
2232 static int
2233 remote_exec_event_p (struct remote_state *rs)
2234 {
2235 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2236 }
2237
2238 /* Insert fork catchpoint target routine. If fork events are enabled
2239 then return success, nothing more to do. */
2240
2241 int
2242 remote_target::insert_fork_catchpoint (int pid)
2243 {
2244 struct remote_state *rs = get_remote_state ();
2245
2246 return !remote_fork_event_p (rs);
2247 }
2248
2249 /* Remove fork catchpoint target routine. Nothing to do, just
2250 return success. */
2251
2252 int
2253 remote_target::remove_fork_catchpoint (int pid)
2254 {
2255 return 0;
2256 }
2257
2258 /* Insert vfork catchpoint target routine. If vfork events are enabled
2259 then return success, nothing more to do. */
2260
2261 int
2262 remote_target::insert_vfork_catchpoint (int pid)
2263 {
2264 struct remote_state *rs = get_remote_state ();
2265
2266 return !remote_vfork_event_p (rs);
2267 }
2268
2269 /* Remove vfork catchpoint target routine. Nothing to do, just
2270 return success. */
2271
2272 int
2273 remote_target::remove_vfork_catchpoint (int pid)
2274 {
2275 return 0;
2276 }
2277
2278 /* Insert exec catchpoint target routine. If exec events are
2279 enabled, just return success. */
2280
2281 int
2282 remote_target::insert_exec_catchpoint (int pid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285
2286 return !remote_exec_event_p (rs);
2287 }
2288
2289 /* Remove exec catchpoint target routine. Nothing to do, just
2290 return success. */
2291
2292 int
2293 remote_target::remove_exec_catchpoint (int pid)
2294 {
2295 return 0;
2296 }
2297
2298 \f
2299
2300 static ptid_t magic_null_ptid;
2301 static ptid_t not_sent_ptid;
2302 static ptid_t any_thread_ptid;
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382 inferior_appeared (inf, pid);
2383 }
2384
2385 inf->attach_flag = attached;
2386 inf->fake_pid_p = fake_pid_p;
2387
2388 /* If no main executable is currently open then attempt to
2389 open the file that was executed to create this inferior. */
2390 if (try_open_exec && get_exec_file (0) == NULL)
2391 exec_file_locate_attach (pid, 0, 1);
2392
2393 return inf;
2394 }
2395
2396 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2397 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2398
2399 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2400 according to RUNNING. */
2401
2402 thread_info *
2403 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 struct thread_info *thread;
2407
2408 /* GDB historically didn't pull threads in the initial connection
2409 setup. If the remote target doesn't even have a concept of
2410 threads (e.g., a bare-metal target), even if internally we
2411 consider that a single-threaded target, mentioning a new thread
2412 might be confusing to the user. Be silent then, preserving the
2413 age old behavior. */
2414 if (rs->starting_up)
2415 thread = add_thread_silent (ptid);
2416 else
2417 thread = add_thread (ptid);
2418
2419 get_remote_thread_info (thread)->vcont_resumed = executing;
2420 set_executing (ptid, executing);
2421 set_running (ptid, running);
2422
2423 return thread;
2424 }
2425
2426 /* Come here when we learn about a thread id from the remote target.
2427 It may be the first time we hear about such thread, so take the
2428 opportunity to add it to GDB's thread list. In case this is the
2429 first time we're noticing its corresponding inferior, add it to
2430 GDB's inferior list as well. EXECUTING indicates whether the
2431 thread is (internally) executing or stopped. */
2432
2433 void
2434 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2435 {
2436 /* In non-stop mode, we assume new found threads are (externally)
2437 running until proven otherwise with a stop reply. In all-stop,
2438 we can only get here if all threads are stopped. */
2439 int running = target_is_non_stop_p () ? 1 : 0;
2440
2441 /* If this is a new thread, add it to GDB's thread list.
2442 If we leave it up to WFI to do this, bad things will happen. */
2443
2444 thread_info *tp = find_thread_ptid (currthread);
2445 if (tp != NULL && tp->state == THREAD_EXITED)
2446 {
2447 /* We're seeing an event on a thread id we knew had exited.
2448 This has to be a new thread reusing the old id. Add it. */
2449 remote_add_thread (currthread, running, executing);
2450 return;
2451 }
2452
2453 if (!in_thread_list (currthread))
2454 {
2455 struct inferior *inf = NULL;
2456 int pid = currthread.pid ();
2457
2458 if (inferior_ptid.is_pid ()
2459 && pid == inferior_ptid.pid ())
2460 {
2461 /* inferior_ptid has no thread member yet. This can happen
2462 with the vAttach -> remote_wait,"TAAthread:" path if the
2463 stub doesn't support qC. This is the first stop reported
2464 after an attach, so this is the main thread. Update the
2465 ptid in the thread list. */
2466 if (in_thread_list (ptid_t (pid)))
2467 thread_change_ptid (inferior_ptid, currthread);
2468 else
2469 {
2470 remote_add_thread (currthread, running, executing);
2471 inferior_ptid = currthread;
2472 }
2473 return;
2474 }
2475
2476 if (magic_null_ptid == inferior_ptid)
2477 {
2478 /* inferior_ptid is not set yet. This can happen with the
2479 vRun -> remote_wait,"TAAthread:" path if the stub
2480 doesn't support qC. This is the first stop reported
2481 after an attach, so this is the main thread. Update the
2482 ptid in the thread list. */
2483 thread_change_ptid (inferior_ptid, currthread);
2484 return;
2485 }
2486
2487 /* When connecting to a target remote, or to a target
2488 extended-remote which already was debugging an inferior, we
2489 may not know about it yet. Add it before adding its child
2490 thread, so notifications are emitted in a sensible order. */
2491 if (find_inferior_pid (currthread.pid ()) == NULL)
2492 {
2493 struct remote_state *rs = get_remote_state ();
2494 int fake_pid_p = !remote_multi_process_p (rs);
2495
2496 inf = remote_add_inferior (fake_pid_p,
2497 currthread.pid (), -1, 1);
2498 }
2499
2500 /* This is really a new thread. Add it. */
2501 thread_info *new_thr
2502 = remote_add_thread (currthread, running, executing);
2503
2504 /* If we found a new inferior, let the common code do whatever
2505 it needs to with it (e.g., read shared libraries, insert
2506 breakpoints), unless we're just setting up an all-stop
2507 connection. */
2508 if (inf != NULL)
2509 {
2510 struct remote_state *rs = get_remote_state ();
2511
2512 if (!rs->starting_up)
2513 notice_new_inferior (new_thr, executing, 0);
2514 }
2515 }
2516 }
2517
2518 /* Return THREAD's private thread data, creating it if necessary. */
2519
2520 static remote_thread_info *
2521 get_remote_thread_info (thread_info *thread)
2522 {
2523 gdb_assert (thread != NULL);
2524
2525 if (thread->priv == NULL)
2526 thread->priv.reset (new remote_thread_info);
2527
2528 return static_cast<remote_thread_info *> (thread->priv.get ());
2529 }
2530
2531 static remote_thread_info *
2532 get_remote_thread_info (ptid_t ptid)
2533 {
2534 thread_info *thr = find_thread_ptid (ptid);
2535 return get_remote_thread_info (thr);
2536 }
2537
2538 /* Call this function as a result of
2539 1) A halt indication (T packet) containing a thread id
2540 2) A direct query of currthread
2541 3) Successful execution of set thread */
2542
2543 static void
2544 record_currthread (struct remote_state *rs, ptid_t currthread)
2545 {
2546 rs->general_thread = currthread;
2547 }
2548
2549 /* If 'QPassSignals' is supported, tell the remote stub what signals
2550 it can simply pass through to the inferior without reporting. */
2551
2552 void
2553 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2554 {
2555 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2556 {
2557 char *pass_packet, *p;
2558 int count = 0;
2559 struct remote_state *rs = get_remote_state ();
2560
2561 gdb_assert (pass_signals.size () < 256);
2562 for (size_t i = 0; i < pass_signals.size (); i++)
2563 {
2564 if (pass_signals[i])
2565 count++;
2566 }
2567 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2568 strcpy (pass_packet, "QPassSignals:");
2569 p = pass_packet + strlen (pass_packet);
2570 for (size_t i = 0; i < pass_signals.size (); i++)
2571 {
2572 if (pass_signals[i])
2573 {
2574 if (i >= 16)
2575 *p++ = tohex (i >> 4);
2576 *p++ = tohex (i & 15);
2577 if (count)
2578 *p++ = ';';
2579 else
2580 break;
2581 count--;
2582 }
2583 }
2584 *p = 0;
2585 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2586 {
2587 putpkt (pass_packet);
2588 getpkt (&rs->buf, 0);
2589 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2590 if (rs->last_pass_packet)
2591 xfree (rs->last_pass_packet);
2592 rs->last_pass_packet = pass_packet;
2593 }
2594 else
2595 xfree (pass_packet);
2596 }
2597 }
2598
2599 /* If 'QCatchSyscalls' is supported, tell the remote stub
2600 to report syscalls to GDB. */
2601
2602 int
2603 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2604 gdb::array_view<const int> syscall_counts)
2605 {
2606 const char *catch_packet;
2607 enum packet_result result;
2608 int n_sysno = 0;
2609
2610 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2611 {
2612 /* Not supported. */
2613 return 1;
2614 }
2615
2616 if (needed && any_count == 0)
2617 {
2618 /* Count how many syscalls are to be caught. */
2619 for (size_t i = 0; i < syscall_counts.size (); i++)
2620 {
2621 if (syscall_counts[i] != 0)
2622 n_sysno++;
2623 }
2624 }
2625
2626 if (remote_debug)
2627 {
2628 fprintf_unfiltered (gdb_stdlog,
2629 "remote_set_syscall_catchpoint "
2630 "pid %d needed %d any_count %d n_sysno %d\n",
2631 pid, needed, any_count, n_sysno);
2632 }
2633
2634 std::string built_packet;
2635 if (needed)
2636 {
2637 /* Prepare a packet with the sysno list, assuming max 8+1
2638 characters for a sysno. If the resulting packet size is too
2639 big, fallback on the non-selective packet. */
2640 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2641 built_packet.reserve (maxpktsz);
2642 built_packet = "QCatchSyscalls:1";
2643 if (any_count == 0)
2644 {
2645 /* Add in each syscall to be caught. */
2646 for (size_t i = 0; i < syscall_counts.size (); i++)
2647 {
2648 if (syscall_counts[i] != 0)
2649 string_appendf (built_packet, ";%zx", i);
2650 }
2651 }
2652 if (built_packet.size () > get_remote_packet_size ())
2653 {
2654 /* catch_packet too big. Fallback to less efficient
2655 non selective mode, with GDB doing the filtering. */
2656 catch_packet = "QCatchSyscalls:1";
2657 }
2658 else
2659 catch_packet = built_packet.c_str ();
2660 }
2661 else
2662 catch_packet = "QCatchSyscalls:0";
2663
2664 struct remote_state *rs = get_remote_state ();
2665
2666 putpkt (catch_packet);
2667 getpkt (&rs->buf, 0);
2668 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2669 if (result == PACKET_OK)
2670 return 0;
2671 else
2672 return -1;
2673 }
2674
2675 /* If 'QProgramSignals' is supported, tell the remote stub what
2676 signals it should pass through to the inferior when detaching. */
2677
2678 void
2679 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2680 {
2681 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2682 {
2683 char *packet, *p;
2684 int count = 0;
2685 struct remote_state *rs = get_remote_state ();
2686
2687 gdb_assert (signals.size () < 256);
2688 for (size_t i = 0; i < signals.size (); i++)
2689 {
2690 if (signals[i])
2691 count++;
2692 }
2693 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2694 strcpy (packet, "QProgramSignals:");
2695 p = packet + strlen (packet);
2696 for (size_t i = 0; i < signals.size (); i++)
2697 {
2698 if (signal_pass_state (i))
2699 {
2700 if (i >= 16)
2701 *p++ = tohex (i >> 4);
2702 *p++ = tohex (i & 15);
2703 if (count)
2704 *p++ = ';';
2705 else
2706 break;
2707 count--;
2708 }
2709 }
2710 *p = 0;
2711 if (!rs->last_program_signals_packet
2712 || strcmp (rs->last_program_signals_packet, packet) != 0)
2713 {
2714 putpkt (packet);
2715 getpkt (&rs->buf, 0);
2716 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2717 xfree (rs->last_program_signals_packet);
2718 rs->last_program_signals_packet = packet;
2719 }
2720 else
2721 xfree (packet);
2722 }
2723 }
2724
2725 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2726 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2727 thread. If GEN is set, set the general thread, if not, then set
2728 the step/continue thread. */
2729 void
2730 remote_target::set_thread (ptid_t ptid, int gen)
2731 {
2732 struct remote_state *rs = get_remote_state ();
2733 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2734 char *buf = rs->buf.data ();
2735 char *endbuf = buf + get_remote_packet_size ();
2736
2737 if (state == ptid)
2738 return;
2739
2740 *buf++ = 'H';
2741 *buf++ = gen ? 'g' : 'c';
2742 if (ptid == magic_null_ptid)
2743 xsnprintf (buf, endbuf - buf, "0");
2744 else if (ptid == any_thread_ptid)
2745 xsnprintf (buf, endbuf - buf, "0");
2746 else if (ptid == minus_one_ptid)
2747 xsnprintf (buf, endbuf - buf, "-1");
2748 else
2749 write_ptid (buf, endbuf, ptid);
2750 putpkt (rs->buf);
2751 getpkt (&rs->buf, 0);
2752 if (gen)
2753 rs->general_thread = ptid;
2754 else
2755 rs->continue_thread = ptid;
2756 }
2757
2758 void
2759 remote_target::set_general_thread (ptid_t ptid)
2760 {
2761 set_thread (ptid, 1);
2762 }
2763
2764 void
2765 remote_target::set_continue_thread (ptid_t ptid)
2766 {
2767 set_thread (ptid, 0);
2768 }
2769
2770 /* Change the remote current process. Which thread within the process
2771 ends up selected isn't important, as long as it is the same process
2772 as what INFERIOR_PTID points to.
2773
2774 This comes from that fact that there is no explicit notion of
2775 "selected process" in the protocol. The selected process for
2776 general operations is the process the selected general thread
2777 belongs to. */
2778
2779 void
2780 remote_target::set_general_process ()
2781 {
2782 struct remote_state *rs = get_remote_state ();
2783
2784 /* If the remote can't handle multiple processes, don't bother. */
2785 if (!remote_multi_process_p (rs))
2786 return;
2787
2788 /* We only need to change the remote current thread if it's pointing
2789 at some other process. */
2790 if (rs->general_thread.pid () != inferior_ptid.pid ())
2791 set_general_thread (inferior_ptid);
2792 }
2793
2794 \f
2795 /* Return nonzero if this is the main thread that we made up ourselves
2796 to model non-threaded targets as single-threaded. */
2797
2798 static int
2799 remote_thread_always_alive (ptid_t ptid)
2800 {
2801 if (ptid == magic_null_ptid)
2802 /* The main thread is always alive. */
2803 return 1;
2804
2805 if (ptid.pid () != 0 && ptid.lwp () == 0)
2806 /* The main thread is always alive. This can happen after a
2807 vAttach, if the remote side doesn't support
2808 multi-threading. */
2809 return 1;
2810
2811 return 0;
2812 }
2813
2814 /* Return nonzero if the thread PTID is still alive on the remote
2815 system. */
2816
2817 bool
2818 remote_target::thread_alive (ptid_t ptid)
2819 {
2820 struct remote_state *rs = get_remote_state ();
2821 char *p, *endp;
2822
2823 /* Check if this is a thread that we made up ourselves to model
2824 non-threaded targets as single-threaded. */
2825 if (remote_thread_always_alive (ptid))
2826 return 1;
2827
2828 p = rs->buf.data ();
2829 endp = p + get_remote_packet_size ();
2830
2831 *p++ = 'T';
2832 write_ptid (p, endp, ptid);
2833
2834 putpkt (rs->buf);
2835 getpkt (&rs->buf, 0);
2836 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2837 }
2838
2839 /* Return a pointer to a thread name if we know it and NULL otherwise.
2840 The thread_info object owns the memory for the name. */
2841
2842 const char *
2843 remote_target::thread_name (struct thread_info *info)
2844 {
2845 if (info->priv != NULL)
2846 {
2847 const std::string &name = get_remote_thread_info (info)->name;
2848 return !name.empty () ? name.c_str () : NULL;
2849 }
2850
2851 return NULL;
2852 }
2853
2854 /* About these extended threadlist and threadinfo packets. They are
2855 variable length packets but, the fields within them are often fixed
2856 length. They are redundent enough to send over UDP as is the
2857 remote protocol in general. There is a matching unit test module
2858 in libstub. */
2859
2860 /* WARNING: This threadref data structure comes from the remote O.S.,
2861 libstub protocol encoding, and remote.c. It is not particularly
2862 changable. */
2863
2864 /* Right now, the internal structure is int. We want it to be bigger.
2865 Plan to fix this. */
2866
2867 typedef int gdb_threadref; /* Internal GDB thread reference. */
2868
2869 /* gdb_ext_thread_info is an internal GDB data structure which is
2870 equivalent to the reply of the remote threadinfo packet. */
2871
2872 struct gdb_ext_thread_info
2873 {
2874 threadref threadid; /* External form of thread reference. */
2875 int active; /* Has state interesting to GDB?
2876 regs, stack. */
2877 char display[256]; /* Brief state display, name,
2878 blocked/suspended. */
2879 char shortname[32]; /* To be used to name threads. */
2880 char more_display[256]; /* Long info, statistics, queue depth,
2881 whatever. */
2882 };
2883
2884 /* The volume of remote transfers can be limited by submitting
2885 a mask containing bits specifying the desired information.
2886 Use a union of these values as the 'selection' parameter to
2887 get_thread_info. FIXME: Make these TAG names more thread specific. */
2888
2889 #define TAG_THREADID 1
2890 #define TAG_EXISTS 2
2891 #define TAG_DISPLAY 4
2892 #define TAG_THREADNAME 8
2893 #define TAG_MOREDISPLAY 16
2894
2895 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2896
2897 static char *unpack_nibble (char *buf, int *val);
2898
2899 static char *unpack_byte (char *buf, int *value);
2900
2901 static char *pack_int (char *buf, int value);
2902
2903 static char *unpack_int (char *buf, int *value);
2904
2905 static char *unpack_string (char *src, char *dest, int length);
2906
2907 static char *pack_threadid (char *pkt, threadref *id);
2908
2909 static char *unpack_threadid (char *inbuf, threadref *id);
2910
2911 void int_to_threadref (threadref *id, int value);
2912
2913 static int threadref_to_int (threadref *ref);
2914
2915 static void copy_threadref (threadref *dest, threadref *src);
2916
2917 static int threadmatch (threadref *dest, threadref *src);
2918
2919 static char *pack_threadinfo_request (char *pkt, int mode,
2920 threadref *id);
2921
2922 static char *pack_threadlist_request (char *pkt, int startflag,
2923 int threadcount,
2924 threadref *nextthread);
2925
2926 static int remote_newthread_step (threadref *ref, void *context);
2927
2928
2929 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2930 buffer we're allowed to write to. Returns
2931 BUF+CHARACTERS_WRITTEN. */
2932
2933 char *
2934 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2935 {
2936 int pid, tid;
2937 struct remote_state *rs = get_remote_state ();
2938
2939 if (remote_multi_process_p (rs))
2940 {
2941 pid = ptid.pid ();
2942 if (pid < 0)
2943 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2944 else
2945 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2946 }
2947 tid = ptid.lwp ();
2948 if (tid < 0)
2949 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2950 else
2951 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2952
2953 return buf;
2954 }
2955
2956 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2957 last parsed char. Returns null_ptid if no thread id is found, and
2958 throws an error if the thread id has an invalid format. */
2959
2960 static ptid_t
2961 read_ptid (const char *buf, const char **obuf)
2962 {
2963 const char *p = buf;
2964 const char *pp;
2965 ULONGEST pid = 0, tid = 0;
2966
2967 if (*p == 'p')
2968 {
2969 /* Multi-process ptid. */
2970 pp = unpack_varlen_hex (p + 1, &pid);
2971 if (*pp != '.')
2972 error (_("invalid remote ptid: %s"), p);
2973
2974 p = pp;
2975 pp = unpack_varlen_hex (p + 1, &tid);
2976 if (obuf)
2977 *obuf = pp;
2978 return ptid_t (pid, tid, 0);
2979 }
2980
2981 /* No multi-process. Just a tid. */
2982 pp = unpack_varlen_hex (p, &tid);
2983
2984 /* Return null_ptid when no thread id is found. */
2985 if (p == pp)
2986 {
2987 if (obuf)
2988 *obuf = pp;
2989 return null_ptid;
2990 }
2991
2992 /* Since the stub is not sending a process id, then default to
2993 what's in inferior_ptid, unless it's null at this point. If so,
2994 then since there's no way to know the pid of the reported
2995 threads, use the magic number. */
2996 if (inferior_ptid == null_ptid)
2997 pid = magic_null_ptid.pid ();
2998 else
2999 pid = inferior_ptid.pid ();
3000
3001 if (obuf)
3002 *obuf = pp;
3003 return ptid_t (pid, tid, 0);
3004 }
3005
3006 static int
3007 stubhex (int ch)
3008 {
3009 if (ch >= 'a' && ch <= 'f')
3010 return ch - 'a' + 10;
3011 if (ch >= '0' && ch <= '9')
3012 return ch - '0';
3013 if (ch >= 'A' && ch <= 'F')
3014 return ch - 'A' + 10;
3015 return -1;
3016 }
3017
3018 static int
3019 stub_unpack_int (char *buff, int fieldlength)
3020 {
3021 int nibble;
3022 int retval = 0;
3023
3024 while (fieldlength)
3025 {
3026 nibble = stubhex (*buff++);
3027 retval |= nibble;
3028 fieldlength--;
3029 if (fieldlength)
3030 retval = retval << 4;
3031 }
3032 return retval;
3033 }
3034
3035 static char *
3036 unpack_nibble (char *buf, int *val)
3037 {
3038 *val = fromhex (*buf++);
3039 return buf;
3040 }
3041
3042 static char *
3043 unpack_byte (char *buf, int *value)
3044 {
3045 *value = stub_unpack_int (buf, 2);
3046 return buf + 2;
3047 }
3048
3049 static char *
3050 pack_int (char *buf, int value)
3051 {
3052 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3053 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3054 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3055 buf = pack_hex_byte (buf, (value & 0xff));
3056 return buf;
3057 }
3058
3059 static char *
3060 unpack_int (char *buf, int *value)
3061 {
3062 *value = stub_unpack_int (buf, 8);
3063 return buf + 8;
3064 }
3065
3066 #if 0 /* Currently unused, uncomment when needed. */
3067 static char *pack_string (char *pkt, char *string);
3068
3069 static char *
3070 pack_string (char *pkt, char *string)
3071 {
3072 char ch;
3073 int len;
3074
3075 len = strlen (string);
3076 if (len > 200)
3077 len = 200; /* Bigger than most GDB packets, junk??? */
3078 pkt = pack_hex_byte (pkt, len);
3079 while (len-- > 0)
3080 {
3081 ch = *string++;
3082 if ((ch == '\0') || (ch == '#'))
3083 ch = '*'; /* Protect encapsulation. */
3084 *pkt++ = ch;
3085 }
3086 return pkt;
3087 }
3088 #endif /* 0 (unused) */
3089
3090 static char *
3091 unpack_string (char *src, char *dest, int length)
3092 {
3093 while (length--)
3094 *dest++ = *src++;
3095 *dest = '\0';
3096 return src;
3097 }
3098
3099 static char *
3100 pack_threadid (char *pkt, threadref *id)
3101 {
3102 char *limit;
3103 unsigned char *altid;
3104
3105 altid = (unsigned char *) id;
3106 limit = pkt + BUF_THREAD_ID_SIZE;
3107 while (pkt < limit)
3108 pkt = pack_hex_byte (pkt, *altid++);
3109 return pkt;
3110 }
3111
3112
3113 static char *
3114 unpack_threadid (char *inbuf, threadref *id)
3115 {
3116 char *altref;
3117 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3118 int x, y;
3119
3120 altref = (char *) id;
3121
3122 while (inbuf < limit)
3123 {
3124 x = stubhex (*inbuf++);
3125 y = stubhex (*inbuf++);
3126 *altref++ = (x << 4) | y;
3127 }
3128 return inbuf;
3129 }
3130
3131 /* Externally, threadrefs are 64 bits but internally, they are still
3132 ints. This is due to a mismatch of specifications. We would like
3133 to use 64bit thread references internally. This is an adapter
3134 function. */
3135
3136 void
3137 int_to_threadref (threadref *id, int value)
3138 {
3139 unsigned char *scan;
3140
3141 scan = (unsigned char *) id;
3142 {
3143 int i = 4;
3144 while (i--)
3145 *scan++ = 0;
3146 }
3147 *scan++ = (value >> 24) & 0xff;
3148 *scan++ = (value >> 16) & 0xff;
3149 *scan++ = (value >> 8) & 0xff;
3150 *scan++ = (value & 0xff);
3151 }
3152
3153 static int
3154 threadref_to_int (threadref *ref)
3155 {
3156 int i, value = 0;
3157 unsigned char *scan;
3158
3159 scan = *ref;
3160 scan += 4;
3161 i = 4;
3162 while (i-- > 0)
3163 value = (value << 8) | ((*scan++) & 0xff);
3164 return value;
3165 }
3166
3167 static void
3168 copy_threadref (threadref *dest, threadref *src)
3169 {
3170 int i;
3171 unsigned char *csrc, *cdest;
3172
3173 csrc = (unsigned char *) src;
3174 cdest = (unsigned char *) dest;
3175 i = 8;
3176 while (i--)
3177 *cdest++ = *csrc++;
3178 }
3179
3180 static int
3181 threadmatch (threadref *dest, threadref *src)
3182 {
3183 /* Things are broken right now, so just assume we got a match. */
3184 #if 0
3185 unsigned char *srcp, *destp;
3186 int i, result;
3187 srcp = (char *) src;
3188 destp = (char *) dest;
3189
3190 result = 1;
3191 while (i-- > 0)
3192 result &= (*srcp++ == *destp++) ? 1 : 0;
3193 return result;
3194 #endif
3195 return 1;
3196 }
3197
3198 /*
3199 threadid:1, # always request threadid
3200 context_exists:2,
3201 display:4,
3202 unique_name:8,
3203 more_display:16
3204 */
3205
3206 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3207
3208 static char *
3209 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3210 {
3211 *pkt++ = 'q'; /* Info Query */
3212 *pkt++ = 'P'; /* process or thread info */
3213 pkt = pack_int (pkt, mode); /* mode */
3214 pkt = pack_threadid (pkt, id); /* threadid */
3215 *pkt = '\0'; /* terminate */
3216 return pkt;
3217 }
3218
3219 /* These values tag the fields in a thread info response packet. */
3220 /* Tagging the fields allows us to request specific fields and to
3221 add more fields as time goes by. */
3222
3223 #define TAG_THREADID 1 /* Echo the thread identifier. */
3224 #define TAG_EXISTS 2 /* Is this process defined enough to
3225 fetch registers and its stack? */
3226 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3227 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3228 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3229 the process. */
3230
3231 int
3232 remote_target::remote_unpack_thread_info_response (char *pkt,
3233 threadref *expectedref,
3234 gdb_ext_thread_info *info)
3235 {
3236 struct remote_state *rs = get_remote_state ();
3237 int mask, length;
3238 int tag;
3239 threadref ref;
3240 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3241 int retval = 1;
3242
3243 /* info->threadid = 0; FIXME: implement zero_threadref. */
3244 info->active = 0;
3245 info->display[0] = '\0';
3246 info->shortname[0] = '\0';
3247 info->more_display[0] = '\0';
3248
3249 /* Assume the characters indicating the packet type have been
3250 stripped. */
3251 pkt = unpack_int (pkt, &mask); /* arg mask */
3252 pkt = unpack_threadid (pkt, &ref);
3253
3254 if (mask == 0)
3255 warning (_("Incomplete response to threadinfo request."));
3256 if (!threadmatch (&ref, expectedref))
3257 { /* This is an answer to a different request. */
3258 warning (_("ERROR RMT Thread info mismatch."));
3259 return 0;
3260 }
3261 copy_threadref (&info->threadid, &ref);
3262
3263 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3264
3265 /* Packets are terminated with nulls. */
3266 while ((pkt < limit) && mask && *pkt)
3267 {
3268 pkt = unpack_int (pkt, &tag); /* tag */
3269 pkt = unpack_byte (pkt, &length); /* length */
3270 if (!(tag & mask)) /* Tags out of synch with mask. */
3271 {
3272 warning (_("ERROR RMT: threadinfo tag mismatch."));
3273 retval = 0;
3274 break;
3275 }
3276 if (tag == TAG_THREADID)
3277 {
3278 if (length != 16)
3279 {
3280 warning (_("ERROR RMT: length of threadid is not 16."));
3281 retval = 0;
3282 break;
3283 }
3284 pkt = unpack_threadid (pkt, &ref);
3285 mask = mask & ~TAG_THREADID;
3286 continue;
3287 }
3288 if (tag == TAG_EXISTS)
3289 {
3290 info->active = stub_unpack_int (pkt, length);
3291 pkt += length;
3292 mask = mask & ~(TAG_EXISTS);
3293 if (length > 8)
3294 {
3295 warning (_("ERROR RMT: 'exists' length too long."));
3296 retval = 0;
3297 break;
3298 }
3299 continue;
3300 }
3301 if (tag == TAG_THREADNAME)
3302 {
3303 pkt = unpack_string (pkt, &info->shortname[0], length);
3304 mask = mask & ~TAG_THREADNAME;
3305 continue;
3306 }
3307 if (tag == TAG_DISPLAY)
3308 {
3309 pkt = unpack_string (pkt, &info->display[0], length);
3310 mask = mask & ~TAG_DISPLAY;
3311 continue;
3312 }
3313 if (tag == TAG_MOREDISPLAY)
3314 {
3315 pkt = unpack_string (pkt, &info->more_display[0], length);
3316 mask = mask & ~TAG_MOREDISPLAY;
3317 continue;
3318 }
3319 warning (_("ERROR RMT: unknown thread info tag."));
3320 break; /* Not a tag we know about. */
3321 }
3322 return retval;
3323 }
3324
3325 int
3326 remote_target::remote_get_threadinfo (threadref *threadid,
3327 int fieldset,
3328 gdb_ext_thread_info *info)
3329 {
3330 struct remote_state *rs = get_remote_state ();
3331 int result;
3332
3333 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3334 putpkt (rs->buf);
3335 getpkt (&rs->buf, 0);
3336
3337 if (rs->buf[0] == '\0')
3338 return 0;
3339
3340 result = remote_unpack_thread_info_response (&rs->buf[2],
3341 threadid, info);
3342 return result;
3343 }
3344
3345 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3346
3347 static char *
3348 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3349 threadref *nextthread)
3350 {
3351 *pkt++ = 'q'; /* info query packet */
3352 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3353 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3354 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3355 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3356 *pkt = '\0';
3357 return pkt;
3358 }
3359
3360 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3361
3362 int
3363 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3364 threadref *original_echo,
3365 threadref *resultlist,
3366 int *doneflag)
3367 {
3368 struct remote_state *rs = get_remote_state ();
3369 char *limit;
3370 int count, resultcount, done;
3371
3372 resultcount = 0;
3373 /* Assume the 'q' and 'M chars have been stripped. */
3374 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3375 /* done parse past here */
3376 pkt = unpack_byte (pkt, &count); /* count field */
3377 pkt = unpack_nibble (pkt, &done);
3378 /* The first threadid is the argument threadid. */
3379 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3380 while ((count-- > 0) && (pkt < limit))
3381 {
3382 pkt = unpack_threadid (pkt, resultlist++);
3383 if (resultcount++ >= result_limit)
3384 break;
3385 }
3386 if (doneflag)
3387 *doneflag = done;
3388 return resultcount;
3389 }
3390
3391 /* Fetch the next batch of threads from the remote. Returns -1 if the
3392 qL packet is not supported, 0 on error and 1 on success. */
3393
3394 int
3395 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3396 int result_limit, int *done, int *result_count,
3397 threadref *threadlist)
3398 {
3399 struct remote_state *rs = get_remote_state ();
3400 int result = 1;
3401
3402 /* Trancate result limit to be smaller than the packet size. */
3403 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3404 >= get_remote_packet_size ())
3405 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3406
3407 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3408 nextthread);
3409 putpkt (rs->buf);
3410 getpkt (&rs->buf, 0);
3411 if (rs->buf[0] == '\0')
3412 {
3413 /* Packet not supported. */
3414 return -1;
3415 }
3416
3417 *result_count =
3418 parse_threadlist_response (&rs->buf[2], result_limit,
3419 &rs->echo_nextthread, threadlist, done);
3420
3421 if (!threadmatch (&rs->echo_nextthread, nextthread))
3422 {
3423 /* FIXME: This is a good reason to drop the packet. */
3424 /* Possably, there is a duplicate response. */
3425 /* Possabilities :
3426 retransmit immediatly - race conditions
3427 retransmit after timeout - yes
3428 exit
3429 wait for packet, then exit
3430 */
3431 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3432 return 0; /* I choose simply exiting. */
3433 }
3434 if (*result_count <= 0)
3435 {
3436 if (*done != 1)
3437 {
3438 warning (_("RMT ERROR : failed to get remote thread list."));
3439 result = 0;
3440 }
3441 return result; /* break; */
3442 }
3443 if (*result_count > result_limit)
3444 {
3445 *result_count = 0;
3446 warning (_("RMT ERROR: threadlist response longer than requested."));
3447 return 0;
3448 }
3449 return result;
3450 }
3451
3452 /* Fetch the list of remote threads, with the qL packet, and call
3453 STEPFUNCTION for each thread found. Stops iterating and returns 1
3454 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3455 STEPFUNCTION returns false. If the packet is not supported,
3456 returns -1. */
3457
3458 int
3459 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3460 void *context, int looplimit)
3461 {
3462 struct remote_state *rs = get_remote_state ();
3463 int done, i, result_count;
3464 int startflag = 1;
3465 int result = 1;
3466 int loopcount = 0;
3467
3468 done = 0;
3469 while (!done)
3470 {
3471 if (loopcount++ > looplimit)
3472 {
3473 result = 0;
3474 warning (_("Remote fetch threadlist -infinite loop-."));
3475 break;
3476 }
3477 result = remote_get_threadlist (startflag, &rs->nextthread,
3478 MAXTHREADLISTRESULTS,
3479 &done, &result_count,
3480 rs->resultthreadlist);
3481 if (result <= 0)
3482 break;
3483 /* Clear for later iterations. */
3484 startflag = 0;
3485 /* Setup to resume next batch of thread references, set nextthread. */
3486 if (result_count >= 1)
3487 copy_threadref (&rs->nextthread,
3488 &rs->resultthreadlist[result_count - 1]);
3489 i = 0;
3490 while (result_count--)
3491 {
3492 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3493 {
3494 result = 0;
3495 break;
3496 }
3497 }
3498 }
3499 return result;
3500 }
3501
3502 /* A thread found on the remote target. */
3503
3504 struct thread_item
3505 {
3506 explicit thread_item (ptid_t ptid_)
3507 : ptid (ptid_)
3508 {}
3509
3510 thread_item (thread_item &&other) = default;
3511 thread_item &operator= (thread_item &&other) = default;
3512
3513 DISABLE_COPY_AND_ASSIGN (thread_item);
3514
3515 /* The thread's PTID. */
3516 ptid_t ptid;
3517
3518 /* The thread's extra info. */
3519 std::string extra;
3520
3521 /* The thread's name. */
3522 std::string name;
3523
3524 /* The core the thread was running on. -1 if not known. */
3525 int core = -1;
3526
3527 /* The thread handle associated with the thread. */
3528 gdb::byte_vector thread_handle;
3529 };
3530
3531 /* Context passed around to the various methods listing remote
3532 threads. As new threads are found, they're added to the ITEMS
3533 vector. */
3534
3535 struct threads_listing_context
3536 {
3537 /* Return true if this object contains an entry for a thread with ptid
3538 PTID. */
3539
3540 bool contains_thread (ptid_t ptid) const
3541 {
3542 auto match_ptid = [&] (const thread_item &item)
3543 {
3544 return item.ptid == ptid;
3545 };
3546
3547 auto it = std::find_if (this->items.begin (),
3548 this->items.end (),
3549 match_ptid);
3550
3551 return it != this->items.end ();
3552 }
3553
3554 /* Remove the thread with ptid PTID. */
3555
3556 void remove_thread (ptid_t ptid)
3557 {
3558 auto match_ptid = [&] (const thread_item &item)
3559 {
3560 return item.ptid == ptid;
3561 };
3562
3563 auto it = std::remove_if (this->items.begin (),
3564 this->items.end (),
3565 match_ptid);
3566
3567 if (it != this->items.end ())
3568 this->items.erase (it);
3569 }
3570
3571 /* The threads found on the remote target. */
3572 std::vector<thread_item> items;
3573 };
3574
3575 static int
3576 remote_newthread_step (threadref *ref, void *data)
3577 {
3578 struct threads_listing_context *context
3579 = (struct threads_listing_context *) data;
3580 int pid = inferior_ptid.pid ();
3581 int lwp = threadref_to_int (ref);
3582 ptid_t ptid (pid, lwp);
3583
3584 context->items.emplace_back (ptid);
3585
3586 return 1; /* continue iterator */
3587 }
3588
3589 #define CRAZY_MAX_THREADS 1000
3590
3591 ptid_t
3592 remote_target::remote_current_thread (ptid_t oldpid)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595
3596 putpkt ("qC");
3597 getpkt (&rs->buf, 0);
3598 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3599 {
3600 const char *obuf;
3601 ptid_t result;
3602
3603 result = read_ptid (&rs->buf[2], &obuf);
3604 if (*obuf != '\0' && remote_debug)
3605 fprintf_unfiltered (gdb_stdlog,
3606 "warning: garbage in qC reply\n");
3607
3608 return result;
3609 }
3610 else
3611 return oldpid;
3612 }
3613
3614 /* List remote threads using the deprecated qL packet. */
3615
3616 int
3617 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3618 {
3619 if (remote_threadlist_iterator (remote_newthread_step, context,
3620 CRAZY_MAX_THREADS) >= 0)
3621 return 1;
3622
3623 return 0;
3624 }
3625
3626 #if defined(HAVE_LIBEXPAT)
3627
3628 static void
3629 start_thread (struct gdb_xml_parser *parser,
3630 const struct gdb_xml_element *element,
3631 void *user_data,
3632 std::vector<gdb_xml_value> &attributes)
3633 {
3634 struct threads_listing_context *data
3635 = (struct threads_listing_context *) user_data;
3636 struct gdb_xml_value *attr;
3637
3638 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3639 ptid_t ptid = read_ptid (id, NULL);
3640
3641 data->items.emplace_back (ptid);
3642 thread_item &item = data->items.back ();
3643
3644 attr = xml_find_attribute (attributes, "core");
3645 if (attr != NULL)
3646 item.core = *(ULONGEST *) attr->value.get ();
3647
3648 attr = xml_find_attribute (attributes, "name");
3649 if (attr != NULL)
3650 item.name = (const char *) attr->value.get ();
3651
3652 attr = xml_find_attribute (attributes, "handle");
3653 if (attr != NULL)
3654 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3655 }
3656
3657 static void
3658 end_thread (struct gdb_xml_parser *parser,
3659 const struct gdb_xml_element *element,
3660 void *user_data, const char *body_text)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664
3665 if (body_text != NULL && *body_text != '\0')
3666 data->items.back ().extra = body_text;
3667 }
3668
3669 const struct gdb_xml_attribute thread_attributes[] = {
3670 { "id", GDB_XML_AF_NONE, NULL, NULL },
3671 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3672 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3673 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3674 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3675 };
3676
3677 const struct gdb_xml_element thread_children[] = {
3678 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3679 };
3680
3681 const struct gdb_xml_element threads_children[] = {
3682 { "thread", thread_attributes, thread_children,
3683 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3684 start_thread, end_thread },
3685 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3686 };
3687
3688 const struct gdb_xml_element threads_elements[] = {
3689 { "threads", NULL, threads_children,
3690 GDB_XML_EF_NONE, NULL, NULL },
3691 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3692 };
3693
3694 #endif
3695
3696 /* List remote threads using qXfer:threads:read. */
3697
3698 int
3699 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3700 {
3701 #if defined(HAVE_LIBEXPAT)
3702 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3703 {
3704 gdb::optional<gdb::char_vector> xml
3705 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3706
3707 if (xml && (*xml)[0] != '\0')
3708 {
3709 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3710 threads_elements, xml->data (), context);
3711 }
3712
3713 return 1;
3714 }
3715 #endif
3716
3717 return 0;
3718 }
3719
3720 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3721
3722 int
3723 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3724 {
3725 struct remote_state *rs = get_remote_state ();
3726
3727 if (rs->use_threadinfo_query)
3728 {
3729 const char *bufp;
3730
3731 putpkt ("qfThreadInfo");
3732 getpkt (&rs->buf, 0);
3733 bufp = rs->buf.data ();
3734 if (bufp[0] != '\0') /* q packet recognized */
3735 {
3736 while (*bufp++ == 'm') /* reply contains one or more TID */
3737 {
3738 do
3739 {
3740 ptid_t ptid = read_ptid (bufp, &bufp);
3741 context->items.emplace_back (ptid);
3742 }
3743 while (*bufp++ == ','); /* comma-separated list */
3744 putpkt ("qsThreadInfo");
3745 getpkt (&rs->buf, 0);
3746 bufp = rs->buf.data ();
3747 }
3748 return 1;
3749 }
3750 else
3751 {
3752 /* Packet not recognized. */
3753 rs->use_threadinfo_query = 0;
3754 }
3755 }
3756
3757 return 0;
3758 }
3759
3760 /* Implement the to_update_thread_list function for the remote
3761 targets. */
3762
3763 void
3764 remote_target::update_thread_list ()
3765 {
3766 struct threads_listing_context context;
3767 int got_list = 0;
3768
3769 /* We have a few different mechanisms to fetch the thread list. Try
3770 them all, starting with the most preferred one first, falling
3771 back to older methods. */
3772 if (remote_get_threads_with_qxfer (&context)
3773 || remote_get_threads_with_qthreadinfo (&context)
3774 || remote_get_threads_with_ql (&context))
3775 {
3776 got_list = 1;
3777
3778 if (context.items.empty ()
3779 && remote_thread_always_alive (inferior_ptid))
3780 {
3781 /* Some targets don't really support threads, but still
3782 reply an (empty) thread list in response to the thread
3783 listing packets, instead of replying "packet not
3784 supported". Exit early so we don't delete the main
3785 thread. */
3786 return;
3787 }
3788
3789 /* CONTEXT now holds the current thread list on the remote
3790 target end. Delete GDB-side threads no longer found on the
3791 target. */
3792 for (thread_info *tp : all_threads_safe ())
3793 {
3794 if (!context.contains_thread (tp->ptid))
3795 {
3796 /* Not found. */
3797 delete_thread (tp);
3798 }
3799 }
3800
3801 /* Remove any unreported fork child threads from CONTEXT so
3802 that we don't interfere with follow fork, which is where
3803 creation of such threads is handled. */
3804 remove_new_fork_children (&context);
3805
3806 /* And now add threads we don't know about yet to our list. */
3807 for (thread_item &item : context.items)
3808 {
3809 if (item.ptid != null_ptid)
3810 {
3811 /* In non-stop mode, we assume new found threads are
3812 executing until proven otherwise with a stop reply.
3813 In all-stop, we can only get here if all threads are
3814 stopped. */
3815 int executing = target_is_non_stop_p () ? 1 : 0;
3816
3817 remote_notice_new_inferior (item.ptid, executing);
3818
3819 thread_info *tp = find_thread_ptid (item.ptid);
3820 remote_thread_info *info = get_remote_thread_info (tp);
3821 info->core = item.core;
3822 info->extra = std::move (item.extra);
3823 info->name = std::move (item.name);
3824 info->thread_handle = std::move (item.thread_handle);
3825 }
3826 }
3827 }
3828
3829 if (!got_list)
3830 {
3831 /* If no thread listing method is supported, then query whether
3832 each known thread is alive, one by one, with the T packet.
3833 If the target doesn't support threads at all, then this is a
3834 no-op. See remote_thread_alive. */
3835 prune_threads ();
3836 }
3837 }
3838
3839 /*
3840 * Collect a descriptive string about the given thread.
3841 * The target may say anything it wants to about the thread
3842 * (typically info about its blocked / runnable state, name, etc.).
3843 * This string will appear in the info threads display.
3844 *
3845 * Optional: targets are not required to implement this function.
