Fix misreporting of omitted bytes for large remote packets
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static int
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return 1;
3405 }
3406
3407 return 0;
3408 }
3409
3410 static VEC(static_tracepoint_marker_p) *
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 VEC(static_tracepoint_marker_p) *markers = NULL;
3416 struct static_tracepoint_marker *marker = NULL;
3417 struct cleanup *old_chain;
3418 const char *p;
3419
3420 /* Ask for a first packet of static tracepoint marker
3421 definition. */
3422 putpkt ("qTfSTM");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424 p = rs->buf;
3425 if (*p == 'E')
3426 error (_("Remote failure reply: %s"), p);
3427
3428 old_chain = make_cleanup (free_current_marker, &marker);
3429
3430 while (*p++ == 'm')
3431 {
3432 if (marker == NULL)
3433 marker = XCNEW (struct static_tracepoint_marker);
3434
3435 do
3436 {
3437 parse_static_tracepoint_marker_definition (p, &p, marker);
3438
3439 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3440 {
3441 VEC_safe_push (static_tracepoint_marker_p,
3442 markers, marker);
3443 marker = NULL;
3444 }
3445 else
3446 {
3447 release_static_tracepoint_marker (marker);
3448 memset (marker, 0, sizeof (*marker));
3449 }
3450 }
3451 while (*p++ == ','); /* comma-separated list */
3452 /* Ask for another packet of static tracepoint definition. */
3453 putpkt ("qTsSTM");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455 p = rs->buf;
3456 }
3457
3458 do_cleanups (old_chain);
3459 return markers;
3460 }
3461
3462 \f
3463 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3464
3465 static ptid_t
3466 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3467 {
3468 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3469 }
3470 \f
3471
3472 /* Restart the remote side; this is an extended protocol operation. */
3473
3474 static void
3475 extended_remote_restart (void)
3476 {
3477 struct remote_state *rs = get_remote_state ();
3478
3479 /* Send the restart command; for reasons I don't understand the
3480 remote side really expects a number after the "R". */
3481 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3482 putpkt (rs->buf);
3483
3484 remote_fileio_reset ();
3485 }
3486 \f
3487 /* Clean up connection to a remote debugger. */
3488
3489 static void
3490 remote_close (struct target_ops *self)
3491 {
3492 struct remote_state *rs = get_remote_state ();
3493
3494 if (rs->remote_desc == NULL)
3495 return; /* already closed */
3496
3497 /* Make sure we leave stdin registered in the event loop. */
3498 remote_terminal_ours (self);
3499
3500 serial_close (rs->remote_desc);
3501 rs->remote_desc = NULL;
3502
3503 /* We don't have a connection to the remote stub anymore. Get rid
3504 of all the inferiors and their threads we were controlling.
3505 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3506 will be unable to find the thread corresponding to (pid, 0, 0). */
3507 inferior_ptid = null_ptid;
3508 discard_all_inferiors ();
3509
3510 /* We are closing the remote target, so we should discard
3511 everything of this target. */
3512 discard_pending_stop_replies_in_queue (rs);
3513
3514 if (remote_async_inferior_event_token)
3515 delete_async_event_handler (&remote_async_inferior_event_token);
3516
3517 remote_notif_state_xfree (rs->notif_state);
3518
3519 trace_reset_local_state ();
3520 }
3521
3522 /* Query the remote side for the text, data and bss offsets. */
3523
3524 static void
3525 get_offsets (void)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 char *buf;
3529 char *ptr;
3530 int lose, num_segments = 0, do_sections, do_segments;
3531 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3532 struct section_offsets *offs;
3533 struct symfile_segment_data *data;
3534
3535 if (symfile_objfile == NULL)
3536 return;
3537
3538 putpkt ("qOffsets");
3539 getpkt (&rs->buf, &rs->buf_size, 0);
3540 buf = rs->buf;
3541
3542 if (buf[0] == '\000')
3543 return; /* Return silently. Stub doesn't support
3544 this command. */
3545 if (buf[0] == 'E')
3546 {
3547 warning (_("Remote failure reply: %s"), buf);
3548 return;
3549 }
3550
3551 /* Pick up each field in turn. This used to be done with scanf, but
3552 scanf will make trouble if CORE_ADDR size doesn't match
3553 conversion directives correctly. The following code will work
3554 with any size of CORE_ADDR. */
3555 text_addr = data_addr = bss_addr = 0;
3556 ptr = buf;
3557 lose = 0;
3558
3559 if (startswith (ptr, "Text="))
3560 {
3561 ptr += 5;
3562 /* Don't use strtol, could lose on big values. */
3563 while (*ptr && *ptr != ';')
3564 text_addr = (text_addr << 4) + fromhex (*ptr++);
3565
3566 if (startswith (ptr, ";Data="))
3567 {
3568 ptr += 6;
3569 while (*ptr && *ptr != ';')
3570 data_addr = (data_addr << 4) + fromhex (*ptr++);
3571 }
3572 else
3573 lose = 1;
3574
3575 if (!lose && startswith (ptr, ";Bss="))
3576 {
3577 ptr += 5;
3578 while (*ptr && *ptr != ';')
3579 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3580
3581 if (bss_addr != data_addr)
3582 warning (_("Target reported unsupported offsets: %s"), buf);
3583 }
3584 else
3585 lose = 1;
3586 }
3587 else if (startswith (ptr, "TextSeg="))
3588 {
3589 ptr += 8;
3590 /* Don't use strtol, could lose on big values. */
3591 while (*ptr && *ptr != ';')
3592 text_addr = (text_addr << 4) + fromhex (*ptr++);
3593 num_segments = 1;
3594
3595 if (startswith (ptr, ";DataSeg="))
3596 {
3597 ptr += 9;
3598 while (*ptr && *ptr != ';')
3599 data_addr = (data_addr << 4) + fromhex (*ptr++);
3600 num_segments++;
3601 }
3602 }
3603 else
3604 lose = 1;
3605
3606 if (lose)
3607 error (_("Malformed response to offset query, %s"), buf);
3608 else if (*ptr != '\0')
3609 warning (_("Target reported unsupported offsets: %s"), buf);
3610
3611 offs = ((struct section_offsets *)
3612 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3613 memcpy (offs, symfile_objfile->section_offsets,
3614 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3615
3616 data = get_symfile_segment_data (symfile_objfile->obfd);
3617 do_segments = (data != NULL);
3618 do_sections = num_segments == 0;
3619
3620 if (num_segments > 0)
3621 {
3622 segments[0] = text_addr;
3623 segments[1] = data_addr;
3624 }
3625 /* If we have two segments, we can still try to relocate everything
3626 by assuming that the .text and .data offsets apply to the whole
3627 text and data segments. Convert the offsets given in the packet
3628 to base addresses for symfile_map_offsets_to_segments. */
3629 else if (data && data->num_segments == 2)
3630 {
3631 segments[0] = data->segment_bases[0] + text_addr;
3632 segments[1] = data->segment_bases[1] + data_addr;
3633 num_segments = 2;
3634 }
3635 /* If the object file has only one segment, assume that it is text
3636 rather than data; main programs with no writable data are rare,
3637 but programs with no code are useless. Of course the code might
3638 have ended up in the data segment... to detect that we would need
3639 the permissions here. */
3640 else if (data && data->num_segments == 1)
3641 {
3642 segments[0] = data->segment_bases[0] + text_addr;
3643 num_segments = 1;
3644 }
3645 /* There's no way to relocate by segment. */
3646 else
3647 do_segments = 0;
3648
3649 if (do_segments)
3650 {
3651 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3652 offs, num_segments, segments);
3653
3654 if (ret == 0 && !do_sections)
3655 error (_("Can not handle qOffsets TextSeg "
3656 "response with this symbol file"));
3657
3658 if (ret > 0)
3659 do_sections = 0;
3660 }
3661
3662 if (data)
3663 free_symfile_segment_data (data);
3664
3665 if (do_sections)
3666 {
3667 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3668
3669 /* This is a temporary kludge to force data and bss to use the
3670 same offsets because that's what nlmconv does now. The real
3671 solution requires changes to the stub and remote.c that I
3672 don't have time to do right now. */
3673
3674 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3675 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3676 }
3677
3678 objfile_relocate (symfile_objfile, offs);
3679 }
3680
3681 /* Send interrupt_sequence to remote target. */
3682 static void
3683 send_interrupt_sequence (void)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686
3687 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3688 remote_serial_write ("\x03", 1);
3689 else if (interrupt_sequence_mode == interrupt_sequence_break)
3690 serial_send_break (rs->remote_desc);
3691 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3692 {
3693 serial_send_break (rs->remote_desc);
3694 remote_serial_write ("g", 1);
3695 }
3696 else
3697 internal_error (__FILE__, __LINE__,
3698 _("Invalid value for interrupt_sequence_mode: %s."),
3699 interrupt_sequence_mode);
3700 }
3701
3702
3703 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3704 and extract the PTID. Returns NULL_PTID if not found. */
3705
3706 static ptid_t
3707 stop_reply_extract_thread (char *stop_reply)
3708 {
3709 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3710 {
3711 const char *p;
3712
3713 /* Txx r:val ; r:val (...) */
3714 p = &stop_reply[3];
3715
3716 /* Look for "register" named "thread". */
3717 while (*p != '\0')
3718 {
3719 const char *p1;
3720
3721 p1 = strchr (p, ':');
3722 if (p1 == NULL)
3723 return null_ptid;
3724
3725 if (strncmp (p, "thread", p1 - p) == 0)
3726 return read_ptid (++p1, &p);
3727
3728 p1 = strchr (p, ';');
3729 if (p1 == NULL)
3730 return null_ptid;
3731 p1++;
3732
3733 p = p1;
3734 }
3735 }
3736
3737 return null_ptid;
3738 }
3739
3740 /* Determine the remote side's current thread. If we have a stop
3741 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3742 "thread" register we can extract the current thread from. If not,
3743 ask the remote which is the current thread with qC. The former
3744 method avoids a roundtrip. */
3745
3746 static ptid_t
3747 get_current_thread (char *wait_status)
3748 {
3749 ptid_t ptid = null_ptid;
3750
3751 /* Note we don't use remote_parse_stop_reply as that makes use of
3752 the target architecture, which we haven't yet fully determined at
3753 this point. */
3754 if (wait_status != NULL)
3755 ptid = stop_reply_extract_thread (wait_status);
3756 if (ptid_equal (ptid, null_ptid))
3757 ptid = remote_current_thread (inferior_ptid);
3758
3759 return ptid;
3760 }
3761
3762 /* Query the remote target for which is the current thread/process,
3763 add it to our tables, and update INFERIOR_PTID. The caller is
3764 responsible for setting the state such that the remote end is ready
3765 to return the current thread.
3766
3767 This function is called after handling the '?' or 'vRun' packets,
3768 whose response is a stop reply from which we can also try
3769 extracting the thread. If the target doesn't support the explicit
3770 qC query, we infer the current thread from that stop reply, passed
3771 in in WAIT_STATUS, which may be NULL. */
3772
3773 static void
3774 add_current_inferior_and_thread (char *wait_status)
3775 {
3776 struct remote_state *rs = get_remote_state ();
3777 int fake_pid_p = 0;
3778
3779 inferior_ptid = null_ptid;
3780
3781 /* Now, if we have thread information, update inferior_ptid. */
3782 ptid_t curr_ptid = get_current_thread (wait_status);
3783
3784 if (curr_ptid != null_ptid)
3785 {
3786 if (!remote_multi_process_p (rs))
3787 fake_pid_p = 1;
3788 }
3789 else
3790 {
3791 /* Without this, some commands which require an active target
3792 (such as kill) won't work. This variable serves (at least)
3793 double duty as both the pid of the target process (if it has
3794 such), and as a flag indicating that a target is active. */
3795 curr_ptid = magic_null_ptid;
3796 fake_pid_p = 1;
3797 }
3798
3799 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3800
3801 /* Add the main thread and switch to it. Don't try reading
3802 registers yet, since we haven't fetched the target description
3803 yet. */
3804 thread_info *tp = add_thread_silent (curr_ptid);
3805 switch_to_thread_no_regs (tp);
3806 }
3807
3808 /* Print info about a thread that was found already stopped on
3809 connection. */
3810
3811 static void
3812 print_one_stopped_thread (struct thread_info *thread)
3813 {
3814 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3815
3816 switch_to_thread (thread->ptid);
3817 stop_pc = get_frame_pc (get_current_frame ());
3818 set_current_sal_from_frame (get_current_frame ());
3819
3820 thread->suspend.waitstatus_pending_p = 0;
3821
3822 if (ws->kind == TARGET_WAITKIND_STOPPED)
3823 {
3824 enum gdb_signal sig = ws->value.sig;
3825
3826 if (signal_print_state (sig))
3827 observer_notify_signal_received (sig);
3828 }
3829 observer_notify_normal_stop (NULL, 1);
3830 }
3831
3832 /* Process all initial stop replies the remote side sent in response
3833 to the ? packet. These indicate threads that were already stopped
3834 on initial connection. We mark these threads as stopped and print
3835 their current frame before giving the user the prompt. */
3836
3837 static void
3838 process_initial_stop_replies (int from_tty)
3839 {
3840 int pending_stop_replies = stop_reply_queue_length ();
3841 struct inferior *inf;
3842 struct thread_info *thread;
3843 struct thread_info *selected = NULL;
3844 struct thread_info *lowest_stopped = NULL;
3845 struct thread_info *first = NULL;
3846
3847 /* Consume the initial pending events. */
3848 while (pending_stop_replies-- > 0)
3849 {
3850 ptid_t waiton_ptid = minus_one_ptid;
3851 ptid_t event_ptid;
3852 struct target_waitstatus ws;
3853 int ignore_event = 0;
3854 struct thread_info *thread;
3855
3856 memset (&ws, 0, sizeof (ws));
3857 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3858 if (remote_debug)
3859 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3860
3861 switch (ws.kind)
3862 {
3863 case TARGET_WAITKIND_IGNORE:
3864 case TARGET_WAITKIND_NO_RESUMED:
3865 case TARGET_WAITKIND_SIGNALLED:
3866 case TARGET_WAITKIND_EXITED:
3867 /* We shouldn't see these, but if we do, just ignore. */
3868 if (remote_debug)
3869 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3870 ignore_event = 1;
3871 break;
3872
3873 case TARGET_WAITKIND_EXECD:
3874 xfree (ws.value.execd_pathname);
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (ignore_event)
3881 continue;
3882
3883 thread = find_thread_ptid (event_ptid);
3884
3885 if (ws.kind == TARGET_WAITKIND_STOPPED)
3886 {
3887 enum gdb_signal sig = ws.value.sig;
3888
3889 /* Stubs traditionally report SIGTRAP as initial signal,
3890 instead of signal 0. Suppress it. */
3891 if (sig == GDB_SIGNAL_TRAP)
3892 sig = GDB_SIGNAL_0;
3893 thread->suspend.stop_signal = sig;
3894 ws.value.sig = sig;
3895 }
3896
3897 thread->suspend.waitstatus = ws;
3898
3899 if (ws.kind != TARGET_WAITKIND_STOPPED
3900 || ws.value.sig != GDB_SIGNAL_0)
3901 thread->suspend.waitstatus_pending_p = 1;
3902
3903 set_executing (event_ptid, 0);
3904 set_running (event_ptid, 0);
3905 get_remote_thread_info (thread)->vcont_resumed = 0;
3906 }
3907
3908 /* "Notice" the new inferiors before anything related to
3909 registers/memory. */
3910 ALL_INFERIORS (inf)
3911 {
3912 if (inf->pid == 0)
3913 continue;
3914
3915 inf->needs_setup = 1;
3916
3917 if (non_stop)
3918 {
3919 thread = any_live_thread_of_process (inf->pid);
3920 notice_new_inferior (thread->ptid,
3921 thread->state == THREAD_RUNNING,
3922 from_tty);
3923 }
3924 }
3925
3926 /* If all-stop on top of non-stop, pause all threads. Note this
3927 records the threads' stop pc, so must be done after "noticing"
3928 the inferiors. */
3929 if (!non_stop)
3930 {
3931 stop_all_threads ();
3932
3933 /* If all threads of an inferior were already stopped, we
3934 haven't setup the inferior yet. */
3935 ALL_INFERIORS (inf)
3936 {
3937 if (inf->pid == 0)
3938 continue;
3939
3940 if (inf->needs_setup)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 switch_to_thread_no_regs (thread);
3944 setup_inferior (0);
3945 }
3946 }
3947 }
3948
3949 /* Now go over all threads that are stopped, and print their current
3950 frame. If all-stop, then if there's a signalled thread, pick
3951 that as current. */
3952 ALL_NON_EXITED_THREADS (thread)
3953 {
3954 if (first == NULL)
3955 first = thread;
3956
3957 if (!non_stop)
3958 set_running (thread->ptid, 0);
3959 else if (thread->state != THREAD_STOPPED)
3960 continue;
3961
3962 if (selected == NULL
3963 && thread->suspend.waitstatus_pending_p)
3964 selected = thread;
3965
3966 if (lowest_stopped == NULL
3967 || thread->inf->num < lowest_stopped->inf->num
3968 || thread->per_inf_num < lowest_stopped->per_inf_num)
3969 lowest_stopped = thread;
3970
3971 if (non_stop)
3972 print_one_stopped_thread (thread);
3973 }
3974
3975 /* In all-stop, we only print the status of one thread, and leave
3976 others with their status pending. */
3977 if (!non_stop)
3978 {
3979 thread = selected;
3980 if (thread == NULL)
3981 thread = lowest_stopped;
3982 if (thread == NULL)
3983 thread = first;
3984
3985 print_one_stopped_thread (thread);
3986 }
3987
3988 /* For "info program". */
3989 thread = inferior_thread ();
3990 if (thread->state == THREAD_STOPPED)
3991 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3992 }
3993
3994 /* Start the remote connection and sync state. */
3995
3996 static void
3997 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 struct packet_config *noack_config;
4001 char *wait_status = NULL;
4002
4003 /* Signal other parts that we're going through the initial setup,
4004 and so things may not be stable yet. E.g., we don't try to
4005 install tracepoints until we've relocated symbols. Also, a
4006 Ctrl-C before we're connected and synced up can't interrupt the
4007 target. Instead, it offers to drop the (potentially wedged)
4008 connection. */
4009 rs->starting_up = 1;
4010
4011 QUIT;
4012
4013 if (interrupt_on_connect)
4014 send_interrupt_sequence ();
4015
4016 /* Ack any packet which the remote side has already sent. */
4017 remote_serial_write ("+", 1);
4018
4019 /* The first packet we send to the target is the optional "supported
4020 packets" request. If the target can answer this, it will tell us
4021 which later probes to skip. */
4022 remote_query_supported ();
4023
4024 /* If the stub wants to get a QAllow, compose one and send it. */
4025 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4026 remote_set_permissions (target);
4027
4028 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4029 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4030 as a reply to known packet. For packet "vFile:setfs:" it is an
4031 invalid reply and GDB would return error in
4032 remote_hostio_set_filesystem, making remote files access impossible.
4033 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4034 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4035 {
4036 const char v_mustreplyempty[] = "vMustReplyEmpty";
4037
4038 putpkt (v_mustreplyempty);
4039 getpkt (&rs->buf, &rs->buf_size, 0);
4040 if (strcmp (rs->buf, "OK") == 0)
4041 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4042 else if (strcmp (rs->buf, "") != 0)
4043 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4044 rs->buf);
4045 }
4046
4047 /* Next, we possibly activate noack mode.
4048
4049 If the QStartNoAckMode packet configuration is set to AUTO,
4050 enable noack mode if the stub reported a wish for it with
4051 qSupported.
4052
4053 If set to TRUE, then enable noack mode even if the stub didn't
4054 report it in qSupported. If the stub doesn't reply OK, the
4055 session ends with an error.
4056
4057 If FALSE, then don't activate noack mode, regardless of what the
4058 stub claimed should be the default with qSupported. */
4059
4060 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4061 if (packet_config_support (noack_config) != PACKET_DISABLE)
4062 {
4063 putpkt ("QStartNoAckMode");
4064 getpkt (&rs->buf, &rs->buf_size, 0);
4065 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4066 rs->noack_mode = 1;
4067 }
4068
4069 if (extended_p)
4070 {
4071 /* Tell the remote that we are using the extended protocol. */
4072 putpkt ("!");
4073 getpkt (&rs->buf, &rs->buf_size, 0);
4074 }
4075
4076 /* Let the target know which signals it is allowed to pass down to
4077 the program. */
4078 update_signals_program_target ();
4079
4080 /* Next, if the target can specify a description, read it. We do
4081 this before anything involving memory or registers. */
4082 target_find_description ();
4083
4084 /* Next, now that we know something about the target, update the
4085 address spaces in the program spaces. */
4086 update_address_spaces ();
4087
4088 /* On OSs where the list of libraries is global to all
4089 processes, we fetch them early. */
4090 if (gdbarch_has_global_solist (target_gdbarch ()))
4091 solib_add (NULL, from_tty, auto_solib_add);
4092
4093 if (target_is_non_stop_p ())
4094 {
4095 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4096 error (_("Non-stop mode requested, but remote "
4097 "does not support non-stop"));
4098
4099 putpkt ("QNonStop:1");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4104
4105 /* Find about threads and processes the stub is already
4106 controlling. We default to adding them in the running state.
4107 The '?' query below will then tell us about which threads are
4108 stopped. */
4109 remote_update_thread_list (target);
4110 }
4111 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4112 {
4113 /* Don't assume that the stub can operate in all-stop mode.
4114 Request it explicitly. */
4115 putpkt ("QNonStop:0");
4116 getpkt (&rs->buf, &rs->buf_size, 0);
4117
4118 if (strcmp (rs->buf, "OK") != 0)
4119 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4120 }
4121
4122 /* Upload TSVs regardless of whether the target is running or not. The
4123 remote stub, such as GDBserver, may have some predefined or builtin
4124 TSVs, even if the target is not running. */
4125 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4126 {
4127 struct uploaded_tsv *uploaded_tsvs = NULL;
4128
4129 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4130 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4131 }
4132
4133 /* Check whether the target is running now. */
4134 putpkt ("?");
4135 getpkt (&rs->buf, &rs->buf_size, 0);
4136
4137 if (!target_is_non_stop_p ())
4138 {
4139 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4140 {
4141 if (!extended_p)
4142 error (_("The target is not running (try extended-remote?)"));
4143
4144 /* We're connected, but not running. Drop out before we
4145 call start_remote. */
4146 rs->starting_up = 0;
4147 return;
4148 }
4149 else
4150 {
4151 /* Save the reply for later. */
4152 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4153 strcpy (wait_status, rs->buf);
4154 }
4155
4156 /* Fetch thread list. */
4157 target_update_thread_list ();
4158
4159 /* Let the stub know that we want it to return the thread. */
4160 set_continue_thread (minus_one_ptid);
4161
4162 if (thread_count () == 0)
4163 {
4164 /* Target has no concept of threads at all. GDB treats
4165 non-threaded target as single-threaded; add a main
4166 thread. */
4167 add_current_inferior_and_thread (wait_status);
4168 }
4169 else
4170 {
4171 /* We have thread information; select the thread the target
4172 says should be current. If we're reconnecting to a
4173 multi-threaded program, this will ideally be the thread
4174 that last reported an event before GDB disconnected. */
4175 inferior_ptid = get_current_thread (wait_status);
4176 if (ptid_equal (inferior_ptid, null_ptid))
4177 {
4178 /* Odd... The target was able to list threads, but not
4179 tell us which thread was current (no "thread"
4180 register in T stop reply?). Just pick the first
4181 thread in the thread list then. */
4182
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog,
4185 "warning: couldn't determine remote "
4186 "current thread; picking first in list.\n");
4187
4188 inferior_ptid = thread_list->ptid;
4189 }
4190 }
4191
4192 /* init_wait_for_inferior should be called before get_offsets in order
4193 to manage `inserted' flag in bp loc in a correct state.
4194 breakpoint_init_inferior, called from init_wait_for_inferior, set
4195 `inserted' flag to 0, while before breakpoint_re_set, called from
4196 start_remote, set `inserted' flag to 1. In the initialization of
4197 inferior, breakpoint_init_inferior should be called first, and then
4198 breakpoint_re_set can be called. If this order is broken, state of
4199 `inserted' flag is wrong, and cause some problems on breakpoint
4200 manipulation. */
4201 init_wait_for_inferior ();
4202
4203 get_offsets (); /* Get text, data & bss offsets. */
4204
4205 /* If we could not find a description using qXfer, and we know
4206 how to do it some other way, try again. This is not
4207 supported for non-stop; it could be, but it is tricky if
4208 there are no stopped threads when we connect. */
4209 if (remote_read_description_p (target)
4210 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4211 {
4212 target_clear_description ();
4213 target_find_description ();
4214 }
4215
4216 /* Use the previously fetched status. */
4217 gdb_assert (wait_status != NULL);
4218 strcpy (rs->buf, wait_status);
4219 rs->cached_wait_status = 1;
4220
4221 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4222 }
4223 else
4224 {
4225 /* Clear WFI global state. Do this before finding about new
4226 threads and inferiors, and setting the current inferior.
4227 Otherwise we would clear the proceed status of the current
4228 inferior when we want its stop_soon state to be preserved
4229 (see notice_new_inferior). */
4230 init_wait_for_inferior ();
4231
4232 /* In non-stop, we will either get an "OK", meaning that there
4233 are no stopped threads at this time; or, a regular stop
4234 reply. In the latter case, there may be more than one thread
4235 stopped --- we pull them all out using the vStopped
4236 mechanism. */
4237 if (strcmp (rs->buf, "OK") != 0)
4238 {
4239 struct notif_client *notif = &notif_client_stop;
4240
4241 /* remote_notif_get_pending_replies acks this one, and gets
4242 the rest out. */
4243 rs->notif_state->pending_event[notif_client_stop.id]
4244 = remote_notif_parse (notif, rs->buf);
4245 remote_notif_get_pending_events (notif);
4246 }
4247
4248 if (thread_count () == 0)
4249 {
4250 if (!extended_p)
4251 error (_("The target is not running (try extended-remote?)"));
4252
4253 /* We're connected, but not running. Drop out before we
4254 call start_remote. */
4255 rs->starting_up = 0;
4256 return;
4257 }
4258
4259 /* In non-stop mode, any cached wait status will be stored in
4260 the stop reply queue. */
4261 gdb_assert (wait_status == NULL);
4262
4263 /* Report all signals during attach/startup. */
4264 remote_pass_signals (target, 0, NULL);
4265
4266 /* If there are already stopped threads, mark them stopped and
4267 report their stops before giving the prompt to the user. */
4268 process_initial_stop_replies (from_tty);
4269
4270 if (target_can_async_p ())
4271 target_async (1);
4272 }
4273
4274 /* If we connected to a live target, do some additional setup. */
4275 if (target_has_execution)
4276 {
4277 if (symfile_objfile) /* No use without a symbol-file. */
4278 remote_check_symbols ();
4279 }
4280
4281 /* Possibly the target has been engaged in a trace run started
4282 previously; find out where things are at. */
4283 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4284 {
4285 struct uploaded_tp *uploaded_tps = NULL;
4286
4287 if (current_trace_status ()->running)
4288 printf_filtered (_("Trace is already running on the target.\n"));
4289
4290 remote_upload_tracepoints (target, &uploaded_tps);
4291
4292 merge_uploaded_tracepoints (&uploaded_tps);
4293 }
4294
4295 /* Possibly the target has been engaged in a btrace record started
4296 previously; find out where things are at. */
4297 remote_btrace_maybe_reopen ();
4298
4299 /* The thread and inferior lists are now synchronized with the
4300 target, our symbols have been relocated, and we're merged the
4301 target's tracepoints with ours. We're done with basic start
4302 up. */
4303 rs->starting_up = 0;
4304
4305 /* Maybe breakpoints are global and need to be inserted now. */
4306 if (breakpoints_should_be_inserted_now ())
4307 insert_breakpoints ();
4308 }
4309
4310 /* Open a connection to a remote debugger.
4311 NAME is the filename used for communication. */
4312
4313 static void
4314 remote_open (const char *name, int from_tty)
4315 {
4316 remote_open_1 (name, from_tty, &remote_ops, 0);
4317 }
4318
4319 /* Open a connection to a remote debugger using the extended
4320 remote gdb protocol. NAME is the filename used for communication. */
4321
4322 static void
4323 extended_remote_open (const char *name, int from_tty)
4324 {
4325 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4326 }
4327
4328 /* Reset all packets back to "unknown support". Called when opening a
4329 new connection to a remote target. */
4330
4331 static void
4332 reset_all_packet_configs_support (void)
4333 {
4334 int i;
4335
4336 for (i = 0; i < PACKET_MAX; i++)
4337 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4338 }
4339
4340 /* Initialize all packet configs. */
4341
4342 static void
4343 init_all_packet_configs (void)
4344 {
4345 int i;
4346
4347 for (i = 0; i < PACKET_MAX; i++)
4348 {
4349 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4350 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4351 }
4352 }
4353
4354 /* Symbol look-up. */
4355
4356 static void
4357 remote_check_symbols (void)
4358 {
4359 char *msg, *reply, *tmp;
4360 int end;
4361 long reply_size;
4362 struct cleanup *old_chain;
4363
4364 /* The remote side has no concept of inferiors that aren't running
4365 yet, it only knows about running processes. If we're connected
4366 but our current inferior is not running, we should not invite the
4367 remote target to request symbol lookups related to its
4368 (unrelated) current process. */
4369 if (!target_has_execution)
4370 return;
4371
4372 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4373 return;
4374
4375 /* Make sure the remote is pointing at the right process. Note
4376 there's no way to select "no process". */
4377 set_general_process ();
4378
4379 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4380 because we need both at the same time. */
4381 msg = (char *) xmalloc (get_remote_packet_size ());
4382 old_chain = make_cleanup (xfree, msg);
4383 reply = (char *) xmalloc (get_remote_packet_size ());
4384 make_cleanup (free_current_contents, &reply);
4385 reply_size = get_remote_packet_size ();
4386
4387 /* Invite target to request symbol lookups. */
4388
4389 putpkt ("qSymbol::");
4390 getpkt (&reply, &reply_size, 0);
4391 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4392
4393 while (startswith (reply, "qSymbol:"))
4394 {
4395 struct bound_minimal_symbol sym;
4396
4397 tmp = &reply[8];
4398 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4399 msg[end] = '\0';
4400 sym = lookup_minimal_symbol (msg, NULL, NULL);
4401 if (sym.minsym == NULL)
4402 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4403 else
4404 {
4405 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4406 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4407
4408 /* If this is a function address, return the start of code
4409 instead of any data function descriptor. */
4410 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4411 sym_addr,
4412 &current_target);
4413
4414 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4415 phex_nz (sym_addr, addr_size), &reply[8]);
4416 }
4417
4418 putpkt (msg);
4419 getpkt (&reply, &reply_size, 0);
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static struct serial *
4426 remote_serial_open (const char *name)
4427 {
4428 static int udp_warning = 0;
4429
4430 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4431 of in ser-tcp.c, because it is the remote protocol assuming that the
4432 serial connection is reliable and not the serial connection promising
4433 to be. */
4434 if (!udp_warning && startswith (name, "udp:"))
4435 {
4436 warning (_("The remote protocol may be unreliable over UDP.\n"
4437 "Some events may be lost, rendering further debugging "
4438 "impossible."));
4439 udp_warning = 1;
4440 }
4441
4442 return serial_open (name);
4443 }
4444
4445 /* Inform the target of our permission settings. The permission flags
4446 work without this, but if the target knows the settings, it can do
4447 a couple things. First, it can add its own check, to catch cases
4448 that somehow manage to get by the permissions checks in target
4449 methods. Second, if the target is wired to disallow particular
4450 settings (for instance, a system in the field that is not set up to
4451 be able to stop at a breakpoint), it can object to any unavailable
4452 permissions. */
4453
4454 void
4455 remote_set_permissions (struct target_ops *self)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458
4459 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4460 "WriteReg:%x;WriteMem:%x;"
4461 "InsertBreak:%x;InsertTrace:%x;"
4462 "InsertFastTrace:%x;Stop:%x",
4463 may_write_registers, may_write_memory,
4464 may_insert_breakpoints, may_insert_tracepoints,
4465 may_insert_fast_tracepoints, may_stop);
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468
4469 /* If the target didn't like the packet, warn the user. Do not try
4470 to undo the user's settings, that would just be maddening. */
4471 if (strcmp (rs->buf, "OK") != 0)
4472 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4473 }
4474
4475 /* This type describes each known response to the qSupported
4476 packet. */
4477 struct protocol_feature
4478 {
4479 /* The name of this protocol feature. */
4480 const char *name;
4481
4482 /* The default for this protocol feature. */
4483 enum packet_support default_support;
4484
4485 /* The function to call when this feature is reported, or after
4486 qSupported processing if the feature is not supported.
4487 The first argument points to this structure. The second
4488 argument indicates whether the packet requested support be
4489 enabled, disabled, or probed (or the default, if this function
4490 is being called at the end of processing and this feature was
4491 not reported). The third argument may be NULL; if not NULL, it
4492 is a NUL-terminated string taken from the packet following
4493 this feature's name and an equals sign. */
4494 void (*func) (const struct protocol_feature *, enum packet_support,
4495 const char *);
4496
4497 /* The corresponding packet for this feature. Only used if
4498 FUNC is remote_supported_packet. */
4499 int packet;
4500 };
4501
4502 static void
4503 remote_supported_packet (const struct protocol_feature *feature,
4504 enum packet_support support,
4505 const char *argument)
4506 {
4507 if (argument)
4508 {
4509 warning (_("Remote qSupported response supplied an unexpected value for"
4510 " \"%s\"."), feature->name);
4511 return;
4512 }
4513
4514 remote_protocol_packets[feature->packet].support = support;
4515 }
4516
4517 static void
4518 remote_packet_size (const struct protocol_feature *feature,
4519 enum packet_support support, const char *value)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 int packet_size;
4524 char *value_end;
4525
4526 if (support != PACKET_ENABLE)
4527 return;
4528
4529 if (value == NULL || *value == '\0')
4530 {
4531 warning (_("Remote target reported \"%s\" without a size."),
4532 feature->name);
4533 return;
4534 }
4535
4536 errno = 0;
4537 packet_size = strtol (value, &value_end, 16);
4538 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4539 {
4540 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4541 feature->name, value);
4542 return;
4543 }
4544
4545 /* Record the new maximum packet size. */
4546 rs->explicit_packet_size = packet_size;
4547 }
4548
4549 static const struct protocol_feature remote_protocol_features[] = {
4550 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4551 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_auxv },
4553 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_exec_file },
4555 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_features },
4557 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_libraries },
4559 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_qXfer_libraries_svr4 },
4561 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4562 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4563 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_memory_map },
4565 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_spu_read },
4567 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_qXfer_spu_write },
4569 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_qXfer_osdata },
4571 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_qXfer_threads },
4573 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_qXfer_traceframe_info },
4575 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QPassSignals },
4577 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_QCatchSyscalls },
4579 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_QProgramSignals },
4581 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_QSetWorkingDir },
4583 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_QStartupWithShell },
4585 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_QEnvironmentHexEncoded },
4587 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QEnvironmentReset },
4589 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_QEnvironmentUnset },
4591 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_QStartNoAckMode },
4593 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_multiprocess_feature },
4595 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4596 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_qXfer_siginfo_read },
4598 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_qXfer_siginfo_write },
4600 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_ConditionalTracepoints },
4602 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_ConditionalBreakpoints },
4604 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_BreakpointCommands },
4606 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_FastTracepoints },
4608 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_StaticTracepoints },
4610 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_InstallInTrace},
4612 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_DisconnectedTracing_feature },
4614 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_bc },
4616 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_bs },
4618 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_TracepointSource },
4620 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_QAllow },
4622 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_EnableDisableTracepoints_feature },
4624 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_fdpic },
4626 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_uib },
4628 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_QDisableRandomization },
4630 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4631 { "QTBuffer:size", PACKET_DISABLE,
4632 remote_supported_packet, PACKET_QTBuffer_size},
4633 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4634 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4635 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4636 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4637 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_qXfer_btrace },
4639 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_qXfer_btrace_conf },
4641 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_Qbtrace_conf_bts_size },
4643 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4644 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4645 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_fork_event_feature },
4647 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_vfork_event_feature },
4649 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_exec_event_feature },
4651 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_Qbtrace_conf_pt_size },
4653 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4654 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4655 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4656 };
4657
4658 static char *remote_support_xml;
4659
4660 /* Register string appended to "xmlRegisters=" in qSupported query. */
4661
4662 void
4663 register_remote_support_xml (const char *xml)
4664 {
4665 #if defined(HAVE_LIBEXPAT)
4666 if (remote_support_xml == NULL)
4667 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4668 else
4669 {
4670 char *copy = xstrdup (remote_support_xml + 13);
4671 char *p = strtok (copy, ",");
4672
4673 do
4674 {
4675 if (strcmp (p, xml) == 0)
4676 {
4677 /* already there */
4678 xfree (copy);
4679 return;
4680 }
4681 }
4682 while ((p = strtok (NULL, ",")) != NULL);
4683 xfree (copy);
4684
4685 remote_support_xml = reconcat (remote_support_xml,
4686 remote_support_xml, ",", xml,
4687 (char *) NULL);
4688 }
4689 #endif
4690 }
4691
4692 static char *
4693 remote_query_supported_append (char *msg, const char *append)
4694 {
4695 if (msg)
4696 return reconcat (msg, msg, ";", append, (char *) NULL);
4697 else
4698 return xstrdup (append);
4699 }
4700
4701 static void
4702 remote_query_supported (void)
4703 {
4704 struct remote_state *rs = get_remote_state ();
4705 char *next;
4706 int i;
4707 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4708
4709 /* The packet support flags are handled differently for this packet
4710 than for most others. We treat an error, a disabled packet, and
4711 an empty response identically: any features which must be reported
4712 to be used will be automatically disabled. An empty buffer
4713 accomplishes this, since that is also the representation for a list
4714 containing no features. */
4715
4716 rs->buf[0] = 0;
4717 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4718 {
4719 char *q = NULL;
4720 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4721
4722 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "multiprocess+");
4724
4725 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4726 q = remote_query_supported_append (q, "swbreak+");
4727 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4728 q = remote_query_supported_append (q, "hwbreak+");
4729
4730 q = remote_query_supported_append (q, "qRelocInsn+");
4731
4732 if (packet_set_cmd_state (PACKET_fork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "fork-events+");
4735 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "vfork-events+");
4738 if (packet_set_cmd_state (PACKET_exec_event_feature)
4739 != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "exec-events+");
4741
4742 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "vContSupported+");
4744
4745 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "QThreadEvents+");
4747
4748 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4749 q = remote_query_supported_append (q, "no-resumed+");
4750
4751 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4752 the qSupported:xmlRegisters=i386 handling. */
4753 if (remote_support_xml != NULL
4754 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4755 q = remote_query_supported_append (q, remote_support_xml);
4756
4757 q = reconcat (q, "qSupported:", q, (char *) NULL);
4758 putpkt (q);
4759
4760 do_cleanups (old_chain);
4761
4762 getpkt (&rs->buf, &rs->buf_size, 0);
4763
4764 /* If an error occured, warn, but do not return - just reset the
4765 buffer to empty and go on to disable features. */
4766 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4767 == PACKET_ERROR)
4768 {
4769 warning (_("Remote failure reply: %s"), rs->buf);
4770 rs->buf[0] = 0;
4771 }
4772 }
4773
4774 memset (seen, 0, sizeof (seen));
4775
4776 next = rs->buf;
4777 while (*next)
4778 {
4779 enum packet_support is_supported;
4780 char *p, *end, *name_end, *value;
4781
4782 /* First separate out this item from the rest of the packet. If
4783 there's another item after this, we overwrite the separator
4784 (terminated strings are much easier to work with). */
4785 p = next;
4786 end = strchr (p, ';');
4787 if (end == NULL)
4788 {
4789 end = p + strlen (p);
4790 next = end;
4791 }
4792 else
4793 {
4794 *end = '\0';
4795 next = end + 1;
4796
4797 if (end == p)
4798 {
4799 warning (_("empty item in \"qSupported\" response"));
4800 continue;
4801 }
4802 }
4803
4804 name_end = strchr (p, '=');
4805 if (name_end)
4806 {
4807 /* This is a name=value entry. */
4808 is_supported = PACKET_ENABLE;
4809 value = name_end + 1;
4810 *name_end = '\0';
4811 }
4812 else
4813 {
4814 value = NULL;
4815 switch (end[-1])
4816 {
4817 case '+':
4818 is_supported = PACKET_ENABLE;
4819 break;
4820
4821 case '-':
4822 is_supported = PACKET_DISABLE;
4823 break;
4824
4825 case '?':
4826 is_supported = PACKET_SUPPORT_UNKNOWN;
4827 break;
4828
4829 default:
4830 warning (_("unrecognized item \"%s\" "
4831 "in \"qSupported\" response"), p);
4832 continue;
4833 }
4834 end[-1] = '\0';
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4838 if (strcmp (remote_protocol_features[i].name, p) == 0)
4839 {
4840 const struct protocol_feature *feature;
4841
4842 seen[i] = 1;
4843 feature = &remote_protocol_features[i];
4844 feature->func (feature, is_supported, value);
4845 break;
4846 }
4847 }
4848
4849 /* If we increased the packet size, make sure to increase the global
4850 buffer size also. We delay this until after parsing the entire
4851 qSupported packet, because this is the same buffer we were
4852 parsing. */
4853 if (rs->buf_size < rs->explicit_packet_size)
4854 {
4855 rs->buf_size = rs->explicit_packet_size;
4856 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4857 }
4858
4859 /* Handle the defaults for unmentioned features. */
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (!seen[i])
4862 {
4863 const struct protocol_feature *feature;
4864
4865 feature = &remote_protocol_features[i];
4866 feature->func (feature, feature->default_support, NULL);
4867 }
4868 }
4869
4870 /* Serial QUIT handler for the remote serial descriptor.
