remote.c: Remove unnecessary fields from 'struct stop_reply'.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include "gdb_stat.h"
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void sync_remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static int fromhex (int a);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
194 struct cmd_list_element *c);
195
196 static void show_remote_protocol_packet_cmd (struct ui_file *file,
197 int from_tty,
198 struct cmd_list_element *c,
199 const char *value);
200
201 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
202 static ptid_t read_ptid (char *buf, char **obuf);
203
204 static void remote_set_permissions (void);
205
206 struct remote_state;
207 static int remote_get_trace_status (struct trace_status *ts);
208
209 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
210
211 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
212
213 static void remote_query_supported (void);
214
215 static void remote_check_symbols (void);
216
217 void _initialize_remote (void);
218
219 struct stop_reply;
220 static void stop_reply_xfree (struct stop_reply *);
221 static void remote_parse_stop_reply (char *, struct stop_reply *);
222 static void push_stop_reply (struct stop_reply *);
223 static void discard_pending_stop_replies (struct inferior *);
224 static int peek_stop_reply (ptid_t ptid);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (void);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (void);
235
236 static int remote_can_run_breakpoint_commands (void);
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Stub vCont actions support.
248
249 Each field is a boolean flag indicating whether the stub reports
250 support for the corresponding action. */
251
252 struct vCont_action_support
253 {
254 /* vCont;t */
255 int t;
256
257 /* vCont;r */
258 int r;
259 };
260
261 /* Controls whether GDB is willing to use range stepping. */
262
263 static int use_range_stepping = 1;
264
265 #define OPAQUETHREADBYTES 8
266
267 /* a 64 bit opaque identifier */
268 typedef unsigned char threadref[OPAQUETHREADBYTES];
269
270 /* About this many threadisds fit in a packet. */
271
272 #define MAXTHREADLISTRESULTS 32
273
274 /* Description of the remote protocol state for the currently
275 connected target. This is per-target state, and independent of the
276 selected architecture. */
277
278 struct remote_state
279 {
280 /* A buffer to use for incoming packets, and its current size. The
281 buffer is grown dynamically for larger incoming packets.
282 Outgoing packets may also be constructed in this buffer.
283 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
284 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
285 packets. */
286 char *buf;
287 long buf_size;
288
289 /* True if we're going through initial connection setup (finding out
290 about the remote side's threads, relocating symbols, etc.). */
291 int starting_up;
292
293 /* If we negotiated packet size explicitly (and thus can bypass
294 heuristics for the largest packet size that will not overflow
295 a buffer in the stub), this will be set to that packet size.
296 Otherwise zero, meaning to use the guessed size. */
297 long explicit_packet_size;
298
299 /* remote_wait is normally called when the target is running and
300 waits for a stop reply packet. But sometimes we need to call it
301 when the target is already stopped. We can send a "?" packet
302 and have remote_wait read the response. Or, if we already have
303 the response, we can stash it in BUF and tell remote_wait to
304 skip calling getpkt. This flag is set when BUF contains a
305 stop reply packet and the target is not waiting. */
306 int cached_wait_status;
307
308 /* True, if in no ack mode. That is, neither GDB nor the stub will
309 expect acks from each other. The connection is assumed to be
310 reliable. */
311 int noack_mode;
312
313 /* True if we're connected in extended remote mode. */
314 int extended;
315
316 /* True if the stub reported support for multi-process
317 extensions. */
318 int multi_process_aware;
319
320 /* True if we resumed the target and we're waiting for the target to
321 stop. In the mean time, we can't start another command/query.
322 The remote server wouldn't be ready to process it, so we'd
323 timeout waiting for a reply that would never come and eventually
324 we'd close the connection. This can happen in asynchronous mode
325 because we allow GDB commands while the target is running. */
326 int waiting_for_stop_reply;
327
328 /* True if the stub reports support for non-stop mode. */
329 int non_stop_aware;
330
331 /* The status of the stub support for the various vCont actions. */
332 struct vCont_action_support supports_vCont;
333
334 /* True if the stub reports support for conditional tracepoints. */
335 int cond_tracepoints;
336
337 /* True if the stub reports support for target-side breakpoint
338 conditions. */
339 int cond_breakpoints;
340
341 /* True if the stub reports support for target-side breakpoint
342 commands. */
343 int breakpoint_commands;
344
345 /* True if the stub reports support for fast tracepoints. */
346 int fast_tracepoints;
347
348 /* True if the stub reports support for static tracepoints. */
349 int static_tracepoints;
350
351 /* True if the stub reports support for installing tracepoint while
352 tracing. */
353 int install_in_trace;
354
355 /* True if the stub can continue running a trace while GDB is
356 disconnected. */
357 int disconnected_tracing;
358
359 /* True if the stub reports support for enabling and disabling
360 tracepoints while a trace experiment is running. */
361 int enable_disable_tracepoints;
362
363 /* True if the stub can collect strings using tracenz bytecode. */
364 int string_tracing;
365
366 /* True if the stub supports qXfer:libraries-svr4:read with a
367 non-empty annex. */
368 int augmented_libraries_svr4_read;
369
370 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
371 responded to that. */
372 int ctrlc_pending_p;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 char *finished_object;
401 char *finished_annex;
402 ULONGEST finished_offset;
403
404 /* Should we try the 'ThreadInfo' query packet?
405
406 This variable (NOT available to the user: auto-detect only!)
407 determines whether GDB will use the new, simpler "ThreadInfo"
408 query or the older, more complex syntax for thread queries.
409 This is an auto-detect variable (set to true at each connect,
410 and set to false when the target fails to recognize it). */
411 int use_threadinfo_query;
412 int use_threadextra_query;
413
414 void (*async_client_callback) (enum inferior_event_type event_type,
415 void *context);
416 void *async_client_context;
417
418 /* This is set to the data address of the access causing the target
419 to stop for a watchpoint. */
420 CORE_ADDR remote_watch_data_address;
421
422 /* This is non-zero if target stopped for a watchpoint. */
423 int remote_stopped_by_watchpoint_p;
424
425 threadref echo_nextthread;
426 threadref nextthread;
427 threadref resultthreadlist[MAXTHREADLISTRESULTS];
428 };
429
430 /* Private data that we'll store in (struct thread_info)->private. */
431 struct private_thread_info
432 {
433 char *extra;
434 int core;
435 };
436
437 static void
438 free_private_thread_info (struct private_thread_info *info)
439 {
440 xfree (info->extra);
441 xfree (info);
442 }
443
444 /* Returns true if the multi-process extensions are in effect. */
445 static int
446 remote_multi_process_p (struct remote_state *rs)
447 {
448 return rs->multi_process_aware;
449 }
450
451 /* This data could be associated with a target, but we do not always
452 have access to the current target when we need it, so for now it is
453 static. This will be fine for as long as only one target is in use
454 at a time. */
455 static struct remote_state *remote_state;
456
457 static struct remote_state *
458 get_remote_state_raw (void)
459 {
460 return remote_state;
461 }
462
463 /* Allocate a new struct remote_state with xmalloc, initialize it, and
464 return it. */
465
466 static struct remote_state *
467 new_remote_state (void)
468 {
469 struct remote_state *result = XCNEW (struct remote_state);
470
471 /* The default buffer size is unimportant; it will be expanded
472 whenever a larger buffer is needed. */
473 result->buf_size = 400;
474 result->buf = xmalloc (result->buf_size);
475 result->remote_traceframe_number = -1;
476 result->last_sent_signal = GDB_SIGNAL_0;
477
478 return result;
479 }
480
481 /* Description of the remote protocol for a given architecture. */
482
483 struct packet_reg
484 {
485 long offset; /* Offset into G packet. */
486 long regnum; /* GDB's internal register number. */
487 LONGEST pnum; /* Remote protocol register number. */
488 int in_g_packet; /* Always part of G packet. */
489 /* long size in bytes; == register_size (target_gdbarch (), regnum);
490 at present. */
491 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
492 at present. */
493 };
494
495 struct remote_arch_state
496 {
497 /* Description of the remote protocol registers. */
498 long sizeof_g_packet;
499
500 /* Description of the remote protocol registers indexed by REGNUM
501 (making an array gdbarch_num_regs in size). */
502 struct packet_reg *regs;
503
504 /* This is the size (in chars) of the first response to the ``g''
505 packet. It is used as a heuristic when determining the maximum
506 size of memory-read and memory-write packets. A target will
507 typically only reserve a buffer large enough to hold the ``g''
508 packet. The size does not include packet overhead (headers and
509 trailers). */
510 long actual_register_packet_size;
511
512 /* This is the maximum size (in chars) of a non read/write packet.
513 It is also used as a cap on the size of read/write packets. */
514 long remote_packet_size;
515 };
516
517 /* Utility: generate error from an incoming stub packet. */
518 static void
519 trace_error (char *buf)
520 {
521 if (*buf++ != 'E')
522 return; /* not an error msg */
523 switch (*buf)
524 {
525 case '1': /* malformed packet error */
526 if (*++buf == '0') /* general case: */
527 error (_("remote.c: error in outgoing packet."));
528 else
529 error (_("remote.c: error in outgoing packet at field #%ld."),
530 strtol (buf, NULL, 16));
531 default:
532 error (_("Target returns error code '%s'."), buf);
533 }
534 }
535
536 /* Utility: wait for reply from stub, while accepting "O" packets. */
537 static char *
538 remote_get_noisy_reply (char **buf_p,
539 long *sizeof_buf)
540 {
541 do /* Loop on reply from remote stub. */
542 {
543 char *buf;
544
545 QUIT; /* Allow user to bail out with ^C. */
546 getpkt (buf_p, sizeof_buf, 0);
547 buf = *buf_p;
548 if (buf[0] == 'E')
549 trace_error (buf);
550 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
551 {
552 ULONGEST ul;
553 CORE_ADDR from, to, org_to;
554 char *p, *pp;
555 int adjusted_size = 0;
556 volatile struct gdb_exception ex;
557
558 p = buf + strlen ("qRelocInsn:");
559 pp = unpack_varlen_hex (p, &ul);
560 if (*pp != ';')
561 error (_("invalid qRelocInsn packet: %s"), buf);
562 from = ul;
563
564 p = pp + 1;
565 unpack_varlen_hex (p, &ul);
566 to = ul;
567
568 org_to = to;
569
570 TRY_CATCH (ex, RETURN_MASK_ALL)
571 {
572 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
573 }
574 if (ex.reason >= 0)
575 {
576 adjusted_size = to - org_to;
577
578 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
579 putpkt (buf);
580 }
581 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
582 {
583 /* Propagate memory errors silently back to the target.
584 The stub may have limited the range of addresses we
585 can write to, for example. */
586 putpkt ("E01");
587 }
588 else
589 {
590 /* Something unexpectedly bad happened. Be verbose so
591 we can tell what, and propagate the error back to the
592 stub, so it doesn't get stuck waiting for a
593 response. */
594 exception_fprintf (gdb_stderr, ex,
595 _("warning: relocating instruction: "));
596 putpkt ("E01");
597 }
598 }
599 else if (buf[0] == 'O' && buf[1] != 'K')
600 remote_console_output (buf + 1); /* 'O' message from stub */
601 else
602 return buf; /* Here's the actual reply. */
603 }
604 while (1);
605 }
606
607 /* Handle for retreving the remote protocol data from gdbarch. */
608 static struct gdbarch_data *remote_gdbarch_data_handle;
609
610 static struct remote_arch_state *
611 get_remote_arch_state (void)
612 {
613 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
614 }
615
616 /* Fetch the global remote target state. */
617
618 static struct remote_state *
619 get_remote_state (void)
620 {
621 /* Make sure that the remote architecture state has been
622 initialized, because doing so might reallocate rs->buf. Any
623 function which calls getpkt also needs to be mindful of changes
624 to rs->buf, but this call limits the number of places which run
625 into trouble. */
626 get_remote_arch_state ();
627
628 return get_remote_state_raw ();
629 }
630
631 static int
632 compare_pnums (const void *lhs_, const void *rhs_)
633 {
634 const struct packet_reg * const *lhs = lhs_;
635 const struct packet_reg * const *rhs = rhs_;
636
637 if ((*lhs)->pnum < (*rhs)->pnum)
638 return -1;
639 else if ((*lhs)->pnum == (*rhs)->pnum)
640 return 0;
641 else
642 return 1;
643 }
644
645 static int
646 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
647 {
648 int regnum, num_remote_regs, offset;
649 struct packet_reg **remote_regs;
650
651 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
652 {
653 struct packet_reg *r = &regs[regnum];
654
655 if (register_size (gdbarch, regnum) == 0)
656 /* Do not try to fetch zero-sized (placeholder) registers. */
657 r->pnum = -1;
658 else
659 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
660
661 r->regnum = regnum;
662 }
663
664 /* Define the g/G packet format as the contents of each register
665 with a remote protocol number, in order of ascending protocol
666 number. */
667
668 remote_regs = alloca (gdbarch_num_regs (gdbarch)
669 * sizeof (struct packet_reg *));
670 for (num_remote_regs = 0, regnum = 0;
671 regnum < gdbarch_num_regs (gdbarch);
672 regnum++)
673 if (regs[regnum].pnum != -1)
674 remote_regs[num_remote_regs++] = &regs[regnum];
675
676 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
677 compare_pnums);
678
679 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
680 {
681 remote_regs[regnum]->in_g_packet = 1;
682 remote_regs[regnum]->offset = offset;
683 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
684 }
685
686 return offset;
687 }
688
689 /* Given the architecture described by GDBARCH, return the remote
690 protocol register's number and the register's offset in the g/G
691 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
692 If the target does not have a mapping for REGNUM, return false,
693 otherwise, return true. */
694
695 int
696 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
697 int *pnum, int *poffset)
698 {
699 int sizeof_g_packet;
700 struct packet_reg *regs;
701 struct cleanup *old_chain;
702
703 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
704
705 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
706 old_chain = make_cleanup (xfree, regs);
707
708 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
709
710 *pnum = regs[regnum].pnum;
711 *poffset = regs[regnum].offset;
712
713 do_cleanups (old_chain);
714
715 return *pnum != -1;
716 }
717
718 static void *
719 init_remote_state (struct gdbarch *gdbarch)
720 {
721 struct remote_state *rs = get_remote_state_raw ();
722 struct remote_arch_state *rsa;
723
724 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
725
726 /* Use the architecture to build a regnum<->pnum table, which will be
727 1:1 unless a feature set specifies otherwise. */
728 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
729 gdbarch_num_regs (gdbarch),
730 struct packet_reg);
731
732 /* Record the maximum possible size of the g packet - it may turn out
733 to be smaller. */
734 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
735
736 /* Default maximum number of characters in a packet body. Many
737 remote stubs have a hardwired buffer size of 400 bytes
738 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
739 as the maximum packet-size to ensure that the packet and an extra
740 NUL character can always fit in the buffer. This stops GDB
741 trashing stubs that try to squeeze an extra NUL into what is
742 already a full buffer (As of 1999-12-04 that was most stubs). */
743 rsa->remote_packet_size = 400 - 1;
744
745 /* This one is filled in when a ``g'' packet is received. */
746 rsa->actual_register_packet_size = 0;
747
748 /* Should rsa->sizeof_g_packet needs more space than the
749 default, adjust the size accordingly. Remember that each byte is
750 encoded as two characters. 32 is the overhead for the packet
751 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
752 (``$NN:G...#NN'') is a better guess, the below has been padded a
753 little. */
754 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
755 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
756
757 /* Make sure that the packet buffer is plenty big enough for
758 this architecture. */
759 if (rs->buf_size < rsa->remote_packet_size)
760 {
761 rs->buf_size = 2 * rsa->remote_packet_size;
762 rs->buf = xrealloc (rs->buf, rs->buf_size);
763 }
764
765 return rsa;
766 }
767
768 /* Return the current allowed size of a remote packet. This is
769 inferred from the current architecture, and should be used to
770 limit the length of outgoing packets. */
771 static long
772 get_remote_packet_size (void)
773 {
774 struct remote_state *rs = get_remote_state ();
775 struct remote_arch_state *rsa = get_remote_arch_state ();
776
777 if (rs->explicit_packet_size)
778 return rs->explicit_packet_size;
779
780 return rsa->remote_packet_size;
781 }
782
783 static struct packet_reg *
784 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
785 {
786 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
787 return NULL;
788 else
789 {
790 struct packet_reg *r = &rsa->regs[regnum];
791
792 gdb_assert (r->regnum == regnum);
793 return r;
794 }
795 }
796
797 static struct packet_reg *
798 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
799 {
800 int i;
801
802 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
803 {
804 struct packet_reg *r = &rsa->regs[i];
805
806 if (r->pnum == pnum)
807 return r;
808 }
809 return NULL;
810 }
811
812 static struct target_ops remote_ops;
813
814 static struct target_ops extended_remote_ops;
815
816 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
817 ``forever'' still use the normal timeout mechanism. This is
818 currently used by the ASYNC code to guarentee that target reads
819 during the initial connect always time-out. Once getpkt has been
820 modified to return a timeout indication and, in turn
821 remote_wait()/wait_for_inferior() have gained a timeout parameter
822 this can go away. */
823 static int wait_forever_enabled_p = 1;
824
825 /* Allow the user to specify what sequence to send to the remote
826 when he requests a program interruption: Although ^C is usually
827 what remote systems expect (this is the default, here), it is
828 sometimes preferable to send a break. On other systems such
829 as the Linux kernel, a break followed by g, which is Magic SysRq g
830 is required in order to interrupt the execution. */
831 const char interrupt_sequence_control_c[] = "Ctrl-C";
832 const char interrupt_sequence_break[] = "BREAK";
833 const char interrupt_sequence_break_g[] = "BREAK-g";
834 static const char *const interrupt_sequence_modes[] =
835 {
836 interrupt_sequence_control_c,
837 interrupt_sequence_break,
838 interrupt_sequence_break_g,
839 NULL
840 };
841 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
842
843 static void
844 show_interrupt_sequence (struct ui_file *file, int from_tty,
845 struct cmd_list_element *c,
846 const char *value)
847 {
848 if (interrupt_sequence_mode == interrupt_sequence_control_c)
849 fprintf_filtered (file,
850 _("Send the ASCII ETX character (Ctrl-c) "
851 "to the remote target to interrupt the "
852 "execution of the program.\n"));
853 else if (interrupt_sequence_mode == interrupt_sequence_break)
854 fprintf_filtered (file,
855 _("send a break signal to the remote target "
856 "to interrupt the execution of the program.\n"));
857 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
858 fprintf_filtered (file,
859 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
860 "the remote target to interrupt the execution "
861 "of Linux kernel.\n"));
862 else
863 internal_error (__FILE__, __LINE__,
864 _("Invalid value for interrupt_sequence_mode: %s."),
865 interrupt_sequence_mode);
866 }
867
868 /* This boolean variable specifies whether interrupt_sequence is sent
869 to the remote target when gdb connects to it.
870 This is mostly needed when you debug the Linux kernel: The Linux kernel
871 expects BREAK g which is Magic SysRq g for connecting gdb. */
872 static int interrupt_on_connect = 0;
873
874 /* This variable is used to implement the "set/show remotebreak" commands.
875 Since these commands are now deprecated in favor of "set/show remote
876 interrupt-sequence", it no longer has any effect on the code. */
877 static int remote_break;
878
879 static void
880 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
881 {
882 if (remote_break)
883 interrupt_sequence_mode = interrupt_sequence_break;
884 else
885 interrupt_sequence_mode = interrupt_sequence_control_c;
886 }
887
888 static void
889 show_remotebreak (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c,
891 const char *value)
892 {
893 }
894
895 /* This variable sets the number of bits in an address that are to be
896 sent in a memory ("M" or "m") packet. Normally, after stripping
897 leading zeros, the entire address would be sent. This variable
898 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
899 initial implementation of remote.c restricted the address sent in
900 memory packets to ``host::sizeof long'' bytes - (typically 32
901 bits). Consequently, for 64 bit targets, the upper 32 bits of an
902 address was never sent. Since fixing this bug may cause a break in
903 some remote targets this variable is principly provided to
904 facilitate backward compatibility. */
905
906 static unsigned int remote_address_size;
907
908 /* Temporary to track who currently owns the terminal. See
909 remote_terminal_* for more details. */
910
911 static int remote_async_terminal_ours_p;
912
913 /* The executable file to use for "run" on the remote side. */
914
915 static char *remote_exec_file = "";
916
917 \f
918 /* User configurable variables for the number of characters in a
919 memory read/write packet. MIN (rsa->remote_packet_size,
920 rsa->sizeof_g_packet) is the default. Some targets need smaller
921 values (fifo overruns, et.al.) and some users need larger values
922 (speed up transfers). The variables ``preferred_*'' (the user
923 request), ``current_*'' (what was actually set) and ``forced_*''
924 (Positive - a soft limit, negative - a hard limit). */
925
926 struct memory_packet_config
927 {
928 char *name;
929 long size;
930 int fixed_p;
931 };
932
933 /* Compute the current size of a read/write packet. Since this makes
934 use of ``actual_register_packet_size'' the computation is dynamic. */
935
936 static long
937 get_memory_packet_size (struct memory_packet_config *config)
938 {
939 struct remote_state *rs = get_remote_state ();
940 struct remote_arch_state *rsa = get_remote_arch_state ();
941
942 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
943 law?) that some hosts don't cope very well with large alloca()
944 calls. Eventually the alloca() code will be replaced by calls to
945 xmalloc() and make_cleanups() allowing this restriction to either
946 be lifted or removed. */
947 #ifndef MAX_REMOTE_PACKET_SIZE
948 #define MAX_REMOTE_PACKET_SIZE 16384
949 #endif
950 /* NOTE: 20 ensures we can write at least one byte. */
951 #ifndef MIN_REMOTE_PACKET_SIZE
952 #define MIN_REMOTE_PACKET_SIZE 20
953 #endif
954 long what_they_get;
955 if (config->fixed_p)
956 {
957 if (config->size <= 0)
958 what_they_get = MAX_REMOTE_PACKET_SIZE;
959 else
960 what_they_get = config->size;
961 }
962 else
963 {
964 what_they_get = get_remote_packet_size ();
965 /* Limit the packet to the size specified by the user. */
966 if (config->size > 0
967 && what_they_get > config->size)
968 what_they_get = config->size;
969
970 /* Limit it to the size of the targets ``g'' response unless we have
971 permission from the stub to use a larger packet size. */
972 if (rs->explicit_packet_size == 0
973 && rsa->actual_register_packet_size > 0
974 && what_they_get > rsa->actual_register_packet_size)
975 what_they_get = rsa->actual_register_packet_size;
976 }
977 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
978 what_they_get = MAX_REMOTE_PACKET_SIZE;
979 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
980 what_they_get = MIN_REMOTE_PACKET_SIZE;
981
982 /* Make sure there is room in the global buffer for this packet
983 (including its trailing NUL byte). */
984 if (rs->buf_size < what_they_get + 1)
985 {
986 rs->buf_size = 2 * what_they_get;
987 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
988 }
989
990 return what_they_get;
991 }
992
993 /* Update the size of a read/write packet. If they user wants
994 something really big then do a sanity check. */
995
996 static void
997 set_memory_packet_size (char *args, struct memory_packet_config *config)
998 {
999 int fixed_p = config->fixed_p;
1000 long size = config->size;
1001
1002 if (args == NULL)
1003 error (_("Argument required (integer, `fixed' or `limited')."));
1004 else if (strcmp (args, "hard") == 0
1005 || strcmp (args, "fixed") == 0)
1006 fixed_p = 1;
1007 else if (strcmp (args, "soft") == 0
1008 || strcmp (args, "limit") == 0)
1009 fixed_p = 0;
1010 else
1011 {
1012 char *end;
1013
1014 size = strtoul (args, &end, 0);
1015 if (args == end)
1016 error (_("Invalid %s (bad syntax)."), config->name);
1017 #if 0
1018 /* Instead of explicitly capping the size of a packet to
1019 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1020 instead allowed to set the size to something arbitrarily
1021 large. */
1022 if (size > MAX_REMOTE_PACKET_SIZE)
1023 error (_("Invalid %s (too large)."), config->name);
1024 #endif
1025 }
1026 /* Extra checks? */
1027 if (fixed_p && !config->fixed_p)
1028 {
1029 if (! query (_("The target may not be able to correctly handle a %s\n"
1030 "of %ld bytes. Change the packet size? "),
1031 config->name, size))
1032 error (_("Packet size not changed."));
1033 }
1034 /* Update the config. */
1035 config->fixed_p = fixed_p;
1036 config->size = size;
1037 }
1038
1039 static void
1040 show_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1043 if (config->fixed_p)
1044 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1045 get_memory_packet_size (config));
1046 else
1047 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1048 get_memory_packet_size (config));
1049 }
1050
1051 static struct memory_packet_config memory_write_packet_config =
1052 {
1053 "memory-write-packet-size",
1054 };
1055
1056 static void
1057 set_memory_write_packet_size (char *args, int from_tty)
1058 {
1059 set_memory_packet_size (args, &memory_write_packet_config);
1060 }
1061
1062 static void
1063 show_memory_write_packet_size (char *args, int from_tty)
1064 {
1065 show_memory_packet_size (&memory_write_packet_config);
1066 }
1067
1068 static long
1069 get_memory_write_packet_size (void)
1070 {
1071 return get_memory_packet_size (&memory_write_packet_config);
1072 }
1073
1074 static struct memory_packet_config memory_read_packet_config =
1075 {
1076 "memory-read-packet-size",
1077 };
1078
1079 static void
1080 set_memory_read_packet_size (char *args, int from_tty)
1081 {
1082 set_memory_packet_size (args, &memory_read_packet_config);
1083 }
1084
1085 static void
1086 show_memory_read_packet_size (char *args, int from_tty)
1087 {
1088 show_memory_packet_size (&memory_read_packet_config);
1089 }
1090
1091 static long
1092 get_memory_read_packet_size (void)
1093 {
1094 long size = get_memory_packet_size (&memory_read_packet_config);
1095
1096 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1097 extra buffer size argument before the memory read size can be
1098 increased beyond this. */
1099 if (size > get_remote_packet_size ())
1100 size = get_remote_packet_size ();
1101 return size;
1102 }
1103
1104 \f
1105 /* Generic configuration support for packets the stub optionally
1106 supports. Allows the user to specify the use of the packet as well
1107 as allowing GDB to auto-detect support in the remote stub. */
1108
1109 enum packet_support
1110 {
1111 PACKET_SUPPORT_UNKNOWN = 0,
1112 PACKET_ENABLE,
1113 PACKET_DISABLE
1114 };
1115
1116 struct packet_config
1117 {
1118 const char *name;
1119 const char *title;
1120 enum auto_boolean detect;
1121 enum packet_support support;
1122 };
1123
1124 /* Analyze a packet's return value and update the packet config
1125 accordingly. */
1126
1127 enum packet_result
1128 {
1129 PACKET_ERROR,
1130 PACKET_OK,
1131 PACKET_UNKNOWN
1132 };
1133
1134 static void
1135 update_packet_config (struct packet_config *config)
1136 {
1137 switch (config->detect)
1138 {
1139 case AUTO_BOOLEAN_TRUE:
1140 config->support = PACKET_ENABLE;
1141 break;
1142 case AUTO_BOOLEAN_FALSE:
1143 config->support = PACKET_DISABLE;
1144 break;
1145 case AUTO_BOOLEAN_AUTO:
1146 config->support = PACKET_SUPPORT_UNKNOWN;
1147 break;
1148 }
1149 }
1150
1151 static void
1152 show_packet_config_cmd (struct packet_config *config)
1153 {
1154 char *support = "internal-error";
1155
1156 switch (config->support)
1157 {
1158 case PACKET_ENABLE:
1159 support = "enabled";
1160 break;
1161 case PACKET_DISABLE:
1162 support = "disabled";
1163 break;
1164 case PACKET_SUPPORT_UNKNOWN:
1165 support = "unknown";
1166 break;
1167 }
1168 switch (config->detect)
1169 {
1170 case AUTO_BOOLEAN_AUTO:
1171 printf_filtered (_("Support for the `%s' packet "
1172 "is auto-detected, currently %s.\n"),
1173 config->name, support);
1174 break;
1175 case AUTO_BOOLEAN_TRUE:
1176 case AUTO_BOOLEAN_FALSE:
1177 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1178 config->name, support);
1179 break;
1180 }
1181 }
1182
1183 static void
1184 add_packet_config_cmd (struct packet_config *config, const char *name,
1185 const char *title, int legacy)
1186 {
1187 char *set_doc;
1188 char *show_doc;
1189 char *cmd_name;
1190
1191 config->name = name;
1192 config->title = title;
1193 config->detect = AUTO_BOOLEAN_AUTO;
1194 config->support = PACKET_SUPPORT_UNKNOWN;
1195 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1196 name, title);
1197 show_doc = xstrprintf ("Show current use of remote "
1198 "protocol `%s' (%s) packet",
1199 name, title);
1200 /* set/show TITLE-packet {auto,on,off} */
1201 cmd_name = xstrprintf ("%s-packet", title);
1202 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1203 &config->detect, set_doc,
1204 show_doc, NULL, /* help_doc */
1205 set_remote_protocol_packet_cmd,
1206 show_remote_protocol_packet_cmd,
1207 &remote_set_cmdlist, &remote_show_cmdlist);
1208 /* The command code copies the documentation strings. */
1209 xfree (set_doc);
1210 xfree (show_doc);
1211 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1212 if (legacy)
1213 {
1214 char *legacy_name;
1215
1216 legacy_name = xstrprintf ("%s-packet", name);
1217 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1218 &remote_set_cmdlist);
1219 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1220 &remote_show_cmdlist);
1221 }
1222 }
1223
1224 static enum packet_result
1225 packet_check_result (const char *buf)
1226 {
1227 if (buf[0] != '\0')
1228 {
1229 /* The stub recognized the packet request. Check that the
1230 operation succeeded. */
1231 if (buf[0] == 'E'
1232 && isxdigit (buf[1]) && isxdigit (buf[2])
1233 && buf[3] == '\0')
1234 /* "Enn" - definitly an error. */
1235 return PACKET_ERROR;
1236
1237 /* Always treat "E." as an error. This will be used for
1238 more verbose error messages, such as E.memtypes. */
1239 if (buf[0] == 'E' && buf[1] == '.')
1240 return PACKET_ERROR;
1241
1242 /* The packet may or may not be OK. Just assume it is. */
1243 return PACKET_OK;
1244 }
1245 else
1246 /* The stub does not support the packet. */
1247 return PACKET_UNKNOWN;
1248 }
1249
1250 static enum packet_result
1251 packet_ok (const char *buf, struct packet_config *config)
1252 {
1253 enum packet_result result;
1254
1255 result = packet_check_result (buf);
1256 switch (result)
1257 {
1258 case PACKET_OK:
1259 case PACKET_ERROR:
1260 /* The stub recognized the packet request. */
1261 switch (config->support)
1262 {
1263 case PACKET_SUPPORT_UNKNOWN:
1264 if (remote_debug)
1265 fprintf_unfiltered (gdb_stdlog,
1266 "Packet %s (%s) is supported\n",
1267 config->name, config->title);
1268 config->support = PACKET_ENABLE;
1269 break;
1270 case PACKET_DISABLE:
1271 internal_error (__FILE__, __LINE__,
1272 _("packet_ok: attempt to use a disabled packet"));
1273 break;
1274 case PACKET_ENABLE:
1275 break;
1276 }
1277 break;
1278 case PACKET_UNKNOWN:
1279 /* The stub does not support the packet. */
1280 switch (config->support)
1281 {
1282 case PACKET_ENABLE:
1283 if (config->detect == AUTO_BOOLEAN_AUTO)
1284 /* If the stub previously indicated that the packet was
1285 supported then there is a protocol error.. */
1286 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1287 config->name, config->title);
1288 else
1289 /* The user set it wrong. */
1290 error (_("Enabled packet %s (%s) not recognized by stub"),
1291 config->name, config->title);
1292 break;
1293 case PACKET_SUPPORT_UNKNOWN:
1294 if (remote_debug)
1295 fprintf_unfiltered (gdb_stdlog,
1296 "Packet %s (%s) is NOT supported\n",
1297 config->name, config->title);
1298 config->support = PACKET_DISABLE;
1299 break;
1300 case PACKET_DISABLE:
1301 break;
1302 }
1303 break;
1304 }
1305
1306 return result;
1307 }
1308
1309 enum {
1310 PACKET_vCont = 0,
1311 PACKET_X,
1312 PACKET_qSymbol,
1313 PACKET_P,
1314 PACKET_p,
1315 PACKET_Z0,
1316 PACKET_Z1,
1317 PACKET_Z2,
1318 PACKET_Z3,
1319 PACKET_Z4,
1320 PACKET_vFile_open,
1321 PACKET_vFile_pread,
1322 PACKET_vFile_pwrite,
1323 PACKET_vFile_close,
1324 PACKET_vFile_unlink,
1325 PACKET_vFile_readlink,
1326 PACKET_qXfer_auxv,
1327 PACKET_qXfer_features,
1328 PACKET_qXfer_libraries,
1329 PACKET_qXfer_libraries_svr4,
1330 PACKET_qXfer_memory_map,
1331 PACKET_qXfer_spu_read,
1332 PACKET_qXfer_spu_write,
1333 PACKET_qXfer_osdata,
1334 PACKET_qXfer_threads,
1335 PACKET_qXfer_statictrace_read,
1336 PACKET_qXfer_traceframe_info,
1337 PACKET_qXfer_uib,
1338 PACKET_qGetTIBAddr,
1339 PACKET_qGetTLSAddr,
1340 PACKET_qSupported,
1341 PACKET_qTStatus,
1342 PACKET_QPassSignals,
1343 PACKET_QProgramSignals,
1344 PACKET_qSearch_memory,
1345 PACKET_vAttach,
1346 PACKET_vRun,
1347 PACKET_QStartNoAckMode,
1348 PACKET_vKill,
1349 PACKET_qXfer_siginfo_read,
1350 PACKET_qXfer_siginfo_write,
1351 PACKET_qAttached,
1352 PACKET_ConditionalTracepoints,
1353 PACKET_ConditionalBreakpoints,
1354 PACKET_BreakpointCommands,
1355 PACKET_FastTracepoints,
1356 PACKET_StaticTracepoints,
1357 PACKET_InstallInTrace,
1358 PACKET_bc,
1359 PACKET_bs,
1360 PACKET_TracepointSource,
1361 PACKET_QAllow,
1362 PACKET_qXfer_fdpic,
1363 PACKET_QDisableRandomization,
1364 PACKET_QAgent,
1365 PACKET_QTBuffer_size,
1366 PACKET_Qbtrace_off,
1367 PACKET_Qbtrace_bts,
1368 PACKET_qXfer_btrace,
1369 PACKET_MAX
1370 };
1371
1372 static struct packet_config remote_protocol_packets[PACKET_MAX];
1373
1374 static void
1375 set_remote_protocol_packet_cmd (char *args, int from_tty,
1376 struct cmd_list_element *c)
1377 {
1378 struct packet_config *packet;
1379
1380 for (packet = remote_protocol_packets;
1381 packet < &remote_protocol_packets[PACKET_MAX];
1382 packet++)
1383 {
1384 if (&packet->detect == c->var)
1385 {
1386 update_packet_config (packet);
1387 return;
1388 }
1389 }
1390 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1391 c->name);
1392 }
1393
1394 static void
1395 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c,
1397 const char *value)
1398 {
1399 struct packet_config *packet;
1400
1401 for (packet = remote_protocol_packets;
1402 packet < &remote_protocol_packets[PACKET_MAX];
1403 packet++)
1404 {
1405 if (&packet->detect == c->var)
1406 {
1407 show_packet_config_cmd (packet);
1408 return;
1409 }
1410 }
1411 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1412 c->name);
1413 }
1414
1415 /* Should we try one of the 'Z' requests? */
1416
1417 enum Z_packet_type
1418 {
1419 Z_PACKET_SOFTWARE_BP,
1420 Z_PACKET_HARDWARE_BP,
1421 Z_PACKET_WRITE_WP,
1422 Z_PACKET_READ_WP,
1423 Z_PACKET_ACCESS_WP,
1424 NR_Z_PACKET_TYPES
1425 };
1426
1427 /* For compatibility with older distributions. Provide a ``set remote
1428 Z-packet ...'' command that updates all the Z packet types. */
1429
1430 static enum auto_boolean remote_Z_packet_detect;
1431
1432 static void
1433 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1434 struct cmd_list_element *c)
1435 {
1436 int i;
1437
1438 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1439 {
1440 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1441 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1442 }
1443 }
1444
1445 static void
1446 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c,
1448 const char *value)
1449 {
1450 int i;
1451
1452 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1453 {
1454 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1455 }
1456 }
1457
1458 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1459 static struct async_signal_handler *async_sigint_remote_twice_token;
1460 static struct async_signal_handler *async_sigint_remote_token;
1461
1462 \f
1463 /* Asynchronous signal handle registered as event loop source for
1464 when we have pending events ready to be passed to the core. */
1465
1466 static struct async_event_handler *remote_async_inferior_event_token;
1467
1468 \f
1469
1470 static ptid_t magic_null_ptid;
1471 static ptid_t not_sent_ptid;
1472 static ptid_t any_thread_ptid;
1473
1474 /* Find out if the stub attached to PID (and hence GDB should offer to
1475 detach instead of killing it when bailing out). */
1476
1477 static int
1478 remote_query_attached (int pid)
1479 {
1480 struct remote_state *rs = get_remote_state ();
1481 size_t size = get_remote_packet_size ();
1482
1483 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1484 return 0;
1485
1486 if (remote_multi_process_p (rs))
1487 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1488 else
1489 xsnprintf (rs->buf, size, "qAttached");
1490
1491 putpkt (rs->buf);
1492 getpkt (&rs->buf, &rs->buf_size, 0);
1493
1494 switch (packet_ok (rs->buf,
1495 &remote_protocol_packets[PACKET_qAttached]))
1496 {
1497 case PACKET_OK:
1498 if (strcmp (rs->buf, "1") == 0)
1499 return 1;
1500 break;
1501 case PACKET_ERROR:
1502 warning (_("Remote failure reply: %s"), rs->buf);
1503 break;
1504 case PACKET_UNKNOWN:
1505 break;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1512 has been invented by GDB, instead of reported by the target. Since
1513 we can be connected to a remote system before before knowing about
1514 any inferior, mark the target with execution when we find the first
1515 inferior. If ATTACHED is 1, then we had just attached to this
1516 inferior. If it is 0, then we just created this inferior. If it
1517 is -1, then try querying the remote stub to find out if it had
1518 attached to the inferior or not. */
1519
1520 static struct inferior *
1521 remote_add_inferior (int fake_pid_p, int pid, int attached)
1522 {
1523 struct inferior *inf;
1524
1525 /* Check whether this process we're learning about is to be
1526 considered attached, or if is to be considered to have been
1527 spawned by the stub. */
1528 if (attached == -1)
1529 attached = remote_query_attached (pid);
1530
1531 if (gdbarch_has_global_solist (target_gdbarch ()))
1532 {
1533 /* If the target shares code across all inferiors, then every
1534 attach adds a new inferior. */
1535 inf = add_inferior (pid);
1536
1537 /* ... and every inferior is bound to the same program space.
1538 However, each inferior may still have its own address
1539 space. */
1540 inf->aspace = maybe_new_address_space ();
1541 inf->pspace = current_program_space;
1542 }
1543 else
1544 {
1545 /* In the traditional debugging scenario, there's a 1-1 match
1546 between program/address spaces. We simply bind the inferior
1547 to the program space's address space. */
1548 inf = current_inferior ();
1549 inferior_appeared (inf, pid);
1550 }
1551
1552 inf->attach_flag = attached;
1553 inf->fake_pid_p = fake_pid_p;
1554
1555 return inf;
1556 }
1557
1558 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1559 according to RUNNING. */
1560
1561 static void
1562 remote_add_thread (ptid_t ptid, int running)
1563 {
1564 add_thread (ptid);
1565
1566 set_executing (ptid, running);
1567 set_running (ptid, running);
1568 }
1569
1570 /* Come here when we learn about a thread id from the remote target.
1571 It may be the first time we hear about such thread, so take the
1572 opportunity to add it to GDB's thread list. In case this is the
1573 first time we're noticing its corresponding inferior, add it to
1574 GDB's inferior list as well. */
1575
1576 static void
1577 remote_notice_new_inferior (ptid_t currthread, int running)
1578 {
1579 /* If this is a new thread, add it to GDB's thread list.
1580 If we leave it up to WFI to do this, bad things will happen. */
1581
1582 if (in_thread_list (currthread) && is_exited (currthread))
1583 {
1584 /* We're seeing an event on a thread id we knew had exited.
1585 This has to be a new thread reusing the old id. Add it. */
1586 remote_add_thread (currthread, running);
1587 return;
1588 }
1589
1590 if (!in_thread_list (currthread))
1591 {
1592 struct inferior *inf = NULL;
1593 int pid = ptid_get_pid (currthread);
1594
1595 if (ptid_is_pid (inferior_ptid)
1596 && pid == ptid_get_pid (inferior_ptid))
1597 {
1598 /* inferior_ptid has no thread member yet. This can happen
1599 with the vAttach -> remote_wait,"TAAthread:" path if the
1600 stub doesn't support qC. This is the first stop reported
1601 after an attach, so this is the main thread. Update the
1602 ptid in the thread list. */
1603 if (in_thread_list (pid_to_ptid (pid)))
1604 thread_change_ptid (inferior_ptid, currthread);
1605 else
1606 {
1607 remote_add_thread (currthread, running);
1608 inferior_ptid = currthread;
1609 }
1610 return;
1611 }
1612
1613 if (ptid_equal (magic_null_ptid, inferior_ptid))
1614 {
1615 /* inferior_ptid is not set yet. This can happen with the
1616 vRun -> remote_wait,"TAAthread:" path if the stub
1617 doesn't support qC. This is the first stop reported
1618 after an attach, so this is the main thread. Update the
1619 ptid in the thread list. */
1620 thread_change_ptid (inferior_ptid, currthread);
1621 return;
1622 }
1623
1624 /* When connecting to a target remote, or to a target
1625 extended-remote which already was debugging an inferior, we
1626 may not know about it yet. Add it before adding its child
1627 thread, so notifications are emitted in a sensible order. */
1628 if (!in_inferior_list (ptid_get_pid (currthread)))
1629 {
1630 struct remote_state *rs = get_remote_state ();
1631 int fake_pid_p = !remote_multi_process_p (rs);
1632
1633 inf = remote_add_inferior (fake_pid_p,
1634 ptid_get_pid (currthread), -1);
1635 }
1636
1637 /* This is really a new thread. Add it. */
1638 remote_add_thread (currthread, running);
1639
1640 /* If we found a new inferior, let the common code do whatever
1641 it needs to with it (e.g., read shared libraries, insert
1642 breakpoints). */
1643 if (inf != NULL)
1644 notice_new_inferior (currthread, running, 0);
1645 }
1646 }
1647
1648 /* Return the private thread data, creating it if necessary. */
1649
1650 static struct private_thread_info *
1651 demand_private_info (ptid_t ptid)
1652 {
1653 struct thread_info *info = find_thread_ptid (ptid);
1654
1655 gdb_assert (info);
1656
1657 if (!info->private)
1658 {
1659 info->private = xmalloc (sizeof (*(info->private)));
1660 info->private_dtor = free_private_thread_info;
1661 info->private->core = -1;
1662 info->private->extra = 0;
1663 }
1664
1665 return info->private;
1666 }
1667
1668 /* Call this function as a result of
1669 1) A halt indication (T packet) containing a thread id
1670 2) A direct query of currthread
1671 3) Successful execution of set thread */
1672
1673 static void
1674 record_currthread (struct remote_state *rs, ptid_t currthread)
1675 {
1676 rs->general_thread = currthread;
1677 }
1678
1679 /* If 'QPassSignals' is supported, tell the remote stub what signals
1680 it can simply pass through to the inferior without reporting. */
1681
1682 static void
1683 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1684 {
1685 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1686 {
1687 char *pass_packet, *p;
1688 int count = 0, i;
1689 struct remote_state *rs = get_remote_state ();
1690
1691 gdb_assert (numsigs < 256);
1692 for (i = 0; i < numsigs; i++)
1693 {
1694 if (pass_signals[i])
1695 count++;
1696 }
1697 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1698 strcpy (pass_packet, "QPassSignals:");
1699 p = pass_packet + strlen (pass_packet);
1700 for (i = 0; i < numsigs; i++)
1701 {
1702 if (pass_signals[i])
1703 {
1704 if (i >= 16)
1705 *p++ = tohex (i >> 4);
1706 *p++ = tohex (i & 15);
1707 if (count)
1708 *p++ = ';';
1709 else
1710 break;
1711 count--;
1712 }
1713 }
1714 *p = 0;
1715 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1716 {
1717 char *buf = rs->buf;
1718
1719 putpkt (pass_packet);
1720 getpkt (&rs->buf, &rs->buf_size, 0);
1721 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1722 if (rs->last_pass_packet)
1723 xfree (rs->last_pass_packet);
1724 rs->last_pass_packet = pass_packet;
1725 }
1726 else
1727 xfree (pass_packet);
1728 }
1729 }
1730
1731 /* If 'QProgramSignals' is supported, tell the remote stub what
1732 signals it should pass through to the inferior when detaching. */
1733
1734 static void
1735 remote_program_signals (int numsigs, unsigned char *signals)
1736 {
1737 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1738 {
1739 char *packet, *p;
1740 int count = 0, i;
1741 struct remote_state *rs = get_remote_state ();
1742
1743 gdb_assert (numsigs < 256);
1744 for (i = 0; i < numsigs; i++)
1745 {
1746 if (signals[i])
1747 count++;
1748 }
1749 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1750 strcpy (packet, "QProgramSignals:");
1751 p = packet + strlen (packet);
1752 for (i = 0; i < numsigs; i++)
1753 {
1754 if (signal_pass_state (i))
1755 {
1756 if (i >= 16)
1757 *p++ = tohex (i >> 4);
1758 *p++ = tohex (i & 15);
1759 if (count)
1760 *p++ = ';';
1761 else
1762 break;
1763 count--;
1764 }
1765 }
1766 *p = 0;
1767 if (!rs->last_program_signals_packet
1768 || strcmp (rs->last_program_signals_packet, packet) != 0)
1769 {
1770 char *buf = rs->buf;
1771
1772 putpkt (packet);
1773 getpkt (&rs->buf, &rs->buf_size, 0);
1774 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1775 xfree (rs->last_program_signals_packet);
1776 rs->last_program_signals_packet = packet;
1777 }
1778 else
1779 xfree (packet);
1780 }
1781 }
1782
1783 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1784 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1785 thread. If GEN is set, set the general thread, if not, then set
1786 the step/continue thread. */
1787 static void
1788 set_thread (struct ptid ptid, int gen)
1789 {
1790 struct remote_state *rs = get_remote_state ();
1791 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1792 char *buf = rs->buf;
1793 char *endbuf = rs->buf + get_remote_packet_size ();
1794
1795 if (ptid_equal (state, ptid))
1796 return;
1797
1798 *buf++ = 'H';
1799 *buf++ = gen ? 'g' : 'c';
1800 if (ptid_equal (ptid, magic_null_ptid))
1801 xsnprintf (buf, endbuf - buf, "0");
1802 else if (ptid_equal (ptid, any_thread_ptid))
1803 xsnprintf (buf, endbuf - buf, "0");
1804 else if (ptid_equal (ptid, minus_one_ptid))
1805 xsnprintf (buf, endbuf - buf, "-1");
1806 else
1807 write_ptid (buf, endbuf, ptid);
1808 putpkt (rs->buf);
1809 getpkt (&rs->buf, &rs->buf_size, 0);
1810 if (gen)
1811 rs->general_thread = ptid;
1812 else
1813 rs->continue_thread = ptid;
1814 }
1815
1816 static void
1817 set_general_thread (struct ptid ptid)
1818 {
1819 set_thread (ptid, 1);
1820 }
1821
1822 static void
1823 set_continue_thread (struct ptid ptid)
1824 {
1825 set_thread (ptid, 0);
1826 }
1827
1828 /* Change the remote current process. Which thread within the process
1829 ends up selected isn't important, as long as it is the same process
1830 as what INFERIOR_PTID points to.