3846 */
3847
3848 const char *
3849 remote_target::extra_thread_info (thread_info *tp)
3850 {
3851 struct remote_state *rs = get_remote_state ();
3852 int set;
3853 threadref id;
3854 struct gdb_ext_thread_info threadinfo;
3855
3856 if (rs->remote_desc == 0) /* paranoia */
3857 internal_error (__FILE__, __LINE__,
3858 _("remote_threads_extra_info"));
3859
3860 if (tp->ptid == magic_null_ptid
3861 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3862 /* This is the main thread which was added by GDB. The remote
3863 server doesn't know about it. */
3864 return NULL;
3865
3866 std::string &extra = get_remote_thread_info (tp)->extra;
3867
3868 /* If already have cached info, use it. */
3869 if (!extra.empty ())
3870 return extra.c_str ();
3871
3872 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3873 {
3874 /* If we're using qXfer:threads:read, then the extra info is
3875 included in the XML. So if we didn't have anything cached,
3876 it's because there's really no extra info. */
3877 return NULL;
3878 }
3879
3880 if (rs->use_threadextra_query)
3881 {
3882 char *b = rs->buf.data ();
3883 char *endb = b + get_remote_packet_size ();
3884
3885 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3886 b += strlen (b);
3887 write_ptid (b, endb, tp->ptid);
3888
3889 putpkt (rs->buf);
3890 getpkt (&rs->buf, 0);
3891 if (rs->buf[0] != 0)
3892 {
3893 extra.resize (strlen (rs->buf.data ()) / 2);
3894 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3895 return extra.c_str ();
3896 }
3897 }
3898
3899 /* If the above query fails, fall back to the old method. */
3900 rs->use_threadextra_query = 0;
3901 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3902 | TAG_MOREDISPLAY | TAG_DISPLAY;
3903 int_to_threadref (&id, tp->ptid.lwp ());
3904 if (remote_get_threadinfo (&id, set, &threadinfo))
3905 if (threadinfo.active)
3906 {
3907 if (*threadinfo.shortname)
3908 string_appendf (extra, " Name: %s", threadinfo.shortname);
3909 if (*threadinfo.display)
3910 {
3911 if (!extra.empty ())
3912 extra += ',';
3913 string_appendf (extra, " State: %s", threadinfo.display);
3914 }
3915 if (*threadinfo.more_display)
3916 {
3917 if (!extra.empty ())
3918 extra += ',';
3919 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3920 }
3921 return extra.c_str ();
3922 }
3923 return NULL;
3924 }
3925 \f
3926
3927 bool
3928 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3929 struct static_tracepoint_marker *marker)
3930 {
3931 struct remote_state *rs = get_remote_state ();
3932 char *p = rs->buf.data ();
3933
3934 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3935 p += strlen (p);
3936 p += hexnumstr (p, addr);
3937 putpkt (rs->buf);
3938 getpkt (&rs->buf, 0);
3939 p = rs->buf.data ();
3940
3941 if (*p == 'E')
3942 error (_("Remote failure reply: %s"), p);
3943
3944 if (*p++ == 'm')
3945 {
3946 parse_static_tracepoint_marker_definition (p, NULL, marker);
3947 return true;
3948 }
3949
3950 return false;
3951 }
3952
3953 std::vector<static_tracepoint_marker>
3954 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957 std::vector<static_tracepoint_marker> markers;
3958 const char *p;
3959 static_tracepoint_marker marker;
3960
3961 /* Ask for a first packet of static tracepoint marker
3962 definition. */
3963 putpkt ("qTfSTM");
3964 getpkt (&rs->buf, 0);
3965 p = rs->buf.data ();
3966 if (*p == 'E')
3967 error (_("Remote failure reply: %s"), p);
3968
3969 while (*p++ == 'm')
3970 {
3971 do
3972 {
3973 parse_static_tracepoint_marker_definition (p, &p, &marker);
3974
3975 if (strid == NULL || marker.str_id == strid)
3976 markers.push_back (std::move (marker));
3977 }
3978 while (*p++ == ','); /* comma-separated list */
3979 /* Ask for another packet of static tracepoint definition. */
3980 putpkt ("qTsSTM");
3981 getpkt (&rs->buf, 0);
3982 p = rs->buf.data ();
3983 }
3984
3985 return markers;
3986 }
3987
3988 \f
3989 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3990
3991 ptid_t
3992 remote_target::get_ada_task_ptid (long lwp, long thread)
3993 {
3994 return ptid_t (inferior_ptid.pid (), lwp, 0);
3995 }
3996 \f
3997
3998 /* Restart the remote side; this is an extended protocol operation. */
3999
4000 void
4001 remote_target::extended_remote_restart ()
4002 {
4003 struct remote_state *rs = get_remote_state ();
4004
4005 /* Send the restart command; for reasons I don't understand the
4006 remote side really expects a number after the "R". */
4007 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4008 putpkt (rs->buf);
4009
4010 remote_fileio_reset ();
4011 }
4012 \f
4013 /* Clean up connection to a remote debugger. */
4014
4015 void
4016 remote_target::close ()
4017 {
4018 /* Make sure we leave stdin registered in the event loop. */
4019 terminal_ours ();
4020
4021 /* We don't have a connection to the remote stub anymore. Get rid
4022 of all the inferiors and their threads we were controlling.
4023 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4024 will be unable to find the thread corresponding to (pid, 0, 0). */
4025 inferior_ptid = null_ptid;
4026 discard_all_inferiors ();
4027
4028 trace_reset_local_state ();
4029
4030 delete this;
4031 }
4032
4033 remote_target::~remote_target ()
4034 {
4035 struct remote_state *rs = get_remote_state ();
4036
4037 /* Check for NULL because we may get here with a partially
4038 constructed target/connection. */
4039 if (rs->remote_desc == nullptr)
4040 return;
4041
4042 serial_close (rs->remote_desc);
4043
4044 /* We are destroying the remote target, so we should discard
4045 everything of this target. */
4046 discard_pending_stop_replies_in_queue ();
4047
4048 if (rs->remote_async_inferior_event_token)
4049 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4050
4051 remote_notif_state_xfree (rs->notif_state);
4052 }
4053
4054 /* Query the remote side for the text, data and bss offsets. */
4055
4056 void
4057 remote_target::get_offsets ()
4058 {
4059 struct remote_state *rs = get_remote_state ();
4060 char *buf;
4061 char *ptr;
4062 int lose, num_segments = 0, do_sections, do_segments;
4063 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4064 struct section_offsets *offs;
4065 struct symfile_segment_data *data;
4066
4067 if (symfile_objfile == NULL)
4068 return;
4069
4070 putpkt ("qOffsets");
4071 getpkt (&rs->buf, 0);
4072 buf = rs->buf.data ();
4073
4074 if (buf[0] == '\000')
4075 return; /* Return silently. Stub doesn't support
4076 this command. */
4077 if (buf[0] == 'E')
4078 {
4079 warning (_("Remote failure reply: %s"), buf);
4080 return;
4081 }
4082
4083 /* Pick up each field in turn. This used to be done with scanf, but
4084 scanf will make trouble if CORE_ADDR size doesn't match
4085 conversion directives correctly. The following code will work
4086 with any size of CORE_ADDR. */
4087 text_addr = data_addr = bss_addr = 0;
4088 ptr = buf;
4089 lose = 0;
4090
4091 if (startswith (ptr, "Text="))
4092 {
4093 ptr += 5;
4094 /* Don't use strtol, could lose on big values. */
4095 while (*ptr && *ptr != ';')
4096 text_addr = (text_addr << 4) + fromhex (*ptr++);
4097
4098 if (startswith (ptr, ";Data="))
4099 {
4100 ptr += 6;
4101 while (*ptr && *ptr != ';')
4102 data_addr = (data_addr << 4) + fromhex (*ptr++);
4103 }
4104 else
4105 lose = 1;
4106
4107 if (!lose && startswith (ptr, ";Bss="))
4108 {
4109 ptr += 5;
4110 while (*ptr && *ptr != ';')
4111 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4112
4113 if (bss_addr != data_addr)
4114 warning (_("Target reported unsupported offsets: %s"), buf);
4115 }
4116 else
4117 lose = 1;
4118 }
4119 else if (startswith (ptr, "TextSeg="))
4120 {
4121 ptr += 8;
4122 /* Don't use strtol, could lose on big values. */
4123 while (*ptr && *ptr != ';')
4124 text_addr = (text_addr << 4) + fromhex (*ptr++);
4125 num_segments = 1;
4126
4127 if (startswith (ptr, ";DataSeg="))
4128 {
4129 ptr += 9;
4130 while (*ptr && *ptr != ';')
4131 data_addr = (data_addr << 4) + fromhex (*ptr++);
4132 num_segments++;
4133 }
4134 }
4135 else
4136 lose = 1;
4137
4138 if (lose)
4139 error (_("Malformed response to offset query, %s"), buf);
4140 else if (*ptr != '\0')
4141 warning (_("Target reported unsupported offsets: %s"), buf);
4142
4143 offs = ((struct section_offsets *)
4144 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4145 memcpy (offs, symfile_objfile->section_offsets,
4146 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4147
4148 data = get_symfile_segment_data (symfile_objfile->obfd);
4149 do_segments = (data != NULL);
4150 do_sections = num_segments == 0;
4151
4152 if (num_segments > 0)
4153 {
4154 segments[0] = text_addr;
4155 segments[1] = data_addr;
4156 }
4157 /* If we have two segments, we can still try to relocate everything
4158 by assuming that the .text and .data offsets apply to the whole
4159 text and data segments. Convert the offsets given in the packet
4160 to base addresses for symfile_map_offsets_to_segments. */
4161 else if (data && data->num_segments == 2)
4162 {
4163 segments[0] = data->segment_bases[0] + text_addr;
4164 segments[1] = data->segment_bases[1] + data_addr;
4165 num_segments = 2;
4166 }
4167 /* If the object file has only one segment, assume that it is text
4168 rather than data; main programs with no writable data are rare,
4169 but programs with no code are useless. Of course the code might
4170 have ended up in the data segment... to detect that we would need
4171 the permissions here. */
4172 else if (data && data->num_segments == 1)
4173 {
4174 segments[0] = data->segment_bases[0] + text_addr;
4175 num_segments = 1;
4176 }
4177 /* There's no way to relocate by segment. */
4178 else
4179 do_segments = 0;
4180
4181 if (do_segments)
4182 {
4183 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4184 offs, num_segments, segments);
4185
4186 if (ret == 0 && !do_sections)
4187 error (_("Can not handle qOffsets TextSeg "
4188 "response with this symbol file"));
4189
4190 if (ret > 0)
4191 do_sections = 0;
4192 }
4193
4194 if (data)
4195 free_symfile_segment_data (data);
4196
4197 if (do_sections)
4198 {
4199 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4200
4201 /* This is a temporary kludge to force data and bss to use the
4202 same offsets because that's what nlmconv does now. The real
4203 solution requires changes to the stub and remote.c that I
4204 don't have time to do right now. */
4205
4206 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4207 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4208 }
4209
4210 objfile_relocate (symfile_objfile, offs);
4211 }
4212
4213 /* Send interrupt_sequence to remote target. */
4214
4215 void
4216 remote_target::send_interrupt_sequence ()
4217 {
4218 struct remote_state *rs = get_remote_state ();
4219
4220 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4221 remote_serial_write ("\x03", 1);
4222 else if (interrupt_sequence_mode == interrupt_sequence_break)
4223 serial_send_break (rs->remote_desc);
4224 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4225 {
4226 serial_send_break (rs->remote_desc);
4227 remote_serial_write ("g", 1);
4228 }
4229 else
4230 internal_error (__FILE__, __LINE__,
4231 _("Invalid value for interrupt_sequence_mode: %s."),
4232 interrupt_sequence_mode);
4233 }
4234
4235
4236 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4237 and extract the PTID. Returns NULL_PTID if not found. */
4238
4239 static ptid_t
4240 stop_reply_extract_thread (char *stop_reply)
4241 {
4242 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4243 {
4244 const char *p;
4245
4246 /* Txx r:val ; r:val (...) */
4247 p = &stop_reply[3];
4248
4249 /* Look for "register" named "thread". */
4250 while (*p != '\0')
4251 {
4252 const char *p1;
4253
4254 p1 = strchr (p, ':');
4255 if (p1 == NULL)
4256 return null_ptid;
4257
4258 if (strncmp (p, "thread", p1 - p) == 0)
4259 return read_ptid (++p1, &p);
4260
4261 p1 = strchr (p, ';');
4262 if (p1 == NULL)
4263 return null_ptid;
4264 p1++;
4265
4266 p = p1;
4267 }
4268 }
4269
4270 return null_ptid;
4271 }
4272
4273 /* Determine the remote side's current thread. If we have a stop
4274 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4275 "thread" register we can extract the current thread from. If not,
4276 ask the remote which is the current thread with qC. The former
4277 method avoids a roundtrip. */
4278
4279 ptid_t
4280 remote_target::get_current_thread (char *wait_status)
4281 {
4282 ptid_t ptid = null_ptid;
4283
4284 /* Note we don't use remote_parse_stop_reply as that makes use of
4285 the target architecture, which we haven't yet fully determined at
4286 this point. */
4287 if (wait_status != NULL)
4288 ptid = stop_reply_extract_thread (wait_status);
4289 if (ptid == null_ptid)
4290 ptid = remote_current_thread (inferior_ptid);
4291
4292 return ptid;
4293 }
4294
4295 /* Query the remote target for which is the current thread/process,
4296 add it to our tables, and update INFERIOR_PTID. The caller is
4297 responsible for setting the state such that the remote end is ready
4298 to return the current thread.
4299
4300 This function is called after handling the '?' or 'vRun' packets,
4301 whose response is a stop reply from which we can also try
4302 extracting the thread. If the target doesn't support the explicit
4303 qC query, we infer the current thread from that stop reply, passed
4304 in in WAIT_STATUS, which may be NULL. */
4305
4306 void
4307 remote_target::add_current_inferior_and_thread (char *wait_status)
4308 {
4309 struct remote_state *rs = get_remote_state ();
4310 int fake_pid_p = 0;
4311
4312 inferior_ptid = null_ptid;
4313
4314 /* Now, if we have thread information, update inferior_ptid. */
4315 ptid_t curr_ptid = get_current_thread (wait_status);
4316
4317 if (curr_ptid != null_ptid)
4318 {
4319 if (!remote_multi_process_p (rs))
4320 fake_pid_p = 1;
4321 }
4322 else
4323 {
4324 /* Without this, some commands which require an active target
4325 (such as kill) won't work. This variable serves (at least)
4326 double duty as both the pid of the target process (if it has
4327 such), and as a flag indicating that a target is active. */
4328 curr_ptid = magic_null_ptid;
4329 fake_pid_p = 1;
4330 }
4331
4332 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4333
4334 /* Add the main thread and switch to it. Don't try reading
4335 registers yet, since we haven't fetched the target description
4336 yet. */
4337 thread_info *tp = add_thread_silent (curr_ptid);
4338 switch_to_thread_no_regs (tp);
4339 }
4340
4341 /* Print info about a thread that was found already stopped on
4342 connection. */
4343
4344 static void
4345 print_one_stopped_thread (struct thread_info *thread)
4346 {
4347 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4348
4349 switch_to_thread (thread);
4350 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4351 set_current_sal_from_frame (get_current_frame ());
4352
4353 thread->suspend.waitstatus_pending_p = 0;
4354
4355 if (ws->kind == TARGET_WAITKIND_STOPPED)
4356 {
4357 enum gdb_signal sig = ws->value.sig;
4358
4359 if (signal_print_state (sig))
4360 gdb::observers::signal_received.notify (sig);
4361 }
4362 gdb::observers::normal_stop.notify (NULL, 1);
4363 }
4364
4365 /* Process all initial stop replies the remote side sent in response
4366 to the ? packet. These indicate threads that were already stopped
4367 on initial connection. We mark these threads as stopped and print
4368 their current frame before giving the user the prompt. */
4369
4370 void
4371 remote_target::process_initial_stop_replies (int from_tty)
4372 {
4373 int pending_stop_replies = stop_reply_queue_length ();
4374 struct thread_info *selected = NULL;
4375 struct thread_info *lowest_stopped = NULL;
4376 struct thread_info *first = NULL;
4377
4378 /* Consume the initial pending events. */
4379 while (pending_stop_replies-- > 0)
4380 {
4381 ptid_t waiton_ptid = minus_one_ptid;
4382 ptid_t event_ptid;
4383 struct target_waitstatus ws;
4384 int ignore_event = 0;
4385
4386 memset (&ws, 0, sizeof (ws));
4387 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4388 if (remote_debug)
4389 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4390
4391 switch (ws.kind)
4392 {
4393 case TARGET_WAITKIND_IGNORE:
4394 case TARGET_WAITKIND_NO_RESUMED:
4395 case TARGET_WAITKIND_SIGNALLED:
4396 case TARGET_WAITKIND_EXITED:
4397 /* We shouldn't see these, but if we do, just ignore. */
4398 if (remote_debug)
4399 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4400 ignore_event = 1;
4401 break;
4402
4403 case TARGET_WAITKIND_EXECD:
4404 xfree (ws.value.execd_pathname);
4405 break;
4406 default:
4407 break;
4408 }
4409
4410 if (ignore_event)
4411 continue;
4412
4413 struct thread_info *evthread = find_thread_ptid (event_ptid);
4414
4415 if (ws.kind == TARGET_WAITKIND_STOPPED)
4416 {
4417 enum gdb_signal sig = ws.value.sig;
4418
4419 /* Stubs traditionally report SIGTRAP as initial signal,
4420 instead of signal 0. Suppress it. */
4421 if (sig == GDB_SIGNAL_TRAP)
4422 sig = GDB_SIGNAL_0;
4423 evthread->suspend.stop_signal = sig;
4424 ws.value.sig = sig;
4425 }
4426
4427 evthread->suspend.waitstatus = ws;
4428
4429 if (ws.kind != TARGET_WAITKIND_STOPPED
4430 || ws.value.sig != GDB_SIGNAL_0)
4431 evthread->suspend.waitstatus_pending_p = 1;
4432
4433 set_executing (event_ptid, 0);
4434 set_running (event_ptid, 0);
4435 get_remote_thread_info (evthread)->vcont_resumed = 0;
4436 }
4437
4438 /* "Notice" the new inferiors before anything related to
4439 registers/memory. */
4440 for (inferior *inf : all_non_exited_inferiors ())
4441 {
4442 inf->needs_setup = 1;
4443
4444 if (non_stop)
4445 {
4446 thread_info *thread = any_live_thread_of_inferior (inf);
4447 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4448 from_tty);
4449 }
4450 }
4451
4452 /* If all-stop on top of non-stop, pause all threads. Note this
4453 records the threads' stop pc, so must be done after "noticing"
4454 the inferiors. */
4455 if (!non_stop)
4456 {
4457 stop_all_threads ();
4458
4459 /* If all threads of an inferior were already stopped, we
4460 haven't setup the inferior yet. */
4461 for (inferior *inf : all_non_exited_inferiors ())
4462 {
4463 if (inf->needs_setup)
4464 {
4465 thread_info *thread = any_live_thread_of_inferior (inf);
4466 switch_to_thread_no_regs (thread);
4467 setup_inferior (0);
4468 }
4469 }
4470 }
4471
4472 /* Now go over all threads that are stopped, and print their current
4473 frame. If all-stop, then if there's a signalled thread, pick
4474 that as current. */
4475 for (thread_info *thread : all_non_exited_threads ())
4476 {
4477 if (first == NULL)
4478 first = thread;
4479
4480 if (!non_stop)
4481 thread->set_running (false);
4482 else if (thread->state != THREAD_STOPPED)
4483 continue;
4484
4485 if (selected == NULL
4486 && thread->suspend.waitstatus_pending_p)
4487 selected = thread;
4488
4489 if (lowest_stopped == NULL
4490 || thread->inf->num < lowest_stopped->inf->num
4491 || thread->per_inf_num < lowest_stopped->per_inf_num)
4492 lowest_stopped = thread;
4493
4494 if (non_stop)
4495 print_one_stopped_thread (thread);
4496 }
4497
4498 /* In all-stop, we only print the status of one thread, and leave
4499 others with their status pending. */
4500 if (!non_stop)
4501 {
4502 thread_info *thread = selected;
4503 if (thread == NULL)
4504 thread = lowest_stopped;
4505 if (thread == NULL)
4506 thread = first;
4507
4508 print_one_stopped_thread (thread);
4509 }
4510
4511 /* For "info program". */
4512 thread_info *thread = inferior_thread ();
4513 if (thread->state == THREAD_STOPPED)
4514 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4515 }
4516
4517 /* Start the remote connection and sync state. */
4518
4519 void
4520 remote_target::start_remote (int from_tty, int extended_p)
4521 {
4522 struct remote_state *rs = get_remote_state ();
4523 struct packet_config *noack_config;
4524 char *wait_status = NULL;
4525
4526 /* Signal other parts that we're going through the initial setup,
4527 and so things may not be stable yet. E.g., we don't try to
4528 install tracepoints until we've relocated symbols. Also, a
4529 Ctrl-C before we're connected and synced up can't interrupt the
4530 target. Instead, it offers to drop the (potentially wedged)
4531 connection. */
4532 rs->starting_up = 1;
4533
4534 QUIT;
4535
4536 if (interrupt_on_connect)
4537 send_interrupt_sequence ();
4538
4539 /* Ack any packet which the remote side has already sent. */
4540 remote_serial_write ("+", 1);
4541
4542 /* The first packet we send to the target is the optional "supported
4543 packets" request. If the target can answer this, it will tell us
4544 which later probes to skip. */
4545 remote_query_supported ();
4546
4547 /* If the stub wants to get a QAllow, compose one and send it. */
4548 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4549 set_permissions ();
4550
4551 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4552 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4553 as a reply to known packet. For packet "vFile:setfs:" it is an
4554 invalid reply and GDB would return error in
4555 remote_hostio_set_filesystem, making remote files access impossible.
4556 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4557 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4558 {
4559 const char v_mustreplyempty[] = "vMustReplyEmpty";
4560
4561 putpkt (v_mustreplyempty);
4562 getpkt (&rs->buf, 0);
4563 if (strcmp (rs->buf.data (), "OK") == 0)
4564 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4565 else if (strcmp (rs->buf.data (), "") != 0)
4566 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4567 rs->buf.data ());
4568 }
4569
4570 /* Next, we possibly activate noack mode.
4571
4572 If the QStartNoAckMode packet configuration is set to AUTO,
4573 enable noack mode if the stub reported a wish for it with
4574 qSupported.
4575
4576 If set to TRUE, then enable noack mode even if the stub didn't
4577 report it in qSupported. If the stub doesn't reply OK, the
4578 session ends with an error.
4579
4580 If FALSE, then don't activate noack mode, regardless of what the
4581 stub claimed should be the default with qSupported. */
4582
4583 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4584 if (packet_config_support (noack_config) != PACKET_DISABLE)
4585 {
4586 putpkt ("QStartNoAckMode");
4587 getpkt (&rs->buf, 0);
4588 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4589 rs->noack_mode = 1;
4590 }
4591
4592 if (extended_p)
4593 {
4594 /* Tell the remote that we are using the extended protocol. */
4595 putpkt ("!");
4596 getpkt (&rs->buf, 0);
4597 }
4598
4599 /* Let the target know which signals it is allowed to pass down to
4600 the program. */
4601 update_signals_program_target ();
4602
4603 /* Next, if the target can specify a description, read it. We do
4604 this before anything involving memory or registers. */
4605 target_find_description ();
4606
4607 /* Next, now that we know something about the target, update the
4608 address spaces in the program spaces. */
4609 update_address_spaces ();
4610
4611 /* On OSs where the list of libraries is global to all
4612 processes, we fetch them early. */
4613 if (gdbarch_has_global_solist (target_gdbarch ()))
4614 solib_add (NULL, from_tty, auto_solib_add);
4615
4616 if (target_is_non_stop_p ())
4617 {
4618 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4619 error (_("Non-stop mode requested, but remote "
4620 "does not support non-stop"));
4621
4622 putpkt ("QNonStop:1");
4623 getpkt (&rs->buf, 0);
4624
4625 if (strcmp (rs->buf.data (), "OK") != 0)
4626 error (_("Remote refused setting non-stop mode with: %s"),
4627 rs->buf.data ());
4628
4629 /* Find about threads and processes the stub is already
4630 controlling. We default to adding them in the running state.
4631 The '?' query below will then tell us about which threads are
4632 stopped. */
4633 this->update_thread_list ();
4634 }
4635 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4636 {
4637 /* Don't assume that the stub can operate in all-stop mode.
4638 Request it explicitly. */
4639 putpkt ("QNonStop:0");
4640 getpkt (&rs->buf, 0);
4641
4642 if (strcmp (rs->buf.data (), "OK") != 0)
4643 error (_("Remote refused setting all-stop mode with: %s"),
4644 rs->buf.data ());
4645 }
4646
4647 /* Upload TSVs regardless of whether the target is running or not. The
4648 remote stub, such as GDBserver, may have some predefined or builtin
4649 TSVs, even if the target is not running. */
4650 if (get_trace_status (current_trace_status ()) != -1)
4651 {
4652 struct uploaded_tsv *uploaded_tsvs = NULL;
4653
4654 upload_trace_state_variables (&uploaded_tsvs);
4655 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4656 }
4657
4658 /* Check whether the target is running now. */
4659 putpkt ("?");
4660 getpkt (&rs->buf, 0);
4661
4662 if (!target_is_non_stop_p ())
4663 {
4664 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4665 {
4666 if (!extended_p)
4667 error (_("The target is not running (try extended-remote?)"));
4668
4669 /* We're connected, but not running. Drop out before we
4670 call start_remote. */
4671 rs->starting_up = 0;
4672 return;
4673 }
4674 else
4675 {
4676 /* Save the reply for later. */
4677 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4678 strcpy (wait_status, rs->buf.data ());
4679 }
4680
4681 /* Fetch thread list. */
4682 target_update_thread_list ();
4683
4684 /* Let the stub know that we want it to return the thread. */
4685 set_continue_thread (minus_one_ptid);
4686
4687 if (thread_count () == 0)
4688 {
4689 /* Target has no concept of threads at all. GDB treats
4690 non-threaded target as single-threaded; add a main
4691 thread. */
4692 add_current_inferior_and_thread (wait_status);
4693 }
4694 else
4695 {
4696 /* We have thread information; select the thread the target
4697 says should be current. If we're reconnecting to a
4698 multi-threaded program, this will ideally be the thread
4699 that last reported an event before GDB disconnected. */
4700 inferior_ptid = get_current_thread (wait_status);
4701 if (inferior_ptid == null_ptid)
4702 {
4703 /* Odd... The target was able to list threads, but not
4704 tell us which thread was current (no "thread"
4705 register in T stop reply?). Just pick the first
4706 thread in the thread list then. */
4707
4708 if (remote_debug)
4709 fprintf_unfiltered (gdb_stdlog,
4710 "warning: couldn't determine remote "
4711 "current thread; picking first in list.\n");
4712
4713 inferior_ptid = inferior_list->thread_list->ptid;
4714 }
4715 }
4716
4717 /* init_wait_for_inferior should be called before get_offsets in order
4718 to manage `inserted' flag in bp loc in a correct state.
4719 breakpoint_init_inferior, called from init_wait_for_inferior, set
4720 `inserted' flag to 0, while before breakpoint_re_set, called from
4721 start_remote, set `inserted' flag to 1. In the initialization of
4722 inferior, breakpoint_init_inferior should be called first, and then
4723 breakpoint_re_set can be called. If this order is broken, state of
4724 `inserted' flag is wrong, and cause some problems on breakpoint
4725 manipulation. */
4726 init_wait_for_inferior ();
4727
4728 get_offsets (); /* Get text, data & bss offsets. */
4729
4730 /* If we could not find a description using qXfer, and we know
4731 how to do it some other way, try again. This is not
4732 supported for non-stop; it could be, but it is tricky if
4733 there are no stopped threads when we connect. */
4734 if (remote_read_description_p (this)
4735 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4736 {
4737 target_clear_description ();
4738 target_find_description ();
4739 }
4740
4741 /* Use the previously fetched status. */
4742 gdb_assert (wait_status != NULL);
4743 strcpy (rs->buf.data (), wait_status);
4744 rs->cached_wait_status = 1;
4745
4746 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4747 }
4748 else
4749 {
4750 /* Clear WFI global state. Do this before finding about new
4751 threads and inferiors, and setting the current inferior.
4752 Otherwise we would clear the proceed status of the current
4753 inferior when we want its stop_soon state to be preserved
4754 (see notice_new_inferior). */
4755 init_wait_for_inferior ();
4756
4757 /* In non-stop, we will either get an "OK", meaning that there
4758 are no stopped threads at this time; or, a regular stop
4759 reply. In the latter case, there may be more than one thread
4760 stopped --- we pull them all out using the vStopped
4761 mechanism. */
4762 if (strcmp (rs->buf.data (), "OK") != 0)
4763 {
4764 struct notif_client *notif = &notif_client_stop;
4765
4766 /* remote_notif_get_pending_replies acks this one, and gets
4767 the rest out. */
4768 rs->notif_state->pending_event[notif_client_stop.id]
4769 = remote_notif_parse (this, notif, rs->buf.data ());
4770 remote_notif_get_pending_events (notif);
4771 }
4772
4773 if (thread_count () == 0)
4774 {
4775 if (!extended_p)
4776 error (_("The target is not running (try extended-remote?)"));
4777
4778 /* We're connected, but not running. Drop out before we
4779 call start_remote. */
4780 rs->starting_up = 0;
4781 return;
4782 }
4783
4784 /* In non-stop mode, any cached wait status will be stored in
4785 the stop reply queue. */
4786 gdb_assert (wait_status == NULL);
4787
4788 /* Report all signals during attach/startup. */
4789 pass_signals ({});
4790
4791 /* If there are already stopped threads, mark them stopped and
4792 report their stops before giving the prompt to the user. */
4793 process_initial_stop_replies (from_tty);
4794
4795 if (target_can_async_p ())
4796 target_async (1);
4797 }
4798
4799 /* If we connected to a live target, do some additional setup. */
4800 if (target_has_execution)
4801 {
4802 if (symfile_objfile) /* No use without a symbol-file. */
4803 remote_check_symbols ();
4804 }
4805
4806 /* Possibly the target has been engaged in a trace run started
4807 previously; find out where things are at. */
4808 if (get_trace_status (current_trace_status ()) != -1)
4809 {
4810 struct uploaded_tp *uploaded_tps = NULL;
4811
4812 if (current_trace_status ()->running)
4813 printf_filtered (_("Trace is already running on the target.\n"));
4814
4815 upload_tracepoints (&uploaded_tps);
4816
4817 merge_uploaded_tracepoints (&uploaded_tps);
4818 }
4819
4820 /* Possibly the target has been engaged in a btrace record started
4821 previously; find out where things are at. */
4822 remote_btrace_maybe_reopen ();
4823
4824 /* The thread and inferior lists are now synchronized with the
4825 target, our symbols have been relocated, and we're merged the
4826 target's tracepoints with ours. We're done with basic start
4827 up. */
4828 rs->starting_up = 0;
4829
4830 /* Maybe breakpoints are global and need to be inserted now. */
4831 if (breakpoints_should_be_inserted_now ())
4832 insert_breakpoints ();
4833 }
4834
4835 /* Open a connection to a remote debugger.
4836 NAME is the filename used for communication. */
4837
4838 void
4839 remote_target::open (const char *name, int from_tty)
4840 {
4841 open_1 (name, from_tty, 0);
4842 }
4843
4844 /* Open a connection to a remote debugger using the extended
4845 remote gdb protocol. NAME is the filename used for communication. */
4846
4847 void
4848 extended_remote_target::open (const char *name, int from_tty)
4849 {
4850 open_1 (name, from_tty, 1 /*extended_p */);
4851 }
4852
4853 /* Reset all packets back to "unknown support". Called when opening a
4854 new connection to a remote target. */
4855
4856 static void
4857 reset_all_packet_configs_support (void)
4858 {
4859 int i;
4860
4861 for (i = 0; i < PACKET_MAX; i++)
4862 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4863 }
4864
4865 /* Initialize all packet configs. */
4866
4867 static void
4868 init_all_packet_configs (void)
4869 {
4870 int i;
4871
4872 for (i = 0; i < PACKET_MAX; i++)
4873 {
4874 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4875 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4876 }
4877 }
4878
4879 /* Symbol look-up. */
4880
4881 void
4882 remote_target::remote_check_symbols ()
4883 {
4884 char *tmp;
4885 int end;
4886
4887 /* The remote side has no concept of inferiors that aren't running
4888 yet, it only knows about running processes. If we're connected
4889 but our current inferior is not running, we should not invite the
4890 remote target to request symbol lookups related to its
4891 (unrelated) current process. */
4892 if (!target_has_execution)
4893 return;
4894
4895 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4896 return;
4897
4898 /* Make sure the remote is pointing at the right process. Note
4899 there's no way to select "no process". */
4900 set_general_process ();
4901
4902 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4903 because we need both at the same time. */
4904 gdb::char_vector msg (get_remote_packet_size ());
4905 gdb::char_vector reply (get_remote_packet_size ());
4906
4907 /* Invite target to request symbol lookups. */
4908
4909 putpkt ("qSymbol::");
4910 getpkt (&reply, 0);
4911 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4912
4913 while (startswith (reply.data (), "qSymbol:"))
4914 {
4915 struct bound_minimal_symbol sym;
4916
4917 tmp = &reply[8];
4918 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4919 strlen (tmp) / 2);
4920 msg[end] = '\0';
4921 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4922 if (sym.minsym == NULL)
4923 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4924 &reply[8]);
4925 else
4926 {
4927 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4928 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4929
4930 /* If this is a function address, return the start of code
4931 instead of any data function descriptor. */
4932 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4933 sym_addr,
4934 current_top_target ());
4935
4936 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4937 phex_nz (sym_addr, addr_size), &reply[8]);
4938 }
4939
4940 putpkt (msg.data ());
4941 getpkt (&reply, 0);
4942 }
4943 }
4944
4945 static struct serial *
4946 remote_serial_open (const char *name)
4947 {
4948 static int udp_warning = 0;
4949
4950 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4951 of in ser-tcp.c, because it is the remote protocol assuming that the
4952 serial connection is reliable and not the serial connection promising
4953 to be. */
4954 if (!udp_warning && startswith (name, "udp:"))
4955 {
4956 warning (_("The remote protocol may be unreliable over UDP.\n"
4957 "Some events may be lost, rendering further debugging "
4958 "impossible."));
4959 udp_warning = 1;
4960 }
4961
4962 return serial_open (name);
4963 }
4964
4965 /* Inform the target of our permission settings. The permission flags
4966 work without this, but if the target knows the settings, it can do
4967 a couple things. First, it can add its own check, to catch cases
4968 that somehow manage to get by the permissions checks in target
4969 methods. Second, if the target is wired to disallow particular
4970 settings (for instance, a system in the field that is not set up to
4971 be able to stop at a breakpoint), it can object to any unavailable
4972 permissions. */
4973
4974 void
4975 remote_target::set_permissions ()
4976 {
4977 struct remote_state *rs = get_remote_state ();
4978
4979 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4980 "WriteReg:%x;WriteMem:%x;"
4981 "InsertBreak:%x;InsertTrace:%x;"
4982 "InsertFastTrace:%x;Stop:%x",
4983 may_write_registers, may_write_memory,
4984 may_insert_breakpoints, may_insert_tracepoints,
4985 may_insert_fast_tracepoints, may_stop);
4986 putpkt (rs->buf);
4987 getpkt (&rs->buf, 0);
4988
4989 /* If the target didn't like the packet, warn the user. Do not try
4990 to undo the user's settings, that would just be maddening. */
4991 if (strcmp (rs->buf.data (), "OK") != 0)
4992 warning (_("Remote refused setting permissions with: %s"),
4993 rs->buf.data ());
4994 }
4995
4996 /* This type describes each known response to the qSupported
4997 packet. */
4998 struct protocol_feature
4999 {
5000 /* The name of this protocol feature. */
5001 const char *name;
5002
5003 /* The default for this protocol feature. */
5004 enum packet_support default_support;
5005
5006 /* The function to call when this feature is reported, or after
5007 qSupported processing if the feature is not supported.
5008 The first argument points to this structure. The second
5009 argument indicates whether the packet requested support be
5010 enabled, disabled, or probed (or the default, if this function
5011 is being called at the end of processing and this feature was
5012 not reported). The third argument may be NULL; if not NULL, it
5013 is a NUL-terminated string taken from the packet following
5014 this feature's name and an equals sign. */
5015 void (*func) (remote_target *remote, const struct protocol_feature *,
5016 enum packet_support, const char *);
5017
5018 /* The corresponding packet for this feature. Only used if
5019 FUNC is remote_supported_packet. */
5020 int packet;
5021 };
5022
5023 static void
5024 remote_supported_packet (remote_target *remote,
5025 const struct protocol_feature *feature,
5026 enum packet_support support,
5027 const char *argument)
5028 {
5029 if (argument)
5030 {
5031 warning (_("Remote qSupported response supplied an unexpected value for"
5032 " \"%s\"."), feature->name);
5033 return;
5034 }
5035
5036 remote_protocol_packets[feature->packet].support = support;
5037 }
5038
5039 void
5040 remote_target::remote_packet_size (const protocol_feature *feature,
5041 enum packet_support support, const char *value)
5042 {
5043 struct remote_state *rs = get_remote_state ();
5044
5045 int packet_size;
5046 char *value_end;
5047
5048 if (support != PACKET_ENABLE)
5049 return;
5050
5051 if (value == NULL || *value == '\0')
5052 {
5053 warning (_("Remote target reported \"%s\" without a size."),
5054 feature->name);
5055 return;
5056 }
5057
5058 errno = 0;
5059 packet_size = strtol (value, &value_end, 16);
5060 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5061 {
5062 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5063 feature->name, value);
5064 return;
5065 }
5066
5067 /* Record the new maximum packet size. */
5068 rs->explicit_packet_size = packet_size;
5069 }
5070
5071 void
5072 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5073 enum packet_support support, const char *value)
5074 {
5075 remote->remote_packet_size (feature, support, value);
5076 }
5077
5078 static const struct protocol_feature remote_protocol_features[] = {
5079 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5080 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_auxv },
5082 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_exec_file },
5084 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_features },
5086 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_libraries },
5088 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_libraries_svr4 },
5090 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5091 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5092 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_memory_map },
5094 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_spu_read },
5096 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_spu_write },
5098 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_osdata },
5100 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_threads },
5102 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_traceframe_info },
5104 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QPassSignals },
5106 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QCatchSyscalls },
5108 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QProgramSignals },
5110 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QSetWorkingDir },
5112 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QStartupWithShell },
5114 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QEnvironmentHexEncoded },
5116 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QEnvironmentReset },
5118 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QEnvironmentUnset },
5120 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QStartNoAckMode },
5122 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_multiprocess_feature },
5124 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5125 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_siginfo_read },
5127 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_siginfo_write },
5129 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_ConditionalTracepoints },
5131 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_ConditionalBreakpoints },
5133 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_BreakpointCommands },
5135 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_FastTracepoints },
5137 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_StaticTracepoints },
5139 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_InstallInTrace},
5141 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_DisconnectedTracing_feature },
5143 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_bc },
5145 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_bs },
5147 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_TracepointSource },
5149 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QAllow },
5151 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_EnableDisableTracepoints_feature },
5153 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_fdpic },
5155 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_uib },
5157 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_QDisableRandomization },
5159 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5160 { "QTBuffer:size", PACKET_DISABLE,
5161 remote_supported_packet, PACKET_QTBuffer_size},
5162 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5163 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5164 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5165 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5166 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_qXfer_btrace },
5168 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_qXfer_btrace_conf },
5170 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_Qbtrace_conf_bts_size },
5172 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5173 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5174 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_fork_event_feature },
5176 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_vfork_event_feature },
5178 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_exec_event_feature },
5180 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_pt_size },
5182 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5183 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5184 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5185 };
5186
5187 static char *remote_support_xml;
5188
5189 /* Register string appended to "xmlRegisters=" in qSupported query. */
5190
5191 void
5192 register_remote_support_xml (const char *xml)
5193 {
5194 #if defined(HAVE_LIBEXPAT)
5195 if (remote_support_xml == NULL)
5196 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5197 else
5198 {
5199 char *copy = xstrdup (remote_support_xml + 13);
5200 char *p = strtok (copy, ",");
5201
5202 do
5203 {
5204 if (strcmp (p, xml) == 0)
5205 {
5206 /* already there */
5207 xfree (copy);
5208 return;
5209 }
5210 }
5211 while ((p = strtok (NULL, ",")) != NULL);
5212 xfree (copy);
5213
5214 remote_support_xml = reconcat (remote_support_xml,
5215 remote_support_xml, ",", xml,
5216 (char *) NULL);
5217 }
5218 #endif
5219 }
5220
5221 static void
5222 remote_query_supported_append (std::string *msg, const char *append)
5223 {
5224 if (!msg->empty ())
5225 msg->append (";");
5226 msg->append (append);
5227 }
5228
5229 void
5230 remote_target::remote_query_supported ()
5231 {
5232 struct remote_state *rs = get_remote_state ();
5233 char *next;
5234 int i;
5235 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5236
5237 /* The packet support flags are handled differently for this packet
5238 than for most others. We treat an error, a disabled packet, and
5239 an empty response identically: any features which must be reported
5240 to be used will be automatically disabled. An empty buffer
5241 accomplishes this, since that is also the representation for a list
5242 containing no features. */
5243
5244 rs->buf[0] = 0;
5245 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5246 {
5247 std::string q;
5248
5249 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5250 remote_query_supported_append (&q, "multiprocess+");
5251
5252 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5253 remote_query_supported_append (&q, "swbreak+");
5254 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5255 remote_query_supported_append (&q, "hwbreak+");
5256
5257 remote_query_supported_append (&q, "qRelocInsn+");
5258
5259 if (packet_set_cmd_state (PACKET_fork_event_feature)
5260 != AUTO_BOOLEAN_FALSE)
5261 remote_query_supported_append (&q, "fork-events+");
5262 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5263 != AUTO_BOOLEAN_FALSE)
5264 remote_query_supported_append (&q, "vfork-events+");
5265 if (packet_set_cmd_state (PACKET_exec_event_feature)
5266 != AUTO_BOOLEAN_FALSE)
5267 remote_query_supported_append (&q, "exec-events+");
5268
5269 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5270 remote_query_supported_append (&q, "vContSupported+");
5271
5272 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5273 remote_query_supported_append (&q, "QThreadEvents+");
5274
5275 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5276 remote_query_supported_append (&q, "no-resumed+");
5277
5278 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5279 the qSupported:xmlRegisters=i386 handling. */
5280 if (remote_support_xml != NULL
5281 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5282 remote_query_supported_append (&q, remote_support_xml);
5283
5284 q = "qSupported:" + q;
5285 putpkt (q.c_str ());
5286
5287 getpkt (&rs->buf, 0);
5288
5289 /* If an error occured, warn, but do not return - just reset the
5290 buffer to empty and go on to disable features. */
5291 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5292 == PACKET_ERROR)
5293 {
5294 warning (_("Remote failure reply: %s"), rs->buf.data ());
5295 rs->buf[0] = 0;
5296 }
5297 }
5298
5299 memset (seen, 0, sizeof (seen));
5300
5301 next = rs->buf.data ();
5302 while (*next)
5303 {
5304 enum packet_support is_supported;
5305 char *p, *end, *name_end, *value;
5306
5307 /* First separate out this item from the rest of the packet. If
5308 there's another item after this, we overwrite the separator
5309 (terminated strings are much easier to work with). */
5310 p = next;
5311 end = strchr (p, ';');
5312 if (end == NULL)
5313 {
5314 end = p + strlen (p);
5315 next = end;
5316 }
5317 else
5318 {
5319 *end = '\0';
5320 next = end + 1;
5321
5322 if (end == p)
5323 {
5324 warning (_("empty item in \"qSupported\" response"));
5325 continue;
5326 }
5327 }
5328
5329 name_end = strchr (p, '=');
5330 if (name_end)
5331 {
5332 /* This is a name=value entry. */
5333 is_supported = PACKET_ENABLE;
5334 value = name_end + 1;
5335 *name_end = '\0';
5336 }
5337 else
5338 {
5339 value = NULL;
5340 switch (end[-1])
5341 {
5342 case '+':
5343 is_supported = PACKET_ENABLE;
5344 break;
5345
5346 case '-':
5347 is_supported = PACKET_DISABLE;
5348 break;
5349
5350 case '?':
5351 is_supported = PACKET_SUPPORT_UNKNOWN;
5352 break;
5353
5354 default:
5355 warning (_("unrecognized item \"%s\" "
5356 "in \"qSupported\" response"), p);
5357 continue;
5358 }
5359 end[-1] = '\0';
5360 }
5361
5362 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5363 if (strcmp (remote_protocol_features[i].name, p) == 0)
5364 {
5365 const struct protocol_feature *feature;
5366
5367 seen[i] = 1;
5368 feature = &remote_protocol_features[i];
5369 feature->func (this, feature, is_supported, value);
5370 break;
5371 }
5372 }
5373
5374 /* If we increased the packet size, make sure to increase the global
5375 buffer size also. We delay this until after parsing the entire
5376 qSupported packet, because this is the same buffer we were
5377 parsing. */
5378 if (rs->buf.size () < rs->explicit_packet_size)
5379 rs->buf.resize (rs->explicit_packet_size);
5380
5381 /* Handle the defaults for unmentioned features. */
5382 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5383 if (!seen[i])
5384 {
5385 const struct protocol_feature *feature;
5386
5387 feature = &remote_protocol_features[i];
5388 feature->func (this, feature, feature->default_support, NULL);
5389 }
5390 }
5391
5392 /* Serial QUIT handler for the remote serial descriptor.
5393
5394 Defers handling a Ctrl-C until we're done with the current
5395 command/response packet sequence, unless:
5396
5397 - We're setting up the connection. Don't send a remote interrupt
5398 request, as we're not fully synced yet. Quit immediately
5399 instead.
5400
5401 - The target has been resumed in the foreground
5402 (target_terminal::is_ours is false) with a synchronous resume
5403 packet, and we're blocked waiting for the stop reply, thus a
5404 Ctrl-C should be immediately sent to the target.
5405
5406 - We get a second Ctrl-C while still within the same serial read or
5407 write. In that case the serial is seemingly wedged --- offer to
5408 quit/disconnect.
5409
5410 - We see a second Ctrl-C without target response, after having
5411 previously interrupted the target. In that case the target/stub
5412 is probably wedged --- offer to quit/disconnect.