4871
4872 Defers handling a Ctrl-C until we're done with the current
4873 command/response packet sequence, unless:
4874
4875 - We're setting up the connection. Don't send a remote interrupt
4876 request, as we're not fully synced yet. Quit immediately
4877 instead.
4878
4879 - The target has been resumed in the foreground
4880 (target_terminal::is_ours is false) with a synchronous resume
4881 packet, and we're blocked waiting for the stop reply, thus a
4882 Ctrl-C should be immediately sent to the target.
4883
4884 - We get a second Ctrl-C while still within the same serial read or
4885 write. In that case the serial is seemingly wedged --- offer to
4886 quit/disconnect.
4887
4888 - We see a second Ctrl-C without target response, after having
4889 previously interrupted the target. In that case the target/stub
4890 is probably wedged --- offer to quit/disconnect.
4891 */
4892
4893 static void
4894 remote_serial_quit_handler (void)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897
4898 if (check_quit_flag ())
4899 {
4900 /* If we're starting up, we're not fully synced yet. Quit
4901 immediately. */
4902 if (rs->starting_up)
4903 quit ();
4904 else if (rs->got_ctrlc_during_io)
4905 {
4906 if (query (_("The target is not responding to GDB commands.\n"
4907 "Stop debugging it? ")))
4908 remote_unpush_and_throw ();
4909 }
4910 /* If ^C has already been sent once, offer to disconnect. */
4911 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4912 interrupt_query ();
4913 /* All-stop protocol, and blocked waiting for stop reply. Send
4914 an interrupt request. */
4915 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4916 target_interrupt ();
4917 else
4918 rs->got_ctrlc_during_io = 1;
4919 }
4920 }
4921
4922 /* Remove any of the remote.c targets from target stack. Upper targets depend
4923 on it so remove them first. */
4924
4925 static void
4926 remote_unpush_target (void)
4927 {
4928 pop_all_targets_at_and_above (process_stratum);
4929 }
4930
4931 static void
4932 remote_unpush_and_throw (void)
4933 {
4934 remote_unpush_target ();
4935 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4936 }
4937
4938 static void
4939 remote_open_1 (const char *name, int from_tty,
4940 struct target_ops *target, int extended_p)
4941 {
4942 struct remote_state *rs = get_remote_state ();
4943
4944 if (name == 0)
4945 error (_("To open a remote debug connection, you need to specify what\n"
4946 "serial device is attached to the remote system\n"
4947 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4948
4949 /* See FIXME above. */
4950 if (!target_async_permitted)
4951 wait_forever_enabled_p = 1;
4952
4953 /* If we're connected to a running target, target_preopen will kill it.
4954 Ask this question first, before target_preopen has a chance to kill
4955 anything. */
4956 if (rs->remote_desc != NULL && !have_inferiors ())
4957 {
4958 if (from_tty
4959 && !query (_("Already connected to a remote target. Disconnect? ")))
4960 error (_("Still connected."));
4961 }
4962
4963 /* Here the possibly existing remote target gets unpushed. */
4964 target_preopen (from_tty);
4965
4966 /* Make sure we send the passed signals list the next time we resume. */
4967 xfree (rs->last_pass_packet);
4968 rs->last_pass_packet = NULL;
4969
4970 /* Make sure we send the program signals list the next time we
4971 resume. */
4972 xfree (rs->last_program_signals_packet);
4973 rs->last_program_signals_packet = NULL;
4974
4975 remote_fileio_reset ();
4976 reopen_exec_file ();
4977 reread_symbols ();
4978
4979 rs->remote_desc = remote_serial_open (name);
4980 if (!rs->remote_desc)
4981 perror_with_name (name);
4982
4983 if (baud_rate != -1)
4984 {
4985 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4986 {
4987 /* The requested speed could not be set. Error out to
4988 top level after closing remote_desc. Take care to
4989 set remote_desc to NULL to avoid closing remote_desc
4990 more than once. */
4991 serial_close (rs->remote_desc);
4992 rs->remote_desc = NULL;
4993 perror_with_name (name);
4994 }
4995 }
4996
4997 serial_setparity (rs->remote_desc, serial_parity);
4998 serial_raw (rs->remote_desc);
4999
5000 /* If there is something sitting in the buffer we might take it as a
5001 response to a command, which would be bad. */
5002 serial_flush_input (rs->remote_desc);
5003
5004 if (from_tty)
5005 {
5006 puts_filtered ("Remote debugging using ");
5007 puts_filtered (name);
5008 puts_filtered ("\n");
5009 }
5010 push_target (target); /* Switch to using remote target now. */
5011
5012 /* Register extra event sources in the event loop. */
5013 remote_async_inferior_event_token
5014 = create_async_event_handler (remote_async_inferior_event_handler,
5015 NULL);
5016 rs->notif_state = remote_notif_state_allocate ();
5017
5018 /* Reset the target state; these things will be queried either by
5019 remote_query_supported or as they are needed. */
5020 reset_all_packet_configs_support ();
5021 rs->cached_wait_status = 0;
5022 rs->explicit_packet_size = 0;
5023 rs->noack_mode = 0;
5024 rs->extended = extended_p;
5025 rs->waiting_for_stop_reply = 0;
5026 rs->ctrlc_pending_p = 0;
5027 rs->got_ctrlc_during_io = 0;
5028
5029 rs->general_thread = not_sent_ptid;
5030 rs->continue_thread = not_sent_ptid;
5031 rs->remote_traceframe_number = -1;
5032
5033 rs->last_resume_exec_dir = EXEC_FORWARD;
5034
5035 /* Probe for ability to use "ThreadInfo" query, as required. */
5036 rs->use_threadinfo_query = 1;
5037 rs->use_threadextra_query = 1;
5038
5039 readahead_cache_invalidate ();
5040
5041 if (target_async_permitted)
5042 {
5043 /* FIXME: cagney/1999-09-23: During the initial connection it is
5044 assumed that the target is already ready and able to respond to
5045 requests. Unfortunately remote_start_remote() eventually calls
5046 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5047 around this. Eventually a mechanism that allows
5048 wait_for_inferior() to expect/get timeouts will be
5049 implemented. */
5050 wait_forever_enabled_p = 0;
5051 }
5052
5053 /* First delete any symbols previously loaded from shared libraries. */
5054 no_shared_libraries (NULL, 0);
5055
5056 /* Start afresh. */
5057 init_thread_list ();
5058
5059 /* Start the remote connection. If error() or QUIT, discard this
5060 target (we'd otherwise be in an inconsistent state) and then
5061 propogate the error on up the exception chain. This ensures that
5062 the caller doesn't stumble along blindly assuming that the
5063 function succeeded. The CLI doesn't have this problem but other
5064 UI's, such as MI do.
5065
5066 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5067 this function should return an error indication letting the
5068 caller restore the previous state. Unfortunately the command
5069 ``target remote'' is directly wired to this function making that
5070 impossible. On a positive note, the CLI side of this problem has
5071 been fixed - the function set_cmd_context() makes it possible for
5072 all the ``target ....'' commands to share a common callback
5073 function. See cli-dump.c. */
5074 {
5075
5076 TRY
5077 {
5078 remote_start_remote (from_tty, target, extended_p);
5079 }
5080 CATCH (ex, RETURN_MASK_ALL)
5081 {
5082 /* Pop the partially set up target - unless something else did
5083 already before throwing the exception. */
5084 if (rs->remote_desc != NULL)
5085 remote_unpush_target ();
5086 if (target_async_permitted)
5087 wait_forever_enabled_p = 1;
5088 throw_exception (ex);
5089 }
5090 END_CATCH
5091 }
5092
5093 remote_btrace_reset ();
5094
5095 if (target_async_permitted)
5096 wait_forever_enabled_p = 1;
5097 }
5098
5099 /* Detach the specified process. */
5100
5101 static void
5102 remote_detach_pid (int pid)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105
5106 if (remote_multi_process_p (rs))
5107 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5108 else
5109 strcpy (rs->buf, "D");
5110
5111 putpkt (rs->buf);
5112 getpkt (&rs->buf, &rs->buf_size, 0);
5113
5114 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5115 ;
5116 else if (rs->buf[0] == '\0')
5117 error (_("Remote doesn't know how to detach"));
5118 else
5119 error (_("Can't detach process."));
5120 }
5121
5122 /* This detaches a program to which we previously attached, using
5123 inferior_ptid to identify the process. After this is done, GDB
5124 can be used to debug some other program. We better not have left
5125 any breakpoints in the target program or it'll die when it hits
5126 one. */
5127
5128 static void
5129 remote_detach_1 (int from_tty, inferior *inf)
5130 {
5131 int pid = ptid_get_pid (inferior_ptid);
5132 struct remote_state *rs = get_remote_state ();
5133 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5134 int is_fork_parent;
5135
5136 if (!target_has_execution)
5137 error (_("No process to detach from."));
5138
5139 target_announce_detach (from_tty);
5140
5141 /* Tell the remote target to detach. */
5142 remote_detach_pid (pid);
5143
5144 /* Exit only if this is the only active inferior. */
5145 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5146 puts_filtered (_("Ending remote debugging.\n"));
5147
5148 /* Check to see if we are detaching a fork parent. Note that if we
5149 are detaching a fork child, tp == NULL. */
5150 is_fork_parent = (tp != NULL
5151 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5152
5153 /* If doing detach-on-fork, we don't mourn, because that will delete
5154 breakpoints that should be available for the followed inferior. */
5155 if (!is_fork_parent)
5156 target_mourn_inferior (inferior_ptid);
5157 else
5158 {
5159 inferior_ptid = null_ptid;
5160 detach_inferior (pid);
5161 }
5162 }
5163
5164 static void
5165 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5166 {
5167 remote_detach_1 (from_tty, inf);
5168 }
5169
5170 static void
5171 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5172 {
5173 remote_detach_1 (from_tty, inf);
5174 }
5175
5176 /* Target follow-fork function for remote targets. On entry, and
5177 at return, the current inferior is the fork parent.
5178
5179 Note that although this is currently only used for extended-remote,
5180 it is named remote_follow_fork in anticipation of using it for the
5181 remote target as well. */
5182
5183 static int
5184 remote_follow_fork (struct target_ops *ops, int follow_child,
5185 int detach_fork)
5186 {
5187 struct remote_state *rs = get_remote_state ();
5188 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5189
5190 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5191 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5192 {
5193 /* When following the parent and detaching the child, we detach
5194 the child here. For the case of following the child and
5195 detaching the parent, the detach is done in the target-
5196 independent follow fork code in infrun.c. We can't use
5197 target_detach when detaching an unfollowed child because
5198 the client side doesn't know anything about the child. */
5199 if (detach_fork && !follow_child)
5200 {
5201 /* Detach the fork child. */
5202 ptid_t child_ptid;
5203 pid_t child_pid;
5204
5205 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5206 child_pid = ptid_get_pid (child_ptid);
5207
5208 remote_detach_pid (child_pid);
5209 }
5210 }
5211 return 0;
5212 }
5213
5214 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5215 in the program space of the new inferior. On entry and at return the
5216 current inferior is the exec'ing inferior. INF is the new exec'd
5217 inferior, which may be the same as the exec'ing inferior unless
5218 follow-exec-mode is "new". */
5219
5220 static void
5221 remote_follow_exec (struct target_ops *ops,
5222 struct inferior *inf, char *execd_pathname)
5223 {
5224 /* We know that this is a target file name, so if it has the "target:"
5225 prefix we strip it off before saving it in the program space. */
5226 if (is_target_filename (execd_pathname))
5227 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5228
5229 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5230 }
5231
5232 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5233
5234 static void
5235 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5236 {
5237 if (args)
5238 error (_("Argument given to \"disconnect\" when remotely debugging."));
5239
5240 /* Make sure we unpush even the extended remote targets. Calling
5241 target_mourn_inferior won't unpush, and remote_mourn won't
5242 unpush if there is more than one inferior left. */
5243 unpush_target (target);
5244 generic_mourn_inferior ();
5245
5246 if (from_tty)
5247 puts_filtered ("Ending remote debugging.\n");
5248 }
5249
5250 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5251 be chatty about it. */
5252
5253 static void
5254 extended_remote_attach (struct target_ops *target, const char *args,
5255 int from_tty)
5256 {
5257 struct remote_state *rs = get_remote_state ();
5258 int pid;
5259 char *wait_status = NULL;
5260
5261 pid = parse_pid_to_attach (args);
5262
5263 /* Remote PID can be freely equal to getpid, do not check it here the same
5264 way as in other targets. */
5265
5266 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5267 error (_("This target does not support attaching to a process"));
5268
5269 if (from_tty)
5270 {
5271 char *exec_file = get_exec_file (0);
5272
5273 if (exec_file)
5274 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5275 target_pid_to_str (pid_to_ptid (pid)));
5276 else
5277 printf_unfiltered (_("Attaching to %s\n"),
5278 target_pid_to_str (pid_to_ptid (pid)));
5279
5280 gdb_flush (gdb_stdout);
5281 }
5282
5283 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5284 putpkt (rs->buf);
5285 getpkt (&rs->buf, &rs->buf_size, 0);
5286
5287 switch (packet_ok (rs->buf,
5288 &remote_protocol_packets[PACKET_vAttach]))
5289 {
5290 case PACKET_OK:
5291 if (!target_is_non_stop_p ())
5292 {
5293 /* Save the reply for later. */
5294 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5295 strcpy (wait_status, rs->buf);
5296 }
5297 else if (strcmp (rs->buf, "OK") != 0)
5298 error (_("Attaching to %s failed with: %s"),
5299 target_pid_to_str (pid_to_ptid (pid)),
5300 rs->buf);
5301 break;
5302 case PACKET_UNKNOWN:
5303 error (_("This target does not support attaching to a process"));
5304 default:
5305 error (_("Attaching to %s failed"),
5306 target_pid_to_str (pid_to_ptid (pid)));
5307 }
5308
5309 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5310
5311 inferior_ptid = pid_to_ptid (pid);
5312
5313 if (target_is_non_stop_p ())
5314 {
5315 struct thread_info *thread;
5316
5317 /* Get list of threads. */
5318 remote_update_thread_list (target);
5319
5320 thread = first_thread_of_process (pid);
5321 if (thread)
5322 inferior_ptid = thread->ptid;
5323 else
5324 inferior_ptid = pid_to_ptid (pid);
5325
5326 /* Invalidate our notion of the remote current thread. */
5327 record_currthread (rs, minus_one_ptid);
5328 }
5329 else
5330 {
5331 /* Now, if we have thread information, update inferior_ptid. */
5332 inferior_ptid = remote_current_thread (inferior_ptid);
5333
5334 /* Add the main thread to the thread list. */
5335 add_thread_silent (inferior_ptid);
5336 }
5337
5338 /* Next, if the target can specify a description, read it. We do
5339 this before anything involving memory or registers. */
5340 target_find_description ();
5341
5342 if (!target_is_non_stop_p ())
5343 {
5344 /* Use the previously fetched status. */
5345 gdb_assert (wait_status != NULL);
5346
5347 if (target_can_async_p ())
5348 {
5349 struct notif_event *reply
5350 = remote_notif_parse (&notif_client_stop, wait_status);
5351
5352 push_stop_reply ((struct stop_reply *) reply);
5353
5354 target_async (1);
5355 }
5356 else
5357 {
5358 gdb_assert (wait_status != NULL);
5359 strcpy (rs->buf, wait_status);
5360 rs->cached_wait_status = 1;
5361 }
5362 }
5363 else
5364 gdb_assert (wait_status == NULL);
5365 }
5366
5367 /* Implementation of the to_post_attach method. */
5368
5369 static void
5370 extended_remote_post_attach (struct target_ops *ops, int pid)
5371 {
5372 /* Get text, data & bss offsets. */
5373 get_offsets ();
5374
5375 /* In certain cases GDB might not have had the chance to start
5376 symbol lookup up until now. This could happen if the debugged
5377 binary is not using shared libraries, the vsyscall page is not
5378 present (on Linux) and the binary itself hadn't changed since the
5379 debugging process was started. */
5380 if (symfile_objfile != NULL)
5381 remote_check_symbols();
5382 }
5383
5384 \f
5385 /* Check for the availability of vCont. This function should also check
5386 the response. */
5387
5388 static void
5389 remote_vcont_probe (struct remote_state *rs)
5390 {
5391 char *buf;
5392
5393 strcpy (rs->buf, "vCont?");
5394 putpkt (rs->buf);
5395 getpkt (&rs->buf, &rs->buf_size, 0);
5396 buf = rs->buf;
5397
5398 /* Make sure that the features we assume are supported. */
5399 if (startswith (buf, "vCont"))
5400 {
5401 char *p = &buf[5];
5402 int support_c, support_C;
5403
5404 rs->supports_vCont.s = 0;
5405 rs->supports_vCont.S = 0;
5406 support_c = 0;
5407 support_C = 0;
5408 rs->supports_vCont.t = 0;
5409 rs->supports_vCont.r = 0;
5410 while (p && *p == ';')
5411 {
5412 p++;
5413 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5414 rs->supports_vCont.s = 1;
5415 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5416 rs->supports_vCont.S = 1;
5417 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 support_c = 1;
5419 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5420 support_C = 1;
5421 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5422 rs->supports_vCont.t = 1;
5423 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5424 rs->supports_vCont.r = 1;
5425
5426 p = strchr (p, ';');
5427 }
5428
5429 /* If c, and C are not all supported, we can't use vCont. Clearing
5430 BUF will make packet_ok disable the packet. */
5431 if (!support_c || !support_C)
5432 buf[0] = 0;
5433 }
5434
5435 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5436 }
5437
5438 /* Helper function for building "vCont" resumptions. Write a
5439 resumption to P. ENDP points to one-passed-the-end of the buffer
5440 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5441 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5442 resumed thread should be single-stepped and/or signalled. If PTID
5443 equals minus_one_ptid, then all threads are resumed; if PTID
5444 represents a process, then all threads of the process are resumed;
5445 the thread to be stepped and/or signalled is given in the global
5446 INFERIOR_PTID. */
5447
5448 static char *
5449 append_resumption (char *p, char *endp,
5450 ptid_t ptid, int step, enum gdb_signal siggnal)
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (step && siggnal != GDB_SIGNAL_0)
5455 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5456 else if (step
5457 /* GDB is willing to range step. */
5458 && use_range_stepping
5459 /* Target supports range stepping. */
5460 && rs->supports_vCont.r
5461 /* We don't currently support range stepping multiple
5462 threads with a wildcard (though the protocol allows it,
5463 so stubs shouldn't make an active effort to forbid
5464 it). */
5465 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5466 {
5467 struct thread_info *tp;
5468
5469 if (ptid_equal (ptid, minus_one_ptid))
5470 {
5471 /* If we don't know about the target thread's tid, then
5472 we're resuming magic_null_ptid (see caller). */
5473 tp = find_thread_ptid (magic_null_ptid);
5474 }
5475 else
5476 tp = find_thread_ptid (ptid);
5477 gdb_assert (tp != NULL);
5478
5479 if (tp->control.may_range_step)
5480 {
5481 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5482
5483 p += xsnprintf (p, endp - p, ";r%s,%s",
5484 phex_nz (tp->control.step_range_start,
5485 addr_size),
5486 phex_nz (tp->control.step_range_end,
5487 addr_size));
5488 }
5489 else
5490 p += xsnprintf (p, endp - p, ";s");
5491 }
5492 else if (step)
5493 p += xsnprintf (p, endp - p, ";s");
5494 else if (siggnal != GDB_SIGNAL_0)
5495 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5496 else
5497 p += xsnprintf (p, endp - p, ";c");
5498
5499 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5500 {
5501 ptid_t nptid;
5502
5503 /* All (-1) threads of process. */
5504 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5505
5506 p += xsnprintf (p, endp - p, ":");
5507 p = write_ptid (p, endp, nptid);
5508 }
5509 else if (!ptid_equal (ptid, minus_one_ptid))
5510 {
5511 p += xsnprintf (p, endp - p, ":");
5512 p = write_ptid (p, endp, ptid);
5513 }
5514
5515 return p;
5516 }
5517
5518 /* Clear the thread's private info on resume. */
5519
5520 static void
5521 resume_clear_thread_private_info (struct thread_info *thread)
5522 {
5523 if (thread->priv != NULL)
5524 {
5525 remote_thread_info *priv = get_remote_thread_info (thread);
5526
5527 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5528 priv->watch_data_address = 0;
5529 }
5530 }
5531
5532 /* Append a vCont continue-with-signal action for threads that have a
5533 non-zero stop signal. */
5534
5535 static char *
5536 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5537 {
5538 struct thread_info *thread;
5539
5540 ALL_NON_EXITED_THREADS (thread)
5541 if (ptid_match (thread->ptid, ptid)
5542 && !ptid_equal (inferior_ptid, thread->ptid)
5543 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5544 {
5545 p = append_resumption (p, endp, thread->ptid,
5546 0, thread->suspend.stop_signal);
5547 thread->suspend.stop_signal = GDB_SIGNAL_0;
5548 resume_clear_thread_private_info (thread);
5549 }
5550
5551 return p;
5552 }
5553
5554 /* Set the target running, using the packets that use Hc
5555 (c/s/C/S). */
5556
5557 static void
5558 remote_resume_with_hc (struct target_ops *ops,
5559 ptid_t ptid, int step, enum gdb_signal siggnal)
5560 {
5561 struct remote_state *rs = get_remote_state ();
5562 struct thread_info *thread;
5563 char *buf;
5564
5565 rs->last_sent_signal = siggnal;
5566 rs->last_sent_step = step;
5567
5568 /* The c/s/C/S resume packets use Hc, so set the continue
5569 thread. */
5570 if (ptid_equal (ptid, minus_one_ptid))
5571 set_continue_thread (any_thread_ptid);
5572 else
5573 set_continue_thread (ptid);
5574
5575 ALL_NON_EXITED_THREADS (thread)
5576 resume_clear_thread_private_info (thread);
5577
5578 buf = rs->buf;
5579 if (execution_direction == EXEC_REVERSE)
5580 {
5581 /* We don't pass signals to the target in reverse exec mode. */
5582 if (info_verbose && siggnal != GDB_SIGNAL_0)
5583 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5584 siggnal);
5585
5586 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5587 error (_("Remote reverse-step not supported."));
5588 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5589 error (_("Remote reverse-continue not supported."));
5590
5591 strcpy (buf, step ? "bs" : "bc");
5592 }
5593 else if (siggnal != GDB_SIGNAL_0)
5594 {
5595 buf[0] = step ? 'S' : 'C';
5596 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5597 buf[2] = tohex (((int) siggnal) & 0xf);
5598 buf[3] = '\0';
5599 }
5600 else
5601 strcpy (buf, step ? "s" : "c");
5602
5603 putpkt (buf);
5604 }
5605
5606 /* Resume the remote inferior by using a "vCont" packet. The thread
5607 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5608 resumed thread should be single-stepped and/or signalled. If PTID
5609 equals minus_one_ptid, then all threads are resumed; the thread to
5610 be stepped and/or signalled is given in the global INFERIOR_PTID.
5611 This function returns non-zero iff it resumes the inferior.
5612
5613 This function issues a strict subset of all possible vCont commands
5614 at the moment. */
5615
5616 static int
5617 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5618 {
5619 struct remote_state *rs = get_remote_state ();
5620 char *p;
5621 char *endp;
5622
5623 /* No reverse execution actions defined for vCont. */
5624 if (execution_direction == EXEC_REVERSE)
5625 return 0;
5626
5627 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5628 remote_vcont_probe (rs);
5629
5630 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5631 return 0;
5632
5633 p = rs->buf;
5634 endp = rs->buf + get_remote_packet_size ();
5635
5636 /* If we could generate a wider range of packets, we'd have to worry
5637 about overflowing BUF. Should there be a generic
5638 "multi-part-packet" packet? */
5639
5640 p += xsnprintf (p, endp - p, "vCont");
5641
5642 if (ptid_equal (ptid, magic_null_ptid))
5643 {
5644 /* MAGIC_NULL_PTID means that we don't have any active threads,
5645 so we don't have any TID numbers the inferior will
5646 understand. Make sure to only send forms that do not specify
5647 a TID. */
5648 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5649 }
5650 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5651 {
5652 /* Resume all threads (of all processes, or of a single
5653 process), with preference for INFERIOR_PTID. This assumes
5654 inferior_ptid belongs to the set of all threads we are about
5655 to resume. */
5656 if (step || siggnal != GDB_SIGNAL_0)
5657 {
5658 /* Step inferior_ptid, with or without signal. */
5659 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5660 }
5661
5662 /* Also pass down any pending signaled resumption for other
5663 threads not the current. */
5664 p = append_pending_thread_resumptions (p, endp, ptid);
5665
5666 /* And continue others without a signal. */
5667 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5668 }
5669 else
5670 {
5671 /* Scheduler locking; resume only PTID. */
5672 append_resumption (p, endp, ptid, step, siggnal);
5673 }
5674
5675 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5676 putpkt (rs->buf);
5677
5678 if (target_is_non_stop_p ())
5679 {
5680 /* In non-stop, the stub replies to vCont with "OK". The stop
5681 reply will be reported asynchronously by means of a `%Stop'
5682 notification. */
5683 getpkt (&rs->buf, &rs->buf_size, 0);
5684 if (strcmp (rs->buf, "OK") != 0)
5685 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5686 }
5687
5688 return 1;
5689 }
5690
5691 /* Tell the remote machine to resume. */
5692
5693 static void
5694 remote_resume (struct target_ops *ops,
5695 ptid_t ptid, int step, enum gdb_signal siggnal)
5696 {
5697 struct remote_state *rs = get_remote_state ();
5698
5699 /* When connected in non-stop mode, the core resumes threads
5700 individually. Resuming remote threads directly in target_resume
5701 would thus result in sending one packet per thread. Instead, to
5702 minimize roundtrip latency, here we just store the resume
5703 request; the actual remote resumption will be done in
5704 target_commit_resume / remote_commit_resume, where we'll be able
5705 to do vCont action coalescing. */
5706 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5707 {
5708 remote_thread_info *remote_thr;
5709
5710 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5711 remote_thr = get_remote_thread_info (inferior_ptid);
5712 else
5713 remote_thr = get_remote_thread_info (ptid);
5714
5715 remote_thr->last_resume_step = step;
5716 remote_thr->last_resume_sig = siggnal;
5717 return;
5718 }
5719
5720 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5721 (explained in remote-notif.c:handle_notification) so
5722 remote_notif_process is not called. We need find a place where
5723 it is safe to start a 'vNotif' sequence. It is good to do it
5724 before resuming inferior, because inferior was stopped and no RSP
5725 traffic at that moment. */
5726 if (!target_is_non_stop_p ())
5727 remote_notif_process (rs->notif_state, &notif_client_stop);
5728
5729 rs->last_resume_exec_dir = execution_direction;
5730
5731 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5732 if (!remote_resume_with_vcont (ptid, step, siggnal))
5733 remote_resume_with_hc (ops, ptid, step, siggnal);
5734
5735 /* We are about to start executing the inferior, let's register it
5736 with the event loop. NOTE: this is the one place where all the
5737 execution commands end up. We could alternatively do this in each
5738 of the execution commands in infcmd.c. */
5739 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5740 into infcmd.c in order to allow inferior function calls to work
5741 NOT asynchronously. */
5742 if (target_can_async_p ())
5743 target_async (1);
5744
5745 /* We've just told the target to resume. The remote server will
5746 wait for the inferior to stop, and then send a stop reply. In
5747 the mean time, we can't start another command/query ourselves
5748 because the stub wouldn't be ready to process it. This applies
5749 only to the base all-stop protocol, however. In non-stop (which
5750 only supports vCont), the stub replies with an "OK", and is
5751 immediate able to process further serial input. */
5752 if (!target_is_non_stop_p ())
5753 rs->waiting_for_stop_reply = 1;
5754 }
5755
5756 static void check_pending_events_prevent_wildcard_vcont
5757 (int *may_global_wildcard_vcont);
5758 static int is_pending_fork_parent_thread (struct thread_info *thread);
5759
5760 /* Private per-inferior info for target remote processes. */
5761
5762 struct remote_inferior : public private_inferior
5763 {
5764 /* Whether we can send a wildcard vCont for this process. */
5765 bool may_wildcard_vcont = true;
5766 };
5767
5768 /* Get the remote private inferior data associated to INF. */
5769
5770 static remote_inferior *
5771 get_remote_inferior (inferior *inf)
5772 {
5773 if (inf->priv == NULL)
5774 inf->priv.reset (new remote_inferior);
5775
5776 return static_cast<remote_inferior *> (inf->priv.get ());
5777 }
5778
5779 /* Structure used to track the construction of a vCont packet in the
5780 outgoing packet buffer. This is used to send multiple vCont
5781 packets if we have more actions than would fit a single packet. */
5782
5783 struct vcont_builder
5784 {
5785 /* Pointer to the first action. P points here if no action has been
5786 appended yet. */
5787 char *first_action;
5788
5789 /* Where the next action will be appended. */
5790 char *p;
5791
5792 /* The end of the buffer. Must never write past this. */
5793 char *endp;
5794 };
5795
5796 /* Prepare the outgoing buffer for a new vCont packet. */
5797
5798 static void
5799 vcont_builder_restart (struct vcont_builder *builder)
5800 {
5801 struct remote_state *rs = get_remote_state ();
5802
5803 builder->p = rs->buf;
5804 builder->endp = rs->buf + get_remote_packet_size ();
5805 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5806 builder->first_action = builder->p;
5807 }
5808
5809 /* If the vCont packet being built has any action, send it to the
5810 remote end. */
5811
5812 static void
5813 vcont_builder_flush (struct vcont_builder *builder)
5814 {
5815 struct remote_state *rs;
5816
5817 if (builder->p == builder->first_action)
5818 return;
5819
5820 rs = get_remote_state ();
5821 putpkt (rs->buf);
5822 getpkt (&rs->buf, &rs->buf_size, 0);
5823 if (strcmp (rs->buf, "OK") != 0)
5824 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5825 }
5826
5827 /* The largest action is range-stepping, with its two addresses. This
5828 is more than sufficient. If a new, bigger action is created, it'll
5829 quickly trigger a failed assertion in append_resumption (and we'll
5830 just bump this). */
5831 #define MAX_ACTION_SIZE 200
5832
5833 /* Append a new vCont action in the outgoing packet being built. If
5834 the action doesn't fit the packet along with previous actions, push
5835 what we've got so far to the remote end and start over a new vCont
5836 packet (with the new action). */
5837
5838 static void
5839 vcont_builder_push_action (struct vcont_builder *builder,
5840 ptid_t ptid, int step, enum gdb_signal siggnal)
5841 {
5842 char buf[MAX_ACTION_SIZE + 1];
5843 char *endp;
5844 size_t rsize;
5845
5846 endp = append_resumption (buf, buf + sizeof (buf),
5847 ptid, step, siggnal);
5848
5849 /* Check whether this new action would fit in the vCont packet along
5850 with previous actions. If not, send what we've got so far and
5851 start a new vCont packet. */
5852 rsize = endp - buf;
5853 if (rsize > builder->endp - builder->p)
5854 {
5855 vcont_builder_flush (builder);
5856 vcont_builder_restart (builder);
5857
5858 /* Should now fit. */
5859 gdb_assert (rsize <= builder->endp - builder->p);
5860 }
5861
5862 memcpy (builder->p, buf, rsize);
5863 builder->p += rsize;
5864 *builder->p = '\0';
5865 }
5866
5867 /* to_commit_resume implementation. */
5868
5869 static void
5870 remote_commit_resume (struct target_ops *ops)
5871 {
5872 struct inferior *inf;
5873 struct thread_info *tp;
5874 int any_process_wildcard;
5875 int may_global_wildcard_vcont;
5876 struct vcont_builder vcont_builder;
5877
5878 /* If connected in all-stop mode, we'd send the remote resume
5879 request directly from remote_resume. Likewise if
5880 reverse-debugging, as there are no defined vCont actions for
5881 reverse execution. */
5882 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5883 return;
5884
5885 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5886 instead of resuming all threads of each process individually.
5887 However, if any thread of a process must remain halted, we can't
5888 send wildcard resumes and must send one action per thread.
5889
5890 Care must be taken to not resume threads/processes the server
5891 side already told us are stopped, but the core doesn't know about
5892 yet, because the events are still in the vStopped notification
5893 queue. For example:
5894
5895 #1 => vCont s:p1.1;c
5896 #2 <= OK
5897 #3 <= %Stopped T05 p1.1
5898 #4 => vStopped
5899 #5 <= T05 p1.2
5900 #6 => vStopped
5901 #7 <= OK
5902 #8 (infrun handles the stop for p1.1 and continues stepping)
5903 #9 => vCont s:p1.1;c
5904
5905 The last vCont above would resume thread p1.2 by mistake, because
5906 the server has no idea that the event for p1.2 had not been
5907 handled yet.
5908
5909 The server side must similarly ignore resume actions for the
5910 thread that has a pending %Stopped notification (and any other
5911 threads with events pending), until GDB acks the notification
5912 with vStopped. Otherwise, e.g., the following case is
5913 mishandled:
5914
5915 #1 => g (or any other packet)
5916 #2 <= [registers]
5917 #3 <= %Stopped T05 p1.2
5918 #4 => vCont s:p1.1;c
5919 #5 <= OK
5920
5921 Above, the server must not resume thread p1.2. GDB can't know
5922 that p1.2 stopped until it acks the %Stopped notification, and
5923 since from GDB's perspective all threads should be running, it
5924 sends a "c" action.