1831
1832 This comes from that fact that there is no explicit notion of
1833 "selected process" in the protocol. The selected process for
1834 general operations is the process the selected general thread
1835 belongs to. */
1836
1837 static void
1838 set_general_process (void)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841
1842 /* If the remote can't handle multiple processes, don't bother. */
1843 if (!rs->extended || !remote_multi_process_p (rs))
1844 return;
1845
1846 /* We only need to change the remote current thread if it's pointing
1847 at some other process. */
1848 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1849 set_general_thread (inferior_ptid);
1850 }
1851
1852 \f
1853 /* Return nonzero if the thread PTID is still alive on the remote
1854 system. */
1855
1856 static int
1857 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1858 {
1859 struct remote_state *rs = get_remote_state ();
1860 char *p, *endp;
1861
1862 if (ptid_equal (ptid, magic_null_ptid))
1863 /* The main thread is always alive. */
1864 return 1;
1865
1866 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1867 /* The main thread is always alive. This can happen after a
1868 vAttach, if the remote side doesn't support
1869 multi-threading. */
1870 return 1;
1871
1872 p = rs->buf;
1873 endp = rs->buf + get_remote_packet_size ();
1874
1875 *p++ = 'T';
1876 write_ptid (p, endp, ptid);
1877
1878 putpkt (rs->buf);
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1881 }
1882
1883 /* About these extended threadlist and threadinfo packets. They are
1884 variable length packets but, the fields within them are often fixed
1885 length. They are redundent enough to send over UDP as is the
1886 remote protocol in general. There is a matching unit test module
1887 in libstub. */
1888
1889 /* WARNING: This threadref data structure comes from the remote O.S.,
1890 libstub protocol encoding, and remote.c. It is not particularly
1891 changable. */
1892
1893 /* Right now, the internal structure is int. We want it to be bigger.
1894 Plan to fix this. */
1895
1896 typedef int gdb_threadref; /* Internal GDB thread reference. */
1897
1898 /* gdb_ext_thread_info is an internal GDB data structure which is
1899 equivalent to the reply of the remote threadinfo packet. */
1900
1901 struct gdb_ext_thread_info
1902 {
1903 threadref threadid; /* External form of thread reference. */
1904 int active; /* Has state interesting to GDB?
1905 regs, stack. */
1906 char display[256]; /* Brief state display, name,
1907 blocked/suspended. */
1908 char shortname[32]; /* To be used to name threads. */
1909 char more_display[256]; /* Long info, statistics, queue depth,
1910 whatever. */
1911 };
1912
1913 /* The volume of remote transfers can be limited by submitting
1914 a mask containing bits specifying the desired information.
1915 Use a union of these values as the 'selection' parameter to
1916 get_thread_info. FIXME: Make these TAG names more thread specific. */
1917
1918 #define TAG_THREADID 1
1919 #define TAG_EXISTS 2
1920 #define TAG_DISPLAY 4
1921 #define TAG_THREADNAME 8
1922 #define TAG_MOREDISPLAY 16
1923
1924 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1925
1926 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1927
1928 static char *unpack_nibble (char *buf, int *val);
1929
1930 static char *pack_nibble (char *buf, int nibble);
1931
1932 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1933
1934 static char *unpack_byte (char *buf, int *value);
1935
1936 static char *pack_int (char *buf, int value);
1937
1938 static char *unpack_int (char *buf, int *value);
1939
1940 static char *unpack_string (char *src, char *dest, int length);
1941
1942 static char *pack_threadid (char *pkt, threadref *id);
1943
1944 static char *unpack_threadid (char *inbuf, threadref *id);
1945
1946 void int_to_threadref (threadref *id, int value);
1947
1948 static int threadref_to_int (threadref *ref);
1949
1950 static void copy_threadref (threadref *dest, threadref *src);
1951
1952 static int threadmatch (threadref *dest, threadref *src);
1953
1954 static char *pack_threadinfo_request (char *pkt, int mode,
1955 threadref *id);
1956
1957 static int remote_unpack_thread_info_response (char *pkt,
1958 threadref *expectedref,
1959 struct gdb_ext_thread_info
1960 *info);
1961
1962
1963 static int remote_get_threadinfo (threadref *threadid,
1964 int fieldset, /*TAG mask */
1965 struct gdb_ext_thread_info *info);
1966
1967 static char *pack_threadlist_request (char *pkt, int startflag,
1968 int threadcount,
1969 threadref *nextthread);
1970
1971 static int parse_threadlist_response (char *pkt,
1972 int result_limit,
1973 threadref *original_echo,
1974 threadref *resultlist,
1975 int *doneflag);
1976
1977 static int remote_get_threadlist (int startflag,
1978 threadref *nextthread,
1979 int result_limit,
1980 int *done,
1981 int *result_count,
1982 threadref *threadlist);
1983
1984 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1985
1986 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1987 void *context, int looplimit);
1988
1989 static int remote_newthread_step (threadref *ref, void *context);
1990
1991
1992 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1993 buffer we're allowed to write to. Returns
1994 BUF+CHARACTERS_WRITTEN. */
1995
1996 static char *
1997 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1998 {
1999 int pid, tid;
2000 struct remote_state *rs = get_remote_state ();
2001
2002 if (remote_multi_process_p (rs))
2003 {
2004 pid = ptid_get_pid (ptid);
2005 if (pid < 0)
2006 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2007 else
2008 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2009 }
2010 tid = ptid_get_tid (ptid);
2011 if (tid < 0)
2012 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2013 else
2014 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2015
2016 return buf;
2017 }
2018
2019 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2020 passed the last parsed char. Returns null_ptid on error. */
2021
2022 static ptid_t
2023 read_ptid (char *buf, char **obuf)
2024 {
2025 char *p = buf;
2026 char *pp;
2027 ULONGEST pid = 0, tid = 0;
2028
2029 if (*p == 'p')
2030 {
2031 /* Multi-process ptid. */
2032 pp = unpack_varlen_hex (p + 1, &pid);
2033 if (*pp != '.')
2034 error (_("invalid remote ptid: %s"), p);
2035
2036 p = pp;
2037 pp = unpack_varlen_hex (p + 1, &tid);
2038 if (obuf)
2039 *obuf = pp;
2040 return ptid_build (pid, 0, tid);
2041 }
2042
2043 /* No multi-process. Just a tid. */
2044 pp = unpack_varlen_hex (p, &tid);
2045
2046 /* Since the stub is not sending a process id, then default to
2047 what's in inferior_ptid, unless it's null at this point. If so,
2048 then since there's no way to know the pid of the reported
2049 threads, use the magic number. */
2050 if (ptid_equal (inferior_ptid, null_ptid))
2051 pid = ptid_get_pid (magic_null_ptid);
2052 else
2053 pid = ptid_get_pid (inferior_ptid);
2054
2055 if (obuf)
2056 *obuf = pp;
2057 return ptid_build (pid, 0, tid);
2058 }
2059
2060 /* Encode 64 bits in 16 chars of hex. */
2061
2062 static const char hexchars[] = "0123456789abcdef";
2063
2064 static int
2065 ishex (int ch, int *val)
2066 {
2067 if ((ch >= 'a') && (ch <= 'f'))
2068 {
2069 *val = ch - 'a' + 10;
2070 return 1;
2071 }
2072 if ((ch >= 'A') && (ch <= 'F'))
2073 {
2074 *val = ch - 'A' + 10;
2075 return 1;
2076 }
2077 if ((ch >= '0') && (ch <= '9'))
2078 {
2079 *val = ch - '0';
2080 return 1;
2081 }
2082 return 0;
2083 }
2084
2085 static int
2086 stubhex (int ch)
2087 {
2088 if (ch >= 'a' && ch <= 'f')
2089 return ch - 'a' + 10;
2090 if (ch >= '0' && ch <= '9')
2091 return ch - '0';
2092 if (ch >= 'A' && ch <= 'F')
2093 return ch - 'A' + 10;
2094 return -1;
2095 }
2096
2097 static int
2098 stub_unpack_int (char *buff, int fieldlength)
2099 {
2100 int nibble;
2101 int retval = 0;
2102
2103 while (fieldlength)
2104 {
2105 nibble = stubhex (*buff++);
2106 retval |= nibble;
2107 fieldlength--;
2108 if (fieldlength)
2109 retval = retval << 4;
2110 }
2111 return retval;
2112 }
2113
2114 char *
2115 unpack_varlen_hex (char *buff, /* packet to parse */
2116 ULONGEST *result)
2117 {
2118 int nibble;
2119 ULONGEST retval = 0;
2120
2121 while (ishex (*buff, &nibble))
2122 {
2123 buff++;
2124 retval = retval << 4;
2125 retval |= nibble & 0x0f;
2126 }
2127 *result = retval;
2128 return buff;
2129 }
2130
2131 static char *
2132 unpack_nibble (char *buf, int *val)
2133 {
2134 *val = fromhex (*buf++);
2135 return buf;
2136 }
2137
2138 static char *
2139 pack_nibble (char *buf, int nibble)
2140 {
2141 *buf++ = hexchars[(nibble & 0x0f)];
2142 return buf;
2143 }
2144
2145 static char *
2146 pack_hex_byte (char *pkt, int byte)
2147 {
2148 *pkt++ = hexchars[(byte >> 4) & 0xf];
2149 *pkt++ = hexchars[(byte & 0xf)];
2150 return pkt;
2151 }
2152
2153 static char *
2154 unpack_byte (char *buf, int *value)
2155 {
2156 *value = stub_unpack_int (buf, 2);
2157 return buf + 2;
2158 }
2159
2160 static char *
2161 pack_int (char *buf, int value)
2162 {
2163 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2164 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2165 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2166 buf = pack_hex_byte (buf, (value & 0xff));
2167 return buf;
2168 }
2169
2170 static char *
2171 unpack_int (char *buf, int *value)
2172 {
2173 *value = stub_unpack_int (buf, 8);
2174 return buf + 8;
2175 }
2176
2177 #if 0 /* Currently unused, uncomment when needed. */
2178 static char *pack_string (char *pkt, char *string);
2179
2180 static char *
2181 pack_string (char *pkt, char *string)
2182 {
2183 char ch;
2184 int len;
2185
2186 len = strlen (string);
2187 if (len > 200)
2188 len = 200; /* Bigger than most GDB packets, junk??? */
2189 pkt = pack_hex_byte (pkt, len);
2190 while (len-- > 0)
2191 {
2192 ch = *string++;
2193 if ((ch == '\0') || (ch == '#'))
2194 ch = '*'; /* Protect encapsulation. */
2195 *pkt++ = ch;
2196 }
2197 return pkt;
2198 }
2199 #endif /* 0 (unused) */
2200
2201 static char *
2202 unpack_string (char *src, char *dest, int length)
2203 {
2204 while (length--)
2205 *dest++ = *src++;
2206 *dest = '\0';
2207 return src;
2208 }
2209
2210 static char *
2211 pack_threadid (char *pkt, threadref *id)
2212 {
2213 char *limit;
2214 unsigned char *altid;
2215
2216 altid = (unsigned char *) id;
2217 limit = pkt + BUF_THREAD_ID_SIZE;
2218 while (pkt < limit)
2219 pkt = pack_hex_byte (pkt, *altid++);
2220 return pkt;
2221 }
2222
2223
2224 static char *
2225 unpack_threadid (char *inbuf, threadref *id)
2226 {
2227 char *altref;
2228 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2229 int x, y;
2230
2231 altref = (char *) id;
2232
2233 while (inbuf < limit)
2234 {
2235 x = stubhex (*inbuf++);
2236 y = stubhex (*inbuf++);
2237 *altref++ = (x << 4) | y;
2238 }
2239 return inbuf;
2240 }
2241
2242 /* Externally, threadrefs are 64 bits but internally, they are still
2243 ints. This is due to a mismatch of specifications. We would like
2244 to use 64bit thread references internally. This is an adapter
2245 function. */
2246
2247 void
2248 int_to_threadref (threadref *id, int value)
2249 {
2250 unsigned char *scan;
2251
2252 scan = (unsigned char *) id;
2253 {
2254 int i = 4;
2255 while (i--)
2256 *scan++ = 0;
2257 }
2258 *scan++ = (value >> 24) & 0xff;
2259 *scan++ = (value >> 16) & 0xff;
2260 *scan++ = (value >> 8) & 0xff;
2261 *scan++ = (value & 0xff);
2262 }
2263
2264 static int
2265 threadref_to_int (threadref *ref)
2266 {
2267 int i, value = 0;
2268 unsigned char *scan;
2269
2270 scan = *ref;
2271 scan += 4;
2272 i = 4;
2273 while (i-- > 0)
2274 value = (value << 8) | ((*scan++) & 0xff);
2275 return value;
2276 }
2277
2278 static void
2279 copy_threadref (threadref *dest, threadref *src)
2280 {
2281 int i;
2282 unsigned char *csrc, *cdest;
2283
2284 csrc = (unsigned char *) src;
2285 cdest = (unsigned char *) dest;
2286 i = 8;
2287 while (i--)
2288 *cdest++ = *csrc++;
2289 }
2290
2291 static int
2292 threadmatch (threadref *dest, threadref *src)
2293 {
2294 /* Things are broken right now, so just assume we got a match. */
2295 #if 0
2296 unsigned char *srcp, *destp;
2297 int i, result;
2298 srcp = (char *) src;
2299 destp = (char *) dest;
2300
2301 result = 1;
2302 while (i-- > 0)
2303 result &= (*srcp++ == *destp++) ? 1 : 0;
2304 return result;
2305 #endif
2306 return 1;
2307 }
2308
2309 /*
2310 threadid:1, # always request threadid
2311 context_exists:2,
2312 display:4,
2313 unique_name:8,
2314 more_display:16
2315 */
2316
2317 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2318
2319 static char *
2320 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2321 {
2322 *pkt++ = 'q'; /* Info Query */
2323 *pkt++ = 'P'; /* process or thread info */
2324 pkt = pack_int (pkt, mode); /* mode */
2325 pkt = pack_threadid (pkt, id); /* threadid */
2326 *pkt = '\0'; /* terminate */
2327 return pkt;
2328 }
2329
2330 /* These values tag the fields in a thread info response packet. */
2331 /* Tagging the fields allows us to request specific fields and to
2332 add more fields as time goes by. */
2333
2334 #define TAG_THREADID 1 /* Echo the thread identifier. */
2335 #define TAG_EXISTS 2 /* Is this process defined enough to
2336 fetch registers and its stack? */
2337 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2338 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2339 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2340 the process. */
2341
2342 static int
2343 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2344 struct gdb_ext_thread_info *info)
2345 {
2346 struct remote_state *rs = get_remote_state ();
2347 int mask, length;
2348 int tag;
2349 threadref ref;
2350 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2351 int retval = 1;
2352
2353 /* info->threadid = 0; FIXME: implement zero_threadref. */
2354 info->active = 0;
2355 info->display[0] = '\0';
2356 info->shortname[0] = '\0';
2357 info->more_display[0] = '\0';
2358
2359 /* Assume the characters indicating the packet type have been
2360 stripped. */
2361 pkt = unpack_int (pkt, &mask); /* arg mask */
2362 pkt = unpack_threadid (pkt, &ref);
2363
2364 if (mask == 0)
2365 warning (_("Incomplete response to threadinfo request."));
2366 if (!threadmatch (&ref, expectedref))
2367 { /* This is an answer to a different request. */
2368 warning (_("ERROR RMT Thread info mismatch."));
2369 return 0;
2370 }
2371 copy_threadref (&info->threadid, &ref);
2372
2373 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2374
2375 /* Packets are terminated with nulls. */
2376 while ((pkt < limit) && mask && *pkt)
2377 {
2378 pkt = unpack_int (pkt, &tag); /* tag */
2379 pkt = unpack_byte (pkt, &length); /* length */
2380 if (!(tag & mask)) /* Tags out of synch with mask. */
2381 {
2382 warning (_("ERROR RMT: threadinfo tag mismatch."));
2383 retval = 0;
2384 break;
2385 }
2386 if (tag == TAG_THREADID)
2387 {
2388 if (length != 16)
2389 {
2390 warning (_("ERROR RMT: length of threadid is not 16."));
2391 retval = 0;
2392 break;
2393 }
2394 pkt = unpack_threadid (pkt, &ref);
2395 mask = mask & ~TAG_THREADID;
2396 continue;
2397 }
2398 if (tag == TAG_EXISTS)
2399 {
2400 info->active = stub_unpack_int (pkt, length);
2401 pkt += length;
2402 mask = mask & ~(TAG_EXISTS);
2403 if (length > 8)
2404 {
2405 warning (_("ERROR RMT: 'exists' length too long."));
2406 retval = 0;
2407 break;
2408 }
2409 continue;
2410 }
2411 if (tag == TAG_THREADNAME)
2412 {
2413 pkt = unpack_string (pkt, &info->shortname[0], length);
2414 mask = mask & ~TAG_THREADNAME;
2415 continue;
2416 }
2417 if (tag == TAG_DISPLAY)
2418 {
2419 pkt = unpack_string (pkt, &info->display[0], length);
2420 mask = mask & ~TAG_DISPLAY;
2421 continue;
2422 }
2423 if (tag == TAG_MOREDISPLAY)
2424 {
2425 pkt = unpack_string (pkt, &info->more_display[0], length);
2426 mask = mask & ~TAG_MOREDISPLAY;
2427 continue;
2428 }
2429 warning (_("ERROR RMT: unknown thread info tag."));
2430 break; /* Not a tag we know about. */
2431 }
2432 return retval;
2433 }
2434
2435 static int
2436 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2437 struct gdb_ext_thread_info *info)
2438 {
2439 struct remote_state *rs = get_remote_state ();
2440 int result;
2441
2442 pack_threadinfo_request (rs->buf, fieldset, threadid);
2443 putpkt (rs->buf);
2444 getpkt (&rs->buf, &rs->buf_size, 0);
2445
2446 if (rs->buf[0] == '\0')
2447 return 0;
2448
2449 result = remote_unpack_thread_info_response (rs->buf + 2,
2450 threadid, info);
2451 return result;
2452 }
2453
2454 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2455
2456 static char *
2457 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2458 threadref *nextthread)
2459 {
2460 *pkt++ = 'q'; /* info query packet */
2461 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2462 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2463 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2464 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2465 *pkt = '\0';
2466 return pkt;
2467 }
2468
2469 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2470
2471 static int
2472 parse_threadlist_response (char *pkt, int result_limit,
2473 threadref *original_echo, threadref *resultlist,
2474 int *doneflag)
2475 {
2476 struct remote_state *rs = get_remote_state ();
2477 char *limit;
2478 int count, resultcount, done;
2479
2480 resultcount = 0;
2481 /* Assume the 'q' and 'M chars have been stripped. */
2482 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2483 /* done parse past here */
2484 pkt = unpack_byte (pkt, &count); /* count field */
2485 pkt = unpack_nibble (pkt, &done);
2486 /* The first threadid is the argument threadid. */
2487 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2488 while ((count-- > 0) && (pkt < limit))
2489 {
2490 pkt = unpack_threadid (pkt, resultlist++);
2491 if (resultcount++ >= result_limit)
2492 break;
2493 }
2494 if (doneflag)
2495 *doneflag = done;
2496 return resultcount;
2497 }
2498
2499 static int
2500 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2501 int *done, int *result_count, threadref *threadlist)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int result = 1;
2505
2506 /* Trancate result limit to be smaller than the packet size. */
2507 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2508 >= get_remote_packet_size ())
2509 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2510
2511 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2512 putpkt (rs->buf);
2513 getpkt (&rs->buf, &rs->buf_size, 0);
2514
2515 if (*rs->buf == '\0')
2516 return 0;
2517 else
2518 *result_count =
2519 parse_threadlist_response (rs->buf + 2, result_limit,
2520 &rs->echo_nextthread, threadlist, done);
2521
2522 if (!threadmatch (&rs->echo_nextthread, nextthread))
2523 {
2524 /* FIXME: This is a good reason to drop the packet. */
2525 /* Possably, there is a duplicate response. */
2526 /* Possabilities :
2527 retransmit immediatly - race conditions
2528 retransmit after timeout - yes
2529 exit
2530 wait for packet, then exit
2531 */
2532 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2533 return 0; /* I choose simply exiting. */
2534 }
2535 if (*result_count <= 0)
2536 {
2537 if (*done != 1)
2538 {
2539 warning (_("RMT ERROR : failed to get remote thread list."));
2540 result = 0;
2541 }
2542 return result; /* break; */
2543 }
2544 if (*result_count > result_limit)
2545 {
2546 *result_count = 0;
2547 warning (_("RMT ERROR: threadlist response longer than requested."));
2548 return 0;
2549 }
2550 return result;
2551 }
2552
2553 /* This is the interface between remote and threads, remotes upper
2554 interface. */
2555
2556 /* remote_find_new_threads retrieves the thread list and for each
2557 thread in the list, looks up the thread in GDB's internal list,
2558 adding the thread if it does not already exist. This involves
2559 getting partial thread lists from the remote target so, polling the
2560 quit_flag is required. */
2561
2562
2563 static int
2564 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2565 int looplimit)
2566 {
2567 struct remote_state *rs = get_remote_state ();
2568 int done, i, result_count;
2569 int startflag = 1;
2570 int result = 1;
2571 int loopcount = 0;
2572
2573 done = 0;
2574 while (!done)
2575 {
2576 if (loopcount++ > looplimit)
2577 {
2578 result = 0;
2579 warning (_("Remote fetch threadlist -infinite loop-."));
2580 break;
2581 }
2582 if (!remote_get_threadlist (startflag, &rs->nextthread,
2583 MAXTHREADLISTRESULTS,
2584 &done, &result_count, rs->resultthreadlist))
2585 {
2586 result = 0;
2587 break;
2588 }
2589 /* Clear for later iterations. */
2590 startflag = 0;
2591 /* Setup to resume next batch of thread references, set nextthread. */
2592 if (result_count >= 1)
2593 copy_threadref (&rs->nextthread,
2594 &rs->resultthreadlist[result_count - 1]);
2595 i = 0;
2596 while (result_count--)
2597 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2598 break;
2599 }
2600 return result;
2601 }
2602
2603 static int
2604 remote_newthread_step (threadref *ref, void *context)
2605 {
2606 int pid = ptid_get_pid (inferior_ptid);
2607 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2608
2609 if (!in_thread_list (ptid))
2610 add_thread (ptid);
2611 return 1; /* continue iterator */
2612 }
2613
2614 #define CRAZY_MAX_THREADS 1000
2615
2616 static ptid_t
2617 remote_current_thread (ptid_t oldpid)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620
2621 putpkt ("qC");
2622 getpkt (&rs->buf, &rs->buf_size, 0);
2623 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2624 return read_ptid (&rs->buf[2], NULL);
2625 else
2626 return oldpid;
2627 }
2628
2629 /* Find new threads for info threads command.
2630 * Original version, using John Metzler's thread protocol.
2631 */
2632
2633 static void
2634 remote_find_new_threads (void)
2635 {
2636 remote_threadlist_iterator (remote_newthread_step, 0,
2637 CRAZY_MAX_THREADS);
2638 }
2639
2640 #if defined(HAVE_LIBEXPAT)
2641
2642 typedef struct thread_item
2643 {
2644 ptid_t ptid;
2645 char *extra;
2646 int core;
2647 } thread_item_t;
2648 DEF_VEC_O(thread_item_t);
2649
2650 struct threads_parsing_context
2651 {
2652 VEC (thread_item_t) *items;
2653 };
2654
2655 static void
2656 start_thread (struct gdb_xml_parser *parser,
2657 const struct gdb_xml_element *element,
2658 void *user_data, VEC(gdb_xml_value_s) *attributes)
2659 {
2660 struct threads_parsing_context *data = user_data;
2661
2662 struct thread_item item;
2663 char *id;
2664 struct gdb_xml_value *attr;
2665
2666 id = xml_find_attribute (attributes, "id")->value;
2667 item.ptid = read_ptid (id, NULL);
2668
2669 attr = xml_find_attribute (attributes, "core");
2670 if (attr != NULL)
2671 item.core = *(ULONGEST *) attr->value;
2672 else
2673 item.core = -1;
2674
2675 item.extra = 0;
2676
2677 VEC_safe_push (thread_item_t, data->items, &item);
2678 }
2679
2680 static void
2681 end_thread (struct gdb_xml_parser *parser,
2682 const struct gdb_xml_element *element,
2683 void *user_data, const char *body_text)
2684 {
2685 struct threads_parsing_context *data = user_data;
2686
2687 if (body_text && *body_text)
2688 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2689 }
2690
2691 const struct gdb_xml_attribute thread_attributes[] = {
2692 { "id", GDB_XML_AF_NONE, NULL, NULL },
2693 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2694 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2695 };
2696
2697 const struct gdb_xml_element thread_children[] = {
2698 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2699 };
2700
2701 const struct gdb_xml_element threads_children[] = {
2702 { "thread", thread_attributes, thread_children,
2703 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2704 start_thread, end_thread },
2705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2706 };
2707
2708 const struct gdb_xml_element threads_elements[] = {
2709 { "threads", NULL, threads_children,
2710 GDB_XML_EF_NONE, NULL, NULL },
2711 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2712 };
2713
2714 /* Discard the contents of the constructed thread info context. */
2715
2716 static void
2717 clear_threads_parsing_context (void *p)
2718 {
2719 struct threads_parsing_context *context = p;
2720 int i;
2721 struct thread_item *item;
2722
2723 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2724 xfree (item->extra);
2725
2726 VEC_free (thread_item_t, context->items);
2727 }
2728
2729 #endif
2730
2731 /*
2732 * Find all threads for info threads command.
2733 * Uses new thread protocol contributed by Cisco.
2734 * Falls back and attempts to use the older method (above)
2735 * if the target doesn't respond to the new method.
2736 */
2737
2738 static void
2739 remote_threads_info (struct target_ops *ops)
2740 {
2741 struct remote_state *rs = get_remote_state ();
2742 char *bufp;
2743 ptid_t new_thread;
2744
2745 if (rs->remote_desc == 0) /* paranoia */
2746 error (_("Command can only be used when connected to the remote target."));
2747
2748 #if defined(HAVE_LIBEXPAT)
2749 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2750 {
2751 char *xml = target_read_stralloc (&current_target,
2752 TARGET_OBJECT_THREADS, NULL);
2753
2754 struct cleanup *back_to = make_cleanup (xfree, xml);
2755
2756 if (xml && *xml)
2757 {
2758 struct threads_parsing_context context;
2759
2760 context.items = NULL;
2761 make_cleanup (clear_threads_parsing_context, &context);
2762
2763 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2764 threads_elements, xml, &context) == 0)
2765 {
2766 int i;
2767 struct thread_item *item;
2768
2769 for (i = 0;
2770 VEC_iterate (thread_item_t, context.items, i, item);
2771 ++i)
2772 {
2773 if (!ptid_equal (item->ptid, null_ptid))
2774 {
2775 struct private_thread_info *info;
2776 /* In non-stop mode, we assume new found threads
2777 are running until proven otherwise with a
2778 stop reply. In all-stop, we can only get
2779 here if all threads are stopped. */
2780 int running = non_stop ? 1 : 0;
2781
2782 remote_notice_new_inferior (item->ptid, running);
2783
2784 info = demand_private_info (item->ptid);
2785 info->core = item->core;
2786 info->extra = item->extra;
2787 item->extra = NULL;
2788 }
2789 }
2790 }
2791 }
2792
2793 do_cleanups (back_to);
2794 return;
2795 }
2796 #endif
2797
2798 if (rs->use_threadinfo_query)
2799 {
2800 putpkt ("qfThreadInfo");
2801 getpkt (&rs->buf, &rs->buf_size, 0);
2802 bufp = rs->buf;
2803 if (bufp[0] != '\0') /* q packet recognized */
2804 {
2805 struct cleanup *old_chain;
2806 char *saved_reply;
2807
2808 /* remote_notice_new_inferior (in the loop below) may make
2809 new RSP calls, which clobber rs->buf. Work with a
2810 copy. */
2811 bufp = saved_reply = xstrdup (rs->buf);
2812 old_chain = make_cleanup (free_current_contents, &saved_reply);
2813
2814 while (*bufp++ == 'm') /* reply contains one or more TID */
2815 {
2816 do
2817 {
2818 new_thread = read_ptid (bufp, &bufp);
2819 if (!ptid_equal (new_thread, null_ptid))
2820 {
2821 /* In non-stop mode, we assume new found threads
2822 are running until proven otherwise with a
2823 stop reply. In all-stop, we can only get
2824 here if all threads are stopped. */
2825 int running = non_stop ? 1 : 0;
2826
2827 remote_notice_new_inferior (new_thread, running);
2828 }
2829 }
2830 while (*bufp++ == ','); /* comma-separated list */
2831 free_current_contents (&saved_reply);
2832 putpkt ("qsThreadInfo");
2833 getpkt (&rs->buf, &rs->buf_size, 0);
2834 bufp = saved_reply = xstrdup (rs->buf);
2835 }
2836 do_cleanups (old_chain);
2837 return; /* done */
2838 }
2839 }
2840
2841 /* Only qfThreadInfo is supported in non-stop mode. */
2842 if (non_stop)
2843 return;
2844
2845 /* Else fall back to old method based on jmetzler protocol. */
2846 rs->use_threadinfo_query = 0;
2847 remote_find_new_threads ();
2848 return;
2849 }
2850
2851 /*
2852 * Collect a descriptive string about the given thread.
2853 * The target may say anything it wants to about the thread
2854 * (typically info about its blocked / runnable state, name, etc.).
2855 * This string will appear in the info threads display.
2856 *
2857 * Optional: targets are not required to implement this function.
2858 */
2859
2860 static char *
2861 remote_threads_extra_info (struct thread_info *tp)
2862 {
2863 struct remote_state *rs = get_remote_state ();
2864 int result;
2865 int set;
2866 threadref id;
2867 struct gdb_ext_thread_info threadinfo;
2868 static char display_buf[100]; /* arbitrary... */
2869 int n = 0; /* position in display_buf */
2870
2871 if (rs->remote_desc == 0) /* paranoia */
2872 internal_error (__FILE__, __LINE__,
2873 _("remote_threads_extra_info"));
2874
2875 if (ptid_equal (tp->ptid, magic_null_ptid)
2876 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2877 /* This is the main thread which was added by GDB. The remote
2878 server doesn't know about it. */
2879 return NULL;
2880
2881 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2882 {
2883 struct thread_info *info = find_thread_ptid (tp->ptid);
2884
2885 if (info && info->private)
2886 return info->private->extra;
2887 else
2888 return NULL;
2889 }
2890
2891 if (rs->use_threadextra_query)
2892 {
2893 char *b = rs->buf;
2894 char *endb = rs->buf + get_remote_packet_size ();
2895
2896 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2897 b += strlen (b);
2898 write_ptid (b, endb, tp->ptid);
2899
2900 putpkt (rs->buf);
2901 getpkt (&rs->buf, &rs->buf_size, 0);
2902 if (rs->buf[0] != 0)
2903 {
2904 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2905 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2906 display_buf [result] = '\0';
2907 return display_buf;
2908 }
2909 }
2910
2911 /* If the above query fails, fall back to the old method. */
2912 rs->use_threadextra_query = 0;
2913 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2914 | TAG_MOREDISPLAY | TAG_DISPLAY;
2915 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2916 if (remote_get_threadinfo (&id, set, &threadinfo))
2917 if (threadinfo.active)
2918 {
2919 if (*threadinfo.shortname)
2920 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2921 " Name: %s,", threadinfo.shortname);
2922 if (*threadinfo.display)
2923 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2924 " State: %s,", threadinfo.display);
2925 if (*threadinfo.more_display)
2926 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2927 " Priority: %s", threadinfo.more_display);
2928
2929 if (n > 0)
2930 {
2931 /* For purely cosmetic reasons, clear up trailing commas. */
2932 if (',' == display_buf[n-1])
2933 display_buf[n-1] = ' ';
2934 return display_buf;
2935 }
2936 }
2937 return NULL;
2938 }
2939 \f
2940
2941 static int
2942 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2943 struct static_tracepoint_marker *marker)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p = rs->buf;
2947
2948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2949 p += strlen (p);
2950 p += hexnumstr (p, addr);
2951 putpkt (rs->buf);
2952 getpkt (&rs->buf, &rs->buf_size, 0);
2953 p = rs->buf;
2954
2955 if (*p == 'E')
2956 error (_("Remote failure reply: %s"), p);
2957
2958 if (*p++ == 'm')
2959 {
2960 parse_static_tracepoint_marker_definition (p, &p, marker);
2961 return 1;
2962 }
2963
2964 return 0;
2965 }
2966
2967 static VEC(static_tracepoint_marker_p) *
2968 remote_static_tracepoint_markers_by_strid (const char *strid)
2969 {
2970 struct remote_state *rs = get_remote_state ();
2971 VEC(static_tracepoint_marker_p) *markers = NULL;
2972 struct static_tracepoint_marker *marker = NULL;
2973 struct cleanup *old_chain;
2974 char *p;
2975
2976 /* Ask for a first packet of static tracepoint marker
2977 definition. */
2978 putpkt ("qTfSTM");
2979 getpkt (&rs->buf, &rs->buf_size, 0);
2980 p = rs->buf;
2981 if (*p == 'E')
2982 error (_("Remote failure reply: %s"), p);
2983
2984 old_chain = make_cleanup (free_current_marker, &marker);
2985
2986 while (*p++ == 'm')
2987 {
2988 if (marker == NULL)
2989 marker = XCNEW (struct static_tracepoint_marker);
2990
2991 do
2992 {
2993 parse_static_tracepoint_marker_definition (p, &p, marker);
2994
2995 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2996 {
2997 VEC_safe_push (static_tracepoint_marker_p,
2998 markers, marker);
2999 marker = NULL;
3000 }
3001 else
3002 {
3003 release_static_tracepoint_marker (marker);
3004 memset (marker, 0, sizeof (*marker));
3005 }
3006 }
3007 while (*p++ == ','); /* comma-separated list */
3008 /* Ask for another packet of static tracepoint definition. */
3009 putpkt ("qTsSTM");
3010 getpkt (&rs->buf, &rs->buf_size, 0);
3011 p = rs->buf;
3012 }
3013
3014 do_cleanups (old_chain);
3015 return markers;
3016 }
3017
3018 \f
3019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3020
3021 static ptid_t
3022 remote_get_ada_task_ptid (long lwp, long thread)
3023 {
3024 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3025 }
3026 \f
3027
3028 /* Restart the remote side; this is an extended protocol operation. */
3029
3030 static void
3031 extended_remote_restart (void)
3032 {
3033 struct remote_state *rs = get_remote_state ();
3034
3035 /* Send the restart command; for reasons I don't understand the
3036 remote side really expects a number after the "R". */
3037 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3038 putpkt (rs->buf);
3039
3040 remote_fileio_reset ();
3041 }
3042 \f
3043 /* Clean up connection to a remote debugger. */
3044
3045 static void
3046 remote_close (void)
3047 {
3048 struct remote_state *rs = get_remote_state ();
3049
3050 if (rs->remote_desc == NULL)
3051 return; /* already closed */
3052
3053 /* Make sure we leave stdin registered in the event loop, and we
3054 don't leave the async SIGINT signal handler installed. */
3055 remote_terminal_ours ();
3056
3057 serial_close (rs->remote_desc);
3058 rs->remote_desc = NULL;
3059
3060 /* We don't have a connection to the remote stub anymore. Get rid
3061 of all the inferiors and their threads we were controlling.
3062 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3063 will be unable to find the thread corresponding to (pid, 0, 0). */
3064 inferior_ptid = null_ptid;
3065 discard_all_inferiors ();
3066
3067 /* Stop replies may from inferiors which are still unknown to GDB.
3068 We are closing the remote target, so we should discard
3069 everything, including the stop replies from GDB-unknown
3070 inferiors. */
3071 discard_pending_stop_replies (NULL);
3072
3073 if (remote_async_inferior_event_token)
3074 delete_async_event_handler (&remote_async_inferior_event_token);
3075
3076 remote_notif_unregister_async_event_handler ();
3077
3078 trace_reset_local_state ();
3079 }
3080
3081 /* Query the remote side for the text, data and bss offsets. */
3082
3083 static void
3084 get_offsets (void)
3085 {
3086 struct remote_state *rs = get_remote_state ();
3087 char *buf;
3088 char *ptr;
3089 int lose, num_segments = 0, do_sections, do_segments;
3090 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3091 struct section_offsets *offs;
3092 struct symfile_segment_data *data;
3093
3094 if (symfile_objfile == NULL)
3095 return;
3096
3097 putpkt ("qOffsets");
3098 getpkt (&rs->buf, &rs->buf_size, 0);
3099 buf = rs->buf;
3100
3101 if (buf[0] == '\000')
3102 return; /* Return silently. Stub doesn't support
3103 this command. */
3104 if (buf[0] == 'E')
3105 {
3106 warning (_("Remote failure reply: %s"), buf);
3107 return;
3108 }
3109
3110 /* Pick up each field in turn. This used to be done with scanf, but
3111 scanf will make trouble if CORE_ADDR size doesn't match
3112 conversion directives correctly. The following code will work
3113 with any size of CORE_ADDR. */
3114 text_addr = data_addr = bss_addr = 0;
3115 ptr = buf;
3116 lose = 0;
3117
3118 if (strncmp (ptr, "Text=", 5) == 0)
3119 {
3120 ptr += 5;
3121 /* Don't use strtol, could lose on big values. */
3122 while (*ptr && *ptr != ';')
3123 text_addr = (text_addr << 4) + fromhex (*ptr++);
3124
3125 if (strncmp (ptr, ";Data=", 6) == 0)
3126 {
3127 ptr += 6;
3128 while (*ptr && *ptr != ';')
3129 data_addr = (data_addr << 4) + fromhex (*ptr++);
3130 }
3131 else
3132 lose = 1;
3133
3134 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3135 {
3136 ptr += 5;
3137 while (*ptr && *ptr != ';')
3138 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3139
3140 if (bss_addr != data_addr)
3141 warning (_("Target reported unsupported offsets: %s"), buf);
3142 }
3143 else
3144 lose = 1;
3145 }
3146 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3147 {
3148 ptr += 8;
3149 /* Don't use strtol, could lose on big values. */
3150 while (*ptr && *ptr != ';')
3151 text_addr = (text_addr << 4) + fromhex (*ptr++);
3152 num_segments = 1;
3153
3154 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3155 {
3156 ptr += 9;
3157 while (*ptr && *ptr != ';')
3158 data_addr = (data_addr << 4) + fromhex (*ptr++);
3159 num_segments++;
3160 }
3161 }
3162 else
3163 lose = 1;
3164
3165 if (lose)
3166 error (_("Malformed response to offset query, %s"), buf);
3167 else if (*ptr != '\0')
3168 warning (_("Target reported unsupported offsets: %s"), buf);
3169
3170 offs = ((struct section_offsets *)
3171 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3172 memcpy (offs, symfile_objfile->section_offsets,
3173 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3174
3175 data = get_symfile_segment_data (symfile_objfile->obfd);
3176 do_segments = (data != NULL);
3177 do_sections = num_segments == 0;
3178
3179 if (num_segments > 0)
3180 {
3181 segments[0] = text_addr;
3182 segments[1] = data_addr;
3183 }
3184 /* If we have two segments, we can still try to relocate everything
3185 by assuming that the .text and .data offsets apply to the whole
3186 text and data segments. Convert the offsets given in the packet
3187 to base addresses for symfile_map_offsets_to_segments. */
3188 else if (data && data->num_segments == 2)
3189 {
3190 segments[0] = data->segment_bases[0] + text_addr;
3191 segments[1] = data->segment_bases[1] + data_addr;
3192 num_segments = 2;
3193 }
3194 /* If the object file has only one segment, assume that it is text
3195 rather than data; main programs with no writable data are rare,
3196 but programs with no code are useless. Of course the code might
3197 have ended up in the data segment... to detect that we would need
3198 the permissions here. */
3199 else if (data && data->num_segments == 1)
3200 {
3201 segments[0] = data->segment_bases[0] + text_addr;
3202 num_segments = 1;
3203 }
3204 /* There's no way to relocate by segment. */
3205 else
3206 do_segments = 0;
3207
3208 if (do_segments)
3209 {
3210 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3211 offs, num_segments, segments);
3212
3213 if (ret == 0 && !do_sections)
3214 error (_("Can not handle qOffsets TextSeg "
3215 "response with this symbol file"));
3216
3217 if (ret > 0)
3218 do_sections = 0;
3219 }
3220
3221 if (data)
3222 free_symfile_segment_data (data);
3223
3224 if (do_sections)
3225 {
3226 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3227
3228 /* This is a temporary kludge to force data and bss to use the
3229 same offsets because that's what nlmconv does now. The real
3230 solution requires changes to the stub and remote.c that I
3231 don't have time to do right now. */
3232
3233 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3234 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3235 }
3236
3237 objfile_relocate (symfile_objfile, offs);
3238 }
3239
3240 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3241 threads we know are stopped already. This is used during the
3242 initial remote connection in non-stop mode --- threads that are
3243 reported as already being stopped are left stopped. */
3244
3245 static int
3246 set_stop_requested_callback (struct thread_info *thread, void *data)
3247 {
3248 /* If we have a stop reply for this thread, it must be stopped. */
3249 if (peek_stop_reply (thread->ptid))
3250 set_stop_requested (thread->ptid, 1);
3251
3252 return 0;
3253 }
3254
3255 /* Send interrupt_sequence to remote target. */
3256 static void
3257 send_interrupt_sequence (void)
3258 {
3259 struct remote_state *rs = get_remote_state ();
3260
3261 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3262 remote_serial_write ("\x03", 1);
3263 else if (interrupt_sequence_mode == interrupt_sequence_break)
3264 serial_send_break (rs->remote_desc);
3265 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3266 {
3267 serial_send_break (rs->remote_desc);
3268 remote_serial_write ("g", 1);
3269 }
3270 else
3271 internal_error (__FILE__, __LINE__,
3272 _("Invalid value for interrupt_sequence_mode: %s."),
3273 interrupt_sequence_mode);
3274 }
3275
3276
3277 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3278 and extract the PTID. Returns NULL_PTID if not found. */
3279
3280 static ptid_t
3281 stop_reply_extract_thread (char *stop_reply)
3282 {
3283 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3284 {
3285 char *p;
3286
3287 /* Txx r:val ; r:val (...) */
3288 p = &stop_reply[3];
3289
3290 /* Look for "register" named "thread". */
3291 while (*p != '\0')
3292 {
3293 char *p1;
3294
3295 p1 = strchr (p, ':');
3296 if (p1 == NULL)
3297 return null_ptid;
3298
3299 if (strncmp (p, "thread", p1 - p) == 0)
3300 return read_ptid (++p1, &p);
3301
3302 p1 = strchr (p, ';');
3303 if (p1 == NULL)
3304 return null_ptid;
3305 p1++;
3306
3307 p = p1;
3308 }
3309 }
3310
3311 return null_ptid;
3312 }
3313
3314 /* Query the remote target for which is the current thread/process,
3315 add it to our tables, and update INFERIOR_PTID. The caller is
3316 responsible for setting the state such that the remote end is ready
3317 to return the current thread.