5413 */
5414
5415 void
5416 remote_target::remote_serial_quit_handler ()
5417 {
5418 struct remote_state *rs = get_remote_state ();
5419
5420 if (check_quit_flag ())
5421 {
5422 /* If we're starting up, we're not fully synced yet. Quit
5423 immediately. */
5424 if (rs->starting_up)
5425 quit ();
5426 else if (rs->got_ctrlc_during_io)
5427 {
5428 if (query (_("The target is not responding to GDB commands.\n"
5429 "Stop debugging it? ")))
5430 remote_unpush_and_throw ();
5431 }
5432 /* If ^C has already been sent once, offer to disconnect. */
5433 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5434 interrupt_query ();
5435 /* All-stop protocol, and blocked waiting for stop reply. Send
5436 an interrupt request. */
5437 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5438 target_interrupt ();
5439 else
5440 rs->got_ctrlc_during_io = 1;
5441 }
5442 }
5443
5444 /* The remote_target that is current while the quit handler is
5445 overridden with remote_serial_quit_handler. */
5446 static remote_target *curr_quit_handler_target;
5447
5448 static void
5449 remote_serial_quit_handler ()
5450 {
5451 curr_quit_handler_target->remote_serial_quit_handler ();
5452 }
5453
5454 /* Remove any of the remote.c targets from target stack. Upper targets depend
5455 on it so remove them first. */
5456
5457 static void
5458 remote_unpush_target (void)
5459 {
5460 pop_all_targets_at_and_above (process_stratum);
5461 }
5462
5463 static void
5464 remote_unpush_and_throw (void)
5465 {
5466 remote_unpush_target ();
5467 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5468 }
5469
5470 void
5471 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5472 {
5473 remote_target *curr_remote = get_current_remote_target ();
5474
5475 if (name == 0)
5476 error (_("To open a remote debug connection, you need to specify what\n"
5477 "serial device is attached to the remote system\n"
5478 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5479
5480 /* If we're connected to a running target, target_preopen will kill it.
5481 Ask this question first, before target_preopen has a chance to kill
5482 anything. */
5483 if (curr_remote != NULL && !have_inferiors ())
5484 {
5485 if (from_tty
5486 && !query (_("Already connected to a remote target. Disconnect? ")))
5487 error (_("Still connected."));
5488 }
5489
5490 /* Here the possibly existing remote target gets unpushed. */
5491 target_preopen (from_tty);
5492
5493 remote_fileio_reset ();
5494 reopen_exec_file ();
5495 reread_symbols ();
5496
5497 remote_target *remote
5498 = (extended_p ? new extended_remote_target () : new remote_target ());
5499 target_ops_up target_holder (remote);
5500
5501 remote_state *rs = remote->get_remote_state ();
5502
5503 /* See FIXME above. */
5504 if (!target_async_permitted)
5505 rs->wait_forever_enabled_p = 1;
5506
5507 rs->remote_desc = remote_serial_open (name);
5508 if (!rs->remote_desc)
5509 perror_with_name (name);
5510
5511 if (baud_rate != -1)
5512 {
5513 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5514 {
5515 /* The requested speed could not be set. Error out to
5516 top level after closing remote_desc. Take care to
5517 set remote_desc to NULL to avoid closing remote_desc
5518 more than once. */
5519 serial_close (rs->remote_desc);
5520 rs->remote_desc = NULL;
5521 perror_with_name (name);
5522 }
5523 }
5524
5525 serial_setparity (rs->remote_desc, serial_parity);
5526 serial_raw (rs->remote_desc);
5527
5528 /* If there is something sitting in the buffer we might take it as a
5529 response to a command, which would be bad. */
5530 serial_flush_input (rs->remote_desc);
5531
5532 if (from_tty)
5533 {
5534 puts_filtered ("Remote debugging using ");
5535 puts_filtered (name);
5536 puts_filtered ("\n");
5537 }
5538
5539 /* Switch to using the remote target now. */
5540 push_target (std::move (target_holder));
5541
5542 /* Register extra event sources in the event loop. */
5543 rs->remote_async_inferior_event_token
5544 = create_async_event_handler (remote_async_inferior_event_handler,
5545 remote);
5546 rs->notif_state = remote_notif_state_allocate (remote);
5547
5548 /* Reset the target state; these things will be queried either by
5549 remote_query_supported or as they are needed. */
5550 reset_all_packet_configs_support ();
5551 rs->cached_wait_status = 0;
5552 rs->explicit_packet_size = 0;
5553 rs->noack_mode = 0;
5554 rs->extended = extended_p;
5555 rs->waiting_for_stop_reply = 0;
5556 rs->ctrlc_pending_p = 0;
5557 rs->got_ctrlc_during_io = 0;
5558
5559 rs->general_thread = not_sent_ptid;
5560 rs->continue_thread = not_sent_ptid;
5561 rs->remote_traceframe_number = -1;
5562
5563 rs->last_resume_exec_dir = EXEC_FORWARD;
5564
5565 /* Probe for ability to use "ThreadInfo" query, as required. */
5566 rs->use_threadinfo_query = 1;
5567 rs->use_threadextra_query = 1;
5568
5569 rs->readahead_cache.invalidate ();
5570
5571 if (target_async_permitted)
5572 {
5573 /* FIXME: cagney/1999-09-23: During the initial connection it is
5574 assumed that the target is already ready and able to respond to
5575 requests. Unfortunately remote_start_remote() eventually calls
5576 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5577 around this. Eventually a mechanism that allows
5578 wait_for_inferior() to expect/get timeouts will be
5579 implemented. */
5580 rs->wait_forever_enabled_p = 0;
5581 }
5582
5583 /* First delete any symbols previously loaded from shared libraries. */
5584 no_shared_libraries (NULL, 0);
5585
5586 /* Start the remote connection. If error() or QUIT, discard this
5587 target (we'd otherwise be in an inconsistent state) and then
5588 propogate the error on up the exception chain. This ensures that
5589 the caller doesn't stumble along blindly assuming that the
5590 function succeeded. The CLI doesn't have this problem but other
5591 UI's, such as MI do.
5592
5593 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5594 this function should return an error indication letting the
5595 caller restore the previous state. Unfortunately the command
5596 ``target remote'' is directly wired to this function making that
5597 impossible. On a positive note, the CLI side of this problem has
5598 been fixed - the function set_cmd_context() makes it possible for
5599 all the ``target ....'' commands to share a common callback
5600 function. See cli-dump.c. */
5601 {
5602
5603 TRY
5604 {
5605 remote->start_remote (from_tty, extended_p);
5606 }
5607 CATCH (ex, RETURN_MASK_ALL)
5608 {
5609 /* Pop the partially set up target - unless something else did
5610 already before throwing the exception. */
5611 if (ex.error != TARGET_CLOSE_ERROR)
5612 remote_unpush_target ();
5613 throw_exception (ex);
5614 }
5615 END_CATCH
5616 }
5617
5618 remote_btrace_reset (rs);
5619
5620 if (target_async_permitted)
5621 rs->wait_forever_enabled_p = 1;
5622 }
5623
5624 /* Detach the specified process. */
5625
5626 void
5627 remote_target::remote_detach_pid (int pid)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630
5631 /* This should not be necessary, but the handling for D;PID in
5632 GDBserver versions prior to 8.2 incorrectly assumes that the
5633 selected process points to the same process we're detaching,
5634 leading to misbehavior (and possibly GDBserver crashing) when it
5635 does not. Since it's easy and cheap, work around it by forcing
5636 GDBserver to select GDB's current process. */
5637 set_general_process ();
5638
5639 if (remote_multi_process_p (rs))
5640 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5641 else
5642 strcpy (rs->buf.data (), "D");
5643
5644 putpkt (rs->buf);
5645 getpkt (&rs->buf, 0);
5646
5647 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5648 ;
5649 else if (rs->buf[0] == '\0')
5650 error (_("Remote doesn't know how to detach"));
5651 else
5652 error (_("Can't detach process."));
5653 }
5654
5655 /* This detaches a program to which we previously attached, using
5656 inferior_ptid to identify the process. After this is done, GDB
5657 can be used to debug some other program. We better not have left
5658 any breakpoints in the target program or it'll die when it hits
5659 one. */
5660
5661 void
5662 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5663 {
5664 int pid = inferior_ptid.pid ();
5665 struct remote_state *rs = get_remote_state ();
5666 int is_fork_parent;
5667
5668 if (!target_has_execution)
5669 error (_("No process to detach from."));
5670
5671 target_announce_detach (from_tty);
5672
5673 /* Tell the remote target to detach. */
5674 remote_detach_pid (pid);
5675
5676 /* Exit only if this is the only active inferior. */
5677 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5678 puts_filtered (_("Ending remote debugging.\n"));
5679
5680 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5681
5682 /* Check to see if we are detaching a fork parent. Note that if we
5683 are detaching a fork child, tp == NULL. */
5684 is_fork_parent = (tp != NULL
5685 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5686
5687 /* If doing detach-on-fork, we don't mourn, because that will delete
5688 breakpoints that should be available for the followed inferior. */
5689 if (!is_fork_parent)
5690 {
5691 /* Save the pid as a string before mourning, since that will
5692 unpush the remote target, and we need the string after. */
5693 std::string infpid = target_pid_to_str (ptid_t (pid));
5694
5695 target_mourn_inferior (inferior_ptid);
5696 if (print_inferior_events)
5697 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5698 inf->num, infpid.c_str ());
5699 }
5700 else
5701 {
5702 inferior_ptid = null_ptid;
5703 detach_inferior (current_inferior ());
5704 }
5705 }
5706
5707 void
5708 remote_target::detach (inferior *inf, int from_tty)
5709 {
5710 remote_detach_1 (inf, from_tty);
5711 }
5712
5713 void
5714 extended_remote_target::detach (inferior *inf, int from_tty)
5715 {
5716 remote_detach_1 (inf, from_tty);
5717 }
5718
5719 /* Target follow-fork function for remote targets. On entry, and
5720 at return, the current inferior is the fork parent.
5721
5722 Note that although this is currently only used for extended-remote,
5723 it is named remote_follow_fork in anticipation of using it for the
5724 remote target as well. */
5725
5726 int
5727 remote_target::follow_fork (int follow_child, int detach_fork)
5728 {
5729 struct remote_state *rs = get_remote_state ();
5730 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5731
5732 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5733 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5734 {
5735 /* When following the parent and detaching the child, we detach
5736 the child here. For the case of following the child and
5737 detaching the parent, the detach is done in the target-
5738 independent follow fork code in infrun.c. We can't use
5739 target_detach when detaching an unfollowed child because
5740 the client side doesn't know anything about the child. */
5741 if (detach_fork && !follow_child)
5742 {
5743 /* Detach the fork child. */
5744 ptid_t child_ptid;
5745 pid_t child_pid;
5746
5747 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5748 child_pid = child_ptid.pid ();
5749
5750 remote_detach_pid (child_pid);
5751 }
5752 }
5753 return 0;
5754 }
5755
5756 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5757 in the program space of the new inferior. On entry and at return the
5758 current inferior is the exec'ing inferior. INF is the new exec'd
5759 inferior, which may be the same as the exec'ing inferior unless
5760 follow-exec-mode is "new". */
5761
5762 void
5763 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5764 {
5765 /* We know that this is a target file name, so if it has the "target:"
5766 prefix we strip it off before saving it in the program space. */
5767 if (is_target_filename (execd_pathname))
5768 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5769
5770 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5771 }
5772
5773 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5774
5775 void
5776 remote_target::disconnect (const char *args, int from_tty)
5777 {
5778 if (args)
5779 error (_("Argument given to \"disconnect\" when remotely debugging."));
5780
5781 /* Make sure we unpush even the extended remote targets. Calling
5782 target_mourn_inferior won't unpush, and remote_mourn won't
5783 unpush if there is more than one inferior left. */
5784 unpush_target (this);
5785 generic_mourn_inferior ();
5786
5787 if (from_tty)
5788 puts_filtered ("Ending remote debugging.\n");
5789 }
5790
5791 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5792 be chatty about it. */
5793
5794 void
5795 extended_remote_target::attach (const char *args, int from_tty)
5796 {
5797 struct remote_state *rs = get_remote_state ();
5798 int pid;
5799 char *wait_status = NULL;
5800
5801 pid = parse_pid_to_attach (args);
5802
5803 /* Remote PID can be freely equal to getpid, do not check it here the same
5804 way as in other targets. */
5805
5806 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5807 error (_("This target does not support attaching to a process"));
5808
5809 if (from_tty)
5810 {
5811 char *exec_file = get_exec_file (0);
5812
5813 if (exec_file)
5814 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5815 target_pid_to_str (ptid_t (pid)));
5816 else
5817 printf_unfiltered (_("Attaching to %s\n"),
5818 target_pid_to_str (ptid_t (pid)));
5819 }
5820
5821 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 switch (packet_ok (rs->buf,
5826 &remote_protocol_packets[PACKET_vAttach]))
5827 {
5828 case PACKET_OK:
5829 if (!target_is_non_stop_p ())
5830 {
5831 /* Save the reply for later. */
5832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5833 strcpy (wait_status, rs->buf.data ());
5834 }
5835 else if (strcmp (rs->buf.data (), "OK") != 0)
5836 error (_("Attaching to %s failed with: %s"),
5837 target_pid_to_str (ptid_t (pid)),
5838 rs->buf.data ());
5839 break;
5840 case PACKET_UNKNOWN:
5841 error (_("This target does not support attaching to a process"));
5842 default:
5843 error (_("Attaching to %s failed"),
5844 target_pid_to_str (ptid_t (pid)));
5845 }
5846
5847 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5848
5849 inferior_ptid = ptid_t (pid);
5850
5851 if (target_is_non_stop_p ())
5852 {
5853 struct thread_info *thread;
5854
5855 /* Get list of threads. */
5856 update_thread_list ();
5857
5858 thread = first_thread_of_inferior (current_inferior ());
5859 if (thread)
5860 inferior_ptid = thread->ptid;
5861 else
5862 inferior_ptid = ptid_t (pid);
5863
5864 /* Invalidate our notion of the remote current thread. */
5865 record_currthread (rs, minus_one_ptid);
5866 }
5867 else
5868 {
5869 /* Now, if we have thread information, update inferior_ptid. */
5870 inferior_ptid = remote_current_thread (inferior_ptid);
5871
5872 /* Add the main thread to the thread list. */
5873 thread_info *thr = add_thread_silent (inferior_ptid);
5874 /* Don't consider the thread stopped until we've processed the
5875 saved stop reply. */
5876 set_executing (thr->ptid, true);
5877 }
5878
5879 /* Next, if the target can specify a description, read it. We do
5880 this before anything involving memory or registers. */
5881 target_find_description ();
5882
5883 if (!target_is_non_stop_p ())
5884 {
5885 /* Use the previously fetched status. */
5886 gdb_assert (wait_status != NULL);
5887
5888 if (target_can_async_p ())
5889 {
5890 struct notif_event *reply
5891 = remote_notif_parse (this, &notif_client_stop, wait_status);
5892
5893 push_stop_reply ((struct stop_reply *) reply);
5894
5895 target_async (1);
5896 }
5897 else
5898 {
5899 gdb_assert (wait_status != NULL);
5900 strcpy (rs->buf.data (), wait_status);
5901 rs->cached_wait_status = 1;
5902 }
5903 }
5904 else
5905 gdb_assert (wait_status == NULL);
5906 }
5907
5908 /* Implementation of the to_post_attach method. */
5909
5910 void
5911 extended_remote_target::post_attach (int pid)
5912 {
5913 /* Get text, data & bss offsets. */
5914 get_offsets ();
5915
5916 /* In certain cases GDB might not have had the chance to start
5917 symbol lookup up until now. This could happen if the debugged
5918 binary is not using shared libraries, the vsyscall page is not
5919 present (on Linux) and the binary itself hadn't changed since the
5920 debugging process was started. */
5921 if (symfile_objfile != NULL)
5922 remote_check_symbols();
5923 }
5924
5925 \f
5926 /* Check for the availability of vCont. This function should also check
5927 the response. */
5928
5929 void
5930 remote_target::remote_vcont_probe ()
5931 {
5932 remote_state *rs = get_remote_state ();
5933 char *buf;
5934
5935 strcpy (rs->buf.data (), "vCont?");
5936 putpkt (rs->buf);
5937 getpkt (&rs->buf, 0);
5938 buf = rs->buf.data ();
5939
5940 /* Make sure that the features we assume are supported. */
5941 if (startswith (buf, "vCont"))
5942 {
5943 char *p = &buf[5];
5944 int support_c, support_C;
5945
5946 rs->supports_vCont.s = 0;
5947 rs->supports_vCont.S = 0;
5948 support_c = 0;
5949 support_C = 0;
5950 rs->supports_vCont.t = 0;
5951 rs->supports_vCont.r = 0;
5952 while (p && *p == ';')
5953 {
5954 p++;
5955 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5956 rs->supports_vCont.s = 1;
5957 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5958 rs->supports_vCont.S = 1;
5959 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5960 support_c = 1;
5961 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 support_C = 1;
5963 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 rs->supports_vCont.t = 1;
5965 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.r = 1;
5967
5968 p = strchr (p, ';');
5969 }
5970
5971 /* If c, and C are not all supported, we can't use vCont. Clearing
5972 BUF will make packet_ok disable the packet. */
5973 if (!support_c || !support_C)
5974 buf[0] = 0;
5975 }
5976
5977 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5978 }
5979
5980 /* Helper function for building "vCont" resumptions. Write a
5981 resumption to P. ENDP points to one-passed-the-end of the buffer
5982 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5983 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5984 resumed thread should be single-stepped and/or signalled. If PTID
5985 equals minus_one_ptid, then all threads are resumed; if PTID
5986 represents a process, then all threads of the process are resumed;
5987 the thread to be stepped and/or signalled is given in the global
5988 INFERIOR_PTID. */
5989
5990 char *
5991 remote_target::append_resumption (char *p, char *endp,
5992 ptid_t ptid, int step, gdb_signal siggnal)
5993 {
5994 struct remote_state *rs = get_remote_state ();
5995
5996 if (step && siggnal != GDB_SIGNAL_0)
5997 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5998 else if (step
5999 /* GDB is willing to range step. */
6000 && use_range_stepping
6001 /* Target supports range stepping. */
6002 && rs->supports_vCont.r
6003 /* We don't currently support range stepping multiple
6004 threads with a wildcard (though the protocol allows it,
6005 so stubs shouldn't make an active effort to forbid
6006 it). */
6007 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6008 {
6009 struct thread_info *tp;
6010
6011 if (ptid == minus_one_ptid)
6012 {
6013 /* If we don't know about the target thread's tid, then
6014 we're resuming magic_null_ptid (see caller). */
6015 tp = find_thread_ptid (magic_null_ptid);
6016 }
6017 else
6018 tp = find_thread_ptid (ptid);
6019 gdb_assert (tp != NULL);
6020
6021 if (tp->control.may_range_step)
6022 {
6023 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6024
6025 p += xsnprintf (p, endp - p, ";r%s,%s",
6026 phex_nz (tp->control.step_range_start,
6027 addr_size),
6028 phex_nz (tp->control.step_range_end,
6029 addr_size));
6030 }
6031 else
6032 p += xsnprintf (p, endp - p, ";s");
6033 }
6034 else if (step)
6035 p += xsnprintf (p, endp - p, ";s");
6036 else if (siggnal != GDB_SIGNAL_0)
6037 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6038 else
6039 p += xsnprintf (p, endp - p, ";c");
6040
6041 if (remote_multi_process_p (rs) && ptid.is_pid ())
6042 {
6043 ptid_t nptid;
6044
6045 /* All (-1) threads of process. */
6046 nptid = ptid_t (ptid.pid (), -1, 0);
6047
6048 p += xsnprintf (p, endp - p, ":");
6049 p = write_ptid (p, endp, nptid);
6050 }
6051 else if (ptid != minus_one_ptid)
6052 {
6053 p += xsnprintf (p, endp - p, ":");
6054 p = write_ptid (p, endp, ptid);
6055 }
6056
6057 return p;
6058 }
6059
6060 /* Clear the thread's private info on resume. */
6061
6062 static void
6063 resume_clear_thread_private_info (struct thread_info *thread)
6064 {
6065 if (thread->priv != NULL)
6066 {
6067 remote_thread_info *priv = get_remote_thread_info (thread);
6068
6069 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6070 priv->watch_data_address = 0;
6071 }
6072 }
6073
6074 /* Append a vCont continue-with-signal action for threads that have a
6075 non-zero stop signal. */
6076
6077 char *
6078 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6079 ptid_t ptid)
6080 {
6081 for (thread_info *thread : all_non_exited_threads (ptid))
6082 if (inferior_ptid != thread->ptid
6083 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6084 {
6085 p = append_resumption (p, endp, thread->ptid,
6086 0, thread->suspend.stop_signal);
6087 thread->suspend.stop_signal = GDB_SIGNAL_0;
6088 resume_clear_thread_private_info (thread);
6089 }
6090
6091 return p;
6092 }
6093
6094 /* Set the target running, using the packets that use Hc
6095 (c/s/C/S). */
6096
6097 void
6098 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6099 gdb_signal siggnal)
6100 {
6101 struct remote_state *rs = get_remote_state ();
6102 char *buf;
6103
6104 rs->last_sent_signal = siggnal;
6105 rs->last_sent_step = step;
6106
6107 /* The c/s/C/S resume packets use Hc, so set the continue
6108 thread. */
6109 if (ptid == minus_one_ptid)
6110 set_continue_thread (any_thread_ptid);
6111 else
6112 set_continue_thread (ptid);
6113
6114 for (thread_info *thread : all_non_exited_threads ())
6115 resume_clear_thread_private_info (thread);
6116
6117 buf = rs->buf.data ();
6118 if (::execution_direction == EXEC_REVERSE)
6119 {
6120 /* We don't pass signals to the target in reverse exec mode. */
6121 if (info_verbose && siggnal != GDB_SIGNAL_0)
6122 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6123 siggnal);
6124
6125 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6126 error (_("Remote reverse-step not supported."));
6127 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6128 error (_("Remote reverse-continue not supported."));
6129
6130 strcpy (buf, step ? "bs" : "bc");
6131 }
6132 else if (siggnal != GDB_SIGNAL_0)
6133 {
6134 buf[0] = step ? 'S' : 'C';
6135 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6136 buf[2] = tohex (((int) siggnal) & 0xf);
6137 buf[3] = '\0';
6138 }
6139 else
6140 strcpy (buf, step ? "s" : "c");
6141
6142 putpkt (buf);
6143 }
6144
6145 /* Resume the remote inferior by using a "vCont" packet. The thread
6146 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6147 resumed thread should be single-stepped and/or signalled. If PTID
6148 equals minus_one_ptid, then all threads are resumed; the thread to
6149 be stepped and/or signalled is given in the global INFERIOR_PTID.
6150 This function returns non-zero iff it resumes the inferior.
6151
6152 This function issues a strict subset of all possible vCont commands
6153 at the moment. */
6154
6155 int
6156 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6157 enum gdb_signal siggnal)
6158 {
6159 struct remote_state *rs = get_remote_state ();
6160 char *p;
6161 char *endp;
6162
6163 /* No reverse execution actions defined for vCont. */
6164 if (::execution_direction == EXEC_REVERSE)
6165 return 0;
6166
6167 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6168 remote_vcont_probe ();
6169
6170 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6171 return 0;
6172
6173 p = rs->buf.data ();
6174 endp = p + get_remote_packet_size ();
6175
6176 /* If we could generate a wider range of packets, we'd have to worry
6177 about overflowing BUF. Should there be a generic
6178 "multi-part-packet" packet? */
6179
6180 p += xsnprintf (p, endp - p, "vCont");
6181
6182 if (ptid == magic_null_ptid)
6183 {
6184 /* MAGIC_NULL_PTID means that we don't have any active threads,
6185 so we don't have any TID numbers the inferior will
6186 understand. Make sure to only send forms that do not specify
6187 a TID. */
6188 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6189 }
6190 else if (ptid == minus_one_ptid || ptid.is_pid ())
6191 {
6192 /* Resume all threads (of all processes, or of a single
6193 process), with preference for INFERIOR_PTID. This assumes
6194 inferior_ptid belongs to the set of all threads we are about
6195 to resume. */
6196 if (step || siggnal != GDB_SIGNAL_0)
6197 {
6198 /* Step inferior_ptid, with or without signal. */
6199 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6200 }
6201
6202 /* Also pass down any pending signaled resumption for other
6203 threads not the current. */
6204 p = append_pending_thread_resumptions (p, endp, ptid);
6205
6206 /* And continue others without a signal. */
6207 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6208 }
6209 else
6210 {
6211 /* Scheduler locking; resume only PTID. */
6212 append_resumption (p, endp, ptid, step, siggnal);
6213 }
6214
6215 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6216 putpkt (rs->buf);
6217
6218 if (target_is_non_stop_p ())
6219 {
6220 /* In non-stop, the stub replies to vCont with "OK". The stop
6221 reply will be reported asynchronously by means of a `%Stop'
6222 notification. */
6223 getpkt (&rs->buf, 0);
6224 if (strcmp (rs->buf.data (), "OK") != 0)
6225 error (_("Unexpected vCont reply in non-stop mode: %s"),
6226 rs->buf.data ());
6227 }
6228
6229 return 1;
6230 }
6231
6232 /* Tell the remote machine to resume. */
6233
6234 void
6235 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6236 {
6237 struct remote_state *rs = get_remote_state ();
6238
6239 /* When connected in non-stop mode, the core resumes threads
6240 individually. Resuming remote threads directly in target_resume
6241 would thus result in sending one packet per thread. Instead, to
6242 minimize roundtrip latency, here we just store the resume
6243 request; the actual remote resumption will be done in
6244 target_commit_resume / remote_commit_resume, where we'll be able
6245 to do vCont action coalescing. */
6246 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6247 {
6248 remote_thread_info *remote_thr;
6249
6250 if (minus_one_ptid == ptid || ptid.is_pid ())
6251 remote_thr = get_remote_thread_info (inferior_ptid);
6252 else
6253 remote_thr = get_remote_thread_info (ptid);
6254
6255 remote_thr->last_resume_step = step;
6256 remote_thr->last_resume_sig = siggnal;
6257 return;
6258 }
6259
6260 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6261 (explained in remote-notif.c:handle_notification) so
6262 remote_notif_process is not called. We need find a place where
6263 it is safe to start a 'vNotif' sequence. It is good to do it
6264 before resuming inferior, because inferior was stopped and no RSP
6265 traffic at that moment. */
6266 if (!target_is_non_stop_p ())
6267 remote_notif_process (rs->notif_state, &notif_client_stop);
6268
6269 rs->last_resume_exec_dir = ::execution_direction;
6270
6271 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6272 if (!remote_resume_with_vcont (ptid, step, siggnal))
6273 remote_resume_with_hc (ptid, step, siggnal);
6274
6275 /* We are about to start executing the inferior, let's register it
6276 with the event loop. NOTE: this is the one place where all the
6277 execution commands end up. We could alternatively do this in each
6278 of the execution commands in infcmd.c. */
6279 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6280 into infcmd.c in order to allow inferior function calls to work
6281 NOT asynchronously. */
6282 if (target_can_async_p ())
6283 target_async (1);
6284
6285 /* We've just told the target to resume. The remote server will
6286 wait for the inferior to stop, and then send a stop reply. In
6287 the mean time, we can't start another command/query ourselves
6288 because the stub wouldn't be ready to process it. This applies
6289 only to the base all-stop protocol, however. In non-stop (which
6290 only supports vCont), the stub replies with an "OK", and is
6291 immediate able to process further serial input. */
6292 if (!target_is_non_stop_p ())
6293 rs->waiting_for_stop_reply = 1;
6294 }
6295
6296 static int is_pending_fork_parent_thread (struct thread_info *thread);
6297
6298 /* Private per-inferior info for target remote processes. */
6299
6300 struct remote_inferior : public private_inferior
6301 {
6302 /* Whether we can send a wildcard vCont for this process. */
6303 bool may_wildcard_vcont = true;
6304 };
6305
6306 /* Get the remote private inferior data associated to INF. */
6307
6308 static remote_inferior *
6309 get_remote_inferior (inferior *inf)
6310 {
6311 if (inf->priv == NULL)
6312 inf->priv.reset (new remote_inferior);
6313
6314 return static_cast<remote_inferior *> (inf->priv.get ());
6315 }
6316
6317 /* Class used to track the construction of a vCont packet in the
6318 outgoing packet buffer. This is used to send multiple vCont
6319 packets if we have more actions than would fit a single packet. */
6320
6321 class vcont_builder
6322 {
6323 public:
6324 explicit vcont_builder (remote_target *remote)
6325 : m_remote (remote)
6326 {
6327 restart ();
6328 }
6329
6330 void flush ();
6331 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6332
6333 private:
6334 void restart ();
6335
6336 /* The remote target. */
6337 remote_target *m_remote;
6338
6339 /* Pointer to the first action. P points here if no action has been
6340 appended yet. */
6341 char *m_first_action;
6342
6343 /* Where the next action will be appended. */
6344 char *m_p;
6345
6346 /* The end of the buffer. Must never write past this. */
6347 char *m_endp;
6348 };
6349
6350 /* Prepare the outgoing buffer for a new vCont packet. */
6351
6352 void
6353 vcont_builder::restart ()
6354 {
6355 struct remote_state *rs = m_remote->get_remote_state ();
6356
6357 m_p = rs->buf.data ();
6358 m_endp = m_p + m_remote->get_remote_packet_size ();
6359 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6360 m_first_action = m_p;
6361 }
6362
6363 /* If the vCont packet being built has any action, send it to the
6364 remote end. */
6365
6366 void
6367 vcont_builder::flush ()
6368 {
6369 struct remote_state *rs;
6370
6371 if (m_p == m_first_action)
6372 return;
6373
6374 rs = m_remote->get_remote_state ();
6375 m_remote->putpkt (rs->buf);
6376 m_remote->getpkt (&rs->buf, 0);
6377 if (strcmp (rs->buf.data (), "OK") != 0)
6378 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6379 }
6380
6381 /* The largest action is range-stepping, with its two addresses. This
6382 is more than sufficient. If a new, bigger action is created, it'll
6383 quickly trigger a failed assertion in append_resumption (and we'll
6384 just bump this). */
6385 #define MAX_ACTION_SIZE 200
6386
6387 /* Append a new vCont action in the outgoing packet being built. If
6388 the action doesn't fit the packet along with previous actions, push
6389 what we've got so far to the remote end and start over a new vCont
6390 packet (with the new action). */
6391
6392 void
6393 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6394 {
6395 char buf[MAX_ACTION_SIZE + 1];
6396
6397 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6398 ptid, step, siggnal);
6399
6400 /* Check whether this new action would fit in the vCont packet along
6401 with previous actions. If not, send what we've got so far and
6402 start a new vCont packet. */
6403 size_t rsize = endp - buf;
6404 if (rsize > m_endp - m_p)
6405 {
6406 flush ();
6407 restart ();
6408
6409 /* Should now fit. */
6410 gdb_assert (rsize <= m_endp - m_p);
6411 }
6412
6413 memcpy (m_p, buf, rsize);
6414 m_p += rsize;
6415 *m_p = '\0';
6416 }
6417
6418 /* to_commit_resume implementation. */
6419
6420 void
6421 remote_target::commit_resume ()
6422 {
6423 int any_process_wildcard;
6424 int may_global_wildcard_vcont;
6425
6426 /* If connected in all-stop mode, we'd send the remote resume
6427 request directly from remote_resume. Likewise if
6428 reverse-debugging, as there are no defined vCont actions for
6429 reverse execution. */
6430 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6431 return;
6432
6433 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6434 instead of resuming all threads of each process individually.
6435 However, if any thread of a process must remain halted, we can't
6436 send wildcard resumes and must send one action per thread.
6437
6438 Care must be taken to not resume threads/processes the server
6439 side already told us are stopped, but the core doesn't know about
6440 yet, because the events are still in the vStopped notification
6441 queue. For example:
6442
6443 #1 => vCont s:p1.1;c
6444 #2 <= OK
6445 #3 <= %Stopped T05 p1.1
6446 #4 => vStopped
6447 #5 <= T05 p1.2
6448 #6 => vStopped
6449 #7 <= OK
6450 #8 (infrun handles the stop for p1.1 and continues stepping)
6451 #9 => vCont s:p1.1;c
6452
6453 The last vCont above would resume thread p1.2 by mistake, because
6454 the server has no idea that the event for p1.2 had not been
6455 handled yet.
6456
6457 The server side must similarly ignore resume actions for the
6458 thread that has a pending %Stopped notification (and any other
6459 threads with events pending), until GDB acks the notification
6460 with vStopped. Otherwise, e.g., the following case is
6461 mishandled:
6462
6463 #1 => g (or any other packet)
6464 #2 <= [registers]
6465 #3 <= %Stopped T05 p1.2
6466 #4 => vCont s:p1.1;c
6467 #5 <= OK
6468
6469 Above, the server must not resume thread p1.2. GDB can't know
6470 that p1.2 stopped until it acks the %Stopped notification, and
6471 since from GDB's perspective all threads should be running, it
6472 sends a "c" action.
6473
6474 Finally, special care must also be given to handling fork/vfork
6475 events. A (v)fork event actually tells us that two processes
6476 stopped -- the parent and the child. Until we follow the fork,
6477 we must not resume the child. Therefore, if we have a pending
6478 fork follow, we must not send a global wildcard resume action
6479 (vCont;c). We can still send process-wide wildcards though. */
6480
6481 /* Start by assuming a global wildcard (vCont;c) is possible. */
6482 may_global_wildcard_vcont = 1;
6483
6484 /* And assume every process is individually wildcard-able too. */
6485 for (inferior *inf : all_non_exited_inferiors ())
6486 {
6487 remote_inferior *priv = get_remote_inferior (inf);
6488
6489 priv->may_wildcard_vcont = true;
6490 }
6491
6492 /* Check for any pending events (not reported or processed yet) and
6493 disable process and global wildcard resumes appropriately. */
6494 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6495
6496 for (thread_info *tp : all_non_exited_threads ())
6497 {
6498 /* If a thread of a process is not meant to be resumed, then we
6499 can't wildcard that process. */
6500 if (!tp->executing)
6501 {
6502 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6503
6504 /* And if we can't wildcard a process, we can't wildcard
6505 everything either. */
6506 may_global_wildcard_vcont = 0;
6507 continue;
6508 }
6509
6510 /* If a thread is the parent of an unfollowed fork, then we
6511 can't do a global wildcard, as that would resume the fork
6512 child. */
6513 if (is_pending_fork_parent_thread (tp))
6514 may_global_wildcard_vcont = 0;
6515 }
6516
6517 /* Now let's build the vCont packet(s). Actions must be appended
6518 from narrower to wider scopes (thread -> process -> global). If
6519 we end up with too many actions for a single packet vcont_builder
6520 flushes the current vCont packet to the remote side and starts a
6521 new one. */
6522 struct vcont_builder vcont_builder (this);
6523
6524 /* Threads first. */
6525 for (thread_info *tp : all_non_exited_threads ())
6526 {
6527 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6528
6529 if (!tp->executing || remote_thr->vcont_resumed)
6530 continue;
6531
6532 gdb_assert (!thread_is_in_step_over_chain (tp));
6533
6534 if (!remote_thr->last_resume_step
6535 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6536 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6537 {
6538 /* We'll send a wildcard resume instead. */
6539 remote_thr->vcont_resumed = 1;
6540 continue;
6541 }
6542
6543 vcont_builder.push_action (tp->ptid,
6544 remote_thr->last_resume_step,
6545 remote_thr->last_resume_sig);
6546 remote_thr->vcont_resumed = 1;
6547 }
6548
6549 /* Now check whether we can send any process-wide wildcard. This is
6550 to avoid sending a global wildcard in the case nothing is
6551 supposed to be resumed. */
6552 any_process_wildcard = 0;
6553
6554 for (inferior *inf : all_non_exited_inferiors ())
6555 {
6556 if (get_remote_inferior (inf)->may_wildcard_vcont)
6557 {
6558 any_process_wildcard = 1;
6559 break;
6560 }
6561 }
6562
6563 if (any_process_wildcard)
6564 {
6565 /* If all processes are wildcard-able, then send a single "c"
6566 action, otherwise, send an "all (-1) threads of process"
6567 continue action for each running process, if any. */
6568 if (may_global_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (minus_one_ptid,
6571 false, GDB_SIGNAL_0);
6572 }
6573 else
6574 {
6575 for (inferior *inf : all_non_exited_inferiors ())
6576 {
6577 if (get_remote_inferior (inf)->may_wildcard_vcont)
6578 {
6579 vcont_builder.push_action (ptid_t (inf->pid),
6580 false, GDB_SIGNAL_0);
6581 }
6582 }
6583 }
6584 }
6585
6586 vcont_builder.flush ();
6587 }
6588
6589 \f
6590
6591 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6592 thread, all threads of a remote process, or all threads of all
6593 processes. */
6594
6595 void
6596 remote_target::remote_stop_ns (ptid_t ptid)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf.data ();
6600 char *endp = p + get_remote_packet_size ();
6601
6602 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6603 remote_vcont_probe ();
6604
6605 if (!rs->supports_vCont.t)
6606 error (_("Remote server does not support stopping threads"));
6607
6608 if (ptid == minus_one_ptid
6609 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6610 p += xsnprintf (p, endp - p, "vCont;t");
6611 else
6612 {
6613 ptid_t nptid;
6614
6615 p += xsnprintf (p, endp - p, "vCont;t:");
6616
6617 if (ptid.is_pid ())
6618 /* All (-1) threads of process. */
6619 nptid = ptid_t (ptid.pid (), -1, 0);
6620 else
6621 {
6622 /* Small optimization: if we already have a stop reply for
6623 this thread, no use in telling the stub we want this
6624 stopped. */
6625 if (peek_stop_reply (ptid))
6626 return;
6627
6628 nptid = ptid;
6629 }
6630
6631 write_ptid (p, endp, nptid);
6632 }
6633
6634 /* In non-stop, we get an immediate OK reply. The stop reply will
6635 come in asynchronously by notification. */
6636 putpkt (rs->buf);
6637 getpkt (&rs->buf, 0);
6638 if (strcmp (rs->buf.data (), "OK") != 0)
6639 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6640 rs->buf.data ());
6641 }
6642
6643 /* All-stop version of target_interrupt. Sends a break or a ^C to
6644 interrupt the remote target. It is undefined which thread of which
6645 process reports the interrupt. */
6646
6647 void
6648 remote_target::remote_interrupt_as ()
6649 {
6650 struct remote_state *rs = get_remote_state ();
6651
6652 rs->ctrlc_pending_p = 1;
6653
6654 /* If the inferior is stopped already, but the core didn't know
6655 about it yet, just ignore the request. The cached wait status
6656 will be collected in remote_wait. */
6657 if (rs->cached_wait_status)
6658 return;
6659
6660 /* Send interrupt_sequence to remote target. */
6661 send_interrupt_sequence ();
6662 }
6663
6664 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6665 the remote target. It is undefined which thread of which process
6666 reports the interrupt. Throws an error if the packet is not
6667 supported by the server. */
6668
6669 void
6670 remote_target::remote_interrupt_ns ()
6671 {
6672 struct remote_state *rs = get_remote_state ();
6673 char *p = rs->buf.data ();
6674 char *endp = p + get_remote_packet_size ();
6675
6676 xsnprintf (p, endp - p, "vCtrlC");
6677
6678 /* In non-stop, we get an immediate OK reply. The stop reply will
6679 come in asynchronously by notification. */
6680 putpkt (rs->buf);
6681 getpkt (&rs->buf, 0);
6682
6683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6684 {
6685 case PACKET_OK:
6686 break;
6687 case PACKET_UNKNOWN:
6688 error (_("No support for interrupting the remote target."));
6689 case PACKET_ERROR:
6690 error (_("Interrupting target failed: %s"), rs->buf.data ());
6691 }
6692 }
6693
6694 /* Implement the to_stop function for the remote targets. */
6695
6696 void
6697 remote_target::stop (ptid_t ptid)
6698 {
6699 if (remote_debug)
6700 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6701
6702 if (target_is_non_stop_p ())
6703 remote_stop_ns (ptid);
6704 else
6705 {
6706 /* We don't currently have a way to transparently pause the
6707 remote target in all-stop mode. Interrupt it instead. */
6708 remote_interrupt_as ();
6709 }
6710 }
6711
6712 /* Implement the to_interrupt function for the remote targets. */
6713
6714 void
6715 remote_target::interrupt ()
6716 {
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6719
6720 if (target_is_non_stop_p ())
6721 remote_interrupt_ns ();
6722 else
6723 remote_interrupt_as ();
6724 }
6725
6726 /* Implement the to_pass_ctrlc function for the remote targets. */
6727
6728 void
6729 remote_target::pass_ctrlc ()
6730 {
6731 struct remote_state *rs = get_remote_state ();
6732
6733 if (remote_debug)
6734 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6735
6736 /* If we're starting up, we're not fully synced yet. Quit
6737 immediately. */
6738 if (rs->starting_up)
6739 quit ();
6740 /* If ^C has already been sent once, offer to disconnect. */
6741 else if (rs->ctrlc_pending_p)
6742 interrupt_query ();
6743 else
6744 target_interrupt ();
6745 }
6746
6747 /* Ask the user what to do when an interrupt is received. */
6748
6749 void
6750 remote_target::interrupt_query ()
6751 {
6752 struct remote_state *rs = get_remote_state ();
6753
6754 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6755 {
6756 if (query (_("The target is not responding to interrupt requests.\n"
6757 "Stop debugging it? ")))
6758 {
6759 remote_unpush_target ();
6760 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6761 }
6762 }
6763 else
6764 {
6765 if (query (_("Interrupted while waiting for the program.\n"
6766 "Give up waiting? ")))
6767 quit ();
6768 }
6769 }
6770
6771 /* Enable/disable target terminal ownership. Most targets can use
6772 terminal groups to control terminal ownership. Remote targets are
6773 different in that explicit transfer of ownership to/from GDB/target
6774 is required. */
6775
6776 void
6777 remote_target::terminal_inferior ()
6778 {
6779 /* NOTE: At this point we could also register our selves as the
6780 recipient of all input. Any characters typed could then be
6781 passed on down to the target. */
6782 }
6783
6784 void
6785 remote_target::terminal_ours ()
6786 {
6787 }
6788
6789 static void
6790 remote_console_output (const char *msg)
6791 {
6792 const char *p;
6793
6794 for (p = msg; p[0] && p[1]; p += 2)
6795 {
6796 char tb[2];
6797 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6798
6799 tb[0] = c;
6800 tb[1] = 0;
6801 fputs_unfiltered (tb, gdb_stdtarg);
6802 }
6803 gdb_flush (gdb_stdtarg);
6804 }
6805
6806 struct stop_reply : public notif_event
6807 {
6808 ~stop_reply ();
6809
6810 /* The identifier of the thread about this event */
6811 ptid_t ptid;
6812
6813 /* The remote state this event is associated with. When the remote
6814 connection, represented by a remote_state object, is closed,
6815 all the associated stop_reply events should be released. */
6816 struct remote_state *rs;
6817
6818 struct target_waitstatus ws;
6819
6820 /* The architecture associated with the expedited registers. */
6821 gdbarch *arch;
6822
6823 /* Expedited registers. This makes remote debugging a bit more
6824 efficient for those targets that provide critical registers as
6825 part of their normal status mechanism (as another roundtrip to
6826 fetch them is avoided). */
6827 std::vector<cached_reg_t> regcache;
6828
6829 enum target_stop_reason stop_reason;
6830
6831 CORE_ADDR watch_data_address;
6832
6833 int core;
6834 };
6835
6836 /* Return the length of the stop reply queue. */
6837
6838 int
6839 remote_target::stop_reply_queue_length ()
6840 {
6841 remote_state *rs = get_remote_state ();
6842 return rs->stop_reply_queue.size ();
6843 }
6844
6845 void
6846 remote_notif_stop_parse (remote_target *remote,
6847 struct notif_client *self, const char *buf,
6848 struct notif_event *event)
6849 {
6850 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6851 }
6852
6853 static void
6854 remote_notif_stop_ack (remote_target *remote,
6855 struct notif_client *self, const char *buf,
6856 struct notif_event *event)
6857 {
6858 struct stop_reply *stop_reply = (struct stop_reply *) event;
6859
6860 /* acknowledge */
6861 putpkt (remote, self->ack_command);
6862
6863 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6864 {
6865 /* We got an unknown stop reply. */
6866 error (_("Unknown stop reply"));
6867 }
6868
6869 remote->push_stop_reply (stop_reply);
6870 }
6871
6872 static int
6873 remote_notif_stop_can_get_pending_events (remote_target *remote,
6874 struct notif_client *self)
6875 {
6876 /* We can't get pending events in remote_notif_process for
6877 notification stop, and we have to do this in remote_wait_ns
6878 instead. If we fetch all queued events from stub, remote stub
6879 may exit and we have no chance to process them back in
6880 remote_wait_ns. */
6881 remote_state *rs = remote->get_remote_state ();
6882 mark_async_event_handler (rs->remote_async_inferior_event_token);
6883 return 0;
6884 }
6885
6886 stop_reply::~stop_reply ()
6887 {
6888 for (cached_reg_t &reg : regcache)
6889 xfree (reg.data);
6890 }
6891
6892 static notif_event_up
6893 remote_notif_stop_alloc_reply ()
6894 {
6895 return notif_event_up (new struct stop_reply ());
6896 }
6897
6898 /* A client of notification Stop. */
6899
6900 struct notif_client notif_client_stop =
6901 {
6902 "Stop",
6903 "vStopped",
6904 remote_notif_stop_parse,
6905 remote_notif_stop_ack,
6906 remote_notif_stop_can_get_pending_events,
6907 remote_notif_stop_alloc_reply,
6908 REMOTE_NOTIF_STOP,
6909 };
6910
6911 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6912 the pid of the process that owns the threads we want to check, or
6913 -1 if we want to check all threads. */
6914
6915 static int
6916 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6917 ptid_t thread_ptid)
6918 {
6919 if (ws->kind == TARGET_WAITKIND_FORKED
6920 || ws->kind == TARGET_WAITKIND_VFORKED)
6921 {
6922 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6923 return 1;
6924 }
6925
6926 return 0;
6927 }
6928
6929 /* Return the thread's pending status used to determine whether the
6930 thread is a fork parent stopped at a fork event. */
6931
6932 static struct target_waitstatus *
6933 thread_pending_fork_status (struct thread_info *thread)
6934 {
6935 if (thread->suspend.waitstatus_pending_p)
6936 return &thread->suspend.waitstatus;
6937 else
6938 return &thread->pending_follow;
6939 }
6940
6941 /* Determine if THREAD is a pending fork parent thread. */
6942
6943 static int
6944 is_pending_fork_parent_thread (struct thread_info *thread)
6945 {
6946 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6947 int pid = -1;
6948
6949 return is_pending_fork_parent (ws, pid, thread->ptid);
6950 }
6951
6952 /* If CONTEXT contains any fork child threads that have not been
6953 reported yet, remove them from the CONTEXT list. If such a
6954 thread exists it is because we are stopped at a fork catchpoint
6955 and have not yet called follow_fork, which will set up the
6956 host-side data structures for the new process. */
6957
6958 void
6959 remote_target::remove_new_fork_children (threads_listing_context *context)
6960 {
6961 int pid = -1;
6962 struct notif_client *notif = &notif_client_stop;
6963
6964 /* For any threads stopped at a fork event, remove the corresponding
6965 fork child threads from the CONTEXT list. */
6966 for (thread_info *thread : all_non_exited_threads ())
6967 {
6968 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6969
6970 if (is_pending_fork_parent (ws, pid, thread->ptid))
6971 context->remove_thread (ws->value.related_pid);
6972 }
6973
6974 /* Check for any pending fork events (not reported or processed yet)
6975 in process PID and remove those fork child threads from the
6976 CONTEXT list as well. */
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 if (event->ws.kind == TARGET_WAITKIND_FORKED
6980 || event->ws.kind == TARGET_WAITKIND_VFORKED
6981 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6982 context->remove_thread (event->ws.value.related_pid);
6983 }
6984
6985 /* Check whether any event pending in the vStopped queue would prevent
6986 a global or process wildcard vCont action. Clear
6987 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6988 and clear the event inferior's may_wildcard_vcont flag if we can't
6989 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6990
6991 void
6992 remote_target::check_pending_events_prevent_wildcard_vcont
6993 (int *may_global_wildcard)
6994 {
6995 struct notif_client *notif = &notif_client_stop;
6996
6997 remote_notif_get_pending_events (notif);
6998 for (auto &event : get_remote_state ()->stop_reply_queue)
6999 {
7000 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7001 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7002 continue;
7003
7004 if (event->ws.kind == TARGET_WAITKIND_FORKED
7005 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7006 *may_global_wildcard = 0;
7007
7008 struct inferior *inf = find_inferior_ptid (event->ptid);
7009
7010 /* This may be the first time we heard about this process.