5925
5926 Finally, special care must also be given to handling fork/vfork
5927 events. A (v)fork event actually tells us that two processes
5928 stopped -- the parent and the child. Until we follow the fork,
5929 we must not resume the child. Therefore, if we have a pending
5930 fork follow, we must not send a global wildcard resume action
5931 (vCont;c). We can still send process-wide wildcards though. */
5932
5933 /* Start by assuming a global wildcard (vCont;c) is possible. */
5934 may_global_wildcard_vcont = 1;
5935
5936 /* And assume every process is individually wildcard-able too. */
5937 ALL_NON_EXITED_INFERIORS (inf)
5938 {
5939 remote_inferior *priv = get_remote_inferior (inf);
5940
5941 priv->may_wildcard_vcont = true;
5942 }
5943
5944 /* Check for any pending events (not reported or processed yet) and
5945 disable process and global wildcard resumes appropriately. */
5946 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5947
5948 ALL_NON_EXITED_THREADS (tp)
5949 {
5950 /* If a thread of a process is not meant to be resumed, then we
5951 can't wildcard that process. */
5952 if (!tp->executing)
5953 {
5954 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5955
5956 /* And if we can't wildcard a process, we can't wildcard
5957 everything either. */
5958 may_global_wildcard_vcont = 0;
5959 continue;
5960 }
5961
5962 /* If a thread is the parent of an unfollowed fork, then we
5963 can't do a global wildcard, as that would resume the fork
5964 child. */
5965 if (is_pending_fork_parent_thread (tp))
5966 may_global_wildcard_vcont = 0;
5967 }
5968
5969 /* Now let's build the vCont packet(s). Actions must be appended
5970 from narrower to wider scopes (thread -> process -> global). If
5971 we end up with too many actions for a single packet vcont_builder
5972 flushes the current vCont packet to the remote side and starts a
5973 new one. */
5974 vcont_builder_restart (&vcont_builder);
5975
5976 /* Threads first. */
5977 ALL_NON_EXITED_THREADS (tp)
5978 {
5979 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5980
5981 if (!tp->executing || remote_thr->vcont_resumed)
5982 continue;
5983
5984 gdb_assert (!thread_is_in_step_over_chain (tp));
5985
5986 if (!remote_thr->last_resume_step
5987 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5988 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5989 {
5990 /* We'll send a wildcard resume instead. */
5991 remote_thr->vcont_resumed = 1;
5992 continue;
5993 }
5994
5995 vcont_builder_push_action (&vcont_builder, tp->ptid,
5996 remote_thr->last_resume_step,
5997 remote_thr->last_resume_sig);
5998 remote_thr->vcont_resumed = 1;
5999 }
6000
6001 /* Now check whether we can send any process-wide wildcard. This is
6002 to avoid sending a global wildcard in the case nothing is
6003 supposed to be resumed. */
6004 any_process_wildcard = 0;
6005
6006 ALL_NON_EXITED_INFERIORS (inf)
6007 {
6008 if (get_remote_inferior (inf)->may_wildcard_vcont)
6009 {
6010 any_process_wildcard = 1;
6011 break;
6012 }
6013 }
6014
6015 if (any_process_wildcard)
6016 {
6017 /* If all processes are wildcard-able, then send a single "c"
6018 action, otherwise, send an "all (-1) threads of process"
6019 continue action for each running process, if any. */
6020 if (may_global_wildcard_vcont)
6021 {
6022 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6023 0, GDB_SIGNAL_0);
6024 }
6025 else
6026 {
6027 ALL_NON_EXITED_INFERIORS (inf)
6028 {
6029 if (get_remote_inferior (inf)->may_wildcard_vcont)
6030 {
6031 vcont_builder_push_action (&vcont_builder,
6032 pid_to_ptid (inf->pid),
6033 0, GDB_SIGNAL_0);
6034 }
6035 }
6036 }
6037 }
6038
6039 vcont_builder_flush (&vcont_builder);
6040 }
6041
6042 \f
6043
6044 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6045 thread, all threads of a remote process, or all threads of all
6046 processes. */
6047
6048 static void
6049 remote_stop_ns (ptid_t ptid)
6050 {
6051 struct remote_state *rs = get_remote_state ();
6052 char *p = rs->buf;
6053 char *endp = rs->buf + get_remote_packet_size ();
6054
6055 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6056 remote_vcont_probe (rs);
6057
6058 if (!rs->supports_vCont.t)
6059 error (_("Remote server does not support stopping threads"));
6060
6061 if (ptid_equal (ptid, minus_one_ptid)
6062 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6063 p += xsnprintf (p, endp - p, "vCont;t");
6064 else
6065 {
6066 ptid_t nptid;
6067
6068 p += xsnprintf (p, endp - p, "vCont;t:");
6069
6070 if (ptid_is_pid (ptid))
6071 /* All (-1) threads of process. */
6072 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6073 else
6074 {
6075 /* Small optimization: if we already have a stop reply for
6076 this thread, no use in telling the stub we want this
6077 stopped. */
6078 if (peek_stop_reply (ptid))
6079 return;
6080
6081 nptid = ptid;
6082 }
6083
6084 write_ptid (p, endp, nptid);
6085 }
6086
6087 /* In non-stop, we get an immediate OK reply. The stop reply will
6088 come in asynchronously by notification. */
6089 putpkt (rs->buf);
6090 getpkt (&rs->buf, &rs->buf_size, 0);
6091 if (strcmp (rs->buf, "OK") != 0)
6092 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6093 }
6094
6095 /* All-stop version of target_interrupt. Sends a break or a ^C to
6096 interrupt the remote target. It is undefined which thread of which
6097 process reports the interrupt. */
6098
6099 static void
6100 remote_interrupt_as (void)
6101 {
6102 struct remote_state *rs = get_remote_state ();
6103
6104 rs->ctrlc_pending_p = 1;
6105
6106 /* If the inferior is stopped already, but the core didn't know
6107 about it yet, just ignore the request. The cached wait status
6108 will be collected in remote_wait. */
6109 if (rs->cached_wait_status)
6110 return;
6111
6112 /* Send interrupt_sequence to remote target. */
6113 send_interrupt_sequence ();
6114 }
6115
6116 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6117 the remote target. It is undefined which thread of which process
6118 reports the interrupt. Throws an error if the packet is not
6119 supported by the server. */
6120
6121 static void
6122 remote_interrupt_ns (void)
6123 {
6124 struct remote_state *rs = get_remote_state ();
6125 char *p = rs->buf;
6126 char *endp = rs->buf + get_remote_packet_size ();
6127
6128 xsnprintf (p, endp - p, "vCtrlC");
6129
6130 /* In non-stop, we get an immediate OK reply. The stop reply will
6131 come in asynchronously by notification. */
6132 putpkt (rs->buf);
6133 getpkt (&rs->buf, &rs->buf_size, 0);
6134
6135 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6136 {
6137 case PACKET_OK:
6138 break;
6139 case PACKET_UNKNOWN:
6140 error (_("No support for interrupting the remote target."));
6141 case PACKET_ERROR:
6142 error (_("Interrupting target failed: %s"), rs->buf);
6143 }
6144 }
6145
6146 /* Implement the to_stop function for the remote targets. */
6147
6148 static void
6149 remote_stop (struct target_ops *self, ptid_t ptid)
6150 {
6151 if (remote_debug)
6152 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6153
6154 if (target_is_non_stop_p ())
6155 remote_stop_ns (ptid);
6156 else
6157 {
6158 /* We don't currently have a way to transparently pause the
6159 remote target in all-stop mode. Interrupt it instead. */
6160 remote_interrupt_as ();
6161 }
6162 }
6163
6164 /* Implement the to_interrupt function for the remote targets. */
6165
6166 static void
6167 remote_interrupt (struct target_ops *self)
6168 {
6169 if (remote_debug)
6170 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6171
6172 if (target_is_non_stop_p ())
6173 remote_interrupt_ns ();
6174 else
6175 remote_interrupt_as ();
6176 }
6177
6178 /* Implement the to_pass_ctrlc function for the remote targets. */
6179
6180 static void
6181 remote_pass_ctrlc (struct target_ops *self)
6182 {
6183 struct remote_state *rs = get_remote_state ();
6184
6185 if (remote_debug)
6186 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6187
6188 /* If we're starting up, we're not fully synced yet. Quit
6189 immediately. */
6190 if (rs->starting_up)
6191 quit ();
6192 /* If ^C has already been sent once, offer to disconnect. */
6193 else if (rs->ctrlc_pending_p)
6194 interrupt_query ();
6195 else
6196 target_interrupt ();
6197 }
6198
6199 /* Ask the user what to do when an interrupt is received. */
6200
6201 static void
6202 interrupt_query (void)
6203 {
6204 struct remote_state *rs = get_remote_state ();
6205
6206 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6207 {
6208 if (query (_("The target is not responding to interrupt requests.\n"
6209 "Stop debugging it? ")))
6210 {
6211 remote_unpush_target ();
6212 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6213 }
6214 }
6215 else
6216 {
6217 if (query (_("Interrupted while waiting for the program.\n"
6218 "Give up waiting? ")))
6219 quit ();
6220 }
6221 }
6222
6223 /* Enable/disable target terminal ownership. Most targets can use
6224 terminal groups to control terminal ownership. Remote targets are
6225 different in that explicit transfer of ownership to/from GDB/target
6226 is required. */
6227
6228 static void
6229 remote_terminal_inferior (struct target_ops *self)
6230 {
6231 /* NOTE: At this point we could also register our selves as the
6232 recipient of all input. Any characters typed could then be
6233 passed on down to the target. */
6234 }
6235
6236 static void
6237 remote_terminal_ours (struct target_ops *self)
6238 {
6239 }
6240
6241 static void
6242 remote_console_output (char *msg)
6243 {
6244 char *p;
6245
6246 for (p = msg; p[0] && p[1]; p += 2)
6247 {
6248 char tb[2];
6249 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6250
6251 tb[0] = c;
6252 tb[1] = 0;
6253 fputs_unfiltered (tb, gdb_stdtarg);
6254 }
6255 gdb_flush (gdb_stdtarg);
6256 }
6257
6258 DEF_VEC_O(cached_reg_t);
6259
6260 typedef struct stop_reply
6261 {
6262 struct notif_event base;
6263
6264 /* The identifier of the thread about this event */
6265 ptid_t ptid;
6266
6267 /* The remote state this event is associated with. When the remote
6268 connection, represented by a remote_state object, is closed,
6269 all the associated stop_reply events should be released. */
6270 struct remote_state *rs;
6271
6272 struct target_waitstatus ws;
6273
6274 /* The architecture associated with the expedited registers. */
6275 gdbarch *arch;
6276
6277 /* Expedited registers. This makes remote debugging a bit more
6278 efficient for those targets that provide critical registers as
6279 part of their normal status mechanism (as another roundtrip to
6280 fetch them is avoided). */
6281 VEC(cached_reg_t) *regcache;
6282
6283 enum target_stop_reason stop_reason;
6284
6285 CORE_ADDR watch_data_address;
6286
6287 int core;
6288 } *stop_reply_p;
6289
6290 DECLARE_QUEUE_P (stop_reply_p);
6291 DEFINE_QUEUE_P (stop_reply_p);
6292 /* The list of already fetched and acknowledged stop events. This
6293 queue is used for notification Stop, and other notifications
6294 don't need queue for their events, because the notification events
6295 of Stop can't be consumed immediately, so that events should be
6296 queued first, and be consumed by remote_wait_{ns,as} one per
6297 time. Other notifications can consume their events immediately,
6298 so queue is not needed for them. */
6299 static QUEUE (stop_reply_p) *stop_reply_queue;
6300
6301 static void
6302 stop_reply_xfree (struct stop_reply *r)
6303 {
6304 notif_event_xfree ((struct notif_event *) r);
6305 }
6306
6307 /* Return the length of the stop reply queue. */
6308
6309 static int
6310 stop_reply_queue_length (void)
6311 {
6312 return QUEUE_length (stop_reply_p, stop_reply_queue);
6313 }
6314
6315 static void
6316 remote_notif_stop_parse (struct notif_client *self, char *buf,
6317 struct notif_event *event)
6318 {
6319 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6320 }
6321
6322 static void
6323 remote_notif_stop_ack (struct notif_client *self, char *buf,
6324 struct notif_event *event)
6325 {
6326 struct stop_reply *stop_reply = (struct stop_reply *) event;
6327
6328 /* acknowledge */
6329 putpkt (self->ack_command);
6330
6331 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6332 /* We got an unknown stop reply. */
6333 error (_("Unknown stop reply"));
6334
6335 push_stop_reply (stop_reply);
6336 }
6337
6338 static int
6339 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6340 {
6341 /* We can't get pending events in remote_notif_process for
6342 notification stop, and we have to do this in remote_wait_ns
6343 instead. If we fetch all queued events from stub, remote stub
6344 may exit and we have no chance to process them back in
6345 remote_wait_ns. */
6346 mark_async_event_handler (remote_async_inferior_event_token);
6347 return 0;
6348 }
6349
6350 static void
6351 stop_reply_dtr (struct notif_event *event)
6352 {
6353 struct stop_reply *r = (struct stop_reply *) event;
6354 cached_reg_t *reg;
6355 int ix;
6356
6357 for (ix = 0;
6358 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6359 ix++)
6360 xfree (reg->data);
6361
6362 VEC_free (cached_reg_t, r->regcache);
6363 }
6364
6365 static struct notif_event *
6366 remote_notif_stop_alloc_reply (void)
6367 {
6368 /* We cast to a pointer to the "base class". */
6369 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6370
6371 r->dtr = stop_reply_dtr;
6372
6373 return r;
6374 }
6375
6376 /* A client of notification Stop. */
6377
6378 struct notif_client notif_client_stop =
6379 {
6380 "Stop",
6381 "vStopped",
6382 remote_notif_stop_parse,
6383 remote_notif_stop_ack,
6384 remote_notif_stop_can_get_pending_events,
6385 remote_notif_stop_alloc_reply,
6386 REMOTE_NOTIF_STOP,
6387 };
6388
6389 /* A parameter to pass data in and out. */
6390
6391 struct queue_iter_param
6392 {
6393 void *input;
6394 struct stop_reply *output;
6395 };
6396
6397 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6398 the pid of the process that owns the threads we want to check, or
6399 -1 if we want to check all threads. */
6400
6401 static int
6402 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6403 ptid_t thread_ptid)
6404 {
6405 if (ws->kind == TARGET_WAITKIND_FORKED
6406 || ws->kind == TARGET_WAITKIND_VFORKED)
6407 {
6408 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6409 return 1;
6410 }
6411
6412 return 0;
6413 }
6414
6415 /* Return the thread's pending status used to determine whether the
6416 thread is a fork parent stopped at a fork event. */
6417
6418 static struct target_waitstatus *
6419 thread_pending_fork_status (struct thread_info *thread)
6420 {
6421 if (thread->suspend.waitstatus_pending_p)
6422 return &thread->suspend.waitstatus;
6423 else
6424 return &thread->pending_follow;
6425 }
6426
6427 /* Determine if THREAD is a pending fork parent thread. */
6428
6429 static int
6430 is_pending_fork_parent_thread (struct thread_info *thread)
6431 {
6432 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6433 int pid = -1;
6434
6435 return is_pending_fork_parent (ws, pid, thread->ptid);
6436 }
6437
6438 /* Check whether EVENT is a fork event, and if it is, remove the
6439 fork child from the context list passed in DATA. */
6440
6441 static int
6442 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6443 QUEUE_ITER (stop_reply_p) *iter,
6444 stop_reply_p event,
6445 void *data)
6446 {
6447 struct queue_iter_param *param = (struct queue_iter_param *) data;
6448 struct threads_listing_context *context
6449 = (struct threads_listing_context *) param->input;
6450
6451 if (event->ws.kind == TARGET_WAITKIND_FORKED
6452 || event->ws.kind == TARGET_WAITKIND_VFORKED
6453 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6454 context->remove_thread (event->ws.value.related_pid);
6455
6456 return 1;
6457 }
6458
6459 /* If CONTEXT contains any fork child threads that have not been
6460 reported yet, remove them from the CONTEXT list. If such a
6461 thread exists it is because we are stopped at a fork catchpoint
6462 and have not yet called follow_fork, which will set up the
6463 host-side data structures for the new process. */
6464
6465 static void
6466 remove_new_fork_children (struct threads_listing_context *context)
6467 {
6468 struct thread_info * thread;
6469 int pid = -1;
6470 struct notif_client *notif = &notif_client_stop;
6471 struct queue_iter_param param;
6472
6473 /* For any threads stopped at a fork event, remove the corresponding
6474 fork child threads from the CONTEXT list. */
6475 ALL_NON_EXITED_THREADS (thread)
6476 {
6477 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6478
6479 if (is_pending_fork_parent (ws, pid, thread->ptid))
6480 context->remove_thread (ws->value.related_pid);
6481 }
6482
6483 /* Check for any pending fork events (not reported or processed yet)
6484 in process PID and remove those fork child threads from the
6485 CONTEXT list as well. */
6486 remote_notif_get_pending_events (notif);
6487 param.input = context;
6488 param.output = NULL;
6489 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6490 remove_child_of_pending_fork, &param);
6491 }
6492
6493 /* Check whether EVENT would prevent a global or process wildcard
6494 vCont action. */
6495
6496 static int
6497 check_pending_event_prevents_wildcard_vcont_callback
6498 (QUEUE (stop_reply_p) *q,
6499 QUEUE_ITER (stop_reply_p) *iter,
6500 stop_reply_p event,
6501 void *data)
6502 {
6503 struct inferior *inf;
6504 int *may_global_wildcard_vcont = (int *) data;
6505
6506 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6507 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6508 return 1;
6509
6510 if (event->ws.kind == TARGET_WAITKIND_FORKED
6511 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6512 *may_global_wildcard_vcont = 0;
6513
6514 inf = find_inferior_ptid (event->ptid);
6515
6516 /* This may be the first time we heard about this process.
6517 Regardless, we must not do a global wildcard resume, otherwise
6518 we'd resume this process too. */
6519 *may_global_wildcard_vcont = 0;
6520 if (inf != NULL)
6521 get_remote_inferior (inf)->may_wildcard_vcont = false;
6522
6523 return 1;
6524 }
6525
6526 /* Check whether any event pending in the vStopped queue would prevent
6527 a global or process wildcard vCont action. Clear
6528 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6529 and clear the event inferior's may_wildcard_vcont flag if we can't
6530 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6531
6532 static void
6533 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6534 {
6535 struct notif_client *notif = &notif_client_stop;
6536
6537 remote_notif_get_pending_events (notif);
6538 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6539 check_pending_event_prevents_wildcard_vcont_callback,
6540 may_global_wildcard);
6541 }
6542
6543 /* Remove stop replies in the queue if its pid is equal to the given
6544 inferior's pid. */
6545
6546 static int
6547 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6548 QUEUE_ITER (stop_reply_p) *iter,
6549 stop_reply_p event,
6550 void *data)
6551 {
6552 struct queue_iter_param *param = (struct queue_iter_param *) data;
6553 struct inferior *inf = (struct inferior *) param->input;
6554
6555 if (ptid_get_pid (event->ptid) == inf->pid)
6556 {
6557 stop_reply_xfree (event);
6558 QUEUE_remove_elem (stop_reply_p, q, iter);
6559 }
6560
6561 return 1;
6562 }
6563
6564 /* Discard all pending stop replies of inferior INF. */
6565
6566 static void
6567 discard_pending_stop_replies (struct inferior *inf)
6568 {
6569 struct queue_iter_param param;
6570 struct stop_reply *reply;
6571 struct remote_state *rs = get_remote_state ();
6572 struct remote_notif_state *rns = rs->notif_state;
6573
6574 /* This function can be notified when an inferior exists. When the
6575 target is not remote, the notification state is NULL. */
6576 if (rs->remote_desc == NULL)
6577 return;
6578
6579 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6580
6581 /* Discard the in-flight notification. */
6582 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6583 {
6584 stop_reply_xfree (reply);
6585 rns->pending_event[notif_client_stop.id] = NULL;
6586 }
6587
6588 param.input = inf;
6589 param.output = NULL;
6590 /* Discard the stop replies we have already pulled with
6591 vStopped. */
6592 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6593 remove_stop_reply_for_inferior, &param);
6594 }
6595
6596 /* If its remote state is equal to the given remote state,
6597 remove EVENT from the stop reply queue. */
6598
6599 static int
6600 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6601 QUEUE_ITER (stop_reply_p) *iter,
6602 stop_reply_p event,
6603 void *data)
6604 {
6605 struct queue_iter_param *param = (struct queue_iter_param *) data;
6606 struct remote_state *rs = (struct remote_state *) param->input;
6607
6608 if (event->rs == rs)
6609 {
6610 stop_reply_xfree (event);
6611 QUEUE_remove_elem (stop_reply_p, q, iter);
6612 }
6613
6614 return 1;
6615 }
6616
6617 /* Discard the stop replies for RS in stop_reply_queue. */
6618
6619 static void
6620 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6621 {
6622 struct queue_iter_param param;
6623
6624 param.input = rs;
6625 param.output = NULL;
6626 /* Discard the stop replies we have already pulled with
6627 vStopped. */
6628 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6629 remove_stop_reply_of_remote_state, &param);
6630 }
6631
6632 /* A parameter to pass data in and out. */
6633
6634 static int
6635 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6636 QUEUE_ITER (stop_reply_p) *iter,
6637 stop_reply_p event,
6638 void *data)
6639 {
6640 struct queue_iter_param *param = (struct queue_iter_param *) data;
6641 ptid_t *ptid = (ptid_t *) param->input;
6642
6643 if (ptid_match (event->ptid, *ptid))
6644 {
6645 param->output = event;
6646 QUEUE_remove_elem (stop_reply_p, q, iter);
6647 return 0;
6648 }
6649
6650 return 1;
6651 }
6652
6653 /* Remove the first reply in 'stop_reply_queue' which matches
6654 PTID. */
6655
6656 static struct stop_reply *
6657 remote_notif_remove_queued_reply (ptid_t ptid)
6658 {
6659 struct queue_iter_param param;
6660
6661 param.input = &ptid;
6662 param.output = NULL;
6663
6664 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6665 remote_notif_remove_once_on_match, &param);
6666 if (notif_debug)
6667 fprintf_unfiltered (gdb_stdlog,
6668 "notif: discard queued event: 'Stop' in %s\n",
6669 target_pid_to_str (ptid));
6670
6671 return param.output;
6672 }
6673
6674 /* Look for a queued stop reply belonging to PTID. If one is found,
6675 remove it from the queue, and return it. Returns NULL if none is
6676 found. If there are still queued events left to process, tell the
6677 event loop to get back to target_wait soon. */
6678
6679 static struct stop_reply *
6680 queued_stop_reply (ptid_t ptid)
6681 {
6682 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6683
6684 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6685 /* There's still at least an event left. */
6686 mark_async_event_handler (remote_async_inferior_event_token);
6687
6688 return r;
6689 }
6690
6691 /* Push a fully parsed stop reply in the stop reply queue. Since we
6692 know that we now have at least one queued event left to pass to the
6693 core side, tell the event loop to get back to target_wait soon. */
6694
6695 static void
6696 push_stop_reply (struct stop_reply *new_event)
6697 {
6698 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6699
6700 if (notif_debug)
6701 fprintf_unfiltered (gdb_stdlog,
6702 "notif: push 'Stop' %s to queue %d\n",
6703 target_pid_to_str (new_event->ptid),
6704 QUEUE_length (stop_reply_p,
6705 stop_reply_queue));
6706
6707 mark_async_event_handler (remote_async_inferior_event_token);
6708 }
6709
6710 static int
6711 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6712 QUEUE_ITER (stop_reply_p) *iter,
6713 struct stop_reply *event,
6714 void *data)
6715 {
6716 ptid_t *ptid = (ptid_t *) data;
6717
6718 return !(ptid_equal (*ptid, event->ptid)
6719 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6720 }
6721
6722 /* Returns true if we have a stop reply for PTID. */
6723
6724 static int
6725 peek_stop_reply (ptid_t ptid)
6726 {
6727 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6728 stop_reply_match_ptid_and_ws, &ptid);
6729 }
6730
6731 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6732 starting with P and ending with PEND matches PREFIX. */
6733
6734 static int
6735 strprefix (const char *p, const char *pend, const char *prefix)
6736 {
6737 for ( ; p < pend; p++, prefix++)
6738 if (*p != *prefix)
6739 return 0;
6740 return *prefix == '\0';
6741 }
6742
6743 /* Parse the stop reply in BUF. Either the function succeeds, and the
6744 result is stored in EVENT, or throws an error. */
6745
6746 static void
6747 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6748 {
6749 remote_arch_state *rsa = NULL;
6750 ULONGEST addr;
6751 const char *p;
6752 int skipregs = 0;
6753
6754 event->ptid = null_ptid;
6755 event->rs = get_remote_state ();
6756 event->ws.kind = TARGET_WAITKIND_IGNORE;
6757 event->ws.value.integer = 0;
6758 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6759 event->regcache = NULL;
6760 event->core = -1;
6761
6762 switch (buf[0])
6763 {
6764 case 'T': /* Status with PC, SP, FP, ... */
6765 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6766 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6767 ss = signal number
6768 n... = register number
6769 r... = register contents
6770 */
6771
6772 p = &buf[3]; /* after Txx */
6773 while (*p)
6774 {
6775 const char *p1;
6776 int fieldsize;
6777
6778 p1 = strchr (p, ':');
6779 if (p1 == NULL)
6780 error (_("Malformed packet(a) (missing colon): %s\n\
6781 Packet: '%s'\n"),
6782 p, buf);
6783 if (p == p1)
6784 error (_("Malformed packet(a) (missing register number): %s\n\
6785 Packet: '%s'\n"),
6786 p, buf);
6787
6788 /* Some "registers" are actually extended stop information.
6789 Note if you're adding a new entry here: GDB 7.9 and
6790 earlier assume that all register "numbers" that start
6791 with an hex digit are real register numbers. Make sure
6792 the server only sends such a packet if it knows the
6793 client understands it. */
6794
6795 if (strprefix (p, p1, "thread"))
6796 event->ptid = read_ptid (++p1, &p);
6797 else if (strprefix (p, p1, "syscall_entry"))
6798 {
6799 ULONGEST sysno;
6800
6801 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6802 p = unpack_varlen_hex (++p1, &sysno);
6803 event->ws.value.syscall_number = (int) sysno;
6804 }
6805 else if (strprefix (p, p1, "syscall_return"))
6806 {
6807 ULONGEST sysno;
6808
6809 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6810 p = unpack_varlen_hex (++p1, &sysno);
6811 event->ws.value.syscall_number = (int) sysno;
6812 }
6813 else if (strprefix (p, p1, "watch")
6814 || strprefix (p, p1, "rwatch")
6815 || strprefix (p, p1, "awatch"))
6816 {
6817 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6818 p = unpack_varlen_hex (++p1, &addr);
6819 event->watch_data_address = (CORE_ADDR) addr;
6820 }
6821 else if (strprefix (p, p1, "swbreak"))
6822 {
6823 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6824
6825 /* Make sure the stub doesn't forget to indicate support
6826 with qSupported. */
6827 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6828 error (_("Unexpected swbreak stop reason"));
6829
6830 /* The value part is documented as "must be empty",
6831 though we ignore it, in case we ever decide to make
6832 use of it in a backward compatible way. */
6833 p = strchrnul (p1 + 1, ';');
6834 }
6835 else if (strprefix (p, p1, "hwbreak"))
6836 {
6837 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6838
6839 /* Make sure the stub doesn't forget to indicate support
6840 with qSupported. */
6841 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6842 error (_("Unexpected hwbreak stop reason"));
6843
6844 /* See above. */
6845 p = strchrnul (p1 + 1, ';');
6846 }
6847 else if (strprefix (p, p1, "library"))
6848 {
6849 event->ws.kind = TARGET_WAITKIND_LOADED;
6850 p = strchrnul (p1 + 1, ';');
6851 }
6852 else if (strprefix (p, p1, "replaylog"))
6853 {
6854 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6855 /* p1 will indicate "begin" or "end", but it makes
6856 no difference for now, so ignore it. */
6857 p = strchrnul (p1 + 1, ';');
6858 }
6859 else if (strprefix (p, p1, "core"))
6860 {
6861 ULONGEST c;
6862
6863 p = unpack_varlen_hex (++p1, &c);
6864 event->core = c;
6865 }
6866 else if (strprefix (p, p1, "fork"))
6867 {
6868 event->ws.value.related_pid = read_ptid (++p1, &p);
6869 event->ws.kind = TARGET_WAITKIND_FORKED;
6870 }
6871 else if (strprefix (p, p1, "vfork"))
6872 {
6873 event->ws.value.related_pid = read_ptid (++p1, &p);
6874 event->ws.kind = TARGET_WAITKIND_VFORKED;
6875 }
6876 else if (strprefix (p, p1, "vforkdone"))
6877 {
6878 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6879 p = strchrnul (p1 + 1, ';');
6880 }
6881 else if (strprefix (p, p1, "exec"))
6882 {
6883 ULONGEST ignored;
6884 char pathname[PATH_MAX];
6885 int pathlen;
6886
6887 /* Determine the length of the execd pathname. */
6888 p = unpack_varlen_hex (++p1, &ignored);
6889 pathlen = (p - p1) / 2;
6890
6891 /* Save the pathname for event reporting and for
6892 the next run command. */
6893 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6894 pathname[pathlen] = '\0';
6895
6896 /* This is freed during event handling. */
6897 event->ws.value.execd_pathname = xstrdup (pathname);
6898 event->ws.kind = TARGET_WAITKIND_EXECD;
6899
6900 /* Skip the registers included in this packet, since
6901 they may be for an architecture different from the
6902 one used by the original program. */
6903 skipregs = 1;
6904 }
6905 else if (strprefix (p, p1, "create"))
6906 {
6907 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6908 p = strchrnul (p1 + 1, ';');
6909 }
6910 else
6911 {
6912 ULONGEST pnum;
6913 const char *p_temp;
6914
6915 if (skipregs)
6916 {
6917 p = strchrnul (p1 + 1, ';');
6918 p++;
6919 continue;
6920 }
6921
6922 /* Maybe a real ``P'' register number. */
6923 p_temp = unpack_varlen_hex (p, &pnum);
6924 /* If the first invalid character is the colon, we got a
6925 register number. Otherwise, it's an unknown stop
6926 reason. */
6927 if (p_temp == p1)
6928 {
6929 /* If we haven't parsed the event's thread yet, find
6930 it now, in order to find the architecture of the
6931 reported expedited registers. */
6932 if (event->ptid == null_ptid)
6933 {
6934 const char *thr = strstr (p1 + 1, ";thread:");
6935 if (thr != NULL)
6936 event->ptid = read_ptid (thr + strlen (";thread:"),
6937 NULL);
6938 else
6939 {
6940 /* Either the current thread hasn't changed,
6941 or the inferior is not multi-threaded.
6942 The event must be for the thread we last
6943 set as (or learned as being) current. */
6944 event->ptid = event->rs->general_thread;
6945 }
6946 }
6947
6948 if (rsa == NULL)
6949 {
6950 inferior *inf = (event->ptid == null_ptid
6951 ? NULL
6952 : find_inferior_ptid (event->ptid));
6953 /* If this is the first time we learn anything
6954 about this process, skip the registers
6955 included in this packet, since we don't yet
6956 know which architecture to use to parse them.
6957 We'll determine the architecture later when
6958 we process the stop reply and retrieve the
6959 target description, via
6960 remote_notice_new_inferior ->
6961 post_create_inferior. */
6962 if (inf == NULL)
6963 {
6964 p = strchrnul (p1 + 1, ';');
6965 p++;
6966 continue;
6967 }
6968
6969 event->arch = inf->gdbarch;
6970 rsa = get_remote_arch_state (event->arch);
6971 }
6972
6973 packet_reg *reg
6974 = packet_reg_from_pnum (event->arch, rsa, pnum);
6975 cached_reg_t cached_reg;
6976
6977 if (reg == NULL)
6978 error (_("Remote sent bad register number %s: %s\n\
6979 Packet: '%s'\n"),
6980 hex_string (pnum), p, buf);
6981
6982 cached_reg.num = reg->regnum;
6983 cached_reg.data = (gdb_byte *)
6984 xmalloc (register_size (event->arch, reg->regnum));
6985
6986 p = p1 + 1;
6987 fieldsize = hex2bin (p, cached_reg.data,
6988 register_size (event->arch, reg->regnum));
6989 p += 2 * fieldsize;
6990 if (fieldsize < register_size (event->arch, reg->regnum))
6991 warning (_("Remote reply is too short: %s"), buf);
6992
6993 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6994 }
6995 else
6996 {
6997 /* Not a number. Silently skip unknown optional
6998 info. */
6999 p = strchrnul (p1 + 1, ';');
7000 }
7001 }
7002
7003 if (*p != ';')
7004 error (_("Remote register badly formatted: %s\nhere: %s"),
7005 buf, p);
7006 ++p;
7007 }
7008
7009 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7010 break;
7011
7012 /* fall through */
7013 case 'S': /* Old style status, just signal only. */
7014 {
7015 int sig;
7016
7017 event->ws.kind = TARGET_WAITKIND_STOPPED;
7018 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7019 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7020 event->ws.value.sig = (enum gdb_signal) sig;
7021 else
7022 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7023 }
7024 break;
7025 case 'w': /* Thread exited. */
7026 {
7027 const char *p;
7028 ULONGEST value;
7029
7030 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7031 p = unpack_varlen_hex (&buf[1], &value);
7032 event->ws.value.integer = value;
7033 if (*p != ';')
7034 error (_("stop reply packet badly formatted: %s"), buf);
7035 event->ptid = read_ptid (++p, NULL);
7036 break;
7037 }
7038 case 'W': /* Target exited. */
7039 case 'X':
7040 {
7041 const char *p;
7042 int pid;
7043 ULONGEST value;
7044
7045 /* GDB used to accept only 2 hex chars here. Stubs should
7046 only send more if they detect GDB supports multi-process
7047 support. */
7048 p = unpack_varlen_hex (&buf[1], &value);
7049
7050 if (buf[0] == 'W')
7051 {
7052 /* The remote process exited. */
7053 event->ws.kind = TARGET_WAITKIND_EXITED;
7054 event->ws.value.integer = value;
7055 }
7056 else
7057 {
7058 /* The remote process exited with a signal. */
7059 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7060 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7061 event->ws.value.sig = (enum gdb_signal) value;
7062 else
7063 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7064 }
7065
7066 /* If no process is specified, assume inferior_ptid. */
7067 pid = ptid_get_pid (inferior_ptid);
7068 if (*p == '\0')
7069 ;
7070 else if (*p == ';')
7071 {
7072 p++;
7073
7074 if (*p == '\0')
7075 ;
7076 else if (startswith (p, "process:"))
7077 {
7078 ULONGEST upid;
7079
7080 p += sizeof ("process:") - 1;
7081 unpack_varlen_hex (p, &upid);
7082 pid = upid;
7083 }
7084 else
7085 error (_("unknown stop reply packet: %s"), buf);
7086 }
7087 else
7088 error (_("unknown stop reply packet: %s"), buf);
7089 event->ptid = pid_to_ptid (pid);
7090 }
7091 break;
7092 case 'N':
7093 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7094 event->ptid = minus_one_ptid;
7095 break;
7096 }
7097
7098 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7099 error (_("No process or thread specified in stop reply: %s"), buf);
7100 }
7101
7102 /* When the stub wants to tell GDB about a new notification reply, it
7103 sends a notification (%Stop, for example). Those can come it at
7104 any time, hence, we have to make sure that any pending
7105 putpkt/getpkt sequence we're making is finished, before querying
7106 the stub for more events with the corresponding ack command
7107 (vStopped, for example). E.g., if we started a vStopped sequence
7108 immediately upon receiving the notification, something like this
7109 could happen:
7110
7111 1.1) --> Hg 1
7112 1.2) <-- OK
7113 1.3) --> g
7114 1.4) <-- %Stop
7115 1.5) --> vStopped
7116 1.6) <-- (registers reply to step #1.3)
7117
7118 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7119 query.
7120
7121 To solve this, whenever we parse a %Stop notification successfully,
7122 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7123 doing whatever we were doing:
7124
7125 2.1) --> Hg 1
7126 2.2) <-- OK
7127 2.3) --> g
7128 2.4) <-- %Stop
7129 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7130 2.5) <-- (registers reply to step #2.3)
7131
7132 Eventualy after step #2.5, we return to the event loop, which
7133 notices there's an event on the
7134 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7135 associated callback --- the function below. At this point, we're
7136 always safe to start a vStopped sequence. :
7137
7138 2.6) --> vStopped
7139 2.7) <-- T05 thread:2
7140 2.8) --> vStopped
7141 2.9) --> OK
7142 */
7143
7144 void
7145 remote_notif_get_pending_events (struct notif_client *nc)
7146 {
7147 struct remote_state *rs = get_remote_state ();
7148
7149 if (rs->notif_state->pending_event[nc->id] != NULL)
7150 {
7151 if (notif_debug)
7152 fprintf_unfiltered (gdb_stdlog,
7153 "notif: process: '%s' ack pending event\n",
7154 nc->name);
7155
7156 /* acknowledge */
7157 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7158 rs->notif_state->pending_event[nc->id] = NULL;
7159
7160 while (1)
7161 {
7162 getpkt (&rs->buf, &rs->buf_size, 0);
7163 if (strcmp (rs->buf, "OK") == 0)
7164 break;
7165 else
7166 remote_notif_ack (nc, rs->buf);
7167 }
7168 }
7169 else
7170 {
7171 if (notif_debug)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "notif: process: '%s' no pending reply\n",
7174 nc->name);
7175 }
7176 }
7177
7178 /* Called when it is decided that STOP_REPLY holds the info of the
7179 event that is to be returned to the core. This function always
7180 destroys STOP_REPLY. */
7181
7182 static ptid_t
7183 process_stop_reply (struct stop_reply *stop_reply,
7184 struct target_waitstatus *status)
7185 {
7186 ptid_t ptid;
7187
7188 *status = stop_reply->ws;
7189 ptid = stop_reply->ptid;
7190
7191 /* If no thread/process was reported by the stub, assume the current
7192 inferior. */
7193 if (ptid_equal (ptid, null_ptid))
7194 ptid = inferior_ptid;
7195
7196 if (status->kind != TARGET_WAITKIND_EXITED
7197 && status->kind != TARGET_WAITKIND_SIGNALLED
7198 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7199 {
7200 /* Expedited registers. */
7201 if (stop_reply->regcache)
7202 {
7203 struct regcache *regcache
7204 = get_thread_arch_regcache (ptid, stop_reply->arch);
7205 cached_reg_t *reg;
7206 int ix;
7207
7208 for (ix = 0;
7209 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7210 ix++)
7211 {
7212 regcache_raw_supply (regcache, reg->num, reg->data);
7213 xfree (reg->data);
7214 }
7215
7216 VEC_free (cached_reg_t, stop_reply->regcache);
7217 }
7218
7219 remote_notice_new_inferior (ptid, 0);
7220 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7221 remote_thr->core = stop_reply->core;
7222 remote_thr->stop_reason = stop_reply->stop_reason;
7223 remote_thr->watch_data_address = stop_reply->watch_data_address;
7224 remote_thr->vcont_resumed = 0;
7225 }
7226
7227 stop_reply_xfree (stop_reply);
7228 return ptid;
7229 }
7230
7231 /* The non-stop mode version of target_wait. */
7232
7233 static ptid_t
7234 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7235 {
7236 struct remote_state *rs = get_remote_state ();
7237 struct stop_reply *stop_reply;
7238 int ret;
7239 int is_notif = 0;
7240
7241 /* If in non-stop mode, get out of getpkt even if a
7242 notification is received. */
7243
7244 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7245 0 /* forever */, &is_notif);
7246 while (1)
7247 {
7248 if (ret != -1 && !is_notif)
7249 switch (rs->buf[0])
7250 {
7251 case 'E': /* Error of some sort. */
7252 /* We're out of sync with the target now. Did it continue
7253 or not? We can't tell which thread it was in non-stop,
7254 so just ignore this. */
7255 warning (_("Remote failure reply: %s"), rs->buf);
7256 break;
7257 case 'O': /* Console output. */
7258 remote_console_output (rs->buf + 1);
7259 break;
7260 default:
7261 warning (_("Invalid remote reply: %s"), rs->buf);
7262 break;
7263 }
7264
7265 /* Acknowledge a pending stop reply that may have arrived in the
7266 mean time. */
7267 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7268 remote_notif_get_pending_events (&notif_client_stop);
7269
7270 /* If indeed we noticed a stop reply, we're done. */
7271 stop_reply = queued_stop_reply (ptid);
7272 if (stop_reply != NULL)
7273 return process_stop_reply (stop_reply, status);
7274
7275 /* Still no event. If we're just polling for an event, then
7276 return to the event loop. */
7277 if (options & TARGET_WNOHANG)
7278 {
7279 status->kind = TARGET_WAITKIND_IGNORE;
7280 return minus_one_ptid;
7281 }
7282
7283 /* Otherwise do a blocking wait. */
7284 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7285 1 /* forever */, &is_notif);
7286 }
7287 }
7288
7289 /* Wait until the remote machine stops, then return, storing status in
7290 STATUS just as `wait' would. */
7291
7292 static ptid_t
7293 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7294 {
7295 struct remote_state *rs = get_remote_state ();
7296 ptid_t event_ptid = null_ptid;
7297 char *buf;
7298 struct stop_reply *stop_reply;
7299
7300 again:
7301
7302 status->kind = TARGET_WAITKIND_IGNORE;
7303 status->value.integer = 0;
7304
7305 stop_reply = queued_stop_reply (ptid);
7306 if (stop_reply != NULL)
7307 return process_stop_reply (stop_reply, status);
7308
7309 if (rs->cached_wait_status)
7310 /* Use the cached wait status, but only once. */
7311 rs->cached_wait_status = 0;
7312 else
7313 {
7314 int ret;
7315 int is_notif;
7316 int forever = ((options & TARGET_WNOHANG) == 0
7317 && wait_forever_enabled_p);
7318
7319 if (!rs->waiting_for_stop_reply)
7320 {
7321 status->kind = TARGET_WAITKIND_NO_RESUMED;
7322 return minus_one_ptid;
7323 }
7324
7325 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7326 _never_ wait for ever -> test on target_is_async_p().
