Remove args from target detach
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static int
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return 1;
3405 }
3406
3407 return 0;
3408 }
3409
3410 static VEC(static_tracepoint_marker_p) *
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 VEC(static_tracepoint_marker_p) *markers = NULL;
3416 struct static_tracepoint_marker *marker = NULL;
3417 struct cleanup *old_chain;
3418 const char *p;
3419
3420 /* Ask for a first packet of static tracepoint marker
3421 definition. */
3422 putpkt ("qTfSTM");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424 p = rs->buf;
3425 if (*p == 'E')
3426 error (_("Remote failure reply: %s"), p);
3427
3428 old_chain = make_cleanup (free_current_marker, &marker);
3429
3430 while (*p++ == 'm')
3431 {
3432 if (marker == NULL)
3433 marker = XCNEW (struct static_tracepoint_marker);
3434
3435 do
3436 {
3437 parse_static_tracepoint_marker_definition (p, &p, marker);
3438
3439 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3440 {
3441 VEC_safe_push (static_tracepoint_marker_p,
3442 markers, marker);
3443 marker = NULL;
3444 }
3445 else
3446 {
3447 release_static_tracepoint_marker (marker);
3448 memset (marker, 0, sizeof (*marker));
3449 }
3450 }
3451 while (*p++ == ','); /* comma-separated list */
3452 /* Ask for another packet of static tracepoint definition. */
3453 putpkt ("qTsSTM");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455 p = rs->buf;
3456 }
3457
3458 do_cleanups (old_chain);
3459 return markers;
3460 }
3461
3462 \f
3463 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3464
3465 static ptid_t
3466 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3467 {
3468 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3469 }
3470 \f
3471
3472 /* Restart the remote side; this is an extended protocol operation. */
3473
3474 static void
3475 extended_remote_restart (void)
3476 {
3477 struct remote_state *rs = get_remote_state ();
3478
3479 /* Send the restart command; for reasons I don't understand the
3480 remote side really expects a number after the "R". */
3481 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3482 putpkt (rs->buf);
3483
3484 remote_fileio_reset ();
3485 }
3486 \f
3487 /* Clean up connection to a remote debugger. */
3488
3489 static void
3490 remote_close (struct target_ops *self)
3491 {
3492 struct remote_state *rs = get_remote_state ();
3493
3494 if (rs->remote_desc == NULL)
3495 return; /* already closed */
3496
3497 /* Make sure we leave stdin registered in the event loop. */
3498 remote_terminal_ours (self);
3499
3500 serial_close (rs->remote_desc);
3501 rs->remote_desc = NULL;
3502
3503 /* We don't have a connection to the remote stub anymore. Get rid
3504 of all the inferiors and their threads we were controlling.
3505 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3506 will be unable to find the thread corresponding to (pid, 0, 0). */
3507 inferior_ptid = null_ptid;
3508 discard_all_inferiors ();
3509
3510 /* We are closing the remote target, so we should discard
3511 everything of this target. */
3512 discard_pending_stop_replies_in_queue (rs);
3513
3514 if (remote_async_inferior_event_token)
3515 delete_async_event_handler (&remote_async_inferior_event_token);
3516
3517 remote_notif_state_xfree (rs->notif_state);
3518
3519 trace_reset_local_state ();
3520 }
3521
3522 /* Query the remote side for the text, data and bss offsets. */
3523
3524 static void
3525 get_offsets (void)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 char *buf;
3529 char *ptr;
3530 int lose, num_segments = 0, do_sections, do_segments;
3531 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3532 struct section_offsets *offs;
3533 struct symfile_segment_data *data;
3534
3535 if (symfile_objfile == NULL)
3536 return;
3537
3538 putpkt ("qOffsets");
3539 getpkt (&rs->buf, &rs->buf_size, 0);
3540 buf = rs->buf;
3541
3542 if (buf[0] == '\000')
3543 return; /* Return silently. Stub doesn't support
3544 this command. */
3545 if (buf[0] == 'E')
3546 {
3547 warning (_("Remote failure reply: %s"), buf);
3548 return;
3549 }
3550
3551 /* Pick up each field in turn. This used to be done with scanf, but
3552 scanf will make trouble if CORE_ADDR size doesn't match
3553 conversion directives correctly. The following code will work
3554 with any size of CORE_ADDR. */
3555 text_addr = data_addr = bss_addr = 0;
3556 ptr = buf;
3557 lose = 0;
3558
3559 if (startswith (ptr, "Text="))
3560 {
3561 ptr += 5;
3562 /* Don't use strtol, could lose on big values. */
3563 while (*ptr && *ptr != ';')
3564 text_addr = (text_addr << 4) + fromhex (*ptr++);
3565
3566 if (startswith (ptr, ";Data="))
3567 {
3568 ptr += 6;
3569 while (*ptr && *ptr != ';')
3570 data_addr = (data_addr << 4) + fromhex (*ptr++);
3571 }
3572 else
3573 lose = 1;
3574
3575 if (!lose && startswith (ptr, ";Bss="))
3576 {
3577 ptr += 5;
3578 while (*ptr && *ptr != ';')
3579 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3580
3581 if (bss_addr != data_addr)
3582 warning (_("Target reported unsupported offsets: %s"), buf);
3583 }
3584 else
3585 lose = 1;
3586 }
3587 else if (startswith (ptr, "TextSeg="))
3588 {
3589 ptr += 8;
3590 /* Don't use strtol, could lose on big values. */
3591 while (*ptr && *ptr != ';')
3592 text_addr = (text_addr << 4) + fromhex (*ptr++);
3593 num_segments = 1;
3594
3595 if (startswith (ptr, ";DataSeg="))
3596 {
3597 ptr += 9;
3598 while (*ptr && *ptr != ';')
3599 data_addr = (data_addr << 4) + fromhex (*ptr++);
3600 num_segments++;
3601 }
3602 }
3603 else
3604 lose = 1;
3605
3606 if (lose)
3607 error (_("Malformed response to offset query, %s"), buf);
3608 else if (*ptr != '\0')
3609 warning (_("Target reported unsupported offsets: %s"), buf);
3610
3611 offs = ((struct section_offsets *)
3612 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3613 memcpy (offs, symfile_objfile->section_offsets,
3614 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3615
3616 data = get_symfile_segment_data (symfile_objfile->obfd);
3617 do_segments = (data != NULL);
3618 do_sections = num_segments == 0;
3619
3620 if (num_segments > 0)
3621 {
3622 segments[0] = text_addr;
3623 segments[1] = data_addr;
3624 }
3625 /* If we have two segments, we can still try to relocate everything
3626 by assuming that the .text and .data offsets apply to the whole
3627 text and data segments. Convert the offsets given in the packet
3628 to base addresses for symfile_map_offsets_to_segments. */
3629 else if (data && data->num_segments == 2)
3630 {
3631 segments[0] = data->segment_bases[0] + text_addr;
3632 segments[1] = data->segment_bases[1] + data_addr;
3633 num_segments = 2;
3634 }
3635 /* If the object file has only one segment, assume that it is text
3636 rather than data; main programs with no writable data are rare,
3637 but programs with no code are useless. Of course the code might
3638 have ended up in the data segment... to detect that we would need
3639 the permissions here. */
3640 else if (data && data->num_segments == 1)
3641 {
3642 segments[0] = data->segment_bases[0] + text_addr;
3643 num_segments = 1;
3644 }
3645 /* There's no way to relocate by segment. */
3646 else
3647 do_segments = 0;
3648
3649 if (do_segments)
3650 {
3651 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3652 offs, num_segments, segments);
3653
3654 if (ret == 0 && !do_sections)
3655 error (_("Can not handle qOffsets TextSeg "
3656 "response with this symbol file"));
3657
3658 if (ret > 0)
3659 do_sections = 0;
3660 }
3661
3662 if (data)
3663 free_symfile_segment_data (data);
3664
3665 if (do_sections)
3666 {
3667 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3668
3669 /* This is a temporary kludge to force data and bss to use the
3670 same offsets because that's what nlmconv does now. The real
3671 solution requires changes to the stub and remote.c that I
3672 don't have time to do right now. */
3673
3674 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3675 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3676 }
3677
3678 objfile_relocate (symfile_objfile, offs);
3679 }
3680
3681 /* Send interrupt_sequence to remote target. */
3682 static void
3683 send_interrupt_sequence (void)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686
3687 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3688 remote_serial_write ("\x03", 1);
3689 else if (interrupt_sequence_mode == interrupt_sequence_break)
3690 serial_send_break (rs->remote_desc);
3691 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3692 {
3693 serial_send_break (rs->remote_desc);
3694 remote_serial_write ("g", 1);
3695 }
3696 else
3697 internal_error (__FILE__, __LINE__,
3698 _("Invalid value for interrupt_sequence_mode: %s."),
3699 interrupt_sequence_mode);
3700 }
3701
3702
3703 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3704 and extract the PTID. Returns NULL_PTID if not found. */
3705
3706 static ptid_t
3707 stop_reply_extract_thread (char *stop_reply)
3708 {
3709 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3710 {
3711 const char *p;
3712
3713 /* Txx r:val ; r:val (...) */
3714 p = &stop_reply[3];
3715
3716 /* Look for "register" named "thread". */
3717 while (*p != '\0')
3718 {
3719 const char *p1;
3720
3721 p1 = strchr (p, ':');
3722 if (p1 == NULL)
3723 return null_ptid;
3724
3725 if (strncmp (p, "thread", p1 - p) == 0)
3726 return read_ptid (++p1, &p);
3727
3728 p1 = strchr (p, ';');
3729 if (p1 == NULL)
3730 return null_ptid;
3731 p1++;
3732
3733 p = p1;
3734 }
3735 }
3736
3737 return null_ptid;
3738 }
3739
3740 /* Determine the remote side's current thread. If we have a stop
3741 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3742 "thread" register we can extract the current thread from. If not,
3743 ask the remote which is the current thread with qC. The former
3744 method avoids a roundtrip. */
3745
3746 static ptid_t
3747 get_current_thread (char *wait_status)
3748 {
3749 ptid_t ptid = null_ptid;
3750
3751 /* Note we don't use remote_parse_stop_reply as that makes use of
3752 the target architecture, which we haven't yet fully determined at
3753 this point. */
3754 if (wait_status != NULL)
3755 ptid = stop_reply_extract_thread (wait_status);
3756 if (ptid_equal (ptid, null_ptid))
3757 ptid = remote_current_thread (inferior_ptid);
3758
3759 return ptid;
3760 }
3761
3762 /* Query the remote target for which is the current thread/process,
3763 add it to our tables, and update INFERIOR_PTID. The caller is
3764 responsible for setting the state such that the remote end is ready
3765 to return the current thread.
3766
3767 This function is called after handling the '?' or 'vRun' packets,
3768 whose response is a stop reply from which we can also try
3769 extracting the thread. If the target doesn't support the explicit
3770 qC query, we infer the current thread from that stop reply, passed
3771 in in WAIT_STATUS, which may be NULL. */
3772
3773 static void
3774 add_current_inferior_and_thread (char *wait_status)
3775 {
3776 struct remote_state *rs = get_remote_state ();
3777 int fake_pid_p = 0;
3778
3779 inferior_ptid = null_ptid;
3780
3781 /* Now, if we have thread information, update inferior_ptid. */
3782 ptid_t curr_ptid = get_current_thread (wait_status);
3783
3784 if (curr_ptid != null_ptid)
3785 {
3786 if (!remote_multi_process_p (rs))
3787 fake_pid_p = 1;
3788 }
3789 else
3790 {
3791 /* Without this, some commands which require an active target
3792 (such as kill) won't work. This variable serves (at least)
3793 double duty as both the pid of the target process (if it has
3794 such), and as a flag indicating that a target is active. */
3795 curr_ptid = magic_null_ptid;
3796 fake_pid_p = 1;
3797 }
3798
3799 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3800
3801 /* Add the main thread and switch to it. Don't try reading
3802 registers yet, since we haven't fetched the target description
3803 yet. */
3804 thread_info *tp = add_thread_silent (curr_ptid);
3805 switch_to_thread_no_regs (tp);
3806 }
3807
3808 /* Print info about a thread that was found already stopped on
3809 connection. */
3810
3811 static void
3812 print_one_stopped_thread (struct thread_info *thread)
3813 {
3814 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3815
3816 switch_to_thread (thread->ptid);
3817 stop_pc = get_frame_pc (get_current_frame ());
3818 set_current_sal_from_frame (get_current_frame ());
3819
3820 thread->suspend.waitstatus_pending_p = 0;
3821
3822 if (ws->kind == TARGET_WAITKIND_STOPPED)
3823 {
3824 enum gdb_signal sig = ws->value.sig;
3825
3826 if (signal_print_state (sig))
3827 observer_notify_signal_received (sig);
3828 }
3829 observer_notify_normal_stop (NULL, 1);
3830 }
3831
3832 /* Process all initial stop replies the remote side sent in response
3833 to the ? packet. These indicate threads that were already stopped
3834 on initial connection. We mark these threads as stopped and print
3835 their current frame before giving the user the prompt. */
3836
3837 static void
3838 process_initial_stop_replies (int from_tty)
3839 {
3840 int pending_stop_replies = stop_reply_queue_length ();
3841 struct inferior *inf;
3842 struct thread_info *thread;
3843 struct thread_info *selected = NULL;
3844 struct thread_info *lowest_stopped = NULL;
3845 struct thread_info *first = NULL;
3846
3847 /* Consume the initial pending events. */
3848 while (pending_stop_replies-- > 0)
3849 {
3850 ptid_t waiton_ptid = minus_one_ptid;
3851 ptid_t event_ptid;
3852 struct target_waitstatus ws;
3853 int ignore_event = 0;
3854 struct thread_info *thread;
3855
3856 memset (&ws, 0, sizeof (ws));
3857 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3858 if (remote_debug)
3859 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3860
3861 switch (ws.kind)
3862 {
3863 case TARGET_WAITKIND_IGNORE:
3864 case TARGET_WAITKIND_NO_RESUMED:
3865 case TARGET_WAITKIND_SIGNALLED:
3866 case TARGET_WAITKIND_EXITED:
3867 /* We shouldn't see these, but if we do, just ignore. */
3868 if (remote_debug)
3869 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3870 ignore_event = 1;
3871 break;
3872
3873 case TARGET_WAITKIND_EXECD:
3874 xfree (ws.value.execd_pathname);
3875 break;
3876 default:
3877 break;
3878 }
3879
3880 if (ignore_event)
3881 continue;
3882
3883 thread = find_thread_ptid (event_ptid);
3884
3885 if (ws.kind == TARGET_WAITKIND_STOPPED)
3886 {
3887 enum gdb_signal sig = ws.value.sig;
3888
3889 /* Stubs traditionally report SIGTRAP as initial signal,
3890 instead of signal 0. Suppress it. */
3891 if (sig == GDB_SIGNAL_TRAP)
3892 sig = GDB_SIGNAL_0;
3893 thread->suspend.stop_signal = sig;
3894 ws.value.sig = sig;
3895 }
3896
3897 thread->suspend.waitstatus = ws;
3898
3899 if (ws.kind != TARGET_WAITKIND_STOPPED
3900 || ws.value.sig != GDB_SIGNAL_0)
3901 thread->suspend.waitstatus_pending_p = 1;
3902
3903 set_executing (event_ptid, 0);
3904 set_running (event_ptid, 0);
3905 get_remote_thread_info (thread)->vcont_resumed = 0;
3906 }
3907
3908 /* "Notice" the new inferiors before anything related to
3909 registers/memory. */
3910 ALL_INFERIORS (inf)
3911 {
3912 if (inf->pid == 0)
3913 continue;
3914
3915 inf->needs_setup = 1;
3916
3917 if (non_stop)
3918 {
3919 thread = any_live_thread_of_process (inf->pid);
3920 notice_new_inferior (thread->ptid,
3921 thread->state == THREAD_RUNNING,
3922 from_tty);
3923 }
3924 }
3925
3926 /* If all-stop on top of non-stop, pause all threads. Note this
3927 records the threads' stop pc, so must be done after "noticing"
3928 the inferiors. */
3929 if (!non_stop)
3930 {
3931 stop_all_threads ();
3932
3933 /* If all threads of an inferior were already stopped, we
3934 haven't setup the inferior yet. */
3935 ALL_INFERIORS (inf)
3936 {
3937 if (inf->pid == 0)
3938 continue;
3939
3940 if (inf->needs_setup)
3941 {
3942 thread = any_live_thread_of_process (inf->pid);
3943 switch_to_thread_no_regs (thread);
3944 setup_inferior (0);
3945 }
3946 }
3947 }
3948
3949 /* Now go over all threads that are stopped, and print their current
3950 frame. If all-stop, then if there's a signalled thread, pick
3951 that as current. */
3952 ALL_NON_EXITED_THREADS (thread)
3953 {
3954 if (first == NULL)
3955 first = thread;
3956
3957 if (!non_stop)
3958 set_running (thread->ptid, 0);
3959 else if (thread->state != THREAD_STOPPED)
3960 continue;
3961
3962 if (selected == NULL
3963 && thread->suspend.waitstatus_pending_p)
3964 selected = thread;
3965
3966 if (lowest_stopped == NULL
3967 || thread->inf->num < lowest_stopped->inf->num
3968 || thread->per_inf_num < lowest_stopped->per_inf_num)
3969 lowest_stopped = thread;
3970
3971 if (non_stop)
3972 print_one_stopped_thread (thread);
3973 }
3974
3975 /* In all-stop, we only print the status of one thread, and leave
3976 others with their status pending. */
3977 if (!non_stop)
3978 {
3979 thread = selected;
3980 if (thread == NULL)
3981 thread = lowest_stopped;
3982 if (thread == NULL)
3983 thread = first;
3984
3985 print_one_stopped_thread (thread);
3986 }
3987
3988 /* For "info program". */
3989 thread = inferior_thread ();
3990 if (thread->state == THREAD_STOPPED)
3991 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3992 }
3993
3994 /* Start the remote connection and sync state. */
3995
3996 static void
3997 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000 struct packet_config *noack_config;
4001 char *wait_status = NULL;
4002
4003 /* Signal other parts that we're going through the initial setup,
4004 and so things may not be stable yet. E.g., we don't try to
4005 install tracepoints until we've relocated symbols. Also, a
4006 Ctrl-C before we're connected and synced up can't interrupt the
4007 target. Instead, it offers to drop the (potentially wedged)
4008 connection. */
4009 rs->starting_up = 1;
4010
4011 QUIT;
4012
4013 if (interrupt_on_connect)
4014 send_interrupt_sequence ();
4015
4016 /* Ack any packet which the remote side has already sent. */
4017 remote_serial_write ("+", 1);
4018
4019 /* The first packet we send to the target is the optional "supported
4020 packets" request. If the target can answer this, it will tell us
4021 which later probes to skip. */
4022 remote_query_supported ();
4023
4024 /* If the stub wants to get a QAllow, compose one and send it. */
4025 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4026 remote_set_permissions (target);
4027
4028 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4029 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4030 as a reply to known packet. For packet "vFile:setfs:" it is an
4031 invalid reply and GDB would return error in
4032 remote_hostio_set_filesystem, making remote files access impossible.
4033 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4034 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4035 {
4036 const char v_mustreplyempty[] = "vMustReplyEmpty";
4037
4038 putpkt (v_mustreplyempty);
4039 getpkt (&rs->buf, &rs->buf_size, 0);
4040 if (strcmp (rs->buf, "OK") == 0)
4041 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4042 else if (strcmp (rs->buf, "") != 0)
4043 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4044 rs->buf);
4045 }
4046
4047 /* Next, we possibly activate noack mode.
4048
4049 If the QStartNoAckMode packet configuration is set to AUTO,
4050 enable noack mode if the stub reported a wish for it with
4051 qSupported.
4052
4053 If set to TRUE, then enable noack mode even if the stub didn't
4054 report it in qSupported. If the stub doesn't reply OK, the
4055 session ends with an error.
4056
4057 If FALSE, then don't activate noack mode, regardless of what the
4058 stub claimed should be the default with qSupported. */
4059
4060 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4061 if (packet_config_support (noack_config) != PACKET_DISABLE)
4062 {
4063 putpkt ("QStartNoAckMode");
4064 getpkt (&rs->buf, &rs->buf_size, 0);
4065 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4066 rs->noack_mode = 1;
4067 }
4068
4069 if (extended_p)
4070 {
4071 /* Tell the remote that we are using the extended protocol. */
4072 putpkt ("!");
4073 getpkt (&rs->buf, &rs->buf_size, 0);
4074 }
4075
4076 /* Let the target know which signals it is allowed to pass down to
4077 the program. */
4078 update_signals_program_target ();
4079
4080 /* Next, if the target can specify a description, read it. We do
4081 this before anything involving memory or registers. */
4082 target_find_description ();
4083
4084 /* Next, now that we know something about the target, update the
4085 address spaces in the program spaces. */
4086 update_address_spaces ();
4087
4088 /* On OSs where the list of libraries is global to all
4089 processes, we fetch them early. */
4090 if (gdbarch_has_global_solist (target_gdbarch ()))
4091 solib_add (NULL, from_tty, auto_solib_add);
4092
4093 if (target_is_non_stop_p ())
4094 {
4095 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4096 error (_("Non-stop mode requested, but remote "
4097 "does not support non-stop"));
4098
4099 putpkt ("QNonStop:1");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4104
4105 /* Find about threads and processes the stub is already
4106 controlling. We default to adding them in the running state.
4107 The '?' query below will then tell us about which threads are
4108 stopped. */
4109 remote_update_thread_list (target);
4110 }
4111 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4112 {
4113 /* Don't assume that the stub can operate in all-stop mode.
4114 Request it explicitly. */
4115 putpkt ("QNonStop:0");
4116 getpkt (&rs->buf, &rs->buf_size, 0);
4117
4118 if (strcmp (rs->buf, "OK") != 0)
4119 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4120 }
4121
4122 /* Upload TSVs regardless of whether the target is running or not. The
4123 remote stub, such as GDBserver, may have some predefined or builtin
4124 TSVs, even if the target is not running. */
4125 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4126 {
4127 struct uploaded_tsv *uploaded_tsvs = NULL;
4128
4129 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4130 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4131 }
4132
4133 /* Check whether the target is running now. */
4134 putpkt ("?");
4135 getpkt (&rs->buf, &rs->buf_size, 0);
4136
4137 if (!target_is_non_stop_p ())
4138 {
4139 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4140 {
4141 if (!extended_p)
4142 error (_("The target is not running (try extended-remote?)"));
4143
4144 /* We're connected, but not running. Drop out before we
4145 call start_remote. */
4146 rs->starting_up = 0;
4147 return;
4148 }
4149 else
4150 {
4151 /* Save the reply for later. */
4152 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4153 strcpy (wait_status, rs->buf);
4154 }
4155
4156 /* Fetch thread list. */
4157 target_update_thread_list ();
4158
4159 /* Let the stub know that we want it to return the thread. */
4160 set_continue_thread (minus_one_ptid);
4161
4162 if (thread_count () == 0)
4163 {
4164 /* Target has no concept of threads at all. GDB treats
4165 non-threaded target as single-threaded; add a main
4166 thread. */
4167 add_current_inferior_and_thread (wait_status);
4168 }
4169 else
4170 {
4171 /* We have thread information; select the thread the target
4172 says should be current. If we're reconnecting to a
4173 multi-threaded program, this will ideally be the thread
4174 that last reported an event before GDB disconnected. */
4175 inferior_ptid = get_current_thread (wait_status);
4176 if (ptid_equal (inferior_ptid, null_ptid))
4177 {
4178 /* Odd... The target was able to list threads, but not
4179 tell us which thread was current (no "thread"
4180 register in T stop reply?). Just pick the first
4181 thread in the thread list then. */
4182
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog,
4185 "warning: couldn't determine remote "
4186 "current thread; picking first in list.\n");
4187
4188 inferior_ptid = thread_list->ptid;
4189 }
4190 }
4191
4192 /* init_wait_for_inferior should be called before get_offsets in order
4193 to manage `inserted' flag in bp loc in a correct state.
4194 breakpoint_init_inferior, called from init_wait_for_inferior, set
4195 `inserted' flag to 0, while before breakpoint_re_set, called from
4196 start_remote, set `inserted' flag to 1. In the initialization of
4197 inferior, breakpoint_init_inferior should be called first, and then
4198 breakpoint_re_set can be called. If this order is broken, state of
4199 `inserted' flag is wrong, and cause some problems on breakpoint
4200 manipulation. */
4201 init_wait_for_inferior ();
4202
4203 get_offsets (); /* Get text, data & bss offsets. */
4204
4205 /* If we could not find a description using qXfer, and we know
4206 how to do it some other way, try again. This is not
4207 supported for non-stop; it could be, but it is tricky if
4208 there are no stopped threads when we connect. */
4209 if (remote_read_description_p (target)
4210 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4211 {
4212 target_clear_description ();
4213 target_find_description ();
4214 }
4215
4216 /* Use the previously fetched status. */
4217 gdb_assert (wait_status != NULL);
4218 strcpy (rs->buf, wait_status);
4219 rs->cached_wait_status = 1;
4220
4221 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4222 }
4223 else
4224 {
4225 /* Clear WFI global state. Do this before finding about new
4226 threads and inferiors, and setting the current inferior.
4227 Otherwise we would clear the proceed status of the current
4228 inferior when we want its stop_soon state to be preserved
4229 (see notice_new_inferior). */
4230 init_wait_for_inferior ();
4231
4232 /* In non-stop, we will either get an "OK", meaning that there
4233 are no stopped threads at this time; or, a regular stop
4234 reply. In the latter case, there may be more than one thread
4235 stopped --- we pull them all out using the vStopped
4236 mechanism. */
4237 if (strcmp (rs->buf, "OK") != 0)
4238 {
4239 struct notif_client *notif = &notif_client_stop;
4240
4241 /* remote_notif_get_pending_replies acks this one, and gets
4242 the rest out. */
4243 rs->notif_state->pending_event[notif_client_stop.id]
4244 = remote_notif_parse (notif, rs->buf);
4245 remote_notif_get_pending_events (notif);
4246 }
4247
4248 if (thread_count () == 0)
4249 {
4250 if (!extended_p)
4251 error (_("The target is not running (try extended-remote?)"));
4252
4253 /* We're connected, but not running. Drop out before we
4254 call start_remote. */
4255 rs->starting_up = 0;
4256 return;
4257 }
4258
4259 /* In non-stop mode, any cached wait status will be stored in
4260 the stop reply queue. */
4261 gdb_assert (wait_status == NULL);
4262
4263 /* Report all signals during attach/startup. */
4264 remote_pass_signals (target, 0, NULL);
4265
4266 /* If there are already stopped threads, mark them stopped and
4267 report their stops before giving the prompt to the user. */
4268 process_initial_stop_replies (from_tty);
4269
4270 if (target_can_async_p ())
4271 target_async (1);
4272 }
4273
4274 /* If we connected to a live target, do some additional setup. */
4275 if (target_has_execution)
4276 {
4277 if (symfile_objfile) /* No use without a symbol-file. */
4278 remote_check_symbols ();
4279 }
4280
4281 /* Possibly the target has been engaged in a trace run started
4282 previously; find out where things are at. */
4283 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4284 {
4285 struct uploaded_tp *uploaded_tps = NULL;
4286
4287 if (current_trace_status ()->running)
4288 printf_filtered (_("Trace is already running on the target.\n"));
4289
4290 remote_upload_tracepoints (target, &uploaded_tps);
4291
4292 merge_uploaded_tracepoints (&uploaded_tps);
4293 }
4294
4295 /* Possibly the target has been engaged in a btrace record started
4296 previously; find out where things are at. */
4297 remote_btrace_maybe_reopen ();
4298
4299 /* The thread and inferior lists are now synchronized with the
4300 target, our symbols have been relocated, and we're merged the
4301 target's tracepoints with ours. We're done with basic start
4302 up. */
4303 rs->starting_up = 0;
4304
4305 /* Maybe breakpoints are global and need to be inserted now. */
4306 if (breakpoints_should_be_inserted_now ())
4307 insert_breakpoints ();
4308 }
4309
4310 /* Open a connection to a remote debugger.
4311 NAME is the filename used for communication. */
4312
4313 static void
4314 remote_open (const char *name, int from_tty)
4315 {
4316 remote_open_1 (name, from_tty, &remote_ops, 0);
4317 }
4318
4319 /* Open a connection to a remote debugger using the extended
4320 remote gdb protocol. NAME is the filename used for communication. */
4321
4322 static void
4323 extended_remote_open (const char *name, int from_tty)
4324 {
4325 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4326 }
4327
4328 /* Reset all packets back to "unknown support". Called when opening a
4329 new connection to a remote target. */
4330
4331 static void
4332 reset_all_packet_configs_support (void)
4333 {
4334 int i;
4335
4336 for (i = 0; i < PACKET_MAX; i++)
4337 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4338 }
4339
4340 /* Initialize all packet configs. */
4341
4342 static void
4343 init_all_packet_configs (void)
4344 {
4345 int i;
4346
4347 for (i = 0; i < PACKET_MAX; i++)
4348 {
4349 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4350 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4351 }
4352 }
4353
4354 /* Symbol look-up. */
4355
4356 static void
4357 remote_check_symbols (void)
4358 {
4359 char *msg, *reply, *tmp;
4360 int end;
4361 long reply_size;
4362 struct cleanup *old_chain;
4363
4364 /* The remote side has no concept of inferiors that aren't running
4365 yet, it only knows about running processes. If we're connected
4366 but our current inferior is not running, we should not invite the
4367 remote target to request symbol lookups related to its
4368 (unrelated) current process. */
4369 if (!target_has_execution)
4370 return;
4371
4372 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4373 return;
4374
4375 /* Make sure the remote is pointing at the right process. Note
4376 there's no way to select "no process". */
4377 set_general_process ();
4378
4379 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4380 because we need both at the same time. */
4381 msg = (char *) xmalloc (get_remote_packet_size ());
4382 old_chain = make_cleanup (xfree, msg);
4383 reply = (char *) xmalloc (get_remote_packet_size ());
4384 make_cleanup (free_current_contents, &reply);
4385 reply_size = get_remote_packet_size ();
4386
4387 /* Invite target to request symbol lookups. */
4388
4389 putpkt ("qSymbol::");
4390 getpkt (&reply, &reply_size, 0);
4391 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4392
4393 while (startswith (reply, "qSymbol:"))
4394 {
4395 struct bound_minimal_symbol sym;
4396
4397 tmp = &reply[8];
4398 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4399 msg[end] = '\0';
4400 sym = lookup_minimal_symbol (msg, NULL, NULL);
4401 if (sym.minsym == NULL)
4402 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4403 else
4404 {
4405 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4406 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4407
4408 /* If this is a function address, return the start of code
4409 instead of any data function descriptor. */
4410 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4411 sym_addr,
4412 &current_target);
4413
4414 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4415 phex_nz (sym_addr, addr_size), &reply[8]);
4416 }
4417
4418 putpkt (msg);
4419 getpkt (&reply, &reply_size, 0);
4420 }
4421
4422 do_cleanups (old_chain);
4423 }
4424
4425 static struct serial *
4426 remote_serial_open (const char *name)
4427 {
4428 static int udp_warning = 0;
4429
4430 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4431 of in ser-tcp.c, because it is the remote protocol assuming that the
4432 serial connection is reliable and not the serial connection promising
4433 to be. */
4434 if (!udp_warning && startswith (name, "udp:"))
4435 {
4436 warning (_("The remote protocol may be unreliable over UDP.\n"
4437 "Some events may be lost, rendering further debugging "
4438 "impossible."));
4439 udp_warning = 1;
4440 }
4441
4442 return serial_open (name);
4443 }
4444
4445 /* Inform the target of our permission settings. The permission flags
4446 work without this, but if the target knows the settings, it can do
4447 a couple things. First, it can add its own check, to catch cases
4448 that somehow manage to get by the permissions checks in target
4449 methods. Second, if the target is wired to disallow particular
4450 settings (for instance, a system in the field that is not set up to
4451 be able to stop at a breakpoint), it can object to any unavailable
4452 permissions. */
4453
4454 void
4455 remote_set_permissions (struct target_ops *self)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458
4459 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4460 "WriteReg:%x;WriteMem:%x;"
4461 "InsertBreak:%x;InsertTrace:%x;"
4462 "InsertFastTrace:%x;Stop:%x",
4463 may_write_registers, may_write_memory,
4464 may_insert_breakpoints, may_insert_tracepoints,
4465 may_insert_fast_tracepoints, may_stop);
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468
4469 /* If the target didn't like the packet, warn the user. Do not try
4470 to undo the user's settings, that would just be maddening. */
4471 if (strcmp (rs->buf, "OK") != 0)
4472 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4473 }
4474
4475 /* This type describes each known response to the qSupported
4476 packet. */
4477 struct protocol_feature
4478 {
4479 /* The name of this protocol feature. */
4480 const char *name;
4481
4482 /* The default for this protocol feature. */
4483 enum packet_support default_support;
4484
4485 /* The function to call when this feature is reported, or after
4486 qSupported processing if the feature is not supported.
4487 The first argument points to this structure. The second
4488 argument indicates whether the packet requested support be
4489 enabled, disabled, or probed (or the default, if this function
4490 is being called at the end of processing and this feature was
4491 not reported). The third argument may be NULL; if not NULL, it
4492 is a NUL-terminated string taken from the packet following
4493 this feature's name and an equals sign. */
4494 void (*func) (const struct protocol_feature *, enum packet_support,
4495 const char *);
4496
4497 /* The corresponding packet for this feature. Only used if
4498 FUNC is remote_supported_packet. */
4499 int packet;
4500 };
4501
4502 static void
4503 remote_supported_packet (const struct protocol_feature *feature,
4504 enum packet_support support,
4505 const char *argument)
4506 {
4507 if (argument)
4508 {
4509 warning (_("Remote qSupported response supplied an unexpected value for"
4510 " \"%s\"."), feature->name);
4511 return;
4512 }
4513
4514 remote_protocol_packets[feature->packet].support = support;
4515 }
4516
4517 static void
4518 remote_packet_size (const struct protocol_feature *feature,
4519 enum packet_support support, const char *value)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 int packet_size;
4524 char *value_end;
4525
4526 if (support != PACKET_ENABLE)
4527 return;
4528
4529 if (value == NULL || *value == '\0')
4530 {
4531 warning (_("Remote target reported \"%s\" without a size."),
4532 feature->name);
4533 return;
4534 }
4535
4536 errno = 0;
4537 packet_size = strtol (value, &value_end, 16);
4538 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4539 {
4540 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4541 feature->name, value);
4542 return;
4543 }
4544
4545 /* Record the new maximum packet size. */
4546 rs->explicit_packet_size = packet_size;
4547 }
4548
4549 static const struct protocol_feature remote_protocol_features[] = {
4550 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4551 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_auxv },
4553 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_exec_file },
4555 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_features },
4557 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_libraries },
4559 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_qXfer_libraries_svr4 },
4561 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4562 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4563 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_qXfer_memory_map },
4565 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_qXfer_spu_read },
4567 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_qXfer_spu_write },
4569 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_qXfer_osdata },
4571 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_qXfer_threads },
4573 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_qXfer_traceframe_info },
4575 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QPassSignals },
4577 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_QCatchSyscalls },
4579 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4580 PACKET_QProgramSignals },
4581 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4582 PACKET_QSetWorkingDir },
4583 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4584 PACKET_QStartupWithShell },
4585 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4586 PACKET_QEnvironmentHexEncoded },
4587 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4588 PACKET_QEnvironmentReset },
4589 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4590 PACKET_QEnvironmentUnset },
4591 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4592 PACKET_QStartNoAckMode },
4593 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4594 PACKET_multiprocess_feature },
4595 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4596 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_qXfer_siginfo_read },
4598 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_qXfer_siginfo_write },
4600 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_ConditionalTracepoints },
4602 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_ConditionalBreakpoints },
4604 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_BreakpointCommands },
4606 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_FastTracepoints },
4608 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_StaticTracepoints },
4610 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_InstallInTrace},
4612 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_DisconnectedTracing_feature },
4614 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_bc },
4616 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_bs },
4618 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_TracepointSource },
4620 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4621 PACKET_QAllow },
4622 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_EnableDisableTracepoints_feature },
4624 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_fdpic },
4626 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_uib },
4628 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_QDisableRandomization },
4630 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4631 { "QTBuffer:size", PACKET_DISABLE,
4632 remote_supported_packet, PACKET_QTBuffer_size},
4633 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4634 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4635 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4636 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4637 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4638 PACKET_qXfer_btrace },
4639 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4640 PACKET_qXfer_btrace_conf },
4641 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4642 PACKET_Qbtrace_conf_bts_size },
4643 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4644 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4645 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4646 PACKET_fork_event_feature },
4647 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4648 PACKET_vfork_event_feature },
4649 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4650 PACKET_exec_event_feature },
4651 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4652 PACKET_Qbtrace_conf_pt_size },
4653 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4654 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4655 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4656 };
4657
4658 static char *remote_support_xml;
4659
4660 /* Register string appended to "xmlRegisters=" in qSupported query. */
4661
4662 void
4663 register_remote_support_xml (const char *xml)
4664 {
4665 #if defined(HAVE_LIBEXPAT)
4666 if (remote_support_xml == NULL)
4667 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4668 else
4669 {
4670 char *copy = xstrdup (remote_support_xml + 13);
4671 char *p = strtok (copy, ",");
4672
4673 do
4674 {
4675 if (strcmp (p, xml) == 0)
4676 {
4677 /* already there */
4678 xfree (copy);
4679 return;
4680 }
4681 }
4682 while ((p = strtok (NULL, ",")) != NULL);
4683 xfree (copy);
4684
4685 remote_support_xml = reconcat (remote_support_xml,
4686 remote_support_xml, ",", xml,
4687 (char *) NULL);
4688 }
4689 #endif
4690 }
4691
4692 static char *
4693 remote_query_supported_append (char *msg, const char *append)
4694 {
4695 if (msg)
4696 return reconcat (msg, msg, ";", append, (char *) NULL);
4697 else
4698 return xstrdup (append);
4699 }
4700
4701 static void
4702 remote_query_supported (void)
4703 {
4704 struct remote_state *rs = get_remote_state ();
4705 char *next;
4706 int i;
4707 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4708
4709 /* The packet support flags are handled differently for this packet
4710 than for most others. We treat an error, a disabled packet, and
4711 an empty response identically: any features which must be reported
4712 to be used will be automatically disabled. An empty buffer
4713 accomplishes this, since that is also the representation for a list
4714 containing no features. */
4715
4716 rs->buf[0] = 0;
4717 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4718 {
4719 char *q = NULL;
4720 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4721
4722 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4723 q = remote_query_supported_append (q, "multiprocess+");
4724
4725 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4726 q = remote_query_supported_append (q, "swbreak+");
4727 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4728 q = remote_query_supported_append (q, "hwbreak+");
4729
4730 q = remote_query_supported_append (q, "qRelocInsn+");
4731
4732 if (packet_set_cmd_state (PACKET_fork_event_feature)
4733 != AUTO_BOOLEAN_FALSE)
4734 q = remote_query_supported_append (q, "fork-events+");
4735 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4736 != AUTO_BOOLEAN_FALSE)
4737 q = remote_query_supported_append (q, "vfork-events+");
4738 if (packet_set_cmd_state (PACKET_exec_event_feature)
4739 != AUTO_BOOLEAN_FALSE)
4740 q = remote_query_supported_append (q, "exec-events+");
4741
4742 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4743 q = remote_query_supported_append (q, "vContSupported+");
4744
4745 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4746 q = remote_query_supported_append (q, "QThreadEvents+");
4747
4748 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4749 q = remote_query_supported_append (q, "no-resumed+");
4750
4751 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4752 the qSupported:xmlRegisters=i386 handling. */
4753 if (remote_support_xml != NULL
4754 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4755 q = remote_query_supported_append (q, remote_support_xml);
4756
4757 q = reconcat (q, "qSupported:", q, (char *) NULL);
4758 putpkt (q);
4759
4760 do_cleanups (old_chain);
4761
4762 getpkt (&rs->buf, &rs->buf_size, 0);
4763
4764 /* If an error occured, warn, but do not return - just reset the
4765 buffer to empty and go on to disable features. */
4766 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4767 == PACKET_ERROR)
4768 {
4769 warning (_("Remote failure reply: %s"), rs->buf);
4770 rs->buf[0] = 0;
4771 }
4772 }
4773
4774 memset (seen, 0, sizeof (seen));
4775
4776 next = rs->buf;
4777 while (*next)
4778 {
4779 enum packet_support is_supported;
4780 char *p, *end, *name_end, *value;
4781
4782 /* First separate out this item from the rest of the packet. If
4783 there's another item after this, we overwrite the separator
4784 (terminated strings are much easier to work with). */
4785 p = next;
4786 end = strchr (p, ';');
4787 if (end == NULL)
4788 {
4789 end = p + strlen (p);
4790 next = end;
4791 }
4792 else
4793 {
4794 *end = '\0';
4795 next = end + 1;
4796
4797 if (end == p)
4798 {
4799 warning (_("empty item in \"qSupported\" response"));
4800 continue;
4801 }
4802 }
4803
4804 name_end = strchr (p, '=');
4805 if (name_end)
4806 {
4807 /* This is a name=value entry. */
4808 is_supported = PACKET_ENABLE;
4809 value = name_end + 1;
4810 *name_end = '\0';
4811 }
4812 else
4813 {
4814 value = NULL;
4815 switch (end[-1])
4816 {
4817 case '+':
4818 is_supported = PACKET_ENABLE;
4819 break;
4820
4821 case '-':
4822 is_supported = PACKET_DISABLE;
4823 break;
4824
4825 case '?':
4826 is_supported = PACKET_SUPPORT_UNKNOWN;
4827 break;
4828
4829 default:
4830 warning (_("unrecognized item \"%s\" "
4831 "in \"qSupported\" response"), p);
4832 continue;
4833 }
4834 end[-1] = '\0';
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4838 if (strcmp (remote_protocol_features[i].name, p) == 0)
4839 {
4840 const struct protocol_feature *feature;
4841
4842 seen[i] = 1;
4843 feature = &remote_protocol_features[i];
4844 feature->func (feature, is_supported, value);
4845 break;
4846 }
4847 }
4848
4849 /* If we increased the packet size, make sure to increase the global
4850 buffer size also. We delay this until after parsing the entire
4851 qSupported packet, because this is the same buffer we were
4852 parsing. */
4853 if (rs->buf_size < rs->explicit_packet_size)
4854 {
4855 rs->buf_size = rs->explicit_packet_size;
4856 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4857 }
4858
4859 /* Handle the defaults for unmentioned features. */
4860 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4861 if (!seen[i])
4862 {
4863 const struct protocol_feature *feature;
4864
4865 feature = &remote_protocol_features[i];
4866 feature->func (feature, feature->default_support, NULL);
4867 }
4868 }
4869
4870 /* Serial QUIT handler for the remote serial descriptor.