7011 Regardless, we must not do a global wildcard resume, otherwise
7012 we'd resume this process too. */
7013 *may_global_wildcard = 0;
7014 if (inf != NULL)
7015 get_remote_inferior (inf)->may_wildcard_vcont = false;
7016 }
7017 }
7018
7019 /* Discard all pending stop replies of inferior INF. */
7020
7021 void
7022 remote_target::discard_pending_stop_replies (struct inferior *inf)
7023 {
7024 struct stop_reply *reply;
7025 struct remote_state *rs = get_remote_state ();
7026 struct remote_notif_state *rns = rs->notif_state;
7027
7028 /* This function can be notified when an inferior exists. When the
7029 target is not remote, the notification state is NULL. */
7030 if (rs->remote_desc == NULL)
7031 return;
7032
7033 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7034
7035 /* Discard the in-flight notification. */
7036 if (reply != NULL && reply->ptid.pid () == inf->pid)
7037 {
7038 delete reply;
7039 rns->pending_event[notif_client_stop.id] = NULL;
7040 }
7041
7042 /* Discard the stop replies we have already pulled with
7043 vStopped. */
7044 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7045 rs->stop_reply_queue.end (),
7046 [=] (const stop_reply_up &event)
7047 {
7048 return event->ptid.pid () == inf->pid;
7049 });
7050 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7051 }
7052
7053 /* Discard the stop replies for RS in stop_reply_queue. */
7054
7055 void
7056 remote_target::discard_pending_stop_replies_in_queue ()
7057 {
7058 remote_state *rs = get_remote_state ();
7059
7060 /* Discard the stop replies we have already pulled with
7061 vStopped. */
7062 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7063 rs->stop_reply_queue.end (),
7064 [=] (const stop_reply_up &event)
7065 {
7066 return event->rs == rs;
7067 });
7068 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7069 }
7070
7071 /* Remove the first reply in 'stop_reply_queue' which matches
7072 PTID. */
7073
7074 struct stop_reply *
7075 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7076 {
7077 remote_state *rs = get_remote_state ();
7078
7079 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7080 rs->stop_reply_queue.end (),
7081 [=] (const stop_reply_up &event)
7082 {
7083 return event->ptid.matches (ptid);
7084 });
7085 struct stop_reply *result;
7086 if (iter == rs->stop_reply_queue.end ())
7087 result = nullptr;
7088 else
7089 {
7090 result = iter->release ();
7091 rs->stop_reply_queue.erase (iter);
7092 }
7093
7094 if (notif_debug)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "notif: discard queued event: 'Stop' in %s\n",
7097 target_pid_to_str (ptid));
7098
7099 return result;
7100 }
7101
7102 /* Look for a queued stop reply belonging to PTID. If one is found,
7103 remove it from the queue, and return it. Returns NULL if none is
7104 found. If there are still queued events left to process, tell the
7105 event loop to get back to target_wait soon. */
7106
7107 struct stop_reply *
7108 remote_target::queued_stop_reply (ptid_t ptid)
7109 {
7110 remote_state *rs = get_remote_state ();
7111 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7112
7113 if (!rs->stop_reply_queue.empty ())
7114 {
7115 /* There's still at least an event left. */
7116 mark_async_event_handler (rs->remote_async_inferior_event_token);
7117 }
7118
7119 return r;
7120 }
7121
7122 /* Push a fully parsed stop reply in the stop reply queue. Since we
7123 know that we now have at least one queued event left to pass to the
7124 core side, tell the event loop to get back to target_wait soon. */
7125
7126 void
7127 remote_target::push_stop_reply (struct stop_reply *new_event)
7128 {
7129 remote_state *rs = get_remote_state ();
7130 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7131
7132 if (notif_debug)
7133 fprintf_unfiltered (gdb_stdlog,
7134 "notif: push 'Stop' %s to queue %d\n",
7135 target_pid_to_str (new_event->ptid),
7136 int (rs->stop_reply_queue.size ()));
7137
7138 mark_async_event_handler (rs->remote_async_inferior_event_token);
7139 }
7140
7141 /* Returns true if we have a stop reply for PTID. */
7142
7143 int
7144 remote_target::peek_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 for (auto &event : rs->stop_reply_queue)
7148 if (ptid == event->ptid
7149 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7150 return 1;
7151 return 0;
7152 }
7153
7154 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7155 starting with P and ending with PEND matches PREFIX. */
7156
7157 static int
7158 strprefix (const char *p, const char *pend, const char *prefix)
7159 {
7160 for ( ; p < pend; p++, prefix++)
7161 if (*p != *prefix)
7162 return 0;
7163 return *prefix == '\0';
7164 }
7165
7166 /* Parse the stop reply in BUF. Either the function succeeds, and the
7167 result is stored in EVENT, or throws an error. */
7168
7169 void
7170 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7171 {
7172 remote_arch_state *rsa = NULL;
7173 ULONGEST addr;
7174 const char *p;
7175 int skipregs = 0;
7176
7177 event->ptid = null_ptid;
7178 event->rs = get_remote_state ();
7179 event->ws.kind = TARGET_WAITKIND_IGNORE;
7180 event->ws.value.integer = 0;
7181 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7182 event->regcache.clear ();
7183 event->core = -1;
7184
7185 switch (buf[0])
7186 {
7187 case 'T': /* Status with PC, SP, FP, ... */
7188 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7189 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7190 ss = signal number
7191 n... = register number
7192 r... = register contents
7193 */
7194
7195 p = &buf[3]; /* after Txx */
7196 while (*p)
7197 {
7198 const char *p1;
7199 int fieldsize;
7200
7201 p1 = strchr (p, ':');
7202 if (p1 == NULL)
7203 error (_("Malformed packet(a) (missing colon): %s\n\
7204 Packet: '%s'\n"),
7205 p, buf);
7206 if (p == p1)
7207 error (_("Malformed packet(a) (missing register number): %s\n\
7208 Packet: '%s'\n"),
7209 p, buf);
7210
7211 /* Some "registers" are actually extended stop information.
7212 Note if you're adding a new entry here: GDB 7.9 and
7213 earlier assume that all register "numbers" that start
7214 with an hex digit are real register numbers. Make sure
7215 the server only sends such a packet if it knows the
7216 client understands it. */
7217
7218 if (strprefix (p, p1, "thread"))
7219 event->ptid = read_ptid (++p1, &p);
7220 else if (strprefix (p, p1, "syscall_entry"))
7221 {
7222 ULONGEST sysno;
7223
7224 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7225 p = unpack_varlen_hex (++p1, &sysno);
7226 event->ws.value.syscall_number = (int) sysno;
7227 }
7228 else if (strprefix (p, p1, "syscall_return"))
7229 {
7230 ULONGEST sysno;
7231
7232 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7233 p = unpack_varlen_hex (++p1, &sysno);
7234 event->ws.value.syscall_number = (int) sysno;
7235 }
7236 else if (strprefix (p, p1, "watch")
7237 || strprefix (p, p1, "rwatch")
7238 || strprefix (p, p1, "awatch"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7241 p = unpack_varlen_hex (++p1, &addr);
7242 event->watch_data_address = (CORE_ADDR) addr;
7243 }
7244 else if (strprefix (p, p1, "swbreak"))
7245 {
7246 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7247
7248 /* Make sure the stub doesn't forget to indicate support
7249 with qSupported. */
7250 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7251 error (_("Unexpected swbreak stop reason"));
7252
7253 /* The value part is documented as "must be empty",
7254 though we ignore it, in case we ever decide to make
7255 use of it in a backward compatible way. */
7256 p = strchrnul (p1 + 1, ';');
7257 }
7258 else if (strprefix (p, p1, "hwbreak"))
7259 {
7260 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7261
7262 /* Make sure the stub doesn't forget to indicate support
7263 with qSupported. */
7264 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7265 error (_("Unexpected hwbreak stop reason"));
7266
7267 /* See above. */
7268 p = strchrnul (p1 + 1, ';');
7269 }
7270 else if (strprefix (p, p1, "library"))
7271 {
7272 event->ws.kind = TARGET_WAITKIND_LOADED;
7273 p = strchrnul (p1 + 1, ';');
7274 }
7275 else if (strprefix (p, p1, "replaylog"))
7276 {
7277 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7278 /* p1 will indicate "begin" or "end", but it makes
7279 no difference for now, so ignore it. */
7280 p = strchrnul (p1 + 1, ';');
7281 }
7282 else if (strprefix (p, p1, "core"))
7283 {
7284 ULONGEST c;
7285
7286 p = unpack_varlen_hex (++p1, &c);
7287 event->core = c;
7288 }
7289 else if (strprefix (p, p1, "fork"))
7290 {
7291 event->ws.value.related_pid = read_ptid (++p1, &p);
7292 event->ws.kind = TARGET_WAITKIND_FORKED;
7293 }
7294 else if (strprefix (p, p1, "vfork"))
7295 {
7296 event->ws.value.related_pid = read_ptid (++p1, &p);
7297 event->ws.kind = TARGET_WAITKIND_VFORKED;
7298 }
7299 else if (strprefix (p, p1, "vforkdone"))
7300 {
7301 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7302 p = strchrnul (p1 + 1, ';');
7303 }
7304 else if (strprefix (p, p1, "exec"))
7305 {
7306 ULONGEST ignored;
7307 int pathlen;
7308
7309 /* Determine the length of the execd pathname. */
7310 p = unpack_varlen_hex (++p1, &ignored);
7311 pathlen = (p - p1) / 2;
7312
7313 /* Save the pathname for event reporting and for
7314 the next run command. */
7315 char *pathname = (char *) xmalloc (pathlen + 1);
7316 struct cleanup *old_chain = make_cleanup (xfree, pathname);
7317 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7318 pathname[pathlen] = '\0';
7319 discard_cleanups (old_chain);
7320
7321 /* This is freed during event handling. */
7322 event->ws.value.execd_pathname = pathname;
7323 event->ws.kind = TARGET_WAITKIND_EXECD;
7324
7325 /* Skip the registers included in this packet, since
7326 they may be for an architecture different from the
7327 one used by the original program. */
7328 skipregs = 1;
7329 }
7330 else if (strprefix (p, p1, "create"))
7331 {
7332 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7333 p = strchrnul (p1 + 1, ';');
7334 }
7335 else
7336 {
7337 ULONGEST pnum;
7338 const char *p_temp;
7339
7340 if (skipregs)
7341 {
7342 p = strchrnul (p1 + 1, ';');
7343 p++;
7344 continue;
7345 }
7346
7347 /* Maybe a real ``P'' register number. */
7348 p_temp = unpack_varlen_hex (p, &pnum);
7349 /* If the first invalid character is the colon, we got a
7350 register number. Otherwise, it's an unknown stop
7351 reason. */
7352 if (p_temp == p1)
7353 {
7354 /* If we haven't parsed the event's thread yet, find
7355 it now, in order to find the architecture of the
7356 reported expedited registers. */
7357 if (event->ptid == null_ptid)
7358 {
7359 const char *thr = strstr (p1 + 1, ";thread:");
7360 if (thr != NULL)
7361 event->ptid = read_ptid (thr + strlen (";thread:"),
7362 NULL);
7363 else
7364 {
7365 /* Either the current thread hasn't changed,
7366 or the inferior is not multi-threaded.
7367 The event must be for the thread we last
7368 set as (or learned as being) current. */
7369 event->ptid = event->rs->general_thread;
7370 }
7371 }
7372
7373 if (rsa == NULL)
7374 {
7375 inferior *inf = (event->ptid == null_ptid
7376 ? NULL
7377 : find_inferior_ptid (event->ptid));
7378 /* If this is the first time we learn anything
7379 about this process, skip the registers
7380 included in this packet, since we don't yet
7381 know which architecture to use to parse them.
7382 We'll determine the architecture later when
7383 we process the stop reply and retrieve the
7384 target description, via
7385 remote_notice_new_inferior ->
7386 post_create_inferior. */
7387 if (inf == NULL)
7388 {
7389 p = strchrnul (p1 + 1, ';');
7390 p++;
7391 continue;
7392 }
7393
7394 event->arch = inf->gdbarch;
7395 rsa = event->rs->get_remote_arch_state (event->arch);
7396 }
7397
7398 packet_reg *reg
7399 = packet_reg_from_pnum (event->arch, rsa, pnum);
7400 cached_reg_t cached_reg;
7401
7402 if (reg == NULL)
7403 error (_("Remote sent bad register number %s: %s\n\
7404 Packet: '%s'\n"),
7405 hex_string (pnum), p, buf);
7406
7407 cached_reg.num = reg->regnum;
7408 cached_reg.data = (gdb_byte *)
7409 xmalloc (register_size (event->arch, reg->regnum));
7410
7411 p = p1 + 1;
7412 fieldsize = hex2bin (p, cached_reg.data,
7413 register_size (event->arch, reg->regnum));
7414 p += 2 * fieldsize;
7415 if (fieldsize < register_size (event->arch, reg->regnum))
7416 warning (_("Remote reply is too short: %s"), buf);
7417
7418 event->regcache.push_back (cached_reg);
7419 }
7420 else
7421 {
7422 /* Not a number. Silently skip unknown optional
7423 info. */
7424 p = strchrnul (p1 + 1, ';');
7425 }
7426 }
7427
7428 if (*p != ';')
7429 error (_("Remote register badly formatted: %s\nhere: %s"),
7430 buf, p);
7431 ++p;
7432 }
7433
7434 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7435 break;
7436
7437 /* fall through */
7438 case 'S': /* Old style status, just signal only. */
7439 {
7440 int sig;
7441
7442 event->ws.kind = TARGET_WAITKIND_STOPPED;
7443 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7444 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7445 event->ws.value.sig = (enum gdb_signal) sig;
7446 else
7447 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7448 }
7449 break;
7450 case 'w': /* Thread exited. */
7451 {
7452 ULONGEST value;
7453
7454 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7455 p = unpack_varlen_hex (&buf[1], &value);
7456 event->ws.value.integer = value;
7457 if (*p != ';')
7458 error (_("stop reply packet badly formatted: %s"), buf);
7459 event->ptid = read_ptid (++p, NULL);
7460 break;
7461 }
7462 case 'W': /* Target exited. */
7463 case 'X':
7464 {
7465 int pid;
7466 ULONGEST value;
7467
7468 /* GDB used to accept only 2 hex chars here. Stubs should
7469 only send more if they detect GDB supports multi-process
7470 support. */
7471 p = unpack_varlen_hex (&buf[1], &value);
7472
7473 if (buf[0] == 'W')
7474 {
7475 /* The remote process exited. */
7476 event->ws.kind = TARGET_WAITKIND_EXITED;
7477 event->ws.value.integer = value;
7478 }
7479 else
7480 {
7481 /* The remote process exited with a signal. */
7482 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7483 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7484 event->ws.value.sig = (enum gdb_signal) value;
7485 else
7486 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7487 }
7488
7489 /* If no process is specified, assume inferior_ptid. */
7490 pid = inferior_ptid.pid ();
7491 if (*p == '\0')
7492 ;
7493 else if (*p == ';')
7494 {
7495 p++;
7496
7497 if (*p == '\0')
7498 ;
7499 else if (startswith (p, "process:"))
7500 {
7501 ULONGEST upid;
7502
7503 p += sizeof ("process:") - 1;
7504 unpack_varlen_hex (p, &upid);
7505 pid = upid;
7506 }
7507 else
7508 error (_("unknown stop reply packet: %s"), buf);
7509 }
7510 else
7511 error (_("unknown stop reply packet: %s"), buf);
7512 event->ptid = ptid_t (pid);
7513 }
7514 break;
7515 case 'N':
7516 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7517 event->ptid = minus_one_ptid;
7518 break;
7519 }
7520
7521 if (target_is_non_stop_p () && event->ptid == null_ptid)
7522 error (_("No process or thread specified in stop reply: %s"), buf);
7523 }
7524
7525 /* When the stub wants to tell GDB about a new notification reply, it
7526 sends a notification (%Stop, for example). Those can come it at
7527 any time, hence, we have to make sure that any pending
7528 putpkt/getpkt sequence we're making is finished, before querying
7529 the stub for more events with the corresponding ack command
7530 (vStopped, for example). E.g., if we started a vStopped sequence
7531 immediately upon receiving the notification, something like this
7532 could happen:
7533
7534 1.1) --> Hg 1
7535 1.2) <-- OK
7536 1.3) --> g
7537 1.4) <-- %Stop
7538 1.5) --> vStopped
7539 1.6) <-- (registers reply to step #1.3)
7540
7541 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7542 query.
7543
7544 To solve this, whenever we parse a %Stop notification successfully,
7545 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7546 doing whatever we were doing:
7547
7548 2.1) --> Hg 1
7549 2.2) <-- OK
7550 2.3) --> g
7551 2.4) <-- %Stop
7552 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7553 2.5) <-- (registers reply to step #2.3)
7554
7555 Eventualy after step #2.5, we return to the event loop, which
7556 notices there's an event on the
7557 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7558 associated callback --- the function below. At this point, we're
7559 always safe to start a vStopped sequence. :
7560
7561 2.6) --> vStopped
7562 2.7) <-- T05 thread:2
7563 2.8) --> vStopped
7564 2.9) --> OK
7565 */
7566
7567 void
7568 remote_target::remote_notif_get_pending_events (notif_client *nc)
7569 {
7570 struct remote_state *rs = get_remote_state ();
7571
7572 if (rs->notif_state->pending_event[nc->id] != NULL)
7573 {
7574 if (notif_debug)
7575 fprintf_unfiltered (gdb_stdlog,
7576 "notif: process: '%s' ack pending event\n",
7577 nc->name);
7578
7579 /* acknowledge */
7580 nc->ack (this, nc, rs->buf.data (),
7581 rs->notif_state->pending_event[nc->id]);
7582 rs->notif_state->pending_event[nc->id] = NULL;
7583
7584 while (1)
7585 {
7586 getpkt (&rs->buf, 0);
7587 if (strcmp (rs->buf.data (), "OK") == 0)
7588 break;
7589 else
7590 remote_notif_ack (this, nc, rs->buf.data ());
7591 }
7592 }
7593 else
7594 {
7595 if (notif_debug)
7596 fprintf_unfiltered (gdb_stdlog,
7597 "notif: process: '%s' no pending reply\n",
7598 nc->name);
7599 }
7600 }
7601
7602 /* Wrapper around remote_target::remote_notif_get_pending_events to
7603 avoid having to export the whole remote_target class. */
7604
7605 void
7606 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7607 {
7608 remote->remote_notif_get_pending_events (nc);
7609 }
7610
7611 /* Called when it is decided that STOP_REPLY holds the info of the
7612 event that is to be returned to the core. This function always
7613 destroys STOP_REPLY. */
7614
7615 ptid_t
7616 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7617 struct target_waitstatus *status)
7618 {
7619 ptid_t ptid;
7620
7621 *status = stop_reply->ws;
7622 ptid = stop_reply->ptid;
7623
7624 /* If no thread/process was reported by the stub, assume the current
7625 inferior. */
7626 if (ptid == null_ptid)
7627 ptid = inferior_ptid;
7628
7629 if (status->kind != TARGET_WAITKIND_EXITED
7630 && status->kind != TARGET_WAITKIND_SIGNALLED
7631 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7632 {
7633 /* Expedited registers. */
7634 if (!stop_reply->regcache.empty ())
7635 {
7636 struct regcache *regcache
7637 = get_thread_arch_regcache (ptid, stop_reply->arch);
7638
7639 for (cached_reg_t &reg : stop_reply->regcache)
7640 {
7641 regcache->raw_supply (reg.num, reg.data);
7642 xfree (reg.data);
7643 }
7644
7645 stop_reply->regcache.clear ();
7646 }
7647
7648 remote_notice_new_inferior (ptid, 0);
7649 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7650 remote_thr->core = stop_reply->core;
7651 remote_thr->stop_reason = stop_reply->stop_reason;
7652 remote_thr->watch_data_address = stop_reply->watch_data_address;
7653 remote_thr->vcont_resumed = 0;
7654 }
7655
7656 delete stop_reply;
7657 return ptid;
7658 }
7659
7660 /* The non-stop mode version of target_wait. */
7661
7662 ptid_t
7663 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7664 {
7665 struct remote_state *rs = get_remote_state ();
7666 struct stop_reply *stop_reply;
7667 int ret;
7668 int is_notif = 0;
7669
7670 /* If in non-stop mode, get out of getpkt even if a
7671 notification is received. */
7672
7673 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7674 while (1)
7675 {
7676 if (ret != -1 && !is_notif)
7677 switch (rs->buf[0])
7678 {
7679 case 'E': /* Error of some sort. */
7680 /* We're out of sync with the target now. Did it continue
7681 or not? We can't tell which thread it was in non-stop,
7682 so just ignore this. */
7683 warning (_("Remote failure reply: %s"), rs->buf.data ());
7684 break;
7685 case 'O': /* Console output. */
7686 remote_console_output (&rs->buf[1]);
7687 break;
7688 default:
7689 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7690 break;
7691 }
7692
7693 /* Acknowledge a pending stop reply that may have arrived in the
7694 mean time. */
7695 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7696 remote_notif_get_pending_events (&notif_client_stop);
7697
7698 /* If indeed we noticed a stop reply, we're done. */
7699 stop_reply = queued_stop_reply (ptid);
7700 if (stop_reply != NULL)
7701 return process_stop_reply (stop_reply, status);
7702
7703 /* Still no event. If we're just polling for an event, then
7704 return to the event loop. */
7705 if (options & TARGET_WNOHANG)
7706 {
7707 status->kind = TARGET_WAITKIND_IGNORE;
7708 return minus_one_ptid;
7709 }
7710
7711 /* Otherwise do a blocking wait. */
7712 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7713 }
7714 }
7715
7716 /* Wait until the remote machine stops, then return, storing status in
7717 STATUS just as `wait' would. */
7718
7719 ptid_t
7720 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7721 {
7722 struct remote_state *rs = get_remote_state ();
7723 ptid_t event_ptid = null_ptid;
7724 char *buf;
7725 struct stop_reply *stop_reply;
7726
7727 again:
7728
7729 status->kind = TARGET_WAITKIND_IGNORE;
7730 status->value.integer = 0;
7731
7732 stop_reply = queued_stop_reply (ptid);
7733 if (stop_reply != NULL)
7734 return process_stop_reply (stop_reply, status);
7735
7736 if (rs->cached_wait_status)
7737 /* Use the cached wait status, but only once. */
7738 rs->cached_wait_status = 0;
7739 else
7740 {
7741 int ret;
7742 int is_notif;
7743 int forever = ((options & TARGET_WNOHANG) == 0
7744 && rs->wait_forever_enabled_p);
7745
7746 if (!rs->waiting_for_stop_reply)
7747 {
7748 status->kind = TARGET_WAITKIND_NO_RESUMED;
7749 return minus_one_ptid;
7750 }
7751
7752 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7753 _never_ wait for ever -> test on target_is_async_p().
7754 However, before we do that we need to ensure that the caller
7755 knows how to take the target into/out of async mode. */
7756 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7757
7758 /* GDB gets a notification. Return to core as this event is
7759 not interesting. */
7760 if (ret != -1 && is_notif)
7761 return minus_one_ptid;
7762
7763 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7764 return minus_one_ptid;
7765 }
7766
7767 buf = rs->buf.data ();
7768
7769 /* Assume that the target has acknowledged Ctrl-C unless we receive
7770 an 'F' or 'O' packet. */
7771 if (buf[0] != 'F' && buf[0] != 'O')
7772 rs->ctrlc_pending_p = 0;
7773
7774 switch (buf[0])
7775 {
7776 case 'E': /* Error of some sort. */
7777 /* We're out of sync with the target now. Did it continue or
7778 not? Not is more likely, so report a stop. */
7779 rs->waiting_for_stop_reply = 0;
7780
7781 warning (_("Remote failure reply: %s"), buf);
7782 status->kind = TARGET_WAITKIND_STOPPED;
7783 status->value.sig = GDB_SIGNAL_0;
7784 break;
7785 case 'F': /* File-I/O request. */
7786 /* GDB may access the inferior memory while handling the File-I/O
7787 request, but we don't want GDB accessing memory while waiting
7788 for a stop reply. See the comments in putpkt_binary. Set
7789 waiting_for_stop_reply to 0 temporarily. */
7790 rs->waiting_for_stop_reply = 0;
7791 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7792 rs->ctrlc_pending_p = 0;
7793 /* GDB handled the File-I/O request, and the target is running
7794 again. Keep waiting for events. */
7795 rs->waiting_for_stop_reply = 1;
7796 break;
7797 case 'N': case 'T': case 'S': case 'X': case 'W':
7798 {
7799 /* There is a stop reply to handle. */
7800 rs->waiting_for_stop_reply = 0;
7801
7802 stop_reply
7803 = (struct stop_reply *) remote_notif_parse (this,
7804 &notif_client_stop,
7805 rs->buf.data ());
7806
7807 event_ptid = process_stop_reply (stop_reply, status);
7808 break;
7809 }
7810 case 'O': /* Console output. */
7811 remote_console_output (buf + 1);
7812 break;
7813 case '\0':
7814 if (rs->last_sent_signal != GDB_SIGNAL_0)
7815 {
7816 /* Zero length reply means that we tried 'S' or 'C' and the
7817 remote system doesn't support it. */
7818 target_terminal::ours_for_output ();
7819 printf_filtered
7820 ("Can't send signals to this remote system. %s not sent.\n",
7821 gdb_signal_to_name (rs->last_sent_signal));
7822 rs->last_sent_signal = GDB_SIGNAL_0;
7823 target_terminal::inferior ();
7824
7825 strcpy (buf, rs->last_sent_step ? "s" : "c");
7826 putpkt (buf);
7827 break;
7828 }
7829 /* fallthrough */
7830 default:
7831 warning (_("Invalid remote reply: %s"), buf);
7832 break;
7833 }
7834
7835 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7836 return minus_one_ptid;
7837 else if (status->kind == TARGET_WAITKIND_IGNORE)
7838 {
7839 /* Nothing interesting happened. If we're doing a non-blocking
7840 poll, we're done. Otherwise, go back to waiting. */
7841 if (options & TARGET_WNOHANG)
7842 return minus_one_ptid;
7843 else
7844 goto again;
7845 }
7846 else if (status->kind != TARGET_WAITKIND_EXITED
7847 && status->kind != TARGET_WAITKIND_SIGNALLED)
7848 {
7849 if (event_ptid != null_ptid)
7850 record_currthread (rs, event_ptid);
7851 else
7852 event_ptid = inferior_ptid;
7853 }
7854 else
7855 /* A process exit. Invalidate our notion of current thread. */
7856 record_currthread (rs, minus_one_ptid);
7857
7858 return event_ptid;
7859 }
7860
7861 /* Wait until the remote machine stops, then return, storing status in
7862 STATUS just as `wait' would. */
7863
7864 ptid_t
7865 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7866 {
7867 ptid_t event_ptid;
7868
7869 if (target_is_non_stop_p ())
7870 event_ptid = wait_ns (ptid, status, options);
7871 else
7872 event_ptid = wait_as (ptid, status, options);
7873
7874 if (target_is_async_p ())
7875 {
7876 remote_state *rs = get_remote_state ();
7877
7878 /* If there are are events left in the queue tell the event loop
7879 to return here. */
7880 if (!rs->stop_reply_queue.empty ())
7881 mark_async_event_handler (rs->remote_async_inferior_event_token);
7882 }
7883
7884 return event_ptid;
7885 }
7886
7887 /* Fetch a single register using a 'p' packet. */
7888
7889 int
7890 remote_target::fetch_register_using_p (struct regcache *regcache,
7891 packet_reg *reg)
7892 {
7893 struct gdbarch *gdbarch = regcache->arch ();
7894 struct remote_state *rs = get_remote_state ();
7895 char *buf, *p;
7896 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7897 int i;
7898
7899 if (packet_support (PACKET_p) == PACKET_DISABLE)
7900 return 0;
7901
7902 if (reg->pnum == -1)
7903 return 0;
7904
7905 p = rs->buf.data ();
7906 *p++ = 'p';
7907 p += hexnumstr (p, reg->pnum);
7908 *p++ = '\0';
7909 putpkt (rs->buf);
7910 getpkt (&rs->buf, 0);
7911
7912 buf = rs->buf.data ();
7913
7914 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7915 {
7916 case PACKET_OK:
7917 break;
7918 case PACKET_UNKNOWN:
7919 return 0;
7920 case PACKET_ERROR:
7921 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7922 gdbarch_register_name (regcache->arch (),
7923 reg->regnum),
7924 buf);
7925 }
7926
7927 /* If this register is unfetchable, tell the regcache. */
7928 if (buf[0] == 'x')
7929 {
7930 regcache->raw_supply (reg->regnum, NULL);
7931 return 1;
7932 }
7933
7934 /* Otherwise, parse and supply the value. */
7935 p = buf;
7936 i = 0;
7937 while (p[0] != 0)
7938 {
7939 if (p[1] == 0)
7940 error (_("fetch_register_using_p: early buf termination"));
7941
7942 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7943 p += 2;
7944 }
7945 regcache->raw_supply (reg->regnum, regp);
7946 return 1;
7947 }
7948
7949 /* Fetch the registers included in the target's 'g' packet. */
7950
7951 int
7952 remote_target::send_g_packet ()
7953 {
7954 struct remote_state *rs = get_remote_state ();
7955 int buf_len;
7956
7957 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7958 putpkt (rs->buf);
7959 getpkt (&rs->buf, 0);
7960 if (packet_check_result (rs->buf) == PACKET_ERROR)
7961 error (_("Could not read registers; remote failure reply '%s'"),
7962 rs->buf.data ());
7963
7964 /* We can get out of synch in various cases. If the first character
7965 in the buffer is not a hex character, assume that has happened
7966 and try to fetch another packet to read. */
7967 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7968 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7969 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7970 && rs->buf[0] != 'x') /* New: unavailable register value. */
7971 {
7972 if (remote_debug)
7973 fprintf_unfiltered (gdb_stdlog,
7974 "Bad register packet; fetching a new packet\n");
7975 getpkt (&rs->buf, 0);
7976 }
7977
7978 buf_len = strlen (rs->buf.data ());
7979
7980 /* Sanity check the received packet. */
7981 if (buf_len % 2 != 0)
7982 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7983
7984 return buf_len / 2;
7985 }
7986
7987 void
7988 remote_target::process_g_packet (struct regcache *regcache)
7989 {
7990 struct gdbarch *gdbarch = regcache->arch ();
7991 struct remote_state *rs = get_remote_state ();
7992 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7993 int i, buf_len;
7994 char *p;
7995 char *regs;
7996
7997 buf_len = strlen (rs->buf.data ());
7998
7999 /* Further sanity checks, with knowledge of the architecture. */
8000 if (buf_len > 2 * rsa->sizeof_g_packet)
8001 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8002 "bytes): %s"),
8003 rsa->sizeof_g_packet, buf_len / 2,
8004 rs->buf.data ());
8005
8006 /* Save the size of the packet sent to us by the target. It is used
8007 as a heuristic when determining the max size of packets that the
8008 target can safely receive. */
8009 if (rsa->actual_register_packet_size == 0)
8010 rsa->actual_register_packet_size = buf_len;
8011
8012 /* If this is smaller than we guessed the 'g' packet would be,
8013 update our records. A 'g' reply that doesn't include a register's
8014 value implies either that the register is not available, or that
8015 the 'p' packet must be used. */
8016 if (buf_len < 2 * rsa->sizeof_g_packet)
8017 {
8018 long sizeof_g_packet = buf_len / 2;
8019
8020 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8021 {
8022 long offset = rsa->regs[i].offset;
8023 long reg_size = register_size (gdbarch, i);
8024
8025 if (rsa->regs[i].pnum == -1)
8026 continue;
8027
8028 if (offset >= sizeof_g_packet)
8029 rsa->regs[i].in_g_packet = 0;
8030 else if (offset + reg_size > sizeof_g_packet)
8031 error (_("Truncated register %d in remote 'g' packet"), i);
8032 else
8033 rsa->regs[i].in_g_packet = 1;
8034 }
8035
8036 /* Looks valid enough, we can assume this is the correct length
8037 for a 'g' packet. It's important not to adjust
8038 rsa->sizeof_g_packet if we have truncated registers otherwise
8039 this "if" won't be run the next time the method is called
8040 with a packet of the same size and one of the internal errors
8041 below will trigger instead. */
8042 rsa->sizeof_g_packet = sizeof_g_packet;
8043 }
8044
8045 regs = (char *) alloca (rsa->sizeof_g_packet);
8046
8047 /* Unimplemented registers read as all bits zero. */
8048 memset (regs, 0, rsa->sizeof_g_packet);
8049
8050 /* Reply describes registers byte by byte, each byte encoded as two
8051 hex characters. Suck them all up, then supply them to the
8052 register cacheing/storage mechanism. */
8053
8054 p = rs->buf.data ();
8055 for (i = 0; i < rsa->sizeof_g_packet; i++)
8056 {
8057 if (p[0] == 0 || p[1] == 0)
8058 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8059 internal_error (__FILE__, __LINE__,
8060 _("unexpected end of 'g' packet reply"));
8061
8062 if (p[0] == 'x' && p[1] == 'x')
8063 regs[i] = 0; /* 'x' */
8064 else
8065 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8066 p += 2;
8067 }
8068
8069 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8070 {
8071 struct packet_reg *r = &rsa->regs[i];
8072 long reg_size = register_size (gdbarch, i);
8073
8074 if (r->in_g_packet)
8075 {
8076 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8077 /* This shouldn't happen - we adjusted in_g_packet above. */
8078 internal_error (__FILE__, __LINE__,
8079 _("unexpected end of 'g' packet reply"));
8080 else if (rs->buf[r->offset * 2] == 'x')
8081 {
8082 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8083 /* The register isn't available, mark it as such (at
8084 the same time setting the value to zero). */
8085 regcache->raw_supply (r->regnum, NULL);
8086 }
8087 else
8088 regcache->raw_supply (r->regnum, regs + r->offset);
8089 }
8090 }
8091 }
8092
8093 void
8094 remote_target::fetch_registers_using_g (struct regcache *regcache)
8095 {
8096 send_g_packet ();
8097 process_g_packet (regcache);
8098 }
8099
8100 /* Make the remote selected traceframe match GDB's selected
8101 traceframe. */
8102
8103 void
8104 remote_target::set_remote_traceframe ()
8105 {
8106 int newnum;
8107 struct remote_state *rs = get_remote_state ();
8108
8109 if (rs->remote_traceframe_number == get_traceframe_number ())
8110 return;
8111
8112 /* Avoid recursion, remote_trace_find calls us again. */
8113 rs->remote_traceframe_number = get_traceframe_number ();
8114
8115 newnum = target_trace_find (tfind_number,
8116 get_traceframe_number (), 0, 0, NULL);
8117
8118 /* Should not happen. If it does, all bets are off. */
8119 if (newnum != get_traceframe_number ())
8120 warning (_("could not set remote traceframe"));
8121 }
8122
8123 void
8124 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8125 {
8126 struct gdbarch *gdbarch = regcache->arch ();
8127 struct remote_state *rs = get_remote_state ();
8128 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8129 int i;
8130
8131 set_remote_traceframe ();
8132 set_general_thread (regcache->ptid ());
8133
8134 if (regnum >= 0)
8135 {
8136 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8137
8138 gdb_assert (reg != NULL);
8139
8140 /* If this register might be in the 'g' packet, try that first -
8141 we are likely to read more than one register. If this is the
8142 first 'g' packet, we might be overly optimistic about its
8143 contents, so fall back to 'p'. */
8144 if (reg->in_g_packet)
8145 {
8146 fetch_registers_using_g (regcache);
8147 if (reg->in_g_packet)
8148 return;
8149 }
8150
8151 if (fetch_register_using_p (regcache, reg))
8152 return;
8153
8154 /* This register is not available. */
8155 regcache->raw_supply (reg->regnum, NULL);
8156
8157 return;
8158 }
8159
8160 fetch_registers_using_g (regcache);
8161
8162 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8163 if (!rsa->regs[i].in_g_packet)
8164 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8165 {
8166 /* This register is not available. */
8167 regcache->raw_supply (i, NULL);
8168 }
8169 }
8170
8171 /* Prepare to store registers. Since we may send them all (using a
8172 'G' request), we have to read out the ones we don't want to change
8173 first. */
8174
8175 void
8176 remote_target::prepare_to_store (struct regcache *regcache)
8177 {
8178 struct remote_state *rs = get_remote_state ();
8179 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8180 int i;
8181
8182 /* Make sure the entire registers array is valid. */
8183 switch (packet_support (PACKET_P))
8184 {
8185 case PACKET_DISABLE:
8186 case PACKET_SUPPORT_UNKNOWN:
8187 /* Make sure all the necessary registers are cached. */
8188 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8189 if (rsa->regs[i].in_g_packet)
8190 regcache->raw_update (rsa->regs[i].regnum);
8191 break;
8192 case PACKET_ENABLE:
8193 break;
8194 }
8195 }
8196
8197 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8198 packet was not recognized. */
8199
8200 int
8201 remote_target::store_register_using_P (const struct regcache *regcache,
8202 packet_reg *reg)
8203 {
8204 struct gdbarch *gdbarch = regcache->arch ();
8205 struct remote_state *rs = get_remote_state ();
8206 /* Try storing a single register. */
8207 char *buf = rs->buf.data ();
8208 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8209 char *p;
8210
8211 if (packet_support (PACKET_P) == PACKET_DISABLE)
8212 return 0;
8213
8214 if (reg->pnum == -1)
8215 return 0;
8216
8217 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8218 p = buf + strlen (buf);
8219 regcache->raw_collect (reg->regnum, regp);
8220 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8221 putpkt (rs->buf);
8222 getpkt (&rs->buf, 0);
8223
8224 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8225 {
8226 case PACKET_OK:
8227 return 1;
8228 case PACKET_ERROR:
8229 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8230 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8231 case PACKET_UNKNOWN:
8232 return 0;
8233 default:
8234 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8235 }
8236 }
8237
8238 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8239 contents of the register cache buffer. FIXME: ignores errors. */
8240
8241 void
8242 remote_target::store_registers_using_G (const struct regcache *regcache)
8243 {
8244 struct remote_state *rs = get_remote_state ();
8245 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8246 gdb_byte *regs;
8247 char *p;
8248
8249 /* Extract all the registers in the regcache copying them into a
8250 local buffer. */
8251 {
8252 int i;
8253
8254 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8255 memset (regs, 0, rsa->sizeof_g_packet);
8256 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8257 {
8258 struct packet_reg *r = &rsa->regs[i];
8259
8260 if (r->in_g_packet)
8261 regcache->raw_collect (r->regnum, regs + r->offset);
8262 }
8263 }
8264
8265 /* Command describes registers byte by byte,
8266 each byte encoded as two hex characters. */
8267 p = rs->buf.data ();
8268 *p++ = 'G';
8269 bin2hex (regs, p, rsa->sizeof_g_packet);
8270 putpkt (rs->buf);
8271 getpkt (&rs->buf, 0);
8272 if (packet_check_result (rs->buf) == PACKET_ERROR)
8273 error (_("Could not write registers; remote failure reply '%s'"),
8274 rs->buf.data ());
8275 }
8276
8277 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8278 of the register cache buffer. FIXME: ignores errors. */
8279
8280 void
8281 remote_target::store_registers (struct regcache *regcache, int regnum)
8282 {
8283 struct gdbarch *gdbarch = regcache->arch ();
8284 struct remote_state *rs = get_remote_state ();
8285 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8286 int i;
8287
8288 set_remote_traceframe ();
8289 set_general_thread (regcache->ptid ());
8290
8291 if (regnum >= 0)
8292 {
8293 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8294
8295 gdb_assert (reg != NULL);
8296
8297 /* Always prefer to store registers using the 'P' packet if
8298 possible; we often change only a small number of registers.
8299 Sometimes we change a larger number; we'd need help from a
8300 higher layer to know to use 'G'. */
8301 if (store_register_using_P (regcache, reg))
8302 return;
8303
8304 /* For now, don't complain if we have no way to write the
8305 register. GDB loses track of unavailable registers too
8306 easily. Some day, this may be an error. We don't have
8307 any way to read the register, either... */
8308 if (!reg->in_g_packet)
8309 return;
8310
8311 store_registers_using_G (regcache);
8312 return;
8313 }
8314
8315 store_registers_using_G (regcache);
8316
8317 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8318 if (!rsa->regs[i].in_g_packet)
8319 if (!store_register_using_P (regcache, &rsa->regs[i]))
8320 /* See above for why we do not issue an error here. */
8321 continue;
8322 }
8323 \f
8324
8325 /* Return the number of hex digits in num. */
8326
8327 static int
8328 hexnumlen (ULONGEST num)
8329 {
8330 int i;
8331
8332 for (i = 0; num != 0; i++)
8333 num >>= 4;
8334
8335 return std::max (i, 1);
8336 }
8337
8338 /* Set BUF to the minimum number of hex digits representing NUM. */
8339
8340 static int
8341 hexnumstr (char *buf, ULONGEST num)
8342 {
8343 int len = hexnumlen (num);
8344
8345 return hexnumnstr (buf, num, len);
8346 }
8347
8348
8349 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8350
8351 static int
8352 hexnumnstr (char *buf, ULONGEST num, int width)
8353 {
8354 int i;
8355
8356 buf[width] = '\0';
8357
8358 for (i = width - 1; i >= 0; i--)
8359 {
8360 buf[i] = "0123456789abcdef"[(num & 0xf)];
8361 num >>= 4;
8362 }
8363
8364 return width;
8365 }
8366
8367 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8368
8369 static CORE_ADDR
8370 remote_address_masked (CORE_ADDR addr)
8371 {
8372 unsigned int address_size = remote_address_size;
8373
8374 /* If "remoteaddresssize" was not set, default to target address size. */
8375 if (!address_size)
8376 address_size = gdbarch_addr_bit (target_gdbarch ());
8377
8378 if (address_size > 0
8379 && address_size < (sizeof (ULONGEST) * 8))
8380 {
8381 /* Only create a mask when that mask can safely be constructed
8382 in a ULONGEST variable. */
8383 ULONGEST mask = 1;
8384
8385 mask = (mask << address_size) - 1;
8386 addr &= mask;
8387 }
8388 return addr;
8389 }
8390
8391 /* Determine whether the remote target supports binary downloading.
8392 This is accomplished by sending a no-op memory write of zero length
8393 to the target at the specified address. It does not suffice to send
8394 the whole packet, since many stubs strip the eighth bit and
8395 subsequently compute a wrong checksum, which causes real havoc with
8396 remote_write_bytes.
8397
8398 NOTE: This can still lose if the serial line is not eight-bit
8399 clean. In cases like this, the user should clear "remote
8400 X-packet". */
8401
8402 void
8403 remote_target::check_binary_download (CORE_ADDR addr)
8404 {
8405 struct remote_state *rs = get_remote_state ();
8406
8407 switch (packet_support (PACKET_X))
8408 {
8409 case PACKET_DISABLE:
8410 break;
8411 case PACKET_ENABLE:
8412 break;
8413 case PACKET_SUPPORT_UNKNOWN:
8414 {
8415 char *p;
8416
8417 p = rs->buf.data ();
8418 *p++ = 'X';
8419 p += hexnumstr (p, (ULONGEST) addr);
8420 *p++ = ',';
8421 p += hexnumstr (p, (ULONGEST) 0);
8422 *p++ = ':';
8423 *p = '\0';
8424
8425 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8426 getpkt (&rs->buf, 0);
8427
8428 if (rs->buf[0] == '\0')
8429 {
8430 if (remote_debug)
8431 fprintf_unfiltered (gdb_stdlog,
8432 "binary downloading NOT "
8433 "supported by target\n");
8434 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8435 }
8436 else
8437 {
8438 if (remote_debug)
8439 fprintf_unfiltered (gdb_stdlog,
8440 "binary downloading supported by target\n");
8441 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8442 }
8443 break;
8444 }
8445 }
8446 }
8447
8448 /* Helper function to resize the payload in order to try to get a good
8449 alignment. We try to write an amount of data such that the next write will
8450 start on an address aligned on REMOTE_ALIGN_WRITES. */
8451
8452 static int
8453 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8454 {
8455 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8456 }
8457
8458 /* Write memory data directly to the remote machine.