7327 However, before we do that we need to ensure that the caller
7328 knows how to take the target into/out of async mode. */
7329 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7330 forever, &is_notif);
7331
7332 /* GDB gets a notification. Return to core as this event is
7333 not interesting. */
7334 if (ret != -1 && is_notif)
7335 return minus_one_ptid;
7336
7337 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7338 return minus_one_ptid;
7339 }
7340
7341 buf = rs->buf;
7342
7343 /* Assume that the target has acknowledged Ctrl-C unless we receive
7344 an 'F' or 'O' packet. */
7345 if (buf[0] != 'F' && buf[0] != 'O')
7346 rs->ctrlc_pending_p = 0;
7347
7348 switch (buf[0])
7349 {
7350 case 'E': /* Error of some sort. */
7351 /* We're out of sync with the target now. Did it continue or
7352 not? Not is more likely, so report a stop. */
7353 rs->waiting_for_stop_reply = 0;
7354
7355 warning (_("Remote failure reply: %s"), buf);
7356 status->kind = TARGET_WAITKIND_STOPPED;
7357 status->value.sig = GDB_SIGNAL_0;
7358 break;
7359 case 'F': /* File-I/O request. */
7360 /* GDB may access the inferior memory while handling the File-I/O
7361 request, but we don't want GDB accessing memory while waiting
7362 for a stop reply. See the comments in putpkt_binary. Set
7363 waiting_for_stop_reply to 0 temporarily. */
7364 rs->waiting_for_stop_reply = 0;
7365 remote_fileio_request (buf, rs->ctrlc_pending_p);
7366 rs->ctrlc_pending_p = 0;
7367 /* GDB handled the File-I/O request, and the target is running
7368 again. Keep waiting for events. */
7369 rs->waiting_for_stop_reply = 1;
7370 break;
7371 case 'N': case 'T': case 'S': case 'X': case 'W':
7372 {
7373 struct stop_reply *stop_reply;
7374
7375 /* There is a stop reply to handle. */
7376 rs->waiting_for_stop_reply = 0;
7377
7378 stop_reply
7379 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7380 rs->buf);
7381
7382 event_ptid = process_stop_reply (stop_reply, status);
7383 break;
7384 }
7385 case 'O': /* Console output. */
7386 remote_console_output (buf + 1);
7387 break;
7388 case '\0':
7389 if (rs->last_sent_signal != GDB_SIGNAL_0)
7390 {
7391 /* Zero length reply means that we tried 'S' or 'C' and the
7392 remote system doesn't support it. */
7393 target_terminal::ours_for_output ();
7394 printf_filtered
7395 ("Can't send signals to this remote system. %s not sent.\n",
7396 gdb_signal_to_name (rs->last_sent_signal));
7397 rs->last_sent_signal = GDB_SIGNAL_0;
7398 target_terminal::inferior ();
7399
7400 strcpy (buf, rs->last_sent_step ? "s" : "c");
7401 putpkt (buf);
7402 break;
7403 }
7404 /* else fallthrough */
7405 default:
7406 warning (_("Invalid remote reply: %s"), buf);
7407 break;
7408 }
7409
7410 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7411 return minus_one_ptid;
7412 else if (status->kind == TARGET_WAITKIND_IGNORE)
7413 {
7414 /* Nothing interesting happened. If we're doing a non-blocking
7415 poll, we're done. Otherwise, go back to waiting. */
7416 if (options & TARGET_WNOHANG)
7417 return minus_one_ptid;
7418 else
7419 goto again;
7420 }
7421 else if (status->kind != TARGET_WAITKIND_EXITED
7422 && status->kind != TARGET_WAITKIND_SIGNALLED)
7423 {
7424 if (!ptid_equal (event_ptid, null_ptid))
7425 record_currthread (rs, event_ptid);
7426 else
7427 event_ptid = inferior_ptid;
7428 }
7429 else
7430 /* A process exit. Invalidate our notion of current thread. */
7431 record_currthread (rs, minus_one_ptid);
7432
7433 return event_ptid;
7434 }
7435
7436 /* Wait until the remote machine stops, then return, storing status in
7437 STATUS just as `wait' would. */
7438
7439 static ptid_t
7440 remote_wait (struct target_ops *ops,
7441 ptid_t ptid, struct target_waitstatus *status, int options)
7442 {
7443 ptid_t event_ptid;
7444
7445 if (target_is_non_stop_p ())
7446 event_ptid = remote_wait_ns (ptid, status, options);
7447 else
7448 event_ptid = remote_wait_as (ptid, status, options);
7449
7450 if (target_is_async_p ())
7451 {
7452 /* If there are are events left in the queue tell the event loop
7453 to return here. */
7454 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7455 mark_async_event_handler (remote_async_inferior_event_token);
7456 }
7457
7458 return event_ptid;
7459 }
7460
7461 /* Fetch a single register using a 'p' packet. */
7462
7463 static int
7464 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7465 {
7466 struct gdbarch *gdbarch = regcache->arch ();
7467 struct remote_state *rs = get_remote_state ();
7468 char *buf, *p;
7469 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7470 int i;
7471
7472 if (packet_support (PACKET_p) == PACKET_DISABLE)
7473 return 0;
7474
7475 if (reg->pnum == -1)
7476 return 0;
7477
7478 p = rs->buf;
7479 *p++ = 'p';
7480 p += hexnumstr (p, reg->pnum);
7481 *p++ = '\0';
7482 putpkt (rs->buf);
7483 getpkt (&rs->buf, &rs->buf_size, 0);
7484
7485 buf = rs->buf;
7486
7487 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7488 {
7489 case PACKET_OK:
7490 break;
7491 case PACKET_UNKNOWN:
7492 return 0;
7493 case PACKET_ERROR:
7494 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7495 gdbarch_register_name (regcache->arch (),
7496 reg->regnum),
7497 buf);
7498 }
7499
7500 /* If this register is unfetchable, tell the regcache. */
7501 if (buf[0] == 'x')
7502 {
7503 regcache_raw_supply (regcache, reg->regnum, NULL);
7504 return 1;
7505 }
7506
7507 /* Otherwise, parse and supply the value. */
7508 p = buf;
7509 i = 0;
7510 while (p[0] != 0)
7511 {
7512 if (p[1] == 0)
7513 error (_("fetch_register_using_p: early buf termination"));
7514
7515 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7516 p += 2;
7517 }
7518 regcache_raw_supply (regcache, reg->regnum, regp);
7519 return 1;
7520 }
7521
7522 /* Fetch the registers included in the target's 'g' packet. */
7523
7524 static int
7525 send_g_packet (void)
7526 {
7527 struct remote_state *rs = get_remote_state ();
7528 int buf_len;
7529
7530 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7531 remote_send (&rs->buf, &rs->buf_size);
7532
7533 /* We can get out of synch in various cases. If the first character
7534 in the buffer is not a hex character, assume that has happened
7535 and try to fetch another packet to read. */
7536 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7537 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7538 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7539 && rs->buf[0] != 'x') /* New: unavailable register value. */
7540 {
7541 if (remote_debug)
7542 fprintf_unfiltered (gdb_stdlog,
7543 "Bad register packet; fetching a new packet\n");
7544 getpkt (&rs->buf, &rs->buf_size, 0);
7545 }
7546
7547 buf_len = strlen (rs->buf);
7548
7549 /* Sanity check the received packet. */
7550 if (buf_len % 2 != 0)
7551 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7552
7553 return buf_len / 2;
7554 }
7555
7556 static void
7557 process_g_packet (struct regcache *regcache)
7558 {
7559 struct gdbarch *gdbarch = regcache->arch ();
7560 struct remote_state *rs = get_remote_state ();
7561 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7562 int i, buf_len;
7563 char *p;
7564 char *regs;
7565
7566 buf_len = strlen (rs->buf);
7567
7568 /* Further sanity checks, with knowledge of the architecture. */
7569 if (buf_len > 2 * rsa->sizeof_g_packet)
7570 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7571 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7572
7573 /* Save the size of the packet sent to us by the target. It is used
7574 as a heuristic when determining the max size of packets that the
7575 target can safely receive. */
7576 if (rsa->actual_register_packet_size == 0)
7577 rsa->actual_register_packet_size = buf_len;
7578
7579 /* If this is smaller than we guessed the 'g' packet would be,
7580 update our records. A 'g' reply that doesn't include a register's
7581 value implies either that the register is not available, or that
7582 the 'p' packet must be used. */
7583 if (buf_len < 2 * rsa->sizeof_g_packet)
7584 {
7585 long sizeof_g_packet = buf_len / 2;
7586
7587 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7588 {
7589 long offset = rsa->regs[i].offset;
7590 long reg_size = register_size (gdbarch, i);
7591
7592 if (rsa->regs[i].pnum == -1)
7593 continue;
7594
7595 if (offset >= sizeof_g_packet)
7596 rsa->regs[i].in_g_packet = 0;
7597 else if (offset + reg_size > sizeof_g_packet)
7598 error (_("Truncated register %d in remote 'g' packet"), i);
7599 else
7600 rsa->regs[i].in_g_packet = 1;
7601 }
7602
7603 /* Looks valid enough, we can assume this is the correct length
7604 for a 'g' packet. It's important not to adjust
7605 rsa->sizeof_g_packet if we have truncated registers otherwise
7606 this "if" won't be run the next time the method is called
7607 with a packet of the same size and one of the internal errors
7608 below will trigger instead. */
7609 rsa->sizeof_g_packet = sizeof_g_packet;
7610 }
7611
7612 regs = (char *) alloca (rsa->sizeof_g_packet);
7613
7614 /* Unimplemented registers read as all bits zero. */
7615 memset (regs, 0, rsa->sizeof_g_packet);
7616
7617 /* Reply describes registers byte by byte, each byte encoded as two
7618 hex characters. Suck them all up, then supply them to the
7619 register cacheing/storage mechanism. */
7620
7621 p = rs->buf;
7622 for (i = 0; i < rsa->sizeof_g_packet; i++)
7623 {
7624 if (p[0] == 0 || p[1] == 0)
7625 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7626 internal_error (__FILE__, __LINE__,
7627 _("unexpected end of 'g' packet reply"));
7628
7629 if (p[0] == 'x' && p[1] == 'x')
7630 regs[i] = 0; /* 'x' */
7631 else
7632 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7633 p += 2;
7634 }
7635
7636 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7637 {
7638 struct packet_reg *r = &rsa->regs[i];
7639 long reg_size = register_size (gdbarch, i);
7640
7641 if (r->in_g_packet)
7642 {
7643 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7644 /* This shouldn't happen - we adjusted in_g_packet above. */
7645 internal_error (__FILE__, __LINE__,
7646 _("unexpected end of 'g' packet reply"));
7647 else if (rs->buf[r->offset * 2] == 'x')
7648 {
7649 gdb_assert (r->offset * 2 < strlen (rs->buf));
7650 /* The register isn't available, mark it as such (at
7651 the same time setting the value to zero). */
7652 regcache_raw_supply (regcache, r->regnum, NULL);
7653 }
7654 else
7655 regcache_raw_supply (regcache, r->regnum,
7656 regs + r->offset);
7657 }
7658 }
7659 }
7660
7661 static void
7662 fetch_registers_using_g (struct regcache *regcache)
7663 {
7664 send_g_packet ();
7665 process_g_packet (regcache);
7666 }
7667
7668 /* Make the remote selected traceframe match GDB's selected
7669 traceframe. */
7670
7671 static void
7672 set_remote_traceframe (void)
7673 {
7674 int newnum;
7675 struct remote_state *rs = get_remote_state ();
7676
7677 if (rs->remote_traceframe_number == get_traceframe_number ())
7678 return;
7679
7680 /* Avoid recursion, remote_trace_find calls us again. */
7681 rs->remote_traceframe_number = get_traceframe_number ();
7682
7683 newnum = target_trace_find (tfind_number,
7684 get_traceframe_number (), 0, 0, NULL);
7685
7686 /* Should not happen. If it does, all bets are off. */
7687 if (newnum != get_traceframe_number ())
7688 warning (_("could not set remote traceframe"));
7689 }
7690
7691 static void
7692 remote_fetch_registers (struct target_ops *ops,
7693 struct regcache *regcache, int regnum)
7694 {
7695 struct gdbarch *gdbarch = regcache->arch ();
7696 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7697 int i;
7698
7699 set_remote_traceframe ();
7700 set_general_thread (regcache_get_ptid (regcache));
7701
7702 if (regnum >= 0)
7703 {
7704 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7705
7706 gdb_assert (reg != NULL);
7707
7708 /* If this register might be in the 'g' packet, try that first -
7709 we are likely to read more than one register. If this is the
7710 first 'g' packet, we might be overly optimistic about its
7711 contents, so fall back to 'p'. */
7712 if (reg->in_g_packet)
7713 {
7714 fetch_registers_using_g (regcache);
7715 if (reg->in_g_packet)
7716 return;
7717 }
7718
7719 if (fetch_register_using_p (regcache, reg))
7720 return;
7721
7722 /* This register is not available. */
7723 regcache_raw_supply (regcache, reg->regnum, NULL);
7724
7725 return;
7726 }
7727
7728 fetch_registers_using_g (regcache);
7729
7730 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7731 if (!rsa->regs[i].in_g_packet)
7732 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7733 {
7734 /* This register is not available. */
7735 regcache_raw_supply (regcache, i, NULL);
7736 }
7737 }
7738
7739 /* Prepare to store registers. Since we may send them all (using a
7740 'G' request), we have to read out the ones we don't want to change
7741 first. */
7742
7743 static void
7744 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7745 {
7746 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7747 int i;
7748
7749 /* Make sure the entire registers array is valid. */
7750 switch (packet_support (PACKET_P))
7751 {
7752 case PACKET_DISABLE:
7753 case PACKET_SUPPORT_UNKNOWN:
7754 /* Make sure all the necessary registers are cached. */
7755 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7756 if (rsa->regs[i].in_g_packet)
7757 regcache_raw_update (regcache, rsa->regs[i].regnum);
7758 break;
7759 case PACKET_ENABLE:
7760 break;
7761 }
7762 }
7763
7764 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7765 packet was not recognized. */
7766
7767 static int
7768 store_register_using_P (const struct regcache *regcache,
7769 struct packet_reg *reg)
7770 {
7771 struct gdbarch *gdbarch = regcache->arch ();
7772 struct remote_state *rs = get_remote_state ();
7773 /* Try storing a single register. */
7774 char *buf = rs->buf;
7775 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7776 char *p;
7777
7778 if (packet_support (PACKET_P) == PACKET_DISABLE)
7779 return 0;
7780
7781 if (reg->pnum == -1)
7782 return 0;
7783
7784 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7785 p = buf + strlen (buf);
7786 regcache_raw_collect (regcache, reg->regnum, regp);
7787 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7788 putpkt (rs->buf);
7789 getpkt (&rs->buf, &rs->buf_size, 0);
7790
7791 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7792 {
7793 case PACKET_OK:
7794 return 1;
7795 case PACKET_ERROR:
7796 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7797 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7798 case PACKET_UNKNOWN:
7799 return 0;
7800 default:
7801 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7802 }
7803 }
7804
7805 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7806 contents of the register cache buffer. FIXME: ignores errors. */
7807
7808 static void
7809 store_registers_using_G (const struct regcache *regcache)
7810 {
7811 struct remote_state *rs = get_remote_state ();
7812 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7813 gdb_byte *regs;
7814 char *p;
7815
7816 /* Extract all the registers in the regcache copying them into a
7817 local buffer. */
7818 {
7819 int i;
7820
7821 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7822 memset (regs, 0, rsa->sizeof_g_packet);
7823 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7824 {
7825 struct packet_reg *r = &rsa->regs[i];
7826
7827 if (r->in_g_packet)
7828 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7829 }
7830 }
7831
7832 /* Command describes registers byte by byte,
7833 each byte encoded as two hex characters. */
7834 p = rs->buf;
7835 *p++ = 'G';
7836 bin2hex (regs, p, rsa->sizeof_g_packet);
7837 putpkt (rs->buf);
7838 getpkt (&rs->buf, &rs->buf_size, 0);
7839 if (packet_check_result (rs->buf) == PACKET_ERROR)
7840 error (_("Could not write registers; remote failure reply '%s'"),
7841 rs->buf);
7842 }
7843
7844 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7845 of the register cache buffer. FIXME: ignores errors. */
7846
7847 static void
7848 remote_store_registers (struct target_ops *ops,
7849 struct regcache *regcache, int regnum)
7850 {
7851 struct gdbarch *gdbarch = regcache->arch ();
7852 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7853 int i;
7854
7855 set_remote_traceframe ();
7856 set_general_thread (regcache_get_ptid (regcache));
7857
7858 if (regnum >= 0)
7859 {
7860 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7861
7862 gdb_assert (reg != NULL);
7863
7864 /* Always prefer to store registers using the 'P' packet if
7865 possible; we often change only a small number of registers.
7866 Sometimes we change a larger number; we'd need help from a
7867 higher layer to know to use 'G'. */
7868 if (store_register_using_P (regcache, reg))
7869 return;
7870
7871 /* For now, don't complain if we have no way to write the
7872 register. GDB loses track of unavailable registers too
7873 easily. Some day, this may be an error. We don't have
7874 any way to read the register, either... */
7875 if (!reg->in_g_packet)
7876 return;
7877
7878 store_registers_using_G (regcache);
7879 return;
7880 }
7881
7882 store_registers_using_G (regcache);
7883
7884 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7885 if (!rsa->regs[i].in_g_packet)
7886 if (!store_register_using_P (regcache, &rsa->regs[i]))
7887 /* See above for why we do not issue an error here. */
7888 continue;
7889 }
7890 \f
7891
7892 /* Return the number of hex digits in num. */
7893
7894 static int
7895 hexnumlen (ULONGEST num)
7896 {
7897 int i;
7898
7899 for (i = 0; num != 0; i++)
7900 num >>= 4;
7901
7902 return std::max (i, 1);
7903 }
7904
7905 /* Set BUF to the minimum number of hex digits representing NUM. */
7906
7907 static int
7908 hexnumstr (char *buf, ULONGEST num)
7909 {
7910 int len = hexnumlen (num);
7911
7912 return hexnumnstr (buf, num, len);
7913 }
7914
7915
7916 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7917
7918 static int
7919 hexnumnstr (char *buf, ULONGEST num, int width)
7920 {
7921 int i;
7922
7923 buf[width] = '\0';
7924
7925 for (i = width - 1; i >= 0; i--)
7926 {
7927 buf[i] = "0123456789abcdef"[(num & 0xf)];
7928 num >>= 4;
7929 }
7930
7931 return width;
7932 }
7933
7934 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7935
7936 static CORE_ADDR
7937 remote_address_masked (CORE_ADDR addr)
7938 {
7939 unsigned int address_size = remote_address_size;
7940
7941 /* If "remoteaddresssize" was not set, default to target address size. */
7942 if (!address_size)
7943 address_size = gdbarch_addr_bit (target_gdbarch ());
7944
7945 if (address_size > 0
7946 && address_size < (sizeof (ULONGEST) * 8))
7947 {
7948 /* Only create a mask when that mask can safely be constructed
7949 in a ULONGEST variable. */
7950 ULONGEST mask = 1;
7951
7952 mask = (mask << address_size) - 1;
7953 addr &= mask;
7954 }
7955 return addr;
7956 }
7957
7958 /* Determine whether the remote target supports binary downloading.
7959 This is accomplished by sending a no-op memory write of zero length
7960 to the target at the specified address. It does not suffice to send
7961 the whole packet, since many stubs strip the eighth bit and
7962 subsequently compute a wrong checksum, which causes real havoc with
7963 remote_write_bytes.
7964
7965 NOTE: This can still lose if the serial line is not eight-bit
7966 clean. In cases like this, the user should clear "remote
7967 X-packet". */
7968
7969 static void
7970 check_binary_download (CORE_ADDR addr)
7971 {
7972 struct remote_state *rs = get_remote_state ();
7973
7974 switch (packet_support (PACKET_X))
7975 {
7976 case PACKET_DISABLE:
7977 break;
7978 case PACKET_ENABLE:
7979 break;
7980 case PACKET_SUPPORT_UNKNOWN:
7981 {
7982 char *p;
7983
7984 p = rs->buf;
7985 *p++ = 'X';
7986 p += hexnumstr (p, (ULONGEST) addr);
7987 *p++ = ',';
7988 p += hexnumstr (p, (ULONGEST) 0);
7989 *p++ = ':';
7990 *p = '\0';
7991
7992 putpkt_binary (rs->buf, (int) (p - rs->buf));
7993 getpkt (&rs->buf, &rs->buf_size, 0);
7994
7995 if (rs->buf[0] == '\0')
7996 {
7997 if (remote_debug)
7998 fprintf_unfiltered (gdb_stdlog,
7999 "binary downloading NOT "
8000 "supported by target\n");
8001 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8002 }
8003 else
8004 {
8005 if (remote_debug)
8006 fprintf_unfiltered (gdb_stdlog,
8007 "binary downloading supported by target\n");
8008 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8009 }
8010 break;
8011 }
8012 }
8013 }
8014
8015 /* Helper function to resize the payload in order to try to get a good
8016 alignment. We try to write an amount of data such that the next write will
8017 start on an address aligned on REMOTE_ALIGN_WRITES. */
8018
8019 static int
8020 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8021 {
8022 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8023 }
8024
8025 /* Write memory data directly to the remote machine.
8026 This does not inform the data cache; the data cache uses this.
8027 HEADER is the starting part of the packet.
8028 MEMADDR is the address in the remote memory space.
8029 MYADDR is the address of the buffer in our space.
8030 LEN_UNITS is the number of addressable units to write.
8031 UNIT_SIZE is the length in bytes of an addressable unit.
8032 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8033 should send data as binary ('X'), or hex-encoded ('M').
8034
8035 The function creates packet of the form
8036 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8037
8038 where encoding of <DATA> is terminated by PACKET_FORMAT.
8039
8040 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8041 are omitted.
8042
8043 Return the transferred status, error or OK (an
8044 'enum target_xfer_status' value). Save the number of addressable units
8045 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8046
8047 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8048 exchange between gdb and the stub could look like (?? in place of the
8049 checksum):
8050
8051 -> $m1000,4#??
8052 <- aaaabbbbccccdddd
8053
8054 -> $M1000,3:eeeeffffeeee#??
8055 <- OK
8056
8057 -> $m1000,4#??
8058 <- eeeeffffeeeedddd */
8059
8060 static enum target_xfer_status
8061 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8062 const gdb_byte *myaddr, ULONGEST len_units,
8063 int unit_size, ULONGEST *xfered_len_units,
8064 char packet_format, int use_length)
8065 {
8066 struct remote_state *rs = get_remote_state ();
8067 char *p;
8068 char *plen = NULL;
8069 int plenlen = 0;
8070 int todo_units;
8071 int units_written;
8072 int payload_capacity_bytes;
8073 int payload_length_bytes;
8074
8075 if (packet_format != 'X' && packet_format != 'M')
8076 internal_error (__FILE__, __LINE__,
8077 _("remote_write_bytes_aux: bad packet format"));
8078
8079 if (len_units == 0)
8080 return TARGET_XFER_EOF;
8081
8082 payload_capacity_bytes = get_memory_write_packet_size ();
8083
8084 /* The packet buffer will be large enough for the payload;
8085 get_memory_packet_size ensures this. */
8086 rs->buf[0] = '\0';
8087
8088 /* Compute the size of the actual payload by subtracting out the
8089 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8090
8091 payload_capacity_bytes -= strlen ("$,:#NN");
8092 if (!use_length)
8093 /* The comma won't be used. */
8094 payload_capacity_bytes += 1;
8095 payload_capacity_bytes -= strlen (header);
8096 payload_capacity_bytes -= hexnumlen (memaddr);
8097
8098 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8099
8100 strcat (rs->buf, header);
8101 p = rs->buf + strlen (header);
8102
8103 /* Compute a best guess of the number of bytes actually transfered. */
8104 if (packet_format == 'X')
8105 {
8106 /* Best guess at number of bytes that will fit. */
8107 todo_units = std::min (len_units,
8108 (ULONGEST) payload_capacity_bytes / unit_size);
8109 if (use_length)
8110 payload_capacity_bytes -= hexnumlen (todo_units);
8111 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8112 }
8113 else
8114 {
8115 /* Number of bytes that will fit. */
8116 todo_units
8117 = std::min (len_units,
8118 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8119 if (use_length)
8120 payload_capacity_bytes -= hexnumlen (todo_units);
8121 todo_units = std::min (todo_units,
8122 (payload_capacity_bytes / unit_size) / 2);
8123 }
8124
8125 if (todo_units <= 0)
8126 internal_error (__FILE__, __LINE__,
8127 _("minimum packet size too small to write data"));
8128
8129 /* If we already need another packet, then try to align the end
8130 of this packet to a useful boundary. */
8131 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8132 todo_units = align_for_efficient_write (todo_units, memaddr);
8133
8134 /* Append "<memaddr>". */
8135 memaddr = remote_address_masked (memaddr);
8136 p += hexnumstr (p, (ULONGEST) memaddr);
8137
8138 if (use_length)
8139 {
8140 /* Append ",". */
8141 *p++ = ',';
8142
8143 /* Append the length and retain its location and size. It may need to be
8144 adjusted once the packet body has been created. */
8145 plen = p;
8146 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8147 p += plenlen;
8148 }
8149
8150 /* Append ":". */
8151 *p++ = ':';
8152 *p = '\0';
8153
8154 /* Append the packet body. */
8155 if (packet_format == 'X')
8156 {
8157 /* Binary mode. Send target system values byte by byte, in
8158 increasing byte addresses. Only escape certain critical
8159 characters. */
8160 payload_length_bytes =
8161 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8162 &units_written, payload_capacity_bytes);
8163
8164 /* If not all TODO units fit, then we'll need another packet. Make
8165 a second try to keep the end of the packet aligned. Don't do
8166 this if the packet is tiny. */
8167 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8168 {
8169 int new_todo_units;
8170
8171 new_todo_units = align_for_efficient_write (units_written, memaddr);
8172
8173 if (new_todo_units != units_written)
8174 payload_length_bytes =
8175 remote_escape_output (myaddr, new_todo_units, unit_size,
8176 (gdb_byte *) p, &units_written,
8177 payload_capacity_bytes);
8178 }
8179
8180 p += payload_length_bytes;
8181 if (use_length && units_written < todo_units)
8182 {
8183 /* Escape chars have filled up the buffer prematurely,
8184 and we have actually sent fewer units than planned.
8185 Fix-up the length field of the packet. Use the same
8186 number of characters as before. */
8187 plen += hexnumnstr (plen, (ULONGEST) units_written,
8188 plenlen);
8189 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8190 }
8191 }
8192 else
8193 {
8194 /* Normal mode: Send target system values byte by byte, in
8195 increasing byte addresses. Each byte is encoded as a two hex
8196 value. */
8197 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8198 units_written = todo_units;
8199 }
8200
8201 putpkt_binary (rs->buf, (int) (p - rs->buf));
8202 getpkt (&rs->buf, &rs->buf_size, 0);
8203
8204 if (rs->buf[0] == 'E')
8205 return TARGET_XFER_E_IO;
8206
8207 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8208 send fewer units than we'd planned. */
8209 *xfered_len_units = (ULONGEST) units_written;
8210 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8211 }
8212
8213 /* Write memory data directly to the remote machine.
8214 This does not inform the data cache; the data cache uses this.
8215 MEMADDR is the address in the remote memory space.
8216 MYADDR is the address of the buffer in our space.
8217 LEN is the number of bytes.
8218
8219 Return the transferred status, error or OK (an
8220 'enum target_xfer_status' value). Save the number of bytes
8221 transferred in *XFERED_LEN. Only transfer a single packet. */
8222
8223 static enum target_xfer_status
8224 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8225 int unit_size, ULONGEST *xfered_len)
8226 {
8227 const char *packet_format = NULL;
8228
8229 /* Check whether the target supports binary download. */
8230 check_binary_download (memaddr);
8231
8232 switch (packet_support (PACKET_X))
8233 {
8234 case PACKET_ENABLE:
8235 packet_format = "X";
8236 break;
8237 case PACKET_DISABLE:
8238 packet_format = "M";
8239 break;
8240 case PACKET_SUPPORT_UNKNOWN:
8241 internal_error (__FILE__, __LINE__,
8242 _("remote_write_bytes: bad internal state"));
8243 default:
8244 internal_error (__FILE__, __LINE__, _("bad switch"));
8245 }
8246
8247 return remote_write_bytes_aux (packet_format,
8248 memaddr, myaddr, len, unit_size, xfered_len,
8249 packet_format[0], 1);
8250 }
8251
8252 /* Read memory data directly from the remote machine.
8253 This does not use the data cache; the data cache uses this.
8254 MEMADDR is the address in the remote memory space.
8255 MYADDR is the address of the buffer in our space.
8256 LEN_UNITS is the number of addressable memory units to read..
8257 UNIT_SIZE is the length in bytes of an addressable unit.
8258
8259 Return the transferred status, error or OK (an
8260 'enum target_xfer_status' value). Save the number of bytes
8261 transferred in *XFERED_LEN_UNITS.
8262
8263 See the comment of remote_write_bytes_aux for an example of
8264 memory read/write exchange between gdb and the stub. */
8265
8266 static enum target_xfer_status
8267 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8268 int unit_size, ULONGEST *xfered_len_units)
8269 {
8270 struct remote_state *rs = get_remote_state ();
8271 int buf_size_bytes; /* Max size of packet output buffer. */
8272 char *p;
8273 int todo_units;
8274 int decoded_bytes;
8275
8276 buf_size_bytes = get_memory_read_packet_size ();
8277 /* The packet buffer will be large enough for the payload;
8278 get_memory_packet_size ensures this. */
8279
8280 /* Number of units that will fit. */
8281 todo_units = std::min (len_units,
8282 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8283
8284 /* Construct "m"<memaddr>","<len>". */
8285 memaddr = remote_address_masked (memaddr);
8286 p = rs->buf;
8287 *p++ = 'm';
8288 p += hexnumstr (p, (ULONGEST) memaddr);
8289 *p++ = ',';
8290 p += hexnumstr (p, (ULONGEST) todo_units);
8291 *p = '\0';
8292 putpkt (rs->buf);
8293 getpkt (&rs->buf, &rs->buf_size, 0);
8294 if (rs->buf[0] == 'E'
8295 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8296 && rs->buf[3] == '\0')
8297 return TARGET_XFER_E_IO;
8298 /* Reply describes memory byte by byte, each byte encoded as two hex
8299 characters. */
8300 p = rs->buf;
8301 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8302 /* Return what we have. Let higher layers handle partial reads. */
8303 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8304 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8305 }
8306
8307 /* Using the set of read-only target sections of remote, read live
8308 read-only memory.
8309
8310 For interface/parameters/return description see target.h,
8311 to_xfer_partial. */
8312
8313 static enum target_xfer_status
8314 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8315 ULONGEST memaddr, ULONGEST len,
8316 int unit_size, ULONGEST *xfered_len)
8317 {
8318 struct target_section *secp;
8319 struct target_section_table *table;
8320
8321 secp = target_section_by_addr (ops, memaddr);
8322 if (secp != NULL
8323 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8324 secp->the_bfd_section)
8325 & SEC_READONLY))
8326 {
8327 struct target_section *p;
8328 ULONGEST memend = memaddr + len;
8329
8330 table = target_get_section_table (ops);
8331
8332 for (p = table->sections; p < table->sections_end; p++)
8333 {
8334 if (memaddr >= p->addr)
8335 {
8336 if (memend <= p->endaddr)
8337 {
8338 /* Entire transfer is within this section. */
8339 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8340 xfered_len);
8341 }
8342 else if (memaddr >= p->endaddr)
8343 {
8344 /* This section ends before the transfer starts. */
8345 continue;
8346 }
8347 else
8348 {
8349 /* This section overlaps the transfer. Just do half. */
8350 len = p->endaddr - memaddr;
8351 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8352 xfered_len);
8353 }
8354 }
8355 }
8356 }
8357
8358 return TARGET_XFER_EOF;
8359 }
8360
8361 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8362 first if the requested memory is unavailable in traceframe.
8363 Otherwise, fall back to remote_read_bytes_1. */
8364
8365 static enum target_xfer_status
8366 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8367 gdb_byte *myaddr, ULONGEST len, int unit_size,
8368 ULONGEST *xfered_len)
8369 {
8370 if (len == 0)
8371 return TARGET_XFER_EOF;
8372
8373 if (get_traceframe_number () != -1)
8374 {
8375 std::vector<mem_range> available;
8376
8377 /* If we fail to get the set of available memory, then the
8378 target does not support querying traceframe info, and so we
8379 attempt reading from the traceframe anyway (assuming the
8380 target implements the old QTro packet then). */
8381 if (traceframe_available_memory (&available, memaddr, len))
8382 {
8383 if (available.empty () || available[0].start != memaddr)
8384 {
8385 enum target_xfer_status res;
8386
8387 /* Don't read into the traceframe's available
8388 memory. */
8389 if (!available.empty ())
8390 {
8391 LONGEST oldlen = len;
8392
8393 len = available[0].start - memaddr;
8394 gdb_assert (len <= oldlen);
8395 }
8396
8397 /* This goes through the topmost target again. */
8398 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8399 len, unit_size, xfered_len);
8400 if (res == TARGET_XFER_OK)
8401 return TARGET_XFER_OK;
8402 else
8403 {
8404 /* No use trying further, we know some memory starting
8405 at MEMADDR isn't available. */
8406 *xfered_len = len;
8407 return (*xfered_len != 0) ?
8408 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8409 }
8410 }
8411
8412 /* Don't try to read more than how much is available, in
8413 case the target implements the deprecated QTro packet to
8414 cater for older GDBs (the target's knowledge of read-only
8415 sections may be outdated by now). */
8416 len = available[0].length;
8417 }
8418 }
8419
8420 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8421 }
8422
8423 \f
8424
8425 /* Sends a packet with content determined by the printf format string
8426 FORMAT and the remaining arguments, then gets the reply. Returns
8427 whether the packet was a success, a failure, or unknown. */
8428
8429 static enum packet_result remote_send_printf (const char *format, ...)
8430 ATTRIBUTE_PRINTF (1, 2);
8431
8432 static enum packet_result
8433 remote_send_printf (const char *format, ...)
8434 {
8435 struct remote_state *rs = get_remote_state ();
8436 int max_size = get_remote_packet_size ();
8437 va_list ap;
8438
8439 va_start (ap, format);
8440
8441 rs->buf[0] = '\0';
8442 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8443 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8444
8445 if (putpkt (rs->buf) < 0)
8446 error (_("Communication problem with target."));
8447
8448 rs->buf[0] = '\0';
8449 getpkt (&rs->buf, &rs->buf_size, 0);
8450
8451 return packet_check_result (rs->buf);
8452 }
8453
8454 /* Flash writing can take quite some time. We'll set
8455 effectively infinite timeout for flash operations.
8456 In future, we'll need to decide on a better approach. */
8457 static const int remote_flash_timeout = 1000;
8458
8459 static void
8460 remote_flash_erase (struct target_ops *ops,
8461 ULONGEST address, LONGEST length)
8462 {
8463 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8464 enum packet_result ret;
8465 scoped_restore restore_timeout
8466 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8467
8468 ret = remote_send_printf ("vFlashErase:%s,%s",
8469 phex (address, addr_size),
8470 phex (length, 4));
8471 switch (ret)
8472 {
8473 case PACKET_UNKNOWN:
8474 error (_("Remote target does not support flash erase"));
8475 case PACKET_ERROR:
8476 error (_("Error erasing flash with vFlashErase packet"));
8477 default:
8478 break;
8479 }
8480 }
8481
8482 static enum target_xfer_status
8483 remote_flash_write (struct target_ops *ops, ULONGEST address,
8484 ULONGEST length, ULONGEST *xfered_len,
8485 const gdb_byte *data)
8486 {
8487 scoped_restore restore_timeout
8488 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8489 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8490 xfered_len,'X', 0);
8491 }
8492
8493 static void
8494 remote_flash_done (struct target_ops *ops)
8495 {
8496 int ret;
8497
8498 scoped_restore restore_timeout
8499 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8500
8501 ret = remote_send_printf ("vFlashDone");
8502
8503 switch (ret)
8504 {
8505 case PACKET_UNKNOWN:
8506 error (_("Remote target does not support vFlashDone"));
8507 case PACKET_ERROR:
8508 error (_("Error finishing flash operation"));
8509 default:
8510 break;
8511 }
8512 }
8513
8514 static void
8515 remote_files_info (struct target_ops *ignore)
8516 {
8517 puts_filtered ("Debugging a target over a serial line.\n");
8518 }
8519 \f
8520 /* Stuff for dealing with the packets which are part of this protocol.
8521 See comment at top of file for details. */
8522
8523 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8524 error to higher layers. Called when a serial error is detected.
8525 The exception message is STRING, followed by a colon and a blank,
8526 the system error message for errno at function entry and final dot
8527 for output compatibility with throw_perror_with_name. */
8528
8529 static void
8530 unpush_and_perror (const char *string)
8531 {
8532 int saved_errno = errno;
8533
8534 remote_unpush_target ();
8535 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8536 safe_strerror (saved_errno));
8537 }
8538
8539 /* Read a single character from the remote end. The current quit
8540 handler is overridden to avoid quitting in the middle of packet
8541 sequence, as that would break communication with the remote server.
8542 See remote_serial_quit_handler for more detail. */
8543
8544 static int
8545 readchar (int timeout)
8546 {
8547 int ch;
8548 struct remote_state *rs = get_remote_state ();
8549
8550 {
8551 scoped_restore restore_quit
8552 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8553
8554 rs->got_ctrlc_during_io = 0;
8555
8556 ch = serial_readchar (rs->remote_desc, timeout);
8557
8558 if (rs->got_ctrlc_during_io)
8559 set_quit_flag ();
8560 }
8561
8562 if (ch >= 0)
8563 return ch;
8564
8565 switch ((enum serial_rc) ch)
8566 {
8567 case SERIAL_EOF:
8568 remote_unpush_target ();
8569 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8570 /* no return */
8571 case SERIAL_ERROR:
8572 unpush_and_perror (_("Remote communication error. "
8573 "Target disconnected."));
8574 /* no return */
8575 case SERIAL_TIMEOUT:
8576 break;
8577 }
8578 return ch;
8579 }
8580
8581 /* Wrapper for serial_write that closes the target and throws if
8582 writing fails. The current quit handler is overridden to avoid
8583 quitting in the middle of packet sequence, as that would break
8584 communication with the remote server. See
8585 remote_serial_quit_handler for more detail. */
8586
8587 static void
8588 remote_serial_write (const char *str, int len)
8589 {
8590 struct remote_state *rs = get_remote_state ();
8591
8592 scoped_restore restore_quit
8593 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8594
8595 rs->got_ctrlc_during_io = 0;
8596
8597 if (serial_write (rs->remote_desc, str, len))
8598 {
8599 unpush_and_perror (_("Remote communication error. "
8600 "Target disconnected."));
8601 }
8602
8603 if (rs->got_ctrlc_during_io)
8604 set_quit_flag ();
8605 }
8606
8607 /* Send the command in *BUF to the remote machine, and read the reply
8608 into *BUF. Report an error if we get an error reply. Resize
8609 *BUF using xrealloc if necessary to hold the result, and update
8610 *SIZEOF_BUF. */
8611
8612 static void
8613 remote_send (char **buf,
8614 long *sizeof_buf)
8615 {
8616 putpkt (*buf);
8617 getpkt (buf, sizeof_buf, 0);
8618
8619 if ((*buf)[0] == 'E')
8620 error (_("Remote failure reply: %s"), *buf);
8621 }
8622
8623 /* Return a string representing an escaped version of BUF, of len N.
8624 E.g. \n is converted to \\n, \t to \\t, etc. */
8625
8626 static std::string
8627 escape_buffer (const char *buf, int n)
8628 {
8629 string_file stb;
8630
8631 stb.putstrn (buf, n, '\\');
8632 return std::move (stb.string ());
8633 }
8634
8635 /* Display a null-terminated packet on stdout, for debugging, using C
8636 string notation. */
8637
8638 static void
8639 print_packet (const char *buf)
8640 {
8641 puts_filtered ("\"");
8642 fputstr_filtered (buf, '"', gdb_stdout);
8643 puts_filtered ("\"");
8644 }
8645
8646 int
8647 putpkt (const char *buf)
8648 {
8649 return putpkt_binary (buf, strlen (buf));
8650 }
8651
8652 /* Send a packet to the remote machine, with error checking. The data
8653 of the packet is in BUF. The string in BUF can be at most
8654 get_remote_packet_size () - 5 to account for the $, # and checksum,
8655 and for a possible /0 if we are debugging (remote_debug) and want
8656 to print the sent packet as a string. */
8657
8658 static int
8659 putpkt_binary (const char *buf, int cnt)
8660 {
8661 struct remote_state *rs = get_remote_state ();
8662 int i;
8663 unsigned char csum = 0;
8664 gdb::def_vector<char> data (cnt + 6);
8665 char *buf2 = data.data ();
8666
8667 int ch;
8668 int tcount = 0;
8669 char *p;
8670
8671 /* Catch cases like trying to read memory or listing threads while
8672 we're waiting for a stop reply. The remote server wouldn't be
8673 ready to handle this request, so we'd hang and timeout. We don't
8674 have to worry about this in synchronous mode, because in that
8675 case it's not possible to issue a command while the target is
8676 running. This is not a problem in non-stop mode, because in that
8677 case, the stub is always ready to process serial input. */
8678 if (!target_is_non_stop_p ()
8679 && target_is_async_p ()
8680 && rs->waiting_for_stop_reply)
8681 {
8682 error (_("Cannot execute this command while the target is running.\n"
8683 "Use the \"interrupt\" command to stop the target\n"
8684 "and then try again."));
8685 }
8686
8687 /* We're sending out a new packet. Make sure we don't look at a
8688 stale cached response. */
8689 rs->cached_wait_status = 0;
8690
8691 /* Copy the packet into buffer BUF2, encapsulating it
8692 and giving it a checksum. */
8693
8694 p = buf2;
8695 *p++ = '$';
8696
8697 for (i = 0; i < cnt; i++)
8698 {
8699 csum += buf[i];
8700 *p++ = buf[i];
8701 }
8702 *p++ = '#';
8703 *p++ = tohex ((csum >> 4) & 0xf);
8704 *p++ = tohex (csum & 0xf);
8705
8706 /* Send it over and over until we get a positive ack. */
8707
8708 while (1)
8709 {
8710 int started_error_output = 0;
8711
8712 if (remote_debug)
8713 {
8714 *p = '\0';
8715
8716 int len = (int) (p - buf2);
8717
8718 std::string str
8719 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8720
8721 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8722
8723 if (len > REMOTE_DEBUG_MAX_CHAR)
8724 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8725 len - REMOTE_DEBUG_MAX_CHAR);
8726
8727 fprintf_unfiltered (gdb_stdlog, "...");
8728
8729 gdb_flush (gdb_stdlog);
8730 }
8731 remote_serial_write (buf2, p - buf2);
8732
8733 /* If this is a no acks version of the remote protocol, send the
8734 packet and move on. */
8735 if (rs->noack_mode)
8736 break;
8737
8738 /* Read until either a timeout occurs (-2) or '+' is read.
8739 Handle any notification that arrives in the mean time. */
8740 while (1)
8741 {
8742 ch = readchar (remote_timeout);
8743
8744 if (remote_debug)
8745 {
8746 switch (ch)
8747 {
8748 case '+':
8749 case '-':
8750 case SERIAL_TIMEOUT:
8751 case '$':
8752 case '%':
8753 if (started_error_output)
8754 {
8755 putchar_unfiltered ('\n');
8756 started_error_output = 0;
8757 }
8758 }
8759 }
8760
8761 switch (ch)
8762 {
8763 case '+':
8764 if (remote_debug)
8765 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8766 return 1;
8767 case '-':
8768 if (remote_debug)
8769 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8770 /* FALLTHROUGH */
8771 case SERIAL_TIMEOUT:
8772 tcount++;
8773 if (tcount > 3)
8774 return 0;
8775 break; /* Retransmit buffer. */
8776 case '$':
8777 {
8778 if (remote_debug)
8779 fprintf_unfiltered (gdb_stdlog,
8780 "Packet instead of Ack, ignoring it\n");
8781 /* It's probably an old response sent because an ACK
8782 was lost. Gobble up the packet and ack it so it
8783 doesn't get retransmitted when we resend this
8784 packet. */
8785 skip_frame ();
8786 remote_serial_write ("+", 1);
8787 continue; /* Now, go look for +. */
8788 }
8789
8790 case '%':
8791 {
8792 int val;
8793
8794 /* If we got a notification, handle it, and go back to looking
8795 for an ack. */
8796 /* We've found the start of a notification. Now
8797 collect the data. */
8798 val = read_frame (&rs->buf, &rs->buf_size);
8799 if (val >= 0)
8800 {
8801 if (remote_debug)
8802 {
8803 std::string str = escape_buffer (rs->buf, val);
8804
8805 fprintf_unfiltered (gdb_stdlog,
8806 " Notification received: %s\n",
8807 str.c_str ());
8808 }
8809 handle_notification (rs->notif_state, rs->buf);
8810 /* We're in sync now, rewait for the ack. */
8811 tcount = 0;
8812 }
8813 else
8814 {
8815 if (remote_debug)
8816 {
8817 if (!started_error_output)
8818 {
8819 started_error_output = 1;
8820 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8821 }
8822 fputc_unfiltered (ch & 0177, gdb_stdlog);
8823 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8824 }
8825 }
8826 continue;
8827 }
8828 /* fall-through */
8829 default:
8830 if (remote_debug)
8831 {
8832 if (!started_error_output)
8833 {
8834 started_error_output = 1;
8835 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8836 }
8837 fputc_unfiltered (ch & 0177, gdb_stdlog);
8838 }
8839 continue;
8840 }
8841 break; /* Here to retransmit. */
8842 }
8843
8844 #if 0
8845 /* This is wrong. If doing a long backtrace, the user should be
8846 able to get out next time we call QUIT, without anything as
8847 violent as interrupt_query. If we want to provide a way out of
8848 here without getting to the next QUIT, it should be based on
8849 hitting ^C twice as in remote_wait. */
8850 if (quit_flag)
8851 {
8852 quit_flag = 0;
8853 interrupt_query ();
8854 }
8855 #endif
8856 }
8857
8858 return 0;
8859 }
8860
8861 /* Come here after finding the start of a frame when we expected an
8862 ack. Do our best to discard the rest of this packet. */
8863
8864 static void
8865 skip_frame (void)
8866 {
8867 int c;
8868
8869 while (1)
8870 {
8871 c = readchar (remote_timeout);
8872 switch (c)
8873 {
8874 case SERIAL_TIMEOUT:
8875 /* Nothing we can do. */
8876 return;
8877 case '#':
8878 /* Discard the two bytes of checksum and stop. */
8879 c = readchar (remote_timeout);
8880 if (c >= 0)
8881 c = readchar (remote_timeout);
8882
8883 return;
8884 case '*': /* Run length encoding. */
8885 /* Discard the repeat count. */
8886 c = readchar (remote_timeout);
8887 if (c < 0)
8888 return;
8889 break;
8890 default:
8891 /* A regular character. */
8892 break;
8893 }
8894 }
8895 }
8896
8897 /* Come here after finding the start of the frame. Collect the rest
8898 into *BUF, verifying the checksum, length, and handling run-length
8899 compression. NUL terminate the buffer. If there is not enough room,
8900 expand *BUF using xrealloc.