4871
4872 Defers handling a Ctrl-C until we're done with the current
4873 command/response packet sequence, unless:
4874
4875 - We're setting up the connection. Don't send a remote interrupt
4876 request, as we're not fully synced yet. Quit immediately
4877 instead.
4878
4879 - The target has been resumed in the foreground
4880 (target_terminal::is_ours is false) with a synchronous resume
4881 packet, and we're blocked waiting for the stop reply, thus a
4882 Ctrl-C should be immediately sent to the target.
4883
4884 - We get a second Ctrl-C while still within the same serial read or
4885 write. In that case the serial is seemingly wedged --- offer to
4886 quit/disconnect.
4887
4888 - We see a second Ctrl-C without target response, after having
4889 previously interrupted the target. In that case the target/stub
4890 is probably wedged --- offer to quit/disconnect.
4891 */
4892
4893 static void
4894 remote_serial_quit_handler (void)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897
4898 if (check_quit_flag ())
4899 {
4900 /* If we're starting up, we're not fully synced yet. Quit
4901 immediately. */
4902 if (rs->starting_up)
4903 quit ();
4904 else if (rs->got_ctrlc_during_io)
4905 {
4906 if (query (_("The target is not responding to GDB commands.\n"
4907 "Stop debugging it? ")))
4908 remote_unpush_and_throw ();
4909 }
4910 /* If ^C has already been sent once, offer to disconnect. */
4911 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4912 interrupt_query ();
4913 /* All-stop protocol, and blocked waiting for stop reply. Send
4914 an interrupt request. */
4915 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4916 target_interrupt (inferior_ptid);
4917 else
4918 rs->got_ctrlc_during_io = 1;
4919 }
4920 }
4921
4922 /* Remove any of the remote.c targets from target stack. Upper targets depend
4923 on it so remove them first. */
4924
4925 static void
4926 remote_unpush_target (void)
4927 {
4928 pop_all_targets_at_and_above (process_stratum);
4929 }
4930
4931 static void
4932 remote_unpush_and_throw (void)
4933 {
4934 remote_unpush_target ();
4935 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4936 }
4937
4938 static void
4939 remote_open_1 (const char *name, int from_tty,
4940 struct target_ops *target, int extended_p)
4941 {
4942 struct remote_state *rs = get_remote_state ();
4943
4944 if (name == 0)
4945 error (_("To open a remote debug connection, you need to specify what\n"
4946 "serial device is attached to the remote system\n"
4947 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4948
4949 /* See FIXME above. */
4950 if (!target_async_permitted)
4951 wait_forever_enabled_p = 1;
4952
4953 /* If we're connected to a running target, target_preopen will kill it.
4954 Ask this question first, before target_preopen has a chance to kill
4955 anything. */
4956 if (rs->remote_desc != NULL && !have_inferiors ())
4957 {
4958 if (from_tty
4959 && !query (_("Already connected to a remote target. Disconnect? ")))
4960 error (_("Still connected."));
4961 }
4962
4963 /* Here the possibly existing remote target gets unpushed. */
4964 target_preopen (from_tty);
4965
4966 /* Make sure we send the passed signals list the next time we resume. */
4967 xfree (rs->last_pass_packet);
4968 rs->last_pass_packet = NULL;
4969
4970 /* Make sure we send the program signals list the next time we
4971 resume. */
4972 xfree (rs->last_program_signals_packet);
4973 rs->last_program_signals_packet = NULL;
4974
4975 remote_fileio_reset ();
4976 reopen_exec_file ();
4977 reread_symbols ();
4978
4979 rs->remote_desc = remote_serial_open (name);
4980 if (!rs->remote_desc)
4981 perror_with_name (name);
4982
4983 if (baud_rate != -1)
4984 {
4985 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4986 {
4987 /* The requested speed could not be set. Error out to
4988 top level after closing remote_desc. Take care to
4989 set remote_desc to NULL to avoid closing remote_desc
4990 more than once. */
4991 serial_close (rs->remote_desc);
4992 rs->remote_desc = NULL;
4993 perror_with_name (name);
4994 }
4995 }
4996
4997 serial_setparity (rs->remote_desc, serial_parity);
4998 serial_raw (rs->remote_desc);
4999
5000 /* If there is something sitting in the buffer we might take it as a
5001 response to a command, which would be bad. */
5002 serial_flush_input (rs->remote_desc);
5003
5004 if (from_tty)
5005 {
5006 puts_filtered ("Remote debugging using ");
5007 puts_filtered (name);
5008 puts_filtered ("\n");
5009 }
5010 push_target (target); /* Switch to using remote target now. */
5011
5012 /* Register extra event sources in the event loop. */
5013 remote_async_inferior_event_token
5014 = create_async_event_handler (remote_async_inferior_event_handler,
5015 NULL);
5016 rs->notif_state = remote_notif_state_allocate ();
5017
5018 /* Reset the target state; these things will be queried either by
5019 remote_query_supported or as they are needed. */
5020 reset_all_packet_configs_support ();
5021 rs->cached_wait_status = 0;
5022 rs->explicit_packet_size = 0;
5023 rs->noack_mode = 0;
5024 rs->extended = extended_p;
5025 rs->waiting_for_stop_reply = 0;
5026 rs->ctrlc_pending_p = 0;
5027 rs->got_ctrlc_during_io = 0;
5028
5029 rs->general_thread = not_sent_ptid;
5030 rs->continue_thread = not_sent_ptid;
5031 rs->remote_traceframe_number = -1;
5032
5033 rs->last_resume_exec_dir = EXEC_FORWARD;
5034
5035 /* Probe for ability to use "ThreadInfo" query, as required. */
5036 rs->use_threadinfo_query = 1;
5037 rs->use_threadextra_query = 1;
5038
5039 readahead_cache_invalidate ();
5040
5041 if (target_async_permitted)
5042 {
5043 /* FIXME: cagney/1999-09-23: During the initial connection it is
5044 assumed that the target is already ready and able to respond to
5045 requests. Unfortunately remote_start_remote() eventually calls
5046 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5047 around this. Eventually a mechanism that allows
5048 wait_for_inferior() to expect/get timeouts will be
5049 implemented. */
5050 wait_forever_enabled_p = 0;
5051 }
5052
5053 /* First delete any symbols previously loaded from shared libraries. */
5054 no_shared_libraries (NULL, 0);
5055
5056 /* Start afresh. */
5057 init_thread_list ();
5058
5059 /* Start the remote connection. If error() or QUIT, discard this
5060 target (we'd otherwise be in an inconsistent state) and then
5061 propogate the error on up the exception chain. This ensures that
5062 the caller doesn't stumble along blindly assuming that the
5063 function succeeded. The CLI doesn't have this problem but other
5064 UI's, such as MI do.
5065
5066 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5067 this function should return an error indication letting the
5068 caller restore the previous state. Unfortunately the command
5069 ``target remote'' is directly wired to this function making that
5070 impossible. On a positive note, the CLI side of this problem has
5071 been fixed - the function set_cmd_context() makes it possible for
5072 all the ``target ....'' commands to share a common callback
5073 function. See cli-dump.c. */
5074 {
5075
5076 TRY
5077 {
5078 remote_start_remote (from_tty, target, extended_p);
5079 }
5080 CATCH (ex, RETURN_MASK_ALL)
5081 {
5082 /* Pop the partially set up target - unless something else did
5083 already before throwing the exception. */
5084 if (rs->remote_desc != NULL)
5085 remote_unpush_target ();
5086 if (target_async_permitted)
5087 wait_forever_enabled_p = 1;
5088 throw_exception (ex);
5089 }
5090 END_CATCH
5091 }
5092
5093 remote_btrace_reset ();
5094
5095 if (target_async_permitted)
5096 wait_forever_enabled_p = 1;
5097 }
5098
5099 /* Detach the specified process. */
5100
5101 static void
5102 remote_detach_pid (int pid)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105
5106 if (remote_multi_process_p (rs))
5107 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5108 else
5109 strcpy (rs->buf, "D");
5110
5111 putpkt (rs->buf);
5112 getpkt (&rs->buf, &rs->buf_size, 0);
5113
5114 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5115 ;
5116 else if (rs->buf[0] == '\0')
5117 error (_("Remote doesn't know how to detach"));
5118 else
5119 error (_("Can't detach process."));
5120 }
5121
5122 /* This detaches a program to which we previously attached, using
5123 inferior_ptid to identify the process. After this is done, GDB
5124 can be used to debug some other program. We better not have left
5125 any breakpoints in the target program or it'll die when it hits
5126 one. */
5127
5128 static void
5129 remote_detach_1 (int from_tty)
5130 {
5131 int pid = ptid_get_pid (inferior_ptid);
5132 struct remote_state *rs = get_remote_state ();
5133 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5134 int is_fork_parent;
5135
5136 if (!target_has_execution)
5137 error (_("No process to detach from."));
5138
5139 target_announce_detach (from_tty);
5140
5141 /* Tell the remote target to detach. */
5142 remote_detach_pid (pid);
5143
5144 /* Exit only if this is the only active inferior. */
5145 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5146 puts_filtered (_("Ending remote debugging.\n"));
5147
5148 /* Check to see if we are detaching a fork parent. Note that if we
5149 are detaching a fork child, tp == NULL. */
5150 is_fork_parent = (tp != NULL
5151 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5152
5153 /* If doing detach-on-fork, we don't mourn, because that will delete
5154 breakpoints that should be available for the followed inferior. */
5155 if (!is_fork_parent)
5156 target_mourn_inferior (inferior_ptid);
5157 else
5158 {
5159 inferior_ptid = null_ptid;
5160 detach_inferior (pid);
5161 }
5162 }
5163
5164 static void
5165 remote_detach (struct target_ops *ops, int from_tty)
5166 {
5167 remote_detach_1 (from_tty);
5168 }
5169
5170 static void
5171 extended_remote_detach (struct target_ops *ops, int from_tty)
5172 {
5173 remote_detach_1 (from_tty);
5174 }
5175
5176 /* Target follow-fork function for remote targets. On entry, and
5177 at return, the current inferior is the fork parent.
5178
5179 Note that although this is currently only used for extended-remote,
5180 it is named remote_follow_fork in anticipation of using it for the
5181 remote target as well. */
5182
5183 static int
5184 remote_follow_fork (struct target_ops *ops, int follow_child,
5185 int detach_fork)
5186 {
5187 struct remote_state *rs = get_remote_state ();
5188 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5189
5190 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5191 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5192 {
5193 /* When following the parent and detaching the child, we detach
5194 the child here. For the case of following the child and
5195 detaching the parent, the detach is done in the target-
5196 independent follow fork code in infrun.c. We can't use
5197 target_detach when detaching an unfollowed child because
5198 the client side doesn't know anything about the child. */
5199 if (detach_fork && !follow_child)
5200 {
5201 /* Detach the fork child. */
5202 ptid_t child_ptid;
5203 pid_t child_pid;
5204
5205 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5206 child_pid = ptid_get_pid (child_ptid);
5207
5208 remote_detach_pid (child_pid);
5209 detach_inferior (child_pid);
5210 }
5211 }
5212 return 0;
5213 }
5214
5215 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5216 in the program space of the new inferior. On entry and at return the
5217 current inferior is the exec'ing inferior. INF is the new exec'd
5218 inferior, which may be the same as the exec'ing inferior unless
5219 follow-exec-mode is "new". */
5220
5221 static void
5222 remote_follow_exec (struct target_ops *ops,
5223 struct inferior *inf, char *execd_pathname)
5224 {
5225 /* We know that this is a target file name, so if it has the "target:"
5226 prefix we strip it off before saving it in the program space. */
5227 if (is_target_filename (execd_pathname))
5228 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5229
5230 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5231 }
5232
5233 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5234
5235 static void
5236 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5237 {
5238 if (args)
5239 error (_("Argument given to \"disconnect\" when remotely debugging."));
5240
5241 /* Make sure we unpush even the extended remote targets. Calling
5242 target_mourn_inferior won't unpush, and remote_mourn won't
5243 unpush if there is more than one inferior left. */
5244 unpush_target (target);
5245 generic_mourn_inferior ();
5246
5247 if (from_tty)
5248 puts_filtered ("Ending remote debugging.\n");
5249 }
5250
5251 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5252 be chatty about it. */
5253
5254 static void
5255 extended_remote_attach (struct target_ops *target, const char *args,
5256 int from_tty)
5257 {
5258 struct remote_state *rs = get_remote_state ();
5259 int pid;
5260 char *wait_status = NULL;
5261
5262 pid = parse_pid_to_attach (args);
5263
5264 /* Remote PID can be freely equal to getpid, do not check it here the same
5265 way as in other targets. */
5266
5267 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5268 error (_("This target does not support attaching to a process"));
5269
5270 if (from_tty)
5271 {
5272 char *exec_file = get_exec_file (0);
5273
5274 if (exec_file)
5275 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5276 target_pid_to_str (pid_to_ptid (pid)));
5277 else
5278 printf_unfiltered (_("Attaching to %s\n"),
5279 target_pid_to_str (pid_to_ptid (pid)));
5280
5281 gdb_flush (gdb_stdout);
5282 }
5283
5284 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5285 putpkt (rs->buf);
5286 getpkt (&rs->buf, &rs->buf_size, 0);
5287
5288 switch (packet_ok (rs->buf,
5289 &remote_protocol_packets[PACKET_vAttach]))
5290 {
5291 case PACKET_OK:
5292 if (!target_is_non_stop_p ())
5293 {
5294 /* Save the reply for later. */
5295 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5296 strcpy (wait_status, rs->buf);
5297 }
5298 else if (strcmp (rs->buf, "OK") != 0)
5299 error (_("Attaching to %s failed with: %s"),
5300 target_pid_to_str (pid_to_ptid (pid)),
5301 rs->buf);
5302 break;
5303 case PACKET_UNKNOWN:
5304 error (_("This target does not support attaching to a process"));
5305 default:
5306 error (_("Attaching to %s failed"),
5307 target_pid_to_str (pid_to_ptid (pid)));
5308 }
5309
5310 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5311
5312 inferior_ptid = pid_to_ptid (pid);
5313
5314 if (target_is_non_stop_p ())
5315 {
5316 struct thread_info *thread;
5317
5318 /* Get list of threads. */
5319 remote_update_thread_list (target);
5320
5321 thread = first_thread_of_process (pid);
5322 if (thread)
5323 inferior_ptid = thread->ptid;
5324 else
5325 inferior_ptid = pid_to_ptid (pid);
5326
5327 /* Invalidate our notion of the remote current thread. */
5328 record_currthread (rs, minus_one_ptid);
5329 }
5330 else
5331 {
5332 /* Now, if we have thread information, update inferior_ptid. */
5333 inferior_ptid = remote_current_thread (inferior_ptid);
5334
5335 /* Add the main thread to the thread list. */
5336 add_thread_silent (inferior_ptid);
5337 }
5338
5339 /* Next, if the target can specify a description, read it. We do
5340 this before anything involving memory or registers. */
5341 target_find_description ();
5342
5343 if (!target_is_non_stop_p ())
5344 {
5345 /* Use the previously fetched status. */
5346 gdb_assert (wait_status != NULL);
5347
5348 if (target_can_async_p ())
5349 {
5350 struct notif_event *reply
5351 = remote_notif_parse (&notif_client_stop, wait_status);
5352
5353 push_stop_reply ((struct stop_reply *) reply);
5354
5355 target_async (1);
5356 }
5357 else
5358 {
5359 gdb_assert (wait_status != NULL);
5360 strcpy (rs->buf, wait_status);
5361 rs->cached_wait_status = 1;
5362 }
5363 }
5364 else
5365 gdb_assert (wait_status == NULL);
5366 }
5367
5368 /* Implementation of the to_post_attach method. */
5369
5370 static void
5371 extended_remote_post_attach (struct target_ops *ops, int pid)
5372 {
5373 /* Get text, data & bss offsets. */
5374 get_offsets ();
5375
5376 /* In certain cases GDB might not have had the chance to start
5377 symbol lookup up until now. This could happen if the debugged
5378 binary is not using shared libraries, the vsyscall page is not
5379 present (on Linux) and the binary itself hadn't changed since the
5380 debugging process was started. */
5381 if (symfile_objfile != NULL)
5382 remote_check_symbols();
5383 }
5384
5385 \f
5386 /* Check for the availability of vCont. This function should also check
5387 the response. */
5388
5389 static void
5390 remote_vcont_probe (struct remote_state *rs)
5391 {
5392 char *buf;
5393
5394 strcpy (rs->buf, "vCont?");
5395 putpkt (rs->buf);
5396 getpkt (&rs->buf, &rs->buf_size, 0);
5397 buf = rs->buf;
5398
5399 /* Make sure that the features we assume are supported. */
5400 if (startswith (buf, "vCont"))
5401 {
5402 char *p = &buf[5];
5403 int support_c, support_C;
5404
5405 rs->supports_vCont.s = 0;
5406 rs->supports_vCont.S = 0;
5407 support_c = 0;
5408 support_C = 0;
5409 rs->supports_vCont.t = 0;
5410 rs->supports_vCont.r = 0;
5411 while (p && *p == ';')
5412 {
5413 p++;
5414 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5415 rs->supports_vCont.s = 1;
5416 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5417 rs->supports_vCont.S = 1;
5418 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5419 support_c = 1;
5420 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5421 support_C = 1;
5422 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5423 rs->supports_vCont.t = 1;
5424 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5425 rs->supports_vCont.r = 1;
5426
5427 p = strchr (p, ';');
5428 }
5429
5430 /* If c, and C are not all supported, we can't use vCont. Clearing
5431 BUF will make packet_ok disable the packet. */
5432 if (!support_c || !support_C)
5433 buf[0] = 0;
5434 }
5435
5436 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5437 }
5438
5439 /* Helper function for building "vCont" resumptions. Write a
5440 resumption to P. ENDP points to one-passed-the-end of the buffer
5441 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5442 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5443 resumed thread should be single-stepped and/or signalled. If PTID
5444 equals minus_one_ptid, then all threads are resumed; if PTID
5445 represents a process, then all threads of the process are resumed;
5446 the thread to be stepped and/or signalled is given in the global
5447 INFERIOR_PTID. */
5448
5449 static char *
5450 append_resumption (char *p, char *endp,
5451 ptid_t ptid, int step, enum gdb_signal siggnal)
5452 {
5453 struct remote_state *rs = get_remote_state ();
5454
5455 if (step && siggnal != GDB_SIGNAL_0)
5456 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5457 else if (step
5458 /* GDB is willing to range step. */
5459 && use_range_stepping
5460 /* Target supports range stepping. */
5461 && rs->supports_vCont.r
5462 /* We don't currently support range stepping multiple
5463 threads with a wildcard (though the protocol allows it,
5464 so stubs shouldn't make an active effort to forbid
5465 it). */
5466 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5467 {
5468 struct thread_info *tp;
5469
5470 if (ptid_equal (ptid, minus_one_ptid))
5471 {
5472 /* If we don't know about the target thread's tid, then
5473 we're resuming magic_null_ptid (see caller). */
5474 tp = find_thread_ptid (magic_null_ptid);
5475 }
5476 else
5477 tp = find_thread_ptid (ptid);
5478 gdb_assert (tp != NULL);
5479
5480 if (tp->control.may_range_step)
5481 {
5482 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5483
5484 p += xsnprintf (p, endp - p, ";r%s,%s",
5485 phex_nz (tp->control.step_range_start,
5486 addr_size),
5487 phex_nz (tp->control.step_range_end,
5488 addr_size));
5489 }
5490 else
5491 p += xsnprintf (p, endp - p, ";s");
5492 }
5493 else if (step)
5494 p += xsnprintf (p, endp - p, ";s");
5495 else if (siggnal != GDB_SIGNAL_0)
5496 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5497 else
5498 p += xsnprintf (p, endp - p, ";c");
5499
5500 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5501 {
5502 ptid_t nptid;
5503
5504 /* All (-1) threads of process. */
5505 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5506
5507 p += xsnprintf (p, endp - p, ":");
5508 p = write_ptid (p, endp, nptid);
5509 }
5510 else if (!ptid_equal (ptid, minus_one_ptid))
5511 {
5512 p += xsnprintf (p, endp - p, ":");
5513 p = write_ptid (p, endp, ptid);
5514 }
5515
5516 return p;
5517 }
5518
5519 /* Clear the thread's private info on resume. */
5520
5521 static void
5522 resume_clear_thread_private_info (struct thread_info *thread)
5523 {
5524 if (thread->priv != NULL)
5525 {
5526 remote_thread_info *priv = get_remote_thread_info (thread);
5527
5528 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5529 priv->watch_data_address = 0;
5530 }
5531 }
5532
5533 /* Append a vCont continue-with-signal action for threads that have a
5534 non-zero stop signal. */
5535
5536 static char *
5537 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5538 {
5539 struct thread_info *thread;
5540
5541 ALL_NON_EXITED_THREADS (thread)
5542 if (ptid_match (thread->ptid, ptid)
5543 && !ptid_equal (inferior_ptid, thread->ptid)
5544 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5545 {
5546 p = append_resumption (p, endp, thread->ptid,
5547 0, thread->suspend.stop_signal);
5548 thread->suspend.stop_signal = GDB_SIGNAL_0;
5549 resume_clear_thread_private_info (thread);
5550 }
5551
5552 return p;
5553 }
5554
5555 /* Set the target running, using the packets that use Hc
5556 (c/s/C/S). */
5557
5558 static void
5559 remote_resume_with_hc (struct target_ops *ops,
5560 ptid_t ptid, int step, enum gdb_signal siggnal)
5561 {
5562 struct remote_state *rs = get_remote_state ();
5563 struct thread_info *thread;
5564 char *buf;
5565
5566 rs->last_sent_signal = siggnal;
5567 rs->last_sent_step = step;
5568
5569 /* The c/s/C/S resume packets use Hc, so set the continue
5570 thread. */
5571 if (ptid_equal (ptid, minus_one_ptid))
5572 set_continue_thread (any_thread_ptid);
5573 else
5574 set_continue_thread (ptid);
5575
5576 ALL_NON_EXITED_THREADS (thread)
5577 resume_clear_thread_private_info (thread);
5578
5579 buf = rs->buf;
5580 if (execution_direction == EXEC_REVERSE)
5581 {
5582 /* We don't pass signals to the target in reverse exec mode. */
5583 if (info_verbose && siggnal != GDB_SIGNAL_0)
5584 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5585 siggnal);
5586
5587 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5588 error (_("Remote reverse-step not supported."));
5589 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5590 error (_("Remote reverse-continue not supported."));
5591
5592 strcpy (buf, step ? "bs" : "bc");
5593 }
5594 else if (siggnal != GDB_SIGNAL_0)
5595 {
5596 buf[0] = step ? 'S' : 'C';
5597 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5598 buf[2] = tohex (((int) siggnal) & 0xf);
5599 buf[3] = '\0';
5600 }
5601 else
5602 strcpy (buf, step ? "s" : "c");
5603
5604 putpkt (buf);
5605 }
5606
5607 /* Resume the remote inferior by using a "vCont" packet. The thread
5608 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5609 resumed thread should be single-stepped and/or signalled. If PTID
5610 equals minus_one_ptid, then all threads are resumed; the thread to
5611 be stepped and/or signalled is given in the global INFERIOR_PTID.
5612 This function returns non-zero iff it resumes the inferior.
5613
5614 This function issues a strict subset of all possible vCont commands
5615 at the moment. */
5616
5617 static int
5618 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5619 {
5620 struct remote_state *rs = get_remote_state ();
5621 char *p;
5622 char *endp;
5623
5624 /* No reverse execution actions defined for vCont. */
5625 if (execution_direction == EXEC_REVERSE)
5626 return 0;
5627
5628 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5629 remote_vcont_probe (rs);
5630
5631 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5632 return 0;
5633
5634 p = rs->buf;
5635 endp = rs->buf + get_remote_packet_size ();
5636
5637 /* If we could generate a wider range of packets, we'd have to worry
5638 about overflowing BUF. Should there be a generic
5639 "multi-part-packet" packet? */
5640
5641 p += xsnprintf (p, endp - p, "vCont");
5642
5643 if (ptid_equal (ptid, magic_null_ptid))
5644 {
5645 /* MAGIC_NULL_PTID means that we don't have any active threads,
5646 so we don't have any TID numbers the inferior will
5647 understand. Make sure to only send forms that do not specify
5648 a TID. */
5649 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5650 }
5651 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5652 {
5653 /* Resume all threads (of all processes, or of a single
5654 process), with preference for INFERIOR_PTID. This assumes
5655 inferior_ptid belongs to the set of all threads we are about
5656 to resume. */
5657 if (step || siggnal != GDB_SIGNAL_0)
5658 {
5659 /* Step inferior_ptid, with or without signal. */
5660 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5661 }
5662
5663 /* Also pass down any pending signaled resumption for other
5664 threads not the current. */
5665 p = append_pending_thread_resumptions (p, endp, ptid);
5666
5667 /* And continue others without a signal. */
5668 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5669 }
5670 else
5671 {
5672 /* Scheduler locking; resume only PTID. */
5673 append_resumption (p, endp, ptid, step, siggnal);
5674 }
5675
5676 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5677 putpkt (rs->buf);
5678
5679 if (target_is_non_stop_p ())
5680 {
5681 /* In non-stop, the stub replies to vCont with "OK". The stop
5682 reply will be reported asynchronously by means of a `%Stop'
5683 notification. */
5684 getpkt (&rs->buf, &rs->buf_size, 0);
5685 if (strcmp (rs->buf, "OK") != 0)
5686 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5687 }
5688
5689 return 1;
5690 }
5691
5692 /* Tell the remote machine to resume. */
5693
5694 static void
5695 remote_resume (struct target_ops *ops,
5696 ptid_t ptid, int step, enum gdb_signal siggnal)
5697 {
5698 struct remote_state *rs = get_remote_state ();
5699
5700 /* When connected in non-stop mode, the core resumes threads
5701 individually. Resuming remote threads directly in target_resume
5702 would thus result in sending one packet per thread. Instead, to
5703 minimize roundtrip latency, here we just store the resume
5704 request; the actual remote resumption will be done in
5705 target_commit_resume / remote_commit_resume, where we'll be able
5706 to do vCont action coalescing. */
5707 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5708 {
5709 remote_thread_info *remote_thr;
5710
5711 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5712 remote_thr = get_remote_thread_info (inferior_ptid);
5713 else
5714 remote_thr = get_remote_thread_info (ptid);
5715
5716 remote_thr->last_resume_step = step;
5717 remote_thr->last_resume_sig = siggnal;
5718 return;
5719 }
5720
5721 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5722 (explained in remote-notif.c:handle_notification) so
5723 remote_notif_process is not called. We need find a place where
5724 it is safe to start a 'vNotif' sequence. It is good to do it
5725 before resuming inferior, because inferior was stopped and no RSP
5726 traffic at that moment. */
5727 if (!target_is_non_stop_p ())
5728 remote_notif_process (rs->notif_state, &notif_client_stop);
5729
5730 rs->last_resume_exec_dir = execution_direction;
5731
5732 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5733 if (!remote_resume_with_vcont (ptid, step, siggnal))
5734 remote_resume_with_hc (ops, ptid, step, siggnal);
5735
5736 /* We are about to start executing the inferior, let's register it
5737 with the event loop. NOTE: this is the one place where all the
5738 execution commands end up. We could alternatively do this in each
5739 of the execution commands in infcmd.c. */
5740 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5741 into infcmd.c in order to allow inferior function calls to work
5742 NOT asynchronously. */
5743 if (target_can_async_p ())
5744 target_async (1);
5745
5746 /* We've just told the target to resume. The remote server will
5747 wait for the inferior to stop, and then send a stop reply. In
5748 the mean time, we can't start another command/query ourselves
5749 because the stub wouldn't be ready to process it. This applies
5750 only to the base all-stop protocol, however. In non-stop (which
5751 only supports vCont), the stub replies with an "OK", and is
5752 immediate able to process further serial input. */
5753 if (!target_is_non_stop_p ())
5754 rs->waiting_for_stop_reply = 1;
5755 }
5756
5757 static void check_pending_events_prevent_wildcard_vcont
5758 (int *may_global_wildcard_vcont);
5759 static int is_pending_fork_parent_thread (struct thread_info *thread);
5760
5761 /* Private per-inferior info for target remote processes. */
5762
5763 struct remote_inferior : public private_inferior
5764 {
5765 /* Whether we can send a wildcard vCont for this process. */
5766 bool may_wildcard_vcont = true;
5767 };
5768
5769 /* Get the remote private inferior data associated to INF. */
5770
5771 static remote_inferior *
5772 get_remote_inferior (inferior *inf)
5773 {
5774 if (inf->priv == NULL)
5775 inf->priv.reset (new remote_inferior);
5776
5777 return static_cast<remote_inferior *> (inf->priv.get ());
5778 }
5779
5780 /* Structure used to track the construction of a vCont packet in the
5781 outgoing packet buffer. This is used to send multiple vCont
5782 packets if we have more actions than would fit a single packet. */
5783
5784 struct vcont_builder
5785 {
5786 /* Pointer to the first action. P points here if no action has been
5787 appended yet. */
5788 char *first_action;
5789
5790 /* Where the next action will be appended. */
5791 char *p;
5792
5793 /* The end of the buffer. Must never write past this. */
5794 char *endp;
5795 };
5796
5797 /* Prepare the outgoing buffer for a new vCont packet. */
5798
5799 static void
5800 vcont_builder_restart (struct vcont_builder *builder)
5801 {
5802 struct remote_state *rs = get_remote_state ();
5803
5804 builder->p = rs->buf;
5805 builder->endp = rs->buf + get_remote_packet_size ();
5806 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5807 builder->first_action = builder->p;
5808 }
5809
5810 /* If the vCont packet being built has any action, send it to the
5811 remote end. */
5812
5813 static void
5814 vcont_builder_flush (struct vcont_builder *builder)
5815 {
5816 struct remote_state *rs;
5817
5818 if (builder->p == builder->first_action)
5819 return;
5820
5821 rs = get_remote_state ();
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, &rs->buf_size, 0);
5824 if (strcmp (rs->buf, "OK") != 0)
5825 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5826 }
5827
5828 /* The largest action is range-stepping, with its two addresses. This
5829 is more than sufficient. If a new, bigger action is created, it'll
5830 quickly trigger a failed assertion in append_resumption (and we'll
5831 just bump this). */
5832 #define MAX_ACTION_SIZE 200
5833
5834 /* Append a new vCont action in the outgoing packet being built. If
5835 the action doesn't fit the packet along with previous actions, push
5836 what we've got so far to the remote end and start over a new vCont
5837 packet (with the new action). */
5838
5839 static void
5840 vcont_builder_push_action (struct vcont_builder *builder,
5841 ptid_t ptid, int step, enum gdb_signal siggnal)
5842 {
5843 char buf[MAX_ACTION_SIZE + 1];
5844 char *endp;
5845 size_t rsize;
5846
5847 endp = append_resumption (buf, buf + sizeof (buf),
5848 ptid, step, siggnal);
5849
5850 /* Check whether this new action would fit in the vCont packet along
5851 with previous actions. If not, send what we've got so far and
5852 start a new vCont packet. */
5853 rsize = endp - buf;
5854 if (rsize > builder->endp - builder->p)
5855 {
5856 vcont_builder_flush (builder);
5857 vcont_builder_restart (builder);
5858
5859 /* Should now fit. */
5860 gdb_assert (rsize <= builder->endp - builder->p);
5861 }
5862
5863 memcpy (builder->p, buf, rsize);
5864 builder->p += rsize;
5865 *builder->p = '\0';
5866 }
5867
5868 /* to_commit_resume implementation. */
5869
5870 static void
5871 remote_commit_resume (struct target_ops *ops)
5872 {
5873 struct inferior *inf;
5874 struct thread_info *tp;
5875 int any_process_wildcard;
5876 int may_global_wildcard_vcont;
5877 struct vcont_builder vcont_builder;
5878
5879 /* If connected in all-stop mode, we'd send the remote resume
5880 request directly from remote_resume. Likewise if
5881 reverse-debugging, as there are no defined vCont actions for
5882 reverse execution. */
5883 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5884 return;
5885
5886 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5887 instead of resuming all threads of each process individually.
5888 However, if any thread of a process must remain halted, we can't
5889 send wildcard resumes and must send one action per thread.
5890
5891 Care must be taken to not resume threads/processes the server
5892 side already told us are stopped, but the core doesn't know about
5893 yet, because the events are still in the vStopped notification
5894 queue. For example:
5895
5896 #1 => vCont s:p1.1;c
5897 #2 <= OK
5898 #3 <= %Stopped T05 p1.1
5899 #4 => vStopped
5900 #5 <= T05 p1.2
5901 #6 => vStopped
5902 #7 <= OK
5903 #8 (infrun handles the stop for p1.1 and continues stepping)
5904 #9 => vCont s:p1.1;c
5905
5906 The last vCont above would resume thread p1.2 by mistake, because
5907 the server has no idea that the event for p1.2 had not been
5908 handled yet.
5909
5910 The server side must similarly ignore resume actions for the
5911 thread that has a pending %Stopped notification (and any other
5912 threads with events pending), until GDB acks the notification
5913 with vStopped. Otherwise, e.g., the following case is
5914 mishandled:
5915
5916 #1 => g (or any other packet)
5917 #2 <= [registers]
5918 #3 <= %Stopped T05 p1.2
5919 #4 => vCont s:p1.1;c
5920 #5 <= OK
5921
5922 Above, the server must not resume thread p1.2. GDB can't know
5923 that p1.2 stopped until it acks the %Stopped notification, and
5924 since from GDB's perspective all threads should be running, it
5925 sends a "c" action.
