Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Fetch the remote exec-file from the current program space. */
1230
1231 static const char *
1232 get_remote_exec_file (void)
1233 {
1234 char *remote_exec_file;
1235
1236 remote_exec_file = remote_pspace_data.get (current_program_space);
1237 if (remote_exec_file == NULL)
1238 return "";
1239
1240 return remote_exec_file;
1241 }
1242
1243 /* Set the remote exec file for PSPACE. */
1244
1245 static void
1246 set_pspace_remote_exec_file (struct program_space *pspace,
1247 const char *remote_exec_file)
1248 {
1249 char *old_file = remote_pspace_data.get (pspace);
1250
1251 xfree (old_file);
1252 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1253 }
1254
1255 /* The "set/show remote exec-file" set command hook. */
1256
1257 static void
1258 set_remote_exec_file (const char *ignored, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 gdb_assert (remote_exec_file_var != NULL);
1262 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1263 }
1264
1265 /* The "set/show remote exec-file" show command hook. */
1266
1267 static void
1268 show_remote_exec_file (struct ui_file *file, int from_tty,
1269 struct cmd_list_element *cmd, const char *value)
1270 {
1271 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1272 }
1273
1274 static int
1275 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1276 {
1277 int regnum, num_remote_regs, offset;
1278 struct packet_reg **remote_regs;
1279
1280 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1281 {
1282 struct packet_reg *r = &regs[regnum];
1283
1284 if (register_size (gdbarch, regnum) == 0)
1285 /* Do not try to fetch zero-sized (placeholder) registers. */
1286 r->pnum = -1;
1287 else
1288 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1289
1290 r->regnum = regnum;
1291 }
1292
1293 /* Define the g/G packet format as the contents of each register
1294 with a remote protocol number, in order of ascending protocol
1295 number. */
1296
1297 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1298 for (num_remote_regs = 0, regnum = 0;
1299 regnum < gdbarch_num_regs (gdbarch);
1300 regnum++)
1301 if (regs[regnum].pnum != -1)
1302 remote_regs[num_remote_regs++] = &regs[regnum];
1303
1304 std::sort (remote_regs, remote_regs + num_remote_regs,
1305 [] (const packet_reg *a, const packet_reg *b)
1306 { return a->pnum < b->pnum; });
1307
1308 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1309 {
1310 remote_regs[regnum]->in_g_packet = 1;
1311 remote_regs[regnum]->offset = offset;
1312 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Given the architecture described by GDBARCH, return the remote
1319 protocol register's number and the register's offset in the g/G
1320 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1321 If the target does not have a mapping for REGNUM, return false,
1322 otherwise, return true. */
1323
1324 int
1325 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1326 int *pnum, int *poffset)
1327 {
1328 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1329
1330 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1331
1332 map_regcache_remote_table (gdbarch, regs.data ());
1333
1334 *pnum = regs[regnum].pnum;
1335 *poffset = regs[regnum].offset;
1336
1337 return *pnum != -1;
1338 }
1339
1340 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1341 {
1342 /* Use the architecture to build a regnum<->pnum table, which will be
1343 1:1 unless a feature set specifies otherwise. */
1344 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1345
1346 /* Record the maximum possible size of the g packet - it may turn out
1347 to be smaller. */
1348 this->sizeof_g_packet
1349 = map_regcache_remote_table (gdbarch, this->regs.get ());
1350
1351 /* Default maximum number of characters in a packet body. Many
1352 remote stubs have a hardwired buffer size of 400 bytes
1353 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1354 as the maximum packet-size to ensure that the packet and an extra
1355 NUL character can always fit in the buffer. This stops GDB
1356 trashing stubs that try to squeeze an extra NUL into what is
1357 already a full buffer (As of 1999-12-04 that was most stubs). */
1358 this->remote_packet_size = 400 - 1;
1359
1360 /* This one is filled in when a ``g'' packet is received. */
1361 this->actual_register_packet_size = 0;
1362
1363 /* Should rsa->sizeof_g_packet needs more space than the
1364 default, adjust the size accordingly. Remember that each byte is
1365 encoded as two characters. 32 is the overhead for the packet
1366 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1367 (``$NN:G...#NN'') is a better guess, the below has been padded a
1368 little. */
1369 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1370 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1371 }
1372
1373 /* Get a pointer to the current remote target. If not connected to a
1374 remote target, return NULL. */
1375
1376 static remote_target *
1377 get_current_remote_target ()
1378 {
1379 target_ops *proc_target = find_target_at (process_stratum);
1380 return dynamic_cast<remote_target *> (proc_target);
1381 }
1382
1383 /* Return the current allowed size of a remote packet. This is
1384 inferred from the current architecture, and should be used to
1385 limit the length of outgoing packets. */
1386 long
1387 remote_target::get_remote_packet_size ()
1388 {
1389 struct remote_state *rs = get_remote_state ();
1390 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1391
1392 if (rs->explicit_packet_size)
1393 return rs->explicit_packet_size;
1394
1395 return rsa->remote_packet_size;
1396 }
1397
1398 static struct packet_reg *
1399 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1400 long regnum)
1401 {
1402 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1403 return NULL;
1404 else
1405 {
1406 struct packet_reg *r = &rsa->regs[regnum];
1407
1408 gdb_assert (r->regnum == regnum);
1409 return r;
1410 }
1411 }
1412
1413 static struct packet_reg *
1414 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1415 LONGEST pnum)
1416 {
1417 int i;
1418
1419 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1420 {
1421 struct packet_reg *r = &rsa->regs[i];
1422
1423 if (r->pnum == pnum)
1424 return r;
1425 }
1426 return NULL;
1427 }
1428
1429 /* Allow the user to specify what sequence to send to the remote
1430 when he requests a program interruption: Although ^C is usually
1431 what remote systems expect (this is the default, here), it is
1432 sometimes preferable to send a break. On other systems such
1433 as the Linux kernel, a break followed by g, which is Magic SysRq g
1434 is required in order to interrupt the execution. */
1435 const char interrupt_sequence_control_c[] = "Ctrl-C";
1436 const char interrupt_sequence_break[] = "BREAK";
1437 const char interrupt_sequence_break_g[] = "BREAK-g";
1438 static const char *const interrupt_sequence_modes[] =
1439 {
1440 interrupt_sequence_control_c,
1441 interrupt_sequence_break,
1442 interrupt_sequence_break_g,
1443 NULL
1444 };
1445 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1446
1447 static void
1448 show_interrupt_sequence (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c,
1450 const char *value)
1451 {
1452 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1453 fprintf_filtered (file,
1454 _("Send the ASCII ETX character (Ctrl-c) "
1455 "to the remote target to interrupt the "
1456 "execution of the program.\n"));
1457 else if (interrupt_sequence_mode == interrupt_sequence_break)
1458 fprintf_filtered (file,
1459 _("send a break signal to the remote target "
1460 "to interrupt the execution of the program.\n"));
1461 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1462 fprintf_filtered (file,
1463 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1464 "the remote target to interrupt the execution "
1465 "of Linux kernel.\n"));
1466 else
1467 internal_error (__FILE__, __LINE__,
1468 _("Invalid value for interrupt_sequence_mode: %s."),
1469 interrupt_sequence_mode);
1470 }
1471
1472 /* This boolean variable specifies whether interrupt_sequence is sent
1473 to the remote target when gdb connects to it.
1474 This is mostly needed when you debug the Linux kernel: The Linux kernel
1475 expects BREAK g which is Magic SysRq g for connecting gdb. */
1476 static bool interrupt_on_connect = false;
1477
1478 /* This variable is used to implement the "set/show remotebreak" commands.
1479 Since these commands are now deprecated in favor of "set/show remote
1480 interrupt-sequence", it no longer has any effect on the code. */
1481 static bool remote_break;
1482
1483 static void
1484 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1485 {
1486 if (remote_break)
1487 interrupt_sequence_mode = interrupt_sequence_break;
1488 else
1489 interrupt_sequence_mode = interrupt_sequence_control_c;
1490 }
1491
1492 static void
1493 show_remotebreak (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c,
1495 const char *value)
1496 {
1497 }
1498
1499 /* This variable sets the number of bits in an address that are to be
1500 sent in a memory ("M" or "m") packet. Normally, after stripping
1501 leading zeros, the entire address would be sent. This variable
1502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1503 initial implementation of remote.c restricted the address sent in
1504 memory packets to ``host::sizeof long'' bytes - (typically 32
1505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1506 address was never sent. Since fixing this bug may cause a break in
1507 some remote targets this variable is principally provided to
1508 facilitate backward compatibility. */
1509
1510 static unsigned int remote_address_size;
1511
1512 \f
1513 /* User configurable variables for the number of characters in a
1514 memory read/write packet. MIN (rsa->remote_packet_size,
1515 rsa->sizeof_g_packet) is the default. Some targets need smaller
1516 values (fifo overruns, et.al.) and some users need larger values
1517 (speed up transfers). The variables ``preferred_*'' (the user
1518 request), ``current_*'' (what was actually set) and ``forced_*''
1519 (Positive - a soft limit, negative - a hard limit). */
1520
1521 struct memory_packet_config
1522 {
1523 const char *name;
1524 long size;
1525 int fixed_p;
1526 };
1527
1528 /* The default max memory-write-packet-size, when the setting is
1529 "fixed". The 16k is historical. (It came from older GDB's using
1530 alloca for buffers and the knowledge (folklore?) that some hosts
1531 don't cope very well with large alloca calls.) */
1532 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1533
1534 /* The minimum remote packet size for memory transfers. Ensures we
1535 can write at least one byte. */
1536 #define MIN_MEMORY_PACKET_SIZE 20
1537
1538 /* Get the memory packet size, assuming it is fixed. */
1539
1540 static long
1541 get_fixed_memory_packet_size (struct memory_packet_config *config)
1542 {
1543 gdb_assert (config->fixed_p);
1544
1545 if (config->size <= 0)
1546 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1547 else
1548 return config->size;
1549 }
1550
1551 /* Compute the current size of a read/write packet. Since this makes
1552 use of ``actual_register_packet_size'' the computation is dynamic. */
1553
1554 long
1555 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1556 {
1557 struct remote_state *rs = get_remote_state ();
1558 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1559
1560 long what_they_get;
1561 if (config->fixed_p)
1562 what_they_get = get_fixed_memory_packet_size (config);
1563 else
1564 {
1565 what_they_get = get_remote_packet_size ();
1566 /* Limit the packet to the size specified by the user. */
1567 if (config->size > 0
1568 && what_they_get > config->size)
1569 what_they_get = config->size;
1570
1571 /* Limit it to the size of the targets ``g'' response unless we have
1572 permission from the stub to use a larger packet size. */
1573 if (rs->explicit_packet_size == 0
1574 && rsa->actual_register_packet_size > 0
1575 && what_they_get > rsa->actual_register_packet_size)
1576 what_they_get = rsa->actual_register_packet_size;
1577 }
1578 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1579 what_they_get = MIN_MEMORY_PACKET_SIZE;
1580
1581 /* Make sure there is room in the global buffer for this packet
1582 (including its trailing NUL byte). */
1583 if (rs->buf.size () < what_they_get + 1)
1584 rs->buf.resize (2 * what_they_get);
1585
1586 return what_they_get;
1587 }
1588
1589 /* Update the size of a read/write packet. If they user wants
1590 something really big then do a sanity check. */
1591
1592 static void
1593 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1594 {
1595 int fixed_p = config->fixed_p;
1596 long size = config->size;
1597
1598 if (args == NULL)
1599 error (_("Argument required (integer, `fixed' or `limited')."));
1600 else if (strcmp (args, "hard") == 0
1601 || strcmp (args, "fixed") == 0)
1602 fixed_p = 1;
1603 else if (strcmp (args, "soft") == 0
1604 || strcmp (args, "limit") == 0)
1605 fixed_p = 0;
1606 else
1607 {
1608 char *end;
1609
1610 size = strtoul (args, &end, 0);
1611 if (args == end)
1612 error (_("Invalid %s (bad syntax)."), config->name);
1613
1614 /* Instead of explicitly capping the size of a packet to or
1615 disallowing it, the user is allowed to set the size to
1616 something arbitrarily large. */
1617 }
1618
1619 /* Extra checks? */
1620 if (fixed_p && !config->fixed_p)
1621 {
1622 /* So that the query shows the correct value. */
1623 long query_size = (size <= 0
1624 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1625 : size);
1626
1627 if (! query (_("The target may not be able to correctly handle a %s\n"
1628 "of %ld bytes. Change the packet size? "),
1629 config->name, query_size))
1630 error (_("Packet size not changed."));
1631 }
1632 /* Update the config. */
1633 config->fixed_p = fixed_p;
1634 config->size = size;
1635 }
1636
1637 static void
1638 show_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 if (config->size == 0)
1641 printf_filtered (_("The %s is 0 (default). "), config->name);
1642 else
1643 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1644 if (config->fixed_p)
1645 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1646 get_fixed_memory_packet_size (config));
1647 else
1648 {
1649 remote_target *remote = get_current_remote_target ();
1650
1651 if (remote != NULL)
1652 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1653 remote->get_memory_packet_size (config));
1654 else
1655 puts_filtered ("The actual limit will be further reduced "
1656 "dependent on the target.\n");
1657 }
1658 }
1659
1660 static struct memory_packet_config memory_write_packet_config =
1661 {
1662 "memory-write-packet-size",
1663 };
1664
1665 static void
1666 set_memory_write_packet_size (const char *args, int from_tty)
1667 {
1668 set_memory_packet_size (args, &memory_write_packet_config);
1669 }
1670
1671 static void
1672 show_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 show_memory_packet_size (&memory_write_packet_config);
1675 }
1676
1677 /* Show the number of hardware watchpoints that can be used. */
1678
1679 static void
1680 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1681 struct cmd_list_element *c,
1682 const char *value)
1683 {
1684 fprintf_filtered (file, _("The maximum number of target hardware "
1685 "watchpoints is %s.\n"), value);
1686 }
1687
1688 /* Show the length limit (in bytes) for hardware watchpoints. */
1689
1690 static void
1691 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1692 struct cmd_list_element *c,
1693 const char *value)
1694 {
1695 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1696 "hardware watchpoint is %s.\n"), value);
1697 }
1698
1699 /* Show the number of hardware breakpoints that can be used. */
1700
1701 static void
1702 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1703 struct cmd_list_element *c,
1704 const char *value)
1705 {
1706 fprintf_filtered (file, _("The maximum number of target hardware "
1707 "breakpoints is %s.\n"), value);
1708 }
1709
1710 /* Controls the maximum number of characters to display in the debug output
1711 for each remote packet. The remaining characters are omitted. */
1712
1713 static int remote_packet_max_chars = 512;
1714
1715 /* Show the maximum number of characters to display for each remote packet
1716 when remote debugging is enabled. */
1717
1718 static void
1719 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("Number of remote packet characters to "
1724 "display is %s.\n"), value);
1725 }
1726
1727 long
1728 remote_target::get_memory_write_packet_size ()
1729 {
1730 return get_memory_packet_size (&memory_write_packet_config);
1731 }
1732
1733 static struct memory_packet_config memory_read_packet_config =
1734 {
1735 "memory-read-packet-size",
1736 };
1737
1738 static void
1739 set_memory_read_packet_size (const char *args, int from_tty)
1740 {
1741 set_memory_packet_size (args, &memory_read_packet_config);
1742 }
1743
1744 static void
1745 show_memory_read_packet_size (const char *args, int from_tty)
1746 {
1747 show_memory_packet_size (&memory_read_packet_config);
1748 }
1749
1750 long
1751 remote_target::get_memory_read_packet_size ()
1752 {
1753 long size = get_memory_packet_size (&memory_read_packet_config);
1754
1755 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1756 extra buffer size argument before the memory read size can be
1757 increased beyond this. */
1758 if (size > get_remote_packet_size ())
1759 size = get_remote_packet_size ();
1760 return size;
1761 }
1762
1763 \f
1764
1765 struct packet_config
1766 {
1767 const char *name;
1768 const char *title;
1769
1770 /* If auto, GDB auto-detects support for this packet or feature,
1771 either through qSupported, or by trying the packet and looking
1772 at the response. If true, GDB assumes the target supports this
1773 packet. If false, the packet is disabled. Configs that don't
1774 have an associated command always have this set to auto. */
1775 enum auto_boolean detect;
1776
1777 /* Does the target support this packet? */
1778 enum packet_support support;
1779 };
1780
1781 static enum packet_support packet_config_support (struct packet_config *config);
1782 static enum packet_support packet_support (int packet);
1783
1784 static void
1785 show_packet_config_cmd (struct packet_config *config)
1786 {
1787 const char *support = "internal-error";
1788
1789 switch (packet_config_support (config))
1790 {
1791 case PACKET_ENABLE:
1792 support = "enabled";
1793 break;
1794 case PACKET_DISABLE:
1795 support = "disabled";
1796 break;
1797 case PACKET_SUPPORT_UNKNOWN:
1798 support = "unknown";
1799 break;
1800 }
1801 switch (config->detect)
1802 {
1803 case AUTO_BOOLEAN_AUTO:
1804 printf_filtered (_("Support for the `%s' packet "
1805 "is auto-detected, currently %s.\n"),
1806 config->name, support);
1807 break;
1808 case AUTO_BOOLEAN_TRUE:
1809 case AUTO_BOOLEAN_FALSE:
1810 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1811 config->name, support);
1812 break;
1813 }
1814 }
1815
1816 static void
1817 add_packet_config_cmd (struct packet_config *config, const char *name,
1818 const char *title, int legacy)
1819 {
1820 char *set_doc;
1821 char *show_doc;
1822 char *cmd_name;
1823
1824 config->name = name;
1825 config->title = title;
1826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1827 name, title);
1828 show_doc = xstrprintf ("Show current use of remote "
1829 "protocol `%s' (%s) packet.",
1830 name, title);
1831 /* set/show TITLE-packet {auto,on,off} */
1832 cmd_name = xstrprintf ("%s-packet", title);
1833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1834 &config->detect, set_doc,
1835 show_doc, NULL, /* help_doc */
1836 NULL,
1837 show_remote_protocol_packet_cmd,
1838 &remote_set_cmdlist, &remote_show_cmdlist);
1839 /* The command code copies the documentation strings. */
1840 xfree (set_doc);
1841 xfree (show_doc);
1842 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1843 if (legacy)
1844 {
1845 char *legacy_name;
1846
1847 legacy_name = xstrprintf ("%s-packet", name);
1848 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1849 &remote_set_cmdlist);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_show_cmdlist);
1852 }
1853 }
1854
1855 static enum packet_result
1856 packet_check_result (const char *buf)
1857 {
1858 if (buf[0] != '\0')
1859 {
1860 /* The stub recognized the packet request. Check that the
1861 operation succeeded. */
1862 if (buf[0] == 'E'
1863 && isxdigit (buf[1]) && isxdigit (buf[2])
1864 && buf[3] == '\0')
1865 /* "Enn" - definitely an error. */
1866 return PACKET_ERROR;
1867
1868 /* Always treat "E." as an error. This will be used for
1869 more verbose error messages, such as E.memtypes. */
1870 if (buf[0] == 'E' && buf[1] == '.')
1871 return PACKET_ERROR;
1872
1873 /* The packet may or may not be OK. Just assume it is. */
1874 return PACKET_OK;
1875 }
1876 else
1877 /* The stub does not support the packet. */
1878 return PACKET_UNKNOWN;
1879 }
1880
1881 static enum packet_result
1882 packet_check_result (const gdb::char_vector &buf)
1883 {
1884 return packet_check_result (buf.data ());
1885 }
1886
1887 static enum packet_result
1888 packet_ok (const char *buf, struct packet_config *config)
1889 {
1890 enum packet_result result;
1891
1892 if (config->detect != AUTO_BOOLEAN_TRUE
1893 && config->support == PACKET_DISABLE)
1894 internal_error (__FILE__, __LINE__,
1895 _("packet_ok: attempt to use a disabled packet"));
1896
1897 result = packet_check_result (buf);
1898 switch (result)
1899 {
1900 case PACKET_OK:
1901 case PACKET_ERROR:
1902 /* The stub recognized the packet request. */
1903 if (config->support == PACKET_SUPPORT_UNKNOWN)
1904 {
1905 if (remote_debug)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "Packet %s (%s) is supported\n",
1908 config->name, config->title);
1909 config->support = PACKET_ENABLE;
1910 }
1911 break;
1912 case PACKET_UNKNOWN:
1913 /* The stub does not support the packet. */
1914 if (config->detect == AUTO_BOOLEAN_AUTO
1915 && config->support == PACKET_ENABLE)
1916 {
1917 /* If the stub previously indicated that the packet was
1918 supported then there is a protocol error. */
1919 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1920 config->name, config->title);
1921 }
1922 else if (config->detect == AUTO_BOOLEAN_TRUE)
1923 {
1924 /* The user set it wrong. */
1925 error (_("Enabled packet %s (%s) not recognized by stub"),
1926 config->name, config->title);
1927 }
1928
1929 if (remote_debug)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "Packet %s (%s) is NOT supported\n",
1932 config->name, config->title);
1933 config->support = PACKET_DISABLE;
1934 break;
1935 }
1936
1937 return result;
1938 }
1939
1940 static enum packet_result
1941 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1942 {
1943 return packet_ok (buf.data (), config);
1944 }
1945
1946 enum {
1947 PACKET_vCont = 0,
1948 PACKET_X,
1949 PACKET_qSymbol,
1950 PACKET_P,
1951 PACKET_p,
1952 PACKET_Z0,
1953 PACKET_Z1,
1954 PACKET_Z2,
1955 PACKET_Z3,
1956 PACKET_Z4,
1957 PACKET_vFile_setfs,
1958 PACKET_vFile_open,
1959 PACKET_vFile_pread,
1960 PACKET_vFile_pwrite,
1961 PACKET_vFile_close,
1962 PACKET_vFile_unlink,
1963 PACKET_vFile_readlink,
1964 PACKET_vFile_fstat,
1965 PACKET_qXfer_auxv,
1966 PACKET_qXfer_features,
1967 PACKET_qXfer_exec_file,
1968 PACKET_qXfer_libraries,
1969 PACKET_qXfer_libraries_svr4,
1970 PACKET_qXfer_memory_map,
1971 PACKET_qXfer_osdata,
1972 PACKET_qXfer_threads,
1973 PACKET_qXfer_statictrace_read,
1974 PACKET_qXfer_traceframe_info,
1975 PACKET_qXfer_uib,
1976 PACKET_qGetTIBAddr,
1977 PACKET_qGetTLSAddr,
1978 PACKET_qSupported,
1979 PACKET_qTStatus,
1980 PACKET_QPassSignals,
1981 PACKET_QCatchSyscalls,
1982 PACKET_QProgramSignals,
1983 PACKET_QSetWorkingDir,
1984 PACKET_QStartupWithShell,
1985 PACKET_QEnvironmentHexEncoded,
1986 PACKET_QEnvironmentReset,
1987 PACKET_QEnvironmentUnset,
1988 PACKET_qCRC,
1989 PACKET_qSearch_memory,
1990 PACKET_vAttach,
1991 PACKET_vRun,
1992 PACKET_QStartNoAckMode,
1993 PACKET_vKill,
1994 PACKET_qXfer_siginfo_read,
1995 PACKET_qXfer_siginfo_write,
1996 PACKET_qAttached,
1997
1998 /* Support for conditional tracepoints. */
1999 PACKET_ConditionalTracepoints,
2000
2001 /* Support for target-side breakpoint conditions. */
2002 PACKET_ConditionalBreakpoints,
2003
2004 /* Support for target-side breakpoint commands. */
2005 PACKET_BreakpointCommands,
2006
2007 /* Support for fast tracepoints. */
2008 PACKET_FastTracepoints,
2009
2010 /* Support for static tracepoints. */
2011 PACKET_StaticTracepoints,
2012
2013 /* Support for installing tracepoints while a trace experiment is
2014 running. */
2015 PACKET_InstallInTrace,
2016
2017 PACKET_bc,
2018 PACKET_bs,
2019 PACKET_TracepointSource,
2020 PACKET_QAllow,
2021 PACKET_qXfer_fdpic,
2022 PACKET_QDisableRandomization,
2023 PACKET_QAgent,
2024 PACKET_QTBuffer_size,
2025 PACKET_Qbtrace_off,
2026 PACKET_Qbtrace_bts,
2027 PACKET_Qbtrace_pt,
2028 PACKET_qXfer_btrace,
2029
2030 /* Support for the QNonStop packet. */
2031 PACKET_QNonStop,
2032
2033 /* Support for the QThreadEvents packet. */
2034 PACKET_QThreadEvents,
2035
2036 /* Support for multi-process extensions. */
2037 PACKET_multiprocess_feature,
2038
2039 /* Support for enabling and disabling tracepoints while a trace
2040 experiment is running. */
2041 PACKET_EnableDisableTracepoints_feature,
2042
2043 /* Support for collecting strings using the tracenz bytecode. */
2044 PACKET_tracenz_feature,
2045
2046 /* Support for continuing to run a trace experiment while GDB is
2047 disconnected. */
2048 PACKET_DisconnectedTracing_feature,
2049
2050 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2051 PACKET_augmented_libraries_svr4_read_feature,
2052
2053 /* Support for the qXfer:btrace-conf:read packet. */
2054 PACKET_qXfer_btrace_conf,
2055
2056 /* Support for the Qbtrace-conf:bts:size packet. */
2057 PACKET_Qbtrace_conf_bts_size,
2058
2059 /* Support for swbreak+ feature. */
2060 PACKET_swbreak_feature,
2061
2062 /* Support for hwbreak+ feature. */
2063 PACKET_hwbreak_feature,
2064
2065 /* Support for fork events. */
2066 PACKET_fork_event_feature,
2067
2068 /* Support for vfork events. */
2069 PACKET_vfork_event_feature,
2070
2071 /* Support for the Qbtrace-conf:pt:size packet. */
2072 PACKET_Qbtrace_conf_pt_size,
2073
2074 /* Support for exec events. */
2075 PACKET_exec_event_feature,
2076
2077 /* Support for query supported vCont actions. */
2078 PACKET_vContSupported,
2079
2080 /* Support remote CTRL-C. */
2081 PACKET_vCtrlC,
2082
2083 /* Support TARGET_WAITKIND_NO_RESUMED. */
2084 PACKET_no_resumed,
2085
2086 PACKET_MAX
2087 };
2088
2089 static struct packet_config remote_protocol_packets[PACKET_MAX];
2090
2091 /* Returns the packet's corresponding "set remote foo-packet" command
2092 state. See struct packet_config for more details. */
2093
2094 static enum auto_boolean
2095 packet_set_cmd_state (int packet)
2096 {
2097 return remote_protocol_packets[packet].detect;
2098 }
2099
2100 /* Returns whether a given packet or feature is supported. This takes
2101 into account the state of the corresponding "set remote foo-packet"
2102 command, which may be used to bypass auto-detection. */
2103
2104 static enum packet_support
2105 packet_config_support (struct packet_config *config)
2106 {
2107 switch (config->detect)
2108 {
2109 case AUTO_BOOLEAN_TRUE:
2110 return PACKET_ENABLE;
2111 case AUTO_BOOLEAN_FALSE:
2112 return PACKET_DISABLE;
2113 case AUTO_BOOLEAN_AUTO:
2114 return config->support;
2115 default:
2116 gdb_assert_not_reached (_("bad switch"));
2117 }
2118 }
2119
2120 /* Same as packet_config_support, but takes the packet's enum value as
2121 argument. */
2122
2123 static enum packet_support
2124 packet_support (int packet)
2125 {
2126 struct packet_config *config = &remote_protocol_packets[packet];
2127
2128 return packet_config_support (config);
2129 }
2130
2131 static void
2132 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2133 struct cmd_list_element *c,
2134 const char *value)
2135 {
2136 struct packet_config *packet;
2137
2138 for (packet = remote_protocol_packets;
2139 packet < &remote_protocol_packets[PACKET_MAX];
2140 packet++)
2141 {
2142 if (&packet->detect == c->var)
2143 {
2144 show_packet_config_cmd (packet);
2145 return;
2146 }
2147 }
2148 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2149 c->name);
2150 }
2151
2152 /* Should we try one of the 'Z' requests? */
2153
2154 enum Z_packet_type
2155 {
2156 Z_PACKET_SOFTWARE_BP,
2157 Z_PACKET_HARDWARE_BP,
2158 Z_PACKET_WRITE_WP,
2159 Z_PACKET_READ_WP,
2160 Z_PACKET_ACCESS_WP,
2161 NR_Z_PACKET_TYPES
2162 };
2163
2164 /* For compatibility with older distributions. Provide a ``set remote
2165 Z-packet ...'' command that updates all the Z packet types. */
2166
2167 static enum auto_boolean remote_Z_packet_detect;
2168
2169 static void
2170 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2171 struct cmd_list_element *c)
2172 {
2173 int i;
2174
2175 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2176 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2177 }
2178
2179 static void
2180 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c,
2182 const char *value)
2183 {
2184 int i;
2185
2186 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2187 {
2188 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2189 }
2190 }
2191
2192 /* Returns true if the multi-process extensions are in effect. */
2193
2194 static int
2195 remote_multi_process_p (struct remote_state *rs)
2196 {
2197 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2198 }
2199
2200 /* Returns true if fork events are supported. */
2201
2202 static int
2203 remote_fork_event_p (struct remote_state *rs)
2204 {
2205 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2206 }
2207
2208 /* Returns true if vfork events are supported. */
2209
2210 static int
2211 remote_vfork_event_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if exec events are supported. */
2217
2218 static int
2219 remote_exec_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Insert fork catchpoint target routine. If fork events are enabled
2225 then return success, nothing more to do. */
2226
2227 int
2228 remote_target::insert_fork_catchpoint (int pid)
2229 {
2230 struct remote_state *rs = get_remote_state ();
2231
2232 return !remote_fork_event_p (rs);
2233 }
2234
2235 /* Remove fork catchpoint target routine. Nothing to do, just
2236 return success. */
2237
2238 int
2239 remote_target::remove_fork_catchpoint (int pid)
2240 {
2241 return 0;
2242 }
2243
2244 /* Insert vfork catchpoint target routine. If vfork events are enabled
2245 then return success, nothing more to do. */
2246
2247 int
2248 remote_target::insert_vfork_catchpoint (int pid)
2249 {
2250 struct remote_state *rs = get_remote_state ();
2251
2252 return !remote_vfork_event_p (rs);
2253 }
2254
2255 /* Remove vfork catchpoint target routine. Nothing to do, just
2256 return success. */
2257
2258 int
2259 remote_target::remove_vfork_catchpoint (int pid)
2260 {
2261 return 0;
2262 }
2263
2264 /* Insert exec catchpoint target routine. If exec events are
2265 enabled, just return success. */
2266
2267 int
2268 remote_target::insert_exec_catchpoint (int pid)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271
2272 return !remote_exec_event_p (rs);
2273 }
2274
2275 /* Remove exec catchpoint target routine. Nothing to do, just
2276 return success. */
2277
2278 int
2279 remote_target::remove_exec_catchpoint (int pid)
2280 {
2281 return 0;
2282 }
2283
2284 \f
2285
2286 /* Take advantage of the fact that the TID field is not used, to tag
2287 special ptids with it set to != 0. */
2288 static const ptid_t magic_null_ptid (42000, -1, 1);
2289 static const ptid_t not_sent_ptid (42000, -2, 1);
2290 static const ptid_t any_thread_ptid (42000, 0, 1);
2291
2292 /* Find out if the stub attached to PID (and hence GDB should offer to
2293 detach instead of killing it when bailing out). */
2294
2295 int
2296 remote_target::remote_query_attached (int pid)
2297 {
2298 struct remote_state *rs = get_remote_state ();
2299 size_t size = get_remote_packet_size ();
2300
2301 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2302 return 0;
2303
2304 if (remote_multi_process_p (rs))
2305 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2306 else
2307 xsnprintf (rs->buf.data (), size, "qAttached");
2308
2309 putpkt (rs->buf);
2310 getpkt (&rs->buf, 0);
2311
2312 switch (packet_ok (rs->buf,
2313 &remote_protocol_packets[PACKET_qAttached]))
2314 {
2315 case PACKET_OK:
2316 if (strcmp (rs->buf.data (), "1") == 0)
2317 return 1;
2318 break;
2319 case PACKET_ERROR:
2320 warning (_("Remote failure reply: %s"), rs->buf.data ());
2321 break;
2322 case PACKET_UNKNOWN:
2323 break;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2330 has been invented by GDB, instead of reported by the target. Since
2331 we can be connected to a remote system before before knowing about
2332 any inferior, mark the target with execution when we find the first
2333 inferior. If ATTACHED is 1, then we had just attached to this
2334 inferior. If it is 0, then we just created this inferior. If it
2335 is -1, then try querying the remote stub to find out if it had
2336 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2337 attempt to open this inferior's executable as the main executable
2338 if no main executable is open already. */
2339
2340 inferior *
2341 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2342 int try_open_exec)
2343 {
2344 struct inferior *inf;
2345
2346 /* Check whether this process we're learning about is to be
2347 considered attached, or if is to be considered to have been
2348 spawned by the stub. */
2349 if (attached == -1)
2350 attached = remote_query_attached (pid);
2351
2352 if (gdbarch_has_global_solist (target_gdbarch ()))
2353 {
2354 /* If the target shares code across all inferiors, then every
2355 attach adds a new inferior. */
2356 inf = add_inferior (pid);
2357
2358 /* ... and every inferior is bound to the same program space.
2359 However, each inferior may still have its own address
2360 space. */
2361 inf->aspace = maybe_new_address_space ();
2362 inf->pspace = current_program_space;
2363 }
2364 else
2365 {
2366 /* In the traditional debugging scenario, there's a 1-1 match
2367 between program/address spaces. We simply bind the inferior
2368 to the program space's address space. */
2369 inf = current_inferior ();
2370 inferior_appeared (inf, pid);
2371 }
2372
2373 inf->attach_flag = attached;
2374 inf->fake_pid_p = fake_pid_p;
2375
2376 /* If no main executable is currently open then attempt to
2377 open the file that was executed to create this inferior. */
2378 if (try_open_exec && get_exec_file (0) == NULL)
2379 exec_file_locate_attach (pid, 0, 1);
2380
2381 return inf;
2382 }
2383
2384 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2385 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2386
2387 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2388 according to RUNNING. */
2389
2390 thread_info *
2391 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 struct thread_info *thread;
2395
2396 /* GDB historically didn't pull threads in the initial connection
2397 setup. If the remote target doesn't even have a concept of
2398 threads (e.g., a bare-metal target), even if internally we
2399 consider that a single-threaded target, mentioning a new thread
2400 might be confusing to the user. Be silent then, preserving the
2401 age old behavior. */
2402 if (rs->starting_up)
2403 thread = add_thread_silent (ptid);
2404 else
2405 thread = add_thread (ptid);
2406
2407 get_remote_thread_info (thread)->vcont_resumed = executing;
2408 set_executing (ptid, executing);
2409 set_running (ptid, running);
2410
2411 return thread;
2412 }
2413
2414 /* Come here when we learn about a thread id from the remote target.
2415 It may be the first time we hear about such thread, so take the
2416 opportunity to add it to GDB's thread list. In case this is the
2417 first time we're noticing its corresponding inferior, add it to
2418 GDB's inferior list as well. EXECUTING indicates whether the
2419 thread is (internally) executing or stopped. */
2420
2421 void
2422 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2423 {
2424 /* In non-stop mode, we assume new found threads are (externally)
2425 running until proven otherwise with a stop reply. In all-stop,
2426 we can only get here if all threads are stopped. */
2427 int running = target_is_non_stop_p () ? 1 : 0;
2428
2429 /* If this is a new thread, add it to GDB's thread list.
2430 If we leave it up to WFI to do this, bad things will happen. */
2431
2432 thread_info *tp = find_thread_ptid (currthread);
2433 if (tp != NULL && tp->state == THREAD_EXITED)
2434 {
2435 /* We're seeing an event on a thread id we knew had exited.
2436 This has to be a new thread reusing the old id. Add it. */
2437 remote_add_thread (currthread, running, executing);
2438 return;
2439 }
2440
2441 if (!in_thread_list (currthread))
2442 {
2443 struct inferior *inf = NULL;
2444 int pid = currthread.pid ();
2445
2446 if (inferior_ptid.is_pid ()
2447 && pid == inferior_ptid.pid ())
2448 {
2449 /* inferior_ptid has no thread member yet. This can happen
2450 with the vAttach -> remote_wait,"TAAthread:" path if the
2451 stub doesn't support qC. This is the first stop reported
2452 after an attach, so this is the main thread. Update the
2453 ptid in the thread list. */
2454 if (in_thread_list (ptid_t (pid)))
2455 thread_change_ptid (inferior_ptid, currthread);
2456 else
2457 {
2458 remote_add_thread (currthread, running, executing);
2459 inferior_ptid = currthread;
2460 }
2461 return;
2462 }
2463
2464 if (magic_null_ptid == inferior_ptid)
2465 {
2466 /* inferior_ptid is not set yet. This can happen with the
2467 vRun -> remote_wait,"TAAthread:" path if the stub
2468 doesn't support qC. This is the first stop reported
2469 after an attach, so this is the main thread. Update the
2470 ptid in the thread list. */
2471 thread_change_ptid (inferior_ptid, currthread);
2472 return;
2473 }
2474
2475 /* When connecting to a target remote, or to a target
2476 extended-remote which already was debugging an inferior, we
2477 may not know about it yet. Add it before adding its child
2478 thread, so notifications are emitted in a sensible order. */
2479 if (find_inferior_pid (currthread.pid ()) == NULL)
2480 {
2481 struct remote_state *rs = get_remote_state ();
2482 bool fake_pid_p = !remote_multi_process_p (rs);
2483
2484 inf = remote_add_inferior (fake_pid_p,
2485 currthread.pid (), -1, 1);
2486 }
2487
2488 /* This is really a new thread. Add it. */
2489 thread_info *new_thr
2490 = remote_add_thread (currthread, running, executing);
2491
2492 /* If we found a new inferior, let the common code do whatever
2493 it needs to with it (e.g., read shared libraries, insert
2494 breakpoints), unless we're just setting up an all-stop
2495 connection. */
2496 if (inf != NULL)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499
2500 if (!rs->starting_up)
2501 notice_new_inferior (new_thr, executing, 0);
2502 }
2503 }
2504 }
2505
2506 /* Return THREAD's private thread data, creating it if necessary. */
2507
2508 static remote_thread_info *
2509 get_remote_thread_info (thread_info *thread)
2510 {
2511 gdb_assert (thread != NULL);
2512
2513 if (thread->priv == NULL)
2514 thread->priv.reset (new remote_thread_info);
2515
2516 return static_cast<remote_thread_info *> (thread->priv.get ());
2517 }
2518
2519 static remote_thread_info *
2520 get_remote_thread_info (ptid_t ptid)
2521 {
2522 thread_info *thr = find_thread_ptid (ptid);
2523 return get_remote_thread_info (thr);
2524 }
2525
2526 /* Call this function as a result of
2527 1) A halt indication (T packet) containing a thread id
2528 2) A direct query of currthread
2529 3) Successful execution of set thread */
2530
2531 static void
2532 record_currthread (struct remote_state *rs, ptid_t currthread)
2533 {
2534 rs->general_thread = currthread;
2535 }
2536
2537 /* If 'QPassSignals' is supported, tell the remote stub what signals
2538 it can simply pass through to the inferior without reporting. */
2539
2540 void
2541 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2542 {
2543 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2544 {
2545 char *pass_packet, *p;
2546 int count = 0;
2547 struct remote_state *rs = get_remote_state ();
2548
2549 gdb_assert (pass_signals.size () < 256);
2550 for (size_t i = 0; i < pass_signals.size (); i++)
2551 {
2552 if (pass_signals[i])
2553 count++;
2554 }
2555 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2556 strcpy (pass_packet, "QPassSignals:");
2557 p = pass_packet + strlen (pass_packet);
2558 for (size_t i = 0; i < pass_signals.size (); i++)
2559 {
2560 if (pass_signals[i])
2561 {
2562 if (i >= 16)
2563 *p++ = tohex (i >> 4);
2564 *p++ = tohex (i & 15);
2565 if (count)
2566 *p++ = ';';
2567 else
2568 break;
2569 count--;
2570 }
2571 }
2572 *p = 0;
2573 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2574 {
2575 putpkt (pass_packet);
2576 getpkt (&rs->buf, 0);
2577 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2578 if (rs->last_pass_packet)
2579 xfree (rs->last_pass_packet);
2580 rs->last_pass_packet = pass_packet;
2581 }
2582 else
2583 xfree (pass_packet);
2584 }
2585 }
2586
2587 /* If 'QCatchSyscalls' is supported, tell the remote stub
2588 to report syscalls to GDB. */
2589
2590 int
2591 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2592 gdb::array_view<const int> syscall_counts)
2593 {
2594 const char *catch_packet;
2595 enum packet_result result;
2596 int n_sysno = 0;
2597
2598 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2599 {
2600 /* Not supported. */
2601 return 1;
2602 }
2603
2604 if (needed && any_count == 0)
2605 {
2606 /* Count how many syscalls are to be caught. */
2607 for (size_t i = 0; i < syscall_counts.size (); i++)
2608 {
2609 if (syscall_counts[i] != 0)
2610 n_sysno++;
2611 }
2612 }
2613
2614 if (remote_debug)
2615 {
2616 fprintf_unfiltered (gdb_stdlog,
2617 "remote_set_syscall_catchpoint "
2618 "pid %d needed %d any_count %d n_sysno %d\n",
2619 pid, needed, any_count, n_sysno);
2620 }
2621
2622 std::string built_packet;
2623 if (needed)
2624 {
2625 /* Prepare a packet with the sysno list, assuming max 8+1
2626 characters for a sysno. If the resulting packet size is too
2627 big, fallback on the non-selective packet. */
2628 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2629 built_packet.reserve (maxpktsz);
2630 built_packet = "QCatchSyscalls:1";
2631 if (any_count == 0)
2632 {
2633 /* Add in each syscall to be caught. */
2634 for (size_t i = 0; i < syscall_counts.size (); i++)
2635 {
2636 if (syscall_counts[i] != 0)
2637 string_appendf (built_packet, ";%zx", i);
2638 }
2639 }
2640 if (built_packet.size () > get_remote_packet_size ())
2641 {
2642 /* catch_packet too big. Fallback to less efficient
2643 non selective mode, with GDB doing the filtering. */
2644 catch_packet = "QCatchSyscalls:1";
2645 }
2646 else
2647 catch_packet = built_packet.c_str ();
2648 }
2649 else
2650 catch_packet = "QCatchSyscalls:0";
2651
2652 struct remote_state *rs = get_remote_state ();
2653
2654 putpkt (catch_packet);
2655 getpkt (&rs->buf, 0);
2656 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2657 if (result == PACKET_OK)
2658 return 0;
2659 else
2660 return -1;
2661 }
2662
2663 /* If 'QProgramSignals' is supported, tell the remote stub what
2664 signals it should pass through to the inferior when detaching. */
2665
2666 void
2667 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2668 {
2669 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2670 {
2671 char *packet, *p;
2672 int count = 0;
2673 struct remote_state *rs = get_remote_state ();
2674
2675 gdb_assert (signals.size () < 256);
2676 for (size_t i = 0; i < signals.size (); i++)
2677 {
2678 if (signals[i])
2679 count++;
2680 }
2681 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2682 strcpy (packet, "QProgramSignals:");
2683 p = packet + strlen (packet);
2684 for (size_t i = 0; i < signals.size (); i++)
2685 {
2686 if (signal_pass_state (i))
2687 {
2688 if (i >= 16)
2689 *p++ = tohex (i >> 4);
2690 *p++ = tohex (i & 15);
2691 if (count)
2692 *p++ = ';';
2693 else
2694 break;
2695 count--;
2696 }
2697 }
2698 *p = 0;
2699 if (!rs->last_program_signals_packet
2700 || strcmp (rs->last_program_signals_packet, packet) != 0)
2701 {
2702 putpkt (packet);
2703 getpkt (&rs->buf, 0);
2704 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2705 xfree (rs->last_program_signals_packet);
2706 rs->last_program_signals_packet = packet;
2707 }
2708 else
2709 xfree (packet);
2710 }
2711 }
2712
2713 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2714 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2715 thread. If GEN is set, set the general thread, if not, then set
2716 the step/continue thread. */
2717 void
2718 remote_target::set_thread (ptid_t ptid, int gen)
2719 {
2720 struct remote_state *rs = get_remote_state ();
2721 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2722 char *buf = rs->buf.data ();
2723 char *endbuf = buf + get_remote_packet_size ();
2724
2725 if (state == ptid)
2726 return;
2727
2728 *buf++ = 'H';
2729 *buf++ = gen ? 'g' : 'c';
2730 if (ptid == magic_null_ptid)
2731 xsnprintf (buf, endbuf - buf, "0");
2732 else if (ptid == any_thread_ptid)
2733 xsnprintf (buf, endbuf - buf, "0");
2734 else if (ptid == minus_one_ptid)
2735 xsnprintf (buf, endbuf - buf, "-1");
2736 else
2737 write_ptid (buf, endbuf, ptid);
2738 putpkt (rs->buf);
2739 getpkt (&rs->buf, 0);
2740 if (gen)
2741 rs->general_thread = ptid;
2742 else
2743 rs->continue_thread = ptid;
2744 }
2745
2746 void
2747 remote_target::set_general_thread (ptid_t ptid)
2748 {
2749 set_thread (ptid, 1);
2750 }
2751
2752 void
2753 remote_target::set_continue_thread (ptid_t ptid)
2754 {
2755 set_thread (ptid, 0);
2756 }
2757
2758 /* Change the remote current process. Which thread within the process
2759 ends up selected isn't important, as long as it is the same process
2760 as what INFERIOR_PTID points to.
2761
2762 This comes from that fact that there is no explicit notion of
2763 "selected process" in the protocol. The selected process for
2764 general operations is the process the selected general thread
2765 belongs to. */
2766
2767 void
2768 remote_target::set_general_process ()
2769 {
2770 struct remote_state *rs = get_remote_state ();
2771
2772 /* If the remote can't handle multiple processes, don't bother. */
2773 if (!remote_multi_process_p (rs))
2774 return;
2775
2776 /* We only need to change the remote current thread if it's pointing
2777 at some other process. */
2778 if (rs->general_thread.pid () != inferior_ptid.pid ())
2779 set_general_thread (inferior_ptid);
2780 }
2781
2782 \f
2783 /* Return nonzero if this is the main thread that we made up ourselves
2784 to model non-threaded targets as single-threaded. */
2785
2786 static int
2787 remote_thread_always_alive (ptid_t ptid)
2788 {
2789 if (ptid == magic_null_ptid)
2790 /* The main thread is always alive. */
2791 return 1;
2792
2793 if (ptid.pid () != 0 && ptid.lwp () == 0)
2794 /* The main thread is always alive. This can happen after a
2795 vAttach, if the remote side doesn't support
2796 multi-threading. */
2797 return 1;
2798
2799 return 0;
2800 }
2801
2802 /* Return nonzero if the thread PTID is still alive on the remote
2803 system. */
2804
2805 bool
2806 remote_target::thread_alive (ptid_t ptid)
2807 {
2808 struct remote_state *rs = get_remote_state ();
2809 char *p, *endp;
2810
2811 /* Check if this is a thread that we made up ourselves to model
2812 non-threaded targets as single-threaded. */
2813 if (remote_thread_always_alive (ptid))
2814 return 1;
2815
2816 p = rs->buf.data ();
2817 endp = p + get_remote_packet_size ();
2818
2819 *p++ = 'T';
2820 write_ptid (p, endp, ptid);
2821
2822 putpkt (rs->buf);
2823 getpkt (&rs->buf, 0);
2824 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2825 }
2826
2827 /* Return a pointer to a thread name if we know it and NULL otherwise.
2828 The thread_info object owns the memory for the name. */
2829
2830 const char *
2831 remote_target::thread_name (struct thread_info *info)
2832 {
2833 if (info->priv != NULL)
2834 {
2835 const std::string &name = get_remote_thread_info (info)->name;
2836 return !name.empty () ? name.c_str () : NULL;
2837 }
2838
2839 return NULL;
2840 }
2841
2842 /* About these extended threadlist and threadinfo packets. They are
2843 variable length packets but, the fields within them are often fixed
2844 length. They are redundant enough to send over UDP as is the
2845 remote protocol in general. There is a matching unit test module
2846 in libstub. */
2847
2848 /* WARNING: This threadref data structure comes from the remote O.S.,
2849 libstub protocol encoding, and remote.c. It is not particularly
2850 changable. */
2851
2852 /* Right now, the internal structure is int. We want it to be bigger.
2853 Plan to fix this. */
2854
2855 typedef int gdb_threadref; /* Internal GDB thread reference. */
2856
2857 /* gdb_ext_thread_info is an internal GDB data structure which is
2858 equivalent to the reply of the remote threadinfo packet. */
2859
2860 struct gdb_ext_thread_info
2861 {
2862 threadref threadid; /* External form of thread reference. */
2863 int active; /* Has state interesting to GDB?
2864 regs, stack. */
2865 char display[256]; /* Brief state display, name,
2866 blocked/suspended. */
2867 char shortname[32]; /* To be used to name threads. */
2868 char more_display[256]; /* Long info, statistics, queue depth,
2869 whatever. */
2870 };
2871
2872 /* The volume of remote transfers can be limited by submitting
2873 a mask containing bits specifying the desired information.