8901
8902 Returns -1 on error, number of characters in buffer (ignoring the
8903 trailing NULL) on success. (could be extended to return one of the
8904 SERIAL status indications). */
8905
8906 static long
8907 read_frame (char **buf_p,
8908 long *sizeof_buf)
8909 {
8910 unsigned char csum;
8911 long bc;
8912 int c;
8913 char *buf = *buf_p;
8914 struct remote_state *rs = get_remote_state ();
8915
8916 csum = 0;
8917 bc = 0;
8918
8919 while (1)
8920 {
8921 c = readchar (remote_timeout);
8922 switch (c)
8923 {
8924 case SERIAL_TIMEOUT:
8925 if (remote_debug)
8926 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8927 return -1;
8928 case '$':
8929 if (remote_debug)
8930 fputs_filtered ("Saw new packet start in middle of old one\n",
8931 gdb_stdlog);
8932 return -1; /* Start a new packet, count retries. */
8933 case '#':
8934 {
8935 unsigned char pktcsum;
8936 int check_0 = 0;
8937 int check_1 = 0;
8938
8939 buf[bc] = '\0';
8940
8941 check_0 = readchar (remote_timeout);
8942 if (check_0 >= 0)
8943 check_1 = readchar (remote_timeout);
8944
8945 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8946 {
8947 if (remote_debug)
8948 fputs_filtered ("Timeout in checksum, retrying\n",
8949 gdb_stdlog);
8950 return -1;
8951 }
8952 else if (check_0 < 0 || check_1 < 0)
8953 {
8954 if (remote_debug)
8955 fputs_filtered ("Communication error in checksum\n",
8956 gdb_stdlog);
8957 return -1;
8958 }
8959
8960 /* Don't recompute the checksum; with no ack packets we
8961 don't have any way to indicate a packet retransmission
8962 is necessary. */
8963 if (rs->noack_mode)
8964 return bc;
8965
8966 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8967 if (csum == pktcsum)
8968 return bc;
8969
8970 if (remote_debug)
8971 {
8972 std::string str = escape_buffer (buf, bc);
8973
8974 fprintf_unfiltered (gdb_stdlog,
8975 "Bad checksum, sentsum=0x%x, "
8976 "csum=0x%x, buf=%s\n",
8977 pktcsum, csum, str.c_str ());
8978 }
8979 /* Number of characters in buffer ignoring trailing
8980 NULL. */
8981 return -1;
8982 }
8983 case '*': /* Run length encoding. */
8984 {
8985 int repeat;
8986
8987 csum += c;
8988 c = readchar (remote_timeout);
8989 csum += c;
8990 repeat = c - ' ' + 3; /* Compute repeat count. */
8991
8992 /* The character before ``*'' is repeated. */
8993
8994 if (repeat > 0 && repeat <= 255 && bc > 0)
8995 {
8996 if (bc + repeat - 1 >= *sizeof_buf - 1)
8997 {
8998 /* Make some more room in the buffer. */
8999 *sizeof_buf += repeat;
9000 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9001 buf = *buf_p;
9002 }
9003
9004 memset (&buf[bc], buf[bc - 1], repeat);
9005 bc += repeat;
9006 continue;
9007 }
9008
9009 buf[bc] = '\0';
9010 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9011 return -1;
9012 }
9013 default:
9014 if (bc >= *sizeof_buf - 1)
9015 {
9016 /* Make some more room in the buffer. */
9017 *sizeof_buf *= 2;
9018 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9019 buf = *buf_p;
9020 }
9021
9022 buf[bc++] = c;
9023 csum += c;
9024 continue;
9025 }
9026 }
9027 }
9028
9029 /* Read a packet from the remote machine, with error checking, and
9030 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9031 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9032 rather than timing out; this is used (in synchronous mode) to wait
9033 for a target that is is executing user code to stop. */
9034 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9035 don't have to change all the calls to getpkt to deal with the
9036 return value, because at the moment I don't know what the right
9037 thing to do it for those. */
9038 void
9039 getpkt (char **buf,
9040 long *sizeof_buf,
9041 int forever)
9042 {
9043 getpkt_sane (buf, sizeof_buf, forever);
9044 }
9045
9046
9047 /* Read a packet from the remote machine, with error checking, and
9048 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9049 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9050 rather than timing out; this is used (in synchronous mode) to wait
9051 for a target that is is executing user code to stop. If FOREVER ==
9052 0, this function is allowed to time out gracefully and return an
9053 indication of this to the caller. Otherwise return the number of
9054 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9055 enough reason to return to the caller. *IS_NOTIF is an output
9056 boolean that indicates whether *BUF holds a notification or not
9057 (a regular packet). */
9058
9059 static int
9060 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9061 int expecting_notif, int *is_notif)
9062 {
9063 struct remote_state *rs = get_remote_state ();
9064 int c;
9065 int tries;
9066 int timeout;
9067 int val = -1;
9068
9069 /* We're reading a new response. Make sure we don't look at a
9070 previously cached response. */
9071 rs->cached_wait_status = 0;
9072
9073 strcpy (*buf, "timeout");
9074
9075 if (forever)
9076 timeout = watchdog > 0 ? watchdog : -1;
9077 else if (expecting_notif)
9078 timeout = 0; /* There should already be a char in the buffer. If
9079 not, bail out. */
9080 else
9081 timeout = remote_timeout;
9082
9083 #define MAX_TRIES 3
9084
9085 /* Process any number of notifications, and then return when
9086 we get a packet. */
9087 for (;;)
9088 {
9089 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9090 times. */
9091 for (tries = 1; tries <= MAX_TRIES; tries++)
9092 {
9093 /* This can loop forever if the remote side sends us
9094 characters continuously, but if it pauses, we'll get
9095 SERIAL_TIMEOUT from readchar because of timeout. Then
9096 we'll count that as a retry.
9097
9098 Note that even when forever is set, we will only wait
9099 forever prior to the start of a packet. After that, we
9100 expect characters to arrive at a brisk pace. They should
9101 show up within remote_timeout intervals. */
9102 do
9103 c = readchar (timeout);
9104 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9105
9106 if (c == SERIAL_TIMEOUT)
9107 {
9108 if (expecting_notif)
9109 return -1; /* Don't complain, it's normal to not get
9110 anything in this case. */
9111
9112 if (forever) /* Watchdog went off? Kill the target. */
9113 {
9114 remote_unpush_target ();
9115 throw_error (TARGET_CLOSE_ERROR,
9116 _("Watchdog timeout has expired. "
9117 "Target detached."));
9118 }
9119 if (remote_debug)
9120 fputs_filtered ("Timed out.\n", gdb_stdlog);
9121 }
9122 else
9123 {
9124 /* We've found the start of a packet or notification.
9125 Now collect the data. */
9126 val = read_frame (buf, sizeof_buf);
9127 if (val >= 0)
9128 break;
9129 }
9130
9131 remote_serial_write ("-", 1);
9132 }
9133
9134 if (tries > MAX_TRIES)
9135 {
9136 /* We have tried hard enough, and just can't receive the
9137 packet/notification. Give up. */
9138 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9139
9140 /* Skip the ack char if we're in no-ack mode. */
9141 if (!rs->noack_mode)
9142 remote_serial_write ("+", 1);
9143 return -1;
9144 }
9145
9146 /* If we got an ordinary packet, return that to our caller. */
9147 if (c == '$')
9148 {
9149 if (remote_debug)
9150 {
9151 std::string str
9152 = escape_buffer (*buf,
9153 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9154
9155 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9156 str.c_str ());
9157
9158 if (val > REMOTE_DEBUG_MAX_CHAR)
9159 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9160 val - REMOTE_DEBUG_MAX_CHAR);
9161
9162 fprintf_unfiltered (gdb_stdlog, "\n");
9163 }
9164
9165 /* Skip the ack char if we're in no-ack mode. */
9166 if (!rs->noack_mode)
9167 remote_serial_write ("+", 1);
9168 if (is_notif != NULL)
9169 *is_notif = 0;
9170 return val;
9171 }
9172
9173 /* If we got a notification, handle it, and go back to looking
9174 for a packet. */
9175 else
9176 {
9177 gdb_assert (c == '%');
9178
9179 if (remote_debug)
9180 {
9181 std::string str = escape_buffer (*buf, val);
9182
9183 fprintf_unfiltered (gdb_stdlog,
9184 " Notification received: %s\n",
9185 str.c_str ());
9186 }
9187 if (is_notif != NULL)
9188 *is_notif = 1;
9189
9190 handle_notification (rs->notif_state, *buf);
9191
9192 /* Notifications require no acknowledgement. */
9193
9194 if (expecting_notif)
9195 return val;
9196 }
9197 }
9198 }
9199
9200 static int
9201 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9202 {
9203 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9204 }
9205
9206 static int
9207 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9208 int *is_notif)
9209 {
9210 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9211 is_notif);
9212 }
9213
9214 /* Check whether EVENT is a fork event for the process specified
9215 by the pid passed in DATA, and if it is, kill the fork child. */
9216
9217 static int
9218 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9219 QUEUE_ITER (stop_reply_p) *iter,
9220 stop_reply_p event,
9221 void *data)
9222 {
9223 struct queue_iter_param *param = (struct queue_iter_param *) data;
9224 int parent_pid = *(int *) param->input;
9225
9226 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9227 {
9228 struct remote_state *rs = get_remote_state ();
9229 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9230 int res;
9231
9232 res = remote_vkill (child_pid, rs);
9233 if (res != 0)
9234 error (_("Can't kill fork child process %d"), child_pid);
9235 }
9236
9237 return 1;
9238 }
9239
9240 /* Kill any new fork children of process PID that haven't been
9241 processed by follow_fork. */
9242
9243 static void
9244 kill_new_fork_children (int pid, struct remote_state *rs)
9245 {
9246 struct thread_info *thread;
9247 struct notif_client *notif = &notif_client_stop;
9248 struct queue_iter_param param;
9249
9250 /* Kill the fork child threads of any threads in process PID
9251 that are stopped at a fork event. */
9252 ALL_NON_EXITED_THREADS (thread)
9253 {
9254 struct target_waitstatus *ws = &thread->pending_follow;
9255
9256 if (is_pending_fork_parent (ws, pid, thread->ptid))
9257 {
9258 struct remote_state *rs = get_remote_state ();
9259 int child_pid = ptid_get_pid (ws->value.related_pid);
9260 int res;
9261
9262 res = remote_vkill (child_pid, rs);
9263 if (res != 0)
9264 error (_("Can't kill fork child process %d"), child_pid);
9265 }
9266 }
9267
9268 /* Check for any pending fork events (not reported or processed yet)
9269 in process PID and kill those fork child threads as well. */
9270 remote_notif_get_pending_events (notif);
9271 param.input = &pid;
9272 param.output = NULL;
9273 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9274 kill_child_of_pending_fork, &param);
9275 }
9276
9277 \f
9278 /* Target hook to kill the current inferior. */
9279
9280 static void
9281 remote_kill (struct target_ops *ops)
9282 {
9283 int res = -1;
9284 int pid = ptid_get_pid (inferior_ptid);
9285 struct remote_state *rs = get_remote_state ();
9286
9287 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9288 {
9289 /* If we're stopped while forking and we haven't followed yet,
9290 kill the child task. We need to do this before killing the
9291 parent task because if this is a vfork then the parent will
9292 be sleeping. */
9293 kill_new_fork_children (pid, rs);
9294
9295 res = remote_vkill (pid, rs);
9296 if (res == 0)
9297 {
9298 target_mourn_inferior (inferior_ptid);
9299 return;
9300 }
9301 }
9302
9303 /* If we are in 'target remote' mode and we are killing the only
9304 inferior, then we will tell gdbserver to exit and unpush the
9305 target. */
9306 if (res == -1 && !remote_multi_process_p (rs)
9307 && number_of_live_inferiors () == 1)
9308 {
9309 remote_kill_k ();
9310
9311 /* We've killed the remote end, we get to mourn it. If we are
9312 not in extended mode, mourning the inferior also unpushes
9313 remote_ops from the target stack, which closes the remote
9314 connection. */
9315 target_mourn_inferior (inferior_ptid);
9316
9317 return;
9318 }
9319
9320 error (_("Can't kill process"));
9321 }
9322
9323 /* Send a kill request to the target using the 'vKill' packet. */
9324
9325 static int
9326 remote_vkill (int pid, struct remote_state *rs)
9327 {
9328 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9329 return -1;
9330
9331 /* Tell the remote target to detach. */
9332 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9333 putpkt (rs->buf);
9334 getpkt (&rs->buf, &rs->buf_size, 0);
9335
9336 switch (packet_ok (rs->buf,
9337 &remote_protocol_packets[PACKET_vKill]))
9338 {
9339 case PACKET_OK:
9340 return 0;
9341 case PACKET_ERROR:
9342 return 1;
9343 case PACKET_UNKNOWN:
9344 return -1;
9345 default:
9346 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9347 }
9348 }
9349
9350 /* Send a kill request to the target using the 'k' packet. */
9351
9352 static void
9353 remote_kill_k (void)
9354 {
9355 /* Catch errors so the user can quit from gdb even when we
9356 aren't on speaking terms with the remote system. */
9357 TRY
9358 {
9359 putpkt ("k");
9360 }
9361 CATCH (ex, RETURN_MASK_ERROR)
9362 {
9363 if (ex.error == TARGET_CLOSE_ERROR)
9364 {
9365 /* If we got an (EOF) error that caused the target
9366 to go away, then we're done, that's what we wanted.
9367 "k" is susceptible to cause a premature EOF, given
9368 that the remote server isn't actually required to
9369 reply to "k", and it can happen that it doesn't
9370 even get to reply ACK to the "k". */
9371 return;
9372 }
9373
9374 /* Otherwise, something went wrong. We didn't actually kill
9375 the target. Just propagate the exception, and let the
9376 user or higher layers decide what to do. */
9377 throw_exception (ex);
9378 }
9379 END_CATCH
9380 }
9381
9382 static void
9383 remote_mourn (struct target_ops *target)
9384 {
9385 struct remote_state *rs = get_remote_state ();
9386
9387 /* In 'target remote' mode with one inferior, we close the connection. */
9388 if (!rs->extended && number_of_live_inferiors () <= 1)
9389 {
9390 unpush_target (target);
9391
9392 /* remote_close takes care of doing most of the clean up. */
9393 generic_mourn_inferior ();
9394 return;
9395 }
9396
9397 /* In case we got here due to an error, but we're going to stay
9398 connected. */
9399 rs->waiting_for_stop_reply = 0;
9400
9401 /* If the current general thread belonged to the process we just
9402 detached from or has exited, the remote side current general
9403 thread becomes undefined. Considering a case like this:
9404
9405 - We just got here due to a detach.
9406 - The process that we're detaching from happens to immediately
9407 report a global breakpoint being hit in non-stop mode, in the
9408 same thread we had selected before.
9409 - GDB attaches to this process again.
9410 - This event happens to be the next event we handle.
9411
9412 GDB would consider that the current general thread didn't need to
9413 be set on the stub side (with Hg), since for all it knew,
9414 GENERAL_THREAD hadn't changed.
9415
9416 Notice that although in all-stop mode, the remote server always
9417 sets the current thread to the thread reporting the stop event,
9418 that doesn't happen in non-stop mode; in non-stop, the stub *must
9419 not* change the current thread when reporting a breakpoint hit,
9420 due to the decoupling of event reporting and event handling.
9421
9422 To keep things simple, we always invalidate our notion of the
9423 current thread. */
9424 record_currthread (rs, minus_one_ptid);
9425
9426 /* Call common code to mark the inferior as not running. */
9427 generic_mourn_inferior ();
9428
9429 if (!have_inferiors ())
9430 {
9431 if (!remote_multi_process_p (rs))
9432 {
9433 /* Check whether the target is running now - some remote stubs
9434 automatically restart after kill. */
9435 putpkt ("?");
9436 getpkt (&rs->buf, &rs->buf_size, 0);
9437
9438 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9439 {
9440 /* Assume that the target has been restarted. Set
9441 inferior_ptid so that bits of core GDB realizes
9442 there's something here, e.g., so that the user can
9443 say "kill" again. */
9444 inferior_ptid = magic_null_ptid;
9445 }
9446 }
9447 }
9448 }
9449
9450 static int
9451 extended_remote_supports_disable_randomization (struct target_ops *self)
9452 {
9453 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9454 }
9455
9456 static void
9457 extended_remote_disable_randomization (int val)
9458 {
9459 struct remote_state *rs = get_remote_state ();
9460 char *reply;
9461
9462 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9463 val);
9464 putpkt (rs->buf);
9465 reply = remote_get_noisy_reply ();
9466 if (*reply == '\0')
9467 error (_("Target does not support QDisableRandomization."));
9468 if (strcmp (reply, "OK") != 0)
9469 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9470 }
9471
9472 static int
9473 extended_remote_run (const std::string &args)
9474 {
9475 struct remote_state *rs = get_remote_state ();
9476 int len;
9477 const char *remote_exec_file = get_remote_exec_file ();
9478
9479 /* If the user has disabled vRun support, or we have detected that
9480 support is not available, do not try it. */
9481 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9482 return -1;
9483
9484 strcpy (rs->buf, "vRun;");
9485 len = strlen (rs->buf);
9486
9487 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9488 error (_("Remote file name too long for run packet"));
9489 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9490 strlen (remote_exec_file));
9491
9492 if (!args.empty ())
9493 {
9494 int i;
9495
9496 gdb_argv argv (args.c_str ());
9497 for (i = 0; argv[i] != NULL; i++)
9498 {
9499 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9500 error (_("Argument list too long for run packet"));
9501 rs->buf[len++] = ';';
9502 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9503 strlen (argv[i]));
9504 }
9505 }
9506
9507 rs->buf[len++] = '\0';
9508
9509 putpkt (rs->buf);
9510 getpkt (&rs->buf, &rs->buf_size, 0);
9511
9512 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9513 {
9514 case PACKET_OK:
9515 /* We have a wait response. All is well. */
9516 return 0;
9517 case PACKET_UNKNOWN:
9518 return -1;
9519 case PACKET_ERROR:
9520 if (remote_exec_file[0] == '\0')
9521 error (_("Running the default executable on the remote target failed; "
9522 "try \"set remote exec-file\"?"));
9523 else
9524 error (_("Running \"%s\" on the remote target failed"),
9525 remote_exec_file);
9526 default:
9527 gdb_assert_not_reached (_("bad switch"));
9528 }
9529 }
9530
9531 /* Helper function to send set/unset environment packets. ACTION is
9532 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9533 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9534 sent. */
9535
9536 static void
9537 send_environment_packet (struct remote_state *rs,
9538 const char *action,
9539 const char *packet,
9540 const char *value)
9541 {
9542 /* Convert the environment variable to an hex string, which
9543 is the best format to be transmitted over the wire. */
9544 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9545 strlen (value));
9546
9547 xsnprintf (rs->buf, get_remote_packet_size (),
9548 "%s:%s", packet, encoded_value.c_str ());
9549
9550 putpkt (rs->buf);
9551 getpkt (&rs->buf, &rs->buf_size, 0);
9552 if (strcmp (rs->buf, "OK") != 0)
9553 warning (_("Unable to %s environment variable '%s' on remote."),
9554 action, value);
9555 }
9556
9557 /* Helper function to handle the QEnvironment* packets. */
9558
9559 static void
9560 extended_remote_environment_support (struct remote_state *rs)
9561 {
9562 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9563 {
9564 putpkt ("QEnvironmentReset");
9565 getpkt (&rs->buf, &rs->buf_size, 0);
9566 if (strcmp (rs->buf, "OK") != 0)
9567 warning (_("Unable to reset environment on remote."));
9568 }
9569
9570 gdb_environ *e = &current_inferior ()->environment;
9571
9572 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9573 for (const std::string &el : e->user_set_env ())
9574 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9575 el.c_str ());
9576
9577 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9578 for (const std::string &el : e->user_unset_env ())
9579 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9580 }
9581
9582 /* Helper function to set the current working directory for the
9583 inferior in the remote target. */
9584
9585 static void
9586 extended_remote_set_inferior_cwd (struct remote_state *rs)
9587 {
9588 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9589 {
9590 const char *inferior_cwd = get_inferior_cwd ();
9591
9592 if (inferior_cwd != NULL)
9593 {
9594 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9595 strlen (inferior_cwd));
9596
9597 xsnprintf (rs->buf, get_remote_packet_size (),
9598 "QSetWorkingDir:%s", hexpath.c_str ());
9599 }
9600 else
9601 {
9602 /* An empty inferior_cwd means that the user wants us to
9603 reset the remote server's inferior's cwd. */
9604 xsnprintf (rs->buf, get_remote_packet_size (),
9605 "QSetWorkingDir:");
9606 }
9607
9608 putpkt (rs->buf);
9609 getpkt (&rs->buf, &rs->buf_size, 0);
9610 if (packet_ok (rs->buf,
9611 &remote_protocol_packets[PACKET_QSetWorkingDir])
9612 != PACKET_OK)
9613 error (_("\
9614 Remote replied unexpectedly while setting the inferior's working\n\
9615 directory: %s"),
9616 rs->buf);
9617
9618 }
9619 }
9620
9621 /* In the extended protocol we want to be able to do things like
9622 "run" and have them basically work as expected. So we need
9623 a special create_inferior function. We support changing the
9624 executable file and the command line arguments, but not the
9625 environment. */
9626
9627 static void
9628 extended_remote_create_inferior (struct target_ops *ops,
9629 const char *exec_file,
9630 const std::string &args,
9631 char **env, int from_tty)
9632 {
9633 int run_worked;
9634 char *stop_reply;
9635 struct remote_state *rs = get_remote_state ();
9636 const char *remote_exec_file = get_remote_exec_file ();
9637
9638 /* If running asynchronously, register the target file descriptor
9639 with the event loop. */
9640 if (target_can_async_p ())
9641 target_async (1);
9642
9643 /* Disable address space randomization if requested (and supported). */
9644 if (extended_remote_supports_disable_randomization (ops))
9645 extended_remote_disable_randomization (disable_randomization);
9646
9647 /* If startup-with-shell is on, we inform gdbserver to start the
9648 remote inferior using a shell. */
9649 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9650 {
9651 xsnprintf (rs->buf, get_remote_packet_size (),
9652 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9653 putpkt (rs->buf);
9654 getpkt (&rs->buf, &rs->buf_size, 0);
9655 if (strcmp (rs->buf, "OK") != 0)
9656 error (_("\
9657 Remote replied unexpectedly while setting startup-with-shell: %s"),
9658 rs->buf);
9659 }
9660
9661 extended_remote_environment_support (rs);
9662
9663 extended_remote_set_inferior_cwd (rs);
9664
9665 /* Now restart the remote server. */
9666 run_worked = extended_remote_run (args) != -1;
9667 if (!run_worked)
9668 {
9669 /* vRun was not supported. Fail if we need it to do what the
9670 user requested. */
9671 if (remote_exec_file[0])
9672 error (_("Remote target does not support \"set remote exec-file\""));
9673 if (!args.empty ())
9674 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9675
9676 /* Fall back to "R". */
9677 extended_remote_restart ();
9678 }
9679
9680 if (!have_inferiors ())
9681 {
9682 /* Clean up from the last time we ran, before we mark the target
9683 running again. This will mark breakpoints uninserted, and
9684 get_offsets may insert breakpoints. */
9685 init_thread_list ();
9686 init_wait_for_inferior ();
9687 }
9688
9689 /* vRun's success return is a stop reply. */
9690 stop_reply = run_worked ? rs->buf : NULL;
9691 add_current_inferior_and_thread (stop_reply);
9692
9693 /* Get updated offsets, if the stub uses qOffsets. */
9694 get_offsets ();
9695 }
9696 \f
9697
9698 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9699 the list of conditions (in agent expression bytecode format), if any, the
9700 target needs to evaluate. The output is placed into the packet buffer
9701 started from BUF and ended at BUF_END. */
9702
9703 static int
9704 remote_add_target_side_condition (struct gdbarch *gdbarch,
9705 struct bp_target_info *bp_tgt, char *buf,
9706 char *buf_end)
9707 {
9708 if (bp_tgt->conditions.empty ())
9709 return 0;
9710
9711 buf += strlen (buf);
9712 xsnprintf (buf, buf_end - buf, "%s", ";");
9713 buf++;
9714
9715 /* Send conditions to the target. */
9716 for (agent_expr *aexpr : bp_tgt->conditions)
9717 {
9718 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9719 buf += strlen (buf);
9720 for (int i = 0; i < aexpr->len; ++i)
9721 buf = pack_hex_byte (buf, aexpr->buf[i]);
9722 *buf = '\0';
9723 }
9724 return 0;
9725 }
9726
9727 static void
9728 remote_add_target_side_commands (struct gdbarch *gdbarch,
9729 struct bp_target_info *bp_tgt, char *buf)
9730 {
9731 if (bp_tgt->tcommands.empty ())
9732 return;
9733
9734 buf += strlen (buf);
9735
9736 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9737 buf += strlen (buf);
9738
9739 /* Concatenate all the agent expressions that are commands into the
9740 cmds parameter. */
9741 for (agent_expr *aexpr : bp_tgt->tcommands)
9742 {
9743 sprintf (buf, "X%x,", aexpr->len);
9744 buf += strlen (buf);
9745 for (int i = 0; i < aexpr->len; ++i)
9746 buf = pack_hex_byte (buf, aexpr->buf[i]);
9747 *buf = '\0';
9748 }
9749 }
9750
9751 /* Insert a breakpoint. On targets that have software breakpoint
9752 support, we ask the remote target to do the work; on targets
9753 which don't, we insert a traditional memory breakpoint. */
9754
9755 static int
9756 remote_insert_breakpoint (struct target_ops *ops,
9757 struct gdbarch *gdbarch,
9758 struct bp_target_info *bp_tgt)
9759 {
9760 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9761 If it succeeds, then set the support to PACKET_ENABLE. If it
9762 fails, and the user has explicitly requested the Z support then
9763 report an error, otherwise, mark it disabled and go on. */
9764
9765 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9766 {
9767 CORE_ADDR addr = bp_tgt->reqstd_address;
9768 struct remote_state *rs;
9769 char *p, *endbuf;
9770
9771 /* Make sure the remote is pointing at the right process, if
9772 necessary. */
9773 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9774 set_general_process ();
9775
9776 rs = get_remote_state ();
9777 p = rs->buf;
9778 endbuf = rs->buf + get_remote_packet_size ();
9779
9780 *(p++) = 'Z';
9781 *(p++) = '0';
9782 *(p++) = ',';
9783 addr = (ULONGEST) remote_address_masked (addr);
9784 p += hexnumstr (p, addr);
9785 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9786
9787 if (remote_supports_cond_breakpoints (ops))
9788 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9789
9790 if (remote_can_run_breakpoint_commands (ops))
9791 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9792
9793 putpkt (rs->buf);
9794 getpkt (&rs->buf, &rs->buf_size, 0);
9795
9796 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9797 {
9798 case PACKET_ERROR:
9799 return -1;
9800 case PACKET_OK:
9801 return 0;
9802 case PACKET_UNKNOWN:
9803 break;
9804 }
9805 }
9806
9807 /* If this breakpoint has target-side commands but this stub doesn't
9808 support Z0 packets, throw error. */
9809 if (!bp_tgt->tcommands.empty ())
9810 throw_error (NOT_SUPPORTED_ERROR, _("\
9811 Target doesn't support breakpoints that have target side commands."));
9812
9813 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9814 }
9815
9816 static int
9817 remote_remove_breakpoint (struct target_ops *ops,
9818 struct gdbarch *gdbarch,
9819 struct bp_target_info *bp_tgt,
9820 enum remove_bp_reason reason)
9821 {
9822 CORE_ADDR addr = bp_tgt->placed_address;
9823 struct remote_state *rs = get_remote_state ();
9824
9825 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9826 {
9827 char *p = rs->buf;
9828 char *endbuf = rs->buf + get_remote_packet_size ();
9829
9830 /* Make sure the remote is pointing at the right process, if
9831 necessary. */
9832 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9833 set_general_process ();
9834
9835 *(p++) = 'z';
9836 *(p++) = '0';
9837 *(p++) = ',';
9838
9839 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9840 p += hexnumstr (p, addr);
9841 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9842
9843 putpkt (rs->buf);
9844 getpkt (&rs->buf, &rs->buf_size, 0);
9845
9846 return (rs->buf[0] == 'E');
9847 }
9848
9849 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9850 }
9851
9852 static enum Z_packet_type
9853 watchpoint_to_Z_packet (int type)
9854 {
9855 switch (type)
9856 {
9857 case hw_write:
9858 return Z_PACKET_WRITE_WP;
9859 break;
9860 case hw_read:
9861 return Z_PACKET_READ_WP;
9862 break;
9863 case hw_access:
9864 return Z_PACKET_ACCESS_WP;
9865 break;
9866 default:
9867 internal_error (__FILE__, __LINE__,
9868 _("hw_bp_to_z: bad watchpoint type %d"), type);
9869 }
9870 }
9871
9872 static int
9873 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9874 enum target_hw_bp_type type, struct expression *cond)
9875 {
9876 struct remote_state *rs = get_remote_state ();
9877 char *endbuf = rs->buf + get_remote_packet_size ();
9878 char *p;
9879 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9880
9881 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9882 return 1;
9883
9884 /* Make sure the remote is pointing at the right process, if
9885 necessary. */
9886 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9887 set_general_process ();
9888
9889 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9890 p = strchr (rs->buf, '\0');
9891 addr = remote_address_masked (addr);
9892 p += hexnumstr (p, (ULONGEST) addr);
9893 xsnprintf (p, endbuf - p, ",%x", len);
9894
9895 putpkt (rs->buf);
9896 getpkt (&rs->buf, &rs->buf_size, 0);
9897
9898 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9899 {
9900 case PACKET_ERROR:
9901 return -1;
9902 case PACKET_UNKNOWN:
9903 return 1;
9904 case PACKET_OK:
9905 return 0;
9906 }
9907 internal_error (__FILE__, __LINE__,
9908 _("remote_insert_watchpoint: reached end of function"));
9909 }
9910
9911 static int
9912 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9913 CORE_ADDR start, int length)
9914 {
9915 CORE_ADDR diff = remote_address_masked (addr - start);
9916
9917 return diff < length;
9918 }
9919
9920
9921 static int
9922 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9923 enum target_hw_bp_type type, struct expression *cond)
9924 {
9925 struct remote_state *rs = get_remote_state ();
9926 char *endbuf = rs->buf + get_remote_packet_size ();
9927 char *p;
9928 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9929
9930 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9931 return -1;
9932
9933 /* Make sure the remote is pointing at the right process, if
9934 necessary. */
9935 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9936 set_general_process ();
9937
9938 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9939 p = strchr (rs->buf, '\0');
9940 addr = remote_address_masked (addr);
9941 p += hexnumstr (p, (ULONGEST) addr);
9942 xsnprintf (p, endbuf - p, ",%x", len);
9943 putpkt (rs->buf);
9944 getpkt (&rs->buf, &rs->buf_size, 0);
9945
9946 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9947 {
9948 case PACKET_ERROR:
9949 case PACKET_UNKNOWN:
9950 return -1;
9951 case PACKET_OK:
9952 return 0;
9953 }
9954 internal_error (__FILE__, __LINE__,
9955 _("remote_remove_watchpoint: reached end of function"));
9956 }
9957
9958
9959 int remote_hw_watchpoint_limit = -1;
9960 int remote_hw_watchpoint_length_limit = -1;
9961 int remote_hw_breakpoint_limit = -1;
9962
9963 static int
9964 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9965 CORE_ADDR addr, int len)
9966 {
9967 if (remote_hw_watchpoint_length_limit == 0)
9968 return 0;
9969 else if (remote_hw_watchpoint_length_limit < 0)
9970 return 1;
9971 else if (len <= remote_hw_watchpoint_length_limit)
9972 return 1;
9973 else
9974 return 0;
9975 }
9976
9977 static int
9978 remote_check_watch_resources (struct target_ops *self,
9979 enum bptype type, int cnt, int ot)
9980 {
9981 if (type == bp_hardware_breakpoint)
9982 {
9983 if (remote_hw_breakpoint_limit == 0)
9984 return 0;
9985 else if (remote_hw_breakpoint_limit < 0)
9986 return 1;
9987 else if (cnt <= remote_hw_breakpoint_limit)
9988 return 1;
9989 }
9990 else
9991 {
9992 if (remote_hw_watchpoint_limit == 0)
9993 return 0;
9994 else if (remote_hw_watchpoint_limit < 0)
9995 return 1;
9996 else if (ot)
9997 return -1;
9998 else if (cnt <= remote_hw_watchpoint_limit)
9999 return 1;
10000 }
10001 return -1;
10002 }
10003
10004 /* The to_stopped_by_sw_breakpoint method of target remote. */
10005
10006 static int
10007 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10008 {
10009 struct thread_info *thread = inferior_thread ();
10010
10011 return (thread->priv != NULL
10012 && (get_remote_thread_info (thread)->stop_reason
10013 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10014 }
10015
10016 /* The to_supports_stopped_by_sw_breakpoint method of target
10017 remote. */
10018
10019 static int
10020 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10021 {
10022 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10023 }
10024
10025 /* The to_stopped_by_hw_breakpoint method of target remote. */
10026
10027 static int
10028 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10029 {
10030 struct thread_info *thread = inferior_thread ();
10031
10032 return (thread->priv != NULL
10033 && (get_remote_thread_info (thread)->stop_reason
10034 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10035 }
10036
10037 /* The to_supports_stopped_by_hw_breakpoint method of target
10038 remote. */
10039
10040 static int
10041 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10042 {
10043 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10044 }
10045
10046 static int
10047 remote_stopped_by_watchpoint (struct target_ops *ops)
10048 {
10049 struct thread_info *thread = inferior_thread ();
10050
10051 return (thread->priv != NULL
10052 && (get_remote_thread_info (thread)->stop_reason
10053 == TARGET_STOPPED_BY_WATCHPOINT));
10054 }
10055
10056 static int
10057 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10058 {
10059 struct thread_info *thread = inferior_thread ();
10060
10061 if (thread->priv != NULL
10062 && (get_remote_thread_info (thread)->stop_reason
10063 == TARGET_STOPPED_BY_WATCHPOINT))
10064 {
10065 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10066 return 1;
10067 }
10068
10069 return 0;
10070 }
10071
10072
10073 static int
10074 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10075 struct bp_target_info *bp_tgt)
10076 {
10077 CORE_ADDR addr = bp_tgt->reqstd_address;
10078 struct remote_state *rs;
10079 char *p, *endbuf;
10080 char *message;
10081
10082 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10083 return -1;
10084
10085 /* Make sure the remote is pointing at the right process, if
10086 necessary. */
10087 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10088 set_general_process ();
10089
10090 rs = get_remote_state ();
10091 p = rs->buf;
10092 endbuf = rs->buf + get_remote_packet_size ();
10093
10094 *(p++) = 'Z';
10095 *(p++) = '1';
10096 *(p++) = ',';
10097
10098 addr = remote_address_masked (addr);
10099 p += hexnumstr (p, (ULONGEST) addr);
10100 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10101
10102 if (remote_supports_cond_breakpoints (self))
10103 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10104
10105 if (remote_can_run_breakpoint_commands (self))
10106 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10107
10108 putpkt (rs->buf);
10109 getpkt (&rs->buf, &rs->buf_size, 0);
10110
10111 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10112 {
10113 case PACKET_ERROR:
10114 if (rs->buf[1] == '.')
10115 {
10116 message = strchr (rs->buf + 2, '.');
10117 if (message)
10118 error (_("Remote failure reply: %s"), message + 1);
10119 }
10120 return -1;
10121 case PACKET_UNKNOWN:
10122 return -1;
10123 case PACKET_OK:
10124 return 0;
10125 }
10126 internal_error (__FILE__, __LINE__,
10127 _("remote_insert_hw_breakpoint: reached end of function"));
10128 }
10129
10130
10131 static int
10132 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10133 struct bp_target_info *bp_tgt)
10134 {
10135 CORE_ADDR addr;
10136 struct remote_state *rs = get_remote_state ();
10137 char *p = rs->buf;
10138 char *endbuf = rs->buf + get_remote_packet_size ();
10139
10140 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10141 return -1;
10142
10143 /* Make sure the remote is pointing at the right process, if
10144 necessary. */
10145 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10146 set_general_process ();
10147
10148 *(p++) = 'z';
10149 *(p++) = '1';
10150 *(p++) = ',';
10151
10152 addr = remote_address_masked (bp_tgt->placed_address);
10153 p += hexnumstr (p, (ULONGEST) addr);
10154 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10155
10156 putpkt (rs->buf);
10157 getpkt (&rs->buf, &rs->buf_size, 0);
10158
10159 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10160 {
10161 case PACKET_ERROR:
10162 case PACKET_UNKNOWN:
10163 return -1;
10164 case PACKET_OK:
10165 return 0;
10166 }
10167 internal_error (__FILE__, __LINE__,
10168 _("remote_remove_hw_breakpoint: reached end of function"));
10169 }
10170
10171 /* Verify memory using the "qCRC:" request. */
10172
10173 static int
10174 remote_verify_memory (struct target_ops *ops,
10175 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10176 {
10177 struct remote_state *rs = get_remote_state ();
10178 unsigned long host_crc, target_crc;
10179 char *tmp;
10180
10181 /* It doesn't make sense to use qCRC if the remote target is
10182 connected but not running. */
10183 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10184 {
10185 enum packet_result result;
10186
10187 /* Make sure the remote is pointing at the right process. */
10188 set_general_process ();
10189
10190 /* FIXME: assumes lma can fit into long. */
10191 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10192 (long) lma, (long) size);
10193 putpkt (rs->buf);
10194
10195 /* Be clever; compute the host_crc before waiting for target
10196 reply. */
10197 host_crc = xcrc32 (data, size, 0xffffffff);
10198
10199 getpkt (&rs->buf, &rs->buf_size, 0);
10200
10201 result = packet_ok (rs->buf,
10202 &remote_protocol_packets[PACKET_qCRC]);
10203 if (result == PACKET_ERROR)
10204 return -1;
10205 else if (result == PACKET_OK)
10206 {
10207 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10208 target_crc = target_crc * 16 + fromhex (*tmp);
10209
10210 return (host_crc == target_crc);
10211 }
10212 }
10213
10214 return simple_verify_memory (ops, data, lma, size);
10215 }
10216
10217 /* compare-sections command
10218
10219 With no arguments, compares each loadable section in the exec bfd
10220 with the same memory range on the target, and reports mismatches.
10221 Useful for verifying the image on the target against the exec file. */
10222
10223 static void
10224 compare_sections_command (const char *args, int from_tty)
10225 {
10226 asection *s;
10227 const char *sectname;
10228 bfd_size_type size;
10229 bfd_vma lma;
10230 int matched = 0;
10231 int mismatched = 0;
10232 int res;
10233 int read_only = 0;
10234
10235 if (!exec_bfd)
10236 error (_("command cannot be used without an exec file"));
10237
10238 /* Make sure the remote is pointing at the right process. */
10239 set_general_process ();
10240
10241 if (args != NULL && strcmp (args, "-r") == 0)
10242 {
10243 read_only = 1;
10244 args = NULL;
10245 }
10246
10247 for (s = exec_bfd->sections; s; s = s->next)
10248 {
10249 if (!(s->flags & SEC_LOAD))
10250 continue; /* Skip non-loadable section. */
10251
10252 if (read_only && (s->flags & SEC_READONLY) == 0)
10253 continue; /* Skip writeable sections */
10254
10255 size = bfd_get_section_size (s);
10256 if (size == 0)
10257 continue; /* Skip zero-length section. */
10258
10259 sectname = bfd_get_section_name (exec_bfd, s);
10260 if (args && strcmp (args, sectname) != 0)
10261 continue; /* Not the section selected by user. */
10262
10263 matched = 1; /* Do this section. */
10264 lma = s->lma;
10265
10266 gdb::byte_vector sectdata (size);
10267 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10268
10269 res = target_verify_memory (sectdata.data (), lma, size);
10270
10271 if (res == -1)
10272 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10273 paddress (target_gdbarch (), lma),
10274 paddress (target_gdbarch (), lma + size));
10275
10276 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10277 paddress (target_gdbarch (), lma),
10278 paddress (target_gdbarch (), lma + size));
10279 if (res)
10280 printf_filtered ("matched.\n");
10281 else
10282 {
10283 printf_filtered ("MIS-MATCHED!\n");
10284 mismatched++;
10285 }
10286 }
10287 if (mismatched > 0)
10288 warning (_("One or more sections of the target image does not match\n\
10289 the loaded file\n"));
10290 if (args && !matched)
10291 printf_filtered (_("No loaded section named '%s'.\n"), args);
10292 }
10293
10294 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10295 into remote target. The number of bytes written to the remote
10296 target is returned, or -1 for error. */
10297
10298 static enum target_xfer_status
10299 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10300 const char *annex, const gdb_byte *writebuf,
10301 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10302 struct packet_config *packet)
10303 {
10304 int i, buf_len;
10305 ULONGEST n;
10306 struct remote_state *rs = get_remote_state ();
10307 int max_size = get_memory_write_packet_size ();
10308
10309 if (packet_config_support (packet) == PACKET_DISABLE)
10310 return TARGET_XFER_E_IO;
10311
10312 /* Insert header. */
10313 i = snprintf (rs->buf, max_size,
10314 "qXfer:%s:write:%s:%s:",
10315 object_name, annex ? annex : "",
10316 phex_nz (offset, sizeof offset));
10317 max_size -= (i + 1);
10318
10319 /* Escape as much data as fits into rs->buf. */
10320 buf_len = remote_escape_output
10321 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10322
10323 if (putpkt_binary (rs->buf, i + buf_len) < 0
10324 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10325 || packet_ok (rs->buf, packet) != PACKET_OK)
10326 return TARGET_XFER_E_IO;
10327
10328 unpack_varlen_hex (rs->buf, &n);
10329
10330 *xfered_len = n;
10331 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10332 }
10333
10334 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10335 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10336 number of bytes read is returned, or 0 for EOF, or -1 for error.