3318
3319 This function is called after handling the '?' or 'vRun' packets,
3320 whose response is a stop reply from which we can also try
3321 extracting the thread. If the target doesn't support the explicit
3322 qC query, we infer the current thread from that stop reply, passed
3323 in in WAIT_STATUS, which may be NULL. */
3324
3325 static void
3326 add_current_inferior_and_thread (char *wait_status)
3327 {
3328 struct remote_state *rs = get_remote_state ();
3329 int fake_pid_p = 0;
3330 ptid_t ptid = null_ptid;
3331
3332 inferior_ptid = null_ptid;
3333
3334 /* Now, if we have thread information, update inferior_ptid. First
3335 if we have a stop reply handy, maybe it's a T stop reply with a
3336 "thread" register we can extract the current thread from. If
3337 not, ask the remote which is the current thread, with qC. The
3338 former method avoids a roundtrip. Note we don't use
3339 remote_parse_stop_reply as that makes use of the target
3340 architecture, which we haven't yet fully determined at this
3341 point. */
3342 if (wait_status != NULL)
3343 ptid = stop_reply_extract_thread (wait_status);
3344 if (ptid_equal (ptid, null_ptid))
3345 ptid = remote_current_thread (inferior_ptid);
3346
3347 if (!ptid_equal (ptid, null_ptid))
3348 {
3349 if (!remote_multi_process_p (rs))
3350 fake_pid_p = 1;
3351
3352 inferior_ptid = ptid;
3353 }
3354 else
3355 {
3356 /* Without this, some commands which require an active target
3357 (such as kill) won't work. This variable serves (at least)
3358 double duty as both the pid of the target process (if it has
3359 such), and as a flag indicating that a target is active. */
3360 inferior_ptid = magic_null_ptid;
3361 fake_pid_p = 1;
3362 }
3363
3364 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3365
3366 /* Add the main thread. */
3367 add_thread_silent (inferior_ptid);
3368 }
3369
3370 static void
3371 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374 struct packet_config *noack_config;
3375 char *wait_status = NULL;
3376
3377 immediate_quit++; /* Allow user to interrupt it. */
3378 QUIT;
3379
3380 if (interrupt_on_connect)
3381 send_interrupt_sequence ();
3382
3383 /* Ack any packet which the remote side has already sent. */
3384 serial_write (rs->remote_desc, "+", 1);
3385
3386 /* Signal other parts that we're going through the initial setup,
3387 and so things may not be stable yet. */
3388 rs->starting_up = 1;
3389
3390 /* The first packet we send to the target is the optional "supported
3391 packets" request. If the target can answer this, it will tell us
3392 which later probes to skip. */
3393 remote_query_supported ();
3394
3395 /* If the stub wants to get a QAllow, compose one and send it. */
3396 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3397 remote_set_permissions ();
3398
3399 /* Next, we possibly activate noack mode.
3400
3401 If the QStartNoAckMode packet configuration is set to AUTO,
3402 enable noack mode if the stub reported a wish for it with
3403 qSupported.
3404
3405 If set to TRUE, then enable noack mode even if the stub didn't
3406 report it in qSupported. If the stub doesn't reply OK, the
3407 session ends with an error.
3408
3409 If FALSE, then don't activate noack mode, regardless of what the
3410 stub claimed should be the default with qSupported. */
3411
3412 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3413
3414 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3415 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3416 && noack_config->support == PACKET_ENABLE))
3417 {
3418 putpkt ("QStartNoAckMode");
3419 getpkt (&rs->buf, &rs->buf_size, 0);
3420 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3421 rs->noack_mode = 1;
3422 }
3423
3424 if (extended_p)
3425 {
3426 /* Tell the remote that we are using the extended protocol. */
3427 putpkt ("!");
3428 getpkt (&rs->buf, &rs->buf_size, 0);
3429 }
3430
3431 /* Let the target know which signals it is allowed to pass down to
3432 the program. */
3433 update_signals_program_target ();
3434
3435 /* Next, if the target can specify a description, read it. We do
3436 this before anything involving memory or registers. */
3437 target_find_description ();
3438
3439 /* Next, now that we know something about the target, update the
3440 address spaces in the program spaces. */
3441 update_address_spaces ();
3442
3443 /* On OSs where the list of libraries is global to all
3444 processes, we fetch them early. */
3445 if (gdbarch_has_global_solist (target_gdbarch ()))
3446 solib_add (NULL, from_tty, target, auto_solib_add);
3447
3448 if (non_stop)
3449 {
3450 if (!rs->non_stop_aware)
3451 error (_("Non-stop mode requested, but remote "
3452 "does not support non-stop"));
3453
3454 putpkt ("QNonStop:1");
3455 getpkt (&rs->buf, &rs->buf_size, 0);
3456
3457 if (strcmp (rs->buf, "OK") != 0)
3458 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3459
3460 /* Find about threads and processes the stub is already
3461 controlling. We default to adding them in the running state.
3462 The '?' query below will then tell us about which threads are
3463 stopped. */
3464 remote_threads_info (target);
3465 }
3466 else if (rs->non_stop_aware)
3467 {
3468 /* Don't assume that the stub can operate in all-stop mode.
3469 Request it explicitly. */
3470 putpkt ("QNonStop:0");
3471 getpkt (&rs->buf, &rs->buf_size, 0);
3472
3473 if (strcmp (rs->buf, "OK") != 0)
3474 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3475 }
3476
3477 /* Upload TSVs regardless of whether the target is running or not. The
3478 remote stub, such as GDBserver, may have some predefined or builtin
3479 TSVs, even if the target is not running. */
3480 if (remote_get_trace_status (current_trace_status ()) != -1)
3481 {
3482 struct uploaded_tsv *uploaded_tsvs = NULL;
3483
3484 remote_upload_trace_state_variables (&uploaded_tsvs);
3485 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3486 }
3487
3488 /* Check whether the target is running now. */
3489 putpkt ("?");
3490 getpkt (&rs->buf, &rs->buf_size, 0);
3491
3492 if (!non_stop)
3493 {
3494 ptid_t ptid;
3495 int fake_pid_p = 0;
3496 struct inferior *inf;
3497
3498 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3499 {
3500 if (!extended_p)
3501 error (_("The target is not running (try extended-remote?)"));
3502
3503 /* We're connected, but not running. Drop out before we
3504 call start_remote. */
3505 rs->starting_up = 0;
3506 return;
3507 }
3508 else
3509 {
3510 /* Save the reply for later. */
3511 wait_status = alloca (strlen (rs->buf) + 1);
3512 strcpy (wait_status, rs->buf);
3513 }
3514
3515 /* Let the stub know that we want it to return the thread. */
3516 set_continue_thread (minus_one_ptid);
3517
3518 add_current_inferior_and_thread (wait_status);
3519
3520 /* init_wait_for_inferior should be called before get_offsets in order
3521 to manage `inserted' flag in bp loc in a correct state.
3522 breakpoint_init_inferior, called from init_wait_for_inferior, set
3523 `inserted' flag to 0, while before breakpoint_re_set, called from
3524 start_remote, set `inserted' flag to 1. In the initialization of
3525 inferior, breakpoint_init_inferior should be called first, and then
3526 breakpoint_re_set can be called. If this order is broken, state of
3527 `inserted' flag is wrong, and cause some problems on breakpoint
3528 manipulation. */
3529 init_wait_for_inferior ();
3530
3531 get_offsets (); /* Get text, data & bss offsets. */
3532
3533 /* If we could not find a description using qXfer, and we know
3534 how to do it some other way, try again. This is not
3535 supported for non-stop; it could be, but it is tricky if
3536 there are no stopped threads when we connect. */
3537 if (remote_read_description_p (target)
3538 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3539 {
3540 target_clear_description ();
3541 target_find_description ();
3542 }
3543
3544 /* Use the previously fetched status. */
3545 gdb_assert (wait_status != NULL);
3546 strcpy (rs->buf, wait_status);
3547 rs->cached_wait_status = 1;
3548
3549 immediate_quit--;
3550 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3551 }
3552 else
3553 {
3554 /* Clear WFI global state. Do this before finding about new
3555 threads and inferiors, and setting the current inferior.
3556 Otherwise we would clear the proceed status of the current
3557 inferior when we want its stop_soon state to be preserved
3558 (see notice_new_inferior). */
3559 init_wait_for_inferior ();
3560
3561 /* In non-stop, we will either get an "OK", meaning that there
3562 are no stopped threads at this time; or, a regular stop
3563 reply. In the latter case, there may be more than one thread
3564 stopped --- we pull them all out using the vStopped
3565 mechanism. */
3566 if (strcmp (rs->buf, "OK") != 0)
3567 {
3568 struct notif_client *notif = &notif_client_stop;
3569
3570 /* remote_notif_get_pending_replies acks this one, and gets
3571 the rest out. */
3572 notif_client_stop.pending_event
3573 = remote_notif_parse (notif, rs->buf);
3574 remote_notif_get_pending_events (notif);
3575
3576 /* Make sure that threads that were stopped remain
3577 stopped. */
3578 iterate_over_threads (set_stop_requested_callback, NULL);
3579 }
3580
3581 if (target_can_async_p ())
3582 target_async (inferior_event_handler, 0);
3583
3584 if (thread_count () == 0)
3585 {
3586 if (!extended_p)
3587 error (_("The target is not running (try extended-remote?)"));
3588
3589 /* We're connected, but not running. Drop out before we
3590 call start_remote. */
3591 rs->starting_up = 0;
3592 return;
3593 }
3594
3595 /* Let the stub know that we want it to return the thread. */
3596
3597 /* Force the stub to choose a thread. */
3598 set_general_thread (null_ptid);
3599
3600 /* Query it. */
3601 inferior_ptid = remote_current_thread (minus_one_ptid);
3602 if (ptid_equal (inferior_ptid, minus_one_ptid))
3603 error (_("remote didn't report the current thread in non-stop mode"));
3604
3605 get_offsets (); /* Get text, data & bss offsets. */
3606
3607 /* In non-stop mode, any cached wait status will be stored in
3608 the stop reply queue. */
3609 gdb_assert (wait_status == NULL);
3610
3611 /* Report all signals during attach/startup. */
3612 remote_pass_signals (0, NULL);
3613 }
3614
3615 /* If we connected to a live target, do some additional setup. */
3616 if (target_has_execution)
3617 {
3618 if (exec_bfd) /* No use without an exec file. */
3619 remote_check_symbols ();
3620 }
3621
3622 /* Possibly the target has been engaged in a trace run started
3623 previously; find out where things are at. */
3624 if (remote_get_trace_status (current_trace_status ()) != -1)
3625 {
3626 struct uploaded_tp *uploaded_tps = NULL;
3627
3628 if (current_trace_status ()->running)
3629 printf_filtered (_("Trace is already running on the target.\n"));
3630
3631 remote_upload_tracepoints (&uploaded_tps);
3632
3633 merge_uploaded_tracepoints (&uploaded_tps);
3634 }
3635
3636 /* The thread and inferior lists are now synchronized with the
3637 target, our symbols have been relocated, and we're merged the
3638 target's tracepoints with ours. We're done with basic start
3639 up. */
3640 rs->starting_up = 0;
3641
3642 /* If breakpoints are global, insert them now. */
3643 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3644 && breakpoints_always_inserted_mode ())
3645 insert_breakpoints ();
3646 }
3647
3648 /* Open a connection to a remote debugger.
3649 NAME is the filename used for communication. */
3650
3651 static void
3652 remote_open (char *name, int from_tty)
3653 {
3654 remote_open_1 (name, from_tty, &remote_ops, 0);
3655 }
3656
3657 /* Open a connection to a remote debugger using the extended
3658 remote gdb protocol. NAME is the filename used for communication. */
3659
3660 static void
3661 extended_remote_open (char *name, int from_tty)
3662 {
3663 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3664 }
3665
3666 /* Generic code for opening a connection to a remote target. */
3667
3668 static void
3669 init_all_packet_configs (void)
3670 {
3671 int i;
3672
3673 for (i = 0; i < PACKET_MAX; i++)
3674 update_packet_config (&remote_protocol_packets[i]);
3675 }
3676
3677 /* Symbol look-up. */
3678
3679 static void
3680 remote_check_symbols (void)
3681 {
3682 struct remote_state *rs = get_remote_state ();
3683 char *msg, *reply, *tmp;
3684 struct minimal_symbol *sym;
3685 int end;
3686
3687 /* The remote side has no concept of inferiors that aren't running
3688 yet, it only knows about running processes. If we're connected
3689 but our current inferior is not running, we should not invite the
3690 remote target to request symbol lookups related to its
3691 (unrelated) current process. */
3692 if (!target_has_execution)
3693 return;
3694
3695 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3696 return;
3697
3698 /* Make sure the remote is pointing at the right process. Note
3699 there's no way to select "no process". */
3700 set_general_process ();
3701
3702 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3703 because we need both at the same time. */
3704 msg = alloca (get_remote_packet_size ());
3705
3706 /* Invite target to request symbol lookups. */
3707
3708 putpkt ("qSymbol::");
3709 getpkt (&rs->buf, &rs->buf_size, 0);
3710 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3711 reply = rs->buf;
3712
3713 while (strncmp (reply, "qSymbol:", 8) == 0)
3714 {
3715 tmp = &reply[8];
3716 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3717 msg[end] = '\0';
3718 sym = lookup_minimal_symbol (msg, NULL, NULL);
3719 if (sym == NULL)
3720 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3721 else
3722 {
3723 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3724 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3725
3726 /* If this is a function address, return the start of code
3727 instead of any data function descriptor. */
3728 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3729 sym_addr,
3730 &current_target);
3731
3732 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3733 phex_nz (sym_addr, addr_size), &reply[8]);
3734 }
3735
3736 putpkt (msg);
3737 getpkt (&rs->buf, &rs->buf_size, 0);
3738 reply = rs->buf;
3739 }
3740 }
3741
3742 static struct serial *
3743 remote_serial_open (char *name)
3744 {
3745 static int udp_warning = 0;
3746
3747 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3748 of in ser-tcp.c, because it is the remote protocol assuming that the
3749 serial connection is reliable and not the serial connection promising
3750 to be. */
3751 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3752 {
3753 warning (_("The remote protocol may be unreliable over UDP.\n"
3754 "Some events may be lost, rendering further debugging "
3755 "impossible."));
3756 udp_warning = 1;
3757 }
3758
3759 return serial_open (name);
3760 }
3761
3762 /* Inform the target of our permission settings. The permission flags
3763 work without this, but if the target knows the settings, it can do
3764 a couple things. First, it can add its own check, to catch cases
3765 that somehow manage to get by the permissions checks in target
3766 methods. Second, if the target is wired to disallow particular
3767 settings (for instance, a system in the field that is not set up to
3768 be able to stop at a breakpoint), it can object to any unavailable
3769 permissions. */
3770
3771 void
3772 remote_set_permissions (void)
3773 {
3774 struct remote_state *rs = get_remote_state ();
3775
3776 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3777 "WriteReg:%x;WriteMem:%x;"
3778 "InsertBreak:%x;InsertTrace:%x;"
3779 "InsertFastTrace:%x;Stop:%x",
3780 may_write_registers, may_write_memory,
3781 may_insert_breakpoints, may_insert_tracepoints,
3782 may_insert_fast_tracepoints, may_stop);
3783 putpkt (rs->buf);
3784 getpkt (&rs->buf, &rs->buf_size, 0);
3785
3786 /* If the target didn't like the packet, warn the user. Do not try
3787 to undo the user's settings, that would just be maddening. */
3788 if (strcmp (rs->buf, "OK") != 0)
3789 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3790 }
3791
3792 /* This type describes each known response to the qSupported
3793 packet. */
3794 struct protocol_feature
3795 {
3796 /* The name of this protocol feature. */
3797 const char *name;
3798
3799 /* The default for this protocol feature. */
3800 enum packet_support default_support;
3801
3802 /* The function to call when this feature is reported, or after
3803 qSupported processing if the feature is not supported.
3804 The first argument points to this structure. The second
3805 argument indicates whether the packet requested support be
3806 enabled, disabled, or probed (or the default, if this function
3807 is being called at the end of processing and this feature was
3808 not reported). The third argument may be NULL; if not NULL, it
3809 is a NUL-terminated string taken from the packet following
3810 this feature's name and an equals sign. */
3811 void (*func) (const struct protocol_feature *, enum packet_support,
3812 const char *);
3813
3814 /* The corresponding packet for this feature. Only used if
3815 FUNC is remote_supported_packet. */
3816 int packet;
3817 };
3818
3819 static void
3820 remote_supported_packet (const struct protocol_feature *feature,
3821 enum packet_support support,
3822 const char *argument)
3823 {
3824 if (argument)
3825 {
3826 warning (_("Remote qSupported response supplied an unexpected value for"
3827 " \"%s\"."), feature->name);
3828 return;
3829 }
3830
3831 if (remote_protocol_packets[feature->packet].support
3832 == PACKET_SUPPORT_UNKNOWN)
3833 remote_protocol_packets[feature->packet].support = support;
3834 }
3835
3836 static void
3837 remote_packet_size (const struct protocol_feature *feature,
3838 enum packet_support support, const char *value)
3839 {
3840 struct remote_state *rs = get_remote_state ();
3841
3842 int packet_size;
3843 char *value_end;
3844
3845 if (support != PACKET_ENABLE)
3846 return;
3847
3848 if (value == NULL || *value == '\0')
3849 {
3850 warning (_("Remote target reported \"%s\" without a size."),
3851 feature->name);
3852 return;
3853 }
3854
3855 errno = 0;
3856 packet_size = strtol (value, &value_end, 16);
3857 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3858 {
3859 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3860 feature->name, value);
3861 return;
3862 }
3863
3864 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3865 {
3866 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3867 packet_size, MAX_REMOTE_PACKET_SIZE);
3868 packet_size = MAX_REMOTE_PACKET_SIZE;
3869 }
3870
3871 /* Record the new maximum packet size. */
3872 rs->explicit_packet_size = packet_size;
3873 }
3874
3875 static void
3876 remote_multi_process_feature (const struct protocol_feature *feature,
3877 enum packet_support support, const char *value)
3878 {
3879 struct remote_state *rs = get_remote_state ();
3880
3881 rs->multi_process_aware = (support == PACKET_ENABLE);
3882 }
3883
3884 static void
3885 remote_non_stop_feature (const struct protocol_feature *feature,
3886 enum packet_support support, const char *value)
3887 {
3888 struct remote_state *rs = get_remote_state ();
3889
3890 rs->non_stop_aware = (support == PACKET_ENABLE);
3891 }
3892
3893 static void
3894 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3895 enum packet_support support,
3896 const char *value)
3897 {
3898 struct remote_state *rs = get_remote_state ();
3899
3900 rs->cond_tracepoints = (support == PACKET_ENABLE);
3901 }
3902
3903 static void
3904 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3905 enum packet_support support,
3906 const char *value)
3907 {
3908 struct remote_state *rs = get_remote_state ();
3909
3910 rs->cond_breakpoints = (support == PACKET_ENABLE);
3911 }
3912
3913 static void
3914 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3915 enum packet_support support,
3916 const char *value)
3917 {
3918 struct remote_state *rs = get_remote_state ();
3919
3920 rs->breakpoint_commands = (support == PACKET_ENABLE);
3921 }
3922
3923 static void
3924 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3925 enum packet_support support,
3926 const char *value)
3927 {
3928 struct remote_state *rs = get_remote_state ();
3929
3930 rs->fast_tracepoints = (support == PACKET_ENABLE);
3931 }
3932
3933 static void
3934 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3935 enum packet_support support,
3936 const char *value)
3937 {
3938 struct remote_state *rs = get_remote_state ();
3939
3940 rs->static_tracepoints = (support == PACKET_ENABLE);
3941 }
3942
3943 static void
3944 remote_install_in_trace_feature (const struct protocol_feature *feature,
3945 enum packet_support support,
3946 const char *value)
3947 {
3948 struct remote_state *rs = get_remote_state ();
3949
3950 rs->install_in_trace = (support == PACKET_ENABLE);
3951 }
3952
3953 static void
3954 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3955 enum packet_support support,
3956 const char *value)
3957 {
3958 struct remote_state *rs = get_remote_state ();
3959
3960 rs->disconnected_tracing = (support == PACKET_ENABLE);
3961 }
3962
3963 static void
3964 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3965 enum packet_support support,
3966 const char *value)
3967 {
3968 struct remote_state *rs = get_remote_state ();
3969
3970 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3971 }
3972
3973 static void
3974 remote_string_tracing_feature (const struct protocol_feature *feature,
3975 enum packet_support support,
3976 const char *value)
3977 {
3978 struct remote_state *rs = get_remote_state ();
3979
3980 rs->string_tracing = (support == PACKET_ENABLE);
3981 }
3982
3983 static void
3984 remote_augmented_libraries_svr4_read_feature
3985 (const struct protocol_feature *feature,
3986 enum packet_support support, const char *value)
3987 {
3988 struct remote_state *rs = get_remote_state ();
3989
3990 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3991 }
3992
3993 static const struct protocol_feature remote_protocol_features[] = {
3994 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3995 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3996 PACKET_qXfer_auxv },
3997 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3998 PACKET_qXfer_features },
3999 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4000 PACKET_qXfer_libraries },
4001 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4002 PACKET_qXfer_libraries_svr4 },
4003 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4004 remote_augmented_libraries_svr4_read_feature, -1 },
4005 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4006 PACKET_qXfer_memory_map },
4007 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4008 PACKET_qXfer_spu_read },
4009 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4010 PACKET_qXfer_spu_write },
4011 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4012 PACKET_qXfer_osdata },
4013 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4014 PACKET_qXfer_threads },
4015 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4016 PACKET_qXfer_traceframe_info },
4017 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4018 PACKET_QPassSignals },
4019 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4020 PACKET_QProgramSignals },
4021 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4022 PACKET_QStartNoAckMode },
4023 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4024 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4025 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4026 PACKET_qXfer_siginfo_read },
4027 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4028 PACKET_qXfer_siginfo_write },
4029 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4030 PACKET_ConditionalTracepoints },
4031 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4032 PACKET_ConditionalBreakpoints },
4033 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4034 PACKET_BreakpointCommands },
4035 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4036 PACKET_FastTracepoints },
4037 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4038 PACKET_StaticTracepoints },
4039 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4040 PACKET_InstallInTrace},
4041 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4042 -1 },
4043 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4044 PACKET_bc },
4045 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4046 PACKET_bs },
4047 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4048 PACKET_TracepointSource },
4049 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4050 PACKET_QAllow },
4051 { "EnableDisableTracepoints", PACKET_DISABLE,
4052 remote_enable_disable_tracepoint_feature, -1 },
4053 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4054 PACKET_qXfer_fdpic },
4055 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4056 PACKET_qXfer_uib },
4057 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4058 PACKET_QDisableRandomization },
4059 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4060 { "QTBuffer:size", PACKET_DISABLE,
4061 remote_supported_packet, PACKET_QTBuffer_size},
4062 { "tracenz", PACKET_DISABLE,
4063 remote_string_tracing_feature, -1 },
4064 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4065 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4066 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4067 PACKET_qXfer_btrace }
4068 };
4069
4070 static char *remote_support_xml;
4071
4072 /* Register string appended to "xmlRegisters=" in qSupported query. */
4073
4074 void
4075 register_remote_support_xml (const char *xml)
4076 {
4077 #if defined(HAVE_LIBEXPAT)
4078 if (remote_support_xml == NULL)
4079 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4080 else
4081 {
4082 char *copy = xstrdup (remote_support_xml + 13);
4083 char *p = strtok (copy, ",");
4084
4085 do
4086 {
4087 if (strcmp (p, xml) == 0)
4088 {
4089 /* already there */
4090 xfree (copy);
4091 return;
4092 }
4093 }
4094 while ((p = strtok (NULL, ",")) != NULL);
4095 xfree (copy);
4096
4097 remote_support_xml = reconcat (remote_support_xml,
4098 remote_support_xml, ",", xml,
4099 (char *) NULL);
4100 }
4101 #endif
4102 }
4103
4104 static char *
4105 remote_query_supported_append (char *msg, const char *append)
4106 {
4107 if (msg)
4108 return reconcat (msg, msg, ";", append, (char *) NULL);
4109 else
4110 return xstrdup (append);
4111 }
4112
4113 static void
4114 remote_query_supported (void)
4115 {
4116 struct remote_state *rs = get_remote_state ();
4117 char *next;
4118 int i;
4119 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4120
4121 /* The packet support flags are handled differently for this packet
4122 than for most others. We treat an error, a disabled packet, and
4123 an empty response identically: any features which must be reported
4124 to be used will be automatically disabled. An empty buffer
4125 accomplishes this, since that is also the representation for a list
4126 containing no features. */
4127
4128 rs->buf[0] = 0;
4129 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4130 {
4131 char *q = NULL;
4132 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4133
4134 q = remote_query_supported_append (q, "multiprocess+");
4135
4136 if (remote_support_xml)
4137 q = remote_query_supported_append (q, remote_support_xml);
4138
4139 q = remote_query_supported_append (q, "qRelocInsn+");
4140
4141 q = reconcat (q, "qSupported:", q, (char *) NULL);
4142 putpkt (q);
4143
4144 do_cleanups (old_chain);
4145
4146 getpkt (&rs->buf, &rs->buf_size, 0);
4147
4148 /* If an error occured, warn, but do not return - just reset the
4149 buffer to empty and go on to disable features. */
4150 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4151 == PACKET_ERROR)
4152 {
4153 warning (_("Remote failure reply: %s"), rs->buf);
4154 rs->buf[0] = 0;
4155 }
4156 }
4157
4158 memset (seen, 0, sizeof (seen));
4159
4160 next = rs->buf;
4161 while (*next)
4162 {
4163 enum packet_support is_supported;
4164 char *p, *end, *name_end, *value;
4165
4166 /* First separate out this item from the rest of the packet. If
4167 there's another item after this, we overwrite the separator
4168 (terminated strings are much easier to work with). */
4169 p = next;
4170 end = strchr (p, ';');
4171 if (end == NULL)
4172 {
4173 end = p + strlen (p);
4174 next = end;
4175 }
4176 else
4177 {
4178 *end = '\0';
4179 next = end + 1;
4180
4181 if (end == p)
4182 {
4183 warning (_("empty item in \"qSupported\" response"));
4184 continue;
4185 }
4186 }
4187
4188 name_end = strchr (p, '=');
4189 if (name_end)
4190 {
4191 /* This is a name=value entry. */
4192 is_supported = PACKET_ENABLE;
4193 value = name_end + 1;
4194 *name_end = '\0';
4195 }
4196 else
4197 {
4198 value = NULL;
4199 switch (end[-1])
4200 {
4201 case '+':
4202 is_supported = PACKET_ENABLE;
4203 break;
4204
4205 case '-':
4206 is_supported = PACKET_DISABLE;
4207 break;
4208
4209 case '?':
4210 is_supported = PACKET_SUPPORT_UNKNOWN;
4211 break;
4212
4213 default:
4214 warning (_("unrecognized item \"%s\" "
4215 "in \"qSupported\" response"), p);
4216 continue;
4217 }
4218 end[-1] = '\0';
4219 }
4220
4221 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4222 if (strcmp (remote_protocol_features[i].name, p) == 0)
4223 {
4224 const struct protocol_feature *feature;
4225
4226 seen[i] = 1;
4227 feature = &remote_protocol_features[i];
4228 feature->func (feature, is_supported, value);
4229 break;
4230 }
4231 }
4232
4233 /* If we increased the packet size, make sure to increase the global
4234 buffer size also. We delay this until after parsing the entire
4235 qSupported packet, because this is the same buffer we were
4236 parsing. */
4237 if (rs->buf_size < rs->explicit_packet_size)
4238 {
4239 rs->buf_size = rs->explicit_packet_size;
4240 rs->buf = xrealloc (rs->buf, rs->buf_size);
4241 }
4242
4243 /* Handle the defaults for unmentioned features. */
4244 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4245 if (!seen[i])
4246 {
4247 const struct protocol_feature *feature;
4248
4249 feature = &remote_protocol_features[i];
4250 feature->func (feature, feature->default_support, NULL);
4251 }
4252 }
4253
4254 /* Remove any of the remote.c targets from target stack. Upper targets depend
4255 on it so remove them first. */
4256
4257 static void
4258 remote_unpush_target (void)
4259 {
4260 pop_all_targets_above (process_stratum - 1);
4261 }
4262
4263 static void
4264 remote_open_1 (char *name, int from_tty,
4265 struct target_ops *target, int extended_p)
4266 {
4267 struct remote_state *rs = get_remote_state ();
4268
4269 if (name == 0)
4270 error (_("To open a remote debug connection, you need to specify what\n"
4271 "serial device is attached to the remote system\n"
4272 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4273
4274 /* See FIXME above. */
4275 if (!target_async_permitted)
4276 wait_forever_enabled_p = 1;
4277
4278 /* If we're connected to a running target, target_preopen will kill it.
4279 Ask this question first, before target_preopen has a chance to kill
4280 anything. */
4281 if (rs->remote_desc != NULL && !have_inferiors ())
4282 {
4283 if (from_tty
4284 && !query (_("Already connected to a remote target. Disconnect? ")))
4285 error (_("Still connected."));
4286 }
4287
4288 /* Here the possibly existing remote target gets unpushed. */
4289 target_preopen (from_tty);
4290
4291 /* Make sure we send the passed signals list the next time we resume. */
4292 xfree (rs->last_pass_packet);
4293 rs->last_pass_packet = NULL;
4294
4295 /* Make sure we send the program signals list the next time we
4296 resume. */
4297 xfree (rs->last_program_signals_packet);
4298 rs->last_program_signals_packet = NULL;
4299
4300 remote_fileio_reset ();
4301 reopen_exec_file ();
4302 reread_symbols ();
4303
4304 rs->remote_desc = remote_serial_open (name);
4305 if (!rs->remote_desc)
4306 perror_with_name (name);
4307
4308 if (baud_rate != -1)
4309 {
4310 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4311 {
4312 /* The requested speed could not be set. Error out to
4313 top level after closing remote_desc. Take care to
4314 set remote_desc to NULL to avoid closing remote_desc
4315 more than once. */
4316 serial_close (rs->remote_desc);
4317 rs->remote_desc = NULL;
4318 perror_with_name (name);
4319 }
4320 }
4321
4322 serial_raw (rs->remote_desc);
4323
4324 /* If there is something sitting in the buffer we might take it as a
4325 response to a command, which would be bad. */
4326 serial_flush_input (rs->remote_desc);
4327
4328 if (from_tty)
4329 {
4330 puts_filtered ("Remote debugging using ");
4331 puts_filtered (name);
4332 puts_filtered ("\n");
4333 }
4334 push_target (target); /* Switch to using remote target now. */
4335
4336 /* Register extra event sources in the event loop. */
4337 remote_async_inferior_event_token
4338 = create_async_event_handler (remote_async_inferior_event_handler,
4339 NULL);
4340 remote_notif_register_async_event_handler ();
4341
4342 /* Reset the target state; these things will be queried either by
4343 remote_query_supported or as they are needed. */
4344 init_all_packet_configs ();
4345 rs->cached_wait_status = 0;
4346 rs->explicit_packet_size = 0;
4347 rs->noack_mode = 0;
4348 rs->multi_process_aware = 0;
4349 rs->extended = extended_p;
4350 rs->non_stop_aware = 0;
4351 rs->waiting_for_stop_reply = 0;
4352 rs->ctrlc_pending_p = 0;
4353
4354 rs->general_thread = not_sent_ptid;
4355 rs->continue_thread = not_sent_ptid;
4356 rs->remote_traceframe_number = -1;
4357
4358 /* Probe for ability to use "ThreadInfo" query, as required. */
4359 rs->use_threadinfo_query = 1;
4360 rs->use_threadextra_query = 1;
4361
4362 if (target_async_permitted)
4363 {
4364 /* With this target we start out by owning the terminal. */
4365 remote_async_terminal_ours_p = 1;
4366
4367 /* FIXME: cagney/1999-09-23: During the initial connection it is
4368 assumed that the target is already ready and able to respond to
4369 requests. Unfortunately remote_start_remote() eventually calls
4370 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4371 around this. Eventually a mechanism that allows
4372 wait_for_inferior() to expect/get timeouts will be
4373 implemented. */
4374 wait_forever_enabled_p = 0;
4375 }
4376
4377 /* First delete any symbols previously loaded from shared libraries. */
4378 no_shared_libraries (NULL, 0);
4379
4380 /* Start afresh. */
4381 init_thread_list ();
4382
4383 /* Start the remote connection. If error() or QUIT, discard this
4384 target (we'd otherwise be in an inconsistent state) and then
4385 propogate the error on up the exception chain. This ensures that
4386 the caller doesn't stumble along blindly assuming that the
4387 function succeeded. The CLI doesn't have this problem but other
4388 UI's, such as MI do.
4389
4390 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4391 this function should return an error indication letting the
4392 caller restore the previous state. Unfortunately the command
4393 ``target remote'' is directly wired to this function making that
4394 impossible. On a positive note, the CLI side of this problem has
4395 been fixed - the function set_cmd_context() makes it possible for
4396 all the ``target ....'' commands to share a common callback
4397 function. See cli-dump.c. */
4398 {
4399 volatile struct gdb_exception ex;
4400
4401 TRY_CATCH (ex, RETURN_MASK_ALL)
4402 {
4403 remote_start_remote (from_tty, target, extended_p);
4404 }
4405 if (ex.reason < 0)
4406 {
4407 /* Pop the partially set up target - unless something else did
4408 already before throwing the exception. */
4409 if (rs->remote_desc != NULL)
4410 remote_unpush_target ();
4411 if (target_async_permitted)
4412 wait_forever_enabled_p = 1;
4413 throw_exception (ex);
4414 }
4415 }
4416
4417 if (target_async_permitted)
4418 wait_forever_enabled_p = 1;
4419 }
4420
4421 /* This takes a program previously attached to and detaches it. After
4422 this is done, GDB can be used to debug some other program. We
4423 better not have left any breakpoints in the target program or it'll
4424 die when it hits one. */
4425
4426 static void
4427 remote_detach_1 (char *args, int from_tty, int extended)
4428 {
4429 int pid = ptid_get_pid (inferior_ptid);
4430 struct remote_state *rs = get_remote_state ();
4431
4432 if (args)
4433 error (_("Argument given to \"detach\" when remotely debugging."));
4434
4435 if (!target_has_execution)
4436 error (_("No process to detach from."));
4437
4438 if (from_tty)
4439 {
4440 char *exec_file = get_exec_file (0);
4441 if (exec_file == NULL)
4442 exec_file = "";
4443 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4444 target_pid_to_str (pid_to_ptid (pid)));
4445 gdb_flush (gdb_stdout);
4446 }
4447
4448 /* Tell the remote target to detach. */
4449 if (remote_multi_process_p (rs))
4450 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4451 else
4452 strcpy (rs->buf, "D");
4453
4454 putpkt (rs->buf);
4455 getpkt (&rs->buf, &rs->buf_size, 0);
4456
4457 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4458 ;
4459 else if (rs->buf[0] == '\0')
4460 error (_("Remote doesn't know how to detach"));
4461 else
4462 error (_("Can't detach process."));
4463
4464 if (from_tty && !extended)
4465 puts_filtered (_("Ending remote debugging.\n"));
4466
4467 target_mourn_inferior ();
4468 }
4469
4470 static void
4471 remote_detach (struct target_ops *ops, char *args, int from_tty)
4472 {
4473 remote_detach_1 (args, from_tty, 0);
4474 }
4475
4476 static void
4477 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4478 {
4479 remote_detach_1 (args, from_tty, 1);
4480 }
4481
4482 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4483
4484 static void
4485 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4486 {
4487 if (args)
4488 error (_("Argument given to \"disconnect\" when remotely debugging."));
4489
4490 /* Make sure we unpush even the extended remote targets; mourn
4491 won't do it. So call remote_mourn_1 directly instead of
4492 target_mourn_inferior. */
4493 remote_mourn_1 (target);
4494
4495 if (from_tty)
4496 puts_filtered ("Ending remote debugging.\n");
4497 }
4498
4499 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4500 be chatty about it. */
4501
4502 static void
4503 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506 int pid;
4507 char *wait_status = NULL;
4508
4509 pid = parse_pid_to_attach (args);
4510
4511 /* Remote PID can be freely equal to getpid, do not check it here the same
4512 way as in other targets. */
4513
4514 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4515 error (_("This target does not support attaching to a process"));
4516
4517 if (from_tty)
4518 {
4519 char *exec_file = get_exec_file (0);
4520
4521 if (exec_file)
4522 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4523 target_pid_to_str (pid_to_ptid (pid)));
4524 else
4525 printf_unfiltered (_("Attaching to %s\n"),
4526 target_pid_to_str (pid_to_ptid (pid)));
4527
4528 gdb_flush (gdb_stdout);
4529 }
4530
4531 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4532 putpkt (rs->buf);
4533 getpkt (&rs->buf, &rs->buf_size, 0);
4534
4535 if (packet_ok (rs->buf,
4536 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4537 {
4538 if (!non_stop)
4539 {
4540 /* Save the reply for later. */
4541 wait_status = alloca (strlen (rs->buf) + 1);
4542 strcpy (wait_status, rs->buf);
4543 }
4544 else if (strcmp (rs->buf, "OK") != 0)
4545 error (_("Attaching to %s failed with: %s"),
4546 target_pid_to_str (pid_to_ptid (pid)),
4547 rs->buf);
4548 }
4549 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4550 error (_("This target does not support attaching to a process"));
4551 else
4552 error (_("Attaching to %s failed"),
4553 target_pid_to_str (pid_to_ptid (pid)));
4554
4555 set_current_inferior (remote_add_inferior (0, pid, 1));
4556
4557 inferior_ptid = pid_to_ptid (pid);
4558
4559 if (non_stop)
4560 {
4561 struct thread_info *thread;
4562
4563 /* Get list of threads. */
4564 remote_threads_info (target);
4565
4566 thread = first_thread_of_process (pid);
4567 if (thread)
4568 inferior_ptid = thread->ptid;
4569 else
4570 inferior_ptid = pid_to_ptid (pid);
4571
4572 /* Invalidate our notion of the remote current thread. */
4573 record_currthread (rs, minus_one_ptid);
4574 }
4575 else
4576 {
4577 /* Now, if we have thread information, update inferior_ptid. */
4578 inferior_ptid = remote_current_thread (inferior_ptid);
4579
4580 /* Add the main thread to the thread list. */
4581 add_thread_silent (inferior_ptid);
4582 }
4583
4584 /* Next, if the target can specify a description, read it. We do
4585 this before anything involving memory or registers. */
4586 target_find_description ();
4587
4588 if (!non_stop)
4589 {
4590 /* Use the previously fetched status. */
4591 gdb_assert (wait_status != NULL);
4592
4593 if (target_can_async_p ())
4594 {
4595 struct notif_event *reply
4596 = remote_notif_parse (&notif_client_stop, wait_status);
4597
4598 push_stop_reply ((struct stop_reply *) reply);
4599
4600 target_async (inferior_event_handler, 0);
4601 }
4602 else
4603 {
4604 gdb_assert (wait_status != NULL);
4605 strcpy (rs->buf, wait_status);
4606 rs->cached_wait_status = 1;
4607 }
4608 }
4609 else
4610 gdb_assert (wait_status == NULL);
4611 }
4612
4613 static void
4614 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4615 {
4616 extended_remote_attach_1 (ops, args, from_tty);
4617 }
4618
4619 /* Convert hex digit A to a number. */
4620
4621 static int
4622 fromhex (int a)
4623 {
4624 if (a >= '0' && a <= '9')
4625 return a - '0';
4626 else if (a >= 'a' && a <= 'f')
4627 return a - 'a' + 10;
4628 else if (a >= 'A' && a <= 'F')
4629 return a - 'A' + 10;
4630 else
4631 error (_("Reply contains invalid hex digit %d"), a);
4632 }
4633
4634 int
4635 hex2bin (const char *hex, gdb_byte *bin, int count)
4636 {
4637 int i;
4638
4639 for (i = 0; i < count; i++)
4640 {
4641 if (hex[0] == 0 || hex[1] == 0)
4642 {
4643 /* Hex string is short, or of uneven length.