2874 Use a union of these values as the 'selection' parameter to
2875 get_thread_info. FIXME: Make these TAG names more thread specific. */
2876
2877 #define TAG_THREADID 1
2878 #define TAG_EXISTS 2
2879 #define TAG_DISPLAY 4
2880 #define TAG_THREADNAME 8
2881 #define TAG_MOREDISPLAY 16
2882
2883 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2884
2885 static char *unpack_nibble (char *buf, int *val);
2886
2887 static char *unpack_byte (char *buf, int *value);
2888
2889 static char *pack_int (char *buf, int value);
2890
2891 static char *unpack_int (char *buf, int *value);
2892
2893 static char *unpack_string (char *src, char *dest, int length);
2894
2895 static char *pack_threadid (char *pkt, threadref *id);
2896
2897 static char *unpack_threadid (char *inbuf, threadref *id);
2898
2899 void int_to_threadref (threadref *id, int value);
2900
2901 static int threadref_to_int (threadref *ref);
2902
2903 static void copy_threadref (threadref *dest, threadref *src);
2904
2905 static int threadmatch (threadref *dest, threadref *src);
2906
2907 static char *pack_threadinfo_request (char *pkt, int mode,
2908 threadref *id);
2909
2910 static char *pack_threadlist_request (char *pkt, int startflag,
2911 int threadcount,
2912 threadref *nextthread);
2913
2914 static int remote_newthread_step (threadref *ref, void *context);
2915
2916
2917 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2918 buffer we're allowed to write to. Returns
2919 BUF+CHARACTERS_WRITTEN. */
2920
2921 char *
2922 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2923 {
2924 int pid, tid;
2925 struct remote_state *rs = get_remote_state ();
2926
2927 if (remote_multi_process_p (rs))
2928 {
2929 pid = ptid.pid ();
2930 if (pid < 0)
2931 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2932 else
2933 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2934 }
2935 tid = ptid.lwp ();
2936 if (tid < 0)
2937 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2938 else
2939 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2940
2941 return buf;
2942 }
2943
2944 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2945 last parsed char. Returns null_ptid if no thread id is found, and
2946 throws an error if the thread id has an invalid format. */
2947
2948 static ptid_t
2949 read_ptid (const char *buf, const char **obuf)
2950 {
2951 const char *p = buf;
2952 const char *pp;
2953 ULONGEST pid = 0, tid = 0;
2954
2955 if (*p == 'p')
2956 {
2957 /* Multi-process ptid. */
2958 pp = unpack_varlen_hex (p + 1, &pid);
2959 if (*pp != '.')
2960 error (_("invalid remote ptid: %s"), p);
2961
2962 p = pp;
2963 pp = unpack_varlen_hex (p + 1, &tid);
2964 if (obuf)
2965 *obuf = pp;
2966 return ptid_t (pid, tid, 0);
2967 }
2968
2969 /* No multi-process. Just a tid. */
2970 pp = unpack_varlen_hex (p, &tid);
2971
2972 /* Return null_ptid when no thread id is found. */
2973 if (p == pp)
2974 {
2975 if (obuf)
2976 *obuf = pp;
2977 return null_ptid;
2978 }
2979
2980 /* Since the stub is not sending a process id, then default to
2981 what's in inferior_ptid, unless it's null at this point. If so,
2982 then since there's no way to know the pid of the reported
2983 threads, use the magic number. */
2984 if (inferior_ptid == null_ptid)
2985 pid = magic_null_ptid.pid ();
2986 else
2987 pid = inferior_ptid.pid ();
2988
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 static int
2995 stubhex (int ch)
2996 {
2997 if (ch >= 'a' && ch <= 'f')
2998 return ch - 'a' + 10;
2999 if (ch >= '0' && ch <= '9')
3000 return ch - '0';
3001 if (ch >= 'A' && ch <= 'F')
3002 return ch - 'A' + 10;
3003 return -1;
3004 }
3005
3006 static int
3007 stub_unpack_int (char *buff, int fieldlength)
3008 {
3009 int nibble;
3010 int retval = 0;
3011
3012 while (fieldlength)
3013 {
3014 nibble = stubhex (*buff++);
3015 retval |= nibble;
3016 fieldlength--;
3017 if (fieldlength)
3018 retval = retval << 4;
3019 }
3020 return retval;
3021 }
3022
3023 static char *
3024 unpack_nibble (char *buf, int *val)
3025 {
3026 *val = fromhex (*buf++);
3027 return buf;
3028 }
3029
3030 static char *
3031 unpack_byte (char *buf, int *value)
3032 {
3033 *value = stub_unpack_int (buf, 2);
3034 return buf + 2;
3035 }
3036
3037 static char *
3038 pack_int (char *buf, int value)
3039 {
3040 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3041 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3042 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3043 buf = pack_hex_byte (buf, (value & 0xff));
3044 return buf;
3045 }
3046
3047 static char *
3048 unpack_int (char *buf, int *value)
3049 {
3050 *value = stub_unpack_int (buf, 8);
3051 return buf + 8;
3052 }
3053
3054 #if 0 /* Currently unused, uncomment when needed. */
3055 static char *pack_string (char *pkt, char *string);
3056
3057 static char *
3058 pack_string (char *pkt, char *string)
3059 {
3060 char ch;
3061 int len;
3062
3063 len = strlen (string);
3064 if (len > 200)
3065 len = 200; /* Bigger than most GDB packets, junk??? */
3066 pkt = pack_hex_byte (pkt, len);
3067 while (len-- > 0)
3068 {
3069 ch = *string++;
3070 if ((ch == '\0') || (ch == '#'))
3071 ch = '*'; /* Protect encapsulation. */
3072 *pkt++ = ch;
3073 }
3074 return pkt;
3075 }
3076 #endif /* 0 (unused) */
3077
3078 static char *
3079 unpack_string (char *src, char *dest, int length)
3080 {
3081 while (length--)
3082 *dest++ = *src++;
3083 *dest = '\0';
3084 return src;
3085 }
3086
3087 static char *
3088 pack_threadid (char *pkt, threadref *id)
3089 {
3090 char *limit;
3091 unsigned char *altid;
3092
3093 altid = (unsigned char *) id;
3094 limit = pkt + BUF_THREAD_ID_SIZE;
3095 while (pkt < limit)
3096 pkt = pack_hex_byte (pkt, *altid++);
3097 return pkt;
3098 }
3099
3100
3101 static char *
3102 unpack_threadid (char *inbuf, threadref *id)
3103 {
3104 char *altref;
3105 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3106 int x, y;
3107
3108 altref = (char *) id;
3109
3110 while (inbuf < limit)
3111 {
3112 x = stubhex (*inbuf++);
3113 y = stubhex (*inbuf++);
3114 *altref++ = (x << 4) | y;
3115 }
3116 return inbuf;
3117 }
3118
3119 /* Externally, threadrefs are 64 bits but internally, they are still
3120 ints. This is due to a mismatch of specifications. We would like
3121 to use 64bit thread references internally. This is an adapter
3122 function. */
3123
3124 void
3125 int_to_threadref (threadref *id, int value)
3126 {
3127 unsigned char *scan;
3128
3129 scan = (unsigned char *) id;
3130 {
3131 int i = 4;
3132 while (i--)
3133 *scan++ = 0;
3134 }
3135 *scan++ = (value >> 24) & 0xff;
3136 *scan++ = (value >> 16) & 0xff;
3137 *scan++ = (value >> 8) & 0xff;
3138 *scan++ = (value & 0xff);
3139 }
3140
3141 static int
3142 threadref_to_int (threadref *ref)
3143 {
3144 int i, value = 0;
3145 unsigned char *scan;
3146
3147 scan = *ref;
3148 scan += 4;
3149 i = 4;
3150 while (i-- > 0)
3151 value = (value << 8) | ((*scan++) & 0xff);
3152 return value;
3153 }
3154
3155 static void
3156 copy_threadref (threadref *dest, threadref *src)
3157 {
3158 int i;
3159 unsigned char *csrc, *cdest;
3160
3161 csrc = (unsigned char *) src;
3162 cdest = (unsigned char *) dest;
3163 i = 8;
3164 while (i--)
3165 *cdest++ = *csrc++;
3166 }
3167
3168 static int
3169 threadmatch (threadref *dest, threadref *src)
3170 {
3171 /* Things are broken right now, so just assume we got a match. */
3172 #if 0
3173 unsigned char *srcp, *destp;
3174 int i, result;
3175 srcp = (char *) src;
3176 destp = (char *) dest;
3177
3178 result = 1;
3179 while (i-- > 0)
3180 result &= (*srcp++ == *destp++) ? 1 : 0;
3181 return result;
3182 #endif
3183 return 1;
3184 }
3185
3186 /*
3187 threadid:1, # always request threadid
3188 context_exists:2,
3189 display:4,
3190 unique_name:8,
3191 more_display:16
3192 */
3193
3194 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3195
3196 static char *
3197 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3198 {
3199 *pkt++ = 'q'; /* Info Query */
3200 *pkt++ = 'P'; /* process or thread info */
3201 pkt = pack_int (pkt, mode); /* mode */
3202 pkt = pack_threadid (pkt, id); /* threadid */
3203 *pkt = '\0'; /* terminate */
3204 return pkt;
3205 }
3206
3207 /* These values tag the fields in a thread info response packet. */
3208 /* Tagging the fields allows us to request specific fields and to
3209 add more fields as time goes by. */
3210
3211 #define TAG_THREADID 1 /* Echo the thread identifier. */
3212 #define TAG_EXISTS 2 /* Is this process defined enough to
3213 fetch registers and its stack? */
3214 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3215 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3216 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3217 the process. */
3218
3219 int
3220 remote_target::remote_unpack_thread_info_response (char *pkt,
3221 threadref *expectedref,
3222 gdb_ext_thread_info *info)
3223 {
3224 struct remote_state *rs = get_remote_state ();
3225 int mask, length;
3226 int tag;
3227 threadref ref;
3228 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3229 int retval = 1;
3230
3231 /* info->threadid = 0; FIXME: implement zero_threadref. */
3232 info->active = 0;
3233 info->display[0] = '\0';
3234 info->shortname[0] = '\0';
3235 info->more_display[0] = '\0';
3236
3237 /* Assume the characters indicating the packet type have been
3238 stripped. */
3239 pkt = unpack_int (pkt, &mask); /* arg mask */
3240 pkt = unpack_threadid (pkt, &ref);
3241
3242 if (mask == 0)
3243 warning (_("Incomplete response to threadinfo request."));
3244 if (!threadmatch (&ref, expectedref))
3245 { /* This is an answer to a different request. */
3246 warning (_("ERROR RMT Thread info mismatch."));
3247 return 0;
3248 }
3249 copy_threadref (&info->threadid, &ref);
3250
3251 /* Loop on tagged fields , try to bail if something goes wrong. */
3252
3253 /* Packets are terminated with nulls. */
3254 while ((pkt < limit) && mask && *pkt)
3255 {
3256 pkt = unpack_int (pkt, &tag); /* tag */
3257 pkt = unpack_byte (pkt, &length); /* length */
3258 if (!(tag & mask)) /* Tags out of synch with mask. */
3259 {
3260 warning (_("ERROR RMT: threadinfo tag mismatch."));
3261 retval = 0;
3262 break;
3263 }
3264 if (tag == TAG_THREADID)
3265 {
3266 if (length != 16)
3267 {
3268 warning (_("ERROR RMT: length of threadid is not 16."));
3269 retval = 0;
3270 break;
3271 }
3272 pkt = unpack_threadid (pkt, &ref);
3273 mask = mask & ~TAG_THREADID;
3274 continue;
3275 }
3276 if (tag == TAG_EXISTS)
3277 {
3278 info->active = stub_unpack_int (pkt, length);
3279 pkt += length;
3280 mask = mask & ~(TAG_EXISTS);
3281 if (length > 8)
3282 {
3283 warning (_("ERROR RMT: 'exists' length too long."));
3284 retval = 0;
3285 break;
3286 }
3287 continue;
3288 }
3289 if (tag == TAG_THREADNAME)
3290 {
3291 pkt = unpack_string (pkt, &info->shortname[0], length);
3292 mask = mask & ~TAG_THREADNAME;
3293 continue;
3294 }
3295 if (tag == TAG_DISPLAY)
3296 {
3297 pkt = unpack_string (pkt, &info->display[0], length);
3298 mask = mask & ~TAG_DISPLAY;
3299 continue;
3300 }
3301 if (tag == TAG_MOREDISPLAY)
3302 {
3303 pkt = unpack_string (pkt, &info->more_display[0], length);
3304 mask = mask & ~TAG_MOREDISPLAY;
3305 continue;
3306 }
3307 warning (_("ERROR RMT: unknown thread info tag."));
3308 break; /* Not a tag we know about. */
3309 }
3310 return retval;
3311 }
3312
3313 int
3314 remote_target::remote_get_threadinfo (threadref *threadid,
3315 int fieldset,
3316 gdb_ext_thread_info *info)
3317 {
3318 struct remote_state *rs = get_remote_state ();
3319 int result;
3320
3321 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3322 putpkt (rs->buf);
3323 getpkt (&rs->buf, 0);
3324
3325 if (rs->buf[0] == '\0')
3326 return 0;
3327
3328 result = remote_unpack_thread_info_response (&rs->buf[2],
3329 threadid, info);
3330 return result;
3331 }
3332
3333 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3334
3335 static char *
3336 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3337 threadref *nextthread)
3338 {
3339 *pkt++ = 'q'; /* info query packet */
3340 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3341 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3342 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3343 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3344 *pkt = '\0';
3345 return pkt;
3346 }
3347
3348 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3349
3350 int
3351 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3352 threadref *original_echo,
3353 threadref *resultlist,
3354 int *doneflag)
3355 {
3356 struct remote_state *rs = get_remote_state ();
3357 char *limit;
3358 int count, resultcount, done;
3359
3360 resultcount = 0;
3361 /* Assume the 'q' and 'M chars have been stripped. */
3362 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3363 /* done parse past here */
3364 pkt = unpack_byte (pkt, &count); /* count field */
3365 pkt = unpack_nibble (pkt, &done);
3366 /* The first threadid is the argument threadid. */
3367 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3368 while ((count-- > 0) && (pkt < limit))
3369 {
3370 pkt = unpack_threadid (pkt, resultlist++);
3371 if (resultcount++ >= result_limit)
3372 break;
3373 }
3374 if (doneflag)
3375 *doneflag = done;
3376 return resultcount;
3377 }
3378
3379 /* Fetch the next batch of threads from the remote. Returns -1 if the
3380 qL packet is not supported, 0 on error and 1 on success. */
3381
3382 int
3383 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3384 int result_limit, int *done, int *result_count,
3385 threadref *threadlist)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 int result = 1;
3389
3390 /* Truncate result limit to be smaller than the packet size. */
3391 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3392 >= get_remote_packet_size ())
3393 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3394
3395 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3396 nextthread);
3397 putpkt (rs->buf);
3398 getpkt (&rs->buf, 0);
3399 if (rs->buf[0] == '\0')
3400 {
3401 /* Packet not supported. */
3402 return -1;
3403 }
3404
3405 *result_count =
3406 parse_threadlist_response (&rs->buf[2], result_limit,
3407 &rs->echo_nextthread, threadlist, done);
3408
3409 if (!threadmatch (&rs->echo_nextthread, nextthread))
3410 {
3411 /* FIXME: This is a good reason to drop the packet. */
3412 /* Possibly, there is a duplicate response. */
3413 /* Possibilities :
3414 retransmit immediatly - race conditions
3415 retransmit after timeout - yes
3416 exit
3417 wait for packet, then exit
3418 */
3419 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3420 return 0; /* I choose simply exiting. */
3421 }
3422 if (*result_count <= 0)
3423 {
3424 if (*done != 1)
3425 {
3426 warning (_("RMT ERROR : failed to get remote thread list."));
3427 result = 0;
3428 }
3429 return result; /* break; */
3430 }
3431 if (*result_count > result_limit)
3432 {
3433 *result_count = 0;
3434 warning (_("RMT ERROR: threadlist response longer than requested."));
3435 return 0;
3436 }
3437 return result;
3438 }
3439
3440 /* Fetch the list of remote threads, with the qL packet, and call
3441 STEPFUNCTION for each thread found. Stops iterating and returns 1
3442 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3443 STEPFUNCTION returns false. If the packet is not supported,
3444 returns -1. */
3445
3446 int
3447 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3448 void *context, int looplimit)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int done, i, result_count;
3452 int startflag = 1;
3453 int result = 1;
3454 int loopcount = 0;
3455
3456 done = 0;
3457 while (!done)
3458 {
3459 if (loopcount++ > looplimit)
3460 {
3461 result = 0;
3462 warning (_("Remote fetch threadlist -infinite loop-."));
3463 break;
3464 }
3465 result = remote_get_threadlist (startflag, &rs->nextthread,
3466 MAXTHREADLISTRESULTS,
3467 &done, &result_count,
3468 rs->resultthreadlist);
3469 if (result <= 0)
3470 break;
3471 /* Clear for later iterations. */
3472 startflag = 0;
3473 /* Setup to resume next batch of thread references, set nextthread. */
3474 if (result_count >= 1)
3475 copy_threadref (&rs->nextthread,
3476 &rs->resultthreadlist[result_count - 1]);
3477 i = 0;
3478 while (result_count--)
3479 {
3480 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3481 {
3482 result = 0;
3483 break;
3484 }
3485 }
3486 }
3487 return result;
3488 }
3489
3490 /* A thread found on the remote target. */
3491
3492 struct thread_item
3493 {
3494 explicit thread_item (ptid_t ptid_)
3495 : ptid (ptid_)
3496 {}
3497
3498 thread_item (thread_item &&other) = default;
3499 thread_item &operator= (thread_item &&other) = default;
3500
3501 DISABLE_COPY_AND_ASSIGN (thread_item);
3502
3503 /* The thread's PTID. */
3504 ptid_t ptid;
3505
3506 /* The thread's extra info. */
3507 std::string extra;
3508
3509 /* The thread's name. */
3510 std::string name;
3511
3512 /* The core the thread was running on. -1 if not known. */
3513 int core = -1;
3514
3515 /* The thread handle associated with the thread. */
3516 gdb::byte_vector thread_handle;
3517 };
3518
3519 /* Context passed around to the various methods listing remote
3520 threads. As new threads are found, they're added to the ITEMS
3521 vector. */
3522
3523 struct threads_listing_context
3524 {
3525 /* Return true if this object contains an entry for a thread with ptid
3526 PTID. */
3527
3528 bool contains_thread (ptid_t ptid) const
3529 {
3530 auto match_ptid = [&] (const thread_item &item)
3531 {
3532 return item.ptid == ptid;
3533 };
3534
3535 auto it = std::find_if (this->items.begin (),
3536 this->items.end (),
3537 match_ptid);
3538
3539 return it != this->items.end ();
3540 }
3541
3542 /* Remove the thread with ptid PTID. */
3543
3544 void remove_thread (ptid_t ptid)
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::remove_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 if (it != this->items.end ())
3556 this->items.erase (it);
3557 }
3558
3559 /* The threads found on the remote target. */
3560 std::vector<thread_item> items;
3561 };
3562
3563 static int
3564 remote_newthread_step (threadref *ref, void *data)
3565 {
3566 struct threads_listing_context *context
3567 = (struct threads_listing_context *) data;
3568 int pid = inferior_ptid.pid ();
3569 int lwp = threadref_to_int (ref);
3570 ptid_t ptid (pid, lwp);
3571
3572 context->items.emplace_back (ptid);
3573
3574 return 1; /* continue iterator */
3575 }
3576
3577 #define CRAZY_MAX_THREADS 1000
3578
3579 ptid_t
3580 remote_target::remote_current_thread (ptid_t oldpid)
3581 {
3582 struct remote_state *rs = get_remote_state ();
3583
3584 putpkt ("qC");
3585 getpkt (&rs->buf, 0);
3586 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3587 {
3588 const char *obuf;
3589 ptid_t result;
3590
3591 result = read_ptid (&rs->buf[2], &obuf);
3592 if (*obuf != '\0' && remote_debug)
3593 fprintf_unfiltered (gdb_stdlog,
3594 "warning: garbage in qC reply\n");
3595
3596 return result;
3597 }
3598 else
3599 return oldpid;
3600 }
3601
3602 /* List remote threads using the deprecated qL packet. */
3603
3604 int
3605 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3606 {
3607 if (remote_threadlist_iterator (remote_newthread_step, context,
3608 CRAZY_MAX_THREADS) >= 0)
3609 return 1;
3610
3611 return 0;
3612 }
3613
3614 #if defined(HAVE_LIBEXPAT)
3615
3616 static void
3617 start_thread (struct gdb_xml_parser *parser,
3618 const struct gdb_xml_element *element,
3619 void *user_data,
3620 std::vector<gdb_xml_value> &attributes)
3621 {
3622 struct threads_listing_context *data
3623 = (struct threads_listing_context *) user_data;
3624 struct gdb_xml_value *attr;
3625
3626 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3627 ptid_t ptid = read_ptid (id, NULL);
3628
3629 data->items.emplace_back (ptid);
3630 thread_item &item = data->items.back ();
3631
3632 attr = xml_find_attribute (attributes, "core");
3633 if (attr != NULL)
3634 item.core = *(ULONGEST *) attr->value.get ();
3635
3636 attr = xml_find_attribute (attributes, "name");
3637 if (attr != NULL)
3638 item.name = (const char *) attr->value.get ();
3639
3640 attr = xml_find_attribute (attributes, "handle");
3641 if (attr != NULL)
3642 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3643 }
3644
3645 static void
3646 end_thread (struct gdb_xml_parser *parser,
3647 const struct gdb_xml_element *element,
3648 void *user_data, const char *body_text)
3649 {
3650 struct threads_listing_context *data
3651 = (struct threads_listing_context *) user_data;
3652
3653 if (body_text != NULL && *body_text != '\0')
3654 data->items.back ().extra = body_text;
3655 }
3656
3657 const struct gdb_xml_attribute thread_attributes[] = {
3658 { "id", GDB_XML_AF_NONE, NULL, NULL },
3659 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3660 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3661 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3662 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3663 };
3664
3665 const struct gdb_xml_element thread_children[] = {
3666 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3667 };
3668
3669 const struct gdb_xml_element threads_children[] = {
3670 { "thread", thread_attributes, thread_children,
3671 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3672 start_thread, end_thread },
3673 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3674 };
3675
3676 const struct gdb_xml_element threads_elements[] = {
3677 { "threads", NULL, threads_children,
3678 GDB_XML_EF_NONE, NULL, NULL },
3679 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3680 };
3681
3682 #endif
3683
3684 /* List remote threads using qXfer:threads:read. */
3685
3686 int
3687 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3688 {
3689 #if defined(HAVE_LIBEXPAT)
3690 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3691 {
3692 gdb::optional<gdb::char_vector> xml
3693 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3694
3695 if (xml && (*xml)[0] != '\0')
3696 {
3697 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3698 threads_elements, xml->data (), context);
3699 }
3700
3701 return 1;
3702 }
3703 #endif
3704
3705 return 0;
3706 }
3707
3708 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3712 {
3713 struct remote_state *rs = get_remote_state ();
3714
3715 if (rs->use_threadinfo_query)
3716 {
3717 const char *bufp;
3718
3719 putpkt ("qfThreadInfo");
3720 getpkt (&rs->buf, 0);
3721 bufp = rs->buf.data ();
3722 if (bufp[0] != '\0') /* q packet recognized */
3723 {
3724 while (*bufp++ == 'm') /* reply contains one or more TID */
3725 {
3726 do
3727 {
3728 ptid_t ptid = read_ptid (bufp, &bufp);
3729 context->items.emplace_back (ptid);
3730 }
3731 while (*bufp++ == ','); /* comma-separated list */
3732 putpkt ("qsThreadInfo");
3733 getpkt (&rs->buf, 0);
3734 bufp = rs->buf.data ();
3735 }
3736 return 1;
3737 }
3738 else
3739 {
3740 /* Packet not recognized. */
3741 rs->use_threadinfo_query = 0;
3742 }
3743 }
3744
3745 return 0;
3746 }
3747
3748 /* Implement the to_update_thread_list function for the remote
3749 targets. */
3750
3751 void
3752 remote_target::update_thread_list ()
3753 {
3754 struct threads_listing_context context;
3755 int got_list = 0;
3756
3757 /* We have a few different mechanisms to fetch the thread list. Try
3758 them all, starting with the most preferred one first, falling
3759 back to older methods. */
3760 if (remote_get_threads_with_qxfer (&context)
3761 || remote_get_threads_with_qthreadinfo (&context)
3762 || remote_get_threads_with_ql (&context))
3763 {
3764 got_list = 1;
3765
3766 if (context.items.empty ()
3767 && remote_thread_always_alive (inferior_ptid))
3768 {
3769 /* Some targets don't really support threads, but still
3770 reply an (empty) thread list in response to the thread
3771 listing packets, instead of replying "packet not
3772 supported". Exit early so we don't delete the main
3773 thread. */
3774 return;
3775 }
3776
3777 /* CONTEXT now holds the current thread list on the remote
3778 target end. Delete GDB-side threads no longer found on the
3779 target. */
3780 for (thread_info *tp : all_threads_safe ())
3781 {
3782 if (!context.contains_thread (tp->ptid))
3783 {
3784 /* Not found. */
3785 delete_thread (tp);
3786 }
3787 }
3788
3789 /* Remove any unreported fork child threads from CONTEXT so
3790 that we don't interfere with follow fork, which is where
3791 creation of such threads is handled. */
3792 remove_new_fork_children (&context);
3793
3794 /* And now add threads we don't know about yet to our list. */
3795 for (thread_item &item : context.items)
3796 {
3797 if (item.ptid != null_ptid)
3798 {
3799 /* In non-stop mode, we assume new found threads are
3800 executing until proven otherwise with a stop reply.
3801 In all-stop, we can only get here if all threads are
3802 stopped. */
3803 int executing = target_is_non_stop_p () ? 1 : 0;
3804
3805 remote_notice_new_inferior (item.ptid, executing);
3806
3807 thread_info *tp = find_thread_ptid (item.ptid);
3808 remote_thread_info *info = get_remote_thread_info (tp);
3809 info->core = item.core;
3810 info->extra = std::move (item.extra);
3811 info->name = std::move (item.name);
3812 info->thread_handle = std::move (item.thread_handle);
3813 }
3814 }
3815 }
3816
3817 if (!got_list)
3818 {
3819 /* If no thread listing method is supported, then query whether
3820 each known thread is alive, one by one, with the T packet.
3821 If the target doesn't support threads at all, then this is a
3822 no-op. See remote_thread_alive. */
3823 prune_threads ();
3824 }
3825 }
3826
3827 /*
3828 * Collect a descriptive string about the given thread.
3829 * The target may say anything it wants to about the thread
3830 * (typically info about its blocked / runnable state, name, etc.).
3831 * This string will appear in the info threads display.
3832 *
3833 * Optional: targets are not required to implement this function.
3834 */
3835
3836 const char *
3837 remote_target::extra_thread_info (thread_info *tp)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 int set;
3841 threadref id;
3842 struct gdb_ext_thread_info threadinfo;
3843
3844 if (rs->remote_desc == 0) /* paranoia */
3845 internal_error (__FILE__, __LINE__,
3846 _("remote_threads_extra_info"));
3847
3848 if (tp->ptid == magic_null_ptid
3849 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3850 /* This is the main thread which was added by GDB. The remote
3851 server doesn't know about it. */
3852 return NULL;
3853
3854 std::string &extra = get_remote_thread_info (tp)->extra;
3855
3856 /* If already have cached info, use it. */
3857 if (!extra.empty ())
3858 return extra.c_str ();
3859
3860 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3861 {
3862 /* If we're using qXfer:threads:read, then the extra info is
3863 included in the XML. So if we didn't have anything cached,
3864 it's because there's really no extra info. */
3865 return NULL;
3866 }
3867
3868 if (rs->use_threadextra_query)
3869 {
3870 char *b = rs->buf.data ();
3871 char *endb = b + get_remote_packet_size ();
3872
3873 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3874 b += strlen (b);
3875 write_ptid (b, endb, tp->ptid);
3876
3877 putpkt (rs->buf);
3878 getpkt (&rs->buf, 0);
3879 if (rs->buf[0] != 0)
3880 {
3881 extra.resize (strlen (rs->buf.data ()) / 2);
3882 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3883 return extra.c_str ();
3884 }
3885 }
3886
3887 /* If the above query fails, fall back to the old method. */
3888 rs->use_threadextra_query = 0;
3889 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3890 | TAG_MOREDISPLAY | TAG_DISPLAY;
3891 int_to_threadref (&id, tp->ptid.lwp ());
3892 if (remote_get_threadinfo (&id, set, &threadinfo))
3893 if (threadinfo.active)
3894 {
3895 if (*threadinfo.shortname)
3896 string_appendf (extra, " Name: %s", threadinfo.shortname);
3897 if (*threadinfo.display)
3898 {
3899 if (!extra.empty ())
3900 extra += ',';
3901 string_appendf (extra, " State: %s", threadinfo.display);
3902 }
3903 if (*threadinfo.more_display)
3904 {
3905 if (!extra.empty ())
3906 extra += ',';
3907 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3908 }
3909 return extra.c_str ();
3910 }
3911 return NULL;
3912 }
3913 \f
3914
3915 bool
3916 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3917 struct static_tracepoint_marker *marker)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920 char *p = rs->buf.data ();
3921
3922 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3923 p += strlen (p);
3924 p += hexnumstr (p, addr);
3925 putpkt (rs->buf);
3926 getpkt (&rs->buf, 0);
3927 p = rs->buf.data ();
3928
3929 if (*p == 'E')
3930 error (_("Remote failure reply: %s"), p);
3931
3932 if (*p++ == 'm')
3933 {
3934 parse_static_tracepoint_marker_definition (p, NULL, marker);
3935 return true;
3936 }
3937
3938 return false;
3939 }
3940
3941 std::vector<static_tracepoint_marker>
3942 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3943 {
3944 struct remote_state *rs = get_remote_state ();
3945 std::vector<static_tracepoint_marker> markers;
3946 const char *p;
3947 static_tracepoint_marker marker;
3948
3949 /* Ask for a first packet of static tracepoint marker
3950 definition. */
3951 putpkt ("qTfSTM");
3952 getpkt (&rs->buf, 0);
3953 p = rs->buf.data ();
3954 if (*p == 'E')
3955 error (_("Remote failure reply: %s"), p);
3956
3957 while (*p++ == 'm')
3958 {
3959 do
3960 {
3961 parse_static_tracepoint_marker_definition (p, &p, &marker);
3962
3963 if (strid == NULL || marker.str_id == strid)
3964 markers.push_back (std::move (marker));
3965 }
3966 while (*p++ == ','); /* comma-separated list */
3967 /* Ask for another packet of static tracepoint definition. */
3968 putpkt ("qTsSTM");
3969 getpkt (&rs->buf, 0);
3970 p = rs->buf.data ();
3971 }
3972
3973 return markers;
3974 }
3975
3976 \f
3977 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3978
3979 ptid_t
3980 remote_target::get_ada_task_ptid (long lwp, long thread)
3981 {
3982 return ptid_t (inferior_ptid.pid (), lwp, 0);
3983 }
3984 \f
3985
3986 /* Restart the remote side; this is an extended protocol operation. */
3987
3988 void
3989 remote_target::extended_remote_restart ()
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992
3993 /* Send the restart command; for reasons I don't understand the
3994 remote side really expects a number after the "R". */
3995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
3996 putpkt (rs->buf);
3997
3998 remote_fileio_reset ();
3999 }
4000 \f
4001 /* Clean up connection to a remote debugger. */
4002
4003 void
4004 remote_target::close ()
4005 {
4006 /* Make sure we leave stdin registered in the event loop. */
4007 terminal_ours ();
4008
4009 /* We don't have a connection to the remote stub anymore. Get rid
4010 of all the inferiors and their threads we were controlling.
4011 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4012 will be unable to find the thread corresponding to (pid, 0, 0). */
4013 inferior_ptid = null_ptid;
4014 discard_all_inferiors ();
4015
4016 trace_reset_local_state ();
4017
4018 delete this;
4019 }
4020
4021 remote_target::~remote_target ()
4022 {
4023 struct remote_state *rs = get_remote_state ();
4024
4025 /* Check for NULL because we may get here with a partially
4026 constructed target/connection. */
4027 if (rs->remote_desc == nullptr)
4028 return;
4029
4030 serial_close (rs->remote_desc);
4031
4032 /* We are destroying the remote target, so we should discard
4033 everything of this target. */
4034 discard_pending_stop_replies_in_queue ();
4035
4036 if (rs->remote_async_inferior_event_token)
4037 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4038
4039 delete rs->notif_state;
4040 }
4041
4042 /* Query the remote side for the text, data and bss offsets. */
4043
4044 void
4045 remote_target::get_offsets ()
4046 {
4047 struct remote_state *rs = get_remote_state ();
4048 char *buf;
4049 char *ptr;
4050 int lose, num_segments = 0, do_sections, do_segments;
4051 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4052 struct symfile_segment_data *data;
4053
4054 if (symfile_objfile == NULL)
4055 return;
4056
4057 putpkt ("qOffsets");
4058 getpkt (&rs->buf, 0);
4059 buf = rs->buf.data ();
4060
4061 if (buf[0] == '\000')
4062 return; /* Return silently. Stub doesn't support
4063 this command. */
4064 if (buf[0] == 'E')
4065 {
4066 warning (_("Remote failure reply: %s"), buf);
4067 return;
4068 }
4069
4070 /* Pick up each field in turn. This used to be done with scanf, but
4071 scanf will make trouble if CORE_ADDR size doesn't match
4072 conversion directives correctly. The following code will work
4073 with any size of CORE_ADDR. */
4074 text_addr = data_addr = bss_addr = 0;
4075 ptr = buf;
4076 lose = 0;
4077
4078 if (startswith (ptr, "Text="))
4079 {
4080 ptr += 5;
4081 /* Don't use strtol, could lose on big values. */
4082 while (*ptr && *ptr != ';')
4083 text_addr = (text_addr << 4) + fromhex (*ptr++);
4084
4085 if (startswith (ptr, ";Data="))
4086 {
4087 ptr += 6;
4088 while (*ptr && *ptr != ';')
4089 data_addr = (data_addr << 4) + fromhex (*ptr++);
4090 }
4091 else
4092 lose = 1;
4093
4094 if (!lose && startswith (ptr, ";Bss="))
4095 {
4096 ptr += 5;
4097 while (*ptr && *ptr != ';')
4098 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4099
4100 if (bss_addr != data_addr)
4101 warning (_("Target reported unsupported offsets: %s"), buf);
4102 }
4103 else
4104 lose = 1;
4105 }
4106 else if (startswith (ptr, "TextSeg="))
4107 {
4108 ptr += 8;
4109 /* Don't use strtol, could lose on big values. */
4110 while (*ptr && *ptr != ';')
4111 text_addr = (text_addr << 4) + fromhex (*ptr++);
4112 num_segments = 1;
4113
4114 if (startswith (ptr, ";DataSeg="))
4115 {
4116 ptr += 9;
4117 while (*ptr && *ptr != ';')
4118 data_addr = (data_addr << 4) + fromhex (*ptr++);
4119 num_segments++;
4120 }
4121 }
4122 else
4123 lose = 1;
4124
4125 if (lose)
4126 error (_("Malformed response to offset query, %s"), buf);
4127 else if (*ptr != '\0')
4128 warning (_("Target reported unsupported offsets: %s"), buf);
4129
4130 section_offsets offs = symfile_objfile->section_offsets;
4131
4132 data = get_symfile_segment_data (symfile_objfile->obfd);
4133 do_segments = (data != NULL);
4134 do_sections = num_segments == 0;
4135
4136 if (num_segments > 0)
4137 {
4138 segments[0] = text_addr;
4139 segments[1] = data_addr;
4140 }
4141 /* If we have two segments, we can still try to relocate everything
4142 by assuming that the .text and .data offsets apply to the whole
4143 text and data segments. Convert the offsets given in the packet
4144 to base addresses for symfile_map_offsets_to_segments. */
4145 else if (data && data->num_segments == 2)
4146 {
4147 segments[0] = data->segment_bases[0] + text_addr;
4148 segments[1] = data->segment_bases[1] + data_addr;
4149 num_segments = 2;
4150 }
4151 /* If the object file has only one segment, assume that it is text
4152 rather than data; main programs with no writable data are rare,
4153 but programs with no code are useless. Of course the code might
4154 have ended up in the data segment... to detect that we would need
4155 the permissions here. */
4156 else if (data && data->num_segments == 1)
4157 {
4158 segments[0] = data->segment_bases[0] + text_addr;
4159 num_segments = 1;
4160 }
4161 /* There's no way to relocate by segment. */
4162 else
4163 do_segments = 0;
4164
4165 if (do_segments)
4166 {
4167 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4168 offs, num_segments, segments);
4169
4170 if (ret == 0 && !do_sections)
4171 error (_("Can not handle qOffsets TextSeg "
4172 "response with this symbol file"));
4173
4174 if (ret > 0)
4175 do_sections = 0;
4176 }
4177
4178 if (data)
4179 free_symfile_segment_data (data);
4180
4181 if (do_sections)
4182 {
4183 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4184
4185 /* This is a temporary kludge to force data and bss to use the
4186 same offsets because that's what nlmconv does now. The real
4187 solution requires changes to the stub and remote.c that I
4188 don't have time to do right now. */
4189
4190 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4191 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4192 }
4193
4194 objfile_relocate (symfile_objfile, offs);
4195 }
4196
4197 /* Send interrupt_sequence to remote target. */
4198
4199 void
4200 remote_target::send_interrupt_sequence ()
4201 {
4202 struct remote_state *rs = get_remote_state ();
4203
4204 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4205 remote_serial_write ("\x03", 1);
4206 else if (interrupt_sequence_mode == interrupt_sequence_break)
4207 serial_send_break (rs->remote_desc);
4208 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4209 {
4210 serial_send_break (rs->remote_desc);
4211 remote_serial_write ("g", 1);
4212 }
4213 else
4214 internal_error (__FILE__, __LINE__,
4215 _("Invalid value for interrupt_sequence_mode: %s."),
4216 interrupt_sequence_mode);
4217 }
4218
4219
4220 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4221 and extract the PTID. Returns NULL_PTID if not found. */
4222
4223 static ptid_t
4224 stop_reply_extract_thread (char *stop_reply)
4225 {
4226 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4227 {
4228 const char *p;
4229
4230 /* Txx r:val ; r:val (...) */
4231 p = &stop_reply[3];
4232
4233 /* Look for "register" named "thread". */
4234 while (*p != '\0')
4235 {
4236 const char *p1;
4237
4238 p1 = strchr (p, ':');
4239 if (p1 == NULL)
4240 return null_ptid;
4241
4242 if (strncmp (p, "thread", p1 - p) == 0)
4243 return read_ptid (++p1, &p);
4244
4245 p1 = strchr (p, ';');
4246 if (p1 == NULL)
4247 return null_ptid;
4248 p1++;
4249
4250 p = p1;
4251 }
4252 }
4253
4254 return null_ptid;
4255 }
4256
4257 /* Determine the remote side's current thread. If we have a stop
4258 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4259 "thread" register we can extract the current thread from. If not,
4260 ask the remote which is the current thread with qC. The former
4261 method avoids a roundtrip. */
4262
4263 ptid_t
4264 remote_target::get_current_thread (char *wait_status)
4265 {
4266 ptid_t ptid = null_ptid;
4267
4268 /* Note we don't use remote_parse_stop_reply as that makes use of
4269 the target architecture, which we haven't yet fully determined at
4270 this point. */
4271 if (wait_status != NULL)
4272 ptid = stop_reply_extract_thread (wait_status);
4273 if (ptid == null_ptid)
4274 ptid = remote_current_thread (inferior_ptid);
4275
4276 return ptid;
4277 }
4278
4279 /* Query the remote target for which is the current thread/process,
4280 add it to our tables, and update INFERIOR_PTID. The caller is
4281 responsible for setting the state such that the remote end is ready
4282 to return the current thread.
4283
4284 This function is called after handling the '?' or 'vRun' packets,
4285 whose response is a stop reply from which we can also try
4286 extracting the thread. If the target doesn't support the explicit
4287 qC query, we infer the current thread from that stop reply, passed
4288 in in WAIT_STATUS, which may be NULL. */
4289
4290 void
4291 remote_target::add_current_inferior_and_thread (char *wait_status)
4292 {
4293 struct remote_state *rs = get_remote_state ();
4294 bool fake_pid_p = false;
4295
4296 inferior_ptid = null_ptid;
4297
4298 /* Now, if we have thread information, update inferior_ptid. */
4299 ptid_t curr_ptid = get_current_thread (wait_status);
4300
4301 if (curr_ptid != null_ptid)
4302 {
4303 if (!remote_multi_process_p (rs))
4304 fake_pid_p = true;
4305 }
4306 else
4307 {
4308 /* Without this, some commands which require an active target
4309 (such as kill) won't work. This variable serves (at least)
4310 double duty as both the pid of the target process (if it has
4311 such), and as a flag indicating that a target is active. */
4312 curr_ptid = magic_null_ptid;
4313 fake_pid_p = true;
4314 }
4315
4316 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4317
4318 /* Add the main thread and switch to it. Don't try reading
4319 registers yet, since we haven't fetched the target description
4320 yet. */
4321 thread_info *tp = add_thread_silent (curr_ptid);
4322 switch_to_thread_no_regs (tp);
4323 }
4324
4325 /* Print info about a thread that was found already stopped on
4326 connection. */
4327
4328 static void
4329 print_one_stopped_thread (struct thread_info *thread)
4330 {
4331 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4332
4333 switch_to_thread (thread);
4334 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4335 set_current_sal_from_frame (get_current_frame ());
4336
4337 thread->suspend.waitstatus_pending_p = 0;
4338
4339 if (ws->kind == TARGET_WAITKIND_STOPPED)
4340 {
4341 enum gdb_signal sig = ws->value.sig;
4342
4343 if (signal_print_state (sig))
4344 gdb::observers::signal_received.notify (sig);
4345 }
4346 gdb::observers::normal_stop.notify (NULL, 1);
4347 }
4348
4349 /* Process all initial stop replies the remote side sent in response
4350 to the ? packet. These indicate threads that were already stopped
4351 on initial connection. We mark these threads as stopped and print
4352 their current frame before giving the user the prompt. */
4353
4354 void
4355 remote_target::process_initial_stop_replies (int from_tty)
4356 {
4357 int pending_stop_replies = stop_reply_queue_length ();
4358 struct thread_info *selected = NULL;
4359 struct thread_info *lowest_stopped = NULL;
4360 struct thread_info *first = NULL;
4361
4362 /* Consume the initial pending events. */
4363 while (pending_stop_replies-- > 0)
4364 {
4365 ptid_t waiton_ptid = minus_one_ptid;
4366 ptid_t event_ptid;
4367 struct target_waitstatus ws;
4368 int ignore_event = 0;
4369
4370 memset (&ws, 0, sizeof (ws));
4371 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4372 if (remote_debug)
4373 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4374
4375 switch (ws.kind)
4376 {
4377 case TARGET_WAITKIND_IGNORE:
4378 case TARGET_WAITKIND_NO_RESUMED:
4379 case TARGET_WAITKIND_SIGNALLED:
4380 case TARGET_WAITKIND_EXITED:
4381 /* We shouldn't see these, but if we do, just ignore. */
4382 if (remote_debug)
4383 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4384 ignore_event = 1;
4385 break;
4386
4387 case TARGET_WAITKIND_EXECD:
4388 xfree (ws.value.execd_pathname);
4389 break;
4390 default:
4391 break;
4392 }
4393
4394 if (ignore_event)
4395 continue;
4396
4397 struct thread_info *evthread = find_thread_ptid (event_ptid);
4398
4399 if (ws.kind == TARGET_WAITKIND_STOPPED)
4400 {
4401 enum gdb_signal sig = ws.value.sig;
4402
4403 /* Stubs traditionally report SIGTRAP as initial signal,
4404 instead of signal 0. Suppress it. */
4405 if (sig == GDB_SIGNAL_TRAP)
4406 sig = GDB_SIGNAL_0;
4407 evthread->suspend.stop_signal = sig;
4408 ws.value.sig = sig;
4409 }
4410
4411 evthread->suspend.waitstatus = ws;
4412
4413 if (ws.kind != TARGET_WAITKIND_STOPPED
4414 || ws.value.sig != GDB_SIGNAL_0)
4415 evthread->suspend.waitstatus_pending_p = 1;
4416
4417 set_executing (event_ptid, 0);
4418 set_running (event_ptid, 0);
4419 get_remote_thread_info (evthread)->vcont_resumed = 0;
4420 }
4421
4422 /* "Notice" the new inferiors before anything related to
4423 registers/memory. */
4424 for (inferior *inf : all_non_exited_inferiors ())
4425 {
4426 inf->needs_setup = 1;
4427
4428 if (non_stop)
4429 {
4430 thread_info *thread = any_live_thread_of_inferior (inf);
4431 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4432 from_tty);
4433 }
4434 }
4435
4436 /* If all-stop on top of non-stop, pause all threads. Note this
4437 records the threads' stop pc, so must be done after "noticing"
4438 the inferiors. */
4439 if (!non_stop)
4440 {
4441 stop_all_threads ();
4442
4443 /* If all threads of an inferior were already stopped, we
4444 haven't setup the inferior yet. */
4445 for (inferior *inf : all_non_exited_inferiors ())
4446 {
4447 if (inf->needs_setup)
4448 {
4449 thread_info *thread = any_live_thread_of_inferior (inf);
4450 switch_to_thread_no_regs (thread);
4451 setup_inferior (0);
4452 }
4453 }
4454 }
4455
4456 /* Now go over all threads that are stopped, and print their current
4457 frame. If all-stop, then if there's a signalled thread, pick
4458 that as current. */
4459 for (thread_info *thread : all_non_exited_threads ())
4460 {
4461 if (first == NULL)
4462 first = thread;
4463
4464 if (!non_stop)
4465 thread->set_running (false);
4466 else if (thread->state != THREAD_STOPPED)
4467 continue;
4468
4469 if (selected == NULL
4470 && thread->suspend.waitstatus_pending_p)
4471 selected = thread;
4472
4473 if (lowest_stopped == NULL
4474 || thread->inf->num < lowest_stopped->inf->num
4475 || thread->per_inf_num < lowest_stopped->per_inf_num)
4476 lowest_stopped = thread;
4477
4478 if (non_stop)
4479 print_one_stopped_thread (thread);
4480 }
4481
4482 /* In all-stop, we only print the status of one thread, and leave
4483 others with their status pending. */
4484 if (!non_stop)
4485 {
4486 thread_info *thread = selected;
4487 if (thread == NULL)
4488 thread = lowest_stopped;
4489 if (thread == NULL)
4490 thread = first;
4491
4492 print_one_stopped_thread (thread);
4493 }
4494
4495 /* For "info program". */
4496 thread_info *thread = inferior_thread ();
4497 if (thread->state == THREAD_STOPPED)
4498 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4499 }
4500
4501 /* Start the remote connection and sync state. */
4502
4503 void
4504 remote_target::start_remote (int from_tty, int extended_p)
4505 {
4506 struct remote_state *rs = get_remote_state ();
4507 struct packet_config *noack_config;
4508 char *wait_status = NULL;
4509
4510 /* Signal other parts that we're going through the initial setup,
4511 and so things may not be stable yet. E.g., we don't try to
4512 install tracepoints until we've relocated symbols. Also, a
4513 Ctrl-C before we're connected and synced up can't interrupt the
4514 target. Instead, it offers to drop the (potentially wedged)
4515 connection. */
4516 rs->starting_up = 1;
4517
4518 QUIT;
4519
4520 if (interrupt_on_connect)
4521 send_interrupt_sequence ();
4522
4523 /* Ack any packet which the remote side has already sent. */
4524 remote_serial_write ("+", 1);
4525
4526 /* The first packet we send to the target is the optional "supported
4527 packets" request. If the target can answer this, it will tell us
4528 which later probes to skip. */
4529 remote_query_supported ();
4530
4531 /* If the stub wants to get a QAllow, compose one and send it. */
4532 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4533 set_permissions ();
4534
4535 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4536 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4537 as a reply to known packet. For packet "vFile:setfs:" it is an
4538 invalid reply and GDB would return error in
4539 remote_hostio_set_filesystem, making remote files access impossible.
4540 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4541 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4542 {
4543 const char v_mustreplyempty[] = "vMustReplyEmpty";
4544
4545 putpkt (v_mustreplyempty);
4546 getpkt (&rs->buf, 0);
4547 if (strcmp (rs->buf.data (), "OK") == 0)
4548 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4549 else if (strcmp (rs->buf.data (), "") != 0)
4550 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4551 rs->buf.data ());
4552 }
4553
4554 /* Next, we possibly activate noack mode.
4555
4556 If the QStartNoAckMode packet configuration is set to AUTO,
4557 enable noack mode if the stub reported a wish for it with
4558 qSupported.
4559
4560 If set to TRUE, then enable noack mode even if the stub didn't
4561 report it in qSupported. If the stub doesn't reply OK, the
4562 session ends with an error.
4563
4564 If FALSE, then don't activate noack mode, regardless of what the
4565 stub claimed should be the default with qSupported. */
4566
4567 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4568 if (packet_config_support (noack_config) != PACKET_DISABLE)
4569 {
4570 putpkt ("QStartNoAckMode");
4571 getpkt (&rs->buf, 0);
4572 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4573 rs->noack_mode = 1;
4574 }
4575
4576 if (extended_p)
4577 {
4578 /* Tell the remote that we are using the extended protocol. */
4579 putpkt ("!");
4580 getpkt (&rs->buf, 0);
4581 }
4582
4583 /* Let the target know which signals it is allowed to pass down to
4584 the program. */
4585 update_signals_program_target ();
4586
4587 /* Next, if the target can specify a description, read it. We do
4588 this before anything involving memory or registers. */
4589 target_find_description ();
4590
4591 /* Next, now that we know something about the target, update the
4592 address spaces in the program spaces. */
4593 update_address_spaces ();
4594
4595 /* On OSs where the list of libraries is global to all
4596 processes, we fetch them early. */
4597 if (gdbarch_has_global_solist (target_gdbarch ()))
4598 solib_add (NULL, from_tty, auto_solib_add);
4599
4600 if (target_is_non_stop_p ())
4601 {
4602 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4603 error (_("Non-stop mode requested, but remote "
4604 "does not support non-stop"));
4605
4606 putpkt ("QNonStop:1");
4607 getpkt (&rs->buf, 0);
4608
4609 if (strcmp (rs->buf.data (), "OK") != 0)
4610 error (_("Remote refused setting non-stop mode with: %s"),
4611 rs->buf.data ());
4612
4613 /* Find about threads and processes the stub is already
4614 controlling. We default to adding them in the running state.