8459 This does not inform the data cache; the data cache uses this.
8460 HEADER is the starting part of the packet.
8461 MEMADDR is the address in the remote memory space.
8462 MYADDR is the address of the buffer in our space.
8463 LEN_UNITS is the number of addressable units to write.
8464 UNIT_SIZE is the length in bytes of an addressable unit.
8465 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8466 should send data as binary ('X'), or hex-encoded ('M').
8467
8468 The function creates packet of the form
8469 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8470
8471 where encoding of <DATA> is terminated by PACKET_FORMAT.
8472
8473 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8474 are omitted.
8475
8476 Return the transferred status, error or OK (an
8477 'enum target_xfer_status' value). Save the number of addressable units
8478 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8479
8480 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8481 exchange between gdb and the stub could look like (?? in place of the
8482 checksum):
8483
8484 -> $m1000,4#??
8485 <- aaaabbbbccccdddd
8486
8487 -> $M1000,3:eeeeffffeeee#??
8488 <- OK
8489
8490 -> $m1000,4#??
8491 <- eeeeffffeeeedddd */
8492
8493 target_xfer_status
8494 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8495 const gdb_byte *myaddr,
8496 ULONGEST len_units,
8497 int unit_size,
8498 ULONGEST *xfered_len_units,
8499 char packet_format, int use_length)
8500 {
8501 struct remote_state *rs = get_remote_state ();
8502 char *p;
8503 char *plen = NULL;
8504 int plenlen = 0;
8505 int todo_units;
8506 int units_written;
8507 int payload_capacity_bytes;
8508 int payload_length_bytes;
8509
8510 if (packet_format != 'X' && packet_format != 'M')
8511 internal_error (__FILE__, __LINE__,
8512 _("remote_write_bytes_aux: bad packet format"));
8513
8514 if (len_units == 0)
8515 return TARGET_XFER_EOF;
8516
8517 payload_capacity_bytes = get_memory_write_packet_size ();
8518
8519 /* The packet buffer will be large enough for the payload;
8520 get_memory_packet_size ensures this. */
8521 rs->buf[0] = '\0';
8522
8523 /* Compute the size of the actual payload by subtracting out the
8524 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8525
8526 payload_capacity_bytes -= strlen ("$,:#NN");
8527 if (!use_length)
8528 /* The comma won't be used. */
8529 payload_capacity_bytes += 1;
8530 payload_capacity_bytes -= strlen (header);
8531 payload_capacity_bytes -= hexnumlen (memaddr);
8532
8533 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8534
8535 strcat (rs->buf.data (), header);
8536 p = rs->buf.data () + strlen (header);
8537
8538 /* Compute a best guess of the number of bytes actually transfered. */
8539 if (packet_format == 'X')
8540 {
8541 /* Best guess at number of bytes that will fit. */
8542 todo_units = std::min (len_units,
8543 (ULONGEST) payload_capacity_bytes / unit_size);
8544 if (use_length)
8545 payload_capacity_bytes -= hexnumlen (todo_units);
8546 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8547 }
8548 else
8549 {
8550 /* Number of bytes that will fit. */
8551 todo_units
8552 = std::min (len_units,
8553 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8554 if (use_length)
8555 payload_capacity_bytes -= hexnumlen (todo_units);
8556 todo_units = std::min (todo_units,
8557 (payload_capacity_bytes / unit_size) / 2);
8558 }
8559
8560 if (todo_units <= 0)
8561 internal_error (__FILE__, __LINE__,
8562 _("minimum packet size too small to write data"));
8563
8564 /* If we already need another packet, then try to align the end
8565 of this packet to a useful boundary. */
8566 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8567 todo_units = align_for_efficient_write (todo_units, memaddr);
8568
8569 /* Append "<memaddr>". */
8570 memaddr = remote_address_masked (memaddr);
8571 p += hexnumstr (p, (ULONGEST) memaddr);
8572
8573 if (use_length)
8574 {
8575 /* Append ",". */
8576 *p++ = ',';
8577
8578 /* Append the length and retain its location and size. It may need to be
8579 adjusted once the packet body has been created. */
8580 plen = p;
8581 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8582 p += plenlen;
8583 }
8584
8585 /* Append ":". */
8586 *p++ = ':';
8587 *p = '\0';
8588
8589 /* Append the packet body. */
8590 if (packet_format == 'X')
8591 {
8592 /* Binary mode. Send target system values byte by byte, in
8593 increasing byte addresses. Only escape certain critical
8594 characters. */
8595 payload_length_bytes =
8596 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8597 &units_written, payload_capacity_bytes);
8598
8599 /* If not all TODO units fit, then we'll need another packet. Make
8600 a second try to keep the end of the packet aligned. Don't do
8601 this if the packet is tiny. */
8602 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8603 {
8604 int new_todo_units;
8605
8606 new_todo_units = align_for_efficient_write (units_written, memaddr);
8607
8608 if (new_todo_units != units_written)
8609 payload_length_bytes =
8610 remote_escape_output (myaddr, new_todo_units, unit_size,
8611 (gdb_byte *) p, &units_written,
8612 payload_capacity_bytes);
8613 }
8614
8615 p += payload_length_bytes;
8616 if (use_length && units_written < todo_units)
8617 {
8618 /* Escape chars have filled up the buffer prematurely,
8619 and we have actually sent fewer units than planned.
8620 Fix-up the length field of the packet. Use the same
8621 number of characters as before. */
8622 plen += hexnumnstr (plen, (ULONGEST) units_written,
8623 plenlen);
8624 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8625 }
8626 }
8627 else
8628 {
8629 /* Normal mode: Send target system values byte by byte, in
8630 increasing byte addresses. Each byte is encoded as a two hex
8631 value. */
8632 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8633 units_written = todo_units;
8634 }
8635
8636 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8637 getpkt (&rs->buf, 0);
8638
8639 if (rs->buf[0] == 'E')
8640 return TARGET_XFER_E_IO;
8641
8642 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8643 send fewer units than we'd planned. */
8644 *xfered_len_units = (ULONGEST) units_written;
8645 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8646 }
8647
8648 /* Write memory data directly to the remote machine.
8649 This does not inform the data cache; the data cache uses this.
8650 MEMADDR is the address in the remote memory space.
8651 MYADDR is the address of the buffer in our space.
8652 LEN is the number of bytes.
8653
8654 Return the transferred status, error or OK (an
8655 'enum target_xfer_status' value). Save the number of bytes
8656 transferred in *XFERED_LEN. Only transfer a single packet. */
8657
8658 target_xfer_status
8659 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8660 ULONGEST len, int unit_size,
8661 ULONGEST *xfered_len)
8662 {
8663 const char *packet_format = NULL;
8664
8665 /* Check whether the target supports binary download. */
8666 check_binary_download (memaddr);
8667
8668 switch (packet_support (PACKET_X))
8669 {
8670 case PACKET_ENABLE:
8671 packet_format = "X";
8672 break;
8673 case PACKET_DISABLE:
8674 packet_format = "M";
8675 break;
8676 case PACKET_SUPPORT_UNKNOWN:
8677 internal_error (__FILE__, __LINE__,
8678 _("remote_write_bytes: bad internal state"));
8679 default:
8680 internal_error (__FILE__, __LINE__, _("bad switch"));
8681 }
8682
8683 return remote_write_bytes_aux (packet_format,
8684 memaddr, myaddr, len, unit_size, xfered_len,
8685 packet_format[0], 1);
8686 }
8687
8688 /* Read memory data directly from the remote machine.
8689 This does not use the data cache; the data cache uses this.
8690 MEMADDR is the address in the remote memory space.
8691 MYADDR is the address of the buffer in our space.
8692 LEN_UNITS is the number of addressable memory units to read..
8693 UNIT_SIZE is the length in bytes of an addressable unit.
8694
8695 Return the transferred status, error or OK (an
8696 'enum target_xfer_status' value). Save the number of bytes
8697 transferred in *XFERED_LEN_UNITS.
8698
8699 See the comment of remote_write_bytes_aux for an example of
8700 memory read/write exchange between gdb and the stub. */
8701
8702 target_xfer_status
8703 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8704 ULONGEST len_units,
8705 int unit_size, ULONGEST *xfered_len_units)
8706 {
8707 struct remote_state *rs = get_remote_state ();
8708 int buf_size_bytes; /* Max size of packet output buffer. */
8709 char *p;
8710 int todo_units;
8711 int decoded_bytes;
8712
8713 buf_size_bytes = get_memory_read_packet_size ();
8714 /* The packet buffer will be large enough for the payload;
8715 get_memory_packet_size ensures this. */
8716
8717 /* Number of units that will fit. */
8718 todo_units = std::min (len_units,
8719 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8720
8721 /* Construct "m"<memaddr>","<len>". */
8722 memaddr = remote_address_masked (memaddr);
8723 p = rs->buf.data ();
8724 *p++ = 'm';
8725 p += hexnumstr (p, (ULONGEST) memaddr);
8726 *p++ = ',';
8727 p += hexnumstr (p, (ULONGEST) todo_units);
8728 *p = '\0';
8729 putpkt (rs->buf);
8730 getpkt (&rs->buf, 0);
8731 if (rs->buf[0] == 'E'
8732 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8733 && rs->buf[3] == '\0')
8734 return TARGET_XFER_E_IO;
8735 /* Reply describes memory byte by byte, each byte encoded as two hex
8736 characters. */
8737 p = rs->buf.data ();
8738 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8739 /* Return what we have. Let higher layers handle partial reads. */
8740 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8741 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8742 }
8743
8744 /* Using the set of read-only target sections of remote, read live
8745 read-only memory.
8746
8747 For interface/parameters/return description see target.h,
8748 to_xfer_partial. */
8749
8750 target_xfer_status
8751 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8752 ULONGEST memaddr,
8753 ULONGEST len,
8754 int unit_size,
8755 ULONGEST *xfered_len)
8756 {
8757 struct target_section *secp;
8758 struct target_section_table *table;
8759
8760 secp = target_section_by_addr (this, memaddr);
8761 if (secp != NULL
8762 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8763 secp->the_bfd_section)
8764 & SEC_READONLY))
8765 {
8766 struct target_section *p;
8767 ULONGEST memend = memaddr + len;
8768
8769 table = target_get_section_table (this);
8770
8771 for (p = table->sections; p < table->sections_end; p++)
8772 {
8773 if (memaddr >= p->addr)
8774 {
8775 if (memend <= p->endaddr)
8776 {
8777 /* Entire transfer is within this section. */
8778 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8779 xfered_len);
8780 }
8781 else if (memaddr >= p->endaddr)
8782 {
8783 /* This section ends before the transfer starts. */
8784 continue;
8785 }
8786 else
8787 {
8788 /* This section overlaps the transfer. Just do half. */
8789 len = p->endaddr - memaddr;
8790 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8791 xfered_len);
8792 }
8793 }
8794 }
8795 }
8796
8797 return TARGET_XFER_EOF;
8798 }
8799
8800 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8801 first if the requested memory is unavailable in traceframe.
8802 Otherwise, fall back to remote_read_bytes_1. */
8803
8804 target_xfer_status
8805 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8806 gdb_byte *myaddr, ULONGEST len, int unit_size,
8807 ULONGEST *xfered_len)
8808 {
8809 if (len == 0)
8810 return TARGET_XFER_EOF;
8811
8812 if (get_traceframe_number () != -1)
8813 {
8814 std::vector<mem_range> available;
8815
8816 /* If we fail to get the set of available memory, then the
8817 target does not support querying traceframe info, and so we
8818 attempt reading from the traceframe anyway (assuming the
8819 target implements the old QTro packet then). */
8820 if (traceframe_available_memory (&available, memaddr, len))
8821 {
8822 if (available.empty () || available[0].start != memaddr)
8823 {
8824 enum target_xfer_status res;
8825
8826 /* Don't read into the traceframe's available
8827 memory. */
8828 if (!available.empty ())
8829 {
8830 LONGEST oldlen = len;
8831
8832 len = available[0].start - memaddr;
8833 gdb_assert (len <= oldlen);
8834 }
8835
8836 /* This goes through the topmost target again. */
8837 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8838 len, unit_size, xfered_len);
8839 if (res == TARGET_XFER_OK)
8840 return TARGET_XFER_OK;
8841 else
8842 {
8843 /* No use trying further, we know some memory starting
8844 at MEMADDR isn't available. */
8845 *xfered_len = len;
8846 return (*xfered_len != 0) ?
8847 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8848 }
8849 }
8850
8851 /* Don't try to read more than how much is available, in
8852 case the target implements the deprecated QTro packet to
8853 cater for older GDBs (the target's knowledge of read-only
8854 sections may be outdated by now). */
8855 len = available[0].length;
8856 }
8857 }
8858
8859 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8860 }
8861
8862 \f
8863
8864 /* Sends a packet with content determined by the printf format string
8865 FORMAT and the remaining arguments, then gets the reply. Returns
8866 whether the packet was a success, a failure, or unknown. */
8867
8868 packet_result
8869 remote_target::remote_send_printf (const char *format, ...)
8870 {
8871 struct remote_state *rs = get_remote_state ();
8872 int max_size = get_remote_packet_size ();
8873 va_list ap;
8874
8875 va_start (ap, format);
8876
8877 rs->buf[0] = '\0';
8878 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8879
8880 va_end (ap);
8881
8882 if (size >= max_size)
8883 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8884
8885 if (putpkt (rs->buf) < 0)
8886 error (_("Communication problem with target."));
8887
8888 rs->buf[0] = '\0';
8889 getpkt (&rs->buf, 0);
8890
8891 return packet_check_result (rs->buf);
8892 }
8893
8894 /* Flash writing can take quite some time. We'll set
8895 effectively infinite timeout for flash operations.
8896 In future, we'll need to decide on a better approach. */
8897 static const int remote_flash_timeout = 1000;
8898
8899 void
8900 remote_target::flash_erase (ULONGEST address, LONGEST length)
8901 {
8902 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8903 enum packet_result ret;
8904 scoped_restore restore_timeout
8905 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8906
8907 ret = remote_send_printf ("vFlashErase:%s,%s",
8908 phex (address, addr_size),
8909 phex (length, 4));
8910 switch (ret)
8911 {
8912 case PACKET_UNKNOWN:
8913 error (_("Remote target does not support flash erase"));
8914 case PACKET_ERROR:
8915 error (_("Error erasing flash with vFlashErase packet"));
8916 default:
8917 break;
8918 }
8919 }
8920
8921 target_xfer_status
8922 remote_target::remote_flash_write (ULONGEST address,
8923 ULONGEST length, ULONGEST *xfered_len,
8924 const gdb_byte *data)
8925 {
8926 scoped_restore restore_timeout
8927 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8928 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8929 xfered_len,'X', 0);
8930 }
8931
8932 void
8933 remote_target::flash_done ()
8934 {
8935 int ret;
8936
8937 scoped_restore restore_timeout
8938 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8939
8940 ret = remote_send_printf ("vFlashDone");
8941
8942 switch (ret)
8943 {
8944 case PACKET_UNKNOWN:
8945 error (_("Remote target does not support vFlashDone"));
8946 case PACKET_ERROR:
8947 error (_("Error finishing flash operation"));
8948 default:
8949 break;
8950 }
8951 }
8952
8953 void
8954 remote_target::files_info ()
8955 {
8956 puts_filtered ("Debugging a target over a serial line.\n");
8957 }
8958 \f
8959 /* Stuff for dealing with the packets which are part of this protocol.
8960 See comment at top of file for details. */
8961
8962 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8963 error to higher layers. Called when a serial error is detected.
8964 The exception message is STRING, followed by a colon and a blank,
8965 the system error message for errno at function entry and final dot
8966 for output compatibility with throw_perror_with_name. */
8967
8968 static void
8969 unpush_and_perror (const char *string)
8970 {
8971 int saved_errno = errno;
8972
8973 remote_unpush_target ();
8974 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8975 safe_strerror (saved_errno));
8976 }
8977
8978 /* Read a single character from the remote end. The current quit
8979 handler is overridden to avoid quitting in the middle of packet
8980 sequence, as that would break communication with the remote server.
8981 See remote_serial_quit_handler for more detail. */
8982
8983 int
8984 remote_target::readchar (int timeout)
8985 {
8986 int ch;
8987 struct remote_state *rs = get_remote_state ();
8988
8989 {
8990 scoped_restore restore_quit_target
8991 = make_scoped_restore (&curr_quit_handler_target, this);
8992 scoped_restore restore_quit
8993 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8994
8995 rs->got_ctrlc_during_io = 0;
8996
8997 ch = serial_readchar (rs->remote_desc, timeout);
8998
8999 if (rs->got_ctrlc_during_io)
9000 set_quit_flag ();
9001 }
9002
9003 if (ch >= 0)
9004 return ch;
9005
9006 switch ((enum serial_rc) ch)
9007 {
9008 case SERIAL_EOF:
9009 remote_unpush_target ();
9010 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9011 /* no return */
9012 case SERIAL_ERROR:
9013 unpush_and_perror (_("Remote communication error. "
9014 "Target disconnected."));
9015 /* no return */
9016 case SERIAL_TIMEOUT:
9017 break;
9018 }
9019 return ch;
9020 }
9021
9022 /* Wrapper for serial_write that closes the target and throws if
9023 writing fails. The current quit handler is overridden to avoid
9024 quitting in the middle of packet sequence, as that would break
9025 communication with the remote server. See
9026 remote_serial_quit_handler for more detail. */
9027
9028 void
9029 remote_target::remote_serial_write (const char *str, int len)
9030 {
9031 struct remote_state *rs = get_remote_state ();
9032
9033 scoped_restore restore_quit_target
9034 = make_scoped_restore (&curr_quit_handler_target, this);
9035 scoped_restore restore_quit
9036 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9037
9038 rs->got_ctrlc_during_io = 0;
9039
9040 if (serial_write (rs->remote_desc, str, len))
9041 {
9042 unpush_and_perror (_("Remote communication error. "
9043 "Target disconnected."));
9044 }
9045
9046 if (rs->got_ctrlc_during_io)
9047 set_quit_flag ();
9048 }
9049
9050 /* Return a string representing an escaped version of BUF, of len N.
9051 E.g. \n is converted to \\n, \t to \\t, etc. */
9052
9053 static std::string
9054 escape_buffer (const char *buf, int n)
9055 {
9056 string_file stb;
9057
9058 stb.putstrn (buf, n, '\\');
9059 return std::move (stb.string ());
9060 }
9061
9062 /* Display a null-terminated packet on stdout, for debugging, using C
9063 string notation. */
9064
9065 static void
9066 print_packet (const char *buf)
9067 {
9068 puts_filtered ("\"");
9069 fputstr_filtered (buf, '"', gdb_stdout);
9070 puts_filtered ("\"");
9071 }
9072
9073 int
9074 remote_target::putpkt (const char *buf)
9075 {
9076 return putpkt_binary (buf, strlen (buf));
9077 }
9078
9079 /* Wrapper around remote_target::putpkt to avoid exporting
9080 remote_target. */
9081
9082 int
9083 putpkt (remote_target *remote, const char *buf)
9084 {
9085 return remote->putpkt (buf);
9086 }
9087
9088 /* Send a packet to the remote machine, with error checking. The data
9089 of the packet is in BUF. The string in BUF can be at most
9090 get_remote_packet_size () - 5 to account for the $, # and checksum,
9091 and for a possible /0 if we are debugging (remote_debug) and want
9092 to print the sent packet as a string. */
9093
9094 int
9095 remote_target::putpkt_binary (const char *buf, int cnt)
9096 {
9097 struct remote_state *rs = get_remote_state ();
9098 int i;
9099 unsigned char csum = 0;
9100 gdb::def_vector<char> data (cnt + 6);
9101 char *buf2 = data.data ();
9102
9103 int ch;
9104 int tcount = 0;
9105 char *p;
9106
9107 /* Catch cases like trying to read memory or listing threads while
9108 we're waiting for a stop reply. The remote server wouldn't be
9109 ready to handle this request, so we'd hang and timeout. We don't
9110 have to worry about this in synchronous mode, because in that
9111 case it's not possible to issue a command while the target is
9112 running. This is not a problem in non-stop mode, because in that
9113 case, the stub is always ready to process serial input. */
9114 if (!target_is_non_stop_p ()
9115 && target_is_async_p ()
9116 && rs->waiting_for_stop_reply)
9117 {
9118 error (_("Cannot execute this command while the target is running.\n"
9119 "Use the \"interrupt\" command to stop the target\n"
9120 "and then try again."));
9121 }
9122
9123 /* We're sending out a new packet. Make sure we don't look at a
9124 stale cached response. */
9125 rs->cached_wait_status = 0;
9126
9127 /* Copy the packet into buffer BUF2, encapsulating it
9128 and giving it a checksum. */
9129
9130 p = buf2;
9131 *p++ = '$';
9132
9133 for (i = 0; i < cnt; i++)
9134 {
9135 csum += buf[i];
9136 *p++ = buf[i];
9137 }
9138 *p++ = '#';
9139 *p++ = tohex ((csum >> 4) & 0xf);
9140 *p++ = tohex (csum & 0xf);
9141
9142 /* Send it over and over until we get a positive ack. */
9143
9144 while (1)
9145 {
9146 int started_error_output = 0;
9147
9148 if (remote_debug)
9149 {
9150 *p = '\0';
9151
9152 int len = (int) (p - buf2);
9153
9154 std::string str
9155 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9156
9157 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9158
9159 if (len > REMOTE_DEBUG_MAX_CHAR)
9160 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9161 len - REMOTE_DEBUG_MAX_CHAR);
9162
9163 fprintf_unfiltered (gdb_stdlog, "...");
9164
9165 gdb_flush (gdb_stdlog);
9166 }
9167 remote_serial_write (buf2, p - buf2);
9168
9169 /* If this is a no acks version of the remote protocol, send the
9170 packet and move on. */
9171 if (rs->noack_mode)
9172 break;
9173
9174 /* Read until either a timeout occurs (-2) or '+' is read.
9175 Handle any notification that arrives in the mean time. */
9176 while (1)
9177 {
9178 ch = readchar (remote_timeout);
9179
9180 if (remote_debug)
9181 {
9182 switch (ch)
9183 {
9184 case '+':
9185 case '-':
9186 case SERIAL_TIMEOUT:
9187 case '$':
9188 case '%':
9189 if (started_error_output)
9190 {
9191 putchar_unfiltered ('\n');
9192 started_error_output = 0;
9193 }
9194 }
9195 }
9196
9197 switch (ch)
9198 {
9199 case '+':
9200 if (remote_debug)
9201 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9202 return 1;
9203 case '-':
9204 if (remote_debug)
9205 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9206 /* FALLTHROUGH */
9207 case SERIAL_TIMEOUT:
9208 tcount++;
9209 if (tcount > 3)
9210 return 0;
9211 break; /* Retransmit buffer. */
9212 case '$':
9213 {
9214 if (remote_debug)
9215 fprintf_unfiltered (gdb_stdlog,
9216 "Packet instead of Ack, ignoring it\n");
9217 /* It's probably an old response sent because an ACK
9218 was lost. Gobble up the packet and ack it so it
9219 doesn't get retransmitted when we resend this
9220 packet. */
9221 skip_frame ();
9222 remote_serial_write ("+", 1);
9223 continue; /* Now, go look for +. */
9224 }
9225
9226 case '%':
9227 {
9228 int val;
9229
9230 /* If we got a notification, handle it, and go back to looking
9231 for an ack. */
9232 /* We've found the start of a notification. Now
9233 collect the data. */
9234 val = read_frame (&rs->buf);
9235 if (val >= 0)
9236 {
9237 if (remote_debug)
9238 {
9239 std::string str = escape_buffer (rs->buf.data (), val);
9240
9241 fprintf_unfiltered (gdb_stdlog,
9242 " Notification received: %s\n",
9243 str.c_str ());
9244 }
9245 handle_notification (rs->notif_state, rs->buf.data ());
9246 /* We're in sync now, rewait for the ack. */
9247 tcount = 0;
9248 }
9249 else
9250 {
9251 if (remote_debug)
9252 {
9253 if (!started_error_output)
9254 {
9255 started_error_output = 1;
9256 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9257 }
9258 fputc_unfiltered (ch & 0177, gdb_stdlog);
9259 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9260 }
9261 }
9262 continue;
9263 }
9264 /* fall-through */
9265 default:
9266 if (remote_debug)
9267 {
9268 if (!started_error_output)
9269 {
9270 started_error_output = 1;
9271 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9272 }
9273 fputc_unfiltered (ch & 0177, gdb_stdlog);
9274 }
9275 continue;
9276 }
9277 break; /* Here to retransmit. */
9278 }
9279
9280 #if 0
9281 /* This is wrong. If doing a long backtrace, the user should be
9282 able to get out next time we call QUIT, without anything as
9283 violent as interrupt_query. If we want to provide a way out of
9284 here without getting to the next QUIT, it should be based on
9285 hitting ^C twice as in remote_wait. */
9286 if (quit_flag)
9287 {
9288 quit_flag = 0;
9289 interrupt_query ();
9290 }
9291 #endif
9292 }
9293
9294 return 0;
9295 }
9296
9297 /* Come here after finding the start of a frame when we expected an
9298 ack. Do our best to discard the rest of this packet. */
9299
9300 void
9301 remote_target::skip_frame ()
9302 {
9303 int c;
9304
9305 while (1)
9306 {
9307 c = readchar (remote_timeout);
9308 switch (c)
9309 {
9310 case SERIAL_TIMEOUT:
9311 /* Nothing we can do. */
9312 return;
9313 case '#':
9314 /* Discard the two bytes of checksum and stop. */
9315 c = readchar (remote_timeout);
9316 if (c >= 0)
9317 c = readchar (remote_timeout);
9318
9319 return;
9320 case '*': /* Run length encoding. */
9321 /* Discard the repeat count. */
9322 c = readchar (remote_timeout);
9323 if (c < 0)
9324 return;
9325 break;
9326 default:
9327 /* A regular character. */
9328 break;
9329 }
9330 }
9331 }
9332
9333 /* Come here after finding the start of the frame. Collect the rest
9334 into *BUF, verifying the checksum, length, and handling run-length
9335 compression. NUL terminate the buffer. If there is not enough room,
9336 expand *BUF.
9337
9338 Returns -1 on error, number of characters in buffer (ignoring the
9339 trailing NULL) on success. (could be extended to return one of the
9340 SERIAL status indications). */
9341
9342 long
9343 remote_target::read_frame (gdb::char_vector *buf_p)
9344 {
9345 unsigned char csum;
9346 long bc;
9347 int c;
9348 char *buf = buf_p->data ();
9349 struct remote_state *rs = get_remote_state ();
9350
9351 csum = 0;
9352 bc = 0;
9353
9354 while (1)
9355 {
9356 c = readchar (remote_timeout);
9357 switch (c)
9358 {
9359 case SERIAL_TIMEOUT:
9360 if (remote_debug)
9361 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9362 return -1;
9363 case '$':
9364 if (remote_debug)
9365 fputs_filtered ("Saw new packet start in middle of old one\n",
9366 gdb_stdlog);
9367 return -1; /* Start a new packet, count retries. */
9368 case '#':
9369 {
9370 unsigned char pktcsum;
9371 int check_0 = 0;
9372 int check_1 = 0;
9373
9374 buf[bc] = '\0';
9375
9376 check_0 = readchar (remote_timeout);
9377 if (check_0 >= 0)
9378 check_1 = readchar (remote_timeout);
9379
9380 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9381 {
9382 if (remote_debug)
9383 fputs_filtered ("Timeout in checksum, retrying\n",
9384 gdb_stdlog);
9385 return -1;
9386 }
9387 else if (check_0 < 0 || check_1 < 0)
9388 {
9389 if (remote_debug)
9390 fputs_filtered ("Communication error in checksum\n",
9391 gdb_stdlog);
9392 return -1;
9393 }
9394
9395 /* Don't recompute the checksum; with no ack packets we
9396 don't have any way to indicate a packet retransmission
9397 is necessary. */
9398 if (rs->noack_mode)
9399 return bc;
9400
9401 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9402 if (csum == pktcsum)
9403 return bc;
9404
9405 if (remote_debug)
9406 {
9407 std::string str = escape_buffer (buf, bc);
9408
9409 fprintf_unfiltered (gdb_stdlog,
9410 "Bad checksum, sentsum=0x%x, "
9411 "csum=0x%x, buf=%s\n",
9412 pktcsum, csum, str.c_str ());
9413 }
9414 /* Number of characters in buffer ignoring trailing
9415 NULL. */
9416 return -1;
9417 }
9418 case '*': /* Run length encoding. */
9419 {
9420 int repeat;
9421
9422 csum += c;
9423 c = readchar (remote_timeout);
9424 csum += c;
9425 repeat = c - ' ' + 3; /* Compute repeat count. */
9426
9427 /* The character before ``*'' is repeated. */
9428
9429 if (repeat > 0 && repeat <= 255 && bc > 0)
9430 {
9431 if (bc + repeat - 1 >= buf_p->size () - 1)
9432 {
9433 /* Make some more room in the buffer. */
9434 buf_p->resize (buf_p->size () + repeat);
9435 buf = buf_p->data ();
9436 }
9437
9438 memset (&buf[bc], buf[bc - 1], repeat);
9439 bc += repeat;
9440 continue;
9441 }
9442
9443 buf[bc] = '\0';
9444 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9445 return -1;
9446 }
9447 default:
9448 if (bc >= buf_p->size () - 1)
9449 {
9450 /* Make some more room in the buffer. */
9451 buf_p->resize (buf_p->size () * 2);
9452 buf = buf_p->data ();
9453 }
9454
9455 buf[bc++] = c;
9456 csum += c;
9457 continue;
9458 }
9459 }
9460 }
9461
9462 /* Read a packet from the remote machine, with error checking, and
9463 store it in *BUF. Resize *BUF if necessary to hold the result. If
9464 FOREVER, wait forever rather than timing out; this is used (in
9465 synchronous mode) to wait for a target that is is executing user
9466 code to stop. */
9467 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9468 don't have to change all the calls to getpkt to deal with the
9469 return value, because at the moment I don't know what the right
9470 thing to do it for those. */
9471
9472 void
9473 remote_target::getpkt (gdb::char_vector *buf, int forever)
9474 {
9475 getpkt_sane (buf, forever);
9476 }
9477
9478
9479 /* Read a packet from the remote machine, with error checking, and
9480 store it in *BUF. Resize *BUF if necessary to hold the result. If
9481 FOREVER, wait forever rather than timing out; this is used (in
9482 synchronous mode) to wait for a target that is is executing user
9483 code to stop. If FOREVER == 0, this function is allowed to time
9484 out gracefully and return an indication of this to the caller.
9485 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9486 consider receiving a notification enough reason to return to the
9487 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9488 holds a notification or not (a regular packet). */
9489
9490 int
9491 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9492 int forever, int expecting_notif,
9493 int *is_notif)
9494 {
9495 struct remote_state *rs = get_remote_state ();
9496 int c;
9497 int tries;
9498 int timeout;
9499 int val = -1;
9500
9501 /* We're reading a new response. Make sure we don't look at a
9502 previously cached response. */
9503 rs->cached_wait_status = 0;
9504
9505 strcpy (buf->data (), "timeout");
9506
9507 if (forever)
9508 timeout = watchdog > 0 ? watchdog : -1;
9509 else if (expecting_notif)
9510 timeout = 0; /* There should already be a char in the buffer. If
9511 not, bail out. */
9512 else
9513 timeout = remote_timeout;
9514
9515 #define MAX_TRIES 3
9516
9517 /* Process any number of notifications, and then return when
9518 we get a packet. */
9519 for (;;)
9520 {
9521 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9522 times. */
9523 for (tries = 1; tries <= MAX_TRIES; tries++)
9524 {
9525 /* This can loop forever if the remote side sends us
9526 characters continuously, but if it pauses, we'll get
9527 SERIAL_TIMEOUT from readchar because of timeout. Then
9528 we'll count that as a retry.
9529
9530 Note that even when forever is set, we will only wait
9531 forever prior to the start of a packet. After that, we
9532 expect characters to arrive at a brisk pace. They should
9533 show up within remote_timeout intervals. */
9534 do
9535 c = readchar (timeout);
9536 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9537
9538 if (c == SERIAL_TIMEOUT)
9539 {
9540 if (expecting_notif)
9541 return -1; /* Don't complain, it's normal to not get
9542 anything in this case. */
9543
9544 if (forever) /* Watchdog went off? Kill the target. */
9545 {
9546 remote_unpush_target ();
9547 throw_error (TARGET_CLOSE_ERROR,
9548 _("Watchdog timeout has expired. "
9549 "Target detached."));
9550 }
9551 if (remote_debug)
9552 fputs_filtered ("Timed out.\n", gdb_stdlog);
9553 }
9554 else
9555 {
9556 /* We've found the start of a packet or notification.
9557 Now collect the data. */
9558 val = read_frame (buf);
9559 if (val >= 0)
9560 break;
9561 }
9562
9563 remote_serial_write ("-", 1);
9564 }
9565
9566 if (tries > MAX_TRIES)
9567 {
9568 /* We have tried hard enough, and just can't receive the
9569 packet/notification. Give up. */
9570 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9571
9572 /* Skip the ack char if we're in no-ack mode. */
9573 if (!rs->noack_mode)
9574 remote_serial_write ("+", 1);
9575 return -1;
9576 }
9577
9578 /* If we got an ordinary packet, return that to our caller. */
9579 if (c == '$')
9580 {
9581 if (remote_debug)
9582 {
9583 std::string str
9584 = escape_buffer (buf->data (),
9585 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9586
9587 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9588 str.c_str ());
9589
9590 if (val > REMOTE_DEBUG_MAX_CHAR)
9591 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9592 val - REMOTE_DEBUG_MAX_CHAR);
9593
9594 fprintf_unfiltered (gdb_stdlog, "\n");
9595 }
9596
9597 /* Skip the ack char if we're in no-ack mode. */
9598 if (!rs->noack_mode)
9599 remote_serial_write ("+", 1);
9600 if (is_notif != NULL)
9601 *is_notif = 0;
9602 return val;
9603 }
9604
9605 /* If we got a notification, handle it, and go back to looking
9606 for a packet. */
9607 else
9608 {
9609 gdb_assert (c == '%');
9610
9611 if (remote_debug)
9612 {
9613 std::string str = escape_buffer (buf->data (), val);
9614
9615 fprintf_unfiltered (gdb_stdlog,
9616 " Notification received: %s\n",
9617 str.c_str ());
9618 }
9619 if (is_notif != NULL)
9620 *is_notif = 1;
9621
9622 handle_notification (rs->notif_state, buf->data ());
9623
9624 /* Notifications require no acknowledgement. */
9625
9626 if (expecting_notif)
9627 return val;
9628 }
9629 }
9630 }
9631
9632 int
9633 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9634 {
9635 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9636 }
9637
9638 int
9639 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9640 int *is_notif)
9641 {
9642 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9643 }
9644
9645 /* Kill any new fork children of process PID that haven't been
9646 processed by follow_fork. */
9647
9648 void
9649 remote_target::kill_new_fork_children (int pid)
9650 {
9651 remote_state *rs = get_remote_state ();
9652 struct notif_client *notif = &notif_client_stop;
9653
9654 /* Kill the fork child threads of any threads in process PID
9655 that are stopped at a fork event. */
9656 for (thread_info *thread : all_non_exited_threads ())
9657 {
9658 struct target_waitstatus *ws = &thread->pending_follow;
9659
9660 if (is_pending_fork_parent (ws, pid, thread->ptid))
9661 {
9662 int child_pid = ws->value.related_pid.pid ();
9663 int res;
9664
9665 res = remote_vkill (child_pid);
9666 if (res != 0)
9667 error (_("Can't kill fork child process %d"), child_pid);
9668 }
9669 }
9670
9671 /* Check for any pending fork events (not reported or processed yet)
9672 in process PID and kill those fork child threads as well. */
9673 remote_notif_get_pending_events (notif);
9674 for (auto &event : rs->stop_reply_queue)
9675 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9676 {
9677 int child_pid = event->ws.value.related_pid.pid ();
9678 int res;
9679
9680 res = remote_vkill (child_pid);
9681 if (res != 0)
9682 error (_("Can't kill fork child process %d"), child_pid);
9683 }
9684 }
9685
9686 \f
9687 /* Target hook to kill the current inferior. */
9688
9689 void
9690 remote_target::kill ()
9691 {
9692 int res = -1;
9693 int pid = inferior_ptid.pid ();
9694 struct remote_state *rs = get_remote_state ();
9695
9696 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9697 {
9698 /* If we're stopped while forking and we haven't followed yet,
9699 kill the child task. We need to do this before killing the
9700 parent task because if this is a vfork then the parent will
9701 be sleeping. */
9702 kill_new_fork_children (pid);
9703
9704 res = remote_vkill (pid);
9705 if (res == 0)
9706 {
9707 target_mourn_inferior (inferior_ptid);
9708 return;
9709 }
9710 }
9711
9712 /* If we are in 'target remote' mode and we are killing the only
9713 inferior, then we will tell gdbserver to exit and unpush the
9714 target. */
9715 if (res == -1 && !remote_multi_process_p (rs)
9716 && number_of_live_inferiors () == 1)
9717 {
9718 remote_kill_k ();
9719
9720 /* We've killed the remote end, we get to mourn it. If we are
9721 not in extended mode, mourning the inferior also unpushes
9722 remote_ops from the target stack, which closes the remote
9723 connection. */
9724 target_mourn_inferior (inferior_ptid);
9725
9726 return;
9727 }
9728
9729 error (_("Can't kill process"));
9730 }
9731
9732 /* Send a kill request to the target using the 'vKill' packet. */
9733
9734 int
9735 remote_target::remote_vkill (int pid)
9736 {
9737 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9738 return -1;
9739
9740 remote_state *rs = get_remote_state ();
9741
9742 /* Tell the remote target to detach. */
9743 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9744 putpkt (rs->buf);
9745 getpkt (&rs->buf, 0);
9746
9747 switch (packet_ok (rs->buf,
9748 &remote_protocol_packets[PACKET_vKill]))
9749 {
9750 case PACKET_OK:
9751 return 0;
9752 case PACKET_ERROR:
9753 return 1;
9754 case PACKET_UNKNOWN:
9755 return -1;
9756 default:
9757 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9758 }
9759 }
9760
9761 /* Send a kill request to the target using the 'k' packet. */
9762
9763 void
9764 remote_target::remote_kill_k ()
9765 {
9766 /* Catch errors so the user can quit from gdb even when we
9767 aren't on speaking terms with the remote system. */
9768 TRY
9769 {
9770 putpkt ("k");
9771 }
9772 CATCH (ex, RETURN_MASK_ERROR)
9773 {
9774 if (ex.error == TARGET_CLOSE_ERROR)
9775 {
9776 /* If we got an (EOF) error that caused the target
9777 to go away, then we're done, that's what we wanted.
9778 "k" is susceptible to cause a premature EOF, given
9779 that the remote server isn't actually required to
9780 reply to "k", and it can happen that it doesn't
9781 even get to reply ACK to the "k". */
9782 return;
9783 }
9784
9785 /* Otherwise, something went wrong. We didn't actually kill
9786 the target. Just propagate the exception, and let the
9787 user or higher layers decide what to do. */
9788 throw_exception (ex);
9789 }
9790 END_CATCH
9791 }
9792
9793 void
9794 remote_target::mourn_inferior ()
9795 {
9796 struct remote_state *rs = get_remote_state ();
9797
9798 /* We're no longer interested in notification events of an inferior
9799 that exited or was killed/detached. */
9800 discard_pending_stop_replies (current_inferior ());
9801
9802 /* In 'target remote' mode with one inferior, we close the connection. */
9803 if (!rs->extended && number_of_live_inferiors () <= 1)
9804 {
9805 unpush_target (this);
9806
9807 /* remote_close takes care of doing most of the clean up. */
9808 generic_mourn_inferior ();
9809 return;
9810 }
9811
9812 /* In case we got here due to an error, but we're going to stay
9813 connected. */
9814 rs->waiting_for_stop_reply = 0;
9815
9816 /* If the current general thread belonged to the process we just
9817 detached from or has exited, the remote side current general
9818 thread becomes undefined. Considering a case like this:
9819
9820 - We just got here due to a detach.
9821 - The process that we're detaching from happens to immediately
9822 report a global breakpoint being hit in non-stop mode, in the
9823 same thread we had selected before.
9824 - GDB attaches to this process again.
9825 - This event happens to be the next event we handle.
9826
9827 GDB would consider that the current general thread didn't need to
9828 be set on the stub side (with Hg), since for all it knew,
9829 GENERAL_THREAD hadn't changed.
9830
9831 Notice that although in all-stop mode, the remote server always
9832 sets the current thread to the thread reporting the stop event,
9833 that doesn't happen in non-stop mode; in non-stop, the stub *must
9834 not* change the current thread when reporting a breakpoint hit,
9835 due to the decoupling of event reporting and event handling.