4644 Return the count that has been converted so far. */
4645 return i;
4646 }
4647 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4648 hex += 2;
4649 }
4650 return i;
4651 }
4652
4653 /* Convert number NIB to a hex digit. */
4654
4655 static int
4656 tohex (int nib)
4657 {
4658 if (nib < 10)
4659 return '0' + nib;
4660 else
4661 return 'a' + nib - 10;
4662 }
4663
4664 int
4665 bin2hex (const gdb_byte *bin, char *hex, int count)
4666 {
4667 int i;
4668
4669 /* May use a length, or a nul-terminated string as input. */
4670 if (count == 0)
4671 count = strlen ((char *) bin);
4672
4673 for (i = 0; i < count; i++)
4674 {
4675 *hex++ = tohex ((*bin >> 4) & 0xf);
4676 *hex++ = tohex (*bin++ & 0xf);
4677 }
4678 *hex = 0;
4679 return i;
4680 }
4681 \f
4682 /* Check for the availability of vCont. This function should also check
4683 the response. */
4684
4685 static void
4686 remote_vcont_probe (struct remote_state *rs)
4687 {
4688 char *buf;
4689
4690 strcpy (rs->buf, "vCont?");
4691 putpkt (rs->buf);
4692 getpkt (&rs->buf, &rs->buf_size, 0);
4693 buf = rs->buf;
4694
4695 /* Make sure that the features we assume are supported. */
4696 if (strncmp (buf, "vCont", 5) == 0)
4697 {
4698 char *p = &buf[5];
4699 int support_s, support_S, support_c, support_C;
4700
4701 support_s = 0;
4702 support_S = 0;
4703 support_c = 0;
4704 support_C = 0;
4705 rs->supports_vCont.t = 0;
4706 rs->supports_vCont.r = 0;
4707 while (p && *p == ';')
4708 {
4709 p++;
4710 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4711 support_s = 1;
4712 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4713 support_S = 1;
4714 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4715 support_c = 1;
4716 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4717 support_C = 1;
4718 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4719 rs->supports_vCont.t = 1;
4720 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4721 rs->supports_vCont.r = 1;
4722
4723 p = strchr (p, ';');
4724 }
4725
4726 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4727 BUF will make packet_ok disable the packet. */
4728 if (!support_s || !support_S || !support_c || !support_C)
4729 buf[0] = 0;
4730 }
4731
4732 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4733 }
4734
4735 /* Helper function for building "vCont" resumptions. Write a
4736 resumption to P. ENDP points to one-passed-the-end of the buffer
4737 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4738 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4739 resumed thread should be single-stepped and/or signalled. If PTID
4740 equals minus_one_ptid, then all threads are resumed; if PTID
4741 represents a process, then all threads of the process are resumed;
4742 the thread to be stepped and/or signalled is given in the global
4743 INFERIOR_PTID. */
4744
4745 static char *
4746 append_resumption (char *p, char *endp,
4747 ptid_t ptid, int step, enum gdb_signal siggnal)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750
4751 if (step && siggnal != GDB_SIGNAL_0)
4752 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4753 else if (step
4754 /* GDB is willing to range step. */
4755 && use_range_stepping
4756 /* Target supports range stepping. */
4757 && rs->supports_vCont.r
4758 /* We don't currently support range stepping multiple
4759 threads with a wildcard (though the protocol allows it,
4760 so stubs shouldn't make an active effort to forbid
4761 it). */
4762 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4763 {
4764 struct thread_info *tp;
4765
4766 if (ptid_equal (ptid, minus_one_ptid))
4767 {
4768 /* If we don't know about the target thread's tid, then
4769 we're resuming magic_null_ptid (see caller). */
4770 tp = find_thread_ptid (magic_null_ptid);
4771 }
4772 else
4773 tp = find_thread_ptid (ptid);
4774 gdb_assert (tp != NULL);
4775
4776 if (tp->control.may_range_step)
4777 {
4778 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4779
4780 p += xsnprintf (p, endp - p, ";r%s,%s",
4781 phex_nz (tp->control.step_range_start,
4782 addr_size),
4783 phex_nz (tp->control.step_range_end,
4784 addr_size));
4785 }
4786 else
4787 p += xsnprintf (p, endp - p, ";s");
4788 }
4789 else if (step)
4790 p += xsnprintf (p, endp - p, ";s");
4791 else if (siggnal != GDB_SIGNAL_0)
4792 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4793 else
4794 p += xsnprintf (p, endp - p, ";c");
4795
4796 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4797 {
4798 ptid_t nptid;
4799
4800 /* All (-1) threads of process. */
4801 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4802
4803 p += xsnprintf (p, endp - p, ":");
4804 p = write_ptid (p, endp, nptid);
4805 }
4806 else if (!ptid_equal (ptid, minus_one_ptid))
4807 {
4808 p += xsnprintf (p, endp - p, ":");
4809 p = write_ptid (p, endp, ptid);
4810 }
4811
4812 return p;
4813 }
4814
4815 /* Append a vCont continue-with-signal action for threads that have a
4816 non-zero stop signal. */
4817
4818 static char *
4819 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4820 {
4821 struct thread_info *thread;
4822
4823 ALL_THREADS (thread)
4824 if (ptid_match (thread->ptid, ptid)
4825 && !ptid_equal (inferior_ptid, thread->ptid)
4826 && thread->suspend.stop_signal != GDB_SIGNAL_0
4827 && signal_pass_state (thread->suspend.stop_signal))
4828 {
4829 p = append_resumption (p, endp, thread->ptid,
4830 0, thread->suspend.stop_signal);
4831 thread->suspend.stop_signal = GDB_SIGNAL_0;
4832 }
4833
4834 return p;
4835 }
4836
4837 /* Resume the remote inferior by using a "vCont" packet. The thread
4838 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4839 resumed thread should be single-stepped and/or signalled. If PTID
4840 equals minus_one_ptid, then all threads are resumed; the thread to
4841 be stepped and/or signalled is given in the global INFERIOR_PTID.
4842 This function returns non-zero iff it resumes the inferior.
4843
4844 This function issues a strict subset of all possible vCont commands at the
4845 moment. */
4846
4847 static int
4848 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4849 {
4850 struct remote_state *rs = get_remote_state ();
4851 char *p;
4852 char *endp;
4853
4854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4855 remote_vcont_probe (rs);
4856
4857 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4858 return 0;
4859
4860 p = rs->buf;
4861 endp = rs->buf + get_remote_packet_size ();
4862
4863 /* If we could generate a wider range of packets, we'd have to worry
4864 about overflowing BUF. Should there be a generic
4865 "multi-part-packet" packet? */
4866
4867 p += xsnprintf (p, endp - p, "vCont");
4868
4869 if (ptid_equal (ptid, magic_null_ptid))
4870 {
4871 /* MAGIC_NULL_PTID means that we don't have any active threads,
4872 so we don't have any TID numbers the inferior will
4873 understand. Make sure to only send forms that do not specify
4874 a TID. */
4875 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4876 }
4877 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4878 {
4879 /* Resume all threads (of all processes, or of a single
4880 process), with preference for INFERIOR_PTID. This assumes
4881 inferior_ptid belongs to the set of all threads we are about
4882 to resume. */
4883 if (step || siggnal != GDB_SIGNAL_0)
4884 {
4885 /* Step inferior_ptid, with or without signal. */
4886 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4887 }
4888
4889 /* Also pass down any pending signaled resumption for other
4890 threads not the current. */
4891 p = append_pending_thread_resumptions (p, endp, ptid);
4892
4893 /* And continue others without a signal. */
4894 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4895 }
4896 else
4897 {
4898 /* Scheduler locking; resume only PTID. */
4899 append_resumption (p, endp, ptid, step, siggnal);
4900 }
4901
4902 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4903 putpkt (rs->buf);
4904
4905 if (non_stop)
4906 {
4907 /* In non-stop, the stub replies to vCont with "OK". The stop
4908 reply will be reported asynchronously by means of a `%Stop'
4909 notification. */
4910 getpkt (&rs->buf, &rs->buf_size, 0);
4911 if (strcmp (rs->buf, "OK") != 0)
4912 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4913 }
4914
4915 return 1;
4916 }
4917
4918 /* Tell the remote machine to resume. */
4919
4920 static void
4921 remote_resume (struct target_ops *ops,
4922 ptid_t ptid, int step, enum gdb_signal siggnal)
4923 {
4924 struct remote_state *rs = get_remote_state ();
4925 char *buf;
4926
4927 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4928 (explained in remote-notif.c:handle_notification) so
4929 remote_notif_process is not called. We need find a place where
4930 it is safe to start a 'vNotif' sequence. It is good to do it
4931 before resuming inferior, because inferior was stopped and no RSP
4932 traffic at that moment. */
4933 if (!non_stop)
4934 remote_notif_process (&notif_client_stop);
4935
4936 rs->last_sent_signal = siggnal;
4937 rs->last_sent_step = step;
4938
4939 /* The vCont packet doesn't need to specify threads via Hc. */
4940 /* No reverse support (yet) for vCont. */
4941 if (execution_direction != EXEC_REVERSE)
4942 if (remote_vcont_resume (ptid, step, siggnal))
4943 goto done;
4944
4945 /* All other supported resume packets do use Hc, so set the continue
4946 thread. */
4947 if (ptid_equal (ptid, minus_one_ptid))
4948 set_continue_thread (any_thread_ptid);
4949 else
4950 set_continue_thread (ptid);
4951
4952 buf = rs->buf;
4953 if (execution_direction == EXEC_REVERSE)
4954 {
4955 /* We don't pass signals to the target in reverse exec mode. */
4956 if (info_verbose && siggnal != GDB_SIGNAL_0)
4957 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4958 siggnal);
4959
4960 if (step
4961 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4962 error (_("Remote reverse-step not supported."));
4963 if (!step
4964 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4965 error (_("Remote reverse-continue not supported."));
4966
4967 strcpy (buf, step ? "bs" : "bc");
4968 }
4969 else if (siggnal != GDB_SIGNAL_0)
4970 {
4971 buf[0] = step ? 'S' : 'C';
4972 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4973 buf[2] = tohex (((int) siggnal) & 0xf);
4974 buf[3] = '\0';
4975 }
4976 else
4977 strcpy (buf, step ? "s" : "c");
4978
4979 putpkt (buf);
4980
4981 done:
4982 /* We are about to start executing the inferior, let's register it
4983 with the event loop. NOTE: this is the one place where all the
4984 execution commands end up. We could alternatively do this in each
4985 of the execution commands in infcmd.c. */
4986 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4987 into infcmd.c in order to allow inferior function calls to work
4988 NOT asynchronously. */
4989 if (target_can_async_p ())
4990 target_async (inferior_event_handler, 0);
4991
4992 /* We've just told the target to resume. The remote server will
4993 wait for the inferior to stop, and then send a stop reply. In
4994 the mean time, we can't start another command/query ourselves
4995 because the stub wouldn't be ready to process it. This applies
4996 only to the base all-stop protocol, however. In non-stop (which
4997 only supports vCont), the stub replies with an "OK", and is
4998 immediate able to process further serial input. */
4999 if (!non_stop)
5000 rs->waiting_for_stop_reply = 1;
5001 }
5002 \f
5003
5004 /* Set up the signal handler for SIGINT, while the target is
5005 executing, ovewriting the 'regular' SIGINT signal handler. */
5006 static void
5007 async_initialize_sigint_signal_handler (void)
5008 {
5009 signal (SIGINT, async_handle_remote_sigint);
5010 }
5011
5012 /* Signal handler for SIGINT, while the target is executing. */
5013 static void
5014 async_handle_remote_sigint (int sig)
5015 {
5016 signal (sig, async_handle_remote_sigint_twice);
5017 mark_async_signal_handler (async_sigint_remote_token);
5018 }
5019
5020 /* Signal handler for SIGINT, installed after SIGINT has already been
5021 sent once. It will take effect the second time that the user sends
5022 a ^C. */
5023 static void
5024 async_handle_remote_sigint_twice (int sig)
5025 {
5026 signal (sig, async_handle_remote_sigint);
5027 mark_async_signal_handler (async_sigint_remote_twice_token);
5028 }
5029
5030 /* Perform the real interruption of the target execution, in response
5031 to a ^C. */
5032 static void
5033 async_remote_interrupt (gdb_client_data arg)
5034 {
5035 if (remote_debug)
5036 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5037
5038 target_stop (inferior_ptid);
5039 }
5040
5041 /* Perform interrupt, if the first attempt did not succeed. Just give
5042 up on the target alltogether. */
5043 static void
5044 async_remote_interrupt_twice (gdb_client_data arg)
5045 {
5046 if (remote_debug)
5047 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5048
5049 interrupt_query ();
5050 }
5051
5052 /* Reinstall the usual SIGINT handlers, after the target has
5053 stopped. */
5054 static void
5055 async_cleanup_sigint_signal_handler (void *dummy)
5056 {
5057 signal (SIGINT, handle_sigint);
5058 }
5059
5060 /* Send ^C to target to halt it. Target will respond, and send us a
5061 packet. */
5062 static void (*ofunc) (int);
5063
5064 /* The command line interface's stop routine. This function is installed
5065 as a signal handler for SIGINT. The first time a user requests a
5066 stop, we call remote_stop to send a break or ^C. If there is no
5067 response from the target (it didn't stop when the user requested it),
5068 we ask the user if he'd like to detach from the target. */
5069 static void
5070 sync_remote_interrupt (int signo)
5071 {
5072 /* If this doesn't work, try more severe steps. */
5073 signal (signo, sync_remote_interrupt_twice);
5074
5075 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5076 }
5077
5078 /* The user typed ^C twice. */
5079
5080 static void
5081 sync_remote_interrupt_twice (int signo)
5082 {
5083 signal (signo, ofunc);
5084 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5085 signal (signo, sync_remote_interrupt);
5086 }
5087
5088 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5089 thread, all threads of a remote process, or all threads of all
5090 processes. */
5091
5092 static void
5093 remote_stop_ns (ptid_t ptid)
5094 {
5095 struct remote_state *rs = get_remote_state ();
5096 char *p = rs->buf;
5097 char *endp = rs->buf + get_remote_packet_size ();
5098
5099 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5100 remote_vcont_probe (rs);
5101
5102 if (!rs->supports_vCont.t)
5103 error (_("Remote server does not support stopping threads"));
5104
5105 if (ptid_equal (ptid, minus_one_ptid)
5106 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5107 p += xsnprintf (p, endp - p, "vCont;t");
5108 else
5109 {
5110 ptid_t nptid;
5111
5112 p += xsnprintf (p, endp - p, "vCont;t:");
5113
5114 if (ptid_is_pid (ptid))
5115 /* All (-1) threads of process. */
5116 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5117 else
5118 {
5119 /* Small optimization: if we already have a stop reply for
5120 this thread, no use in telling the stub we want this
5121 stopped. */
5122 if (peek_stop_reply (ptid))
5123 return;
5124
5125 nptid = ptid;
5126 }
5127
5128 write_ptid (p, endp, nptid);
5129 }
5130
5131 /* In non-stop, we get an immediate OK reply. The stop reply will
5132 come in asynchronously by notification. */
5133 putpkt (rs->buf);
5134 getpkt (&rs->buf, &rs->buf_size, 0);
5135 if (strcmp (rs->buf, "OK") != 0)
5136 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5137 }
5138
5139 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5140 remote target. It is undefined which thread of which process
5141 reports the stop. */
5142
5143 static void
5144 remote_stop_as (ptid_t ptid)
5145 {
5146 struct remote_state *rs = get_remote_state ();
5147
5148 rs->ctrlc_pending_p = 1;
5149
5150 /* If the inferior is stopped already, but the core didn't know
5151 about it yet, just ignore the request. The cached wait status
5152 will be collected in remote_wait. */
5153 if (rs->cached_wait_status)
5154 return;
5155
5156 /* Send interrupt_sequence to remote target. */
5157 send_interrupt_sequence ();
5158 }
5159
5160 /* This is the generic stop called via the target vector. When a target
5161 interrupt is requested, either by the command line or the GUI, we
5162 will eventually end up here. */
5163
5164 static void
5165 remote_stop (ptid_t ptid)
5166 {
5167 if (remote_debug)
5168 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5169
5170 if (non_stop)
5171 remote_stop_ns (ptid);
5172 else
5173 remote_stop_as (ptid);
5174 }
5175
5176 /* Ask the user what to do when an interrupt is received. */
5177
5178 static void
5179 interrupt_query (void)
5180 {
5181 target_terminal_ours ();
5182
5183 if (target_can_async_p ())
5184 {
5185 signal (SIGINT, handle_sigint);
5186 quit ();
5187 }
5188 else
5189 {
5190 if (query (_("Interrupted while waiting for the program.\n\
5191 Give up (and stop debugging it)? ")))
5192 {
5193 remote_unpush_target ();
5194 quit ();
5195 }
5196 }
5197
5198 target_terminal_inferior ();
5199 }
5200
5201 /* Enable/disable target terminal ownership. Most targets can use
5202 terminal groups to control terminal ownership. Remote targets are
5203 different in that explicit transfer of ownership to/from GDB/target
5204 is required. */
5205
5206 static void
5207 remote_terminal_inferior (void)
5208 {
5209 if (!target_async_permitted)
5210 /* Nothing to do. */
5211 return;
5212
5213 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5214 idempotent. The event-loop GDB talking to an asynchronous target
5215 with a synchronous command calls this function from both
5216 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5217 transfer the terminal to the target when it shouldn't this guard
5218 can go away. */
5219 if (!remote_async_terminal_ours_p)
5220 return;
5221 delete_file_handler (input_fd);
5222 remote_async_terminal_ours_p = 0;
5223 async_initialize_sigint_signal_handler ();
5224 /* NOTE: At this point we could also register our selves as the
5225 recipient of all input. Any characters typed could then be
5226 passed on down to the target. */
5227 }
5228
5229 static void
5230 remote_terminal_ours (void)
5231 {
5232 if (!target_async_permitted)
5233 /* Nothing to do. */
5234 return;
5235
5236 /* See FIXME in remote_terminal_inferior. */
5237 if (remote_async_terminal_ours_p)
5238 return;
5239 async_cleanup_sigint_signal_handler (NULL);
5240 add_file_handler (input_fd, stdin_event_handler, 0);
5241 remote_async_terminal_ours_p = 1;
5242 }
5243
5244 static void
5245 remote_console_output (char *msg)
5246 {
5247 char *p;
5248
5249 for (p = msg; p[0] && p[1]; p += 2)
5250 {
5251 char tb[2];
5252 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5253
5254 tb[0] = c;
5255 tb[1] = 0;
5256 fputs_unfiltered (tb, gdb_stdtarg);
5257 }
5258 gdb_flush (gdb_stdtarg);
5259 }
5260
5261 typedef struct cached_reg
5262 {
5263 int num;
5264 gdb_byte data[MAX_REGISTER_SIZE];
5265 } cached_reg_t;
5266
5267 DEF_VEC_O(cached_reg_t);
5268
5269 typedef struct stop_reply
5270 {
5271 struct notif_event base;
5272
5273 /* The identifier of the thread about this event */
5274 ptid_t ptid;
5275
5276 struct target_waitstatus ws;
5277
5278 /* Expedited registers. This makes remote debugging a bit more
5279 efficient for those targets that provide critical registers as
5280 part of their normal status mechanism (as another roundtrip to
5281 fetch them is avoided). */
5282 VEC(cached_reg_t) *regcache;
5283
5284 int stopped_by_watchpoint_p;
5285 CORE_ADDR watch_data_address;
5286
5287 int core;
5288 } *stop_reply_p;
5289
5290 DECLARE_QUEUE_P (stop_reply_p);
5291 DEFINE_QUEUE_P (stop_reply_p);
5292 /* The list of already fetched and acknowledged stop events. This
5293 queue is used for notification Stop, and other notifications
5294 don't need queue for their events, because the notification events
5295 of Stop can't be consumed immediately, so that events should be
5296 queued first, and be consumed by remote_wait_{ns,as} one per
5297 time. Other notifications can consume their events immediately,
5298 so queue is not needed for them. */
5299 static QUEUE (stop_reply_p) *stop_reply_queue;
5300
5301 static void
5302 stop_reply_xfree (struct stop_reply *r)
5303 {
5304 if (r != NULL)
5305 {
5306 VEC_free (cached_reg_t, r->regcache);
5307 xfree (r);
5308 }
5309 }
5310
5311 static void
5312 remote_notif_stop_parse (struct notif_client *self, char *buf,
5313 struct notif_event *event)
5314 {
5315 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5316 }
5317
5318 static void
5319 remote_notif_stop_ack (struct notif_client *self, char *buf,
5320 struct notif_event *event)
5321 {
5322 struct stop_reply *stop_reply = (struct stop_reply *) event;
5323
5324 /* acknowledge */
5325 putpkt ((char *) self->ack_command);
5326
5327 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5328 /* We got an unknown stop reply. */
5329 error (_("Unknown stop reply"));
5330
5331 push_stop_reply (stop_reply);
5332 }
5333
5334 static int
5335 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5336 {
5337 /* We can't get pending events in remote_notif_process for
5338 notification stop, and we have to do this in remote_wait_ns
5339 instead. If we fetch all queued events from stub, remote stub
5340 may exit and we have no chance to process them back in
5341 remote_wait_ns. */
5342 mark_async_event_handler (remote_async_inferior_event_token);
5343 return 0;
5344 }
5345
5346 static void
5347 stop_reply_dtr (struct notif_event *event)
5348 {
5349 struct stop_reply *r = (struct stop_reply *) event;
5350
5351 VEC_free (cached_reg_t, r->regcache);
5352 }
5353
5354 static struct notif_event *
5355 remote_notif_stop_alloc_reply (void)
5356 {
5357 struct notif_event *r
5358 = (struct notif_event *) XMALLOC (struct stop_reply);
5359
5360 r->dtr = stop_reply_dtr;
5361
5362 return r;
5363 }
5364
5365 /* A client of notification Stop. */
5366
5367 struct notif_client notif_client_stop =
5368 {
5369 "Stop",
5370 "vStopped",
5371 remote_notif_stop_parse,
5372 remote_notif_stop_ack,
5373 remote_notif_stop_can_get_pending_events,
5374 remote_notif_stop_alloc_reply,
5375 NULL,
5376 };
5377
5378 /* A parameter to pass data in and out. */
5379
5380 struct queue_iter_param
5381 {
5382 void *input;
5383 struct stop_reply *output;
5384 };
5385
5386 /* Remove all queue elements meet the condition it checks. */
5387
5388 static int
5389 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5390 QUEUE_ITER (stop_reply_p) *iter,
5391 stop_reply_p event,
5392 void *data)
5393 {
5394 struct queue_iter_param *param = data;
5395 struct inferior *inf = param->input;
5396
5397 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5398 {
5399 stop_reply_xfree (event);
5400 QUEUE_remove_elem (stop_reply_p, q, iter);
5401 }
5402
5403 return 1;
5404 }
5405
5406 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5407 discard everything. */
5408
5409 static void
5410 discard_pending_stop_replies (struct inferior *inf)
5411 {
5412 int i;
5413 struct queue_iter_param param;
5414 struct stop_reply *reply
5415 = (struct stop_reply *) notif_client_stop.pending_event;
5416
5417 /* Discard the in-flight notification. */
5418 if (reply != NULL
5419 && (inf == NULL
5420 || ptid_get_pid (reply->ptid) == inf->pid))
5421 {
5422 stop_reply_xfree (reply);
5423 notif_client_stop.pending_event = NULL;
5424 }
5425
5426 param.input = inf;
5427 param.output = NULL;
5428 /* Discard the stop replies we have already pulled with
5429 vStopped. */
5430 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5431 remote_notif_remove_all, &param);
5432 }
5433
5434 /* A parameter to pass data in and out. */
5435
5436 static int
5437 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5438 QUEUE_ITER (stop_reply_p) *iter,
5439 stop_reply_p event,
5440 void *data)
5441 {
5442 struct queue_iter_param *param = data;
5443 ptid_t *ptid = param->input;
5444
5445 if (ptid_match (event->ptid, *ptid))
5446 {
5447 param->output = event;
5448 QUEUE_remove_elem (stop_reply_p, q, iter);
5449 return 0;
5450 }
5451
5452 return 1;
5453 }
5454
5455 /* Remove the first reply in 'stop_reply_queue' which matches
5456 PTID. */
5457
5458 static struct stop_reply *
5459 remote_notif_remove_queued_reply (ptid_t ptid)
5460 {
5461 struct queue_iter_param param;
5462
5463 param.input = &ptid;
5464 param.output = NULL;
5465
5466 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5467 remote_notif_remove_once_on_match, &param);
5468 if (notif_debug)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "notif: discard queued event: 'Stop' in %s\n",
5471 target_pid_to_str (ptid));
5472
5473 return param.output;
5474 }
5475
5476 /* Look for a queued stop reply belonging to PTID. If one is found,
5477 remove it from the queue, and return it. Returns NULL if none is
5478 found. If there are still queued events left to process, tell the
5479 event loop to get back to target_wait soon. */
5480
5481 static struct stop_reply *
5482 queued_stop_reply (ptid_t ptid)
5483 {
5484 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5485
5486 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5487 /* There's still at least an event left. */
5488 mark_async_event_handler (remote_async_inferior_event_token);
5489
5490 return r;
5491 }
5492
5493 /* Push a fully parsed stop reply in the stop reply queue. Since we
5494 know that we now have at least one queued event left to pass to the
5495 core side, tell the event loop to get back to target_wait soon. */
5496
5497 static void
5498 push_stop_reply (struct stop_reply *new_event)
5499 {
5500 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5501
5502 if (notif_debug)
5503 fprintf_unfiltered (gdb_stdlog,
5504 "notif: push 'Stop' %s to queue %d\n",
5505 target_pid_to_str (new_event->ptid),
5506 QUEUE_length (stop_reply_p,
5507 stop_reply_queue));
5508
5509 mark_async_event_handler (remote_async_inferior_event_token);
5510 }
5511
5512 static int
5513 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5514 QUEUE_ITER (stop_reply_p) *iter,
5515 struct stop_reply *event,
5516 void *data)
5517 {
5518 ptid_t *ptid = data;
5519
5520 return !(ptid_equal (*ptid, event->ptid)
5521 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5522 }
5523
5524 /* Returns true if we have a stop reply for PTID. */
5525
5526 static int
5527 peek_stop_reply (ptid_t ptid)
5528 {
5529 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5530 stop_reply_match_ptid_and_ws, &ptid);
5531 }
5532
5533 /* Parse the stop reply in BUF. Either the function succeeds, and the
5534 result is stored in EVENT, or throws an error. */
5535
5536 static void
5537 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5538 {
5539 struct remote_arch_state *rsa = get_remote_arch_state ();
5540 ULONGEST addr;
5541 char *p;
5542
5543 event->ptid = null_ptid;
5544 event->ws.kind = TARGET_WAITKIND_IGNORE;
5545 event->ws.value.integer = 0;
5546 event->stopped_by_watchpoint_p = 0;
5547 event->regcache = NULL;
5548 event->core = -1;
5549
5550 switch (buf[0])
5551 {
5552 case 'T': /* Status with PC, SP, FP, ... */
5553 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5554 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5555 ss = signal number
5556 n... = register number
5557 r... = register contents
5558 */
5559
5560 p = &buf[3]; /* after Txx */
5561 while (*p)
5562 {
5563 char *p1;
5564 char *p_temp;
5565 int fieldsize;
5566 LONGEST pnum = 0;
5567
5568 /* If the packet contains a register number, save it in
5569 pnum and set p1 to point to the character following it.
5570 Otherwise p1 points to p. */
5571
5572 /* If this packet is an awatch packet, don't parse the 'a'
5573 as a register number. */
5574
5575 if (strncmp (p, "awatch", strlen("awatch")) != 0
5576 && strncmp (p, "core", strlen ("core") != 0))
5577 {
5578 /* Read the ``P'' register number. */
5579 pnum = strtol (p, &p_temp, 16);
5580 p1 = p_temp;
5581 }
5582 else
5583 p1 = p;
5584
5585 if (p1 == p) /* No register number present here. */
5586 {
5587 p1 = strchr (p, ':');
5588 if (p1 == NULL)
5589 error (_("Malformed packet(a) (missing colon): %s\n\
5590 Packet: '%s'\n"),
5591 p, buf);
5592 if (strncmp (p, "thread", p1 - p) == 0)
5593 event->ptid = read_ptid (++p1, &p);
5594 else if ((strncmp (p, "watch", p1 - p) == 0)
5595 || (strncmp (p, "rwatch", p1 - p) == 0)
5596 || (strncmp (p, "awatch", p1 - p) == 0))
5597 {
5598 event->stopped_by_watchpoint_p = 1;
5599 p = unpack_varlen_hex (++p1, &addr);
5600 event->watch_data_address = (CORE_ADDR) addr;
5601 }
5602 else if (strncmp (p, "library", p1 - p) == 0)
5603 {
5604 p1++;
5605 p_temp = p1;
5606 while (*p_temp && *p_temp != ';')
5607 p_temp++;
5608
5609 event->ws.kind = TARGET_WAITKIND_LOADED;
5610 p = p_temp;
5611 }
5612 else if (strncmp (p, "replaylog", p1 - p) == 0)
5613 {
5614 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5615 /* p1 will indicate "begin" or "end", but it makes
5616 no difference for now, so ignore it. */
5617 p_temp = strchr (p1 + 1, ';');
5618 if (p_temp)
5619 p = p_temp;
5620 }
5621 else if (strncmp (p, "core", p1 - p) == 0)
5622 {
5623 ULONGEST c;
5624
5625 p = unpack_varlen_hex (++p1, &c);
5626 event->core = c;
5627 }
5628 else
5629 {
5630 /* Silently skip unknown optional info. */
5631 p_temp = strchr (p1 + 1, ';');
5632 if (p_temp)
5633 p = p_temp;
5634 }
5635 }
5636 else
5637 {
5638 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5639 cached_reg_t cached_reg;
5640
5641 p = p1;
5642
5643 if (*p != ':')
5644 error (_("Malformed packet(b) (missing colon): %s\n\
5645 Packet: '%s'\n"),
5646 p, buf);
5647 ++p;
5648
5649 if (reg == NULL)
5650 error (_("Remote sent bad register number %s: %s\n\
5651 Packet: '%s'\n"),
5652 hex_string (pnum), p, buf);
5653
5654 cached_reg.num = reg->regnum;
5655
5656 fieldsize = hex2bin (p, cached_reg.data,
5657 register_size (target_gdbarch (),
5658 reg->regnum));
5659 p += 2 * fieldsize;
5660 if (fieldsize < register_size (target_gdbarch (),
5661 reg->regnum))
5662 warning (_("Remote reply is too short: %s"), buf);
5663
5664 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5665 }
5666
5667 if (*p != ';')
5668 error (_("Remote register badly formatted: %s\nhere: %s"),
5669 buf, p);
5670 ++p;
5671 }
5672
5673 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5674 break;
5675
5676 /* fall through */
5677 case 'S': /* Old style status, just signal only. */
5678 event->ws.kind = TARGET_WAITKIND_STOPPED;
5679 event->ws.value.sig = (enum gdb_signal)
5680 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5681 break;
5682 case 'W': /* Target exited. */
5683 case 'X':
5684 {
5685 char *p;
5686 int pid;
5687 ULONGEST value;
5688
5689 /* GDB used to accept only 2 hex chars here. Stubs should
5690 only send more if they detect GDB supports multi-process
5691 support. */
5692 p = unpack_varlen_hex (&buf[1], &value);
5693
5694 if (buf[0] == 'W')
5695 {
5696 /* The remote process exited. */
5697 event->ws.kind = TARGET_WAITKIND_EXITED;
5698 event->ws.value.integer = value;
5699 }
5700 else
5701 {
5702 /* The remote process exited with a signal. */
5703 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5704 event->ws.value.sig = (enum gdb_signal) value;
5705 }
5706
5707 /* If no process is specified, assume inferior_ptid. */
5708 pid = ptid_get_pid (inferior_ptid);
5709 if (*p == '\0')
5710 ;
5711 else if (*p == ';')
5712 {
5713 p++;
5714
5715 if (p == '\0')
5716 ;
5717 else if (strncmp (p,
5718 "process:", sizeof ("process:") - 1) == 0)
5719 {
5720 ULONGEST upid;
5721
5722 p += sizeof ("process:") - 1;
5723 unpack_varlen_hex (p, &upid);
5724 pid = upid;
5725 }
5726 else
5727 error (_("unknown stop reply packet: %s"), buf);
5728 }
5729 else
5730 error (_("unknown stop reply packet: %s"), buf);
5731 event->ptid = pid_to_ptid (pid);
5732 }
5733 break;
5734 }
5735
5736 if (non_stop && ptid_equal (event->ptid, null_ptid))
5737 error (_("No process or thread specified in stop reply: %s"), buf);
5738 }
5739
5740 /* When the stub wants to tell GDB about a new notification reply, it
5741 sends a notification (%Stop, for example). Those can come it at
5742 any time, hence, we have to make sure that any pending
5743 putpkt/getpkt sequence we're making is finished, before querying
5744 the stub for more events with the corresponding ack command
5745 (vStopped, for example). E.g., if we started a vStopped sequence
5746 immediately upon receiving the notification, something like this
5747 could happen:
5748
5749 1.1) --> Hg 1
5750 1.2) <-- OK
5751 1.3) --> g
5752 1.4) <-- %Stop
5753 1.5) --> vStopped
5754 1.6) <-- (registers reply to step #1.3)
5755
5756 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5757 query.
5758
5759 To solve this, whenever we parse a %Stop notification successfully,
5760 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5761 doing whatever we were doing:
5762
5763 2.1) --> Hg 1
5764 2.2) <-- OK
5765 2.3) --> g
5766 2.4) <-- %Stop
5767 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5768 2.5) <-- (registers reply to step #2.3)
5769
5770 Eventualy after step #2.5, we return to the event loop, which
5771 notices there's an event on the
5772 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5773 associated callback --- the function below. At this point, we're
5774 always safe to start a vStopped sequence. :
5775
5776 2.6) --> vStopped
5777 2.7) <-- T05 thread:2
5778 2.8) --> vStopped
5779 2.9) --> OK
5780 */
5781
5782 void
5783 remote_notif_get_pending_events (struct notif_client *nc)
5784 {
5785 struct remote_state *rs = get_remote_state ();
5786
5787 if (nc->pending_event)
5788 {
5789 if (notif_debug)
5790 fprintf_unfiltered (gdb_stdlog,
5791 "notif: process: '%s' ack pending event\n",
5792 nc->name);
5793
5794 /* acknowledge */
5795 nc->ack (nc, rs->buf, nc->pending_event);
5796 nc->pending_event = NULL;
5797
5798 while (1)
5799 {
5800 getpkt (&rs->buf, &rs->buf_size, 0);
5801 if (strcmp (rs->buf, "OK") == 0)
5802 break;
5803 else
5804 remote_notif_ack (nc, rs->buf);
5805 }
5806 }
5807 else
5808 {
5809 if (notif_debug)
5810 fprintf_unfiltered (gdb_stdlog,
5811 "notif: process: '%s' no pending reply\n",
5812 nc->name);
5813 }
5814 }
5815
5816 /* Called when it is decided that STOP_REPLY holds the info of the
5817 event that is to be returned to the core. This function always
5818 destroys STOP_REPLY. */
5819
5820 static ptid_t
5821 process_stop_reply (struct stop_reply *stop_reply,
5822 struct target_waitstatus *status)
5823 {
5824 ptid_t ptid;
5825
5826 *status = stop_reply->ws;
5827 ptid = stop_reply->ptid;
5828
5829 /* If no thread/process was reported by the stub, assume the current
5830 inferior. */
5831 if (ptid_equal (ptid, null_ptid))
5832 ptid = inferior_ptid;
5833
5834 if (status->kind != TARGET_WAITKIND_EXITED
5835 && status->kind != TARGET_WAITKIND_SIGNALLED)
5836 {
5837 struct remote_state *rs = get_remote_state ();
5838
5839 /* Expedited registers. */
5840 if (stop_reply->regcache)
5841 {
5842 struct regcache *regcache
5843 = get_thread_arch_regcache (ptid, target_gdbarch ());
5844 cached_reg_t *reg;
5845 int ix;
5846
5847 for (ix = 0;
5848 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5849 ix++)
5850 regcache_raw_supply (regcache, reg->num, reg->data);
5851 VEC_free (cached_reg_t, stop_reply->regcache);
5852 }
5853
5854 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5855 rs->remote_watch_data_address = stop_reply->watch_data_address;
5856
5857 remote_notice_new_inferior (ptid, 0);
5858 demand_private_info (ptid)->core = stop_reply->core;
5859 }
5860
5861 stop_reply_xfree (stop_reply);
5862 return ptid;
5863 }
5864
5865 /* The non-stop mode version of target_wait. */
5866
5867 static ptid_t
5868 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5869 {
5870 struct remote_state *rs = get_remote_state ();
5871 struct stop_reply *stop_reply;
5872 int ret;
5873 int is_notif = 0;
5874
5875 /* If in non-stop mode, get out of getpkt even if a
5876 notification is received. */
5877
5878 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5879 0 /* forever */, &is_notif);
5880 while (1)
5881 {
5882 if (ret != -1 && !is_notif)
5883 switch (rs->buf[0])
5884 {
5885 case 'E': /* Error of some sort. */
5886 /* We're out of sync with the target now. Did it continue
5887 or not? We can't tell which thread it was in non-stop,
5888 so just ignore this. */
5889 warning (_("Remote failure reply: %s"), rs->buf);
5890 break;
5891 case 'O': /* Console output. */
5892 remote_console_output (rs->buf + 1);
5893 break;
5894 default:
5895 warning (_("Invalid remote reply: %s"), rs->buf);
5896 break;
5897 }
5898
5899 /* Acknowledge a pending stop reply that may have arrived in the
5900 mean time. */
5901 if (notif_client_stop.pending_event != NULL)
5902 remote_notif_get_pending_events (&notif_client_stop);
5903
5904 /* If indeed we noticed a stop reply, we're done. */
5905 stop_reply = queued_stop_reply (ptid);
5906 if (stop_reply != NULL)
5907 return process_stop_reply (stop_reply, status);
5908
5909 /* Still no event. If we're just polling for an event, then
5910 return to the event loop. */
5911 if (options & TARGET_WNOHANG)
5912 {
5913 status->kind = TARGET_WAITKIND_IGNORE;
5914 return minus_one_ptid;
5915 }
5916
5917 /* Otherwise do a blocking wait. */
5918 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5919 1 /* forever */, &is_notif);
5920 }
5921 }
5922
5923 /* Wait until the remote machine stops, then return, storing status in
5924 STATUS just as `wait' would. */
5925
5926 static ptid_t
5927 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5928 {
5929 struct remote_state *rs = get_remote_state ();
5930 ptid_t event_ptid = null_ptid;
5931 char *buf;
5932 struct stop_reply *stop_reply;
5933
5934 again:
5935
5936 status->kind = TARGET_WAITKIND_IGNORE;
5937 status->value.integer = 0;
5938
5939 stop_reply = queued_stop_reply (ptid);
5940 if (stop_reply != NULL)
5941 return process_stop_reply (stop_reply, status);
5942
5943 if (rs->cached_wait_status)
5944 /* Use the cached wait status, but only once. */
5945 rs->cached_wait_status = 0;
5946 else
5947 {
5948 int ret;
5949 int is_notif;
5950
5951 if (!target_is_async_p ())
5952 {
5953 ofunc = signal (SIGINT, sync_remote_interrupt);
5954 /* If the user hit C-c before this packet, or between packets,
5955 pretend that it was hit right here. */
5956 if (check_quit_flag ())
5957 {
5958 clear_quit_flag ();
5959 sync_remote_interrupt (SIGINT);
5960 }
5961 }
5962
5963 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5964 _never_ wait for ever -> test on target_is_async_p().