4615 The '?' query below will then tell us about which threads are
4616 stopped. */
4617 this->update_thread_list ();
4618 }
4619 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4620 {
4621 /* Don't assume that the stub can operate in all-stop mode.
4622 Request it explicitly. */
4623 putpkt ("QNonStop:0");
4624 getpkt (&rs->buf, 0);
4625
4626 if (strcmp (rs->buf.data (), "OK") != 0)
4627 error (_("Remote refused setting all-stop mode with: %s"),
4628 rs->buf.data ());
4629 }
4630
4631 /* Upload TSVs regardless of whether the target is running or not. The
4632 remote stub, such as GDBserver, may have some predefined or builtin
4633 TSVs, even if the target is not running. */
4634 if (get_trace_status (current_trace_status ()) != -1)
4635 {
4636 struct uploaded_tsv *uploaded_tsvs = NULL;
4637
4638 upload_trace_state_variables (&uploaded_tsvs);
4639 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4640 }
4641
4642 /* Check whether the target is running now. */
4643 putpkt ("?");
4644 getpkt (&rs->buf, 0);
4645
4646 if (!target_is_non_stop_p ())
4647 {
4648 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4649 {
4650 if (!extended_p)
4651 error (_("The target is not running (try extended-remote?)"));
4652
4653 /* We're connected, but not running. Drop out before we
4654 call start_remote. */
4655 rs->starting_up = 0;
4656 return;
4657 }
4658 else
4659 {
4660 /* Save the reply for later. */
4661 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4662 strcpy (wait_status, rs->buf.data ());
4663 }
4664
4665 /* Fetch thread list. */
4666 target_update_thread_list ();
4667
4668 /* Let the stub know that we want it to return the thread. */
4669 set_continue_thread (minus_one_ptid);
4670
4671 if (thread_count () == 0)
4672 {
4673 /* Target has no concept of threads at all. GDB treats
4674 non-threaded target as single-threaded; add a main
4675 thread. */
4676 add_current_inferior_and_thread (wait_status);
4677 }
4678 else
4679 {
4680 /* We have thread information; select the thread the target
4681 says should be current. If we're reconnecting to a
4682 multi-threaded program, this will ideally be the thread
4683 that last reported an event before GDB disconnected. */
4684 inferior_ptid = get_current_thread (wait_status);
4685 if (inferior_ptid == null_ptid)
4686 {
4687 /* Odd... The target was able to list threads, but not
4688 tell us which thread was current (no "thread"
4689 register in T stop reply?). Just pick the first
4690 thread in the thread list then. */
4691
4692 if (remote_debug)
4693 fprintf_unfiltered (gdb_stdlog,
4694 "warning: couldn't determine remote "
4695 "current thread; picking first in list.\n");
4696
4697 inferior_ptid = inferior_list->thread_list->ptid;
4698 }
4699 }
4700
4701 /* init_wait_for_inferior should be called before get_offsets in order
4702 to manage `inserted' flag in bp loc in a correct state.
4703 breakpoint_init_inferior, called from init_wait_for_inferior, set
4704 `inserted' flag to 0, while before breakpoint_re_set, called from
4705 start_remote, set `inserted' flag to 1. In the initialization of
4706 inferior, breakpoint_init_inferior should be called first, and then
4707 breakpoint_re_set can be called. If this order is broken, state of
4708 `inserted' flag is wrong, and cause some problems on breakpoint
4709 manipulation. */
4710 init_wait_for_inferior ();
4711
4712 get_offsets (); /* Get text, data & bss offsets. */
4713
4714 /* If we could not find a description using qXfer, and we know
4715 how to do it some other way, try again. This is not
4716 supported for non-stop; it could be, but it is tricky if
4717 there are no stopped threads when we connect. */
4718 if (remote_read_description_p (this)
4719 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4720 {
4721 target_clear_description ();
4722 target_find_description ();
4723 }
4724
4725 /* Use the previously fetched status. */
4726 gdb_assert (wait_status != NULL);
4727 strcpy (rs->buf.data (), wait_status);
4728 rs->cached_wait_status = 1;
4729
4730 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4731 }
4732 else
4733 {
4734 /* Clear WFI global state. Do this before finding about new
4735 threads and inferiors, and setting the current inferior.
4736 Otherwise we would clear the proceed status of the current
4737 inferior when we want its stop_soon state to be preserved
4738 (see notice_new_inferior). */
4739 init_wait_for_inferior ();
4740
4741 /* In non-stop, we will either get an "OK", meaning that there
4742 are no stopped threads at this time; or, a regular stop
4743 reply. In the latter case, there may be more than one thread
4744 stopped --- we pull them all out using the vStopped
4745 mechanism. */
4746 if (strcmp (rs->buf.data (), "OK") != 0)
4747 {
4748 struct notif_client *notif = &notif_client_stop;
4749
4750 /* remote_notif_get_pending_replies acks this one, and gets
4751 the rest out. */
4752 rs->notif_state->pending_event[notif_client_stop.id]
4753 = remote_notif_parse (this, notif, rs->buf.data ());
4754 remote_notif_get_pending_events (notif);
4755 }
4756
4757 if (thread_count () == 0)
4758 {
4759 if (!extended_p)
4760 error (_("The target is not running (try extended-remote?)"));
4761
4762 /* We're connected, but not running. Drop out before we
4763 call start_remote. */
4764 rs->starting_up = 0;
4765 return;
4766 }
4767
4768 /* In non-stop mode, any cached wait status will be stored in
4769 the stop reply queue. */
4770 gdb_assert (wait_status == NULL);
4771
4772 /* Report all signals during attach/startup. */
4773 pass_signals ({});
4774
4775 /* If there are already stopped threads, mark them stopped and
4776 report their stops before giving the prompt to the user. */
4777 process_initial_stop_replies (from_tty);
4778
4779 if (target_can_async_p ())
4780 target_async (1);
4781 }
4782
4783 /* If we connected to a live target, do some additional setup. */
4784 if (target_has_execution)
4785 {
4786 if (symfile_objfile) /* No use without a symbol-file. */
4787 remote_check_symbols ();
4788 }
4789
4790 /* Possibly the target has been engaged in a trace run started
4791 previously; find out where things are at. */
4792 if (get_trace_status (current_trace_status ()) != -1)
4793 {
4794 struct uploaded_tp *uploaded_tps = NULL;
4795
4796 if (current_trace_status ()->running)
4797 printf_filtered (_("Trace is already running on the target.\n"));
4798
4799 upload_tracepoints (&uploaded_tps);
4800
4801 merge_uploaded_tracepoints (&uploaded_tps);
4802 }
4803
4804 /* Possibly the target has been engaged in a btrace record started
4805 previously; find out where things are at. */
4806 remote_btrace_maybe_reopen ();
4807
4808 /* The thread and inferior lists are now synchronized with the
4809 target, our symbols have been relocated, and we're merged the
4810 target's tracepoints with ours. We're done with basic start
4811 up. */
4812 rs->starting_up = 0;
4813
4814 /* Maybe breakpoints are global and need to be inserted now. */
4815 if (breakpoints_should_be_inserted_now ())
4816 insert_breakpoints ();
4817 }
4818
4819 /* Open a connection to a remote debugger.
4820 NAME is the filename used for communication. */
4821
4822 void
4823 remote_target::open (const char *name, int from_tty)
4824 {
4825 open_1 (name, from_tty, 0);
4826 }
4827
4828 /* Open a connection to a remote debugger using the extended
4829 remote gdb protocol. NAME is the filename used for communication. */
4830
4831 void
4832 extended_remote_target::open (const char *name, int from_tty)
4833 {
4834 open_1 (name, from_tty, 1 /*extended_p */);
4835 }
4836
4837 /* Reset all packets back to "unknown support". Called when opening a
4838 new connection to a remote target. */
4839
4840 static void
4841 reset_all_packet_configs_support (void)
4842 {
4843 int i;
4844
4845 for (i = 0; i < PACKET_MAX; i++)
4846 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4847 }
4848
4849 /* Initialize all packet configs. */
4850
4851 static void
4852 init_all_packet_configs (void)
4853 {
4854 int i;
4855
4856 for (i = 0; i < PACKET_MAX; i++)
4857 {
4858 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4859 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4860 }
4861 }
4862
4863 /* Symbol look-up. */
4864
4865 void
4866 remote_target::remote_check_symbols ()
4867 {
4868 char *tmp;
4869 int end;
4870
4871 /* The remote side has no concept of inferiors that aren't running
4872 yet, it only knows about running processes. If we're connected
4873 but our current inferior is not running, we should not invite the
4874 remote target to request symbol lookups related to its
4875 (unrelated) current process. */
4876 if (!target_has_execution)
4877 return;
4878
4879 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4880 return;
4881
4882 /* Make sure the remote is pointing at the right process. Note
4883 there's no way to select "no process". */
4884 set_general_process ();
4885
4886 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4887 because we need both at the same time. */
4888 gdb::char_vector msg (get_remote_packet_size ());
4889 gdb::char_vector reply (get_remote_packet_size ());
4890
4891 /* Invite target to request symbol lookups. */
4892
4893 putpkt ("qSymbol::");
4894 getpkt (&reply, 0);
4895 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4896
4897 while (startswith (reply.data (), "qSymbol:"))
4898 {
4899 struct bound_minimal_symbol sym;
4900
4901 tmp = &reply[8];
4902 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4903 strlen (tmp) / 2);
4904 msg[end] = '\0';
4905 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4906 if (sym.minsym == NULL)
4907 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4908 &reply[8]);
4909 else
4910 {
4911 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4912 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4913
4914 /* If this is a function address, return the start of code
4915 instead of any data function descriptor. */
4916 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4917 sym_addr,
4918 current_top_target ());
4919
4920 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4921 phex_nz (sym_addr, addr_size), &reply[8]);
4922 }
4923
4924 putpkt (msg.data ());
4925 getpkt (&reply, 0);
4926 }
4927 }
4928
4929 static struct serial *
4930 remote_serial_open (const char *name)
4931 {
4932 static int udp_warning = 0;
4933
4934 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4935 of in ser-tcp.c, because it is the remote protocol assuming that the
4936 serial connection is reliable and not the serial connection promising
4937 to be. */
4938 if (!udp_warning && startswith (name, "udp:"))
4939 {
4940 warning (_("The remote protocol may be unreliable over UDP.\n"
4941 "Some events may be lost, rendering further debugging "
4942 "impossible."));
4943 udp_warning = 1;
4944 }
4945
4946 return serial_open (name);
4947 }
4948
4949 /* Inform the target of our permission settings. The permission flags
4950 work without this, but if the target knows the settings, it can do
4951 a couple things. First, it can add its own check, to catch cases
4952 that somehow manage to get by the permissions checks in target
4953 methods. Second, if the target is wired to disallow particular
4954 settings (for instance, a system in the field that is not set up to
4955 be able to stop at a breakpoint), it can object to any unavailable
4956 permissions. */
4957
4958 void
4959 remote_target::set_permissions ()
4960 {
4961 struct remote_state *rs = get_remote_state ();
4962
4963 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4964 "WriteReg:%x;WriteMem:%x;"
4965 "InsertBreak:%x;InsertTrace:%x;"
4966 "InsertFastTrace:%x;Stop:%x",
4967 may_write_registers, may_write_memory,
4968 may_insert_breakpoints, may_insert_tracepoints,
4969 may_insert_fast_tracepoints, may_stop);
4970 putpkt (rs->buf);
4971 getpkt (&rs->buf, 0);
4972
4973 /* If the target didn't like the packet, warn the user. Do not try
4974 to undo the user's settings, that would just be maddening. */
4975 if (strcmp (rs->buf.data (), "OK") != 0)
4976 warning (_("Remote refused setting permissions with: %s"),
4977 rs->buf.data ());
4978 }
4979
4980 /* This type describes each known response to the qSupported
4981 packet. */
4982 struct protocol_feature
4983 {
4984 /* The name of this protocol feature. */
4985 const char *name;
4986
4987 /* The default for this protocol feature. */
4988 enum packet_support default_support;
4989
4990 /* The function to call when this feature is reported, or after
4991 qSupported processing if the feature is not supported.
4992 The first argument points to this structure. The second
4993 argument indicates whether the packet requested support be
4994 enabled, disabled, or probed (or the default, if this function
4995 is being called at the end of processing and this feature was
4996 not reported). The third argument may be NULL; if not NULL, it
4997 is a NUL-terminated string taken from the packet following
4998 this feature's name and an equals sign. */
4999 void (*func) (remote_target *remote, const struct protocol_feature *,
5000 enum packet_support, const char *);
5001
5002 /* The corresponding packet for this feature. Only used if
5003 FUNC is remote_supported_packet. */
5004 int packet;
5005 };
5006
5007 static void
5008 remote_supported_packet (remote_target *remote,
5009 const struct protocol_feature *feature,
5010 enum packet_support support,
5011 const char *argument)
5012 {
5013 if (argument)
5014 {
5015 warning (_("Remote qSupported response supplied an unexpected value for"
5016 " \"%s\"."), feature->name);
5017 return;
5018 }
5019
5020 remote_protocol_packets[feature->packet].support = support;
5021 }
5022
5023 void
5024 remote_target::remote_packet_size (const protocol_feature *feature,
5025 enum packet_support support, const char *value)
5026 {
5027 struct remote_state *rs = get_remote_state ();
5028
5029 int packet_size;
5030 char *value_end;
5031
5032 if (support != PACKET_ENABLE)
5033 return;
5034
5035 if (value == NULL || *value == '\0')
5036 {
5037 warning (_("Remote target reported \"%s\" without a size."),
5038 feature->name);
5039 return;
5040 }
5041
5042 errno = 0;
5043 packet_size = strtol (value, &value_end, 16);
5044 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5045 {
5046 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5047 feature->name, value);
5048 return;
5049 }
5050
5051 /* Record the new maximum packet size. */
5052 rs->explicit_packet_size = packet_size;
5053 }
5054
5055 static void
5056 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5057 enum packet_support support, const char *value)
5058 {
5059 remote->remote_packet_size (feature, support, value);
5060 }
5061
5062 static const struct protocol_feature remote_protocol_features[] = {
5063 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5064 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5065 PACKET_qXfer_auxv },
5066 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5067 PACKET_qXfer_exec_file },
5068 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5069 PACKET_qXfer_features },
5070 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5071 PACKET_qXfer_libraries },
5072 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_libraries_svr4 },
5074 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5075 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5076 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_memory_map },
5078 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_qXfer_osdata },
5080 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_threads },
5082 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_traceframe_info },
5084 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_QPassSignals },
5086 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_QCatchSyscalls },
5088 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_QProgramSignals },
5090 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_QSetWorkingDir },
5092 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_QStartupWithShell },
5094 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_QEnvironmentHexEncoded },
5096 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_QEnvironmentReset },
5098 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QEnvironmentUnset },
5100 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QStartNoAckMode },
5102 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_multiprocess_feature },
5104 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5105 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_siginfo_read },
5107 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_siginfo_write },
5109 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_ConditionalTracepoints },
5111 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_ConditionalBreakpoints },
5113 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_BreakpointCommands },
5115 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_FastTracepoints },
5117 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_StaticTracepoints },
5119 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_InstallInTrace},
5121 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_DisconnectedTracing_feature },
5123 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_bc },
5125 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_bs },
5127 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_TracepointSource },
5129 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QAllow },
5131 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_EnableDisableTracepoints_feature },
5133 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_fdpic },
5135 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_uib },
5137 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QDisableRandomization },
5139 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5140 { "QTBuffer:size", PACKET_DISABLE,
5141 remote_supported_packet, PACKET_QTBuffer_size},
5142 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5143 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5144 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5145 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5146 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_qXfer_btrace },
5148 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_qXfer_btrace_conf },
5150 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_Qbtrace_conf_bts_size },
5152 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5153 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5154 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_fork_event_feature },
5156 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_vfork_event_feature },
5158 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_exec_event_feature },
5160 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_Qbtrace_conf_pt_size },
5162 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5163 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5164 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5165 };
5166
5167 static char *remote_support_xml;
5168
5169 /* Register string appended to "xmlRegisters=" in qSupported query. */
5170
5171 void
5172 register_remote_support_xml (const char *xml)
5173 {
5174 #if defined(HAVE_LIBEXPAT)
5175 if (remote_support_xml == NULL)
5176 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5177 else
5178 {
5179 char *copy = xstrdup (remote_support_xml + 13);
5180 char *saveptr;
5181 char *p = strtok_r (copy, ",", &saveptr);
5182
5183 do
5184 {
5185 if (strcmp (p, xml) == 0)
5186 {
5187 /* already there */
5188 xfree (copy);
5189 return;
5190 }
5191 }
5192 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5193 xfree (copy);
5194
5195 remote_support_xml = reconcat (remote_support_xml,
5196 remote_support_xml, ",", xml,
5197 (char *) NULL);
5198 }
5199 #endif
5200 }
5201
5202 static void
5203 remote_query_supported_append (std::string *msg, const char *append)
5204 {
5205 if (!msg->empty ())
5206 msg->append (";");
5207 msg->append (append);
5208 }
5209
5210 void
5211 remote_target::remote_query_supported ()
5212 {
5213 struct remote_state *rs = get_remote_state ();
5214 char *next;
5215 int i;
5216 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5217
5218 /* The packet support flags are handled differently for this packet
5219 than for most others. We treat an error, a disabled packet, and
5220 an empty response identically: any features which must be reported
5221 to be used will be automatically disabled. An empty buffer
5222 accomplishes this, since that is also the representation for a list
5223 containing no features. */
5224
5225 rs->buf[0] = 0;
5226 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5227 {
5228 std::string q;
5229
5230 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5231 remote_query_supported_append (&q, "multiprocess+");
5232
5233 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5234 remote_query_supported_append (&q, "swbreak+");
5235 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5236 remote_query_supported_append (&q, "hwbreak+");
5237
5238 remote_query_supported_append (&q, "qRelocInsn+");
5239
5240 if (packet_set_cmd_state (PACKET_fork_event_feature)
5241 != AUTO_BOOLEAN_FALSE)
5242 remote_query_supported_append (&q, "fork-events+");
5243 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5244 != AUTO_BOOLEAN_FALSE)
5245 remote_query_supported_append (&q, "vfork-events+");
5246 if (packet_set_cmd_state (PACKET_exec_event_feature)
5247 != AUTO_BOOLEAN_FALSE)
5248 remote_query_supported_append (&q, "exec-events+");
5249
5250 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5251 remote_query_supported_append (&q, "vContSupported+");
5252
5253 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5254 remote_query_supported_append (&q, "QThreadEvents+");
5255
5256 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "no-resumed+");
5258
5259 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5260 the qSupported:xmlRegisters=i386 handling. */
5261 if (remote_support_xml != NULL
5262 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5263 remote_query_supported_append (&q, remote_support_xml);
5264
5265 q = "qSupported:" + q;
5266 putpkt (q.c_str ());
5267
5268 getpkt (&rs->buf, 0);
5269
5270 /* If an error occured, warn, but do not return - just reset the
5271 buffer to empty and go on to disable features. */
5272 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5273 == PACKET_ERROR)
5274 {
5275 warning (_("Remote failure reply: %s"), rs->buf.data ());
5276 rs->buf[0] = 0;
5277 }
5278 }
5279
5280 memset (seen, 0, sizeof (seen));
5281
5282 next = rs->buf.data ();
5283 while (*next)
5284 {
5285 enum packet_support is_supported;
5286 char *p, *end, *name_end, *value;
5287
5288 /* First separate out this item from the rest of the packet. If
5289 there's another item after this, we overwrite the separator
5290 (terminated strings are much easier to work with). */
5291 p = next;
5292 end = strchr (p, ';');
5293 if (end == NULL)
5294 {
5295 end = p + strlen (p);
5296 next = end;
5297 }
5298 else
5299 {
5300 *end = '\0';
5301 next = end + 1;
5302
5303 if (end == p)
5304 {
5305 warning (_("empty item in \"qSupported\" response"));
5306 continue;
5307 }
5308 }
5309
5310 name_end = strchr (p, '=');
5311 if (name_end)
5312 {
5313 /* This is a name=value entry. */
5314 is_supported = PACKET_ENABLE;
5315 value = name_end + 1;
5316 *name_end = '\0';
5317 }
5318 else
5319 {
5320 value = NULL;
5321 switch (end[-1])
5322 {
5323 case '+':
5324 is_supported = PACKET_ENABLE;
5325 break;
5326
5327 case '-':
5328 is_supported = PACKET_DISABLE;
5329 break;
5330
5331 case '?':
5332 is_supported = PACKET_SUPPORT_UNKNOWN;
5333 break;
5334
5335 default:
5336 warning (_("unrecognized item \"%s\" "
5337 "in \"qSupported\" response"), p);
5338 continue;
5339 }
5340 end[-1] = '\0';
5341 }
5342
5343 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5344 if (strcmp (remote_protocol_features[i].name, p) == 0)
5345 {
5346 const struct protocol_feature *feature;
5347
5348 seen[i] = 1;
5349 feature = &remote_protocol_features[i];
5350 feature->func (this, feature, is_supported, value);
5351 break;
5352 }
5353 }
5354
5355 /* If we increased the packet size, make sure to increase the global
5356 buffer size also. We delay this until after parsing the entire
5357 qSupported packet, because this is the same buffer we were
5358 parsing. */
5359 if (rs->buf.size () < rs->explicit_packet_size)
5360 rs->buf.resize (rs->explicit_packet_size);
5361
5362 /* Handle the defaults for unmentioned features. */
5363 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5364 if (!seen[i])
5365 {
5366 const struct protocol_feature *feature;
5367
5368 feature = &remote_protocol_features[i];
5369 feature->func (this, feature, feature->default_support, NULL);
5370 }
5371 }
5372
5373 /* Serial QUIT handler for the remote serial descriptor.
5374
5375 Defers handling a Ctrl-C until we're done with the current
5376 command/response packet sequence, unless:
5377
5378 - We're setting up the connection. Don't send a remote interrupt
5379 request, as we're not fully synced yet. Quit immediately
5380 instead.
5381
5382 - The target has been resumed in the foreground
5383 (target_terminal::is_ours is false) with a synchronous resume
5384 packet, and we're blocked waiting for the stop reply, thus a
5385 Ctrl-C should be immediately sent to the target.
5386
5387 - We get a second Ctrl-C while still within the same serial read or
5388 write. In that case the serial is seemingly wedged --- offer to
5389 quit/disconnect.
5390
5391 - We see a second Ctrl-C without target response, after having
5392 previously interrupted the target. In that case the target/stub
5393 is probably wedged --- offer to quit/disconnect.
5394 */
5395
5396 void
5397 remote_target::remote_serial_quit_handler ()
5398 {
5399 struct remote_state *rs = get_remote_state ();
5400
5401 if (check_quit_flag ())
5402 {
5403 /* If we're starting up, we're not fully synced yet. Quit
5404 immediately. */
5405 if (rs->starting_up)
5406 quit ();
5407 else if (rs->got_ctrlc_during_io)
5408 {
5409 if (query (_("The target is not responding to GDB commands.\n"
5410 "Stop debugging it? ")))
5411 remote_unpush_and_throw ();
5412 }
5413 /* If ^C has already been sent once, offer to disconnect. */
5414 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5415 interrupt_query ();
5416 /* All-stop protocol, and blocked waiting for stop reply. Send
5417 an interrupt request. */
5418 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5419 target_interrupt ();
5420 else
5421 rs->got_ctrlc_during_io = 1;
5422 }
5423 }
5424
5425 /* The remote_target that is current while the quit handler is
5426 overridden with remote_serial_quit_handler. */
5427 static remote_target *curr_quit_handler_target;
5428
5429 static void
5430 remote_serial_quit_handler ()
5431 {
5432 curr_quit_handler_target->remote_serial_quit_handler ();
5433 }
5434
5435 /* Remove any of the remote.c targets from target stack. Upper targets depend
5436 on it so remove them first. */
5437
5438 static void
5439 remote_unpush_target (void)
5440 {
5441 pop_all_targets_at_and_above (process_stratum);
5442 }
5443
5444 static void
5445 remote_unpush_and_throw (void)
5446 {
5447 remote_unpush_target ();
5448 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5449 }
5450
5451 void
5452 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5453 {
5454 remote_target *curr_remote = get_current_remote_target ();
5455
5456 if (name == 0)
5457 error (_("To open a remote debug connection, you need to specify what\n"
5458 "serial device is attached to the remote system\n"
5459 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5460
5461 /* If we're connected to a running target, target_preopen will kill it.
5462 Ask this question first, before target_preopen has a chance to kill
5463 anything. */
5464 if (curr_remote != NULL && !have_inferiors ())
5465 {
5466 if (from_tty
5467 && !query (_("Already connected to a remote target. Disconnect? ")))
5468 error (_("Still connected."));
5469 }
5470
5471 /* Here the possibly existing remote target gets unpushed. */
5472 target_preopen (from_tty);
5473
5474 remote_fileio_reset ();
5475 reopen_exec_file ();
5476 reread_symbols ();
5477
5478 remote_target *remote
5479 = (extended_p ? new extended_remote_target () : new remote_target ());
5480 target_ops_up target_holder (remote);
5481
5482 remote_state *rs = remote->get_remote_state ();
5483
5484 /* See FIXME above. */
5485 if (!target_async_permitted)
5486 rs->wait_forever_enabled_p = 1;
5487
5488 rs->remote_desc = remote_serial_open (name);
5489 if (!rs->remote_desc)
5490 perror_with_name (name);
5491
5492 if (baud_rate != -1)
5493 {
5494 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5495 {
5496 /* The requested speed could not be set. Error out to
5497 top level after closing remote_desc. Take care to
5498 set remote_desc to NULL to avoid closing remote_desc
5499 more than once. */
5500 serial_close (rs->remote_desc);
5501 rs->remote_desc = NULL;
5502 perror_with_name (name);
5503 }
5504 }
5505
5506 serial_setparity (rs->remote_desc, serial_parity);
5507 serial_raw (rs->remote_desc);
5508
5509 /* If there is something sitting in the buffer we might take it as a
5510 response to a command, which would be bad. */
5511 serial_flush_input (rs->remote_desc);
5512
5513 if (from_tty)
5514 {
5515 puts_filtered ("Remote debugging using ");
5516 puts_filtered (name);
5517 puts_filtered ("\n");
5518 }
5519
5520 /* Switch to using the remote target now. */
5521 push_target (std::move (target_holder));
5522
5523 /* Register extra event sources in the event loop. */
5524 rs->remote_async_inferior_event_token
5525 = create_async_event_handler (remote_async_inferior_event_handler,
5526 remote);
5527 rs->notif_state = remote_notif_state_allocate (remote);
5528
5529 /* Reset the target state; these things will be queried either by
5530 remote_query_supported or as they are needed. */
5531 reset_all_packet_configs_support ();
5532 rs->cached_wait_status = 0;
5533 rs->explicit_packet_size = 0;
5534 rs->noack_mode = 0;
5535 rs->extended = extended_p;
5536 rs->waiting_for_stop_reply = 0;
5537 rs->ctrlc_pending_p = 0;
5538 rs->got_ctrlc_during_io = 0;
5539
5540 rs->general_thread = not_sent_ptid;
5541 rs->continue_thread = not_sent_ptid;
5542 rs->remote_traceframe_number = -1;
5543
5544 rs->last_resume_exec_dir = EXEC_FORWARD;
5545
5546 /* Probe for ability to use "ThreadInfo" query, as required. */
5547 rs->use_threadinfo_query = 1;
5548 rs->use_threadextra_query = 1;
5549
5550 rs->readahead_cache.invalidate ();
5551
5552 if (target_async_permitted)
5553 {
5554 /* FIXME: cagney/1999-09-23: During the initial connection it is
5555 assumed that the target is already ready and able to respond to
5556 requests. Unfortunately remote_start_remote() eventually calls
5557 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5558 around this. Eventually a mechanism that allows
5559 wait_for_inferior() to expect/get timeouts will be
5560 implemented. */
5561 rs->wait_forever_enabled_p = 0;
5562 }
5563
5564 /* First delete any symbols previously loaded from shared libraries. */
5565 no_shared_libraries (NULL, 0);
5566
5567 /* Start the remote connection. If error() or QUIT, discard this
5568 target (we'd otherwise be in an inconsistent state) and then
5569 propogate the error on up the exception chain. This ensures that
5570 the caller doesn't stumble along blindly assuming that the
5571 function succeeded. The CLI doesn't have this problem but other
5572 UI's, such as MI do.
5573
5574 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5575 this function should return an error indication letting the
5576 caller restore the previous state. Unfortunately the command
5577 ``target remote'' is directly wired to this function making that
5578 impossible. On a positive note, the CLI side of this problem has
5579 been fixed - the function set_cmd_context() makes it possible for
5580 all the ``target ....'' commands to share a common callback
5581 function. See cli-dump.c. */
5582 {
5583
5584 try
5585 {
5586 remote->start_remote (from_tty, extended_p);
5587 }
5588 catch (const gdb_exception &ex)
5589 {
5590 /* Pop the partially set up target - unless something else did
5591 already before throwing the exception. */
5592 if (ex.error != TARGET_CLOSE_ERROR)
5593 remote_unpush_target ();
5594 throw;
5595 }
5596 }
5597
5598 remote_btrace_reset (rs);
5599
5600 if (target_async_permitted)
5601 rs->wait_forever_enabled_p = 1;
5602 }
5603
5604 /* Detach the specified process. */
5605
5606 void
5607 remote_target::remote_detach_pid (int pid)
5608 {
5609 struct remote_state *rs = get_remote_state ();
5610
5611 /* This should not be necessary, but the handling for D;PID in
5612 GDBserver versions prior to 8.2 incorrectly assumes that the
5613 selected process points to the same process we're detaching,
5614 leading to misbehavior (and possibly GDBserver crashing) when it
5615 does not. Since it's easy and cheap, work around it by forcing
5616 GDBserver to select GDB's current process. */
5617 set_general_process ();
5618
5619 if (remote_multi_process_p (rs))
5620 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5621 else
5622 strcpy (rs->buf.data (), "D");
5623
5624 putpkt (rs->buf);
5625 getpkt (&rs->buf, 0);
5626
5627 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5628 ;
5629 else if (rs->buf[0] == '\0')
5630 error (_("Remote doesn't know how to detach"));
5631 else
5632 error (_("Can't detach process."));
5633 }
5634
5635 /* This detaches a program to which we previously attached, using
5636 inferior_ptid to identify the process. After this is done, GDB
5637 can be used to debug some other program. We better not have left
5638 any breakpoints in the target program or it'll die when it hits
5639 one. */
5640
5641 void
5642 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5643 {
5644 int pid = inferior_ptid.pid ();
5645 struct remote_state *rs = get_remote_state ();
5646 int is_fork_parent;
5647
5648 if (!target_has_execution)
5649 error (_("No process to detach from."));
5650
5651 target_announce_detach (from_tty);
5652
5653 /* Tell the remote target to detach. */
5654 remote_detach_pid (pid);
5655
5656 /* Exit only if this is the only active inferior. */
5657 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5658 puts_filtered (_("Ending remote debugging.\n"));
5659
5660 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5661
5662 /* Check to see if we are detaching a fork parent. Note that if we
5663 are detaching a fork child, tp == NULL. */
5664 is_fork_parent = (tp != NULL
5665 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5666
5667 /* If doing detach-on-fork, we don't mourn, because that will delete
5668 breakpoints that should be available for the followed inferior. */
5669 if (!is_fork_parent)
5670 {
5671 /* Save the pid as a string before mourning, since that will
5672 unpush the remote target, and we need the string after. */
5673 std::string infpid = target_pid_to_str (ptid_t (pid));
5674
5675 target_mourn_inferior (inferior_ptid);
5676 if (print_inferior_events)
5677 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5678 inf->num, infpid.c_str ());
5679 }
5680 else
5681 {
5682 inferior_ptid = null_ptid;
5683 detach_inferior (current_inferior ());
5684 }
5685 }
5686
5687 void
5688 remote_target::detach (inferior *inf, int from_tty)
5689 {
5690 remote_detach_1 (inf, from_tty);
5691 }
5692
5693 void
5694 extended_remote_target::detach (inferior *inf, int from_tty)
5695 {
5696 remote_detach_1 (inf, from_tty);
5697 }
5698
5699 /* Target follow-fork function for remote targets. On entry, and
5700 at return, the current inferior is the fork parent.
5701
5702 Note that although this is currently only used for extended-remote,
5703 it is named remote_follow_fork in anticipation of using it for the
5704 remote target as well. */
5705
5706 int
5707 remote_target::follow_fork (int follow_child, int detach_fork)
5708 {
5709 struct remote_state *rs = get_remote_state ();
5710 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5711
5712 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5713 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5714 {
5715 /* When following the parent and detaching the child, we detach
5716 the child here. For the case of following the child and
5717 detaching the parent, the detach is done in the target-
5718 independent follow fork code in infrun.c. We can't use
5719 target_detach when detaching an unfollowed child because
5720 the client side doesn't know anything about the child. */
5721 if (detach_fork && !follow_child)
5722 {
5723 /* Detach the fork child. */
5724 ptid_t child_ptid;
5725 pid_t child_pid;
5726
5727 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5728 child_pid = child_ptid.pid ();
5729
5730 remote_detach_pid (child_pid);
5731 }
5732 }
5733 return 0;
5734 }
5735
5736 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5737 in the program space of the new inferior. On entry and at return the
5738 current inferior is the exec'ing inferior. INF is the new exec'd
5739 inferior, which may be the same as the exec'ing inferior unless
5740 follow-exec-mode is "new". */
5741
5742 void
5743 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5744 {
5745 /* We know that this is a target file name, so if it has the "target:"
5746 prefix we strip it off before saving it in the program space. */
5747 if (is_target_filename (execd_pathname))
5748 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5749
5750 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5751 }
5752
5753 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5754
5755 void
5756 remote_target::disconnect (const char *args, int from_tty)
5757 {
5758 if (args)
5759 error (_("Argument given to \"disconnect\" when remotely debugging."));
5760
5761 /* Make sure we unpush even the extended remote targets. Calling
5762 target_mourn_inferior won't unpush, and remote_mourn won't
5763 unpush if there is more than one inferior left. */
5764 unpush_target (this);
5765 generic_mourn_inferior ();
5766
5767 if (from_tty)
5768 puts_filtered ("Ending remote debugging.\n");
5769 }
5770
5771 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5772 be chatty about it. */
5773
5774 void
5775 extended_remote_target::attach (const char *args, int from_tty)
5776 {
5777 struct remote_state *rs = get_remote_state ();
5778 int pid;
5779 char *wait_status = NULL;
5780
5781 pid = parse_pid_to_attach (args);
5782
5783 /* Remote PID can be freely equal to getpid, do not check it here the same
5784 way as in other targets. */
5785
5786 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5787 error (_("This target does not support attaching to a process"));
5788
5789 if (from_tty)
5790 {
5791 const char *exec_file = get_exec_file (0);
5792
5793 if (exec_file)
5794 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5795 target_pid_to_str (ptid_t (pid)).c_str ());
5796 else
5797 printf_unfiltered (_("Attaching to %s\n"),
5798 target_pid_to_str (ptid_t (pid)).c_str ());
5799 }
5800
5801 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5802 putpkt (rs->buf);
5803 getpkt (&rs->buf, 0);
5804
5805 switch (packet_ok (rs->buf,
5806 &remote_protocol_packets[PACKET_vAttach]))
5807 {
5808 case PACKET_OK:
5809 if (!target_is_non_stop_p ())
5810 {
5811 /* Save the reply for later. */
5812 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5813 strcpy (wait_status, rs->buf.data ());
5814 }
5815 else if (strcmp (rs->buf.data (), "OK") != 0)
5816 error (_("Attaching to %s failed with: %s"),
5817 target_pid_to_str (ptid_t (pid)).c_str (),
5818 rs->buf.data ());
5819 break;
5820 case PACKET_UNKNOWN:
5821 error (_("This target does not support attaching to a process"));
5822 default:
5823 error (_("Attaching to %s failed"),
5824 target_pid_to_str (ptid_t (pid)).c_str ());
5825 }
5826
5827 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5828
5829 inferior_ptid = ptid_t (pid);
5830
5831 if (target_is_non_stop_p ())
5832 {
5833 struct thread_info *thread;
5834
5835 /* Get list of threads. */
5836 update_thread_list ();
5837
5838 thread = first_thread_of_inferior (current_inferior ());
5839 if (thread)
5840 inferior_ptid = thread->ptid;
5841 else
5842 inferior_ptid = ptid_t (pid);
5843
5844 /* Invalidate our notion of the remote current thread. */
5845 record_currthread (rs, minus_one_ptid);
5846 }
5847 else
5848 {
5849 /* Now, if we have thread information, update inferior_ptid. */
5850 inferior_ptid = remote_current_thread (inferior_ptid);
5851
5852 /* Add the main thread to the thread list. */
5853 thread_info *thr = add_thread_silent (inferior_ptid);
5854 /* Don't consider the thread stopped until we've processed the
5855 saved stop reply. */
5856 set_executing (thr->ptid, true);
5857 }
5858
5859 /* Next, if the target can specify a description, read it. We do
5860 this before anything involving memory or registers. */
5861 target_find_description ();
5862
5863 if (!target_is_non_stop_p ())
5864 {
5865 /* Use the previously fetched status. */
5866 gdb_assert (wait_status != NULL);
5867
5868 if (target_can_async_p ())
5869 {
5870 struct notif_event *reply
5871 = remote_notif_parse (this, &notif_client_stop, wait_status);
5872
5873 push_stop_reply ((struct stop_reply *) reply);
5874
5875 target_async (1);
5876 }
5877 else
5878 {
5879 gdb_assert (wait_status != NULL);
5880 strcpy (rs->buf.data (), wait_status);
5881 rs->cached_wait_status = 1;
5882 }
5883 }
5884 else
5885 gdb_assert (wait_status == NULL);
5886 }
5887
5888 /* Implementation of the to_post_attach method. */
5889
5890 void
5891 extended_remote_target::post_attach (int pid)
5892 {
5893 /* Get text, data & bss offsets. */
5894 get_offsets ();
5895
5896 /* In certain cases GDB might not have had the chance to start
5897 symbol lookup up until now. This could happen if the debugged
5898 binary is not using shared libraries, the vsyscall page is not
5899 present (on Linux) and the binary itself hadn't changed since the
5900 debugging process was started. */
5901 if (symfile_objfile != NULL)
5902 remote_check_symbols();
5903 }
5904
5905 \f
5906 /* Check for the availability of vCont. This function should also check
5907 the response. */
5908
5909 void
5910 remote_target::remote_vcont_probe ()
5911 {
5912 remote_state *rs = get_remote_state ();
5913 char *buf;
5914
5915 strcpy (rs->buf.data (), "vCont?");
5916 putpkt (rs->buf);
5917 getpkt (&rs->buf, 0);
5918 buf = rs->buf.data ();
5919
5920 /* Make sure that the features we assume are supported. */
5921 if (startswith (buf, "vCont"))
5922 {
5923 char *p = &buf[5];
5924 int support_c, support_C;
5925
5926 rs->supports_vCont.s = 0;
5927 rs->supports_vCont.S = 0;
5928 support_c = 0;
5929 support_C = 0;
5930 rs->supports_vCont.t = 0;
5931 rs->supports_vCont.r = 0;
5932 while (p && *p == ';')
5933 {
5934 p++;
5935 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5936 rs->supports_vCont.s = 1;
5937 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5938 rs->supports_vCont.S = 1;
5939 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5940 support_c = 1;
5941 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5942 support_C = 1;
5943 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5944 rs->supports_vCont.t = 1;
5945 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5946 rs->supports_vCont.r = 1;
5947
5948 p = strchr (p, ';');
5949 }
5950
5951 /* If c, and C are not all supported, we can't use vCont. Clearing
5952 BUF will make packet_ok disable the packet. */
5953 if (!support_c || !support_C)
5954 buf[0] = 0;
5955 }
5956
5957 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5958 }
5959
5960 /* Helper function for building "vCont" resumptions. Write a
5961 resumption to P. ENDP points to one-passed-the-end of the buffer
5962 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5963 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5964 resumed thread should be single-stepped and/or signalled. If PTID
5965 equals minus_one_ptid, then all threads are resumed; if PTID
5966 represents a process, then all threads of the process are resumed;
5967 the thread to be stepped and/or signalled is given in the global
5968 INFERIOR_PTID. */
5969
5970 char *
5971 remote_target::append_resumption (char *p, char *endp,
5972 ptid_t ptid, int step, gdb_signal siggnal)
5973 {
5974 struct remote_state *rs = get_remote_state ();
5975
5976 if (step && siggnal != GDB_SIGNAL_0)
5977 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5978 else if (step
5979 /* GDB is willing to range step. */
5980 && use_range_stepping
5981 /* Target supports range stepping. */
5982 && rs->supports_vCont.r
5983 /* We don't currently support range stepping multiple
5984 threads with a wildcard (though the protocol allows it,
5985 so stubs shouldn't make an active effort to forbid
5986 it). */
5987 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5988 {
5989 struct thread_info *tp;
5990
5991 if (ptid == minus_one_ptid)
5992 {
5993 /* If we don't know about the target thread's tid, then
5994 we're resuming magic_null_ptid (see caller). */
5995 tp = find_thread_ptid (magic_null_ptid);
5996 }
5997 else
5998 tp = find_thread_ptid (ptid);
5999 gdb_assert (tp != NULL);
6000
6001 if (tp->control.may_range_step)
6002 {
6003 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6004
6005 p += xsnprintf (p, endp - p, ";r%s,%s",
6006 phex_nz (tp->control.step_range_start,
6007 addr_size),
6008 phex_nz (tp->control.step_range_end,
6009 addr_size));
6010 }
6011 else
6012 p += xsnprintf (p, endp - p, ";s");
6013 }
6014 else if (step)
6015 p += xsnprintf (p, endp - p, ";s");
6016 else if (siggnal != GDB_SIGNAL_0)
6017 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6018 else
6019 p += xsnprintf (p, endp - p, ";c");
6020
6021 if (remote_multi_process_p (rs) && ptid.is_pid ())
6022 {
6023 ptid_t nptid;
6024
6025 /* All (-1) threads of process. */
6026 nptid = ptid_t (ptid.pid (), -1, 0);
6027
6028 p += xsnprintf (p, endp - p, ":");
6029 p = write_ptid (p, endp, nptid);
6030 }
6031 else if (ptid != minus_one_ptid)
6032 {
6033 p += xsnprintf (p, endp - p, ":");
6034 p = write_ptid (p, endp, ptid);
6035 }
6036
6037 return p;
6038 }
6039
6040 /* Clear the thread's private info on resume. */
6041
6042 static void
6043 resume_clear_thread_private_info (struct thread_info *thread)
6044 {
6045 if (thread->priv != NULL)
6046 {
6047 remote_thread_info *priv = get_remote_thread_info (thread);
6048
6049 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6050 priv->watch_data_address = 0;
6051 }
6052 }
6053
6054 /* Append a vCont continue-with-signal action for threads that have a
6055 non-zero stop signal. */
6056
6057 char *
6058 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6059 ptid_t ptid)
6060 {
6061 for (thread_info *thread : all_non_exited_threads (ptid))
6062 if (inferior_ptid != thread->ptid
6063 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6064 {
6065 p = append_resumption (p, endp, thread->ptid,
6066 0, thread->suspend.stop_signal);
6067 thread->suspend.stop_signal = GDB_SIGNAL_0;
6068 resume_clear_thread_private_info (thread);
6069 }
6070
6071 return p;
6072 }
6073
6074 /* Set the target running, using the packets that use Hc
6075 (c/s/C/S). */
6076
6077 void
6078 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6079 gdb_signal siggnal)
6080 {
6081 struct remote_state *rs = get_remote_state ();
6082 char *buf;
6083
6084 rs->last_sent_signal = siggnal;
6085 rs->last_sent_step = step;
6086
6087 /* The c/s/C/S resume packets use Hc, so set the continue
6088 thread. */
6089 if (ptid == minus_one_ptid)
6090 set_continue_thread (any_thread_ptid);
6091 else
6092 set_continue_thread (ptid);
6093
6094 for (thread_info *thread : all_non_exited_threads ())
6095 resume_clear_thread_private_info (thread);
6096
6097 buf = rs->buf.data ();
6098 if (::execution_direction == EXEC_REVERSE)
6099 {
6100 /* We don't pass signals to the target in reverse exec mode. */
6101 if (info_verbose && siggnal != GDB_SIGNAL_0)
6102 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6103 siggnal);
6104
6105 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6106 error (_("Remote reverse-step not supported."));
6107 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6108 error (_("Remote reverse-continue not supported."));
6109
6110 strcpy (buf, step ? "bs" : "bc");
6111 }
6112 else if (siggnal != GDB_SIGNAL_0)
6113 {
6114 buf[0] = step ? 'S' : 'C';
6115 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6116 buf[2] = tohex (((int) siggnal) & 0xf);
6117 buf[3] = '\0';
6118 }
6119 else
6120 strcpy (buf, step ? "s" : "c");
6121
6122 putpkt (buf);
6123 }
6124
6125 /* Resume the remote inferior by using a "vCont" packet. The thread
6126 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6127 resumed thread should be single-stepped and/or signalled. If PTID
6128 equals minus_one_ptid, then all threads are resumed; the thread to
6129 be stepped and/or signalled is given in the global INFERIOR_PTID.