10337 The number of bytes read may be less than LEN without indicating an
10338 EOF. PACKET is checked and updated to indicate whether the remote
10339 target supports this object. */
10340
10341 static enum target_xfer_status
10342 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10343 const char *annex,
10344 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10345 ULONGEST *xfered_len,
10346 struct packet_config *packet)
10347 {
10348 struct remote_state *rs = get_remote_state ();
10349 LONGEST i, n, packet_len;
10350
10351 if (packet_config_support (packet) == PACKET_DISABLE)
10352 return TARGET_XFER_E_IO;
10353
10354 /* Check whether we've cached an end-of-object packet that matches
10355 this request. */
10356 if (rs->finished_object)
10357 {
10358 if (strcmp (object_name, rs->finished_object) == 0
10359 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10360 && offset == rs->finished_offset)
10361 return TARGET_XFER_EOF;
10362
10363
10364 /* Otherwise, we're now reading something different. Discard
10365 the cache. */
10366 xfree (rs->finished_object);
10367 xfree (rs->finished_annex);
10368 rs->finished_object = NULL;
10369 rs->finished_annex = NULL;
10370 }
10371
10372 /* Request only enough to fit in a single packet. The actual data
10373 may not, since we don't know how much of it will need to be escaped;
10374 the target is free to respond with slightly less data. We subtract
10375 five to account for the response type and the protocol frame. */
10376 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10377 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10378 object_name, annex ? annex : "",
10379 phex_nz (offset, sizeof offset),
10380 phex_nz (n, sizeof n));
10381 i = putpkt (rs->buf);
10382 if (i < 0)
10383 return TARGET_XFER_E_IO;
10384
10385 rs->buf[0] = '\0';
10386 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10387 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10388 return TARGET_XFER_E_IO;
10389
10390 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10391 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10392
10393 /* 'm' means there is (or at least might be) more data after this
10394 batch. That does not make sense unless there's at least one byte
10395 of data in this reply. */
10396 if (rs->buf[0] == 'm' && packet_len == 1)
10397 error (_("Remote qXfer reply contained no data."));
10398
10399 /* Got some data. */
10400 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10401 packet_len - 1, readbuf, n);
10402
10403 /* 'l' is an EOF marker, possibly including a final block of data,
10404 or possibly empty. If we have the final block of a non-empty
10405 object, record this fact to bypass a subsequent partial read. */
10406 if (rs->buf[0] == 'l' && offset + i > 0)
10407 {
10408 rs->finished_object = xstrdup (object_name);
10409 rs->finished_annex = xstrdup (annex ? annex : "");
10410 rs->finished_offset = offset + i;
10411 }
10412
10413 if (i == 0)
10414 return TARGET_XFER_EOF;
10415 else
10416 {
10417 *xfered_len = i;
10418 return TARGET_XFER_OK;
10419 }
10420 }
10421
10422 static enum target_xfer_status
10423 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10424 const char *annex, gdb_byte *readbuf,
10425 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10426 ULONGEST *xfered_len)
10427 {
10428 struct remote_state *rs;
10429 int i;
10430 char *p2;
10431 char query_type;
10432 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10433
10434 set_remote_traceframe ();
10435 set_general_thread (inferior_ptid);
10436
10437 rs = get_remote_state ();
10438
10439 /* Handle memory using the standard memory routines. */
10440 if (object == TARGET_OBJECT_MEMORY)
10441 {
10442 /* If the remote target is connected but not running, we should
10443 pass this request down to a lower stratum (e.g. the executable
10444 file). */
10445 if (!target_has_execution)
10446 return TARGET_XFER_EOF;
10447
10448 if (writebuf != NULL)
10449 return remote_write_bytes (offset, writebuf, len, unit_size,
10450 xfered_len);
10451 else
10452 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10453 xfered_len);
10454 }
10455
10456 /* Handle SPU memory using qxfer packets. */
10457 if (object == TARGET_OBJECT_SPU)
10458 {
10459 if (readbuf)
10460 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10461 xfered_len, &remote_protocol_packets
10462 [PACKET_qXfer_spu_read]);
10463 else
10464 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10465 xfered_len, &remote_protocol_packets
10466 [PACKET_qXfer_spu_write]);
10467 }
10468
10469 /* Handle extra signal info using qxfer packets. */
10470 if (object == TARGET_OBJECT_SIGNAL_INFO)
10471 {
10472 if (readbuf)
10473 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10474 xfered_len, &remote_protocol_packets
10475 [PACKET_qXfer_siginfo_read]);
10476 else
10477 return remote_write_qxfer (ops, "siginfo", annex,
10478 writebuf, offset, len, xfered_len,
10479 &remote_protocol_packets
10480 [PACKET_qXfer_siginfo_write]);
10481 }
10482
10483 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10484 {
10485 if (readbuf)
10486 return remote_read_qxfer (ops, "statictrace", annex,
10487 readbuf, offset, len, xfered_len,
10488 &remote_protocol_packets
10489 [PACKET_qXfer_statictrace_read]);
10490 else
10491 return TARGET_XFER_E_IO;
10492 }
10493
10494 /* Only handle flash writes. */
10495 if (writebuf != NULL)
10496 {
10497 switch (object)
10498 {
10499 case TARGET_OBJECT_FLASH:
10500 return remote_flash_write (ops, offset, len, xfered_len,
10501 writebuf);
10502
10503 default:
10504 return TARGET_XFER_E_IO;
10505 }
10506 }
10507
10508 /* Map pre-existing objects onto letters. DO NOT do this for new
10509 objects!!! Instead specify new query packets. */
10510 switch (object)
10511 {
10512 case TARGET_OBJECT_AVR:
10513 query_type = 'R';
10514 break;
10515
10516 case TARGET_OBJECT_AUXV:
10517 gdb_assert (annex == NULL);
10518 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10519 xfered_len,
10520 &remote_protocol_packets[PACKET_qXfer_auxv]);
10521
10522 case TARGET_OBJECT_AVAILABLE_FEATURES:
10523 return remote_read_qxfer
10524 (ops, "features", annex, readbuf, offset, len, xfered_len,
10525 &remote_protocol_packets[PACKET_qXfer_features]);
10526
10527 case TARGET_OBJECT_LIBRARIES:
10528 return remote_read_qxfer
10529 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10530 &remote_protocol_packets[PACKET_qXfer_libraries]);
10531
10532 case TARGET_OBJECT_LIBRARIES_SVR4:
10533 return remote_read_qxfer
10534 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10535 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10536
10537 case TARGET_OBJECT_MEMORY_MAP:
10538 gdb_assert (annex == NULL);
10539 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10540 xfered_len,
10541 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10542
10543 case TARGET_OBJECT_OSDATA:
10544 /* Should only get here if we're connected. */
10545 gdb_assert (rs->remote_desc);
10546 return remote_read_qxfer
10547 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10548 &remote_protocol_packets[PACKET_qXfer_osdata]);
10549
10550 case TARGET_OBJECT_THREADS:
10551 gdb_assert (annex == NULL);
10552 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10553 xfered_len,
10554 &remote_protocol_packets[PACKET_qXfer_threads]);
10555
10556 case TARGET_OBJECT_TRACEFRAME_INFO:
10557 gdb_assert (annex == NULL);
10558 return remote_read_qxfer
10559 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10560 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10561
10562 case TARGET_OBJECT_FDPIC:
10563 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10564 xfered_len,
10565 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10566
10567 case TARGET_OBJECT_OPENVMS_UIB:
10568 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10569 xfered_len,
10570 &remote_protocol_packets[PACKET_qXfer_uib]);
10571
10572 case TARGET_OBJECT_BTRACE:
10573 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10574 xfered_len,
10575 &remote_protocol_packets[PACKET_qXfer_btrace]);
10576
10577 case TARGET_OBJECT_BTRACE_CONF:
10578 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10579 len, xfered_len,
10580 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10581
10582 case TARGET_OBJECT_EXEC_FILE:
10583 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10584 len, xfered_len,
10585 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10586
10587 default:
10588 return TARGET_XFER_E_IO;
10589 }
10590
10591 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10592 large enough let the caller deal with it. */
10593 if (len < get_remote_packet_size ())
10594 return TARGET_XFER_E_IO;
10595 len = get_remote_packet_size ();
10596
10597 /* Except for querying the minimum buffer size, target must be open. */
10598 if (!rs->remote_desc)
10599 error (_("remote query is only available after target open"));
10600
10601 gdb_assert (annex != NULL);
10602 gdb_assert (readbuf != NULL);
10603
10604 p2 = rs->buf;
10605 *p2++ = 'q';
10606 *p2++ = query_type;
10607
10608 /* We used one buffer char for the remote protocol q command and
10609 another for the query type. As the remote protocol encapsulation
10610 uses 4 chars plus one extra in case we are debugging
10611 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10612 string. */
10613 i = 0;
10614 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10615 {
10616 /* Bad caller may have sent forbidden characters. */
10617 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10618 *p2++ = annex[i];
10619 i++;
10620 }
10621 *p2 = '\0';
10622 gdb_assert (annex[i] == '\0');
10623
10624 i = putpkt (rs->buf);
10625 if (i < 0)
10626 return TARGET_XFER_E_IO;
10627
10628 getpkt (&rs->buf, &rs->buf_size, 0);
10629 strcpy ((char *) readbuf, rs->buf);
10630
10631 *xfered_len = strlen ((char *) readbuf);
10632 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10633 }
10634
10635 /* Implementation of to_get_memory_xfer_limit. */
10636
10637 static ULONGEST
10638 remote_get_memory_xfer_limit (struct target_ops *ops)
10639 {
10640 return get_memory_write_packet_size ();
10641 }
10642
10643 static int
10644 remote_search_memory (struct target_ops* ops,
10645 CORE_ADDR start_addr, ULONGEST search_space_len,
10646 const gdb_byte *pattern, ULONGEST pattern_len,
10647 CORE_ADDR *found_addrp)
10648 {
10649 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10650 struct remote_state *rs = get_remote_state ();
10651 int max_size = get_memory_write_packet_size ();
10652 struct packet_config *packet =
10653 &remote_protocol_packets[PACKET_qSearch_memory];
10654 /* Number of packet bytes used to encode the pattern;
10655 this could be more than PATTERN_LEN due to escape characters. */
10656 int escaped_pattern_len;
10657 /* Amount of pattern that was encodable in the packet. */
10658 int used_pattern_len;
10659 int i;
10660 int found;
10661 ULONGEST found_addr;
10662
10663 /* Don't go to the target if we don't have to. This is done before
10664 checking packet_config_support to avoid the possibility that a
10665 success for this edge case means the facility works in
10666 general. */
10667 if (pattern_len > search_space_len)
10668 return 0;
10669 if (pattern_len == 0)
10670 {
10671 *found_addrp = start_addr;
10672 return 1;
10673 }
10674
10675 /* If we already know the packet isn't supported, fall back to the simple
10676 way of searching memory. */
10677
10678 if (packet_config_support (packet) == PACKET_DISABLE)
10679 {
10680 /* Target doesn't provided special support, fall back and use the
10681 standard support (copy memory and do the search here). */
10682 return simple_search_memory (ops, start_addr, search_space_len,
10683 pattern, pattern_len, found_addrp);
10684 }
10685
10686 /* Make sure the remote is pointing at the right process. */
10687 set_general_process ();
10688
10689 /* Insert header. */
10690 i = snprintf (rs->buf, max_size,
10691 "qSearch:memory:%s;%s;",
10692 phex_nz (start_addr, addr_size),
10693 phex_nz (search_space_len, sizeof (search_space_len)));
10694 max_size -= (i + 1);
10695
10696 /* Escape as much data as fits into rs->buf. */
10697 escaped_pattern_len =
10698 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10699 &used_pattern_len, max_size);
10700
10701 /* Bail if the pattern is too large. */
10702 if (used_pattern_len != pattern_len)
10703 error (_("Pattern is too large to transmit to remote target."));
10704
10705 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10706 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10707 || packet_ok (rs->buf, packet) != PACKET_OK)
10708 {
10709 /* The request may not have worked because the command is not
10710 supported. If so, fall back to the simple way. */
10711 if (packet_config_support (packet) == PACKET_DISABLE)
10712 {
10713 return simple_search_memory (ops, start_addr, search_space_len,
10714 pattern, pattern_len, found_addrp);
10715 }
10716 return -1;
10717 }
10718
10719 if (rs->buf[0] == '0')
10720 found = 0;
10721 else if (rs->buf[0] == '1')
10722 {
10723 found = 1;
10724 if (rs->buf[1] != ',')
10725 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10726 unpack_varlen_hex (rs->buf + 2, &found_addr);
10727 *found_addrp = found_addr;
10728 }
10729 else
10730 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10731
10732 return found;
10733 }
10734
10735 static void
10736 remote_rcmd (struct target_ops *self, const char *command,
10737 struct ui_file *outbuf)
10738 {
10739 struct remote_state *rs = get_remote_state ();
10740 char *p = rs->buf;
10741
10742 if (!rs->remote_desc)
10743 error (_("remote rcmd is only available after target open"));
10744
10745 /* Send a NULL command across as an empty command. */
10746 if (command == NULL)
10747 command = "";
10748
10749 /* The query prefix. */
10750 strcpy (rs->buf, "qRcmd,");
10751 p = strchr (rs->buf, '\0');
10752
10753 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10754 > get_remote_packet_size ())
10755 error (_("\"monitor\" command ``%s'' is too long."), command);
10756
10757 /* Encode the actual command. */
10758 bin2hex ((const gdb_byte *) command, p, strlen (command));
10759
10760 if (putpkt (rs->buf) < 0)
10761 error (_("Communication problem with target."));
10762
10763 /* get/display the response */
10764 while (1)
10765 {
10766 char *buf;
10767
10768 /* XXX - see also remote_get_noisy_reply(). */
10769 QUIT; /* Allow user to bail out with ^C. */
10770 rs->buf[0] = '\0';
10771 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10772 {
10773 /* Timeout. Continue to (try to) read responses.
10774 This is better than stopping with an error, assuming the stub
10775 is still executing the (long) monitor command.
10776 If needed, the user can interrupt gdb using C-c, obtaining
10777 an effect similar to stop on timeout. */
10778 continue;
10779 }
10780 buf = rs->buf;
10781 if (buf[0] == '\0')
10782 error (_("Target does not support this command."));
10783 if (buf[0] == 'O' && buf[1] != 'K')
10784 {
10785 remote_console_output (buf + 1); /* 'O' message from stub. */
10786 continue;
10787 }
10788 if (strcmp (buf, "OK") == 0)
10789 break;
10790 if (strlen (buf) == 3 && buf[0] == 'E'
10791 && isdigit (buf[1]) && isdigit (buf[2]))
10792 {
10793 error (_("Protocol error with Rcmd"));
10794 }
10795 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10796 {
10797 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10798
10799 fputc_unfiltered (c, outbuf);
10800 }
10801 break;
10802 }
10803 }
10804
10805 static std::vector<mem_region>
10806 remote_memory_map (struct target_ops *ops)
10807 {
10808 std::vector<mem_region> result;
10809 gdb::unique_xmalloc_ptr<char> text
10810 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10811
10812 if (text)
10813 result = parse_memory_map (text.get ());
10814
10815 return result;
10816 }
10817
10818 static void
10819 packet_command (const char *args, int from_tty)
10820 {
10821 struct remote_state *rs = get_remote_state ();
10822
10823 if (!rs->remote_desc)
10824 error (_("command can only be used with remote target"));
10825
10826 if (!args)
10827 error (_("remote-packet command requires packet text as argument"));
10828
10829 puts_filtered ("sending: ");
10830 print_packet (args);
10831 puts_filtered ("\n");
10832 putpkt (args);
10833
10834 getpkt (&rs->buf, &rs->buf_size, 0);
10835 puts_filtered ("received: ");
10836 print_packet (rs->buf);
10837 puts_filtered ("\n");
10838 }
10839
10840 #if 0
10841 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10842
10843 static void display_thread_info (struct gdb_ext_thread_info *info);
10844
10845 static void threadset_test_cmd (char *cmd, int tty);
10846
10847 static void threadalive_test (char *cmd, int tty);
10848
10849 static void threadlist_test_cmd (char *cmd, int tty);
10850
10851 int get_and_display_threadinfo (threadref *ref);
10852
10853 static void threadinfo_test_cmd (char *cmd, int tty);
10854
10855 static int thread_display_step (threadref *ref, void *context);
10856
10857 static void threadlist_update_test_cmd (char *cmd, int tty);
10858
10859 static void init_remote_threadtests (void);
10860
10861 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10862
10863 static void
10864 threadset_test_cmd (const char *cmd, int tty)
10865 {
10866 int sample_thread = SAMPLE_THREAD;
10867
10868 printf_filtered (_("Remote threadset test\n"));
10869 set_general_thread (sample_thread);
10870 }
10871
10872
10873 static void
10874 threadalive_test (const char *cmd, int tty)
10875 {
10876 int sample_thread = SAMPLE_THREAD;
10877 int pid = ptid_get_pid (inferior_ptid);
10878 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10879
10880 if (remote_thread_alive (ptid))
10881 printf_filtered ("PASS: Thread alive test\n");
10882 else
10883 printf_filtered ("FAIL: Thread alive test\n");
10884 }
10885
10886 void output_threadid (char *title, threadref *ref);
10887
10888 void
10889 output_threadid (char *title, threadref *ref)
10890 {
10891 char hexid[20];
10892
10893 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10894 hexid[16] = 0;
10895 printf_filtered ("%s %s\n", title, (&hexid[0]));
10896 }
10897
10898 static void
10899 threadlist_test_cmd (const char *cmd, int tty)
10900 {
10901 int startflag = 1;
10902 threadref nextthread;
10903 int done, result_count;
10904 threadref threadlist[3];
10905
10906 printf_filtered ("Remote Threadlist test\n");
10907 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10908 &result_count, &threadlist[0]))
10909 printf_filtered ("FAIL: threadlist test\n");
10910 else
10911 {
10912 threadref *scan = threadlist;
10913 threadref *limit = scan + result_count;
10914
10915 while (scan < limit)
10916 output_threadid (" thread ", scan++);
10917 }
10918 }
10919
10920 void
10921 display_thread_info (struct gdb_ext_thread_info *info)
10922 {
10923 output_threadid ("Threadid: ", &info->threadid);
10924 printf_filtered ("Name: %s\n ", info->shortname);
10925 printf_filtered ("State: %s\n", info->display);
10926 printf_filtered ("other: %s\n\n", info->more_display);
10927 }
10928
10929 int
10930 get_and_display_threadinfo (threadref *ref)
10931 {
10932 int result;
10933 int set;
10934 struct gdb_ext_thread_info threadinfo;
10935
10936 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10937 | TAG_MOREDISPLAY | TAG_DISPLAY;
10938 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10939 display_thread_info (&threadinfo);
10940 return result;
10941 }
10942
10943 static void
10944 threadinfo_test_cmd (const char *cmd, int tty)
10945 {
10946 int athread = SAMPLE_THREAD;
10947 threadref thread;
10948 int set;
10949
10950 int_to_threadref (&thread, athread);
10951 printf_filtered ("Remote Threadinfo test\n");
10952 if (!get_and_display_threadinfo (&thread))
10953 printf_filtered ("FAIL cannot get thread info\n");
10954 }
10955
10956 static int
10957 thread_display_step (threadref *ref, void *context)
10958 {
10959 /* output_threadid(" threadstep ",ref); *//* simple test */
10960 return get_and_display_threadinfo (ref);
10961 }
10962
10963 static void
10964 threadlist_update_test_cmd (const char *cmd, int tty)
10965 {
10966 printf_filtered ("Remote Threadlist update test\n");
10967 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10968 }
10969
10970 static void
10971 init_remote_threadtests (void)
10972 {
10973 add_com ("tlist", class_obscure, threadlist_test_cmd,
10974 _("Fetch and print the remote list of "
10975 "thread identifiers, one pkt only"));
10976 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10977 _("Fetch and display info about one thread"));
10978 add_com ("tset", class_obscure, threadset_test_cmd,
10979 _("Test setting to a different thread"));
10980 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10981 _("Iterate through updating all remote thread info"));
10982 add_com ("talive", class_obscure, threadalive_test,
10983 _(" Remote thread alive test "));
10984 }
10985
10986 #endif /* 0 */
10987
10988 /* Convert a thread ID to a string. Returns the string in a static
10989 buffer. */
10990
10991 static const char *
10992 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10993 {
10994 static char buf[64];
10995 struct remote_state *rs = get_remote_state ();
10996
10997 if (ptid_equal (ptid, null_ptid))
10998 return normal_pid_to_str (ptid);
10999 else if (ptid_is_pid (ptid))
11000 {
11001 /* Printing an inferior target id. */
11002
11003 /* When multi-process extensions are off, there's no way in the
11004 remote protocol to know the remote process id, if there's any
11005 at all. There's one exception --- when we're connected with
11006 target extended-remote, and we manually attached to a process
11007 with "attach PID". We don't record anywhere a flag that
11008 allows us to distinguish that case from the case of
11009 connecting with extended-remote and the stub already being
11010 attached to a process, and reporting yes to qAttached, hence
11011 no smart special casing here. */
11012 if (!remote_multi_process_p (rs))
11013 {
11014 xsnprintf (buf, sizeof buf, "Remote target");
11015 return buf;
11016 }
11017
11018 return normal_pid_to_str (ptid);
11019 }
11020 else
11021 {
11022 if (ptid_equal (magic_null_ptid, ptid))
11023 xsnprintf (buf, sizeof buf, "Thread <main>");
11024 else if (remote_multi_process_p (rs))
11025 if (ptid_get_lwp (ptid) == 0)
11026 return normal_pid_to_str (ptid);
11027 else
11028 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11029 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11030 else
11031 xsnprintf (buf, sizeof buf, "Thread %ld",
11032 ptid_get_lwp (ptid));
11033 return buf;
11034 }
11035 }
11036
11037 /* Get the address of the thread local variable in OBJFILE which is
11038 stored at OFFSET within the thread local storage for thread PTID. */
11039
11040 static CORE_ADDR
11041 remote_get_thread_local_address (struct target_ops *ops,
11042 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11043 {
11044 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11045 {
11046 struct remote_state *rs = get_remote_state ();
11047 char *p = rs->buf;
11048 char *endp = rs->buf + get_remote_packet_size ();
11049 enum packet_result result;
11050
11051 strcpy (p, "qGetTLSAddr:");
11052 p += strlen (p);
11053 p = write_ptid (p, endp, ptid);
11054 *p++ = ',';
11055 p += hexnumstr (p, offset);
11056 *p++ = ',';
11057 p += hexnumstr (p, lm);
11058 *p++ = '\0';
11059
11060 putpkt (rs->buf);
11061 getpkt (&rs->buf, &rs->buf_size, 0);
11062 result = packet_ok (rs->buf,
11063 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11064 if (result == PACKET_OK)
11065 {
11066 ULONGEST result;
11067
11068 unpack_varlen_hex (rs->buf, &result);
11069 return result;
11070 }
11071 else if (result == PACKET_UNKNOWN)
11072 throw_error (TLS_GENERIC_ERROR,
11073 _("Remote target doesn't support qGetTLSAddr packet"));
11074 else
11075 throw_error (TLS_GENERIC_ERROR,
11076 _("Remote target failed to process qGetTLSAddr request"));
11077 }
11078 else
11079 throw_error (TLS_GENERIC_ERROR,
11080 _("TLS not supported or disabled on this target"));
11081 /* Not reached. */
11082 return 0;
11083 }
11084
11085 /* Provide thread local base, i.e. Thread Information Block address.
11086 Returns 1 if ptid is found and thread_local_base is non zero. */
11087
11088 static int
11089 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11090 {
11091 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11092 {
11093 struct remote_state *rs = get_remote_state ();
11094 char *p = rs->buf;
11095 char *endp = rs->buf + get_remote_packet_size ();
11096 enum packet_result result;
11097
11098 strcpy (p, "qGetTIBAddr:");
11099 p += strlen (p);
11100 p = write_ptid (p, endp, ptid);
11101 *p++ = '\0';
11102
11103 putpkt (rs->buf);
11104 getpkt (&rs->buf, &rs->buf_size, 0);
11105 result = packet_ok (rs->buf,
11106 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11107 if (result == PACKET_OK)
11108 {
11109 ULONGEST result;
11110
11111 unpack_varlen_hex (rs->buf, &result);
11112 if (addr)
11113 *addr = (CORE_ADDR) result;
11114 return 1;
11115 }
11116 else if (result == PACKET_UNKNOWN)
11117 error (_("Remote target doesn't support qGetTIBAddr packet"));
11118 else
11119 error (_("Remote target failed to process qGetTIBAddr request"));
11120 }
11121 else
11122 error (_("qGetTIBAddr not supported or disabled on this target"));
11123 /* Not reached. */
11124 return 0;
11125 }
11126
11127 /* Support for inferring a target description based on the current
11128 architecture and the size of a 'g' packet. While the 'g' packet
11129 can have any size (since optional registers can be left off the
11130 end), some sizes are easily recognizable given knowledge of the
11131 approximate architecture. */
11132
11133 struct remote_g_packet_guess
11134 {
11135 int bytes;
11136 const struct target_desc *tdesc;
11137 };
11138 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11139 DEF_VEC_O(remote_g_packet_guess_s);
11140
11141 struct remote_g_packet_data
11142 {
11143 VEC(remote_g_packet_guess_s) *guesses;
11144 };
11145
11146 static struct gdbarch_data *remote_g_packet_data_handle;
11147
11148 static void *
11149 remote_g_packet_data_init (struct obstack *obstack)
11150 {
11151 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11152 }
11153
11154 void
11155 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11156 const struct target_desc *tdesc)
11157 {
11158 struct remote_g_packet_data *data
11159 = ((struct remote_g_packet_data *)
11160 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11161 struct remote_g_packet_guess new_guess, *guess;
11162 int ix;
11163
11164 gdb_assert (tdesc != NULL);
11165
11166 for (ix = 0;
11167 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11168 ix++)
11169 if (guess->bytes == bytes)
11170 internal_error (__FILE__, __LINE__,
11171 _("Duplicate g packet description added for size %d"),
11172 bytes);
11173
11174 new_guess.bytes = bytes;
11175 new_guess.tdesc = tdesc;
11176 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11177 }
11178
11179 /* Return 1 if remote_read_description would do anything on this target
11180 and architecture, 0 otherwise. */
11181
11182 static int
11183 remote_read_description_p (struct target_ops *target)
11184 {
11185 struct remote_g_packet_data *data
11186 = ((struct remote_g_packet_data *)
11187 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11188
11189 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11190 return 1;
11191
11192 return 0;
11193 }
11194
11195 static const struct target_desc *
11196 remote_read_description (struct target_ops *target)
11197 {
11198 struct remote_g_packet_data *data
11199 = ((struct remote_g_packet_data *)
11200 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11201
11202 /* Do not try this during initial connection, when we do not know
11203 whether there is a running but stopped thread. */
11204 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11205 return target->beneath->to_read_description (target->beneath);
11206
11207 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11208 {
11209 struct remote_g_packet_guess *guess;
11210 int ix;
11211 int bytes = send_g_packet ();
11212
11213 for (ix = 0;
11214 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11215 ix++)
11216 if (guess->bytes == bytes)
11217 return guess->tdesc;
11218
11219 /* We discard the g packet. A minor optimization would be to
11220 hold on to it, and fill the register cache once we have selected
11221 an architecture, but it's too tricky to do safely. */
11222 }
11223
11224 return target->beneath->to_read_description (target->beneath);
11225 }
11226
11227 /* Remote file transfer support. This is host-initiated I/O, not
11228 target-initiated; for target-initiated, see remote-fileio.c. */
11229
11230 /* If *LEFT is at least the length of STRING, copy STRING to
11231 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11232 decrease *LEFT. Otherwise raise an error. */
11233
11234 static void
11235 remote_buffer_add_string (char **buffer, int *left, const char *string)
11236 {
11237 int len = strlen (string);
11238
11239 if (len > *left)
11240 error (_("Packet too long for target."));
11241
11242 memcpy (*buffer, string, len);
11243 *buffer += len;
11244 *left -= len;
11245
11246 /* NUL-terminate the buffer as a convenience, if there is
11247 room. */
11248 if (*left)
11249 **buffer = '\0';
11250 }
11251
11252 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11253 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11254 decrease *LEFT. Otherwise raise an error. */
11255
11256 static void
11257 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11258 int len)
11259 {
11260 if (2 * len > *left)
11261 error (_("Packet too long for target."));
11262
11263 bin2hex (bytes, *buffer, len);
11264 *buffer += 2 * len;
11265 *left -= 2 * len;
11266
11267 /* NUL-terminate the buffer as a convenience, if there is
11268 room. */
11269 if (*left)
11270 **buffer = '\0';
11271 }
11272
11273 /* If *LEFT is large enough, convert VALUE to hex and add it to
11274 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11275 decrease *LEFT. Otherwise raise an error. */
11276
11277 static void
11278 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11279 {
11280 int len = hexnumlen (value);
11281
11282 if (len > *left)
11283 error (_("Packet too long for target."));
11284
11285 hexnumstr (*buffer, value);
11286 *buffer += len;
11287 *left -= len;
11288
11289 /* NUL-terminate the buffer as a convenience, if there is
11290 room. */
11291 if (*left)
11292 **buffer = '\0';
11293 }
11294
11295 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11296 value, *REMOTE_ERRNO to the remote error number or zero if none
11297 was included, and *ATTACHMENT to point to the start of the annex
11298 if any. The length of the packet isn't needed here; there may
11299 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11300
11301 Return 0 if the packet could be parsed, -1 if it could not. If
11302 -1 is returned, the other variables may not be initialized. */
11303
11304 static int
11305 remote_hostio_parse_result (char *buffer, int *retcode,
11306 int *remote_errno, char **attachment)
11307 {
11308 char *p, *p2;
11309
11310 *remote_errno = 0;
11311 *attachment = NULL;
11312
11313 if (buffer[0] != 'F')
11314 return -1;
11315
11316 errno = 0;
11317 *retcode = strtol (&buffer[1], &p, 16);
11318 if (errno != 0 || p == &buffer[1])
11319 return -1;
11320
11321 /* Check for ",errno". */
11322 if (*p == ',')
11323 {
11324 errno = 0;
11325 *remote_errno = strtol (p + 1, &p2, 16);
11326 if (errno != 0 || p + 1 == p2)
11327 return -1;
11328 p = p2;
11329 }
11330
11331 /* Check for ";attachment". If there is no attachment, the
11332 packet should end here. */
11333 if (*p == ';')
11334 {
11335 *attachment = p + 1;
11336 return 0;
11337 }
11338 else if (*p == '\0')
11339 return 0;
11340 else
11341 return -1;
11342 }
11343
11344 /* Send a prepared I/O packet to the target and read its response.
11345 The prepared packet is in the global RS->BUF before this function
11346 is called, and the answer is there when we return.
11347
11348 COMMAND_BYTES is the length of the request to send, which may include
11349 binary data. WHICH_PACKET is the packet configuration to check
11350 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11351 is set to the error number and -1 is returned. Otherwise the value
11352 returned by the function is returned.
11353
11354 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11355 attachment is expected; an error will be reported if there's a
11356 mismatch. If one is found, *ATTACHMENT will be set to point into
11357 the packet buffer and *ATTACHMENT_LEN will be set to the
11358 attachment's length. */
11359
11360 static int
11361 remote_hostio_send_command (int command_bytes, int which_packet,
11362 int *remote_errno, char **attachment,
11363 int *attachment_len)
11364 {
11365 struct remote_state *rs = get_remote_state ();
11366 int ret, bytes_read;
11367 char *attachment_tmp;
11368
11369 if (!rs->remote_desc
11370 || packet_support (which_packet) == PACKET_DISABLE)
11371 {
11372 *remote_errno = FILEIO_ENOSYS;
11373 return -1;
11374 }
11375
11376 putpkt_binary (rs->buf, command_bytes);
11377 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11378
11379 /* If it timed out, something is wrong. Don't try to parse the
11380 buffer. */
11381 if (bytes_read < 0)
11382 {
11383 *remote_errno = FILEIO_EINVAL;
11384 return -1;
11385 }
11386
11387 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11388 {
11389 case PACKET_ERROR:
11390 *remote_errno = FILEIO_EINVAL;
11391 return -1;
11392 case PACKET_UNKNOWN:
11393 *remote_errno = FILEIO_ENOSYS;
11394 return -1;
11395 case PACKET_OK:
11396 break;
11397 }
11398
11399 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11400 &attachment_tmp))
11401 {
11402 *remote_errno = FILEIO_EINVAL;
11403 return -1;
11404 }
11405
11406 /* Make sure we saw an attachment if and only if we expected one. */
11407 if ((attachment_tmp == NULL && attachment != NULL)
11408 || (attachment_tmp != NULL && attachment == NULL))
11409 {
11410 *remote_errno = FILEIO_EINVAL;
11411 return -1;
11412 }
11413
11414 /* If an attachment was found, it must point into the packet buffer;
11415 work out how many bytes there were. */
11416 if (attachment_tmp != NULL)
11417 {
11418 *attachment = attachment_tmp;
11419 *attachment_len = bytes_read - (*attachment - rs->buf);
11420 }
11421
11422 return ret;
11423 }
11424
11425 /* Invalidate the readahead cache. */
11426
11427 static void
11428 readahead_cache_invalidate (void)
11429 {
11430 struct remote_state *rs = get_remote_state ();
11431
11432 rs->readahead_cache.fd = -1;
11433 }
11434
11435 /* Invalidate the readahead cache if it is holding data for FD. */
11436
11437 static void
11438 readahead_cache_invalidate_fd (int fd)
11439 {
11440 struct remote_state *rs = get_remote_state ();
11441
11442 if (rs->readahead_cache.fd == fd)
11443 rs->readahead_cache.fd = -1;
11444 }
11445
11446 /* Set the filesystem remote_hostio functions that take FILENAME
11447 arguments will use. Return 0 on success, or -1 if an error
11448 occurs (and set *REMOTE_ERRNO). */
11449
11450 static int
11451 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11452 {
11453 struct remote_state *rs = get_remote_state ();
11454 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11455 char *p = rs->buf;
11456 int left = get_remote_packet_size () - 1;
11457 char arg[9];
11458 int ret;
11459
11460 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11461 return 0;
11462
11463 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11464 return 0;
11465
11466 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11467
11468 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11469 remote_buffer_add_string (&p, &left, arg);
11470
11471 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11472 remote_errno, NULL, NULL);
11473
11474 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11475 return 0;
11476
11477 if (ret == 0)
11478 rs->fs_pid = required_pid;
11479
11480 return ret;
11481 }
11482
11483 /* Implementation of to_fileio_open. */
11484
11485 static int
11486 remote_hostio_open (struct target_ops *self,
11487 struct inferior *inf, const char *filename,
11488 int flags, int mode, int warn_if_slow,
11489 int *remote_errno)
11490 {
11491 struct remote_state *rs = get_remote_state ();
11492 char *p = rs->buf;
11493 int left = get_remote_packet_size () - 1;
11494
11495 if (warn_if_slow)
11496 {
11497 static int warning_issued = 0;
11498
11499 printf_unfiltered (_("Reading %s from remote target...\n"),
11500 filename);
11501
11502 if (!warning_issued)
11503 {
11504 warning (_("File transfers from remote targets can be slow."
11505 " Use \"set sysroot\" to access files locally"
11506 " instead."));
11507 warning_issued = 1;
11508 }
11509 }
11510
11511 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11512 return -1;
11513
11514 remote_buffer_add_string (&p, &left, "vFile:open:");
11515
11516 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11517 strlen (filename));
11518 remote_buffer_add_string (&p, &left, ",");
11519
11520 remote_buffer_add_int (&p, &left, flags);
11521 remote_buffer_add_string (&p, &left, ",");
11522
11523 remote_buffer_add_int (&p, &left, mode);
11524
11525 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11526 remote_errno, NULL, NULL);
11527 }
11528
11529 /* Implementation of to_fileio_pwrite. */
11530
11531 static int
11532 remote_hostio_pwrite (struct target_ops *self,
11533 int fd, const gdb_byte *write_buf, int len,
11534 ULONGEST offset, int *remote_errno)
11535 {
11536 struct remote_state *rs = get_remote_state ();
11537 char *p = rs->buf;
11538 int left = get_remote_packet_size ();
11539 int out_len;
11540
11541 readahead_cache_invalidate_fd (fd);
11542
11543 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11544
11545 remote_buffer_add_int (&p, &left, fd);
11546 remote_buffer_add_string (&p, &left, ",");
11547
11548 remote_buffer_add_int (&p, &left, offset);
11549 remote_buffer_add_string (&p, &left, ",");
11550
11551 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11552 get_remote_packet_size () - (p - rs->buf));
11553
11554 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11555 remote_errno, NULL, NULL);
11556 }
11557
11558 /* Helper for the implementation of to_fileio_pread. Read the file
11559 from the remote side with vFile:pread. */
11560
11561 static int
11562 remote_hostio_pread_vFile (struct target_ops *self,
11563 int fd, gdb_byte *read_buf, int len,
11564 ULONGEST offset, int *remote_errno)
11565 {
11566 struct remote_state *rs = get_remote_state ();
11567 char *p = rs->buf;
11568 char *attachment;
11569 int left = get_remote_packet_size ();
11570 int ret, attachment_len;
11571 int read_len;
11572
11573 remote_buffer_add_string (&p, &left, "vFile:pread:");
11574
11575 remote_buffer_add_int (&p, &left, fd);
11576 remote_buffer_add_string (&p, &left, ",");
11577
11578 remote_buffer_add_int (&p, &left, len);
11579 remote_buffer_add_string (&p, &left, ",");
11580
11581 remote_buffer_add_int (&p, &left, offset);
11582
11583 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11584 remote_errno, &attachment,
11585 &attachment_len);
11586
11587 if (ret < 0)
11588 return ret;
11589
11590 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11591 read_buf, len);
11592 if (read_len != ret)
11593 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11594
11595 return ret;
11596 }
11597
11598 /* Serve pread from the readahead cache. Returns number of bytes
11599 read, or 0 if the request can't be served from the cache. */
11600
11601 static int
11602 remote_hostio_pread_from_cache (struct remote_state *rs,
11603 int fd, gdb_byte *read_buf, size_t len,
11604 ULONGEST offset)
11605 {
11606 struct readahead_cache *cache = &rs->readahead_cache;
11607
11608 if (cache->fd == fd
11609 && cache->offset <= offset
11610 && offset < cache->offset + cache->bufsize)
11611 {
11612 ULONGEST max = cache->offset + cache->bufsize;
11613
11614 if (offset + len > max)
11615 len = max - offset;
11616
11617 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11618 return len;
11619 }
11620
11621 return 0;
11622 }
11623
11624 /* Implementation of to_fileio_pread. */
11625
11626 static int
11627 remote_hostio_pread (struct target_ops *self,
11628 int fd, gdb_byte *read_buf, int len,
11629 ULONGEST offset, int *remote_errno)
11630 {
11631 int ret;
11632 struct remote_state *rs = get_remote_state ();
11633 struct readahead_cache *cache = &rs->readahead_cache;
11634
11635 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11636 if (ret > 0)
11637 {
11638 cache->hit_count++;
11639
11640 if (remote_debug)
11641 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11642 pulongest (cache->hit_count));
11643 return ret;
11644 }
11645
11646 cache->miss_count++;
11647 if (remote_debug)
11648 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11649 pulongest (cache->miss_count));
11650
11651 cache->fd = fd;
11652 cache->offset = offset;
11653 cache->bufsize = get_remote_packet_size ();
11654 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11655
11656 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11657 cache->offset, remote_errno);
11658 if (ret <= 0)
11659 {
11660 readahead_cache_invalidate_fd (fd);
11661 return ret;
11662 }
11663
11664 cache->bufsize = ret;
11665 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11666 }
11667
11668 /* Implementation of to_fileio_close. */
11669
11670 static int
11671 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11672 {
11673 struct remote_state *rs = get_remote_state ();
11674 char *p = rs->buf;
11675 int left = get_remote_packet_size () - 1;
11676
11677 readahead_cache_invalidate_fd (fd);
11678
11679 remote_buffer_add_string (&p, &left, "vFile:close:");
11680
11681 remote_buffer_add_int (&p, &left, fd);
11682
11683 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11684 remote_errno, NULL, NULL);
11685 }
11686
11687 /* Implementation of to_fileio_unlink. */
11688
11689 static int
11690 remote_hostio_unlink (struct target_ops *self,
11691 struct inferior *inf, const char *filename,
11692 int *remote_errno)
11693 {
11694 struct remote_state *rs = get_remote_state ();
11695 char *p = rs->buf;
11696 int left = get_remote_packet_size () - 1;
11697
11698 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11699 return -1;
11700
11701 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11702
11703 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11704 strlen (filename));
11705
11706 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11707 remote_errno, NULL, NULL);
11708 }
11709
11710 /* Implementation of to_fileio_readlink. */
11711
11712 static gdb::optional<std::string>
11713 remote_hostio_readlink (struct target_ops *self,
11714 struct inferior *inf, const char *filename,
11715 int *remote_errno)
11716 {
11717 struct remote_state *rs = get_remote_state ();
11718 char *p = rs->buf;
11719 char *attachment;
11720 int left = get_remote_packet_size ();
11721 int len, attachment_len;
11722 int read_len;
11723
11724 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11725 return {};
11726
11727 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11728
11729 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11730 strlen (filename));
11731
11732 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11733 remote_errno, &attachment,
11734 &attachment_len);
11735
11736 if (len < 0)
11737 return {};
11738
11739 std::string ret (len, '\0');
11740
11741 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11742 (gdb_byte *) &ret[0], len);
11743 if (read_len != len)
11744 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11745
11746 return ret;
11747 }
11748
11749 /* Implementation of to_fileio_fstat. */
11750
11751 static int
11752 remote_hostio_fstat (struct target_ops *self,
11753 int fd, struct stat *st,
11754 int *remote_errno)
11755 {
11756 struct remote_state *rs = get_remote_state ();
11757 char *p = rs->buf;
11758 int left = get_remote_packet_size ();
11759 int attachment_len, ret;
11760 char *attachment;
11761 struct fio_stat fst;
11762 int read_len;
11763
11764 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11765
11766 remote_buffer_add_int (&p, &left, fd);
11767
11768 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11769 remote_errno, &attachment,
11770 &attachment_len);
11771 if (ret < 0)
11772 {
11773 if (*remote_errno != FILEIO_ENOSYS)
11774 return ret;
11775
11776 /* Strictly we should return -1, ENOSYS here, but when
11777 "set sysroot remote:" was implemented in August 2008
11778 BFD's need for a stat function was sidestepped with
11779 this hack. This was not remedied until March 2015
11780 so we retain the previous behavior to avoid breaking
11781 compatibility.