5965 However, before we do that we need to ensure that the caller
5966 knows how to take the target into/out of async mode. */
5967 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5968 wait_forever_enabled_p, &is_notif);
5969
5970 if (!target_is_async_p ())
5971 signal (SIGINT, ofunc);
5972
5973 /* GDB gets a notification. Return to core as this event is
5974 not interesting. */
5975 if (ret != -1 && is_notif)
5976 return minus_one_ptid;
5977 }
5978
5979 buf = rs->buf;
5980
5981 rs->remote_stopped_by_watchpoint_p = 0;
5982
5983 /* We got something. */
5984 rs->waiting_for_stop_reply = 0;
5985
5986 /* Assume that the target has acknowledged Ctrl-C unless we receive
5987 an 'F' or 'O' packet. */
5988 if (buf[0] != 'F' && buf[0] != 'O')
5989 rs->ctrlc_pending_p = 0;
5990
5991 switch (buf[0])
5992 {
5993 case 'E': /* Error of some sort. */
5994 /* We're out of sync with the target now. Did it continue or
5995 not? Not is more likely, so report a stop. */
5996 warning (_("Remote failure reply: %s"), buf);
5997 status->kind = TARGET_WAITKIND_STOPPED;
5998 status->value.sig = GDB_SIGNAL_0;
5999 break;
6000 case 'F': /* File-I/O request. */
6001 remote_fileio_request (buf, rs->ctrlc_pending_p);
6002 rs->ctrlc_pending_p = 0;
6003 break;
6004 case 'T': case 'S': case 'X': case 'W':
6005 {
6006 struct stop_reply *stop_reply
6007 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6008 rs->buf);
6009
6010 event_ptid = process_stop_reply (stop_reply, status);
6011 break;
6012 }
6013 case 'O': /* Console output. */
6014 remote_console_output (buf + 1);
6015
6016 /* The target didn't really stop; keep waiting. */
6017 rs->waiting_for_stop_reply = 1;
6018
6019 break;
6020 case '\0':
6021 if (rs->last_sent_signal != GDB_SIGNAL_0)
6022 {
6023 /* Zero length reply means that we tried 'S' or 'C' and the
6024 remote system doesn't support it. */
6025 target_terminal_ours_for_output ();
6026 printf_filtered
6027 ("Can't send signals to this remote system. %s not sent.\n",
6028 gdb_signal_to_name (rs->last_sent_signal));
6029 rs->last_sent_signal = GDB_SIGNAL_0;
6030 target_terminal_inferior ();
6031
6032 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6033 putpkt ((char *) buf);
6034
6035 /* We just told the target to resume, so a stop reply is in
6036 order. */
6037 rs->waiting_for_stop_reply = 1;
6038 break;
6039 }
6040 /* else fallthrough */
6041 default:
6042 warning (_("Invalid remote reply: %s"), buf);
6043 /* Keep waiting. */
6044 rs->waiting_for_stop_reply = 1;
6045 break;
6046 }
6047
6048 if (status->kind == TARGET_WAITKIND_IGNORE)
6049 {
6050 /* Nothing interesting happened. If we're doing a non-blocking
6051 poll, we're done. Otherwise, go back to waiting. */
6052 if (options & TARGET_WNOHANG)
6053 return minus_one_ptid;
6054 else
6055 goto again;
6056 }
6057 else if (status->kind != TARGET_WAITKIND_EXITED
6058 && status->kind != TARGET_WAITKIND_SIGNALLED)
6059 {
6060 if (!ptid_equal (event_ptid, null_ptid))
6061 record_currthread (rs, event_ptid);
6062 else
6063 event_ptid = inferior_ptid;
6064 }
6065 else
6066 /* A process exit. Invalidate our notion of current thread. */
6067 record_currthread (rs, minus_one_ptid);
6068
6069 return event_ptid;
6070 }
6071
6072 /* Wait until the remote machine stops, then return, storing status in
6073 STATUS just as `wait' would. */
6074
6075 static ptid_t
6076 remote_wait (struct target_ops *ops,
6077 ptid_t ptid, struct target_waitstatus *status, int options)
6078 {
6079 ptid_t event_ptid;
6080
6081 if (non_stop)
6082 event_ptid = remote_wait_ns (ptid, status, options);
6083 else
6084 event_ptid = remote_wait_as (ptid, status, options);
6085
6086 if (target_can_async_p ())
6087 {
6088 /* If there are are events left in the queue tell the event loop
6089 to return here. */
6090 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6091 mark_async_event_handler (remote_async_inferior_event_token);
6092 }
6093
6094 return event_ptid;
6095 }
6096
6097 /* Fetch a single register using a 'p' packet. */
6098
6099 static int
6100 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6101 {
6102 struct remote_state *rs = get_remote_state ();
6103 char *buf, *p;
6104 char regp[MAX_REGISTER_SIZE];
6105 int i;
6106
6107 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6108 return 0;
6109
6110 if (reg->pnum == -1)
6111 return 0;
6112
6113 p = rs->buf;
6114 *p++ = 'p';
6115 p += hexnumstr (p, reg->pnum);
6116 *p++ = '\0';
6117 putpkt (rs->buf);
6118 getpkt (&rs->buf, &rs->buf_size, 0);
6119
6120 buf = rs->buf;
6121
6122 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6123 {
6124 case PACKET_OK:
6125 break;
6126 case PACKET_UNKNOWN:
6127 return 0;
6128 case PACKET_ERROR:
6129 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6130 gdbarch_register_name (get_regcache_arch (regcache),
6131 reg->regnum),
6132 buf);
6133 }
6134
6135 /* If this register is unfetchable, tell the regcache. */
6136 if (buf[0] == 'x')
6137 {
6138 regcache_raw_supply (regcache, reg->regnum, NULL);
6139 return 1;
6140 }
6141
6142 /* Otherwise, parse and supply the value. */
6143 p = buf;
6144 i = 0;
6145 while (p[0] != 0)
6146 {
6147 if (p[1] == 0)
6148 error (_("fetch_register_using_p: early buf termination"));
6149
6150 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6151 p += 2;
6152 }
6153 regcache_raw_supply (regcache, reg->regnum, regp);
6154 return 1;
6155 }
6156
6157 /* Fetch the registers included in the target's 'g' packet. */
6158
6159 static int
6160 send_g_packet (void)
6161 {
6162 struct remote_state *rs = get_remote_state ();
6163 int buf_len;
6164
6165 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6166 remote_send (&rs->buf, &rs->buf_size);
6167
6168 /* We can get out of synch in various cases. If the first character
6169 in the buffer is not a hex character, assume that has happened
6170 and try to fetch another packet to read. */
6171 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6172 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6173 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6174 && rs->buf[0] != 'x') /* New: unavailable register value. */
6175 {
6176 if (remote_debug)
6177 fprintf_unfiltered (gdb_stdlog,
6178 "Bad register packet; fetching a new packet\n");
6179 getpkt (&rs->buf, &rs->buf_size, 0);
6180 }
6181
6182 buf_len = strlen (rs->buf);
6183
6184 /* Sanity check the received packet. */
6185 if (buf_len % 2 != 0)
6186 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6187
6188 return buf_len / 2;
6189 }
6190
6191 static void
6192 process_g_packet (struct regcache *regcache)
6193 {
6194 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6195 struct remote_state *rs = get_remote_state ();
6196 struct remote_arch_state *rsa = get_remote_arch_state ();
6197 int i, buf_len;
6198 char *p;
6199 char *regs;
6200
6201 buf_len = strlen (rs->buf);
6202
6203 /* Further sanity checks, with knowledge of the architecture. */
6204 if (buf_len > 2 * rsa->sizeof_g_packet)
6205 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6206
6207 /* Save the size of the packet sent to us by the target. It is used
6208 as a heuristic when determining the max size of packets that the
6209 target can safely receive. */
6210 if (rsa->actual_register_packet_size == 0)
6211 rsa->actual_register_packet_size = buf_len;
6212
6213 /* If this is smaller than we guessed the 'g' packet would be,
6214 update our records. A 'g' reply that doesn't include a register's
6215 value implies either that the register is not available, or that
6216 the 'p' packet must be used. */
6217 if (buf_len < 2 * rsa->sizeof_g_packet)
6218 {
6219 rsa->sizeof_g_packet = buf_len / 2;
6220
6221 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6222 {
6223 if (rsa->regs[i].pnum == -1)
6224 continue;
6225
6226 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6227 rsa->regs[i].in_g_packet = 0;
6228 else
6229 rsa->regs[i].in_g_packet = 1;
6230 }
6231 }
6232
6233 regs = alloca (rsa->sizeof_g_packet);
6234
6235 /* Unimplemented registers read as all bits zero. */
6236 memset (regs, 0, rsa->sizeof_g_packet);
6237
6238 /* Reply describes registers byte by byte, each byte encoded as two
6239 hex characters. Suck them all up, then supply them to the
6240 register cacheing/storage mechanism. */
6241
6242 p = rs->buf;
6243 for (i = 0; i < rsa->sizeof_g_packet; i++)
6244 {
6245 if (p[0] == 0 || p[1] == 0)
6246 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6247 internal_error (__FILE__, __LINE__,
6248 _("unexpected end of 'g' packet reply"));
6249
6250 if (p[0] == 'x' && p[1] == 'x')
6251 regs[i] = 0; /* 'x' */
6252 else
6253 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6254 p += 2;
6255 }
6256
6257 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6258 {
6259 struct packet_reg *r = &rsa->regs[i];
6260
6261 if (r->in_g_packet)
6262 {
6263 if (r->offset * 2 >= strlen (rs->buf))
6264 /* This shouldn't happen - we adjusted in_g_packet above. */
6265 internal_error (__FILE__, __LINE__,
6266 _("unexpected end of 'g' packet reply"));
6267 else if (rs->buf[r->offset * 2] == 'x')
6268 {
6269 gdb_assert (r->offset * 2 < strlen (rs->buf));
6270 /* The register isn't available, mark it as such (at
6271 the same time setting the value to zero). */
6272 regcache_raw_supply (regcache, r->regnum, NULL);
6273 }
6274 else
6275 regcache_raw_supply (regcache, r->regnum,
6276 regs + r->offset);
6277 }
6278 }
6279 }
6280
6281 static void
6282 fetch_registers_using_g (struct regcache *regcache)
6283 {
6284 send_g_packet ();
6285 process_g_packet (regcache);
6286 }
6287
6288 /* Make the remote selected traceframe match GDB's selected
6289 traceframe. */
6290
6291 static void
6292 set_remote_traceframe (void)
6293 {
6294 int newnum;
6295 struct remote_state *rs = get_remote_state ();
6296
6297 if (rs->remote_traceframe_number == get_traceframe_number ())
6298 return;
6299
6300 /* Avoid recursion, remote_trace_find calls us again. */
6301 rs->remote_traceframe_number = get_traceframe_number ();
6302
6303 newnum = target_trace_find (tfind_number,
6304 get_traceframe_number (), 0, 0, NULL);
6305
6306 /* Should not happen. If it does, all bets are off. */
6307 if (newnum != get_traceframe_number ())
6308 warning (_("could not set remote traceframe"));
6309 }
6310
6311 static void
6312 remote_fetch_registers (struct target_ops *ops,
6313 struct regcache *regcache, int regnum)
6314 {
6315 struct remote_arch_state *rsa = get_remote_arch_state ();
6316 int i;
6317
6318 set_remote_traceframe ();
6319 set_general_thread (inferior_ptid);
6320
6321 if (regnum >= 0)
6322 {
6323 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6324
6325 gdb_assert (reg != NULL);
6326
6327 /* If this register might be in the 'g' packet, try that first -
6328 we are likely to read more than one register. If this is the
6329 first 'g' packet, we might be overly optimistic about its
6330 contents, so fall back to 'p'. */
6331 if (reg->in_g_packet)
6332 {
6333 fetch_registers_using_g (regcache);
6334 if (reg->in_g_packet)
6335 return;
6336 }
6337
6338 if (fetch_register_using_p (regcache, reg))
6339 return;
6340
6341 /* This register is not available. */
6342 regcache_raw_supply (regcache, reg->regnum, NULL);
6343
6344 return;
6345 }
6346
6347 fetch_registers_using_g (regcache);
6348
6349 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6350 if (!rsa->regs[i].in_g_packet)
6351 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6352 {
6353 /* This register is not available. */
6354 regcache_raw_supply (regcache, i, NULL);
6355 }
6356 }
6357
6358 /* Prepare to store registers. Since we may send them all (using a
6359 'G' request), we have to read out the ones we don't want to change
6360 first. */
6361
6362 static void
6363 remote_prepare_to_store (struct regcache *regcache)
6364 {
6365 struct remote_arch_state *rsa = get_remote_arch_state ();
6366 int i;
6367 gdb_byte buf[MAX_REGISTER_SIZE];
6368
6369 /* Make sure the entire registers array is valid. */
6370 switch (remote_protocol_packets[PACKET_P].support)
6371 {
6372 case PACKET_DISABLE:
6373 case PACKET_SUPPORT_UNKNOWN:
6374 /* Make sure all the necessary registers are cached. */
6375 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6376 if (rsa->regs[i].in_g_packet)
6377 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6378 break;
6379 case PACKET_ENABLE:
6380 break;
6381 }
6382 }
6383
6384 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6385 packet was not recognized. */
6386
6387 static int
6388 store_register_using_P (const struct regcache *regcache,
6389 struct packet_reg *reg)
6390 {
6391 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6392 struct remote_state *rs = get_remote_state ();
6393 /* Try storing a single register. */
6394 char *buf = rs->buf;
6395 gdb_byte regp[MAX_REGISTER_SIZE];
6396 char *p;
6397
6398 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6399 return 0;
6400
6401 if (reg->pnum == -1)
6402 return 0;
6403
6404 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6405 p = buf + strlen (buf);
6406 regcache_raw_collect (regcache, reg->regnum, regp);
6407 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6408 putpkt (rs->buf);
6409 getpkt (&rs->buf, &rs->buf_size, 0);
6410
6411 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6412 {
6413 case PACKET_OK:
6414 return 1;
6415 case PACKET_ERROR:
6416 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6417 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6418 case PACKET_UNKNOWN:
6419 return 0;
6420 default:
6421 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6422 }
6423 }
6424
6425 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6426 contents of the register cache buffer. FIXME: ignores errors. */
6427
6428 static void
6429 store_registers_using_G (const struct regcache *regcache)
6430 {
6431 struct remote_state *rs = get_remote_state ();
6432 struct remote_arch_state *rsa = get_remote_arch_state ();
6433 gdb_byte *regs;
6434 char *p;
6435
6436 /* Extract all the registers in the regcache copying them into a
6437 local buffer. */
6438 {
6439 int i;
6440
6441 regs = alloca (rsa->sizeof_g_packet);
6442 memset (regs, 0, rsa->sizeof_g_packet);
6443 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6444 {
6445 struct packet_reg *r = &rsa->regs[i];
6446
6447 if (r->in_g_packet)
6448 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6449 }
6450 }
6451
6452 /* Command describes registers byte by byte,
6453 each byte encoded as two hex characters. */
6454 p = rs->buf;
6455 *p++ = 'G';
6456 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6457 updated. */
6458 bin2hex (regs, p, rsa->sizeof_g_packet);
6459 putpkt (rs->buf);
6460 getpkt (&rs->buf, &rs->buf_size, 0);
6461 if (packet_check_result (rs->buf) == PACKET_ERROR)
6462 error (_("Could not write registers; remote failure reply '%s'"),
6463 rs->buf);
6464 }
6465
6466 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6467 of the register cache buffer. FIXME: ignores errors. */
6468
6469 static void
6470 remote_store_registers (struct target_ops *ops,
6471 struct regcache *regcache, int regnum)
6472 {
6473 struct remote_arch_state *rsa = get_remote_arch_state ();
6474 int i;
6475
6476 set_remote_traceframe ();
6477 set_general_thread (inferior_ptid);
6478
6479 if (regnum >= 0)
6480 {
6481 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6482
6483 gdb_assert (reg != NULL);
6484
6485 /* Always prefer to store registers using the 'P' packet if
6486 possible; we often change only a small number of registers.
6487 Sometimes we change a larger number; we'd need help from a
6488 higher layer to know to use 'G'. */
6489 if (store_register_using_P (regcache, reg))
6490 return;
6491
6492 /* For now, don't complain if we have no way to write the
6493 register. GDB loses track of unavailable registers too
6494 easily. Some day, this may be an error. We don't have
6495 any way to read the register, either... */
6496 if (!reg->in_g_packet)
6497 return;
6498
6499 store_registers_using_G (regcache);
6500 return;
6501 }
6502
6503 store_registers_using_G (regcache);
6504
6505 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6506 if (!rsa->regs[i].in_g_packet)
6507 if (!store_register_using_P (regcache, &rsa->regs[i]))
6508 /* See above for why we do not issue an error here. */
6509 continue;
6510 }
6511 \f
6512
6513 /* Return the number of hex digits in num. */
6514
6515 static int
6516 hexnumlen (ULONGEST num)
6517 {
6518 int i;
6519
6520 for (i = 0; num != 0; i++)
6521 num >>= 4;
6522
6523 return max (i, 1);
6524 }
6525
6526 /* Set BUF to the minimum number of hex digits representing NUM. */
6527
6528 static int
6529 hexnumstr (char *buf, ULONGEST num)
6530 {
6531 int len = hexnumlen (num);
6532
6533 return hexnumnstr (buf, num, len);
6534 }
6535
6536
6537 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6538
6539 static int
6540 hexnumnstr (char *buf, ULONGEST num, int width)
6541 {
6542 int i;
6543
6544 buf[width] = '\0';
6545
6546 for (i = width - 1; i >= 0; i--)
6547 {
6548 buf[i] = "0123456789abcdef"[(num & 0xf)];
6549 num >>= 4;
6550 }
6551
6552 return width;
6553 }
6554
6555 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6556
6557 static CORE_ADDR
6558 remote_address_masked (CORE_ADDR addr)
6559 {
6560 unsigned int address_size = remote_address_size;
6561
6562 /* If "remoteaddresssize" was not set, default to target address size. */
6563 if (!address_size)
6564 address_size = gdbarch_addr_bit (target_gdbarch ());
6565
6566 if (address_size > 0
6567 && address_size < (sizeof (ULONGEST) * 8))
6568 {
6569 /* Only create a mask when that mask can safely be constructed
6570 in a ULONGEST variable. */
6571 ULONGEST mask = 1;
6572
6573 mask = (mask << address_size) - 1;
6574 addr &= mask;
6575 }
6576 return addr;
6577 }
6578
6579 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6580 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6581 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6582 (which may be more than *OUT_LEN due to escape characters). The
6583 total number of bytes in the output buffer will be at most
6584 OUT_MAXLEN. */
6585
6586 static int
6587 remote_escape_output (const gdb_byte *buffer, int len,
6588 gdb_byte *out_buf, int *out_len,
6589 int out_maxlen)
6590 {
6591 int input_index, output_index;
6592
6593 output_index = 0;
6594 for (input_index = 0; input_index < len; input_index++)
6595 {
6596 gdb_byte b = buffer[input_index];
6597
6598 if (b == '$' || b == '#' || b == '}')
6599 {
6600 /* These must be escaped. */
6601 if (output_index + 2 > out_maxlen)
6602 break;
6603 out_buf[output_index++] = '}';
6604 out_buf[output_index++] = b ^ 0x20;
6605 }
6606 else
6607 {
6608 if (output_index + 1 > out_maxlen)
6609 break;
6610 out_buf[output_index++] = b;
6611 }
6612 }
6613
6614 *out_len = input_index;
6615 return output_index;
6616 }
6617
6618 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6619 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6620 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6621
6622 This function reverses remote_escape_output. It allows more
6623 escaped characters than that function does, in particular because
6624 '*' must be escaped to avoid the run-length encoding processing
6625 in reading packets. */
6626
6627 static int
6628 remote_unescape_input (const gdb_byte *buffer, int len,
6629 gdb_byte *out_buf, int out_maxlen)
6630 {
6631 int input_index, output_index;
6632 int escaped;
6633
6634 output_index = 0;
6635 escaped = 0;
6636 for (input_index = 0; input_index < len; input_index++)
6637 {
6638 gdb_byte b = buffer[input_index];
6639
6640 if (output_index + 1 > out_maxlen)
6641 {
6642 warning (_("Received too much data from remote target;"
6643 " ignoring overflow."));
6644 return output_index;
6645 }
6646
6647 if (escaped)
6648 {
6649 out_buf[output_index++] = b ^ 0x20;
6650 escaped = 0;
6651 }
6652 else if (b == '}')
6653 escaped = 1;
6654 else
6655 out_buf[output_index++] = b;
6656 }
6657
6658 if (escaped)
6659 error (_("Unmatched escape character in target response."));
6660
6661 return output_index;
6662 }
6663
6664 /* Determine whether the remote target supports binary downloading.
6665 This is accomplished by sending a no-op memory write of zero length
6666 to the target at the specified address. It does not suffice to send
6667 the whole packet, since many stubs strip the eighth bit and
6668 subsequently compute a wrong checksum, which causes real havoc with
6669 remote_write_bytes.
6670
6671 NOTE: This can still lose if the serial line is not eight-bit
6672 clean. In cases like this, the user should clear "remote
6673 X-packet". */
6674
6675 static void
6676 check_binary_download (CORE_ADDR addr)
6677 {
6678 struct remote_state *rs = get_remote_state ();
6679
6680 switch (remote_protocol_packets[PACKET_X].support)
6681 {
6682 case PACKET_DISABLE:
6683 break;
6684 case PACKET_ENABLE:
6685 break;
6686 case PACKET_SUPPORT_UNKNOWN:
6687 {
6688 char *p;
6689
6690 p = rs->buf;
6691 *p++ = 'X';
6692 p += hexnumstr (p, (ULONGEST) addr);
6693 *p++ = ',';
6694 p += hexnumstr (p, (ULONGEST) 0);
6695 *p++ = ':';
6696 *p = '\0';
6697
6698 putpkt_binary (rs->buf, (int) (p - rs->buf));
6699 getpkt (&rs->buf, &rs->buf_size, 0);
6700
6701 if (rs->buf[0] == '\0')
6702 {
6703 if (remote_debug)
6704 fprintf_unfiltered (gdb_stdlog,
6705 "binary downloading NOT "
6706 "supported by target\n");
6707 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6708 }
6709 else
6710 {
6711 if (remote_debug)
6712 fprintf_unfiltered (gdb_stdlog,
6713 "binary downloading supported by target\n");
6714 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6715 }
6716 break;
6717 }
6718 }
6719 }
6720
6721 /* Write memory data directly to the remote machine.
6722 This does not inform the data cache; the data cache uses this.
6723 HEADER is the starting part of the packet.
6724 MEMADDR is the address in the remote memory space.
6725 MYADDR is the address of the buffer in our space.
6726 LEN is the number of bytes.
6727 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6728 should send data as binary ('X'), or hex-encoded ('M').
6729
6730 The function creates packet of the form
6731 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6732
6733 where encoding of <DATA> is termined by PACKET_FORMAT.
6734
6735 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6736 are omitted.
6737
6738 Returns the number of bytes transferred, or a negative value (an
6739 'enum target_xfer_error' value) for error. Only transfer a single
6740 packet. */
6741
6742 static LONGEST
6743 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6744 const gdb_byte *myaddr, ssize_t len,
6745 char packet_format, int use_length)
6746 {
6747 struct remote_state *rs = get_remote_state ();
6748 char *p;
6749 char *plen = NULL;
6750 int plenlen = 0;
6751 int todo;
6752 int nr_bytes;
6753 int payload_size;
6754 int payload_length;
6755 int header_length;
6756
6757 if (packet_format != 'X' && packet_format != 'M')
6758 internal_error (__FILE__, __LINE__,
6759 _("remote_write_bytes_aux: bad packet format"));
6760
6761 if (len <= 0)
6762 return 0;
6763
6764 payload_size = get_memory_write_packet_size ();
6765
6766 /* The packet buffer will be large enough for the payload;
6767 get_memory_packet_size ensures this. */
6768 rs->buf[0] = '\0';
6769
6770 /* Compute the size of the actual payload by subtracting out the
6771 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6772
6773 payload_size -= strlen ("$,:#NN");
6774 if (!use_length)
6775 /* The comma won't be used. */
6776 payload_size += 1;
6777 header_length = strlen (header);
6778 payload_size -= header_length;
6779 payload_size -= hexnumlen (memaddr);
6780
6781 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6782
6783 strcat (rs->buf, header);
6784 p = rs->buf + strlen (header);
6785
6786 /* Compute a best guess of the number of bytes actually transfered. */
6787 if (packet_format == 'X')
6788 {
6789 /* Best guess at number of bytes that will fit. */
6790 todo = min (len, payload_size);
6791 if (use_length)
6792 payload_size -= hexnumlen (todo);
6793 todo = min (todo, payload_size);
6794 }
6795 else
6796 {
6797 /* Num bytes that will fit. */
6798 todo = min (len, payload_size / 2);
6799 if (use_length)
6800 payload_size -= hexnumlen (todo);
6801 todo = min (todo, payload_size / 2);
6802 }
6803
6804 if (todo <= 0)
6805 internal_error (__FILE__, __LINE__,
6806 _("minimum packet size too small to write data"));
6807
6808 /* If we already need another packet, then try to align the end
6809 of this packet to a useful boundary. */
6810 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6811 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6812
6813 /* Append "<memaddr>". */
6814 memaddr = remote_address_masked (memaddr);
6815 p += hexnumstr (p, (ULONGEST) memaddr);
6816
6817 if (use_length)
6818 {
6819 /* Append ",". */
6820 *p++ = ',';
6821
6822 /* Append <len>. Retain the location/size of <len>. It may need to
6823 be adjusted once the packet body has been created. */
6824 plen = p;
6825 plenlen = hexnumstr (p, (ULONGEST) todo);
6826 p += plenlen;
6827 }
6828
6829 /* Append ":". */
6830 *p++ = ':';
6831 *p = '\0';
6832
6833 /* Append the packet body. */
6834 if (packet_format == 'X')
6835 {
6836 /* Binary mode. Send target system values byte by byte, in
6837 increasing byte addresses. Only escape certain critical
6838 characters. */
6839 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6840 &nr_bytes, payload_size);
6841
6842 /* If not all TODO bytes fit, then we'll need another packet. Make
6843 a second try to keep the end of the packet aligned. Don't do
6844 this if the packet is tiny. */
6845 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6846 {
6847 int new_nr_bytes;
6848
6849 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6850 - memaddr);
6851 if (new_nr_bytes != nr_bytes)
6852 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6853 (gdb_byte *) p, &nr_bytes,
6854 payload_size);
6855 }
6856
6857 p += payload_length;
6858 if (use_length && nr_bytes < todo)
6859 {
6860 /* Escape chars have filled up the buffer prematurely,
6861 and we have actually sent fewer bytes than planned.
6862 Fix-up the length field of the packet. Use the same
6863 number of characters as before. */
6864 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6865 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6866 }
6867 }
6868 else
6869 {
6870 /* Normal mode: Send target system values byte by byte, in
6871 increasing byte addresses. Each byte is encoded as a two hex
6872 value. */
6873 nr_bytes = bin2hex (myaddr, p, todo);
6874 p += 2 * nr_bytes;
6875 }
6876
6877 putpkt_binary (rs->buf, (int) (p - rs->buf));
6878 getpkt (&rs->buf, &rs->buf_size, 0);
6879
6880 if (rs->buf[0] == 'E')
6881 return TARGET_XFER_E_IO;
6882
6883 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6884 fewer bytes than we'd planned. */
6885 return nr_bytes;
6886 }
6887
6888 /* Write memory data directly to the remote machine.
6889 This does not inform the data cache; the data cache uses this.
6890 MEMADDR is the address in the remote memory space.
6891 MYADDR is the address of the buffer in our space.
6892 LEN is the number of bytes.
6893
6894 Returns number of bytes transferred, or a negative value (an 'enum
6895 target_xfer_error' value) for error. Only transfer a single
6896 packet. */
6897
6898 static LONGEST
6899 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6900 {
6901 char *packet_format = 0;
6902
6903 /* Check whether the target supports binary download. */
6904 check_binary_download (memaddr);
6905
6906 switch (remote_protocol_packets[PACKET_X].support)
6907 {
6908 case PACKET_ENABLE:
6909 packet_format = "X";
6910 break;
6911 case PACKET_DISABLE:
6912 packet_format = "M";
6913 break;
6914 case PACKET_SUPPORT_UNKNOWN:
6915 internal_error (__FILE__, __LINE__,
6916 _("remote_write_bytes: bad internal state"));
6917 default:
6918 internal_error (__FILE__, __LINE__, _("bad switch"));
6919 }
6920
6921 return remote_write_bytes_aux (packet_format,
6922 memaddr, myaddr, len, packet_format[0], 1);
6923 }
6924
6925 /* Read memory data directly from the remote machine.
6926 This does not use the data cache; the data cache uses this.
6927 MEMADDR is the address in the remote memory space.
6928 MYADDR is the address of the buffer in our space.
6929 LEN is the number of bytes.
6930
6931 Returns number of bytes transferred, or a negative value (an 'enum
6932 target_xfer_error' value) for error. */
6933
6934 static LONGEST
6935 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6936 {
6937 struct remote_state *rs = get_remote_state ();
6938 int max_buf_size; /* Max size of packet output buffer. */
6939 char *p;
6940 int todo;
6941 int i;
6942
6943 if (len <= 0)
6944 return 0;
6945
6946 max_buf_size = get_memory_read_packet_size ();
6947 /* The packet buffer will be large enough for the payload;
6948 get_memory_packet_size ensures this. */
6949
6950 /* Number if bytes that will fit. */
6951 todo = min (len, max_buf_size / 2);
6952
6953 /* Construct "m"<memaddr>","<len>". */
6954 memaddr = remote_address_masked (memaddr);
6955 p = rs->buf;
6956 *p++ = 'm';
6957 p += hexnumstr (p, (ULONGEST) memaddr);
6958 *p++ = ',';
6959 p += hexnumstr (p, (ULONGEST) todo);
6960 *p = '\0';
6961 putpkt (rs->buf);
6962 getpkt (&rs->buf, &rs->buf_size, 0);
6963 if (rs->buf[0] == 'E'
6964 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6965 && rs->buf[3] == '\0')
6966 return TARGET_XFER_E_IO;
6967 /* Reply describes memory byte by byte, each byte encoded as two hex
6968 characters. */
6969 p = rs->buf;
6970 i = hex2bin (p, myaddr, todo);
6971 /* Return what we have. Let higher layers handle partial reads. */
6972 return i;
6973 }
6974
6975 \f
6976
6977 /* Sends a packet with content determined by the printf format string
6978 FORMAT and the remaining arguments, then gets the reply. Returns
6979 whether the packet was a success, a failure, or unknown. */
6980
6981 static enum packet_result
6982 remote_send_printf (const char *format, ...)
6983 {
6984 struct remote_state *rs = get_remote_state ();
6985 int max_size = get_remote_packet_size ();
6986 va_list ap;
6987
6988 va_start (ap, format);
6989
6990 rs->buf[0] = '\0';
6991 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6992 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6993
6994 if (putpkt (rs->buf) < 0)
6995 error (_("Communication problem with target."));
6996
6997 rs->buf[0] = '\0';
6998 getpkt (&rs->buf, &rs->buf_size, 0);
6999
7000 return packet_check_result (rs->buf);
7001 }
7002
7003 static void
7004 restore_remote_timeout (void *p)
7005 {
7006 int value = *(int *)p;
7007
7008 remote_timeout = value;
7009 }
7010
7011 /* Flash writing can take quite some time. We'll set
7012 effectively infinite timeout for flash operations.
7013 In future, we'll need to decide on a better approach. */
7014 static const int remote_flash_timeout = 1000;
7015
7016 static void
7017 remote_flash_erase (struct target_ops *ops,
7018 ULONGEST address, LONGEST length)
7019 {
7020 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7021 int saved_remote_timeout = remote_timeout;
7022 enum packet_result ret;
7023 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7024 &saved_remote_timeout);
7025
7026 remote_timeout = remote_flash_timeout;
7027
7028 ret = remote_send_printf ("vFlashErase:%s,%s",
7029 phex (address, addr_size),
7030 phex (length, 4));
7031 switch (ret)
7032 {
7033 case PACKET_UNKNOWN:
7034 error (_("Remote target does not support flash erase"));
7035 case PACKET_ERROR:
7036 error (_("Error erasing flash with vFlashErase packet"));
7037 default:
7038 break;
7039 }
7040
7041 do_cleanups (back_to);
7042 }
7043
7044 static LONGEST
7045 remote_flash_write (struct target_ops *ops,
7046 ULONGEST address, LONGEST length,
7047 const gdb_byte *data)
7048 {
7049 int saved_remote_timeout = remote_timeout;
7050 LONGEST ret;
7051 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7052 &saved_remote_timeout);
7053
7054 remote_timeout = remote_flash_timeout;
7055 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7056 do_cleanups (back_to);
7057
7058 return ret;
7059 }
7060
7061 static void
7062 remote_flash_done (struct target_ops *ops)
7063 {
7064 int saved_remote_timeout = remote_timeout;
7065 int ret;
7066 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7067 &saved_remote_timeout);
7068
7069 remote_timeout = remote_flash_timeout;
7070 ret = remote_send_printf ("vFlashDone");
7071 do_cleanups (back_to);
7072
7073 switch (ret)
7074 {
7075 case PACKET_UNKNOWN:
7076 error (_("Remote target does not support vFlashDone"));
7077 case PACKET_ERROR:
7078 error (_("Error finishing flash operation"));
7079 default:
7080 break;
7081 }
7082 }
7083
7084 static void
7085 remote_files_info (struct target_ops *ignore)
7086 {
7087 puts_filtered ("Debugging a target over a serial line.\n");
7088 }
7089 \f
7090 /* Stuff for dealing with the packets which are part of this protocol.
7091 See comment at top of file for details. */
7092
7093 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7094 error to higher layers. Called when a serial error is detected.
7095 The exception message is STRING, followed by a colon and a blank,
7096 the system error message for errno at function entry and final dot
7097 for output compatibility with throw_perror_with_name. */
7098
7099 static void
7100 unpush_and_perror (const char *string)
7101 {
7102 int saved_errno = errno;
7103
7104 remote_unpush_target ();
7105 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7106 safe_strerror (saved_errno));
7107 }
7108
7109 /* Read a single character from the remote end. */
7110
7111 static int
7112 readchar (int timeout)
7113 {
7114 int ch;
7115 struct remote_state *rs = get_remote_state ();
7116
7117 ch = serial_readchar (rs->remote_desc, timeout);
7118
7119 if (ch >= 0)
7120 return ch;
7121
7122 switch ((enum serial_rc) ch)
7123 {
7124 case SERIAL_EOF:
7125 remote_unpush_target ();
7126 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7127 /* no return */
7128 case SERIAL_ERROR:
7129 unpush_and_perror (_("Remote communication error. "
7130 "Target disconnected."));
7131 /* no return */
7132 case SERIAL_TIMEOUT:
7133 break;
7134 }
7135 return ch;
7136 }
7137
7138 /* Wrapper for serial_write that closes the target and throws if
7139 writing fails. */
7140
7141 static void
7142 remote_serial_write (const char *str, int len)
7143 {
7144 struct remote_state *rs = get_remote_state ();
7145
7146 if (serial_write (rs->remote_desc, str, len))
7147 {
7148 unpush_and_perror (_("Remote communication error. "
7149 "Target disconnected."));
7150 }
7151 }
7152
7153 /* Send the command in *BUF to the remote machine, and read the reply
7154 into *BUF. Report an error if we get an error reply. Resize
7155 *BUF using xrealloc if necessary to hold the result, and update
7156 *SIZEOF_BUF. */
7157
7158 static void
7159 remote_send (char **buf,
7160 long *sizeof_buf)
7161 {
7162 putpkt (*buf);
7163 getpkt (buf, sizeof_buf, 0);
7164
7165 if ((*buf)[0] == 'E')
7166 error (_("Remote failure reply: %s"), *buf);
7167 }
7168
7169 /* Return a pointer to an xmalloc'ed string representing an escaped
7170 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7171 etc. The caller is responsible for releasing the returned
7172 memory. */
7173
7174 static char *
7175 escape_buffer (const char *buf, int n)
7176 {
7177 struct cleanup *old_chain;
7178 struct ui_file *stb;
7179 char *str;
7180
7181 stb = mem_fileopen ();
7182 old_chain = make_cleanup_ui_file_delete (stb);
7183
7184 fputstrn_unfiltered (buf, n, 0, stb);
7185 str = ui_file_xstrdup (stb, NULL);
7186 do_cleanups (old_chain);
7187 return str;
7188 }
7189
7190 /* Display a null-terminated packet on stdout, for debugging, using C
7191 string notation. */
7192
7193 static void
7194 print_packet (char *buf)
7195 {
7196 puts_filtered ("\"");
7197 fputstr_filtered (buf, '"', gdb_stdout);
7198 puts_filtered ("\"");
7199 }
7200
7201 int
7202 putpkt (char *buf)
7203 {
7204 return putpkt_binary (buf, strlen (buf));
7205 }
7206
7207 /* Send a packet to the remote machine, with error checking. The data
7208 of the packet is in BUF. The string in BUF can be at most
7209 get_remote_packet_size () - 5 to account for the $, # and checksum,
7210 and for a possible /0 if we are debugging (remote_debug) and want
7211 to print the sent packet as a string. */
7212
7213 static int
7214 putpkt_binary (char *buf, int cnt)
7215 {
7216 struct remote_state *rs = get_remote_state ();
7217 int i;
7218 unsigned char csum = 0;
7219 char *buf2 = alloca (cnt + 6);
7220
7221 int ch;
7222 int tcount = 0;
7223 char *p;
7224 char *message;
7225
7226 /* Catch cases like trying to read memory or listing threads while
7227 we're waiting for a stop reply. The remote server wouldn't be
7228 ready to handle this request, so we'd hang and timeout. We don't
7229 have to worry about this in synchronous mode, because in that
7230 case it's not possible to issue a command while the target is
7231 running. This is not a problem in non-stop mode, because in that
7232 case, the stub is always ready to process serial input. */
7233 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7234 error (_("Cannot execute this command while the target is running."));
7235
7236 /* We're sending out a new packet. Make sure we don't look at a
7237 stale cached response. */
7238 rs->cached_wait_status = 0;
7239
7240 /* Copy the packet into buffer BUF2, encapsulating it
7241 and giving it a checksum. */
7242
7243 p = buf2;
7244 *p++ = '$';
7245
7246 for (i = 0; i < cnt; i++)
7247 {
7248 csum += buf[i];
7249 *p++ = buf[i];
7250 }
7251 *p++ = '#';
7252 *p++ = tohex ((csum >> 4) & 0xf);
7253 *p++ = tohex (csum & 0xf);
7254
7255 /* Send it over and over until we get a positive ack. */
7256
7257 while (1)
7258 {
7259 int started_error_output = 0;
7260
7261 if (remote_debug)
7262 {
7263 struct cleanup *old_chain;
7264 char *str;
7265
7266 *p = '\0';
7267 str = escape_buffer (buf2, p - buf2);
7268 old_chain = make_cleanup (xfree, str);
7269 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7270 gdb_flush (gdb_stdlog);
7271 do_cleanups (old_chain);
7272 }
7273 remote_serial_write (buf2, p - buf2);
7274
7275 /* If this is a no acks version of the remote protocol, send the
7276 packet and move on. */
7277 if (rs->noack_mode)
7278 break;
7279
7280 /* Read until either a timeout occurs (-2) or '+' is read.
7281 Handle any notification that arrives in the mean time. */
7282 while (1)
7283 {
7284 ch = readchar (remote_timeout);
7285
7286 if (remote_debug)
7287 {
7288 switch (ch)
7289 {
7290 case '+':
7291 case '-':
7292 case SERIAL_TIMEOUT:
7293 case '$':
7294 case '%':
7295 if (started_error_output)
7296 {
7297 putchar_unfiltered ('\n');
7298 started_error_output = 0;
7299 }
7300 }
7301 }
7302
7303 switch (ch)
7304 {
7305 case '+':
7306 if (remote_debug)
7307 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7308 return 1;
7309 case '-':
7310 if (remote_debug)
7311 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7312 /* FALLTHROUGH */
7313 case SERIAL_TIMEOUT:
7314 tcount++;
7315 if (tcount > 3)
7316 return 0;
7317 break; /* Retransmit buffer. */
7318 case '$':
7319 {
7320 if (remote_debug)
7321 fprintf_unfiltered (gdb_stdlog,
7322 "Packet instead of Ack, ignoring it\n");
7323 /* It's probably an old response sent because an ACK
7324 was lost. Gobble up the packet and ack it so it
7325 doesn't get retransmitted when we resend this
7326 packet. */
7327 skip_frame ();
7328 remote_serial_write ("+", 1);
7329 continue; /* Now, go look for +. */
7330 }
7331
7332 case '%':
7333 {
7334 int val;
7335
7336 /* If we got a notification, handle it, and go back to looking
7337 for an ack. */
7338 /* We've found the start of a notification. Now
7339 collect the data. */
7340 val = read_frame (&rs->buf, &rs->buf_size);
7341 if (val >= 0)
7342 {
7343 if (remote_debug)
7344 {
7345 struct cleanup *old_chain;
7346 char *str;
7347
7348 str = escape_buffer (rs->buf, val);
7349 old_chain = make_cleanup (xfree, str);
7350 fprintf_unfiltered (gdb_stdlog,
7351 " Notification received: %s\n",
7352 str);
7353 do_cleanups (old_chain);
7354 }
7355 handle_notification (rs->buf);
7356 /* We're in sync now, rewait for the ack. */
7357 tcount = 0;
7358 }
7359 else
7360 {
7361 if (remote_debug)
7362 {
7363 if (!started_error_output)
7364 {
7365 started_error_output = 1;
7366 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7367 }
7368 fputc_unfiltered (ch & 0177, gdb_stdlog);
7369 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7370 }
7371 }
7372 continue;
7373 }
7374 /* fall-through */
7375 default:
7376 if (remote_debug)
7377 {
7378 if (!started_error_output)
7379 {
7380 started_error_output = 1;
7381 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7382 }
7383 fputc_unfiltered (ch & 0177, gdb_stdlog);
7384 }
7385 continue;
7386 }
7387 break; /* Here to retransmit. */
7388 }
7389
7390 #if 0
7391 /* This is wrong. If doing a long backtrace, the user should be
7392 able to get out next time we call QUIT, without anything as
7393 violent as interrupt_query. If we want to provide a way out of
7394 here without getting to the next QUIT, it should be based on
7395 hitting ^C twice as in remote_wait. */
7396 if (quit_flag)
7397 {
7398 quit_flag = 0;
7399 interrupt_query ();
7400 }
7401 #endif
7402 }
7403 return 0;
7404 }
7405
7406 /* Come here after finding the start of a frame when we expected an
7407 ack. Do our best to discard the rest of this packet. */
7408
7409 static void
7410 skip_frame (void)
7411 {
7412 int c;
7413
7414 while (1)
7415 {
7416 c = readchar (remote_timeout);
7417 switch (c)
7418 {
7419 case SERIAL_TIMEOUT:
7420 /* Nothing we can do. */
7421 return;
7422 case '#':
7423 /* Discard the two bytes of checksum and stop. */
7424 c = readchar (remote_timeout);
7425 if (c >= 0)
7426 c = readchar (remote_timeout);
7427
7428 return;
7429 case '*': /* Run length encoding. */
7430 /* Discard the repeat count. */
7431 c = readchar (remote_timeout);
7432 if (c < 0)
7433 return;
7434 break;
7435 default:
7436 /* A regular character. */
7437 break;
7438 }
7439 }
7440 }
7441
7442 /* Come here after finding the start of the frame. Collect the rest
7443 into *BUF, verifying the checksum, length, and handling run-length
7444 compression. NUL terminate the buffer. If there is not enough room,
7445 expand *BUF using xrealloc.
7446
7447 Returns -1 on error, number of characters in buffer (ignoring the
7448 trailing NULL) on success. (could be extended to return one of the
7449 SERIAL status indications). */
7450
7451 static long
7452 read_frame (char **buf_p,
7453 long *sizeof_buf)
7454 {
7455 unsigned char csum;
7456 long bc;
7457 int c;
7458 char *buf = *buf_p;
7459 struct remote_state *rs = get_remote_state ();
7460
7461 csum = 0;
7462 bc = 0;
7463
7464 while (1)
7465 {
7466 c = readchar (remote_timeout);
7467 switch (c)
7468 {
7469 case SERIAL_TIMEOUT:
7470 if (remote_debug)
7471 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7472 return -1;
7473 case '$':
7474 if (remote_debug)
7475 fputs_filtered ("Saw new packet start in middle of old one\n",
7476 gdb_stdlog);
7477 return -1; /* Start a new packet, count retries. */
7478 case '#':
7479 {
7480 unsigned char pktcsum;
7481 int check_0 = 0;
7482 int check_1 = 0;
7483
7484 buf[bc] = '\0';
7485
7486 check_0 = readchar (remote_timeout);
7487 if (check_0 >= 0)
7488 check_1 = readchar (remote_timeout);
7489
7490 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7491 {
7492 if (remote_debug)
7493 fputs_filtered ("Timeout in checksum, retrying\n",
7494 gdb_stdlog);
7495 return -1;
7496 }
7497 else if (check_0 < 0 || check_1 < 0)
7498 {
7499 if (remote_debug)
7500 fputs_filtered ("Communication error in checksum\n",
7501 gdb_stdlog);
7502 return -1;
7503 }
7504
7505 /* Don't recompute the checksum; with no ack packets we
7506 don't have any way to indicate a packet retransmission
7507 is necessary. */
7508 if (rs->noack_mode)
7509 return bc;
7510
7511 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7512 if (csum == pktcsum)
7513 return bc;
7514
7515 if (remote_debug)
7516 {
7517 struct cleanup *old_chain;
7518 char *str;
7519
7520 str = escape_buffer (buf, bc);
7521 old_chain = make_cleanup (xfree, str);
7522 fprintf_unfiltered (gdb_stdlog,
7523 "Bad checksum, sentsum=0x%x, "
7524 "csum=0x%x, buf=%s\n",
7525 pktcsum, csum, str);
7526 do_cleanups (old_chain);
7527 }
7528 /* Number of characters in buffer ignoring trailing
7529 NULL. */
7530 return -1;
7531 }
7532 case '*': /* Run length encoding. */
7533 {
7534 int repeat;
7535
7536 csum += c;
7537 c = readchar (remote_timeout);
7538 csum += c;
7539 repeat = c - ' ' + 3; /* Compute repeat count. */
7540
7541 /* The character before ``*'' is repeated. */
7542
7543 if (repeat > 0 && repeat <= 255 && bc > 0)
7544 {
7545 if (bc + repeat - 1 >= *sizeof_buf - 1)
7546 {
7547 /* Make some more room in the buffer. */
7548 *sizeof_buf += repeat;
7549 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7550 buf = *buf_p;
7551 }
7552
7553 memset (&buf[bc], buf[bc - 1], repeat);
7554 bc += repeat;
7555 continue;
7556 }
7557
7558 buf[bc] = '\0';
7559 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7560 return -1;
7561 }
7562 default:
7563 if (bc >= *sizeof_buf - 1)
7564 {
7565 /* Make some more room in the buffer. */
7566 *sizeof_buf *= 2;
7567 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7568 buf = *buf_p;
7569 }
7570
7571 buf[bc++] = c;
7572 csum += c;
7573 continue;
7574 }
7575 }
7576 }
7577
7578 /* Read a packet from the remote machine, with error checking, and
7579 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7580 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7581 rather than timing out; this is used (in synchronous mode) to wait
7582 for a target that is is executing user code to stop. */
7583 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7584 don't have to change all the calls to getpkt to deal with the
7585 return value, because at the moment I don't know what the right
7586 thing to do it for those. */
7587 void
7588 getpkt (char **buf,
7589 long *sizeof_buf,
7590 int forever)
7591 {
7592 int timed_out;
7593
7594 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7595 }
7596
7597
7598 /* Read a packet from the remote machine, with error checking, and
7599 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7600 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7601 rather than timing out; this is used (in synchronous mode) to wait
7602 for a target that is is executing user code to stop. If FOREVER ==
7603 0, this function is allowed to time out gracefully and return an
7604 indication of this to the caller. Otherwise return the number of
7605 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7606 enough reason to return to the caller. *IS_NOTIF is an output
7607 boolean that indicates whether *BUF holds a notification or not
7608 (a regular packet). */
7609
7610 static int
7611 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7612 int expecting_notif, int *is_notif)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615 int c;
7616 int tries;
7617 int timeout;
7618 int val = -1;
7619
7620 /* We're reading a new response. Make sure we don't look at a
7621 previously cached response. */
7622 rs->cached_wait_status = 0;
7623
7624 strcpy (*buf, "timeout");
7625
7626 if (forever)
7627 timeout = watchdog > 0 ? watchdog : -1;
7628 else if (expecting_notif)
7629 timeout = 0; /* There should already be a char in the buffer. If
7630 not, bail out. */
7631 else
7632 timeout = remote_timeout;
7633
7634 #define MAX_TRIES 3
7635
7636 /* Process any number of notifications, and then return when
7637 we get a packet. */
7638 for (;;)
7639 {
7640 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7641 times. */
7642 for (tries = 1; tries <= MAX_TRIES; tries++)
7643 {
7644 /* This can loop forever if the remote side sends us
7645 characters continuously, but if it pauses, we'll get
7646 SERIAL_TIMEOUT from readchar because of timeout. Then
7647 we'll count that as a retry.
7648
7649 Note that even when forever is set, we will only wait
7650 forever prior to the start of a packet. After that, we
7651 expect characters to arrive at a brisk pace. They should
7652 show up within remote_timeout intervals. */
7653 do
7654 c = readchar (timeout);
7655 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7656
7657 if (c == SERIAL_TIMEOUT)
7658 {
7659 if (expecting_notif)
7660 return -1; /* Don't complain, it's normal to not get
7661 anything in this case. */
7662
7663 if (forever) /* Watchdog went off? Kill the target. */
7664 {
7665 QUIT;
7666 remote_unpush_target ();
7667 throw_error (TARGET_CLOSE_ERROR,
7668 _("Watchdog timeout has expired. "
7669 "Target detached."));
7670 }
7671 if (remote_debug)
7672 fputs_filtered ("Timed out.\n", gdb_stdlog);
7673 }
7674 else
7675 {
7676 /* We've found the start of a packet or notification.