5926
5927 Finally, special care must also be given to handling fork/vfork
5928 events. A (v)fork event actually tells us that two processes
5929 stopped -- the parent and the child. Until we follow the fork,
5930 we must not resume the child. Therefore, if we have a pending
5931 fork follow, we must not send a global wildcard resume action
5932 (vCont;c). We can still send process-wide wildcards though. */
5933
5934 /* Start by assuming a global wildcard (vCont;c) is possible. */
5935 may_global_wildcard_vcont = 1;
5936
5937 /* And assume every process is individually wildcard-able too. */
5938 ALL_NON_EXITED_INFERIORS (inf)
5939 {
5940 remote_inferior *priv = get_remote_inferior (inf);
5941
5942 priv->may_wildcard_vcont = true;
5943 }
5944
5945 /* Check for any pending events (not reported or processed yet) and
5946 disable process and global wildcard resumes appropriately. */
5947 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5948
5949 ALL_NON_EXITED_THREADS (tp)
5950 {
5951 /* If a thread of a process is not meant to be resumed, then we
5952 can't wildcard that process. */
5953 if (!tp->executing)
5954 {
5955 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5956
5957 /* And if we can't wildcard a process, we can't wildcard
5958 everything either. */
5959 may_global_wildcard_vcont = 0;
5960 continue;
5961 }
5962
5963 /* If a thread is the parent of an unfollowed fork, then we
5964 can't do a global wildcard, as that would resume the fork
5965 child. */
5966 if (is_pending_fork_parent_thread (tp))
5967 may_global_wildcard_vcont = 0;
5968 }
5969
5970 /* Now let's build the vCont packet(s). Actions must be appended
5971 from narrower to wider scopes (thread -> process -> global). If
5972 we end up with too many actions for a single packet vcont_builder
5973 flushes the current vCont packet to the remote side and starts a
5974 new one. */
5975 vcont_builder_restart (&vcont_builder);
5976
5977 /* Threads first. */
5978 ALL_NON_EXITED_THREADS (tp)
5979 {
5980 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5981
5982 if (!tp->executing || remote_thr->vcont_resumed)
5983 continue;
5984
5985 gdb_assert (!thread_is_in_step_over_chain (tp));
5986
5987 if (!remote_thr->last_resume_step
5988 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5989 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5990 {
5991 /* We'll send a wildcard resume instead. */
5992 remote_thr->vcont_resumed = 1;
5993 continue;
5994 }
5995
5996 vcont_builder_push_action (&vcont_builder, tp->ptid,
5997 remote_thr->last_resume_step,
5998 remote_thr->last_resume_sig);
5999 remote_thr->vcont_resumed = 1;
6000 }
6001
6002 /* Now check whether we can send any process-wide wildcard. This is
6003 to avoid sending a global wildcard in the case nothing is
6004 supposed to be resumed. */
6005 any_process_wildcard = 0;
6006
6007 ALL_NON_EXITED_INFERIORS (inf)
6008 {
6009 if (get_remote_inferior (inf)->may_wildcard_vcont)
6010 {
6011 any_process_wildcard = 1;
6012 break;
6013 }
6014 }
6015
6016 if (any_process_wildcard)
6017 {
6018 /* If all processes are wildcard-able, then send a single "c"
6019 action, otherwise, send an "all (-1) threads of process"
6020 continue action for each running process, if any. */
6021 if (may_global_wildcard_vcont)
6022 {
6023 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6024 0, GDB_SIGNAL_0);
6025 }
6026 else
6027 {
6028 ALL_NON_EXITED_INFERIORS (inf)
6029 {
6030 if (get_remote_inferior (inf)->may_wildcard_vcont)
6031 {
6032 vcont_builder_push_action (&vcont_builder,
6033 pid_to_ptid (inf->pid),
6034 0, GDB_SIGNAL_0);
6035 }
6036 }
6037 }
6038 }
6039
6040 vcont_builder_flush (&vcont_builder);
6041 }
6042
6043 \f
6044
6045 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6046 thread, all threads of a remote process, or all threads of all
6047 processes. */
6048
6049 static void
6050 remote_stop_ns (ptid_t ptid)
6051 {
6052 struct remote_state *rs = get_remote_state ();
6053 char *p = rs->buf;
6054 char *endp = rs->buf + get_remote_packet_size ();
6055
6056 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6057 remote_vcont_probe (rs);
6058
6059 if (!rs->supports_vCont.t)
6060 error (_("Remote server does not support stopping threads"));
6061
6062 if (ptid_equal (ptid, minus_one_ptid)
6063 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6064 p += xsnprintf (p, endp - p, "vCont;t");
6065 else
6066 {
6067 ptid_t nptid;
6068
6069 p += xsnprintf (p, endp - p, "vCont;t:");
6070
6071 if (ptid_is_pid (ptid))
6072 /* All (-1) threads of process. */
6073 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6074 else
6075 {
6076 /* Small optimization: if we already have a stop reply for
6077 this thread, no use in telling the stub we want this
6078 stopped. */
6079 if (peek_stop_reply (ptid))
6080 return;
6081
6082 nptid = ptid;
6083 }
6084
6085 write_ptid (p, endp, nptid);
6086 }
6087
6088 /* In non-stop, we get an immediate OK reply. The stop reply will
6089 come in asynchronously by notification. */
6090 putpkt (rs->buf);
6091 getpkt (&rs->buf, &rs->buf_size, 0);
6092 if (strcmp (rs->buf, "OK") != 0)
6093 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6094 }
6095
6096 /* All-stop version of target_interrupt. Sends a break or a ^C to
6097 interrupt the remote target. It is undefined which thread of which
6098 process reports the interrupt. */
6099
6100 static void
6101 remote_interrupt_as (void)
6102 {
6103 struct remote_state *rs = get_remote_state ();
6104
6105 rs->ctrlc_pending_p = 1;
6106
6107 /* If the inferior is stopped already, but the core didn't know
6108 about it yet, just ignore the request. The cached wait status
6109 will be collected in remote_wait. */
6110 if (rs->cached_wait_status)
6111 return;
6112
6113 /* Send interrupt_sequence to remote target. */
6114 send_interrupt_sequence ();
6115 }
6116
6117 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6118 the remote target. It is undefined which thread of which process
6119 reports the interrupt. Throws an error if the packet is not
6120 supported by the server. */
6121
6122 static void
6123 remote_interrupt_ns (void)
6124 {
6125 struct remote_state *rs = get_remote_state ();
6126 char *p = rs->buf;
6127 char *endp = rs->buf + get_remote_packet_size ();
6128
6129 xsnprintf (p, endp - p, "vCtrlC");
6130
6131 /* In non-stop, we get an immediate OK reply. The stop reply will
6132 come in asynchronously by notification. */
6133 putpkt (rs->buf);
6134 getpkt (&rs->buf, &rs->buf_size, 0);
6135
6136 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6137 {
6138 case PACKET_OK:
6139 break;
6140 case PACKET_UNKNOWN:
6141 error (_("No support for interrupting the remote target."));
6142 case PACKET_ERROR:
6143 error (_("Interrupting target failed: %s"), rs->buf);
6144 }
6145 }
6146
6147 /* Implement the to_stop function for the remote targets. */
6148
6149 static void
6150 remote_stop (struct target_ops *self, ptid_t ptid)
6151 {
6152 if (remote_debug)
6153 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6154
6155 if (target_is_non_stop_p ())
6156 remote_stop_ns (ptid);
6157 else
6158 {
6159 /* We don't currently have a way to transparently pause the
6160 remote target in all-stop mode. Interrupt it instead. */
6161 remote_interrupt_as ();
6162 }
6163 }
6164
6165 /* Implement the to_interrupt function for the remote targets. */
6166
6167 static void
6168 remote_interrupt (struct target_ops *self, ptid_t ptid)
6169 {
6170 if (remote_debug)
6171 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6172
6173 if (target_is_non_stop_p ())
6174 remote_interrupt_ns ();
6175 else
6176 remote_interrupt_as ();
6177 }
6178
6179 /* Implement the to_pass_ctrlc function for the remote targets. */
6180
6181 static void
6182 remote_pass_ctrlc (struct target_ops *self)
6183 {
6184 struct remote_state *rs = get_remote_state ();
6185
6186 if (remote_debug)
6187 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6188
6189 /* If we're starting up, we're not fully synced yet. Quit
6190 immediately. */
6191 if (rs->starting_up)
6192 quit ();
6193 /* If ^C has already been sent once, offer to disconnect. */
6194 else if (rs->ctrlc_pending_p)
6195 interrupt_query ();
6196 else
6197 target_interrupt (inferior_ptid);
6198 }
6199
6200 /* Ask the user what to do when an interrupt is received. */
6201
6202 static void
6203 interrupt_query (void)
6204 {
6205 struct remote_state *rs = get_remote_state ();
6206
6207 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6208 {
6209 if (query (_("The target is not responding to interrupt requests.\n"
6210 "Stop debugging it? ")))
6211 {
6212 remote_unpush_target ();
6213 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6214 }
6215 }
6216 else
6217 {
6218 if (query (_("Interrupted while waiting for the program.\n"
6219 "Give up waiting? ")))
6220 quit ();
6221 }
6222 }
6223
6224 /* Enable/disable target terminal ownership. Most targets can use
6225 terminal groups to control terminal ownership. Remote targets are
6226 different in that explicit transfer of ownership to/from GDB/target
6227 is required. */
6228
6229 static void
6230 remote_terminal_inferior (struct target_ops *self)
6231 {
6232 /* NOTE: At this point we could also register our selves as the
6233 recipient of all input. Any characters typed could then be
6234 passed on down to the target. */
6235 }
6236
6237 static void
6238 remote_terminal_ours (struct target_ops *self)
6239 {
6240 }
6241
6242 static void
6243 remote_console_output (char *msg)
6244 {
6245 char *p;
6246
6247 for (p = msg; p[0] && p[1]; p += 2)
6248 {
6249 char tb[2];
6250 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6251
6252 tb[0] = c;
6253 tb[1] = 0;
6254 fputs_unfiltered (tb, gdb_stdtarg);
6255 }
6256 gdb_flush (gdb_stdtarg);
6257 }
6258
6259 DEF_VEC_O(cached_reg_t);
6260
6261 typedef struct stop_reply
6262 {
6263 struct notif_event base;
6264
6265 /* The identifier of the thread about this event */
6266 ptid_t ptid;
6267
6268 /* The remote state this event is associated with. When the remote
6269 connection, represented by a remote_state object, is closed,
6270 all the associated stop_reply events should be released. */
6271 struct remote_state *rs;
6272
6273 struct target_waitstatus ws;
6274
6275 /* The architecture associated with the expedited registers. */
6276 gdbarch *arch;
6277
6278 /* Expedited registers. This makes remote debugging a bit more
6279 efficient for those targets that provide critical registers as
6280 part of their normal status mechanism (as another roundtrip to
6281 fetch them is avoided). */
6282 VEC(cached_reg_t) *regcache;
6283
6284 enum target_stop_reason stop_reason;
6285
6286 CORE_ADDR watch_data_address;
6287
6288 int core;
6289 } *stop_reply_p;
6290
6291 DECLARE_QUEUE_P (stop_reply_p);
6292 DEFINE_QUEUE_P (stop_reply_p);
6293 /* The list of already fetched and acknowledged stop events. This
6294 queue is used for notification Stop, and other notifications
6295 don't need queue for their events, because the notification events
6296 of Stop can't be consumed immediately, so that events should be
6297 queued first, and be consumed by remote_wait_{ns,as} one per
6298 time. Other notifications can consume their events immediately,
6299 so queue is not needed for them. */
6300 static QUEUE (stop_reply_p) *stop_reply_queue;
6301
6302 static void
6303 stop_reply_xfree (struct stop_reply *r)
6304 {
6305 notif_event_xfree ((struct notif_event *) r);
6306 }
6307
6308 /* Return the length of the stop reply queue. */
6309
6310 static int
6311 stop_reply_queue_length (void)
6312 {
6313 return QUEUE_length (stop_reply_p, stop_reply_queue);
6314 }
6315
6316 static void
6317 remote_notif_stop_parse (struct notif_client *self, char *buf,
6318 struct notif_event *event)
6319 {
6320 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6321 }
6322
6323 static void
6324 remote_notif_stop_ack (struct notif_client *self, char *buf,
6325 struct notif_event *event)
6326 {
6327 struct stop_reply *stop_reply = (struct stop_reply *) event;
6328
6329 /* acknowledge */
6330 putpkt (self->ack_command);
6331
6332 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6333 /* We got an unknown stop reply. */
6334 error (_("Unknown stop reply"));
6335
6336 push_stop_reply (stop_reply);
6337 }
6338
6339 static int
6340 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6341 {
6342 /* We can't get pending events in remote_notif_process for
6343 notification stop, and we have to do this in remote_wait_ns
6344 instead. If we fetch all queued events from stub, remote stub
6345 may exit and we have no chance to process them back in
6346 remote_wait_ns. */
6347 mark_async_event_handler (remote_async_inferior_event_token);
6348 return 0;
6349 }
6350
6351 static void
6352 stop_reply_dtr (struct notif_event *event)
6353 {
6354 struct stop_reply *r = (struct stop_reply *) event;
6355 cached_reg_t *reg;
6356 int ix;
6357
6358 for (ix = 0;
6359 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6360 ix++)
6361 xfree (reg->data);
6362
6363 VEC_free (cached_reg_t, r->regcache);
6364 }
6365
6366 static struct notif_event *
6367 remote_notif_stop_alloc_reply (void)
6368 {
6369 /* We cast to a pointer to the "base class". */
6370 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6371
6372 r->dtr = stop_reply_dtr;
6373
6374 return r;
6375 }
6376
6377 /* A client of notification Stop. */
6378
6379 struct notif_client notif_client_stop =
6380 {
6381 "Stop",
6382 "vStopped",
6383 remote_notif_stop_parse,
6384 remote_notif_stop_ack,
6385 remote_notif_stop_can_get_pending_events,
6386 remote_notif_stop_alloc_reply,
6387 REMOTE_NOTIF_STOP,
6388 };
6389
6390 /* A parameter to pass data in and out. */
6391
6392 struct queue_iter_param
6393 {
6394 void *input;
6395 struct stop_reply *output;
6396 };
6397
6398 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6399 the pid of the process that owns the threads we want to check, or
6400 -1 if we want to check all threads. */
6401
6402 static int
6403 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6404 ptid_t thread_ptid)
6405 {
6406 if (ws->kind == TARGET_WAITKIND_FORKED
6407 || ws->kind == TARGET_WAITKIND_VFORKED)
6408 {
6409 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6410 return 1;
6411 }
6412
6413 return 0;
6414 }
6415
6416 /* Return the thread's pending status used to determine whether the
6417 thread is a fork parent stopped at a fork event. */
6418
6419 static struct target_waitstatus *
6420 thread_pending_fork_status (struct thread_info *thread)
6421 {
6422 if (thread->suspend.waitstatus_pending_p)
6423 return &thread->suspend.waitstatus;
6424 else
6425 return &thread->pending_follow;
6426 }
6427
6428 /* Determine if THREAD is a pending fork parent thread. */
6429
6430 static int
6431 is_pending_fork_parent_thread (struct thread_info *thread)
6432 {
6433 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6434 int pid = -1;
6435
6436 return is_pending_fork_parent (ws, pid, thread->ptid);
6437 }
6438
6439 /* Check whether EVENT is a fork event, and if it is, remove the
6440 fork child from the context list passed in DATA. */
6441
6442 static int
6443 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6444 QUEUE_ITER (stop_reply_p) *iter,
6445 stop_reply_p event,
6446 void *data)
6447 {
6448 struct queue_iter_param *param = (struct queue_iter_param *) data;
6449 struct threads_listing_context *context
6450 = (struct threads_listing_context *) param->input;
6451
6452 if (event->ws.kind == TARGET_WAITKIND_FORKED
6453 || event->ws.kind == TARGET_WAITKIND_VFORKED
6454 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6455 context->remove_thread (event->ws.value.related_pid);
6456
6457 return 1;
6458 }
6459
6460 /* If CONTEXT contains any fork child threads that have not been
6461 reported yet, remove them from the CONTEXT list. If such a
6462 thread exists it is because we are stopped at a fork catchpoint
6463 and have not yet called follow_fork, which will set up the
6464 host-side data structures for the new process. */
6465
6466 static void
6467 remove_new_fork_children (struct threads_listing_context *context)
6468 {
6469 struct thread_info * thread;
6470 int pid = -1;
6471 struct notif_client *notif = &notif_client_stop;
6472 struct queue_iter_param param;
6473
6474 /* For any threads stopped at a fork event, remove the corresponding
6475 fork child threads from the CONTEXT list. */
6476 ALL_NON_EXITED_THREADS (thread)
6477 {
6478 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6479
6480 if (is_pending_fork_parent (ws, pid, thread->ptid))
6481 context->remove_thread (ws->value.related_pid);
6482 }
6483
6484 /* Check for any pending fork events (not reported or processed yet)
6485 in process PID and remove those fork child threads from the
6486 CONTEXT list as well. */
6487 remote_notif_get_pending_events (notif);
6488 param.input = context;
6489 param.output = NULL;
6490 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6491 remove_child_of_pending_fork, &param);
6492 }
6493
6494 /* Check whether EVENT would prevent a global or process wildcard
6495 vCont action. */
6496
6497 static int
6498 check_pending_event_prevents_wildcard_vcont_callback
6499 (QUEUE (stop_reply_p) *q,
6500 QUEUE_ITER (stop_reply_p) *iter,
6501 stop_reply_p event,
6502 void *data)
6503 {
6504 struct inferior *inf;
6505 int *may_global_wildcard_vcont = (int *) data;
6506
6507 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6508 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6509 return 1;
6510
6511 if (event->ws.kind == TARGET_WAITKIND_FORKED
6512 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6513 *may_global_wildcard_vcont = 0;
6514
6515 inf = find_inferior_ptid (event->ptid);
6516
6517 /* This may be the first time we heard about this process.
6518 Regardless, we must not do a global wildcard resume, otherwise
6519 we'd resume this process too. */
6520 *may_global_wildcard_vcont = 0;
6521 if (inf != NULL)
6522 get_remote_inferior (inf)->may_wildcard_vcont = false;
6523
6524 return 1;
6525 }
6526
6527 /* Check whether any event pending in the vStopped queue would prevent
6528 a global or process wildcard vCont action. Clear
6529 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6530 and clear the event inferior's may_wildcard_vcont flag if we can't
6531 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6532
6533 static void
6534 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6535 {
6536 struct notif_client *notif = &notif_client_stop;
6537
6538 remote_notif_get_pending_events (notif);
6539 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6540 check_pending_event_prevents_wildcard_vcont_callback,
6541 may_global_wildcard);
6542 }
6543
6544 /* Remove stop replies in the queue if its pid is equal to the given
6545 inferior's pid. */
6546
6547 static int
6548 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6549 QUEUE_ITER (stop_reply_p) *iter,
6550 stop_reply_p event,
6551 void *data)
6552 {
6553 struct queue_iter_param *param = (struct queue_iter_param *) data;
6554 struct inferior *inf = (struct inferior *) param->input;
6555
6556 if (ptid_get_pid (event->ptid) == inf->pid)
6557 {
6558 stop_reply_xfree (event);
6559 QUEUE_remove_elem (stop_reply_p, q, iter);
6560 }
6561
6562 return 1;
6563 }
6564
6565 /* Discard all pending stop replies of inferior INF. */
6566
6567 static void
6568 discard_pending_stop_replies (struct inferior *inf)
6569 {
6570 struct queue_iter_param param;
6571 struct stop_reply *reply;
6572 struct remote_state *rs = get_remote_state ();
6573 struct remote_notif_state *rns = rs->notif_state;
6574
6575 /* This function can be notified when an inferior exists. When the
6576 target is not remote, the notification state is NULL. */
6577 if (rs->remote_desc == NULL)
6578 return;
6579
6580 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6581
6582 /* Discard the in-flight notification. */
6583 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6584 {
6585 stop_reply_xfree (reply);
6586 rns->pending_event[notif_client_stop.id] = NULL;
6587 }
6588
6589 param.input = inf;
6590 param.output = NULL;
6591 /* Discard the stop replies we have already pulled with
6592 vStopped. */
6593 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6594 remove_stop_reply_for_inferior, &param);
6595 }
6596
6597 /* If its remote state is equal to the given remote state,
6598 remove EVENT from the stop reply queue. */
6599
6600 static int
6601 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6602 QUEUE_ITER (stop_reply_p) *iter,
6603 stop_reply_p event,
6604 void *data)
6605 {
6606 struct queue_iter_param *param = (struct queue_iter_param *) data;
6607 struct remote_state *rs = (struct remote_state *) param->input;
6608
6609 if (event->rs == rs)
6610 {
6611 stop_reply_xfree (event);
6612 QUEUE_remove_elem (stop_reply_p, q, iter);
6613 }
6614
6615 return 1;
6616 }
6617
6618 /* Discard the stop replies for RS in stop_reply_queue. */
6619
6620 static void
6621 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6622 {
6623 struct queue_iter_param param;
6624
6625 param.input = rs;
6626 param.output = NULL;
6627 /* Discard the stop replies we have already pulled with
6628 vStopped. */
6629 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6630 remove_stop_reply_of_remote_state, &param);
6631 }
6632
6633 /* A parameter to pass data in and out. */
6634
6635 static int
6636 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6637 QUEUE_ITER (stop_reply_p) *iter,
6638 stop_reply_p event,
6639 void *data)
6640 {
6641 struct queue_iter_param *param = (struct queue_iter_param *) data;
6642 ptid_t *ptid = (ptid_t *) param->input;
6643
6644 if (ptid_match (event->ptid, *ptid))
6645 {
6646 param->output = event;
6647 QUEUE_remove_elem (stop_reply_p, q, iter);
6648 return 0;
6649 }
6650
6651 return 1;
6652 }
6653
6654 /* Remove the first reply in 'stop_reply_queue' which matches
6655 PTID. */
6656
6657 static struct stop_reply *
6658 remote_notif_remove_queued_reply (ptid_t ptid)
6659 {
6660 struct queue_iter_param param;
6661
6662 param.input = &ptid;
6663 param.output = NULL;
6664
6665 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6666 remote_notif_remove_once_on_match, &param);
6667 if (notif_debug)
6668 fprintf_unfiltered (gdb_stdlog,
6669 "notif: discard queued event: 'Stop' in %s\n",
6670 target_pid_to_str (ptid));
6671
6672 return param.output;
6673 }
6674
6675 /* Look for a queued stop reply belonging to PTID. If one is found,
6676 remove it from the queue, and return it. Returns NULL if none is
6677 found. If there are still queued events left to process, tell the
6678 event loop to get back to target_wait soon. */
6679
6680 static struct stop_reply *
6681 queued_stop_reply (ptid_t ptid)
6682 {
6683 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6684
6685 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6686 /* There's still at least an event left. */
6687 mark_async_event_handler (remote_async_inferior_event_token);
6688
6689 return r;
6690 }
6691
6692 /* Push a fully parsed stop reply in the stop reply queue. Since we
6693 know that we now have at least one queued event left to pass to the
6694 core side, tell the event loop to get back to target_wait soon. */
6695
6696 static void
6697 push_stop_reply (struct stop_reply *new_event)
6698 {
6699 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6700
6701 if (notif_debug)
6702 fprintf_unfiltered (gdb_stdlog,
6703 "notif: push 'Stop' %s to queue %d\n",
6704 target_pid_to_str (new_event->ptid),
6705 QUEUE_length (stop_reply_p,
6706 stop_reply_queue));
6707
6708 mark_async_event_handler (remote_async_inferior_event_token);
6709 }
6710
6711 static int
6712 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6713 QUEUE_ITER (stop_reply_p) *iter,
6714 struct stop_reply *event,
6715 void *data)
6716 {
6717 ptid_t *ptid = (ptid_t *) data;
6718
6719 return !(ptid_equal (*ptid, event->ptid)
6720 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6721 }
6722
6723 /* Returns true if we have a stop reply for PTID. */
6724
6725 static int
6726 peek_stop_reply (ptid_t ptid)
6727 {
6728 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6729 stop_reply_match_ptid_and_ws, &ptid);
6730 }
6731
6732 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6733 starting with P and ending with PEND matches PREFIX. */
6734
6735 static int
6736 strprefix (const char *p, const char *pend, const char *prefix)
6737 {
6738 for ( ; p < pend; p++, prefix++)
6739 if (*p != *prefix)
6740 return 0;
6741 return *prefix == '\0';
6742 }
6743
6744 /* Parse the stop reply in BUF. Either the function succeeds, and the
6745 result is stored in EVENT, or throws an error. */
6746
6747 static void
6748 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6749 {
6750 remote_arch_state *rsa = NULL;
6751 ULONGEST addr;
6752 const char *p;
6753 int skipregs = 0;
6754
6755 event->ptid = null_ptid;
6756 event->rs = get_remote_state ();
6757 event->ws.kind = TARGET_WAITKIND_IGNORE;
6758 event->ws.value.integer = 0;
6759 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6760 event->regcache = NULL;
6761 event->core = -1;
6762
6763 switch (buf[0])
6764 {
6765 case 'T': /* Status with PC, SP, FP, ... */
6766 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6767 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6768 ss = signal number
6769 n... = register number
6770 r... = register contents
6771 */
6772
6773 p = &buf[3]; /* after Txx */
6774 while (*p)
6775 {
6776 const char *p1;
6777 int fieldsize;
6778
6779 p1 = strchr (p, ':');
6780 if (p1 == NULL)
6781 error (_("Malformed packet(a) (missing colon): %s\n\
6782 Packet: '%s'\n"),
6783 p, buf);
6784 if (p == p1)
6785 error (_("Malformed packet(a) (missing register number): %s\n\
6786 Packet: '%s'\n"),
6787 p, buf);
6788
6789 /* Some "registers" are actually extended stop information.
6790 Note if you're adding a new entry here: GDB 7.9 and
6791 earlier assume that all register "numbers" that start
6792 with an hex digit are real register numbers. Make sure
6793 the server only sends such a packet if it knows the
6794 client understands it. */
6795
6796 if (strprefix (p, p1, "thread"))
6797 event->ptid = read_ptid (++p1, &p);
6798 else if (strprefix (p, p1, "syscall_entry"))
6799 {
6800 ULONGEST sysno;
6801
6802 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6803 p = unpack_varlen_hex (++p1, &sysno);
6804 event->ws.value.syscall_number = (int) sysno;
6805 }
6806 else if (strprefix (p, p1, "syscall_return"))
6807 {
6808 ULONGEST sysno;
6809
6810 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6811 p = unpack_varlen_hex (++p1, &sysno);
6812 event->ws.value.syscall_number = (int) sysno;
6813 }
6814 else if (strprefix (p, p1, "watch")
6815 || strprefix (p, p1, "rwatch")
6816 || strprefix (p, p1, "awatch"))
6817 {
6818 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6819 p = unpack_varlen_hex (++p1, &addr);
6820 event->watch_data_address = (CORE_ADDR) addr;
6821 }
6822 else if (strprefix (p, p1, "swbreak"))
6823 {
6824 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6825
6826 /* Make sure the stub doesn't forget to indicate support
6827 with qSupported. */
6828 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6829 error (_("Unexpected swbreak stop reason"));
6830
6831 /* The value part is documented as "must be empty",
6832 though we ignore it, in case we ever decide to make
6833 use of it in a backward compatible way. */
6834 p = strchrnul (p1 + 1, ';');
6835 }
6836 else if (strprefix (p, p1, "hwbreak"))
6837 {
6838 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6839
6840 /* Make sure the stub doesn't forget to indicate support
6841 with qSupported. */
6842 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6843 error (_("Unexpected hwbreak stop reason"));
6844
6845 /* See above. */
6846 p = strchrnul (p1 + 1, ';');
6847 }
6848 else if (strprefix (p, p1, "library"))
6849 {
6850 event->ws.kind = TARGET_WAITKIND_LOADED;
6851 p = strchrnul (p1 + 1, ';');
6852 }
6853 else if (strprefix (p, p1, "replaylog"))
6854 {
6855 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6856 /* p1 will indicate "begin" or "end", but it makes
6857 no difference for now, so ignore it. */
6858 p = strchrnul (p1 + 1, ';');
6859 }
6860 else if (strprefix (p, p1, "core"))
6861 {
6862 ULONGEST c;
6863
6864 p = unpack_varlen_hex (++p1, &c);
6865 event->core = c;
6866 }
6867 else if (strprefix (p, p1, "fork"))
6868 {
6869 event->ws.value.related_pid = read_ptid (++p1, &p);
6870 event->ws.kind = TARGET_WAITKIND_FORKED;
6871 }
6872 else if (strprefix (p, p1, "vfork"))
6873 {
6874 event->ws.value.related_pid = read_ptid (++p1, &p);
6875 event->ws.kind = TARGET_WAITKIND_VFORKED;
6876 }
6877 else if (strprefix (p, p1, "vforkdone"))
6878 {
6879 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6880 p = strchrnul (p1 + 1, ';');
6881 }
6882 else if (strprefix (p, p1, "exec"))
6883 {
6884 ULONGEST ignored;
6885 char pathname[PATH_MAX];
6886 int pathlen;
6887
6888 /* Determine the length of the execd pathname. */
6889 p = unpack_varlen_hex (++p1, &ignored);
6890 pathlen = (p - p1) / 2;
6891
6892 /* Save the pathname for event reporting and for
6893 the next run command. */
6894 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6895 pathname[pathlen] = '\0';
6896
6897 /* This is freed during event handling. */
6898 event->ws.value.execd_pathname = xstrdup (pathname);
6899 event->ws.kind = TARGET_WAITKIND_EXECD;
6900
6901 /* Skip the registers included in this packet, since
6902 they may be for an architecture different from the
6903 one used by the original program. */
6904 skipregs = 1;
6905 }
6906 else if (strprefix (p, p1, "create"))
6907 {
6908 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6909 p = strchrnul (p1 + 1, ';');
6910 }
6911 else
6912 {
6913 ULONGEST pnum;
6914 const char *p_temp;
6915
6916 if (skipregs)
6917 {
6918 p = strchrnul (p1 + 1, ';');
6919 p++;
6920 continue;
6921 }
6922
6923 /* Maybe a real ``P'' register number. */
6924 p_temp = unpack_varlen_hex (p, &pnum);
6925 /* If the first invalid character is the colon, we got a
6926 register number. Otherwise, it's an unknown stop
6927 reason. */
6928 if (p_temp == p1)
6929 {
6930 /* If we haven't parsed the event's thread yet, find
6931 it now, in order to find the architecture of the
6932 reported expedited registers. */
6933 if (event->ptid == null_ptid)
6934 {
6935 const char *thr = strstr (p1 + 1, ";thread:");
6936 if (thr != NULL)
6937 event->ptid = read_ptid (thr + strlen (";thread:"),
6938 NULL);
6939 else
6940 {
6941 /* Either the current thread hasn't changed,
6942 or the inferior is not multi-threaded.
6943 The event must be for the thread we last
6944 set as (or learned as being) current. */
6945 event->ptid = event->rs->general_thread;
6946 }
6947 }
6948
6949 if (rsa == NULL)
6950 {
6951 inferior *inf = (event->ptid == null_ptid
6952 ? NULL
6953 : find_inferior_ptid (event->ptid));
6954 /* If this is the first time we learn anything
6955 about this process, skip the registers
6956 included in this packet, since we don't yet
6957 know which architecture to use to parse them.
6958 We'll determine the architecture later when
6959 we process the stop reply and retrieve the
6960 target description, via
6961 remote_notice_new_inferior ->
6962 post_create_inferior. */
6963 if (inf == NULL)
6964 {
6965 p = strchrnul (p1 + 1, ';');
6966 p++;
6967 continue;
6968 }
6969
6970 event->arch = inf->gdbarch;
6971 rsa = get_remote_arch_state (event->arch);
6972 }
6973
6974 packet_reg *reg
6975 = packet_reg_from_pnum (event->arch, rsa, pnum);
6976 cached_reg_t cached_reg;
6977
6978 if (reg == NULL)
6979 error (_("Remote sent bad register number %s: %s\n\
6980 Packet: '%s'\n"),
6981 hex_string (pnum), p, buf);
6982
6983 cached_reg.num = reg->regnum;
6984 cached_reg.data = (gdb_byte *)
6985 xmalloc (register_size (event->arch, reg->regnum));
6986
6987 p = p1 + 1;
6988 fieldsize = hex2bin (p, cached_reg.data,
6989 register_size (event->arch, reg->regnum));
6990 p += 2 * fieldsize;
6991 if (fieldsize < register_size (event->arch, reg->regnum))
6992 warning (_("Remote reply is too short: %s"), buf);
6993
6994 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6995 }
6996 else
6997 {
6998 /* Not a number. Silently skip unknown optional
6999 info. */
7000 p = strchrnul (p1 + 1, ';');
7001 }
7002 }
7003
7004 if (*p != ';')
7005 error (_("Remote register badly formatted: %s\nhere: %s"),
7006 buf, p);
7007 ++p;
7008 }
7009
7010 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7011 break;
7012
7013 /* fall through */
7014 case 'S': /* Old style status, just signal only. */
7015 {
7016 int sig;
7017
7018 event->ws.kind = TARGET_WAITKIND_STOPPED;
7019 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7020 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7021 event->ws.value.sig = (enum gdb_signal) sig;
7022 else
7023 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7024 }
7025 break;
7026 case 'w': /* Thread exited. */
7027 {
7028 const char *p;
7029 ULONGEST value;
7030
7031 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7032 p = unpack_varlen_hex (&buf[1], &value);
7033 event->ws.value.integer = value;
7034 if (*p != ';')
7035 error (_("stop reply packet badly formatted: %s"), buf);
7036 event->ptid = read_ptid (++p, NULL);
7037 break;
7038 }
7039 case 'W': /* Target exited. */
7040 case 'X':
7041 {
7042 const char *p;
7043 int pid;
7044 ULONGEST value;
7045
7046 /* GDB used to accept only 2 hex chars here. Stubs should
7047 only send more if they detect GDB supports multi-process
7048 support. */
7049 p = unpack_varlen_hex (&buf[1], &value);
7050
7051 if (buf[0] == 'W')
7052 {
7053 /* The remote process exited. */
7054 event->ws.kind = TARGET_WAITKIND_EXITED;
7055 event->ws.value.integer = value;
7056 }
7057 else
7058 {
7059 /* The remote process exited with a signal. */
7060 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7061 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7062 event->ws.value.sig = (enum gdb_signal) value;
7063 else
7064 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7065 }
7066
7067 /* If no process is specified, assume inferior_ptid. */
7068 pid = ptid_get_pid (inferior_ptid);
7069 if (*p == '\0')
7070 ;
7071 else if (*p == ';')
7072 {
7073 p++;
7074
7075 if (*p == '\0')
7076 ;
7077 else if (startswith (p, "process:"))
7078 {
7079 ULONGEST upid;
7080
7081 p += sizeof ("process:") - 1;
7082 unpack_varlen_hex (p, &upid);
7083 pid = upid;
7084 }
7085 else
7086 error (_("unknown stop reply packet: %s"), buf);
7087 }
7088 else
7089 error (_("unknown stop reply packet: %s"), buf);
7090 event->ptid = pid_to_ptid (pid);
7091 }
7092 break;
7093 case 'N':
7094 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7095 event->ptid = minus_one_ptid;
7096 break;
7097 }
7098
7099 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7100 error (_("No process or thread specified in stop reply: %s"), buf);
7101 }
7102
7103 /* When the stub wants to tell GDB about a new notification reply, it
7104 sends a notification (%Stop, for example). Those can come it at
7105 any time, hence, we have to make sure that any pending
7106 putpkt/getpkt sequence we're making is finished, before querying
7107 the stub for more events with the corresponding ack command
7108 (vStopped, for example). E.g., if we started a vStopped sequence
7109 immediately upon receiving the notification, something like this
7110 could happen:
7111
7112 1.1) --> Hg 1
7113 1.2) <-- OK
7114 1.3) --> g
7115 1.4) <-- %Stop
7116 1.5) --> vStopped
7117 1.6) <-- (registers reply to step #1.3)
7118
7119 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7120 query.
7121
7122 To solve this, whenever we parse a %Stop notification successfully,
7123 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7124 doing whatever we were doing:
7125
7126 2.1) --> Hg 1
7127 2.2) <-- OK
7128 2.3) --> g
7129 2.4) <-- %Stop
7130 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7131 2.5) <-- (registers reply to step #2.3)
7132
7133 Eventualy after step #2.5, we return to the event loop, which
7134 notices there's an event on the
7135 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7136 associated callback --- the function below. At this point, we're
7137 always safe to start a vStopped sequence. :
7138
7139 2.6) --> vStopped
7140 2.7) <-- T05 thread:2
7141 2.8) --> vStopped
7142 2.9) --> OK
7143 */
7144
7145 void
7146 remote_notif_get_pending_events (struct notif_client *nc)
7147 {
7148 struct remote_state *rs = get_remote_state ();
7149
7150 if (rs->notif_state->pending_event[nc->id] != NULL)
7151 {
7152 if (notif_debug)
7153 fprintf_unfiltered (gdb_stdlog,
7154 "notif: process: '%s' ack pending event\n",
7155 nc->name);
7156
7157 /* acknowledge */
7158 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7159 rs->notif_state->pending_event[nc->id] = NULL;
7160
7161 while (1)
7162 {
7163 getpkt (&rs->buf, &rs->buf_size, 0);
7164 if (strcmp (rs->buf, "OK") == 0)
7165 break;
7166 else
7167 remote_notif_ack (nc, rs->buf);
7168 }
7169 }
7170 else
7171 {
7172 if (notif_debug)
7173 fprintf_unfiltered (gdb_stdlog,
7174 "notif: process: '%s' no pending reply\n",
7175 nc->name);
7176 }
7177 }
7178
7179 /* Called when it is decided that STOP_REPLY holds the info of the
7180 event that is to be returned to the core. This function always
7181 destroys STOP_REPLY. */
7182
7183 static ptid_t
7184 process_stop_reply (struct stop_reply *stop_reply,
7185 struct target_waitstatus *status)
7186 {
7187 ptid_t ptid;
7188
7189 *status = stop_reply->ws;
7190 ptid = stop_reply->ptid;
7191
7192 /* If no thread/process was reported by the stub, assume the current
7193 inferior. */
7194 if (ptid_equal (ptid, null_ptid))
7195 ptid = inferior_ptid;
7196
7197 if (status->kind != TARGET_WAITKIND_EXITED
7198 && status->kind != TARGET_WAITKIND_SIGNALLED
7199 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7200 {
7201 /* Expedited registers. */
7202 if (stop_reply->regcache)
7203 {
7204 struct regcache *regcache
7205 = get_thread_arch_regcache (ptid, stop_reply->arch);
7206 cached_reg_t *reg;
7207 int ix;
7208
7209 for (ix = 0;
7210 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7211 ix++)
7212 {
7213 regcache_raw_supply (regcache, reg->num, reg->data);
7214 xfree (reg->data);
7215 }
7216
7217 VEC_free (cached_reg_t, stop_reply->regcache);
7218 }
7219
7220 remote_notice_new_inferior (ptid, 0);
7221 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7222 remote_thr->core = stop_reply->core;
7223 remote_thr->stop_reason = stop_reply->stop_reason;
7224 remote_thr->watch_data_address = stop_reply->watch_data_address;
7225 remote_thr->vcont_resumed = 0;
7226 }
7227
7228 stop_reply_xfree (stop_reply);
7229 return ptid;
7230 }
7231
7232 /* The non-stop mode version of target_wait. */
7233
7234 static ptid_t
7235 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7236 {
7237 struct remote_state *rs = get_remote_state ();
7238 struct stop_reply *stop_reply;
7239 int ret;
7240 int is_notif = 0;
7241
7242 /* If in non-stop mode, get out of getpkt even if a
7243 notification is received. */
7244
7245 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7246 0 /* forever */, &is_notif);
7247 while (1)
7248 {
7249 if (ret != -1 && !is_notif)
7250 switch (rs->buf[0])
7251 {
7252 case 'E': /* Error of some sort. */
7253 /* We're out of sync with the target now. Did it continue
7254 or not? We can't tell which thread it was in non-stop,
7255 so just ignore this. */
7256 warning (_("Remote failure reply: %s"), rs->buf);
7257 break;
7258 case 'O': /* Console output. */
7259 remote_console_output (rs->buf + 1);
7260 break;
7261 default:
7262 warning (_("Invalid remote reply: %s"), rs->buf);
7263 break;
7264 }
7265
7266 /* Acknowledge a pending stop reply that may have arrived in the
7267 mean time. */
7268 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7269 remote_notif_get_pending_events (&notif_client_stop);
7270
7271 /* If indeed we noticed a stop reply, we're done. */
7272 stop_reply = queued_stop_reply (ptid);
7273 if (stop_reply != NULL)
7274 return process_stop_reply (stop_reply, status);
7275
7276 /* Still no event. If we're just polling for an event, then
7277 return to the event loop. */
7278 if (options & TARGET_WNOHANG)
7279 {
7280 status->kind = TARGET_WAITKIND_IGNORE;
7281 return minus_one_ptid;
7282 }
7283
7284 /* Otherwise do a blocking wait. */
7285 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7286 1 /* forever */, &is_notif);
7287 }
7288 }
7289
7290 /* Wait until the remote machine stops, then return, storing status in
7291 STATUS just as `wait' would. */
7292
7293 static ptid_t
7294 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7295 {
7296 struct remote_state *rs = get_remote_state ();
7297 ptid_t event_ptid = null_ptid;
7298 char *buf;
7299 struct stop_reply *stop_reply;
7300
7301 again:
7302
7303 status->kind = TARGET_WAITKIND_IGNORE;
7304 status->value.integer = 0;
7305
7306 stop_reply = queued_stop_reply (ptid);
7307 if (stop_reply != NULL)
7308 return process_stop_reply (stop_reply, status);
7309
7310 if (rs->cached_wait_status)
7311 /* Use the cached wait status, but only once. */
7312 rs->cached_wait_status = 0;
7313 else
7314 {
7315 int ret;
7316 int is_notif;
7317 int forever = ((options & TARGET_WNOHANG) == 0
7318 && wait_forever_enabled_p);
7319
7320 if (!rs->waiting_for_stop_reply)
7321 {
7322 status->kind = TARGET_WAITKIND_NO_RESUMED;
7323 return minus_one_ptid;
7324 }
7325
7326 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7327 _never_ wait for ever -> test on target_is_async_p().