9836
9837 To keep things simple, we always invalidate our notion of the
9838 current thread. */
9839 record_currthread (rs, minus_one_ptid);
9840
9841 /* Call common code to mark the inferior as not running. */
9842 generic_mourn_inferior ();
9843
9844 if (!have_inferiors ())
9845 {
9846 if (!remote_multi_process_p (rs))
9847 {
9848 /* Check whether the target is running now - some remote stubs
9849 automatically restart after kill. */
9850 putpkt ("?");
9851 getpkt (&rs->buf, 0);
9852
9853 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9854 {
9855 /* Assume that the target has been restarted. Set
9856 inferior_ptid so that bits of core GDB realizes
9857 there's something here, e.g., so that the user can
9858 say "kill" again. */
9859 inferior_ptid = magic_null_ptid;
9860 }
9861 }
9862 }
9863 }
9864
9865 bool
9866 extended_remote_target::supports_disable_randomization ()
9867 {
9868 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9869 }
9870
9871 void
9872 remote_target::extended_remote_disable_randomization (int val)
9873 {
9874 struct remote_state *rs = get_remote_state ();
9875 char *reply;
9876
9877 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9878 "QDisableRandomization:%x", val);
9879 putpkt (rs->buf);
9880 reply = remote_get_noisy_reply ();
9881 if (*reply == '\0')
9882 error (_("Target does not support QDisableRandomization."));
9883 if (strcmp (reply, "OK") != 0)
9884 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9885 }
9886
9887 int
9888 remote_target::extended_remote_run (const std::string &args)
9889 {
9890 struct remote_state *rs = get_remote_state ();
9891 int len;
9892 const char *remote_exec_file = get_remote_exec_file ();
9893
9894 /* If the user has disabled vRun support, or we have detected that
9895 support is not available, do not try it. */
9896 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9897 return -1;
9898
9899 strcpy (rs->buf.data (), "vRun;");
9900 len = strlen (rs->buf.data ());
9901
9902 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9903 error (_("Remote file name too long for run packet"));
9904 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9905 strlen (remote_exec_file));
9906
9907 if (!args.empty ())
9908 {
9909 int i;
9910
9911 gdb_argv argv (args.c_str ());
9912 for (i = 0; argv[i] != NULL; i++)
9913 {
9914 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9915 error (_("Argument list too long for run packet"));
9916 rs->buf[len++] = ';';
9917 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9918 strlen (argv[i]));
9919 }
9920 }
9921
9922 rs->buf[len++] = '\0';
9923
9924 putpkt (rs->buf);
9925 getpkt (&rs->buf, 0);
9926
9927 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9928 {
9929 case PACKET_OK:
9930 /* We have a wait response. All is well. */
9931 return 0;
9932 case PACKET_UNKNOWN:
9933 return -1;
9934 case PACKET_ERROR:
9935 if (remote_exec_file[0] == '\0')
9936 error (_("Running the default executable on the remote target failed; "
9937 "try \"set remote exec-file\"?"));
9938 else
9939 error (_("Running \"%s\" on the remote target failed"),
9940 remote_exec_file);
9941 default:
9942 gdb_assert_not_reached (_("bad switch"));
9943 }
9944 }
9945
9946 /* Helper function to send set/unset environment packets. ACTION is
9947 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9948 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9949 sent. */
9950
9951 void
9952 remote_target::send_environment_packet (const char *action,
9953 const char *packet,
9954 const char *value)
9955 {
9956 remote_state *rs = get_remote_state ();
9957
9958 /* Convert the environment variable to an hex string, which
9959 is the best format to be transmitted over the wire. */
9960 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9961 strlen (value));
9962
9963 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9964 "%s:%s", packet, encoded_value.c_str ());
9965
9966 putpkt (rs->buf);
9967 getpkt (&rs->buf, 0);
9968 if (strcmp (rs->buf.data (), "OK") != 0)
9969 warning (_("Unable to %s environment variable '%s' on remote."),
9970 action, value);
9971 }
9972
9973 /* Helper function to handle the QEnvironment* packets. */
9974
9975 void
9976 remote_target::extended_remote_environment_support ()
9977 {
9978 remote_state *rs = get_remote_state ();
9979
9980 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9981 {
9982 putpkt ("QEnvironmentReset");
9983 getpkt (&rs->buf, 0);
9984 if (strcmp (rs->buf.data (), "OK") != 0)
9985 warning (_("Unable to reset environment on remote."));
9986 }
9987
9988 gdb_environ *e = &current_inferior ()->environment;
9989
9990 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9991 for (const std::string &el : e->user_set_env ())
9992 send_environment_packet ("set", "QEnvironmentHexEncoded",
9993 el.c_str ());
9994
9995 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9996 for (const std::string &el : e->user_unset_env ())
9997 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9998 }
9999
10000 /* Helper function to set the current working directory for the
10001 inferior in the remote target. */
10002
10003 void
10004 remote_target::extended_remote_set_inferior_cwd ()
10005 {
10006 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10007 {
10008 const char *inferior_cwd = get_inferior_cwd ();
10009 remote_state *rs = get_remote_state ();
10010
10011 if (inferior_cwd != NULL)
10012 {
10013 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10014 strlen (inferior_cwd));
10015
10016 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10017 "QSetWorkingDir:%s", hexpath.c_str ());
10018 }
10019 else
10020 {
10021 /* An empty inferior_cwd means that the user wants us to
10022 reset the remote server's inferior's cwd. */
10023 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10024 "QSetWorkingDir:");
10025 }
10026
10027 putpkt (rs->buf);
10028 getpkt (&rs->buf, 0);
10029 if (packet_ok (rs->buf,
10030 &remote_protocol_packets[PACKET_QSetWorkingDir])
10031 != PACKET_OK)
10032 error (_("\
10033 Remote replied unexpectedly while setting the inferior's working\n\
10034 directory: %s"),
10035 rs->buf.data ());
10036
10037 }
10038 }
10039
10040 /* In the extended protocol we want to be able to do things like
10041 "run" and have them basically work as expected. So we need
10042 a special create_inferior function. We support changing the
10043 executable file and the command line arguments, but not the
10044 environment. */
10045
10046 void
10047 extended_remote_target::create_inferior (const char *exec_file,
10048 const std::string &args,
10049 char **env, int from_tty)
10050 {
10051 int run_worked;
10052 char *stop_reply;
10053 struct remote_state *rs = get_remote_state ();
10054 const char *remote_exec_file = get_remote_exec_file ();
10055
10056 /* If running asynchronously, register the target file descriptor
10057 with the event loop. */
10058 if (target_can_async_p ())
10059 target_async (1);
10060
10061 /* Disable address space randomization if requested (and supported). */
10062 if (supports_disable_randomization ())
10063 extended_remote_disable_randomization (disable_randomization);
10064
10065 /* If startup-with-shell is on, we inform gdbserver to start the
10066 remote inferior using a shell. */
10067 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10068 {
10069 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10070 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10071 putpkt (rs->buf);
10072 getpkt (&rs->buf, 0);
10073 if (strcmp (rs->buf.data (), "OK") != 0)
10074 error (_("\
10075 Remote replied unexpectedly while setting startup-with-shell: %s"),
10076 rs->buf.data ());
10077 }
10078
10079 extended_remote_environment_support ();
10080
10081 extended_remote_set_inferior_cwd ();
10082
10083 /* Now restart the remote server. */
10084 run_worked = extended_remote_run (args) != -1;
10085 if (!run_worked)
10086 {
10087 /* vRun was not supported. Fail if we need it to do what the
10088 user requested. */
10089 if (remote_exec_file[0])
10090 error (_("Remote target does not support \"set remote exec-file\""));
10091 if (!args.empty ())
10092 error (_("Remote target does not support \"set args\" or run ARGS"));
10093
10094 /* Fall back to "R". */
10095 extended_remote_restart ();
10096 }
10097
10098 /* vRun's success return is a stop reply. */
10099 stop_reply = run_worked ? rs->buf.data () : NULL;
10100 add_current_inferior_and_thread (stop_reply);
10101
10102 /* Get updated offsets, if the stub uses qOffsets. */
10103 get_offsets ();
10104 }
10105 \f
10106
10107 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10108 the list of conditions (in agent expression bytecode format), if any, the
10109 target needs to evaluate. The output is placed into the packet buffer
10110 started from BUF and ended at BUF_END. */
10111
10112 static int
10113 remote_add_target_side_condition (struct gdbarch *gdbarch,
10114 struct bp_target_info *bp_tgt, char *buf,
10115 char *buf_end)
10116 {
10117 if (bp_tgt->conditions.empty ())
10118 return 0;
10119
10120 buf += strlen (buf);
10121 xsnprintf (buf, buf_end - buf, "%s", ";");
10122 buf++;
10123
10124 /* Send conditions to the target. */
10125 for (agent_expr *aexpr : bp_tgt->conditions)
10126 {
10127 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10128 buf += strlen (buf);
10129 for (int i = 0; i < aexpr->len; ++i)
10130 buf = pack_hex_byte (buf, aexpr->buf[i]);
10131 *buf = '\0';
10132 }
10133 return 0;
10134 }
10135
10136 static void
10137 remote_add_target_side_commands (struct gdbarch *gdbarch,
10138 struct bp_target_info *bp_tgt, char *buf)
10139 {
10140 if (bp_tgt->tcommands.empty ())
10141 return;
10142
10143 buf += strlen (buf);
10144
10145 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10146 buf += strlen (buf);
10147
10148 /* Concatenate all the agent expressions that are commands into the
10149 cmds parameter. */
10150 for (agent_expr *aexpr : bp_tgt->tcommands)
10151 {
10152 sprintf (buf, "X%x,", aexpr->len);
10153 buf += strlen (buf);
10154 for (int i = 0; i < aexpr->len; ++i)
10155 buf = pack_hex_byte (buf, aexpr->buf[i]);
10156 *buf = '\0';
10157 }
10158 }
10159
10160 /* Insert a breakpoint. On targets that have software breakpoint
10161 support, we ask the remote target to do the work; on targets
10162 which don't, we insert a traditional memory breakpoint. */
10163
10164 int
10165 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10166 struct bp_target_info *bp_tgt)
10167 {
10168 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10169 If it succeeds, then set the support to PACKET_ENABLE. If it
10170 fails, and the user has explicitly requested the Z support then
10171 report an error, otherwise, mark it disabled and go on. */
10172
10173 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10174 {
10175 CORE_ADDR addr = bp_tgt->reqstd_address;
10176 struct remote_state *rs;
10177 char *p, *endbuf;
10178
10179 /* Make sure the remote is pointing at the right process, if
10180 necessary. */
10181 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10182 set_general_process ();
10183
10184 rs = get_remote_state ();
10185 p = rs->buf.data ();
10186 endbuf = p + get_remote_packet_size ();
10187
10188 *(p++) = 'Z';
10189 *(p++) = '0';
10190 *(p++) = ',';
10191 addr = (ULONGEST) remote_address_masked (addr);
10192 p += hexnumstr (p, addr);
10193 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10194
10195 if (supports_evaluation_of_breakpoint_conditions ())
10196 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10197
10198 if (can_run_breakpoint_commands ())
10199 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10200
10201 putpkt (rs->buf);
10202 getpkt (&rs->buf, 0);
10203
10204 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10205 {
10206 case PACKET_ERROR:
10207 return -1;
10208 case PACKET_OK:
10209 return 0;
10210 case PACKET_UNKNOWN:
10211 break;
10212 }
10213 }
10214
10215 /* If this breakpoint has target-side commands but this stub doesn't
10216 support Z0 packets, throw error. */
10217 if (!bp_tgt->tcommands.empty ())
10218 throw_error (NOT_SUPPORTED_ERROR, _("\
10219 Target doesn't support breakpoints that have target side commands."));
10220
10221 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10222 }
10223
10224 int
10225 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10226 struct bp_target_info *bp_tgt,
10227 enum remove_bp_reason reason)
10228 {
10229 CORE_ADDR addr = bp_tgt->placed_address;
10230 struct remote_state *rs = get_remote_state ();
10231
10232 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10233 {
10234 char *p = rs->buf.data ();
10235 char *endbuf = p + get_remote_packet_size ();
10236
10237 /* Make sure the remote is pointing at the right process, if
10238 necessary. */
10239 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10240 set_general_process ();
10241
10242 *(p++) = 'z';
10243 *(p++) = '0';
10244 *(p++) = ',';
10245
10246 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10247 p += hexnumstr (p, addr);
10248 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10249
10250 putpkt (rs->buf);
10251 getpkt (&rs->buf, 0);
10252
10253 return (rs->buf[0] == 'E');
10254 }
10255
10256 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10257 }
10258
10259 static enum Z_packet_type
10260 watchpoint_to_Z_packet (int type)
10261 {
10262 switch (type)
10263 {
10264 case hw_write:
10265 return Z_PACKET_WRITE_WP;
10266 break;
10267 case hw_read:
10268 return Z_PACKET_READ_WP;
10269 break;
10270 case hw_access:
10271 return Z_PACKET_ACCESS_WP;
10272 break;
10273 default:
10274 internal_error (__FILE__, __LINE__,
10275 _("hw_bp_to_z: bad watchpoint type %d"), type);
10276 }
10277 }
10278
10279 int
10280 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10281 enum target_hw_bp_type type, struct expression *cond)
10282 {
10283 struct remote_state *rs = get_remote_state ();
10284 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10285 char *p;
10286 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10287
10288 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10289 return 1;
10290
10291 /* Make sure the remote is pointing at the right process, if
10292 necessary. */
10293 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10294 set_general_process ();
10295
10296 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10297 p = strchr (rs->buf.data (), '\0');
10298 addr = remote_address_masked (addr);
10299 p += hexnumstr (p, (ULONGEST) addr);
10300 xsnprintf (p, endbuf - p, ",%x", len);
10301
10302 putpkt (rs->buf);
10303 getpkt (&rs->buf, 0);
10304
10305 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10306 {
10307 case PACKET_ERROR:
10308 return -1;
10309 case PACKET_UNKNOWN:
10310 return 1;
10311 case PACKET_OK:
10312 return 0;
10313 }
10314 internal_error (__FILE__, __LINE__,
10315 _("remote_insert_watchpoint: reached end of function"));
10316 }
10317
10318 bool
10319 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10320 CORE_ADDR start, int length)
10321 {
10322 CORE_ADDR diff = remote_address_masked (addr - start);
10323
10324 return diff < length;
10325 }
10326
10327
10328 int
10329 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10330 enum target_hw_bp_type type, struct expression *cond)
10331 {
10332 struct remote_state *rs = get_remote_state ();
10333 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10334 char *p;
10335 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10336
10337 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10338 return -1;
10339
10340 /* Make sure the remote is pointing at the right process, if
10341 necessary. */
10342 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10343 set_general_process ();
10344
10345 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10346 p = strchr (rs->buf.data (), '\0');
10347 addr = remote_address_masked (addr);
10348 p += hexnumstr (p, (ULONGEST) addr);
10349 xsnprintf (p, endbuf - p, ",%x", len);
10350 putpkt (rs->buf);
10351 getpkt (&rs->buf, 0);
10352
10353 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10354 {
10355 case PACKET_ERROR:
10356 case PACKET_UNKNOWN:
10357 return -1;
10358 case PACKET_OK:
10359 return 0;
10360 }
10361 internal_error (__FILE__, __LINE__,
10362 _("remote_remove_watchpoint: reached end of function"));
10363 }
10364
10365
10366 int remote_hw_watchpoint_limit = -1;
10367 int remote_hw_watchpoint_length_limit = -1;
10368 int remote_hw_breakpoint_limit = -1;
10369
10370 int
10371 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10372 {
10373 if (remote_hw_watchpoint_length_limit == 0)
10374 return 0;
10375 else if (remote_hw_watchpoint_length_limit < 0)
10376 return 1;
10377 else if (len <= remote_hw_watchpoint_length_limit)
10378 return 1;
10379 else
10380 return 0;
10381 }
10382
10383 int
10384 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10385 {
10386 if (type == bp_hardware_breakpoint)
10387 {
10388 if (remote_hw_breakpoint_limit == 0)
10389 return 0;
10390 else if (remote_hw_breakpoint_limit < 0)
10391 return 1;
10392 else if (cnt <= remote_hw_breakpoint_limit)
10393 return 1;
10394 }
10395 else
10396 {
10397 if (remote_hw_watchpoint_limit == 0)
10398 return 0;
10399 else if (remote_hw_watchpoint_limit < 0)
10400 return 1;
10401 else if (ot)
10402 return -1;
10403 else if (cnt <= remote_hw_watchpoint_limit)
10404 return 1;
10405 }
10406 return -1;
10407 }
10408
10409 /* The to_stopped_by_sw_breakpoint method of target remote. */
10410
10411 bool
10412 remote_target::stopped_by_sw_breakpoint ()
10413 {
10414 struct thread_info *thread = inferior_thread ();
10415
10416 return (thread->priv != NULL
10417 && (get_remote_thread_info (thread)->stop_reason
10418 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10419 }
10420
10421 /* The to_supports_stopped_by_sw_breakpoint method of target
10422 remote. */
10423
10424 bool
10425 remote_target::supports_stopped_by_sw_breakpoint ()
10426 {
10427 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10428 }
10429
10430 /* The to_stopped_by_hw_breakpoint method of target remote. */
10431
10432 bool
10433 remote_target::stopped_by_hw_breakpoint ()
10434 {
10435 struct thread_info *thread = inferior_thread ();
10436
10437 return (thread->priv != NULL
10438 && (get_remote_thread_info (thread)->stop_reason
10439 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10440 }
10441
10442 /* The to_supports_stopped_by_hw_breakpoint method of target
10443 remote. */
10444
10445 bool
10446 remote_target::supports_stopped_by_hw_breakpoint ()
10447 {
10448 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10449 }
10450
10451 bool
10452 remote_target::stopped_by_watchpoint ()
10453 {
10454 struct thread_info *thread = inferior_thread ();
10455
10456 return (thread->priv != NULL
10457 && (get_remote_thread_info (thread)->stop_reason
10458 == TARGET_STOPPED_BY_WATCHPOINT));
10459 }
10460
10461 bool
10462 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10463 {
10464 struct thread_info *thread = inferior_thread ();
10465
10466 if (thread->priv != NULL
10467 && (get_remote_thread_info (thread)->stop_reason
10468 == TARGET_STOPPED_BY_WATCHPOINT))
10469 {
10470 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10471 return true;
10472 }
10473
10474 return false;
10475 }
10476
10477
10478 int
10479 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10480 struct bp_target_info *bp_tgt)
10481 {
10482 CORE_ADDR addr = bp_tgt->reqstd_address;
10483 struct remote_state *rs;
10484 char *p, *endbuf;
10485 char *message;
10486
10487 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10488 return -1;
10489
10490 /* Make sure the remote is pointing at the right process, if
10491 necessary. */
10492 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10493 set_general_process ();
10494
10495 rs = get_remote_state ();
10496 p = rs->buf.data ();
10497 endbuf = p + get_remote_packet_size ();
10498
10499 *(p++) = 'Z';
10500 *(p++) = '1';
10501 *(p++) = ',';
10502
10503 addr = remote_address_masked (addr);
10504 p += hexnumstr (p, (ULONGEST) addr);
10505 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10506
10507 if (supports_evaluation_of_breakpoint_conditions ())
10508 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10509
10510 if (can_run_breakpoint_commands ())
10511 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10512
10513 putpkt (rs->buf);
10514 getpkt (&rs->buf, 0);
10515
10516 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10517 {
10518 case PACKET_ERROR:
10519 if (rs->buf[1] == '.')
10520 {
10521 message = strchr (&rs->buf[2], '.');
10522 if (message)
10523 error (_("Remote failure reply: %s"), message + 1);
10524 }
10525 return -1;
10526 case PACKET_UNKNOWN:
10527 return -1;
10528 case PACKET_OK:
10529 return 0;
10530 }
10531 internal_error (__FILE__, __LINE__,
10532 _("remote_insert_hw_breakpoint: reached end of function"));
10533 }
10534
10535
10536 int
10537 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10538 struct bp_target_info *bp_tgt)
10539 {
10540 CORE_ADDR addr;
10541 struct remote_state *rs = get_remote_state ();
10542 char *p = rs->buf.data ();
10543 char *endbuf = p + get_remote_packet_size ();
10544
10545 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10546 return -1;
10547
10548 /* Make sure the remote is pointing at the right process, if
10549 necessary. */
10550 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10551 set_general_process ();
10552
10553 *(p++) = 'z';
10554 *(p++) = '1';
10555 *(p++) = ',';
10556
10557 addr = remote_address_masked (bp_tgt->placed_address);
10558 p += hexnumstr (p, (ULONGEST) addr);
10559 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10560
10561 putpkt (rs->buf);
10562 getpkt (&rs->buf, 0);
10563
10564 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10565 {
10566 case PACKET_ERROR:
10567 case PACKET_UNKNOWN:
10568 return -1;
10569 case PACKET_OK:
10570 return 0;
10571 }
10572 internal_error (__FILE__, __LINE__,
10573 _("remote_remove_hw_breakpoint: reached end of function"));
10574 }
10575
10576 /* Verify memory using the "qCRC:" request. */
10577
10578 int
10579 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10580 {
10581 struct remote_state *rs = get_remote_state ();
10582 unsigned long host_crc, target_crc;
10583 char *tmp;
10584
10585 /* It doesn't make sense to use qCRC if the remote target is
10586 connected but not running. */
10587 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10588 {
10589 enum packet_result result;
10590
10591 /* Make sure the remote is pointing at the right process. */
10592 set_general_process ();
10593
10594 /* FIXME: assumes lma can fit into long. */
10595 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10596 (long) lma, (long) size);
10597 putpkt (rs->buf);
10598
10599 /* Be clever; compute the host_crc before waiting for target
10600 reply. */
10601 host_crc = xcrc32 (data, size, 0xffffffff);
10602
10603 getpkt (&rs->buf, 0);
10604
10605 result = packet_ok (rs->buf,
10606 &remote_protocol_packets[PACKET_qCRC]);
10607 if (result == PACKET_ERROR)
10608 return -1;
10609 else if (result == PACKET_OK)
10610 {
10611 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10612 target_crc = target_crc * 16 + fromhex (*tmp);
10613
10614 return (host_crc == target_crc);
10615 }
10616 }
10617
10618 return simple_verify_memory (this, data, lma, size);
10619 }
10620
10621 /* compare-sections command
10622
10623 With no arguments, compares each loadable section in the exec bfd
10624 with the same memory range on the target, and reports mismatches.
10625 Useful for verifying the image on the target against the exec file. */
10626
10627 static void
10628 compare_sections_command (const char *args, int from_tty)
10629 {
10630 asection *s;
10631 const char *sectname;
10632 bfd_size_type size;
10633 bfd_vma lma;
10634 int matched = 0;
10635 int mismatched = 0;
10636 int res;
10637 int read_only = 0;
10638
10639 if (!exec_bfd)
10640 error (_("command cannot be used without an exec file"));
10641
10642 if (args != NULL && strcmp (args, "-r") == 0)
10643 {
10644 read_only = 1;
10645 args = NULL;
10646 }
10647
10648 for (s = exec_bfd->sections; s; s = s->next)
10649 {
10650 if (!(s->flags & SEC_LOAD))
10651 continue; /* Skip non-loadable section. */
10652
10653 if (read_only && (s->flags & SEC_READONLY) == 0)
10654 continue; /* Skip writeable sections */
10655
10656 size = bfd_get_section_size (s);
10657 if (size == 0)
10658 continue; /* Skip zero-length section. */
10659
10660 sectname = bfd_get_section_name (exec_bfd, s);
10661 if (args && strcmp (args, sectname) != 0)
10662 continue; /* Not the section selected by user. */
10663
10664 matched = 1; /* Do this section. */
10665 lma = s->lma;
10666
10667 gdb::byte_vector sectdata (size);
10668 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10669
10670 res = target_verify_memory (sectdata.data (), lma, size);
10671
10672 if (res == -1)
10673 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10674 paddress (target_gdbarch (), lma),
10675 paddress (target_gdbarch (), lma + size));
10676
10677 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10678 paddress (target_gdbarch (), lma),
10679 paddress (target_gdbarch (), lma + size));
10680 if (res)
10681 printf_filtered ("matched.\n");
10682 else
10683 {
10684 printf_filtered ("MIS-MATCHED!\n");
10685 mismatched++;
10686 }
10687 }
10688 if (mismatched > 0)
10689 warning (_("One or more sections of the target image does not match\n\
10690 the loaded file\n"));
10691 if (args && !matched)
10692 printf_filtered (_("No loaded section named '%s'.\n"), args);
10693 }
10694
10695 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10696 into remote target. The number of bytes written to the remote
10697 target is returned, or -1 for error. */
10698
10699 target_xfer_status
10700 remote_target::remote_write_qxfer (const char *object_name,
10701 const char *annex, const gdb_byte *writebuf,
10702 ULONGEST offset, LONGEST len,
10703 ULONGEST *xfered_len,
10704 struct packet_config *packet)
10705 {
10706 int i, buf_len;
10707 ULONGEST n;
10708 struct remote_state *rs = get_remote_state ();
10709 int max_size = get_memory_write_packet_size ();
10710
10711 if (packet_config_support (packet) == PACKET_DISABLE)
10712 return TARGET_XFER_E_IO;
10713
10714 /* Insert header. */
10715 i = snprintf (rs->buf.data (), max_size,
10716 "qXfer:%s:write:%s:%s:",
10717 object_name, annex ? annex : "",
10718 phex_nz (offset, sizeof offset));
10719 max_size -= (i + 1);
10720
10721 /* Escape as much data as fits into rs->buf. */
10722 buf_len = remote_escape_output
10723 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10724
10725 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10726 || getpkt_sane (&rs->buf, 0) < 0
10727 || packet_ok (rs->buf, packet) != PACKET_OK)
10728 return TARGET_XFER_E_IO;
10729
10730 unpack_varlen_hex (rs->buf.data (), &n);
10731
10732 *xfered_len = n;
10733 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10734 }
10735
10736 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10737 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10738 number of bytes read is returned, or 0 for EOF, or -1 for error.
10739 The number of bytes read may be less than LEN without indicating an
10740 EOF. PACKET is checked and updated to indicate whether the remote
10741 target supports this object. */
10742
10743 target_xfer_status
10744 remote_target::remote_read_qxfer (const char *object_name,
10745 const char *annex,
10746 gdb_byte *readbuf, ULONGEST offset,
10747 LONGEST len,
10748 ULONGEST *xfered_len,
10749 struct packet_config *packet)
10750 {
10751 struct remote_state *rs = get_remote_state ();
10752 LONGEST i, n, packet_len;
10753
10754 if (packet_config_support (packet) == PACKET_DISABLE)
10755 return TARGET_XFER_E_IO;
10756
10757 /* Check whether we've cached an end-of-object packet that matches
10758 this request. */
10759 if (rs->finished_object)
10760 {
10761 if (strcmp (object_name, rs->finished_object) == 0
10762 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10763 && offset == rs->finished_offset)
10764 return TARGET_XFER_EOF;
10765
10766
10767 /* Otherwise, we're now reading something different. Discard
10768 the cache. */
10769 xfree (rs->finished_object);
10770 xfree (rs->finished_annex);
10771 rs->finished_object = NULL;
10772 rs->finished_annex = NULL;
10773 }
10774
10775 /* Request only enough to fit in a single packet. The actual data
10776 may not, since we don't know how much of it will need to be escaped;
10777 the target is free to respond with slightly less data. We subtract
10778 five to account for the response type and the protocol frame. */
10779 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10780 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10781 "qXfer:%s:read:%s:%s,%s",
10782 object_name, annex ? annex : "",
10783 phex_nz (offset, sizeof offset),
10784 phex_nz (n, sizeof n));
10785 i = putpkt (rs->buf);
10786 if (i < 0)
10787 return TARGET_XFER_E_IO;
10788
10789 rs->buf[0] = '\0';
10790 packet_len = getpkt_sane (&rs->buf, 0);
10791 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10792 return TARGET_XFER_E_IO;
10793
10794 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10795 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10796
10797 /* 'm' means there is (or at least might be) more data after this
10798 batch. That does not make sense unless there's at least one byte
10799 of data in this reply. */
10800 if (rs->buf[0] == 'm' && packet_len == 1)
10801 error (_("Remote qXfer reply contained no data."));
10802
10803 /* Got some data. */
10804 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10805 packet_len - 1, readbuf, n);
10806
10807 /* 'l' is an EOF marker, possibly including a final block of data,
10808 or possibly empty. If we have the final block of a non-empty
10809 object, record this fact to bypass a subsequent partial read. */
10810 if (rs->buf[0] == 'l' && offset + i > 0)
10811 {
10812 rs->finished_object = xstrdup (object_name);
10813 rs->finished_annex = xstrdup (annex ? annex : "");
10814 rs->finished_offset = offset + i;
10815 }
10816
10817 if (i == 0)
10818 return TARGET_XFER_EOF;
10819 else
10820 {
10821 *xfered_len = i;
10822 return TARGET_XFER_OK;
10823 }
10824 }
10825
10826 enum target_xfer_status
10827 remote_target::xfer_partial (enum target_object object,
10828 const char *annex, gdb_byte *readbuf,
10829 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10830 ULONGEST *xfered_len)
10831 {
10832 struct remote_state *rs;
10833 int i;
10834 char *p2;
10835 char query_type;
10836 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10837
10838 set_remote_traceframe ();
10839 set_general_thread (inferior_ptid);
10840
10841 rs = get_remote_state ();
10842
10843 /* Handle memory using the standard memory routines. */
10844 if (object == TARGET_OBJECT_MEMORY)
10845 {
10846 /* If the remote target is connected but not running, we should
10847 pass this request down to a lower stratum (e.g. the executable
10848 file). */
10849 if (!target_has_execution)
10850 return TARGET_XFER_EOF;
10851
10852 if (writebuf != NULL)
10853 return remote_write_bytes (offset, writebuf, len, unit_size,
10854 xfered_len);
10855 else
10856 return remote_read_bytes (offset, readbuf, len, unit_size,
10857 xfered_len);
10858 }
10859
10860 /* Handle SPU memory using qxfer packets. */
10861 if (object == TARGET_OBJECT_SPU)
10862 {
10863 if (readbuf)
10864 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10865 xfered_len, &remote_protocol_packets
10866 [PACKET_qXfer_spu_read]);
10867 else
10868 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10869 xfered_len, &remote_protocol_packets
10870 [PACKET_qXfer_spu_write]);
10871 }
10872
10873 /* Handle extra signal info using qxfer packets. */
10874 if (object == TARGET_OBJECT_SIGNAL_INFO)
10875 {
10876 if (readbuf)
10877 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10878 xfered_len, &remote_protocol_packets
10879 [PACKET_qXfer_siginfo_read]);
10880 else
10881 return remote_write_qxfer ("siginfo", annex,
10882 writebuf, offset, len, xfered_len,
10883 &remote_protocol_packets
10884 [PACKET_qXfer_siginfo_write]);
10885 }
10886
10887 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10888 {
10889 if (readbuf)
10890 return remote_read_qxfer ("statictrace", annex,
10891 readbuf, offset, len, xfered_len,
10892 &remote_protocol_packets
10893 [PACKET_qXfer_statictrace_read]);
10894 else
10895 return TARGET_XFER_E_IO;
10896 }
10897
10898 /* Only handle flash writes. */
10899 if (writebuf != NULL)
10900 {
10901 switch (object)
10902 {
10903 case TARGET_OBJECT_FLASH:
10904 return remote_flash_write (offset, len, xfered_len,
10905 writebuf);
10906
10907 default:
10908 return TARGET_XFER_E_IO;
10909 }
10910 }
10911
10912 /* Map pre-existing objects onto letters. DO NOT do this for new
10913 objects!!! Instead specify new query packets. */
10914 switch (object)
10915 {
10916 case TARGET_OBJECT_AVR:
10917 query_type = 'R';
10918 break;
10919
10920 case TARGET_OBJECT_AUXV:
10921 gdb_assert (annex == NULL);
10922 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10923 xfered_len,
10924 &remote_protocol_packets[PACKET_qXfer_auxv]);
10925
10926 case TARGET_OBJECT_AVAILABLE_FEATURES:
10927 return remote_read_qxfer
10928 ("features", annex, readbuf, offset, len, xfered_len,
10929 &remote_protocol_packets[PACKET_qXfer_features]);
10930
10931 case TARGET_OBJECT_LIBRARIES:
10932 return remote_read_qxfer
10933 ("libraries", annex, readbuf, offset, len, xfered_len,
10934 &remote_protocol_packets[PACKET_qXfer_libraries]);
10935
10936 case TARGET_OBJECT_LIBRARIES_SVR4:
10937 return remote_read_qxfer
10938 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10939 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10940
10941 case TARGET_OBJECT_MEMORY_MAP:
10942 gdb_assert (annex == NULL);
10943 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10944 xfered_len,
10945 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10946
10947 case TARGET_OBJECT_OSDATA:
10948 /* Should only get here if we're connected. */
10949 gdb_assert (rs->remote_desc);
10950 return remote_read_qxfer
10951 ("osdata", annex, readbuf, offset, len, xfered_len,
10952 &remote_protocol_packets[PACKET_qXfer_osdata]);
10953
10954 case TARGET_OBJECT_THREADS:
10955 gdb_assert (annex == NULL);
10956 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10957 xfered_len,
10958 &remote_protocol_packets[PACKET_qXfer_threads]);
10959
10960 case TARGET_OBJECT_TRACEFRAME_INFO:
10961 gdb_assert (annex == NULL);
10962 return remote_read_qxfer
10963 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10964 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10965
10966 case TARGET_OBJECT_FDPIC:
10967 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10968 xfered_len,
10969 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10970
10971 case TARGET_OBJECT_OPENVMS_UIB:
10972 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10973 xfered_len,
10974 &remote_protocol_packets[PACKET_qXfer_uib]);
10975
10976 case TARGET_OBJECT_BTRACE:
10977 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10978 xfered_len,
10979 &remote_protocol_packets[PACKET_qXfer_btrace]);
10980
10981 case TARGET_OBJECT_BTRACE_CONF:
10982 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10983 len, xfered_len,
10984 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10985
10986 case TARGET_OBJECT_EXEC_FILE:
10987 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10988 len, xfered_len,
10989 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10990
10991 default:
10992 return TARGET_XFER_E_IO;
10993 }
10994
10995 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10996 large enough let the caller deal with it. */
10997 if (len < get_remote_packet_size ())
10998 return TARGET_XFER_E_IO;
10999 len = get_remote_packet_size ();
11000
11001 /* Except for querying the minimum buffer size, target must be open. */
11002 if (!rs->remote_desc)
11003 error (_("remote query is only available after target open"));
11004
11005 gdb_assert (annex != NULL);
11006 gdb_assert (readbuf != NULL);
11007
11008 p2 = rs->buf.data ();
11009 *p2++ = 'q';
11010 *p2++ = query_type;
11011
11012 /* We used one buffer char for the remote protocol q command and
11013 another for the query type. As the remote protocol encapsulation
11014 uses 4 chars plus one extra in case we are debugging
11015 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11016 string. */
11017 i = 0;
11018 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11019 {
11020 /* Bad caller may have sent forbidden characters. */
11021 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11022 *p2++ = annex[i];
11023 i++;
11024 }
11025 *p2 = '\0';
11026 gdb_assert (annex[i] == '\0');
11027
11028 i = putpkt (rs->buf);
11029 if (i < 0)
11030 return TARGET_XFER_E_IO;
11031
11032 getpkt (&rs->buf, 0);
11033 strcpy ((char *) readbuf, rs->buf.data ());
11034
11035 *xfered_len = strlen ((char *) readbuf);
11036 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11037 }
11038
11039 /* Implementation of to_get_memory_xfer_limit. */
11040
11041 ULONGEST
11042 remote_target::get_memory_xfer_limit ()
11043 {
11044 return get_memory_write_packet_size ();
11045 }
11046
11047 int
11048 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11049 const gdb_byte *pattern, ULONGEST pattern_len,
11050 CORE_ADDR *found_addrp)
11051 {
11052 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11053 struct remote_state *rs = get_remote_state ();
11054 int max_size = get_memory_write_packet_size ();
11055 struct packet_config *packet =
11056 &remote_protocol_packets[PACKET_qSearch_memory];
11057 /* Number of packet bytes used to encode the pattern;
11058 this could be more than PATTERN_LEN due to escape characters. */
11059 int escaped_pattern_len;
11060 /* Amount of pattern that was encodable in the packet. */
11061 int used_pattern_len;
11062 int i;
11063 int found;
11064 ULONGEST found_addr;
11065
11066 /* Don't go to the target if we don't have to. This is done before
11067 checking packet_config_support to avoid the possibility that a
11068 success for this edge case means the facility works in
11069 general. */
11070 if (pattern_len > search_space_len)
11071 return 0;
11072 if (pattern_len == 0)
11073 {
11074 *found_addrp = start_addr;
11075 return 1;
11076 }
11077
11078 /* If we already know the packet isn't supported, fall back to the simple
11079 way of searching memory. */
11080
11081 if (packet_config_support (packet) == PACKET_DISABLE)
11082 {
11083 /* Target doesn't provided special support, fall back and use the
11084 standard support (copy memory and do the search here). */
11085 return simple_search_memory (this, start_addr, search_space_len,
11086 pattern, pattern_len, found_addrp);
11087 }
11088
11089 /* Make sure the remote is pointing at the right process. */
11090 set_general_process ();
11091
11092 /* Insert header. */
11093 i = snprintf (rs->buf.data (), max_size,
11094 "qSearch:memory:%s;%s;",
11095 phex_nz (start_addr, addr_size),
11096 phex_nz (search_space_len, sizeof (search_space_len)));
11097 max_size -= (i + 1);
11098
11099 /* Escape as much data as fits into rs->buf. */
11100 escaped_pattern_len =
11101 remote_escape_output (pattern, pattern_len, 1,
11102 (gdb_byte *) rs->buf.data () + i,
11103 &used_pattern_len, max_size);
11104
11105 /* Bail if the pattern is too large. */
11106 if (used_pattern_len != pattern_len)
11107 error (_("Pattern is too large to transmit to remote target."));
11108
11109 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11110 || getpkt_sane (&rs->buf, 0) < 0
11111 || packet_ok (rs->buf, packet) != PACKET_OK)
11112 {
11113 /* The request may not have worked because the command is not
11114 supported. If so, fall back to the simple way. */
11115 if (packet_config_support (packet) == PACKET_DISABLE)
11116 {
11117 return simple_search_memory (this, start_addr, search_space_len,
11118 pattern, pattern_len, found_addrp);
11119 }
11120 return -1;
11121 }
11122
11123 if (rs->buf[0] == '0')
11124 found = 0;
11125 else if (rs->buf[0] == '1')
11126 {
11127 found = 1;
11128 if (rs->buf[1] != ',')
11129 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11130 unpack_varlen_hex (&rs->buf[2], &found_addr);
11131 *found_addrp = found_addr;
11132 }
11133 else
11134 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11135
11136 return found;
11137 }
11138
11139 void
11140 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11141 {
11142 struct remote_state *rs = get_remote_state ();
11143 char *p = rs->buf.data ();
11144
11145 if (!rs->remote_desc)
11146 error (_("remote rcmd is only available after target open"));
11147
11148 /* Send a NULL command across as an empty command. */
11149 if (command == NULL)
11150 command = "";
11151
11152 /* The query prefix. */
11153 strcpy (rs->buf.data (), "qRcmd,");
11154 p = strchr (rs->buf.data (), '\0');
11155
11156 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11157 > get_remote_packet_size ())
11158 error (_("\"monitor\" command ``%s'' is too long."), command);
11159
11160 /* Encode the actual command. */
11161 bin2hex ((const gdb_byte *) command, p, strlen (command));
11162
11163 if (putpkt (rs->buf) < 0)
11164 error (_("Communication problem with target."));
11165
11166 /* get/display the response */
11167 while (1)
11168 {
11169 char *buf;
11170
11171 /* XXX - see also remote_get_noisy_reply(). */
11172 QUIT; /* Allow user to bail out with ^C. */
11173 rs->buf[0] = '\0';
11174 if (getpkt_sane (&rs->buf, 0) == -1)
11175 {
11176 /* Timeout. Continue to (try to) read responses.
11177 This is better than stopping with an error, assuming the stub
11178 is still executing the (long) monitor command.
11179 If needed, the user can interrupt gdb using C-c, obtaining
11180 an effect similar to stop on timeout. */
11181 continue;
11182 }
11183 buf = rs->buf.data ();
11184 if (buf[0] == '\0')
11185 error (_("Target does not support this command."));
11186 if (buf[0] == 'O' && buf[1] != 'K')
11187 {
11188 remote_console_output (buf + 1); /* 'O' message from stub. */
11189 continue;
11190 }
11191 if (strcmp (buf, "OK") == 0)
11192 break;
11193 if (strlen (buf) == 3 && buf[0] == 'E'
11194 && isdigit (buf[1]) && isdigit (buf[2]))
11195 {
11196 error (_("Protocol error with Rcmd"));
11197 }
11198 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11199 {
11200 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11201
11202 fputc_unfiltered (c, outbuf);
11203 }
11204 break;
11205 }
11206 }
11207
11208 std::vector<mem_region>
11209 remote_target::memory_map ()
11210 {
11211 std::vector<mem_region> result;
11212 gdb::optional<gdb::char_vector> text
11213 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11214
11215 if (text)
11216 result = parse_memory_map (text->data ());
11217
11218 return result;
11219 }
11220
11221 static void
11222 packet_command (const char *args, int from_tty)
11223 {
11224 remote_target *remote = get_current_remote_target ();
11225
11226 if (remote == nullptr)
11227 error (_("command can only be used with remote target"));
11228
11229 remote->packet_command (args, from_tty);
11230 }
11231
11232 void
11233 remote_target::packet_command (const char *args, int from_tty)
11234 {
11235 if (!args)
11236 error (_("remote-packet command requires packet text as argument"));
11237
11238 puts_filtered ("sending: ");
11239 print_packet (args);
11240 puts_filtered ("\n");
11241 putpkt (args);
11242
11243 remote_state *rs = get_remote_state ();
11244
11245 getpkt (&rs->buf, 0);
11246 puts_filtered ("received: ");
11247 print_packet (rs->buf.data ());
11248 puts_filtered ("\n");
11249 }
11250
11251 #if 0
11252 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11253
11254 static void display_thread_info (struct gdb_ext_thread_info *info);
11255
11256 static void threadset_test_cmd (char *cmd, int tty);
11257
11258 static void threadalive_test (char *cmd, int tty);
11259
11260 static void threadlist_test_cmd (char *cmd, int tty);
11261
11262 int get_and_display_threadinfo (threadref *ref);
11263
11264 static void threadinfo_test_cmd (char *cmd, int tty);
11265
11266 static int thread_display_step (threadref *ref, void *context);
11267
11268 static void threadlist_update_test_cmd (char *cmd, int tty);
11269
11270 static void init_remote_threadtests (void);
11271
11272 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11273
11274 static void
11275 threadset_test_cmd (const char *cmd, int tty)
11276 {
11277 int sample_thread = SAMPLE_THREAD;
11278
11279 printf_filtered (_("Remote threadset test\n"));
11280 set_general_thread (sample_thread);
11281 }
11282
11283
11284 static void
11285 threadalive_test (const char *cmd, int tty)
11286 {
11287 int sample_thread = SAMPLE_THREAD;
11288 int pid = inferior_ptid.pid ();
11289 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11290
11291 if (remote_thread_alive (ptid))
11292 printf_filtered ("PASS: Thread alive test\n");
11293 else
11294 printf_filtered ("FAIL: Thread alive test\n");
11295 }
11296
11297 void output_threadid (char *title, threadref *ref);
11298
11299 void
11300 output_threadid (char *title, threadref *ref)
11301 {
11302 char hexid[20];
11303
11304 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11305 hexid[16] = 0;
11306 printf_filtered ("%s %s\n", title, (&hexid[0]));
11307 }
11308
11309 static void
11310 threadlist_test_cmd (const char *cmd, int tty)
11311 {
11312 int startflag = 1;
11313 threadref nextthread;
11314 int done, result_count;
11315 threadref threadlist[3];
11316
11317 printf_filtered ("Remote Threadlist test\n");
11318 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11319 &result_count, &threadlist[0]))
11320 printf_filtered ("FAIL: threadlist test\n");
11321 else
11322 {
11323 threadref *scan = threadlist;
11324 threadref *limit = scan + result_count;
11325
11326 while (scan < limit)
11327 output_threadid (" thread ", scan++);
11328 }
11329 }
11330
11331 void
11332 display_thread_info (struct gdb_ext_thread_info *info)
11333 {
11334 output_threadid ("Threadid: ", &info->threadid);
11335 printf_filtered ("Name: %s\n ", info->shortname);
11336 printf_filtered ("State: %s\n", info->display);
11337 printf_filtered ("other: %s\n\n", info->more_display);
11338 }
11339
11340 int
11341 get_and_display_threadinfo (threadref *ref)
11342 {
11343 int result;
11344 int set;
11345 struct gdb_ext_thread_info threadinfo;
11346
11347 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11348 | TAG_MOREDISPLAY | TAG_DISPLAY;
11349 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11350 display_thread_info (&threadinfo);
11351 return result;
11352 }
11353
11354 static void
11355 threadinfo_test_cmd (const char *cmd, int tty)
11356 {
11357 int athread = SAMPLE_THREAD;
11358 threadref thread;
11359 int set;
11360
11361 int_to_threadref (&thread, athread);
11362 printf_filtered ("Remote Threadinfo test\n");
11363 if (!get_and_display_threadinfo (&thread))
11364 printf_filtered ("FAIL cannot get thread info\n");
11365 }
11366
11367 static int
11368 thread_display_step (threadref *ref, void *context)
11369 {
11370 /* output_threadid(" threadstep ",ref); *//* simple test */
11371 return get_and_display_threadinfo (ref);
11372 }
11373
11374 static void
11375 threadlist_update_test_cmd (const char *cmd, int tty)
11376 {
11377 printf_filtered ("Remote Threadlist update test\n");
11378 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11379 }
11380
11381 static void
11382 init_remote_threadtests (void)
11383 {
11384 add_com ("tlist", class_obscure, threadlist_test_cmd,
11385 _("Fetch and print the remote list of "
11386 "thread identifiers, one pkt only"));
11387 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11388 _("Fetch and display info about one thread"));
11389 add_com ("tset", class_obscure, threadset_test_cmd,
11390 _("Test setting to a different thread"));
11391 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11392 _("Iterate through updating all remote thread info"));
11393 add_com ("talive", class_obscure, threadalive_test,
11394 _(" Remote thread alive test "));
11395 }
11396
11397 #endif /* 0 */
11398
11399 /* Convert a thread ID to a string. Returns the string in a static
11400 buffer. */
11401
11402 const char *
11403 remote_target::pid_to_str (ptid_t ptid)
11404 {
11405 static char buf[64];
11406 struct remote_state *rs = get_remote_state ();
11407
11408 if (ptid == null_ptid)
11409 return normal_pid_to_str (ptid);
11410 else if (ptid.is_pid ())
11411 {
11412 /* Printing an inferior target id. */
11413
11414 /* When multi-process extensions are off, there's no way in the
11415 remote protocol to know the remote process id, if there's any
11416 at all. There's one exception --- when we're connected with
11417 target extended-remote, and we manually attached to a process
11418 with "attach PID". We don't record anywhere a flag that
11419 allows us to distinguish that case from the case of
11420 connecting with extended-remote and the stub already being
11421 attached to a process, and reporting yes to qAttached, hence
11422 no smart special casing here. */
11423 if (!remote_multi_process_p (rs))
11424 {
11425 xsnprintf (buf, sizeof buf, "Remote target");
11426 return buf;
11427 }
11428
11429 return normal_pid_to_str (ptid);
11430 }
11431 else
11432 {
11433 if (magic_null_ptid == ptid)
11434 xsnprintf (buf, sizeof buf, "Thread <main>");
11435 else if (remote_multi_process_p (rs))
11436 if (ptid.lwp () == 0)
11437 return normal_pid_to_str (ptid);
11438 else
11439 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11440 ptid.pid (), ptid.lwp ());
11441 else
11442 xsnprintf (buf, sizeof buf, "Thread %ld",
11443 ptid.lwp ());
11444 return buf;
11445 }
11446 }
11447
11448 /* Get the address of the thread local variable in OBJFILE which is
11449 stored at OFFSET within the thread local storage for thread PTID. */
11450
11451 CORE_ADDR
11452 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11453 CORE_ADDR offset)
11454 {
11455 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11456 {
11457 struct remote_state *rs = get_remote_state ();
11458 char *p = rs->buf.data ();
11459 char *endp = p + get_remote_packet_size ();
11460 enum packet_result result;
11461
11462 strcpy (p, "qGetTLSAddr:");
11463 p += strlen (p);
11464 p = write_ptid (p, endp, ptid);
11465 *p++ = ',';
11466 p += hexnumstr (p, offset);
11467 *p++ = ',';
11468 p += hexnumstr (p, lm);
11469 *p++ = '\0';
11470
11471 putpkt (rs->buf);
11472 getpkt (&rs->buf, 0);
11473 result = packet_ok (rs->buf,
11474 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11475 if (result == PACKET_OK)
11476 {
11477 ULONGEST addr;
11478
11479 unpack_varlen_hex (rs->buf.data (), &addr);
11480 return addr;
11481 }
11482 else if (result == PACKET_UNKNOWN)
11483 throw_error (TLS_GENERIC_ERROR,
11484 _("Remote target doesn't support qGetTLSAddr packet"));
11485 else
11486 throw_error (TLS_GENERIC_ERROR,
11487 _("Remote target failed to process qGetTLSAddr request"));
11488 }
11489 else
11490 throw_error (TLS_GENERIC_ERROR,
11491 _("TLS not supported or disabled on this target"));
11492 /* Not reached. */
11493 return 0;
11494 }
11495
11496 /* Provide thread local base, i.e. Thread Information Block address.