7677 Now collect the data. */
7678 val = read_frame (buf, sizeof_buf);
7679 if (val >= 0)
7680 break;
7681 }
7682
7683 remote_serial_write ("-", 1);
7684 }
7685
7686 if (tries > MAX_TRIES)
7687 {
7688 /* We have tried hard enough, and just can't receive the
7689 packet/notification. Give up. */
7690 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7691
7692 /* Skip the ack char if we're in no-ack mode. */
7693 if (!rs->noack_mode)
7694 remote_serial_write ("+", 1);
7695 return -1;
7696 }
7697
7698 /* If we got an ordinary packet, return that to our caller. */
7699 if (c == '$')
7700 {
7701 if (remote_debug)
7702 {
7703 struct cleanup *old_chain;
7704 char *str;
7705
7706 str = escape_buffer (*buf, val);
7707 old_chain = make_cleanup (xfree, str);
7708 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7709 do_cleanups (old_chain);
7710 }
7711
7712 /* Skip the ack char if we're in no-ack mode. */
7713 if (!rs->noack_mode)
7714 remote_serial_write ("+", 1);
7715 if (is_notif != NULL)
7716 *is_notif = 0;
7717 return val;
7718 }
7719
7720 /* If we got a notification, handle it, and go back to looking
7721 for a packet. */
7722 else
7723 {
7724 gdb_assert (c == '%');
7725
7726 if (remote_debug)
7727 {
7728 struct cleanup *old_chain;
7729 char *str;
7730
7731 str = escape_buffer (*buf, val);
7732 old_chain = make_cleanup (xfree, str);
7733 fprintf_unfiltered (gdb_stdlog,
7734 " Notification received: %s\n",
7735 str);
7736 do_cleanups (old_chain);
7737 }
7738 if (is_notif != NULL)
7739 *is_notif = 1;
7740
7741 handle_notification (*buf);
7742
7743 /* Notifications require no acknowledgement. */
7744
7745 if (expecting_notif)
7746 return val;
7747 }
7748 }
7749 }
7750
7751 static int
7752 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7753 {
7754 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7755 }
7756
7757 static int
7758 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7759 int *is_notif)
7760 {
7761 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7762 is_notif);
7763 }
7764
7765 \f
7766 /* A helper function that just calls putpkt; for type correctness. */
7767
7768 static int
7769 putpkt_for_catch_errors (void *arg)
7770 {
7771 return putpkt (arg);
7772 }
7773
7774 static void
7775 remote_kill (struct target_ops *ops)
7776 {
7777 /* Use catch_errors so the user can quit from gdb even when we
7778 aren't on speaking terms with the remote system. */
7779 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7780
7781 /* Don't wait for it to die. I'm not really sure it matters whether
7782 we do or not. For the existing stubs, kill is a noop. */
7783 target_mourn_inferior ();
7784 }
7785
7786 static int
7787 remote_vkill (int pid, struct remote_state *rs)
7788 {
7789 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7790 return -1;
7791
7792 /* Tell the remote target to detach. */
7793 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7794 putpkt (rs->buf);
7795 getpkt (&rs->buf, &rs->buf_size, 0);
7796
7797 if (packet_ok (rs->buf,
7798 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7799 return 0;
7800 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7801 return -1;
7802 else
7803 return 1;
7804 }
7805
7806 static void
7807 extended_remote_kill (struct target_ops *ops)
7808 {
7809 int res;
7810 int pid = ptid_get_pid (inferior_ptid);
7811 struct remote_state *rs = get_remote_state ();
7812
7813 res = remote_vkill (pid, rs);
7814 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7815 {
7816 /* Don't try 'k' on a multi-process aware stub -- it has no way
7817 to specify the pid. */
7818
7819 putpkt ("k");
7820 #if 0
7821 getpkt (&rs->buf, &rs->buf_size, 0);
7822 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7823 res = 1;
7824 #else
7825 /* Don't wait for it to die. I'm not really sure it matters whether
7826 we do or not. For the existing stubs, kill is a noop. */
7827 res = 0;
7828 #endif
7829 }
7830
7831 if (res != 0)
7832 error (_("Can't kill process"));
7833
7834 target_mourn_inferior ();
7835 }
7836
7837 static void
7838 remote_mourn (struct target_ops *ops)
7839 {
7840 remote_mourn_1 (ops);
7841 }
7842
7843 /* Worker function for remote_mourn. */
7844 static void
7845 remote_mourn_1 (struct target_ops *target)
7846 {
7847 unpush_target (target);
7848
7849 /* remote_close takes care of doing most of the clean up. */
7850 generic_mourn_inferior ();
7851 }
7852
7853 static void
7854 extended_remote_mourn_1 (struct target_ops *target)
7855 {
7856 struct remote_state *rs = get_remote_state ();
7857
7858 /* In case we got here due to an error, but we're going to stay
7859 connected. */
7860 rs->waiting_for_stop_reply = 0;
7861
7862 /* If the current general thread belonged to the process we just
7863 detached from or has exited, the remote side current general
7864 thread becomes undefined. Considering a case like this:
7865
7866 - We just got here due to a detach.
7867 - The process that we're detaching from happens to immediately
7868 report a global breakpoint being hit in non-stop mode, in the
7869 same thread we had selected before.
7870 - GDB attaches to this process again.
7871 - This event happens to be the next event we handle.
7872
7873 GDB would consider that the current general thread didn't need to
7874 be set on the stub side (with Hg), since for all it knew,
7875 GENERAL_THREAD hadn't changed.
7876
7877 Notice that although in all-stop mode, the remote server always
7878 sets the current thread to the thread reporting the stop event,
7879 that doesn't happen in non-stop mode; in non-stop, the stub *must
7880 not* change the current thread when reporting a breakpoint hit,
7881 due to the decoupling of event reporting and event handling.
7882
7883 To keep things simple, we always invalidate our notion of the
7884 current thread. */
7885 record_currthread (rs, minus_one_ptid);
7886
7887 /* Unlike "target remote", we do not want to unpush the target; then
7888 the next time the user says "run", we won't be connected. */
7889
7890 /* Call common code to mark the inferior as not running. */
7891 generic_mourn_inferior ();
7892
7893 if (!have_inferiors ())
7894 {
7895 if (!remote_multi_process_p (rs))
7896 {
7897 /* Check whether the target is running now - some remote stubs
7898 automatically restart after kill. */
7899 putpkt ("?");
7900 getpkt (&rs->buf, &rs->buf_size, 0);
7901
7902 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7903 {
7904 /* Assume that the target has been restarted. Set
7905 inferior_ptid so that bits of core GDB realizes
7906 there's something here, e.g., so that the user can
7907 say "kill" again. */
7908 inferior_ptid = magic_null_ptid;
7909 }
7910 }
7911 }
7912 }
7913
7914 static void
7915 extended_remote_mourn (struct target_ops *ops)
7916 {
7917 extended_remote_mourn_1 (ops);
7918 }
7919
7920 static int
7921 extended_remote_supports_disable_randomization (void)
7922 {
7923 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7924 == PACKET_ENABLE);
7925 }
7926
7927 static void
7928 extended_remote_disable_randomization (int val)
7929 {
7930 struct remote_state *rs = get_remote_state ();
7931 char *reply;
7932
7933 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7934 val);
7935 putpkt (rs->buf);
7936 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7937 if (*reply == '\0')
7938 error (_("Target does not support QDisableRandomization."));
7939 if (strcmp (reply, "OK") != 0)
7940 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7941 }
7942
7943 static int
7944 extended_remote_run (char *args)
7945 {
7946 struct remote_state *rs = get_remote_state ();
7947 int len;
7948
7949 /* If the user has disabled vRun support, or we have detected that
7950 support is not available, do not try it. */
7951 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7952 return -1;
7953
7954 strcpy (rs->buf, "vRun;");
7955 len = strlen (rs->buf);
7956
7957 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7958 error (_("Remote file name too long for run packet"));
7959 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7960
7961 gdb_assert (args != NULL);
7962 if (*args)
7963 {
7964 struct cleanup *back_to;
7965 int i;
7966 char **argv;
7967
7968 argv = gdb_buildargv (args);
7969 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7970 for (i = 0; argv[i] != NULL; i++)
7971 {
7972 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7973 error (_("Argument list too long for run packet"));
7974 rs->buf[len++] = ';';
7975 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7976 }
7977 do_cleanups (back_to);
7978 }
7979
7980 rs->buf[len++] = '\0';
7981
7982 putpkt (rs->buf);
7983 getpkt (&rs->buf, &rs->buf_size, 0);
7984
7985 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7986 {
7987 /* We have a wait response. All is well. */
7988 return 0;
7989 }
7990 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7991 /* It wasn't disabled before, but it is now. */
7992 return -1;
7993 else
7994 {
7995 if (remote_exec_file[0] == '\0')
7996 error (_("Running the default executable on the remote target failed; "
7997 "try \"set remote exec-file\"?"));
7998 else
7999 error (_("Running \"%s\" on the remote target failed"),
8000 remote_exec_file);
8001 }
8002 }
8003
8004 /* In the extended protocol we want to be able to do things like
8005 "run" and have them basically work as expected. So we need
8006 a special create_inferior function. We support changing the
8007 executable file and the command line arguments, but not the
8008 environment. */
8009
8010 static void
8011 extended_remote_create_inferior_1 (char *exec_file, char *args,
8012 char **env, int from_tty)
8013 {
8014 int run_worked;
8015 char *stop_reply;
8016 struct remote_state *rs = get_remote_state ();
8017
8018 /* If running asynchronously, register the target file descriptor
8019 with the event loop. */
8020 if (target_can_async_p ())
8021 target_async (inferior_event_handler, 0);
8022
8023 /* Disable address space randomization if requested (and supported). */
8024 if (extended_remote_supports_disable_randomization ())
8025 extended_remote_disable_randomization (disable_randomization);
8026
8027 /* Now restart the remote server. */
8028 run_worked = extended_remote_run (args) != -1;
8029 if (!run_worked)
8030 {
8031 /* vRun was not supported. Fail if we need it to do what the
8032 user requested. */
8033 if (remote_exec_file[0])
8034 error (_("Remote target does not support \"set remote exec-file\""));
8035 if (args[0])
8036 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8037
8038 /* Fall back to "R". */
8039 extended_remote_restart ();
8040 }
8041
8042 if (!have_inferiors ())
8043 {
8044 /* Clean up from the last time we ran, before we mark the target
8045 running again. This will mark breakpoints uninserted, and
8046 get_offsets may insert breakpoints. */
8047 init_thread_list ();
8048 init_wait_for_inferior ();
8049 }
8050
8051 /* vRun's success return is a stop reply. */
8052 stop_reply = run_worked ? rs->buf : NULL;
8053 add_current_inferior_and_thread (stop_reply);
8054
8055 /* Get updated offsets, if the stub uses qOffsets. */
8056 get_offsets ();
8057 }
8058
8059 static void
8060 extended_remote_create_inferior (struct target_ops *ops,
8061 char *exec_file, char *args,
8062 char **env, int from_tty)
8063 {
8064 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8065 }
8066 \f
8067
8068 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8069 the list of conditions (in agent expression bytecode format), if any, the
8070 target needs to evaluate. The output is placed into the packet buffer
8071 started from BUF and ended at BUF_END. */
8072
8073 static int
8074 remote_add_target_side_condition (struct gdbarch *gdbarch,
8075 struct bp_target_info *bp_tgt, char *buf,
8076 char *buf_end)
8077 {
8078 struct agent_expr *aexpr = NULL;
8079 int i, ix;
8080 char *pkt;
8081 char *buf_start = buf;
8082
8083 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8084 return 0;
8085
8086 buf += strlen (buf);
8087 xsnprintf (buf, buf_end - buf, "%s", ";");
8088 buf++;
8089
8090 /* Send conditions to the target and free the vector. */
8091 for (ix = 0;
8092 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8093 ix++)
8094 {
8095 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8096 buf += strlen (buf);
8097 for (i = 0; i < aexpr->len; ++i)
8098 buf = pack_hex_byte (buf, aexpr->buf[i]);
8099 *buf = '\0';
8100 }
8101
8102 VEC_free (agent_expr_p, bp_tgt->conditions);
8103 return 0;
8104 }
8105
8106 static void
8107 remote_add_target_side_commands (struct gdbarch *gdbarch,
8108 struct bp_target_info *bp_tgt, char *buf)
8109 {
8110 struct agent_expr *aexpr = NULL;
8111 int i, ix;
8112
8113 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8114 return;
8115
8116 buf += strlen (buf);
8117
8118 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8119 buf += strlen (buf);
8120
8121 /* Concatenate all the agent expressions that are commands into the
8122 cmds parameter. */
8123 for (ix = 0;
8124 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8125 ix++)
8126 {
8127 sprintf (buf, "X%x,", aexpr->len);
8128 buf += strlen (buf);
8129 for (i = 0; i < aexpr->len; ++i)
8130 buf = pack_hex_byte (buf, aexpr->buf[i]);
8131 *buf = '\0';
8132 }
8133
8134 VEC_free (agent_expr_p, bp_tgt->tcommands);
8135 }
8136
8137 /* Insert a breakpoint. On targets that have software breakpoint
8138 support, we ask the remote target to do the work; on targets
8139 which don't, we insert a traditional memory breakpoint. */
8140
8141 static int
8142 remote_insert_breakpoint (struct gdbarch *gdbarch,
8143 struct bp_target_info *bp_tgt)
8144 {
8145 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8146 If it succeeds, then set the support to PACKET_ENABLE. If it
8147 fails, and the user has explicitly requested the Z support then
8148 report an error, otherwise, mark it disabled and go on. */
8149
8150 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8151 {
8152 CORE_ADDR addr = bp_tgt->placed_address;
8153 struct remote_state *rs;
8154 char *p, *endbuf;
8155 int bpsize;
8156 struct condition_list *cond = NULL;
8157
8158 /* Make sure the remote is pointing at the right process, if
8159 necessary. */
8160 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8161 set_general_process ();
8162
8163 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8164
8165 rs = get_remote_state ();
8166 p = rs->buf;
8167 endbuf = rs->buf + get_remote_packet_size ();
8168
8169 *(p++) = 'Z';
8170 *(p++) = '0';
8171 *(p++) = ',';
8172 addr = (ULONGEST) remote_address_masked (addr);
8173 p += hexnumstr (p, addr);
8174 xsnprintf (p, endbuf - p, ",%d", bpsize);
8175
8176 if (remote_supports_cond_breakpoints ())
8177 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8178
8179 if (remote_can_run_breakpoint_commands ())
8180 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8181
8182 putpkt (rs->buf);
8183 getpkt (&rs->buf, &rs->buf_size, 0);
8184
8185 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8186 {
8187 case PACKET_ERROR:
8188 return -1;
8189 case PACKET_OK:
8190 bp_tgt->placed_address = addr;
8191 bp_tgt->placed_size = bpsize;
8192 return 0;
8193 case PACKET_UNKNOWN:
8194 break;
8195 }
8196 }
8197
8198 return memory_insert_breakpoint (gdbarch, bp_tgt);
8199 }
8200
8201 static int
8202 remote_remove_breakpoint (struct gdbarch *gdbarch,
8203 struct bp_target_info *bp_tgt)
8204 {
8205 CORE_ADDR addr = bp_tgt->placed_address;
8206 struct remote_state *rs = get_remote_state ();
8207
8208 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8209 {
8210 char *p = rs->buf;
8211 char *endbuf = rs->buf + get_remote_packet_size ();
8212
8213 /* Make sure the remote is pointing at the right process, if
8214 necessary. */
8215 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8216 set_general_process ();
8217
8218 *(p++) = 'z';
8219 *(p++) = '0';
8220 *(p++) = ',';
8221
8222 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8223 p += hexnumstr (p, addr);
8224 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8225
8226 putpkt (rs->buf);
8227 getpkt (&rs->buf, &rs->buf_size, 0);
8228
8229 return (rs->buf[0] == 'E');
8230 }
8231
8232 return memory_remove_breakpoint (gdbarch, bp_tgt);
8233 }
8234
8235 static int
8236 watchpoint_to_Z_packet (int type)
8237 {
8238 switch (type)
8239 {
8240 case hw_write:
8241 return Z_PACKET_WRITE_WP;
8242 break;
8243 case hw_read:
8244 return Z_PACKET_READ_WP;
8245 break;
8246 case hw_access:
8247 return Z_PACKET_ACCESS_WP;
8248 break;
8249 default:
8250 internal_error (__FILE__, __LINE__,
8251 _("hw_bp_to_z: bad watchpoint type %d"), type);
8252 }
8253 }
8254
8255 static int
8256 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8257 struct expression *cond)
8258 {
8259 struct remote_state *rs = get_remote_state ();
8260 char *endbuf = rs->buf + get_remote_packet_size ();
8261 char *p;
8262 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8263
8264 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8265 return 1;
8266
8267 /* Make sure the remote is pointing at the right process, if
8268 necessary. */
8269 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8270 set_general_process ();
8271
8272 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8273 p = strchr (rs->buf, '\0');
8274 addr = remote_address_masked (addr);
8275 p += hexnumstr (p, (ULONGEST) addr);
8276 xsnprintf (p, endbuf - p, ",%x", len);
8277
8278 putpkt (rs->buf);
8279 getpkt (&rs->buf, &rs->buf_size, 0);
8280
8281 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8282 {
8283 case PACKET_ERROR:
8284 return -1;
8285 case PACKET_UNKNOWN:
8286 return 1;
8287 case PACKET_OK:
8288 return 0;
8289 }
8290 internal_error (__FILE__, __LINE__,
8291 _("remote_insert_watchpoint: reached end of function"));
8292 }
8293
8294 static int
8295 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8296 CORE_ADDR start, int length)
8297 {
8298 CORE_ADDR diff = remote_address_masked (addr - start);
8299
8300 return diff < length;
8301 }
8302
8303
8304 static int
8305 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8306 struct expression *cond)
8307 {
8308 struct remote_state *rs = get_remote_state ();
8309 char *endbuf = rs->buf + get_remote_packet_size ();
8310 char *p;
8311 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8312
8313 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8314 return -1;
8315
8316 /* Make sure the remote is pointing at the right process, if
8317 necessary. */
8318 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8319 set_general_process ();
8320
8321 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8322 p = strchr (rs->buf, '\0');
8323 addr = remote_address_masked (addr);
8324 p += hexnumstr (p, (ULONGEST) addr);
8325 xsnprintf (p, endbuf - p, ",%x", len);
8326 putpkt (rs->buf);
8327 getpkt (&rs->buf, &rs->buf_size, 0);
8328
8329 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8330 {
8331 case PACKET_ERROR:
8332 case PACKET_UNKNOWN:
8333 return -1;
8334 case PACKET_OK:
8335 return 0;
8336 }
8337 internal_error (__FILE__, __LINE__,
8338 _("remote_remove_watchpoint: reached end of function"));
8339 }
8340
8341
8342 int remote_hw_watchpoint_limit = -1;
8343 int remote_hw_watchpoint_length_limit = -1;
8344 int remote_hw_breakpoint_limit = -1;
8345
8346 static int
8347 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8348 {
8349 if (remote_hw_watchpoint_length_limit == 0)
8350 return 0;
8351 else if (remote_hw_watchpoint_length_limit < 0)
8352 return 1;
8353 else if (len <= remote_hw_watchpoint_length_limit)
8354 return 1;
8355 else
8356 return 0;
8357 }
8358
8359 static int
8360 remote_check_watch_resources (int type, int cnt, int ot)
8361 {
8362 if (type == bp_hardware_breakpoint)
8363 {
8364 if (remote_hw_breakpoint_limit == 0)
8365 return 0;
8366 else if (remote_hw_breakpoint_limit < 0)
8367 return 1;
8368 else if (cnt <= remote_hw_breakpoint_limit)
8369 return 1;
8370 }
8371 else
8372 {
8373 if (remote_hw_watchpoint_limit == 0)
8374 return 0;
8375 else if (remote_hw_watchpoint_limit < 0)
8376 return 1;
8377 else if (ot)
8378 return -1;
8379 else if (cnt <= remote_hw_watchpoint_limit)
8380 return 1;
8381 }
8382 return -1;
8383 }
8384
8385 static int
8386 remote_stopped_by_watchpoint (void)
8387 {
8388 struct remote_state *rs = get_remote_state ();
8389
8390 return rs->remote_stopped_by_watchpoint_p;
8391 }
8392
8393 static int
8394 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8395 {
8396 struct remote_state *rs = get_remote_state ();
8397 int rc = 0;
8398
8399 if (remote_stopped_by_watchpoint ())
8400 {
8401 *addr_p = rs->remote_watch_data_address;
8402 rc = 1;
8403 }
8404
8405 return rc;
8406 }
8407
8408
8409 static int
8410 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8411 struct bp_target_info *bp_tgt)
8412 {
8413 CORE_ADDR addr;
8414 struct remote_state *rs;
8415 char *p, *endbuf;
8416 char *message;
8417
8418 /* The length field should be set to the size of a breakpoint
8419 instruction, even though we aren't inserting one ourselves. */
8420
8421 gdbarch_remote_breakpoint_from_pc
8422 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8423
8424 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8425 return -1;
8426
8427 /* Make sure the remote is pointing at the right process, if
8428 necessary. */
8429 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8430 set_general_process ();
8431
8432 rs = get_remote_state ();
8433 p = rs->buf;
8434 endbuf = rs->buf + get_remote_packet_size ();
8435
8436 *(p++) = 'Z';
8437 *(p++) = '1';
8438 *(p++) = ',';
8439
8440 addr = remote_address_masked (bp_tgt->placed_address);
8441 p += hexnumstr (p, (ULONGEST) addr);
8442 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8443
8444 if (remote_supports_cond_breakpoints ())
8445 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8446
8447 if (remote_can_run_breakpoint_commands ())
8448 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8449
8450 putpkt (rs->buf);
8451 getpkt (&rs->buf, &rs->buf_size, 0);
8452
8453 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8454 {
8455 case PACKET_ERROR:
8456 if (rs->buf[1] == '.')
8457 {
8458 message = strchr (rs->buf + 2, '.');
8459 if (message)
8460 error (_("Remote failure reply: %s"), message + 1);
8461 }
8462 return -1;
8463 case PACKET_UNKNOWN:
8464 return -1;
8465 case PACKET_OK:
8466 return 0;
8467 }
8468 internal_error (__FILE__, __LINE__,
8469 _("remote_insert_hw_breakpoint: reached end of function"));
8470 }
8471
8472
8473 static int
8474 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8475 struct bp_target_info *bp_tgt)
8476 {
8477 CORE_ADDR addr;
8478 struct remote_state *rs = get_remote_state ();
8479 char *p = rs->buf;
8480 char *endbuf = rs->buf + get_remote_packet_size ();
8481
8482 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8483 return -1;
8484
8485 /* Make sure the remote is pointing at the right process, if
8486 necessary. */
8487 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8488 set_general_process ();
8489
8490 *(p++) = 'z';
8491 *(p++) = '1';
8492 *(p++) = ',';
8493
8494 addr = remote_address_masked (bp_tgt->placed_address);
8495 p += hexnumstr (p, (ULONGEST) addr);
8496 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8497
8498 putpkt (rs->buf);
8499 getpkt (&rs->buf, &rs->buf_size, 0);
8500
8501 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8502 {
8503 case PACKET_ERROR:
8504 case PACKET_UNKNOWN:
8505 return -1;
8506 case PACKET_OK:
8507 return 0;
8508 }
8509 internal_error (__FILE__, __LINE__,
8510 _("remote_remove_hw_breakpoint: reached end of function"));
8511 }
8512
8513 /* Verify memory using the "qCRC:" request. */
8514
8515 static int
8516 remote_verify_memory (struct target_ops *ops,
8517 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8518 {
8519 struct remote_state *rs = get_remote_state ();
8520 unsigned long host_crc, target_crc;
8521 char *tmp;
8522
8523 /* Make sure the remote is pointing at the right process. */
8524 set_general_process ();
8525
8526 /* FIXME: assumes lma can fit into long. */
8527 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8528 (long) lma, (long) size);
8529 putpkt (rs->buf);
8530
8531 /* Be clever; compute the host_crc before waiting for target
8532 reply. */
8533 host_crc = xcrc32 (data, size, 0xffffffff);
8534
8535 getpkt (&rs->buf, &rs->buf_size, 0);
8536 if (rs->buf[0] == 'E')
8537 return -1;
8538
8539 if (rs->buf[0] != 'C')
8540 error (_("remote target does not support this operation"));
8541
8542 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8543 target_crc = target_crc * 16 + fromhex (*tmp);
8544
8545 return (host_crc == target_crc);
8546 }
8547
8548 /* compare-sections command
8549
8550 With no arguments, compares each loadable section in the exec bfd
8551 with the same memory range on the target, and reports mismatches.
8552 Useful for verifying the image on the target against the exec file. */
8553
8554 static void
8555 compare_sections_command (char *args, int from_tty)
8556 {
8557 asection *s;
8558 struct cleanup *old_chain;
8559 gdb_byte *sectdata;
8560 const char *sectname;
8561 bfd_size_type size;
8562 bfd_vma lma;
8563 int matched = 0;
8564 int mismatched = 0;
8565 int res;
8566
8567 if (!exec_bfd)
8568 error (_("command cannot be used without an exec file"));
8569
8570 /* Make sure the remote is pointing at the right process. */
8571 set_general_process ();
8572
8573 for (s = exec_bfd->sections; s; s = s->next)
8574 {
8575 if (!(s->flags & SEC_LOAD))
8576 continue; /* Skip non-loadable section. */
8577
8578 size = bfd_get_section_size (s);
8579 if (size == 0)
8580 continue; /* Skip zero-length section. */
8581
8582 sectname = bfd_get_section_name (exec_bfd, s);
8583 if (args && strcmp (args, sectname) != 0)
8584 continue; /* Not the section selected by user. */
8585
8586 matched = 1; /* Do this section. */
8587 lma = s->lma;
8588
8589 sectdata = xmalloc (size);
8590 old_chain = make_cleanup (xfree, sectdata);
8591 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8592
8593 res = target_verify_memory (sectdata, lma, size);
8594
8595 if (res == -1)
8596 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8597 paddress (target_gdbarch (), lma),
8598 paddress (target_gdbarch (), lma + size));
8599
8600 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8601 paddress (target_gdbarch (), lma),
8602 paddress (target_gdbarch (), lma + size));
8603 if (res)
8604 printf_filtered ("matched.\n");
8605 else
8606 {
8607 printf_filtered ("MIS-MATCHED!\n");
8608 mismatched++;
8609 }
8610
8611 do_cleanups (old_chain);
8612 }
8613 if (mismatched > 0)
8614 warning (_("One or more sections of the remote executable does not match\n\
8615 the loaded file\n"));
8616 if (args && !matched)
8617 printf_filtered (_("No loaded section named '%s'.\n"), args);
8618 }
8619
8620 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8621 into remote target. The number of bytes written to the remote
8622 target is returned, or -1 for error. */
8623
8624 static LONGEST
8625 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8626 const char *annex, const gdb_byte *writebuf,
8627 ULONGEST offset, LONGEST len,
8628 struct packet_config *packet)
8629 {
8630 int i, buf_len;
8631 ULONGEST n;
8632 struct remote_state *rs = get_remote_state ();
8633 int max_size = get_memory_write_packet_size ();
8634
8635 if (packet->support == PACKET_DISABLE)
8636 return -1;
8637
8638 /* Insert header. */
8639 i = snprintf (rs->buf, max_size,
8640 "qXfer:%s:write:%s:%s:",
8641 object_name, annex ? annex : "",
8642 phex_nz (offset, sizeof offset));
8643 max_size -= (i + 1);
8644
8645 /* Escape as much data as fits into rs->buf. */
8646 buf_len = remote_escape_output
8647 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8648
8649 if (putpkt_binary (rs->buf, i + buf_len) < 0
8650 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8651 || packet_ok (rs->buf, packet) != PACKET_OK)
8652 return -1;
8653
8654 unpack_varlen_hex (rs->buf, &n);
8655 return n;
8656 }
8657
8658 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8659 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8660 number of bytes read is returned, or 0 for EOF, or -1 for error.
8661 The number of bytes read may be less than LEN without indicating an
8662 EOF. PACKET is checked and updated to indicate whether the remote
8663 target supports this object. */
8664
8665 static LONGEST
8666 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8667 const char *annex,
8668 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8669 struct packet_config *packet)
8670 {
8671 struct remote_state *rs = get_remote_state ();
8672 LONGEST i, n, packet_len;
8673
8674 if (packet->support == PACKET_DISABLE)
8675 return -1;
8676
8677 /* Check whether we've cached an end-of-object packet that matches
8678 this request. */
8679 if (rs->finished_object)
8680 {
8681 if (strcmp (object_name, rs->finished_object) == 0
8682 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8683 && offset == rs->finished_offset)
8684 return 0;
8685
8686 /* Otherwise, we're now reading something different. Discard
8687 the cache. */
8688 xfree (rs->finished_object);
8689 xfree (rs->finished_annex);
8690 rs->finished_object = NULL;
8691 rs->finished_annex = NULL;
8692 }
8693
8694 /* Request only enough to fit in a single packet. The actual data
8695 may not, since we don't know how much of it will need to be escaped;
8696 the target is free to respond with slightly less data. We subtract
8697 five to account for the response type and the protocol frame. */
8698 n = min (get_remote_packet_size () - 5, len);
8699 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8700 object_name, annex ? annex : "",
8701 phex_nz (offset, sizeof offset),
8702 phex_nz (n, sizeof n));
8703 i = putpkt (rs->buf);
8704 if (i < 0)
8705 return -1;
8706
8707 rs->buf[0] = '\0';
8708 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8709 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8710 return -1;
8711
8712 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8713 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8714
8715 /* 'm' means there is (or at least might be) more data after this
8716 batch. That does not make sense unless there's at least one byte
8717 of data in this reply. */
8718 if (rs->buf[0] == 'm' && packet_len == 1)
8719 error (_("Remote qXfer reply contained no data."));
8720
8721 /* Got some data. */
8722 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8723 packet_len - 1, readbuf, n);
8724
8725 /* 'l' is an EOF marker, possibly including a final block of data,
8726 or possibly empty. If we have the final block of a non-empty
8727 object, record this fact to bypass a subsequent partial read. */
8728 if (rs->buf[0] == 'l' && offset + i > 0)
8729 {
8730 rs->finished_object = xstrdup (object_name);
8731 rs->finished_annex = xstrdup (annex ? annex : "");
8732 rs->finished_offset = offset + i;
8733 }
8734
8735 return i;
8736 }
8737
8738 static LONGEST
8739 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8740 const char *annex, gdb_byte *readbuf,
8741 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8742 {
8743 struct remote_state *rs;
8744 int i;
8745 char *p2;
8746 char query_type;
8747
8748 set_remote_traceframe ();
8749 set_general_thread (inferior_ptid);
8750
8751 rs = get_remote_state ();
8752
8753 /* Handle memory using the standard memory routines. */
8754 if (object == TARGET_OBJECT_MEMORY)
8755 {
8756 LONGEST xfered;
8757
8758 /* If the remote target is connected but not running, we should
8759 pass this request down to a lower stratum (e.g. the executable
8760 file). */
8761 if (!target_has_execution)
8762 return 0;
8763
8764 if (writebuf != NULL)
8765 xfered = remote_write_bytes (offset, writebuf, len);
8766 else
8767 xfered = remote_read_bytes (offset, readbuf, len);
8768
8769 return xfered;
8770 }
8771
8772 /* Handle SPU memory using qxfer packets. */
8773 if (object == TARGET_OBJECT_SPU)
8774 {
8775 if (readbuf)
8776 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8777 &remote_protocol_packets
8778 [PACKET_qXfer_spu_read]);
8779 else
8780 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8781 &remote_protocol_packets
8782 [PACKET_qXfer_spu_write]);
8783 }
8784
8785 /* Handle extra signal info using qxfer packets. */
8786 if (object == TARGET_OBJECT_SIGNAL_INFO)
8787 {
8788 if (readbuf)
8789 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8790 &remote_protocol_packets
8791 [PACKET_qXfer_siginfo_read]);
8792 else
8793 return remote_write_qxfer (ops, "siginfo", annex,
8794 writebuf, offset, len,
8795 &remote_protocol_packets
8796 [PACKET_qXfer_siginfo_write]);
8797 }
8798
8799 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8800 {
8801 if (readbuf)
8802 return remote_read_qxfer (ops, "statictrace", annex,
8803 readbuf, offset, len,
8804 &remote_protocol_packets
8805 [PACKET_qXfer_statictrace_read]);
8806 else
8807 return -1;
8808 }
8809
8810 /* Only handle flash writes. */
8811 if (writebuf != NULL)
8812 {
8813 LONGEST xfered;
8814
8815 switch (object)
8816 {
8817 case TARGET_OBJECT_FLASH:
8818 return remote_flash_write (ops, offset, len, writebuf);
8819
8820 default:
8821 return -1;
8822 }
8823 }
8824
8825 /* Map pre-existing objects onto letters. DO NOT do this for new
8826 objects!!! Instead specify new query packets. */
8827 switch (object)
8828 {
8829 case TARGET_OBJECT_AVR:
8830 query_type = 'R';
8831 break;
8832
8833 case TARGET_OBJECT_AUXV:
8834 gdb_assert (annex == NULL);
8835 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8836 &remote_protocol_packets[PACKET_qXfer_auxv]);
8837
8838 case TARGET_OBJECT_AVAILABLE_FEATURES:
8839 return remote_read_qxfer
8840 (ops, "features", annex, readbuf, offset, len,
8841 &remote_protocol_packets[PACKET_qXfer_features]);
8842
8843 case TARGET_OBJECT_LIBRARIES:
8844 return remote_read_qxfer
8845 (ops, "libraries", annex, readbuf, offset, len,
8846 &remote_protocol_packets[PACKET_qXfer_libraries]);
8847
8848 case TARGET_OBJECT_LIBRARIES_SVR4:
8849 return remote_read_qxfer
8850 (ops, "libraries-svr4", annex, readbuf, offset, len,
8851 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8852
8853 case TARGET_OBJECT_MEMORY_MAP:
8854 gdb_assert (annex == NULL);
8855 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8856 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8857
8858 case TARGET_OBJECT_OSDATA:
8859 /* Should only get here if we're connected. */
8860 gdb_assert (rs->remote_desc);
8861 return remote_read_qxfer
8862 (ops, "osdata", annex, readbuf, offset, len,
8863 &remote_protocol_packets[PACKET_qXfer_osdata]);
8864
8865 case TARGET_OBJECT_THREADS:
8866 gdb_assert (annex == NULL);
8867 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8868 &remote_protocol_packets[PACKET_qXfer_threads]);
8869
8870 case TARGET_OBJECT_TRACEFRAME_INFO:
8871 gdb_assert (annex == NULL);
8872 return remote_read_qxfer
8873 (ops, "traceframe-info", annex, readbuf, offset, len,
8874 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8875
8876 case TARGET_OBJECT_FDPIC:
8877 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8878 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8879
8880 case TARGET_OBJECT_OPENVMS_UIB:
8881 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8882 &remote_protocol_packets[PACKET_qXfer_uib]);
8883
8884 case TARGET_OBJECT_BTRACE:
8885 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8886 &remote_protocol_packets[PACKET_qXfer_btrace]);
8887
8888 default:
8889 return -1;
8890 }
8891
8892 /* Note: a zero OFFSET and LEN can be used to query the minimum
8893 buffer size. */
8894 if (offset == 0 && len == 0)
8895 return (get_remote_packet_size ());
8896 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8897 large enough let the caller deal with it. */
8898 if (len < get_remote_packet_size ())
8899 return -1;
8900 len = get_remote_packet_size ();
8901
8902 /* Except for querying the minimum buffer size, target must be open. */
8903 if (!rs->remote_desc)
8904 error (_("remote query is only available after target open"));
8905
8906 gdb_assert (annex != NULL);
8907 gdb_assert (readbuf != NULL);
8908
8909 p2 = rs->buf;
8910 *p2++ = 'q';
8911 *p2++ = query_type;
8912
8913 /* We used one buffer char for the remote protocol q command and
8914 another for the query type. As the remote protocol encapsulation
8915 uses 4 chars plus one extra in case we are debugging
8916 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8917 string. */
8918 i = 0;
8919 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8920 {
8921 /* Bad caller may have sent forbidden characters. */
8922 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8923 *p2++ = annex[i];
8924 i++;
8925 }
8926 *p2 = '\0';
8927 gdb_assert (annex[i] == '\0');
8928
8929 i = putpkt (rs->buf);
8930 if (i < 0)
8931 return i;
8932
8933 getpkt (&rs->buf, &rs->buf_size, 0);
8934 strcpy ((char *) readbuf, rs->buf);
8935
8936 return strlen ((char *) readbuf);
8937 }
8938
8939 static int
8940 remote_search_memory (struct target_ops* ops,
8941 CORE_ADDR start_addr, ULONGEST search_space_len,
8942 const gdb_byte *pattern, ULONGEST pattern_len,
8943 CORE_ADDR *found_addrp)
8944 {
8945 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8946 struct remote_state *rs = get_remote_state ();
8947 int max_size = get_memory_write_packet_size ();
8948 struct packet_config *packet =
8949 &remote_protocol_packets[PACKET_qSearch_memory];
8950 /* Number of packet bytes used to encode the pattern;
8951 this could be more than PATTERN_LEN due to escape characters. */
8952 int escaped_pattern_len;
8953 /* Amount of pattern that was encodable in the packet. */
8954 int used_pattern_len;
8955 int i;
8956 int found;
8957 ULONGEST found_addr;
8958
8959 /* Don't go to the target if we don't have to.
8960 This is done before checking packet->support to avoid the possibility that
8961 a success for this edge case means the facility works in general. */
8962 if (pattern_len > search_space_len)
8963 return 0;
8964 if (pattern_len == 0)
8965 {
8966 *found_addrp = start_addr;
8967 return 1;
8968 }
8969
8970 /* If we already know the packet isn't supported, fall back to the simple
8971 way of searching memory. */
8972
8973 if (packet->support == PACKET_DISABLE)
8974 {
8975 /* Target doesn't provided special support, fall back and use the
8976 standard support (copy memory and do the search here). */
8977 return simple_search_memory (ops, start_addr, search_space_len,
8978 pattern, pattern_len, found_addrp);
8979 }
8980
8981 /* Make sure the remote is pointing at the right process. */
8982 set_general_process ();
8983
8984 /* Insert header. */
8985 i = snprintf (rs->buf, max_size,
8986 "qSearch:memory:%s;%s;",
8987 phex_nz (start_addr, addr_size),
8988 phex_nz (search_space_len, sizeof (search_space_len)));
8989 max_size -= (i + 1);
8990
8991 /* Escape as much data as fits into rs->buf. */
8992 escaped_pattern_len =
8993 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
8994 &used_pattern_len, max_size);
8995
8996 /* Bail if the pattern is too large. */
8997 if (used_pattern_len != pattern_len)
8998 error (_("Pattern is too large to transmit to remote target."));
8999
9000 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9001 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9002 || packet_ok (rs->buf, packet) != PACKET_OK)
9003 {
9004 /* The request may not have worked because the command is not
9005 supported. If so, fall back to the simple way. */
9006 if (packet->support == PACKET_DISABLE)
9007 {
9008 return simple_search_memory (ops, start_addr, search_space_len,
9009 pattern, pattern_len, found_addrp);
9010 }
9011 return -1;
9012 }
9013
9014 if (rs->buf[0] == '0')
9015 found = 0;
9016 else if (rs->buf[0] == '1')
9017 {
9018 found = 1;
9019 if (rs->buf[1] != ',')
9020 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9021 unpack_varlen_hex (rs->buf + 2, &found_addr);
9022 *found_addrp = found_addr;
9023 }
9024 else
9025 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9026
9027 return found;
9028 }
9029
9030 static void
9031 remote_rcmd (char *command,
9032 struct ui_file *outbuf)
9033 {
9034 struct remote_state *rs = get_remote_state ();
9035 char *p = rs->buf;
9036
9037 if (!rs->remote_desc)
9038 error (_("remote rcmd is only available after target open"));
9039
9040 /* Send a NULL command across as an empty command. */
9041 if (command == NULL)
9042 command = "";
9043
9044 /* The query prefix. */
9045 strcpy (rs->buf, "qRcmd,");
9046 p = strchr (rs->buf, '\0');
9047
9048 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9049 > get_remote_packet_size ())
9050 error (_("\"monitor\" command ``%s'' is too long."), command);
9051
9052 /* Encode the actual command. */
9053 bin2hex ((gdb_byte *) command, p, 0);
9054
9055 if (putpkt (rs->buf) < 0)
9056 error (_("Communication problem with target."));
9057
9058 /* get/display the response */
9059 while (1)
9060 {
9061 char *buf;
9062
9063 /* XXX - see also remote_get_noisy_reply(). */
9064 QUIT; /* Allow user to bail out with ^C. */
9065 rs->buf[0] = '\0';
9066 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9067 {
9068 /* Timeout. Continue to (try to) read responses.
9069 This is better than stopping with an error, assuming the stub
9070 is still executing the (long) monitor command.