7328 However, before we do that we need to ensure that the caller
7329 knows how to take the target into/out of async mode. */
7330 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7331 forever, &is_notif);
7332
7333 /* GDB gets a notification. Return to core as this event is
7334 not interesting. */
7335 if (ret != -1 && is_notif)
7336 return minus_one_ptid;
7337
7338 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7339 return minus_one_ptid;
7340 }
7341
7342 buf = rs->buf;
7343
7344 /* Assume that the target has acknowledged Ctrl-C unless we receive
7345 an 'F' or 'O' packet. */
7346 if (buf[0] != 'F' && buf[0] != 'O')
7347 rs->ctrlc_pending_p = 0;
7348
7349 switch (buf[0])
7350 {
7351 case 'E': /* Error of some sort. */
7352 /* We're out of sync with the target now. Did it continue or
7353 not? Not is more likely, so report a stop. */
7354 rs->waiting_for_stop_reply = 0;
7355
7356 warning (_("Remote failure reply: %s"), buf);
7357 status->kind = TARGET_WAITKIND_STOPPED;
7358 status->value.sig = GDB_SIGNAL_0;
7359 break;
7360 case 'F': /* File-I/O request. */
7361 /* GDB may access the inferior memory while handling the File-I/O
7362 request, but we don't want GDB accessing memory while waiting
7363 for a stop reply. See the comments in putpkt_binary. Set
7364 waiting_for_stop_reply to 0 temporarily. */
7365 rs->waiting_for_stop_reply = 0;
7366 remote_fileio_request (buf, rs->ctrlc_pending_p);
7367 rs->ctrlc_pending_p = 0;
7368 /* GDB handled the File-I/O request, and the target is running
7369 again. Keep waiting for events. */
7370 rs->waiting_for_stop_reply = 1;
7371 break;
7372 case 'N': case 'T': case 'S': case 'X': case 'W':
7373 {
7374 struct stop_reply *stop_reply;
7375
7376 /* There is a stop reply to handle. */
7377 rs->waiting_for_stop_reply = 0;
7378
7379 stop_reply
7380 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7381 rs->buf);
7382
7383 event_ptid = process_stop_reply (stop_reply, status);
7384 break;
7385 }
7386 case 'O': /* Console output. */
7387 remote_console_output (buf + 1);
7388 break;
7389 case '\0':
7390 if (rs->last_sent_signal != GDB_SIGNAL_0)
7391 {
7392 /* Zero length reply means that we tried 'S' or 'C' and the
7393 remote system doesn't support it. */
7394 target_terminal::ours_for_output ();
7395 printf_filtered
7396 ("Can't send signals to this remote system. %s not sent.\n",
7397 gdb_signal_to_name (rs->last_sent_signal));
7398 rs->last_sent_signal = GDB_SIGNAL_0;
7399 target_terminal::inferior ();
7400
7401 strcpy (buf, rs->last_sent_step ? "s" : "c");
7402 putpkt (buf);
7403 break;
7404 }
7405 /* else fallthrough */
7406 default:
7407 warning (_("Invalid remote reply: %s"), buf);
7408 break;
7409 }
7410
7411 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7412 return minus_one_ptid;
7413 else if (status->kind == TARGET_WAITKIND_IGNORE)
7414 {
7415 /* Nothing interesting happened. If we're doing a non-blocking
7416 poll, we're done. Otherwise, go back to waiting. */
7417 if (options & TARGET_WNOHANG)
7418 return minus_one_ptid;
7419 else
7420 goto again;
7421 }
7422 else if (status->kind != TARGET_WAITKIND_EXITED
7423 && status->kind != TARGET_WAITKIND_SIGNALLED)
7424 {
7425 if (!ptid_equal (event_ptid, null_ptid))
7426 record_currthread (rs, event_ptid);
7427 else
7428 event_ptid = inferior_ptid;
7429 }
7430 else
7431 /* A process exit. Invalidate our notion of current thread. */
7432 record_currthread (rs, minus_one_ptid);
7433
7434 return event_ptid;
7435 }
7436
7437 /* Wait until the remote machine stops, then return, storing status in
7438 STATUS just as `wait' would. */
7439
7440 static ptid_t
7441 remote_wait (struct target_ops *ops,
7442 ptid_t ptid, struct target_waitstatus *status, int options)
7443 {
7444 ptid_t event_ptid;
7445
7446 if (target_is_non_stop_p ())
7447 event_ptid = remote_wait_ns (ptid, status, options);
7448 else
7449 event_ptid = remote_wait_as (ptid, status, options);
7450
7451 if (target_is_async_p ())
7452 {
7453 /* If there are are events left in the queue tell the event loop
7454 to return here. */
7455 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7456 mark_async_event_handler (remote_async_inferior_event_token);
7457 }
7458
7459 return event_ptid;
7460 }
7461
7462 /* Fetch a single register using a 'p' packet. */
7463
7464 static int
7465 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7466 {
7467 struct gdbarch *gdbarch = regcache->arch ();
7468 struct remote_state *rs = get_remote_state ();
7469 char *buf, *p;
7470 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7471 int i;
7472
7473 if (packet_support (PACKET_p) == PACKET_DISABLE)
7474 return 0;
7475
7476 if (reg->pnum == -1)
7477 return 0;
7478
7479 p = rs->buf;
7480 *p++ = 'p';
7481 p += hexnumstr (p, reg->pnum);
7482 *p++ = '\0';
7483 putpkt (rs->buf);
7484 getpkt (&rs->buf, &rs->buf_size, 0);
7485
7486 buf = rs->buf;
7487
7488 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7489 {
7490 case PACKET_OK:
7491 break;
7492 case PACKET_UNKNOWN:
7493 return 0;
7494 case PACKET_ERROR:
7495 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7496 gdbarch_register_name (regcache->arch (),
7497 reg->regnum),
7498 buf);
7499 }
7500
7501 /* If this register is unfetchable, tell the regcache. */
7502 if (buf[0] == 'x')
7503 {
7504 regcache_raw_supply (regcache, reg->regnum, NULL);
7505 return 1;
7506 }
7507
7508 /* Otherwise, parse and supply the value. */
7509 p = buf;
7510 i = 0;
7511 while (p[0] != 0)
7512 {
7513 if (p[1] == 0)
7514 error (_("fetch_register_using_p: early buf termination"));
7515
7516 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7517 p += 2;
7518 }
7519 regcache_raw_supply (regcache, reg->regnum, regp);
7520 return 1;
7521 }
7522
7523 /* Fetch the registers included in the target's 'g' packet. */
7524
7525 static int
7526 send_g_packet (void)
7527 {
7528 struct remote_state *rs = get_remote_state ();
7529 int buf_len;
7530
7531 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7532 remote_send (&rs->buf, &rs->buf_size);
7533
7534 /* We can get out of synch in various cases. If the first character
7535 in the buffer is not a hex character, assume that has happened
7536 and try to fetch another packet to read. */
7537 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7538 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7539 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7540 && rs->buf[0] != 'x') /* New: unavailable register value. */
7541 {
7542 if (remote_debug)
7543 fprintf_unfiltered (gdb_stdlog,
7544 "Bad register packet; fetching a new packet\n");
7545 getpkt (&rs->buf, &rs->buf_size, 0);
7546 }
7547
7548 buf_len = strlen (rs->buf);
7549
7550 /* Sanity check the received packet. */
7551 if (buf_len % 2 != 0)
7552 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7553
7554 return buf_len / 2;
7555 }
7556
7557 static void
7558 process_g_packet (struct regcache *regcache)
7559 {
7560 struct gdbarch *gdbarch = regcache->arch ();
7561 struct remote_state *rs = get_remote_state ();
7562 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7563 int i, buf_len;
7564 char *p;
7565 char *regs;
7566
7567 buf_len = strlen (rs->buf);
7568
7569 /* Further sanity checks, with knowledge of the architecture. */
7570 if (buf_len > 2 * rsa->sizeof_g_packet)
7571 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7572 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7573
7574 /* Save the size of the packet sent to us by the target. It is used
7575 as a heuristic when determining the max size of packets that the
7576 target can safely receive. */
7577 if (rsa->actual_register_packet_size == 0)
7578 rsa->actual_register_packet_size = buf_len;
7579
7580 /* If this is smaller than we guessed the 'g' packet would be,
7581 update our records. A 'g' reply that doesn't include a register's
7582 value implies either that the register is not available, or that
7583 the 'p' packet must be used. */
7584 if (buf_len < 2 * rsa->sizeof_g_packet)
7585 {
7586 long sizeof_g_packet = buf_len / 2;
7587
7588 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7589 {
7590 long offset = rsa->regs[i].offset;
7591 long reg_size = register_size (gdbarch, i);
7592
7593 if (rsa->regs[i].pnum == -1)
7594 continue;
7595
7596 if (offset >= sizeof_g_packet)
7597 rsa->regs[i].in_g_packet = 0;
7598 else if (offset + reg_size > sizeof_g_packet)
7599 error (_("Truncated register %d in remote 'g' packet"), i);
7600 else
7601 rsa->regs[i].in_g_packet = 1;
7602 }
7603
7604 /* Looks valid enough, we can assume this is the correct length
7605 for a 'g' packet. It's important not to adjust
7606 rsa->sizeof_g_packet if we have truncated registers otherwise
7607 this "if" won't be run the next time the method is called
7608 with a packet of the same size and one of the internal errors
7609 below will trigger instead. */
7610 rsa->sizeof_g_packet = sizeof_g_packet;
7611 }
7612
7613 regs = (char *) alloca (rsa->sizeof_g_packet);
7614
7615 /* Unimplemented registers read as all bits zero. */
7616 memset (regs, 0, rsa->sizeof_g_packet);
7617
7618 /* Reply describes registers byte by byte, each byte encoded as two
7619 hex characters. Suck them all up, then supply them to the
7620 register cacheing/storage mechanism. */
7621
7622 p = rs->buf;
7623 for (i = 0; i < rsa->sizeof_g_packet; i++)
7624 {
7625 if (p[0] == 0 || p[1] == 0)
7626 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7627 internal_error (__FILE__, __LINE__,
7628 _("unexpected end of 'g' packet reply"));
7629
7630 if (p[0] == 'x' && p[1] == 'x')
7631 regs[i] = 0; /* 'x' */
7632 else
7633 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7634 p += 2;
7635 }
7636
7637 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7638 {
7639 struct packet_reg *r = &rsa->regs[i];
7640 long reg_size = register_size (gdbarch, i);
7641
7642 if (r->in_g_packet)
7643 {
7644 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7645 /* This shouldn't happen - we adjusted in_g_packet above. */
7646 internal_error (__FILE__, __LINE__,
7647 _("unexpected end of 'g' packet reply"));
7648 else if (rs->buf[r->offset * 2] == 'x')
7649 {
7650 gdb_assert (r->offset * 2 < strlen (rs->buf));
7651 /* The register isn't available, mark it as such (at
7652 the same time setting the value to zero). */
7653 regcache_raw_supply (regcache, r->regnum, NULL);
7654 }
7655 else
7656 regcache_raw_supply (regcache, r->regnum,
7657 regs + r->offset);
7658 }
7659 }
7660 }
7661
7662 static void
7663 fetch_registers_using_g (struct regcache *regcache)
7664 {
7665 send_g_packet ();
7666 process_g_packet (regcache);
7667 }
7668
7669 /* Make the remote selected traceframe match GDB's selected
7670 traceframe. */
7671
7672 static void
7673 set_remote_traceframe (void)
7674 {
7675 int newnum;
7676 struct remote_state *rs = get_remote_state ();
7677
7678 if (rs->remote_traceframe_number == get_traceframe_number ())
7679 return;
7680
7681 /* Avoid recursion, remote_trace_find calls us again. */
7682 rs->remote_traceframe_number = get_traceframe_number ();
7683
7684 newnum = target_trace_find (tfind_number,
7685 get_traceframe_number (), 0, 0, NULL);
7686
7687 /* Should not happen. If it does, all bets are off. */
7688 if (newnum != get_traceframe_number ())
7689 warning (_("could not set remote traceframe"));
7690 }
7691
7692 static void
7693 remote_fetch_registers (struct target_ops *ops,
7694 struct regcache *regcache, int regnum)
7695 {
7696 struct gdbarch *gdbarch = regcache->arch ();
7697 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7698 int i;
7699
7700 set_remote_traceframe ();
7701 set_general_thread (regcache_get_ptid (regcache));
7702
7703 if (regnum >= 0)
7704 {
7705 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7706
7707 gdb_assert (reg != NULL);
7708
7709 /* If this register might be in the 'g' packet, try that first -
7710 we are likely to read more than one register. If this is the
7711 first 'g' packet, we might be overly optimistic about its
7712 contents, so fall back to 'p'. */
7713 if (reg->in_g_packet)
7714 {
7715 fetch_registers_using_g (regcache);
7716 if (reg->in_g_packet)
7717 return;
7718 }
7719
7720 if (fetch_register_using_p (regcache, reg))
7721 return;
7722
7723 /* This register is not available. */
7724 regcache_raw_supply (regcache, reg->regnum, NULL);
7725
7726 return;
7727 }
7728
7729 fetch_registers_using_g (regcache);
7730
7731 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7732 if (!rsa->regs[i].in_g_packet)
7733 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7734 {
7735 /* This register is not available. */
7736 regcache_raw_supply (regcache, i, NULL);
7737 }
7738 }
7739
7740 /* Prepare to store registers. Since we may send them all (using a
7741 'G' request), we have to read out the ones we don't want to change
7742 first. */
7743
7744 static void
7745 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7746 {
7747 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7748 int i;
7749
7750 /* Make sure the entire registers array is valid. */
7751 switch (packet_support (PACKET_P))
7752 {
7753 case PACKET_DISABLE:
7754 case PACKET_SUPPORT_UNKNOWN:
7755 /* Make sure all the necessary registers are cached. */
7756 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7757 if (rsa->regs[i].in_g_packet)
7758 regcache_raw_update (regcache, rsa->regs[i].regnum);
7759 break;
7760 case PACKET_ENABLE:
7761 break;
7762 }
7763 }
7764
7765 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7766 packet was not recognized. */
7767
7768 static int
7769 store_register_using_P (const struct regcache *regcache,
7770 struct packet_reg *reg)
7771 {
7772 struct gdbarch *gdbarch = regcache->arch ();
7773 struct remote_state *rs = get_remote_state ();
7774 /* Try storing a single register. */
7775 char *buf = rs->buf;
7776 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7777 char *p;
7778
7779 if (packet_support (PACKET_P) == PACKET_DISABLE)
7780 return 0;
7781
7782 if (reg->pnum == -1)
7783 return 0;
7784
7785 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7786 p = buf + strlen (buf);
7787 regcache_raw_collect (regcache, reg->regnum, regp);
7788 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7789 putpkt (rs->buf);
7790 getpkt (&rs->buf, &rs->buf_size, 0);
7791
7792 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7793 {
7794 case PACKET_OK:
7795 return 1;
7796 case PACKET_ERROR:
7797 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7798 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7799 case PACKET_UNKNOWN:
7800 return 0;
7801 default:
7802 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7803 }
7804 }
7805
7806 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7807 contents of the register cache buffer. FIXME: ignores errors. */
7808
7809 static void
7810 store_registers_using_G (const struct regcache *regcache)
7811 {
7812 struct remote_state *rs = get_remote_state ();
7813 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7814 gdb_byte *regs;
7815 char *p;
7816
7817 /* Extract all the registers in the regcache copying them into a
7818 local buffer. */
7819 {
7820 int i;
7821
7822 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7823 memset (regs, 0, rsa->sizeof_g_packet);
7824 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7825 {
7826 struct packet_reg *r = &rsa->regs[i];
7827
7828 if (r->in_g_packet)
7829 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7830 }
7831 }
7832
7833 /* Command describes registers byte by byte,
7834 each byte encoded as two hex characters. */
7835 p = rs->buf;
7836 *p++ = 'G';
7837 bin2hex (regs, p, rsa->sizeof_g_packet);
7838 putpkt (rs->buf);
7839 getpkt (&rs->buf, &rs->buf_size, 0);
7840 if (packet_check_result (rs->buf) == PACKET_ERROR)
7841 error (_("Could not write registers; remote failure reply '%s'"),
7842 rs->buf);
7843 }
7844
7845 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7846 of the register cache buffer. FIXME: ignores errors. */
7847
7848 static void
7849 remote_store_registers (struct target_ops *ops,
7850 struct regcache *regcache, int regnum)
7851 {
7852 struct gdbarch *gdbarch = regcache->arch ();
7853 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7854 int i;
7855
7856 set_remote_traceframe ();
7857 set_general_thread (regcache_get_ptid (regcache));
7858
7859 if (regnum >= 0)
7860 {
7861 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7862
7863 gdb_assert (reg != NULL);
7864
7865 /* Always prefer to store registers using the 'P' packet if
7866 possible; we often change only a small number of registers.
7867 Sometimes we change a larger number; we'd need help from a
7868 higher layer to know to use 'G'. */
7869 if (store_register_using_P (regcache, reg))
7870 return;
7871
7872 /* For now, don't complain if we have no way to write the
7873 register. GDB loses track of unavailable registers too
7874 easily. Some day, this may be an error. We don't have
7875 any way to read the register, either... */
7876 if (!reg->in_g_packet)
7877 return;
7878
7879 store_registers_using_G (regcache);
7880 return;
7881 }
7882
7883 store_registers_using_G (regcache);
7884
7885 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7886 if (!rsa->regs[i].in_g_packet)
7887 if (!store_register_using_P (regcache, &rsa->regs[i]))
7888 /* See above for why we do not issue an error here. */
7889 continue;
7890 }
7891 \f
7892
7893 /* Return the number of hex digits in num. */
7894
7895 static int
7896 hexnumlen (ULONGEST num)
7897 {
7898 int i;
7899
7900 for (i = 0; num != 0; i++)
7901 num >>= 4;
7902
7903 return std::max (i, 1);
7904 }
7905
7906 /* Set BUF to the minimum number of hex digits representing NUM. */
7907
7908 static int
7909 hexnumstr (char *buf, ULONGEST num)
7910 {
7911 int len = hexnumlen (num);
7912
7913 return hexnumnstr (buf, num, len);
7914 }
7915
7916
7917 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7918
7919 static int
7920 hexnumnstr (char *buf, ULONGEST num, int width)
7921 {
7922 int i;
7923
7924 buf[width] = '\0';
7925
7926 for (i = width - 1; i >= 0; i--)
7927 {
7928 buf[i] = "0123456789abcdef"[(num & 0xf)];
7929 num >>= 4;
7930 }
7931
7932 return width;
7933 }
7934
7935 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7936
7937 static CORE_ADDR
7938 remote_address_masked (CORE_ADDR addr)
7939 {
7940 unsigned int address_size = remote_address_size;
7941
7942 /* If "remoteaddresssize" was not set, default to target address size. */
7943 if (!address_size)
7944 address_size = gdbarch_addr_bit (target_gdbarch ());
7945
7946 if (address_size > 0
7947 && address_size < (sizeof (ULONGEST) * 8))
7948 {
7949 /* Only create a mask when that mask can safely be constructed
7950 in a ULONGEST variable. */
7951 ULONGEST mask = 1;
7952
7953 mask = (mask << address_size) - 1;
7954 addr &= mask;
7955 }
7956 return addr;
7957 }
7958
7959 /* Determine whether the remote target supports binary downloading.
7960 This is accomplished by sending a no-op memory write of zero length
7961 to the target at the specified address. It does not suffice to send
7962 the whole packet, since many stubs strip the eighth bit and
7963 subsequently compute a wrong checksum, which causes real havoc with
7964 remote_write_bytes.
7965
7966 NOTE: This can still lose if the serial line is not eight-bit
7967 clean. In cases like this, the user should clear "remote
7968 X-packet". */
7969
7970 static void
7971 check_binary_download (CORE_ADDR addr)
7972 {
7973 struct remote_state *rs = get_remote_state ();
7974
7975 switch (packet_support (PACKET_X))
7976 {
7977 case PACKET_DISABLE:
7978 break;
7979 case PACKET_ENABLE:
7980 break;
7981 case PACKET_SUPPORT_UNKNOWN:
7982 {
7983 char *p;
7984
7985 p = rs->buf;
7986 *p++ = 'X';
7987 p += hexnumstr (p, (ULONGEST) addr);
7988 *p++ = ',';
7989 p += hexnumstr (p, (ULONGEST) 0);
7990 *p++ = ':';
7991 *p = '\0';
7992
7993 putpkt_binary (rs->buf, (int) (p - rs->buf));
7994 getpkt (&rs->buf, &rs->buf_size, 0);
7995
7996 if (rs->buf[0] == '\0')
7997 {
7998 if (remote_debug)
7999 fprintf_unfiltered (gdb_stdlog,
8000 "binary downloading NOT "
8001 "supported by target\n");
8002 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8003 }
8004 else
8005 {
8006 if (remote_debug)
8007 fprintf_unfiltered (gdb_stdlog,
8008 "binary downloading supported by target\n");
8009 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8010 }
8011 break;
8012 }
8013 }
8014 }
8015
8016 /* Helper function to resize the payload in order to try to get a good
8017 alignment. We try to write an amount of data such that the next write will
8018 start on an address aligned on REMOTE_ALIGN_WRITES. */
8019
8020 static int
8021 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8022 {
8023 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8024 }
8025
8026 /* Write memory data directly to the remote machine.
8027 This does not inform the data cache; the data cache uses this.
8028 HEADER is the starting part of the packet.
8029 MEMADDR is the address in the remote memory space.
8030 MYADDR is the address of the buffer in our space.
8031 LEN_UNITS is the number of addressable units to write.
8032 UNIT_SIZE is the length in bytes of an addressable unit.
8033 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8034 should send data as binary ('X'), or hex-encoded ('M').
8035
8036 The function creates packet of the form
8037 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8038
8039 where encoding of <DATA> is terminated by PACKET_FORMAT.
8040
8041 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8042 are omitted.
8043
8044 Return the transferred status, error or OK (an
8045 'enum target_xfer_status' value). Save the number of addressable units
8046 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8047
8048 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8049 exchange between gdb and the stub could look like (?? in place of the
8050 checksum):
8051
8052 -> $m1000,4#??
8053 <- aaaabbbbccccdddd
8054
8055 -> $M1000,3:eeeeffffeeee#??
8056 <- OK
8057
8058 -> $m1000,4#??
8059 <- eeeeffffeeeedddd */
8060
8061 static enum target_xfer_status
8062 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8063 const gdb_byte *myaddr, ULONGEST len_units,
8064 int unit_size, ULONGEST *xfered_len_units,
8065 char packet_format, int use_length)
8066 {
8067 struct remote_state *rs = get_remote_state ();
8068 char *p;
8069 char *plen = NULL;
8070 int plenlen = 0;
8071 int todo_units;
8072 int units_written;
8073 int payload_capacity_bytes;
8074 int payload_length_bytes;
8075
8076 if (packet_format != 'X' && packet_format != 'M')
8077 internal_error (__FILE__, __LINE__,
8078 _("remote_write_bytes_aux: bad packet format"));
8079
8080 if (len_units == 0)
8081 return TARGET_XFER_EOF;
8082
8083 payload_capacity_bytes = get_memory_write_packet_size ();
8084
8085 /* The packet buffer will be large enough for the payload;
8086 get_memory_packet_size ensures this. */
8087 rs->buf[0] = '\0';
8088
8089 /* Compute the size of the actual payload by subtracting out the
8090 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8091
8092 payload_capacity_bytes -= strlen ("$,:#NN");
8093 if (!use_length)
8094 /* The comma won't be used. */
8095 payload_capacity_bytes += 1;
8096 payload_capacity_bytes -= strlen (header);
8097 payload_capacity_bytes -= hexnumlen (memaddr);
8098
8099 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8100
8101 strcat (rs->buf, header);
8102 p = rs->buf + strlen (header);
8103
8104 /* Compute a best guess of the number of bytes actually transfered. */
8105 if (packet_format == 'X')
8106 {
8107 /* Best guess at number of bytes that will fit. */
8108 todo_units = std::min (len_units,
8109 (ULONGEST) payload_capacity_bytes / unit_size);
8110 if (use_length)
8111 payload_capacity_bytes -= hexnumlen (todo_units);
8112 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8113 }
8114 else
8115 {
8116 /* Number of bytes that will fit. */
8117 todo_units
8118 = std::min (len_units,
8119 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8120 if (use_length)
8121 payload_capacity_bytes -= hexnumlen (todo_units);
8122 todo_units = std::min (todo_units,
8123 (payload_capacity_bytes / unit_size) / 2);
8124 }
8125
8126 if (todo_units <= 0)
8127 internal_error (__FILE__, __LINE__,
8128 _("minimum packet size too small to write data"));
8129
8130 /* If we already need another packet, then try to align the end
8131 of this packet to a useful boundary. */
8132 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8133 todo_units = align_for_efficient_write (todo_units, memaddr);
8134
8135 /* Append "<memaddr>". */
8136 memaddr = remote_address_masked (memaddr);
8137 p += hexnumstr (p, (ULONGEST) memaddr);
8138
8139 if (use_length)
8140 {
8141 /* Append ",". */
8142 *p++ = ',';
8143
8144 /* Append the length and retain its location and size. It may need to be
8145 adjusted once the packet body has been created. */
8146 plen = p;
8147 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8148 p += plenlen;
8149 }
8150
8151 /* Append ":". */
8152 *p++ = ':';
8153 *p = '\0';
8154
8155 /* Append the packet body. */
8156 if (packet_format == 'X')
8157 {
8158 /* Binary mode. Send target system values byte by byte, in
8159 increasing byte addresses. Only escape certain critical
8160 characters. */
8161 payload_length_bytes =
8162 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8163 &units_written, payload_capacity_bytes);
8164
8165 /* If not all TODO units fit, then we'll need another packet. Make
8166 a second try to keep the end of the packet aligned. Don't do
8167 this if the packet is tiny. */
8168 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8169 {
8170 int new_todo_units;
8171
8172 new_todo_units = align_for_efficient_write (units_written, memaddr);
8173
8174 if (new_todo_units != units_written)
8175 payload_length_bytes =
8176 remote_escape_output (myaddr, new_todo_units, unit_size,
8177 (gdb_byte *) p, &units_written,
8178 payload_capacity_bytes);
8179 }
8180
8181 p += payload_length_bytes;
8182 if (use_length && units_written < todo_units)
8183 {
8184 /* Escape chars have filled up the buffer prematurely,
8185 and we have actually sent fewer units than planned.
8186 Fix-up the length field of the packet. Use the same
8187 number of characters as before. */
8188 plen += hexnumnstr (plen, (ULONGEST) units_written,
8189 plenlen);
8190 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8191 }
8192 }
8193 else
8194 {
8195 /* Normal mode: Send target system values byte by byte, in
8196 increasing byte addresses. Each byte is encoded as a two hex
8197 value. */
8198 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8199 units_written = todo_units;
8200 }
8201
8202 putpkt_binary (rs->buf, (int) (p - rs->buf));
8203 getpkt (&rs->buf, &rs->buf_size, 0);
8204
8205 if (rs->buf[0] == 'E')
8206 return TARGET_XFER_E_IO;
8207
8208 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8209 send fewer units than we'd planned. */
8210 *xfered_len_units = (ULONGEST) units_written;
8211 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8212 }
8213
8214 /* Write memory data directly to the remote machine.
8215 This does not inform the data cache; the data cache uses this.
8216 MEMADDR is the address in the remote memory space.
8217 MYADDR is the address of the buffer in our space.
8218 LEN is the number of bytes.
8219
8220 Return the transferred status, error or OK (an
8221 'enum target_xfer_status' value). Save the number of bytes
8222 transferred in *XFERED_LEN. Only transfer a single packet. */
8223
8224 static enum target_xfer_status
8225 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8226 int unit_size, ULONGEST *xfered_len)
8227 {
8228 const char *packet_format = NULL;
8229
8230 /* Check whether the target supports binary download. */
8231 check_binary_download (memaddr);
8232
8233 switch (packet_support (PACKET_X))
8234 {
8235 case PACKET_ENABLE:
8236 packet_format = "X";
8237 break;
8238 case PACKET_DISABLE:
8239 packet_format = "M";
8240 break;
8241 case PACKET_SUPPORT_UNKNOWN:
8242 internal_error (__FILE__, __LINE__,
8243 _("remote_write_bytes: bad internal state"));
8244 default:
8245 internal_error (__FILE__, __LINE__, _("bad switch"));
8246 }
8247
8248 return remote_write_bytes_aux (packet_format,
8249 memaddr, myaddr, len, unit_size, xfered_len,
8250 packet_format[0], 1);
8251 }
8252
8253 /* Read memory data directly from the remote machine.
8254 This does not use the data cache; the data cache uses this.
8255 MEMADDR is the address in the remote memory space.
8256 MYADDR is the address of the buffer in our space.
8257 LEN_UNITS is the number of addressable memory units to read..
8258 UNIT_SIZE is the length in bytes of an addressable unit.
8259
8260 Return the transferred status, error or OK (an
8261 'enum target_xfer_status' value). Save the number of bytes
8262 transferred in *XFERED_LEN_UNITS.
8263
8264 See the comment of remote_write_bytes_aux for an example of
8265 memory read/write exchange between gdb and the stub. */
8266
8267 static enum target_xfer_status
8268 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8269 int unit_size, ULONGEST *xfered_len_units)
8270 {
8271 struct remote_state *rs = get_remote_state ();
8272 int buf_size_bytes; /* Max size of packet output buffer. */
8273 char *p;
8274 int todo_units;
8275 int decoded_bytes;
8276
8277 buf_size_bytes = get_memory_read_packet_size ();
8278 /* The packet buffer will be large enough for the payload;
8279 get_memory_packet_size ensures this. */
8280
8281 /* Number of units that will fit. */
8282 todo_units = std::min (len_units,
8283 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8284
8285 /* Construct "m"<memaddr>","<len>". */
8286 memaddr = remote_address_masked (memaddr);
8287 p = rs->buf;
8288 *p++ = 'm';
8289 p += hexnumstr (p, (ULONGEST) memaddr);
8290 *p++ = ',';
8291 p += hexnumstr (p, (ULONGEST) todo_units);
8292 *p = '\0';
8293 putpkt (rs->buf);
8294 getpkt (&rs->buf, &rs->buf_size, 0);
8295 if (rs->buf[0] == 'E'
8296 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8297 && rs->buf[3] == '\0')
8298 return TARGET_XFER_E_IO;
8299 /* Reply describes memory byte by byte, each byte encoded as two hex
8300 characters. */
8301 p = rs->buf;
8302 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8303 /* Return what we have. Let higher layers handle partial reads. */
8304 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8305 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8306 }
8307
8308 /* Using the set of read-only target sections of remote, read live
8309 read-only memory.
8310
8311 For interface/parameters/return description see target.h,
8312 to_xfer_partial. */
8313
8314 static enum target_xfer_status
8315 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8316 ULONGEST memaddr, ULONGEST len,
8317 int unit_size, ULONGEST *xfered_len)
8318 {
8319 struct target_section *secp;
8320 struct target_section_table *table;
8321
8322 secp = target_section_by_addr (ops, memaddr);
8323 if (secp != NULL
8324 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8325 secp->the_bfd_section)
8326 & SEC_READONLY))
8327 {
8328 struct target_section *p;
8329 ULONGEST memend = memaddr + len;
8330
8331 table = target_get_section_table (ops);
8332
8333 for (p = table->sections; p < table->sections_end; p++)
8334 {
8335 if (memaddr >= p->addr)
8336 {
8337 if (memend <= p->endaddr)
8338 {
8339 /* Entire transfer is within this section. */
8340 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8341 xfered_len);
8342 }
8343 else if (memaddr >= p->endaddr)
8344 {
8345 /* This section ends before the transfer starts. */
8346 continue;
8347 }
8348 else
8349 {
8350 /* This section overlaps the transfer. Just do half. */
8351 len = p->endaddr - memaddr;
8352 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8353 xfered_len);
8354 }
8355 }
8356 }
8357 }
8358
8359 return TARGET_XFER_EOF;
8360 }
8361
8362 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8363 first if the requested memory is unavailable in traceframe.
8364 Otherwise, fall back to remote_read_bytes_1. */
8365
8366 static enum target_xfer_status
8367 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8368 gdb_byte *myaddr, ULONGEST len, int unit_size,
8369 ULONGEST *xfered_len)
8370 {
8371 if (len == 0)
8372 return TARGET_XFER_EOF;
8373
8374 if (get_traceframe_number () != -1)
8375 {
8376 std::vector<mem_range> available;
8377
8378 /* If we fail to get the set of available memory, then the
8379 target does not support querying traceframe info, and so we
8380 attempt reading from the traceframe anyway (assuming the
8381 target implements the old QTro packet then). */
8382 if (traceframe_available_memory (&available, memaddr, len))
8383 {
8384 if (available.empty () || available[0].start != memaddr)
8385 {
8386 enum target_xfer_status res;
8387
8388 /* Don't read into the traceframe's available
8389 memory. */
8390 if (!available.empty ())
8391 {
8392 LONGEST oldlen = len;
8393
8394 len = available[0].start - memaddr;
8395 gdb_assert (len <= oldlen);
8396 }
8397
8398 /* This goes through the topmost target again. */
8399 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8400 len, unit_size, xfered_len);
8401 if (res == TARGET_XFER_OK)
8402 return TARGET_XFER_OK;
8403 else
8404 {
8405 /* No use trying further, we know some memory starting
8406 at MEMADDR isn't available. */
8407 *xfered_len = len;
8408 return (*xfered_len != 0) ?
8409 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8410 }
8411 }
8412
8413 /* Don't try to read more than how much is available, in
8414 case the target implements the deprecated QTro packet to
8415 cater for older GDBs (the target's knowledge of read-only
8416 sections may be outdated by now). */
8417 len = available[0].length;
8418 }
8419 }
8420
8421 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8422 }
8423
8424 \f
8425
8426 /* Sends a packet with content determined by the printf format string
8427 FORMAT and the remaining arguments, then gets the reply. Returns
8428 whether the packet was a success, a failure, or unknown. */
8429
8430 static enum packet_result remote_send_printf (const char *format, ...)
8431 ATTRIBUTE_PRINTF (1, 2);
8432
8433 static enum packet_result
8434 remote_send_printf (const char *format, ...)
8435 {
8436 struct remote_state *rs = get_remote_state ();
8437 int max_size = get_remote_packet_size ();
8438 va_list ap;
8439
8440 va_start (ap, format);
8441
8442 rs->buf[0] = '\0';
8443 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8444 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8445
8446 if (putpkt (rs->buf) < 0)
8447 error (_("Communication problem with target."));
8448
8449 rs->buf[0] = '\0';
8450 getpkt (&rs->buf, &rs->buf_size, 0);
8451
8452 return packet_check_result (rs->buf);
8453 }
8454
8455 /* Flash writing can take quite some time. We'll set
8456 effectively infinite timeout for flash operations.
8457 In future, we'll need to decide on a better approach. */
8458 static const int remote_flash_timeout = 1000;
8459
8460 static void
8461 remote_flash_erase (struct target_ops *ops,
8462 ULONGEST address, LONGEST length)
8463 {
8464 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8465 enum packet_result ret;
8466 scoped_restore restore_timeout
8467 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8468
8469 ret = remote_send_printf ("vFlashErase:%s,%s",
8470 phex (address, addr_size),
8471 phex (length, 4));
8472 switch (ret)
8473 {
8474 case PACKET_UNKNOWN:
8475 error (_("Remote target does not support flash erase"));
8476 case PACKET_ERROR:
8477 error (_("Error erasing flash with vFlashErase packet"));
8478 default:
8479 break;
8480 }
8481 }
8482
8483 static enum target_xfer_status
8484 remote_flash_write (struct target_ops *ops, ULONGEST address,
8485 ULONGEST length, ULONGEST *xfered_len,
8486 const gdb_byte *data)
8487 {
8488 scoped_restore restore_timeout
8489 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8490 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8491 xfered_len,'X', 0);
8492 }
8493
8494 static void
8495 remote_flash_done (struct target_ops *ops)
8496 {
8497 int ret;
8498
8499 scoped_restore restore_timeout
8500 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8501
8502 ret = remote_send_printf ("vFlashDone");
8503
8504 switch (ret)
8505 {
8506 case PACKET_UNKNOWN:
8507 error (_("Remote target does not support vFlashDone"));
8508 case PACKET_ERROR:
8509 error (_("Error finishing flash operation"));
8510 default:
8511 break;
8512 }
8513 }
8514
8515 static void
8516 remote_files_info (struct target_ops *ignore)
8517 {
8518 puts_filtered ("Debugging a target over a serial line.\n");
8519 }
8520 \f
8521 /* Stuff for dealing with the packets which are part of this protocol.
8522 See comment at top of file for details. */
8523
8524 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8525 error to higher layers. Called when a serial error is detected.
8526 The exception message is STRING, followed by a colon and a blank,
8527 the system error message for errno at function entry and final dot
8528 for output compatibility with throw_perror_with_name. */
8529
8530 static void
8531 unpush_and_perror (const char *string)
8532 {
8533 int saved_errno = errno;
8534
8535 remote_unpush_target ();
8536 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8537 safe_strerror (saved_errno));
8538 }
8539
8540 /* Read a single character from the remote end. The current quit
8541 handler is overridden to avoid quitting in the middle of packet
8542 sequence, as that would break communication with the remote server.
8543 See remote_serial_quit_handler for more detail. */
8544
8545 static int
8546 readchar (int timeout)
8547 {
8548 int ch;
8549 struct remote_state *rs = get_remote_state ();
8550
8551 {
8552 scoped_restore restore_quit
8553 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8554
8555 rs->got_ctrlc_during_io = 0;
8556
8557 ch = serial_readchar (rs->remote_desc, timeout);
8558
8559 if (rs->got_ctrlc_during_io)
8560 set_quit_flag ();
8561 }
8562
8563 if (ch >= 0)
8564 return ch;
8565
8566 switch ((enum serial_rc) ch)
8567 {
8568 case SERIAL_EOF:
8569 remote_unpush_target ();
8570 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8571 /* no return */
8572 case SERIAL_ERROR:
8573 unpush_and_perror (_("Remote communication error. "
8574 "Target disconnected."));
8575 /* no return */
8576 case SERIAL_TIMEOUT:
8577 break;
8578 }
8579 return ch;
8580 }
8581
8582 /* Wrapper for serial_write that closes the target and throws if
8583 writing fails. The current quit handler is overridden to avoid
8584 quitting in the middle of packet sequence, as that would break
8585 communication with the remote server. See
8586 remote_serial_quit_handler for more detail. */
8587
8588 static void
8589 remote_serial_write (const char *str, int len)
8590 {
8591 struct remote_state *rs = get_remote_state ();
8592
8593 scoped_restore restore_quit
8594 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8595
8596 rs->got_ctrlc_during_io = 0;
8597
8598 if (serial_write (rs->remote_desc, str, len))
8599 {
8600 unpush_and_perror (_("Remote communication error. "
8601 "Target disconnected."));
8602 }
8603
8604 if (rs->got_ctrlc_during_io)
8605 set_quit_flag ();
8606 }
8607
8608 /* Send the command in *BUF to the remote machine, and read the reply
8609 into *BUF. Report an error if we get an error reply. Resize
8610 *BUF using xrealloc if necessary to hold the result, and update
8611 *SIZEOF_BUF. */
8612
8613 static void
8614 remote_send (char **buf,
8615 long *sizeof_buf)
8616 {
8617 putpkt (*buf);
8618 getpkt (buf, sizeof_buf, 0);
8619
8620 if ((*buf)[0] == 'E')
8621 error (_("Remote failure reply: %s"), *buf);
8622 }
8623
8624 /* Return a string representing an escaped version of BUF, of len N.