11782
11783 Note that the memset is a March 2015 addition; older
11784 GDBs set st_size *and nothing else* so the structure
11785 would have garbage in all other fields. This might
11786 break something but retaining the previous behavior
11787 here would be just too wrong. */
11788
11789 memset (st, 0, sizeof (struct stat));
11790 st->st_size = INT_MAX;
11791 return 0;
11792 }
11793
11794 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11795 (gdb_byte *) &fst, sizeof (fst));
11796
11797 if (read_len != ret)
11798 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11799
11800 if (read_len != sizeof (fst))
11801 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11802 read_len, (int) sizeof (fst));
11803
11804 remote_fileio_to_host_stat (&fst, st);
11805
11806 return 0;
11807 }
11808
11809 /* Implementation of to_filesystem_is_local. */
11810
11811 static int
11812 remote_filesystem_is_local (struct target_ops *self)
11813 {
11814 /* Valgrind GDB presents itself as a remote target but works
11815 on the local filesystem: it does not implement remote get
11816 and users are not expected to set a sysroot. To handle
11817 this case we treat the remote filesystem as local if the
11818 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11819 does not support vFile:open. */
11820 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11821 {
11822 enum packet_support ps = packet_support (PACKET_vFile_open);
11823
11824 if (ps == PACKET_SUPPORT_UNKNOWN)
11825 {
11826 int fd, remote_errno;
11827
11828 /* Try opening a file to probe support. The supplied
11829 filename is irrelevant, we only care about whether
11830 the stub recognizes the packet or not. */
11831 fd = remote_hostio_open (self, NULL, "just probing",
11832 FILEIO_O_RDONLY, 0700, 0,
11833 &remote_errno);
11834
11835 if (fd >= 0)
11836 remote_hostio_close (self, fd, &remote_errno);
11837
11838 ps = packet_support (PACKET_vFile_open);
11839 }
11840
11841 if (ps == PACKET_DISABLE)
11842 {
11843 static int warning_issued = 0;
11844
11845 if (!warning_issued)
11846 {
11847 warning (_("remote target does not support file"
11848 " transfer, attempting to access files"
11849 " from local filesystem."));
11850 warning_issued = 1;
11851 }
11852
11853 return 1;
11854 }
11855 }
11856
11857 return 0;
11858 }
11859
11860 static int
11861 remote_fileio_errno_to_host (int errnum)
11862 {
11863 switch (errnum)
11864 {
11865 case FILEIO_EPERM:
11866 return EPERM;
11867 case FILEIO_ENOENT:
11868 return ENOENT;
11869 case FILEIO_EINTR:
11870 return EINTR;
11871 case FILEIO_EIO:
11872 return EIO;
11873 case FILEIO_EBADF:
11874 return EBADF;
11875 case FILEIO_EACCES:
11876 return EACCES;
11877 case FILEIO_EFAULT:
11878 return EFAULT;
11879 case FILEIO_EBUSY:
11880 return EBUSY;
11881 case FILEIO_EEXIST:
11882 return EEXIST;
11883 case FILEIO_ENODEV:
11884 return ENODEV;
11885 case FILEIO_ENOTDIR:
11886 return ENOTDIR;
11887 case FILEIO_EISDIR:
11888 return EISDIR;
11889 case FILEIO_EINVAL:
11890 return EINVAL;
11891 case FILEIO_ENFILE:
11892 return ENFILE;
11893 case FILEIO_EMFILE:
11894 return EMFILE;
11895 case FILEIO_EFBIG:
11896 return EFBIG;
11897 case FILEIO_ENOSPC:
11898 return ENOSPC;
11899 case FILEIO_ESPIPE:
11900 return ESPIPE;
11901 case FILEIO_EROFS:
11902 return EROFS;
11903 case FILEIO_ENOSYS:
11904 return ENOSYS;
11905 case FILEIO_ENAMETOOLONG:
11906 return ENAMETOOLONG;
11907 }
11908 return -1;
11909 }
11910
11911 static char *
11912 remote_hostio_error (int errnum)
11913 {
11914 int host_error = remote_fileio_errno_to_host (errnum);
11915
11916 if (host_error == -1)
11917 error (_("Unknown remote I/O error %d"), errnum);
11918 else
11919 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11920 }
11921
11922 static void
11923 remote_hostio_close_cleanup (void *opaque)
11924 {
11925 int fd = *(int *) opaque;
11926 int remote_errno;
11927
11928 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11929 }
11930
11931 void
11932 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11933 {
11934 struct cleanup *back_to, *close_cleanup;
11935 int retcode, fd, remote_errno, bytes, io_size;
11936 gdb_byte *buffer;
11937 int bytes_in_buffer;
11938 int saw_eof;
11939 ULONGEST offset;
11940 struct remote_state *rs = get_remote_state ();
11941
11942 if (!rs->remote_desc)
11943 error (_("command can only be used with remote target"));
11944
11945 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11946 if (file == NULL)
11947 perror_with_name (local_file);
11948
11949 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11950 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11951 | FILEIO_O_TRUNC),
11952 0700, 0, &remote_errno);
11953 if (fd == -1)
11954 remote_hostio_error (remote_errno);
11955
11956 /* Send up to this many bytes at once. They won't all fit in the
11957 remote packet limit, so we'll transfer slightly fewer. */
11958 io_size = get_remote_packet_size ();
11959 buffer = (gdb_byte *) xmalloc (io_size);
11960 back_to = make_cleanup (xfree, buffer);
11961
11962 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11963
11964 bytes_in_buffer = 0;
11965 saw_eof = 0;
11966 offset = 0;
11967 while (bytes_in_buffer || !saw_eof)
11968 {
11969 if (!saw_eof)
11970 {
11971 bytes = fread (buffer + bytes_in_buffer, 1,
11972 io_size - bytes_in_buffer,
11973 file.get ());
11974 if (bytes == 0)
11975 {
11976 if (ferror (file.get ()))
11977 error (_("Error reading %s."), local_file);
11978 else
11979 {
11980 /* EOF. Unless there is something still in the
11981 buffer from the last iteration, we are done. */
11982 saw_eof = 1;
11983 if (bytes_in_buffer == 0)
11984 break;
11985 }
11986 }
11987 }
11988 else
11989 bytes = 0;
11990
11991 bytes += bytes_in_buffer;
11992 bytes_in_buffer = 0;
11993
11994 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11995 fd, buffer, bytes,
11996 offset, &remote_errno);
11997
11998 if (retcode < 0)
11999 remote_hostio_error (remote_errno);
12000 else if (retcode == 0)
12001 error (_("Remote write of %d bytes returned 0!"), bytes);
12002 else if (retcode < bytes)
12003 {
12004 /* Short write. Save the rest of the read data for the next
12005 write. */
12006 bytes_in_buffer = bytes - retcode;
12007 memmove (buffer, buffer + retcode, bytes_in_buffer);
12008 }
12009
12010 offset += retcode;
12011 }
12012
12013 discard_cleanups (close_cleanup);
12014 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12015 remote_hostio_error (remote_errno);
12016
12017 if (from_tty)
12018 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12019 do_cleanups (back_to);
12020 }
12021
12022 void
12023 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12024 {
12025 struct cleanup *back_to, *close_cleanup;
12026 int fd, remote_errno, bytes, io_size;
12027 gdb_byte *buffer;
12028 ULONGEST offset;
12029 struct remote_state *rs = get_remote_state ();
12030
12031 if (!rs->remote_desc)
12032 error (_("command can only be used with remote target"));
12033
12034 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12035 remote_file, FILEIO_O_RDONLY, 0, 0,
12036 &remote_errno);
12037 if (fd == -1)
12038 remote_hostio_error (remote_errno);
12039
12040 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12041 if (file == NULL)
12042 perror_with_name (local_file);
12043
12044 /* Send up to this many bytes at once. They won't all fit in the
12045 remote packet limit, so we'll transfer slightly fewer. */
12046 io_size = get_remote_packet_size ();
12047 buffer = (gdb_byte *) xmalloc (io_size);
12048 back_to = make_cleanup (xfree, buffer);
12049
12050 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12051
12052 offset = 0;
12053 while (1)
12054 {
12055 bytes = remote_hostio_pread (find_target_at (process_stratum),
12056 fd, buffer, io_size, offset, &remote_errno);
12057 if (bytes == 0)
12058 /* Success, but no bytes, means end-of-file. */
12059 break;
12060 if (bytes == -1)
12061 remote_hostio_error (remote_errno);
12062
12063 offset += bytes;
12064
12065 bytes = fwrite (buffer, 1, bytes, file.get ());
12066 if (bytes == 0)
12067 perror_with_name (local_file);
12068 }
12069
12070 discard_cleanups (close_cleanup);
12071 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12072 remote_hostio_error (remote_errno);
12073
12074 if (from_tty)
12075 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12076 do_cleanups (back_to);
12077 }
12078
12079 void
12080 remote_file_delete (const char *remote_file, int from_tty)
12081 {
12082 int retcode, remote_errno;
12083 struct remote_state *rs = get_remote_state ();
12084
12085 if (!rs->remote_desc)
12086 error (_("command can only be used with remote target"));
12087
12088 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12089 NULL, remote_file, &remote_errno);
12090 if (retcode == -1)
12091 remote_hostio_error (remote_errno);
12092
12093 if (from_tty)
12094 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12095 }
12096
12097 static void
12098 remote_put_command (const char *args, int from_tty)
12099 {
12100 if (args == NULL)
12101 error_no_arg (_("file to put"));
12102
12103 gdb_argv argv (args);
12104 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12105 error (_("Invalid parameters to remote put"));
12106
12107 remote_file_put (argv[0], argv[1], from_tty);
12108 }
12109
12110 static void
12111 remote_get_command (const char *args, int from_tty)
12112 {
12113 if (args == NULL)
12114 error_no_arg (_("file to get"));
12115
12116 gdb_argv argv (args);
12117 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12118 error (_("Invalid parameters to remote get"));
12119
12120 remote_file_get (argv[0], argv[1], from_tty);
12121 }
12122
12123 static void
12124 remote_delete_command (const char *args, int from_tty)
12125 {
12126 if (args == NULL)
12127 error_no_arg (_("file to delete"));
12128
12129 gdb_argv argv (args);
12130 if (argv[0] == NULL || argv[1] != NULL)
12131 error (_("Invalid parameters to remote delete"));
12132
12133 remote_file_delete (argv[0], from_tty);
12134 }
12135
12136 static void
12137 remote_command (const char *args, int from_tty)
12138 {
12139 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12140 }
12141
12142 static int
12143 remote_can_execute_reverse (struct target_ops *self)
12144 {
12145 if (packet_support (PACKET_bs) == PACKET_ENABLE
12146 || packet_support (PACKET_bc) == PACKET_ENABLE)
12147 return 1;
12148 else
12149 return 0;
12150 }
12151
12152 static int
12153 remote_supports_non_stop (struct target_ops *self)
12154 {
12155 return 1;
12156 }
12157
12158 static int
12159 remote_supports_disable_randomization (struct target_ops *self)
12160 {
12161 /* Only supported in extended mode. */
12162 return 0;
12163 }
12164
12165 static int
12166 remote_supports_multi_process (struct target_ops *self)
12167 {
12168 struct remote_state *rs = get_remote_state ();
12169
12170 return remote_multi_process_p (rs);
12171 }
12172
12173 static int
12174 remote_supports_cond_tracepoints (void)
12175 {
12176 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12177 }
12178
12179 static int
12180 remote_supports_cond_breakpoints (struct target_ops *self)
12181 {
12182 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12183 }
12184
12185 static int
12186 remote_supports_fast_tracepoints (void)
12187 {
12188 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12189 }
12190
12191 static int
12192 remote_supports_static_tracepoints (void)
12193 {
12194 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12195 }
12196
12197 static int
12198 remote_supports_install_in_trace (void)
12199 {
12200 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12201 }
12202
12203 static int
12204 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12205 {
12206 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12207 == PACKET_ENABLE);
12208 }
12209
12210 static int
12211 remote_supports_string_tracing (struct target_ops *self)
12212 {
12213 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12214 }
12215
12216 static int
12217 remote_can_run_breakpoint_commands (struct target_ops *self)
12218 {
12219 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12220 }
12221
12222 static void
12223 remote_trace_init (struct target_ops *self)
12224 {
12225 struct remote_state *rs = get_remote_state ();
12226
12227 putpkt ("QTinit");
12228 remote_get_noisy_reply ();
12229 if (strcmp (rs->buf, "OK") != 0)
12230 error (_("Target does not support this command."));
12231 }
12232
12233 /* Recursive routine to walk through command list including loops, and
12234 download packets for each command. */
12235
12236 static void
12237 remote_download_command_source (int num, ULONGEST addr,
12238 struct command_line *cmds)
12239 {
12240 struct remote_state *rs = get_remote_state ();
12241 struct command_line *cmd;
12242
12243 for (cmd = cmds; cmd; cmd = cmd->next)
12244 {
12245 QUIT; /* Allow user to bail out with ^C. */
12246 strcpy (rs->buf, "QTDPsrc:");
12247 encode_source_string (num, addr, "cmd", cmd->line,
12248 rs->buf + strlen (rs->buf),
12249 rs->buf_size - strlen (rs->buf));
12250 putpkt (rs->buf);
12251 remote_get_noisy_reply ();
12252 if (strcmp (rs->buf, "OK"))
12253 warning (_("Target does not support source download."));
12254
12255 if (cmd->control_type == while_control
12256 || cmd->control_type == while_stepping_control)
12257 {
12258 remote_download_command_source (num, addr, *cmd->body_list);
12259
12260 QUIT; /* Allow user to bail out with ^C. */
12261 strcpy (rs->buf, "QTDPsrc:");
12262 encode_source_string (num, addr, "cmd", "end",
12263 rs->buf + strlen (rs->buf),
12264 rs->buf_size - strlen (rs->buf));
12265 putpkt (rs->buf);
12266 remote_get_noisy_reply ();
12267 if (strcmp (rs->buf, "OK"))
12268 warning (_("Target does not support source download."));
12269 }
12270 }
12271 }
12272
12273 static void
12274 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12275 {
12276 #define BUF_SIZE 2048
12277
12278 CORE_ADDR tpaddr;
12279 char addrbuf[40];
12280 char buf[BUF_SIZE];
12281 std::vector<std::string> tdp_actions;
12282 std::vector<std::string> stepping_actions;
12283 char *pkt;
12284 struct breakpoint *b = loc->owner;
12285 struct tracepoint *t = (struct tracepoint *) b;
12286 struct remote_state *rs = get_remote_state ();
12287
12288 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12289
12290 tpaddr = loc->address;
12291 sprintf_vma (addrbuf, tpaddr);
12292 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12293 addrbuf, /* address */
12294 (b->enable_state == bp_enabled ? 'E' : 'D'),
12295 t->step_count, t->pass_count);
12296 /* Fast tracepoints are mostly handled by the target, but we can
12297 tell the target how big of an instruction block should be moved
12298 around. */
12299 if (b->type == bp_fast_tracepoint)
12300 {
12301 /* Only test for support at download time; we may not know
12302 target capabilities at definition time. */
12303 if (remote_supports_fast_tracepoints ())
12304 {
12305 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12306 NULL))
12307 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12308 gdb_insn_length (loc->gdbarch, tpaddr));
12309 else
12310 /* If it passed validation at definition but fails now,
12311 something is very wrong. */
12312 internal_error (__FILE__, __LINE__,
12313 _("Fast tracepoint not "
12314 "valid during download"));
12315 }
12316 else
12317 /* Fast tracepoints are functionally identical to regular
12318 tracepoints, so don't take lack of support as a reason to
12319 give up on the trace run. */
12320 warning (_("Target does not support fast tracepoints, "
12321 "downloading %d as regular tracepoint"), b->number);
12322 }
12323 else if (b->type == bp_static_tracepoint)
12324 {
12325 /* Only test for support at download time; we may not know
12326 target capabilities at definition time. */
12327 if (remote_supports_static_tracepoints ())
12328 {
12329 struct static_tracepoint_marker marker;
12330
12331 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12332 strcat (buf, ":S");
12333 else
12334 error (_("Static tracepoint not valid during download"));
12335 }
12336 else
12337 /* Fast tracepoints are functionally identical to regular
12338 tracepoints, so don't take lack of support as a reason
12339 to give up on the trace run. */
12340 error (_("Target does not support static tracepoints"));
12341 }
12342 /* If the tracepoint has a conditional, make it into an agent
12343 expression and append to the definition. */
12344 if (loc->cond)
12345 {
12346 /* Only test support at download time, we may not know target
12347 capabilities at definition time. */
12348 if (remote_supports_cond_tracepoints ())
12349 {
12350 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12351 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12352 aexpr->len);
12353 pkt = buf + strlen (buf);
12354 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12355 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12356 *pkt = '\0';
12357 }
12358 else
12359 warning (_("Target does not support conditional tracepoints, "
12360 "ignoring tp %d cond"), b->number);
12361 }
12362
12363 if (b->commands || *default_collect)
12364 strcat (buf, "-");
12365 putpkt (buf);
12366 remote_get_noisy_reply ();
12367 if (strcmp (rs->buf, "OK"))
12368 error (_("Target does not support tracepoints."));
12369
12370 /* do_single_steps (t); */
12371 for (auto action_it = tdp_actions.begin ();
12372 action_it != tdp_actions.end (); action_it++)
12373 {
12374 QUIT; /* Allow user to bail out with ^C. */
12375
12376 bool has_more = (action_it != tdp_actions.end ()
12377 || !stepping_actions.empty ());
12378
12379 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12380 b->number, addrbuf, /* address */
12381 action_it->c_str (),
12382 has_more ? '-' : 0);
12383 putpkt (buf);
12384 remote_get_noisy_reply ();
12385 if (strcmp (rs->buf, "OK"))
12386 error (_("Error on target while setting tracepoints."));
12387 }
12388
12389 for (auto action_it = stepping_actions.begin ();
12390 action_it != stepping_actions.end (); action_it++)
12391 {
12392 QUIT; /* Allow user to bail out with ^C. */
12393
12394 bool is_first = action_it == stepping_actions.begin ();
12395 bool has_more = action_it != stepping_actions.end ();
12396
12397 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12398 b->number, addrbuf, /* address */
12399 is_first ? "S" : "",
12400 action_it->c_str (),
12401 has_more ? "-" : "");
12402 putpkt (buf);
12403 remote_get_noisy_reply ();
12404 if (strcmp (rs->buf, "OK"))
12405 error (_("Error on target while setting tracepoints."));
12406 }
12407
12408 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12409 {
12410 if (b->location != NULL)
12411 {
12412 strcpy (buf, "QTDPsrc:");
12413 encode_source_string (b->number, loc->address, "at",
12414 event_location_to_string (b->location.get ()),
12415 buf + strlen (buf), 2048 - strlen (buf));
12416 putpkt (buf);
12417 remote_get_noisy_reply ();
12418 if (strcmp (rs->buf, "OK"))
12419 warning (_("Target does not support source download."));
12420 }
12421 if (b->cond_string)
12422 {
12423 strcpy (buf, "QTDPsrc:");
12424 encode_source_string (b->number, loc->address,
12425 "cond", b->cond_string, buf + strlen (buf),
12426 2048 - strlen (buf));
12427 putpkt (buf);
12428 remote_get_noisy_reply ();
12429 if (strcmp (rs->buf, "OK"))
12430 warning (_("Target does not support source download."));
12431 }
12432 remote_download_command_source (b->number, loc->address,
12433 breakpoint_commands (b));
12434 }
12435 }
12436
12437 static int
12438 remote_can_download_tracepoint (struct target_ops *self)
12439 {
12440 struct remote_state *rs = get_remote_state ();
12441 struct trace_status *ts;
12442 int status;
12443
12444 /* Don't try to install tracepoints until we've relocated our
12445 symbols, and fetched and merged the target's tracepoint list with
12446 ours. */
12447 if (rs->starting_up)
12448 return 0;
12449
12450 ts = current_trace_status ();
12451 status = remote_get_trace_status (self, ts);
12452
12453 if (status == -1 || !ts->running_known || !ts->running)
12454 return 0;
12455
12456 /* If we are in a tracing experiment, but remote stub doesn't support
12457 installing tracepoint in trace, we have to return. */
12458 if (!remote_supports_install_in_trace ())
12459 return 0;
12460
12461 return 1;
12462 }
12463
12464
12465 static void
12466 remote_download_trace_state_variable (struct target_ops *self,
12467 struct trace_state_variable *tsv)
12468 {
12469 struct remote_state *rs = get_remote_state ();
12470 char *p;
12471
12472 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12473 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12474 tsv->builtin);
12475 p = rs->buf + strlen (rs->buf);
12476 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12477 error (_("Trace state variable name too long for tsv definition packet"));
12478 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12479 *p++ = '\0';
12480 putpkt (rs->buf);
12481 remote_get_noisy_reply ();
12482 if (*rs->buf == '\0')
12483 error (_("Target does not support this command."));
12484 if (strcmp (rs->buf, "OK") != 0)
12485 error (_("Error on target while downloading trace state variable."));
12486 }
12487
12488 static void
12489 remote_enable_tracepoint (struct target_ops *self,
12490 struct bp_location *location)
12491 {
12492 struct remote_state *rs = get_remote_state ();
12493 char addr_buf[40];
12494
12495 sprintf_vma (addr_buf, location->address);
12496 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12497 location->owner->number, addr_buf);
12498 putpkt (rs->buf);
12499 remote_get_noisy_reply ();
12500 if (*rs->buf == '\0')
12501 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12502 if (strcmp (rs->buf, "OK") != 0)
12503 error (_("Error on target while enabling tracepoint."));
12504 }
12505
12506 static void
12507 remote_disable_tracepoint (struct target_ops *self,
12508 struct bp_location *location)
12509 {
12510 struct remote_state *rs = get_remote_state ();
12511 char addr_buf[40];
12512
12513 sprintf_vma (addr_buf, location->address);
12514 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12515 location->owner->number, addr_buf);
12516 putpkt (rs->buf);
12517 remote_get_noisy_reply ();
12518 if (*rs->buf == '\0')
12519 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12520 if (strcmp (rs->buf, "OK") != 0)
12521 error (_("Error on target while disabling tracepoint."));
12522 }
12523
12524 static void
12525 remote_trace_set_readonly_regions (struct target_ops *self)
12526 {
12527 asection *s;
12528 bfd *abfd = NULL;
12529 bfd_size_type size;
12530 bfd_vma vma;
12531 int anysecs = 0;
12532 int offset = 0;
12533
12534 if (!exec_bfd)
12535 return; /* No information to give. */
12536
12537 struct remote_state *rs = get_remote_state ();
12538
12539 strcpy (rs->buf, "QTro");
12540 offset = strlen (rs->buf);
12541 for (s = exec_bfd->sections; s; s = s->next)
12542 {
12543 char tmp1[40], tmp2[40];
12544 int sec_length;
12545
12546 if ((s->flags & SEC_LOAD) == 0 ||
12547 /* (s->flags & SEC_CODE) == 0 || */
12548 (s->flags & SEC_READONLY) == 0)
12549 continue;
12550
12551 anysecs = 1;
12552 vma = bfd_get_section_vma (abfd, s);
12553 size = bfd_get_section_size (s);
12554 sprintf_vma (tmp1, vma);
12555 sprintf_vma (tmp2, vma + size);
12556 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12557 if (offset + sec_length + 1 > rs->buf_size)
12558 {
12559 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12560 warning (_("\
12561 Too many sections for read-only sections definition packet."));
12562 break;
12563 }
12564 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12565 tmp1, tmp2);
12566 offset += sec_length;
12567 }
12568 if (anysecs)
12569 {
12570 putpkt (rs->buf);
12571 getpkt (&rs->buf, &rs->buf_size, 0);
12572 }
12573 }
12574
12575 static void
12576 remote_trace_start (struct target_ops *self)
12577 {
12578 struct remote_state *rs = get_remote_state ();
12579
12580 putpkt ("QTStart");
12581 remote_get_noisy_reply ();
12582 if (*rs->buf == '\0')
12583 error (_("Target does not support this command."));
12584 if (strcmp (rs->buf, "OK") != 0)
12585 error (_("Bogus reply from target: %s"), rs->buf);
12586 }
12587
12588 static int
12589 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12590 {
12591 /* Initialize it just to avoid a GCC false warning. */
12592 char *p = NULL;
12593 /* FIXME we need to get register block size some other way. */
12594 extern int trace_regblock_size;
12595 enum packet_result result;
12596 struct remote_state *rs = get_remote_state ();
12597
12598 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12599 return -1;
12600
12601 trace_regblock_size
12602 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12603
12604 putpkt ("qTStatus");
12605
12606 TRY
12607 {
12608 p = remote_get_noisy_reply ();
12609 }
12610 CATCH (ex, RETURN_MASK_ERROR)
12611 {
12612 if (ex.error != TARGET_CLOSE_ERROR)
12613 {
12614 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12615 return -1;
12616 }
12617 throw_exception (ex);
12618 }
12619 END_CATCH
12620
12621 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12622
12623 /* If the remote target doesn't do tracing, flag it. */
12624 if (result == PACKET_UNKNOWN)
12625 return -1;
12626
12627 /* We're working with a live target. */
12628 ts->filename = NULL;
12629
12630 if (*p++ != 'T')
12631 error (_("Bogus trace status reply from target: %s"), rs->buf);
12632
12633 /* Function 'parse_trace_status' sets default value of each field of
12634 'ts' at first, so we don't have to do it here. */
12635 parse_trace_status (p, ts);
12636
12637 return ts->running;
12638 }
12639
12640 static void
12641 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12642 struct uploaded_tp *utp)
12643 {
12644 struct remote_state *rs = get_remote_state ();
12645 char *reply;
12646 struct bp_location *loc;
12647 struct tracepoint *tp = (struct tracepoint *) bp;
12648 size_t size = get_remote_packet_size ();
12649
12650 if (tp)
12651 {
12652 tp->hit_count = 0;
12653 tp->traceframe_usage = 0;
12654 for (loc = tp->loc; loc; loc = loc->next)
12655 {
12656 /* If the tracepoint was never downloaded, don't go asking for
12657 any status. */
12658 if (tp->number_on_target == 0)
12659 continue;
12660 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12661 phex_nz (loc->address, 0));
12662 putpkt (rs->buf);
12663 reply = remote_get_noisy_reply ();
12664 if (reply && *reply)
12665 {
12666 if (*reply == 'V')
12667 parse_tracepoint_status (reply + 1, bp, utp);
12668 }
12669 }
12670 }
12671 else if (utp)
12672 {
12673 utp->hit_count = 0;
12674 utp->traceframe_usage = 0;
12675 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12676 phex_nz (utp->addr, 0));
12677 putpkt (rs->buf);
12678 reply = remote_get_noisy_reply ();
12679 if (reply && *reply)
12680 {
12681 if (*reply == 'V')
12682 parse_tracepoint_status (reply + 1, bp, utp);
12683 }
12684 }
12685 }
12686
12687 static void
12688 remote_trace_stop (struct target_ops *self)
12689 {
12690 struct remote_state *rs = get_remote_state ();
12691
12692 putpkt ("QTStop");
12693 remote_get_noisy_reply ();
12694 if (*rs->buf == '\0')
12695 error (_("Target does not support this command."));
12696 if (strcmp (rs->buf, "OK") != 0)
12697 error (_("Bogus reply from target: %s"), rs->buf);
12698 }
12699
12700 static int
12701 remote_trace_find (struct target_ops *self,
12702 enum trace_find_type type, int num,
12703 CORE_ADDR addr1, CORE_ADDR addr2,
12704 int *tpp)
12705 {
12706 struct remote_state *rs = get_remote_state ();
12707 char *endbuf = rs->buf + get_remote_packet_size ();
12708 char *p, *reply;
12709 int target_frameno = -1, target_tracept = -1;
12710
12711 /* Lookups other than by absolute frame number depend on the current
12712 trace selected, so make sure it is correct on the remote end
12713 first. */
12714 if (type != tfind_number)
12715 set_remote_traceframe ();
12716
12717 p = rs->buf;
12718 strcpy (p, "QTFrame:");
12719 p = strchr (p, '\0');
12720 switch (type)
12721 {
12722 case tfind_number:
12723 xsnprintf (p, endbuf - p, "%x", num);
12724 break;
12725 case tfind_pc:
12726 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12727 break;
12728 case tfind_tp:
12729 xsnprintf (p, endbuf - p, "tdp:%x", num);
12730 break;
12731 case tfind_range:
12732 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12733 phex_nz (addr2, 0));
12734 break;
12735 case tfind_outside:
12736 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12737 phex_nz (addr2, 0));
12738 break;
12739 default:
12740 error (_("Unknown trace find type %d"), type);
12741 }
12742
12743 putpkt (rs->buf);
12744 reply = remote_get_noisy_reply ();
12745 if (*reply == '\0')
12746 error (_("Target does not support this command."));
12747
12748 while (reply && *reply)
12749 switch (*reply)
12750 {
12751 case 'F':
12752 p = ++reply;
12753 target_frameno = (int) strtol (p, &reply, 16);
12754 if (reply == p)
12755 error (_("Unable to parse trace frame number"));
12756 /* Don't update our remote traceframe number cache on failure
12757 to select a remote traceframe. */
12758 if (target_frameno == -1)
12759 return -1;
12760 break;
12761 case 'T':
12762 p = ++reply;
12763 target_tracept = (int) strtol (p, &reply, 16);
12764 if (reply == p)
12765 error (_("Unable to parse tracepoint number"));
12766 break;
12767 case 'O': /* "OK"? */
12768 if (reply[1] == 'K' && reply[2] == '\0')
12769 reply += 2;
12770 else
12771 error (_("Bogus reply from target: %s"), reply);
12772 break;
12773 default:
12774 error (_("Bogus reply from target: %s"), reply);
12775 }
12776 if (tpp)
12777 *tpp = target_tracept;
12778
12779 rs->remote_traceframe_number = target_frameno;
12780 return target_frameno;
12781 }
12782
12783 static int
12784 remote_get_trace_state_variable_value (struct target_ops *self,
12785 int tsvnum, LONGEST *val)
12786 {
12787 struct remote_state *rs = get_remote_state ();
12788 char *reply;
12789 ULONGEST uval;
12790
12791 set_remote_traceframe ();
12792
12793 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12794 putpkt (rs->buf);
12795 reply = remote_get_noisy_reply ();
12796 if (reply && *reply)
12797 {
12798 if (*reply == 'V')
12799 {
12800 unpack_varlen_hex (reply + 1, &uval);
12801 *val = (LONGEST) uval;
12802 return 1;
12803 }
12804 }
12805 return 0;
12806 }
12807
12808 static int
12809 remote_save_trace_data (struct target_ops *self, const char *filename)
12810 {
12811 struct remote_state *rs = get_remote_state ();
12812 char *p, *reply;
12813
12814 p = rs->buf;
12815 strcpy (p, "QTSave:");
12816 p += strlen (p);
12817 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12818 error (_("Remote file name too long for trace save packet"));
12819 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12820 *p++ = '\0';
12821 putpkt (rs->buf);
12822 reply = remote_get_noisy_reply ();
12823 if (*reply == '\0')
12824 error (_("Target does not support this command."));
12825 if (strcmp (reply, "OK") != 0)
12826 error (_("Bogus reply from target: %s"), reply);
12827 return 0;
12828 }
12829
12830 /* This is basically a memory transfer, but needs to be its own packet
12831 because we don't know how the target actually organizes its trace
12832 memory, plus we want to be able to ask for as much as possible, but
12833 not be unhappy if we don't get as much as we ask for. */
12834
12835 static LONGEST
12836 remote_get_raw_trace_data (struct target_ops *self,
12837 gdb_byte *buf, ULONGEST offset, LONGEST len)
12838 {
12839 struct remote_state *rs = get_remote_state ();
12840 char *reply;
12841 char *p;
12842 int rslt;
12843
12844 p = rs->buf;
12845 strcpy (p, "qTBuffer:");
12846 p += strlen (p);
12847 p += hexnumstr (p, offset);
12848 *p++ = ',';
12849 p += hexnumstr (p, len);
12850 *p++ = '\0';
12851
12852 putpkt (rs->buf);
12853 reply = remote_get_noisy_reply ();
12854 if (reply && *reply)
12855 {
12856 /* 'l' by itself means we're at the end of the buffer and
12857 there is nothing more to get. */
12858 if (*reply == 'l')
12859 return 0;
12860
12861 /* Convert the reply into binary. Limit the number of bytes to
12862 convert according to our passed-in buffer size, rather than
12863 what was returned in the packet; if the target is
12864 unexpectedly generous and gives us a bigger reply than we
12865 asked for, we don't want to crash. */
12866 rslt = hex2bin (reply, buf, len);
12867 return rslt;
12868 }
12869
12870 /* Something went wrong, flag as an error. */
12871 return -1;
12872 }
12873
12874 static void
12875 remote_set_disconnected_tracing (struct target_ops *self, int val)
12876 {
12877 struct remote_state *rs = get_remote_state ();
12878
12879 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12880 {
12881 char *reply;
12882
12883 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12884 putpkt (rs->buf);
12885 reply = remote_get_noisy_reply ();
12886 if (*reply == '\0')
12887 error (_("Target does not support this command."));
12888 if (strcmp (reply, "OK") != 0)
12889 error (_("Bogus reply from target: %s"), reply);
12890 }
12891 else if (val)
12892 warning (_("Target does not support disconnected tracing."));
12893 }
12894
12895 static int
12896 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12897 {
12898 struct thread_info *info = find_thread_ptid (ptid);
12899
12900 if (info != NULL && info->priv != NULL)
12901 return get_remote_thread_info (info)->core;
12902
12903 return -1;
12904 }
12905
12906 static void
12907 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12908 {
12909 struct remote_state *rs = get_remote_state ();
12910 char *reply;
12911
12912 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12913 putpkt (rs->buf);
12914 reply = remote_get_noisy_reply ();
12915 if (*reply == '\0')
12916 error (_("Target does not support this command."));
12917 if (strcmp (reply, "OK") != 0)
12918 error (_("Bogus reply from target: %s"), reply);
12919 }
12920
12921 static traceframe_info_up
12922 remote_traceframe_info (struct target_ops *self)
12923 {
12924 gdb::unique_xmalloc_ptr<char> text
12925 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12926 NULL);
12927 if (text != NULL)
12928 return parse_traceframe_info (text.get ());
12929
12930 return NULL;
12931 }
12932
12933 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12934 instruction on which a fast tracepoint may be placed. Returns -1
12935 if the packet is not supported, and 0 if the minimum instruction
12936 length is unknown. */
12937
12938 static int
12939 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12940 {
12941 struct remote_state *rs = get_remote_state ();
12942 char *reply;
12943
12944 /* If we're not debugging a process yet, the IPA can't be
12945 loaded. */
12946 if (!target_has_execution)
12947 return 0;
12948
12949 /* Make sure the remote is pointing at the right process. */
12950 set_general_process ();
12951
12952 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12953 putpkt (rs->buf);
12954 reply = remote_get_noisy_reply ();
12955 if (*reply == '\0')
12956 return -1;
12957 else
12958 {
12959 ULONGEST min_insn_len;
12960
12961 unpack_varlen_hex (reply, &min_insn_len);
12962
12963 return (int) min_insn_len;
12964 }
12965 }
12966
12967 static void
12968 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12969 {
12970 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12971 {
12972 struct remote_state *rs = get_remote_state ();
12973 char *buf = rs->buf;
12974 char *endbuf = rs->buf + get_remote_packet_size ();
12975 enum packet_result result;
12976
12977 gdb_assert (val >= 0 || val == -1);
12978 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12979 /* Send -1 as literal "-1" to avoid host size dependency. */
12980 if (val < 0)
12981 {
12982 *buf++ = '-';
12983 buf += hexnumstr (buf, (ULONGEST) -val);
12984 }
12985 else
12986 buf += hexnumstr (buf, (ULONGEST) val);
12987
12988 putpkt (rs->buf);
12989 remote_get_noisy_reply ();
12990 result = packet_ok (rs->buf,
12991 &remote_protocol_packets[PACKET_QTBuffer_size]);
12992
12993 if (result != PACKET_OK)
12994 warning (_("Bogus reply from target: %s"), rs->buf);
12995 }
12996 }
12997
12998 static int
12999 remote_set_trace_notes (struct target_ops *self,
13000 const char *user, const char *notes,
13001 const char *stop_notes)
13002 {
13003 struct remote_state *rs = get_remote_state ();
13004 char *reply;
13005 char *buf = rs->buf;
13006 char *endbuf = rs->buf + get_remote_packet_size ();
13007 int nbytes;
13008
13009 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13010 if (user)
13011 {
13012 buf += xsnprintf (buf, endbuf - buf, "user:");
13013 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13014 buf += 2 * nbytes;
13015 *buf++ = ';';
13016 }
13017 if (notes)
13018 {
13019 buf += xsnprintf (buf, endbuf - buf, "notes:");
13020 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13021 buf += 2 * nbytes;
13022 *buf++ = ';';
13023 }
13024 if (stop_notes)
13025 {
13026 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13027 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13028 buf += 2 * nbytes;
13029 *buf++ = ';';
13030 }
13031 /* Ensure the buffer is terminated. */
13032 *buf = '\0';
13033
13034 putpkt (rs->buf);
13035 reply = remote_get_noisy_reply ();
13036 if (*reply == '\0')
13037 return 0;
13038
13039 if (strcmp (reply, "OK") != 0)
13040 error (_("Bogus reply from target: %s"), reply);
13041
13042 return 1;
13043 }
13044
13045 static int
13046 remote_use_agent (struct target_ops *self, int use)
13047 {
13048 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13049 {
13050 struct remote_state *rs = get_remote_state ();
13051
13052 /* If the stub supports QAgent. */
13053 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13054 putpkt (rs->buf);
13055 getpkt (&rs->buf, &rs->buf_size, 0);
13056
13057 if (strcmp (rs->buf, "OK") == 0)
13058 {
13059 use_agent = use;
13060 return 1;
13061 }
13062 }
13063
13064 return 0;
13065 }
13066
13067 static int
13068 remote_can_use_agent (struct target_ops *self)
13069 {
13070 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13071 }
13072
13073 struct btrace_target_info
13074 {
13075 /* The ptid of the traced thread. */
13076 ptid_t ptid;
13077
13078 /* The obtained branch trace configuration. */
13079 struct btrace_config conf;
13080 };
13081
13082 /* Reset our idea of our target's btrace configuration. */
13083
13084 static void
13085 remote_btrace_reset (void)
13086 {
13087 struct remote_state *rs = get_remote_state ();
13088
13089 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13090 }
13091
13092 /* Synchronize the configuration with the target. */
13093
13094 static void
13095 btrace_sync_conf (const struct btrace_config *conf)
13096 {
13097 struct packet_config *packet;
13098 struct remote_state *rs;
13099 char *buf, *pos, *endbuf;
13100
13101 rs = get_remote_state ();
13102 buf = rs->buf;
13103 endbuf = buf + get_remote_packet_size ();
13104
13105 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13106 if (packet_config_support (packet) == PACKET_ENABLE
13107 && conf->bts.size != rs->btrace_config.bts.size)
13108 {
13109 pos = buf;
13110 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13111 conf->bts.size);
13112
13113 putpkt (buf);
13114 getpkt (&buf, &rs->buf_size, 0);
13115
13116 if (packet_ok (buf, packet) == PACKET_ERROR)
13117 {
13118 if (buf[0] == 'E' && buf[1] == '.')