9071 If needed, the user can interrupt gdb using C-c, obtaining
9072 an effect similar to stop on timeout. */
9073 continue;
9074 }
9075 buf = rs->buf;
9076 if (buf[0] == '\0')
9077 error (_("Target does not support this command."));
9078 if (buf[0] == 'O' && buf[1] != 'K')
9079 {
9080 remote_console_output (buf + 1); /* 'O' message from stub. */
9081 continue;
9082 }
9083 if (strcmp (buf, "OK") == 0)
9084 break;
9085 if (strlen (buf) == 3 && buf[0] == 'E'
9086 && isdigit (buf[1]) && isdigit (buf[2]))
9087 {
9088 error (_("Protocol error with Rcmd"));
9089 }
9090 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9091 {
9092 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9093
9094 fputc_unfiltered (c, outbuf);
9095 }
9096 break;
9097 }
9098 }
9099
9100 static VEC(mem_region_s) *
9101 remote_memory_map (struct target_ops *ops)
9102 {
9103 VEC(mem_region_s) *result = NULL;
9104 char *text = target_read_stralloc (&current_target,
9105 TARGET_OBJECT_MEMORY_MAP, NULL);
9106
9107 if (text)
9108 {
9109 struct cleanup *back_to = make_cleanup (xfree, text);
9110
9111 result = parse_memory_map (text);
9112 do_cleanups (back_to);
9113 }
9114
9115 return result;
9116 }
9117
9118 static void
9119 packet_command (char *args, int from_tty)
9120 {
9121 struct remote_state *rs = get_remote_state ();
9122
9123 if (!rs->remote_desc)
9124 error (_("command can only be used with remote target"));
9125
9126 if (!args)
9127 error (_("remote-packet command requires packet text as argument"));
9128
9129 puts_filtered ("sending: ");
9130 print_packet (args);
9131 puts_filtered ("\n");
9132 putpkt (args);
9133
9134 getpkt (&rs->buf, &rs->buf_size, 0);
9135 puts_filtered ("received: ");
9136 print_packet (rs->buf);
9137 puts_filtered ("\n");
9138 }
9139
9140 #if 0
9141 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9142
9143 static void display_thread_info (struct gdb_ext_thread_info *info);
9144
9145 static void threadset_test_cmd (char *cmd, int tty);
9146
9147 static void threadalive_test (char *cmd, int tty);
9148
9149 static void threadlist_test_cmd (char *cmd, int tty);
9150
9151 int get_and_display_threadinfo (threadref *ref);
9152
9153 static void threadinfo_test_cmd (char *cmd, int tty);
9154
9155 static int thread_display_step (threadref *ref, void *context);
9156
9157 static void threadlist_update_test_cmd (char *cmd, int tty);
9158
9159 static void init_remote_threadtests (void);
9160
9161 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9162
9163 static void
9164 threadset_test_cmd (char *cmd, int tty)
9165 {
9166 int sample_thread = SAMPLE_THREAD;
9167
9168 printf_filtered (_("Remote threadset test\n"));
9169 set_general_thread (sample_thread);
9170 }
9171
9172
9173 static void
9174 threadalive_test (char *cmd, int tty)
9175 {
9176 int sample_thread = SAMPLE_THREAD;
9177 int pid = ptid_get_pid (inferior_ptid);
9178 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9179
9180 if (remote_thread_alive (ptid))
9181 printf_filtered ("PASS: Thread alive test\n");
9182 else
9183 printf_filtered ("FAIL: Thread alive test\n");
9184 }
9185
9186 void output_threadid (char *title, threadref *ref);
9187
9188 void
9189 output_threadid (char *title, threadref *ref)
9190 {
9191 char hexid[20];
9192
9193 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9194 hexid[16] = 0;
9195 printf_filtered ("%s %s\n", title, (&hexid[0]));
9196 }
9197
9198 static void
9199 threadlist_test_cmd (char *cmd, int tty)
9200 {
9201 int startflag = 1;
9202 threadref nextthread;
9203 int done, result_count;
9204 threadref threadlist[3];
9205
9206 printf_filtered ("Remote Threadlist test\n");
9207 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9208 &result_count, &threadlist[0]))
9209 printf_filtered ("FAIL: threadlist test\n");
9210 else
9211 {
9212 threadref *scan = threadlist;
9213 threadref *limit = scan + result_count;
9214
9215 while (scan < limit)
9216 output_threadid (" thread ", scan++);
9217 }
9218 }
9219
9220 void
9221 display_thread_info (struct gdb_ext_thread_info *info)
9222 {
9223 output_threadid ("Threadid: ", &info->threadid);
9224 printf_filtered ("Name: %s\n ", info->shortname);
9225 printf_filtered ("State: %s\n", info->display);
9226 printf_filtered ("other: %s\n\n", info->more_display);
9227 }
9228
9229 int
9230 get_and_display_threadinfo (threadref *ref)
9231 {
9232 int result;
9233 int set;
9234 struct gdb_ext_thread_info threadinfo;
9235
9236 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9237 | TAG_MOREDISPLAY | TAG_DISPLAY;
9238 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9239 display_thread_info (&threadinfo);
9240 return result;
9241 }
9242
9243 static void
9244 threadinfo_test_cmd (char *cmd, int tty)
9245 {
9246 int athread = SAMPLE_THREAD;
9247 threadref thread;
9248 int set;
9249
9250 int_to_threadref (&thread, athread);
9251 printf_filtered ("Remote Threadinfo test\n");
9252 if (!get_and_display_threadinfo (&thread))
9253 printf_filtered ("FAIL cannot get thread info\n");
9254 }
9255
9256 static int
9257 thread_display_step (threadref *ref, void *context)
9258 {
9259 /* output_threadid(" threadstep ",ref); *//* simple test */
9260 return get_and_display_threadinfo (ref);
9261 }
9262
9263 static void
9264 threadlist_update_test_cmd (char *cmd, int tty)
9265 {
9266 printf_filtered ("Remote Threadlist update test\n");
9267 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9268 }
9269
9270 static void
9271 init_remote_threadtests (void)
9272 {
9273 add_com ("tlist", class_obscure, threadlist_test_cmd,
9274 _("Fetch and print the remote list of "
9275 "thread identifiers, one pkt only"));
9276 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9277 _("Fetch and display info about one thread"));
9278 add_com ("tset", class_obscure, threadset_test_cmd,
9279 _("Test setting to a different thread"));
9280 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9281 _("Iterate through updating all remote thread info"));
9282 add_com ("talive", class_obscure, threadalive_test,
9283 _(" Remote thread alive test "));
9284 }
9285
9286 #endif /* 0 */
9287
9288 /* Convert a thread ID to a string. Returns the string in a static
9289 buffer. */
9290
9291 static char *
9292 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9293 {
9294 static char buf[64];
9295 struct remote_state *rs = get_remote_state ();
9296
9297 if (ptid_equal (ptid, null_ptid))
9298 return normal_pid_to_str (ptid);
9299 else if (ptid_is_pid (ptid))
9300 {
9301 /* Printing an inferior target id. */
9302
9303 /* When multi-process extensions are off, there's no way in the
9304 remote protocol to know the remote process id, if there's any
9305 at all. There's one exception --- when we're connected with
9306 target extended-remote, and we manually attached to a process
9307 with "attach PID". We don't record anywhere a flag that
9308 allows us to distinguish that case from the case of
9309 connecting with extended-remote and the stub already being
9310 attached to a process, and reporting yes to qAttached, hence
9311 no smart special casing here. */
9312 if (!remote_multi_process_p (rs))
9313 {
9314 xsnprintf (buf, sizeof buf, "Remote target");
9315 return buf;
9316 }
9317
9318 return normal_pid_to_str (ptid);
9319 }
9320 else
9321 {
9322 if (ptid_equal (magic_null_ptid, ptid))
9323 xsnprintf (buf, sizeof buf, "Thread <main>");
9324 else if (rs->extended && remote_multi_process_p (rs))
9325 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9326 ptid_get_pid (ptid), ptid_get_tid (ptid));
9327 else
9328 xsnprintf (buf, sizeof buf, "Thread %ld",
9329 ptid_get_tid (ptid));
9330 return buf;
9331 }
9332 }
9333
9334 /* Get the address of the thread local variable in OBJFILE which is
9335 stored at OFFSET within the thread local storage for thread PTID. */
9336
9337 static CORE_ADDR
9338 remote_get_thread_local_address (struct target_ops *ops,
9339 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9340 {
9341 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9342 {
9343 struct remote_state *rs = get_remote_state ();
9344 char *p = rs->buf;
9345 char *endp = rs->buf + get_remote_packet_size ();
9346 enum packet_result result;
9347
9348 strcpy (p, "qGetTLSAddr:");
9349 p += strlen (p);
9350 p = write_ptid (p, endp, ptid);
9351 *p++ = ',';
9352 p += hexnumstr (p, offset);
9353 *p++ = ',';
9354 p += hexnumstr (p, lm);
9355 *p++ = '\0';
9356
9357 putpkt (rs->buf);
9358 getpkt (&rs->buf, &rs->buf_size, 0);
9359 result = packet_ok (rs->buf,
9360 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9361 if (result == PACKET_OK)
9362 {
9363 ULONGEST result;
9364
9365 unpack_varlen_hex (rs->buf, &result);
9366 return result;
9367 }
9368 else if (result == PACKET_UNKNOWN)
9369 throw_error (TLS_GENERIC_ERROR,
9370 _("Remote target doesn't support qGetTLSAddr packet"));
9371 else
9372 throw_error (TLS_GENERIC_ERROR,
9373 _("Remote target failed to process qGetTLSAddr request"));
9374 }
9375 else
9376 throw_error (TLS_GENERIC_ERROR,
9377 _("TLS not supported or disabled on this target"));
9378 /* Not reached. */
9379 return 0;
9380 }
9381
9382 /* Provide thread local base, i.e. Thread Information Block address.
9383 Returns 1 if ptid is found and thread_local_base is non zero. */
9384
9385 static int
9386 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9387 {
9388 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9389 {
9390 struct remote_state *rs = get_remote_state ();
9391 char *p = rs->buf;
9392 char *endp = rs->buf + get_remote_packet_size ();
9393 enum packet_result result;
9394
9395 strcpy (p, "qGetTIBAddr:");
9396 p += strlen (p);
9397 p = write_ptid (p, endp, ptid);
9398 *p++ = '\0';
9399
9400 putpkt (rs->buf);
9401 getpkt (&rs->buf, &rs->buf_size, 0);
9402 result = packet_ok (rs->buf,
9403 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9404 if (result == PACKET_OK)
9405 {
9406 ULONGEST result;
9407
9408 unpack_varlen_hex (rs->buf, &result);
9409 if (addr)
9410 *addr = (CORE_ADDR) result;
9411 return 1;
9412 }
9413 else if (result == PACKET_UNKNOWN)
9414 error (_("Remote target doesn't support qGetTIBAddr packet"));
9415 else
9416 error (_("Remote target failed to process qGetTIBAddr request"));
9417 }
9418 else
9419 error (_("qGetTIBAddr not supported or disabled on this target"));
9420 /* Not reached. */
9421 return 0;
9422 }
9423
9424 /* Support for inferring a target description based on the current
9425 architecture and the size of a 'g' packet. While the 'g' packet
9426 can have any size (since optional registers can be left off the
9427 end), some sizes are easily recognizable given knowledge of the
9428 approximate architecture. */
9429
9430 struct remote_g_packet_guess
9431 {
9432 int bytes;
9433 const struct target_desc *tdesc;
9434 };
9435 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9436 DEF_VEC_O(remote_g_packet_guess_s);
9437
9438 struct remote_g_packet_data
9439 {
9440 VEC(remote_g_packet_guess_s) *guesses;
9441 };
9442
9443 static struct gdbarch_data *remote_g_packet_data_handle;
9444
9445 static void *
9446 remote_g_packet_data_init (struct obstack *obstack)
9447 {
9448 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9449 }
9450
9451 void
9452 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9453 const struct target_desc *tdesc)
9454 {
9455 struct remote_g_packet_data *data
9456 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9457 struct remote_g_packet_guess new_guess, *guess;
9458 int ix;
9459
9460 gdb_assert (tdesc != NULL);
9461
9462 for (ix = 0;
9463 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9464 ix++)
9465 if (guess->bytes == bytes)
9466 internal_error (__FILE__, __LINE__,
9467 _("Duplicate g packet description added for size %d"),
9468 bytes);
9469
9470 new_guess.bytes = bytes;
9471 new_guess.tdesc = tdesc;
9472 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9473 }
9474
9475 /* Return 1 if remote_read_description would do anything on this target
9476 and architecture, 0 otherwise. */
9477
9478 static int
9479 remote_read_description_p (struct target_ops *target)
9480 {
9481 struct remote_g_packet_data *data
9482 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9483
9484 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9485 return 1;
9486
9487 return 0;
9488 }
9489
9490 static const struct target_desc *
9491 remote_read_description (struct target_ops *target)
9492 {
9493 struct remote_g_packet_data *data
9494 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9495
9496 /* Do not try this during initial connection, when we do not know
9497 whether there is a running but stopped thread. */
9498 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9499 return NULL;
9500
9501 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9502 {
9503 struct remote_g_packet_guess *guess;
9504 int ix;
9505 int bytes = send_g_packet ();
9506
9507 for (ix = 0;
9508 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9509 ix++)
9510 if (guess->bytes == bytes)
9511 return guess->tdesc;
9512
9513 /* We discard the g packet. A minor optimization would be to
9514 hold on to it, and fill the register cache once we have selected
9515 an architecture, but it's too tricky to do safely. */
9516 }
9517
9518 return NULL;
9519 }
9520
9521 /* Remote file transfer support. This is host-initiated I/O, not
9522 target-initiated; for target-initiated, see remote-fileio.c. */
9523
9524 /* If *LEFT is at least the length of STRING, copy STRING to
9525 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9526 decrease *LEFT. Otherwise raise an error. */
9527
9528 static void
9529 remote_buffer_add_string (char **buffer, int *left, char *string)
9530 {
9531 int len = strlen (string);
9532
9533 if (len > *left)
9534 error (_("Packet too long for target."));
9535
9536 memcpy (*buffer, string, len);
9537 *buffer += len;
9538 *left -= len;
9539
9540 /* NUL-terminate the buffer as a convenience, if there is
9541 room. */
9542 if (*left)
9543 **buffer = '\0';
9544 }
9545
9546 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9547 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9548 decrease *LEFT. Otherwise raise an error. */
9549
9550 static void
9551 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9552 int len)
9553 {
9554 if (2 * len > *left)
9555 error (_("Packet too long for target."));
9556
9557 bin2hex (bytes, *buffer, len);
9558 *buffer += 2 * len;
9559 *left -= 2 * len;
9560
9561 /* NUL-terminate the buffer as a convenience, if there is
9562 room. */
9563 if (*left)
9564 **buffer = '\0';
9565 }
9566
9567 /* If *LEFT is large enough, convert VALUE to hex and add it to
9568 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9569 decrease *LEFT. Otherwise raise an error. */
9570
9571 static void
9572 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9573 {
9574 int len = hexnumlen (value);
9575
9576 if (len > *left)
9577 error (_("Packet too long for target."));
9578
9579 hexnumstr (*buffer, value);
9580 *buffer += len;
9581 *left -= len;
9582
9583 /* NUL-terminate the buffer as a convenience, if there is
9584 room. */
9585 if (*left)
9586 **buffer = '\0';
9587 }
9588
9589 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9590 value, *REMOTE_ERRNO to the remote error number or zero if none
9591 was included, and *ATTACHMENT to point to the start of the annex
9592 if any. The length of the packet isn't needed here; there may
9593 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9594
9595 Return 0 if the packet could be parsed, -1 if it could not. If
9596 -1 is returned, the other variables may not be initialized. */
9597
9598 static int
9599 remote_hostio_parse_result (char *buffer, int *retcode,
9600 int *remote_errno, char **attachment)
9601 {
9602 char *p, *p2;
9603
9604 *remote_errno = 0;
9605 *attachment = NULL;
9606
9607 if (buffer[0] != 'F')
9608 return -1;
9609
9610 errno = 0;
9611 *retcode = strtol (&buffer[1], &p, 16);
9612 if (errno != 0 || p == &buffer[1])
9613 return -1;
9614
9615 /* Check for ",errno". */
9616 if (*p == ',')
9617 {
9618 errno = 0;
9619 *remote_errno = strtol (p + 1, &p2, 16);
9620 if (errno != 0 || p + 1 == p2)
9621 return -1;
9622 p = p2;
9623 }
9624
9625 /* Check for ";attachment". If there is no attachment, the
9626 packet should end here. */
9627 if (*p == ';')
9628 {
9629 *attachment = p + 1;
9630 return 0;
9631 }
9632 else if (*p == '\0')
9633 return 0;
9634 else
9635 return -1;
9636 }
9637
9638 /* Send a prepared I/O packet to the target and read its response.
9639 The prepared packet is in the global RS->BUF before this function
9640 is called, and the answer is there when we return.
9641
9642 COMMAND_BYTES is the length of the request to send, which may include
9643 binary data. WHICH_PACKET is the packet configuration to check
9644 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9645 is set to the error number and -1 is returned. Otherwise the value
9646 returned by the function is returned.
9647
9648 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9649 attachment is expected; an error will be reported if there's a
9650 mismatch. If one is found, *ATTACHMENT will be set to point into
9651 the packet buffer and *ATTACHMENT_LEN will be set to the
9652 attachment's length. */
9653
9654 static int
9655 remote_hostio_send_command (int command_bytes, int which_packet,
9656 int *remote_errno, char **attachment,
9657 int *attachment_len)
9658 {
9659 struct remote_state *rs = get_remote_state ();
9660 int ret, bytes_read;
9661 char *attachment_tmp;
9662
9663 if (!rs->remote_desc
9664 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9665 {
9666 *remote_errno = FILEIO_ENOSYS;
9667 return -1;
9668 }
9669
9670 putpkt_binary (rs->buf, command_bytes);
9671 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9672
9673 /* If it timed out, something is wrong. Don't try to parse the
9674 buffer. */
9675 if (bytes_read < 0)
9676 {
9677 *remote_errno = FILEIO_EINVAL;
9678 return -1;
9679 }
9680
9681 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9682 {
9683 case PACKET_ERROR:
9684 *remote_errno = FILEIO_EINVAL;
9685 return -1;
9686 case PACKET_UNKNOWN:
9687 *remote_errno = FILEIO_ENOSYS;
9688 return -1;
9689 case PACKET_OK:
9690 break;
9691 }
9692
9693 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9694 &attachment_tmp))
9695 {
9696 *remote_errno = FILEIO_EINVAL;
9697 return -1;
9698 }
9699
9700 /* Make sure we saw an attachment if and only if we expected one. */
9701 if ((attachment_tmp == NULL && attachment != NULL)
9702 || (attachment_tmp != NULL && attachment == NULL))
9703 {
9704 *remote_errno = FILEIO_EINVAL;
9705 return -1;
9706 }
9707
9708 /* If an attachment was found, it must point into the packet buffer;
9709 work out how many bytes there were. */
9710 if (attachment_tmp != NULL)
9711 {
9712 *attachment = attachment_tmp;
9713 *attachment_len = bytes_read - (*attachment - rs->buf);
9714 }
9715
9716 return ret;
9717 }
9718
9719 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9720 remote file descriptor, or -1 if an error occurs (and set
9721 *REMOTE_ERRNO). */
9722
9723 static int
9724 remote_hostio_open (const char *filename, int flags, int mode,
9725 int *remote_errno)
9726 {
9727 struct remote_state *rs = get_remote_state ();
9728 char *p = rs->buf;
9729 int left = get_remote_packet_size () - 1;
9730
9731 remote_buffer_add_string (&p, &left, "vFile:open:");
9732
9733 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9734 strlen (filename));
9735 remote_buffer_add_string (&p, &left, ",");
9736
9737 remote_buffer_add_int (&p, &left, flags);
9738 remote_buffer_add_string (&p, &left, ",");
9739
9740 remote_buffer_add_int (&p, &left, mode);
9741
9742 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9743 remote_errno, NULL, NULL);
9744 }
9745
9746 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9747 Return the number of bytes written, or -1 if an error occurs (and
9748 set *REMOTE_ERRNO). */
9749
9750 static int
9751 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9752 ULONGEST offset, int *remote_errno)
9753 {
9754 struct remote_state *rs = get_remote_state ();
9755 char *p = rs->buf;
9756 int left = get_remote_packet_size ();
9757 int out_len;
9758
9759 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9760
9761 remote_buffer_add_int (&p, &left, fd);
9762 remote_buffer_add_string (&p, &left, ",");
9763
9764 remote_buffer_add_int (&p, &left, offset);
9765 remote_buffer_add_string (&p, &left, ",");
9766
9767 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9768 get_remote_packet_size () - (p - rs->buf));
9769
9770 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9771 remote_errno, NULL, NULL);
9772 }
9773
9774 /* Read up to LEN bytes FD on the remote target into READ_BUF
9775 Return the number of bytes read, or -1 if an error occurs (and
9776 set *REMOTE_ERRNO). */
9777
9778 static int
9779 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9780 ULONGEST offset, int *remote_errno)
9781 {
9782 struct remote_state *rs = get_remote_state ();
9783 char *p = rs->buf;
9784 char *attachment;
9785 int left = get_remote_packet_size ();
9786 int ret, attachment_len;
9787 int read_len;
9788
9789 remote_buffer_add_string (&p, &left, "vFile:pread:");
9790
9791 remote_buffer_add_int (&p, &left, fd);
9792 remote_buffer_add_string (&p, &left, ",");
9793
9794 remote_buffer_add_int (&p, &left, len);
9795 remote_buffer_add_string (&p, &left, ",");
9796
9797 remote_buffer_add_int (&p, &left, offset);
9798
9799 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9800 remote_errno, &attachment,
9801 &attachment_len);
9802
9803 if (ret < 0)
9804 return ret;
9805
9806 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9807 read_buf, len);
9808 if (read_len != ret)
9809 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9810
9811 return ret;
9812 }
9813
9814 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9815 (and set *REMOTE_ERRNO). */
9816
9817 static int
9818 remote_hostio_close (int fd, int *remote_errno)
9819 {
9820 struct remote_state *rs = get_remote_state ();
9821 char *p = rs->buf;
9822 int left = get_remote_packet_size () - 1;
9823
9824 remote_buffer_add_string (&p, &left, "vFile:close:");
9825
9826 remote_buffer_add_int (&p, &left, fd);
9827
9828 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9829 remote_errno, NULL, NULL);
9830 }
9831
9832 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9833 occurs (and set *REMOTE_ERRNO). */
9834
9835 static int
9836 remote_hostio_unlink (const char *filename, int *remote_errno)
9837 {
9838 struct remote_state *rs = get_remote_state ();
9839 char *p = rs->buf;
9840 int left = get_remote_packet_size () - 1;
9841
9842 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9843
9844 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9845 strlen (filename));
9846
9847 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9848 remote_errno, NULL, NULL);
9849 }
9850
9851 /* Read value of symbolic link FILENAME on the remote target. Return
9852 a null-terminated string allocated via xmalloc, or NULL if an error
9853 occurs (and set *REMOTE_ERRNO). */
9854
9855 static char *
9856 remote_hostio_readlink (const char *filename, int *remote_errno)
9857 {
9858 struct remote_state *rs = get_remote_state ();
9859 char *p = rs->buf;
9860 char *attachment;
9861 int left = get_remote_packet_size ();
9862 int len, attachment_len;
9863 int read_len;
9864 char *ret;
9865
9866 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9867
9868 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9869 strlen (filename));
9870
9871 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9872 remote_errno, &attachment,
9873 &attachment_len);
9874
9875 if (len < 0)
9876 return NULL;
9877
9878 ret = xmalloc (len + 1);
9879
9880 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9881 (gdb_byte *) ret, len);
9882 if (read_len != len)
9883 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9884
9885 ret[len] = '\0';
9886 return ret;
9887 }
9888
9889 static int
9890 remote_fileio_errno_to_host (int errnum)
9891 {
9892 switch (errnum)
9893 {
9894 case FILEIO_EPERM:
9895 return EPERM;
9896 case FILEIO_ENOENT:
9897 return ENOENT;
9898 case FILEIO_EINTR:
9899 return EINTR;
9900 case FILEIO_EIO:
9901 return EIO;
9902 case FILEIO_EBADF:
9903 return EBADF;
9904 case FILEIO_EACCES:
9905 return EACCES;
9906 case FILEIO_EFAULT:
9907 return EFAULT;
9908 case FILEIO_EBUSY:
9909 return EBUSY;
9910 case FILEIO_EEXIST:
9911 return EEXIST;
9912 case FILEIO_ENODEV:
9913 return ENODEV;
9914 case FILEIO_ENOTDIR:
9915 return ENOTDIR;
9916 case FILEIO_EISDIR:
9917 return EISDIR;
9918 case FILEIO_EINVAL:
9919 return EINVAL;
9920 case FILEIO_ENFILE:
9921 return ENFILE;
9922 case FILEIO_EMFILE:
9923 return EMFILE;
9924 case FILEIO_EFBIG:
9925 return EFBIG;
9926 case FILEIO_ENOSPC:
9927 return ENOSPC;
9928 case FILEIO_ESPIPE:
9929 return ESPIPE;
9930 case FILEIO_EROFS:
9931 return EROFS;
9932 case FILEIO_ENOSYS:
9933 return ENOSYS;
9934 case FILEIO_ENAMETOOLONG:
9935 return ENAMETOOLONG;
9936 }
9937 return -1;
9938 }
9939
9940 static char *
9941 remote_hostio_error (int errnum)
9942 {
9943 int host_error = remote_fileio_errno_to_host (errnum);
9944
9945 if (host_error == -1)
9946 error (_("Unknown remote I/O error %d"), errnum);
9947 else
9948 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9949 }
9950
9951 static void
9952 remote_hostio_close_cleanup (void *opaque)
9953 {
9954 int fd = *(int *) opaque;
9955 int remote_errno;
9956
9957 remote_hostio_close (fd, &remote_errno);
9958 }
9959
9960
9961 static void *
9962 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9963 {
9964 const char *filename = bfd_get_filename (abfd);
9965 int fd, remote_errno;
9966 int *stream;
9967
9968 gdb_assert (remote_filename_p (filename));
9969
9970 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9971 if (fd == -1)
9972 {
9973 errno = remote_fileio_errno_to_host (remote_errno);
9974 bfd_set_error (bfd_error_system_call);
9975 return NULL;
9976 }
9977
9978 stream = xmalloc (sizeof (int));
9979 *stream = fd;
9980 return stream;
9981 }
9982
9983 static int
9984 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9985 {
9986 int fd = *(int *)stream;
9987 int remote_errno;
9988
9989 xfree (stream);
9990
9991 /* Ignore errors on close; these may happen if the remote
9992 connection was already torn down. */
9993 remote_hostio_close (fd, &remote_errno);
9994
9995 /* Zero means success. */
9996 return 0;
9997 }
9998
9999 static file_ptr
10000 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10001 file_ptr nbytes, file_ptr offset)
10002 {
10003 int fd = *(int *)stream;
10004 int remote_errno;
10005 file_ptr pos, bytes;
10006
10007 pos = 0;
10008 while (nbytes > pos)
10009 {
10010 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10011 offset + pos, &remote_errno);
10012 if (bytes == 0)
10013 /* Success, but no bytes, means end-of-file. */
10014 break;
10015 if (bytes == -1)
10016 {
10017 errno = remote_fileio_errno_to_host (remote_errno);
10018 bfd_set_error (bfd_error_system_call);
10019 return -1;
10020 }
10021
10022 pos += bytes;
10023 }
10024
10025 return pos;
10026 }
10027
10028 static int
10029 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10030 {
10031 /* FIXME: We should probably implement remote_hostio_stat. */
10032 sb->st_size = INT_MAX;
10033 return 0;
10034 }
10035
10036 int
10037 remote_filename_p (const char *filename)
10038 {
10039 return strncmp (filename, "remote:", 7) == 0;
10040 }
10041
10042 bfd *
10043 remote_bfd_open (const char *remote_file, const char *target)
10044 {
10045 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10046 remote_bfd_iovec_open, NULL,
10047 remote_bfd_iovec_pread,
10048 remote_bfd_iovec_close,
10049 remote_bfd_iovec_stat);
10050
10051 return abfd;
10052 }
10053
10054 void
10055 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10056 {
10057 struct cleanup *back_to, *close_cleanup;
10058 int retcode, fd, remote_errno, bytes, io_size;
10059 FILE *file;
10060 gdb_byte *buffer;
10061 int bytes_in_buffer;
10062 int saw_eof;
10063 ULONGEST offset;
10064 struct remote_state *rs = get_remote_state ();
10065
10066 if (!rs->remote_desc)
10067 error (_("command can only be used with remote target"));
10068
10069 file = gdb_fopen_cloexec (local_file, "rb");
10070 if (file == NULL)
10071 perror_with_name (local_file);
10072 back_to = make_cleanup_fclose (file);
10073
10074 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10075 | FILEIO_O_TRUNC),
10076 0700, &remote_errno);
10077 if (fd == -1)
10078 remote_hostio_error (remote_errno);
10079
10080 /* Send up to this many bytes at once. They won't all fit in the
10081 remote packet limit, so we'll transfer slightly fewer. */
10082 io_size = get_remote_packet_size ();
10083 buffer = xmalloc (io_size);
10084 make_cleanup (xfree, buffer);
10085
10086 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10087
10088 bytes_in_buffer = 0;
10089 saw_eof = 0;
10090 offset = 0;
10091 while (bytes_in_buffer || !saw_eof)
10092 {
10093 if (!saw_eof)
10094 {
10095 bytes = fread (buffer + bytes_in_buffer, 1,
10096 io_size - bytes_in_buffer,
10097 file);
10098 if (bytes == 0)
10099 {
10100 if (ferror (file))
10101 error (_("Error reading %s."), local_file);
10102 else
10103 {
10104 /* EOF. Unless there is something still in the
10105 buffer from the last iteration, we are done. */
10106 saw_eof = 1;
10107 if (bytes_in_buffer == 0)
10108 break;
10109 }
10110 }
10111 }
10112 else
10113 bytes = 0;
10114
10115 bytes += bytes_in_buffer;
10116 bytes_in_buffer = 0;
10117
10118 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10119 offset, &remote_errno);
10120
10121 if (retcode < 0)
10122 remote_hostio_error (remote_errno);
10123 else if (retcode == 0)
10124 error (_("Remote write of %d bytes returned 0!"), bytes);
10125 else if (retcode < bytes)
10126 {
10127 /* Short write. Save the rest of the read data for the next
10128 write. */
10129 bytes_in_buffer = bytes - retcode;
10130 memmove (buffer, buffer + retcode, bytes_in_buffer);
10131 }
10132
10133 offset += retcode;
10134 }
10135
10136 discard_cleanups (close_cleanup);
10137 if (remote_hostio_close (fd, &remote_errno))
10138 remote_hostio_error (remote_errno);
10139
10140 if (from_tty)
10141 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10142 do_cleanups (back_to);
10143 }
10144
10145 void
10146 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10147 {
10148 struct cleanup *back_to, *close_cleanup;
10149 int fd, remote_errno, bytes, io_size;
10150 FILE *file;
10151 gdb_byte *buffer;
10152 ULONGEST offset;
10153 struct remote_state *rs = get_remote_state ();
10154
10155 if (!rs->remote_desc)
10156 error (_("command can only be used with remote target"));
10157
10158 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10159 if (fd == -1)
10160 remote_hostio_error (remote_errno);
10161
10162 file = gdb_fopen_cloexec (local_file, "wb");
10163 if (file == NULL)
10164 perror_with_name (local_file);
10165 back_to = make_cleanup_fclose (file);
10166
10167 /* Send up to this many bytes at once. They won't all fit in the
10168 remote packet limit, so we'll transfer slightly fewer. */
10169 io_size = get_remote_packet_size ();
10170 buffer = xmalloc (io_size);
10171 make_cleanup (xfree, buffer);
10172
10173 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10174
10175 offset = 0;
10176 while (1)
10177 {
10178 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10179 if (bytes == 0)
10180 /* Success, but no bytes, means end-of-file. */
10181 break;
10182 if (bytes == -1)
10183 remote_hostio_error (remote_errno);
10184
10185 offset += bytes;
10186
10187 bytes = fwrite (buffer, 1, bytes, file);
10188 if (bytes == 0)
10189 perror_with_name (local_file);
10190 }
10191
10192 discard_cleanups (close_cleanup);
10193 if (remote_hostio_close (fd, &remote_errno))
10194 remote_hostio_error (remote_errno);
10195
10196 if (from_tty)
10197 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10198 do_cleanups (back_to);
10199 }
10200
10201 void
10202 remote_file_delete (const char *remote_file, int from_tty)
10203 {
10204 int retcode, remote_errno;
10205 struct remote_state *rs = get_remote_state ();
10206
10207 if (!rs->remote_desc)
10208 error (_("command can only be used with remote target"));
10209
10210 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10211 if (retcode == -1)
10212 remote_hostio_error (remote_errno);
10213
10214 if (from_tty)
10215 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10216 }
10217
10218 static void
10219 remote_put_command (char *args, int from_tty)
10220 {
10221 struct cleanup *back_to;
10222 char **argv;
10223
10224 if (args == NULL)
10225 error_no_arg (_("file to put"));
10226
10227 argv = gdb_buildargv (args);
10228 back_to = make_cleanup_freeargv (argv);
10229 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10230 error (_("Invalid parameters to remote put"));
10231
10232 remote_file_put (argv[0], argv[1], from_tty);
10233
10234 do_cleanups (back_to);
10235 }
10236
10237 static void
10238 remote_get_command (char *args, int from_tty)
10239 {
10240 struct cleanup *back_to;
10241 char **argv;
10242
10243 if (args == NULL)
10244 error_no_arg (_("file to get"));
10245
10246 argv = gdb_buildargv (args);
10247 back_to = make_cleanup_freeargv (argv);
10248 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10249 error (_("Invalid parameters to remote get"));
10250
10251 remote_file_get (argv[0], argv[1], from_tty);
10252
10253 do_cleanups (back_to);
10254 }
10255
10256 static void
10257 remote_delete_command (char *args, int from_tty)
10258 {
10259 struct cleanup *back_to;
10260 char **argv;
10261
10262 if (args == NULL)
10263 error_no_arg (_("file to delete"));
10264
10265 argv = gdb_buildargv (args);
10266 back_to = make_cleanup_freeargv (argv);
10267 if (argv[0] == NULL || argv[1] != NULL)
10268 error (_("Invalid parameters to remote delete"));
10269
10270 remote_file_delete (argv[0], from_tty);
10271
10272 do_cleanups (back_to);
10273 }
10274
10275 static void
10276 remote_command (char *args, int from_tty)
10277 {
10278 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10279 }
10280
10281 static int
10282 remote_can_execute_reverse (void)
10283 {
10284 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10285 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10286 return 1;
10287 else
10288 return 0;
10289 }
10290
10291 static int
10292 remote_supports_non_stop (void)
10293 {
10294 return 1;
10295 }
10296
10297 static int
10298 remote_supports_disable_randomization (void)
10299 {
10300 /* Only supported in extended mode. */
10301 return 0;
10302 }
10303
10304 static int
10305 remote_supports_multi_process (void)
10306 {
10307 struct remote_state *rs = get_remote_state ();
10308
10309 /* Only extended-remote handles being attached to multiple
10310 processes, even though plain remote can use the multi-process
10311 thread id extensions, so that GDB knows the target process's
10312 PID. */
10313 return rs->extended && remote_multi_process_p (rs);
10314 }
10315
10316 static int
10317 remote_supports_cond_tracepoints (void)
10318 {
10319 struct remote_state *rs = get_remote_state ();
10320
10321 return rs->cond_tracepoints;
10322 }
10323
10324 static int
10325 remote_supports_cond_breakpoints (void)
10326 {
10327 struct remote_state *rs = get_remote_state ();
10328
10329 return rs->cond_breakpoints;
10330 }
10331
10332 static int
10333 remote_supports_fast_tracepoints (void)
10334 {
10335 struct remote_state *rs = get_remote_state ();
10336
10337 return rs->fast_tracepoints;
10338 }
10339
10340 static int
10341 remote_supports_static_tracepoints (void)
10342 {
10343 struct remote_state *rs = get_remote_state ();
10344
10345 return rs->static_tracepoints;
10346 }
10347
10348 static int
10349 remote_supports_install_in_trace (void)
10350 {
10351 struct remote_state *rs = get_remote_state ();
10352
10353 return rs->install_in_trace;
10354 }
10355
10356 static int
10357 remote_supports_enable_disable_tracepoint (void)
10358 {
10359 struct remote_state *rs = get_remote_state ();
10360
10361 return rs->enable_disable_tracepoints;
10362 }
10363
10364 static int
10365 remote_supports_string_tracing (void)
10366 {
10367 struct remote_state *rs = get_remote_state ();
10368
10369 return rs->string_tracing;
10370 }
10371
10372 static int
10373 remote_can_run_breakpoint_commands (void)
10374 {
10375 struct remote_state *rs = get_remote_state ();
10376
10377 return rs->breakpoint_commands;
10378 }
10379
10380 static void
10381 remote_trace_init (void)
10382 {
10383 putpkt ("QTinit");
10384 remote_get_noisy_reply (&target_buf, &target_buf_size);
10385 if (strcmp (target_buf, "OK") != 0)
10386 error (_("Target does not support this command."));
10387 }
10388
10389 static void free_actions_list (char **actions_list);
10390 static void free_actions_list_cleanup_wrapper (void *);
10391 static void
10392 free_actions_list_cleanup_wrapper (void *al)
10393 {
10394 free_actions_list (al);
10395 }
10396
10397 static void
10398 free_actions_list (char **actions_list)
10399 {
10400 int ndx;
10401
10402 if (actions_list == 0)
10403 return;
10404
10405 for (ndx = 0; actions_list[ndx]; ndx++)
10406 xfree (actions_list[ndx]);
10407
10408 xfree (actions_list);
10409 }
10410
10411 /* Recursive routine to walk through command list including loops, and
10412 download packets for each command. */
10413
10414 static void
10415 remote_download_command_source (int num, ULONGEST addr,
10416 struct command_line *cmds)
10417 {
10418 struct remote_state *rs = get_remote_state ();
10419 struct command_line *cmd;
10420
10421 for (cmd = cmds; cmd; cmd = cmd->next)
10422 {
10423 QUIT; /* Allow user to bail out with ^C. */
10424 strcpy (rs->buf, "QTDPsrc:");
10425 encode_source_string (num, addr, "cmd", cmd->line,
10426 rs->buf + strlen (rs->buf),
10427 rs->buf_size - strlen (rs->buf));
10428 putpkt (rs->buf);
10429 remote_get_noisy_reply (&target_buf, &target_buf_size);
10430 if (strcmp (target_buf, "OK"))
10431 warning (_("Target does not support source download."));
10432
10433 if (cmd->control_type == while_control
10434 || cmd->control_type == while_stepping_control)
10435 {
10436 remote_download_command_source (num, addr, *cmd->body_list);
10437
10438 QUIT; /* Allow user to bail out with ^C. */
10439 strcpy (rs->buf, "QTDPsrc:");
10440 encode_source_string (num, addr, "cmd", "end",
10441 rs->buf + strlen (rs->buf),
10442 rs->buf_size - strlen (rs->buf));
10443 putpkt (rs->buf);
10444 remote_get_noisy_reply (&target_buf, &target_buf_size);
10445 if (strcmp (target_buf, "OK"))
10446 warning (_("Target does not support source download."));
10447 }
10448 }
10449 }
10450
10451 static void
10452 remote_download_tracepoint (struct bp_location *loc)
10453 {
10454 #define BUF_SIZE 2048
10455
10456 CORE_ADDR tpaddr;
10457 char addrbuf[40];
10458 char buf[BUF_SIZE];
10459 char **tdp_actions;
10460 char **stepping_actions;
10461 int ndx;
10462 struct cleanup *old_chain = NULL;
10463 struct agent_expr *aexpr;
10464 struct cleanup *aexpr_chain = NULL;
10465 char *pkt;
10466 struct breakpoint *b = loc->owner;
10467 struct tracepoint *t = (struct tracepoint *) b;
10468
10469 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10470 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10471 tdp_actions);
10472 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10473 stepping_actions);
10474
10475 tpaddr = loc->address;
10476 sprintf_vma (addrbuf, tpaddr);
10477 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10478 addrbuf, /* address */
10479 (b->enable_state == bp_enabled ? 'E' : 'D'),
10480 t->step_count, t->pass_count);
10481 /* Fast tracepoints are mostly handled by the target, but we can
10482 tell the target how big of an instruction block should be moved
10483 around. */
10484 if (b->type == bp_fast_tracepoint)
10485 {
10486 /* Only test for support at download time; we may not know
10487 target capabilities at definition time. */
10488 if (remote_supports_fast_tracepoints ())
10489 {
10490 int isize;
10491
10492 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10493 tpaddr, &isize, NULL))
10494 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10495 isize);
10496 else
10497 /* If it passed validation at definition but fails now,
10498 something is very wrong. */
10499 internal_error (__FILE__, __LINE__,
10500 _("Fast tracepoint not "
10501 "valid during download"));
10502 }
10503 else
10504 /* Fast tracepoints are functionally identical to regular
10505 tracepoints, so don't take lack of support as a reason to
10506 give up on the trace run. */
10507 warning (_("Target does not support fast tracepoints, "
10508 "downloading %d as regular tracepoint"), b->number);
10509 }
10510 else if (b->type == bp_static_tracepoint)
10511 {
10512 /* Only test for support at download time; we may not know
10513 target capabilities at definition time. */
10514 if (remote_supports_static_tracepoints ())
10515 {
10516 struct static_tracepoint_marker marker;
10517
10518 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10519 strcat (buf, ":S");
10520 else
10521 error (_("Static tracepoint not valid during download"));
10522 }
10523 else
10524 /* Fast tracepoints are functionally identical to regular
10525 tracepoints, so don't take lack of support as a reason
10526 to give up on the trace run. */
10527 error (_("Target does not support static tracepoints"));
10528 }
10529 /* If the tracepoint has a conditional, make it into an agent
10530 expression and append to the definition. */
10531 if (loc->cond)
10532 {
10533 /* Only test support at download time, we may not know target
10534 capabilities at definition time. */
10535 if (remote_supports_cond_tracepoints ())
10536 {
10537 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10538 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10539 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10540 aexpr->len);
10541 pkt = buf + strlen (buf);
10542 for (ndx = 0; ndx < aexpr->len; ++ndx)
10543 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10544 *pkt = '\0';
10545 do_cleanups (aexpr_chain);
10546 }
10547 else
10548 warning (_("Target does not support conditional tracepoints, "
10549 "ignoring tp %d cond"), b->number);
10550 }
10551
10552 if (b->commands || *default_collect)
10553 strcat (buf, "-");
10554 putpkt (buf);
10555 remote_get_noisy_reply (&target_buf, &target_buf_size);
10556 if (strcmp (target_buf, "OK"))
10557 error (_("Target does not support tracepoints."));
10558
10559 /* do_single_steps (t); */
10560 if (tdp_actions)
10561 {
10562 for (ndx = 0; tdp_actions[ndx]; ndx++)
10563 {
10564 QUIT; /* Allow user to bail out with ^C. */
10565 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10566 b->number, addrbuf, /* address */
10567 tdp_actions[ndx],
10568 ((tdp_actions[ndx + 1] || stepping_actions)
10569 ? '-' : 0));
10570 putpkt (buf);
10571 remote_get_noisy_reply (&target_buf,
10572 &target_buf_size);
10573 if (strcmp (target_buf, "OK"))
10574 error (_("Error on target while setting tracepoints."));
10575 }
10576 }
10577 if (stepping_actions)
10578 {
10579 for (ndx = 0; stepping_actions[ndx]; ndx++)
10580 {
10581 QUIT; /* Allow user to bail out with ^C. */
10582 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10583 b->number, addrbuf, /* address */
10584 ((ndx == 0) ? "S" : ""),
10585 stepping_actions[ndx],
10586 (stepping_actions[ndx + 1] ? "-" : ""));
10587 putpkt (buf);
10588 remote_get_noisy_reply (&target_buf,
10589 &target_buf_size);
10590 if (strcmp (target_buf, "OK"))
10591 error (_("Error on target while setting tracepoints."));
10592 }
10593 }
10594
10595 if (remote_protocol_packets[PACKET_TracepointSource].support
10596 == PACKET_ENABLE)
10597 {
10598 if (b->addr_string)
10599 {
10600 strcpy (buf, "QTDPsrc:");
10601 encode_source_string (b->number, loc->address,
10602 "at", b->addr_string, buf + strlen (buf),
10603 2048 - strlen (buf));
10604
10605 putpkt (buf);
10606 remote_get_noisy_reply (&target_buf, &target_buf_size);
10607 if (strcmp (target_buf, "OK"))
10608 warning (_("Target does not support source download."));
10609 }
10610 if (b->cond_string)
10611 {
10612 strcpy (buf, "QTDPsrc:");
10613 encode_source_string (b->number, loc->address,
10614 "cond", b->cond_string, buf + strlen (buf),
10615 2048 - strlen (buf));
10616 putpkt (buf);
10617 remote_get_noisy_reply (&target_buf, &target_buf_size);
10618 if (strcmp (target_buf, "OK"))
10619 warning (_("Target does not support source download."));
10620 }
10621 remote_download_command_source (b->number, loc->address,
10622 breakpoint_commands (b));
10623 }
10624
10625 do_cleanups (old_chain);
10626 }
10627
10628 static int
10629 remote_can_download_tracepoint (void)
10630 {
10631 struct remote_state *rs = get_remote_state ();
10632 struct trace_status *ts;
10633 int status;
10634
10635 /* Don't try to install tracepoints until we've relocated our
10636 symbols, and fetched and merged the target's tracepoint list with
10637 ours. */
10638 if (rs->starting_up)
10639 return 0;
10640
10641 ts = current_trace_status ();
10642 status = remote_get_trace_status (ts);
10643
10644 if (status == -1 || !ts->running_known || !ts->running)
10645 return 0;
10646
10647 /* If we are in a tracing experiment, but remote stub doesn't support
10648 installing tracepoint in trace, we have to return. */
10649 if (!remote_supports_install_in_trace ())
10650 return 0;
10651
10652 return 1;
10653 }
10654
10655
10656 static void
10657 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10658 {
10659 struct remote_state *rs = get_remote_state ();
10660 char *p;
10661
10662 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10663 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10664 tsv->builtin);
10665 p = rs->buf + strlen (rs->buf);
10666 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10667 error (_("Trace state variable name too long for tsv definition packet"));
10668 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10669 *p++ = '\0';
10670 putpkt (rs->buf);
10671 remote_get_noisy_reply (&target_buf, &target_buf_size);
10672 if (*target_buf == '\0')
10673 error (_("Target does not support this command."));
10674 if (strcmp (target_buf, "OK") != 0)
10675 error (_("Error on target while downloading trace state variable."));
10676 }
10677
10678 static void
10679 remote_enable_tracepoint (struct bp_location *location)
10680 {
10681 struct remote_state *rs = get_remote_state ();
10682 char addr_buf[40];
10683
10684 sprintf_vma (addr_buf, location->address);
10685 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10686 location->owner->number, addr_buf);
10687 putpkt (rs->buf);
10688 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10689 if (*rs->buf == '\0')
10690 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10691 if (strcmp (rs->buf, "OK") != 0)
10692 error (_("Error on target while enabling tracepoint."));
10693 }
10694
10695 static void
10696 remote_disable_tracepoint (struct bp_location *location)
10697 {
10698 struct remote_state *rs = get_remote_state ();
10699 char addr_buf[40];
10700
10701 sprintf_vma (addr_buf, location->address);
10702 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10703 location->owner->number, addr_buf);
10704 putpkt (rs->buf);
10705 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10706 if (*rs->buf == '\0')
10707 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10708 if (strcmp (rs->buf, "OK") != 0)
10709 error (_("Error on target while disabling tracepoint."));
10710 }
10711
10712 static void
10713 remote_trace_set_readonly_regions (void)
10714 {
10715 asection *s;
10716 bfd *abfd = NULL;
10717 bfd_size_type size;
10718 bfd_vma vma;
10719 int anysecs = 0;
10720 int offset = 0;
10721
10722 if (!exec_bfd)
10723 return; /* No information to give. */
10724
10725 strcpy (target_buf, "QTro");
10726 offset = strlen (target_buf);
10727 for (s = exec_bfd->sections; s; s = s->next)
10728 {
10729 char tmp1[40], tmp2[40];
10730 int sec_length;
10731
10732 if ((s->flags & SEC_LOAD) == 0 ||
10733 /* (s->flags & SEC_CODE) == 0 || */
10734 (s->flags & SEC_READONLY) == 0)
10735 continue;
10736
10737 anysecs = 1;
10738 vma = bfd_get_section_vma (abfd, s);
10739 size = bfd_get_section_size (s);
10740 sprintf_vma (tmp1, vma);
10741 sprintf_vma (tmp2, vma + size);
10742 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10743 if (offset + sec_length + 1 > target_buf_size)
10744 {
10745 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10746 != PACKET_ENABLE)
10747 warning (_("\
10748 Too many sections for read-only sections definition packet."));
10749 break;
10750 }
10751 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10752 tmp1, tmp2);
10753 offset += sec_length;
10754 }
10755 if (anysecs)
10756 {
10757 putpkt (target_buf);
10758 getpkt (&target_buf, &target_buf_size, 0);
10759 }
10760 }
10761
10762 static void
10763 remote_trace_start (void)
10764 {
10765 putpkt ("QTStart");