8625 E.g. \n is converted to \\n, \t to \\t, etc. */
8626
8627 static std::string
8628 escape_buffer (const char *buf, int n)
8629 {
8630 string_file stb;
8631
8632 stb.putstrn (buf, n, '\\');
8633 return std::move (stb.string ());
8634 }
8635
8636 /* Display a null-terminated packet on stdout, for debugging, using C
8637 string notation. */
8638
8639 static void
8640 print_packet (const char *buf)
8641 {
8642 puts_filtered ("\"");
8643 fputstr_filtered (buf, '"', gdb_stdout);
8644 puts_filtered ("\"");
8645 }
8646
8647 int
8648 putpkt (const char *buf)
8649 {
8650 return putpkt_binary (buf, strlen (buf));
8651 }
8652
8653 /* Send a packet to the remote machine, with error checking. The data
8654 of the packet is in BUF. The string in BUF can be at most
8655 get_remote_packet_size () - 5 to account for the $, # and checksum,
8656 and for a possible /0 if we are debugging (remote_debug) and want
8657 to print the sent packet as a string. */
8658
8659 static int
8660 putpkt_binary (const char *buf, int cnt)
8661 {
8662 struct remote_state *rs = get_remote_state ();
8663 int i;
8664 unsigned char csum = 0;
8665 gdb::def_vector<char> data (cnt + 6);
8666 char *buf2 = data.data ();
8667
8668 int ch;
8669 int tcount = 0;
8670 char *p;
8671
8672 /* Catch cases like trying to read memory or listing threads while
8673 we're waiting for a stop reply. The remote server wouldn't be
8674 ready to handle this request, so we'd hang and timeout. We don't
8675 have to worry about this in synchronous mode, because in that
8676 case it's not possible to issue a command while the target is
8677 running. This is not a problem in non-stop mode, because in that
8678 case, the stub is always ready to process serial input. */
8679 if (!target_is_non_stop_p ()
8680 && target_is_async_p ()
8681 && rs->waiting_for_stop_reply)
8682 {
8683 error (_("Cannot execute this command while the target is running.\n"
8684 "Use the \"interrupt\" command to stop the target\n"
8685 "and then try again."));
8686 }
8687
8688 /* We're sending out a new packet. Make sure we don't look at a
8689 stale cached response. */
8690 rs->cached_wait_status = 0;
8691
8692 /* Copy the packet into buffer BUF2, encapsulating it
8693 and giving it a checksum. */
8694
8695 p = buf2;
8696 *p++ = '$';
8697
8698 for (i = 0; i < cnt; i++)
8699 {
8700 csum += buf[i];
8701 *p++ = buf[i];
8702 }
8703 *p++ = '#';
8704 *p++ = tohex ((csum >> 4) & 0xf);
8705 *p++ = tohex (csum & 0xf);
8706
8707 /* Send it over and over until we get a positive ack. */
8708
8709 while (1)
8710 {
8711 int started_error_output = 0;
8712
8713 if (remote_debug)
8714 {
8715 *p = '\0';
8716
8717 int len = (int) (p - buf2);
8718
8719 std::string str
8720 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8721
8722 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8723
8724 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8725 {
8726 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8727 str.length () - REMOTE_DEBUG_MAX_CHAR);
8728 }
8729
8730 fprintf_unfiltered (gdb_stdlog, "...");
8731
8732 gdb_flush (gdb_stdlog);
8733 }
8734 remote_serial_write (buf2, p - buf2);
8735
8736 /* If this is a no acks version of the remote protocol, send the
8737 packet and move on. */
8738 if (rs->noack_mode)
8739 break;
8740
8741 /* Read until either a timeout occurs (-2) or '+' is read.
8742 Handle any notification that arrives in the mean time. */
8743 while (1)
8744 {
8745 ch = readchar (remote_timeout);
8746
8747 if (remote_debug)
8748 {
8749 switch (ch)
8750 {
8751 case '+':
8752 case '-':
8753 case SERIAL_TIMEOUT:
8754 case '$':
8755 case '%':
8756 if (started_error_output)
8757 {
8758 putchar_unfiltered ('\n');
8759 started_error_output = 0;
8760 }
8761 }
8762 }
8763
8764 switch (ch)
8765 {
8766 case '+':
8767 if (remote_debug)
8768 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8769 return 1;
8770 case '-':
8771 if (remote_debug)
8772 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8773 /* FALLTHROUGH */
8774 case SERIAL_TIMEOUT:
8775 tcount++;
8776 if (tcount > 3)
8777 return 0;
8778 break; /* Retransmit buffer. */
8779 case '$':
8780 {
8781 if (remote_debug)
8782 fprintf_unfiltered (gdb_stdlog,
8783 "Packet instead of Ack, ignoring it\n");
8784 /* It's probably an old response sent because an ACK
8785 was lost. Gobble up the packet and ack it so it
8786 doesn't get retransmitted when we resend this
8787 packet. */
8788 skip_frame ();
8789 remote_serial_write ("+", 1);
8790 continue; /* Now, go look for +. */
8791 }
8792
8793 case '%':
8794 {
8795 int val;
8796
8797 /* If we got a notification, handle it, and go back to looking
8798 for an ack. */
8799 /* We've found the start of a notification. Now
8800 collect the data. */
8801 val = read_frame (&rs->buf, &rs->buf_size);
8802 if (val >= 0)
8803 {
8804 if (remote_debug)
8805 {
8806 std::string str = escape_buffer (rs->buf, val);
8807
8808 fprintf_unfiltered (gdb_stdlog,
8809 " Notification received: %s\n",
8810 str.c_str ());
8811 }
8812 handle_notification (rs->notif_state, rs->buf);
8813 /* We're in sync now, rewait for the ack. */
8814 tcount = 0;
8815 }
8816 else
8817 {
8818 if (remote_debug)
8819 {
8820 if (!started_error_output)
8821 {
8822 started_error_output = 1;
8823 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8824 }
8825 fputc_unfiltered (ch & 0177, gdb_stdlog);
8826 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8827 }
8828 }
8829 continue;
8830 }
8831 /* fall-through */
8832 default:
8833 if (remote_debug)
8834 {
8835 if (!started_error_output)
8836 {
8837 started_error_output = 1;
8838 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8839 }
8840 fputc_unfiltered (ch & 0177, gdb_stdlog);
8841 }
8842 continue;
8843 }
8844 break; /* Here to retransmit. */
8845 }
8846
8847 #if 0
8848 /* This is wrong. If doing a long backtrace, the user should be
8849 able to get out next time we call QUIT, without anything as
8850 violent as interrupt_query. If we want to provide a way out of
8851 here without getting to the next QUIT, it should be based on
8852 hitting ^C twice as in remote_wait. */
8853 if (quit_flag)
8854 {
8855 quit_flag = 0;
8856 interrupt_query ();
8857 }
8858 #endif
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Come here after finding the start of a frame when we expected an
8865 ack. Do our best to discard the rest of this packet. */
8866
8867 static void
8868 skip_frame (void)
8869 {
8870 int c;
8871
8872 while (1)
8873 {
8874 c = readchar (remote_timeout);
8875 switch (c)
8876 {
8877 case SERIAL_TIMEOUT:
8878 /* Nothing we can do. */
8879 return;
8880 case '#':
8881 /* Discard the two bytes of checksum and stop. */
8882 c = readchar (remote_timeout);
8883 if (c >= 0)
8884 c = readchar (remote_timeout);
8885
8886 return;
8887 case '*': /* Run length encoding. */
8888 /* Discard the repeat count. */
8889 c = readchar (remote_timeout);
8890 if (c < 0)
8891 return;
8892 break;
8893 default:
8894 /* A regular character. */
8895 break;
8896 }
8897 }
8898 }
8899
8900 /* Come here after finding the start of the frame. Collect the rest
8901 into *BUF, verifying the checksum, length, and handling run-length
8902 compression. NUL terminate the buffer. If there is not enough room,
8903 expand *BUF using xrealloc.
8904
8905 Returns -1 on error, number of characters in buffer (ignoring the
8906 trailing NULL) on success. (could be extended to return one of the
8907 SERIAL status indications). */
8908
8909 static long
8910 read_frame (char **buf_p,
8911 long *sizeof_buf)
8912 {
8913 unsigned char csum;
8914 long bc;
8915 int c;
8916 char *buf = *buf_p;
8917 struct remote_state *rs = get_remote_state ();
8918
8919 csum = 0;
8920 bc = 0;
8921
8922 while (1)
8923 {
8924 c = readchar (remote_timeout);
8925 switch (c)
8926 {
8927 case SERIAL_TIMEOUT:
8928 if (remote_debug)
8929 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8930 return -1;
8931 case '$':
8932 if (remote_debug)
8933 fputs_filtered ("Saw new packet start in middle of old one\n",
8934 gdb_stdlog);
8935 return -1; /* Start a new packet, count retries. */
8936 case '#':
8937 {
8938 unsigned char pktcsum;
8939 int check_0 = 0;
8940 int check_1 = 0;
8941
8942 buf[bc] = '\0';
8943
8944 check_0 = readchar (remote_timeout);
8945 if (check_0 >= 0)
8946 check_1 = readchar (remote_timeout);
8947
8948 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8949 {
8950 if (remote_debug)
8951 fputs_filtered ("Timeout in checksum, retrying\n",
8952 gdb_stdlog);
8953 return -1;
8954 }
8955 else if (check_0 < 0 || check_1 < 0)
8956 {
8957 if (remote_debug)
8958 fputs_filtered ("Communication error in checksum\n",
8959 gdb_stdlog);
8960 return -1;
8961 }
8962
8963 /* Don't recompute the checksum; with no ack packets we
8964 don't have any way to indicate a packet retransmission
8965 is necessary. */
8966 if (rs->noack_mode)
8967 return bc;
8968
8969 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8970 if (csum == pktcsum)
8971 return bc;
8972
8973 if (remote_debug)
8974 {
8975 std::string str = escape_buffer (buf, bc);
8976
8977 fprintf_unfiltered (gdb_stdlog,
8978 "Bad checksum, sentsum=0x%x, "
8979 "csum=0x%x, buf=%s\n",
8980 pktcsum, csum, str.c_str ());
8981 }
8982 /* Number of characters in buffer ignoring trailing
8983 NULL. */
8984 return -1;
8985 }
8986 case '*': /* Run length encoding. */
8987 {
8988 int repeat;
8989
8990 csum += c;
8991 c = readchar (remote_timeout);
8992 csum += c;
8993 repeat = c - ' ' + 3; /* Compute repeat count. */
8994
8995 /* The character before ``*'' is repeated. */
8996
8997 if (repeat > 0 && repeat <= 255 && bc > 0)
8998 {
8999 if (bc + repeat - 1 >= *sizeof_buf - 1)
9000 {
9001 /* Make some more room in the buffer. */
9002 *sizeof_buf += repeat;
9003 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9004 buf = *buf_p;
9005 }
9006
9007 memset (&buf[bc], buf[bc - 1], repeat);
9008 bc += repeat;
9009 continue;
9010 }
9011
9012 buf[bc] = '\0';
9013 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9014 return -1;
9015 }
9016 default:
9017 if (bc >= *sizeof_buf - 1)
9018 {
9019 /* Make some more room in the buffer. */
9020 *sizeof_buf *= 2;
9021 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9022 buf = *buf_p;
9023 }
9024
9025 buf[bc++] = c;
9026 csum += c;
9027 continue;
9028 }
9029 }
9030 }
9031
9032 /* Read a packet from the remote machine, with error checking, and
9033 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9034 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9035 rather than timing out; this is used (in synchronous mode) to wait
9036 for a target that is is executing user code to stop. */
9037 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9038 don't have to change all the calls to getpkt to deal with the
9039 return value, because at the moment I don't know what the right
9040 thing to do it for those. */
9041 void
9042 getpkt (char **buf,
9043 long *sizeof_buf,
9044 int forever)
9045 {
9046 getpkt_sane (buf, sizeof_buf, forever);
9047 }
9048
9049
9050 /* Read a packet from the remote machine, with error checking, and
9051 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9052 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9053 rather than timing out; this is used (in synchronous mode) to wait
9054 for a target that is is executing user code to stop. If FOREVER ==
9055 0, this function is allowed to time out gracefully and return an
9056 indication of this to the caller. Otherwise return the number of
9057 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9058 enough reason to return to the caller. *IS_NOTIF is an output
9059 boolean that indicates whether *BUF holds a notification or not
9060 (a regular packet). */
9061
9062 static int
9063 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9064 int expecting_notif, int *is_notif)
9065 {
9066 struct remote_state *rs = get_remote_state ();
9067 int c;
9068 int tries;
9069 int timeout;
9070 int val = -1;
9071
9072 /* We're reading a new response. Make sure we don't look at a
9073 previously cached response. */
9074 rs->cached_wait_status = 0;
9075
9076 strcpy (*buf, "timeout");
9077
9078 if (forever)
9079 timeout = watchdog > 0 ? watchdog : -1;
9080 else if (expecting_notif)
9081 timeout = 0; /* There should already be a char in the buffer. If
9082 not, bail out. */
9083 else
9084 timeout = remote_timeout;
9085
9086 #define MAX_TRIES 3
9087
9088 /* Process any number of notifications, and then return when
9089 we get a packet. */
9090 for (;;)
9091 {
9092 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9093 times. */
9094 for (tries = 1; tries <= MAX_TRIES; tries++)
9095 {
9096 /* This can loop forever if the remote side sends us
9097 characters continuously, but if it pauses, we'll get
9098 SERIAL_TIMEOUT from readchar because of timeout. Then
9099 we'll count that as a retry.
9100
9101 Note that even when forever is set, we will only wait
9102 forever prior to the start of a packet. After that, we
9103 expect characters to arrive at a brisk pace. They should
9104 show up within remote_timeout intervals. */
9105 do
9106 c = readchar (timeout);
9107 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9108
9109 if (c == SERIAL_TIMEOUT)
9110 {
9111 if (expecting_notif)
9112 return -1; /* Don't complain, it's normal to not get
9113 anything in this case. */
9114
9115 if (forever) /* Watchdog went off? Kill the target. */
9116 {
9117 remote_unpush_target ();
9118 throw_error (TARGET_CLOSE_ERROR,
9119 _("Watchdog timeout has expired. "
9120 "Target detached."));
9121 }
9122 if (remote_debug)
9123 fputs_filtered ("Timed out.\n", gdb_stdlog);
9124 }
9125 else
9126 {
9127 /* We've found the start of a packet or notification.
9128 Now collect the data. */
9129 val = read_frame (buf, sizeof_buf);
9130 if (val >= 0)
9131 break;
9132 }
9133
9134 remote_serial_write ("-", 1);
9135 }
9136
9137 if (tries > MAX_TRIES)
9138 {
9139 /* We have tried hard enough, and just can't receive the
9140 packet/notification. Give up. */
9141 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9142
9143 /* Skip the ack char if we're in no-ack mode. */
9144 if (!rs->noack_mode)
9145 remote_serial_write ("+", 1);
9146 return -1;
9147 }
9148
9149 /* If we got an ordinary packet, return that to our caller. */
9150 if (c == '$')
9151 {
9152 if (remote_debug)
9153 {
9154 std::string str
9155 = escape_buffer (*buf,
9156 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9157
9158 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9159 str.c_str ());
9160
9161 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9162 {
9163 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9164 str.length () - REMOTE_DEBUG_MAX_CHAR);
9165 }
9166
9167 fprintf_unfiltered (gdb_stdlog, "\n");
9168 }
9169
9170 /* Skip the ack char if we're in no-ack mode. */
9171 if (!rs->noack_mode)
9172 remote_serial_write ("+", 1);
9173 if (is_notif != NULL)
9174 *is_notif = 0;
9175 return val;
9176 }
9177
9178 /* If we got a notification, handle it, and go back to looking
9179 for a packet. */
9180 else
9181 {
9182 gdb_assert (c == '%');
9183
9184 if (remote_debug)
9185 {
9186 std::string str = escape_buffer (*buf, val);
9187
9188 fprintf_unfiltered (gdb_stdlog,
9189 " Notification received: %s\n",
9190 str.c_str ());
9191 }
9192 if (is_notif != NULL)
9193 *is_notif = 1;
9194
9195 handle_notification (rs->notif_state, *buf);
9196
9197 /* Notifications require no acknowledgement. */
9198
9199 if (expecting_notif)
9200 return val;
9201 }
9202 }
9203 }
9204
9205 static int
9206 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9207 {
9208 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9209 }
9210
9211 static int
9212 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9213 int *is_notif)
9214 {
9215 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9216 is_notif);
9217 }
9218
9219 /* Check whether EVENT is a fork event for the process specified
9220 by the pid passed in DATA, and if it is, kill the fork child. */
9221
9222 static int
9223 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9224 QUEUE_ITER (stop_reply_p) *iter,
9225 stop_reply_p event,
9226 void *data)
9227 {
9228 struct queue_iter_param *param = (struct queue_iter_param *) data;
9229 int parent_pid = *(int *) param->input;
9230
9231 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9232 {
9233 struct remote_state *rs = get_remote_state ();
9234 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9235 int res;
9236
9237 res = remote_vkill (child_pid, rs);
9238 if (res != 0)
9239 error (_("Can't kill fork child process %d"), child_pid);
9240 }
9241
9242 return 1;
9243 }
9244
9245 /* Kill any new fork children of process PID that haven't been
9246 processed by follow_fork. */
9247
9248 static void
9249 kill_new_fork_children (int pid, struct remote_state *rs)
9250 {
9251 struct thread_info *thread;
9252 struct notif_client *notif = &notif_client_stop;
9253 struct queue_iter_param param;
9254
9255 /* Kill the fork child threads of any threads in process PID
9256 that are stopped at a fork event. */
9257 ALL_NON_EXITED_THREADS (thread)
9258 {
9259 struct target_waitstatus *ws = &thread->pending_follow;
9260
9261 if (is_pending_fork_parent (ws, pid, thread->ptid))
9262 {
9263 struct remote_state *rs = get_remote_state ();
9264 int child_pid = ptid_get_pid (ws->value.related_pid);
9265 int res;
9266
9267 res = remote_vkill (child_pid, rs);
9268 if (res != 0)
9269 error (_("Can't kill fork child process %d"), child_pid);
9270 }
9271 }
9272
9273 /* Check for any pending fork events (not reported or processed yet)
9274 in process PID and kill those fork child threads as well. */
9275 remote_notif_get_pending_events (notif);
9276 param.input = &pid;
9277 param.output = NULL;
9278 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9279 kill_child_of_pending_fork, &param);
9280 }
9281
9282 \f
9283 /* Target hook to kill the current inferior. */
9284
9285 static void
9286 remote_kill (struct target_ops *ops)
9287 {
9288 int res = -1;
9289 int pid = ptid_get_pid (inferior_ptid);
9290 struct remote_state *rs = get_remote_state ();
9291
9292 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9293 {
9294 /* If we're stopped while forking and we haven't followed yet,
9295 kill the child task. We need to do this before killing the
9296 parent task because if this is a vfork then the parent will
9297 be sleeping. */
9298 kill_new_fork_children (pid, rs);
9299
9300 res = remote_vkill (pid, rs);
9301 if (res == 0)
9302 {
9303 target_mourn_inferior (inferior_ptid);
9304 return;
9305 }
9306 }
9307
9308 /* If we are in 'target remote' mode and we are killing the only
9309 inferior, then we will tell gdbserver to exit and unpush the
9310 target. */
9311 if (res == -1 && !remote_multi_process_p (rs)
9312 && number_of_live_inferiors () == 1)
9313 {
9314 remote_kill_k ();
9315
9316 /* We've killed the remote end, we get to mourn it. If we are
9317 not in extended mode, mourning the inferior also unpushes
9318 remote_ops from the target stack, which closes the remote
9319 connection. */
9320 target_mourn_inferior (inferior_ptid);
9321
9322 return;
9323 }
9324
9325 error (_("Can't kill process"));
9326 }
9327
9328 /* Send a kill request to the target using the 'vKill' packet. */
9329
9330 static int
9331 remote_vkill (int pid, struct remote_state *rs)
9332 {
9333 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9334 return -1;
9335
9336 /* Tell the remote target to detach. */
9337 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9338 putpkt (rs->buf);
9339 getpkt (&rs->buf, &rs->buf_size, 0);
9340
9341 switch (packet_ok (rs->buf,
9342 &remote_protocol_packets[PACKET_vKill]))
9343 {
9344 case PACKET_OK:
9345 return 0;
9346 case PACKET_ERROR:
9347 return 1;
9348 case PACKET_UNKNOWN:
9349 return -1;
9350 default:
9351 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9352 }
9353 }
9354
9355 /* Send a kill request to the target using the 'k' packet. */
9356
9357 static void
9358 remote_kill_k (void)
9359 {
9360 /* Catch errors so the user can quit from gdb even when we
9361 aren't on speaking terms with the remote system. */
9362 TRY
9363 {
9364 putpkt ("k");
9365 }
9366 CATCH (ex, RETURN_MASK_ERROR)
9367 {
9368 if (ex.error == TARGET_CLOSE_ERROR)
9369 {
9370 /* If we got an (EOF) error that caused the target
9371 to go away, then we're done, that's what we wanted.
9372 "k" is susceptible to cause a premature EOF, given
9373 that the remote server isn't actually required to
9374 reply to "k", and it can happen that it doesn't
9375 even get to reply ACK to the "k". */
9376 return;
9377 }
9378
9379 /* Otherwise, something went wrong. We didn't actually kill
9380 the target. Just propagate the exception, and let the
9381 user or higher layers decide what to do. */
9382 throw_exception (ex);
9383 }
9384 END_CATCH
9385 }
9386
9387 static void
9388 remote_mourn (struct target_ops *target)
9389 {
9390 struct remote_state *rs = get_remote_state ();
9391
9392 /* In 'target remote' mode with one inferior, we close the connection. */
9393 if (!rs->extended && number_of_live_inferiors () <= 1)
9394 {
9395 unpush_target (target);
9396
9397 /* remote_close takes care of doing most of the clean up. */
9398 generic_mourn_inferior ();
9399 return;
9400 }
9401
9402 /* In case we got here due to an error, but we're going to stay
9403 connected. */
9404 rs->waiting_for_stop_reply = 0;
9405
9406 /* If the current general thread belonged to the process we just
9407 detached from or has exited, the remote side current general
9408 thread becomes undefined. Considering a case like this:
9409
9410 - We just got here due to a detach.
9411 - The process that we're detaching from happens to immediately
9412 report a global breakpoint being hit in non-stop mode, in the
9413 same thread we had selected before.
9414 - GDB attaches to this process again.
9415 - This event happens to be the next event we handle.
9416
9417 GDB would consider that the current general thread didn't need to
9418 be set on the stub side (with Hg), since for all it knew,
9419 GENERAL_THREAD hadn't changed.
9420
9421 Notice that although in all-stop mode, the remote server always
9422 sets the current thread to the thread reporting the stop event,
9423 that doesn't happen in non-stop mode; in non-stop, the stub *must
9424 not* change the current thread when reporting a breakpoint hit,
9425 due to the decoupling of event reporting and event handling.
9426
9427 To keep things simple, we always invalidate our notion of the
9428 current thread. */
9429 record_currthread (rs, minus_one_ptid);
9430
9431 /* Call common code to mark the inferior as not running. */
9432 generic_mourn_inferior ();
9433
9434 if (!have_inferiors ())
9435 {
9436 if (!remote_multi_process_p (rs))
9437 {
9438 /* Check whether the target is running now - some remote stubs
9439 automatically restart after kill. */
9440 putpkt ("?");
9441 getpkt (&rs->buf, &rs->buf_size, 0);
9442
9443 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9444 {
9445 /* Assume that the target has been restarted. Set
9446 inferior_ptid so that bits of core GDB realizes
9447 there's something here, e.g., so that the user can
9448 say "kill" again. */
9449 inferior_ptid = magic_null_ptid;
9450 }
9451 }
9452 }
9453 }
9454
9455 static int
9456 extended_remote_supports_disable_randomization (struct target_ops *self)
9457 {
9458 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9459 }
9460
9461 static void
9462 extended_remote_disable_randomization (int val)
9463 {
9464 struct remote_state *rs = get_remote_state ();
9465 char *reply;
9466
9467 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9468 val);
9469 putpkt (rs->buf);
9470 reply = remote_get_noisy_reply ();
9471 if (*reply == '\0')
9472 error (_("Target does not support QDisableRandomization."));
9473 if (strcmp (reply, "OK") != 0)
9474 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9475 }
9476
9477 static int
9478 extended_remote_run (const std::string &args)
9479 {
9480 struct remote_state *rs = get_remote_state ();
9481 int len;
9482 const char *remote_exec_file = get_remote_exec_file ();
9483
9484 /* If the user has disabled vRun support, or we have detected that
9485 support is not available, do not try it. */
9486 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9487 return -1;
9488
9489 strcpy (rs->buf, "vRun;");
9490 len = strlen (rs->buf);
9491
9492 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9493 error (_("Remote file name too long for run packet"));
9494 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9495 strlen (remote_exec_file));
9496
9497 if (!args.empty ())
9498 {
9499 int i;
9500
9501 gdb_argv argv (args.c_str ());
9502 for (i = 0; argv[i] != NULL; i++)
9503 {
9504 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9505 error (_("Argument list too long for run packet"));
9506 rs->buf[len++] = ';';
9507 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9508 strlen (argv[i]));
9509 }
9510 }
9511
9512 rs->buf[len++] = '\0';
9513
9514 putpkt (rs->buf);
9515 getpkt (&rs->buf, &rs->buf_size, 0);
9516
9517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9518 {
9519 case PACKET_OK:
9520 /* We have a wait response. All is well. */
9521 return 0;
9522 case PACKET_UNKNOWN:
9523 return -1;
9524 case PACKET_ERROR:
9525 if (remote_exec_file[0] == '\0')
9526 error (_("Running the default executable on the remote target failed; "
9527 "try \"set remote exec-file\"?"));
9528 else
9529 error (_("Running \"%s\" on the remote target failed"),
9530 remote_exec_file);
9531 default:
9532 gdb_assert_not_reached (_("bad switch"));
9533 }
9534 }
9535
9536 /* Helper function to send set/unset environment packets. ACTION is
9537 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9538 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9539 sent. */
9540
9541 static void
9542 send_environment_packet (struct remote_state *rs,
9543 const char *action,
9544 const char *packet,
9545 const char *value)
9546 {
9547 /* Convert the environment variable to an hex string, which
9548 is the best format to be transmitted over the wire. */
9549 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9550 strlen (value));
9551
9552 xsnprintf (rs->buf, get_remote_packet_size (),
9553 "%s:%s", packet, encoded_value.c_str ());
9554
9555 putpkt (rs->buf);
9556 getpkt (&rs->buf, &rs->buf_size, 0);
9557 if (strcmp (rs->buf, "OK") != 0)
9558 warning (_("Unable to %s environment variable '%s' on remote."),
9559 action, value);
9560 }
9561
9562 /* Helper function to handle the QEnvironment* packets. */
9563
9564 static void
9565 extended_remote_environment_support (struct remote_state *rs)
9566 {
9567 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9568 {
9569 putpkt ("QEnvironmentReset");
9570 getpkt (&rs->buf, &rs->buf_size, 0);
9571 if (strcmp (rs->buf, "OK") != 0)
9572 warning (_("Unable to reset environment on remote."));
9573 }
9574
9575 gdb_environ *e = &current_inferior ()->environment;
9576
9577 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9578 for (const std::string &el : e->user_set_env ())
9579 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9580 el.c_str ());
9581
9582 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9583 for (const std::string &el : e->user_unset_env ())
9584 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9585 }
9586
9587 /* Helper function to set the current working directory for the
9588 inferior in the remote target. */
9589
9590 static void
9591 extended_remote_set_inferior_cwd (struct remote_state *rs)
9592 {
9593 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9594 {
9595 const char *inferior_cwd = get_inferior_cwd ();
9596
9597 if (inferior_cwd != NULL)
9598 {
9599 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9600 strlen (inferior_cwd));
9601
9602 xsnprintf (rs->buf, get_remote_packet_size (),
9603 "QSetWorkingDir:%s", hexpath.c_str ());
9604 }
9605 else
9606 {
9607 /* An empty inferior_cwd means that the user wants us to
9608 reset the remote server's inferior's cwd. */
9609 xsnprintf (rs->buf, get_remote_packet_size (),
9610 "QSetWorkingDir:");
9611 }
9612
9613 putpkt (rs->buf);
9614 getpkt (&rs->buf, &rs->buf_size, 0);
9615 if (packet_ok (rs->buf,
9616 &remote_protocol_packets[PACKET_QSetWorkingDir])
9617 != PACKET_OK)
9618 error (_("\
9619 Remote replied unexpectedly while setting the inferior's working\n\
9620 directory: %s"),
9621 rs->buf);
9622
9623 }
9624 }
9625
9626 /* In the extended protocol we want to be able to do things like
9627 "run" and have them basically work as expected. So we need
9628 a special create_inferior function. We support changing the
9629 executable file and the command line arguments, but not the
9630 environment. */
9631
9632 static void
9633 extended_remote_create_inferior (struct target_ops *ops,
9634 const char *exec_file,
9635 const std::string &args,
9636 char **env, int from_tty)
9637 {
9638 int run_worked;
9639 char *stop_reply;
9640 struct remote_state *rs = get_remote_state ();
9641 const char *remote_exec_file = get_remote_exec_file ();
9642
9643 /* If running asynchronously, register the target file descriptor
9644 with the event loop. */
9645 if (target_can_async_p ())
9646 target_async (1);
9647
9648 /* Disable address space randomization if requested (and supported). */
9649 if (extended_remote_supports_disable_randomization (ops))
9650 extended_remote_disable_randomization (disable_randomization);
9651
9652 /* If startup-with-shell is on, we inform gdbserver to start the
9653 remote inferior using a shell. */
9654 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9655 {
9656 xsnprintf (rs->buf, get_remote_packet_size (),
9657 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9658 putpkt (rs->buf);
9659 getpkt (&rs->buf, &rs->buf_size, 0);
9660 if (strcmp (rs->buf, "OK") != 0)
9661 error (_("\
9662 Remote replied unexpectedly while setting startup-with-shell: %s"),
9663 rs->buf);
9664 }
9665
9666 extended_remote_environment_support (rs);
9667
9668 extended_remote_set_inferior_cwd (rs);
9669
9670 /* Now restart the remote server. */
9671 run_worked = extended_remote_run (args) != -1;
9672 if (!run_worked)
9673 {
9674 /* vRun was not supported. Fail if we need it to do what the
9675 user requested. */
9676 if (remote_exec_file[0])
9677 error (_("Remote target does not support \"set remote exec-file\""));
9678 if (!args.empty ())
9679 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9680
9681 /* Fall back to "R". */
9682 extended_remote_restart ();
9683 }
9684
9685 if (!have_inferiors ())
9686 {
9687 /* Clean up from the last time we ran, before we mark the target
9688 running again. This will mark breakpoints uninserted, and
9689 get_offsets may insert breakpoints. */
9690 init_thread_list ();
9691 init_wait_for_inferior ();
9692 }
9693
9694 /* vRun's success return is a stop reply. */
9695 stop_reply = run_worked ? rs->buf : NULL;
9696 add_current_inferior_and_thread (stop_reply);
9697
9698 /* Get updated offsets, if the stub uses qOffsets. */
9699 get_offsets ();
9700 }
9701 \f
9702
9703 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9704 the list of conditions (in agent expression bytecode format), if any, the
9705 target needs to evaluate. The output is placed into the packet buffer
9706 started from BUF and ended at BUF_END. */
9707
9708 static int
9709 remote_add_target_side_condition (struct gdbarch *gdbarch,
9710 struct bp_target_info *bp_tgt, char *buf,
9711 char *buf_end)
9712 {
9713 if (bp_tgt->conditions.empty ())
9714 return 0;
9715
9716 buf += strlen (buf);
9717 xsnprintf (buf, buf_end - buf, "%s", ";");
9718 buf++;
9719
9720 /* Send conditions to the target. */
9721 for (agent_expr *aexpr : bp_tgt->conditions)
9722 {
9723 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9724 buf += strlen (buf);
9725 for (int i = 0; i < aexpr->len; ++i)
9726 buf = pack_hex_byte (buf, aexpr->buf[i]);
9727 *buf = '\0';
9728 }
9729 return 0;
9730 }
9731
9732 static void
9733 remote_add_target_side_commands (struct gdbarch *gdbarch,
9734 struct bp_target_info *bp_tgt, char *buf)
9735 {
9736 if (bp_tgt->tcommands.empty ())
9737 return;
9738
9739 buf += strlen (buf);
9740
9741 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9742 buf += strlen (buf);
9743
9744 /* Concatenate all the agent expressions that are commands into the
9745 cmds parameter. */
9746 for (agent_expr *aexpr : bp_tgt->tcommands)
9747 {
9748 sprintf (buf, "X%x,", aexpr->len);
9749 buf += strlen (buf);
9750 for (int i = 0; i < aexpr->len; ++i)
9751 buf = pack_hex_byte (buf, aexpr->buf[i]);
9752 *buf = '\0';
9753 }
9754 }
9755
9756 /* Insert a breakpoint. On targets that have software breakpoint
9757 support, we ask the remote target to do the work; on targets
9758 which don't, we insert a traditional memory breakpoint. */
9759
9760 static int
9761 remote_insert_breakpoint (struct target_ops *ops,
9762 struct gdbarch *gdbarch,
9763 struct bp_target_info *bp_tgt)
9764 {
9765 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9766 If it succeeds, then set the support to PACKET_ENABLE. If it
9767 fails, and the user has explicitly requested the Z support then
9768 report an error, otherwise, mark it disabled and go on. */
9769
9770 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9771 {
9772 CORE_ADDR addr = bp_tgt->reqstd_address;
9773 struct remote_state *rs;
9774 char *p, *endbuf;
9775
9776 /* Make sure the remote is pointing at the right process, if
9777 necessary. */
9778 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9779 set_general_process ();
9780
9781 rs = get_remote_state ();
9782 p = rs->buf;
9783 endbuf = rs->buf + get_remote_packet_size ();
9784
9785 *(p++) = 'Z';
9786 *(p++) = '0';
9787 *(p++) = ',';
9788 addr = (ULONGEST) remote_address_masked (addr);
9789 p += hexnumstr (p, addr);
9790 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9791
9792 if (remote_supports_cond_breakpoints (ops))
9793 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9794
9795 if (remote_can_run_breakpoint_commands (ops))
9796 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9797
9798 putpkt (rs->buf);
9799 getpkt (&rs->buf, &rs->buf_size, 0);
9800
9801 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9802 {
9803 case PACKET_ERROR:
9804 return -1;
9805 case PACKET_OK:
9806 return 0;
9807 case PACKET_UNKNOWN:
9808 break;
9809 }
9810 }
9811
9812 /* If this breakpoint has target-side commands but this stub doesn't
9813 support Z0 packets, throw error. */
9814 if (!bp_tgt->tcommands.empty ())
9815 throw_error (NOT_SUPPORTED_ERROR, _("\
9816 Target doesn't support breakpoints that have target side commands."));
9817
9818 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9819 }
9820
9821 static int
9822 remote_remove_breakpoint (struct target_ops *ops,
9823 struct gdbarch *gdbarch,
9824 struct bp_target_info *bp_tgt,
9825 enum remove_bp_reason reason)
9826 {
9827 CORE_ADDR addr = bp_tgt->placed_address;
9828 struct remote_state *rs = get_remote_state ();
9829
9830 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9831 {
9832 char *p = rs->buf;
9833 char *endbuf = rs->buf + get_remote_packet_size ();
9834
9835 /* Make sure the remote is pointing at the right process, if
9836 necessary. */
9837 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9838 set_general_process ();
9839
9840 *(p++) = 'z';
9841 *(p++) = '0';
9842 *(p++) = ',';
9843
9844 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9845 p += hexnumstr (p, addr);
9846 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9847
9848 putpkt (rs->buf);
9849 getpkt (&rs->buf, &rs->buf_size, 0);
9850
9851 return (rs->buf[0] == 'E');
9852 }
9853
9854 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9855 }
9856
9857 static enum Z_packet_type
9858 watchpoint_to_Z_packet (int type)
9859 {
9860 switch (type)
9861 {
9862 case hw_write:
9863 return Z_PACKET_WRITE_WP;
9864 break;
9865 case hw_read:
9866 return Z_PACKET_READ_WP;
9867 break;
9868 case hw_access:
9869 return Z_PACKET_ACCESS_WP;
9870 break;
9871 default:
9872 internal_error (__FILE__, __LINE__,
9873 _("hw_bp_to_z: bad watchpoint type %d"), type);
9874 }
9875 }
9876
9877 static int
9878 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9879 enum target_hw_bp_type type, struct expression *cond)
9880 {
9881 struct remote_state *rs = get_remote_state ();
9882 char *endbuf = rs->buf + get_remote_packet_size ();
9883 char *p;
9884 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9885
9886 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9887 return 1;
9888
9889 /* Make sure the remote is pointing at the right process, if
9890 necessary. */
9891 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9892 set_general_process ();
9893
9894 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9895 p = strchr (rs->buf, '\0');
9896 addr = remote_address_masked (addr);
9897 p += hexnumstr (p, (ULONGEST) addr);
9898 xsnprintf (p, endbuf - p, ",%x", len);
9899
9900 putpkt (rs->buf);
9901 getpkt (&rs->buf, &rs->buf_size, 0);
9902
9903 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9904 {
9905 case PACKET_ERROR:
9906 return -1;
9907 case PACKET_UNKNOWN:
9908 return 1;
9909 case PACKET_OK:
9910 return 0;
9911 }
9912 internal_error (__FILE__, __LINE__,
9913 _("remote_insert_watchpoint: reached end of function"));
9914 }
9915
9916 static int
9917 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9918 CORE_ADDR start, int length)
9919 {
9920 CORE_ADDR diff = remote_address_masked (addr - start);
9921
9922 return diff < length;
9923 }
9924
9925
9926 static int
9927 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9928 enum target_hw_bp_type type, struct expression *cond)
9929 {
9930 struct remote_state *rs = get_remote_state ();
9931 char *endbuf = rs->buf + get_remote_packet_size ();
9932 char *p;
9933 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9934
9935 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9936 return -1;
9937
9938 /* Make sure the remote is pointing at the right process, if
9939 necessary. */
9940 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9941 set_general_process ();
9942
9943 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9944 p = strchr (rs->buf, '\0');
9945 addr = remote_address_masked (addr);
9946 p += hexnumstr (p, (ULONGEST) addr);
9947 xsnprintf (p, endbuf - p, ",%x", len);
9948 putpkt (rs->buf);
9949 getpkt (&rs->buf, &rs->buf_size, 0);
9950
9951 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9952 {
9953 case PACKET_ERROR:
9954 case PACKET_UNKNOWN:
9955 return -1;
9956 case PACKET_OK:
9957 return 0;
9958 }
9959 internal_error (__FILE__, __LINE__,
9960 _("remote_remove_watchpoint: reached end of function"));
9961 }
9962
9963
9964 int remote_hw_watchpoint_limit = -1;
9965 int remote_hw_watchpoint_length_limit = -1;
9966 int remote_hw_breakpoint_limit = -1;
9967
9968 static int
9969 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9970 CORE_ADDR addr, int len)
9971 {
9972 if (remote_hw_watchpoint_length_limit == 0)
9973 return 0;
9974 else if (remote_hw_watchpoint_length_limit < 0)
9975 return 1;
9976 else if (len <= remote_hw_watchpoint_length_limit)
9977 return 1;
9978 else
9979 return 0;
9980 }
9981
9982 static int
9983 remote_check_watch_resources (struct target_ops *self,
9984 enum bptype type, int cnt, int ot)
9985 {
9986 if (type == bp_hardware_breakpoint)
9987 {
9988 if (remote_hw_breakpoint_limit == 0)
9989 return 0;
9990 else if (remote_hw_breakpoint_limit < 0)
9991 return 1;
9992 else if (cnt <= remote_hw_breakpoint_limit)
9993 return 1;
9994 }
9995 else
9996 {
9997 if (remote_hw_watchpoint_limit == 0)
9998 return 0;
9999 else if (remote_hw_watchpoint_limit < 0)
10000 return 1;
10001 else if (ot)
10002 return -1;
10003 else if (cnt <= remote_hw_watchpoint_limit)
10004 return 1;
10005 }
10006 return -1;
10007 }
10008
10009 /* The to_stopped_by_sw_breakpoint method of target remote. */
10010
10011 static int
10012 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10013 {
10014 struct thread_info *thread = inferior_thread ();
10015
10016 return (thread->priv != NULL
10017 && (get_remote_thread_info (thread)->stop_reason
10018 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10019 }
10020
10021 /* The to_supports_stopped_by_sw_breakpoint method of target
10022 remote. */
10023
10024 static int
10025 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10026 {
10027 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10028 }
10029
10030 /* The to_stopped_by_hw_breakpoint method of target remote. */
10031
10032 static int
10033 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10034 {
10035 struct thread_info *thread = inferior_thread ();
10036
10037 return (thread->priv != NULL
10038 && (get_remote_thread_info (thread)->stop_reason
10039 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10040 }
10041
10042 /* The to_supports_stopped_by_hw_breakpoint method of target
10043 remote. */
10044
10045 static int
10046 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10047 {
10048 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10049 }
10050
10051 static int
10052 remote_stopped_by_watchpoint (struct target_ops *ops)
10053 {
10054 struct thread_info *thread = inferior_thread ();
10055
10056 return (thread->priv != NULL
10057 && (get_remote_thread_info (thread)->stop_reason
10058 == TARGET_STOPPED_BY_WATCHPOINT));
10059 }
10060
10061 static int
10062 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10063 {
10064 struct thread_info *thread = inferior_thread ();
10065
10066 if (thread->priv != NULL
10067 && (get_remote_thread_info (thread)->stop_reason
10068 == TARGET_STOPPED_BY_WATCHPOINT))
10069 {
10070 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10071 return 1;
10072 }
10073
10074 return 0;
10075 }
10076
10077
10078 static int
10079 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10080 struct bp_target_info *bp_tgt)
10081 {
10082 CORE_ADDR addr = bp_tgt->reqstd_address;
10083 struct remote_state *rs;
10084 char *p, *endbuf;
10085 char *message;
10086
10087 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10088 return -1;
10089
10090 /* Make sure the remote is pointing at the right process, if
10091 necessary. */
10092 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10093 set_general_process ();
10094
10095 rs = get_remote_state ();
10096 p = rs->buf;
10097 endbuf = rs->buf + get_remote_packet_size ();
10098
10099 *(p++) = 'Z';
10100 *(p++) = '1';
10101 *(p++) = ',';
10102
10103 addr = remote_address_masked (addr);
10104 p += hexnumstr (p, (ULONGEST) addr);
10105 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10106
10107 if (remote_supports_cond_breakpoints (self))
10108 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10109
10110 if (remote_can_run_breakpoint_commands (self))
10111 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10112
10113 putpkt (rs->buf);
10114 getpkt (&rs->buf, &rs->buf_size, 0);
10115
10116 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10117 {
10118 case PACKET_ERROR:
10119 if (rs->buf[1] == '.')