6130 This function returns non-zero iff it resumes the inferior.
6131
6132 This function issues a strict subset of all possible vCont commands
6133 at the moment. */
6134
6135 int
6136 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6137 enum gdb_signal siggnal)
6138 {
6139 struct remote_state *rs = get_remote_state ();
6140 char *p;
6141 char *endp;
6142
6143 /* No reverse execution actions defined for vCont. */
6144 if (::execution_direction == EXEC_REVERSE)
6145 return 0;
6146
6147 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6148 remote_vcont_probe ();
6149
6150 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6151 return 0;
6152
6153 p = rs->buf.data ();
6154 endp = p + get_remote_packet_size ();
6155
6156 /* If we could generate a wider range of packets, we'd have to worry
6157 about overflowing BUF. Should there be a generic
6158 "multi-part-packet" packet? */
6159
6160 p += xsnprintf (p, endp - p, "vCont");
6161
6162 if (ptid == magic_null_ptid)
6163 {
6164 /* MAGIC_NULL_PTID means that we don't have any active threads,
6165 so we don't have any TID numbers the inferior will
6166 understand. Make sure to only send forms that do not specify
6167 a TID. */
6168 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6169 }
6170 else if (ptid == minus_one_ptid || ptid.is_pid ())
6171 {
6172 /* Resume all threads (of all processes, or of a single
6173 process), with preference for INFERIOR_PTID. This assumes
6174 inferior_ptid belongs to the set of all threads we are about
6175 to resume. */
6176 if (step || siggnal != GDB_SIGNAL_0)
6177 {
6178 /* Step inferior_ptid, with or without signal. */
6179 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6180 }
6181
6182 /* Also pass down any pending signaled resumption for other
6183 threads not the current. */
6184 p = append_pending_thread_resumptions (p, endp, ptid);
6185
6186 /* And continue others without a signal. */
6187 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6188 }
6189 else
6190 {
6191 /* Scheduler locking; resume only PTID. */
6192 append_resumption (p, endp, ptid, step, siggnal);
6193 }
6194
6195 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6196 putpkt (rs->buf);
6197
6198 if (target_is_non_stop_p ())
6199 {
6200 /* In non-stop, the stub replies to vCont with "OK". The stop
6201 reply will be reported asynchronously by means of a `%Stop'
6202 notification. */
6203 getpkt (&rs->buf, 0);
6204 if (strcmp (rs->buf.data (), "OK") != 0)
6205 error (_("Unexpected vCont reply in non-stop mode: %s"),
6206 rs->buf.data ());
6207 }
6208
6209 return 1;
6210 }
6211
6212 /* Tell the remote machine to resume. */
6213
6214 void
6215 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6216 {
6217 struct remote_state *rs = get_remote_state ();
6218
6219 /* When connected in non-stop mode, the core resumes threads
6220 individually. Resuming remote threads directly in target_resume
6221 would thus result in sending one packet per thread. Instead, to
6222 minimize roundtrip latency, here we just store the resume
6223 request; the actual remote resumption will be done in
6224 target_commit_resume / remote_commit_resume, where we'll be able
6225 to do vCont action coalescing. */
6226 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6227 {
6228 remote_thread_info *remote_thr;
6229
6230 if (minus_one_ptid == ptid || ptid.is_pid ())
6231 remote_thr = get_remote_thread_info (inferior_ptid);
6232 else
6233 remote_thr = get_remote_thread_info (ptid);
6234
6235 remote_thr->last_resume_step = step;
6236 remote_thr->last_resume_sig = siggnal;
6237 return;
6238 }
6239
6240 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6241 (explained in remote-notif.c:handle_notification) so
6242 remote_notif_process is not called. We need find a place where
6243 it is safe to start a 'vNotif' sequence. It is good to do it
6244 before resuming inferior, because inferior was stopped and no RSP
6245 traffic at that moment. */
6246 if (!target_is_non_stop_p ())
6247 remote_notif_process (rs->notif_state, &notif_client_stop);
6248
6249 rs->last_resume_exec_dir = ::execution_direction;
6250
6251 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6252 if (!remote_resume_with_vcont (ptid, step, siggnal))
6253 remote_resume_with_hc (ptid, step, siggnal);
6254
6255 /* We are about to start executing the inferior, let's register it
6256 with the event loop. NOTE: this is the one place where all the
6257 execution commands end up. We could alternatively do this in each
6258 of the execution commands in infcmd.c. */
6259 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6260 into infcmd.c in order to allow inferior function calls to work
6261 NOT asynchronously. */
6262 if (target_can_async_p ())
6263 target_async (1);
6264
6265 /* We've just told the target to resume. The remote server will
6266 wait for the inferior to stop, and then send a stop reply. In
6267 the mean time, we can't start another command/query ourselves
6268 because the stub wouldn't be ready to process it. This applies
6269 only to the base all-stop protocol, however. In non-stop (which
6270 only supports vCont), the stub replies with an "OK", and is
6271 immediate able to process further serial input. */
6272 if (!target_is_non_stop_p ())
6273 rs->waiting_for_stop_reply = 1;
6274 }
6275
6276 static int is_pending_fork_parent_thread (struct thread_info *thread);
6277
6278 /* Private per-inferior info for target remote processes. */
6279
6280 struct remote_inferior : public private_inferior
6281 {
6282 /* Whether we can send a wildcard vCont for this process. */
6283 bool may_wildcard_vcont = true;
6284 };
6285
6286 /* Get the remote private inferior data associated to INF. */
6287
6288 static remote_inferior *
6289 get_remote_inferior (inferior *inf)
6290 {
6291 if (inf->priv == NULL)
6292 inf->priv.reset (new remote_inferior);
6293
6294 return static_cast<remote_inferior *> (inf->priv.get ());
6295 }
6296
6297 /* Class used to track the construction of a vCont packet in the
6298 outgoing packet buffer. This is used to send multiple vCont
6299 packets if we have more actions than would fit a single packet. */
6300
6301 class vcont_builder
6302 {
6303 public:
6304 explicit vcont_builder (remote_target *remote)
6305 : m_remote (remote)
6306 {
6307 restart ();
6308 }
6309
6310 void flush ();
6311 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6312
6313 private:
6314 void restart ();
6315
6316 /* The remote target. */
6317 remote_target *m_remote;
6318
6319 /* Pointer to the first action. P points here if no action has been
6320 appended yet. */
6321 char *m_first_action;
6322
6323 /* Where the next action will be appended. */
6324 char *m_p;
6325
6326 /* The end of the buffer. Must never write past this. */
6327 char *m_endp;
6328 };
6329
6330 /* Prepare the outgoing buffer for a new vCont packet. */
6331
6332 void
6333 vcont_builder::restart ()
6334 {
6335 struct remote_state *rs = m_remote->get_remote_state ();
6336
6337 m_p = rs->buf.data ();
6338 m_endp = m_p + m_remote->get_remote_packet_size ();
6339 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6340 m_first_action = m_p;
6341 }
6342
6343 /* If the vCont packet being built has any action, send it to the
6344 remote end. */
6345
6346 void
6347 vcont_builder::flush ()
6348 {
6349 struct remote_state *rs;
6350
6351 if (m_p == m_first_action)
6352 return;
6353
6354 rs = m_remote->get_remote_state ();
6355 m_remote->putpkt (rs->buf);
6356 m_remote->getpkt (&rs->buf, 0);
6357 if (strcmp (rs->buf.data (), "OK") != 0)
6358 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6359 }
6360
6361 /* The largest action is range-stepping, with its two addresses. This
6362 is more than sufficient. If a new, bigger action is created, it'll
6363 quickly trigger a failed assertion in append_resumption (and we'll
6364 just bump this). */
6365 #define MAX_ACTION_SIZE 200
6366
6367 /* Append a new vCont action in the outgoing packet being built. If
6368 the action doesn't fit the packet along with previous actions, push
6369 what we've got so far to the remote end and start over a new vCont
6370 packet (with the new action). */
6371
6372 void
6373 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6374 {
6375 char buf[MAX_ACTION_SIZE + 1];
6376
6377 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6378 ptid, step, siggnal);
6379
6380 /* Check whether this new action would fit in the vCont packet along
6381 with previous actions. If not, send what we've got so far and
6382 start a new vCont packet. */
6383 size_t rsize = endp - buf;
6384 if (rsize > m_endp - m_p)
6385 {
6386 flush ();
6387 restart ();
6388
6389 /* Should now fit. */
6390 gdb_assert (rsize <= m_endp - m_p);
6391 }
6392
6393 memcpy (m_p, buf, rsize);
6394 m_p += rsize;
6395 *m_p = '\0';
6396 }
6397
6398 /* to_commit_resume implementation. */
6399
6400 void
6401 remote_target::commit_resume ()
6402 {
6403 int any_process_wildcard;
6404 int may_global_wildcard_vcont;
6405
6406 /* If connected in all-stop mode, we'd send the remote resume
6407 request directly from remote_resume. Likewise if
6408 reverse-debugging, as there are no defined vCont actions for
6409 reverse execution. */
6410 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6411 return;
6412
6413 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6414 instead of resuming all threads of each process individually.
6415 However, if any thread of a process must remain halted, we can't
6416 send wildcard resumes and must send one action per thread.
6417
6418 Care must be taken to not resume threads/processes the server
6419 side already told us are stopped, but the core doesn't know about
6420 yet, because the events are still in the vStopped notification
6421 queue. For example:
6422
6423 #1 => vCont s:p1.1;c
6424 #2 <= OK
6425 #3 <= %Stopped T05 p1.1
6426 #4 => vStopped
6427 #5 <= T05 p1.2
6428 #6 => vStopped
6429 #7 <= OK
6430 #8 (infrun handles the stop for p1.1 and continues stepping)
6431 #9 => vCont s:p1.1;c
6432
6433 The last vCont above would resume thread p1.2 by mistake, because
6434 the server has no idea that the event for p1.2 had not been
6435 handled yet.
6436
6437 The server side must similarly ignore resume actions for the
6438 thread that has a pending %Stopped notification (and any other
6439 threads with events pending), until GDB acks the notification
6440 with vStopped. Otherwise, e.g., the following case is
6441 mishandled:
6442
6443 #1 => g (or any other packet)
6444 #2 <= [registers]
6445 #3 <= %Stopped T05 p1.2
6446 #4 => vCont s:p1.1;c
6447 #5 <= OK
6448
6449 Above, the server must not resume thread p1.2. GDB can't know
6450 that p1.2 stopped until it acks the %Stopped notification, and
6451 since from GDB's perspective all threads should be running, it
6452 sends a "c" action.
6453
6454 Finally, special care must also be given to handling fork/vfork
6455 events. A (v)fork event actually tells us that two processes
6456 stopped -- the parent and the child. Until we follow the fork,
6457 we must not resume the child. Therefore, if we have a pending
6458 fork follow, we must not send a global wildcard resume action
6459 (vCont;c). We can still send process-wide wildcards though. */
6460
6461 /* Start by assuming a global wildcard (vCont;c) is possible. */
6462 may_global_wildcard_vcont = 1;
6463
6464 /* And assume every process is individually wildcard-able too. */
6465 for (inferior *inf : all_non_exited_inferiors ())
6466 {
6467 remote_inferior *priv = get_remote_inferior (inf);
6468
6469 priv->may_wildcard_vcont = true;
6470 }
6471
6472 /* Check for any pending events (not reported or processed yet) and
6473 disable process and global wildcard resumes appropriately. */
6474 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6475
6476 for (thread_info *tp : all_non_exited_threads ())
6477 {
6478 /* If a thread of a process is not meant to be resumed, then we
6479 can't wildcard that process. */
6480 if (!tp->executing)
6481 {
6482 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6483
6484 /* And if we can't wildcard a process, we can't wildcard
6485 everything either. */
6486 may_global_wildcard_vcont = 0;
6487 continue;
6488 }
6489
6490 /* If a thread is the parent of an unfollowed fork, then we
6491 can't do a global wildcard, as that would resume the fork
6492 child. */
6493 if (is_pending_fork_parent_thread (tp))
6494 may_global_wildcard_vcont = 0;
6495 }
6496
6497 /* Now let's build the vCont packet(s). Actions must be appended
6498 from narrower to wider scopes (thread -> process -> global). If
6499 we end up with too many actions for a single packet vcont_builder
6500 flushes the current vCont packet to the remote side and starts a
6501 new one. */
6502 struct vcont_builder vcont_builder (this);
6503
6504 /* Threads first. */
6505 for (thread_info *tp : all_non_exited_threads ())
6506 {
6507 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6508
6509 if (!tp->executing || remote_thr->vcont_resumed)
6510 continue;
6511
6512 gdb_assert (!thread_is_in_step_over_chain (tp));
6513
6514 if (!remote_thr->last_resume_step
6515 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6516 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6517 {
6518 /* We'll send a wildcard resume instead. */
6519 remote_thr->vcont_resumed = 1;
6520 continue;
6521 }
6522
6523 vcont_builder.push_action (tp->ptid,
6524 remote_thr->last_resume_step,
6525 remote_thr->last_resume_sig);
6526 remote_thr->vcont_resumed = 1;
6527 }
6528
6529 /* Now check whether we can send any process-wide wildcard. This is
6530 to avoid sending a global wildcard in the case nothing is
6531 supposed to be resumed. */
6532 any_process_wildcard = 0;
6533
6534 for (inferior *inf : all_non_exited_inferiors ())
6535 {
6536 if (get_remote_inferior (inf)->may_wildcard_vcont)
6537 {
6538 any_process_wildcard = 1;
6539 break;
6540 }
6541 }
6542
6543 if (any_process_wildcard)
6544 {
6545 /* If all processes are wildcard-able, then send a single "c"
6546 action, otherwise, send an "all (-1) threads of process"
6547 continue action for each running process, if any. */
6548 if (may_global_wildcard_vcont)
6549 {
6550 vcont_builder.push_action (minus_one_ptid,
6551 false, GDB_SIGNAL_0);
6552 }
6553 else
6554 {
6555 for (inferior *inf : all_non_exited_inferiors ())
6556 {
6557 if (get_remote_inferior (inf)->may_wildcard_vcont)
6558 {
6559 vcont_builder.push_action (ptid_t (inf->pid),
6560 false, GDB_SIGNAL_0);
6561 }
6562 }
6563 }
6564 }
6565
6566 vcont_builder.flush ();
6567 }
6568
6569 \f
6570
6571 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6572 thread, all threads of a remote process, or all threads of all
6573 processes. */
6574
6575 void
6576 remote_target::remote_stop_ns (ptid_t ptid)
6577 {
6578 struct remote_state *rs = get_remote_state ();
6579 char *p = rs->buf.data ();
6580 char *endp = p + get_remote_packet_size ();
6581
6582 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6583 remote_vcont_probe ();
6584
6585 if (!rs->supports_vCont.t)
6586 error (_("Remote server does not support stopping threads"));
6587
6588 if (ptid == minus_one_ptid
6589 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6590 p += xsnprintf (p, endp - p, "vCont;t");
6591 else
6592 {
6593 ptid_t nptid;
6594
6595 p += xsnprintf (p, endp - p, "vCont;t:");
6596
6597 if (ptid.is_pid ())
6598 /* All (-1) threads of process. */
6599 nptid = ptid_t (ptid.pid (), -1, 0);
6600 else
6601 {
6602 /* Small optimization: if we already have a stop reply for
6603 this thread, no use in telling the stub we want this
6604 stopped. */
6605 if (peek_stop_reply (ptid))
6606 return;
6607
6608 nptid = ptid;
6609 }
6610
6611 write_ptid (p, endp, nptid);
6612 }
6613
6614 /* In non-stop, we get an immediate OK reply. The stop reply will
6615 come in asynchronously by notification. */
6616 putpkt (rs->buf);
6617 getpkt (&rs->buf, 0);
6618 if (strcmp (rs->buf.data (), "OK") != 0)
6619 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6620 rs->buf.data ());
6621 }
6622
6623 /* All-stop version of target_interrupt. Sends a break or a ^C to
6624 interrupt the remote target. It is undefined which thread of which
6625 process reports the interrupt. */
6626
6627 void
6628 remote_target::remote_interrupt_as ()
6629 {
6630 struct remote_state *rs = get_remote_state ();
6631
6632 rs->ctrlc_pending_p = 1;
6633
6634 /* If the inferior is stopped already, but the core didn't know
6635 about it yet, just ignore the request. The cached wait status
6636 will be collected in remote_wait. */
6637 if (rs->cached_wait_status)
6638 return;
6639
6640 /* Send interrupt_sequence to remote target. */
6641 send_interrupt_sequence ();
6642 }
6643
6644 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6645 the remote target. It is undefined which thread of which process
6646 reports the interrupt. Throws an error if the packet is not
6647 supported by the server. */
6648
6649 void
6650 remote_target::remote_interrupt_ns ()
6651 {
6652 struct remote_state *rs = get_remote_state ();
6653 char *p = rs->buf.data ();
6654 char *endp = p + get_remote_packet_size ();
6655
6656 xsnprintf (p, endp - p, "vCtrlC");
6657
6658 /* In non-stop, we get an immediate OK reply. The stop reply will
6659 come in asynchronously by notification. */
6660 putpkt (rs->buf);
6661 getpkt (&rs->buf, 0);
6662
6663 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6664 {
6665 case PACKET_OK:
6666 break;
6667 case PACKET_UNKNOWN:
6668 error (_("No support for interrupting the remote target."));
6669 case PACKET_ERROR:
6670 error (_("Interrupting target failed: %s"), rs->buf.data ());
6671 }
6672 }
6673
6674 /* Implement the to_stop function for the remote targets. */
6675
6676 void
6677 remote_target::stop (ptid_t ptid)
6678 {
6679 if (remote_debug)
6680 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6681
6682 if (target_is_non_stop_p ())
6683 remote_stop_ns (ptid);
6684 else
6685 {
6686 /* We don't currently have a way to transparently pause the
6687 remote target in all-stop mode. Interrupt it instead. */
6688 remote_interrupt_as ();
6689 }
6690 }
6691
6692 /* Implement the to_interrupt function for the remote targets. */
6693
6694 void
6695 remote_target::interrupt ()
6696 {
6697 if (remote_debug)
6698 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6699
6700 if (target_is_non_stop_p ())
6701 remote_interrupt_ns ();
6702 else
6703 remote_interrupt_as ();
6704 }
6705
6706 /* Implement the to_pass_ctrlc function for the remote targets. */
6707
6708 void
6709 remote_target::pass_ctrlc ()
6710 {
6711 struct remote_state *rs = get_remote_state ();
6712
6713 if (remote_debug)
6714 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6715
6716 /* If we're starting up, we're not fully synced yet. Quit
6717 immediately. */
6718 if (rs->starting_up)
6719 quit ();
6720 /* If ^C has already been sent once, offer to disconnect. */
6721 else if (rs->ctrlc_pending_p)
6722 interrupt_query ();
6723 else
6724 target_interrupt ();
6725 }
6726
6727 /* Ask the user what to do when an interrupt is received. */
6728
6729 void
6730 remote_target::interrupt_query ()
6731 {
6732 struct remote_state *rs = get_remote_state ();
6733
6734 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6735 {
6736 if (query (_("The target is not responding to interrupt requests.\n"
6737 "Stop debugging it? ")))
6738 {
6739 remote_unpush_target ();
6740 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6741 }
6742 }
6743 else
6744 {
6745 if (query (_("Interrupted while waiting for the program.\n"
6746 "Give up waiting? ")))
6747 quit ();
6748 }
6749 }
6750
6751 /* Enable/disable target terminal ownership. Most targets can use
6752 terminal groups to control terminal ownership. Remote targets are
6753 different in that explicit transfer of ownership to/from GDB/target
6754 is required. */
6755
6756 void
6757 remote_target::terminal_inferior ()
6758 {
6759 /* NOTE: At this point we could also register our selves as the
6760 recipient of all input. Any characters typed could then be
6761 passed on down to the target. */
6762 }
6763
6764 void
6765 remote_target::terminal_ours ()
6766 {
6767 }
6768
6769 static void
6770 remote_console_output (const char *msg)
6771 {
6772 const char *p;
6773
6774 for (p = msg; p[0] && p[1]; p += 2)
6775 {
6776 char tb[2];
6777 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6778
6779 tb[0] = c;
6780 tb[1] = 0;
6781 fputs_unfiltered (tb, gdb_stdtarg);
6782 }
6783 gdb_flush (gdb_stdtarg);
6784 }
6785
6786 struct stop_reply : public notif_event
6787 {
6788 ~stop_reply ();
6789
6790 /* The identifier of the thread about this event */
6791 ptid_t ptid;
6792
6793 /* The remote state this event is associated with. When the remote
6794 connection, represented by a remote_state object, is closed,
6795 all the associated stop_reply events should be released. */
6796 struct remote_state *rs;
6797
6798 struct target_waitstatus ws;
6799
6800 /* The architecture associated with the expedited registers. */
6801 gdbarch *arch;
6802
6803 /* Expedited registers. This makes remote debugging a bit more
6804 efficient for those targets that provide critical registers as
6805 part of their normal status mechanism (as another roundtrip to
6806 fetch them is avoided). */
6807 std::vector<cached_reg_t> regcache;
6808
6809 enum target_stop_reason stop_reason;
6810
6811 CORE_ADDR watch_data_address;
6812
6813 int core;
6814 };
6815
6816 /* Return the length of the stop reply queue. */
6817
6818 int
6819 remote_target::stop_reply_queue_length ()
6820 {
6821 remote_state *rs = get_remote_state ();
6822 return rs->stop_reply_queue.size ();
6823 }
6824
6825 static void
6826 remote_notif_stop_parse (remote_target *remote,
6827 struct notif_client *self, const char *buf,
6828 struct notif_event *event)
6829 {
6830 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6831 }
6832
6833 static void
6834 remote_notif_stop_ack (remote_target *remote,
6835 struct notif_client *self, const char *buf,
6836 struct notif_event *event)
6837 {
6838 struct stop_reply *stop_reply = (struct stop_reply *) event;
6839
6840 /* acknowledge */
6841 putpkt (remote, self->ack_command);
6842
6843 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6844 {
6845 /* We got an unknown stop reply. */
6846 error (_("Unknown stop reply"));
6847 }
6848
6849 remote->push_stop_reply (stop_reply);
6850 }
6851
6852 static int
6853 remote_notif_stop_can_get_pending_events (remote_target *remote,
6854 struct notif_client *self)
6855 {
6856 /* We can't get pending events in remote_notif_process for
6857 notification stop, and we have to do this in remote_wait_ns
6858 instead. If we fetch all queued events from stub, remote stub
6859 may exit and we have no chance to process them back in
6860 remote_wait_ns. */
6861 remote_state *rs = remote->get_remote_state ();
6862 mark_async_event_handler (rs->remote_async_inferior_event_token);
6863 return 0;
6864 }
6865
6866 stop_reply::~stop_reply ()
6867 {
6868 for (cached_reg_t &reg : regcache)
6869 xfree (reg.data);
6870 }
6871
6872 static notif_event_up
6873 remote_notif_stop_alloc_reply ()
6874 {
6875 return notif_event_up (new struct stop_reply ());
6876 }
6877
6878 /* A client of notification Stop. */
6879
6880 struct notif_client notif_client_stop =
6881 {
6882 "Stop",
6883 "vStopped",
6884 remote_notif_stop_parse,
6885 remote_notif_stop_ack,
6886 remote_notif_stop_can_get_pending_events,
6887 remote_notif_stop_alloc_reply,
6888 REMOTE_NOTIF_STOP,
6889 };
6890
6891 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6892 the pid of the process that owns the threads we want to check, or
6893 -1 if we want to check all threads. */
6894
6895 static int
6896 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6897 ptid_t thread_ptid)
6898 {
6899 if (ws->kind == TARGET_WAITKIND_FORKED
6900 || ws->kind == TARGET_WAITKIND_VFORKED)
6901 {
6902 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6903 return 1;
6904 }
6905
6906 return 0;
6907 }
6908
6909 /* Return the thread's pending status used to determine whether the
6910 thread is a fork parent stopped at a fork event. */
6911
6912 static struct target_waitstatus *
6913 thread_pending_fork_status (struct thread_info *thread)
6914 {
6915 if (thread->suspend.waitstatus_pending_p)
6916 return &thread->suspend.waitstatus;
6917 else
6918 return &thread->pending_follow;
6919 }
6920
6921 /* Determine if THREAD is a pending fork parent thread. */
6922
6923 static int
6924 is_pending_fork_parent_thread (struct thread_info *thread)
6925 {
6926 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6927 int pid = -1;
6928
6929 return is_pending_fork_parent (ws, pid, thread->ptid);
6930 }
6931
6932 /* If CONTEXT contains any fork child threads that have not been
6933 reported yet, remove them from the CONTEXT list. If such a
6934 thread exists it is because we are stopped at a fork catchpoint
6935 and have not yet called follow_fork, which will set up the
6936 host-side data structures for the new process. */
6937
6938 void
6939 remote_target::remove_new_fork_children (threads_listing_context *context)
6940 {
6941 int pid = -1;
6942 struct notif_client *notif = &notif_client_stop;
6943
6944 /* For any threads stopped at a fork event, remove the corresponding
6945 fork child threads from the CONTEXT list. */
6946 for (thread_info *thread : all_non_exited_threads ())
6947 {
6948 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6949
6950 if (is_pending_fork_parent (ws, pid, thread->ptid))
6951 context->remove_thread (ws->value.related_pid);
6952 }
6953
6954 /* Check for any pending fork events (not reported or processed yet)
6955 in process PID and remove those fork child threads from the
6956 CONTEXT list as well. */
6957 remote_notif_get_pending_events (notif);
6958 for (auto &event : get_remote_state ()->stop_reply_queue)
6959 if (event->ws.kind == TARGET_WAITKIND_FORKED
6960 || event->ws.kind == TARGET_WAITKIND_VFORKED
6961 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6962 context->remove_thread (event->ws.value.related_pid);
6963 }
6964
6965 /* Check whether any event pending in the vStopped queue would prevent
6966 a global or process wildcard vCont action. Clear
6967 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6968 and clear the event inferior's may_wildcard_vcont flag if we can't
6969 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6970
6971 void
6972 remote_target::check_pending_events_prevent_wildcard_vcont
6973 (int *may_global_wildcard)
6974 {
6975 struct notif_client *notif = &notif_client_stop;
6976
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 {
6980 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6981 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6982 continue;
6983
6984 if (event->ws.kind == TARGET_WAITKIND_FORKED
6985 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6986 *may_global_wildcard = 0;
6987
6988 struct inferior *inf = find_inferior_ptid (event->ptid);
6989
6990 /* This may be the first time we heard about this process.
6991 Regardless, we must not do a global wildcard resume, otherwise
6992 we'd resume this process too. */
6993 *may_global_wildcard = 0;
6994 if (inf != NULL)
6995 get_remote_inferior (inf)->may_wildcard_vcont = false;
6996 }
6997 }
6998
6999 /* Discard all pending stop replies of inferior INF. */
7000
7001 void
7002 remote_target::discard_pending_stop_replies (struct inferior *inf)
7003 {
7004 struct stop_reply *reply;
7005 struct remote_state *rs = get_remote_state ();
7006 struct remote_notif_state *rns = rs->notif_state;
7007
7008 /* This function can be notified when an inferior exists. When the
7009 target is not remote, the notification state is NULL. */
7010 if (rs->remote_desc == NULL)
7011 return;
7012
7013 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7014
7015 /* Discard the in-flight notification. */
7016 if (reply != NULL && reply->ptid.pid () == inf->pid)
7017 {
7018 delete reply;
7019 rns->pending_event[notif_client_stop.id] = NULL;
7020 }
7021
7022 /* Discard the stop replies we have already pulled with
7023 vStopped. */
7024 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7025 rs->stop_reply_queue.end (),
7026 [=] (const stop_reply_up &event)
7027 {
7028 return event->ptid.pid () == inf->pid;
7029 });
7030 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7031 }
7032
7033 /* Discard the stop replies for RS in stop_reply_queue. */
7034
7035 void
7036 remote_target::discard_pending_stop_replies_in_queue ()
7037 {
7038 remote_state *rs = get_remote_state ();
7039
7040 /* Discard the stop replies we have already pulled with
7041 vStopped. */
7042 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7043 rs->stop_reply_queue.end (),
7044 [=] (const stop_reply_up &event)
7045 {
7046 return event->rs == rs;
7047 });
7048 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7049 }
7050
7051 /* Remove the first reply in 'stop_reply_queue' which matches
7052 PTID. */
7053
7054 struct stop_reply *
7055 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7056 {
7057 remote_state *rs = get_remote_state ();
7058
7059 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7060 rs->stop_reply_queue.end (),
7061 [=] (const stop_reply_up &event)
7062 {
7063 return event->ptid.matches (ptid);
7064 });
7065 struct stop_reply *result;
7066 if (iter == rs->stop_reply_queue.end ())
7067 result = nullptr;
7068 else
7069 {
7070 result = iter->release ();
7071 rs->stop_reply_queue.erase (iter);
7072 }
7073
7074 if (notif_debug)
7075 fprintf_unfiltered (gdb_stdlog,
7076 "notif: discard queued event: 'Stop' in %s\n",
7077 target_pid_to_str (ptid).c_str ());
7078
7079 return result;
7080 }
7081
7082 /* Look for a queued stop reply belonging to PTID. If one is found,
7083 remove it from the queue, and return it. Returns NULL if none is
7084 found. If there are still queued events left to process, tell the
7085 event loop to get back to target_wait soon. */
7086
7087 struct stop_reply *
7088 remote_target::queued_stop_reply (ptid_t ptid)
7089 {
7090 remote_state *rs = get_remote_state ();
7091 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7092
7093 if (!rs->stop_reply_queue.empty ())
7094 {
7095 /* There's still at least an event left. */
7096 mark_async_event_handler (rs->remote_async_inferior_event_token);
7097 }
7098
7099 return r;
7100 }
7101
7102 /* Push a fully parsed stop reply in the stop reply queue. Since we
7103 know that we now have at least one queued event left to pass to the
7104 core side, tell the event loop to get back to target_wait soon. */
7105
7106 void
7107 remote_target::push_stop_reply (struct stop_reply *new_event)
7108 {
7109 remote_state *rs = get_remote_state ();
7110 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7111
7112 if (notif_debug)
7113 fprintf_unfiltered (gdb_stdlog,
7114 "notif: push 'Stop' %s to queue %d\n",
7115 target_pid_to_str (new_event->ptid).c_str (),
7116 int (rs->stop_reply_queue.size ()));
7117
7118 mark_async_event_handler (rs->remote_async_inferior_event_token);
7119 }
7120
7121 /* Returns true if we have a stop reply for PTID. */
7122
7123 int
7124 remote_target::peek_stop_reply (ptid_t ptid)
7125 {
7126 remote_state *rs = get_remote_state ();
7127 for (auto &event : rs->stop_reply_queue)
7128 if (ptid == event->ptid
7129 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7130 return 1;
7131 return 0;
7132 }
7133
7134 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7135 starting with P and ending with PEND matches PREFIX. */
7136
7137 static int
7138 strprefix (const char *p, const char *pend, const char *prefix)
7139 {
7140 for ( ; p < pend; p++, prefix++)
7141 if (*p != *prefix)
7142 return 0;
7143 return *prefix == '\0';
7144 }
7145
7146 /* Parse the stop reply in BUF. Either the function succeeds, and the
7147 result is stored in EVENT, or throws an error. */
7148
7149 void
7150 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7151 {
7152 remote_arch_state *rsa = NULL;
7153 ULONGEST addr;
7154 const char *p;
7155 int skipregs = 0;
7156
7157 event->ptid = null_ptid;
7158 event->rs = get_remote_state ();
7159 event->ws.kind = TARGET_WAITKIND_IGNORE;
7160 event->ws.value.integer = 0;
7161 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7162 event->regcache.clear ();
7163 event->core = -1;
7164
7165 switch (buf[0])
7166 {
7167 case 'T': /* Status with PC, SP, FP, ... */
7168 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7169 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7170 ss = signal number
7171 n... = register number
7172 r... = register contents
7173 */
7174
7175 p = &buf[3]; /* after Txx */
7176 while (*p)
7177 {
7178 const char *p1;
7179 int fieldsize;
7180
7181 p1 = strchr (p, ':');
7182 if (p1 == NULL)
7183 error (_("Malformed packet(a) (missing colon): %s\n\
7184 Packet: '%s'\n"),
7185 p, buf);
7186 if (p == p1)
7187 error (_("Malformed packet(a) (missing register number): %s\n\
7188 Packet: '%s'\n"),
7189 p, buf);
7190
7191 /* Some "registers" are actually extended stop information.
7192 Note if you're adding a new entry here: GDB 7.9 and
7193 earlier assume that all register "numbers" that start
7194 with an hex digit are real register numbers. Make sure
7195 the server only sends such a packet if it knows the
7196 client understands it. */
7197
7198 if (strprefix (p, p1, "thread"))
7199 event->ptid = read_ptid (++p1, &p);
7200 else if (strprefix (p, p1, "syscall_entry"))
7201 {
7202 ULONGEST sysno;
7203
7204 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7205 p = unpack_varlen_hex (++p1, &sysno);
7206 event->ws.value.syscall_number = (int) sysno;
7207 }
7208 else if (strprefix (p, p1, "syscall_return"))
7209 {
7210 ULONGEST sysno;
7211
7212 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7213 p = unpack_varlen_hex (++p1, &sysno);
7214 event->ws.value.syscall_number = (int) sysno;
7215 }
7216 else if (strprefix (p, p1, "watch")
7217 || strprefix (p, p1, "rwatch")
7218 || strprefix (p, p1, "awatch"))
7219 {
7220 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7221 p = unpack_varlen_hex (++p1, &addr);
7222 event->watch_data_address = (CORE_ADDR) addr;
7223 }
7224 else if (strprefix (p, p1, "swbreak"))
7225 {
7226 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7227
7228 /* Make sure the stub doesn't forget to indicate support
7229 with qSupported. */
7230 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7231 error (_("Unexpected swbreak stop reason"));
7232
7233 /* The value part is documented as "must be empty",
7234 though we ignore it, in case we ever decide to make
7235 use of it in a backward compatible way. */
7236 p = strchrnul (p1 + 1, ';');
7237 }
7238 else if (strprefix (p, p1, "hwbreak"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7241
7242 /* Make sure the stub doesn't forget to indicate support
7243 with qSupported. */
7244 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7245 error (_("Unexpected hwbreak stop reason"));
7246
7247 /* See above. */
7248 p = strchrnul (p1 + 1, ';');
7249 }
7250 else if (strprefix (p, p1, "library"))
7251 {
7252 event->ws.kind = TARGET_WAITKIND_LOADED;
7253 p = strchrnul (p1 + 1, ';');
7254 }
7255 else if (strprefix (p, p1, "replaylog"))
7256 {
7257 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7258 /* p1 will indicate "begin" or "end", but it makes
7259 no difference for now, so ignore it. */
7260 p = strchrnul (p1 + 1, ';');
7261 }
7262 else if (strprefix (p, p1, "core"))
7263 {
7264 ULONGEST c;
7265
7266 p = unpack_varlen_hex (++p1, &c);
7267 event->core = c;
7268 }
7269 else if (strprefix (p, p1, "fork"))
7270 {
7271 event->ws.value.related_pid = read_ptid (++p1, &p);
7272 event->ws.kind = TARGET_WAITKIND_FORKED;
7273 }
7274 else if (strprefix (p, p1, "vfork"))
7275 {
7276 event->ws.value.related_pid = read_ptid (++p1, &p);
7277 event->ws.kind = TARGET_WAITKIND_VFORKED;
7278 }
7279 else if (strprefix (p, p1, "vforkdone"))
7280 {
7281 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7282 p = strchrnul (p1 + 1, ';');
7283 }
7284 else if (strprefix (p, p1, "exec"))
7285 {
7286 ULONGEST ignored;
7287 int pathlen;
7288
7289 /* Determine the length of the execd pathname. */
7290 p = unpack_varlen_hex (++p1, &ignored);
7291 pathlen = (p - p1) / 2;
7292
7293 /* Save the pathname for event reporting and for
7294 the next run command. */
7295 gdb::unique_xmalloc_ptr<char[]> pathname
7296 ((char *) xmalloc (pathlen + 1));
7297 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7298 pathname[pathlen] = '\0';
7299
7300 /* This is freed during event handling. */
7301 event->ws.value.execd_pathname = pathname.release ();
7302 event->ws.kind = TARGET_WAITKIND_EXECD;
7303
7304 /* Skip the registers included in this packet, since
7305 they may be for an architecture different from the
7306 one used by the original program. */
7307 skipregs = 1;
7308 }
7309 else if (strprefix (p, p1, "create"))
7310 {
7311 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7312 p = strchrnul (p1 + 1, ';');
7313 }
7314 else
7315 {
7316 ULONGEST pnum;
7317 const char *p_temp;
7318
7319 if (skipregs)
7320 {
7321 p = strchrnul (p1 + 1, ';');
7322 p++;
7323 continue;
7324 }
7325
7326 /* Maybe a real ``P'' register number. */
7327 p_temp = unpack_varlen_hex (p, &pnum);
7328 /* If the first invalid character is the colon, we got a
7329 register number. Otherwise, it's an unknown stop
7330 reason. */
7331 if (p_temp == p1)
7332 {
7333 /* If we haven't parsed the event's thread yet, find
7334 it now, in order to find the architecture of the
7335 reported expedited registers. */
7336 if (event->ptid == null_ptid)
7337 {
7338 const char *thr = strstr (p1 + 1, ";thread:");
7339 if (thr != NULL)
7340 event->ptid = read_ptid (thr + strlen (";thread:"),
7341 NULL);
7342 else
7343 {
7344 /* Either the current thread hasn't changed,
7345 or the inferior is not multi-threaded.
7346 The event must be for the thread we last
7347 set as (or learned as being) current. */
7348 event->ptid = event->rs->general_thread;
7349 }
7350 }
7351
7352 if (rsa == NULL)
7353 {
7354 inferior *inf = (event->ptid == null_ptid
7355 ? NULL
7356 : find_inferior_ptid (event->ptid));
7357 /* If this is the first time we learn anything
7358 about this process, skip the registers
7359 included in this packet, since we don't yet
7360 know which architecture to use to parse them.
7361 We'll determine the architecture later when
7362 we process the stop reply and retrieve the
7363 target description, via
7364 remote_notice_new_inferior ->
7365 post_create_inferior. */
7366 if (inf == NULL)
7367 {
7368 p = strchrnul (p1 + 1, ';');
7369 p++;
7370 continue;
7371 }
7372
7373 event->arch = inf->gdbarch;
7374 rsa = event->rs->get_remote_arch_state (event->arch);
7375 }
7376
7377 packet_reg *reg
7378 = packet_reg_from_pnum (event->arch, rsa, pnum);
7379 cached_reg_t cached_reg;
7380
7381 if (reg == NULL)
7382 error (_("Remote sent bad register number %s: %s\n\
7383 Packet: '%s'\n"),
7384 hex_string (pnum), p, buf);
7385
7386 cached_reg.num = reg->regnum;
7387 cached_reg.data = (gdb_byte *)
7388 xmalloc (register_size (event->arch, reg->regnum));
7389
7390 p = p1 + 1;
7391 fieldsize = hex2bin (p, cached_reg.data,
7392 register_size (event->arch, reg->regnum));
7393 p += 2 * fieldsize;
7394 if (fieldsize < register_size (event->arch, reg->regnum))
7395 warning (_("Remote reply is too short: %s"), buf);
7396
7397 event->regcache.push_back (cached_reg);
7398 }
7399 else
7400 {
7401 /* Not a number. Silently skip unknown optional
7402 info. */
7403 p = strchrnul (p1 + 1, ';');
7404 }
7405 }
7406
7407 if (*p != ';')
7408 error (_("Remote register badly formatted: %s\nhere: %s"),
7409 buf, p);
7410 ++p;
7411 }
7412
7413 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7414 break;
7415
7416 /* fall through */
7417 case 'S': /* Old style status, just signal only. */
7418 {
7419 int sig;
7420
7421 event->ws.kind = TARGET_WAITKIND_STOPPED;
7422 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7423 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7424 event->ws.value.sig = (enum gdb_signal) sig;
7425 else
7426 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7427 }
7428 break;
7429 case 'w': /* Thread exited. */
7430 {
7431 ULONGEST value;
7432
7433 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7434 p = unpack_varlen_hex (&buf[1], &value);
7435 event->ws.value.integer = value;
7436 if (*p != ';')
7437 error (_("stop reply packet badly formatted: %s"), buf);
7438 event->ptid = read_ptid (++p, NULL);
7439 break;
7440 }
7441 case 'W': /* Target exited. */
7442 case 'X':
7443 {
7444 int pid;
7445 ULONGEST value;
7446
7447 /* GDB used to accept only 2 hex chars here. Stubs should
7448 only send more if they detect GDB supports multi-process
7449 support. */
7450 p = unpack_varlen_hex (&buf[1], &value);
7451
7452 if (buf[0] == 'W')
7453 {
7454 /* The remote process exited. */
7455 event->ws.kind = TARGET_WAITKIND_EXITED;
7456 event->ws.value.integer = value;
7457 }
7458 else
7459 {
7460 /* The remote process exited with a signal. */
7461 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7462 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7463 event->ws.value.sig = (enum gdb_signal) value;
7464 else
7465 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7466 }
7467
7468 /* If no process is specified, assume inferior_ptid. */
7469 pid = inferior_ptid.pid ();
7470 if (*p == '\0')
7471 ;
7472 else if (*p == ';')
7473 {
7474 p++;
7475
7476 if (*p == '\0')
7477 ;
7478 else if (startswith (p, "process:"))
7479 {
7480 ULONGEST upid;
7481
7482 p += sizeof ("process:") - 1;
7483 unpack_varlen_hex (p, &upid);
7484 pid = upid;
7485 }
7486 else
7487 error (_("unknown stop reply packet: %s"), buf);
7488 }
7489 else
7490 error (_("unknown stop reply packet: %s"), buf);
7491 event->ptid = ptid_t (pid);
7492 }
7493 break;
7494 case 'N':
7495 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7496 event->ptid = minus_one_ptid;
7497 break;
7498 }
7499
7500 if (target_is_non_stop_p () && event->ptid == null_ptid)
7501 error (_("No process or thread specified in stop reply: %s"), buf);
7502 }
7503
7504 /* When the stub wants to tell GDB about a new notification reply, it
7505 sends a notification (%Stop, for example). Those can come it at
7506 any time, hence, we have to make sure that any pending
7507 putpkt/getpkt sequence we're making is finished, before querying
7508 the stub for more events with the corresponding ack command
7509 (vStopped, for example). E.g., if we started a vStopped sequence
7510 immediately upon receiving the notification, something like this
7511 could happen:
7512
7513 1.1) --> Hg 1
7514 1.2) <-- OK
7515 1.3) --> g
7516 1.4) <-- %Stop
7517 1.5) --> vStopped
7518 1.6) <-- (registers reply to step #1.3)
7519
7520 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7521 query.
7522
7523 To solve this, whenever we parse a %Stop notification successfully,
7524 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7525 doing whatever we were doing:
7526
7527 2.1) --> Hg 1
7528 2.2) <-- OK
7529 2.3) --> g
7530 2.4) <-- %Stop
7531 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7532 2.5) <-- (registers reply to step #2.3)
7533
7534 Eventually after step #2.5, we return to the event loop, which
7535 notices there's an event on the
7536 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7537 associated callback --- the function below. At this point, we're
7538 always safe to start a vStopped sequence. :
7539
7540 2.6) --> vStopped
7541 2.7) <-- T05 thread:2
7542 2.8) --> vStopped
7543 2.9) --> OK
7544 */
7545
7546 void
7547 remote_target::remote_notif_get_pending_events (notif_client *nc)
7548 {
7549 struct remote_state *rs = get_remote_state ();
7550
7551 if (rs->notif_state->pending_event[nc->id] != NULL)
7552 {
7553 if (notif_debug)
7554 fprintf_unfiltered (gdb_stdlog,
7555 "notif: process: '%s' ack pending event\n",
7556 nc->name);
7557
7558 /* acknowledge */
7559 nc->ack (this, nc, rs->buf.data (),
7560 rs->notif_state->pending_event[nc->id]);
7561 rs->notif_state->pending_event[nc->id] = NULL;
7562
7563 while (1)
7564 {
7565 getpkt (&rs->buf, 0);
7566 if (strcmp (rs->buf.data (), "OK") == 0)
7567 break;
7568 else
7569 remote_notif_ack (this, nc, rs->buf.data ());
7570 }
7571 }
7572 else
7573 {
7574 if (notif_debug)
7575 fprintf_unfiltered (gdb_stdlog,
7576 "notif: process: '%s' no pending reply\n",
7577 nc->name);
7578 }
7579 }
7580
7581 /* Wrapper around remote_target::remote_notif_get_pending_events to
7582 avoid having to export the whole remote_target class. */
7583
7584 void
7585 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7586 {
7587 remote->remote_notif_get_pending_events (nc);
7588 }
7589
7590 /* Called when it is decided that STOP_REPLY holds the info of the
7591 event that is to be returned to the core. This function always
7592 destroys STOP_REPLY. */
7593
7594 ptid_t
7595 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7596 struct target_waitstatus *status)
7597 {
7598 ptid_t ptid;
7599
7600 *status = stop_reply->ws;
7601 ptid = stop_reply->ptid;
7602
7603 /* If no thread/process was reported by the stub, assume the current
7604 inferior. */
7605 if (ptid == null_ptid)
7606 ptid = inferior_ptid;
7607
7608 if (status->kind != TARGET_WAITKIND_EXITED
7609 && status->kind != TARGET_WAITKIND_SIGNALLED
7610 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7611 {
7612 /* Expedited registers. */
7613 if (!stop_reply->regcache.empty ())
7614 {
7615 struct regcache *regcache
7616 = get_thread_arch_regcache (ptid, stop_reply->arch);
7617
7618 for (cached_reg_t &reg : stop_reply->regcache)
7619 {
7620 regcache->raw_supply (reg.num, reg.data);
7621 xfree (reg.data);
7622 }
7623
7624 stop_reply->regcache.clear ();
7625 }
7626
7627 remote_notice_new_inferior (ptid, 0);
7628 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7629 remote_thr->core = stop_reply->core;
7630 remote_thr->stop_reason = stop_reply->stop_reason;
7631 remote_thr->watch_data_address = stop_reply->watch_data_address;
7632 remote_thr->vcont_resumed = 0;
7633 }
7634
7635 delete stop_reply;
7636 return ptid;
7637 }
7638
7639 /* The non-stop mode version of target_wait. */
7640
7641 ptid_t
7642 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7643 {
7644 struct remote_state *rs = get_remote_state ();
7645 struct stop_reply *stop_reply;
7646 int ret;
7647 int is_notif = 0;
7648
7649 /* If in non-stop mode, get out of getpkt even if a
7650 notification is received. */
7651
7652 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7653 while (1)
7654 {
7655 if (ret != -1 && !is_notif)
7656 switch (rs->buf[0])
7657 {
7658 case 'E': /* Error of some sort. */
7659 /* We're out of sync with the target now. Did it continue
7660 or not? We can't tell which thread it was in non-stop,
7661 so just ignore this. */
7662 warning (_("Remote failure reply: %s"), rs->buf.data ());
7663 break;
7664 case 'O': /* Console output. */
7665 remote_console_output (&rs->buf[1]);
7666 break;
7667 default:
7668 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7669 break;
7670 }
7671
7672 /* Acknowledge a pending stop reply that may have arrived in the
7673 mean time. */
7674 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7675 remote_notif_get_pending_events (&notif_client_stop);
7676
7677 /* If indeed we noticed a stop reply, we're done. */
7678 stop_reply = queued_stop_reply (ptid);
7679 if (stop_reply != NULL)
7680 return process_stop_reply (stop_reply, status);
7681
7682 /* Still no event. If we're just polling for an event, then
7683 return to the event loop. */
7684 if (options & TARGET_WNOHANG)
7685 {
7686 status->kind = TARGET_WAITKIND_IGNORE;
7687 return minus_one_ptid;
7688 }
7689
7690 /* Otherwise do a blocking wait. */
7691 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7692 }
7693 }
7694
7695 /* Wait until the remote machine stops, then return, storing status in
7696 STATUS just as `wait' would. */
7697
7698 ptid_t
7699 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7700 {
7701 struct remote_state *rs = get_remote_state ();
7702 ptid_t event_ptid = null_ptid;
7703 char *buf;
7704 struct stop_reply *stop_reply;
7705
7706 again:
7707
7708 status->kind = TARGET_WAITKIND_IGNORE;
7709 status->value.integer = 0;
7710
7711 stop_reply = queued_stop_reply (ptid);
7712 if (stop_reply != NULL)
7713 return process_stop_reply (stop_reply, status);
7714
7715 if (rs->cached_wait_status)
7716 /* Use the cached wait status, but only once. */
7717 rs->cached_wait_status = 0;
7718 else
7719 {
7720 int ret;
7721 int is_notif;
7722 int forever = ((options & TARGET_WNOHANG) == 0
7723 && rs->wait_forever_enabled_p);
7724
7725 if (!rs->waiting_for_stop_reply)
7726 {
7727 status->kind = TARGET_WAITKIND_NO_RESUMED;
7728 return minus_one_ptid;
7729 }
7730
7731 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7732 _never_ wait for ever -> test on target_is_async_p().