10766 remote_get_noisy_reply (&target_buf, &target_buf_size);
10767 if (*target_buf == '\0')
10768 error (_("Target does not support this command."));
10769 if (strcmp (target_buf, "OK") != 0)
10770 error (_("Bogus reply from target: %s"), target_buf);
10771 }
10772
10773 static int
10774 remote_get_trace_status (struct trace_status *ts)
10775 {
10776 /* Initialize it just to avoid a GCC false warning. */
10777 char *p = NULL;
10778 /* FIXME we need to get register block size some other way. */
10779 extern int trace_regblock_size;
10780 volatile struct gdb_exception ex;
10781 enum packet_result result;
10782
10783 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10784 return -1;
10785
10786 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10787
10788 putpkt ("qTStatus");
10789
10790 TRY_CATCH (ex, RETURN_MASK_ERROR)
10791 {
10792 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10793 }
10794 if (ex.reason < 0)
10795 {
10796 if (ex.error != TARGET_CLOSE_ERROR)
10797 {
10798 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10799 return -1;
10800 }
10801 throw_exception (ex);
10802 }
10803
10804 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10805
10806 /* If the remote target doesn't do tracing, flag it. */
10807 if (result == PACKET_UNKNOWN)
10808 return -1;
10809
10810 /* We're working with a live target. */
10811 ts->filename = NULL;
10812
10813 if (*p++ != 'T')
10814 error (_("Bogus trace status reply from target: %s"), target_buf);
10815
10816 /* Function 'parse_trace_status' sets default value of each field of
10817 'ts' at first, so we don't have to do it here. */
10818 parse_trace_status (p, ts);
10819
10820 return ts->running;
10821 }
10822
10823 static void
10824 remote_get_tracepoint_status (struct breakpoint *bp,
10825 struct uploaded_tp *utp)
10826 {
10827 struct remote_state *rs = get_remote_state ();
10828 char *reply;
10829 struct bp_location *loc;
10830 struct tracepoint *tp = (struct tracepoint *) bp;
10831 size_t size = get_remote_packet_size ();
10832
10833 if (tp)
10834 {
10835 tp->base.hit_count = 0;
10836 tp->traceframe_usage = 0;
10837 for (loc = tp->base.loc; loc; loc = loc->next)
10838 {
10839 /* If the tracepoint was never downloaded, don't go asking for
10840 any status. */
10841 if (tp->number_on_target == 0)
10842 continue;
10843 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10844 phex_nz (loc->address, 0));
10845 putpkt (rs->buf);
10846 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10847 if (reply && *reply)
10848 {
10849 if (*reply == 'V')
10850 parse_tracepoint_status (reply + 1, bp, utp);
10851 }
10852 }
10853 }
10854 else if (utp)
10855 {
10856 utp->hit_count = 0;
10857 utp->traceframe_usage = 0;
10858 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10859 phex_nz (utp->addr, 0));
10860 putpkt (rs->buf);
10861 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10862 if (reply && *reply)
10863 {
10864 if (*reply == 'V')
10865 parse_tracepoint_status (reply + 1, bp, utp);
10866 }
10867 }
10868 }
10869
10870 static void
10871 remote_trace_stop (void)
10872 {
10873 putpkt ("QTStop");
10874 remote_get_noisy_reply (&target_buf, &target_buf_size);
10875 if (*target_buf == '\0')
10876 error (_("Target does not support this command."));
10877 if (strcmp (target_buf, "OK") != 0)
10878 error (_("Bogus reply from target: %s"), target_buf);
10879 }
10880
10881 static int
10882 remote_trace_find (enum trace_find_type type, int num,
10883 CORE_ADDR addr1, CORE_ADDR addr2,
10884 int *tpp)
10885 {
10886 struct remote_state *rs = get_remote_state ();
10887 char *endbuf = rs->buf + get_remote_packet_size ();
10888 char *p, *reply;
10889 int target_frameno = -1, target_tracept = -1;
10890
10891 /* Lookups other than by absolute frame number depend on the current
10892 trace selected, so make sure it is correct on the remote end
10893 first. */
10894 if (type != tfind_number)
10895 set_remote_traceframe ();
10896
10897 p = rs->buf;
10898 strcpy (p, "QTFrame:");
10899 p = strchr (p, '\0');
10900 switch (type)
10901 {
10902 case tfind_number:
10903 xsnprintf (p, endbuf - p, "%x", num);
10904 break;
10905 case tfind_pc:
10906 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10907 break;
10908 case tfind_tp:
10909 xsnprintf (p, endbuf - p, "tdp:%x", num);
10910 break;
10911 case tfind_range:
10912 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10913 phex_nz (addr2, 0));
10914 break;
10915 case tfind_outside:
10916 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10917 phex_nz (addr2, 0));
10918 break;
10919 default:
10920 error (_("Unknown trace find type %d"), type);
10921 }
10922
10923 putpkt (rs->buf);
10924 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
10925 if (*reply == '\0')
10926 error (_("Target does not support this command."));
10927
10928 while (reply && *reply)
10929 switch (*reply)
10930 {
10931 case 'F':
10932 p = ++reply;
10933 target_frameno = (int) strtol (p, &reply, 16);
10934 if (reply == p)
10935 error (_("Unable to parse trace frame number"));
10936 /* Don't update our remote traceframe number cache on failure
10937 to select a remote traceframe. */
10938 if (target_frameno == -1)
10939 return -1;
10940 break;
10941 case 'T':
10942 p = ++reply;
10943 target_tracept = (int) strtol (p, &reply, 16);
10944 if (reply == p)
10945 error (_("Unable to parse tracepoint number"));
10946 break;
10947 case 'O': /* "OK"? */
10948 if (reply[1] == 'K' && reply[2] == '\0')
10949 reply += 2;
10950 else
10951 error (_("Bogus reply from target: %s"), reply);
10952 break;
10953 default:
10954 error (_("Bogus reply from target: %s"), reply);
10955 }
10956 if (tpp)
10957 *tpp = target_tracept;
10958
10959 rs->remote_traceframe_number = target_frameno;
10960 return target_frameno;
10961 }
10962
10963 static int
10964 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10965 {
10966 struct remote_state *rs = get_remote_state ();
10967 char *reply;
10968 ULONGEST uval;
10969
10970 set_remote_traceframe ();
10971
10972 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10973 putpkt (rs->buf);
10974 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10975 if (reply && *reply)
10976 {
10977 if (*reply == 'V')
10978 {
10979 unpack_varlen_hex (reply + 1, &uval);
10980 *val = (LONGEST) uval;
10981 return 1;
10982 }
10983 }
10984 return 0;
10985 }
10986
10987 static int
10988 remote_save_trace_data (const char *filename)
10989 {
10990 struct remote_state *rs = get_remote_state ();
10991 char *p, *reply;
10992
10993 p = rs->buf;
10994 strcpy (p, "QTSave:");
10995 p += strlen (p);
10996 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10997 error (_("Remote file name too long for trace save packet"));
10998 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10999 *p++ = '\0';
11000 putpkt (rs->buf);
11001 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11002 if (*reply == '\0')
11003 error (_("Target does not support this command."));
11004 if (strcmp (reply, "OK") != 0)
11005 error (_("Bogus reply from target: %s"), reply);
11006 return 0;
11007 }
11008
11009 /* This is basically a memory transfer, but needs to be its own packet
11010 because we don't know how the target actually organizes its trace
11011 memory, plus we want to be able to ask for as much as possible, but
11012 not be unhappy if we don't get as much as we ask for. */
11013
11014 static LONGEST
11015 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11016 {
11017 struct remote_state *rs = get_remote_state ();
11018 char *reply;
11019 char *p;
11020 int rslt;
11021
11022 p = rs->buf;
11023 strcpy (p, "qTBuffer:");
11024 p += strlen (p);
11025 p += hexnumstr (p, offset);
11026 *p++ = ',';
11027 p += hexnumstr (p, len);
11028 *p++ = '\0';
11029
11030 putpkt (rs->buf);
11031 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11032 if (reply && *reply)
11033 {
11034 /* 'l' by itself means we're at the end of the buffer and
11035 there is nothing more to get. */
11036 if (*reply == 'l')
11037 return 0;
11038
11039 /* Convert the reply into binary. Limit the number of bytes to
11040 convert according to our passed-in buffer size, rather than
11041 what was returned in the packet; if the target is
11042 unexpectedly generous and gives us a bigger reply than we
11043 asked for, we don't want to crash. */
11044 rslt = hex2bin (target_buf, buf, len);
11045 return rslt;
11046 }
11047
11048 /* Something went wrong, flag as an error. */
11049 return -1;
11050 }
11051
11052 static void
11053 remote_set_disconnected_tracing (int val)
11054 {
11055 struct remote_state *rs = get_remote_state ();
11056
11057 if (rs->disconnected_tracing)
11058 {
11059 char *reply;
11060
11061 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11062 putpkt (rs->buf);
11063 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11064 if (*reply == '\0')
11065 error (_("Target does not support this command."));
11066 if (strcmp (reply, "OK") != 0)
11067 error (_("Bogus reply from target: %s"), reply);
11068 }
11069 else if (val)
11070 warning (_("Target does not support disconnected tracing."));
11071 }
11072
11073 static int
11074 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11075 {
11076 struct thread_info *info = find_thread_ptid (ptid);
11077
11078 if (info && info->private)
11079 return info->private->core;
11080 return -1;
11081 }
11082
11083 static void
11084 remote_set_circular_trace_buffer (int val)
11085 {
11086 struct remote_state *rs = get_remote_state ();
11087 char *reply;
11088
11089 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11090 putpkt (rs->buf);
11091 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11092 if (*reply == '\0')
11093 error (_("Target does not support this command."));
11094 if (strcmp (reply, "OK") != 0)
11095 error (_("Bogus reply from target: %s"), reply);
11096 }
11097
11098 static struct traceframe_info *
11099 remote_traceframe_info (void)
11100 {
11101 char *text;
11102
11103 text = target_read_stralloc (&current_target,
11104 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11105 if (text != NULL)
11106 {
11107 struct traceframe_info *info;
11108 struct cleanup *back_to = make_cleanup (xfree, text);
11109
11110 info = parse_traceframe_info (text);
11111 do_cleanups (back_to);
11112 return info;
11113 }
11114
11115 return NULL;
11116 }
11117
11118 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11119 instruction on which a fast tracepoint may be placed. Returns -1
11120 if the packet is not supported, and 0 if the minimum instruction
11121 length is unknown. */
11122
11123 static int
11124 remote_get_min_fast_tracepoint_insn_len (void)
11125 {
11126 struct remote_state *rs = get_remote_state ();
11127 char *reply;
11128
11129 /* If we're not debugging a process yet, the IPA can't be
11130 loaded. */
11131 if (!target_has_execution)
11132 return 0;
11133
11134 /* Make sure the remote is pointing at the right process. */
11135 set_general_process ();
11136
11137 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11138 putpkt (rs->buf);
11139 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11140 if (*reply == '\0')
11141 return -1;
11142 else
11143 {
11144 ULONGEST min_insn_len;
11145
11146 unpack_varlen_hex (reply, &min_insn_len);
11147
11148 return (int) min_insn_len;
11149 }
11150 }
11151
11152 static void
11153 remote_set_trace_buffer_size (LONGEST val)
11154 {
11155 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11156 != PACKET_DISABLE)
11157 {
11158 struct remote_state *rs = get_remote_state ();
11159 char *buf = rs->buf;
11160 char *endbuf = rs->buf + get_remote_packet_size ();
11161 enum packet_result result;
11162
11163 gdb_assert (val >= 0 || val == -1);
11164 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11165 /* Send -1 as literal "-1" to avoid host size dependency. */
11166 if (val < 0)
11167 {
11168 *buf++ = '-';
11169 buf += hexnumstr (buf, (ULONGEST) -val);
11170 }
11171 else
11172 buf += hexnumstr (buf, (ULONGEST) val);
11173
11174 putpkt (rs->buf);
11175 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11176 result = packet_ok (rs->buf,
11177 &remote_protocol_packets[PACKET_QTBuffer_size]);
11178
11179 if (result != PACKET_OK)
11180 warning (_("Bogus reply from target: %s"), rs->buf);
11181 }
11182 }
11183
11184 static int
11185 remote_set_trace_notes (const char *user, const char *notes,
11186 const char *stop_notes)
11187 {
11188 struct remote_state *rs = get_remote_state ();
11189 char *reply;
11190 char *buf = rs->buf;
11191 char *endbuf = rs->buf + get_remote_packet_size ();
11192 int nbytes;
11193
11194 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11195 if (user)
11196 {
11197 buf += xsnprintf (buf, endbuf - buf, "user:");
11198 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11199 buf += 2 * nbytes;
11200 *buf++ = ';';
11201 }
11202 if (notes)
11203 {
11204 buf += xsnprintf (buf, endbuf - buf, "notes:");
11205 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11206 buf += 2 * nbytes;
11207 *buf++ = ';';
11208 }
11209 if (stop_notes)
11210 {
11211 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11212 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11213 buf += 2 * nbytes;
11214 *buf++ = ';';
11215 }
11216 /* Ensure the buffer is terminated. */
11217 *buf = '\0';
11218
11219 putpkt (rs->buf);
11220 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11221 if (*reply == '\0')
11222 return 0;
11223
11224 if (strcmp (reply, "OK") != 0)
11225 error (_("Bogus reply from target: %s"), reply);
11226
11227 return 1;
11228 }
11229
11230 static int
11231 remote_use_agent (int use)
11232 {
11233 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11234 {
11235 struct remote_state *rs = get_remote_state ();
11236
11237 /* If the stub supports QAgent. */
11238 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11239 putpkt (rs->buf);
11240 getpkt (&rs->buf, &rs->buf_size, 0);
11241
11242 if (strcmp (rs->buf, "OK") == 0)
11243 {
11244 use_agent = use;
11245 return 1;
11246 }
11247 }
11248
11249 return 0;
11250 }
11251
11252 static int
11253 remote_can_use_agent (void)
11254 {
11255 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11256 }
11257
11258 struct btrace_target_info
11259 {
11260 /* The ptid of the traced thread. */
11261 ptid_t ptid;
11262 };
11263
11264 /* Check whether the target supports branch tracing. */
11265
11266 static int
11267 remote_supports_btrace (void)
11268 {
11269 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11270 return 0;
11271 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11272 return 0;
11273 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11274 return 0;
11275
11276 return 1;
11277 }
11278
11279 /* Enable branch tracing. */
11280
11281 static struct btrace_target_info *
11282 remote_enable_btrace (ptid_t ptid)
11283 {
11284 struct btrace_target_info *tinfo = NULL;
11285 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11286 struct remote_state *rs = get_remote_state ();
11287 char *buf = rs->buf;
11288 char *endbuf = rs->buf + get_remote_packet_size ();
11289
11290 if (packet->support != PACKET_ENABLE)
11291 error (_("Target does not support branch tracing."));
11292
11293 set_general_thread (ptid);
11294
11295 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11296 putpkt (rs->buf);
11297 getpkt (&rs->buf, &rs->buf_size, 0);
11298
11299 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11300 {
11301 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11302 error (_("Could not enable branch tracing for %s: %s"),
11303 target_pid_to_str (ptid), rs->buf + 2);
11304 else
11305 error (_("Could not enable branch tracing for %s."),
11306 target_pid_to_str (ptid));
11307 }
11308
11309 tinfo = xzalloc (sizeof (*tinfo));
11310 tinfo->ptid = ptid;
11311
11312 return tinfo;
11313 }
11314
11315 /* Disable branch tracing. */
11316
11317 static void
11318 remote_disable_btrace (struct btrace_target_info *tinfo)
11319 {
11320 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11321 struct remote_state *rs = get_remote_state ();
11322 char *buf = rs->buf;
11323 char *endbuf = rs->buf + get_remote_packet_size ();
11324
11325 if (packet->support != PACKET_ENABLE)
11326 error (_("Target does not support branch tracing."));
11327
11328 set_general_thread (tinfo->ptid);
11329
11330 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11331 putpkt (rs->buf);
11332 getpkt (&rs->buf, &rs->buf_size, 0);
11333
11334 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11335 {
11336 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11337 error (_("Could not disable branch tracing for %s: %s"),
11338 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11339 else
11340 error (_("Could not disable branch tracing for %s."),
11341 target_pid_to_str (tinfo->ptid));
11342 }
11343
11344 xfree (tinfo);
11345 }
11346
11347 /* Teardown branch tracing. */
11348
11349 static void
11350 remote_teardown_btrace (struct btrace_target_info *tinfo)
11351 {
11352 /* We must not talk to the target during teardown. */
11353 xfree (tinfo);
11354 }
11355
11356 /* Read the branch trace. */
11357
11358 static VEC (btrace_block_s) *
11359 remote_read_btrace (struct btrace_target_info *tinfo,
11360 enum btrace_read_type type)
11361 {
11362 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11363 struct remote_state *rs = get_remote_state ();
11364 VEC (btrace_block_s) *btrace = NULL;
11365 const char *annex;
11366 char *xml;
11367
11368 if (packet->support != PACKET_ENABLE)
11369 error (_("Target does not support branch tracing."));
11370
11371 #if !defined(HAVE_LIBEXPAT)
11372 error (_("Cannot process branch tracing result. XML parsing not supported."));
11373 #endif
11374
11375 switch (type)
11376 {
11377 case btrace_read_all:
11378 annex = "all";
11379 break;
11380 case btrace_read_new:
11381 annex = "new";
11382 break;
11383 default:
11384 internal_error (__FILE__, __LINE__,
11385 _("Bad branch tracing read type: %u."),
11386 (unsigned int) type);
11387 }
11388
11389 xml = target_read_stralloc (&current_target,
11390 TARGET_OBJECT_BTRACE, annex);
11391 if (xml != NULL)
11392 {
11393 struct cleanup *cleanup = make_cleanup (xfree, xml);
11394
11395 btrace = parse_xml_btrace (xml);
11396 do_cleanups (cleanup);
11397 }
11398
11399 return btrace;
11400 }
11401
11402 static int
11403 remote_augmented_libraries_svr4_read (void)
11404 {
11405 struct remote_state *rs = get_remote_state ();
11406
11407 return rs->augmented_libraries_svr4_read;
11408 }
11409
11410 static void
11411 init_remote_ops (void)
11412 {
11413 remote_ops.to_shortname = "remote";
11414 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11415 remote_ops.to_doc =
11416 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11417 Specify the serial device it is connected to\n\
11418 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11419 remote_ops.to_open = remote_open;
11420 remote_ops.to_close = remote_close;
11421 remote_ops.to_detach = remote_detach;
11422 remote_ops.to_disconnect = remote_disconnect;
11423 remote_ops.to_resume = remote_resume;
11424 remote_ops.to_wait = remote_wait;
11425 remote_ops.to_fetch_registers = remote_fetch_registers;
11426 remote_ops.to_store_registers = remote_store_registers;
11427 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11428 remote_ops.to_files_info = remote_files_info;
11429 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11430 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11431 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11432 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11433 remote_ops.to_watchpoint_addr_within_range =
11434 remote_watchpoint_addr_within_range;
11435 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11436 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11437 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11438 remote_ops.to_region_ok_for_hw_watchpoint
11439 = remote_region_ok_for_hw_watchpoint;
11440 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11441 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11442 remote_ops.to_kill = remote_kill;
11443 remote_ops.to_load = generic_load;
11444 remote_ops.to_mourn_inferior = remote_mourn;
11445 remote_ops.to_pass_signals = remote_pass_signals;
11446 remote_ops.to_program_signals = remote_program_signals;
11447 remote_ops.to_thread_alive = remote_thread_alive;
11448 remote_ops.to_find_new_threads = remote_threads_info;
11449 remote_ops.to_pid_to_str = remote_pid_to_str;
11450 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11451 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11452 remote_ops.to_stop = remote_stop;
11453 remote_ops.to_xfer_partial = remote_xfer_partial;
11454 remote_ops.to_rcmd = remote_rcmd;
11455 remote_ops.to_log_command = serial_log_command;
11456 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11457 remote_ops.to_stratum = process_stratum;
11458 remote_ops.to_has_all_memory = default_child_has_all_memory;
11459 remote_ops.to_has_memory = default_child_has_memory;
11460 remote_ops.to_has_stack = default_child_has_stack;
11461 remote_ops.to_has_registers = default_child_has_registers;
11462 remote_ops.to_has_execution = default_child_has_execution;
11463 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11464 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11465 remote_ops.to_magic = OPS_MAGIC;
11466 remote_ops.to_memory_map = remote_memory_map;
11467 remote_ops.to_flash_erase = remote_flash_erase;
11468 remote_ops.to_flash_done = remote_flash_done;
11469 remote_ops.to_read_description = remote_read_description;
11470 remote_ops.to_search_memory = remote_search_memory;
11471 remote_ops.to_can_async_p = remote_can_async_p;
11472 remote_ops.to_is_async_p = remote_is_async_p;
11473 remote_ops.to_async = remote_async;
11474 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11475 remote_ops.to_terminal_ours = remote_terminal_ours;
11476 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11477 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11478 remote_ops.to_supports_disable_randomization
11479 = remote_supports_disable_randomization;
11480 remote_ops.to_fileio_open = remote_hostio_open;
11481 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11482 remote_ops.to_fileio_pread = remote_hostio_pread;
11483 remote_ops.to_fileio_close = remote_hostio_close;
11484 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11485 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11486 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11487 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11488 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11489 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11490 remote_ops.to_trace_init = remote_trace_init;
11491 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11492 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11493 remote_ops.to_download_trace_state_variable
11494 = remote_download_trace_state_variable;
11495 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11496 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11497 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11498 remote_ops.to_trace_start = remote_trace_start;
11499 remote_ops.to_get_trace_status = remote_get_trace_status;
11500 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11501 remote_ops.to_trace_stop = remote_trace_stop;
11502 remote_ops.to_trace_find = remote_trace_find;
11503 remote_ops.to_get_trace_state_variable_value
11504 = remote_get_trace_state_variable_value;
11505 remote_ops.to_save_trace_data = remote_save_trace_data;
11506 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11507 remote_ops.to_upload_trace_state_variables
11508 = remote_upload_trace_state_variables;
11509 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11510 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11511 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11512 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11513 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11514 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11515 remote_ops.to_core_of_thread = remote_core_of_thread;
11516 remote_ops.to_verify_memory = remote_verify_memory;
11517 remote_ops.to_get_tib_address = remote_get_tib_address;
11518 remote_ops.to_set_permissions = remote_set_permissions;
11519 remote_ops.to_static_tracepoint_marker_at
11520 = remote_static_tracepoint_marker_at;
11521 remote_ops.to_static_tracepoint_markers_by_strid
11522 = remote_static_tracepoint_markers_by_strid;
11523 remote_ops.to_traceframe_info = remote_traceframe_info;
11524 remote_ops.to_use_agent = remote_use_agent;
11525 remote_ops.to_can_use_agent = remote_can_use_agent;
11526 remote_ops.to_supports_btrace = remote_supports_btrace;
11527 remote_ops.to_enable_btrace = remote_enable_btrace;
11528 remote_ops.to_disable_btrace = remote_disable_btrace;
11529 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11530 remote_ops.to_read_btrace = remote_read_btrace;
11531 remote_ops.to_augmented_libraries_svr4_read =
11532 remote_augmented_libraries_svr4_read;
11533 }
11534
11535 /* Set up the extended remote vector by making a copy of the standard
11536 remote vector and adding to it. */
11537
11538 static void
11539 init_extended_remote_ops (void)
11540 {
11541 extended_remote_ops = remote_ops;
11542
11543 extended_remote_ops.to_shortname = "extended-remote";
11544 extended_remote_ops.to_longname =
11545 "Extended remote serial target in gdb-specific protocol";
11546 extended_remote_ops.to_doc =
11547 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11548 Specify the serial device it is connected to (e.g. /dev/ttya).";
11549 extended_remote_ops.to_open = extended_remote_open;
11550 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11551 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11552 extended_remote_ops.to_detach = extended_remote_detach;
11553 extended_remote_ops.to_attach = extended_remote_attach;
11554 extended_remote_ops.to_kill = extended_remote_kill;
11555 extended_remote_ops.to_supports_disable_randomization
11556 = extended_remote_supports_disable_randomization;
11557 }
11558
11559 static int
11560 remote_can_async_p (void)
11561 {
11562 struct remote_state *rs = get_remote_state ();
11563
11564 if (!target_async_permitted)
11565 /* We only enable async when the user specifically asks for it. */
11566 return 0;
11567
11568 /* We're async whenever the serial device is. */
11569 return serial_can_async_p (rs->remote_desc);
11570 }
11571
11572 static int
11573 remote_is_async_p (void)
11574 {
11575 struct remote_state *rs = get_remote_state ();
11576
11577 if (!target_async_permitted)
11578 /* We only enable async when the user specifically asks for it. */
11579 return 0;
11580
11581 /* We're async whenever the serial device is. */
11582 return serial_is_async_p (rs->remote_desc);
11583 }
11584
11585 /* Pass the SERIAL event on and up to the client. One day this code
11586 will be able to delay notifying the client of an event until the
11587 point where an entire packet has been received. */
11588
11589 static serial_event_ftype remote_async_serial_handler;
11590
11591 static void
11592 remote_async_serial_handler (struct serial *scb, void *context)
11593 {
11594 struct remote_state *rs = context;
11595
11596 /* Don't propogate error information up to the client. Instead let
11597 the client find out about the error by querying the target. */
11598 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11599 }
11600
11601 static void
11602 remote_async_inferior_event_handler (gdb_client_data data)
11603 {
11604 inferior_event_handler (INF_REG_EVENT, NULL);
11605 }
11606
11607 static void
11608 remote_async (void (*callback) (enum inferior_event_type event_type,
11609 void *context), void *context)
11610 {
11611 struct remote_state *rs = get_remote_state ();
11612
11613 if (callback != NULL)
11614 {
11615 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11616 rs->async_client_callback = callback;
11617 rs->async_client_context = context;
11618 }
11619 else
11620 serial_async (rs->remote_desc, NULL, NULL);
11621 }
11622
11623 static void
11624 set_remote_cmd (char *args, int from_tty)
11625 {
11626 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11627 }
11628
11629 static void
11630 show_remote_cmd (char *args, int from_tty)
11631 {
11632 /* We can't just use cmd_show_list here, because we want to skip
11633 the redundant "show remote Z-packet" and the legacy aliases. */
11634 struct cleanup *showlist_chain;
11635 struct cmd_list_element *list = remote_show_cmdlist;
11636 struct ui_out *uiout = current_uiout;
11637
11638 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11639 for (; list != NULL; list = list->next)
11640 if (strcmp (list->name, "Z-packet") == 0)
11641 continue;
11642 else if (list->type == not_set_cmd)
11643 /* Alias commands are exactly like the original, except they
11644 don't have the normal type. */
11645 continue;
11646 else
11647 {
11648 struct cleanup *option_chain
11649 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11650
11651 ui_out_field_string (uiout, "name", list->name);
11652 ui_out_text (uiout, ": ");
11653 if (list->type == show_cmd)
11654 do_show_command ((char *) NULL, from_tty, list);
11655 else
11656 cmd_func (list, NULL, from_tty);
11657 /* Close the tuple. */
11658 do_cleanups (option_chain);
11659 }
11660
11661 /* Close the tuple. */
11662 do_cleanups (showlist_chain);
11663 }
11664
11665
11666 /* Function to be called whenever a new objfile (shlib) is detected. */
11667 static void
11668 remote_new_objfile (struct objfile *objfile)
11669 {
11670 struct remote_state *rs = get_remote_state ();
11671
11672 if (rs->remote_desc != 0) /* Have a remote connection. */
11673 remote_check_symbols ();
11674 }
11675
11676 /* Pull all the tracepoints defined on the target and create local
11677 data structures representing them. We don't want to create real
11678 tracepoints yet, we don't want to mess up the user's existing
11679 collection. */
11680
11681 static int
11682 remote_upload_tracepoints (struct uploaded_tp **utpp)
11683 {
11684 struct remote_state *rs = get_remote_state ();
11685 char *p;
11686
11687 /* Ask for a first packet of tracepoint definition. */
11688 putpkt ("qTfP");
11689 getpkt (&rs->buf, &rs->buf_size, 0);
11690 p = rs->buf;
11691 while (*p && *p != 'l')
11692 {
11693 parse_tracepoint_definition (p, utpp);
11694 /* Ask for another packet of tracepoint definition. */
11695 putpkt ("qTsP");
11696 getpkt (&rs->buf, &rs->buf_size, 0);
11697 p = rs->buf;
11698 }
11699 return 0;
11700 }
11701
11702 static int
11703 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11704 {
11705 struct remote_state *rs = get_remote_state ();
11706 char *p;
11707
11708 /* Ask for a first packet of variable definition. */
11709 putpkt ("qTfV");
11710 getpkt (&rs->buf, &rs->buf_size, 0);
11711 p = rs->buf;
11712 while (*p && *p != 'l')
11713 {
11714 parse_tsv_definition (p, utsvp);
11715 /* Ask for another packet of variable definition. */
11716 putpkt ("qTsV");
11717 getpkt (&rs->buf, &rs->buf_size, 0);
11718 p = rs->buf;
11719 }
11720 return 0;
11721 }
11722
11723 /* The "set/show range-stepping" show hook. */
11724
11725 static void
11726 show_range_stepping (struct ui_file *file, int from_tty,
11727 struct cmd_list_element *c,
11728 const char *value)
11729 {
11730 fprintf_filtered (file,
11731 _("Debugger's willingness to use range stepping "
11732 "is %s.\n"), value);
11733 }
11734
11735 /* The "set/show range-stepping" set hook. */
11736
11737 static void
11738 set_range_stepping (char *ignore_args, int from_tty,
11739 struct cmd_list_element *c)
11740 {
11741 struct remote_state *rs = get_remote_state ();
11742
11743 /* Whene enabling, check whether range stepping is actually
11744 supported by the target, and warn if not. */
11745 if (use_range_stepping)
11746 {
11747 if (rs->remote_desc != NULL)
11748 {
11749 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11750 remote_vcont_probe (rs);
11751
11752 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11753 && rs->supports_vCont.r)
11754 return;
11755 }
11756
11757 warning (_("Range stepping is not supported by the current target"));
11758 }
11759 }
11760
11761 void
11762 _initialize_remote (void)
11763 {
11764 struct remote_state *rs;
11765 struct cmd_list_element *cmd;
11766 const char *cmd_name;
11767
11768 /* architecture specific data */
11769 remote_gdbarch_data_handle =
11770 gdbarch_data_register_post_init (init_remote_state);
11771 remote_g_packet_data_handle =
11772 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11773
11774 /* Initialize the per-target state. At the moment there is only one
11775 of these, not one per target. Only one target is active at a
11776 time. */
11777 remote_state = new_remote_state ();
11778
11779 init_remote_ops ();
11780 add_target (&remote_ops);
11781
11782 init_extended_remote_ops ();
11783 add_target (&extended_remote_ops);
11784
11785 /* Hook into new objfile notification. */
11786 observer_attach_new_objfile (remote_new_objfile);
11787 /* We're no longer interested in notification events of an inferior
11788 when it exits. */
11789 observer_attach_inferior_exit (discard_pending_stop_replies);
11790
11791 /* Set up signal handlers. */
11792 async_sigint_remote_token =
11793 create_async_signal_handler (async_remote_interrupt, NULL);
11794 async_sigint_remote_twice_token =
11795 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11796
11797 #if 0
11798 init_remote_threadtests ();
11799 #endif
11800
11801 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11802 /* set/show remote ... */
11803
11804 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11805 Remote protocol specific variables\n\
11806 Configure various remote-protocol specific variables such as\n\
11807 the packets being used"),
11808 &remote_set_cmdlist, "set remote ",
11809 0 /* allow-unknown */, &setlist);
11810 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11811 Remote protocol specific variables\n\
11812 Configure various remote-protocol specific variables such as\n\
11813 the packets being used"),
11814 &remote_show_cmdlist, "show remote ",
11815 0 /* allow-unknown */, &showlist);
11816
11817 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11818 Compare section data on target to the exec file.\n\
11819 Argument is a single section name (default: all loaded sections)."),
11820 &cmdlist);
11821
11822 add_cmd ("packet", class_maintenance, packet_command, _("\
11823 Send an arbitrary packet to a remote target.\n\
11824 maintenance packet TEXT\n\
11825 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11826 this command sends the string TEXT to the inferior, and displays the\n\
11827 response packet. GDB supplies the initial `$' character, and the\n\
11828 terminating `#' character and checksum."),
11829 &maintenancelist);
11830
11831 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11832 Set whether to send break if interrupted."), _("\
11833 Show whether to send break if interrupted."), _("\
11834 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11835 set_remotebreak, show_remotebreak,
11836 &setlist, &showlist);
11837 cmd_name = "remotebreak";
11838 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11839 deprecate_cmd (cmd, "set remote interrupt-sequence");
11840 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11841 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11842 deprecate_cmd (cmd, "show remote interrupt-sequence");
11843
11844 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11845 interrupt_sequence_modes, &interrupt_sequence_mode,
11846 _("\
11847 Set interrupt sequence to remote target."), _("\
11848 Show interrupt sequence to remote target."), _("\
11849 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11850 NULL, show_interrupt_sequence,
11851 &remote_set_cmdlist,
11852 &remote_show_cmdlist);
11853
11854 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11855 &interrupt_on_connect, _("\
11856 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11857 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11858 If set, interrupt sequence is sent to remote target."),
11859 NULL, NULL,
11860 &remote_set_cmdlist, &remote_show_cmdlist);
11861
11862 /* Install commands for configuring memory read/write packets. */
11863
11864 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11865 Set the maximum number of bytes per memory write packet (deprecated)."),
11866 &setlist);
11867 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11868 Show the maximum number of bytes per memory write packet (deprecated)."),
11869 &showlist);
11870 add_cmd ("memory-write-packet-size", no_class,
11871 set_memory_write_packet_size, _("\
11872 Set the maximum number of bytes per memory-write packet.\n\
11873 Specify the number of bytes in a packet or 0 (zero) for the\n\
11874 default packet size. The actual limit is further reduced\n\
11875 dependent on the target. Specify ``fixed'' to disable the\n\
11876 further restriction and ``limit'' to enable that restriction."),
11877 &remote_set_cmdlist);
11878 add_cmd ("memory-read-packet-size", no_class,
11879 set_memory_read_packet_size, _("\
11880 Set the maximum number of bytes per memory-read packet.\n\
11881 Specify the number of bytes in a packet or 0 (zero) for the\n\
11882 default packet size. The actual limit is further reduced\n\
11883 dependent on the target. Specify ``fixed'' to disable the\n\
11884 further restriction and ``limit'' to enable that restriction."),
11885 &remote_set_cmdlist);
11886 add_cmd ("memory-write-packet-size", no_class,
11887 show_memory_write_packet_size,
11888 _("Show the maximum number of bytes per memory-write packet."),
11889 &remote_show_cmdlist);
11890 add_cmd ("memory-read-packet-size", no_class,
11891 show_memory_read_packet_size,
11892 _("Show the maximum number of bytes per memory-read packet."),
11893 &remote_show_cmdlist);
11894
11895 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11896 &remote_hw_watchpoint_limit, _("\
11897 Set the maximum number of target hardware watchpoints."), _("\
11898 Show the maximum number of target hardware watchpoints."), _("\
11899 Specify a negative limit for unlimited."),
11900 NULL, NULL, /* FIXME: i18n: The maximum
11901 number of target hardware
11902 watchpoints is %s. */
11903 &remote_set_cmdlist, &remote_show_cmdlist);
11904 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11905 &remote_hw_watchpoint_length_limit, _("\
11906 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11907 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11908 Specify a negative limit for unlimited."),
11909 NULL, NULL, /* FIXME: i18n: The maximum
11910 length (in bytes) of a target
11911 hardware watchpoint is %s. */
11912 &remote_set_cmdlist, &remote_show_cmdlist);
11913 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11914 &remote_hw_breakpoint_limit, _("\
11915 Set the maximum number of target hardware breakpoints."), _("\
11916 Show the maximum number of target hardware breakpoints."), _("\
11917 Specify a negative limit for unlimited."),
11918 NULL, NULL, /* FIXME: i18n: The maximum
11919 number of target hardware
11920 breakpoints is %s. */
11921 &remote_set_cmdlist, &remote_show_cmdlist);
11922
11923 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11924 &remote_address_size, _("\
11925 Set the maximum size of the address (in bits) in a memory packet."), _("\
11926 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11927 NULL,
11928 NULL, /* FIXME: i18n: */
11929 &setlist, &showlist);
11930
11931 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11932 "X", "binary-download", 1);
11933
11934 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11935 "vCont", "verbose-resume", 0);
11936
11937 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11938 "QPassSignals", "pass-signals", 0);
11939
11940 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11941 "QProgramSignals", "program-signals", 0);
11942
11943 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11944 "qSymbol", "symbol-lookup", 0);
11945
11946 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11947 "P", "set-register", 1);
11948
11949 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11950 "p", "fetch-register", 1);
11951
11952 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11953 "Z0", "software-breakpoint", 0);
11954
11955 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11956 "Z1", "hardware-breakpoint", 0);
11957
11958 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11959 "Z2", "write-watchpoint", 0);
11960
11961 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11962 "Z3", "read-watchpoint", 0);
11963
11964 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11965 "Z4", "access-watchpoint", 0);
11966
11967 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11968 "qXfer:auxv:read", "read-aux-vector", 0);
11969
11970 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11971 "qXfer:features:read", "target-features", 0);
11972
11973 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11974 "qXfer:libraries:read", "library-info", 0);
11975
11976 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11977 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11978
11979 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11980 "qXfer:memory-map:read", "memory-map", 0);
11981
11982 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11983 "qXfer:spu:read", "read-spu-object", 0);
11984
11985 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11986 "qXfer:spu:write", "write-spu-object", 0);
11987
11988 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11989 "qXfer:osdata:read", "osdata", 0);
11990
11991 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11992 "qXfer:threads:read", "threads", 0);
11993
11994 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11995 "qXfer:siginfo:read", "read-siginfo-object", 0);
11996
11997 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11998 "qXfer:siginfo:write", "write-siginfo-object", 0);
11999
12000 add_packet_config_cmd
12001 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12002 "qXfer:traceframe-info:read", "traceframe-info", 0);
12003
12004 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12005 "qXfer:uib:read", "unwind-info-block", 0);
12006
12007 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12008 "qGetTLSAddr", "get-thread-local-storage-address",
12009 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12012 "qGetTIBAddr", "get-thread-information-block-address",
12013 0);
12014
12015 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12016 "bc", "reverse-continue", 0);
12017
12018 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12019 "bs", "reverse-step", 0);
12020
12021 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12022 "qSupported", "supported-packets", 0);
12023
12024 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12025 "qSearch:memory", "search-memory", 0);
12026
12027 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12028 "qTStatus", "trace-status", 0);
12029
12030 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12031 "vFile:open", "hostio-open", 0);
12032
12033 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12034 "vFile:pread", "hostio-pread", 0);
12035
12036 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12037 "vFile:pwrite", "hostio-pwrite", 0);
12038
12039 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12040 "vFile:close", "hostio-close", 0);
12041
12042 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12043 "vFile:unlink", "hostio-unlink", 0);
12044
12045 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12046 "vFile:readlink", "hostio-readlink", 0);
12047
12048 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12049 "vAttach", "attach", 0);
12050
12051 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12052 "vRun", "run", 0);
12053
12054 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12055 "QStartNoAckMode", "noack", 0);
12056
12057 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12058 "vKill", "kill", 0);
12059
12060 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12061 "qAttached", "query-attached", 0);
12062
12063 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12064 "ConditionalTracepoints",
12065 "conditional-tracepoints", 0);
12066
12067 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12068 "ConditionalBreakpoints",
12069 "conditional-breakpoints", 0);
12070
12071 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12072 "BreakpointCommands",
12073 "breakpoint-commands", 0);
12074
12075 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12076 "FastTracepoints", "fast-tracepoints", 0);
12077
12078 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12079 "TracepointSource", "TracepointSource", 0);
12080
12081 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12082 "QAllow", "allow", 0);
12083
12084 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12085 "StaticTracepoints", "static-tracepoints", 0);
12086
12087 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12088 "InstallInTrace", "install-in-trace", 0);
12089
12090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12091 "qXfer:statictrace:read", "read-sdata-object", 0);
12092
12093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12094 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12095
12096 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12097 "QDisableRandomization", "disable-randomization", 0);
12098
12099 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12100 "QAgent", "agent", 0);
12101
12102 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12103 "QTBuffer:size", "trace-buffer-size", 0);
12104
12105 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12106 "Qbtrace:off", "disable-btrace", 0);
12107
12108 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12109 "Qbtrace:bts", "enable-btrace", 0);
12110
12111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12112 "qXfer:btrace", "read-btrace", 0);
12113
12114 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12115 Z sub-packet has its own set and show commands, but users may
12116 have sets to this variable in their .gdbinit files (or in their
12117 documentation). */
12118 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12119 &remote_Z_packet_detect, _("\
12120 Set use of remote protocol `Z' packets"), _("\
12121 Show use of remote protocol `Z' packets "), _("\
12122 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12123 packets."),
12124 set_remote_protocol_Z_packet_cmd,
12125 show_remote_protocol_Z_packet_cmd,
12126 /* FIXME: i18n: Use of remote protocol
12127 `Z' packets is %s. */
12128 &remote_set_cmdlist, &remote_show_cmdlist);
12129
12130 add_prefix_cmd ("remote", class_files, remote_command, _("\
12131 Manipulate files on the remote system\n\
12132 Transfer files to and from the remote target system."),
12133 &remote_cmdlist, "remote ",
12134 0 /* allow-unknown */, &cmdlist);
12135
12136 add_cmd ("put", class_files, remote_put_command,
12137 _("Copy a local file to the remote system."),
12138 &remote_cmdlist);
12139
12140 add_cmd ("get", class_files, remote_get_command,
12141 _("Copy a remote file to the local system."),
12142 &remote_cmdlist);
12143
12144 add_cmd ("delete", class_files, remote_delete_command,
12145 _("Delete a remote file."),
12146 &remote_cmdlist);
12147
12148 remote_exec_file = xstrdup ("");
12149 add_setshow_string_noescape_cmd ("exec-file", class_files,
12150 &remote_exec_file, _("\
12151 Set the remote pathname for \"run\""), _("\
12152 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12153 &remote_set_cmdlist, &remote_show_cmdlist);
12154
12155 add_setshow_boolean_cmd ("range-stepping", class_run,
12156 &use_range_stepping, _("\
12157 Enable or disable range stepping."), _("\
12158 Show whether target-assisted range stepping is enabled."), _("\
12159 If on, and the target supports it, when stepping a source line, GDB\n\
12160 tells the target to step the corresponding range of addresses itself instead\n\
12161 of issuing multiple single-steps. This speeds up source level\n\
12162 stepping. If off, GDB always issues single-steps, even if range\n\
12163 stepping is supported by the target. The default is on."),
12164 set_range_stepping,
12165 show_range_stepping,
12166 &setlist,
12167 &showlist);
12168
12169 /* Eventually initialize fileio. See fileio.c */
12170 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12171
12172 /* Take advantage of the fact that the LWP field is not used, to tag
12173 special ptids with it set to != 0. */
12174 magic_null_ptid = ptid_build (42000, 1, -1);
12175 not_sent_ptid = ptid_build (42000, 1, -2);
12176 any_thread_ptid = ptid_build (42000, 1, 0);
12177
12178 target_buf_size = 2048;
12179 target_buf = xmalloc (target_buf_size);
12180 }
12181
This page took 0.267372 seconds and 5 git commands to generate.