11497 Returns 1 if ptid is found and thread_local_base is non zero. */
11498
11499 bool
11500 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11501 {
11502 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11503 {
11504 struct remote_state *rs = get_remote_state ();
11505 char *p = rs->buf.data ();
11506 char *endp = p + get_remote_packet_size ();
11507 enum packet_result result;
11508
11509 strcpy (p, "qGetTIBAddr:");
11510 p += strlen (p);
11511 p = write_ptid (p, endp, ptid);
11512 *p++ = '\0';
11513
11514 putpkt (rs->buf);
11515 getpkt (&rs->buf, 0);
11516 result = packet_ok (rs->buf,
11517 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11518 if (result == PACKET_OK)
11519 {
11520 ULONGEST val;
11521 unpack_varlen_hex (rs->buf.data (), &val);
11522 if (addr)
11523 *addr = (CORE_ADDR) val;
11524 return true;
11525 }
11526 else if (result == PACKET_UNKNOWN)
11527 error (_("Remote target doesn't support qGetTIBAddr packet"));
11528 else
11529 error (_("Remote target failed to process qGetTIBAddr request"));
11530 }
11531 else
11532 error (_("qGetTIBAddr not supported or disabled on this target"));
11533 /* Not reached. */
11534 return false;
11535 }
11536
11537 /* Support for inferring a target description based on the current
11538 architecture and the size of a 'g' packet. While the 'g' packet
11539 can have any size (since optional registers can be left off the
11540 end), some sizes are easily recognizable given knowledge of the
11541 approximate architecture. */
11542
11543 struct remote_g_packet_guess
11544 {
11545 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11546 : bytes (bytes_),
11547 tdesc (tdesc_)
11548 {
11549 }
11550
11551 int bytes;
11552 const struct target_desc *tdesc;
11553 };
11554
11555 struct remote_g_packet_data : public allocate_on_obstack
11556 {
11557 std::vector<remote_g_packet_guess> guesses;
11558 };
11559
11560 static struct gdbarch_data *remote_g_packet_data_handle;
11561
11562 static void *
11563 remote_g_packet_data_init (struct obstack *obstack)
11564 {
11565 return new (obstack) remote_g_packet_data;
11566 }
11567
11568 void
11569 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11570 const struct target_desc *tdesc)
11571 {
11572 struct remote_g_packet_data *data
11573 = ((struct remote_g_packet_data *)
11574 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11575
11576 gdb_assert (tdesc != NULL);
11577
11578 for (const remote_g_packet_guess &guess : data->guesses)
11579 if (guess.bytes == bytes)
11580 internal_error (__FILE__, __LINE__,
11581 _("Duplicate g packet description added for size %d"),
11582 bytes);
11583
11584 data->guesses.emplace_back (bytes, tdesc);
11585 }
11586
11587 /* Return true if remote_read_description would do anything on this target
11588 and architecture, false otherwise. */
11589
11590 static bool
11591 remote_read_description_p (struct target_ops *target)
11592 {
11593 struct remote_g_packet_data *data
11594 = ((struct remote_g_packet_data *)
11595 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11596
11597 return !data->guesses.empty ();
11598 }
11599
11600 const struct target_desc *
11601 remote_target::read_description ()
11602 {
11603 struct remote_g_packet_data *data
11604 = ((struct remote_g_packet_data *)
11605 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11606
11607 /* Do not try this during initial connection, when we do not know
11608 whether there is a running but stopped thread. */
11609 if (!target_has_execution || inferior_ptid == null_ptid)
11610 return beneath ()->read_description ();
11611
11612 if (!data->guesses.empty ())
11613 {
11614 int bytes = send_g_packet ();
11615
11616 for (const remote_g_packet_guess &guess : data->guesses)
11617 if (guess.bytes == bytes)
11618 return guess.tdesc;
11619
11620 /* We discard the g packet. A minor optimization would be to
11621 hold on to it, and fill the register cache once we have selected
11622 an architecture, but it's too tricky to do safely. */
11623 }
11624
11625 return beneath ()->read_description ();
11626 }
11627
11628 /* Remote file transfer support. This is host-initiated I/O, not
11629 target-initiated; for target-initiated, see remote-fileio.c. */
11630
11631 /* If *LEFT is at least the length of STRING, copy STRING to
11632 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11633 decrease *LEFT. Otherwise raise an error. */
11634
11635 static void
11636 remote_buffer_add_string (char **buffer, int *left, const char *string)
11637 {
11638 int len = strlen (string);
11639
11640 if (len > *left)
11641 error (_("Packet too long for target."));
11642
11643 memcpy (*buffer, string, len);
11644 *buffer += len;
11645 *left -= len;
11646
11647 /* NUL-terminate the buffer as a convenience, if there is
11648 room. */
11649 if (*left)
11650 **buffer = '\0';
11651 }
11652
11653 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11654 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11655 decrease *LEFT. Otherwise raise an error. */
11656
11657 static void
11658 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11659 int len)
11660 {
11661 if (2 * len > *left)
11662 error (_("Packet too long for target."));
11663
11664 bin2hex (bytes, *buffer, len);
11665 *buffer += 2 * len;
11666 *left -= 2 * len;
11667
11668 /* NUL-terminate the buffer as a convenience, if there is
11669 room. */
11670 if (*left)
11671 **buffer = '\0';
11672 }
11673
11674 /* If *LEFT is large enough, convert VALUE to hex and add it to
11675 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11676 decrease *LEFT. Otherwise raise an error. */
11677
11678 static void
11679 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11680 {
11681 int len = hexnumlen (value);
11682
11683 if (len > *left)
11684 error (_("Packet too long for target."));
11685
11686 hexnumstr (*buffer, value);
11687 *buffer += len;
11688 *left -= len;
11689
11690 /* NUL-terminate the buffer as a convenience, if there is
11691 room. */
11692 if (*left)
11693 **buffer = '\0';
11694 }
11695
11696 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11697 value, *REMOTE_ERRNO to the remote error number or zero if none
11698 was included, and *ATTACHMENT to point to the start of the annex
11699 if any. The length of the packet isn't needed here; there may
11700 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11701
11702 Return 0 if the packet could be parsed, -1 if it could not. If
11703 -1 is returned, the other variables may not be initialized. */
11704
11705 static int
11706 remote_hostio_parse_result (char *buffer, int *retcode,
11707 int *remote_errno, char **attachment)
11708 {
11709 char *p, *p2;
11710
11711 *remote_errno = 0;
11712 *attachment = NULL;
11713
11714 if (buffer[0] != 'F')
11715 return -1;
11716
11717 errno = 0;
11718 *retcode = strtol (&buffer[1], &p, 16);
11719 if (errno != 0 || p == &buffer[1])
11720 return -1;
11721
11722 /* Check for ",errno". */
11723 if (*p == ',')
11724 {
11725 errno = 0;
11726 *remote_errno = strtol (p + 1, &p2, 16);
11727 if (errno != 0 || p + 1 == p2)
11728 return -1;
11729 p = p2;
11730 }
11731
11732 /* Check for ";attachment". If there is no attachment, the
11733 packet should end here. */
11734 if (*p == ';')
11735 {
11736 *attachment = p + 1;
11737 return 0;
11738 }
11739 else if (*p == '\0')
11740 return 0;
11741 else
11742 return -1;
11743 }
11744
11745 /* Send a prepared I/O packet to the target and read its response.
11746 The prepared packet is in the global RS->BUF before this function
11747 is called, and the answer is there when we return.
11748
11749 COMMAND_BYTES is the length of the request to send, which may include
11750 binary data. WHICH_PACKET is the packet configuration to check
11751 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11752 is set to the error number and -1 is returned. Otherwise the value
11753 returned by the function is returned.
11754
11755 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11756 attachment is expected; an error will be reported if there's a
11757 mismatch. If one is found, *ATTACHMENT will be set to point into
11758 the packet buffer and *ATTACHMENT_LEN will be set to the
11759 attachment's length. */
11760
11761 int
11762 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11763 int *remote_errno, char **attachment,
11764 int *attachment_len)
11765 {
11766 struct remote_state *rs = get_remote_state ();
11767 int ret, bytes_read;
11768 char *attachment_tmp;
11769
11770 if (packet_support (which_packet) == PACKET_DISABLE)
11771 {
11772 *remote_errno = FILEIO_ENOSYS;
11773 return -1;
11774 }
11775
11776 putpkt_binary (rs->buf.data (), command_bytes);
11777 bytes_read = getpkt_sane (&rs->buf, 0);
11778
11779 /* If it timed out, something is wrong. Don't try to parse the
11780 buffer. */
11781 if (bytes_read < 0)
11782 {
11783 *remote_errno = FILEIO_EINVAL;
11784 return -1;
11785 }
11786
11787 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11788 {
11789 case PACKET_ERROR:
11790 *remote_errno = FILEIO_EINVAL;
11791 return -1;
11792 case PACKET_UNKNOWN:
11793 *remote_errno = FILEIO_ENOSYS;
11794 return -1;
11795 case PACKET_OK:
11796 break;
11797 }
11798
11799 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11800 &attachment_tmp))
11801 {
11802 *remote_errno = FILEIO_EINVAL;
11803 return -1;
11804 }
11805
11806 /* Make sure we saw an attachment if and only if we expected one. */
11807 if ((attachment_tmp == NULL && attachment != NULL)
11808 || (attachment_tmp != NULL && attachment == NULL))
11809 {
11810 *remote_errno = FILEIO_EINVAL;
11811 return -1;
11812 }
11813
11814 /* If an attachment was found, it must point into the packet buffer;
11815 work out how many bytes there were. */
11816 if (attachment_tmp != NULL)
11817 {
11818 *attachment = attachment_tmp;
11819 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11820 }
11821
11822 return ret;
11823 }
11824
11825 /* See declaration.h. */
11826
11827 void
11828 readahead_cache::invalidate ()
11829 {
11830 this->fd = -1;
11831 }
11832
11833 /* See declaration.h. */
11834
11835 void
11836 readahead_cache::invalidate_fd (int fd)
11837 {
11838 if (this->fd == fd)
11839 this->fd = -1;
11840 }
11841
11842 /* Set the filesystem remote_hostio functions that take FILENAME
11843 arguments will use. Return 0 on success, or -1 if an error
11844 occurs (and set *REMOTE_ERRNO). */
11845
11846 int
11847 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11848 int *remote_errno)
11849 {
11850 struct remote_state *rs = get_remote_state ();
11851 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11852 char *p = rs->buf.data ();
11853 int left = get_remote_packet_size () - 1;
11854 char arg[9];
11855 int ret;
11856
11857 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11858 return 0;
11859
11860 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11861 return 0;
11862
11863 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11864
11865 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11866 remote_buffer_add_string (&p, &left, arg);
11867
11868 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11869 remote_errno, NULL, NULL);
11870
11871 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11872 return 0;
11873
11874 if (ret == 0)
11875 rs->fs_pid = required_pid;
11876
11877 return ret;
11878 }
11879
11880 /* Implementation of to_fileio_open. */
11881
11882 int
11883 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11884 int flags, int mode, int warn_if_slow,
11885 int *remote_errno)
11886 {
11887 struct remote_state *rs = get_remote_state ();
11888 char *p = rs->buf.data ();
11889 int left = get_remote_packet_size () - 1;
11890
11891 if (warn_if_slow)
11892 {
11893 static int warning_issued = 0;
11894
11895 printf_unfiltered (_("Reading %s from remote target...\n"),
11896 filename);
11897
11898 if (!warning_issued)
11899 {
11900 warning (_("File transfers from remote targets can be slow."
11901 " Use \"set sysroot\" to access files locally"
11902 " instead."));
11903 warning_issued = 1;
11904 }
11905 }
11906
11907 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11908 return -1;
11909
11910 remote_buffer_add_string (&p, &left, "vFile:open:");
11911
11912 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11913 strlen (filename));
11914 remote_buffer_add_string (&p, &left, ",");
11915
11916 remote_buffer_add_int (&p, &left, flags);
11917 remote_buffer_add_string (&p, &left, ",");
11918
11919 remote_buffer_add_int (&p, &left, mode);
11920
11921 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11922 remote_errno, NULL, NULL);
11923 }
11924
11925 int
11926 remote_target::fileio_open (struct inferior *inf, const char *filename,
11927 int flags, int mode, int warn_if_slow,
11928 int *remote_errno)
11929 {
11930 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11931 remote_errno);
11932 }
11933
11934 /* Implementation of to_fileio_pwrite. */
11935
11936 int
11937 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11938 ULONGEST offset, int *remote_errno)
11939 {
11940 struct remote_state *rs = get_remote_state ();
11941 char *p = rs->buf.data ();
11942 int left = get_remote_packet_size ();
11943 int out_len;
11944
11945 rs->readahead_cache.invalidate_fd (fd);
11946
11947 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11948
11949 remote_buffer_add_int (&p, &left, fd);
11950 remote_buffer_add_string (&p, &left, ",");
11951
11952 remote_buffer_add_int (&p, &left, offset);
11953 remote_buffer_add_string (&p, &left, ",");
11954
11955 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11956 (get_remote_packet_size ()
11957 - (p - rs->buf.data ())));
11958
11959 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11960 remote_errno, NULL, NULL);
11961 }
11962
11963 int
11964 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11965 ULONGEST offset, int *remote_errno)
11966 {
11967 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11968 }
11969
11970 /* Helper for the implementation of to_fileio_pread. Read the file
11971 from the remote side with vFile:pread. */
11972
11973 int
11974 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11975 ULONGEST offset, int *remote_errno)
11976 {
11977 struct remote_state *rs = get_remote_state ();
11978 char *p = rs->buf.data ();
11979 char *attachment;
11980 int left = get_remote_packet_size ();
11981 int ret, attachment_len;
11982 int read_len;
11983
11984 remote_buffer_add_string (&p, &left, "vFile:pread:");
11985
11986 remote_buffer_add_int (&p, &left, fd);
11987 remote_buffer_add_string (&p, &left, ",");
11988
11989 remote_buffer_add_int (&p, &left, len);
11990 remote_buffer_add_string (&p, &left, ",");
11991
11992 remote_buffer_add_int (&p, &left, offset);
11993
11994 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11995 remote_errno, &attachment,
11996 &attachment_len);
11997
11998 if (ret < 0)
11999 return ret;
12000
12001 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12002 read_buf, len);
12003 if (read_len != ret)
12004 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12005
12006 return ret;
12007 }
12008
12009 /* See declaration.h. */
12010
12011 int
12012 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12013 ULONGEST offset)
12014 {
12015 if (this->fd == fd
12016 && this->offset <= offset
12017 && offset < this->offset + this->bufsize)
12018 {
12019 ULONGEST max = this->offset + this->bufsize;
12020
12021 if (offset + len > max)
12022 len = max - offset;
12023
12024 memcpy (read_buf, this->buf + offset - this->offset, len);
12025 return len;
12026 }
12027
12028 return 0;
12029 }
12030
12031 /* Implementation of to_fileio_pread. */
12032
12033 int
12034 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12035 ULONGEST offset, int *remote_errno)
12036 {
12037 int ret;
12038 struct remote_state *rs = get_remote_state ();
12039 readahead_cache *cache = &rs->readahead_cache;
12040
12041 ret = cache->pread (fd, read_buf, len, offset);
12042 if (ret > 0)
12043 {
12044 cache->hit_count++;
12045
12046 if (remote_debug)
12047 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12048 pulongest (cache->hit_count));
12049 return ret;
12050 }
12051
12052 cache->miss_count++;
12053 if (remote_debug)
12054 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12055 pulongest (cache->miss_count));
12056
12057 cache->fd = fd;
12058 cache->offset = offset;
12059 cache->bufsize = get_remote_packet_size ();
12060 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12061
12062 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12063 cache->offset, remote_errno);
12064 if (ret <= 0)
12065 {
12066 cache->invalidate_fd (fd);
12067 return ret;
12068 }
12069
12070 cache->bufsize = ret;
12071 return cache->pread (fd, read_buf, len, offset);
12072 }
12073
12074 int
12075 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12076 ULONGEST offset, int *remote_errno)
12077 {
12078 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12079 }
12080
12081 /* Implementation of to_fileio_close. */
12082
12083 int
12084 remote_target::remote_hostio_close (int fd, int *remote_errno)
12085 {
12086 struct remote_state *rs = get_remote_state ();
12087 char *p = rs->buf.data ();
12088 int left = get_remote_packet_size () - 1;
12089
12090 rs->readahead_cache.invalidate_fd (fd);
12091
12092 remote_buffer_add_string (&p, &left, "vFile:close:");
12093
12094 remote_buffer_add_int (&p, &left, fd);
12095
12096 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12097 remote_errno, NULL, NULL);
12098 }
12099
12100 int
12101 remote_target::fileio_close (int fd, int *remote_errno)
12102 {
12103 return remote_hostio_close (fd, remote_errno);
12104 }
12105
12106 /* Implementation of to_fileio_unlink. */
12107
12108 int
12109 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12110 int *remote_errno)
12111 {
12112 struct remote_state *rs = get_remote_state ();
12113 char *p = rs->buf.data ();
12114 int left = get_remote_packet_size () - 1;
12115
12116 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12117 return -1;
12118
12119 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12120
12121 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12122 strlen (filename));
12123
12124 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12125 remote_errno, NULL, NULL);
12126 }
12127
12128 int
12129 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12130 int *remote_errno)
12131 {
12132 return remote_hostio_unlink (inf, filename, remote_errno);
12133 }
12134
12135 /* Implementation of to_fileio_readlink. */
12136
12137 gdb::optional<std::string>
12138 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12139 int *remote_errno)
12140 {
12141 struct remote_state *rs = get_remote_state ();
12142 char *p = rs->buf.data ();
12143 char *attachment;
12144 int left = get_remote_packet_size ();
12145 int len, attachment_len;
12146 int read_len;
12147
12148 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12149 return {};
12150
12151 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12152
12153 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12154 strlen (filename));
12155
12156 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12157 remote_errno, &attachment,
12158 &attachment_len);
12159
12160 if (len < 0)
12161 return {};
12162
12163 std::string ret (len, '\0');
12164
12165 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12166 (gdb_byte *) &ret[0], len);
12167 if (read_len != len)
12168 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12169
12170 return ret;
12171 }
12172
12173 /* Implementation of to_fileio_fstat. */
12174
12175 int
12176 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12177 {
12178 struct remote_state *rs = get_remote_state ();
12179 char *p = rs->buf.data ();
12180 int left = get_remote_packet_size ();
12181 int attachment_len, ret;
12182 char *attachment;
12183 struct fio_stat fst;
12184 int read_len;
12185
12186 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12187
12188 remote_buffer_add_int (&p, &left, fd);
12189
12190 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12191 remote_errno, &attachment,
12192 &attachment_len);
12193 if (ret < 0)
12194 {
12195 if (*remote_errno != FILEIO_ENOSYS)
12196 return ret;
12197
12198 /* Strictly we should return -1, ENOSYS here, but when
12199 "set sysroot remote:" was implemented in August 2008
12200 BFD's need for a stat function was sidestepped with
12201 this hack. This was not remedied until March 2015
12202 so we retain the previous behavior to avoid breaking
12203 compatibility.
12204
12205 Note that the memset is a March 2015 addition; older
12206 GDBs set st_size *and nothing else* so the structure
12207 would have garbage in all other fields. This might
12208 break something but retaining the previous behavior
12209 here would be just too wrong. */
12210
12211 memset (st, 0, sizeof (struct stat));
12212 st->st_size = INT_MAX;
12213 return 0;
12214 }
12215
12216 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12217 (gdb_byte *) &fst, sizeof (fst));
12218
12219 if (read_len != ret)
12220 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12221
12222 if (read_len != sizeof (fst))
12223 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12224 read_len, (int) sizeof (fst));
12225
12226 remote_fileio_to_host_stat (&fst, st);
12227
12228 return 0;
12229 }
12230
12231 /* Implementation of to_filesystem_is_local. */
12232
12233 bool
12234 remote_target::filesystem_is_local ()
12235 {
12236 /* Valgrind GDB presents itself as a remote target but works
12237 on the local filesystem: it does not implement remote get
12238 and users are not expected to set a sysroot. To handle
12239 this case we treat the remote filesystem as local if the
12240 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12241 does not support vFile:open. */
12242 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12243 {
12244 enum packet_support ps = packet_support (PACKET_vFile_open);
12245
12246 if (ps == PACKET_SUPPORT_UNKNOWN)
12247 {
12248 int fd, remote_errno;
12249
12250 /* Try opening a file to probe support. The supplied
12251 filename is irrelevant, we only care about whether
12252 the stub recognizes the packet or not. */
12253 fd = remote_hostio_open (NULL, "just probing",
12254 FILEIO_O_RDONLY, 0700, 0,
12255 &remote_errno);
12256
12257 if (fd >= 0)
12258 remote_hostio_close (fd, &remote_errno);
12259
12260 ps = packet_support (PACKET_vFile_open);
12261 }
12262
12263 if (ps == PACKET_DISABLE)
12264 {
12265 static int warning_issued = 0;
12266
12267 if (!warning_issued)
12268 {
12269 warning (_("remote target does not support file"
12270 " transfer, attempting to access files"
12271 " from local filesystem."));
12272 warning_issued = 1;
12273 }
12274
12275 return true;
12276 }
12277 }
12278
12279 return false;
12280 }
12281
12282 static int
12283 remote_fileio_errno_to_host (int errnum)
12284 {
12285 switch (errnum)
12286 {
12287 case FILEIO_EPERM:
12288 return EPERM;
12289 case FILEIO_ENOENT:
12290 return ENOENT;
12291 case FILEIO_EINTR:
12292 return EINTR;
12293 case FILEIO_EIO:
12294 return EIO;
12295 case FILEIO_EBADF:
12296 return EBADF;
12297 case FILEIO_EACCES:
12298 return EACCES;
12299 case FILEIO_EFAULT:
12300 return EFAULT;
12301 case FILEIO_EBUSY:
12302 return EBUSY;
12303 case FILEIO_EEXIST:
12304 return EEXIST;
12305 case FILEIO_ENODEV:
12306 return ENODEV;
12307 case FILEIO_ENOTDIR:
12308 return ENOTDIR;
12309 case FILEIO_EISDIR:
12310 return EISDIR;
12311 case FILEIO_EINVAL:
12312 return EINVAL;
12313 case FILEIO_ENFILE:
12314 return ENFILE;
12315 case FILEIO_EMFILE:
12316 return EMFILE;
12317 case FILEIO_EFBIG:
12318 return EFBIG;
12319 case FILEIO_ENOSPC:
12320 return ENOSPC;
12321 case FILEIO_ESPIPE:
12322 return ESPIPE;
12323 case FILEIO_EROFS:
12324 return EROFS;
12325 case FILEIO_ENOSYS:
12326 return ENOSYS;
12327 case FILEIO_ENAMETOOLONG:
12328 return ENAMETOOLONG;
12329 }
12330 return -1;
12331 }
12332
12333 static char *
12334 remote_hostio_error (int errnum)
12335 {
12336 int host_error = remote_fileio_errno_to_host (errnum);
12337
12338 if (host_error == -1)
12339 error (_("Unknown remote I/O error %d"), errnum);
12340 else
12341 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12342 }
12343
12344 /* A RAII wrapper around a remote file descriptor. */
12345
12346 class scoped_remote_fd
12347 {
12348 public:
12349 scoped_remote_fd (remote_target *remote, int fd)
12350 : m_remote (remote), m_fd (fd)
12351 {
12352 }
12353
12354 ~scoped_remote_fd ()
12355 {
12356 if (m_fd != -1)
12357 {
12358 try
12359 {
12360 int remote_errno;
12361 m_remote->remote_hostio_close (m_fd, &remote_errno);
12362 }
12363 catch (...)
12364 {
12365 /* Swallow exception before it escapes the dtor. If
12366 something goes wrong, likely the connection is gone,
12367 and there's nothing else that can be done. */
12368 }
12369 }
12370 }
12371
12372 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12373
12374 /* Release ownership of the file descriptor, and return it. */
12375 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12376 {
12377 int fd = m_fd;
12378 m_fd = -1;
12379 return fd;
12380 }
12381
12382 /* Return the owned file descriptor. */
12383 int get () const noexcept
12384 {
12385 return m_fd;
12386 }
12387
12388 private:
12389 /* The remote target. */
12390 remote_target *m_remote;
12391
12392 /* The owned remote I/O file descriptor. */
12393 int m_fd;
12394 };
12395
12396 void
12397 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12398 {
12399 remote_target *remote = get_current_remote_target ();
12400
12401 if (remote == nullptr)
12402 error (_("command can only be used with remote target"));
12403
12404 remote->remote_file_put (local_file, remote_file, from_tty);
12405 }
12406
12407 void
12408 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12409 int from_tty)
12410 {
12411 int retcode, remote_errno, bytes, io_size;
12412 int bytes_in_buffer;
12413 int saw_eof;
12414 ULONGEST offset;
12415
12416 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12417 if (file == NULL)
12418 perror_with_name (local_file);
12419
12420 scoped_remote_fd fd
12421 (this, remote_hostio_open (NULL,
12422 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12423 | FILEIO_O_TRUNC),
12424 0700, 0, &remote_errno));
12425 if (fd.get () == -1)
12426 remote_hostio_error (remote_errno);
12427
12428 /* Send up to this many bytes at once. They won't all fit in the
12429 remote packet limit, so we'll transfer slightly fewer. */
12430 io_size = get_remote_packet_size ();
12431 gdb::byte_vector buffer (io_size);
12432
12433 bytes_in_buffer = 0;
12434 saw_eof = 0;
12435 offset = 0;
12436 while (bytes_in_buffer || !saw_eof)
12437 {
12438 if (!saw_eof)
12439 {
12440 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12441 io_size - bytes_in_buffer,
12442 file.get ());
12443 if (bytes == 0)
12444 {
12445 if (ferror (file.get ()))
12446 error (_("Error reading %s."), local_file);
12447 else
12448 {
12449 /* EOF. Unless there is something still in the
12450 buffer from the last iteration, we are done. */
12451 saw_eof = 1;
12452 if (bytes_in_buffer == 0)
12453 break;
12454 }
12455 }
12456 }
12457 else
12458 bytes = 0;
12459
12460 bytes += bytes_in_buffer;
12461 bytes_in_buffer = 0;
12462
12463 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12464 offset, &remote_errno);
12465
12466 if (retcode < 0)
12467 remote_hostio_error (remote_errno);
12468 else if (retcode == 0)
12469 error (_("Remote write of %d bytes returned 0!"), bytes);
12470 else if (retcode < bytes)
12471 {
12472 /* Short write. Save the rest of the read data for the next
12473 write. */
12474 bytes_in_buffer = bytes - retcode;
12475 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12476 }
12477
12478 offset += retcode;
12479 }
12480
12481 if (remote_hostio_close (fd.release (), &remote_errno))
12482 remote_hostio_error (remote_errno);
12483
12484 if (from_tty)
12485 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12486 }
12487
12488 void
12489 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12490 {
12491 remote_target *remote = get_current_remote_target ();
12492
12493 if (remote == nullptr)
12494 error (_("command can only be used with remote target"));
12495
12496 remote->remote_file_get (remote_file, local_file, from_tty);
12497 }
12498
12499 void
12500 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12501 int from_tty)
12502 {
12503 int remote_errno, bytes, io_size;
12504 ULONGEST offset;
12505
12506 scoped_remote_fd fd
12507 (this, remote_hostio_open (NULL,
12508 remote_file, FILEIO_O_RDONLY, 0, 0,
12509 &remote_errno));
12510 if (fd.get () == -1)
12511 remote_hostio_error (remote_errno);
12512
12513 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12514 if (file == NULL)
12515 perror_with_name (local_file);
12516
12517 /* Send up to this many bytes at once. They won't all fit in the
12518 remote packet limit, so we'll transfer slightly fewer. */
12519 io_size = get_remote_packet_size ();
12520 gdb::byte_vector buffer (io_size);
12521
12522 offset = 0;
12523 while (1)
12524 {
12525 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12526 &remote_errno);
12527 if (bytes == 0)
12528 /* Success, but no bytes, means end-of-file. */
12529 break;
12530 if (bytes == -1)
12531 remote_hostio_error (remote_errno);
12532
12533 offset += bytes;
12534
12535 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12536 if (bytes == 0)
12537 perror_with_name (local_file);
12538 }
12539
12540 if (remote_hostio_close (fd.release (), &remote_errno))
12541 remote_hostio_error (remote_errno);
12542
12543 if (from_tty)
12544 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12545 }
12546
12547 void
12548 remote_file_delete (const char *remote_file, int from_tty)
12549 {
12550 remote_target *remote = get_current_remote_target ();
12551
12552 if (remote == nullptr)
12553 error (_("command can only be used with remote target"));
12554
12555 remote->remote_file_delete (remote_file, from_tty);
12556 }
12557
12558 void
12559 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12560 {
12561 int retcode, remote_errno;
12562
12563 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12564 if (retcode == -1)
12565 remote_hostio_error (remote_errno);
12566
12567 if (from_tty)
12568 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12569 }
12570
12571 static void
12572 remote_put_command (const char *args, int from_tty)
12573 {
12574 if (args == NULL)
12575 error_no_arg (_("file to put"));
12576
12577 gdb_argv argv (args);
12578 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12579 error (_("Invalid parameters to remote put"));
12580
12581 remote_file_put (argv[0], argv[1], from_tty);
12582 }
12583
12584 static void
12585 remote_get_command (const char *args, int from_tty)
12586 {
12587 if (args == NULL)
12588 error_no_arg (_("file to get"));
12589
12590 gdb_argv argv (args);
12591 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12592 error (_("Invalid parameters to remote get"));
12593
12594 remote_file_get (argv[0], argv[1], from_tty);
12595 }
12596
12597 static void
12598 remote_delete_command (const char *args, int from_tty)
12599 {
12600 if (args == NULL)
12601 error_no_arg (_("file to delete"));
12602
12603 gdb_argv argv (args);
12604 if (argv[0] == NULL || argv[1] != NULL)
12605 error (_("Invalid parameters to remote delete"));
12606
12607 remote_file_delete (argv[0], from_tty);
12608 }
12609
12610 static void
12611 remote_command (const char *args, int from_tty)
12612 {
12613 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12614 }
12615
12616 bool
12617 remote_target::can_execute_reverse ()
12618 {
12619 if (packet_support (PACKET_bs) == PACKET_ENABLE
12620 || packet_support (PACKET_bc) == PACKET_ENABLE)
12621 return true;
12622 else
12623 return false;
12624 }
12625
12626 bool
12627 remote_target::supports_non_stop ()
12628 {
12629 return true;
12630 }
12631
12632 bool
12633 remote_target::supports_disable_randomization ()
12634 {
12635 /* Only supported in extended mode. */
12636 return false;
12637 }
12638
12639 bool
12640 remote_target::supports_multi_process ()
12641 {
12642 struct remote_state *rs = get_remote_state ();
12643
12644 return remote_multi_process_p (rs);
12645 }
12646
12647 static int
12648 remote_supports_cond_tracepoints ()
12649 {
12650 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12651 }
12652
12653 bool
12654 remote_target::supports_evaluation_of_breakpoint_conditions ()
12655 {
12656 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12657 }
12658
12659 static int
12660 remote_supports_fast_tracepoints ()
12661 {
12662 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12663 }
12664
12665 static int
12666 remote_supports_static_tracepoints ()
12667 {
12668 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12669 }
12670
12671 static int
12672 remote_supports_install_in_trace ()
12673 {
12674 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12675 }
12676
12677 bool
12678 remote_target::supports_enable_disable_tracepoint ()
12679 {
12680 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12681 == PACKET_ENABLE);
12682 }
12683
12684 bool
12685 remote_target::supports_string_tracing ()
12686 {
12687 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12688 }
12689
12690 bool
12691 remote_target::can_run_breakpoint_commands ()
12692 {
12693 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12694 }
12695
12696 void
12697 remote_target::trace_init ()
12698 {
12699 struct remote_state *rs = get_remote_state ();
12700
12701 putpkt ("QTinit");
12702 remote_get_noisy_reply ();
12703 if (strcmp (rs->buf.data (), "OK") != 0)
12704 error (_("Target does not support this command."));
12705 }
12706
12707 /* Recursive routine to walk through command list including loops, and
12708 download packets for each command. */
12709
12710 void
12711 remote_target::remote_download_command_source (int num, ULONGEST addr,
12712 struct command_line *cmds)
12713 {
12714 struct remote_state *rs = get_remote_state ();
12715 struct command_line *cmd;
12716
12717 for (cmd = cmds; cmd; cmd = cmd->next)
12718 {
12719 QUIT; /* Allow user to bail out with ^C. */
12720 strcpy (rs->buf.data (), "QTDPsrc:");
12721 encode_source_string (num, addr, "cmd", cmd->line,
12722 rs->buf.data () + strlen (rs->buf.data ()),
12723 rs->buf.size () - strlen (rs->buf.data ()));
12724 putpkt (rs->buf);
12725 remote_get_noisy_reply ();
12726 if (strcmp (rs->buf.data (), "OK"))
12727 warning (_("Target does not support source download."));
12728
12729 if (cmd->control_type == while_control
12730 || cmd->control_type == while_stepping_control)
12731 {
12732 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12733
12734 QUIT; /* Allow user to bail out with ^C. */
12735 strcpy (rs->buf.data (), "QTDPsrc:");
12736 encode_source_string (num, addr, "cmd", "end",
12737 rs->buf.data () + strlen (rs->buf.data ()),
12738 rs->buf.size () - strlen (rs->buf.data ()));
12739 putpkt (rs->buf);
12740 remote_get_noisy_reply ();
12741 if (strcmp (rs->buf.data (), "OK"))
12742 warning (_("Target does not support source download."));
12743 }
12744 }
12745 }
12746
12747 void
12748 remote_target::download_tracepoint (struct bp_location *loc)
12749 {
12750 CORE_ADDR tpaddr;
12751 char addrbuf[40];
12752 std::vector<std::string> tdp_actions;
12753 std::vector<std::string> stepping_actions;
12754 char *pkt;
12755 struct breakpoint *b = loc->owner;
12756 struct tracepoint *t = (struct tracepoint *) b;
12757 struct remote_state *rs = get_remote_state ();
12758 int ret;
12759 const char *err_msg = _("Tracepoint packet too large for target.");
12760 size_t size_left;
12761
12762 /* We use a buffer other than rs->buf because we'll build strings
12763 across multiple statements, and other statements in between could
12764 modify rs->buf. */
12765 gdb::char_vector buf (get_remote_packet_size ());
12766
12767 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12768
12769 tpaddr = loc->address;
12770 sprintf_vma (addrbuf, tpaddr);
12771 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12772 b->number, addrbuf, /* address */
12773 (b->enable_state == bp_enabled ? 'E' : 'D'),
12774 t->step_count, t->pass_count);
12775
12776 if (ret < 0 || ret >= buf.size ())
12777 error ("%s", err_msg);
12778
12779 /* Fast tracepoints are mostly handled by the target, but we can
12780 tell the target how big of an instruction block should be moved
12781 around. */
12782 if (b->type == bp_fast_tracepoint)
12783 {
12784 /* Only test for support at download time; we may not know
12785 target capabilities at definition time. */
12786 if (remote_supports_fast_tracepoints ())
12787 {
12788 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12789 NULL))
12790 {
12791 size_left = buf.size () - strlen (buf.data ());
12792 ret = snprintf (buf.data () + strlen (buf.data ()),
12793 size_left, ":F%x",
12794 gdb_insn_length (loc->gdbarch, tpaddr));
12795
12796 if (ret < 0 || ret >= size_left)
12797 error ("%s", err_msg);
12798 }
12799 else
12800 /* If it passed validation at definition but fails now,
12801 something is very wrong. */
12802 internal_error (__FILE__, __LINE__,
12803 _("Fast tracepoint not "
12804 "valid during download"));
12805 }
12806 else
12807 /* Fast tracepoints are functionally identical to regular
12808 tracepoints, so don't take lack of support as a reason to
12809 give up on the trace run. */
12810 warning (_("Target does not support fast tracepoints, "
12811 "downloading %d as regular tracepoint"), b->number);
12812 }
12813 else if (b->type == bp_static_tracepoint)
12814 {
12815 /* Only test for support at download time; we may not know
12816 target capabilities at definition time. */
12817 if (remote_supports_static_tracepoints ())
12818 {
12819 struct static_tracepoint_marker marker;
12820
12821 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12822 {
12823 size_left = buf.size () - strlen (buf.data ());
12824 ret = snprintf (buf.data () + strlen (buf.data ()),
12825 size_left, ":S");
12826
12827 if (ret < 0 || ret >= size_left)
12828 error ("%s", err_msg);
12829 }
12830 else
12831 error (_("Static tracepoint not valid during download"));
12832 }
12833 else
12834 /* Fast tracepoints are functionally identical to regular
12835 tracepoints, so don't take lack of support as a reason
12836 to give up on the trace run. */
12837 error (_("Target does not support static tracepoints"));
12838 }
12839 /* If the tracepoint has a conditional, make it into an agent
12840 expression and append to the definition. */
12841 if (loc->cond)
12842 {
12843 /* Only test support at download time, we may not know target
12844 capabilities at definition time. */
12845 if (remote_supports_cond_tracepoints ())
12846 {
12847 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12848 loc->cond.get ());
12849
12850 size_left = buf.size () - strlen (buf.data ());
12851
12852 ret = snprintf (buf.data () + strlen (buf.data ()),
12853 size_left, ":X%x,", aexpr->len);
12854
12855 if (ret < 0 || ret >= size_left)
12856 error ("%s", err_msg);
12857
12858 size_left = buf.size () - strlen (buf.data ());
12859
12860 /* Two bytes to encode each aexpr byte, plus the terminating
12861 null byte. */
12862 if (aexpr->len * 2 + 1 > size_left)
12863 error ("%s", err_msg);
12864
12865 pkt = buf.data () + strlen (buf.data ());
12866
12867 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12868 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12869 *pkt = '\0';
12870 }
12871 else
12872 warning (_("Target does not support conditional tracepoints, "
12873 "ignoring tp %d cond"), b->number);
12874 }
12875
12876 if (b->commands || *default_collect)
12877 {
12878 size_left = buf.size () - strlen (buf.data ());
12879
12880 ret = snprintf (buf.data () + strlen (buf.data ()),
12881 size_left, "-");
12882
12883 if (ret < 0 || ret >= size_left)
12884 error ("%s", err_msg);
12885 }
12886
12887 putpkt (buf.data ());
12888 remote_get_noisy_reply ();
12889 if (strcmp (rs->buf.data (), "OK"))
12890 error (_("Target does not support tracepoints."));
12891
12892 /* do_single_steps (t); */
12893 for (auto action_it = tdp_actions.begin ();
12894 action_it != tdp_actions.end (); action_it++)
12895 {
12896 QUIT; /* Allow user to bail out with ^C. */
12897
12898 bool has_more = ((action_it + 1) != tdp_actions.end ()
12899 || !stepping_actions.empty ());
12900
12901 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12902 b->number, addrbuf, /* address */
12903 action_it->c_str (),
12904 has_more ? '-' : 0);
12905
12906 if (ret < 0 || ret >= buf.size ())
12907 error ("%s", err_msg);
12908
12909 putpkt (buf.data ());
12910 remote_get_noisy_reply ();
12911 if (strcmp (rs->buf.data (), "OK"))
12912 error (_("Error on target while setting tracepoints."));
12913 }
12914
12915 for (auto action_it = stepping_actions.begin ();
12916 action_it != stepping_actions.end (); action_it++)
12917 {
12918 QUIT; /* Allow user to bail out with ^C. */
12919
12920 bool is_first = action_it == stepping_actions.begin ();
12921 bool has_more = (action_it + 1) != stepping_actions.end ();
12922
12923 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12924 b->number, addrbuf, /* address */
12925 is_first ? "S" : "",
12926 action_it->c_str (),
12927 has_more ? "-" : "");
12928
12929 if (ret < 0 || ret >= buf.size ())
12930 error ("%s", err_msg);
12931
12932 putpkt (buf.data ());
12933 remote_get_noisy_reply ();
12934 if (strcmp (rs->buf.data (), "OK"))
12935 error (_("Error on target while setting tracepoints."));
12936 }
12937
12938 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12939 {
12940 if (b->location != NULL)
12941 {
12942 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12943
12944 if (ret < 0 || ret >= buf.size ())
12945 error ("%s", err_msg);
12946
12947 encode_source_string (b->number, loc->address, "at",
12948 event_location_to_string (b->location.get ()),
12949 buf.data () + strlen (buf.data ()),
12950 buf.size () - strlen (buf.data ()));
12951 putpkt (buf.data ());
12952 remote_get_noisy_reply ();
12953 if (strcmp (rs->buf.data (), "OK"))
12954 warning (_("Target does not support source download."));
12955 }
12956 if (b->cond_string)
12957 {
12958 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12959
12960 if (ret < 0 || ret >= buf.size ())
12961 error ("%s", err_msg);
12962
12963 encode_source_string (b->number, loc->address,
12964 "cond", b->cond_string,
12965 buf.data () + strlen (buf.data ()),
12966 buf.size () - strlen (buf.data ()));
12967 putpkt (buf.data ());
12968 remote_get_noisy_reply ();
12969 if (strcmp (rs->buf.data (), "OK"))
12970 warning (_("Target does not support source download."));
12971 }
12972 remote_download_command_source (b->number, loc->address,
12973 breakpoint_commands (b));
12974 }
12975 }
12976
12977 bool
12978 remote_target::can_download_tracepoint ()
12979 {
12980 struct remote_state *rs = get_remote_state ();
12981 struct trace_status *ts;
12982 int status;
12983
12984 /* Don't try to install tracepoints until we've relocated our
12985 symbols, and fetched and merged the target's tracepoint list with
12986 ours. */
12987 if (rs->starting_up)
12988 return false;
12989
12990 ts = current_trace_status ();
12991 status = get_trace_status (ts);
12992
12993 if (status == -1 || !ts->running_known || !ts->running)
12994 return false;
12995
12996 /* If we are in a tracing experiment, but remote stub doesn't support
12997 installing tracepoint in trace, we have to return. */
12998 if (!remote_supports_install_in_trace ())
12999 return false;
13000
13001 return true;
13002 }
13003
13004
13005 void
13006 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13007 {
13008 struct remote_state *rs = get_remote_state ();
13009 char *p;
13010
13011 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13012 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13013 tsv.builtin);
13014 p = rs->buf.data () + strlen (rs->buf.data ());
13015 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13016 >= get_remote_packet_size ())
13017 error (_("Trace state variable name too long for tsv definition packet"));
13018 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13019 *p++ = '\0';
13020 putpkt (rs->buf);
13021 remote_get_noisy_reply ();
13022 if (rs->buf[0] == '\0')
13023 error (_("Target does not support this command."));
13024 if (strcmp (rs->buf.data (), "OK") != 0)
13025 error (_("Error on target while downloading trace state variable."));
13026 }
13027
13028 void
13029 remote_target::enable_tracepoint (struct bp_location *location)
13030 {
13031 struct remote_state *rs = get_remote_state ();
13032 char addr_buf[40];
13033
13034 sprintf_vma (addr_buf, location->address);
13035 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13036 location->owner->number, addr_buf);
13037 putpkt (rs->buf);
13038 remote_get_noisy_reply ();
13039 if (rs->buf[0] == '\0')
13040 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13041 if (strcmp (rs->buf.data (), "OK") != 0)
13042 error (_("Error on target while enabling tracepoint."));
13043 }
13044
13045 void
13046 remote_target::disable_tracepoint (struct bp_location *location)
13047 {
13048 struct remote_state *rs = get_remote_state ();
13049 char addr_buf[40];
13050
13051 sprintf_vma (addr_buf, location->address);
13052 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13053 location->owner->number, addr_buf);
13054 putpkt (rs->buf);
13055 remote_get_noisy_reply ();
13056 if (rs->buf[0] == '\0')
13057 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13058 if (strcmp (rs->buf.data (), "OK") != 0)
13059 error (_("Error on target while disabling tracepoint."));
13060 }
13061
13062 void
13063 remote_target::trace_set_readonly_regions ()
13064 {
13065 asection *s;
13066 bfd *abfd = NULL;
13067 bfd_size_type size;
13068 bfd_vma vma;
13069 int anysecs = 0;
13070 int offset = 0;
13071
13072 if (!exec_bfd)
13073 return; /* No information to give. */
13074
13075 struct remote_state *rs = get_remote_state ();
13076
13077 strcpy (rs->buf.data (), "QTro");
13078 offset = strlen (rs->buf.data ());
13079 for (s = exec_bfd->sections; s; s = s->next)
13080 {
13081 char tmp1[40], tmp2[40];
13082 int sec_length;
13083
13084 if ((s->flags & SEC_LOAD) == 0 ||
13085 /* (s->flags & SEC_CODE) == 0 || */
13086 (s->flags & SEC_READONLY) == 0)
13087 continue;
13088
13089 anysecs = 1;
13090 vma = bfd_get_section_vma (abfd, s);
13091 size = bfd_get_section_size (s);
13092 sprintf_vma (tmp1, vma);
13093 sprintf_vma (tmp2, vma + size);
13094 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13095 if (offset + sec_length + 1 > rs->buf.size ())
13096 {
13097 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13098 warning (_("\
13099 Too many sections for read-only sections definition packet."));
13100 break;
13101 }
13102 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13103 tmp1, tmp2);
13104 offset += sec_length;
13105 }
13106 if (anysecs)
13107 {
13108 putpkt (rs->buf);
13109 getpkt (&rs->buf, 0);
13110 }
13111 }
13112
13113 void
13114 remote_target::trace_start ()
13115 {
13116 struct remote_state *rs = get_remote_state ();
13117
13118 putpkt ("QTStart");
13119 remote_get_noisy_reply ();
13120 if (rs->buf[0] == '\0')
13121 error (_("Target does not support this command."));
13122 if (strcmp (rs->buf.data (), "OK") != 0)
13123 error (_("Bogus reply from target: %s"), rs->buf.data ());
13124 }
13125
13126 int
13127 remote_target::get_trace_status (struct trace_status *ts)
13128 {
13129 /* Initialize it just to avoid a GCC false warning. */
13130 char *p = NULL;
13131 /* FIXME we need to get register block size some other way. */
13132 extern int trace_regblock_size;
13133 enum packet_result result;
13134 struct remote_state *rs = get_remote_state ();
13135
13136 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13137 return -1;
13138
13139 trace_regblock_size
13140 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13141
13142 putpkt ("qTStatus");
13143
13144 TRY
13145 {
13146 p = remote_get_noisy_reply ();
13147 }
13148 CATCH (ex, RETURN_MASK_ERROR)
13149 {
13150 if (ex.error != TARGET_CLOSE_ERROR)
13151 {
13152 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13153 return -1;
13154 }
13155 throw_exception (ex);
13156 }
13157 END_CATCH
13158
13159 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13160
13161 /* If the remote target doesn't do tracing, flag it. */
13162 if (result == PACKET_UNKNOWN)
13163 return -1;
13164
13165 /* We're working with a live target. */
13166 ts->filename = NULL;
13167
13168 if (*p++ != 'T')
13169 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13170
13171 /* Function 'parse_trace_status' sets default value of each field of
13172 'ts' at first, so we don't have to do it here. */
13173 parse_trace_status (p, ts);
13174
13175 return ts->running;
13176 }
13177
13178 void
13179 remote_target::get_tracepoint_status (struct breakpoint *bp,
13180 struct uploaded_tp *utp)
13181 {
13182 struct remote_state *rs = get_remote_state ();
13183 char *reply;
13184 struct bp_location *loc;
13185 struct tracepoint *tp = (struct tracepoint *) bp;
13186 size_t size = get_remote_packet_size ();
13187
13188 if (tp)
13189 {
13190 tp->hit_count = 0;
13191 tp->traceframe_usage = 0;