7733 However, before we do that we need to ensure that the caller
7734 knows how to take the target into/out of async mode. */
7735 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7736
7737 /* GDB gets a notification. Return to core as this event is
7738 not interesting. */
7739 if (ret != -1 && is_notif)
7740 return minus_one_ptid;
7741
7742 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7743 return minus_one_ptid;
7744 }
7745
7746 buf = rs->buf.data ();
7747
7748 /* Assume that the target has acknowledged Ctrl-C unless we receive
7749 an 'F' or 'O' packet. */
7750 if (buf[0] != 'F' && buf[0] != 'O')
7751 rs->ctrlc_pending_p = 0;
7752
7753 switch (buf[0])
7754 {
7755 case 'E': /* Error of some sort. */
7756 /* We're out of sync with the target now. Did it continue or
7757 not? Not is more likely, so report a stop. */
7758 rs->waiting_for_stop_reply = 0;
7759
7760 warning (_("Remote failure reply: %s"), buf);
7761 status->kind = TARGET_WAITKIND_STOPPED;
7762 status->value.sig = GDB_SIGNAL_0;
7763 break;
7764 case 'F': /* File-I/O request. */
7765 /* GDB may access the inferior memory while handling the File-I/O
7766 request, but we don't want GDB accessing memory while waiting
7767 for a stop reply. See the comments in putpkt_binary. Set
7768 waiting_for_stop_reply to 0 temporarily. */
7769 rs->waiting_for_stop_reply = 0;
7770 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7771 rs->ctrlc_pending_p = 0;
7772 /* GDB handled the File-I/O request, and the target is running
7773 again. Keep waiting for events. */
7774 rs->waiting_for_stop_reply = 1;
7775 break;
7776 case 'N': case 'T': case 'S': case 'X': case 'W':
7777 {
7778 /* There is a stop reply to handle. */
7779 rs->waiting_for_stop_reply = 0;
7780
7781 stop_reply
7782 = (struct stop_reply *) remote_notif_parse (this,
7783 &notif_client_stop,
7784 rs->buf.data ());
7785
7786 event_ptid = process_stop_reply (stop_reply, status);
7787 break;
7788 }
7789 case 'O': /* Console output. */
7790 remote_console_output (buf + 1);
7791 break;
7792 case '\0':
7793 if (rs->last_sent_signal != GDB_SIGNAL_0)
7794 {
7795 /* Zero length reply means that we tried 'S' or 'C' and the
7796 remote system doesn't support it. */
7797 target_terminal::ours_for_output ();
7798 printf_filtered
7799 ("Can't send signals to this remote system. %s not sent.\n",
7800 gdb_signal_to_name (rs->last_sent_signal));
7801 rs->last_sent_signal = GDB_SIGNAL_0;
7802 target_terminal::inferior ();
7803
7804 strcpy (buf, rs->last_sent_step ? "s" : "c");
7805 putpkt (buf);
7806 break;
7807 }
7808 /* fallthrough */
7809 default:
7810 warning (_("Invalid remote reply: %s"), buf);
7811 break;
7812 }
7813
7814 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7815 return minus_one_ptid;
7816 else if (status->kind == TARGET_WAITKIND_IGNORE)
7817 {
7818 /* Nothing interesting happened. If we're doing a non-blocking
7819 poll, we're done. Otherwise, go back to waiting. */
7820 if (options & TARGET_WNOHANG)
7821 return minus_one_ptid;
7822 else
7823 goto again;
7824 }
7825 else if (status->kind != TARGET_WAITKIND_EXITED
7826 && status->kind != TARGET_WAITKIND_SIGNALLED)
7827 {
7828 if (event_ptid != null_ptid)
7829 record_currthread (rs, event_ptid);
7830 else
7831 event_ptid = inferior_ptid;
7832 }
7833 else
7834 /* A process exit. Invalidate our notion of current thread. */
7835 record_currthread (rs, minus_one_ptid);
7836
7837 return event_ptid;
7838 }
7839
7840 /* Wait until the remote machine stops, then return, storing status in
7841 STATUS just as `wait' would. */
7842
7843 ptid_t
7844 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7845 {
7846 ptid_t event_ptid;
7847
7848 if (target_is_non_stop_p ())
7849 event_ptid = wait_ns (ptid, status, options);
7850 else
7851 event_ptid = wait_as (ptid, status, options);
7852
7853 if (target_is_async_p ())
7854 {
7855 remote_state *rs = get_remote_state ();
7856
7857 /* If there are are events left in the queue tell the event loop
7858 to return here. */
7859 if (!rs->stop_reply_queue.empty ())
7860 mark_async_event_handler (rs->remote_async_inferior_event_token);
7861 }
7862
7863 return event_ptid;
7864 }
7865
7866 /* Fetch a single register using a 'p' packet. */
7867
7868 int
7869 remote_target::fetch_register_using_p (struct regcache *regcache,
7870 packet_reg *reg)
7871 {
7872 struct gdbarch *gdbarch = regcache->arch ();
7873 struct remote_state *rs = get_remote_state ();
7874 char *buf, *p;
7875 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7876 int i;
7877
7878 if (packet_support (PACKET_p) == PACKET_DISABLE)
7879 return 0;
7880
7881 if (reg->pnum == -1)
7882 return 0;
7883
7884 p = rs->buf.data ();
7885 *p++ = 'p';
7886 p += hexnumstr (p, reg->pnum);
7887 *p++ = '\0';
7888 putpkt (rs->buf);
7889 getpkt (&rs->buf, 0);
7890
7891 buf = rs->buf.data ();
7892
7893 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7894 {
7895 case PACKET_OK:
7896 break;
7897 case PACKET_UNKNOWN:
7898 return 0;
7899 case PACKET_ERROR:
7900 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7901 gdbarch_register_name (regcache->arch (),
7902 reg->regnum),
7903 buf);
7904 }
7905
7906 /* If this register is unfetchable, tell the regcache. */
7907 if (buf[0] == 'x')
7908 {
7909 regcache->raw_supply (reg->regnum, NULL);
7910 return 1;
7911 }
7912
7913 /* Otherwise, parse and supply the value. */
7914 p = buf;
7915 i = 0;
7916 while (p[0] != 0)
7917 {
7918 if (p[1] == 0)
7919 error (_("fetch_register_using_p: early buf termination"));
7920
7921 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7922 p += 2;
7923 }
7924 regcache->raw_supply (reg->regnum, regp);
7925 return 1;
7926 }
7927
7928 /* Fetch the registers included in the target's 'g' packet. */
7929
7930 int
7931 remote_target::send_g_packet ()
7932 {
7933 struct remote_state *rs = get_remote_state ();
7934 int buf_len;
7935
7936 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7937 putpkt (rs->buf);
7938 getpkt (&rs->buf, 0);
7939 if (packet_check_result (rs->buf) == PACKET_ERROR)
7940 error (_("Could not read registers; remote failure reply '%s'"),
7941 rs->buf.data ());
7942
7943 /* We can get out of synch in various cases. If the first character
7944 in the buffer is not a hex character, assume that has happened
7945 and try to fetch another packet to read. */
7946 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7947 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7948 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7949 && rs->buf[0] != 'x') /* New: unavailable register value. */
7950 {
7951 if (remote_debug)
7952 fprintf_unfiltered (gdb_stdlog,
7953 "Bad register packet; fetching a new packet\n");
7954 getpkt (&rs->buf, 0);
7955 }
7956
7957 buf_len = strlen (rs->buf.data ());
7958
7959 /* Sanity check the received packet. */
7960 if (buf_len % 2 != 0)
7961 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7962
7963 return buf_len / 2;
7964 }
7965
7966 void
7967 remote_target::process_g_packet (struct regcache *regcache)
7968 {
7969 struct gdbarch *gdbarch = regcache->arch ();
7970 struct remote_state *rs = get_remote_state ();
7971 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7972 int i, buf_len;
7973 char *p;
7974 char *regs;
7975
7976 buf_len = strlen (rs->buf.data ());
7977
7978 /* Further sanity checks, with knowledge of the architecture. */
7979 if (buf_len > 2 * rsa->sizeof_g_packet)
7980 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7981 "bytes): %s"),
7982 rsa->sizeof_g_packet, buf_len / 2,
7983 rs->buf.data ());
7984
7985 /* Save the size of the packet sent to us by the target. It is used
7986 as a heuristic when determining the max size of packets that the
7987 target can safely receive. */
7988 if (rsa->actual_register_packet_size == 0)
7989 rsa->actual_register_packet_size = buf_len;
7990
7991 /* If this is smaller than we guessed the 'g' packet would be,
7992 update our records. A 'g' reply that doesn't include a register's
7993 value implies either that the register is not available, or that
7994 the 'p' packet must be used. */
7995 if (buf_len < 2 * rsa->sizeof_g_packet)
7996 {
7997 long sizeof_g_packet = buf_len / 2;
7998
7999 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8000 {
8001 long offset = rsa->regs[i].offset;
8002 long reg_size = register_size (gdbarch, i);
8003
8004 if (rsa->regs[i].pnum == -1)
8005 continue;
8006
8007 if (offset >= sizeof_g_packet)
8008 rsa->regs[i].in_g_packet = 0;
8009 else if (offset + reg_size > sizeof_g_packet)
8010 error (_("Truncated register %d in remote 'g' packet"), i);
8011 else
8012 rsa->regs[i].in_g_packet = 1;
8013 }
8014
8015 /* Looks valid enough, we can assume this is the correct length
8016 for a 'g' packet. It's important not to adjust
8017 rsa->sizeof_g_packet if we have truncated registers otherwise
8018 this "if" won't be run the next time the method is called
8019 with a packet of the same size and one of the internal errors
8020 below will trigger instead. */
8021 rsa->sizeof_g_packet = sizeof_g_packet;
8022 }
8023
8024 regs = (char *) alloca (rsa->sizeof_g_packet);
8025
8026 /* Unimplemented registers read as all bits zero. */
8027 memset (regs, 0, rsa->sizeof_g_packet);
8028
8029 /* Reply describes registers byte by byte, each byte encoded as two
8030 hex characters. Suck them all up, then supply them to the
8031 register cacheing/storage mechanism. */
8032
8033 p = rs->buf.data ();
8034 for (i = 0; i < rsa->sizeof_g_packet; i++)
8035 {
8036 if (p[0] == 0 || p[1] == 0)
8037 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8038 internal_error (__FILE__, __LINE__,
8039 _("unexpected end of 'g' packet reply"));
8040
8041 if (p[0] == 'x' && p[1] == 'x')
8042 regs[i] = 0; /* 'x' */
8043 else
8044 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8045 p += 2;
8046 }
8047
8048 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8049 {
8050 struct packet_reg *r = &rsa->regs[i];
8051 long reg_size = register_size (gdbarch, i);
8052
8053 if (r->in_g_packet)
8054 {
8055 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8056 /* This shouldn't happen - we adjusted in_g_packet above. */
8057 internal_error (__FILE__, __LINE__,
8058 _("unexpected end of 'g' packet reply"));
8059 else if (rs->buf[r->offset * 2] == 'x')
8060 {
8061 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8062 /* The register isn't available, mark it as such (at
8063 the same time setting the value to zero). */
8064 regcache->raw_supply (r->regnum, NULL);
8065 }
8066 else
8067 regcache->raw_supply (r->regnum, regs + r->offset);
8068 }
8069 }
8070 }
8071
8072 void
8073 remote_target::fetch_registers_using_g (struct regcache *regcache)
8074 {
8075 send_g_packet ();
8076 process_g_packet (regcache);
8077 }
8078
8079 /* Make the remote selected traceframe match GDB's selected
8080 traceframe. */
8081
8082 void
8083 remote_target::set_remote_traceframe ()
8084 {
8085 int newnum;
8086 struct remote_state *rs = get_remote_state ();
8087
8088 if (rs->remote_traceframe_number == get_traceframe_number ())
8089 return;
8090
8091 /* Avoid recursion, remote_trace_find calls us again. */
8092 rs->remote_traceframe_number = get_traceframe_number ();
8093
8094 newnum = target_trace_find (tfind_number,
8095 get_traceframe_number (), 0, 0, NULL);
8096
8097 /* Should not happen. If it does, all bets are off. */
8098 if (newnum != get_traceframe_number ())
8099 warning (_("could not set remote traceframe"));
8100 }
8101
8102 void
8103 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8104 {
8105 struct gdbarch *gdbarch = regcache->arch ();
8106 struct remote_state *rs = get_remote_state ();
8107 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8108 int i;
8109
8110 set_remote_traceframe ();
8111 set_general_thread (regcache->ptid ());
8112
8113 if (regnum >= 0)
8114 {
8115 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8116
8117 gdb_assert (reg != NULL);
8118
8119 /* If this register might be in the 'g' packet, try that first -
8120 we are likely to read more than one register. If this is the
8121 first 'g' packet, we might be overly optimistic about its
8122 contents, so fall back to 'p'. */
8123 if (reg->in_g_packet)
8124 {
8125 fetch_registers_using_g (regcache);
8126 if (reg->in_g_packet)
8127 return;
8128 }
8129
8130 if (fetch_register_using_p (regcache, reg))
8131 return;
8132
8133 /* This register is not available. */
8134 regcache->raw_supply (reg->regnum, NULL);
8135
8136 return;
8137 }
8138
8139 fetch_registers_using_g (regcache);
8140
8141 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8142 if (!rsa->regs[i].in_g_packet)
8143 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8144 {
8145 /* This register is not available. */
8146 regcache->raw_supply (i, NULL);
8147 }
8148 }
8149
8150 /* Prepare to store registers. Since we may send them all (using a
8151 'G' request), we have to read out the ones we don't want to change
8152 first. */
8153
8154 void
8155 remote_target::prepare_to_store (struct regcache *regcache)
8156 {
8157 struct remote_state *rs = get_remote_state ();
8158 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8159 int i;
8160
8161 /* Make sure the entire registers array is valid. */
8162 switch (packet_support (PACKET_P))
8163 {
8164 case PACKET_DISABLE:
8165 case PACKET_SUPPORT_UNKNOWN:
8166 /* Make sure all the necessary registers are cached. */
8167 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8168 if (rsa->regs[i].in_g_packet)
8169 regcache->raw_update (rsa->regs[i].regnum);
8170 break;
8171 case PACKET_ENABLE:
8172 break;
8173 }
8174 }
8175
8176 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8177 packet was not recognized. */
8178
8179 int
8180 remote_target::store_register_using_P (const struct regcache *regcache,
8181 packet_reg *reg)
8182 {
8183 struct gdbarch *gdbarch = regcache->arch ();
8184 struct remote_state *rs = get_remote_state ();
8185 /* Try storing a single register. */
8186 char *buf = rs->buf.data ();
8187 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8188 char *p;
8189
8190 if (packet_support (PACKET_P) == PACKET_DISABLE)
8191 return 0;
8192
8193 if (reg->pnum == -1)
8194 return 0;
8195
8196 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8197 p = buf + strlen (buf);
8198 regcache->raw_collect (reg->regnum, regp);
8199 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8200 putpkt (rs->buf);
8201 getpkt (&rs->buf, 0);
8202
8203 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8204 {
8205 case PACKET_OK:
8206 return 1;
8207 case PACKET_ERROR:
8208 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8209 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8210 case PACKET_UNKNOWN:
8211 return 0;
8212 default:
8213 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8214 }
8215 }
8216
8217 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8218 contents of the register cache buffer. FIXME: ignores errors. */
8219
8220 void
8221 remote_target::store_registers_using_G (const struct regcache *regcache)
8222 {
8223 struct remote_state *rs = get_remote_state ();
8224 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8225 gdb_byte *regs;
8226 char *p;
8227
8228 /* Extract all the registers in the regcache copying them into a
8229 local buffer. */
8230 {
8231 int i;
8232
8233 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8234 memset (regs, 0, rsa->sizeof_g_packet);
8235 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8236 {
8237 struct packet_reg *r = &rsa->regs[i];
8238
8239 if (r->in_g_packet)
8240 regcache->raw_collect (r->regnum, regs + r->offset);
8241 }
8242 }
8243
8244 /* Command describes registers byte by byte,
8245 each byte encoded as two hex characters. */
8246 p = rs->buf.data ();
8247 *p++ = 'G';
8248 bin2hex (regs, p, rsa->sizeof_g_packet);
8249 putpkt (rs->buf);
8250 getpkt (&rs->buf, 0);
8251 if (packet_check_result (rs->buf) == PACKET_ERROR)
8252 error (_("Could not write registers; remote failure reply '%s'"),
8253 rs->buf.data ());
8254 }
8255
8256 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8257 of the register cache buffer. FIXME: ignores errors. */
8258
8259 void
8260 remote_target::store_registers (struct regcache *regcache, int regnum)
8261 {
8262 struct gdbarch *gdbarch = regcache->arch ();
8263 struct remote_state *rs = get_remote_state ();
8264 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8265 int i;
8266
8267 set_remote_traceframe ();
8268 set_general_thread (regcache->ptid ());
8269
8270 if (regnum >= 0)
8271 {
8272 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8273
8274 gdb_assert (reg != NULL);
8275
8276 /* Always prefer to store registers using the 'P' packet if
8277 possible; we often change only a small number of registers.
8278 Sometimes we change a larger number; we'd need help from a
8279 higher layer to know to use 'G'. */
8280 if (store_register_using_P (regcache, reg))
8281 return;
8282
8283 /* For now, don't complain if we have no way to write the
8284 register. GDB loses track of unavailable registers too
8285 easily. Some day, this may be an error. We don't have
8286 any way to read the register, either... */
8287 if (!reg->in_g_packet)
8288 return;
8289
8290 store_registers_using_G (regcache);
8291 return;
8292 }
8293
8294 store_registers_using_G (regcache);
8295
8296 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8297 if (!rsa->regs[i].in_g_packet)
8298 if (!store_register_using_P (regcache, &rsa->regs[i]))
8299 /* See above for why we do not issue an error here. */
8300 continue;
8301 }
8302 \f
8303
8304 /* Return the number of hex digits in num. */
8305
8306 static int
8307 hexnumlen (ULONGEST num)
8308 {
8309 int i;
8310
8311 for (i = 0; num != 0; i++)
8312 num >>= 4;
8313
8314 return std::max (i, 1);
8315 }
8316
8317 /* Set BUF to the minimum number of hex digits representing NUM. */
8318
8319 static int
8320 hexnumstr (char *buf, ULONGEST num)
8321 {
8322 int len = hexnumlen (num);
8323
8324 return hexnumnstr (buf, num, len);
8325 }
8326
8327
8328 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8329
8330 static int
8331 hexnumnstr (char *buf, ULONGEST num, int width)
8332 {
8333 int i;
8334
8335 buf[width] = '\0';
8336
8337 for (i = width - 1; i >= 0; i--)
8338 {
8339 buf[i] = "0123456789abcdef"[(num & 0xf)];
8340 num >>= 4;
8341 }
8342
8343 return width;
8344 }
8345
8346 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8347
8348 static CORE_ADDR
8349 remote_address_masked (CORE_ADDR addr)
8350 {
8351 unsigned int address_size = remote_address_size;
8352
8353 /* If "remoteaddresssize" was not set, default to target address size. */
8354 if (!address_size)
8355 address_size = gdbarch_addr_bit (target_gdbarch ());
8356
8357 if (address_size > 0
8358 && address_size < (sizeof (ULONGEST) * 8))
8359 {
8360 /* Only create a mask when that mask can safely be constructed
8361 in a ULONGEST variable. */
8362 ULONGEST mask = 1;
8363
8364 mask = (mask << address_size) - 1;
8365 addr &= mask;
8366 }
8367 return addr;
8368 }
8369
8370 /* Determine whether the remote target supports binary downloading.
8371 This is accomplished by sending a no-op memory write of zero length
8372 to the target at the specified address. It does not suffice to send
8373 the whole packet, since many stubs strip the eighth bit and
8374 subsequently compute a wrong checksum, which causes real havoc with
8375 remote_write_bytes.
8376
8377 NOTE: This can still lose if the serial line is not eight-bit
8378 clean. In cases like this, the user should clear "remote
8379 X-packet". */
8380
8381 void
8382 remote_target::check_binary_download (CORE_ADDR addr)
8383 {
8384 struct remote_state *rs = get_remote_state ();
8385
8386 switch (packet_support (PACKET_X))
8387 {
8388 case PACKET_DISABLE:
8389 break;
8390 case PACKET_ENABLE:
8391 break;
8392 case PACKET_SUPPORT_UNKNOWN:
8393 {
8394 char *p;
8395
8396 p = rs->buf.data ();
8397 *p++ = 'X';
8398 p += hexnumstr (p, (ULONGEST) addr);
8399 *p++ = ',';
8400 p += hexnumstr (p, (ULONGEST) 0);
8401 *p++ = ':';
8402 *p = '\0';
8403
8404 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8405 getpkt (&rs->buf, 0);
8406
8407 if (rs->buf[0] == '\0')
8408 {
8409 if (remote_debug)
8410 fprintf_unfiltered (gdb_stdlog,
8411 "binary downloading NOT "
8412 "supported by target\n");
8413 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8414 }
8415 else
8416 {
8417 if (remote_debug)
8418 fprintf_unfiltered (gdb_stdlog,
8419 "binary downloading supported by target\n");
8420 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8421 }
8422 break;
8423 }
8424 }
8425 }
8426
8427 /* Helper function to resize the payload in order to try to get a good
8428 alignment. We try to write an amount of data such that the next write will
8429 start on an address aligned on REMOTE_ALIGN_WRITES. */
8430
8431 static int
8432 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8433 {
8434 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8435 }
8436
8437 /* Write memory data directly to the remote machine.
8438 This does not inform the data cache; the data cache uses this.
8439 HEADER is the starting part of the packet.
8440 MEMADDR is the address in the remote memory space.
8441 MYADDR is the address of the buffer in our space.
8442 LEN_UNITS is the number of addressable units to write.
8443 UNIT_SIZE is the length in bytes of an addressable unit.
8444 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8445 should send data as binary ('X'), or hex-encoded ('M').
8446
8447 The function creates packet of the form
8448 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8449
8450 where encoding of <DATA> is terminated by PACKET_FORMAT.
8451
8452 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8453 are omitted.
8454
8455 Return the transferred status, error or OK (an
8456 'enum target_xfer_status' value). Save the number of addressable units
8457 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8458
8459 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8460 exchange between gdb and the stub could look like (?? in place of the
8461 checksum):
8462
8463 -> $m1000,4#??
8464 <- aaaabbbbccccdddd
8465
8466 -> $M1000,3:eeeeffffeeee#??
8467 <- OK
8468
8469 -> $m1000,4#??
8470 <- eeeeffffeeeedddd */
8471
8472 target_xfer_status
8473 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8474 const gdb_byte *myaddr,
8475 ULONGEST len_units,
8476 int unit_size,
8477 ULONGEST *xfered_len_units,
8478 char packet_format, int use_length)
8479 {
8480 struct remote_state *rs = get_remote_state ();
8481 char *p;
8482 char *plen = NULL;
8483 int plenlen = 0;
8484 int todo_units;
8485 int units_written;
8486 int payload_capacity_bytes;
8487 int payload_length_bytes;
8488
8489 if (packet_format != 'X' && packet_format != 'M')
8490 internal_error (__FILE__, __LINE__,
8491 _("remote_write_bytes_aux: bad packet format"));
8492
8493 if (len_units == 0)
8494 return TARGET_XFER_EOF;
8495
8496 payload_capacity_bytes = get_memory_write_packet_size ();
8497
8498 /* The packet buffer will be large enough for the payload;
8499 get_memory_packet_size ensures this. */
8500 rs->buf[0] = '\0';
8501
8502 /* Compute the size of the actual payload by subtracting out the
8503 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8504
8505 payload_capacity_bytes -= strlen ("$,:#NN");
8506 if (!use_length)
8507 /* The comma won't be used. */
8508 payload_capacity_bytes += 1;
8509 payload_capacity_bytes -= strlen (header);
8510 payload_capacity_bytes -= hexnumlen (memaddr);
8511
8512 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8513
8514 strcat (rs->buf.data (), header);
8515 p = rs->buf.data () + strlen (header);
8516
8517 /* Compute a best guess of the number of bytes actually transfered. */
8518 if (packet_format == 'X')
8519 {
8520 /* Best guess at number of bytes that will fit. */
8521 todo_units = std::min (len_units,
8522 (ULONGEST) payload_capacity_bytes / unit_size);
8523 if (use_length)
8524 payload_capacity_bytes -= hexnumlen (todo_units);
8525 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8526 }
8527 else
8528 {
8529 /* Number of bytes that will fit. */
8530 todo_units
8531 = std::min (len_units,
8532 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8533 if (use_length)
8534 payload_capacity_bytes -= hexnumlen (todo_units);
8535 todo_units = std::min (todo_units,
8536 (payload_capacity_bytes / unit_size) / 2);
8537 }
8538
8539 if (todo_units <= 0)
8540 internal_error (__FILE__, __LINE__,
8541 _("minimum packet size too small to write data"));
8542
8543 /* If we already need another packet, then try to align the end
8544 of this packet to a useful boundary. */
8545 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8546 todo_units = align_for_efficient_write (todo_units, memaddr);
8547
8548 /* Append "<memaddr>". */
8549 memaddr = remote_address_masked (memaddr);
8550 p += hexnumstr (p, (ULONGEST) memaddr);
8551
8552 if (use_length)
8553 {
8554 /* Append ",". */
8555 *p++ = ',';
8556
8557 /* Append the length and retain its location and size. It may need to be
8558 adjusted once the packet body has been created. */
8559 plen = p;
8560 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8561 p += plenlen;
8562 }
8563
8564 /* Append ":". */
8565 *p++ = ':';
8566 *p = '\0';
8567
8568 /* Append the packet body. */
8569 if (packet_format == 'X')
8570 {
8571 /* Binary mode. Send target system values byte by byte, in
8572 increasing byte addresses. Only escape certain critical
8573 characters. */
8574 payload_length_bytes =
8575 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8576 &units_written, payload_capacity_bytes);
8577
8578 /* If not all TODO units fit, then we'll need another packet. Make
8579 a second try to keep the end of the packet aligned. Don't do
8580 this if the packet is tiny. */
8581 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8582 {
8583 int new_todo_units;
8584
8585 new_todo_units = align_for_efficient_write (units_written, memaddr);
8586
8587 if (new_todo_units != units_written)
8588 payload_length_bytes =
8589 remote_escape_output (myaddr, new_todo_units, unit_size,
8590 (gdb_byte *) p, &units_written,
8591 payload_capacity_bytes);
8592 }
8593
8594 p += payload_length_bytes;
8595 if (use_length && units_written < todo_units)
8596 {
8597 /* Escape chars have filled up the buffer prematurely,
8598 and we have actually sent fewer units than planned.
8599 Fix-up the length field of the packet. Use the same
8600 number of characters as before. */
8601 plen += hexnumnstr (plen, (ULONGEST) units_written,
8602 plenlen);
8603 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8604 }
8605 }
8606 else
8607 {
8608 /* Normal mode: Send target system values byte by byte, in
8609 increasing byte addresses. Each byte is encoded as a two hex
8610 value. */
8611 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8612 units_written = todo_units;
8613 }
8614
8615 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8616 getpkt (&rs->buf, 0);
8617
8618 if (rs->buf[0] == 'E')
8619 return TARGET_XFER_E_IO;
8620
8621 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8622 send fewer units than we'd planned. */
8623 *xfered_len_units = (ULONGEST) units_written;
8624 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8625 }
8626
8627 /* Write memory data directly to the remote machine.
8628 This does not inform the data cache; the data cache uses this.
8629 MEMADDR is the address in the remote memory space.
8630 MYADDR is the address of the buffer in our space.
8631 LEN is the number of bytes.
8632
8633 Return the transferred status, error or OK (an
8634 'enum target_xfer_status' value). Save the number of bytes
8635 transferred in *XFERED_LEN. Only transfer a single packet. */
8636
8637 target_xfer_status
8638 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8639 ULONGEST len, int unit_size,
8640 ULONGEST *xfered_len)
8641 {
8642 const char *packet_format = NULL;
8643
8644 /* Check whether the target supports binary download. */
8645 check_binary_download (memaddr);
8646
8647 switch (packet_support (PACKET_X))
8648 {
8649 case PACKET_ENABLE:
8650 packet_format = "X";
8651 break;
8652 case PACKET_DISABLE:
8653 packet_format = "M";
8654 break;
8655 case PACKET_SUPPORT_UNKNOWN:
8656 internal_error (__FILE__, __LINE__,
8657 _("remote_write_bytes: bad internal state"));
8658 default:
8659 internal_error (__FILE__, __LINE__, _("bad switch"));
8660 }
8661
8662 return remote_write_bytes_aux (packet_format,
8663 memaddr, myaddr, len, unit_size, xfered_len,
8664 packet_format[0], 1);
8665 }
8666
8667 /* Read memory data directly from the remote machine.
8668 This does not use the data cache; the data cache uses this.
8669 MEMADDR is the address in the remote memory space.
8670 MYADDR is the address of the buffer in our space.
8671 LEN_UNITS is the number of addressable memory units to read..
8672 UNIT_SIZE is the length in bytes of an addressable unit.
8673
8674 Return the transferred status, error or OK (an
8675 'enum target_xfer_status' value). Save the number of bytes
8676 transferred in *XFERED_LEN_UNITS.
8677
8678 See the comment of remote_write_bytes_aux for an example of
8679 memory read/write exchange between gdb and the stub. */
8680
8681 target_xfer_status
8682 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8683 ULONGEST len_units,
8684 int unit_size, ULONGEST *xfered_len_units)
8685 {
8686 struct remote_state *rs = get_remote_state ();
8687 int buf_size_bytes; /* Max size of packet output buffer. */
8688 char *p;
8689 int todo_units;
8690 int decoded_bytes;
8691
8692 buf_size_bytes = get_memory_read_packet_size ();
8693 /* The packet buffer will be large enough for the payload;
8694 get_memory_packet_size ensures this. */
8695
8696 /* Number of units that will fit. */
8697 todo_units = std::min (len_units,
8698 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8699
8700 /* Construct "m"<memaddr>","<len>". */
8701 memaddr = remote_address_masked (memaddr);
8702 p = rs->buf.data ();
8703 *p++ = 'm';
8704 p += hexnumstr (p, (ULONGEST) memaddr);
8705 *p++ = ',';
8706 p += hexnumstr (p, (ULONGEST) todo_units);
8707 *p = '\0';
8708 putpkt (rs->buf);
8709 getpkt (&rs->buf, 0);
8710 if (rs->buf[0] == 'E'
8711 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8712 && rs->buf[3] == '\0')
8713 return TARGET_XFER_E_IO;
8714 /* Reply describes memory byte by byte, each byte encoded as two hex
8715 characters. */
8716 p = rs->buf.data ();
8717 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8718 /* Return what we have. Let higher layers handle partial reads. */
8719 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8720 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8721 }
8722
8723 /* Using the set of read-only target sections of remote, read live
8724 read-only memory.
8725
8726 For interface/parameters/return description see target.h,
8727 to_xfer_partial. */
8728
8729 target_xfer_status
8730 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8731 ULONGEST memaddr,
8732 ULONGEST len,
8733 int unit_size,
8734 ULONGEST *xfered_len)
8735 {
8736 struct target_section *secp;
8737 struct target_section_table *table;
8738
8739 secp = target_section_by_addr (this, memaddr);
8740 if (secp != NULL
8741 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8742 {
8743 struct target_section *p;
8744 ULONGEST memend = memaddr + len;
8745
8746 table = target_get_section_table (this);
8747
8748 for (p = table->sections; p < table->sections_end; p++)
8749 {
8750 if (memaddr >= p->addr)
8751 {
8752 if (memend <= p->endaddr)
8753 {
8754 /* Entire transfer is within this section. */
8755 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8756 xfered_len);
8757 }
8758 else if (memaddr >= p->endaddr)
8759 {
8760 /* This section ends before the transfer starts. */
8761 continue;
8762 }
8763 else
8764 {
8765 /* This section overlaps the transfer. Just do half. */
8766 len = p->endaddr - memaddr;
8767 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8768 xfered_len);
8769 }
8770 }
8771 }
8772 }
8773
8774 return TARGET_XFER_EOF;
8775 }
8776
8777 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8778 first if the requested memory is unavailable in traceframe.
8779 Otherwise, fall back to remote_read_bytes_1. */
8780
8781 target_xfer_status
8782 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8783 gdb_byte *myaddr, ULONGEST len, int unit_size,
8784 ULONGEST *xfered_len)
8785 {
8786 if (len == 0)
8787 return TARGET_XFER_EOF;
8788
8789 if (get_traceframe_number () != -1)
8790 {
8791 std::vector<mem_range> available;
8792
8793 /* If we fail to get the set of available memory, then the
8794 target does not support querying traceframe info, and so we
8795 attempt reading from the traceframe anyway (assuming the
8796 target implements the old QTro packet then). */
8797 if (traceframe_available_memory (&available, memaddr, len))
8798 {
8799 if (available.empty () || available[0].start != memaddr)
8800 {
8801 enum target_xfer_status res;
8802
8803 /* Don't read into the traceframe's available
8804 memory. */
8805 if (!available.empty ())
8806 {
8807 LONGEST oldlen = len;
8808
8809 len = available[0].start - memaddr;
8810 gdb_assert (len <= oldlen);
8811 }
8812
8813 /* This goes through the topmost target again. */
8814 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8815 len, unit_size, xfered_len);
8816 if (res == TARGET_XFER_OK)
8817 return TARGET_XFER_OK;
8818 else
8819 {
8820 /* No use trying further, we know some memory starting
8821 at MEMADDR isn't available. */
8822 *xfered_len = len;
8823 return (*xfered_len != 0) ?
8824 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8825 }
8826 }
8827
8828 /* Don't try to read more than how much is available, in
8829 case the target implements the deprecated QTro packet to
8830 cater for older GDBs (the target's knowledge of read-only
8831 sections may be outdated by now). */
8832 len = available[0].length;
8833 }
8834 }
8835
8836 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8837 }
8838
8839 \f
8840
8841 /* Sends a packet with content determined by the printf format string
8842 FORMAT and the remaining arguments, then gets the reply. Returns
8843 whether the packet was a success, a failure, or unknown. */
8844
8845 packet_result
8846 remote_target::remote_send_printf (const char *format, ...)
8847 {
8848 struct remote_state *rs = get_remote_state ();
8849 int max_size = get_remote_packet_size ();
8850 va_list ap;
8851
8852 va_start (ap, format);
8853
8854 rs->buf[0] = '\0';
8855 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8856
8857 va_end (ap);
8858
8859 if (size >= max_size)
8860 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8861
8862 if (putpkt (rs->buf) < 0)
8863 error (_("Communication problem with target."));
8864
8865 rs->buf[0] = '\0';
8866 getpkt (&rs->buf, 0);
8867
8868 return packet_check_result (rs->buf);
8869 }
8870
8871 /* Flash writing can take quite some time. We'll set
8872 effectively infinite timeout for flash operations.
8873 In future, we'll need to decide on a better approach. */
8874 static const int remote_flash_timeout = 1000;
8875
8876 void
8877 remote_target::flash_erase (ULONGEST address, LONGEST length)
8878 {
8879 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8880 enum packet_result ret;
8881 scoped_restore restore_timeout
8882 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8883
8884 ret = remote_send_printf ("vFlashErase:%s,%s",
8885 phex (address, addr_size),
8886 phex (length, 4));
8887 switch (ret)
8888 {
8889 case PACKET_UNKNOWN:
8890 error (_("Remote target does not support flash erase"));
8891 case PACKET_ERROR:
8892 error (_("Error erasing flash with vFlashErase packet"));
8893 default:
8894 break;
8895 }
8896 }
8897
8898 target_xfer_status
8899 remote_target::remote_flash_write (ULONGEST address,
8900 ULONGEST length, ULONGEST *xfered_len,
8901 const gdb_byte *data)
8902 {
8903 scoped_restore restore_timeout
8904 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8905 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8906 xfered_len,'X', 0);
8907 }
8908
8909 void
8910 remote_target::flash_done ()
8911 {
8912 int ret;
8913
8914 scoped_restore restore_timeout
8915 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8916
8917 ret = remote_send_printf ("vFlashDone");
8918
8919 switch (ret)
8920 {
8921 case PACKET_UNKNOWN:
8922 error (_("Remote target does not support vFlashDone"));
8923 case PACKET_ERROR:
8924 error (_("Error finishing flash operation"));
8925 default:
8926 break;
8927 }
8928 }
8929
8930 void
8931 remote_target::files_info ()
8932 {
8933 puts_filtered ("Debugging a target over a serial line.\n");
8934 }
8935 \f
8936 /* Stuff for dealing with the packets which are part of this protocol.
8937 See comment at top of file for details. */
8938
8939 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8940 error to higher layers. Called when a serial error is detected.
8941 The exception message is STRING, followed by a colon and a blank,
8942 the system error message for errno at function entry and final dot
8943 for output compatibility with throw_perror_with_name. */
8944
8945 static void
8946 unpush_and_perror (const char *string)
8947 {
8948 int saved_errno = errno;
8949
8950 remote_unpush_target ();
8951 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8952 safe_strerror (saved_errno));
8953 }
8954
8955 /* Read a single character from the remote end. The current quit
8956 handler is overridden to avoid quitting in the middle of packet
8957 sequence, as that would break communication with the remote server.
8958 See remote_serial_quit_handler for more detail. */
8959
8960 int
8961 remote_target::readchar (int timeout)
8962 {
8963 int ch;
8964 struct remote_state *rs = get_remote_state ();
8965
8966 {
8967 scoped_restore restore_quit_target
8968 = make_scoped_restore (&curr_quit_handler_target, this);
8969 scoped_restore restore_quit
8970 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8971
8972 rs->got_ctrlc_during_io = 0;
8973
8974 ch = serial_readchar (rs->remote_desc, timeout);
8975
8976 if (rs->got_ctrlc_during_io)
8977 set_quit_flag ();
8978 }
8979
8980 if (ch >= 0)
8981 return ch;
8982
8983 switch ((enum serial_rc) ch)
8984 {
8985 case SERIAL_EOF:
8986 remote_unpush_target ();
8987 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8988 /* no return */
8989 case SERIAL_ERROR:
8990 unpush_and_perror (_("Remote communication error. "
8991 "Target disconnected."));
8992 /* no return */
8993 case SERIAL_TIMEOUT:
8994 break;
8995 }
8996 return ch;
8997 }
8998
8999 /* Wrapper for serial_write that closes the target and throws if
9000 writing fails. The current quit handler is overridden to avoid
9001 quitting in the middle of packet sequence, as that would break
9002 communication with the remote server. See
9003 remote_serial_quit_handler for more detail. */
9004
9005 void
9006 remote_target::remote_serial_write (const char *str, int len)
9007 {
9008 struct remote_state *rs = get_remote_state ();
9009
9010 scoped_restore restore_quit_target
9011 = make_scoped_restore (&curr_quit_handler_target, this);
9012 scoped_restore restore_quit
9013 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9014
9015 rs->got_ctrlc_during_io = 0;
9016
9017 if (serial_write (rs->remote_desc, str, len))
9018 {
9019 unpush_and_perror (_("Remote communication error. "
9020 "Target disconnected."));
9021 }
9022
9023 if (rs->got_ctrlc_during_io)
9024 set_quit_flag ();
9025 }
9026
9027 /* Return a string representing an escaped version of BUF, of len N.
9028 E.g. \n is converted to \\n, \t to \\t, etc. */
9029
9030 static std::string
9031 escape_buffer (const char *buf, int n)
9032 {
9033 string_file stb;
9034
9035 stb.putstrn (buf, n, '\\');
9036 return std::move (stb.string ());
9037 }
9038
9039 /* Display a null-terminated packet on stdout, for debugging, using C
9040 string notation. */
9041
9042 static void
9043 print_packet (const char *buf)
9044 {
9045 puts_filtered ("\"");
9046 fputstr_filtered (buf, '"', gdb_stdout);
9047 puts_filtered ("\"");
9048 }
9049
9050 int
9051 remote_target::putpkt (const char *buf)
9052 {
9053 return putpkt_binary (buf, strlen (buf));
9054 }
9055
9056 /* Wrapper around remote_target::putpkt to avoid exporting
9057 remote_target. */
9058
9059 int
9060 putpkt (remote_target *remote, const char *buf)
9061 {
9062 return remote->putpkt (buf);
9063 }
9064
9065 /* Send a packet to the remote machine, with error checking. The data
9066 of the packet is in BUF. The string in BUF can be at most
9067 get_remote_packet_size () - 5 to account for the $, # and checksum,
9068 and for a possible /0 if we are debugging (remote_debug) and want
9069 to print the sent packet as a string. */
9070
9071 int
9072 remote_target::putpkt_binary (const char *buf, int cnt)
9073 {
9074 struct remote_state *rs = get_remote_state ();
9075 int i;
9076 unsigned char csum = 0;
9077 gdb::def_vector<char> data (cnt + 6);
9078 char *buf2 = data.data ();
9079
9080 int ch;
9081 int tcount = 0;
9082 char *p;
9083
9084 /* Catch cases like trying to read memory or listing threads while
9085 we're waiting for a stop reply. The remote server wouldn't be
9086 ready to handle this request, so we'd hang and timeout. We don't
9087 have to worry about this in synchronous mode, because in that
9088 case it's not possible to issue a command while the target is
9089 running. This is not a problem in non-stop mode, because in that
9090 case, the stub is always ready to process serial input. */
9091 if (!target_is_non_stop_p ()
9092 && target_is_async_p ()
9093 && rs->waiting_for_stop_reply)
9094 {
9095 error (_("Cannot execute this command while the target is running.\n"
9096 "Use the \"interrupt\" command to stop the target\n"
9097 "and then try again."));
9098 }
9099
9100 /* We're sending out a new packet. Make sure we don't look at a
9101 stale cached response. */
9102 rs->cached_wait_status = 0;
9103
9104 /* Copy the packet into buffer BUF2, encapsulating it
9105 and giving it a checksum. */
9106
9107 p = buf2;
9108 *p++ = '$';
9109
9110 for (i = 0; i < cnt; i++)
9111 {
9112 csum += buf[i];
9113 *p++ = buf[i];
9114 }
9115 *p++ = '#';
9116 *p++ = tohex ((csum >> 4) & 0xf);
9117 *p++ = tohex (csum & 0xf);
9118
9119 /* Send it over and over until we get a positive ack. */
9120
9121 while (1)
9122 {
9123 int started_error_output = 0;
9124
9125 if (remote_debug)
9126 {
9127 *p = '\0';
9128
9129 int len = (int) (p - buf2);
9130 int max_chars;
9131
9132 if (remote_packet_max_chars < 0)
9133 max_chars = len;
9134 else
9135 max_chars = remote_packet_max_chars;
9136
9137 std::string str
9138 = escape_buffer (buf2, std::min (len, max_chars));
9139
9140 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9141
9142 if (len > max_chars)
9143 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9144 len - max_chars);
9145
9146 fprintf_unfiltered (gdb_stdlog, "...");
9147
9148 gdb_flush (gdb_stdlog);
9149 }
9150 remote_serial_write (buf2, p - buf2);
9151
9152 /* If this is a no acks version of the remote protocol, send the
9153 packet and move on. */
9154 if (rs->noack_mode)
9155 break;
9156
9157 /* Read until either a timeout occurs (-2) or '+' is read.
9158 Handle any notification that arrives in the mean time. */
9159 while (1)
9160 {
9161 ch = readchar (remote_timeout);
9162
9163 if (remote_debug)
9164 {
9165 switch (ch)
9166 {
9167 case '+':
9168 case '-':
9169 case SERIAL_TIMEOUT:
9170 case '$':
9171 case '%':
9172 if (started_error_output)
9173 {
9174 putchar_unfiltered ('\n');
9175 started_error_output = 0;
9176 }
9177 }
9178 }
9179
9180 switch (ch)
9181 {
9182 case '+':
9183 if (remote_debug)
9184 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9185 return 1;
9186 case '-':
9187 if (remote_debug)
9188 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9189 /* FALLTHROUGH */
9190 case SERIAL_TIMEOUT:
9191 tcount++;
9192 if (tcount > 3)
9193 return 0;
9194 break; /* Retransmit buffer. */
9195 case '$':
9196 {
9197 if (remote_debug)
9198 fprintf_unfiltered (gdb_stdlog,
9199 "Packet instead of Ack, ignoring it\n");
9200 /* It's probably an old response sent because an ACK
9201 was lost. Gobble up the packet and ack it so it
9202 doesn't get retransmitted when we resend this
9203 packet. */
9204 skip_frame ();
9205 remote_serial_write ("+", 1);
9206 continue; /* Now, go look for +. */
9207 }
9208
9209 case '%':
9210 {
9211 int val;
9212
9213 /* If we got a notification, handle it, and go back to looking
9214 for an ack. */
9215 /* We've found the start of a notification. Now
9216 collect the data. */
9217 val = read_frame (&rs->buf);
9218 if (val >= 0)
9219 {
9220 if (remote_debug)
9221 {
9222 std::string str = escape_buffer (rs->buf.data (), val);
9223
9224 fprintf_unfiltered (gdb_stdlog,
9225 " Notification received: %s\n",
9226 str.c_str ());
9227 }
9228 handle_notification (rs->notif_state, rs->buf.data ());
9229 /* We're in sync now, rewait for the ack. */
9230 tcount = 0;
9231 }
9232 else
9233 {
9234 if (remote_debug)
9235 {
9236 if (!started_error_output)
9237 {
9238 started_error_output = 1;
9239 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9240 }
9241 fputc_unfiltered (ch & 0177, gdb_stdlog);
9242 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9243 }
9244 }
9245 continue;
9246 }
9247 /* fall-through */
9248 default:
9249 if (remote_debug)
9250 {
9251 if (!started_error_output)
9252 {
9253 started_error_output = 1;
9254 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9255 }
9256 fputc_unfiltered (ch & 0177, gdb_stdlog);
9257 }
9258 continue;
9259 }
9260 break; /* Here to retransmit. */
9261 }
9262
9263 #if 0
9264 /* This is wrong. If doing a long backtrace, the user should be
9265 able to get out next time we call QUIT, without anything as
9266 violent as interrupt_query. If we want to provide a way out of
9267 here without getting to the next QUIT, it should be based on
9268 hitting ^C twice as in remote_wait. */
9269 if (quit_flag)
9270 {
9271 quit_flag = 0;
9272 interrupt_query ();
9273 }
9274 #endif
9275 }
9276
9277 return 0;
9278 }
9279
9280 /* Come here after finding the start of a frame when we expected an
9281 ack. Do our best to discard the rest of this packet. */
9282
9283 void
9284 remote_target::skip_frame ()
9285 {
9286 int c;
9287
9288 while (1)
9289 {
9290 c = readchar (remote_timeout);
9291 switch (c)
9292 {
9293 case SERIAL_TIMEOUT:
9294 /* Nothing we can do. */
9295 return;
9296 case '#':
9297 /* Discard the two bytes of checksum and stop. */
9298 c = readchar (remote_timeout);
9299 if (c >= 0)
9300 c = readchar (remote_timeout);
9301
9302 return;
9303 case '*': /* Run length encoding. */
9304 /* Discard the repeat count. */
9305 c = readchar (remote_timeout);
9306 if (c < 0)
9307 return;
9308 break;
9309 default:
9310 /* A regular character. */
9311 break;
9312 }
9313 }
9314 }
9315
9316 /* Come here after finding the start of the frame. Collect the rest
9317 into *BUF, verifying the checksum, length, and handling run-length
9318 compression. NUL terminate the buffer. If there is not enough room,
9319 expand *BUF.
9320
9321 Returns -1 on error, number of characters in buffer (ignoring the
9322 trailing NULL) on success. (could be extended to return one of the
9323 SERIAL status indications). */
9324
9325 long
9326 remote_target::read_frame (gdb::char_vector *buf_p)
9327 {
9328 unsigned char csum;
9329 long bc;
9330 int c;
9331 char *buf = buf_p->data ();
9332 struct remote_state *rs = get_remote_state ();
9333
9334 csum = 0;
9335 bc = 0;
9336
9337 while (1)
9338 {
9339 c = readchar (remote_timeout);
9340 switch (c)
9341 {
9342 case SERIAL_TIMEOUT:
9343 if (remote_debug)
9344 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9345 return -1;
9346 case '$':
9347 if (remote_debug)
9348 fputs_filtered ("Saw new packet start in middle of old one\n",
9349 gdb_stdlog);
9350 return -1; /* Start a new packet, count retries. */
9351 case '#':
9352 {
9353 unsigned char pktcsum;
9354 int check_0 = 0;
9355 int check_1 = 0;
9356
9357 buf[bc] = '\0';
9358
9359 check_0 = readchar (remote_timeout);
9360 if (check_0 >= 0)
9361 check_1 = readchar (remote_timeout);
9362
9363 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9364 {
9365 if (remote_debug)
9366 fputs_filtered ("Timeout in checksum, retrying\n",
9367 gdb_stdlog);
9368 return -1;
9369 }
9370 else if (check_0 < 0 || check_1 < 0)
9371 {
9372 if (remote_debug)
9373 fputs_filtered ("Communication error in checksum\n",
9374 gdb_stdlog);
9375 return -1;
9376 }
9377
9378 /* Don't recompute the checksum; with no ack packets we
9379 don't have any way to indicate a packet retransmission
9380 is necessary. */
9381 if (rs->noack_mode)
9382 return bc;
9383
9384 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9385 if (csum == pktcsum)
9386 return bc;
9387
9388 if (remote_debug)
9389 {
9390 std::string str = escape_buffer (buf, bc);
9391
9392 fprintf_unfiltered (gdb_stdlog,
9393 "Bad checksum, sentsum=0x%x, "
9394 "csum=0x%x, buf=%s\n",
9395 pktcsum, csum, str.c_str ());
9396 }
9397 /* Number of characters in buffer ignoring trailing
9398 NULL. */
9399 return -1;
9400 }
9401 case '*': /* Run length encoding. */
9402 {
9403 int repeat;
9404
9405 csum += c;
9406 c = readchar (remote_timeout);
9407 csum += c;
9408 repeat = c - ' ' + 3; /* Compute repeat count. */
9409
9410 /* The character before ``*'' is repeated. */
9411
9412 if (repeat > 0 && repeat <= 255 && bc > 0)
9413 {
9414 if (bc + repeat - 1 >= buf_p->size () - 1)
9415 {
9416 /* Make some more room in the buffer. */
9417 buf_p->resize (buf_p->size () + repeat);
9418 buf = buf_p->data ();
9419 }
9420
9421 memset (&buf[bc], buf[bc - 1], repeat);
9422 bc += repeat;
9423 continue;
9424 }
9425
9426 buf[bc] = '\0';
9427 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9428 return -1;
9429 }
9430 default:
9431 if (bc >= buf_p->size () - 1)
9432 {
9433 /* Make some more room in the buffer. */
9434 buf_p->resize (buf_p->size () * 2);
9435 buf = buf_p->data ();
9436 }
9437
9438 buf[bc++] = c;
9439 csum += c;
9440 continue;
9441 }
9442 }
9443 }
9444
9445 /* Set this to the maximum number of seconds to wait instead of waiting forever
9446 in target_wait(). If this timer times out, then it generates an error and
9447 the command is aborted. This replaces most of the need for timeouts in the
9448 GDB test suite, and makes it possible to distinguish between a hung target
9449 and one with slow communications. */
9450
9451 static int watchdog = 0;
9452 static void
9453 show_watchdog (struct ui_file *file, int from_tty,
9454 struct cmd_list_element *c, const char *value)
9455 {
9456 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9457 }
9458
9459 /* Read a packet from the remote machine, with error checking, and
9460 store it in *BUF. Resize *BUF if necessary to hold the result. If
9461 FOREVER, wait forever rather than timing out; this is used (in
9462 synchronous mode) to wait for a target that is is executing user
9463 code to stop. */
9464 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9465 don't have to change all the calls to getpkt to deal with the
9466 return value, because at the moment I don't know what the right
9467 thing to do it for those. */
9468
9469 void
9470 remote_target::getpkt (gdb::char_vector *buf, int forever)
9471 {
9472 getpkt_sane (buf, forever);
9473 }
9474
9475
9476 /* Read a packet from the remote machine, with error checking, and
9477 store it in *BUF. Resize *BUF if necessary to hold the result. If
9478 FOREVER, wait forever rather than timing out; this is used (in
9479 synchronous mode) to wait for a target that is is executing user
9480 code to stop. If FOREVER == 0, this function is allowed to time
9481 out gracefully and return an indication of this to the caller.
9482 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9483 consider receiving a notification enough reason to return to the
9484 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9485 holds a notification or not (a regular packet). */
9486
9487 int
9488 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9489 int forever, int expecting_notif,
9490 int *is_notif)
9491 {
9492 struct remote_state *rs = get_remote_state ();
9493 int c;
9494 int tries;
9495 int timeout;
9496 int val = -1;
9497
9498 /* We're reading a new response. Make sure we don't look at a
9499 previously cached response. */
9500 rs->cached_wait_status = 0;
9501
9502 strcpy (buf->data (), "timeout");
9503
9504 if (forever)
9505 timeout = watchdog > 0 ? watchdog : -1;
9506 else if (expecting_notif)
9507 timeout = 0; /* There should already be a char in the buffer. If
9508 not, bail out. */
9509 else
9510 timeout = remote_timeout;
9511
9512 #define MAX_TRIES 3
9513
9514 /* Process any number of notifications, and then return when
9515 we get a packet. */
9516 for (;;)
9517 {
9518 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9519 times. */
9520 for (tries = 1; tries <= MAX_TRIES; tries++)
9521 {
9522 /* This can loop forever if the remote side sends us
9523 characters continuously, but if it pauses, we'll get
9524 SERIAL_TIMEOUT from readchar because of timeout. Then
9525 we'll count that as a retry.
9526
9527 Note that even when forever is set, we will only wait
9528 forever prior to the start of a packet. After that, we
9529 expect characters to arrive at a brisk pace. They should
9530 show up within remote_timeout intervals. */
9531 do
9532 c = readchar (timeout);
9533 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9534
9535 if (c == SERIAL_TIMEOUT)
9536 {
9537 if (expecting_notif)
9538 return -1; /* Don't complain, it's normal to not get
9539 anything in this case. */
9540
9541 if (forever) /* Watchdog went off? Kill the target. */
9542 {
9543 remote_unpush_target ();
9544 throw_error (TARGET_CLOSE_ERROR,
9545 _("Watchdog timeout has expired. "
9546 "Target detached."));
9547 }
9548 if (remote_debug)
9549 fputs_filtered ("Timed out.\n", gdb_stdlog);
9550 }
9551 else
9552 {
9553 /* We've found the start of a packet or notification.