13119 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13120 else
13121 error (_("Failed to configure the BTS buffer size."));
13122 }
13123
13124 rs->btrace_config.bts.size = conf->bts.size;
13125 }
13126
13127 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13128 if (packet_config_support (packet) == PACKET_ENABLE
13129 && conf->pt.size != rs->btrace_config.pt.size)
13130 {
13131 pos = buf;
13132 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13133 conf->pt.size);
13134
13135 putpkt (buf);
13136 getpkt (&buf, &rs->buf_size, 0);
13137
13138 if (packet_ok (buf, packet) == PACKET_ERROR)
13139 {
13140 if (buf[0] == 'E' && buf[1] == '.')
13141 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13142 else
13143 error (_("Failed to configure the trace buffer size."));
13144 }
13145
13146 rs->btrace_config.pt.size = conf->pt.size;
13147 }
13148 }
13149
13150 /* Read the current thread's btrace configuration from the target and
13151 store it into CONF. */
13152
13153 static void
13154 btrace_read_config (struct btrace_config *conf)
13155 {
13156 gdb::unique_xmalloc_ptr<char> xml
13157 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13158 if (xml != NULL)
13159 parse_xml_btrace_conf (conf, xml.get ());
13160 }
13161
13162 /* Maybe reopen target btrace. */
13163
13164 static void
13165 remote_btrace_maybe_reopen (void)
13166 {
13167 struct remote_state *rs = get_remote_state ();
13168 struct thread_info *tp;
13169 int btrace_target_pushed = 0;
13170 int warned = 0;
13171
13172 scoped_restore_current_thread restore_thread;
13173
13174 ALL_NON_EXITED_THREADS (tp)
13175 {
13176 set_general_thread (tp->ptid);
13177
13178 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13179 btrace_read_config (&rs->btrace_config);
13180
13181 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13182 continue;
13183
13184 #if !defined (HAVE_LIBIPT)
13185 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13186 {
13187 if (!warned)
13188 {
13189 warned = 1;
13190 warning (_("Target is recording using Intel Processor Trace "
13191 "but support was disabled at compile time."));
13192 }
13193
13194 continue;
13195 }
13196 #endif /* !defined (HAVE_LIBIPT) */
13197
13198 /* Push target, once, but before anything else happens. This way our
13199 changes to the threads will be cleaned up by unpushing the target
13200 in case btrace_read_config () throws. */
13201 if (!btrace_target_pushed)
13202 {
13203 btrace_target_pushed = 1;
13204 record_btrace_push_target ();
13205 printf_filtered (_("Target is recording using %s.\n"),
13206 btrace_format_string (rs->btrace_config.format));
13207 }
13208
13209 tp->btrace.target = XCNEW (struct btrace_target_info);
13210 tp->btrace.target->ptid = tp->ptid;
13211 tp->btrace.target->conf = rs->btrace_config;
13212 }
13213 }
13214
13215 /* Enable branch tracing. */
13216
13217 static struct btrace_target_info *
13218 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13219 const struct btrace_config *conf)
13220 {
13221 struct btrace_target_info *tinfo = NULL;
13222 struct packet_config *packet = NULL;
13223 struct remote_state *rs = get_remote_state ();
13224 char *buf = rs->buf;
13225 char *endbuf = rs->buf + get_remote_packet_size ();
13226
13227 switch (conf->format)
13228 {
13229 case BTRACE_FORMAT_BTS:
13230 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13231 break;
13232
13233 case BTRACE_FORMAT_PT:
13234 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13235 break;
13236 }
13237
13238 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13239 error (_("Target does not support branch tracing."));
13240
13241 btrace_sync_conf (conf);
13242
13243 set_general_thread (ptid);
13244
13245 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13246 putpkt (rs->buf);
13247 getpkt (&rs->buf, &rs->buf_size, 0);
13248
13249 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13250 {
13251 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13252 error (_("Could not enable branch tracing for %s: %s"),
13253 target_pid_to_str (ptid), rs->buf + 2);
13254 else
13255 error (_("Could not enable branch tracing for %s."),
13256 target_pid_to_str (ptid));
13257 }
13258
13259 tinfo = XCNEW (struct btrace_target_info);
13260 tinfo->ptid = ptid;
13261
13262 /* If we fail to read the configuration, we lose some information, but the
13263 tracing itself is not impacted. */
13264 TRY
13265 {
13266 btrace_read_config (&tinfo->conf);
13267 }
13268 CATCH (err, RETURN_MASK_ERROR)
13269 {
13270 if (err.message != NULL)
13271 warning ("%s", err.message);
13272 }
13273 END_CATCH
13274
13275 return tinfo;
13276 }
13277
13278 /* Disable branch tracing. */
13279
13280 static void
13281 remote_disable_btrace (struct target_ops *self,
13282 struct btrace_target_info *tinfo)
13283 {
13284 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13285 struct remote_state *rs = get_remote_state ();
13286 char *buf = rs->buf;
13287 char *endbuf = rs->buf + get_remote_packet_size ();
13288
13289 if (packet_config_support (packet) != PACKET_ENABLE)
13290 error (_("Target does not support branch tracing."));
13291
13292 set_general_thread (tinfo->ptid);
13293
13294 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13295 putpkt (rs->buf);
13296 getpkt (&rs->buf, &rs->buf_size, 0);
13297
13298 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13299 {
13300 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13301 error (_("Could not disable branch tracing for %s: %s"),
13302 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13303 else
13304 error (_("Could not disable branch tracing for %s."),
13305 target_pid_to_str (tinfo->ptid));
13306 }
13307
13308 xfree (tinfo);
13309 }
13310
13311 /* Teardown branch tracing. */
13312
13313 static void
13314 remote_teardown_btrace (struct target_ops *self,
13315 struct btrace_target_info *tinfo)
13316 {
13317 /* We must not talk to the target during teardown. */
13318 xfree (tinfo);
13319 }
13320
13321 /* Read the branch trace. */
13322
13323 static enum btrace_error
13324 remote_read_btrace (struct target_ops *self,
13325 struct btrace_data *btrace,
13326 struct btrace_target_info *tinfo,
13327 enum btrace_read_type type)
13328 {
13329 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13330 const char *annex;
13331
13332 if (packet_config_support (packet) != PACKET_ENABLE)
13333 error (_("Target does not support branch tracing."));
13334
13335 #if !defined(HAVE_LIBEXPAT)
13336 error (_("Cannot process branch tracing result. XML parsing not supported."));
13337 #endif
13338
13339 switch (type)
13340 {
13341 case BTRACE_READ_ALL:
13342 annex = "all";
13343 break;
13344 case BTRACE_READ_NEW:
13345 annex = "new";
13346 break;
13347 case BTRACE_READ_DELTA:
13348 annex = "delta";
13349 break;
13350 default:
13351 internal_error (__FILE__, __LINE__,
13352 _("Bad branch tracing read type: %u."),
13353 (unsigned int) type);
13354 }
13355
13356 gdb::unique_xmalloc_ptr<char> xml
13357 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13358 if (xml == NULL)
13359 return BTRACE_ERR_UNKNOWN;
13360
13361 parse_xml_btrace (btrace, xml.get ());
13362
13363 return BTRACE_ERR_NONE;
13364 }
13365
13366 static const struct btrace_config *
13367 remote_btrace_conf (struct target_ops *self,
13368 const struct btrace_target_info *tinfo)
13369 {
13370 return &tinfo->conf;
13371 }
13372
13373 static int
13374 remote_augmented_libraries_svr4_read (struct target_ops *self)
13375 {
13376 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13377 == PACKET_ENABLE);
13378 }
13379
13380 /* Implementation of to_load. */
13381
13382 static void
13383 remote_load (struct target_ops *self, const char *name, int from_tty)
13384 {
13385 generic_load (name, from_tty);
13386 }
13387
13388 /* Accepts an integer PID; returns a string representing a file that
13389 can be opened on the remote side to get the symbols for the child
13390 process. Returns NULL if the operation is not supported. */
13391
13392 static char *
13393 remote_pid_to_exec_file (struct target_ops *self, int pid)
13394 {
13395 static gdb::unique_xmalloc_ptr<char> filename;
13396 struct inferior *inf;
13397 char *annex = NULL;
13398
13399 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13400 return NULL;
13401
13402 inf = find_inferior_pid (pid);
13403 if (inf == NULL)
13404 internal_error (__FILE__, __LINE__,
13405 _("not currently attached to process %d"), pid);
13406
13407 if (!inf->fake_pid_p)
13408 {
13409 const int annex_size = 9;
13410
13411 annex = (char *) alloca (annex_size);
13412 xsnprintf (annex, annex_size, "%x", pid);
13413 }
13414
13415 filename = target_read_stralloc (&current_target,
13416 TARGET_OBJECT_EXEC_FILE, annex);
13417
13418 return filename.get ();
13419 }
13420
13421 /* Implement the to_can_do_single_step target_ops method. */
13422
13423 static int
13424 remote_can_do_single_step (struct target_ops *ops)
13425 {
13426 /* We can only tell whether target supports single step or not by
13427 supported s and S vCont actions if the stub supports vContSupported
13428 feature. If the stub doesn't support vContSupported feature,
13429 we have conservatively to think target doesn't supports single
13430 step. */
13431 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13432 {
13433 struct remote_state *rs = get_remote_state ();
13434
13435 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13436 remote_vcont_probe (rs);
13437
13438 return rs->supports_vCont.s && rs->supports_vCont.S;
13439 }
13440 else
13441 return 0;
13442 }
13443
13444 /* Implementation of the to_execution_direction method for the remote
13445 target. */
13446
13447 static enum exec_direction_kind
13448 remote_execution_direction (struct target_ops *self)
13449 {
13450 struct remote_state *rs = get_remote_state ();
13451
13452 return rs->last_resume_exec_dir;
13453 }
13454
13455 /* Return pointer to the thread_info struct which corresponds to
13456 THREAD_HANDLE (having length HANDLE_LEN). */
13457
13458 static struct thread_info *
13459 remote_thread_handle_to_thread_info (struct target_ops *ops,
13460 const gdb_byte *thread_handle,
13461 int handle_len,
13462 struct inferior *inf)
13463 {
13464 struct thread_info *tp;
13465
13466 ALL_NON_EXITED_THREADS (tp)
13467 {
13468 remote_thread_info *priv = get_remote_thread_info (tp);
13469
13470 if (tp->inf == inf && priv != NULL)
13471 {
13472 if (handle_len != priv->thread_handle.size ())
13473 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13474 handle_len, priv->thread_handle.size ());
13475 if (memcmp (thread_handle, priv->thread_handle.data (),
13476 handle_len) == 0)
13477 return tp;
13478 }
13479 }
13480
13481 return NULL;
13482 }
13483
13484 static void
13485 init_remote_ops (void)
13486 {
13487 remote_ops.to_shortname = "remote";
13488 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13489 remote_ops.to_doc =
13490 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13491 Specify the serial device it is connected to\n\
13492 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13493 remote_ops.to_open = remote_open;
13494 remote_ops.to_close = remote_close;
13495 remote_ops.to_detach = remote_detach;
13496 remote_ops.to_disconnect = remote_disconnect;
13497 remote_ops.to_resume = remote_resume;
13498 remote_ops.to_commit_resume = remote_commit_resume;
13499 remote_ops.to_wait = remote_wait;
13500 remote_ops.to_fetch_registers = remote_fetch_registers;
13501 remote_ops.to_store_registers = remote_store_registers;
13502 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13503 remote_ops.to_files_info = remote_files_info;
13504 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13505 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13506 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13507 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13508 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13509 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13510 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13511 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13512 remote_ops.to_watchpoint_addr_within_range =
13513 remote_watchpoint_addr_within_range;
13514 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13515 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13516 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13517 remote_ops.to_region_ok_for_hw_watchpoint
13518 = remote_region_ok_for_hw_watchpoint;
13519 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13520 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13521 remote_ops.to_kill = remote_kill;
13522 remote_ops.to_load = remote_load;
13523 remote_ops.to_mourn_inferior = remote_mourn;
13524 remote_ops.to_pass_signals = remote_pass_signals;
13525 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13526 remote_ops.to_program_signals = remote_program_signals;
13527 remote_ops.to_thread_alive = remote_thread_alive;
13528 remote_ops.to_thread_name = remote_thread_name;
13529 remote_ops.to_update_thread_list = remote_update_thread_list;
13530 remote_ops.to_pid_to_str = remote_pid_to_str;
13531 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13532 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13533 remote_ops.to_stop = remote_stop;
13534 remote_ops.to_interrupt = remote_interrupt;
13535 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13536 remote_ops.to_xfer_partial = remote_xfer_partial;
13537 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13538 remote_ops.to_rcmd = remote_rcmd;
13539 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13540 remote_ops.to_log_command = serial_log_command;
13541 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13542 remote_ops.to_stratum = process_stratum;
13543 remote_ops.to_has_all_memory = default_child_has_all_memory;
13544 remote_ops.to_has_memory = default_child_has_memory;
13545 remote_ops.to_has_stack = default_child_has_stack;
13546 remote_ops.to_has_registers = default_child_has_registers;
13547 remote_ops.to_has_execution = default_child_has_execution;
13548 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13549 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13550 remote_ops.to_magic = OPS_MAGIC;
13551 remote_ops.to_memory_map = remote_memory_map;
13552 remote_ops.to_flash_erase = remote_flash_erase;
13553 remote_ops.to_flash_done = remote_flash_done;
13554 remote_ops.to_read_description = remote_read_description;
13555 remote_ops.to_search_memory = remote_search_memory;
13556 remote_ops.to_can_async_p = remote_can_async_p;
13557 remote_ops.to_is_async_p = remote_is_async_p;
13558 remote_ops.to_async = remote_async;
13559 remote_ops.to_thread_events = remote_thread_events;
13560 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13561 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13562 remote_ops.to_terminal_ours = remote_terminal_ours;
13563 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13564 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13565 remote_ops.to_supports_disable_randomization
13566 = remote_supports_disable_randomization;
13567 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13568 remote_ops.to_fileio_open = remote_hostio_open;
13569 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13570 remote_ops.to_fileio_pread = remote_hostio_pread;
13571 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13572 remote_ops.to_fileio_close = remote_hostio_close;
13573 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13574 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13575 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13576 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13577 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13578 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13579 remote_ops.to_trace_init = remote_trace_init;
13580 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13581 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13582 remote_ops.to_download_trace_state_variable
13583 = remote_download_trace_state_variable;
13584 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13585 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13586 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13587 remote_ops.to_trace_start = remote_trace_start;
13588 remote_ops.to_get_trace_status = remote_get_trace_status;
13589 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13590 remote_ops.to_trace_stop = remote_trace_stop;
13591 remote_ops.to_trace_find = remote_trace_find;
13592 remote_ops.to_get_trace_state_variable_value
13593 = remote_get_trace_state_variable_value;
13594 remote_ops.to_save_trace_data = remote_save_trace_data;
13595 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13596 remote_ops.to_upload_trace_state_variables
13597 = remote_upload_trace_state_variables;
13598 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13599 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13600 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13601 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13602 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13603 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13604 remote_ops.to_core_of_thread = remote_core_of_thread;
13605 remote_ops.to_verify_memory = remote_verify_memory;
13606 remote_ops.to_get_tib_address = remote_get_tib_address;
13607 remote_ops.to_set_permissions = remote_set_permissions;
13608 remote_ops.to_static_tracepoint_marker_at
13609 = remote_static_tracepoint_marker_at;
13610 remote_ops.to_static_tracepoint_markers_by_strid
13611 = remote_static_tracepoint_markers_by_strid;
13612 remote_ops.to_traceframe_info = remote_traceframe_info;
13613 remote_ops.to_use_agent = remote_use_agent;
13614 remote_ops.to_can_use_agent = remote_can_use_agent;
13615 remote_ops.to_enable_btrace = remote_enable_btrace;
13616 remote_ops.to_disable_btrace = remote_disable_btrace;
13617 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13618 remote_ops.to_read_btrace = remote_read_btrace;
13619 remote_ops.to_btrace_conf = remote_btrace_conf;
13620 remote_ops.to_augmented_libraries_svr4_read =
13621 remote_augmented_libraries_svr4_read;
13622 remote_ops.to_follow_fork = remote_follow_fork;
13623 remote_ops.to_follow_exec = remote_follow_exec;
13624 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13625 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13626 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13627 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13628 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13629 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13630 remote_ops.to_execution_direction = remote_execution_direction;
13631 remote_ops.to_thread_handle_to_thread_info =
13632 remote_thread_handle_to_thread_info;
13633 }
13634
13635 /* Set up the extended remote vector by making a copy of the standard
13636 remote vector and adding to it. */
13637
13638 static void
13639 init_extended_remote_ops (void)
13640 {
13641 extended_remote_ops = remote_ops;
13642
13643 extended_remote_ops.to_shortname = "extended-remote";
13644 extended_remote_ops.to_longname =
13645 "Extended remote serial target in gdb-specific protocol";
13646 extended_remote_ops.to_doc =
13647 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13648 Specify the serial device it is connected to (e.g. /dev/ttya).";
13649 extended_remote_ops.to_open = extended_remote_open;
13650 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13651 extended_remote_ops.to_detach = extended_remote_detach;
13652 extended_remote_ops.to_attach = extended_remote_attach;
13653 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13654 extended_remote_ops.to_supports_disable_randomization
13655 = extended_remote_supports_disable_randomization;
13656 }
13657
13658 static int
13659 remote_can_async_p (struct target_ops *ops)
13660 {
13661 struct remote_state *rs = get_remote_state ();
13662
13663 /* We don't go async if the user has explicitly prevented it with the
13664 "maint set target-async" command. */
13665 if (!target_async_permitted)
13666 return 0;
13667
13668 /* We're async whenever the serial device is. */
13669 return serial_can_async_p (rs->remote_desc);
13670 }
13671
13672 static int
13673 remote_is_async_p (struct target_ops *ops)
13674 {
13675 struct remote_state *rs = get_remote_state ();
13676
13677 if (!target_async_permitted)
13678 /* We only enable async when the user specifically asks for it. */
13679 return 0;
13680
13681 /* We're async whenever the serial device is. */
13682 return serial_is_async_p (rs->remote_desc);
13683 }
13684
13685 /* Pass the SERIAL event on and up to the client. One day this code
13686 will be able to delay notifying the client of an event until the
13687 point where an entire packet has been received. */
13688
13689 static serial_event_ftype remote_async_serial_handler;
13690
13691 static void
13692 remote_async_serial_handler (struct serial *scb, void *context)
13693 {
13694 /* Don't propogate error information up to the client. Instead let
13695 the client find out about the error by querying the target. */
13696 inferior_event_handler (INF_REG_EVENT, NULL);
13697 }
13698
13699 static void
13700 remote_async_inferior_event_handler (gdb_client_data data)
13701 {
13702 inferior_event_handler (INF_REG_EVENT, NULL);
13703 }
13704
13705 static void
13706 remote_async (struct target_ops *ops, int enable)
13707 {
13708 struct remote_state *rs = get_remote_state ();
13709
13710 if (enable)
13711 {
13712 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13713
13714 /* If there are pending events in the stop reply queue tell the
13715 event loop to process them. */
13716 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13717 mark_async_event_handler (remote_async_inferior_event_token);
13718 /* For simplicity, below we clear the pending events token
13719 without remembering whether it is marked, so here we always
13720 mark it. If there's actually no pending notification to
13721 process, this ends up being a no-op (other than a spurious
13722 event-loop wakeup). */
13723 if (target_is_non_stop_p ())
13724 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13725 }
13726 else
13727 {
13728 serial_async (rs->remote_desc, NULL, NULL);
13729 /* If the core is disabling async, it doesn't want to be
13730 disturbed with target events. Clear all async event sources
13731 too. */
13732 clear_async_event_handler (remote_async_inferior_event_token);
13733 if (target_is_non_stop_p ())
13734 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13735 }
13736 }
13737
13738 /* Implementation of the to_thread_events method. */
13739
13740 static void
13741 remote_thread_events (struct target_ops *ops, int enable)
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744 size_t size = get_remote_packet_size ();
13745
13746 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13747 return;
13748
13749 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13750 putpkt (rs->buf);
13751 getpkt (&rs->buf, &rs->buf_size, 0);
13752
13753 switch (packet_ok (rs->buf,
13754 &remote_protocol_packets[PACKET_QThreadEvents]))
13755 {
13756 case PACKET_OK:
13757 if (strcmp (rs->buf, "OK") != 0)
13758 error (_("Remote refused setting thread events: %s"), rs->buf);
13759 break;
13760 case PACKET_ERROR:
13761 warning (_("Remote failure reply: %s"), rs->buf);
13762 break;
13763 case PACKET_UNKNOWN:
13764 break;
13765 }
13766 }
13767
13768 static void
13769 set_remote_cmd (const char *args, int from_tty)
13770 {
13771 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13772 }
13773
13774 static void
13775 show_remote_cmd (const char *args, int from_tty)
13776 {
13777 /* We can't just use cmd_show_list here, because we want to skip
13778 the redundant "show remote Z-packet" and the legacy aliases. */
13779 struct cmd_list_element *list = remote_show_cmdlist;
13780 struct ui_out *uiout = current_uiout;
13781
13782 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13783 for (; list != NULL; list = list->next)
13784 if (strcmp (list->name, "Z-packet") == 0)
13785 continue;
13786 else if (list->type == not_set_cmd)
13787 /* Alias commands are exactly like the original, except they
13788 don't have the normal type. */
13789 continue;
13790 else
13791 {
13792 ui_out_emit_tuple option_emitter (uiout, "option");
13793
13794 uiout->field_string ("name", list->name);
13795 uiout->text (": ");
13796 if (list->type == show_cmd)
13797 do_show_command (NULL, from_tty, list);
13798 else
13799 cmd_func (list, NULL, from_tty);
13800 }
13801 }
13802
13803
13804 /* Function to be called whenever a new objfile (shlib) is detected. */
13805 static void
13806 remote_new_objfile (struct objfile *objfile)
13807 {
13808 struct remote_state *rs = get_remote_state ();
13809
13810 if (rs->remote_desc != 0) /* Have a remote connection. */
13811 remote_check_symbols ();
13812 }
13813
13814 /* Pull all the tracepoints defined on the target and create local
13815 data structures representing them. We don't want to create real
13816 tracepoints yet, we don't want to mess up the user's existing
13817 collection. */
13818
13819 static int
13820 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13821 {
13822 struct remote_state *rs = get_remote_state ();
13823 char *p;
13824
13825 /* Ask for a first packet of tracepoint definition. */
13826 putpkt ("qTfP");
13827 getpkt (&rs->buf, &rs->buf_size, 0);
13828 p = rs->buf;
13829 while (*p && *p != 'l')
13830 {
13831 parse_tracepoint_definition (p, utpp);
13832 /* Ask for another packet of tracepoint definition. */
13833 putpkt ("qTsP");
13834 getpkt (&rs->buf, &rs->buf_size, 0);
13835 p = rs->buf;
13836 }
13837 return 0;
13838 }
13839
13840 static int
13841 remote_upload_trace_state_variables (struct target_ops *self,
13842 struct uploaded_tsv **utsvp)
13843 {
13844 struct remote_state *rs = get_remote_state ();
13845 char *p;
13846
13847 /* Ask for a first packet of variable definition. */
13848 putpkt ("qTfV");
13849 getpkt (&rs->buf, &rs->buf_size, 0);
13850 p = rs->buf;
13851 while (*p && *p != 'l')
13852 {
13853 parse_tsv_definition (p, utsvp);
13854 /* Ask for another packet of variable definition. */
13855 putpkt ("qTsV");
13856 getpkt (&rs->buf, &rs->buf_size, 0);
13857 p = rs->buf;
13858 }
13859 return 0;
13860 }
13861
13862 /* The "set/show range-stepping" show hook. */
13863
13864 static void
13865 show_range_stepping (struct ui_file *file, int from_tty,
13866 struct cmd_list_element *c,
13867 const char *value)
13868 {
13869 fprintf_filtered (file,
13870 _("Debugger's willingness to use range stepping "
13871 "is %s.\n"), value);
13872 }
13873
13874 /* The "set/show range-stepping" set hook. */
13875
13876 static void
13877 set_range_stepping (const char *ignore_args, int from_tty,
13878 struct cmd_list_element *c)
13879 {
13880 struct remote_state *rs = get_remote_state ();
13881
13882 /* Whene enabling, check whether range stepping is actually
13883 supported by the target, and warn if not. */
13884 if (use_range_stepping)
13885 {
13886 if (rs->remote_desc != NULL)
13887 {
13888 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13889 remote_vcont_probe (rs);
13890
13891 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13892 && rs->supports_vCont.r)
13893 return;
13894 }
13895
13896 warning (_("Range stepping is not supported by the current target"));
13897 }
13898 }
13899
13900 void
13901 _initialize_remote (void)
13902 {
13903 struct cmd_list_element *cmd;
13904 const char *cmd_name;
13905
13906 /* architecture specific data */
13907 remote_gdbarch_data_handle =
13908 gdbarch_data_register_post_init (init_remote_state);
13909 remote_g_packet_data_handle =
13910 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13911
13912 remote_pspace_data
13913 = register_program_space_data_with_cleanup (NULL,
13914 remote_pspace_data_cleanup);
13915
13916 /* Initialize the per-target state. At the moment there is only one
13917 of these, not one per target. Only one target is active at a
13918 time. */
13919 remote_state = new_remote_state ();
13920
13921 init_remote_ops ();
13922 add_target (&remote_ops);
13923
13924 init_extended_remote_ops ();
13925 add_target (&extended_remote_ops);
13926
13927 /* Hook into new objfile notification. */
13928 observer_attach_new_objfile (remote_new_objfile);
13929 /* We're no longer interested in notification events of an inferior
13930 when it exits. */
13931 observer_attach_inferior_exit (discard_pending_stop_replies);
13932
13933 #if 0
13934 init_remote_threadtests ();
13935 #endif
13936
13937 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13938 /* set/show remote ... */
13939
13940 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13941 Remote protocol specific variables\n\
13942 Configure various remote-protocol specific variables such as\n\
13943 the packets being used"),
13944 &remote_set_cmdlist, "set remote ",
13945 0 /* allow-unknown */, &setlist);
13946 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13947 Remote protocol specific variables\n\
13948 Configure various remote-protocol specific variables such as\n\
13949 the packets being used"),
13950 &remote_show_cmdlist, "show remote ",
13951 0 /* allow-unknown */, &showlist);
13952
13953 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13954 Compare section data on target to the exec file.\n\
13955 Argument is a single section name (default: all loaded sections).\n\
13956 To compare only read-only loaded sections, specify the -r option."),
13957 &cmdlist);
13958
13959 add_cmd ("packet", class_maintenance, packet_command, _("\
13960 Send an arbitrary packet to a remote target.\n\
13961 maintenance packet TEXT\n\
13962 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13963 this command sends the string TEXT to the inferior, and displays the\n\
13964 response packet. GDB supplies the initial `$' character, and the\n\
13965 terminating `#' character and checksum."),
13966 &maintenancelist);
13967
13968 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13969 Set whether to send break if interrupted."), _("\
13970 Show whether to send break if interrupted."), _("\
13971 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13972 set_remotebreak, show_remotebreak,
13973 &setlist, &showlist);
13974 cmd_name = "remotebreak";
13975 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13976 deprecate_cmd (cmd, "set remote interrupt-sequence");
13977 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13978 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13979 deprecate_cmd (cmd, "show remote interrupt-sequence");
13980
13981 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13982 interrupt_sequence_modes, &interrupt_sequence_mode,
13983 _("\
13984 Set interrupt sequence to remote target."), _("\
13985 Show interrupt sequence to remote target."), _("\
13986 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13987 NULL, show_interrupt_sequence,
13988 &remote_set_cmdlist,
13989 &remote_show_cmdlist);
13990
13991 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13992 &interrupt_on_connect, _("\
13993 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13994 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13995 If set, interrupt sequence is sent to remote target."),
13996 NULL, NULL,
13997 &remote_set_cmdlist, &remote_show_cmdlist);
13998
13999 /* Install commands for configuring memory read/write packets. */
14000
14001 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14002 Set the maximum number of bytes per memory write packet (deprecated)."),
14003 &setlist);
14004 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14005 Show the maximum number of bytes per memory write packet (deprecated)."),
14006 &showlist);
14007 add_cmd ("memory-write-packet-size", no_class,
14008 set_memory_write_packet_size, _("\
14009 Set the maximum number of bytes per memory-write packet.\n\
14010 Specify the number of bytes in a packet or 0 (zero) for the\n\
14011 default packet size. The actual limit is further reduced\n\
14012 dependent on the target. Specify ``fixed'' to disable the\n\
14013 further restriction and ``limit'' to enable that restriction."),
14014 &remote_set_cmdlist);
14015 add_cmd ("memory-read-packet-size", no_class,
14016 set_memory_read_packet_size, _("\
14017 Set the maximum number of bytes per memory-read packet.\n\
14018 Specify the number of bytes in a packet or 0 (zero) for the\n\
14019 default packet size. The actual limit is further reduced\n\
14020 dependent on the target. Specify ``fixed'' to disable the\n\
14021 further restriction and ``limit'' to enable that restriction."),
14022 &remote_set_cmdlist);
14023 add_cmd ("memory-write-packet-size", no_class,
14024 show_memory_write_packet_size,
14025 _("Show the maximum number of bytes per memory-write packet."),
14026 &remote_show_cmdlist);
14027 add_cmd ("memory-read-packet-size", no_class,
14028 show_memory_read_packet_size,
14029 _("Show the maximum number of bytes per memory-read packet."),
14030 &remote_show_cmdlist);
14031
14032 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14033 &remote_hw_watchpoint_limit, _("\
14034 Set the maximum number of target hardware watchpoints."), _("\
14035 Show the maximum number of target hardware watchpoints."), _("\
14036 Specify a negative limit for unlimited."),
14037 NULL, NULL, /* FIXME: i18n: The maximum
14038 number of target hardware
14039 watchpoints is %s. */
14040 &remote_set_cmdlist, &remote_show_cmdlist);
14041 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14042 &remote_hw_watchpoint_length_limit, _("\
14043 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14044 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14045 Specify a negative limit for unlimited."),
14046 NULL, NULL, /* FIXME: i18n: The maximum
14047 length (in bytes) of a target
14048 hardware watchpoint is %s. */
14049 &remote_set_cmdlist, &remote_show_cmdlist);
14050 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14051 &remote_hw_breakpoint_limit, _("\
14052 Set the maximum number of target hardware breakpoints."), _("\
14053 Show the maximum number of target hardware breakpoints."), _("\
14054 Specify a negative limit for unlimited."),
14055 NULL, NULL, /* FIXME: i18n: The maximum
14056 number of target hardware
14057 breakpoints is %s. */
14058 &remote_set_cmdlist, &remote_show_cmdlist);
14059
14060 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14061 &remote_address_size, _("\
14062 Set the maximum size of the address (in bits) in a memory packet."), _("\
14063 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14064 NULL,
14065 NULL, /* FIXME: i18n: */
14066 &setlist, &showlist);
14067
14068 init_all_packet_configs ();
14069
14070 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14071 "X", "binary-download", 1);
14072
14073 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14074 "vCont", "verbose-resume", 0);
14075
14076 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14077 "QPassSignals", "pass-signals", 0);
14078
14079 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14080 "QCatchSyscalls", "catch-syscalls", 0);
14081
14082 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14083 "QProgramSignals", "program-signals", 0);
14084
14085 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14086 "QSetWorkingDir", "set-working-dir", 0);
14087
14088 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14089 "QStartupWithShell", "startup-with-shell", 0);
14090
14091 add_packet_config_cmd (&remote_protocol_packets
14092 [PACKET_QEnvironmentHexEncoded],
14093 "QEnvironmentHexEncoded", "environment-hex-encoded",
14094 0);
14095
14096 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14097 "QEnvironmentReset", "environment-reset",
14098 0);
14099
14100 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14101 "QEnvironmentUnset", "environment-unset",
14102 0);
14103
14104 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14105 "qSymbol", "symbol-lookup", 0);
14106
14107 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14108 "P", "set-register", 1);
14109
14110 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14111 "p", "fetch-register", 1);
14112
14113 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14114 "Z0", "software-breakpoint", 0);
14115
14116 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14117 "Z1", "hardware-breakpoint", 0);
14118
14119 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14120 "Z2", "write-watchpoint", 0);
14121
14122 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14123 "Z3", "read-watchpoint", 0);
14124
14125 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14126 "Z4", "access-watchpoint", 0);
14127
14128 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14129 "qXfer:auxv:read", "read-aux-vector", 0);
14130
14131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14132 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14133
14134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14135 "qXfer:features:read", "target-features", 0);
14136
14137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14138 "qXfer:libraries:read", "library-info", 0);
14139
14140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14141 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14142
14143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14144 "qXfer:memory-map:read", "memory-map", 0);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14147 "qXfer:spu:read", "read-spu-object", 0);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14150 "qXfer:spu:write", "write-spu-object", 0);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14153 "qXfer:osdata:read", "osdata", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14156 "qXfer:threads:read", "threads", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14159 "qXfer:siginfo:read", "read-siginfo-object", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14162 "qXfer:siginfo:write", "write-siginfo-object", 0);
14163
14164 add_packet_config_cmd
14165 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14166 "qXfer:traceframe-info:read", "traceframe-info", 0);
14167
14168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14169 "qXfer:uib:read", "unwind-info-block", 0);
14170
14171 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14172 "qGetTLSAddr", "get-thread-local-storage-address",
14173 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14176 "qGetTIBAddr", "get-thread-information-block-address",
14177 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14180 "bc", "reverse-continue", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14183 "bs", "reverse-step", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14186 "qSupported", "supported-packets", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14189 "qSearch:memory", "search-memory", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14192 "qTStatus", "trace-status", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14195 "vFile:setfs", "hostio-setfs", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14198 "vFile:open", "hostio-open", 0);
14199
14200 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14201 "vFile:pread", "hostio-pread", 0);
14202
14203 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14204 "vFile:pwrite", "hostio-pwrite", 0);
14205
14206 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14207 "vFile:close", "hostio-close", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14210 "vFile:unlink", "hostio-unlink", 0);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14213 "vFile:readlink", "hostio-readlink", 0);
14214
14215 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14216 "vFile:fstat", "hostio-fstat", 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14219 "vAttach", "attach", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14222 "vRun", "run", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14225 "QStartNoAckMode", "noack", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14228 "vKill", "kill", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14231 "qAttached", "query-attached", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14234 "ConditionalTracepoints",
14235 "conditional-tracepoints", 0);
14236
14237 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14238 "ConditionalBreakpoints",
14239 "conditional-breakpoints", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14242 "BreakpointCommands",
14243 "breakpoint-commands", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14246 "FastTracepoints", "fast-tracepoints", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14249 "TracepointSource", "TracepointSource", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14252 "QAllow", "allow", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14255 "StaticTracepoints", "static-tracepoints", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14258 "InstallInTrace", "install-in-trace", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14261 "qXfer:statictrace:read", "read-sdata-object", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14264 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14267 "QDisableRandomization", "disable-randomization", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14270 "QAgent", "agent", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14273 "QTBuffer:size", "trace-buffer-size", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14276 "Qbtrace:off", "disable-btrace", 0);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14279 "Qbtrace:bts", "enable-btrace-bts", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14282 "Qbtrace:pt", "enable-btrace-pt", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14285 "qXfer:btrace", "read-btrace", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14288 "qXfer:btrace-conf", "read-btrace-conf", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14291 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14294 "multiprocess-feature", "multiprocess-feature", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14297 "swbreak-feature", "swbreak-feature", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14300 "hwbreak-feature", "hwbreak-feature", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14303 "fork-event-feature", "fork-event-feature", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14306 "vfork-event-feature", "vfork-event-feature", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14309 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14312 "vContSupported", "verbose-resume-supported", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14315 "exec-event-feature", "exec-event-feature", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14318 "vCtrlC", "ctrl-c", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14321 "QThreadEvents", "thread-events", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14324 "N stop reply", "no-resumed-stop-reply", 0);
14325
14326 /* Assert that we've registered "set remote foo-packet" commands
14327 for all packet configs. */
14328 {
14329 int i;
14330
14331 for (i = 0; i < PACKET_MAX; i++)
14332 {
14333 /* Ideally all configs would have a command associated. Some
14334 still don't though. */
14335 int excepted;
14336
14337 switch (i)
14338 {
14339 case PACKET_QNonStop:
14340 case PACKET_EnableDisableTracepoints_feature:
14341 case PACKET_tracenz_feature:
14342 case PACKET_DisconnectedTracing_feature:
14343 case PACKET_augmented_libraries_svr4_read_feature:
14344 case PACKET_qCRC:
14345 /* Additions to this list need to be well justified:
14346 pre-existing packets are OK; new packets are not. */
14347 excepted = 1;
14348 break;
14349 default:
14350 excepted = 0;
14351 break;
14352 }
14353
14354 /* This catches both forgetting to add a config command, and
14355 forgetting to remove a packet from the exception list. */
14356 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14357 }
14358 }
14359
14360 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14361 Z sub-packet has its own set and show commands, but users may
14362 have sets to this variable in their .gdbinit files (or in their
14363 documentation). */
14364 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14365 &remote_Z_packet_detect, _("\
14366 Set use of remote protocol `Z' packets"), _("\
14367 Show use of remote protocol `Z' packets "), _("\
14368 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14369 packets."),
14370 set_remote_protocol_Z_packet_cmd,
14371 show_remote_protocol_Z_packet_cmd,
14372 /* FIXME: i18n: Use of remote protocol
14373 `Z' packets is %s. */
14374 &remote_set_cmdlist, &remote_show_cmdlist);
14375
14376 add_prefix_cmd ("remote", class_files, remote_command, _("\
14377 Manipulate files on the remote system\n\
14378 Transfer files to and from the remote target system."),
14379 &remote_cmdlist, "remote ",
14380 0 /* allow-unknown */, &cmdlist);
14381
14382 add_cmd ("put", class_files, remote_put_command,
14383 _("Copy a local file to the remote system."),
14384 &remote_cmdlist);
14385
14386 add_cmd ("get", class_files, remote_get_command,
14387 _("Copy a remote file to the local system."),
14388 &remote_cmdlist);
14389
14390 add_cmd ("delete", class_files, remote_delete_command,
14391 _("Delete a remote file."),
14392 &remote_cmdlist);
14393
14394 add_setshow_string_noescape_cmd ("exec-file", class_files,
14395 &remote_exec_file_var, _("\
14396 Set the remote pathname for \"run\""), _("\
14397 Show the remote pathname for \"run\""), NULL,
14398 set_remote_exec_file,
14399 show_remote_exec_file,
14400 &remote_set_cmdlist,
14401 &remote_show_cmdlist);
14402
14403 add_setshow_boolean_cmd ("range-stepping", class_run,
14404 &use_range_stepping, _("\
14405 Enable or disable range stepping."), _("\
14406 Show whether target-assisted range stepping is enabled."), _("\
14407 If on, and the target supports it, when stepping a source line, GDB\n\
14408 tells the target to step the corresponding range of addresses itself instead\n\
14409 of issuing multiple single-steps. This speeds up source level\n\
14410 stepping. If off, GDB always issues single-steps, even if range\n\
14411 stepping is supported by the target. The default is on."),
14412 set_range_stepping,
14413 show_range_stepping,
14414 &setlist,
14415 &showlist);
14416
14417 /* Eventually initialize fileio. See fileio.c */
14418 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14419
14420 /* Take advantage of the fact that the TID field is not used, to tag
14421 special ptids with it set to != 0. */
14422 magic_null_ptid = ptid_build (42000, -1, 1);
14423 not_sent_ptid = ptid_build (42000, -2, 1);
14424 any_thread_ptid = ptid_build (42000, 0, 1);
14425 }
This page took 0.316855 seconds and 5 git commands to generate.