13192 for (loc = tp->loc; loc; loc = loc->next)
13193 {
13194 /* If the tracepoint was never downloaded, don't go asking for
13195 any status. */
13196 if (tp->number_on_target == 0)
13197 continue;
13198 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13199 phex_nz (loc->address, 0));
13200 putpkt (rs->buf);
13201 reply = remote_get_noisy_reply ();
13202 if (reply && *reply)
13203 {
13204 if (*reply == 'V')
13205 parse_tracepoint_status (reply + 1, bp, utp);
13206 }
13207 }
13208 }
13209 else if (utp)
13210 {
13211 utp->hit_count = 0;
13212 utp->traceframe_usage = 0;
13213 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13214 phex_nz (utp->addr, 0));
13215 putpkt (rs->buf);
13216 reply = remote_get_noisy_reply ();
13217 if (reply && *reply)
13218 {
13219 if (*reply == 'V')
13220 parse_tracepoint_status (reply + 1, bp, utp);
13221 }
13222 }
13223 }
13224
13225 void
13226 remote_target::trace_stop ()
13227 {
13228 struct remote_state *rs = get_remote_state ();
13229
13230 putpkt ("QTStop");
13231 remote_get_noisy_reply ();
13232 if (rs->buf[0] == '\0')
13233 error (_("Target does not support this command."));
13234 if (strcmp (rs->buf.data (), "OK") != 0)
13235 error (_("Bogus reply from target: %s"), rs->buf.data ());
13236 }
13237
13238 int
13239 remote_target::trace_find (enum trace_find_type type, int num,
13240 CORE_ADDR addr1, CORE_ADDR addr2,
13241 int *tpp)
13242 {
13243 struct remote_state *rs = get_remote_state ();
13244 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13245 char *p, *reply;
13246 int target_frameno = -1, target_tracept = -1;
13247
13248 /* Lookups other than by absolute frame number depend on the current
13249 trace selected, so make sure it is correct on the remote end
13250 first. */
13251 if (type != tfind_number)
13252 set_remote_traceframe ();
13253
13254 p = rs->buf.data ();
13255 strcpy (p, "QTFrame:");
13256 p = strchr (p, '\0');
13257 switch (type)
13258 {
13259 case tfind_number:
13260 xsnprintf (p, endbuf - p, "%x", num);
13261 break;
13262 case tfind_pc:
13263 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13264 break;
13265 case tfind_tp:
13266 xsnprintf (p, endbuf - p, "tdp:%x", num);
13267 break;
13268 case tfind_range:
13269 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13270 phex_nz (addr2, 0));
13271 break;
13272 case tfind_outside:
13273 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13274 phex_nz (addr2, 0));
13275 break;
13276 default:
13277 error (_("Unknown trace find type %d"), type);
13278 }
13279
13280 putpkt (rs->buf);
13281 reply = remote_get_noisy_reply ();
13282 if (*reply == '\0')
13283 error (_("Target does not support this command."));
13284
13285 while (reply && *reply)
13286 switch (*reply)
13287 {
13288 case 'F':
13289 p = ++reply;
13290 target_frameno = (int) strtol (p, &reply, 16);
13291 if (reply == p)
13292 error (_("Unable to parse trace frame number"));
13293 /* Don't update our remote traceframe number cache on failure
13294 to select a remote traceframe. */
13295 if (target_frameno == -1)
13296 return -1;
13297 break;
13298 case 'T':
13299 p = ++reply;
13300 target_tracept = (int) strtol (p, &reply, 16);
13301 if (reply == p)
13302 error (_("Unable to parse tracepoint number"));
13303 break;
13304 case 'O': /* "OK"? */
13305 if (reply[1] == 'K' && reply[2] == '\0')
13306 reply += 2;
13307 else
13308 error (_("Bogus reply from target: %s"), reply);
13309 break;
13310 default:
13311 error (_("Bogus reply from target: %s"), reply);
13312 }
13313 if (tpp)
13314 *tpp = target_tracept;
13315
13316 rs->remote_traceframe_number = target_frameno;
13317 return target_frameno;
13318 }
13319
13320 bool
13321 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13322 {
13323 struct remote_state *rs = get_remote_state ();
13324 char *reply;
13325 ULONGEST uval;
13326
13327 set_remote_traceframe ();
13328
13329 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13330 putpkt (rs->buf);
13331 reply = remote_get_noisy_reply ();
13332 if (reply && *reply)
13333 {
13334 if (*reply == 'V')
13335 {
13336 unpack_varlen_hex (reply + 1, &uval);
13337 *val = (LONGEST) uval;
13338 return true;
13339 }
13340 }
13341 return false;
13342 }
13343
13344 int
13345 remote_target::save_trace_data (const char *filename)
13346 {
13347 struct remote_state *rs = get_remote_state ();
13348 char *p, *reply;
13349
13350 p = rs->buf.data ();
13351 strcpy (p, "QTSave:");
13352 p += strlen (p);
13353 if ((p - rs->buf.data ()) + strlen (filename) * 2
13354 >= get_remote_packet_size ())
13355 error (_("Remote file name too long for trace save packet"));
13356 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13357 *p++ = '\0';
13358 putpkt (rs->buf);
13359 reply = remote_get_noisy_reply ();
13360 if (*reply == '\0')
13361 error (_("Target does not support this command."));
13362 if (strcmp (reply, "OK") != 0)
13363 error (_("Bogus reply from target: %s"), reply);
13364 return 0;
13365 }
13366
13367 /* This is basically a memory transfer, but needs to be its own packet
13368 because we don't know how the target actually organizes its trace
13369 memory, plus we want to be able to ask for as much as possible, but
13370 not be unhappy if we don't get as much as we ask for. */
13371
13372 LONGEST
13373 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13374 {
13375 struct remote_state *rs = get_remote_state ();
13376 char *reply;
13377 char *p;
13378 int rslt;
13379
13380 p = rs->buf.data ();
13381 strcpy (p, "qTBuffer:");
13382 p += strlen (p);
13383 p += hexnumstr (p, offset);
13384 *p++ = ',';
13385 p += hexnumstr (p, len);
13386 *p++ = '\0';
13387
13388 putpkt (rs->buf);
13389 reply = remote_get_noisy_reply ();
13390 if (reply && *reply)
13391 {
13392 /* 'l' by itself means we're at the end of the buffer and
13393 there is nothing more to get. */
13394 if (*reply == 'l')
13395 return 0;
13396
13397 /* Convert the reply into binary. Limit the number of bytes to
13398 convert according to our passed-in buffer size, rather than
13399 what was returned in the packet; if the target is
13400 unexpectedly generous and gives us a bigger reply than we
13401 asked for, we don't want to crash. */
13402 rslt = hex2bin (reply, buf, len);
13403 return rslt;
13404 }
13405
13406 /* Something went wrong, flag as an error. */
13407 return -1;
13408 }
13409
13410 void
13411 remote_target::set_disconnected_tracing (int val)
13412 {
13413 struct remote_state *rs = get_remote_state ();
13414
13415 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13416 {
13417 char *reply;
13418
13419 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13420 "QTDisconnected:%x", val);
13421 putpkt (rs->buf);
13422 reply = remote_get_noisy_reply ();
13423 if (*reply == '\0')
13424 error (_("Target does not support this command."));
13425 if (strcmp (reply, "OK") != 0)
13426 error (_("Bogus reply from target: %s"), reply);
13427 }
13428 else if (val)
13429 warning (_("Target does not support disconnected tracing."));
13430 }
13431
13432 int
13433 remote_target::core_of_thread (ptid_t ptid)
13434 {
13435 struct thread_info *info = find_thread_ptid (ptid);
13436
13437 if (info != NULL && info->priv != NULL)
13438 return get_remote_thread_info (info)->core;
13439
13440 return -1;
13441 }
13442
13443 void
13444 remote_target::set_circular_trace_buffer (int val)
13445 {
13446 struct remote_state *rs = get_remote_state ();
13447 char *reply;
13448
13449 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13450 "QTBuffer:circular:%x", val);
13451 putpkt (rs->buf);
13452 reply = remote_get_noisy_reply ();
13453 if (*reply == '\0')
13454 error (_("Target does not support this command."));
13455 if (strcmp (reply, "OK") != 0)
13456 error (_("Bogus reply from target: %s"), reply);
13457 }
13458
13459 traceframe_info_up
13460 remote_target::traceframe_info ()
13461 {
13462 gdb::optional<gdb::char_vector> text
13463 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13464 NULL);
13465 if (text)
13466 return parse_traceframe_info (text->data ());
13467
13468 return NULL;
13469 }
13470
13471 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13472 instruction on which a fast tracepoint may be placed. Returns -1
13473 if the packet is not supported, and 0 if the minimum instruction
13474 length is unknown. */
13475
13476 int
13477 remote_target::get_min_fast_tracepoint_insn_len ()
13478 {
13479 struct remote_state *rs = get_remote_state ();
13480 char *reply;
13481
13482 /* If we're not debugging a process yet, the IPA can't be
13483 loaded. */
13484 if (!target_has_execution)
13485 return 0;
13486
13487 /* Make sure the remote is pointing at the right process. */
13488 set_general_process ();
13489
13490 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13491 putpkt (rs->buf);
13492 reply = remote_get_noisy_reply ();
13493 if (*reply == '\0')
13494 return -1;
13495 else
13496 {
13497 ULONGEST min_insn_len;
13498
13499 unpack_varlen_hex (reply, &min_insn_len);
13500
13501 return (int) min_insn_len;
13502 }
13503 }
13504
13505 void
13506 remote_target::set_trace_buffer_size (LONGEST val)
13507 {
13508 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13509 {
13510 struct remote_state *rs = get_remote_state ();
13511 char *buf = rs->buf.data ();
13512 char *endbuf = buf + get_remote_packet_size ();
13513 enum packet_result result;
13514
13515 gdb_assert (val >= 0 || val == -1);
13516 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13517 /* Send -1 as literal "-1" to avoid host size dependency. */
13518 if (val < 0)
13519 {
13520 *buf++ = '-';
13521 buf += hexnumstr (buf, (ULONGEST) -val);
13522 }
13523 else
13524 buf += hexnumstr (buf, (ULONGEST) val);
13525
13526 putpkt (rs->buf);
13527 remote_get_noisy_reply ();
13528 result = packet_ok (rs->buf,
13529 &remote_protocol_packets[PACKET_QTBuffer_size]);
13530
13531 if (result != PACKET_OK)
13532 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13533 }
13534 }
13535
13536 bool
13537 remote_target::set_trace_notes (const char *user, const char *notes,
13538 const char *stop_notes)
13539 {
13540 struct remote_state *rs = get_remote_state ();
13541 char *reply;
13542 char *buf = rs->buf.data ();
13543 char *endbuf = buf + get_remote_packet_size ();
13544 int nbytes;
13545
13546 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13547 if (user)
13548 {
13549 buf += xsnprintf (buf, endbuf - buf, "user:");
13550 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13551 buf += 2 * nbytes;
13552 *buf++ = ';';
13553 }
13554 if (notes)
13555 {
13556 buf += xsnprintf (buf, endbuf - buf, "notes:");
13557 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13558 buf += 2 * nbytes;
13559 *buf++ = ';';
13560 }
13561 if (stop_notes)
13562 {
13563 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13564 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13565 buf += 2 * nbytes;
13566 *buf++ = ';';
13567 }
13568 /* Ensure the buffer is terminated. */
13569 *buf = '\0';
13570
13571 putpkt (rs->buf);
13572 reply = remote_get_noisy_reply ();
13573 if (*reply == '\0')
13574 return false;
13575
13576 if (strcmp (reply, "OK") != 0)
13577 error (_("Bogus reply from target: %s"), reply);
13578
13579 return true;
13580 }
13581
13582 bool
13583 remote_target::use_agent (bool use)
13584 {
13585 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13586 {
13587 struct remote_state *rs = get_remote_state ();
13588
13589 /* If the stub supports QAgent. */
13590 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13591 putpkt (rs->buf);
13592 getpkt (&rs->buf, 0);
13593
13594 if (strcmp (rs->buf.data (), "OK") == 0)
13595 {
13596 ::use_agent = use;
13597 return true;
13598 }
13599 }
13600
13601 return false;
13602 }
13603
13604 bool
13605 remote_target::can_use_agent ()
13606 {
13607 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13608 }
13609
13610 struct btrace_target_info
13611 {
13612 /* The ptid of the traced thread. */
13613 ptid_t ptid;
13614
13615 /* The obtained branch trace configuration. */
13616 struct btrace_config conf;
13617 };
13618
13619 /* Reset our idea of our target's btrace configuration. */
13620
13621 static void
13622 remote_btrace_reset (remote_state *rs)
13623 {
13624 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13625 }
13626
13627 /* Synchronize the configuration with the target. */
13628
13629 void
13630 remote_target::btrace_sync_conf (const btrace_config *conf)
13631 {
13632 struct packet_config *packet;
13633 struct remote_state *rs;
13634 char *buf, *pos, *endbuf;
13635
13636 rs = get_remote_state ();
13637 buf = rs->buf.data ();
13638 endbuf = buf + get_remote_packet_size ();
13639
13640 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13641 if (packet_config_support (packet) == PACKET_ENABLE
13642 && conf->bts.size != rs->btrace_config.bts.size)
13643 {
13644 pos = buf;
13645 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13646 conf->bts.size);
13647
13648 putpkt (buf);
13649 getpkt (&rs->buf, 0);
13650
13651 if (packet_ok (buf, packet) == PACKET_ERROR)
13652 {
13653 if (buf[0] == 'E' && buf[1] == '.')
13654 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13655 else
13656 error (_("Failed to configure the BTS buffer size."));
13657 }
13658
13659 rs->btrace_config.bts.size = conf->bts.size;
13660 }
13661
13662 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13663 if (packet_config_support (packet) == PACKET_ENABLE
13664 && conf->pt.size != rs->btrace_config.pt.size)
13665 {
13666 pos = buf;
13667 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13668 conf->pt.size);
13669
13670 putpkt (buf);
13671 getpkt (&rs->buf, 0);
13672
13673 if (packet_ok (buf, packet) == PACKET_ERROR)
13674 {
13675 if (buf[0] == 'E' && buf[1] == '.')
13676 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13677 else
13678 error (_("Failed to configure the trace buffer size."));
13679 }
13680
13681 rs->btrace_config.pt.size = conf->pt.size;
13682 }
13683 }
13684
13685 /* Read the current thread's btrace configuration from the target and
13686 store it into CONF. */
13687
13688 static void
13689 btrace_read_config (struct btrace_config *conf)
13690 {
13691 gdb::optional<gdb::char_vector> xml
13692 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13693 if (xml)
13694 parse_xml_btrace_conf (conf, xml->data ());
13695 }
13696
13697 /* Maybe reopen target btrace. */
13698
13699 void
13700 remote_target::remote_btrace_maybe_reopen ()
13701 {
13702 struct remote_state *rs = get_remote_state ();
13703 int btrace_target_pushed = 0;
13704 #if !defined (HAVE_LIBIPT)
13705 int warned = 0;
13706 #endif
13707
13708 scoped_restore_current_thread restore_thread;
13709
13710 for (thread_info *tp : all_non_exited_threads ())
13711 {
13712 set_general_thread (tp->ptid);
13713
13714 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13715 btrace_read_config (&rs->btrace_config);
13716
13717 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13718 continue;
13719
13720 #if !defined (HAVE_LIBIPT)
13721 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13722 {
13723 if (!warned)
13724 {
13725 warned = 1;
13726 warning (_("Target is recording using Intel Processor Trace "
13727 "but support was disabled at compile time."));
13728 }
13729
13730 continue;
13731 }
13732 #endif /* !defined (HAVE_LIBIPT) */
13733
13734 /* Push target, once, but before anything else happens. This way our
13735 changes to the threads will be cleaned up by unpushing the target
13736 in case btrace_read_config () throws. */
13737 if (!btrace_target_pushed)
13738 {
13739 btrace_target_pushed = 1;
13740 record_btrace_push_target ();
13741 printf_filtered (_("Target is recording using %s.\n"),
13742 btrace_format_string (rs->btrace_config.format));
13743 }
13744
13745 tp->btrace.target = XCNEW (struct btrace_target_info);
13746 tp->btrace.target->ptid = tp->ptid;
13747 tp->btrace.target->conf = rs->btrace_config;
13748 }
13749 }
13750
13751 /* Enable branch tracing. */
13752
13753 struct btrace_target_info *
13754 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13755 {
13756 struct btrace_target_info *tinfo = NULL;
13757 struct packet_config *packet = NULL;
13758 struct remote_state *rs = get_remote_state ();
13759 char *buf = rs->buf.data ();
13760 char *endbuf = buf + get_remote_packet_size ();
13761
13762 switch (conf->format)
13763 {
13764 case BTRACE_FORMAT_BTS:
13765 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13766 break;
13767
13768 case BTRACE_FORMAT_PT:
13769 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13770 break;
13771 }
13772
13773 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13774 error (_("Target does not support branch tracing."));
13775
13776 btrace_sync_conf (conf);
13777
13778 set_general_thread (ptid);
13779
13780 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13781 putpkt (rs->buf);
13782 getpkt (&rs->buf, 0);
13783
13784 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13785 {
13786 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13787 error (_("Could not enable branch tracing for %s: %s"),
13788 target_pid_to_str (ptid), &rs->buf[2]);
13789 else
13790 error (_("Could not enable branch tracing for %s."),
13791 target_pid_to_str (ptid));
13792 }
13793
13794 tinfo = XCNEW (struct btrace_target_info);
13795 tinfo->ptid = ptid;
13796
13797 /* If we fail to read the configuration, we lose some information, but the
13798 tracing itself is not impacted. */
13799 TRY
13800 {
13801 btrace_read_config (&tinfo->conf);
13802 }
13803 CATCH (err, RETURN_MASK_ERROR)
13804 {
13805 if (err.message != NULL)
13806 warning ("%s", err.message);
13807 }
13808 END_CATCH
13809
13810 return tinfo;
13811 }
13812
13813 /* Disable branch tracing. */
13814
13815 void
13816 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13817 {
13818 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13819 struct remote_state *rs = get_remote_state ();
13820 char *buf = rs->buf.data ();
13821 char *endbuf = buf + get_remote_packet_size ();
13822
13823 if (packet_config_support (packet) != PACKET_ENABLE)
13824 error (_("Target does not support branch tracing."));
13825
13826 set_general_thread (tinfo->ptid);
13827
13828 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13829 putpkt (rs->buf);
13830 getpkt (&rs->buf, 0);
13831
13832 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13833 {
13834 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13835 error (_("Could not disable branch tracing for %s: %s"),
13836 target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13837 else
13838 error (_("Could not disable branch tracing for %s."),
13839 target_pid_to_str (tinfo->ptid));
13840 }
13841
13842 xfree (tinfo);
13843 }
13844
13845 /* Teardown branch tracing. */
13846
13847 void
13848 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13849 {
13850 /* We must not talk to the target during teardown. */
13851 xfree (tinfo);
13852 }
13853
13854 /* Read the branch trace. */
13855
13856 enum btrace_error
13857 remote_target::read_btrace (struct btrace_data *btrace,
13858 struct btrace_target_info *tinfo,
13859 enum btrace_read_type type)
13860 {
13861 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13862 const char *annex;
13863
13864 if (packet_config_support (packet) != PACKET_ENABLE)
13865 error (_("Target does not support branch tracing."));
13866
13867 #if !defined(HAVE_LIBEXPAT)
13868 error (_("Cannot process branch tracing result. XML parsing not supported."));
13869 #endif
13870
13871 switch (type)
13872 {
13873 case BTRACE_READ_ALL:
13874 annex = "all";
13875 break;
13876 case BTRACE_READ_NEW:
13877 annex = "new";
13878 break;
13879 case BTRACE_READ_DELTA:
13880 annex = "delta";
13881 break;
13882 default:
13883 internal_error (__FILE__, __LINE__,
13884 _("Bad branch tracing read type: %u."),
13885 (unsigned int) type);
13886 }
13887
13888 gdb::optional<gdb::char_vector> xml
13889 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13890 if (!xml)
13891 return BTRACE_ERR_UNKNOWN;
13892
13893 parse_xml_btrace (btrace, xml->data ());
13894
13895 return BTRACE_ERR_NONE;
13896 }
13897
13898 const struct btrace_config *
13899 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13900 {
13901 return &tinfo->conf;
13902 }
13903
13904 bool
13905 remote_target::augmented_libraries_svr4_read ()
13906 {
13907 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13908 == PACKET_ENABLE);
13909 }
13910
13911 /* Implementation of to_load. */
13912
13913 void
13914 remote_target::load (const char *name, int from_tty)
13915 {
13916 generic_load (name, from_tty);
13917 }
13918
13919 /* Accepts an integer PID; returns a string representing a file that
13920 can be opened on the remote side to get the symbols for the child
13921 process. Returns NULL if the operation is not supported. */
13922
13923 char *
13924 remote_target::pid_to_exec_file (int pid)
13925 {
13926 static gdb::optional<gdb::char_vector> filename;
13927 struct inferior *inf;
13928 char *annex = NULL;
13929
13930 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13931 return NULL;
13932
13933 inf = find_inferior_pid (pid);
13934 if (inf == NULL)
13935 internal_error (__FILE__, __LINE__,
13936 _("not currently attached to process %d"), pid);
13937
13938 if (!inf->fake_pid_p)
13939 {
13940 const int annex_size = 9;
13941
13942 annex = (char *) alloca (annex_size);
13943 xsnprintf (annex, annex_size, "%x", pid);
13944 }
13945
13946 filename = target_read_stralloc (current_top_target (),
13947 TARGET_OBJECT_EXEC_FILE, annex);
13948
13949 return filename ? filename->data () : nullptr;
13950 }
13951
13952 /* Implement the to_can_do_single_step target_ops method. */
13953
13954 int
13955 remote_target::can_do_single_step ()
13956 {
13957 /* We can only tell whether target supports single step or not by
13958 supported s and S vCont actions if the stub supports vContSupported
13959 feature. If the stub doesn't support vContSupported feature,
13960 we have conservatively to think target doesn't supports single
13961 step. */
13962 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13963 {
13964 struct remote_state *rs = get_remote_state ();
13965
13966 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13967 remote_vcont_probe ();
13968
13969 return rs->supports_vCont.s && rs->supports_vCont.S;
13970 }
13971 else
13972 return 0;
13973 }
13974
13975 /* Implementation of the to_execution_direction method for the remote
13976 target. */
13977
13978 enum exec_direction_kind
13979 remote_target::execution_direction ()
13980 {
13981 struct remote_state *rs = get_remote_state ();
13982
13983 return rs->last_resume_exec_dir;
13984 }
13985
13986 /* Return pointer to the thread_info struct which corresponds to
13987 THREAD_HANDLE (having length HANDLE_LEN). */
13988
13989 thread_info *
13990 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13991 int handle_len,
13992 inferior *inf)
13993 {
13994 for (thread_info *tp : all_non_exited_threads ())
13995 {
13996 remote_thread_info *priv = get_remote_thread_info (tp);
13997
13998 if (tp->inf == inf && priv != NULL)
13999 {
14000 if (handle_len != priv->thread_handle.size ())
14001 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14002 handle_len, priv->thread_handle.size ());
14003 if (memcmp (thread_handle, priv->thread_handle.data (),
14004 handle_len) == 0)
14005 return tp;
14006 }
14007 }
14008
14009 return NULL;
14010 }
14011
14012 bool
14013 remote_target::can_async_p ()
14014 {
14015 struct remote_state *rs = get_remote_state ();
14016
14017 /* We don't go async if the user has explicitly prevented it with the
14018 "maint set target-async" command. */
14019 if (!target_async_permitted)
14020 return false;
14021
14022 /* We're async whenever the serial device is. */
14023 return serial_can_async_p (rs->remote_desc);
14024 }
14025
14026 bool
14027 remote_target::is_async_p ()
14028 {
14029 struct remote_state *rs = get_remote_state ();
14030
14031 if (!target_async_permitted)
14032 /* We only enable async when the user specifically asks for it. */
14033 return false;
14034
14035 /* We're async whenever the serial device is. */
14036 return serial_is_async_p (rs->remote_desc);
14037 }
14038
14039 /* Pass the SERIAL event on and up to the client. One day this code
14040 will be able to delay notifying the client of an event until the
14041 point where an entire packet has been received. */
14042
14043 static serial_event_ftype remote_async_serial_handler;
14044
14045 static void
14046 remote_async_serial_handler (struct serial *scb, void *context)
14047 {
14048 /* Don't propogate error information up to the client. Instead let
14049 the client find out about the error by querying the target. */
14050 inferior_event_handler (INF_REG_EVENT, NULL);
14051 }
14052
14053 static void
14054 remote_async_inferior_event_handler (gdb_client_data data)
14055 {
14056 inferior_event_handler (INF_REG_EVENT, data);
14057 }
14058
14059 void
14060 remote_target::async (int enable)
14061 {
14062 struct remote_state *rs = get_remote_state ();
14063
14064 if (enable)
14065 {
14066 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14067
14068 /* If there are pending events in the stop reply queue tell the
14069 event loop to process them. */
14070 if (!rs->stop_reply_queue.empty ())
14071 mark_async_event_handler (rs->remote_async_inferior_event_token);
14072 /* For simplicity, below we clear the pending events token
14073 without remembering whether it is marked, so here we always
14074 mark it. If there's actually no pending notification to
14075 process, this ends up being a no-op (other than a spurious
14076 event-loop wakeup). */
14077 if (target_is_non_stop_p ())
14078 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14079 }
14080 else
14081 {
14082 serial_async (rs->remote_desc, NULL, NULL);
14083 /* If the core is disabling async, it doesn't want to be
14084 disturbed with target events. Clear all async event sources
14085 too. */
14086 clear_async_event_handler (rs->remote_async_inferior_event_token);
14087 if (target_is_non_stop_p ())
14088 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14089 }
14090 }
14091
14092 /* Implementation of the to_thread_events method. */
14093
14094 void
14095 remote_target::thread_events (int enable)
14096 {
14097 struct remote_state *rs = get_remote_state ();
14098 size_t size = get_remote_packet_size ();
14099
14100 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14101 return;
14102
14103 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14104 putpkt (rs->buf);
14105 getpkt (&rs->buf, 0);
14106
14107 switch (packet_ok (rs->buf,
14108 &remote_protocol_packets[PACKET_QThreadEvents]))
14109 {
14110 case PACKET_OK:
14111 if (strcmp (rs->buf.data (), "OK") != 0)
14112 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14113 break;
14114 case PACKET_ERROR:
14115 warning (_("Remote failure reply: %s"), rs->buf.data ());
14116 break;
14117 case PACKET_UNKNOWN:
14118 break;
14119 }
14120 }
14121
14122 static void
14123 set_remote_cmd (const char *args, int from_tty)
14124 {
14125 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14126 }
14127
14128 static void
14129 show_remote_cmd (const char *args, int from_tty)
14130 {
14131 /* We can't just use cmd_show_list here, because we want to skip
14132 the redundant "show remote Z-packet" and the legacy aliases. */
14133 struct cmd_list_element *list = remote_show_cmdlist;
14134 struct ui_out *uiout = current_uiout;
14135
14136 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14137 for (; list != NULL; list = list->next)
14138 if (strcmp (list->name, "Z-packet") == 0)
14139 continue;
14140 else if (list->type == not_set_cmd)
14141 /* Alias commands are exactly like the original, except they
14142 don't have the normal type. */
14143 continue;
14144 else
14145 {
14146 ui_out_emit_tuple option_emitter (uiout, "option");
14147
14148 uiout->field_string ("name", list->name);
14149 uiout->text (": ");
14150 if (list->type == show_cmd)
14151 do_show_command (NULL, from_tty, list);
14152 else
14153 cmd_func (list, NULL, from_tty);
14154 }
14155 }
14156
14157
14158 /* Function to be called whenever a new objfile (shlib) is detected. */
14159 static void
14160 remote_new_objfile (struct objfile *objfile)
14161 {
14162 remote_target *remote = get_current_remote_target ();
14163
14164 if (remote != NULL) /* Have a remote connection. */
14165 remote->remote_check_symbols ();
14166 }
14167
14168 /* Pull all the tracepoints defined on the target and create local
14169 data structures representing them. We don't want to create real
14170 tracepoints yet, we don't want to mess up the user's existing
14171 collection. */
14172
14173 int
14174 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14175 {
14176 struct remote_state *rs = get_remote_state ();
14177 char *p;
14178
14179 /* Ask for a first packet of tracepoint definition. */
14180 putpkt ("qTfP");
14181 getpkt (&rs->buf, 0);
14182 p = rs->buf.data ();
14183 while (*p && *p != 'l')
14184 {
14185 parse_tracepoint_definition (p, utpp);
14186 /* Ask for another packet of tracepoint definition. */
14187 putpkt ("qTsP");
14188 getpkt (&rs->buf, 0);
14189 p = rs->buf.data ();
14190 }
14191 return 0;
14192 }
14193
14194 int
14195 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14196 {
14197 struct remote_state *rs = get_remote_state ();
14198 char *p;
14199
14200 /* Ask for a first packet of variable definition. */
14201 putpkt ("qTfV");
14202 getpkt (&rs->buf, 0);
14203 p = rs->buf.data ();
14204 while (*p && *p != 'l')
14205 {
14206 parse_tsv_definition (p, utsvp);
14207 /* Ask for another packet of variable definition. */
14208 putpkt ("qTsV");
14209 getpkt (&rs->buf, 0);
14210 p = rs->buf.data ();
14211 }
14212 return 0;
14213 }
14214
14215 /* The "set/show range-stepping" show hook. */
14216
14217 static void
14218 show_range_stepping (struct ui_file *file, int from_tty,
14219 struct cmd_list_element *c,
14220 const char *value)
14221 {
14222 fprintf_filtered (file,
14223 _("Debugger's willingness to use range stepping "
14224 "is %s.\n"), value);
14225 }
14226
14227 /* Return true if the vCont;r action is supported by the remote
14228 stub. */
14229
14230 bool
14231 remote_target::vcont_r_supported ()
14232 {
14233 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14234 remote_vcont_probe ();
14235
14236 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14237 && get_remote_state ()->supports_vCont.r);
14238 }
14239
14240 /* The "set/show range-stepping" set hook. */
14241
14242 static void
14243 set_range_stepping (const char *ignore_args, int from_tty,
14244 struct cmd_list_element *c)
14245 {
14246 /* When enabling, check whether range stepping is actually supported
14247 by the target, and warn if not. */
14248 if (use_range_stepping)
14249 {
14250 remote_target *remote = get_current_remote_target ();
14251 if (remote == NULL
14252 || !remote->vcont_r_supported ())
14253 warning (_("Range stepping is not supported by the current target"));
14254 }
14255 }
14256
14257 void
14258 _initialize_remote (void)
14259 {
14260 struct cmd_list_element *cmd;
14261 const char *cmd_name;
14262
14263 /* architecture specific data */
14264 remote_g_packet_data_handle =
14265 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14266
14267 remote_pspace_data
14268 = register_program_space_data_with_cleanup (NULL,
14269 remote_pspace_data_cleanup);
14270
14271 add_target (remote_target_info, remote_target::open);
14272 add_target (extended_remote_target_info, extended_remote_target::open);
14273
14274 /* Hook into new objfile notification. */
14275 gdb::observers::new_objfile.attach (remote_new_objfile);
14276
14277 #if 0
14278 init_remote_threadtests ();
14279 #endif
14280
14281 /* set/show remote ... */
14282
14283 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14284 Remote protocol specific variables\n\
14285 Configure various remote-protocol specific variables such as\n\
14286 the packets being used"),
14287 &remote_set_cmdlist, "set remote ",
14288 0 /* allow-unknown */, &setlist);
14289 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14290 Remote protocol specific variables\n\
14291 Configure various remote-protocol specific variables such as\n\
14292 the packets being used"),
14293 &remote_show_cmdlist, "show remote ",
14294 0 /* allow-unknown */, &showlist);
14295
14296 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14297 Compare section data on target to the exec file.\n\
14298 Argument is a single section name (default: all loaded sections).\n\
14299 To compare only read-only loaded sections, specify the -r option."),
14300 &cmdlist);
14301
14302 add_cmd ("packet", class_maintenance, packet_command, _("\
14303 Send an arbitrary packet to a remote target.\n\
14304 maintenance packet TEXT\n\
14305 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14306 this command sends the string TEXT to the inferior, and displays the\n\
14307 response packet. GDB supplies the initial `$' character, and the\n\
14308 terminating `#' character and checksum."),
14309 &maintenancelist);
14310
14311 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14312 Set whether to send break if interrupted."), _("\
14313 Show whether to send break if interrupted."), _("\
14314 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14315 set_remotebreak, show_remotebreak,
14316 &setlist, &showlist);
14317 cmd_name = "remotebreak";
14318 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14319 deprecate_cmd (cmd, "set remote interrupt-sequence");
14320 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14321 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14322 deprecate_cmd (cmd, "show remote interrupt-sequence");
14323
14324 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14325 interrupt_sequence_modes, &interrupt_sequence_mode,
14326 _("\
14327 Set interrupt sequence to remote target."), _("\
14328 Show interrupt sequence to remote target."), _("\
14329 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14330 NULL, show_interrupt_sequence,
14331 &remote_set_cmdlist,
14332 &remote_show_cmdlist);
14333
14334 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14335 &interrupt_on_connect, _("\
14336 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14337 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14338 If set, interrupt sequence is sent to remote target."),
14339 NULL, NULL,
14340 &remote_set_cmdlist, &remote_show_cmdlist);
14341
14342 /* Install commands for configuring memory read/write packets. */
14343
14344 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14345 Set the maximum number of bytes per memory write packet (deprecated)."),
14346 &setlist);
14347 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14348 Show the maximum number of bytes per memory write packet (deprecated)."),
14349 &showlist);
14350 add_cmd ("memory-write-packet-size", no_class,
14351 set_memory_write_packet_size, _("\
14352 Set the maximum number of bytes per memory-write packet.\n\
14353 Specify the number of bytes in a packet or 0 (zero) for the\n\
14354 default packet size. The actual limit is further reduced\n\
14355 dependent on the target. Specify ``fixed'' to disable the\n\
14356 further restriction and ``limit'' to enable that restriction."),
14357 &remote_set_cmdlist);
14358 add_cmd ("memory-read-packet-size", no_class,
14359 set_memory_read_packet_size, _("\
14360 Set the maximum number of bytes per memory-read packet.\n\
14361 Specify the number of bytes in a packet or 0 (zero) for the\n\
14362 default packet size. The actual limit is further reduced\n\
14363 dependent on the target. Specify ``fixed'' to disable the\n\
14364 further restriction and ``limit'' to enable that restriction."),
14365 &remote_set_cmdlist);
14366 add_cmd ("memory-write-packet-size", no_class,
14367 show_memory_write_packet_size,
14368 _("Show the maximum number of bytes per memory-write packet."),
14369 &remote_show_cmdlist);
14370 add_cmd ("memory-read-packet-size", no_class,
14371 show_memory_read_packet_size,
14372 _("Show the maximum number of bytes per memory-read packet."),
14373 &remote_show_cmdlist);
14374
14375 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14376 &remote_hw_watchpoint_limit, _("\
14377 Set the maximum number of target hardware watchpoints."), _("\
14378 Show the maximum number of target hardware watchpoints."), _("\
14379 Specify \"unlimited\" for unlimited hardware watchpoints."),
14380 NULL, show_hardware_watchpoint_limit,
14381 &remote_set_cmdlist,
14382 &remote_show_cmdlist);
14383 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14384 no_class,
14385 &remote_hw_watchpoint_length_limit, _("\
14386 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14387 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14388 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14389 NULL, show_hardware_watchpoint_length_limit,
14390 &remote_set_cmdlist, &remote_show_cmdlist);
14391 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14392 &remote_hw_breakpoint_limit, _("\
14393 Set the maximum number of target hardware breakpoints."), _("\
14394 Show the maximum number of target hardware breakpoints."), _("\
14395 Specify \"unlimited\" for unlimited hardware breakpoints."),
14396 NULL, show_hardware_breakpoint_limit,
14397 &remote_set_cmdlist, &remote_show_cmdlist);
14398
14399 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14400 &remote_address_size, _("\
14401 Set the maximum size of the address (in bits) in a memory packet."), _("\
14402 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14403 NULL,
14404 NULL, /* FIXME: i18n: */
14405 &setlist, &showlist);
14406
14407 init_all_packet_configs ();
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14410 "X", "binary-download", 1);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14413 "vCont", "verbose-resume", 0);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14416 "QPassSignals", "pass-signals", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14419 "QCatchSyscalls", "catch-syscalls", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14422 "QProgramSignals", "program-signals", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14425 "QSetWorkingDir", "set-working-dir", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14428 "QStartupWithShell", "startup-with-shell", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets
14431 [PACKET_QEnvironmentHexEncoded],
14432 "QEnvironmentHexEncoded", "environment-hex-encoded",
14433 0);
14434
14435 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14436 "QEnvironmentReset", "environment-reset",
14437 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14440 "QEnvironmentUnset", "environment-unset",
14441 0);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14444 "qSymbol", "symbol-lookup", 0);
14445
14446 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14447 "P", "set-register", 1);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14450 "p", "fetch-register", 1);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14453 "Z0", "software-breakpoint", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14456 "Z1", "hardware-breakpoint", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14459 "Z2", "write-watchpoint", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14462 "Z3", "read-watchpoint", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14465 "Z4", "access-watchpoint", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14468 "qXfer:auxv:read", "read-aux-vector", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14471 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14474 "qXfer:features:read", "target-features", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14477 "qXfer:libraries:read", "library-info", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14480 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14483 "qXfer:memory-map:read", "memory-map", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14486 "qXfer:spu:read", "read-spu-object", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14489 "qXfer:spu:write", "write-spu-object", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14492 "qXfer:osdata:read", "osdata", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14495 "qXfer:threads:read", "threads", 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14498 "qXfer:siginfo:read", "read-siginfo-object", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14501 "qXfer:siginfo:write", "write-siginfo-object", 0);
14502
14503 add_packet_config_cmd
14504 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14505 "qXfer:traceframe-info:read", "traceframe-info", 0);
14506
14507 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14508 "qXfer:uib:read", "unwind-info-block", 0);
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14511 "qGetTLSAddr", "get-thread-local-storage-address",
14512 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14515 "qGetTIBAddr", "get-thread-information-block-address",
14516 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14519 "bc", "reverse-continue", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14522 "bs", "reverse-step", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14525 "qSupported", "supported-packets", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14528 "qSearch:memory", "search-memory", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14531 "qTStatus", "trace-status", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14534 "vFile:setfs", "hostio-setfs", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14537 "vFile:open", "hostio-open", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14540 "vFile:pread", "hostio-pread", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14543 "vFile:pwrite", "hostio-pwrite", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14546 "vFile:close", "hostio-close", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14549 "vFile:unlink", "hostio-unlink", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14552 "vFile:readlink", "hostio-readlink", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14555 "vFile:fstat", "hostio-fstat", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14558 "vAttach", "attach", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14561 "vRun", "run", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14564 "QStartNoAckMode", "noack", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14567 "vKill", "kill", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14570 "qAttached", "query-attached", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14573 "ConditionalTracepoints",
14574 "conditional-tracepoints", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14577 "ConditionalBreakpoints",
14578 "conditional-breakpoints", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14581 "BreakpointCommands",
14582 "breakpoint-commands", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14585 "FastTracepoints", "fast-tracepoints", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14588 "TracepointSource", "TracepointSource", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14591 "QAllow", "allow", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14594 "StaticTracepoints", "static-tracepoints", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14597 "InstallInTrace", "install-in-trace", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14600 "qXfer:statictrace:read", "read-sdata-object", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14603 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14606 "QDisableRandomization", "disable-randomization", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14609 "QAgent", "agent", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14612 "QTBuffer:size", "trace-buffer-size", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14615 "Qbtrace:off", "disable-btrace", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14618 "Qbtrace:bts", "enable-btrace-bts", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14621 "Qbtrace:pt", "enable-btrace-pt", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14624 "qXfer:btrace", "read-btrace", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14627 "qXfer:btrace-conf", "read-btrace-conf", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14630 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14633 "multiprocess-feature", "multiprocess-feature", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14636 "swbreak-feature", "swbreak-feature", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14639 "hwbreak-feature", "hwbreak-feature", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14642 "fork-event-feature", "fork-event-feature", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14645 "vfork-event-feature", "vfork-event-feature", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14648 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14651 "vContSupported", "verbose-resume-supported", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14654 "exec-event-feature", "exec-event-feature", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14657 "vCtrlC", "ctrl-c", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14660 "QThreadEvents", "thread-events", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14663 "N stop reply", "no-resumed-stop-reply", 0);
14664
14665 /* Assert that we've registered "set remote foo-packet" commands
14666 for all packet configs. */
14667 {
14668 int i;
14669
14670 for (i = 0; i < PACKET_MAX; i++)
14671 {
14672 /* Ideally all configs would have a command associated. Some
14673 still don't though. */
14674 int excepted;
14675
14676 switch (i)
14677 {
14678 case PACKET_QNonStop:
14679 case PACKET_EnableDisableTracepoints_feature:
14680 case PACKET_tracenz_feature:
14681 case PACKET_DisconnectedTracing_feature:
14682 case PACKET_augmented_libraries_svr4_read_feature:
14683 case PACKET_qCRC:
14684 /* Additions to this list need to be well justified:
14685 pre-existing packets are OK; new packets are not. */
14686 excepted = 1;
14687 break;
14688 default:
14689 excepted = 0;
14690 break;
14691 }
14692
14693 /* This catches both forgetting to add a config command, and
14694 forgetting to remove a packet from the exception list. */
14695 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14696 }
14697 }
14698
14699 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14700 Z sub-packet has its own set and show commands, but users may
14701 have sets to this variable in their .gdbinit files (or in their
14702 documentation). */
14703 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14704 &remote_Z_packet_detect, _("\
14705 Set use of remote protocol `Z' packets"), _("\
14706 Show use of remote protocol `Z' packets "), _("\
14707 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14708 packets."),
14709 set_remote_protocol_Z_packet_cmd,
14710 show_remote_protocol_Z_packet_cmd,
14711 /* FIXME: i18n: Use of remote protocol
14712 `Z' packets is %s. */
14713 &remote_set_cmdlist, &remote_show_cmdlist);
14714
14715 add_prefix_cmd ("remote", class_files, remote_command, _("\
14716 Manipulate files on the remote system\n\
14717 Transfer files to and from the remote target system."),
14718 &remote_cmdlist, "remote ",
14719 0 /* allow-unknown */, &cmdlist);
14720
14721 add_cmd ("put", class_files, remote_put_command,
14722 _("Copy a local file to the remote system."),
14723 &remote_cmdlist);
14724
14725 add_cmd ("get", class_files, remote_get_command,
14726 _("Copy a remote file to the local system."),
14727 &remote_cmdlist);
14728
14729 add_cmd ("delete", class_files, remote_delete_command,
14730 _("Delete a remote file."),
14731 &remote_cmdlist);
14732
14733 add_setshow_string_noescape_cmd ("exec-file", class_files,
14734 &remote_exec_file_var, _("\
14735 Set the remote pathname for \"run\""), _("\
14736 Show the remote pathname for \"run\""), NULL,
14737 set_remote_exec_file,
14738 show_remote_exec_file,
14739 &remote_set_cmdlist,
14740 &remote_show_cmdlist);
14741
14742 add_setshow_boolean_cmd ("range-stepping", class_run,
14743 &use_range_stepping, _("\
14744 Enable or disable range stepping."), _("\
14745 Show whether target-assisted range stepping is enabled."), _("\
14746 If on, and the target supports it, when stepping a source line, GDB\n\
14747 tells the target to step the corresponding range of addresses itself instead\n\
14748 of issuing multiple single-steps. This speeds up source level\n\
14749 stepping. If off, GDB always issues single-steps, even if range\n\
14750 stepping is supported by the target. The default is on."),
14751 set_range_stepping,
14752 show_range_stepping,
14753 &setlist,
14754 &showlist);
14755
14756 /* Eventually initialize fileio. See fileio.c */
14757 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14758
14759 /* Take advantage of the fact that the TID field is not used, to tag
14760 special ptids with it set to != 0. */
14761 magic_null_ptid = ptid_t (42000, -1, 1);
14762 not_sent_ptid = ptid_t (42000, -2, 1);
14763 any_thread_ptid = ptid_t (42000, 0, 1);
14764 }
This page took 0.441215 seconds and 5 git commands to generate.