10120 {
10121 message = strchr (rs->buf + 2, '.');
10122 if (message)
10123 error (_("Remote failure reply: %s"), message + 1);
10124 }
10125 return -1;
10126 case PACKET_UNKNOWN:
10127 return -1;
10128 case PACKET_OK:
10129 return 0;
10130 }
10131 internal_error (__FILE__, __LINE__,
10132 _("remote_insert_hw_breakpoint: reached end of function"));
10133 }
10134
10135
10136 static int
10137 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10138 struct bp_target_info *bp_tgt)
10139 {
10140 CORE_ADDR addr;
10141 struct remote_state *rs = get_remote_state ();
10142 char *p = rs->buf;
10143 char *endbuf = rs->buf + get_remote_packet_size ();
10144
10145 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10146 return -1;
10147
10148 /* Make sure the remote is pointing at the right process, if
10149 necessary. */
10150 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10151 set_general_process ();
10152
10153 *(p++) = 'z';
10154 *(p++) = '1';
10155 *(p++) = ',';
10156
10157 addr = remote_address_masked (bp_tgt->placed_address);
10158 p += hexnumstr (p, (ULONGEST) addr);
10159 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10160
10161 putpkt (rs->buf);
10162 getpkt (&rs->buf, &rs->buf_size, 0);
10163
10164 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10165 {
10166 case PACKET_ERROR:
10167 case PACKET_UNKNOWN:
10168 return -1;
10169 case PACKET_OK:
10170 return 0;
10171 }
10172 internal_error (__FILE__, __LINE__,
10173 _("remote_remove_hw_breakpoint: reached end of function"));
10174 }
10175
10176 /* Verify memory using the "qCRC:" request. */
10177
10178 static int
10179 remote_verify_memory (struct target_ops *ops,
10180 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10181 {
10182 struct remote_state *rs = get_remote_state ();
10183 unsigned long host_crc, target_crc;
10184 char *tmp;
10185
10186 /* It doesn't make sense to use qCRC if the remote target is
10187 connected but not running. */
10188 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10189 {
10190 enum packet_result result;
10191
10192 /* Make sure the remote is pointing at the right process. */
10193 set_general_process ();
10194
10195 /* FIXME: assumes lma can fit into long. */
10196 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10197 (long) lma, (long) size);
10198 putpkt (rs->buf);
10199
10200 /* Be clever; compute the host_crc before waiting for target
10201 reply. */
10202 host_crc = xcrc32 (data, size, 0xffffffff);
10203
10204 getpkt (&rs->buf, &rs->buf_size, 0);
10205
10206 result = packet_ok (rs->buf,
10207 &remote_protocol_packets[PACKET_qCRC]);
10208 if (result == PACKET_ERROR)
10209 return -1;
10210 else if (result == PACKET_OK)
10211 {
10212 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10213 target_crc = target_crc * 16 + fromhex (*tmp);
10214
10215 return (host_crc == target_crc);
10216 }
10217 }
10218
10219 return simple_verify_memory (ops, data, lma, size);
10220 }
10221
10222 /* compare-sections command
10223
10224 With no arguments, compares each loadable section in the exec bfd
10225 with the same memory range on the target, and reports mismatches.
10226 Useful for verifying the image on the target against the exec file. */
10227
10228 static void
10229 compare_sections_command (const char *args, int from_tty)
10230 {
10231 asection *s;
10232 const char *sectname;
10233 bfd_size_type size;
10234 bfd_vma lma;
10235 int matched = 0;
10236 int mismatched = 0;
10237 int res;
10238 int read_only = 0;
10239
10240 if (!exec_bfd)
10241 error (_("command cannot be used without an exec file"));
10242
10243 /* Make sure the remote is pointing at the right process. */
10244 set_general_process ();
10245
10246 if (args != NULL && strcmp (args, "-r") == 0)
10247 {
10248 read_only = 1;
10249 args = NULL;
10250 }
10251
10252 for (s = exec_bfd->sections; s; s = s->next)
10253 {
10254 if (!(s->flags & SEC_LOAD))
10255 continue; /* Skip non-loadable section. */
10256
10257 if (read_only && (s->flags & SEC_READONLY) == 0)
10258 continue; /* Skip writeable sections */
10259
10260 size = bfd_get_section_size (s);
10261 if (size == 0)
10262 continue; /* Skip zero-length section. */
10263
10264 sectname = bfd_get_section_name (exec_bfd, s);
10265 if (args && strcmp (args, sectname) != 0)
10266 continue; /* Not the section selected by user. */
10267
10268 matched = 1; /* Do this section. */
10269 lma = s->lma;
10270
10271 gdb::byte_vector sectdata (size);
10272 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10273
10274 res = target_verify_memory (sectdata.data (), lma, size);
10275
10276 if (res == -1)
10277 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10278 paddress (target_gdbarch (), lma),
10279 paddress (target_gdbarch (), lma + size));
10280
10281 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10282 paddress (target_gdbarch (), lma),
10283 paddress (target_gdbarch (), lma + size));
10284 if (res)
10285 printf_filtered ("matched.\n");
10286 else
10287 {
10288 printf_filtered ("MIS-MATCHED!\n");
10289 mismatched++;
10290 }
10291 }
10292 if (mismatched > 0)
10293 warning (_("One or more sections of the target image does not match\n\
10294 the loaded file\n"));
10295 if (args && !matched)
10296 printf_filtered (_("No loaded section named '%s'.\n"), args);
10297 }
10298
10299 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10300 into remote target. The number of bytes written to the remote
10301 target is returned, or -1 for error. */
10302
10303 static enum target_xfer_status
10304 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10305 const char *annex, const gdb_byte *writebuf,
10306 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10307 struct packet_config *packet)
10308 {
10309 int i, buf_len;
10310 ULONGEST n;
10311 struct remote_state *rs = get_remote_state ();
10312 int max_size = get_memory_write_packet_size ();
10313
10314 if (packet_config_support (packet) == PACKET_DISABLE)
10315 return TARGET_XFER_E_IO;
10316
10317 /* Insert header. */
10318 i = snprintf (rs->buf, max_size,
10319 "qXfer:%s:write:%s:%s:",
10320 object_name, annex ? annex : "",
10321 phex_nz (offset, sizeof offset));
10322 max_size -= (i + 1);
10323
10324 /* Escape as much data as fits into rs->buf. */
10325 buf_len = remote_escape_output
10326 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10327
10328 if (putpkt_binary (rs->buf, i + buf_len) < 0
10329 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10330 || packet_ok (rs->buf, packet) != PACKET_OK)
10331 return TARGET_XFER_E_IO;
10332
10333 unpack_varlen_hex (rs->buf, &n);
10334
10335 *xfered_len = n;
10336 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10337 }
10338
10339 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10340 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10341 number of bytes read is returned, or 0 for EOF, or -1 for error.
10342 The number of bytes read may be less than LEN without indicating an
10343 EOF. PACKET is checked and updated to indicate whether the remote
10344 target supports this object. */
10345
10346 static enum target_xfer_status
10347 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10348 const char *annex,
10349 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10350 ULONGEST *xfered_len,
10351 struct packet_config *packet)
10352 {
10353 struct remote_state *rs = get_remote_state ();
10354 LONGEST i, n, packet_len;
10355
10356 if (packet_config_support (packet) == PACKET_DISABLE)
10357 return TARGET_XFER_E_IO;
10358
10359 /* Check whether we've cached an end-of-object packet that matches
10360 this request. */
10361 if (rs->finished_object)
10362 {
10363 if (strcmp (object_name, rs->finished_object) == 0
10364 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10365 && offset == rs->finished_offset)
10366 return TARGET_XFER_EOF;
10367
10368
10369 /* Otherwise, we're now reading something different. Discard
10370 the cache. */
10371 xfree (rs->finished_object);
10372 xfree (rs->finished_annex);
10373 rs->finished_object = NULL;
10374 rs->finished_annex = NULL;
10375 }
10376
10377 /* Request only enough to fit in a single packet. The actual data
10378 may not, since we don't know how much of it will need to be escaped;
10379 the target is free to respond with slightly less data. We subtract
10380 five to account for the response type and the protocol frame. */
10381 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10382 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10383 object_name, annex ? annex : "",
10384 phex_nz (offset, sizeof offset),
10385 phex_nz (n, sizeof n));
10386 i = putpkt (rs->buf);
10387 if (i < 0)
10388 return TARGET_XFER_E_IO;
10389
10390 rs->buf[0] = '\0';
10391 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10392 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10393 return TARGET_XFER_E_IO;
10394
10395 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10396 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10397
10398 /* 'm' means there is (or at least might be) more data after this
10399 batch. That does not make sense unless there's at least one byte
10400 of data in this reply. */
10401 if (rs->buf[0] == 'm' && packet_len == 1)
10402 error (_("Remote qXfer reply contained no data."));
10403
10404 /* Got some data. */
10405 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10406 packet_len - 1, readbuf, n);
10407
10408 /* 'l' is an EOF marker, possibly including a final block of data,
10409 or possibly empty. If we have the final block of a non-empty
10410 object, record this fact to bypass a subsequent partial read. */
10411 if (rs->buf[0] == 'l' && offset + i > 0)
10412 {
10413 rs->finished_object = xstrdup (object_name);
10414 rs->finished_annex = xstrdup (annex ? annex : "");
10415 rs->finished_offset = offset + i;
10416 }
10417
10418 if (i == 0)
10419 return TARGET_XFER_EOF;
10420 else
10421 {
10422 *xfered_len = i;
10423 return TARGET_XFER_OK;
10424 }
10425 }
10426
10427 static enum target_xfer_status
10428 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10429 const char *annex, gdb_byte *readbuf,
10430 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10431 ULONGEST *xfered_len)
10432 {
10433 struct remote_state *rs;
10434 int i;
10435 char *p2;
10436 char query_type;
10437 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10438
10439 set_remote_traceframe ();
10440 set_general_thread (inferior_ptid);
10441
10442 rs = get_remote_state ();
10443
10444 /* Handle memory using the standard memory routines. */
10445 if (object == TARGET_OBJECT_MEMORY)
10446 {
10447 /* If the remote target is connected but not running, we should
10448 pass this request down to a lower stratum (e.g. the executable
10449 file). */
10450 if (!target_has_execution)
10451 return TARGET_XFER_EOF;
10452
10453 if (writebuf != NULL)
10454 return remote_write_bytes (offset, writebuf, len, unit_size,
10455 xfered_len);
10456 else
10457 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10458 xfered_len);
10459 }
10460
10461 /* Handle SPU memory using qxfer packets. */
10462 if (object == TARGET_OBJECT_SPU)
10463 {
10464 if (readbuf)
10465 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10466 xfered_len, &remote_protocol_packets
10467 [PACKET_qXfer_spu_read]);
10468 else
10469 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10470 xfered_len, &remote_protocol_packets
10471 [PACKET_qXfer_spu_write]);
10472 }
10473
10474 /* Handle extra signal info using qxfer packets. */
10475 if (object == TARGET_OBJECT_SIGNAL_INFO)
10476 {
10477 if (readbuf)
10478 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10479 xfered_len, &remote_protocol_packets
10480 [PACKET_qXfer_siginfo_read]);
10481 else
10482 return remote_write_qxfer (ops, "siginfo", annex,
10483 writebuf, offset, len, xfered_len,
10484 &remote_protocol_packets
10485 [PACKET_qXfer_siginfo_write]);
10486 }
10487
10488 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10489 {
10490 if (readbuf)
10491 return remote_read_qxfer (ops, "statictrace", annex,
10492 readbuf, offset, len, xfered_len,
10493 &remote_protocol_packets
10494 [PACKET_qXfer_statictrace_read]);
10495 else
10496 return TARGET_XFER_E_IO;
10497 }
10498
10499 /* Only handle flash writes. */
10500 if (writebuf != NULL)
10501 {
10502 switch (object)
10503 {
10504 case TARGET_OBJECT_FLASH:
10505 return remote_flash_write (ops, offset, len, xfered_len,
10506 writebuf);
10507
10508 default:
10509 return TARGET_XFER_E_IO;
10510 }
10511 }
10512
10513 /* Map pre-existing objects onto letters. DO NOT do this for new
10514 objects!!! Instead specify new query packets. */
10515 switch (object)
10516 {
10517 case TARGET_OBJECT_AVR:
10518 query_type = 'R';
10519 break;
10520
10521 case TARGET_OBJECT_AUXV:
10522 gdb_assert (annex == NULL);
10523 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10524 xfered_len,
10525 &remote_protocol_packets[PACKET_qXfer_auxv]);
10526
10527 case TARGET_OBJECT_AVAILABLE_FEATURES:
10528 return remote_read_qxfer
10529 (ops, "features", annex, readbuf, offset, len, xfered_len,
10530 &remote_protocol_packets[PACKET_qXfer_features]);
10531
10532 case TARGET_OBJECT_LIBRARIES:
10533 return remote_read_qxfer
10534 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10535 &remote_protocol_packets[PACKET_qXfer_libraries]);
10536
10537 case TARGET_OBJECT_LIBRARIES_SVR4:
10538 return remote_read_qxfer
10539 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10540 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10541
10542 case TARGET_OBJECT_MEMORY_MAP:
10543 gdb_assert (annex == NULL);
10544 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10545 xfered_len,
10546 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10547
10548 case TARGET_OBJECT_OSDATA:
10549 /* Should only get here if we're connected. */
10550 gdb_assert (rs->remote_desc);
10551 return remote_read_qxfer
10552 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10553 &remote_protocol_packets[PACKET_qXfer_osdata]);
10554
10555 case TARGET_OBJECT_THREADS:
10556 gdb_assert (annex == NULL);
10557 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10558 xfered_len,
10559 &remote_protocol_packets[PACKET_qXfer_threads]);
10560
10561 case TARGET_OBJECT_TRACEFRAME_INFO:
10562 gdb_assert (annex == NULL);
10563 return remote_read_qxfer
10564 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10565 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10566
10567 case TARGET_OBJECT_FDPIC:
10568 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10569 xfered_len,
10570 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10571
10572 case TARGET_OBJECT_OPENVMS_UIB:
10573 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10574 xfered_len,
10575 &remote_protocol_packets[PACKET_qXfer_uib]);
10576
10577 case TARGET_OBJECT_BTRACE:
10578 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10579 xfered_len,
10580 &remote_protocol_packets[PACKET_qXfer_btrace]);
10581
10582 case TARGET_OBJECT_BTRACE_CONF:
10583 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10584 len, xfered_len,
10585 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10586
10587 case TARGET_OBJECT_EXEC_FILE:
10588 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10589 len, xfered_len,
10590 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10591
10592 default:
10593 return TARGET_XFER_E_IO;
10594 }
10595
10596 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10597 large enough let the caller deal with it. */
10598 if (len < get_remote_packet_size ())
10599 return TARGET_XFER_E_IO;
10600 len = get_remote_packet_size ();
10601
10602 /* Except for querying the minimum buffer size, target must be open. */
10603 if (!rs->remote_desc)
10604 error (_("remote query is only available after target open"));
10605
10606 gdb_assert (annex != NULL);
10607 gdb_assert (readbuf != NULL);
10608
10609 p2 = rs->buf;
10610 *p2++ = 'q';
10611 *p2++ = query_type;
10612
10613 /* We used one buffer char for the remote protocol q command and
10614 another for the query type. As the remote protocol encapsulation
10615 uses 4 chars plus one extra in case we are debugging
10616 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10617 string. */
10618 i = 0;
10619 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10620 {
10621 /* Bad caller may have sent forbidden characters. */
10622 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10623 *p2++ = annex[i];
10624 i++;
10625 }
10626 *p2 = '\0';
10627 gdb_assert (annex[i] == '\0');
10628
10629 i = putpkt (rs->buf);
10630 if (i < 0)
10631 return TARGET_XFER_E_IO;
10632
10633 getpkt (&rs->buf, &rs->buf_size, 0);
10634 strcpy ((char *) readbuf, rs->buf);
10635
10636 *xfered_len = strlen ((char *) readbuf);
10637 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10638 }
10639
10640 /* Implementation of to_get_memory_xfer_limit. */
10641
10642 static ULONGEST
10643 remote_get_memory_xfer_limit (struct target_ops *ops)
10644 {
10645 return get_memory_write_packet_size ();
10646 }
10647
10648 static int
10649 remote_search_memory (struct target_ops* ops,
10650 CORE_ADDR start_addr, ULONGEST search_space_len,
10651 const gdb_byte *pattern, ULONGEST pattern_len,
10652 CORE_ADDR *found_addrp)
10653 {
10654 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10655 struct remote_state *rs = get_remote_state ();
10656 int max_size = get_memory_write_packet_size ();
10657 struct packet_config *packet =
10658 &remote_protocol_packets[PACKET_qSearch_memory];
10659 /* Number of packet bytes used to encode the pattern;
10660 this could be more than PATTERN_LEN due to escape characters. */
10661 int escaped_pattern_len;
10662 /* Amount of pattern that was encodable in the packet. */
10663 int used_pattern_len;
10664 int i;
10665 int found;
10666 ULONGEST found_addr;
10667
10668 /* Don't go to the target if we don't have to. This is done before
10669 checking packet_config_support to avoid the possibility that a
10670 success for this edge case means the facility works in
10671 general. */
10672 if (pattern_len > search_space_len)
10673 return 0;
10674 if (pattern_len == 0)
10675 {
10676 *found_addrp = start_addr;
10677 return 1;
10678 }
10679
10680 /* If we already know the packet isn't supported, fall back to the simple
10681 way of searching memory. */
10682
10683 if (packet_config_support (packet) == PACKET_DISABLE)
10684 {
10685 /* Target doesn't provided special support, fall back and use the
10686 standard support (copy memory and do the search here). */
10687 return simple_search_memory (ops, start_addr, search_space_len,
10688 pattern, pattern_len, found_addrp);
10689 }
10690
10691 /* Make sure the remote is pointing at the right process. */
10692 set_general_process ();
10693
10694 /* Insert header. */
10695 i = snprintf (rs->buf, max_size,
10696 "qSearch:memory:%s;%s;",
10697 phex_nz (start_addr, addr_size),
10698 phex_nz (search_space_len, sizeof (search_space_len)));
10699 max_size -= (i + 1);
10700
10701 /* Escape as much data as fits into rs->buf. */
10702 escaped_pattern_len =
10703 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10704 &used_pattern_len, max_size);
10705
10706 /* Bail if the pattern is too large. */
10707 if (used_pattern_len != pattern_len)
10708 error (_("Pattern is too large to transmit to remote target."));
10709
10710 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10711 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10712 || packet_ok (rs->buf, packet) != PACKET_OK)
10713 {
10714 /* The request may not have worked because the command is not
10715 supported. If so, fall back to the simple way. */
10716 if (packet_config_support (packet) == PACKET_DISABLE)
10717 {
10718 return simple_search_memory (ops, start_addr, search_space_len,
10719 pattern, pattern_len, found_addrp);
10720 }
10721 return -1;
10722 }
10723
10724 if (rs->buf[0] == '0')
10725 found = 0;
10726 else if (rs->buf[0] == '1')
10727 {
10728 found = 1;
10729 if (rs->buf[1] != ',')
10730 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10731 unpack_varlen_hex (rs->buf + 2, &found_addr);
10732 *found_addrp = found_addr;
10733 }
10734 else
10735 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10736
10737 return found;
10738 }
10739
10740 static void
10741 remote_rcmd (struct target_ops *self, const char *command,
10742 struct ui_file *outbuf)
10743 {
10744 struct remote_state *rs = get_remote_state ();
10745 char *p = rs->buf;
10746
10747 if (!rs->remote_desc)
10748 error (_("remote rcmd is only available after target open"));
10749
10750 /* Send a NULL command across as an empty command. */
10751 if (command == NULL)
10752 command = "";
10753
10754 /* The query prefix. */
10755 strcpy (rs->buf, "qRcmd,");
10756 p = strchr (rs->buf, '\0');
10757
10758 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10759 > get_remote_packet_size ())
10760 error (_("\"monitor\" command ``%s'' is too long."), command);
10761
10762 /* Encode the actual command. */
10763 bin2hex ((const gdb_byte *) command, p, strlen (command));
10764
10765 if (putpkt (rs->buf) < 0)
10766 error (_("Communication problem with target."));
10767
10768 /* get/display the response */
10769 while (1)
10770 {
10771 char *buf;
10772
10773 /* XXX - see also remote_get_noisy_reply(). */
10774 QUIT; /* Allow user to bail out with ^C. */
10775 rs->buf[0] = '\0';
10776 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10777 {
10778 /* Timeout. Continue to (try to) read responses.
10779 This is better than stopping with an error, assuming the stub
10780 is still executing the (long) monitor command.
10781 If needed, the user can interrupt gdb using C-c, obtaining
10782 an effect similar to stop on timeout. */
10783 continue;
10784 }
10785 buf = rs->buf;
10786 if (buf[0] == '\0')
10787 error (_("Target does not support this command."));
10788 if (buf[0] == 'O' && buf[1] != 'K')
10789 {
10790 remote_console_output (buf + 1); /* 'O' message from stub. */
10791 continue;
10792 }
10793 if (strcmp (buf, "OK") == 0)
10794 break;
10795 if (strlen (buf) == 3 && buf[0] == 'E'
10796 && isdigit (buf[1]) && isdigit (buf[2]))
10797 {
10798 error (_("Protocol error with Rcmd"));
10799 }
10800 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10801 {
10802 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10803
10804 fputc_unfiltered (c, outbuf);
10805 }
10806 break;
10807 }
10808 }
10809
10810 static std::vector<mem_region>
10811 remote_memory_map (struct target_ops *ops)
10812 {
10813 std::vector<mem_region> result;
10814 gdb::unique_xmalloc_ptr<char> text
10815 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10816
10817 if (text)
10818 result = parse_memory_map (text.get ());
10819
10820 return result;
10821 }
10822
10823 static void
10824 packet_command (const char *args, int from_tty)
10825 {
10826 struct remote_state *rs = get_remote_state ();
10827
10828 if (!rs->remote_desc)
10829 error (_("command can only be used with remote target"));
10830
10831 if (!args)
10832 error (_("remote-packet command requires packet text as argument"));
10833
10834 puts_filtered ("sending: ");
10835 print_packet (args);
10836 puts_filtered ("\n");
10837 putpkt (args);
10838
10839 getpkt (&rs->buf, &rs->buf_size, 0);
10840 puts_filtered ("received: ");
10841 print_packet (rs->buf);
10842 puts_filtered ("\n");
10843 }
10844
10845 #if 0
10846 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10847
10848 static void display_thread_info (struct gdb_ext_thread_info *info);
10849
10850 static void threadset_test_cmd (char *cmd, int tty);
10851
10852 static void threadalive_test (char *cmd, int tty);
10853
10854 static void threadlist_test_cmd (char *cmd, int tty);
10855
10856 int get_and_display_threadinfo (threadref *ref);
10857
10858 static void threadinfo_test_cmd (char *cmd, int tty);
10859
10860 static int thread_display_step (threadref *ref, void *context);
10861
10862 static void threadlist_update_test_cmd (char *cmd, int tty);
10863
10864 static void init_remote_threadtests (void);
10865
10866 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10867
10868 static void
10869 threadset_test_cmd (const char *cmd, int tty)
10870 {
10871 int sample_thread = SAMPLE_THREAD;
10872
10873 printf_filtered (_("Remote threadset test\n"));
10874 set_general_thread (sample_thread);
10875 }
10876
10877
10878 static void
10879 threadalive_test (const char *cmd, int tty)
10880 {
10881 int sample_thread = SAMPLE_THREAD;
10882 int pid = ptid_get_pid (inferior_ptid);
10883 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10884
10885 if (remote_thread_alive (ptid))
10886 printf_filtered ("PASS: Thread alive test\n");
10887 else
10888 printf_filtered ("FAIL: Thread alive test\n");
10889 }
10890
10891 void output_threadid (char *title, threadref *ref);
10892
10893 void
10894 output_threadid (char *title, threadref *ref)
10895 {
10896 char hexid[20];
10897
10898 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10899 hexid[16] = 0;
10900 printf_filtered ("%s %s\n", title, (&hexid[0]));
10901 }
10902
10903 static void
10904 threadlist_test_cmd (const char *cmd, int tty)
10905 {
10906 int startflag = 1;
10907 threadref nextthread;
10908 int done, result_count;
10909 threadref threadlist[3];
10910
10911 printf_filtered ("Remote Threadlist test\n");
10912 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10913 &result_count, &threadlist[0]))
10914 printf_filtered ("FAIL: threadlist test\n");
10915 else
10916 {
10917 threadref *scan = threadlist;
10918 threadref *limit = scan + result_count;
10919
10920 while (scan < limit)
10921 output_threadid (" thread ", scan++);
10922 }
10923 }
10924
10925 void
10926 display_thread_info (struct gdb_ext_thread_info *info)
10927 {
10928 output_threadid ("Threadid: ", &info->threadid);
10929 printf_filtered ("Name: %s\n ", info->shortname);
10930 printf_filtered ("State: %s\n", info->display);
10931 printf_filtered ("other: %s\n\n", info->more_display);
10932 }
10933
10934 int
10935 get_and_display_threadinfo (threadref *ref)
10936 {
10937 int result;
10938 int set;
10939 struct gdb_ext_thread_info threadinfo;
10940
10941 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10942 | TAG_MOREDISPLAY | TAG_DISPLAY;
10943 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10944 display_thread_info (&threadinfo);
10945 return result;
10946 }
10947
10948 static void
10949 threadinfo_test_cmd (const char *cmd, int tty)
10950 {
10951 int athread = SAMPLE_THREAD;
10952 threadref thread;
10953 int set;
10954
10955 int_to_threadref (&thread, athread);
10956 printf_filtered ("Remote Threadinfo test\n");
10957 if (!get_and_display_threadinfo (&thread))
10958 printf_filtered ("FAIL cannot get thread info\n");
10959 }
10960
10961 static int
10962 thread_display_step (threadref *ref, void *context)
10963 {
10964 /* output_threadid(" threadstep ",ref); *//* simple test */
10965 return get_and_display_threadinfo (ref);
10966 }
10967
10968 static void
10969 threadlist_update_test_cmd (const char *cmd, int tty)
10970 {
10971 printf_filtered ("Remote Threadlist update test\n");
10972 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10973 }
10974
10975 static void
10976 init_remote_threadtests (void)
10977 {
10978 add_com ("tlist", class_obscure, threadlist_test_cmd,
10979 _("Fetch and print the remote list of "
10980 "thread identifiers, one pkt only"));
10981 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10982 _("Fetch and display info about one thread"));
10983 add_com ("tset", class_obscure, threadset_test_cmd,
10984 _("Test setting to a different thread"));
10985 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10986 _("Iterate through updating all remote thread info"));
10987 add_com ("talive", class_obscure, threadalive_test,
10988 _(" Remote thread alive test "));
10989 }
10990
10991 #endif /* 0 */
10992
10993 /* Convert a thread ID to a string. Returns the string in a static
10994 buffer. */
10995
10996 static const char *
10997 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10998 {
10999 static char buf[64];
11000 struct remote_state *rs = get_remote_state ();
11001
11002 if (ptid_equal (ptid, null_ptid))
11003 return normal_pid_to_str (ptid);
11004 else if (ptid_is_pid (ptid))
11005 {
11006 /* Printing an inferior target id. */
11007
11008 /* When multi-process extensions are off, there's no way in the
11009 remote protocol to know the remote process id, if there's any
11010 at all. There's one exception --- when we're connected with
11011 target extended-remote, and we manually attached to a process
11012 with "attach PID". We don't record anywhere a flag that
11013 allows us to distinguish that case from the case of
11014 connecting with extended-remote and the stub already being
11015 attached to a process, and reporting yes to qAttached, hence
11016 no smart special casing here. */
11017 if (!remote_multi_process_p (rs))
11018 {
11019 xsnprintf (buf, sizeof buf, "Remote target");
11020 return buf;
11021 }
11022
11023 return normal_pid_to_str (ptid);
11024 }
11025 else
11026 {
11027 if (ptid_equal (magic_null_ptid, ptid))
11028 xsnprintf (buf, sizeof buf, "Thread <main>");
11029 else if (remote_multi_process_p (rs))
11030 if (ptid_get_lwp (ptid) == 0)
11031 return normal_pid_to_str (ptid);
11032 else
11033 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11034 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11035 else
11036 xsnprintf (buf, sizeof buf, "Thread %ld",
11037 ptid_get_lwp (ptid));
11038 return buf;
11039 }
11040 }
11041
11042 /* Get the address of the thread local variable in OBJFILE which is
11043 stored at OFFSET within the thread local storage for thread PTID. */
11044
11045 static CORE_ADDR
11046 remote_get_thread_local_address (struct target_ops *ops,
11047 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11048 {
11049 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11050 {
11051 struct remote_state *rs = get_remote_state ();
11052 char *p = rs->buf;
11053 char *endp = rs->buf + get_remote_packet_size ();
11054 enum packet_result result;
11055
11056 strcpy (p, "qGetTLSAddr:");
11057 p += strlen (p);
11058 p = write_ptid (p, endp, ptid);
11059 *p++ = ',';
11060 p += hexnumstr (p, offset);
11061 *p++ = ',';
11062 p += hexnumstr (p, lm);
11063 *p++ = '\0';
11064
11065 putpkt (rs->buf);
11066 getpkt (&rs->buf, &rs->buf_size, 0);
11067 result = packet_ok (rs->buf,
11068 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11069 if (result == PACKET_OK)
11070 {
11071 ULONGEST result;
11072
11073 unpack_varlen_hex (rs->buf, &result);
11074 return result;
11075 }
11076 else if (result == PACKET_UNKNOWN)
11077 throw_error (TLS_GENERIC_ERROR,
11078 _("Remote target doesn't support qGetTLSAddr packet"));
11079 else
11080 throw_error (TLS_GENERIC_ERROR,
11081 _("Remote target failed to process qGetTLSAddr request"));
11082 }
11083 else
11084 throw_error (TLS_GENERIC_ERROR,
11085 _("TLS not supported or disabled on this target"));
11086 /* Not reached. */
11087 return 0;
11088 }
11089
11090 /* Provide thread local base, i.e. Thread Information Block address.
11091 Returns 1 if ptid is found and thread_local_base is non zero. */
11092
11093 static int
11094 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11095 {
11096 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11097 {
11098 struct remote_state *rs = get_remote_state ();
11099 char *p = rs->buf;
11100 char *endp = rs->buf + get_remote_packet_size ();
11101 enum packet_result result;
11102
11103 strcpy (p, "qGetTIBAddr:");
11104 p += strlen (p);
11105 p = write_ptid (p, endp, ptid);
11106 *p++ = '\0';
11107
11108 putpkt (rs->buf);
11109 getpkt (&rs->buf, &rs->buf_size, 0);
11110 result = packet_ok (rs->buf,
11111 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11112 if (result == PACKET_OK)
11113 {
11114 ULONGEST result;
11115
11116 unpack_varlen_hex (rs->buf, &result);
11117 if (addr)
11118 *addr = (CORE_ADDR) result;
11119 return 1;
11120 }
11121 else if (result == PACKET_UNKNOWN)
11122 error (_("Remote target doesn't support qGetTIBAddr packet"));
11123 else
11124 error (_("Remote target failed to process qGetTIBAddr request"));
11125 }
11126 else
11127 error (_("qGetTIBAddr not supported or disabled on this target"));
11128 /* Not reached. */
11129 return 0;
11130 }
11131
11132 /* Support for inferring a target description based on the current
11133 architecture and the size of a 'g' packet. While the 'g' packet
11134 can have any size (since optional registers can be left off the
11135 end), some sizes are easily recognizable given knowledge of the
11136 approximate architecture. */
11137
11138 struct remote_g_packet_guess
11139 {
11140 int bytes;
11141 const struct target_desc *tdesc;
11142 };
11143 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11144 DEF_VEC_O(remote_g_packet_guess_s);
11145
11146 struct remote_g_packet_data
11147 {
11148 VEC(remote_g_packet_guess_s) *guesses;
11149 };
11150
11151 static struct gdbarch_data *remote_g_packet_data_handle;
11152
11153 static void *
11154 remote_g_packet_data_init (struct obstack *obstack)
11155 {
11156 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11157 }
11158
11159 void
11160 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11161 const struct target_desc *tdesc)
11162 {
11163 struct remote_g_packet_data *data
11164 = ((struct remote_g_packet_data *)
11165 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11166 struct remote_g_packet_guess new_guess, *guess;
11167 int ix;
11168
11169 gdb_assert (tdesc != NULL);
11170
11171 for (ix = 0;
11172 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11173 ix++)
11174 if (guess->bytes == bytes)
11175 internal_error (__FILE__, __LINE__,
11176 _("Duplicate g packet description added for size %d"),
11177 bytes);
11178
11179 new_guess.bytes = bytes;
11180 new_guess.tdesc = tdesc;
11181 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11182 }
11183
11184 /* Return 1 if remote_read_description would do anything on this target
11185 and architecture, 0 otherwise. */
11186
11187 static int
11188 remote_read_description_p (struct target_ops *target)
11189 {
11190 struct remote_g_packet_data *data
11191 = ((struct remote_g_packet_data *)
11192 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11193
11194 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11195 return 1;
11196
11197 return 0;
11198 }
11199
11200 static const struct target_desc *
11201 remote_read_description (struct target_ops *target)
11202 {
11203 struct remote_g_packet_data *data
11204 = ((struct remote_g_packet_data *)
11205 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11206
11207 /* Do not try this during initial connection, when we do not know
11208 whether there is a running but stopped thread. */
11209 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11210 return target->beneath->to_read_description (target->beneath);
11211
11212 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11213 {
11214 struct remote_g_packet_guess *guess;
11215 int ix;
11216 int bytes = send_g_packet ();
11217
11218 for (ix = 0;
11219 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11220 ix++)
11221 if (guess->bytes == bytes)
11222 return guess->tdesc;
11223
11224 /* We discard the g packet. A minor optimization would be to
11225 hold on to it, and fill the register cache once we have selected
11226 an architecture, but it's too tricky to do safely. */
11227 }
11228
11229 return target->beneath->to_read_description (target->beneath);
11230 }
11231
11232 /* Remote file transfer support. This is host-initiated I/O, not
11233 target-initiated; for target-initiated, see remote-fileio.c. */
11234
11235 /* If *LEFT is at least the length of STRING, copy STRING to
11236 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11237 decrease *LEFT. Otherwise raise an error. */
11238
11239 static void
11240 remote_buffer_add_string (char **buffer, int *left, const char *string)
11241 {
11242 int len = strlen (string);
11243
11244 if (len > *left)
11245 error (_("Packet too long for target."));
11246
11247 memcpy (*buffer, string, len);
11248 *buffer += len;
11249 *left -= len;
11250
11251 /* NUL-terminate the buffer as a convenience, if there is
11252 room. */
11253 if (*left)
11254 **buffer = '\0';
11255 }
11256
11257 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11258 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11259 decrease *LEFT. Otherwise raise an error. */
11260
11261 static void
11262 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11263 int len)
11264 {
11265 if (2 * len > *left)
11266 error (_("Packet too long for target."));
11267
11268 bin2hex (bytes, *buffer, len);
11269 *buffer += 2 * len;
11270 *left -= 2 * len;
11271
11272 /* NUL-terminate the buffer as a convenience, if there is
11273 room. */
11274 if (*left)
11275 **buffer = '\0';
11276 }
11277
11278 /* If *LEFT is large enough, convert VALUE to hex and add it to
11279 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11280 decrease *LEFT. Otherwise raise an error. */
11281
11282 static void
11283 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11284 {
11285 int len = hexnumlen (value);
11286
11287 if (len > *left)
11288 error (_("Packet too long for target."));
11289
11290 hexnumstr (*buffer, value);
11291 *buffer += len;
11292 *left -= len;
11293
11294 /* NUL-terminate the buffer as a convenience, if there is
11295 room. */
11296 if (*left)
11297 **buffer = '\0';
11298 }
11299
11300 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11301 value, *REMOTE_ERRNO to the remote error number or zero if none
11302 was included, and *ATTACHMENT to point to the start of the annex
11303 if any. The length of the packet isn't needed here; there may
11304 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11305
11306 Return 0 if the packet could be parsed, -1 if it could not. If
11307 -1 is returned, the other variables may not be initialized. */
11308
11309 static int
11310 remote_hostio_parse_result (char *buffer, int *retcode,
11311 int *remote_errno, char **attachment)
11312 {
11313 char *p, *p2;
11314
11315 *remote_errno = 0;
11316 *attachment = NULL;
11317
11318 if (buffer[0] != 'F')
11319 return -1;
11320
11321 errno = 0;
11322 *retcode = strtol (&buffer[1], &p, 16);
11323 if (errno != 0 || p == &buffer[1])
11324 return -1;
11325
11326 /* Check for ",errno". */
11327 if (*p == ',')
11328 {
11329 errno = 0;
11330 *remote_errno = strtol (p + 1, &p2, 16);
11331 if (errno != 0 || p + 1 == p2)
11332 return -1;
11333 p = p2;
11334 }
11335
11336 /* Check for ";attachment". If there is no attachment, the
11337 packet should end here. */
11338 if (*p == ';')
11339 {
11340 *attachment = p + 1;
11341 return 0;
11342 }
11343 else if (*p == '\0')
11344 return 0;
11345 else
11346 return -1;
11347 }
11348
11349 /* Send a prepared I/O packet to the target and read its response.
11350 The prepared packet is in the global RS->BUF before this function
11351 is called, and the answer is there when we return.
11352
11353 COMMAND_BYTES is the length of the request to send, which may include
11354 binary data. WHICH_PACKET is the packet configuration to check
11355 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11356 is set to the error number and -1 is returned. Otherwise the value
11357 returned by the function is returned.