9554 Now collect the data. */
9555 val = read_frame (buf);
9556 if (val >= 0)
9557 break;
9558 }
9559
9560 remote_serial_write ("-", 1);
9561 }
9562
9563 if (tries > MAX_TRIES)
9564 {
9565 /* We have tried hard enough, and just can't receive the
9566 packet/notification. Give up. */
9567 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9568
9569 /* Skip the ack char if we're in no-ack mode. */
9570 if (!rs->noack_mode)
9571 remote_serial_write ("+", 1);
9572 return -1;
9573 }
9574
9575 /* If we got an ordinary packet, return that to our caller. */
9576 if (c == '$')
9577 {
9578 if (remote_debug)
9579 {
9580 int max_chars;
9581
9582 if (remote_packet_max_chars < 0)
9583 max_chars = val;
9584 else
9585 max_chars = remote_packet_max_chars;
9586
9587 std::string str
9588 = escape_buffer (buf->data (),
9589 std::min (val, max_chars));
9590
9591 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9592 str.c_str ());
9593
9594 if (val > max_chars)
9595 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9596 val - max_chars);
9597
9598 fprintf_unfiltered (gdb_stdlog, "\n");
9599 }
9600
9601 /* Skip the ack char if we're in no-ack mode. */
9602 if (!rs->noack_mode)
9603 remote_serial_write ("+", 1);
9604 if (is_notif != NULL)
9605 *is_notif = 0;
9606 return val;
9607 }
9608
9609 /* If we got a notification, handle it, and go back to looking
9610 for a packet. */
9611 else
9612 {
9613 gdb_assert (c == '%');
9614
9615 if (remote_debug)
9616 {
9617 std::string str = escape_buffer (buf->data (), val);
9618
9619 fprintf_unfiltered (gdb_stdlog,
9620 " Notification received: %s\n",
9621 str.c_str ());
9622 }
9623 if (is_notif != NULL)
9624 *is_notif = 1;
9625
9626 handle_notification (rs->notif_state, buf->data ());
9627
9628 /* Notifications require no acknowledgement. */
9629
9630 if (expecting_notif)
9631 return val;
9632 }
9633 }
9634 }
9635
9636 int
9637 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9638 {
9639 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9640 }
9641
9642 int
9643 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9644 int *is_notif)
9645 {
9646 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9647 }
9648
9649 /* Kill any new fork children of process PID that haven't been
9650 processed by follow_fork. */
9651
9652 void
9653 remote_target::kill_new_fork_children (int pid)
9654 {
9655 remote_state *rs = get_remote_state ();
9656 struct notif_client *notif = &notif_client_stop;
9657
9658 /* Kill the fork child threads of any threads in process PID
9659 that are stopped at a fork event. */
9660 for (thread_info *thread : all_non_exited_threads ())
9661 {
9662 struct target_waitstatus *ws = &thread->pending_follow;
9663
9664 if (is_pending_fork_parent (ws, pid, thread->ptid))
9665 {
9666 int child_pid = ws->value.related_pid.pid ();
9667 int res;
9668
9669 res = remote_vkill (child_pid);
9670 if (res != 0)
9671 error (_("Can't kill fork child process %d"), child_pid);
9672 }
9673 }
9674
9675 /* Check for any pending fork events (not reported or processed yet)
9676 in process PID and kill those fork child threads as well. */
9677 remote_notif_get_pending_events (notif);
9678 for (auto &event : rs->stop_reply_queue)
9679 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9680 {
9681 int child_pid = event->ws.value.related_pid.pid ();
9682 int res;
9683
9684 res = remote_vkill (child_pid);
9685 if (res != 0)
9686 error (_("Can't kill fork child process %d"), child_pid);
9687 }
9688 }
9689
9690 \f
9691 /* Target hook to kill the current inferior. */
9692
9693 void
9694 remote_target::kill ()
9695 {
9696 int res = -1;
9697 int pid = inferior_ptid.pid ();
9698 struct remote_state *rs = get_remote_state ();
9699
9700 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9701 {
9702 /* If we're stopped while forking and we haven't followed yet,
9703 kill the child task. We need to do this before killing the
9704 parent task because if this is a vfork then the parent will
9705 be sleeping. */
9706 kill_new_fork_children (pid);
9707
9708 res = remote_vkill (pid);
9709 if (res == 0)
9710 {
9711 target_mourn_inferior (inferior_ptid);
9712 return;
9713 }
9714 }
9715
9716 /* If we are in 'target remote' mode and we are killing the only
9717 inferior, then we will tell gdbserver to exit and unpush the
9718 target. */
9719 if (res == -1 && !remote_multi_process_p (rs)
9720 && number_of_live_inferiors () == 1)
9721 {
9722 remote_kill_k ();
9723
9724 /* We've killed the remote end, we get to mourn it. If we are
9725 not in extended mode, mourning the inferior also unpushes
9726 remote_ops from the target stack, which closes the remote
9727 connection. */
9728 target_mourn_inferior (inferior_ptid);
9729
9730 return;
9731 }
9732
9733 error (_("Can't kill process"));
9734 }
9735
9736 /* Send a kill request to the target using the 'vKill' packet. */
9737
9738 int
9739 remote_target::remote_vkill (int pid)
9740 {
9741 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9742 return -1;
9743
9744 remote_state *rs = get_remote_state ();
9745
9746 /* Tell the remote target to detach. */
9747 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9748 putpkt (rs->buf);
9749 getpkt (&rs->buf, 0);
9750
9751 switch (packet_ok (rs->buf,
9752 &remote_protocol_packets[PACKET_vKill]))
9753 {
9754 case PACKET_OK:
9755 return 0;
9756 case PACKET_ERROR:
9757 return 1;
9758 case PACKET_UNKNOWN:
9759 return -1;
9760 default:
9761 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9762 }
9763 }
9764
9765 /* Send a kill request to the target using the 'k' packet. */
9766
9767 void
9768 remote_target::remote_kill_k ()
9769 {
9770 /* Catch errors so the user can quit from gdb even when we
9771 aren't on speaking terms with the remote system. */
9772 try
9773 {
9774 putpkt ("k");
9775 }
9776 catch (const gdb_exception_error &ex)
9777 {
9778 if (ex.error == TARGET_CLOSE_ERROR)
9779 {
9780 /* If we got an (EOF) error that caused the target
9781 to go away, then we're done, that's what we wanted.
9782 "k" is susceptible to cause a premature EOF, given
9783 that the remote server isn't actually required to
9784 reply to "k", and it can happen that it doesn't
9785 even get to reply ACK to the "k". */
9786 return;
9787 }
9788
9789 /* Otherwise, something went wrong. We didn't actually kill
9790 the target. Just propagate the exception, and let the
9791 user or higher layers decide what to do. */
9792 throw;
9793 }
9794 }
9795
9796 void
9797 remote_target::mourn_inferior ()
9798 {
9799 struct remote_state *rs = get_remote_state ();
9800
9801 /* We're no longer interested in notification events of an inferior
9802 that exited or was killed/detached. */
9803 discard_pending_stop_replies (current_inferior ());
9804
9805 /* In 'target remote' mode with one inferior, we close the connection. */
9806 if (!rs->extended && number_of_live_inferiors () <= 1)
9807 {
9808 unpush_target (this);
9809
9810 /* remote_close takes care of doing most of the clean up. */
9811 generic_mourn_inferior ();
9812 return;
9813 }
9814
9815 /* In case we got here due to an error, but we're going to stay
9816 connected. */
9817 rs->waiting_for_stop_reply = 0;
9818
9819 /* If the current general thread belonged to the process we just
9820 detached from or has exited, the remote side current general
9821 thread becomes undefined. Considering a case like this:
9822
9823 - We just got here due to a detach.
9824 - The process that we're detaching from happens to immediately
9825 report a global breakpoint being hit in non-stop mode, in the
9826 same thread we had selected before.
9827 - GDB attaches to this process again.
9828 - This event happens to be the next event we handle.
9829
9830 GDB would consider that the current general thread didn't need to
9831 be set on the stub side (with Hg), since for all it knew,
9832 GENERAL_THREAD hadn't changed.
9833
9834 Notice that although in all-stop mode, the remote server always
9835 sets the current thread to the thread reporting the stop event,
9836 that doesn't happen in non-stop mode; in non-stop, the stub *must
9837 not* change the current thread when reporting a breakpoint hit,
9838 due to the decoupling of event reporting and event handling.
9839
9840 To keep things simple, we always invalidate our notion of the
9841 current thread. */
9842 record_currthread (rs, minus_one_ptid);
9843
9844 /* Call common code to mark the inferior as not running. */
9845 generic_mourn_inferior ();
9846
9847 if (!have_inferiors ())
9848 {
9849 if (!remote_multi_process_p (rs))
9850 {
9851 /* Check whether the target is running now - some remote stubs
9852 automatically restart after kill. */
9853 putpkt ("?");
9854 getpkt (&rs->buf, 0);
9855
9856 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9857 {
9858 /* Assume that the target has been restarted. Set
9859 inferior_ptid so that bits of core GDB realizes
9860 there's something here, e.g., so that the user can
9861 say "kill" again. */
9862 inferior_ptid = magic_null_ptid;
9863 }
9864 }
9865 }
9866 }
9867
9868 bool
9869 extended_remote_target::supports_disable_randomization ()
9870 {
9871 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9872 }
9873
9874 void
9875 remote_target::extended_remote_disable_randomization (int val)
9876 {
9877 struct remote_state *rs = get_remote_state ();
9878 char *reply;
9879
9880 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9881 "QDisableRandomization:%x", val);
9882 putpkt (rs->buf);
9883 reply = remote_get_noisy_reply ();
9884 if (*reply == '\0')
9885 error (_("Target does not support QDisableRandomization."));
9886 if (strcmp (reply, "OK") != 0)
9887 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9888 }
9889
9890 int
9891 remote_target::extended_remote_run (const std::string &args)
9892 {
9893 struct remote_state *rs = get_remote_state ();
9894 int len;
9895 const char *remote_exec_file = get_remote_exec_file ();
9896
9897 /* If the user has disabled vRun support, or we have detected that
9898 support is not available, do not try it. */
9899 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9900 return -1;
9901
9902 strcpy (rs->buf.data (), "vRun;");
9903 len = strlen (rs->buf.data ());
9904
9905 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9906 error (_("Remote file name too long for run packet"));
9907 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9908 strlen (remote_exec_file));
9909
9910 if (!args.empty ())
9911 {
9912 int i;
9913
9914 gdb_argv argv (args.c_str ());
9915 for (i = 0; argv[i] != NULL; i++)
9916 {
9917 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9918 error (_("Argument list too long for run packet"));
9919 rs->buf[len++] = ';';
9920 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9921 strlen (argv[i]));
9922 }
9923 }
9924
9925 rs->buf[len++] = '\0';
9926
9927 putpkt (rs->buf);
9928 getpkt (&rs->buf, 0);
9929
9930 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9931 {
9932 case PACKET_OK:
9933 /* We have a wait response. All is well. */
9934 return 0;
9935 case PACKET_UNKNOWN:
9936 return -1;
9937 case PACKET_ERROR:
9938 if (remote_exec_file[0] == '\0')
9939 error (_("Running the default executable on the remote target failed; "
9940 "try \"set remote exec-file\"?"));
9941 else
9942 error (_("Running \"%s\" on the remote target failed"),
9943 remote_exec_file);
9944 default:
9945 gdb_assert_not_reached (_("bad switch"));
9946 }
9947 }
9948
9949 /* Helper function to send set/unset environment packets. ACTION is
9950 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9951 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9952 sent. */
9953
9954 void
9955 remote_target::send_environment_packet (const char *action,
9956 const char *packet,
9957 const char *value)
9958 {
9959 remote_state *rs = get_remote_state ();
9960
9961 /* Convert the environment variable to an hex string, which
9962 is the best format to be transmitted over the wire. */
9963 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9964 strlen (value));
9965
9966 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9967 "%s:%s", packet, encoded_value.c_str ());
9968
9969 putpkt (rs->buf);
9970 getpkt (&rs->buf, 0);
9971 if (strcmp (rs->buf.data (), "OK") != 0)
9972 warning (_("Unable to %s environment variable '%s' on remote."),
9973 action, value);
9974 }
9975
9976 /* Helper function to handle the QEnvironment* packets. */
9977
9978 void
9979 remote_target::extended_remote_environment_support ()
9980 {
9981 remote_state *rs = get_remote_state ();
9982
9983 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9984 {
9985 putpkt ("QEnvironmentReset");
9986 getpkt (&rs->buf, 0);
9987 if (strcmp (rs->buf.data (), "OK") != 0)
9988 warning (_("Unable to reset environment on remote."));
9989 }
9990
9991 gdb_environ *e = &current_inferior ()->environment;
9992
9993 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9994 for (const std::string &el : e->user_set_env ())
9995 send_environment_packet ("set", "QEnvironmentHexEncoded",
9996 el.c_str ());
9997
9998 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9999 for (const std::string &el : e->user_unset_env ())
10000 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10001 }
10002
10003 /* Helper function to set the current working directory for the
10004 inferior in the remote target. */
10005
10006 void
10007 remote_target::extended_remote_set_inferior_cwd ()
10008 {
10009 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10010 {
10011 const char *inferior_cwd = get_inferior_cwd ();
10012 remote_state *rs = get_remote_state ();
10013
10014 if (inferior_cwd != NULL)
10015 {
10016 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10017 strlen (inferior_cwd));
10018
10019 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10020 "QSetWorkingDir:%s", hexpath.c_str ());
10021 }
10022 else
10023 {
10024 /* An empty inferior_cwd means that the user wants us to
10025 reset the remote server's inferior's cwd. */
10026 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10027 "QSetWorkingDir:");
10028 }
10029
10030 putpkt (rs->buf);
10031 getpkt (&rs->buf, 0);
10032 if (packet_ok (rs->buf,
10033 &remote_protocol_packets[PACKET_QSetWorkingDir])
10034 != PACKET_OK)
10035 error (_("\
10036 Remote replied unexpectedly while setting the inferior's working\n\
10037 directory: %s"),
10038 rs->buf.data ());
10039
10040 }
10041 }
10042
10043 /* In the extended protocol we want to be able to do things like
10044 "run" and have them basically work as expected. So we need
10045 a special create_inferior function. We support changing the
10046 executable file and the command line arguments, but not the
10047 environment. */
10048
10049 void
10050 extended_remote_target::create_inferior (const char *exec_file,
10051 const std::string &args,
10052 char **env, int from_tty)
10053 {
10054 int run_worked;
10055 char *stop_reply;
10056 struct remote_state *rs = get_remote_state ();
10057 const char *remote_exec_file = get_remote_exec_file ();
10058
10059 /* If running asynchronously, register the target file descriptor
10060 with the event loop. */
10061 if (target_can_async_p ())
10062 target_async (1);
10063
10064 /* Disable address space randomization if requested (and supported). */
10065 if (supports_disable_randomization ())
10066 extended_remote_disable_randomization (disable_randomization);
10067
10068 /* If startup-with-shell is on, we inform gdbserver to start the
10069 remote inferior using a shell. */
10070 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10071 {
10072 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10073 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10074 putpkt (rs->buf);
10075 getpkt (&rs->buf, 0);
10076 if (strcmp (rs->buf.data (), "OK") != 0)
10077 error (_("\
10078 Remote replied unexpectedly while setting startup-with-shell: %s"),
10079 rs->buf.data ());
10080 }
10081
10082 extended_remote_environment_support ();
10083
10084 extended_remote_set_inferior_cwd ();
10085
10086 /* Now restart the remote server. */
10087 run_worked = extended_remote_run (args) != -1;
10088 if (!run_worked)
10089 {
10090 /* vRun was not supported. Fail if we need it to do what the
10091 user requested. */
10092 if (remote_exec_file[0])
10093 error (_("Remote target does not support \"set remote exec-file\""));
10094 if (!args.empty ())
10095 error (_("Remote target does not support \"set args\" or run ARGS"));
10096
10097 /* Fall back to "R". */
10098 extended_remote_restart ();
10099 }
10100
10101 /* vRun's success return is a stop reply. */
10102 stop_reply = run_worked ? rs->buf.data () : NULL;
10103 add_current_inferior_and_thread (stop_reply);
10104
10105 /* Get updated offsets, if the stub uses qOffsets. */
10106 get_offsets ();
10107 }
10108 \f
10109
10110 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10111 the list of conditions (in agent expression bytecode format), if any, the
10112 target needs to evaluate. The output is placed into the packet buffer
10113 started from BUF and ended at BUF_END. */
10114
10115 static int
10116 remote_add_target_side_condition (struct gdbarch *gdbarch,
10117 struct bp_target_info *bp_tgt, char *buf,
10118 char *buf_end)
10119 {
10120 if (bp_tgt->conditions.empty ())
10121 return 0;
10122
10123 buf += strlen (buf);
10124 xsnprintf (buf, buf_end - buf, "%s", ";");
10125 buf++;
10126
10127 /* Send conditions to the target. */
10128 for (agent_expr *aexpr : bp_tgt->conditions)
10129 {
10130 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10131 buf += strlen (buf);
10132 for (int i = 0; i < aexpr->len; ++i)
10133 buf = pack_hex_byte (buf, aexpr->buf[i]);
10134 *buf = '\0';
10135 }
10136 return 0;
10137 }
10138
10139 static void
10140 remote_add_target_side_commands (struct gdbarch *gdbarch,
10141 struct bp_target_info *bp_tgt, char *buf)
10142 {
10143 if (bp_tgt->tcommands.empty ())
10144 return;
10145
10146 buf += strlen (buf);
10147
10148 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10149 buf += strlen (buf);
10150
10151 /* Concatenate all the agent expressions that are commands into the
10152 cmds parameter. */
10153 for (agent_expr *aexpr : bp_tgt->tcommands)
10154 {
10155 sprintf (buf, "X%x,", aexpr->len);
10156 buf += strlen (buf);
10157 for (int i = 0; i < aexpr->len; ++i)
10158 buf = pack_hex_byte (buf, aexpr->buf[i]);
10159 *buf = '\0';
10160 }
10161 }
10162
10163 /* Insert a breakpoint. On targets that have software breakpoint
10164 support, we ask the remote target to do the work; on targets
10165 which don't, we insert a traditional memory breakpoint. */
10166
10167 int
10168 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10169 struct bp_target_info *bp_tgt)
10170 {
10171 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10172 If it succeeds, then set the support to PACKET_ENABLE. If it
10173 fails, and the user has explicitly requested the Z support then
10174 report an error, otherwise, mark it disabled and go on. */
10175
10176 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10177 {
10178 CORE_ADDR addr = bp_tgt->reqstd_address;
10179 struct remote_state *rs;
10180 char *p, *endbuf;
10181
10182 /* Make sure the remote is pointing at the right process, if
10183 necessary. */
10184 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10185 set_general_process ();
10186
10187 rs = get_remote_state ();
10188 p = rs->buf.data ();
10189 endbuf = p + get_remote_packet_size ();
10190
10191 *(p++) = 'Z';
10192 *(p++) = '0';
10193 *(p++) = ',';
10194 addr = (ULONGEST) remote_address_masked (addr);
10195 p += hexnumstr (p, addr);
10196 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10197
10198 if (supports_evaluation_of_breakpoint_conditions ())
10199 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10200
10201 if (can_run_breakpoint_commands ())
10202 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10203
10204 putpkt (rs->buf);
10205 getpkt (&rs->buf, 0);
10206
10207 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10208 {
10209 case PACKET_ERROR:
10210 return -1;
10211 case PACKET_OK:
10212 return 0;
10213 case PACKET_UNKNOWN:
10214 break;
10215 }
10216 }
10217
10218 /* If this breakpoint has target-side commands but this stub doesn't
10219 support Z0 packets, throw error. */
10220 if (!bp_tgt->tcommands.empty ())
10221 throw_error (NOT_SUPPORTED_ERROR, _("\
10222 Target doesn't support breakpoints that have target side commands."));
10223
10224 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10225 }
10226
10227 int
10228 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10229 struct bp_target_info *bp_tgt,
10230 enum remove_bp_reason reason)
10231 {
10232 CORE_ADDR addr = bp_tgt->placed_address;
10233 struct remote_state *rs = get_remote_state ();
10234
10235 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10236 {
10237 char *p = rs->buf.data ();
10238 char *endbuf = p + get_remote_packet_size ();
10239
10240 /* Make sure the remote is pointing at the right process, if
10241 necessary. */
10242 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10243 set_general_process ();
10244
10245 *(p++) = 'z';
10246 *(p++) = '0';
10247 *(p++) = ',';
10248
10249 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10250 p += hexnumstr (p, addr);
10251 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10252
10253 putpkt (rs->buf);
10254 getpkt (&rs->buf, 0);
10255
10256 return (rs->buf[0] == 'E');
10257 }
10258
10259 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10260 }
10261
10262 static enum Z_packet_type
10263 watchpoint_to_Z_packet (int type)
10264 {
10265 switch (type)
10266 {
10267 case hw_write:
10268 return Z_PACKET_WRITE_WP;
10269 break;
10270 case hw_read:
10271 return Z_PACKET_READ_WP;
10272 break;
10273 case hw_access:
10274 return Z_PACKET_ACCESS_WP;
10275 break;
10276 default:
10277 internal_error (__FILE__, __LINE__,
10278 _("hw_bp_to_z: bad watchpoint type %d"), type);
10279 }
10280 }
10281
10282 int
10283 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10284 enum target_hw_bp_type type, struct expression *cond)
10285 {
10286 struct remote_state *rs = get_remote_state ();
10287 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10288 char *p;
10289 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10290
10291 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10292 return 1;
10293
10294 /* Make sure the remote is pointing at the right process, if
10295 necessary. */
10296 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10297 set_general_process ();
10298
10299 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10300 p = strchr (rs->buf.data (), '\0');
10301 addr = remote_address_masked (addr);
10302 p += hexnumstr (p, (ULONGEST) addr);
10303 xsnprintf (p, endbuf - p, ",%x", len);
10304
10305 putpkt (rs->buf);
10306 getpkt (&rs->buf, 0);
10307
10308 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10309 {
10310 case PACKET_ERROR:
10311 return -1;
10312 case PACKET_UNKNOWN:
10313 return 1;
10314 case PACKET_OK:
10315 return 0;
10316 }
10317 internal_error (__FILE__, __LINE__,
10318 _("remote_insert_watchpoint: reached end of function"));
10319 }
10320
10321 bool
10322 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10323 CORE_ADDR start, int length)
10324 {
10325 CORE_ADDR diff = remote_address_masked (addr - start);
10326
10327 return diff < length;
10328 }
10329
10330
10331 int
10332 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10333 enum target_hw_bp_type type, struct expression *cond)
10334 {
10335 struct remote_state *rs = get_remote_state ();
10336 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10337 char *p;
10338 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10339
10340 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10341 return -1;
10342
10343 /* Make sure the remote is pointing at the right process, if
10344 necessary. */
10345 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10346 set_general_process ();
10347
10348 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10349 p = strchr (rs->buf.data (), '\0');
10350 addr = remote_address_masked (addr);
10351 p += hexnumstr (p, (ULONGEST) addr);
10352 xsnprintf (p, endbuf - p, ",%x", len);
10353 putpkt (rs->buf);
10354 getpkt (&rs->buf, 0);
10355
10356 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10357 {
10358 case PACKET_ERROR:
10359 case PACKET_UNKNOWN:
10360 return -1;
10361 case PACKET_OK:
10362 return 0;
10363 }
10364 internal_error (__FILE__, __LINE__,
10365 _("remote_remove_watchpoint: reached end of function"));
10366 }
10367
10368
10369 static int remote_hw_watchpoint_limit = -1;
10370 static int remote_hw_watchpoint_length_limit = -1;
10371 static int remote_hw_breakpoint_limit = -1;
10372
10373 int
10374 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10375 {
10376 if (remote_hw_watchpoint_length_limit == 0)
10377 return 0;
10378 else if (remote_hw_watchpoint_length_limit < 0)
10379 return 1;
10380 else if (len <= remote_hw_watchpoint_length_limit)
10381 return 1;
10382 else
10383 return 0;
10384 }
10385
10386 int
10387 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10388 {
10389 if (type == bp_hardware_breakpoint)
10390 {
10391 if (remote_hw_breakpoint_limit == 0)
10392 return 0;
10393 else if (remote_hw_breakpoint_limit < 0)
10394 return 1;
10395 else if (cnt <= remote_hw_breakpoint_limit)
10396 return 1;
10397 }
10398 else
10399 {
10400 if (remote_hw_watchpoint_limit == 0)
10401 return 0;
10402 else if (remote_hw_watchpoint_limit < 0)
10403 return 1;
10404 else if (ot)
10405 return -1;
10406 else if (cnt <= remote_hw_watchpoint_limit)
10407 return 1;
10408 }
10409 return -1;
10410 }
10411
10412 /* The to_stopped_by_sw_breakpoint method of target remote. */
10413
10414 bool
10415 remote_target::stopped_by_sw_breakpoint ()
10416 {
10417 struct thread_info *thread = inferior_thread ();
10418
10419 return (thread->priv != NULL
10420 && (get_remote_thread_info (thread)->stop_reason
10421 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10422 }
10423
10424 /* The to_supports_stopped_by_sw_breakpoint method of target
10425 remote. */
10426
10427 bool
10428 remote_target::supports_stopped_by_sw_breakpoint ()
10429 {
10430 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10431 }
10432
10433 /* The to_stopped_by_hw_breakpoint method of target remote. */
10434
10435 bool
10436 remote_target::stopped_by_hw_breakpoint ()
10437 {
10438 struct thread_info *thread = inferior_thread ();
10439
10440 return (thread->priv != NULL
10441 && (get_remote_thread_info (thread)->stop_reason
10442 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10443 }
10444
10445 /* The to_supports_stopped_by_hw_breakpoint method of target
10446 remote. */
10447
10448 bool
10449 remote_target::supports_stopped_by_hw_breakpoint ()
10450 {
10451 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10452 }
10453
10454 bool
10455 remote_target::stopped_by_watchpoint ()
10456 {
10457 struct thread_info *thread = inferior_thread ();
10458
10459 return (thread->priv != NULL
10460 && (get_remote_thread_info (thread)->stop_reason
10461 == TARGET_STOPPED_BY_WATCHPOINT));
10462 }
10463
10464 bool
10465 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10466 {
10467 struct thread_info *thread = inferior_thread ();
10468
10469 if (thread->priv != NULL
10470 && (get_remote_thread_info (thread)->stop_reason
10471 == TARGET_STOPPED_BY_WATCHPOINT))
10472 {
10473 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10474 return true;
10475 }
10476
10477 return false;
10478 }
10479
10480
10481 int
10482 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10483 struct bp_target_info *bp_tgt)
10484 {
10485 CORE_ADDR addr = bp_tgt->reqstd_address;
10486 struct remote_state *rs;
10487 char *p, *endbuf;
10488 char *message;
10489
10490 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10491 return -1;
10492
10493 /* Make sure the remote is pointing at the right process, if
10494 necessary. */
10495 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10496 set_general_process ();
10497
10498 rs = get_remote_state ();
10499 p = rs->buf.data ();
10500 endbuf = p + get_remote_packet_size ();
10501
10502 *(p++) = 'Z';
10503 *(p++) = '1';
10504 *(p++) = ',';
10505
10506 addr = remote_address_masked (addr);
10507 p += hexnumstr (p, (ULONGEST) addr);
10508 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10509
10510 if (supports_evaluation_of_breakpoint_conditions ())
10511 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10512
10513 if (can_run_breakpoint_commands ())
10514 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10515
10516 putpkt (rs->buf);
10517 getpkt (&rs->buf, 0);
10518
10519 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10520 {
10521 case PACKET_ERROR:
10522 if (rs->buf[1] == '.')
10523 {
10524 message = strchr (&rs->buf[2], '.');
10525 if (message)
10526 error (_("Remote failure reply: %s"), message + 1);
10527 }
10528 return -1;
10529 case PACKET_UNKNOWN:
10530 return -1;
10531 case PACKET_OK:
10532 return 0;
10533 }
10534 internal_error (__FILE__, __LINE__,
10535 _("remote_insert_hw_breakpoint: reached end of function"));
10536 }
10537
10538
10539 int
10540 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10541 struct bp_target_info *bp_tgt)
10542 {
10543 CORE_ADDR addr;
10544 struct remote_state *rs = get_remote_state ();
10545 char *p = rs->buf.data ();
10546 char *endbuf = p + get_remote_packet_size ();
10547
10548 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10549 return -1;
10550
10551 /* Make sure the remote is pointing at the right process, if
10552 necessary. */
10553 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10554 set_general_process ();
10555
10556 *(p++) = 'z';
10557 *(p++) = '1';
10558 *(p++) = ',';
10559
10560 addr = remote_address_masked (bp_tgt->placed_address);
10561 p += hexnumstr (p, (ULONGEST) addr);
10562 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10563
10564 putpkt (rs->buf);
10565 getpkt (&rs->buf, 0);
10566
10567 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10568 {
10569 case PACKET_ERROR:
10570 case PACKET_UNKNOWN:
10571 return -1;
10572 case PACKET_OK:
10573 return 0;
10574 }
10575 internal_error (__FILE__, __LINE__,
10576 _("remote_remove_hw_breakpoint: reached end of function"));
10577 }
10578
10579 /* Verify memory using the "qCRC:" request. */
10580
10581 int
10582 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10583 {
10584 struct remote_state *rs = get_remote_state ();
10585 unsigned long host_crc, target_crc;
10586 char *tmp;
10587
10588 /* It doesn't make sense to use qCRC if the remote target is
10589 connected but not running. */
10590 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10591 {
10592 enum packet_result result;
10593
10594 /* Make sure the remote is pointing at the right process. */
10595 set_general_process ();
10596
10597 /* FIXME: assumes lma can fit into long. */
10598 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10599 (long) lma, (long) size);
10600 putpkt (rs->buf);
10601
10602 /* Be clever; compute the host_crc before waiting for target
10603 reply. */
10604 host_crc = xcrc32 (data, size, 0xffffffff);
10605
10606 getpkt (&rs->buf, 0);
10607
10608 result = packet_ok (rs->buf,
10609 &remote_protocol_packets[PACKET_qCRC]);
10610 if (result == PACKET_ERROR)
10611 return -1;
10612 else if (result == PACKET_OK)
10613 {
10614 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10615 target_crc = target_crc * 16 + fromhex (*tmp);
10616
10617 return (host_crc == target_crc);
10618 }
10619 }
10620
10621 return simple_verify_memory (this, data, lma, size);
10622 }
10623
10624 /* compare-sections command
10625
10626 With no arguments, compares each loadable section in the exec bfd
10627 with the same memory range on the target, and reports mismatches.
10628 Useful for verifying the image on the target against the exec file. */
10629
10630 static void
10631 compare_sections_command (const char *args, int from_tty)
10632 {
10633 asection *s;
10634 const char *sectname;
10635 bfd_size_type size;
10636 bfd_vma lma;
10637 int matched = 0;
10638 int mismatched = 0;
10639 int res;
10640 int read_only = 0;
10641
10642 if (!exec_bfd)
10643 error (_("command cannot be used without an exec file"));
10644
10645 if (args != NULL && strcmp (args, "-r") == 0)
10646 {
10647 read_only = 1;
10648 args = NULL;
10649 }
10650
10651 for (s = exec_bfd->sections; s; s = s->next)
10652 {
10653 if (!(s->flags & SEC_LOAD))
10654 continue; /* Skip non-loadable section. */
10655
10656 if (read_only && (s->flags & SEC_READONLY) == 0)
10657 continue; /* Skip writeable sections */
10658
10659 size = bfd_section_size (s);
10660 if (size == 0)
10661 continue; /* Skip zero-length section. */
10662
10663 sectname = bfd_section_name (s);
10664 if (args && strcmp (args, sectname) != 0)
10665 continue; /* Not the section selected by user. */
10666
10667 matched = 1; /* Do this section. */
10668 lma = s->lma;
10669
10670 gdb::byte_vector sectdata (size);
10671 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10672
10673 res = target_verify_memory (sectdata.data (), lma, size);
10674
10675 if (res == -1)
10676 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10677 paddress (target_gdbarch (), lma),
10678 paddress (target_gdbarch (), lma + size));
10679
10680 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10681 paddress (target_gdbarch (), lma),
10682 paddress (target_gdbarch (), lma + size));
10683 if (res)
10684 printf_filtered ("matched.\n");
10685 else
10686 {
10687 printf_filtered ("MIS-MATCHED!\n");
10688 mismatched++;
10689 }
10690 }
10691 if (mismatched > 0)
10692 warning (_("One or more sections of the target image does not match\n\
10693 the loaded file\n"));
10694 if (args && !matched)
10695 printf_filtered (_("No loaded section named '%s'.\n"), args);
10696 }
10697
10698 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10699 into remote target. The number of bytes written to the remote
10700 target is returned, or -1 for error. */
10701
10702 target_xfer_status
10703 remote_target::remote_write_qxfer (const char *object_name,
10704 const char *annex, const gdb_byte *writebuf,
10705 ULONGEST offset, LONGEST len,
10706 ULONGEST *xfered_len,
10707 struct packet_config *packet)
10708 {
10709 int i, buf_len;
10710 ULONGEST n;
10711 struct remote_state *rs = get_remote_state ();
10712 int max_size = get_memory_write_packet_size ();
10713
10714 if (packet_config_support (packet) == PACKET_DISABLE)
10715 return TARGET_XFER_E_IO;
10716
10717 /* Insert header. */
10718 i = snprintf (rs->buf.data (), max_size,
10719 "qXfer:%s:write:%s:%s:",
10720 object_name, annex ? annex : "",
10721 phex_nz (offset, sizeof offset));
10722 max_size -= (i + 1);
10723
10724 /* Escape as much data as fits into rs->buf. */
10725 buf_len = remote_escape_output
10726 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10727
10728 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10729 || getpkt_sane (&rs->buf, 0) < 0
10730 || packet_ok (rs->buf, packet) != PACKET_OK)
10731 return TARGET_XFER_E_IO;
10732
10733 unpack_varlen_hex (rs->buf.data (), &n);
10734
10735 *xfered_len = n;
10736 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10737 }
10738
10739 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10740 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10741 number of bytes read is returned, or 0 for EOF, or -1 for error.
10742 The number of bytes read may be less than LEN without indicating an
10743 EOF. PACKET is checked and updated to indicate whether the remote
10744 target supports this object. */
10745
10746 target_xfer_status
10747 remote_target::remote_read_qxfer (const char *object_name,
10748 const char *annex,
10749 gdb_byte *readbuf, ULONGEST offset,
10750 LONGEST len,
10751 ULONGEST *xfered_len,
10752 struct packet_config *packet)
10753 {
10754 struct remote_state *rs = get_remote_state ();
10755 LONGEST i, n, packet_len;
10756
10757 if (packet_config_support (packet) == PACKET_DISABLE)
10758 return TARGET_XFER_E_IO;
10759
10760 /* Check whether we've cached an end-of-object packet that matches
10761 this request. */
10762 if (rs->finished_object)
10763 {
10764 if (strcmp (object_name, rs->finished_object) == 0
10765 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10766 && offset == rs->finished_offset)
10767 return TARGET_XFER_EOF;
10768
10769
10770 /* Otherwise, we're now reading something different. Discard
10771 the cache. */
10772 xfree (rs->finished_object);
10773 xfree (rs->finished_annex);
10774 rs->finished_object = NULL;
10775 rs->finished_annex = NULL;
10776 }
10777
10778 /* Request only enough to fit in a single packet. The actual data
10779 may not, since we don't know how much of it will need to be escaped;
10780 the target is free to respond with slightly less data. We subtract
10781 five to account for the response type and the protocol frame. */
10782 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10783 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10784 "qXfer:%s:read:%s:%s,%s",
10785 object_name, annex ? annex : "",
10786 phex_nz (offset, sizeof offset),
10787 phex_nz (n, sizeof n));
10788 i = putpkt (rs->buf);
10789 if (i < 0)
10790 return TARGET_XFER_E_IO;
10791
10792 rs->buf[0] = '\0';
10793 packet_len = getpkt_sane (&rs->buf, 0);
10794 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10795 return TARGET_XFER_E_IO;
10796
10797 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10798 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10799
10800 /* 'm' means there is (or at least might be) more data after this
10801 batch. That does not make sense unless there's at least one byte
10802 of data in this reply. */
10803 if (rs->buf[0] == 'm' && packet_len == 1)
10804 error (_("Remote qXfer reply contained no data."));
10805
10806 /* Got some data. */
10807 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10808 packet_len - 1, readbuf, n);
10809
10810 /* 'l' is an EOF marker, possibly including a final block of data,
10811 or possibly empty. If we have the final block of a non-empty
10812 object, record this fact to bypass a subsequent partial read. */
10813 if (rs->buf[0] == 'l' && offset + i > 0)
10814 {
10815 rs->finished_object = xstrdup (object_name);
10816 rs->finished_annex = xstrdup (annex ? annex : "");
10817 rs->finished_offset = offset + i;
10818 }
10819
10820 if (i == 0)
10821 return TARGET_XFER_EOF;
10822 else
10823 {
10824 *xfered_len = i;
10825 return TARGET_XFER_OK;
10826 }
10827 }
10828
10829 enum target_xfer_status
10830 remote_target::xfer_partial (enum target_object object,
10831 const char *annex, gdb_byte *readbuf,
10832 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10833 ULONGEST *xfered_len)
10834 {
10835 struct remote_state *rs;
10836 int i;
10837 char *p2;
10838 char query_type;
10839 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10840
10841 set_remote_traceframe ();
10842 set_general_thread (inferior_ptid);
10843
10844 rs = get_remote_state ();
10845
10846 /* Handle memory using the standard memory routines. */
10847 if (object == TARGET_OBJECT_MEMORY)
10848 {
10849 /* If the remote target is connected but not running, we should
10850 pass this request down to a lower stratum (e.g. the executable
10851 file). */
10852 if (!target_has_execution)
10853 return TARGET_XFER_EOF;
10854
10855 if (writebuf != NULL)
10856 return remote_write_bytes (offset, writebuf, len, unit_size,
10857 xfered_len);
10858 else
10859 return remote_read_bytes (offset, readbuf, len, unit_size,
10860 xfered_len);
10861 }
10862
10863 /* Handle extra signal info using qxfer packets. */
10864 if (object == TARGET_OBJECT_SIGNAL_INFO)
10865 {
10866 if (readbuf)
10867 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10868 xfered_len, &remote_protocol_packets
10869 [PACKET_qXfer_siginfo_read]);
10870 else
10871 return remote_write_qxfer ("siginfo", annex,
10872 writebuf, offset, len, xfered_len,
10873 &remote_protocol_packets
10874 [PACKET_qXfer_siginfo_write]);
10875 }
10876
10877 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10878 {
10879 if (readbuf)
10880 return remote_read_qxfer ("statictrace", annex,
10881 readbuf, offset, len, xfered_len,
10882 &remote_protocol_packets
10883 [PACKET_qXfer_statictrace_read]);
10884 else
10885 return TARGET_XFER_E_IO;
10886 }
10887
10888 /* Only handle flash writes. */
10889 if (writebuf != NULL)
10890 {
10891 switch (object)
10892 {
10893 case TARGET_OBJECT_FLASH:
10894 return remote_flash_write (offset, len, xfered_len,
10895 writebuf);
10896
10897 default:
10898 return TARGET_XFER_E_IO;
10899 }
10900 }
10901
10902 /* Map pre-existing objects onto letters. DO NOT do this for new
10903 objects!!! Instead specify new query packets. */
10904 switch (object)
10905 {
10906 case TARGET_OBJECT_AVR:
10907 query_type = 'R';
10908 break;
10909
10910 case TARGET_OBJECT_AUXV:
10911 gdb_assert (annex == NULL);
10912 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10913 xfered_len,
10914 &remote_protocol_packets[PACKET_qXfer_auxv]);
10915
10916 case TARGET_OBJECT_AVAILABLE_FEATURES:
10917 return remote_read_qxfer
10918 ("features", annex, readbuf, offset, len, xfered_len,
10919 &remote_protocol_packets[PACKET_qXfer_features]);
10920
10921 case TARGET_OBJECT_LIBRARIES:
10922 return remote_read_qxfer
10923 ("libraries", annex, readbuf, offset, len, xfered_len,
10924 &remote_protocol_packets[PACKET_qXfer_libraries]);
10925
10926 case TARGET_OBJECT_LIBRARIES_SVR4:
10927 return remote_read_qxfer
10928 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10929 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10930
10931 case TARGET_OBJECT_MEMORY_MAP:
10932 gdb_assert (annex == NULL);
10933 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10934 xfered_len,
10935 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10936
10937 case TARGET_OBJECT_OSDATA:
10938 /* Should only get here if we're connected. */
10939 gdb_assert (rs->remote_desc);
10940 return remote_read_qxfer
10941 ("osdata", annex, readbuf, offset, len, xfered_len,
10942 &remote_protocol_packets[PACKET_qXfer_osdata]);
10943
10944 case TARGET_OBJECT_THREADS:
10945 gdb_assert (annex == NULL);
10946 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10947 xfered_len,
10948 &remote_protocol_packets[PACKET_qXfer_threads]);
10949
10950 case TARGET_OBJECT_TRACEFRAME_INFO:
10951 gdb_assert (annex == NULL);
10952 return remote_read_qxfer
10953 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10954 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10955
10956 case TARGET_OBJECT_FDPIC:
10957 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10958 xfered_len,
10959 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10960
10961 case TARGET_OBJECT_OPENVMS_UIB:
10962 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10963 xfered_len,
10964 &remote_protocol_packets[PACKET_qXfer_uib]);
10965
10966 case TARGET_OBJECT_BTRACE:
10967 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10968 xfered_len,
10969 &remote_protocol_packets[PACKET_qXfer_btrace]);
10970
10971 case TARGET_OBJECT_BTRACE_CONF:
10972 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10973 len, xfered_len,
10974 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10975
10976 case TARGET_OBJECT_EXEC_FILE:
10977 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10978 len, xfered_len,
10979 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10980
10981 default:
10982 return TARGET_XFER_E_IO;
10983 }
10984
10985 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10986 large enough let the caller deal with it. */
10987 if (len < get_remote_packet_size ())
10988 return TARGET_XFER_E_IO;
10989 len = get_remote_packet_size ();
10990
10991 /* Except for querying the minimum buffer size, target must be open. */
10992 if (!rs->remote_desc)
10993 error (_("remote query is only available after target open"));
10994
10995 gdb_assert (annex != NULL);
10996 gdb_assert (readbuf != NULL);
10997
10998 p2 = rs->buf.data ();
10999 *p2++ = 'q';
11000 *p2++ = query_type;
11001
11002 /* We used one buffer char for the remote protocol q command and
11003 another for the query type. As the remote protocol encapsulation
11004 uses 4 chars plus one extra in case we are debugging
11005 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11006 string. */
11007 i = 0;
11008 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11009 {
11010 /* Bad caller may have sent forbidden characters. */
11011 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11012 *p2++ = annex[i];
11013 i++;
11014 }
11015 *p2 = '\0';
11016 gdb_assert (annex[i] == '\0');
11017
11018 i = putpkt (rs->buf);
11019 if (i < 0)
11020 return TARGET_XFER_E_IO;
11021
11022 getpkt (&rs->buf, 0);
11023 strcpy ((char *) readbuf, rs->buf.data ());
11024
11025 *xfered_len = strlen ((char *) readbuf);
11026 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11027 }
11028
11029 /* Implementation of to_get_memory_xfer_limit. */
11030
11031 ULONGEST
11032 remote_target::get_memory_xfer_limit ()
11033 {
11034 return get_memory_write_packet_size ();
11035 }
11036
11037 int
11038 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11039 const gdb_byte *pattern, ULONGEST pattern_len,
11040 CORE_ADDR *found_addrp)
11041 {
11042 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11043 struct remote_state *rs = get_remote_state ();
11044 int max_size = get_memory_write_packet_size ();
11045 struct packet_config *packet =
11046 &remote_protocol_packets[PACKET_qSearch_memory];
11047 /* Number of packet bytes used to encode the pattern;
11048 this could be more than PATTERN_LEN due to escape characters. */
11049 int escaped_pattern_len;
11050 /* Amount of pattern that was encodable in the packet. */
11051 int used_pattern_len;
11052 int i;
11053 int found;
11054 ULONGEST found_addr;
11055
11056 /* Don't go to the target if we don't have to. This is done before
11057 checking packet_config_support to avoid the possibility that a
11058 success for this edge case means the facility works in
11059 general. */
11060 if (pattern_len > search_space_len)
11061 return 0;
11062 if (pattern_len == 0)
11063 {
11064 *found_addrp = start_addr;
11065 return 1;
11066 }
11067
11068 /* If we already know the packet isn't supported, fall back to the simple
11069 way of searching memory. */
11070
11071 if (packet_config_support (packet) == PACKET_DISABLE)
11072 {
11073 /* Target doesn't provided special support, fall back and use the
11074 standard support (copy memory and do the search here). */
11075 return simple_search_memory (this, start_addr, search_space_len,
11076 pattern, pattern_len, found_addrp);
11077 }
11078
11079 /* Make sure the remote is pointing at the right process. */
11080 set_general_process ();
11081
11082 /* Insert header. */
11083 i = snprintf (rs->buf.data (), max_size,
11084 "qSearch:memory:%s;%s;",
11085 phex_nz (start_addr, addr_size),
11086 phex_nz (search_space_len, sizeof (search_space_len)));
11087 max_size -= (i + 1);
11088
11089 /* Escape as much data as fits into rs->buf. */
11090 escaped_pattern_len =
11091 remote_escape_output (pattern, pattern_len, 1,
11092 (gdb_byte *) rs->buf.data () + i,
11093 &used_pattern_len, max_size);
11094
11095 /* Bail if the pattern is too large. */
11096 if (used_pattern_len != pattern_len)
11097 error (_("Pattern is too large to transmit to remote target."));
11098
11099 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11100 || getpkt_sane (&rs->buf, 0) < 0
11101 || packet_ok (rs->buf, packet) != PACKET_OK)
11102 {
11103 /* The request may not have worked because the command is not
11104 supported. If so, fall back to the simple way. */
11105 if (packet_config_support (packet) == PACKET_DISABLE)
11106 {
11107 return simple_search_memory (this, start_addr, search_space_len,
11108 pattern, pattern_len, found_addrp);
11109 }
11110 return -1;
11111 }
11112
11113 if (rs->buf[0] == '0')
11114 found = 0;
11115 else if (rs->buf[0] == '1')
11116 {
11117 found = 1;
11118 if (rs->buf[1] != ',')
11119 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11120 unpack_varlen_hex (&rs->buf[2], &found_addr);
11121 *found_addrp = found_addr;
11122 }
11123 else
11124 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11125
11126 return found;
11127 }
11128
11129 void
11130 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11131 {
11132 struct remote_state *rs = get_remote_state ();
11133 char *p = rs->buf.data ();
11134
11135 if (!rs->remote_desc)
11136 error (_("remote rcmd is only available after target open"));
11137
11138 /* Send a NULL command across as an empty command. */
11139 if (command == NULL)
11140 command = "";
11141
11142 /* The query prefix. */
11143 strcpy (rs->buf.data (), "qRcmd,");
11144 p = strchr (rs->buf.data (), '\0');
11145
11146 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11147 > get_remote_packet_size ())
11148 error (_("\"monitor\" command ``%s'' is too long."), command);
11149
11150 /* Encode the actual command. */
11151 bin2hex ((const gdb_byte *) command, p, strlen (command));
11152
11153 if (putpkt (rs->buf) < 0)
11154 error (_("Communication problem with target."));
11155
11156 /* get/display the response */
11157 while (1)
11158 {
11159 char *buf;
11160
11161 /* XXX - see also remote_get_noisy_reply(). */
11162 QUIT; /* Allow user to bail out with ^C. */
11163 rs->buf[0] = '\0';
11164 if (getpkt_sane (&rs->buf, 0) == -1)
11165 {
11166 /* Timeout. Continue to (try to) read responses.
11167 This is better than stopping with an error, assuming the stub
11168 is still executing the (long) monitor command.
11169 If needed, the user can interrupt gdb using C-c, obtaining
11170 an effect similar to stop on timeout. */
11171 continue;
11172 }
11173 buf = rs->buf.data ();
11174 if (buf[0] == '\0')
11175 error (_("Target does not support this command."));
11176 if (buf[0] == 'O' && buf[1] != 'K')
11177 {
11178 remote_console_output (buf + 1); /* 'O' message from stub. */
11179 continue;
11180 }
11181 if (strcmp (buf, "OK") == 0)
11182 break;
11183 if (strlen (buf) == 3 && buf[0] == 'E'
11184 && isdigit (buf[1]) && isdigit (buf[2]))
11185 {
11186 error (_("Protocol error with Rcmd"));
11187 }
11188 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11189 {
11190 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11191
11192 fputc_unfiltered (c, outbuf);
11193 }
11194 break;
11195 }
11196 }
11197
11198 std::vector<mem_region>
11199 remote_target::memory_map ()
11200 {
11201 std::vector<mem_region> result;
11202 gdb::optional<gdb::char_vector> text
11203 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11204
11205 if (text)
11206 result = parse_memory_map (text->data ());
11207
11208 return result;
11209 }
11210
11211 static void
11212 packet_command (const char *args, int from_tty)
11213 {
11214 remote_target *remote = get_current_remote_target ();
11215
11216 if (remote == nullptr)
11217 error (_("command can only be used with remote target"));
11218
11219 remote->packet_command (args, from_tty);
11220 }
11221
11222 void
11223 remote_target::packet_command (const char *args, int from_tty)
11224 {
11225 if (!args)
11226 error (_("remote-packet command requires packet text as argument"));
11227
11228 puts_filtered ("sending: ");
11229 print_packet (args);
11230 puts_filtered ("\n");
11231 putpkt (args);
11232
11233 remote_state *rs = get_remote_state ();
11234
11235 getpkt (&rs->buf, 0);
11236 puts_filtered ("received: ");
11237 print_packet (rs->buf.data ());
11238 puts_filtered ("\n");
11239 }
11240
11241 #if 0
11242 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11243
11244 static void display_thread_info (struct gdb_ext_thread_info *info);
11245
11246 static void threadset_test_cmd (char *cmd, int tty);
11247
11248 static void threadalive_test (char *cmd, int tty);
11249
11250 static void threadlist_test_cmd (char *cmd, int tty);
11251
11252 int get_and_display_threadinfo (threadref *ref);
11253
11254 static void threadinfo_test_cmd (char *cmd, int tty);
11255
11256 static int thread_display_step (threadref *ref, void *context);
11257
11258 static void threadlist_update_test_cmd (char *cmd, int tty);
11259
11260 static void init_remote_threadtests (void);
11261
11262 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11263
11264 static void
11265 threadset_test_cmd (const char *cmd, int tty)
11266 {
11267 int sample_thread = SAMPLE_THREAD;
11268
11269 printf_filtered (_("Remote threadset test\n"));
11270 set_general_thread (sample_thread);
11271 }
11272
11273
11274 static void
11275 threadalive_test (const char *cmd, int tty)
11276 {
11277 int sample_thread = SAMPLE_THREAD;
11278 int pid = inferior_ptid.pid ();
11279 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11280
11281 if (remote_thread_alive (ptid))
11282 printf_filtered ("PASS: Thread alive test\n");
11283 else
11284 printf_filtered ("FAIL: Thread alive test\n");
11285 }
11286
11287 void output_threadid (char *title, threadref *ref);
11288
11289 void
11290 output_threadid (char *title, threadref *ref)
11291 {
11292 char hexid[20];
11293
11294 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11295 hexid[16] = 0;
11296 printf_filtered ("%s %s\n", title, (&hexid[0]));
11297 }
11298
11299 static void
11300 threadlist_test_cmd (const char *cmd, int tty)
11301 {
11302 int startflag = 1;
11303 threadref nextthread;
11304 int done, result_count;
11305 threadref threadlist[3];
11306
11307 printf_filtered ("Remote Threadlist test\n");
11308 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11309 &result_count, &threadlist[0]))
11310 printf_filtered ("FAIL: threadlist test\n");
11311 else
11312 {
11313 threadref *scan = threadlist;
11314 threadref *limit = scan + result_count;
11315
11316 while (scan < limit)
11317 output_threadid (" thread ", scan++);
11318 }
11319 }
11320
11321 void
11322 display_thread_info (struct gdb_ext_thread_info *info)
11323 {
11324 output_threadid ("Threadid: ", &info->threadid);
11325 printf_filtered ("Name: %s\n ", info->shortname);
11326 printf_filtered ("State: %s\n", info->display);
11327 printf_filtered ("other: %s\n\n", info->more_display);
11328 }
11329
11330 int
11331 get_and_display_threadinfo (threadref *ref)
11332 {
11333 int result;
11334 int set;
11335 struct gdb_ext_thread_info threadinfo;
11336
11337 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11338 | TAG_MOREDISPLAY | TAG_DISPLAY;
11339 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11340 display_thread_info (&threadinfo);
11341 return result;
11342 }
11343
11344 static void
11345 threadinfo_test_cmd (const char *cmd, int tty)
11346 {
11347 int athread = SAMPLE_THREAD;
11348 threadref thread;
11349 int set;
11350
11351 int_to_threadref (&thread, athread);
11352 printf_filtered ("Remote Threadinfo test\n");
11353 if (!get_and_display_threadinfo (&thread))
11354 printf_filtered ("FAIL cannot get thread info\n");
11355 }
11356
11357 static int
11358 thread_display_step (threadref *ref, void *context)
11359 {
11360 /* output_threadid(" threadstep ",ref); *//* simple test */
11361 return get_and_display_threadinfo (ref);
11362 }
11363
11364 static void
11365 threadlist_update_test_cmd (const char *cmd, int tty)
11366 {
11367 printf_filtered ("Remote Threadlist update test\n");
11368 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11369 }
11370
11371 static void
11372 init_remote_threadtests (void)
11373 {
11374 add_com ("tlist", class_obscure, threadlist_test_cmd,
11375 _("Fetch and print the remote list of "
11376 "thread identifiers, one pkt only."));
11377 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11378 _("Fetch and display info about one thread."));
11379 add_com ("tset", class_obscure, threadset_test_cmd,
11380 _("Test setting to a different thread."));
11381 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11382 _("Iterate through updating all remote thread info."));
11383 add_com ("talive", class_obscure, threadalive_test,
11384 _("Remote thread alive test."));
11385 }
11386
11387 #endif /* 0 */
11388
11389 /* Convert a thread ID to a string. */
11390
11391 std::string
11392 remote_target::pid_to_str (ptid_t ptid)
11393 {
11394 struct remote_state *rs = get_remote_state ();
11395
11396 if (ptid == null_ptid)
11397 return normal_pid_to_str (ptid);
11398 else if (ptid.is_pid ())
11399 {
11400 /* Printing an inferior target id. */
11401
11402 /* When multi-process extensions are off, there's no way in the
11403 remote protocol to know the remote process id, if there's any
11404 at all. There's one exception --- when we're connected with
11405 target extended-remote, and we manually attached to a process
11406 with "attach PID". We don't record anywhere a flag that
11407 allows us to distinguish that case from the case of
11408 connecting with extended-remote and the stub already being
11409 attached to a process, and reporting yes to qAttached, hence
11410 no smart special casing here. */
11411 if (!remote_multi_process_p (rs))
11412 return "Remote target";
11413
11414 return normal_pid_to_str (ptid);
11415 }
11416 else
11417 {
11418 if (magic_null_ptid == ptid)
11419 return "Thread <main>";
11420 else if (remote_multi_process_p (rs))
11421 if (ptid.lwp () == 0)
11422 return normal_pid_to_str (ptid);
11423 else
11424 return string_printf ("Thread %d.%ld",
11425 ptid.pid (), ptid.lwp ());
11426 else
11427 return string_printf ("Thread %ld", ptid.lwp ());
11428 }
11429 }
11430
11431 /* Get the address of the thread local variable in OBJFILE which is
11432 stored at OFFSET within the thread local storage for thread PTID. */
11433
11434 CORE_ADDR
11435 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11436 CORE_ADDR offset)
11437 {
11438 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11439 {
11440 struct remote_state *rs = get_remote_state ();
11441 char *p = rs->buf.data ();
11442 char *endp = p + get_remote_packet_size ();
11443 enum packet_result result;
11444
11445 strcpy (p, "qGetTLSAddr:");
11446 p += strlen (p);
11447 p = write_ptid (p, endp, ptid);
11448 *p++ = ',';
11449 p += hexnumstr (p, offset);
11450 *p++ = ',';
11451 p += hexnumstr (p, lm);
11452 *p++ = '\0';
11453
11454 putpkt (rs->buf);
11455 getpkt (&rs->buf, 0);
11456 result = packet_ok (rs->buf,
11457 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11458 if (result == PACKET_OK)
11459 {
11460 ULONGEST addr;
11461
11462 unpack_varlen_hex (rs->buf.data (), &addr);
11463 return addr;
11464 }
11465 else if (result == PACKET_UNKNOWN)
11466 throw_error (TLS_GENERIC_ERROR,
11467 _("Remote target doesn't support qGetTLSAddr packet"));
11468 else
11469 throw_error (TLS_GENERIC_ERROR,
11470 _("Remote target failed to process qGetTLSAddr request"));
11471 }
11472 else
11473 throw_error (TLS_GENERIC_ERROR,
11474 _("TLS not supported or disabled on this target"));
11475 /* Not reached. */
11476 return 0;
11477 }
11478
11479 /* Provide thread local base, i.e. Thread Information Block address.
11480 Returns 1 if ptid is found and thread_local_base is non zero. */
11481
11482 bool
11483 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11484 {
11485 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11486 {
11487 struct remote_state *rs = get_remote_state ();
11488 char *p = rs->buf.data ();
11489 char *endp = p + get_remote_packet_size ();
11490 enum packet_result result;
11491
11492 strcpy (p, "qGetTIBAddr:");
11493 p += strlen (p);
11494 p = write_ptid (p, endp, ptid);
11495 *p++ = '\0';
11496
11497 putpkt (rs->buf);
11498 getpkt (&rs->buf, 0);
11499 result = packet_ok (rs->buf,
11500 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11501 if (result == PACKET_OK)
11502 {
11503 ULONGEST val;
11504 unpack_varlen_hex (rs->buf.data (), &val);
11505 if (addr)
11506 *addr = (CORE_ADDR) val;
11507 return true;
11508 }
11509 else if (result == PACKET_UNKNOWN)
11510 error (_("Remote target doesn't support qGetTIBAddr packet"));
11511 else
11512 error (_("Remote target failed to process qGetTIBAddr request"));
11513 }
11514 else
11515 error (_("qGetTIBAddr not supported or disabled on this target"));
11516 /* Not reached. */
11517 return false;
11518 }
11519
11520 /* Support for inferring a target description based on the current
11521 architecture and the size of a 'g' packet. While the 'g' packet
11522 can have any size (since optional registers can be left off the
11523 end), some sizes are easily recognizable given knowledge of the
11524 approximate architecture. */
11525
11526 struct remote_g_packet_guess
11527 {
11528 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11529 : bytes (bytes_),
11530 tdesc (tdesc_)
11531 {
11532 }
11533
11534 int bytes;
11535 const struct target_desc *tdesc;
11536 };
11537
11538 struct remote_g_packet_data : public allocate_on_obstack
11539 {
11540 std::vector<remote_g_packet_guess> guesses;
11541 };
11542
11543 static struct gdbarch_data *remote_g_packet_data_handle;
11544
11545 static void *
11546 remote_g_packet_data_init (struct obstack *obstack)
11547 {
11548 return new (obstack) remote_g_packet_data;
11549 }
11550
11551 void
11552 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11553 const struct target_desc *tdesc)
11554 {
11555 struct remote_g_packet_data *data
11556 = ((struct remote_g_packet_data *)
11557 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11558
11559 gdb_assert (tdesc != NULL);
11560
11561 for (const remote_g_packet_guess &guess : data->guesses)
11562 if (guess.bytes == bytes)
11563 internal_error (__FILE__, __LINE__,
11564 _("Duplicate g packet description added for size %d"),
11565 bytes);
11566
11567 data->guesses.emplace_back (bytes, tdesc);
11568 }
11569
11570 /* Return true if remote_read_description would do anything on this target
11571 and architecture, false otherwise. */
11572
11573 static bool
11574 remote_read_description_p (struct target_ops *target)
11575 {
11576 struct remote_g_packet_data *data
11577 = ((struct remote_g_packet_data *)
11578 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11579
11580 return !data->guesses.empty ();
11581 }
11582
11583 const struct target_desc *
11584 remote_target::read_description ()
11585 {
11586 struct remote_g_packet_data *data
11587 = ((struct remote_g_packet_data *)
11588 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11589
11590 /* Do not try this during initial connection, when we do not know
11591 whether there is a running but stopped thread. */
11592 if (!target_has_execution || inferior_ptid == null_ptid)
11593 return beneath ()->read_description ();
11594
11595 if (!data->guesses.empty ())
11596 {
11597 int bytes = send_g_packet ();
11598
11599 for (const remote_g_packet_guess &guess : data->guesses)
11600 if (guess.bytes == bytes)
11601 return guess.tdesc;
11602
11603 /* We discard the g packet. A minor optimization would be to
11604 hold on to it, and fill the register cache once we have selected
11605 an architecture, but it's too tricky to do safely. */
11606 }
11607
11608 return beneath ()->read_description ();
11609 }
11610
11611 /* Remote file transfer support. This is host-initiated I/O, not
11612 target-initiated; for target-initiated, see remote-fileio.c. */
11613
11614 /* If *LEFT is at least the length of STRING, copy STRING to
11615 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11616 decrease *LEFT. Otherwise raise an error. */
11617
11618 static void
11619 remote_buffer_add_string (char **buffer, int *left, const char *string)
11620 {
11621 int len = strlen (string);
11622
11623 if (len > *left)
11624 error (_("Packet too long for target."));
11625
11626 memcpy (*buffer, string, len);
11627 *buffer += len;
11628 *left -= len;
11629
11630 /* NUL-terminate the buffer as a convenience, if there is
11631 room. */
11632 if (*left)
11633 **buffer = '\0';
11634 }
11635
11636 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11637 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11638 decrease *LEFT. Otherwise raise an error. */
11639
11640 static void
11641 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11642 int len)
11643 {
11644 if (2 * len > *left)
11645 error (_("Packet too long for target."));
11646
11647 bin2hex (bytes, *buffer, len);
11648 *buffer += 2 * len;
11649 *left -= 2 * len;
11650
11651 /* NUL-terminate the buffer as a convenience, if there is
11652 room. */
11653 if (*left)
11654 **buffer = '\0';
11655 }
11656
11657 /* If *LEFT is large enough, convert VALUE to hex and add it to
11658 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11659 decrease *LEFT. Otherwise raise an error. */
11660
11661 static void
11662 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11663 {
11664 int len = hexnumlen (value);
11665
11666 if (len > *left)
11667 error (_("Packet too long for target."));
11668
11669 hexnumstr (*buffer, value);
11670 *buffer += len;
11671 *left -= len;
11672
11673 /* NUL-terminate the buffer as a convenience, if there is
11674 room. */
11675 if (*left)
11676 **buffer = '\0';
11677 }
11678
11679 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11680 value, *REMOTE_ERRNO to the remote error number or zero if none
11681 was included, and *ATTACHMENT to point to the start of the annex
11682 if any. The length of the packet isn't needed here; there may
11683 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11684
11685 Return 0 if the packet could be parsed, -1 if it could not. If
11686 -1 is returned, the other variables may not be initialized. */
11687
11688 static int
11689 remote_hostio_parse_result (char *buffer, int *retcode,
11690 int *remote_errno, char **attachment)
11691 {
11692 char *p, *p2;
11693
11694 *remote_errno = 0;
11695 *attachment = NULL;
11696
11697 if (buffer[0] != 'F')
11698 return -1;
11699
11700 errno = 0;
11701 *retcode = strtol (&buffer[1], &p, 16);
11702 if (errno != 0 || p == &buffer[1])
11703 return -1;
11704
11705 /* Check for ",errno". */
11706 if (*p == ',')
11707 {
11708 errno = 0;
11709 *remote_errno = strtol (p + 1, &p2, 16);
11710 if (errno != 0 || p + 1 == p2)
11711 return -1;
11712 p = p2;
11713 }
11714
11715 /* Check for ";attachment". If there is no attachment, the
11716 packet should end here. */
11717 if (*p == ';')
11718 {
11719 *attachment = p + 1;
11720 return 0;
11721 }
11722 else if (*p == '\0')
11723 return 0;
11724 else
11725 return -1;
11726 }
11727
11728 /* Send a prepared I/O packet to the target and read its response.
11729 The prepared packet is in the global RS->BUF before this function
11730 is called, and the answer is there when we return.
11731
11732 COMMAND_BYTES is the length of the request to send, which may include
11733 binary data. WHICH_PACKET is the packet configuration to check
11734 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11735 is set to the error number and -1 is returned. Otherwise the value
11736 returned by the function is returned.
11737
11738 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11739 attachment is expected; an error will be reported if there's a
11740 mismatch. If one is found, *ATTACHMENT will be set to point into
11741 the packet buffer and *ATTACHMENT_LEN will be set to the
11742 attachment's length. */
11743
11744 int
11745 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11746 int *remote_errno, char **attachment,
11747 int *attachment_len)
11748 {
11749 struct remote_state *rs = get_remote_state ();
11750 int ret, bytes_read;
11751 char *attachment_tmp;
11752
11753 if (packet_support (which_packet) == PACKET_DISABLE)
11754 {
11755 *remote_errno = FILEIO_ENOSYS;
11756 return -1;
11757 }
11758
11759 putpkt_binary (rs->buf.data (), command_bytes);
11760 bytes_read = getpkt_sane (&rs->buf, 0);
11761
11762 /* If it timed out, something is wrong. Don't try to parse the
11763 buffer. */
11764 if (bytes_read < 0)
11765 {
11766 *remote_errno = FILEIO_EINVAL;
11767 return -1;
11768 }
11769
11770 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11771 {
11772 case PACKET_ERROR:
11773 *remote_errno = FILEIO_EINVAL;
11774 return -1;
11775 case PACKET_UNKNOWN:
11776 *remote_errno = FILEIO_ENOSYS;
11777 return -1;
11778 case PACKET_OK:
11779 break;
11780 }
11781
11782 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11783 &attachment_tmp))
11784 {
11785 *remote_errno = FILEIO_EINVAL;
11786 return -1;
11787 }
11788
11789 /* Make sure we saw an attachment if and only if we expected one. */
11790 if ((attachment_tmp == NULL && attachment != NULL)
11791 || (attachment_tmp != NULL && attachment == NULL))
11792 {
11793 *remote_errno = FILEIO_EINVAL;
11794 return -1;
11795 }
11796
11797 /* If an attachment was found, it must point into the packet buffer;
11798 work out how many bytes there were. */
11799 if (attachment_tmp != NULL)
11800 {
11801 *attachment = attachment_tmp;
11802 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11803 }
11804
11805 return ret;
11806 }
11807
11808 /* See declaration.h. */
11809
11810 void
11811 readahead_cache::invalidate ()
11812 {
11813 this->fd = -1;
11814 }
11815
11816 /* See declaration.h. */
11817
11818 void
11819 readahead_cache::invalidate_fd (int fd)
11820 {
11821 if (this->fd == fd)
11822 this->fd = -1;
11823 }
11824
11825 /* Set the filesystem remote_hostio functions that take FILENAME
11826 arguments will use. Return 0 on success, or -1 if an error
11827 occurs (and set *REMOTE_ERRNO). */
11828
11829 int
11830 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11831 int *remote_errno)
11832 {
11833 struct remote_state *rs = get_remote_state ();
11834 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11835 char *p = rs->buf.data ();
11836 int left = get_remote_packet_size () - 1;
11837 char arg[9];
11838 int ret;
11839
11840 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11841 return 0;
11842
11843 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11844 return 0;
11845
11846 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11847
11848 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11849 remote_buffer_add_string (&p, &left, arg);
11850
11851 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11852 remote_errno, NULL, NULL);
11853
11854 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11855 return 0;
11856
11857 if (ret == 0)
11858 rs->fs_pid = required_pid;
11859
11860 return ret;
11861 }
11862
11863 /* Implementation of to_fileio_open. */
11864
11865 int
11866 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11867 int flags, int mode, int warn_if_slow,
11868 int *remote_errno)
11869 {
11870 struct remote_state *rs = get_remote_state ();
11871 char *p = rs->buf.data ();
11872 int left = get_remote_packet_size () - 1;
11873
11874 if (warn_if_slow)
11875 {
11876 static int warning_issued = 0;
11877
11878 printf_unfiltered (_("Reading %s from remote target...\n"),
11879 filename);
11880
11881 if (!warning_issued)
11882 {
11883 warning (_("File transfers from remote targets can be slow."
11884 " Use \"set sysroot\" to access files locally"
11885 " instead."));
11886 warning_issued = 1;
11887 }
11888 }
11889
11890 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11891 return -1;
11892
11893 remote_buffer_add_string (&p, &left, "vFile:open:");
11894
11895 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11896 strlen (filename));
11897 remote_buffer_add_string (&p, &left, ",");
11898
11899 remote_buffer_add_int (&p, &left, flags);
11900 remote_buffer_add_string (&p, &left, ",");
11901
11902 remote_buffer_add_int (&p, &left, mode);
11903
11904 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11905 remote_errno, NULL, NULL);
11906 }
11907
11908 int
11909 remote_target::fileio_open (struct inferior *inf, const char *filename,
11910 int flags, int mode, int warn_if_slow,
11911 int *remote_errno)
11912 {
11913 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11914 remote_errno);
11915 }
11916
11917 /* Implementation of to_fileio_pwrite. */
11918
11919 int
11920 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11921 ULONGEST offset, int *remote_errno)
11922 {
11923 struct remote_state *rs = get_remote_state ();
11924 char *p = rs->buf.data ();
11925 int left = get_remote_packet_size ();
11926 int out_len;
11927
11928 rs->readahead_cache.invalidate_fd (fd);
11929
11930 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11931
11932 remote_buffer_add_int (&p, &left, fd);
11933 remote_buffer_add_string (&p, &left, ",");
11934
11935 remote_buffer_add_int (&p, &left, offset);
11936 remote_buffer_add_string (&p, &left, ",");
11937
11938 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11939 (get_remote_packet_size ()
11940 - (p - rs->buf.data ())));
11941
11942 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11943 remote_errno, NULL, NULL);
11944 }
11945
11946 int
11947 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11948 ULONGEST offset, int *remote_errno)
11949 {
11950 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11951 }
11952
11953 /* Helper for the implementation of to_fileio_pread. Read the file
11954 from the remote side with vFile:pread. */
11955
11956 int
11957 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11958 ULONGEST offset, int *remote_errno)
11959 {
11960 struct remote_state *rs = get_remote_state ();
11961 char *p = rs->buf.data ();
11962 char *attachment;
11963 int left = get_remote_packet_size ();
11964 int ret, attachment_len;
11965 int read_len;
11966
11967 remote_buffer_add_string (&p, &left, "vFile:pread:");
11968
11969 remote_buffer_add_int (&p, &left, fd);
11970 remote_buffer_add_string (&p, &left, ",");
11971
11972 remote_buffer_add_int (&p, &left, len);
11973 remote_buffer_add_string (&p, &left, ",");
11974
11975 remote_buffer_add_int (&p, &left, offset);
11976
11977 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11978 remote_errno, &attachment,
11979 &attachment_len);
11980
11981 if (ret < 0)
11982 return ret;
11983
11984 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11985 read_buf, len);
11986 if (read_len != ret)
11987 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11988
11989 return ret;
11990 }
11991
11992 /* See declaration.h. */
11993
11994 int
11995 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11996 ULONGEST offset)
11997 {
11998 if (this->fd == fd
11999 && this->offset <= offset
12000 && offset < this->offset + this->bufsize)
12001 {
12002 ULONGEST max = this->offset + this->bufsize;
12003
12004 if (offset + len > max)
12005 len = max - offset;
12006
12007 memcpy (read_buf, this->buf + offset - this->offset, len);
12008 return len;
12009 }
12010
12011 return 0;
12012 }
12013
12014 /* Implementation of to_fileio_pread. */
12015
12016 int
12017 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12018 ULONGEST offset, int *remote_errno)
12019 {
12020 int ret;
12021 struct remote_state *rs = get_remote_state ();
12022 readahead_cache *cache = &rs->readahead_cache;
12023
12024 ret = cache->pread (fd, read_buf, len, offset);
12025 if (ret > 0)
12026 {
12027 cache->hit_count++;
12028
12029 if (remote_debug)
12030 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12031 pulongest (cache->hit_count));
12032 return ret;
12033 }
12034
12035 cache->miss_count++;
12036 if (remote_debug)
12037 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12038 pulongest (cache->miss_count));
12039
12040 cache->fd = fd;
12041 cache->offset = offset;
12042 cache->bufsize = get_remote_packet_size ();
12043 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12044
12045 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12046 cache->offset, remote_errno);
12047 if (ret <= 0)
12048 {
12049 cache->invalidate_fd (fd);
12050 return ret;
12051 }
12052
12053 cache->bufsize = ret;
12054 return cache->pread (fd, read_buf, len, offset);
12055 }
12056
12057 int
12058 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12059 ULONGEST offset, int *remote_errno)
12060 {
12061 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12062 }
12063
12064 /* Implementation of to_fileio_close. */
12065
12066 int
12067 remote_target::remote_hostio_close (int fd, int *remote_errno)
12068 {
12069 struct remote_state *rs = get_remote_state ();
12070 char *p = rs->buf.data ();
12071 int left = get_remote_packet_size () - 1;
12072
12073 rs->readahead_cache.invalidate_fd (fd);
12074
12075 remote_buffer_add_string (&p, &left, "vFile:close:");
12076
12077 remote_buffer_add_int (&p, &left, fd);
12078
12079 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12080 remote_errno, NULL, NULL);
12081 }
12082
12083 int
12084 remote_target::fileio_close (int fd, int *remote_errno)
12085 {
12086 return remote_hostio_close (fd, remote_errno);
12087 }
12088
12089 /* Implementation of to_fileio_unlink. */
12090
12091 int
12092 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12093 int *remote_errno)
12094 {
12095 struct remote_state *rs = get_remote_state ();
12096 char *p = rs->buf.data ();
12097 int left = get_remote_packet_size () - 1;
12098
12099 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12100 return -1;
12101
12102 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12103
12104 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12105 strlen (filename));
12106
12107 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12108 remote_errno, NULL, NULL);
12109 }
12110
12111 int
12112 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12113 int *remote_errno)
12114 {
12115 return remote_hostio_unlink (inf, filename, remote_errno);
12116 }
12117
12118 /* Implementation of to_fileio_readlink. */
12119
12120 gdb::optional<std::string>
12121 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12122 int *remote_errno)
12123 {
12124 struct remote_state *rs = get_remote_state ();
12125 char *p = rs->buf.data ();
12126 char *attachment;
12127 int left = get_remote_packet_size ();
12128 int len, attachment_len;
12129 int read_len;
12130
12131 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12132 return {};
12133
12134 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12135
12136 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12137 strlen (filename));
12138
12139 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12140 remote_errno, &attachment,
12141 &attachment_len);
12142
12143 if (len < 0)
12144 return {};
12145
12146 std::string ret (len, '\0');
12147
12148 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12149 (gdb_byte *) &ret[0], len);
12150 if (read_len != len)
12151 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12152
12153 return ret;
12154 }
12155
12156 /* Implementation of to_fileio_fstat. */
12157
12158 int
12159 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12160 {
12161 struct remote_state *rs = get_remote_state ();
12162 char *p = rs->buf.data ();
12163 int left = get_remote_packet_size ();
12164 int attachment_len, ret;
12165 char *attachment;
12166 struct fio_stat fst;
12167 int read_len;
12168
12169 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12170
12171 remote_buffer_add_int (&p, &left, fd);
12172
12173 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12174 remote_errno, &attachment,
12175 &attachment_len);
12176 if (ret < 0)
12177 {
12178 if (*remote_errno != FILEIO_ENOSYS)
12179 return ret;
12180
12181 /* Strictly we should return -1, ENOSYS here, but when
12182 "set sysroot remote:" was implemented in August 2008
12183 BFD's need for a stat function was sidestepped with
12184 this hack. This was not remedied until March 2015
12185 so we retain the previous behavior to avoid breaking
12186 compatibility.
12187
12188 Note that the memset is a March 2015 addition; older
12189 GDBs set st_size *and nothing else* so the structure
12190 would have garbage in all other fields. This might
12191 break something but retaining the previous behavior
12192 here would be just too wrong. */
12193
12194 memset (st, 0, sizeof (struct stat));
12195 st->st_size = INT_MAX;
12196 return 0;
12197 }
12198
12199 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12200 (gdb_byte *) &fst, sizeof (fst));
12201
12202 if (read_len != ret)
12203 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12204
12205 if (read_len != sizeof (fst))
12206 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12207 read_len, (int) sizeof (fst));
12208
12209 remote_fileio_to_host_stat (&fst, st);
12210
12211 return 0;
12212 }
12213
12214 /* Implementation of to_filesystem_is_local. */
12215
12216 bool
12217 remote_target::filesystem_is_local ()
12218 {
12219 /* Valgrind GDB presents itself as a remote target but works
12220 on the local filesystem: it does not implement remote get
12221 and users are not expected to set a sysroot. To handle
12222 this case we treat the remote filesystem as local if the
12223 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12224 does not support vFile:open. */
12225 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12226 {
12227 enum packet_support ps = packet_support (PACKET_vFile_open);
12228
12229 if (ps == PACKET_SUPPORT_UNKNOWN)
12230 {
12231 int fd, remote_errno;
12232
12233 /* Try opening a file to probe support. The supplied
12234 filename is irrelevant, we only care about whether
12235 the stub recognizes the packet or not. */
12236 fd = remote_hostio_open (NULL, "just probing",
12237 FILEIO_O_RDONLY, 0700, 0,
12238 &remote_errno);
12239
12240 if (fd >= 0)
12241 remote_hostio_close (fd, &remote_errno);
12242
12243 ps = packet_support (PACKET_vFile_open);
12244 }
12245
12246 if (ps == PACKET_DISABLE)
12247 {
12248 static int warning_issued = 0;
12249
12250 if (!warning_issued)
12251 {
12252 warning (_("remote target does not support file"
12253 " transfer, attempting to access files"
12254 " from local filesystem."));
12255 warning_issued = 1;
12256 }
12257
12258 return true;
12259 }
12260 }
12261
12262 return false;
12263 }
12264
12265 static int
12266 remote_fileio_errno_to_host (int errnum)
12267 {
12268 switch (errnum)
12269 {
12270 case FILEIO_EPERM:
12271 return EPERM;
12272 case FILEIO_ENOENT:
12273 return ENOENT;
12274 case FILEIO_EINTR:
12275 return EINTR;
12276 case FILEIO_EIO:
12277 return EIO;
12278 case FILEIO_EBADF:
12279 return EBADF;
12280 case FILEIO_EACCES:
12281 return EACCES;
12282 case FILEIO_EFAULT:
12283 return EFAULT;
12284 case FILEIO_EBUSY:
12285 return EBUSY;
12286 case FILEIO_EEXIST:
12287 return EEXIST;
12288 case FILEIO_ENODEV:
12289 return ENODEV;
12290 case FILEIO_ENOTDIR:
12291 return ENOTDIR;
12292 case FILEIO_EISDIR:
12293 return EISDIR;
12294 case FILEIO_EINVAL:
12295 return EINVAL;
12296 case FILEIO_ENFILE:
12297 return ENFILE;
12298 case FILEIO_EMFILE:
12299 return EMFILE;
12300 case FILEIO_EFBIG:
12301 return EFBIG;
12302 case FILEIO_ENOSPC:
12303 return ENOSPC;
12304 case FILEIO_ESPIPE:
12305 return ESPIPE;
12306 case FILEIO_EROFS:
12307 return EROFS;
12308 case FILEIO_ENOSYS:
12309 return ENOSYS;
12310 case FILEIO_ENAMETOOLONG:
12311 return ENAMETOOLONG;
12312 }
12313 return -1;
12314 }
12315
12316 static char *
12317 remote_hostio_error (int errnum)
12318 {
12319 int host_error = remote_fileio_errno_to_host (errnum);
12320
12321 if (host_error == -1)
12322 error (_("Unknown remote I/O error %d"), errnum);
12323 else
12324 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12325 }
12326
12327 /* A RAII wrapper around a remote file descriptor. */
12328
12329 class scoped_remote_fd
12330 {
12331 public:
12332 scoped_remote_fd (remote_target *remote, int fd)
12333 : m_remote (remote), m_fd (fd)
12334 {
12335 }
12336
12337 ~scoped_remote_fd ()
12338 {
12339 if (m_fd != -1)
12340 {
12341 try
12342 {
12343 int remote_errno;
12344 m_remote->remote_hostio_close (m_fd, &remote_errno);
12345 }
12346 catch (...)
12347 {
12348 /* Swallow exception before it escapes the dtor. If
12349 something goes wrong, likely the connection is gone,
12350 and there's nothing else that can be done. */
12351 }
12352 }
12353 }
12354
12355 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12356
12357 /* Release ownership of the file descriptor, and return it. */
12358 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12359 {
12360 int fd = m_fd;
12361 m_fd = -1;
12362 return fd;
12363 }
12364
12365 /* Return the owned file descriptor. */
12366 int get () const noexcept
12367 {
12368 return m_fd;
12369 }
12370
12371 private:
12372 /* The remote target. */
12373 remote_target *m_remote;
12374
12375 /* The owned remote I/O file descriptor. */
12376 int m_fd;
12377 };
12378
12379 void
12380 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12381 {
12382 remote_target *remote = get_current_remote_target ();
12383
12384 if (remote == nullptr)
12385 error (_("command can only be used with remote target"));
12386
12387 remote->remote_file_put (local_file, remote_file, from_tty);
12388 }
12389
12390 void
12391 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12392 int from_tty)
12393 {
12394 int retcode, remote_errno, bytes, io_size;
12395 int bytes_in_buffer;
12396 int saw_eof;
12397 ULONGEST offset;
12398
12399 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12400 if (file == NULL)
12401 perror_with_name (local_file);
12402
12403 scoped_remote_fd fd
12404 (this, remote_hostio_open (NULL,
12405 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12406 | FILEIO_O_TRUNC),
12407 0700, 0, &remote_errno));
12408 if (fd.get () == -1)
12409 remote_hostio_error (remote_errno);
12410
12411 /* Send up to this many bytes at once. They won't all fit in the
12412 remote packet limit, so we'll transfer slightly fewer. */
12413 io_size = get_remote_packet_size ();
12414 gdb::byte_vector buffer (io_size);
12415
12416 bytes_in_buffer = 0;
12417 saw_eof = 0;
12418 offset = 0;
12419 while (bytes_in_buffer || !saw_eof)
12420 {
12421 if (!saw_eof)
12422 {
12423 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12424 io_size - bytes_in_buffer,
12425 file.get ());
12426 if (bytes == 0)
12427 {
12428 if (ferror (file.get ()))
12429 error (_("Error reading %s."), local_file);
12430 else
12431 {
12432 /* EOF. Unless there is something still in the
12433 buffer from the last iteration, we are done. */
12434 saw_eof = 1;
12435 if (bytes_in_buffer == 0)
12436 break;
12437 }
12438 }
12439 }
12440 else
12441 bytes = 0;
12442
12443 bytes += bytes_in_buffer;
12444 bytes_in_buffer = 0;
12445
12446 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12447 offset, &remote_errno);
12448
12449 if (retcode < 0)
12450 remote_hostio_error (remote_errno);
12451 else if (retcode == 0)
12452 error (_("Remote write of %d bytes returned 0!"), bytes);
12453 else if (retcode < bytes)
12454 {
12455 /* Short write. Save the rest of the read data for the next
12456 write. */
12457 bytes_in_buffer = bytes - retcode;
12458 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12459 }
12460
12461 offset += retcode;
12462 }
12463
12464 if (remote_hostio_close (fd.release (), &remote_errno))
12465 remote_hostio_error (remote_errno);
12466
12467 if (from_tty)
12468 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12469 }
12470
12471 void
12472 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12473 {
12474 remote_target *remote = get_current_remote_target ();
12475
12476 if (remote == nullptr)
12477 error (_("command can only be used with remote target"));
12478
12479 remote->remote_file_get (remote_file, local_file, from_tty);
12480 }
12481
12482 void
12483 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12484 int from_tty)
12485 {
12486 int remote_errno, bytes, io_size;
12487 ULONGEST offset;
12488
12489 scoped_remote_fd fd
12490 (this, remote_hostio_open (NULL,
12491 remote_file, FILEIO_O_RDONLY, 0, 0,
12492 &remote_errno));
12493 if (fd.get () == -1)
12494 remote_hostio_error (remote_errno);
12495
12496 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12497 if (file == NULL)
12498 perror_with_name (local_file);
12499
12500 /* Send up to this many bytes at once. They won't all fit in the
12501 remote packet limit, so we'll transfer slightly fewer. */
12502 io_size = get_remote_packet_size ();
12503 gdb::byte_vector buffer (io_size);
12504
12505 offset = 0;
12506 while (1)
12507 {
12508 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12509 &remote_errno);
12510 if (bytes == 0)
12511 /* Success, but no bytes, means end-of-file. */
12512 break;
12513 if (bytes == -1)
12514 remote_hostio_error (remote_errno);
12515
12516 offset += bytes;
12517
12518 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12519 if (bytes == 0)
12520 perror_with_name (local_file);
12521 }
12522
12523 if (remote_hostio_close (fd.release (), &remote_errno))
12524 remote_hostio_error (remote_errno);
12525
12526 if (from_tty)
12527 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12528 }
12529
12530 void
12531 remote_file_delete (const char *remote_file, int from_tty)
12532 {
12533 remote_target *remote = get_current_remote_target ();
12534
12535 if (remote == nullptr)
12536 error (_("command can only be used with remote target"));
12537
12538 remote->remote_file_delete (remote_file, from_tty);
12539 }
12540
12541 void
12542 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12543 {
12544 int retcode, remote_errno;
12545
12546 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12547 if (retcode == -1)
12548 remote_hostio_error (remote_errno);
12549
12550 if (from_tty)
12551 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12552 }
12553
12554 static void
12555 remote_put_command (const char *args, int from_tty)
12556 {
12557 if (args == NULL)
12558 error_no_arg (_("file to put"));
12559
12560 gdb_argv argv (args);
12561 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12562 error (_("Invalid parameters to remote put"));
12563
12564 remote_file_put (argv[0], argv[1], from_tty);
12565 }
12566
12567 static void
12568 remote_get_command (const char *args, int from_tty)
12569 {
12570 if (args == NULL)
12571 error_no_arg (_("file to get"));
12572
12573 gdb_argv argv (args);
12574 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12575 error (_("Invalid parameters to remote get"));
12576
12577 remote_file_get (argv[0], argv[1], from_tty);
12578 }
12579
12580 static void
12581 remote_delete_command (const char *args, int from_tty)
12582 {
12583 if (args == NULL)
12584 error_no_arg (_("file to delete"));
12585
12586 gdb_argv argv (args);
12587 if (argv[0] == NULL || argv[1] != NULL)
12588 error (_("Invalid parameters to remote delete"));
12589
12590 remote_file_delete (argv[0], from_tty);
12591 }
12592
12593 static void
12594 remote_command (const char *args, int from_tty)
12595 {
12596 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12597 }
12598
12599 bool
12600 remote_target::can_execute_reverse ()
12601 {
12602 if (packet_support (PACKET_bs) == PACKET_ENABLE
12603 || packet_support (PACKET_bc) == PACKET_ENABLE)
12604 return true;
12605 else
12606 return false;
12607 }
12608
12609 bool
12610 remote_target::supports_non_stop ()
12611 {
12612 return true;
12613 }
12614
12615 bool
12616 remote_target::supports_disable_randomization ()
12617 {
12618 /* Only supported in extended mode. */
12619 return false;
12620 }
12621
12622 bool
12623 remote_target::supports_multi_process ()
12624 {
12625 struct remote_state *rs = get_remote_state ();
12626
12627 return remote_multi_process_p (rs);
12628 }
12629
12630 static int
12631 remote_supports_cond_tracepoints ()
12632 {
12633 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12634 }
12635
12636 bool
12637 remote_target::supports_evaluation_of_breakpoint_conditions ()
12638 {
12639 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12640 }
12641
12642 static int
12643 remote_supports_fast_tracepoints ()
12644 {
12645 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12646 }
12647
12648 static int
12649 remote_supports_static_tracepoints ()
12650 {
12651 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12652 }
12653
12654 static int
12655 remote_supports_install_in_trace ()
12656 {
12657 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12658 }
12659
12660 bool
12661 remote_target::supports_enable_disable_tracepoint ()
12662 {
12663 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12664 == PACKET_ENABLE);
12665 }
12666
12667 bool
12668 remote_target::supports_string_tracing ()
12669 {
12670 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12671 }
12672
12673 bool
12674 remote_target::can_run_breakpoint_commands ()
12675 {
12676 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12677 }
12678
12679 void
12680 remote_target::trace_init ()
12681 {
12682 struct remote_state *rs = get_remote_state ();
12683
12684 putpkt ("QTinit");
12685 remote_get_noisy_reply ();
12686 if (strcmp (rs->buf.data (), "OK") != 0)
12687 error (_("Target does not support this command."));
12688 }
12689
12690 /* Recursive routine to walk through command list including loops, and
12691 download packets for each command. */
12692
12693 void
12694 remote_target::remote_download_command_source (int num, ULONGEST addr,
12695 struct command_line *cmds)
12696 {
12697 struct remote_state *rs = get_remote_state ();
12698 struct command_line *cmd;
12699
12700 for (cmd = cmds; cmd; cmd = cmd->next)
12701 {
12702 QUIT; /* Allow user to bail out with ^C. */
12703 strcpy (rs->buf.data (), "QTDPsrc:");
12704 encode_source_string (num, addr, "cmd", cmd->line,
12705 rs->buf.data () + strlen (rs->buf.data ()),
12706 rs->buf.size () - strlen (rs->buf.data ()));
12707 putpkt (rs->buf);
12708 remote_get_noisy_reply ();
12709 if (strcmp (rs->buf.data (), "OK"))
12710 warning (_("Target does not support source download."));
12711
12712 if (cmd->control_type == while_control
12713 || cmd->control_type == while_stepping_control)
12714 {
12715 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12716
12717 QUIT; /* Allow user to bail out with ^C. */
12718 strcpy (rs->buf.data (), "QTDPsrc:");
12719 encode_source_string (num, addr, "cmd", "end",
12720 rs->buf.data () + strlen (rs->buf.data ()),
12721 rs->buf.size () - strlen (rs->buf.data ()));
12722 putpkt (rs->buf);
12723 remote_get_noisy_reply ();
12724 if (strcmp (rs->buf.data (), "OK"))
12725 warning (_("Target does not support source download."));
12726 }
12727 }
12728 }
12729
12730 void
12731 remote_target::download_tracepoint (struct bp_location *loc)
12732 {
12733 CORE_ADDR tpaddr;
12734 char addrbuf[40];
12735 std::vector<std::string> tdp_actions;
12736 std::vector<std::string> stepping_actions;
12737 char *pkt;
12738 struct breakpoint *b = loc->owner;
12739 struct tracepoint *t = (struct tracepoint *) b;
12740 struct remote_state *rs = get_remote_state ();
12741 int ret;
12742 const char *err_msg = _("Tracepoint packet too large for target.");
12743 size_t size_left;
12744
12745 /* We use a buffer other than rs->buf because we'll build strings
12746 across multiple statements, and other statements in between could
12747 modify rs->buf. */
12748 gdb::char_vector buf (get_remote_packet_size ());
12749
12750 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12751
12752 tpaddr = loc->address;
12753 sprintf_vma (addrbuf, tpaddr);
12754 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12755 b->number, addrbuf, /* address */
12756 (b->enable_state == bp_enabled ? 'E' : 'D'),
12757 t->step_count, t->pass_count);
12758
12759 if (ret < 0 || ret >= buf.size ())
12760 error ("%s", err_msg);
12761
12762 /* Fast tracepoints are mostly handled by the target, but we can
12763 tell the target how big of an instruction block should be moved
12764 around. */
12765 if (b->type == bp_fast_tracepoint)
12766 {
12767 /* Only test for support at download time; we may not know
12768 target capabilities at definition time. */
12769 if (remote_supports_fast_tracepoints ())
12770 {
12771 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12772 NULL))
12773 {
12774 size_left = buf.size () - strlen (buf.data ());
12775 ret = snprintf (buf.data () + strlen (buf.data ()),
12776 size_left, ":F%x",
12777 gdb_insn_length (loc->gdbarch, tpaddr));
12778
12779 if (ret < 0 || ret >= size_left)
12780 error ("%s", err_msg);
12781 }
12782 else
12783 /* If it passed validation at definition but fails now,
12784 something is very wrong. */
12785 internal_error (__FILE__, __LINE__,
12786 _("Fast tracepoint not "
12787 "valid during download"));
12788 }
12789 else
12790 /* Fast tracepoints are functionally identical to regular
12791 tracepoints, so don't take lack of support as a reason to
12792 give up on the trace run. */
12793 warning (_("Target does not support fast tracepoints, "
12794 "downloading %d as regular tracepoint"), b->number);
12795 }
12796 else if (b->type == bp_static_tracepoint)
12797 {
12798 /* Only test for support at download time; we may not know
12799 target capabilities at definition time. */
12800 if (remote_supports_static_tracepoints ())
12801 {
12802 struct static_tracepoint_marker marker;
12803
12804 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12805 {
12806 size_left = buf.size () - strlen (buf.data ());
12807 ret = snprintf (buf.data () + strlen (buf.data ()),
12808 size_left, ":S");
12809
12810 if (ret < 0 || ret >= size_left)
12811 error ("%s", err_msg);
12812 }
12813 else
12814 error (_("Static tracepoint not valid during download"));
12815 }
12816 else
12817 /* Fast tracepoints are functionally identical to regular
12818 tracepoints, so don't take lack of support as a reason
12819 to give up on the trace run. */
12820 error (_("Target does not support static tracepoints"));
12821 }
12822 /* If the tracepoint has a conditional, make it into an agent
12823 expression and append to the definition. */
12824 if (loc->cond)
12825 {
12826 /* Only test support at download time, we may not know target
12827 capabilities at definition time. */
12828 if (remote_supports_cond_tracepoints ())
12829 {
12830 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12831 loc->cond.get ());
12832
12833 size_left = buf.size () - strlen (buf.data ());
12834
12835 ret = snprintf (buf.data () + strlen (buf.data ()),
12836 size_left, ":X%x,", aexpr->len);
12837
12838 if (ret < 0 || ret >= size_left)
12839 error ("%s", err_msg);
12840
12841 size_left = buf.size () - strlen (buf.data ());
12842
12843 /* Two bytes to encode each aexpr byte, plus the terminating
12844 null byte. */
12845 if (aexpr->len * 2 + 1 > size_left)
12846 error ("%s", err_msg);
12847
12848 pkt = buf.data () + strlen (buf.data ());
12849
12850 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12851 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12852 *pkt = '\0';
12853 }
12854 else
12855 warning (_("Target does not support conditional tracepoints, "
12856 "ignoring tp %d cond"), b->number);
12857 }
12858
12859 if (b->commands || *default_collect)
12860 {
12861 size_left = buf.size () - strlen (buf.data ());
12862
12863 ret = snprintf (buf.data () + strlen (buf.data ()),
12864 size_left, "-");
12865
12866 if (ret < 0 || ret >= size_left)
12867 error ("%s", err_msg);
12868 }
12869
12870 putpkt (buf.data ());
12871 remote_get_noisy_reply ();
12872 if (strcmp (rs->buf.data (), "OK"))
12873 error (_("Target does not support tracepoints."));
12874
12875 /* do_single_steps (t); */
12876 for (auto action_it = tdp_actions.begin ();
12877 action_it != tdp_actions.end (); action_it++)
12878 {
12879 QUIT; /* Allow user to bail out with ^C. */
12880
12881 bool has_more = ((action_it + 1) != tdp_actions.end ()
12882 || !stepping_actions.empty ());
12883
12884 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12885 b->number, addrbuf, /* address */
12886 action_it->c_str (),
12887 has_more ? '-' : 0);
12888
12889 if (ret < 0 || ret >= buf.size ())
12890 error ("%s", err_msg);
12891
12892 putpkt (buf.data ());
12893 remote_get_noisy_reply ();
12894 if (strcmp (rs->buf.data (), "OK"))
12895 error (_("Error on target while setting tracepoints."));
12896 }
12897
12898 for (auto action_it = stepping_actions.begin ();
12899 action_it != stepping_actions.end (); action_it++)
12900 {
12901 QUIT; /* Allow user to bail out with ^C. */
12902
12903 bool is_first = action_it == stepping_actions.begin ();
12904 bool has_more = (action_it + 1) != stepping_actions.end ();
12905
12906 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12907 b->number, addrbuf, /* address */
12908 is_first ? "S" : "",
12909 action_it->c_str (),
12910 has_more ? "-" : "");
12911
12912 if (ret < 0 || ret >= buf.size ())
12913 error ("%s", err_msg);
12914
12915 putpkt (buf.data ());
12916 remote_get_noisy_reply ();
12917 if (strcmp (rs->buf.data (), "OK"))
12918 error (_("Error on target while setting tracepoints."));
12919 }
12920
12921 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12922 {
12923 if (b->location != NULL)
12924 {
12925 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12926
12927 if (ret < 0 || ret >= buf.size ())
12928 error ("%s", err_msg);
12929
12930 encode_source_string (b->number, loc->address, "at",
12931 event_location_to_string (b->location.get ()),
12932 buf.data () + strlen (buf.data ()),
12933 buf.size () - strlen (buf.data ()));
12934 putpkt (buf.data ());
12935 remote_get_noisy_reply ();
12936 if (strcmp (rs->buf.data (), "OK"))
12937 warning (_("Target does not support source download."));
12938 }
12939 if (b->cond_string)
12940 {
12941 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12942
12943 if (ret < 0 || ret >= buf.size ())
12944 error ("%s", err_msg);
12945
12946 encode_source_string (b->number, loc->address,
12947 "cond", b->cond_string,
12948 buf.data () + strlen (buf.data ()),
12949 buf.size () - strlen (buf.data ()));
12950 putpkt (buf.data ());
12951 remote_get_noisy_reply ();
12952 if (strcmp (rs->buf.data (), "OK"))
12953 warning (_("Target does not support source download."));
12954 }
12955 remote_download_command_source (b->number, loc->address,
12956 breakpoint_commands (b));
12957 }
12958 }
12959
12960 bool
12961 remote_target::can_download_tracepoint ()
12962 {
12963 struct remote_state *rs = get_remote_state ();
12964 struct trace_status *ts;
12965 int status;
12966
12967 /* Don't try to install tracepoints until we've relocated our
12968 symbols, and fetched and merged the target's tracepoint list with
12969 ours. */
12970 if (rs->starting_up)
12971 return false;
12972
12973 ts = current_trace_status ();
12974 status = get_trace_status (ts);
12975
12976 if (status == -1 || !ts->running_known || !ts->running)
12977 return false;
12978
12979 /* If we are in a tracing experiment, but remote stub doesn't support
12980 installing tracepoint in trace, we have to return. */
12981 if (!remote_supports_install_in_trace ())
12982 return false;
12983
12984 return true;
12985 }
12986
12987
12988 void
12989 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12990 {
12991 struct remote_state *rs = get_remote_state ();
12992 char *p;
12993
12994 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
12995 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12996 tsv.builtin);
12997 p = rs->buf.data () + strlen (rs->buf.data ());
12998 if ((p - rs->buf.data ()) + tsv.name.length () * 2
12999 >= get_remote_packet_size ())
13000 error (_("Trace state variable name too long for tsv definition packet"));
13001 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13002 *p++ = '\0';
13003 putpkt (rs->buf);
13004 remote_get_noisy_reply ();
13005 if (rs->buf[0] == '\0')
13006 error (_("Target does not support this command."));
13007 if (strcmp (rs->buf.data (), "OK") != 0)
13008 error (_("Error on target while downloading trace state variable."));
13009 }
13010
13011 void
13012 remote_target::enable_tracepoint (struct bp_location *location)
13013 {
13014 struct remote_state *rs = get_remote_state ();
13015 char addr_buf[40];
13016
13017 sprintf_vma (addr_buf, location->address);
13018 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13019 location->owner->number, addr_buf);
13020 putpkt (rs->buf);
13021 remote_get_noisy_reply ();
13022 if (rs->buf[0] == '\0')
13023 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13024 if (strcmp (rs->buf.data (), "OK") != 0)