11358
11359 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11360 attachment is expected; an error will be reported if there's a
11361 mismatch. If one is found, *ATTACHMENT will be set to point into
11362 the packet buffer and *ATTACHMENT_LEN will be set to the
11363 attachment's length. */
11364
11365 static int
11366 remote_hostio_send_command (int command_bytes, int which_packet,
11367 int *remote_errno, char **attachment,
11368 int *attachment_len)
11369 {
11370 struct remote_state *rs = get_remote_state ();
11371 int ret, bytes_read;
11372 char *attachment_tmp;
11373
11374 if (!rs->remote_desc
11375 || packet_support (which_packet) == PACKET_DISABLE)
11376 {
11377 *remote_errno = FILEIO_ENOSYS;
11378 return -1;
11379 }
11380
11381 putpkt_binary (rs->buf, command_bytes);
11382 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11383
11384 /* If it timed out, something is wrong. Don't try to parse the
11385 buffer. */
11386 if (bytes_read < 0)
11387 {
11388 *remote_errno = FILEIO_EINVAL;
11389 return -1;
11390 }
11391
11392 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11393 {
11394 case PACKET_ERROR:
11395 *remote_errno = FILEIO_EINVAL;
11396 return -1;
11397 case PACKET_UNKNOWN:
11398 *remote_errno = FILEIO_ENOSYS;
11399 return -1;
11400 case PACKET_OK:
11401 break;
11402 }
11403
11404 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11405 &attachment_tmp))
11406 {
11407 *remote_errno = FILEIO_EINVAL;
11408 return -1;
11409 }
11410
11411 /* Make sure we saw an attachment if and only if we expected one. */
11412 if ((attachment_tmp == NULL && attachment != NULL)
11413 || (attachment_tmp != NULL && attachment == NULL))
11414 {
11415 *remote_errno = FILEIO_EINVAL;
11416 return -1;
11417 }
11418
11419 /* If an attachment was found, it must point into the packet buffer;
11420 work out how many bytes there were. */
11421 if (attachment_tmp != NULL)
11422 {
11423 *attachment = attachment_tmp;
11424 *attachment_len = bytes_read - (*attachment - rs->buf);
11425 }
11426
11427 return ret;
11428 }
11429
11430 /* Invalidate the readahead cache. */
11431
11432 static void
11433 readahead_cache_invalidate (void)
11434 {
11435 struct remote_state *rs = get_remote_state ();
11436
11437 rs->readahead_cache.fd = -1;
11438 }
11439
11440 /* Invalidate the readahead cache if it is holding data for FD. */
11441
11442 static void
11443 readahead_cache_invalidate_fd (int fd)
11444 {
11445 struct remote_state *rs = get_remote_state ();
11446
11447 if (rs->readahead_cache.fd == fd)
11448 rs->readahead_cache.fd = -1;
11449 }
11450
11451 /* Set the filesystem remote_hostio functions that take FILENAME
11452 arguments will use. Return 0 on success, or -1 if an error
11453 occurs (and set *REMOTE_ERRNO). */
11454
11455 static int
11456 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11457 {
11458 struct remote_state *rs = get_remote_state ();
11459 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11460 char *p = rs->buf;
11461 int left = get_remote_packet_size () - 1;
11462 char arg[9];
11463 int ret;
11464
11465 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11466 return 0;
11467
11468 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11469 return 0;
11470
11471 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11472
11473 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11474 remote_buffer_add_string (&p, &left, arg);
11475
11476 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11477 remote_errno, NULL, NULL);
11478
11479 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11480 return 0;
11481
11482 if (ret == 0)
11483 rs->fs_pid = required_pid;
11484
11485 return ret;
11486 }
11487
11488 /* Implementation of to_fileio_open. */
11489
11490 static int
11491 remote_hostio_open (struct target_ops *self,
11492 struct inferior *inf, const char *filename,
11493 int flags, int mode, int warn_if_slow,
11494 int *remote_errno)
11495 {
11496 struct remote_state *rs = get_remote_state ();
11497 char *p = rs->buf;
11498 int left = get_remote_packet_size () - 1;
11499
11500 if (warn_if_slow)
11501 {
11502 static int warning_issued = 0;
11503
11504 printf_unfiltered (_("Reading %s from remote target...\n"),
11505 filename);
11506
11507 if (!warning_issued)
11508 {
11509 warning (_("File transfers from remote targets can be slow."
11510 " Use \"set sysroot\" to access files locally"
11511 " instead."));
11512 warning_issued = 1;
11513 }
11514 }
11515
11516 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11517 return -1;
11518
11519 remote_buffer_add_string (&p, &left, "vFile:open:");
11520
11521 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11522 strlen (filename));
11523 remote_buffer_add_string (&p, &left, ",");
11524
11525 remote_buffer_add_int (&p, &left, flags);
11526 remote_buffer_add_string (&p, &left, ",");
11527
11528 remote_buffer_add_int (&p, &left, mode);
11529
11530 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11531 remote_errno, NULL, NULL);
11532 }
11533
11534 /* Implementation of to_fileio_pwrite. */
11535
11536 static int
11537 remote_hostio_pwrite (struct target_ops *self,
11538 int fd, const gdb_byte *write_buf, int len,
11539 ULONGEST offset, int *remote_errno)
11540 {
11541 struct remote_state *rs = get_remote_state ();
11542 char *p = rs->buf;
11543 int left = get_remote_packet_size ();
11544 int out_len;
11545
11546 readahead_cache_invalidate_fd (fd);
11547
11548 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11549
11550 remote_buffer_add_int (&p, &left, fd);
11551 remote_buffer_add_string (&p, &left, ",");
11552
11553 remote_buffer_add_int (&p, &left, offset);
11554 remote_buffer_add_string (&p, &left, ",");
11555
11556 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11557 get_remote_packet_size () - (p - rs->buf));
11558
11559 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11560 remote_errno, NULL, NULL);
11561 }
11562
11563 /* Helper for the implementation of to_fileio_pread. Read the file
11564 from the remote side with vFile:pread. */
11565
11566 static int
11567 remote_hostio_pread_vFile (struct target_ops *self,
11568 int fd, gdb_byte *read_buf, int len,
11569 ULONGEST offset, int *remote_errno)
11570 {
11571 struct remote_state *rs = get_remote_state ();
11572 char *p = rs->buf;
11573 char *attachment;
11574 int left = get_remote_packet_size ();
11575 int ret, attachment_len;
11576 int read_len;
11577
11578 remote_buffer_add_string (&p, &left, "vFile:pread:");
11579
11580 remote_buffer_add_int (&p, &left, fd);
11581 remote_buffer_add_string (&p, &left, ",");
11582
11583 remote_buffer_add_int (&p, &left, len);
11584 remote_buffer_add_string (&p, &left, ",");
11585
11586 remote_buffer_add_int (&p, &left, offset);
11587
11588 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11589 remote_errno, &attachment,
11590 &attachment_len);
11591
11592 if (ret < 0)
11593 return ret;
11594
11595 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11596 read_buf, len);
11597 if (read_len != ret)
11598 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11599
11600 return ret;
11601 }
11602
11603 /* Serve pread from the readahead cache. Returns number of bytes
11604 read, or 0 if the request can't be served from the cache. */
11605
11606 static int
11607 remote_hostio_pread_from_cache (struct remote_state *rs,
11608 int fd, gdb_byte *read_buf, size_t len,
11609 ULONGEST offset)
11610 {
11611 struct readahead_cache *cache = &rs->readahead_cache;
11612
11613 if (cache->fd == fd
11614 && cache->offset <= offset
11615 && offset < cache->offset + cache->bufsize)
11616 {
11617 ULONGEST max = cache->offset + cache->bufsize;
11618
11619 if (offset + len > max)
11620 len = max - offset;
11621
11622 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11623 return len;
11624 }
11625
11626 return 0;
11627 }
11628
11629 /* Implementation of to_fileio_pread. */
11630
11631 static int
11632 remote_hostio_pread (struct target_ops *self,
11633 int fd, gdb_byte *read_buf, int len,
11634 ULONGEST offset, int *remote_errno)
11635 {
11636 int ret;
11637 struct remote_state *rs = get_remote_state ();
11638 struct readahead_cache *cache = &rs->readahead_cache;
11639
11640 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11641 if (ret > 0)
11642 {
11643 cache->hit_count++;
11644
11645 if (remote_debug)
11646 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11647 pulongest (cache->hit_count));
11648 return ret;
11649 }
11650
11651 cache->miss_count++;
11652 if (remote_debug)
11653 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11654 pulongest (cache->miss_count));
11655
11656 cache->fd = fd;
11657 cache->offset = offset;
11658 cache->bufsize = get_remote_packet_size ();
11659 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11660
11661 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11662 cache->offset, remote_errno);
11663 if (ret <= 0)
11664 {
11665 readahead_cache_invalidate_fd (fd);
11666 return ret;
11667 }
11668
11669 cache->bufsize = ret;
11670 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11671 }
11672
11673 /* Implementation of to_fileio_close. */
11674
11675 static int
11676 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11677 {
11678 struct remote_state *rs = get_remote_state ();
11679 char *p = rs->buf;
11680 int left = get_remote_packet_size () - 1;
11681
11682 readahead_cache_invalidate_fd (fd);
11683
11684 remote_buffer_add_string (&p, &left, "vFile:close:");
11685
11686 remote_buffer_add_int (&p, &left, fd);
11687
11688 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11689 remote_errno, NULL, NULL);
11690 }
11691
11692 /* Implementation of to_fileio_unlink. */
11693
11694 static int
11695 remote_hostio_unlink (struct target_ops *self,
11696 struct inferior *inf, const char *filename,
11697 int *remote_errno)
11698 {
11699 struct remote_state *rs = get_remote_state ();
11700 char *p = rs->buf;
11701 int left = get_remote_packet_size () - 1;
11702
11703 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11704 return -1;
11705
11706 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11707
11708 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11709 strlen (filename));
11710
11711 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11712 remote_errno, NULL, NULL);
11713 }
11714
11715 /* Implementation of to_fileio_readlink. */
11716
11717 static char *
11718 remote_hostio_readlink (struct target_ops *self,
11719 struct inferior *inf, const char *filename,
11720 int *remote_errno)
11721 {
11722 struct remote_state *rs = get_remote_state ();
11723 char *p = rs->buf;
11724 char *attachment;
11725 int left = get_remote_packet_size ();
11726 int len, attachment_len;
11727 int read_len;
11728 char *ret;
11729
11730 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11731 return NULL;
11732
11733 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11734
11735 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11736 strlen (filename));
11737
11738 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11739 remote_errno, &attachment,
11740 &attachment_len);
11741
11742 if (len < 0)
11743 return NULL;
11744
11745 ret = (char *) xmalloc (len + 1);
11746
11747 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11748 (gdb_byte *) ret, len);
11749 if (read_len != len)
11750 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11751
11752 ret[len] = '\0';
11753 return ret;
11754 }
11755
11756 /* Implementation of to_fileio_fstat. */
11757
11758 static int
11759 remote_hostio_fstat (struct target_ops *self,
11760 int fd, struct stat *st,
11761 int *remote_errno)
11762 {
11763 struct remote_state *rs = get_remote_state ();
11764 char *p = rs->buf;
11765 int left = get_remote_packet_size ();
11766 int attachment_len, ret;
11767 char *attachment;
11768 struct fio_stat fst;
11769 int read_len;
11770
11771 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11772
11773 remote_buffer_add_int (&p, &left, fd);
11774
11775 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11776 remote_errno, &attachment,
11777 &attachment_len);
11778 if (ret < 0)
11779 {
11780 if (*remote_errno != FILEIO_ENOSYS)
11781 return ret;
11782
11783 /* Strictly we should return -1, ENOSYS here, but when
11784 "set sysroot remote:" was implemented in August 2008
11785 BFD's need for a stat function was sidestepped with
11786 this hack. This was not remedied until March 2015
11787 so we retain the previous behavior to avoid breaking
11788 compatibility.
11789
11790 Note that the memset is a March 2015 addition; older
11791 GDBs set st_size *and nothing else* so the structure
11792 would have garbage in all other fields. This might
11793 break something but retaining the previous behavior
11794 here would be just too wrong. */
11795
11796 memset (st, 0, sizeof (struct stat));
11797 st->st_size = INT_MAX;
11798 return 0;
11799 }
11800
11801 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11802 (gdb_byte *) &fst, sizeof (fst));
11803
11804 if (read_len != ret)
11805 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11806
11807 if (read_len != sizeof (fst))
11808 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11809 read_len, (int) sizeof (fst));
11810
11811 remote_fileio_to_host_stat (&fst, st);
11812
11813 return 0;
11814 }
11815
11816 /* Implementation of to_filesystem_is_local. */
11817
11818 static int
11819 remote_filesystem_is_local (struct target_ops *self)
11820 {
11821 /* Valgrind GDB presents itself as a remote target but works
11822 on the local filesystem: it does not implement remote get
11823 and users are not expected to set a sysroot. To handle
11824 this case we treat the remote filesystem as local if the
11825 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11826 does not support vFile:open. */
11827 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11828 {
11829 enum packet_support ps = packet_support (PACKET_vFile_open);
11830
11831 if (ps == PACKET_SUPPORT_UNKNOWN)
11832 {
11833 int fd, remote_errno;
11834
11835 /* Try opening a file to probe support. The supplied
11836 filename is irrelevant, we only care about whether
11837 the stub recognizes the packet or not. */
11838 fd = remote_hostio_open (self, NULL, "just probing",
11839 FILEIO_O_RDONLY, 0700, 0,
11840 &remote_errno);
11841
11842 if (fd >= 0)
11843 remote_hostio_close (self, fd, &remote_errno);
11844
11845 ps = packet_support (PACKET_vFile_open);
11846 }
11847
11848 if (ps == PACKET_DISABLE)
11849 {
11850 static int warning_issued = 0;
11851
11852 if (!warning_issued)
11853 {
11854 warning (_("remote target does not support file"
11855 " transfer, attempting to access files"
11856 " from local filesystem."));
11857 warning_issued = 1;
11858 }
11859
11860 return 1;
11861 }
11862 }
11863
11864 return 0;
11865 }
11866
11867 static int
11868 remote_fileio_errno_to_host (int errnum)
11869 {
11870 switch (errnum)
11871 {
11872 case FILEIO_EPERM:
11873 return EPERM;
11874 case FILEIO_ENOENT:
11875 return ENOENT;
11876 case FILEIO_EINTR:
11877 return EINTR;
11878 case FILEIO_EIO:
11879 return EIO;
11880 case FILEIO_EBADF:
11881 return EBADF;
11882 case FILEIO_EACCES:
11883 return EACCES;
11884 case FILEIO_EFAULT:
11885 return EFAULT;
11886 case FILEIO_EBUSY:
11887 return EBUSY;
11888 case FILEIO_EEXIST:
11889 return EEXIST;
11890 case FILEIO_ENODEV:
11891 return ENODEV;
11892 case FILEIO_ENOTDIR:
11893 return ENOTDIR;
11894 case FILEIO_EISDIR:
11895 return EISDIR;
11896 case FILEIO_EINVAL:
11897 return EINVAL;
11898 case FILEIO_ENFILE:
11899 return ENFILE;
11900 case FILEIO_EMFILE:
11901 return EMFILE;
11902 case FILEIO_EFBIG:
11903 return EFBIG;
11904 case FILEIO_ENOSPC:
11905 return ENOSPC;
11906 case FILEIO_ESPIPE:
11907 return ESPIPE;
11908 case FILEIO_EROFS:
11909 return EROFS;
11910 case FILEIO_ENOSYS:
11911 return ENOSYS;
11912 case FILEIO_ENAMETOOLONG:
11913 return ENAMETOOLONG;
11914 }
11915 return -1;
11916 }
11917
11918 static char *
11919 remote_hostio_error (int errnum)
11920 {
11921 int host_error = remote_fileio_errno_to_host (errnum);
11922
11923 if (host_error == -1)
11924 error (_("Unknown remote I/O error %d"), errnum);
11925 else
11926 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11927 }
11928
11929 static void
11930 remote_hostio_close_cleanup (void *opaque)
11931 {
11932 int fd = *(int *) opaque;
11933 int remote_errno;
11934
11935 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11936 }
11937
11938 void
11939 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11940 {
11941 struct cleanup *back_to, *close_cleanup;
11942 int retcode, fd, remote_errno, bytes, io_size;
11943 gdb_byte *buffer;
11944 int bytes_in_buffer;
11945 int saw_eof;
11946 ULONGEST offset;
11947 struct remote_state *rs = get_remote_state ();
11948
11949 if (!rs->remote_desc)
11950 error (_("command can only be used with remote target"));
11951
11952 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11953 if (file == NULL)
11954 perror_with_name (local_file);
11955
11956 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11957 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11958 | FILEIO_O_TRUNC),
11959 0700, 0, &remote_errno);
11960 if (fd == -1)
11961 remote_hostio_error (remote_errno);
11962
11963 /* Send up to this many bytes at once. They won't all fit in the
11964 remote packet limit, so we'll transfer slightly fewer. */
11965 io_size = get_remote_packet_size ();
11966 buffer = (gdb_byte *) xmalloc (io_size);
11967 back_to = make_cleanup (xfree, buffer);
11968
11969 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11970
11971 bytes_in_buffer = 0;
11972 saw_eof = 0;
11973 offset = 0;
11974 while (bytes_in_buffer || !saw_eof)
11975 {
11976 if (!saw_eof)
11977 {
11978 bytes = fread (buffer + bytes_in_buffer, 1,
11979 io_size - bytes_in_buffer,
11980 file.get ());
11981 if (bytes == 0)
11982 {
11983 if (ferror (file.get ()))
11984 error (_("Error reading %s."), local_file);
11985 else
11986 {
11987 /* EOF. Unless there is something still in the
11988 buffer from the last iteration, we are done. */
11989 saw_eof = 1;
11990 if (bytes_in_buffer == 0)
11991 break;
11992 }
11993 }
11994 }
11995 else
11996 bytes = 0;
11997
11998 bytes += bytes_in_buffer;
11999 bytes_in_buffer = 0;
12000
12001 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12002 fd, buffer, bytes,
12003 offset, &remote_errno);
12004
12005 if (retcode < 0)
12006 remote_hostio_error (remote_errno);
12007 else if (retcode == 0)
12008 error (_("Remote write of %d bytes returned 0!"), bytes);
12009 else if (retcode < bytes)
12010 {
12011 /* Short write. Save the rest of the read data for the next
12012 write. */
12013 bytes_in_buffer = bytes - retcode;
12014 memmove (buffer, buffer + retcode, bytes_in_buffer);
12015 }
12016
12017 offset += retcode;
12018 }
12019
12020 discard_cleanups (close_cleanup);
12021 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12022 remote_hostio_error (remote_errno);
12023
12024 if (from_tty)
12025 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12026 do_cleanups (back_to);
12027 }
12028
12029 void
12030 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12031 {
12032 struct cleanup *back_to, *close_cleanup;
12033 int fd, remote_errno, bytes, io_size;
12034 gdb_byte *buffer;
12035 ULONGEST offset;
12036 struct remote_state *rs = get_remote_state ();
12037
12038 if (!rs->remote_desc)
12039 error (_("command can only be used with remote target"));
12040
12041 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12042 remote_file, FILEIO_O_RDONLY, 0, 0,
12043 &remote_errno);
12044 if (fd == -1)
12045 remote_hostio_error (remote_errno);
12046
12047 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12048 if (file == NULL)
12049 perror_with_name (local_file);
12050
12051 /* Send up to this many bytes at once. They won't all fit in the
12052 remote packet limit, so we'll transfer slightly fewer. */
12053 io_size = get_remote_packet_size ();
12054 buffer = (gdb_byte *) xmalloc (io_size);
12055 back_to = make_cleanup (xfree, buffer);
12056
12057 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12058
12059 offset = 0;
12060 while (1)
12061 {
12062 bytes = remote_hostio_pread (find_target_at (process_stratum),
12063 fd, buffer, io_size, offset, &remote_errno);
12064 if (bytes == 0)
12065 /* Success, but no bytes, means end-of-file. */
12066 break;
12067 if (bytes == -1)
12068 remote_hostio_error (remote_errno);
12069
12070 offset += bytes;
12071
12072 bytes = fwrite (buffer, 1, bytes, file.get ());
12073 if (bytes == 0)
12074 perror_with_name (local_file);
12075 }
12076
12077 discard_cleanups (close_cleanup);
12078 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12079 remote_hostio_error (remote_errno);
12080
12081 if (from_tty)
12082 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12083 do_cleanups (back_to);
12084 }
12085
12086 void
12087 remote_file_delete (const char *remote_file, int from_tty)
12088 {
12089 int retcode, remote_errno;
12090 struct remote_state *rs = get_remote_state ();
12091
12092 if (!rs->remote_desc)
12093 error (_("command can only be used with remote target"));
12094
12095 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12096 NULL, remote_file, &remote_errno);
12097 if (retcode == -1)
12098 remote_hostio_error (remote_errno);
12099
12100 if (from_tty)
12101 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12102 }
12103
12104 static void
12105 remote_put_command (const char *args, int from_tty)
12106 {
12107 if (args == NULL)
12108 error_no_arg (_("file to put"));
12109
12110 gdb_argv argv (args);
12111 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12112 error (_("Invalid parameters to remote put"));
12113
12114 remote_file_put (argv[0], argv[1], from_tty);
12115 }
12116
12117 static void
12118 remote_get_command (const char *args, int from_tty)
12119 {
12120 if (args == NULL)
12121 error_no_arg (_("file to get"));
12122
12123 gdb_argv argv (args);
12124 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12125 error (_("Invalid parameters to remote get"));
12126
12127 remote_file_get (argv[0], argv[1], from_tty);
12128 }
12129
12130 static void
12131 remote_delete_command (const char *args, int from_tty)
12132 {
12133 if (args == NULL)
12134 error_no_arg (_("file to delete"));
12135
12136 gdb_argv argv (args);
12137 if (argv[0] == NULL || argv[1] != NULL)
12138 error (_("Invalid parameters to remote delete"));
12139
12140 remote_file_delete (argv[0], from_tty);
12141 }
12142
12143 static void
12144 remote_command (const char *args, int from_tty)
12145 {
12146 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12147 }
12148
12149 static int
12150 remote_can_execute_reverse (struct target_ops *self)
12151 {
12152 if (packet_support (PACKET_bs) == PACKET_ENABLE
12153 || packet_support (PACKET_bc) == PACKET_ENABLE)
12154 return 1;
12155 else
12156 return 0;
12157 }
12158
12159 static int
12160 remote_supports_non_stop (struct target_ops *self)
12161 {
12162 return 1;
12163 }
12164
12165 static int
12166 remote_supports_disable_randomization (struct target_ops *self)
12167 {
12168 /* Only supported in extended mode. */
12169 return 0;
12170 }
12171
12172 static int
12173 remote_supports_multi_process (struct target_ops *self)
12174 {
12175 struct remote_state *rs = get_remote_state ();
12176
12177 return remote_multi_process_p (rs);
12178 }
12179
12180 static int
12181 remote_supports_cond_tracepoints (void)
12182 {
12183 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12184 }
12185
12186 static int
12187 remote_supports_cond_breakpoints (struct target_ops *self)
12188 {
12189 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12190 }
12191
12192 static int
12193 remote_supports_fast_tracepoints (void)
12194 {
12195 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12196 }
12197
12198 static int
12199 remote_supports_static_tracepoints (void)
12200 {
12201 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12202 }
12203
12204 static int
12205 remote_supports_install_in_trace (void)
12206 {
12207 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12208 }
12209
12210 static int
12211 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12212 {
12213 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12214 == PACKET_ENABLE);
12215 }
12216
12217 static int
12218 remote_supports_string_tracing (struct target_ops *self)
12219 {
12220 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12221 }
12222
12223 static int
12224 remote_can_run_breakpoint_commands (struct target_ops *self)
12225 {
12226 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12227 }
12228
12229 static void
12230 remote_trace_init (struct target_ops *self)
12231 {
12232 struct remote_state *rs = get_remote_state ();
12233
12234 putpkt ("QTinit");
12235 remote_get_noisy_reply ();
12236 if (strcmp (rs->buf, "OK") != 0)
12237 error (_("Target does not support this command."));
12238 }
12239
12240 /* Recursive routine to walk through command list including loops, and
12241 download packets for each command. */
12242
12243 static void
12244 remote_download_command_source (int num, ULONGEST addr,
12245 struct command_line *cmds)
12246 {
12247 struct remote_state *rs = get_remote_state ();
12248 struct command_line *cmd;
12249
12250 for (cmd = cmds; cmd; cmd = cmd->next)
12251 {
12252 QUIT; /* Allow user to bail out with ^C. */
12253 strcpy (rs->buf, "QTDPsrc:");
12254 encode_source_string (num, addr, "cmd", cmd->line,
12255 rs->buf + strlen (rs->buf),
12256 rs->buf_size - strlen (rs->buf));
12257 putpkt (rs->buf);
12258 remote_get_noisy_reply ();
12259 if (strcmp (rs->buf, "OK"))
12260 warning (_("Target does not support source download."));
12261
12262 if (cmd->control_type == while_control
12263 || cmd->control_type == while_stepping_control)
12264 {
12265 remote_download_command_source (num, addr, *cmd->body_list);
12266
12267 QUIT; /* Allow user to bail out with ^C. */
12268 strcpy (rs->buf, "QTDPsrc:");
12269 encode_source_string (num, addr, "cmd", "end",
12270 rs->buf + strlen (rs->buf),
12271 rs->buf_size - strlen (rs->buf));
12272 putpkt (rs->buf);
12273 remote_get_noisy_reply ();
12274 if (strcmp (rs->buf, "OK"))
12275 warning (_("Target does not support source download."));
12276 }
12277 }
12278 }
12279
12280 static void
12281 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12282 {
12283 #define BUF_SIZE 2048
12284
12285 CORE_ADDR tpaddr;
12286 char addrbuf[40];
12287 char buf[BUF_SIZE];
12288 std::vector<std::string> tdp_actions;
12289 std::vector<std::string> stepping_actions;
12290 char *pkt;
12291 struct breakpoint *b = loc->owner;
12292 struct tracepoint *t = (struct tracepoint *) b;
12293 struct remote_state *rs = get_remote_state ();
12294
12295 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12296
12297 tpaddr = loc->address;
12298 sprintf_vma (addrbuf, tpaddr);
12299 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12300 addrbuf, /* address */
12301 (b->enable_state == bp_enabled ? 'E' : 'D'),
12302 t->step_count, t->pass_count);
12303 /* Fast tracepoints are mostly handled by the target, but we can
12304 tell the target how big of an instruction block should be moved
12305 around. */
12306 if (b->type == bp_fast_tracepoint)
12307 {
12308 /* Only test for support at download time; we may not know
12309 target capabilities at definition time. */
12310 if (remote_supports_fast_tracepoints ())
12311 {
12312 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12313 NULL))
12314 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12315 gdb_insn_length (loc->gdbarch, tpaddr));
12316 else
12317 /* If it passed validation at definition but fails now,
12318 something is very wrong. */
12319 internal_error (__FILE__, __LINE__,
12320 _("Fast tracepoint not "
12321 "valid during download"));
12322 }
12323 else
12324 /* Fast tracepoints are functionally identical to regular
12325 tracepoints, so don't take lack of support as a reason to
12326 give up on the trace run. */
12327 warning (_("Target does not support fast tracepoints, "
12328 "downloading %d as regular tracepoint"), b->number);
12329 }
12330 else if (b->type == bp_static_tracepoint)
12331 {
12332 /* Only test for support at download time; we may not know
12333 target capabilities at definition time. */
12334 if (remote_supports_static_tracepoints ())
12335 {
12336 struct static_tracepoint_marker marker;
12337
12338 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12339 strcat (buf, ":S");
12340 else
12341 error (_("Static tracepoint not valid during download"));
12342 }
12343 else
12344 /* Fast tracepoints are functionally identical to regular
12345 tracepoints, so don't take lack of support as a reason
12346 to give up on the trace run. */
12347 error (_("Target does not support static tracepoints"));
12348 }
12349 /* If the tracepoint has a conditional, make it into an agent
12350 expression and append to the definition. */
12351 if (loc->cond)
12352 {
12353 /* Only test support at download time, we may not know target
12354 capabilities at definition time. */
12355 if (remote_supports_cond_tracepoints ())
12356 {
12357 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12358 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12359 aexpr->len);
12360 pkt = buf + strlen (buf);
12361 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12362 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12363 *pkt = '\0';
12364 }
12365 else
12366 warning (_("Target does not support conditional tracepoints, "
12367 "ignoring tp %d cond"), b->number);
12368 }
12369
12370 if (b->commands || *default_collect)
12371 strcat (buf, "-");
12372 putpkt (buf);
12373 remote_get_noisy_reply ();
12374 if (strcmp (rs->buf, "OK"))
12375 error (_("Target does not support tracepoints."));
12376
12377 /* do_single_steps (t); */
12378 for (auto action_it = tdp_actions.begin ();
12379 action_it != tdp_actions.end (); action_it++)
12380 {
12381 QUIT; /* Allow user to bail out with ^C. */
12382
12383 bool has_more = (action_it != tdp_actions.end ()
12384 || !stepping_actions.empty ());
12385
12386 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12387 b->number, addrbuf, /* address */
12388 action_it->c_str (),
12389 has_more ? '-' : 0);
12390 putpkt (buf);
12391 remote_get_noisy_reply ();
12392 if (strcmp (rs->buf, "OK"))
12393 error (_("Error on target while setting tracepoints."));
12394 }
12395
12396 for (auto action_it = stepping_actions.begin ();
12397 action_it != stepping_actions.end (); action_it++)
12398 {
12399 QUIT; /* Allow user to bail out with ^C. */
12400
12401 bool is_first = action_it == stepping_actions.begin ();
12402 bool has_more = action_it != stepping_actions.end ();
12403
12404 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12405 b->number, addrbuf, /* address */
12406 is_first ? "S" : "",
12407 action_it->c_str (),
12408 has_more ? "-" : "");
12409 putpkt (buf);
12410 remote_get_noisy_reply ();
12411 if (strcmp (rs->buf, "OK"))
12412 error (_("Error on target while setting tracepoints."));
12413 }
12414
12415 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12416 {
12417 if (b->location != NULL)
12418 {
12419 strcpy (buf, "QTDPsrc:");
12420 encode_source_string (b->number, loc->address, "at",
12421 event_location_to_string (b->location.get ()),
12422 buf + strlen (buf), 2048 - strlen (buf));
12423 putpkt (buf);
12424 remote_get_noisy_reply ();
12425 if (strcmp (rs->buf, "OK"))
12426 warning (_("Target does not support source download."));
12427 }
12428 if (b->cond_string)
12429 {
12430 strcpy (buf, "QTDPsrc:");
12431 encode_source_string (b->number, loc->address,
12432 "cond", b->cond_string, buf + strlen (buf),
12433 2048 - strlen (buf));
12434 putpkt (buf);
12435 remote_get_noisy_reply ();
12436 if (strcmp (rs->buf, "OK"))
12437 warning (_("Target does not support source download."));
12438 }
12439 remote_download_command_source (b->number, loc->address,
12440 breakpoint_commands (b));
12441 }
12442 }
12443
12444 static int
12445 remote_can_download_tracepoint (struct target_ops *self)
12446 {
12447 struct remote_state *rs = get_remote_state ();
12448 struct trace_status *ts;
12449 int status;
12450
12451 /* Don't try to install tracepoints until we've relocated our
12452 symbols, and fetched and merged the target's tracepoint list with
12453 ours. */
12454 if (rs->starting_up)
12455 return 0;
12456
12457 ts = current_trace_status ();
12458 status = remote_get_trace_status (self, ts);
12459
12460 if (status == -1 || !ts->running_known || !ts->running)
12461 return 0;
12462
12463 /* If we are in a tracing experiment, but remote stub doesn't support
12464 installing tracepoint in trace, we have to return. */
12465 if (!remote_supports_install_in_trace ())
12466 return 0;
12467
12468 return 1;
12469 }
12470
12471
12472 static void
12473 remote_download_trace_state_variable (struct target_ops *self,
12474 struct trace_state_variable *tsv)
12475 {
12476 struct remote_state *rs = get_remote_state ();
12477 char *p;
12478
12479 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12480 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12481 tsv->builtin);
12482 p = rs->buf + strlen (rs->buf);
12483 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12484 error (_("Trace state variable name too long for tsv definition packet"));
12485 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12486 *p++ = '\0';
12487 putpkt (rs->buf);
12488 remote_get_noisy_reply ();
12489 if (*rs->buf == '\0')
12490 error (_("Target does not support this command."));
12491 if (strcmp (rs->buf, "OK") != 0)
12492 error (_("Error on target while downloading trace state variable."));
12493 }
12494
12495 static void
12496 remote_enable_tracepoint (struct target_ops *self,
12497 struct bp_location *location)
12498 {
12499 struct remote_state *rs = get_remote_state ();
12500 char addr_buf[40];
12501
12502 sprintf_vma (addr_buf, location->address);
12503 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12504 location->owner->number, addr_buf);
12505 putpkt (rs->buf);
12506 remote_get_noisy_reply ();
12507 if (*rs->buf == '\0')
12508 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12509 if (strcmp (rs->buf, "OK") != 0)
12510 error (_("Error on target while enabling tracepoint."));
12511 }
12512
12513 static void
12514 remote_disable_tracepoint (struct target_ops *self,
12515 struct bp_location *location)
12516 {
12517 struct remote_state *rs = get_remote_state ();
12518 char addr_buf[40];
12519
12520 sprintf_vma (addr_buf, location->address);
12521 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12522 location->owner->number, addr_buf);
12523 putpkt (rs->buf);
12524 remote_get_noisy_reply ();
12525 if (*rs->buf == '\0')
12526 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12527 if (strcmp (rs->buf, "OK") != 0)
12528 error (_("Error on target while disabling tracepoint."));
12529 }
12530
12531 static void
12532 remote_trace_set_readonly_regions (struct target_ops *self)
12533 {
12534 asection *s;
12535 bfd *abfd = NULL;
12536 bfd_size_type size;
12537 bfd_vma vma;
12538 int anysecs = 0;
12539 int offset = 0;
12540
12541 if (!exec_bfd)
12542 return; /* No information to give. */
12543
12544 struct remote_state *rs = get_remote_state ();
12545
12546 strcpy (rs->buf, "QTro");
12547 offset = strlen (rs->buf);
12548 for (s = exec_bfd->sections; s; s = s->next)
12549 {
12550 char tmp1[40], tmp2[40];
12551 int sec_length;
12552
12553 if ((s->flags & SEC_LOAD) == 0 ||
12554 /* (s->flags & SEC_CODE) == 0 || */
12555 (s->flags & SEC_READONLY) == 0)
12556 continue;
12557
12558 anysecs = 1;
12559 vma = bfd_get_section_vma (abfd, s);
12560 size = bfd_get_section_size (s);
12561 sprintf_vma (tmp1, vma);
12562 sprintf_vma (tmp2, vma + size);
12563 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12564 if (offset + sec_length + 1 > rs->buf_size)
12565 {
12566 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12567 warning (_("\
12568 Too many sections for read-only sections definition packet."));
12569 break;
12570 }
12571 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12572 tmp1, tmp2);
12573 offset += sec_length;
12574 }
12575 if (anysecs)
12576 {
12577 putpkt (rs->buf);
12578 getpkt (&rs->buf, &rs->buf_size, 0);
12579 }
12580 }
12581
12582 static void
12583 remote_trace_start (struct target_ops *self)
12584 {
12585 struct remote_state *rs = get_remote_state ();
12586
12587 putpkt ("QTStart");
12588 remote_get_noisy_reply ();
12589 if (*rs->buf == '\0')
12590 error (_("Target does not support this command."));
12591 if (strcmp (rs->buf, "OK") != 0)
12592 error (_("Bogus reply from target: %s"), rs->buf);
12593 }
12594
12595 static int
12596 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12597 {
12598 /* Initialize it just to avoid a GCC false warning. */
12599 char *p = NULL;
12600 /* FIXME we need to get register block size some other way. */
12601 extern int trace_regblock_size;
12602 enum packet_result result;
12603 struct remote_state *rs = get_remote_state ();
12604
12605 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12606 return -1;
12607
12608 trace_regblock_size
12609 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12610
12611 putpkt ("qTStatus");
12612
12613 TRY
12614 {
12615 p = remote_get_noisy_reply ();
12616 }
12617 CATCH (ex, RETURN_MASK_ERROR)
12618 {
12619 if (ex.error != TARGET_CLOSE_ERROR)
12620 {
12621 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12622 return -1;
12623 }
12624 throw_exception (ex);
12625 }
12626 END_CATCH
12627
12628 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12629
12630 /* If the remote target doesn't do tracing, flag it. */
12631 if (result == PACKET_UNKNOWN)
12632 return -1;
12633
12634 /* We're working with a live target. */
12635 ts->filename = NULL;
12636
12637 if (*p++ != 'T')
12638 error (_("Bogus trace status reply from target: %s"), rs->buf);
12639
12640 /* Function 'parse_trace_status' sets default value of each field of
12641 'ts' at first, so we don't have to do it here. */
12642 parse_trace_status (p, ts);
12643
12644 return ts->running;
12645 }
12646
12647 static void
12648 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12649 struct uploaded_tp *utp)
12650 {
12651 struct remote_state *rs = get_remote_state ();
12652 char *reply;
12653 struct bp_location *loc;
12654 struct tracepoint *tp = (struct tracepoint *) bp;
12655 size_t size = get_remote_packet_size ();
12656
12657 if (tp)
12658 {
12659 tp->hit_count = 0;
12660 tp->traceframe_usage = 0;
12661 for (loc = tp->loc; loc; loc = loc->next)
12662 {
12663 /* If the tracepoint was never downloaded, don't go asking for
12664 any status. */
12665 if (tp->number_on_target == 0)
12666 continue;
12667 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12668 phex_nz (loc->address, 0));
12669 putpkt (rs->buf);
12670 reply = remote_get_noisy_reply ();
12671 if (reply && *reply)
12672 {
12673 if (*reply == 'V')
12674 parse_tracepoint_status (reply + 1, bp, utp);
12675 }
12676 }
12677 }
12678 else if (utp)
12679 {
12680 utp->hit_count = 0;
12681 utp->traceframe_usage = 0;
12682 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12683 phex_nz (utp->addr, 0));
12684 putpkt (rs->buf);
12685 reply = remote_get_noisy_reply ();
12686 if (reply && *reply)
12687 {
12688 if (*reply == 'V')
12689 parse_tracepoint_status (reply + 1, bp, utp);
12690 }
12691 }
12692 }
12693
12694 static void
12695 remote_trace_stop (struct target_ops *self)
12696 {
12697 struct remote_state *rs = get_remote_state ();
12698
12699 putpkt ("QTStop");
12700 remote_get_noisy_reply ();
12701 if (*rs->buf == '\0')
12702 error (_("Target does not support this command."));
12703 if (strcmp (rs->buf, "OK") != 0)
12704 error (_("Bogus reply from target: %s"), rs->buf);
12705 }
12706
12707 static int
12708 remote_trace_find (struct target_ops *self,
12709 enum trace_find_type type, int num,
12710 CORE_ADDR addr1, CORE_ADDR addr2,
12711 int *tpp)
12712 {
12713 struct remote_state *rs = get_remote_state ();
12714 char *endbuf = rs->buf + get_remote_packet_size ();
12715 char *p, *reply;
12716 int target_frameno = -1, target_tracept = -1;
12717
12718 /* Lookups other than by absolute frame number depend on the current
12719 trace selected, so make sure it is correct on the remote end
12720 first. */
12721 if (type != tfind_number)
12722 set_remote_traceframe ();
12723
12724 p = rs->buf;
12725 strcpy (p, "QTFrame:");
12726 p = strchr (p, '\0');
12727 switch (type)
12728 {
12729 case tfind_number:
12730 xsnprintf (p, endbuf - p, "%x", num);
12731 break;
12732 case tfind_pc:
12733 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12734 break;
12735 case tfind_tp:
12736 xsnprintf (p, endbuf - p, "tdp:%x", num);
12737 break;
12738 case tfind_range:
12739 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12740 phex_nz (addr2, 0));
12741 break;
12742 case tfind_outside:
12743 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12744 phex_nz (addr2, 0));
12745 break;
12746 default:
12747 error (_("Unknown trace find type %d"), type);
12748 }
12749
12750 putpkt (rs->buf);
12751 reply = remote_get_noisy_reply ();
12752 if (*reply == '\0')
12753 error (_("Target does not support this command."));
12754
12755 while (reply && *reply)
12756 switch (*reply)
12757 {
12758 case 'F':
12759 p = ++reply;
12760 target_frameno = (int) strtol (p, &reply, 16);
12761 if (reply == p)
12762 error (_("Unable to parse trace frame number"));
12763 /* Don't update our remote traceframe number cache on failure
12764 to select a remote traceframe. */
12765 if (target_frameno == -1)
12766 return -1;
12767 break;
12768 case 'T':
12769 p = ++reply;
12770 target_tracept = (int) strtol (p, &reply, 16);
12771 if (reply == p)
12772 error (_("Unable to parse tracepoint number"));
12773 break;
12774 case 'O': /* "OK"? */
12775 if (reply[1] == 'K' && reply[2] == '\0')
12776 reply += 2;
12777 else
12778 error (_("Bogus reply from target: %s"), reply);
12779 break;
12780 default:
12781 error (_("Bogus reply from target: %s"), reply);
12782 }
12783 if (tpp)
12784 *tpp = target_tracept;
12785
12786 rs->remote_traceframe_number = target_frameno;
12787 return target_frameno;
12788 }
12789
12790 static int
12791 remote_get_trace_state_variable_value (struct target_ops *self,
12792 int tsvnum, LONGEST *val)
12793 {
12794 struct remote_state *rs = get_remote_state ();
12795 char *reply;
12796 ULONGEST uval;
12797
12798 set_remote_traceframe ();
12799
12800 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12801 putpkt (rs->buf);
12802 reply = remote_get_noisy_reply ();
12803 if (reply && *reply)
12804 {
12805 if (*reply == 'V')
12806 {
12807 unpack_varlen_hex (reply + 1, &uval);
12808 *val = (LONGEST) uval;
12809 return 1;
12810 }
12811 }
12812 return 0;
12813 }
12814
12815 static int
12816 remote_save_trace_data (struct target_ops *self, const char *filename)
12817 {
12818 struct remote_state *rs = get_remote_state ();
12819 char *p, *reply;
12820
12821 p = rs->buf;
12822 strcpy (p, "QTSave:");
12823 p += strlen (p);
12824 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12825 error (_("Remote file name too long for trace save packet"));
12826 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12827 *p++ = '\0';
12828 putpkt (rs->buf);
12829 reply = remote_get_noisy_reply ();
12830 if (*reply == '\0')
12831 error (_("Target does not support this command."));
12832 if (strcmp (reply, "OK") != 0)
12833 error (_("Bogus reply from target: %s"), reply);
12834 return 0;
12835 }
12836
12837 /* This is basically a memory transfer, but needs to be its own packet
12838 because we don't know how the target actually organizes its trace
12839 memory, plus we want to be able to ask for as much as possible, but
12840 not be unhappy if we don't get as much as we ask for. */
12841
12842 static LONGEST
12843 remote_get_raw_trace_data (struct target_ops *self,
12844 gdb_byte *buf, ULONGEST offset, LONGEST len)
12845 {
12846 struct remote_state *rs = get_remote_state ();
12847 char *reply;
12848 char *p;
12849 int rslt;
12850
12851 p = rs->buf;
12852 strcpy (p, "qTBuffer:");
12853 p += strlen (p);
12854 p += hexnumstr (p, offset);
12855 *p++ = ',';
12856 p += hexnumstr (p, len);
12857 *p++ = '\0';
12858
12859 putpkt (rs->buf);
12860 reply = remote_get_noisy_reply ();
12861 if (reply && *reply)
12862 {
12863 /* 'l' by itself means we're at the end of the buffer and
12864 there is nothing more to get. */
12865 if (*reply == 'l')
12866 return 0;
12867
12868 /* Convert the reply into binary. Limit the number of bytes to
12869 convert according to our passed-in buffer size, rather than
12870 what was returned in the packet; if the target is
12871 unexpectedly generous and gives us a bigger reply than we
12872 asked for, we don't want to crash. */
12873 rslt = hex2bin (reply, buf, len);
12874 return rslt;
12875 }
12876
12877 /* Something went wrong, flag as an error. */
12878 return -1;
12879 }
12880
12881 static void
12882 remote_set_disconnected_tracing (struct target_ops *self, int val)
12883 {
12884 struct remote_state *rs = get_remote_state ();
12885
12886 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12887 {
12888 char *reply;
12889
12890 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12891 putpkt (rs->buf);
12892 reply = remote_get_noisy_reply ();
12893 if (*reply == '\0')
12894 error (_("Target does not support this command."));
12895 if (strcmp (reply, "OK") != 0)
12896 error (_("Bogus reply from target: %s"), reply);
12897 }
12898 else if (val)
12899 warning (_("Target does not support disconnected tracing."));
12900 }
12901
12902 static int
12903 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12904 {
12905 struct thread_info *info = find_thread_ptid (ptid);
12906
12907 if (info != NULL && info->priv != NULL)
12908 return get_remote_thread_info (info)->core;
12909
12910 return -1;
12911 }
12912
12913 static void
12914 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12915 {
12916 struct remote_state *rs = get_remote_state ();
12917 char *reply;
12918
12919 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12920 putpkt (rs->buf);
12921 reply = remote_get_noisy_reply ();
12922 if (*reply == '\0')
12923 error (_("Target does not support this command."));
12924 if (strcmp (reply, "OK") != 0)
12925 error (_("Bogus reply from target: %s"), reply);
12926 }
12927
12928 static traceframe_info_up
12929 remote_traceframe_info (struct target_ops *self)
12930 {
12931 gdb::unique_xmalloc_ptr<char> text
12932 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12933 NULL);
12934 if (text != NULL)
12935 return parse_traceframe_info (text.get ());
12936
12937 return NULL;
12938 }
12939
12940 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12941 instruction on which a fast tracepoint may be placed. Returns -1
12942 if the packet is not supported, and 0 if the minimum instruction
12943 length is unknown. */
12944
12945 static int
12946 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12947 {
12948 struct remote_state *rs = get_remote_state ();
12949 char *reply;
12950
12951 /* If we're not debugging a process yet, the IPA can't be
12952 loaded. */
12953 if (!target_has_execution)
12954 return 0;
12955
12956 /* Make sure the remote is pointing at the right process. */
12957 set_general_process ();
12958
12959 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12960 putpkt (rs->buf);
12961 reply = remote_get_noisy_reply ();
12962 if (*reply == '\0')
12963 return -1;
12964 else
12965 {
12966 ULONGEST min_insn_len;
12967
12968 unpack_varlen_hex (reply, &min_insn_len);
12969
12970 return (int) min_insn_len;
12971 }
12972 }
12973
12974 static void
12975 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12976 {
12977 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12978 {
12979 struct remote_state *rs = get_remote_state ();
12980 char *buf = rs->buf;
12981 char *endbuf = rs->buf + get_remote_packet_size ();
12982 enum packet_result result;
12983
12984 gdb_assert (val >= 0 || val == -1);
12985 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12986 /* Send -1 as literal "-1" to avoid host size dependency. */
12987 if (val < 0)
12988 {
12989 *buf++ = '-';
12990 buf += hexnumstr (buf, (ULONGEST) -val);
12991 }
12992 else
12993 buf += hexnumstr (buf, (ULONGEST) val);
12994
12995 putpkt (rs->buf);
12996 remote_get_noisy_reply ();
12997 result = packet_ok (rs->buf,
12998 &remote_protocol_packets[PACKET_QTBuffer_size]);
12999
13000 if (result != PACKET_OK)
13001 warning (_("Bogus reply from target: %s"), rs->buf);
13002 }
13003 }
13004
13005 static int
13006 remote_set_trace_notes (struct target_ops *self,
13007 const char *user, const char *notes,
13008 const char *stop_notes)
13009 {
13010 struct remote_state *rs = get_remote_state ();
13011 char *reply;
13012 char *buf = rs->buf;
13013 char *endbuf = rs->buf + get_remote_packet_size ();
13014 int nbytes;
13015
13016 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13017 if (user)
13018 {
13019 buf += xsnprintf (buf, endbuf - buf, "user:");
13020 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13021 buf += 2 * nbytes;
13022 *buf++ = ';';
13023 }
13024 if (notes)
13025 {
13026 buf += xsnprintf (buf, endbuf - buf, "notes:");
13027 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13028 buf += 2 * nbytes;
13029 *buf++ = ';';
13030 }
13031 if (stop_notes)
13032 {
13033 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13034 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13035 buf += 2 * nbytes;
13036 *buf++ = ';';
13037 }
13038 /* Ensure the buffer is terminated. */
13039 *buf = '\0';
13040
13041 putpkt (rs->buf);
13042 reply = remote_get_noisy_reply ();
13043 if (*reply == '\0')
13044 return 0;
13045
13046 if (strcmp (reply, "OK") != 0)
13047 error (_("Bogus reply from target: %s"), reply);
13048
13049 return 1;
13050 }
13051
13052 static int
13053 remote_use_agent (struct target_ops *self, int use)
13054 {
13055 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13056 {
13057 struct remote_state *rs = get_remote_state ();
13058
13059 /* If the stub supports QAgent. */
13060 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13061 putpkt (rs->buf);
13062 getpkt (&rs->buf, &rs->buf_size, 0);
13063
13064 if (strcmp (rs->buf, "OK") == 0)
13065 {
13066 use_agent = use;
13067 return 1;
13068 }
13069 }
13070
13071 return 0;
13072 }
13073
13074 static int
13075 remote_can_use_agent (struct target_ops *self)
13076 {
13077 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13078 }
13079
13080 struct btrace_target_info
13081 {
13082 /* The ptid of the traced thread. */
13083 ptid_t ptid;
13084
13085 /* The obtained branch trace configuration. */
13086 struct btrace_config conf;
13087 };
13088
13089 /* Reset our idea of our target's btrace configuration. */
13090
13091 static void
13092 remote_btrace_reset (void)
13093 {
13094 struct remote_state *rs = get_remote_state ();
13095
13096 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13097 }
13098
13099 /* Check whether the target supports branch tracing. */
13100
13101 static int
13102 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13103 {
13104 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13105 return 0;
13106 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13107 return 0;
13108
13109 switch (format)
13110 {
13111 case BTRACE_FORMAT_NONE:
13112 return 0;
13113
13114 case BTRACE_FORMAT_BTS:
13115 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13116
13117 case BTRACE_FORMAT_PT:
13118 /* The trace is decoded on the host. Even if our target supports it,
13119 we still need to have libipt to decode the trace. */
13120 #if defined (HAVE_LIBIPT)
13121 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13122 #else /* !defined (HAVE_LIBIPT) */
13123 return 0;
13124 #endif /* !defined (HAVE_LIBIPT) */
13125 }
13126
13127 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13128 }
13129
13130 /* Synchronize the configuration with the target. */
13131
13132 static void
13133 btrace_sync_conf (const struct btrace_config *conf)
13134 {
13135 struct packet_config *packet;
13136 struct remote_state *rs;
13137 char *buf, *pos, *endbuf;
13138
13139 rs = get_remote_state ();
13140 buf = rs->buf;
13141 endbuf = buf + get_remote_packet_size ();
13142
13143 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13144 if (packet_config_support (packet) == PACKET_ENABLE
13145 && conf->bts.size != rs->btrace_config.bts.size)
13146 {
13147 pos = buf;
13148 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13149 conf->bts.size);
13150
13151 putpkt (buf);
13152 getpkt (&buf, &rs->buf_size, 0);
13153
13154 if (packet_ok (buf, packet) == PACKET_ERROR)
13155 {
13156 if (buf[0] == 'E' && buf[1] == '.')