13025 error (_("Error on target while enabling tracepoint."));
13026 }
13027
13028 void
13029 remote_target::disable_tracepoint (struct bp_location *location)
13030 {
13031 struct remote_state *rs = get_remote_state ();
13032 char addr_buf[40];
13033
13034 sprintf_vma (addr_buf, location->address);
13035 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13036 location->owner->number, addr_buf);
13037 putpkt (rs->buf);
13038 remote_get_noisy_reply ();
13039 if (rs->buf[0] == '\0')
13040 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13041 if (strcmp (rs->buf.data (), "OK") != 0)
13042 error (_("Error on target while disabling tracepoint."));
13043 }
13044
13045 void
13046 remote_target::trace_set_readonly_regions ()
13047 {
13048 asection *s;
13049 bfd_size_type size;
13050 bfd_vma vma;
13051 int anysecs = 0;
13052 int offset = 0;
13053
13054 if (!exec_bfd)
13055 return; /* No information to give. */
13056
13057 struct remote_state *rs = get_remote_state ();
13058
13059 strcpy (rs->buf.data (), "QTro");
13060 offset = strlen (rs->buf.data ());
13061 for (s = exec_bfd->sections; s; s = s->next)
13062 {
13063 char tmp1[40], tmp2[40];
13064 int sec_length;
13065
13066 if ((s->flags & SEC_LOAD) == 0 ||
13067 /* (s->flags & SEC_CODE) == 0 || */
13068 (s->flags & SEC_READONLY) == 0)
13069 continue;
13070
13071 anysecs = 1;
13072 vma = bfd_section_vma (s);
13073 size = bfd_section_size (s);
13074 sprintf_vma (tmp1, vma);
13075 sprintf_vma (tmp2, vma + size);
13076 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13077 if (offset + sec_length + 1 > rs->buf.size ())
13078 {
13079 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13080 warning (_("\
13081 Too many sections for read-only sections definition packet."));
13082 break;
13083 }
13084 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13085 tmp1, tmp2);
13086 offset += sec_length;
13087 }
13088 if (anysecs)
13089 {
13090 putpkt (rs->buf);
13091 getpkt (&rs->buf, 0);
13092 }
13093 }
13094
13095 void
13096 remote_target::trace_start ()
13097 {
13098 struct remote_state *rs = get_remote_state ();
13099
13100 putpkt ("QTStart");
13101 remote_get_noisy_reply ();
13102 if (rs->buf[0] == '\0')
13103 error (_("Target does not support this command."));
13104 if (strcmp (rs->buf.data (), "OK") != 0)
13105 error (_("Bogus reply from target: %s"), rs->buf.data ());
13106 }
13107
13108 int
13109 remote_target::get_trace_status (struct trace_status *ts)
13110 {
13111 /* Initialize it just to avoid a GCC false warning. */
13112 char *p = NULL;
13113 enum packet_result result;
13114 struct remote_state *rs = get_remote_state ();
13115
13116 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13117 return -1;
13118
13119 /* FIXME we need to get register block size some other way. */
13120 trace_regblock_size
13121 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13122
13123 putpkt ("qTStatus");
13124
13125 try
13126 {
13127 p = remote_get_noisy_reply ();
13128 }
13129 catch (const gdb_exception_error &ex)
13130 {
13131 if (ex.error != TARGET_CLOSE_ERROR)
13132 {
13133 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13134 return -1;
13135 }
13136 throw;
13137 }
13138
13139 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13140
13141 /* If the remote target doesn't do tracing, flag it. */
13142 if (result == PACKET_UNKNOWN)
13143 return -1;
13144
13145 /* We're working with a live target. */
13146 ts->filename = NULL;
13147
13148 if (*p++ != 'T')
13149 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13150
13151 /* Function 'parse_trace_status' sets default value of each field of
13152 'ts' at first, so we don't have to do it here. */
13153 parse_trace_status (p, ts);
13154
13155 return ts->running;
13156 }
13157
13158 void
13159 remote_target::get_tracepoint_status (struct breakpoint *bp,
13160 struct uploaded_tp *utp)
13161 {
13162 struct remote_state *rs = get_remote_state ();
13163 char *reply;
13164 struct bp_location *loc;
13165 struct tracepoint *tp = (struct tracepoint *) bp;
13166 size_t size = get_remote_packet_size ();
13167
13168 if (tp)
13169 {
13170 tp->hit_count = 0;
13171 tp->traceframe_usage = 0;
13172 for (loc = tp->loc; loc; loc = loc->next)
13173 {
13174 /* If the tracepoint was never downloaded, don't go asking for
13175 any status. */
13176 if (tp->number_on_target == 0)
13177 continue;
13178 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13179 phex_nz (loc->address, 0));
13180 putpkt (rs->buf);
13181 reply = remote_get_noisy_reply ();
13182 if (reply && *reply)
13183 {
13184 if (*reply == 'V')
13185 parse_tracepoint_status (reply + 1, bp, utp);
13186 }
13187 }
13188 }
13189 else if (utp)
13190 {
13191 utp->hit_count = 0;
13192 utp->traceframe_usage = 0;
13193 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13194 phex_nz (utp->addr, 0));
13195 putpkt (rs->buf);
13196 reply = remote_get_noisy_reply ();
13197 if (reply && *reply)
13198 {
13199 if (*reply == 'V')
13200 parse_tracepoint_status (reply + 1, bp, utp);
13201 }
13202 }
13203 }
13204
13205 void
13206 remote_target::trace_stop ()
13207 {
13208 struct remote_state *rs = get_remote_state ();
13209
13210 putpkt ("QTStop");
13211 remote_get_noisy_reply ();
13212 if (rs->buf[0] == '\0')
13213 error (_("Target does not support this command."));
13214 if (strcmp (rs->buf.data (), "OK") != 0)
13215 error (_("Bogus reply from target: %s"), rs->buf.data ());
13216 }
13217
13218 int
13219 remote_target::trace_find (enum trace_find_type type, int num,
13220 CORE_ADDR addr1, CORE_ADDR addr2,
13221 int *tpp)
13222 {
13223 struct remote_state *rs = get_remote_state ();
13224 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13225 char *p, *reply;
13226 int target_frameno = -1, target_tracept = -1;
13227
13228 /* Lookups other than by absolute frame number depend on the current
13229 trace selected, so make sure it is correct on the remote end
13230 first. */
13231 if (type != tfind_number)
13232 set_remote_traceframe ();
13233
13234 p = rs->buf.data ();
13235 strcpy (p, "QTFrame:");
13236 p = strchr (p, '\0');
13237 switch (type)
13238 {
13239 case tfind_number:
13240 xsnprintf (p, endbuf - p, "%x", num);
13241 break;
13242 case tfind_pc:
13243 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13244 break;
13245 case tfind_tp:
13246 xsnprintf (p, endbuf - p, "tdp:%x", num);
13247 break;
13248 case tfind_range:
13249 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13250 phex_nz (addr2, 0));
13251 break;
13252 case tfind_outside:
13253 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13254 phex_nz (addr2, 0));
13255 break;
13256 default:
13257 error (_("Unknown trace find type %d"), type);
13258 }
13259
13260 putpkt (rs->buf);
13261 reply = remote_get_noisy_reply ();
13262 if (*reply == '\0')
13263 error (_("Target does not support this command."));
13264
13265 while (reply && *reply)
13266 switch (*reply)
13267 {
13268 case 'F':
13269 p = ++reply;
13270 target_frameno = (int) strtol (p, &reply, 16);
13271 if (reply == p)
13272 error (_("Unable to parse trace frame number"));
13273 /* Don't update our remote traceframe number cache on failure
13274 to select a remote traceframe. */
13275 if (target_frameno == -1)
13276 return -1;
13277 break;
13278 case 'T':
13279 p = ++reply;
13280 target_tracept = (int) strtol (p, &reply, 16);
13281 if (reply == p)
13282 error (_("Unable to parse tracepoint number"));
13283 break;
13284 case 'O': /* "OK"? */
13285 if (reply[1] == 'K' && reply[2] == '\0')
13286 reply += 2;
13287 else
13288 error (_("Bogus reply from target: %s"), reply);
13289 break;
13290 default:
13291 error (_("Bogus reply from target: %s"), reply);
13292 }
13293 if (tpp)
13294 *tpp = target_tracept;
13295
13296 rs->remote_traceframe_number = target_frameno;
13297 return target_frameno;
13298 }
13299
13300 bool
13301 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13302 {
13303 struct remote_state *rs = get_remote_state ();
13304 char *reply;
13305 ULONGEST uval;
13306
13307 set_remote_traceframe ();
13308
13309 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13310 putpkt (rs->buf);
13311 reply = remote_get_noisy_reply ();
13312 if (reply && *reply)
13313 {
13314 if (*reply == 'V')
13315 {
13316 unpack_varlen_hex (reply + 1, &uval);
13317 *val = (LONGEST) uval;
13318 return true;
13319 }
13320 }
13321 return false;
13322 }
13323
13324 int
13325 remote_target::save_trace_data (const char *filename)
13326 {
13327 struct remote_state *rs = get_remote_state ();
13328 char *p, *reply;
13329
13330 p = rs->buf.data ();
13331 strcpy (p, "QTSave:");
13332 p += strlen (p);
13333 if ((p - rs->buf.data ()) + strlen (filename) * 2
13334 >= get_remote_packet_size ())
13335 error (_("Remote file name too long for trace save packet"));
13336 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13337 *p++ = '\0';
13338 putpkt (rs->buf);
13339 reply = remote_get_noisy_reply ();
13340 if (*reply == '\0')
13341 error (_("Target does not support this command."));
13342 if (strcmp (reply, "OK") != 0)
13343 error (_("Bogus reply from target: %s"), reply);
13344 return 0;
13345 }
13346
13347 /* This is basically a memory transfer, but needs to be its own packet
13348 because we don't know how the target actually organizes its trace
13349 memory, plus we want to be able to ask for as much as possible, but
13350 not be unhappy if we don't get as much as we ask for. */
13351
13352 LONGEST
13353 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13354 {
13355 struct remote_state *rs = get_remote_state ();
13356 char *reply;
13357 char *p;
13358 int rslt;
13359
13360 p = rs->buf.data ();
13361 strcpy (p, "qTBuffer:");
13362 p += strlen (p);
13363 p += hexnumstr (p, offset);
13364 *p++ = ',';
13365 p += hexnumstr (p, len);
13366 *p++ = '\0';
13367
13368 putpkt (rs->buf);
13369 reply = remote_get_noisy_reply ();
13370 if (reply && *reply)
13371 {
13372 /* 'l' by itself means we're at the end of the buffer and
13373 there is nothing more to get. */
13374 if (*reply == 'l')
13375 return 0;
13376
13377 /* Convert the reply into binary. Limit the number of bytes to
13378 convert according to our passed-in buffer size, rather than
13379 what was returned in the packet; if the target is
13380 unexpectedly generous and gives us a bigger reply than we
13381 asked for, we don't want to crash. */
13382 rslt = hex2bin (reply, buf, len);
13383 return rslt;
13384 }
13385
13386 /* Something went wrong, flag as an error. */
13387 return -1;
13388 }
13389
13390 void
13391 remote_target::set_disconnected_tracing (int val)
13392 {
13393 struct remote_state *rs = get_remote_state ();
13394
13395 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13396 {
13397 char *reply;
13398
13399 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13400 "QTDisconnected:%x", val);
13401 putpkt (rs->buf);
13402 reply = remote_get_noisy_reply ();
13403 if (*reply == '\0')
13404 error (_("Target does not support this command."));
13405 if (strcmp (reply, "OK") != 0)
13406 error (_("Bogus reply from target: %s"), reply);
13407 }
13408 else if (val)
13409 warning (_("Target does not support disconnected tracing."));
13410 }
13411
13412 int
13413 remote_target::core_of_thread (ptid_t ptid)
13414 {
13415 struct thread_info *info = find_thread_ptid (ptid);
13416
13417 if (info != NULL && info->priv != NULL)
13418 return get_remote_thread_info (info)->core;
13419
13420 return -1;
13421 }
13422
13423 void
13424 remote_target::set_circular_trace_buffer (int val)
13425 {
13426 struct remote_state *rs = get_remote_state ();
13427 char *reply;
13428
13429 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13430 "QTBuffer:circular:%x", val);
13431 putpkt (rs->buf);
13432 reply = remote_get_noisy_reply ();
13433 if (*reply == '\0')
13434 error (_("Target does not support this command."));
13435 if (strcmp (reply, "OK") != 0)
13436 error (_("Bogus reply from target: %s"), reply);
13437 }
13438
13439 traceframe_info_up
13440 remote_target::traceframe_info ()
13441 {
13442 gdb::optional<gdb::char_vector> text
13443 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13444 NULL);
13445 if (text)
13446 return parse_traceframe_info (text->data ());
13447
13448 return NULL;
13449 }
13450
13451 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13452 instruction on which a fast tracepoint may be placed. Returns -1
13453 if the packet is not supported, and 0 if the minimum instruction
13454 length is unknown. */
13455
13456 int
13457 remote_target::get_min_fast_tracepoint_insn_len ()
13458 {
13459 struct remote_state *rs = get_remote_state ();
13460 char *reply;
13461
13462 /* If we're not debugging a process yet, the IPA can't be
13463 loaded. */
13464 if (!target_has_execution)
13465 return 0;
13466
13467 /* Make sure the remote is pointing at the right process. */
13468 set_general_process ();
13469
13470 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13471 putpkt (rs->buf);
13472 reply = remote_get_noisy_reply ();
13473 if (*reply == '\0')
13474 return -1;
13475 else
13476 {
13477 ULONGEST min_insn_len;
13478
13479 unpack_varlen_hex (reply, &min_insn_len);
13480
13481 return (int) min_insn_len;
13482 }
13483 }
13484
13485 void
13486 remote_target::set_trace_buffer_size (LONGEST val)
13487 {
13488 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13489 {
13490 struct remote_state *rs = get_remote_state ();
13491 char *buf = rs->buf.data ();
13492 char *endbuf = buf + get_remote_packet_size ();
13493 enum packet_result result;
13494
13495 gdb_assert (val >= 0 || val == -1);
13496 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13497 /* Send -1 as literal "-1" to avoid host size dependency. */
13498 if (val < 0)
13499 {
13500 *buf++ = '-';
13501 buf += hexnumstr (buf, (ULONGEST) -val);
13502 }
13503 else
13504 buf += hexnumstr (buf, (ULONGEST) val);
13505
13506 putpkt (rs->buf);
13507 remote_get_noisy_reply ();
13508 result = packet_ok (rs->buf,
13509 &remote_protocol_packets[PACKET_QTBuffer_size]);
13510
13511 if (result != PACKET_OK)
13512 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13513 }
13514 }
13515
13516 bool
13517 remote_target::set_trace_notes (const char *user, const char *notes,
13518 const char *stop_notes)
13519 {
13520 struct remote_state *rs = get_remote_state ();
13521 char *reply;
13522 char *buf = rs->buf.data ();
13523 char *endbuf = buf + get_remote_packet_size ();
13524 int nbytes;
13525
13526 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13527 if (user)
13528 {
13529 buf += xsnprintf (buf, endbuf - buf, "user:");
13530 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13531 buf += 2 * nbytes;
13532 *buf++ = ';';
13533 }
13534 if (notes)
13535 {
13536 buf += xsnprintf (buf, endbuf - buf, "notes:");
13537 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13538 buf += 2 * nbytes;
13539 *buf++ = ';';
13540 }
13541 if (stop_notes)
13542 {
13543 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13544 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13545 buf += 2 * nbytes;
13546 *buf++ = ';';
13547 }
13548 /* Ensure the buffer is terminated. */
13549 *buf = '\0';
13550
13551 putpkt (rs->buf);
13552 reply = remote_get_noisy_reply ();
13553 if (*reply == '\0')
13554 return false;
13555
13556 if (strcmp (reply, "OK") != 0)
13557 error (_("Bogus reply from target: %s"), reply);
13558
13559 return true;
13560 }
13561
13562 bool
13563 remote_target::use_agent (bool use)
13564 {
13565 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13566 {
13567 struct remote_state *rs = get_remote_state ();
13568
13569 /* If the stub supports QAgent. */
13570 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13571 putpkt (rs->buf);
13572 getpkt (&rs->buf, 0);
13573
13574 if (strcmp (rs->buf.data (), "OK") == 0)
13575 {
13576 ::use_agent = use;
13577 return true;
13578 }
13579 }
13580
13581 return false;
13582 }
13583
13584 bool
13585 remote_target::can_use_agent ()
13586 {
13587 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13588 }
13589
13590 struct btrace_target_info
13591 {
13592 /* The ptid of the traced thread. */
13593 ptid_t ptid;
13594
13595 /* The obtained branch trace configuration. */
13596 struct btrace_config conf;
13597 };
13598
13599 /* Reset our idea of our target's btrace configuration. */
13600
13601 static void
13602 remote_btrace_reset (remote_state *rs)
13603 {
13604 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13605 }
13606
13607 /* Synchronize the configuration with the target. */
13608
13609 void
13610 remote_target::btrace_sync_conf (const btrace_config *conf)
13611 {
13612 struct packet_config *packet;
13613 struct remote_state *rs;
13614 char *buf, *pos, *endbuf;
13615
13616 rs = get_remote_state ();
13617 buf = rs->buf.data ();
13618 endbuf = buf + get_remote_packet_size ();
13619
13620 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13621 if (packet_config_support (packet) == PACKET_ENABLE
13622 && conf->bts.size != rs->btrace_config.bts.size)
13623 {
13624 pos = buf;
13625 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13626 conf->bts.size);
13627
13628 putpkt (buf);
13629 getpkt (&rs->buf, 0);
13630
13631 if (packet_ok (buf, packet) == PACKET_ERROR)
13632 {
13633 if (buf[0] == 'E' && buf[1] == '.')
13634 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13635 else
13636 error (_("Failed to configure the BTS buffer size."));
13637 }
13638
13639 rs->btrace_config.bts.size = conf->bts.size;
13640 }
13641
13642 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13643 if (packet_config_support (packet) == PACKET_ENABLE
13644 && conf->pt.size != rs->btrace_config.pt.size)
13645 {
13646 pos = buf;
13647 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13648 conf->pt.size);
13649
13650 putpkt (buf);
13651 getpkt (&rs->buf, 0);
13652
13653 if (packet_ok (buf, packet) == PACKET_ERROR)
13654 {
13655 if (buf[0] == 'E' && buf[1] == '.')
13656 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13657 else
13658 error (_("Failed to configure the trace buffer size."));
13659 }
13660
13661 rs->btrace_config.pt.size = conf->pt.size;
13662 }
13663 }
13664
13665 /* Read the current thread's btrace configuration from the target and
13666 store it into CONF. */
13667
13668 static void
13669 btrace_read_config (struct btrace_config *conf)
13670 {
13671 gdb::optional<gdb::char_vector> xml
13672 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13673 if (xml)
13674 parse_xml_btrace_conf (conf, xml->data ());
13675 }
13676
13677 /* Maybe reopen target btrace. */
13678
13679 void
13680 remote_target::remote_btrace_maybe_reopen ()
13681 {
13682 struct remote_state *rs = get_remote_state ();
13683 int btrace_target_pushed = 0;
13684 #if !defined (HAVE_LIBIPT)
13685 int warned = 0;
13686 #endif
13687
13688 /* Don't bother walking the entirety of the remote thread list when
13689 we know the feature isn't supported by the remote. */
13690 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13691 return;
13692
13693 scoped_restore_current_thread restore_thread;
13694
13695 for (thread_info *tp : all_non_exited_threads ())
13696 {
13697 set_general_thread (tp->ptid);
13698
13699 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13700 btrace_read_config (&rs->btrace_config);
13701
13702 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13703 continue;
13704
13705 #if !defined (HAVE_LIBIPT)
13706 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13707 {
13708 if (!warned)
13709 {
13710 warned = 1;
13711 warning (_("Target is recording using Intel Processor Trace "
13712 "but support was disabled at compile time."));
13713 }
13714
13715 continue;
13716 }
13717 #endif /* !defined (HAVE_LIBIPT) */
13718
13719 /* Push target, once, but before anything else happens. This way our
13720 changes to the threads will be cleaned up by unpushing the target
13721 in case btrace_read_config () throws. */
13722 if (!btrace_target_pushed)
13723 {
13724 btrace_target_pushed = 1;
13725 record_btrace_push_target ();
13726 printf_filtered (_("Target is recording using %s.\n"),
13727 btrace_format_string (rs->btrace_config.format));
13728 }
13729
13730 tp->btrace.target = XCNEW (struct btrace_target_info);
13731 tp->btrace.target->ptid = tp->ptid;
13732 tp->btrace.target->conf = rs->btrace_config;
13733 }
13734 }
13735
13736 /* Enable branch tracing. */
13737
13738 struct btrace_target_info *
13739 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13740 {
13741 struct btrace_target_info *tinfo = NULL;
13742 struct packet_config *packet = NULL;
13743 struct remote_state *rs = get_remote_state ();
13744 char *buf = rs->buf.data ();
13745 char *endbuf = buf + get_remote_packet_size ();
13746
13747 switch (conf->format)
13748 {
13749 case BTRACE_FORMAT_BTS:
13750 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13751 break;
13752
13753 case BTRACE_FORMAT_PT:
13754 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13755 break;
13756 }
13757
13758 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13759 error (_("Target does not support branch tracing."));
13760
13761 btrace_sync_conf (conf);
13762
13763 set_general_thread (ptid);
13764
13765 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13766 putpkt (rs->buf);
13767 getpkt (&rs->buf, 0);
13768
13769 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13770 {
13771 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13772 error (_("Could not enable branch tracing for %s: %s"),
13773 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13774 else
13775 error (_("Could not enable branch tracing for %s."),
13776 target_pid_to_str (ptid).c_str ());
13777 }
13778
13779 tinfo = XCNEW (struct btrace_target_info);
13780 tinfo->ptid = ptid;
13781
13782 /* If we fail to read the configuration, we lose some information, but the
13783 tracing itself is not impacted. */
13784 try
13785 {
13786 btrace_read_config (&tinfo->conf);
13787 }
13788 catch (const gdb_exception_error &err)
13789 {
13790 if (err.message != NULL)
13791 warning ("%s", err.what ());
13792 }
13793
13794 return tinfo;
13795 }
13796
13797 /* Disable branch tracing. */
13798
13799 void
13800 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13801 {
13802 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13803 struct remote_state *rs = get_remote_state ();
13804 char *buf = rs->buf.data ();
13805 char *endbuf = buf + get_remote_packet_size ();
13806
13807 if (packet_config_support (packet) != PACKET_ENABLE)
13808 error (_("Target does not support branch tracing."));
13809
13810 set_general_thread (tinfo->ptid);
13811
13812 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13813 putpkt (rs->buf);
13814 getpkt (&rs->buf, 0);
13815
13816 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13817 {
13818 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13819 error (_("Could not disable branch tracing for %s: %s"),
13820 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13821 else
13822 error (_("Could not disable branch tracing for %s."),
13823 target_pid_to_str (tinfo->ptid).c_str ());
13824 }
13825
13826 xfree (tinfo);
13827 }
13828
13829 /* Teardown branch tracing. */
13830
13831 void
13832 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13833 {
13834 /* We must not talk to the target during teardown. */
13835 xfree (tinfo);
13836 }
13837
13838 /* Read the branch trace. */
13839
13840 enum btrace_error
13841 remote_target::read_btrace (struct btrace_data *btrace,
13842 struct btrace_target_info *tinfo,
13843 enum btrace_read_type type)
13844 {
13845 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13846 const char *annex;
13847
13848 if (packet_config_support (packet) != PACKET_ENABLE)
13849 error (_("Target does not support branch tracing."));
13850
13851 #if !defined(HAVE_LIBEXPAT)
13852 error (_("Cannot process branch tracing result. XML parsing not supported."));
13853 #endif
13854
13855 switch (type)
13856 {
13857 case BTRACE_READ_ALL:
13858 annex = "all";
13859 break;
13860 case BTRACE_READ_NEW:
13861 annex = "new";
13862 break;
13863 case BTRACE_READ_DELTA:
13864 annex = "delta";
13865 break;
13866 default:
13867 internal_error (__FILE__, __LINE__,
13868 _("Bad branch tracing read type: %u."),
13869 (unsigned int) type);
13870 }
13871
13872 gdb::optional<gdb::char_vector> xml
13873 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13874 if (!xml)
13875 return BTRACE_ERR_UNKNOWN;
13876
13877 parse_xml_btrace (btrace, xml->data ());
13878
13879 return BTRACE_ERR_NONE;
13880 }
13881
13882 const struct btrace_config *
13883 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13884 {
13885 return &tinfo->conf;
13886 }
13887
13888 bool
13889 remote_target::augmented_libraries_svr4_read ()
13890 {
13891 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13892 == PACKET_ENABLE);
13893 }
13894
13895 /* Implementation of to_load. */
13896
13897 void
13898 remote_target::load (const char *name, int from_tty)
13899 {
13900 generic_load (name, from_tty);
13901 }
13902
13903 /* Accepts an integer PID; returns a string representing a file that
13904 can be opened on the remote side to get the symbols for the child
13905 process. Returns NULL if the operation is not supported. */
13906
13907 char *
13908 remote_target::pid_to_exec_file (int pid)
13909 {
13910 static gdb::optional<gdb::char_vector> filename;
13911 struct inferior *inf;
13912 char *annex = NULL;
13913
13914 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13915 return NULL;
13916
13917 inf = find_inferior_pid (pid);
13918 if (inf == NULL)
13919 internal_error (__FILE__, __LINE__,
13920 _("not currently attached to process %d"), pid);
13921
13922 if (!inf->fake_pid_p)
13923 {
13924 const int annex_size = 9;
13925
13926 annex = (char *) alloca (annex_size);
13927 xsnprintf (annex, annex_size, "%x", pid);
13928 }
13929
13930 filename = target_read_stralloc (current_top_target (),
13931 TARGET_OBJECT_EXEC_FILE, annex);
13932
13933 return filename ? filename->data () : nullptr;
13934 }
13935
13936 /* Implement the to_can_do_single_step target_ops method. */
13937
13938 int
13939 remote_target::can_do_single_step ()
13940 {
13941 /* We can only tell whether target supports single step or not by
13942 supported s and S vCont actions if the stub supports vContSupported
13943 feature. If the stub doesn't support vContSupported feature,
13944 we have conservatively to think target doesn't supports single
13945 step. */
13946 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13947 {
13948 struct remote_state *rs = get_remote_state ();
13949
13950 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13951 remote_vcont_probe ();
13952
13953 return rs->supports_vCont.s && rs->supports_vCont.S;
13954 }
13955 else
13956 return 0;
13957 }
13958
13959 /* Implementation of the to_execution_direction method for the remote
13960 target. */
13961
13962 enum exec_direction_kind
13963 remote_target::execution_direction ()
13964 {
13965 struct remote_state *rs = get_remote_state ();
13966
13967 return rs->last_resume_exec_dir;
13968 }
13969
13970 /* Return pointer to the thread_info struct which corresponds to
13971 THREAD_HANDLE (having length HANDLE_LEN). */
13972
13973 thread_info *
13974 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13975 int handle_len,
13976 inferior *inf)
13977 {
13978 for (thread_info *tp : all_non_exited_threads ())
13979 {
13980 remote_thread_info *priv = get_remote_thread_info (tp);
13981
13982 if (tp->inf == inf && priv != NULL)
13983 {
13984 if (handle_len != priv->thread_handle.size ())
13985 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13986 handle_len, priv->thread_handle.size ());
13987 if (memcmp (thread_handle, priv->thread_handle.data (),
13988 handle_len) == 0)
13989 return tp;
13990 }
13991 }
13992
13993 return NULL;
13994 }
13995
13996 gdb::byte_vector
13997 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
13998 {
13999 remote_thread_info *priv = get_remote_thread_info (tp);
14000 return priv->thread_handle;
14001 }
14002
14003 bool
14004 remote_target::can_async_p ()
14005 {
14006 struct remote_state *rs = get_remote_state ();
14007
14008 /* We don't go async if the user has explicitly prevented it with the
14009 "maint set target-async" command. */
14010 if (!target_async_permitted)
14011 return false;
14012
14013 /* We're async whenever the serial device is. */
14014 return serial_can_async_p (rs->remote_desc);
14015 }
14016
14017 bool
14018 remote_target::is_async_p ()
14019 {
14020 struct remote_state *rs = get_remote_state ();
14021
14022 if (!target_async_permitted)
14023 /* We only enable async when the user specifically asks for it. */
14024 return false;
14025
14026 /* We're async whenever the serial device is. */
14027 return serial_is_async_p (rs->remote_desc);
14028 }
14029
14030 /* Pass the SERIAL event on and up to the client. One day this code
14031 will be able to delay notifying the client of an event until the
14032 point where an entire packet has been received. */
14033
14034 static serial_event_ftype remote_async_serial_handler;
14035
14036 static void
14037 remote_async_serial_handler (struct serial *scb, void *context)
14038 {
14039 /* Don't propogate error information up to the client. Instead let
14040 the client find out about the error by querying the target. */
14041 inferior_event_handler (INF_REG_EVENT, NULL);
14042 }
14043
14044 static void
14045 remote_async_inferior_event_handler (gdb_client_data data)
14046 {
14047 inferior_event_handler (INF_REG_EVENT, data);
14048 }
14049
14050 void
14051 remote_target::async (int enable)
14052 {
14053 struct remote_state *rs = get_remote_state ();
14054
14055 if (enable)
14056 {
14057 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14058
14059 /* If there are pending events in the stop reply queue tell the
14060 event loop to process them. */
14061 if (!rs->stop_reply_queue.empty ())
14062 mark_async_event_handler (rs->remote_async_inferior_event_token);
14063 /* For simplicity, below we clear the pending events token
14064 without remembering whether it is marked, so here we always
14065 mark it. If there's actually no pending notification to
14066 process, this ends up being a no-op (other than a spurious
14067 event-loop wakeup). */
14068 if (target_is_non_stop_p ())
14069 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14070 }
14071 else
14072 {
14073 serial_async (rs->remote_desc, NULL, NULL);
14074 /* If the core is disabling async, it doesn't want to be
14075 disturbed with target events. Clear all async event sources
14076 too. */
14077 clear_async_event_handler (rs->remote_async_inferior_event_token);
14078 if (target_is_non_stop_p ())
14079 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14080 }
14081 }
14082
14083 /* Implementation of the to_thread_events method. */
14084
14085 void
14086 remote_target::thread_events (int enable)
14087 {
14088 struct remote_state *rs = get_remote_state ();
14089 size_t size = get_remote_packet_size ();
14090
14091 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14092 return;
14093
14094 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14095 putpkt (rs->buf);
14096 getpkt (&rs->buf, 0);
14097
14098 switch (packet_ok (rs->buf,
14099 &remote_protocol_packets[PACKET_QThreadEvents]))
14100 {
14101 case PACKET_OK:
14102 if (strcmp (rs->buf.data (), "OK") != 0)
14103 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14104 break;
14105 case PACKET_ERROR:
14106 warning (_("Remote failure reply: %s"), rs->buf.data ());
14107 break;
14108 case PACKET_UNKNOWN:
14109 break;
14110 }
14111 }
14112
14113 static void
14114 set_remote_cmd (const char *args, int from_tty)
14115 {
14116 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14117 }
14118
14119 static void
14120 show_remote_cmd (const char *args, int from_tty)
14121 {
14122 /* We can't just use cmd_show_list here, because we want to skip
14123 the redundant "show remote Z-packet" and the legacy aliases. */
14124 struct cmd_list_element *list = remote_show_cmdlist;
14125 struct ui_out *uiout = current_uiout;
14126
14127 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14128 for (; list != NULL; list = list->next)
14129 if (strcmp (list->name, "Z-packet") == 0)
14130 continue;
14131 else if (list->type == not_set_cmd)
14132 /* Alias commands are exactly like the original, except they
14133 don't have the normal type. */
14134 continue;
14135 else
14136 {
14137 ui_out_emit_tuple option_emitter (uiout, "option");
14138
14139 uiout->field_string ("name", list->name);
14140 uiout->text (": ");
14141 if (list->type == show_cmd)
14142 do_show_command (NULL, from_tty, list);
14143 else
14144 cmd_func (list, NULL, from_tty);
14145 }
14146 }
14147
14148
14149 /* Function to be called whenever a new objfile (shlib) is detected. */
14150 static void
14151 remote_new_objfile (struct objfile *objfile)
14152 {
14153 remote_target *remote = get_current_remote_target ();
14154
14155 if (remote != NULL) /* Have a remote connection. */
14156 remote->remote_check_symbols ();
14157 }
14158
14159 /* Pull all the tracepoints defined on the target and create local
14160 data structures representing them. We don't want to create real
14161 tracepoints yet, we don't want to mess up the user's existing
14162 collection. */
14163
14164 int
14165 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14166 {
14167 struct remote_state *rs = get_remote_state ();
14168 char *p;
14169
14170 /* Ask for a first packet of tracepoint definition. */
14171 putpkt ("qTfP");
14172 getpkt (&rs->buf, 0);
14173 p = rs->buf.data ();
14174 while (*p && *p != 'l')
14175 {
14176 parse_tracepoint_definition (p, utpp);
14177 /* Ask for another packet of tracepoint definition. */
14178 putpkt ("qTsP");
14179 getpkt (&rs->buf, 0);
14180 p = rs->buf.data ();
14181 }
14182 return 0;
14183 }
14184
14185 int
14186 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14187 {
14188 struct remote_state *rs = get_remote_state ();
14189 char *p;
14190
14191 /* Ask for a first packet of variable definition. */
14192 putpkt ("qTfV");
14193 getpkt (&rs->buf, 0);
14194 p = rs->buf.data ();
14195 while (*p && *p != 'l')
14196 {
14197 parse_tsv_definition (p, utsvp);
14198 /* Ask for another packet of variable definition. */
14199 putpkt ("qTsV");
14200 getpkt (&rs->buf, 0);
14201 p = rs->buf.data ();
14202 }
14203 return 0;
14204 }
14205
14206 /* The "set/show range-stepping" show hook. */
14207
14208 static void
14209 show_range_stepping (struct ui_file *file, int from_tty,
14210 struct cmd_list_element *c,
14211 const char *value)
14212 {
14213 fprintf_filtered (file,
14214 _("Debugger's willingness to use range stepping "
14215 "is %s.\n"), value);
14216 }
14217
14218 /* Return true if the vCont;r action is supported by the remote
14219 stub. */
14220
14221 bool
14222 remote_target::vcont_r_supported ()
14223 {
14224 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14225 remote_vcont_probe ();
14226
14227 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14228 && get_remote_state ()->supports_vCont.r);
14229 }
14230
14231 /* The "set/show range-stepping" set hook. */
14232
14233 static void
14234 set_range_stepping (const char *ignore_args, int from_tty,
14235 struct cmd_list_element *c)
14236 {
14237 /* When enabling, check whether range stepping is actually supported
14238 by the target, and warn if not. */
14239 if (use_range_stepping)
14240 {
14241 remote_target *remote = get_current_remote_target ();
14242 if (remote == NULL
14243 || !remote->vcont_r_supported ())
14244 warning (_("Range stepping is not supported by the current target"));
14245 }
14246 }
14247
14248 void
14249 _initialize_remote (void)
14250 {
14251 struct cmd_list_element *cmd;
14252 const char *cmd_name;
14253
14254 /* architecture specific data */
14255 remote_g_packet_data_handle =
14256 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14257
14258 add_target (remote_target_info, remote_target::open);
14259 add_target (extended_remote_target_info, extended_remote_target::open);
14260
14261 /* Hook into new objfile notification. */
14262 gdb::observers::new_objfile.attach (remote_new_objfile);
14263
14264 #if 0
14265 init_remote_threadtests ();
14266 #endif
14267
14268 /* set/show remote ... */
14269
14270 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14271 Remote protocol specific variables.\n\
14272 Configure various remote-protocol specific variables such as\n\
14273 the packets being used."),
14274 &remote_set_cmdlist, "set remote ",
14275 0 /* allow-unknown */, &setlist);
14276 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14277 Remote protocol specific variables.\n\
14278 Configure various remote-protocol specific variables such as\n\
14279 the packets being used."),
14280 &remote_show_cmdlist, "show remote ",
14281 0 /* allow-unknown */, &showlist);
14282
14283 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14284 Compare section data on target to the exec file.\n\
14285 Argument is a single section name (default: all loaded sections).\n\
14286 To compare only read-only loaded sections, specify the -r option."),
14287 &cmdlist);
14288
14289 add_cmd ("packet", class_maintenance, packet_command, _("\
14290 Send an arbitrary packet to a remote target.\n\
14291 maintenance packet TEXT\n\
14292 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14293 this command sends the string TEXT to the inferior, and displays the\n\
14294 response packet. GDB supplies the initial `$' character, and the\n\
14295 terminating `#' character and checksum."),
14296 &maintenancelist);
14297
14298 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14299 Set whether to send break if interrupted."), _("\
14300 Show whether to send break if interrupted."), _("\
14301 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14302 set_remotebreak, show_remotebreak,
14303 &setlist, &showlist);
14304 cmd_name = "remotebreak";
14305 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14306 deprecate_cmd (cmd, "set remote interrupt-sequence");
14307 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14308 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14309 deprecate_cmd (cmd, "show remote interrupt-sequence");
14310
14311 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14312 interrupt_sequence_modes, &interrupt_sequence_mode,
14313 _("\
14314 Set interrupt sequence to remote target."), _("\
14315 Show interrupt sequence to remote target."), _("\
14316 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14317 NULL, show_interrupt_sequence,
14318 &remote_set_cmdlist,
14319 &remote_show_cmdlist);
14320
14321 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14322 &interrupt_on_connect, _("\
14323 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14324 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14325 If set, interrupt sequence is sent to remote target."),
14326 NULL, NULL,
14327 &remote_set_cmdlist, &remote_show_cmdlist);
14328
14329 /* Install commands for configuring memory read/write packets. */
14330
14331 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14332 Set the maximum number of bytes per memory write packet (deprecated)."),
14333 &setlist);
14334 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14335 Show the maximum number of bytes per memory write packet (deprecated)."),
14336 &showlist);
14337 add_cmd ("memory-write-packet-size", no_class,
14338 set_memory_write_packet_size, _("\
14339 Set the maximum number of bytes per memory-write packet.\n\
14340 Specify the number of bytes in a packet or 0 (zero) for the\n\
14341 default packet size. The actual limit is further reduced\n\
14342 dependent on the target. Specify ``fixed'' to disable the\n\
14343 further restriction and ``limit'' to enable that restriction."),
14344 &remote_set_cmdlist);
14345 add_cmd ("memory-read-packet-size", no_class,
14346 set_memory_read_packet_size, _("\
14347 Set the maximum number of bytes per memory-read packet.\n\
14348 Specify the number of bytes in a packet or 0 (zero) for the\n\
14349 default packet size. The actual limit is further reduced\n\
14350 dependent on the target. Specify ``fixed'' to disable the\n\
14351 further restriction and ``limit'' to enable that restriction."),
14352 &remote_set_cmdlist);
14353 add_cmd ("memory-write-packet-size", no_class,
14354 show_memory_write_packet_size,
14355 _("Show the maximum number of bytes per memory-write packet."),
14356 &remote_show_cmdlist);
14357 add_cmd ("memory-read-packet-size", no_class,
14358 show_memory_read_packet_size,
14359 _("Show the maximum number of bytes per memory-read packet."),
14360 &remote_show_cmdlist);
14361
14362 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14363 &remote_hw_watchpoint_limit, _("\
14364 Set the maximum number of target hardware watchpoints."), _("\
14365 Show the maximum number of target hardware watchpoints."), _("\
14366 Specify \"unlimited\" for unlimited hardware watchpoints."),
14367 NULL, show_hardware_watchpoint_limit,
14368 &remote_set_cmdlist,
14369 &remote_show_cmdlist);
14370 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14371 no_class,
14372 &remote_hw_watchpoint_length_limit, _("\
14373 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14374 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14375 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14376 NULL, show_hardware_watchpoint_length_limit,
14377 &remote_set_cmdlist, &remote_show_cmdlist);
14378 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14379 &remote_hw_breakpoint_limit, _("\
14380 Set the maximum number of target hardware breakpoints."), _("\
14381 Show the maximum number of target hardware breakpoints."), _("\
14382 Specify \"unlimited\" for unlimited hardware breakpoints."),
14383 NULL, show_hardware_breakpoint_limit,
14384 &remote_set_cmdlist, &remote_show_cmdlist);
14385
14386 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14387 &remote_address_size, _("\
14388 Set the maximum size of the address (in bits) in a memory packet."), _("\
14389 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14390 NULL,
14391 NULL, /* FIXME: i18n: */
14392 &setlist, &showlist);
14393
14394 init_all_packet_configs ();
14395
14396 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14397 "X", "binary-download", 1);
14398
14399 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14400 "vCont", "verbose-resume", 0);
14401
14402 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14403 "QPassSignals", "pass-signals", 0);
14404
14405 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14406 "QCatchSyscalls", "catch-syscalls", 0);
14407
14408 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14409 "QProgramSignals", "program-signals", 0);
14410
14411 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14412 "QSetWorkingDir", "set-working-dir", 0);
14413
14414 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14415 "QStartupWithShell", "startup-with-shell", 0);
14416
14417 add_packet_config_cmd (&remote_protocol_packets
14418 [PACKET_QEnvironmentHexEncoded],
14419 "QEnvironmentHexEncoded", "environment-hex-encoded",
14420 0);
14421
14422 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14423 "QEnvironmentReset", "environment-reset",
14424 0);
14425
14426 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14427 "QEnvironmentUnset", "environment-unset",
14428 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14431 "qSymbol", "symbol-lookup", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14434 "P", "set-register", 1);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14437 "p", "fetch-register", 1);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14440 "Z0", "software-breakpoint", 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14443 "Z1", "hardware-breakpoint", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14446 "Z2", "write-watchpoint", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14449 "Z3", "read-watchpoint", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14452 "Z4", "access-watchpoint", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14455 "qXfer:auxv:read", "read-aux-vector", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14458 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14461 "qXfer:features:read", "target-features", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14464 "qXfer:libraries:read", "library-info", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14467 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14470 "qXfer:memory-map:read", "memory-map", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14473 "qXfer:osdata:read", "osdata", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14476 "qXfer:threads:read", "threads", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14479 "qXfer:siginfo:read", "read-siginfo-object", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14482 "qXfer:siginfo:write", "write-siginfo-object", 0);
14483
14484 add_packet_config_cmd
14485 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14486 "qXfer:traceframe-info:read", "traceframe-info", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14489 "qXfer:uib:read", "unwind-info-block", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14492 "qGetTLSAddr", "get-thread-local-storage-address",
14493 0);
14494
14495 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14496 "qGetTIBAddr", "get-thread-information-block-address",
14497 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14500 "bc", "reverse-continue", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14503 "bs", "reverse-step", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14506 "qSupported", "supported-packets", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14509 "qSearch:memory", "search-memory", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14512 "qTStatus", "trace-status", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14515 "vFile:setfs", "hostio-setfs", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14518 "vFile:open", "hostio-open", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14521 "vFile:pread", "hostio-pread", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14524 "vFile:pwrite", "hostio-pwrite", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14527 "vFile:close", "hostio-close", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14530 "vFile:unlink", "hostio-unlink", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14533 "vFile:readlink", "hostio-readlink", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14536 "vFile:fstat", "hostio-fstat", 0);
14537
14538 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14539 "vAttach", "attach", 0);
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14542 "vRun", "run", 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14545 "QStartNoAckMode", "noack", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14548 "vKill", "kill", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14551 "qAttached", "query-attached", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14554 "ConditionalTracepoints",
14555 "conditional-tracepoints", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14558 "ConditionalBreakpoints",
14559 "conditional-breakpoints", 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14562 "BreakpointCommands",
14563 "breakpoint-commands", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14566 "FastTracepoints", "fast-tracepoints", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14569 "TracepointSource", "TracepointSource", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14572 "QAllow", "allow", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14575 "StaticTracepoints", "static-tracepoints", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14578 "InstallInTrace", "install-in-trace", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14581 "qXfer:statictrace:read", "read-sdata-object", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14584 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14587 "QDisableRandomization", "disable-randomization", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14590 "QAgent", "agent", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14593 "QTBuffer:size", "trace-buffer-size", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14596 "Qbtrace:off", "disable-btrace", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14599 "Qbtrace:bts", "enable-btrace-bts", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14602 "Qbtrace:pt", "enable-btrace-pt", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14605 "qXfer:btrace", "read-btrace", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14608 "qXfer:btrace-conf", "read-btrace-conf", 0);
14609
14610 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14611 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14614 "multiprocess-feature", "multiprocess-feature", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14617 "swbreak-feature", "swbreak-feature", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14620 "hwbreak-feature", "hwbreak-feature", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14623 "fork-event-feature", "fork-event-feature", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14626 "vfork-event-feature", "vfork-event-feature", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14629 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14632 "vContSupported", "verbose-resume-supported", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14635 "exec-event-feature", "exec-event-feature", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14638 "vCtrlC", "ctrl-c", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14641 "QThreadEvents", "thread-events", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14644 "N stop reply", "no-resumed-stop-reply", 0);
14645
14646 /* Assert that we've registered "set remote foo-packet" commands
14647 for all packet configs. */
14648 {
14649 int i;
14650
14651 for (i = 0; i < PACKET_MAX; i++)
14652 {
14653 /* Ideally all configs would have a command associated. Some
14654 still don't though. */
14655 int excepted;
14656
14657 switch (i)
14658 {
14659 case PACKET_QNonStop:
14660 case PACKET_EnableDisableTracepoints_feature:
14661 case PACKET_tracenz_feature:
14662 case PACKET_DisconnectedTracing_feature:
14663 case PACKET_augmented_libraries_svr4_read_feature:
14664 case PACKET_qCRC:
14665 /* Additions to this list need to be well justified:
14666 pre-existing packets are OK; new packets are not. */
14667 excepted = 1;
14668 break;
14669 default:
14670 excepted = 0;
14671 break;
14672 }
14673
14674 /* This catches both forgetting to add a config command, and
14675 forgetting to remove a packet from the exception list. */
14676 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14677 }
14678 }
14679
14680 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14681 Z sub-packet has its own set and show commands, but users may
14682 have sets to this variable in their .gdbinit files (or in their
14683 documentation). */
14684 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14685 &remote_Z_packet_detect, _("\
14686 Set use of remote protocol `Z' packets."), _("\
14687 Show use of remote protocol `Z' packets."), _("\
14688 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14689 packets."),
14690 set_remote_protocol_Z_packet_cmd,
14691 show_remote_protocol_Z_packet_cmd,
14692 /* FIXME: i18n: Use of remote protocol
14693 `Z' packets is %s. */
14694 &remote_set_cmdlist, &remote_show_cmdlist);
14695
14696 add_prefix_cmd ("remote", class_files, remote_command, _("\
14697 Manipulate files on the remote system.\n\
14698 Transfer files to and from the remote target system."),
14699 &remote_cmdlist, "remote ",
14700 0 /* allow-unknown */, &cmdlist);
14701
14702 add_cmd ("put", class_files, remote_put_command,
14703 _("Copy a local file to the remote system."),
14704 &remote_cmdlist);
14705
14706 add_cmd ("get", class_files, remote_get_command,
14707 _("Copy a remote file to the local system."),
14708 &remote_cmdlist);
14709
14710 add_cmd ("delete", class_files, remote_delete_command,
14711 _("Delete a remote file."),
14712 &remote_cmdlist);
14713
14714 add_setshow_string_noescape_cmd ("exec-file", class_files,
14715 &remote_exec_file_var, _("\
14716 Set the remote pathname for \"run\"."), _("\
14717 Show the remote pathname for \"run\"."), NULL,
14718 set_remote_exec_file,
14719 show_remote_exec_file,
14720 &remote_set_cmdlist,
14721 &remote_show_cmdlist);
14722
14723 add_setshow_boolean_cmd ("range-stepping", class_run,
14724 &use_range_stepping, _("\
14725 Enable or disable range stepping."), _("\
14726 Show whether target-assisted range stepping is enabled."), _("\
14727 If on, and the target supports it, when stepping a source line, GDB\n\
14728 tells the target to step the corresponding range of addresses itself instead\n\
14729 of issuing multiple single-steps. This speeds up source level\n\
14730 stepping. If off, GDB always issues single-steps, even if range\n\
14731 stepping is supported by the target. The default is on."),
14732 set_range_stepping,
14733 show_range_stepping,
14734 &setlist,
14735 &showlist);
14736
14737 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14738 Set watchdog timer."), _("\
14739 Show watchdog timer."), _("\
14740 When non-zero, this timeout is used instead of waiting forever for a target\n\
14741 to finish a low-level step or continue operation. If the specified amount\n\
14742 of time passes without a response from the target, an error occurs."),
14743 NULL,
14744 show_watchdog,
14745 &setlist, &showlist);
14746
14747 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14748 &remote_packet_max_chars, _("\
14749 Set the maximum number of characters to display for each remote packet."), _("\
14750 Show the maximum number of characters to display for each remote packet."), _("\
14751 Specify \"unlimited\" to display all the characters."),
14752 NULL, show_remote_packet_max_chars,
14753 &setdebuglist, &showdebuglist);
14754
14755 /* Eventually initialize fileio. See fileio.c */
14756 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14757 }
This page took 0.333184 seconds and 5 git commands to generate.