13157 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13158 else
13159 error (_("Failed to configure the BTS buffer size."));
13160 }
13161
13162 rs->btrace_config.bts.size = conf->bts.size;
13163 }
13164
13165 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13166 if (packet_config_support (packet) == PACKET_ENABLE
13167 && conf->pt.size != rs->btrace_config.pt.size)
13168 {
13169 pos = buf;
13170 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13171 conf->pt.size);
13172
13173 putpkt (buf);
13174 getpkt (&buf, &rs->buf_size, 0);
13175
13176 if (packet_ok (buf, packet) == PACKET_ERROR)
13177 {
13178 if (buf[0] == 'E' && buf[1] == '.')
13179 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13180 else
13181 error (_("Failed to configure the trace buffer size."));
13182 }
13183
13184 rs->btrace_config.pt.size = conf->pt.size;
13185 }
13186 }
13187
13188 /* Read the current thread's btrace configuration from the target and
13189 store it into CONF. */
13190
13191 static void
13192 btrace_read_config (struct btrace_config *conf)
13193 {
13194 gdb::unique_xmalloc_ptr<char> xml
13195 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13196 if (xml != NULL)
13197 parse_xml_btrace_conf (conf, xml.get ());
13198 }
13199
13200 /* Maybe reopen target btrace. */
13201
13202 static void
13203 remote_btrace_maybe_reopen (void)
13204 {
13205 struct remote_state *rs = get_remote_state ();
13206 struct thread_info *tp;
13207 int btrace_target_pushed = 0;
13208 int warned = 0;
13209
13210 scoped_restore_current_thread restore_thread;
13211
13212 ALL_NON_EXITED_THREADS (tp)
13213 {
13214 set_general_thread (tp->ptid);
13215
13216 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13217 btrace_read_config (&rs->btrace_config);
13218
13219 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13220 continue;
13221
13222 #if !defined (HAVE_LIBIPT)
13223 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13224 {
13225 if (!warned)
13226 {
13227 warned = 1;
13228 warning (_("GDB does not support Intel Processor Trace. "
13229 "\"record\" will not work in this session."));
13230 }
13231
13232 continue;
13233 }
13234 #endif /* !defined (HAVE_LIBIPT) */
13235
13236 /* Push target, once, but before anything else happens. This way our
13237 changes to the threads will be cleaned up by unpushing the target
13238 in case btrace_read_config () throws. */
13239 if (!btrace_target_pushed)
13240 {
13241 btrace_target_pushed = 1;
13242 record_btrace_push_target ();
13243 printf_filtered (_("Target is recording using %s.\n"),
13244 btrace_format_string (rs->btrace_config.format));
13245 }
13246
13247 tp->btrace.target = XCNEW (struct btrace_target_info);
13248 tp->btrace.target->ptid = tp->ptid;
13249 tp->btrace.target->conf = rs->btrace_config;
13250 }
13251 }
13252
13253 /* Enable branch tracing. */
13254
13255 static struct btrace_target_info *
13256 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13257 const struct btrace_config *conf)
13258 {
13259 struct btrace_target_info *tinfo = NULL;
13260 struct packet_config *packet = NULL;
13261 struct remote_state *rs = get_remote_state ();
13262 char *buf = rs->buf;
13263 char *endbuf = rs->buf + get_remote_packet_size ();
13264
13265 switch (conf->format)
13266 {
13267 case BTRACE_FORMAT_BTS:
13268 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13269 break;
13270
13271 case BTRACE_FORMAT_PT:
13272 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13273 break;
13274 }
13275
13276 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13277 error (_("Target does not support branch tracing."));
13278
13279 btrace_sync_conf (conf);
13280
13281 set_general_thread (ptid);
13282
13283 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13284 putpkt (rs->buf);
13285 getpkt (&rs->buf, &rs->buf_size, 0);
13286
13287 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13288 {
13289 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13290 error (_("Could not enable branch tracing for %s: %s"),
13291 target_pid_to_str (ptid), rs->buf + 2);
13292 else
13293 error (_("Could not enable branch tracing for %s."),
13294 target_pid_to_str (ptid));
13295 }
13296
13297 tinfo = XCNEW (struct btrace_target_info);
13298 tinfo->ptid = ptid;
13299
13300 /* If we fail to read the configuration, we lose some information, but the
13301 tracing itself is not impacted. */
13302 TRY
13303 {
13304 btrace_read_config (&tinfo->conf);
13305 }
13306 CATCH (err, RETURN_MASK_ERROR)
13307 {
13308 if (err.message != NULL)
13309 warning ("%s", err.message);
13310 }
13311 END_CATCH
13312
13313 return tinfo;
13314 }
13315
13316 /* Disable branch tracing. */
13317
13318 static void
13319 remote_disable_btrace (struct target_ops *self,
13320 struct btrace_target_info *tinfo)
13321 {
13322 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13323 struct remote_state *rs = get_remote_state ();
13324 char *buf = rs->buf;
13325 char *endbuf = rs->buf + get_remote_packet_size ();
13326
13327 if (packet_config_support (packet) != PACKET_ENABLE)
13328 error (_("Target does not support branch tracing."));
13329
13330 set_general_thread (tinfo->ptid);
13331
13332 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13333 putpkt (rs->buf);
13334 getpkt (&rs->buf, &rs->buf_size, 0);
13335
13336 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13337 {
13338 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13339 error (_("Could not disable branch tracing for %s: %s"),
13340 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13341 else
13342 error (_("Could not disable branch tracing for %s."),
13343 target_pid_to_str (tinfo->ptid));
13344 }
13345
13346 xfree (tinfo);
13347 }
13348
13349 /* Teardown branch tracing. */
13350
13351 static void
13352 remote_teardown_btrace (struct target_ops *self,
13353 struct btrace_target_info *tinfo)
13354 {
13355 /* We must not talk to the target during teardown. */
13356 xfree (tinfo);
13357 }
13358
13359 /* Read the branch trace. */
13360
13361 static enum btrace_error
13362 remote_read_btrace (struct target_ops *self,
13363 struct btrace_data *btrace,
13364 struct btrace_target_info *tinfo,
13365 enum btrace_read_type type)
13366 {
13367 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13368 const char *annex;
13369
13370 if (packet_config_support (packet) != PACKET_ENABLE)
13371 error (_("Target does not support branch tracing."));
13372
13373 #if !defined(HAVE_LIBEXPAT)
13374 error (_("Cannot process branch tracing result. XML parsing not supported."));
13375 #endif
13376
13377 switch (type)
13378 {
13379 case BTRACE_READ_ALL:
13380 annex = "all";
13381 break;
13382 case BTRACE_READ_NEW:
13383 annex = "new";
13384 break;
13385 case BTRACE_READ_DELTA:
13386 annex = "delta";
13387 break;
13388 default:
13389 internal_error (__FILE__, __LINE__,
13390 _("Bad branch tracing read type: %u."),
13391 (unsigned int) type);
13392 }
13393
13394 gdb::unique_xmalloc_ptr<char> xml
13395 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13396 if (xml == NULL)
13397 return BTRACE_ERR_UNKNOWN;
13398
13399 parse_xml_btrace (btrace, xml.get ());
13400
13401 return BTRACE_ERR_NONE;
13402 }
13403
13404 static const struct btrace_config *
13405 remote_btrace_conf (struct target_ops *self,
13406 const struct btrace_target_info *tinfo)
13407 {
13408 return &tinfo->conf;
13409 }
13410
13411 static int
13412 remote_augmented_libraries_svr4_read (struct target_ops *self)
13413 {
13414 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13415 == PACKET_ENABLE);
13416 }
13417
13418 /* Implementation of to_load. */
13419
13420 static void
13421 remote_load (struct target_ops *self, const char *name, int from_tty)
13422 {
13423 generic_load (name, from_tty);
13424 }
13425
13426 /* Accepts an integer PID; returns a string representing a file that
13427 can be opened on the remote side to get the symbols for the child
13428 process. Returns NULL if the operation is not supported. */
13429
13430 static char *
13431 remote_pid_to_exec_file (struct target_ops *self, int pid)
13432 {
13433 static gdb::unique_xmalloc_ptr<char> filename;
13434 struct inferior *inf;
13435 char *annex = NULL;
13436
13437 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13438 return NULL;
13439
13440 inf = find_inferior_pid (pid);
13441 if (inf == NULL)
13442 internal_error (__FILE__, __LINE__,
13443 _("not currently attached to process %d"), pid);
13444
13445 if (!inf->fake_pid_p)
13446 {
13447 const int annex_size = 9;
13448
13449 annex = (char *) alloca (annex_size);
13450 xsnprintf (annex, annex_size, "%x", pid);
13451 }
13452
13453 filename = target_read_stralloc (&current_target,
13454 TARGET_OBJECT_EXEC_FILE, annex);
13455
13456 return filename.get ();
13457 }
13458
13459 /* Implement the to_can_do_single_step target_ops method. */
13460
13461 static int
13462 remote_can_do_single_step (struct target_ops *ops)
13463 {
13464 /* We can only tell whether target supports single step or not by
13465 supported s and S vCont actions if the stub supports vContSupported
13466 feature. If the stub doesn't support vContSupported feature,
13467 we have conservatively to think target doesn't supports single
13468 step. */
13469 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13470 {
13471 struct remote_state *rs = get_remote_state ();
13472
13473 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13474 remote_vcont_probe (rs);
13475
13476 return rs->supports_vCont.s && rs->supports_vCont.S;
13477 }
13478 else
13479 return 0;
13480 }
13481
13482 /* Implementation of the to_execution_direction method for the remote
13483 target. */
13484
13485 static enum exec_direction_kind
13486 remote_execution_direction (struct target_ops *self)
13487 {
13488 struct remote_state *rs = get_remote_state ();
13489
13490 return rs->last_resume_exec_dir;
13491 }
13492
13493 /* Return pointer to the thread_info struct which corresponds to
13494 THREAD_HANDLE (having length HANDLE_LEN). */
13495
13496 static struct thread_info *
13497 remote_thread_handle_to_thread_info (struct target_ops *ops,
13498 const gdb_byte *thread_handle,
13499 int handle_len,
13500 struct inferior *inf)
13501 {
13502 struct thread_info *tp;
13503
13504 ALL_NON_EXITED_THREADS (tp)
13505 {
13506 remote_thread_info *priv = get_remote_thread_info (tp);
13507
13508 if (tp->inf == inf && priv != NULL)
13509 {
13510 if (handle_len != priv->thread_handle.size ())
13511 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13512 handle_len, priv->thread_handle.size ());
13513 if (memcmp (thread_handle, priv->thread_handle.data (),
13514 handle_len) == 0)
13515 return tp;
13516 }
13517 }
13518
13519 return NULL;
13520 }
13521
13522 static void
13523 init_remote_ops (void)
13524 {
13525 remote_ops.to_shortname = "remote";
13526 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13527 remote_ops.to_doc =
13528 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13529 Specify the serial device it is connected to\n\
13530 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13531 remote_ops.to_open = remote_open;
13532 remote_ops.to_close = remote_close;
13533 remote_ops.to_detach = remote_detach;
13534 remote_ops.to_disconnect = remote_disconnect;
13535 remote_ops.to_resume = remote_resume;
13536 remote_ops.to_commit_resume = remote_commit_resume;
13537 remote_ops.to_wait = remote_wait;
13538 remote_ops.to_fetch_registers = remote_fetch_registers;
13539 remote_ops.to_store_registers = remote_store_registers;
13540 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13541 remote_ops.to_files_info = remote_files_info;
13542 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13543 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13544 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13545 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13546 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13547 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13548 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13549 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13550 remote_ops.to_watchpoint_addr_within_range =
13551 remote_watchpoint_addr_within_range;
13552 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13553 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13554 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13555 remote_ops.to_region_ok_for_hw_watchpoint
13556 = remote_region_ok_for_hw_watchpoint;
13557 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13558 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13559 remote_ops.to_kill = remote_kill;
13560 remote_ops.to_load = remote_load;
13561 remote_ops.to_mourn_inferior = remote_mourn;
13562 remote_ops.to_pass_signals = remote_pass_signals;
13563 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13564 remote_ops.to_program_signals = remote_program_signals;
13565 remote_ops.to_thread_alive = remote_thread_alive;
13566 remote_ops.to_thread_name = remote_thread_name;
13567 remote_ops.to_update_thread_list = remote_update_thread_list;
13568 remote_ops.to_pid_to_str = remote_pid_to_str;
13569 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13570 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13571 remote_ops.to_stop = remote_stop;
13572 remote_ops.to_interrupt = remote_interrupt;
13573 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13574 remote_ops.to_xfer_partial = remote_xfer_partial;
13575 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13576 remote_ops.to_rcmd = remote_rcmd;
13577 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13578 remote_ops.to_log_command = serial_log_command;
13579 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13580 remote_ops.to_stratum = process_stratum;
13581 remote_ops.to_has_all_memory = default_child_has_all_memory;
13582 remote_ops.to_has_memory = default_child_has_memory;
13583 remote_ops.to_has_stack = default_child_has_stack;
13584 remote_ops.to_has_registers = default_child_has_registers;
13585 remote_ops.to_has_execution = default_child_has_execution;
13586 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13587 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13588 remote_ops.to_magic = OPS_MAGIC;
13589 remote_ops.to_memory_map = remote_memory_map;
13590 remote_ops.to_flash_erase = remote_flash_erase;
13591 remote_ops.to_flash_done = remote_flash_done;
13592 remote_ops.to_read_description = remote_read_description;
13593 remote_ops.to_search_memory = remote_search_memory;
13594 remote_ops.to_can_async_p = remote_can_async_p;
13595 remote_ops.to_is_async_p = remote_is_async_p;
13596 remote_ops.to_async = remote_async;
13597 remote_ops.to_thread_events = remote_thread_events;
13598 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13599 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13600 remote_ops.to_terminal_ours = remote_terminal_ours;
13601 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13602 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13603 remote_ops.to_supports_disable_randomization
13604 = remote_supports_disable_randomization;
13605 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13606 remote_ops.to_fileio_open = remote_hostio_open;
13607 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13608 remote_ops.to_fileio_pread = remote_hostio_pread;
13609 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13610 remote_ops.to_fileio_close = remote_hostio_close;
13611 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13612 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13613 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13614 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13615 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13616 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13617 remote_ops.to_trace_init = remote_trace_init;
13618 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13619 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13620 remote_ops.to_download_trace_state_variable
13621 = remote_download_trace_state_variable;
13622 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13623 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13624 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13625 remote_ops.to_trace_start = remote_trace_start;
13626 remote_ops.to_get_trace_status = remote_get_trace_status;
13627 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13628 remote_ops.to_trace_stop = remote_trace_stop;
13629 remote_ops.to_trace_find = remote_trace_find;
13630 remote_ops.to_get_trace_state_variable_value
13631 = remote_get_trace_state_variable_value;
13632 remote_ops.to_save_trace_data = remote_save_trace_data;
13633 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13634 remote_ops.to_upload_trace_state_variables
13635 = remote_upload_trace_state_variables;
13636 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13637 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13638 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13639 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13640 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13641 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13642 remote_ops.to_core_of_thread = remote_core_of_thread;
13643 remote_ops.to_verify_memory = remote_verify_memory;
13644 remote_ops.to_get_tib_address = remote_get_tib_address;
13645 remote_ops.to_set_permissions = remote_set_permissions;
13646 remote_ops.to_static_tracepoint_marker_at
13647 = remote_static_tracepoint_marker_at;
13648 remote_ops.to_static_tracepoint_markers_by_strid
13649 = remote_static_tracepoint_markers_by_strid;
13650 remote_ops.to_traceframe_info = remote_traceframe_info;
13651 remote_ops.to_use_agent = remote_use_agent;
13652 remote_ops.to_can_use_agent = remote_can_use_agent;
13653 remote_ops.to_supports_btrace = remote_supports_btrace;
13654 remote_ops.to_enable_btrace = remote_enable_btrace;
13655 remote_ops.to_disable_btrace = remote_disable_btrace;
13656 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13657 remote_ops.to_read_btrace = remote_read_btrace;
13658 remote_ops.to_btrace_conf = remote_btrace_conf;
13659 remote_ops.to_augmented_libraries_svr4_read =
13660 remote_augmented_libraries_svr4_read;
13661 remote_ops.to_follow_fork = remote_follow_fork;
13662 remote_ops.to_follow_exec = remote_follow_exec;
13663 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13664 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13665 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13666 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13667 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13668 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13669 remote_ops.to_execution_direction = remote_execution_direction;
13670 remote_ops.to_thread_handle_to_thread_info =
13671 remote_thread_handle_to_thread_info;
13672 }
13673
13674 /* Set up the extended remote vector by making a copy of the standard
13675 remote vector and adding to it. */
13676
13677 static void
13678 init_extended_remote_ops (void)
13679 {
13680 extended_remote_ops = remote_ops;
13681
13682 extended_remote_ops.to_shortname = "extended-remote";
13683 extended_remote_ops.to_longname =
13684 "Extended remote serial target in gdb-specific protocol";
13685 extended_remote_ops.to_doc =
13686 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13687 Specify the serial device it is connected to (e.g. /dev/ttya).";
13688 extended_remote_ops.to_open = extended_remote_open;
13689 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13690 extended_remote_ops.to_detach = extended_remote_detach;
13691 extended_remote_ops.to_attach = extended_remote_attach;
13692 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13693 extended_remote_ops.to_supports_disable_randomization
13694 = extended_remote_supports_disable_randomization;
13695 }
13696
13697 static int
13698 remote_can_async_p (struct target_ops *ops)
13699 {
13700 struct remote_state *rs = get_remote_state ();
13701
13702 /* We don't go async if the user has explicitly prevented it with the
13703 "maint set target-async" command. */
13704 if (!target_async_permitted)
13705 return 0;
13706
13707 /* We're async whenever the serial device is. */
13708 return serial_can_async_p (rs->remote_desc);
13709 }
13710
13711 static int
13712 remote_is_async_p (struct target_ops *ops)
13713 {
13714 struct remote_state *rs = get_remote_state ();
13715
13716 if (!target_async_permitted)
13717 /* We only enable async when the user specifically asks for it. */
13718 return 0;
13719
13720 /* We're async whenever the serial device is. */
13721 return serial_is_async_p (rs->remote_desc);
13722 }
13723
13724 /* Pass the SERIAL event on and up to the client. One day this code
13725 will be able to delay notifying the client of an event until the
13726 point where an entire packet has been received. */
13727
13728 static serial_event_ftype remote_async_serial_handler;
13729
13730 static void
13731 remote_async_serial_handler (struct serial *scb, void *context)
13732 {
13733 /* Don't propogate error information up to the client. Instead let
13734 the client find out about the error by querying the target. */
13735 inferior_event_handler (INF_REG_EVENT, NULL);
13736 }
13737
13738 static void
13739 remote_async_inferior_event_handler (gdb_client_data data)
13740 {
13741 inferior_event_handler (INF_REG_EVENT, NULL);
13742 }
13743
13744 static void
13745 remote_async (struct target_ops *ops, int enable)
13746 {
13747 struct remote_state *rs = get_remote_state ();
13748
13749 if (enable)
13750 {
13751 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13752
13753 /* If there are pending events in the stop reply queue tell the
13754 event loop to process them. */
13755 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13756 mark_async_event_handler (remote_async_inferior_event_token);
13757 /* For simplicity, below we clear the pending events token
13758 without remembering whether it is marked, so here we always
13759 mark it. If there's actually no pending notification to
13760 process, this ends up being a no-op (other than a spurious
13761 event-loop wakeup). */
13762 if (target_is_non_stop_p ())
13763 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13764 }
13765 else
13766 {
13767 serial_async (rs->remote_desc, NULL, NULL);
13768 /* If the core is disabling async, it doesn't want to be
13769 disturbed with target events. Clear all async event sources
13770 too. */
13771 clear_async_event_handler (remote_async_inferior_event_token);
13772 if (target_is_non_stop_p ())
13773 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13774 }
13775 }
13776
13777 /* Implementation of the to_thread_events method. */
13778
13779 static void
13780 remote_thread_events (struct target_ops *ops, int enable)
13781 {
13782 struct remote_state *rs = get_remote_state ();
13783 size_t size = get_remote_packet_size ();
13784
13785 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13786 return;
13787
13788 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13789 putpkt (rs->buf);
13790 getpkt (&rs->buf, &rs->buf_size, 0);
13791
13792 switch (packet_ok (rs->buf,
13793 &remote_protocol_packets[PACKET_QThreadEvents]))
13794 {
13795 case PACKET_OK:
13796 if (strcmp (rs->buf, "OK") != 0)
13797 error (_("Remote refused setting thread events: %s"), rs->buf);
13798 break;
13799 case PACKET_ERROR:
13800 warning (_("Remote failure reply: %s"), rs->buf);
13801 break;
13802 case PACKET_UNKNOWN:
13803 break;
13804 }
13805 }
13806
13807 static void
13808 set_remote_cmd (const char *args, int from_tty)
13809 {
13810 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13811 }
13812
13813 static void
13814 show_remote_cmd (const char *args, int from_tty)
13815 {
13816 /* We can't just use cmd_show_list here, because we want to skip
13817 the redundant "show remote Z-packet" and the legacy aliases. */
13818 struct cmd_list_element *list = remote_show_cmdlist;
13819 struct ui_out *uiout = current_uiout;
13820
13821 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13822 for (; list != NULL; list = list->next)
13823 if (strcmp (list->name, "Z-packet") == 0)
13824 continue;
13825 else if (list->type == not_set_cmd)
13826 /* Alias commands are exactly like the original, except they
13827 don't have the normal type. */
13828 continue;
13829 else
13830 {
13831 ui_out_emit_tuple option_emitter (uiout, "option");
13832
13833 uiout->field_string ("name", list->name);
13834 uiout->text (": ");
13835 if (list->type == show_cmd)
13836 do_show_command (NULL, from_tty, list);
13837 else
13838 cmd_func (list, NULL, from_tty);
13839 }
13840 }
13841
13842
13843 /* Function to be called whenever a new objfile (shlib) is detected. */
13844 static void
13845 remote_new_objfile (struct objfile *objfile)
13846 {
13847 struct remote_state *rs = get_remote_state ();
13848
13849 if (rs->remote_desc != 0) /* Have a remote connection. */
13850 remote_check_symbols ();
13851 }
13852
13853 /* Pull all the tracepoints defined on the target and create local
13854 data structures representing them. We don't want to create real
13855 tracepoints yet, we don't want to mess up the user's existing
13856 collection. */
13857
13858 static int
13859 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13860 {
13861 struct remote_state *rs = get_remote_state ();
13862 char *p;
13863
13864 /* Ask for a first packet of tracepoint definition. */
13865 putpkt ("qTfP");
13866 getpkt (&rs->buf, &rs->buf_size, 0);
13867 p = rs->buf;
13868 while (*p && *p != 'l')
13869 {
13870 parse_tracepoint_definition (p, utpp);
13871 /* Ask for another packet of tracepoint definition. */
13872 putpkt ("qTsP");
13873 getpkt (&rs->buf, &rs->buf_size, 0);
13874 p = rs->buf;
13875 }
13876 return 0;
13877 }
13878
13879 static int
13880 remote_upload_trace_state_variables (struct target_ops *self,
13881 struct uploaded_tsv **utsvp)
13882 {
13883 struct remote_state *rs = get_remote_state ();
13884 char *p;
13885
13886 /* Ask for a first packet of variable definition. */
13887 putpkt ("qTfV");
13888 getpkt (&rs->buf, &rs->buf_size, 0);
13889 p = rs->buf;
13890 while (*p && *p != 'l')
13891 {
13892 parse_tsv_definition (p, utsvp);
13893 /* Ask for another packet of variable definition. */
13894 putpkt ("qTsV");
13895 getpkt (&rs->buf, &rs->buf_size, 0);
13896 p = rs->buf;
13897 }
13898 return 0;
13899 }
13900
13901 /* The "set/show range-stepping" show hook. */
13902
13903 static void
13904 show_range_stepping (struct ui_file *file, int from_tty,
13905 struct cmd_list_element *c,
13906 const char *value)
13907 {
13908 fprintf_filtered (file,
13909 _("Debugger's willingness to use range stepping "
13910 "is %s.\n"), value);
13911 }
13912
13913 /* The "set/show range-stepping" set hook. */
13914
13915 static void
13916 set_range_stepping (const char *ignore_args, int from_tty,
13917 struct cmd_list_element *c)
13918 {
13919 struct remote_state *rs = get_remote_state ();
13920
13921 /* Whene enabling, check whether range stepping is actually
13922 supported by the target, and warn if not. */
13923 if (use_range_stepping)
13924 {
13925 if (rs->remote_desc != NULL)
13926 {
13927 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13928 remote_vcont_probe (rs);
13929
13930 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13931 && rs->supports_vCont.r)
13932 return;
13933 }
13934
13935 warning (_("Range stepping is not supported by the current target"));
13936 }
13937 }
13938
13939 void
13940 _initialize_remote (void)
13941 {
13942 struct cmd_list_element *cmd;
13943 const char *cmd_name;
13944
13945 /* architecture specific data */
13946 remote_gdbarch_data_handle =
13947 gdbarch_data_register_post_init (init_remote_state);
13948 remote_g_packet_data_handle =
13949 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13950
13951 remote_pspace_data
13952 = register_program_space_data_with_cleanup (NULL,
13953 remote_pspace_data_cleanup);
13954
13955 /* Initialize the per-target state. At the moment there is only one
13956 of these, not one per target. Only one target is active at a
13957 time. */
13958 remote_state = new_remote_state ();
13959
13960 init_remote_ops ();
13961 add_target (&remote_ops);
13962
13963 init_extended_remote_ops ();
13964 add_target (&extended_remote_ops);
13965
13966 /* Hook into new objfile notification. */
13967 observer_attach_new_objfile (remote_new_objfile);
13968 /* We're no longer interested in notification events of an inferior
13969 when it exits. */
13970 observer_attach_inferior_exit (discard_pending_stop_replies);
13971
13972 #if 0
13973 init_remote_threadtests ();
13974 #endif
13975
13976 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13977 /* set/show remote ... */
13978
13979 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13980 Remote protocol specific variables\n\
13981 Configure various remote-protocol specific variables such as\n\
13982 the packets being used"),
13983 &remote_set_cmdlist, "set remote ",
13984 0 /* allow-unknown */, &setlist);
13985 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13986 Remote protocol specific variables\n\
13987 Configure various remote-protocol specific variables such as\n\
13988 the packets being used"),
13989 &remote_show_cmdlist, "show remote ",
13990 0 /* allow-unknown */, &showlist);
13991
13992 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13993 Compare section data on target to the exec file.\n\
13994 Argument is a single section name (default: all loaded sections).\n\
13995 To compare only read-only loaded sections, specify the -r option."),
13996 &cmdlist);
13997
13998 add_cmd ("packet", class_maintenance, packet_command, _("\
13999 Send an arbitrary packet to a remote target.\n\
14000 maintenance packet TEXT\n\
14001 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14002 this command sends the string TEXT to the inferior, and displays the\n\
14003 response packet. GDB supplies the initial `$' character, and the\n\
14004 terminating `#' character and checksum."),
14005 &maintenancelist);
14006
14007 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14008 Set whether to send break if interrupted."), _("\
14009 Show whether to send break if interrupted."), _("\
14010 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14011 set_remotebreak, show_remotebreak,
14012 &setlist, &showlist);
14013 cmd_name = "remotebreak";
14014 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14015 deprecate_cmd (cmd, "set remote interrupt-sequence");
14016 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14017 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14018 deprecate_cmd (cmd, "show remote interrupt-sequence");
14019
14020 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14021 interrupt_sequence_modes, &interrupt_sequence_mode,
14022 _("\
14023 Set interrupt sequence to remote target."), _("\
14024 Show interrupt sequence to remote target."), _("\
14025 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14026 NULL, show_interrupt_sequence,
14027 &remote_set_cmdlist,
14028 &remote_show_cmdlist);
14029
14030 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14031 &interrupt_on_connect, _("\
14032 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14033 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14034 If set, interrupt sequence is sent to remote target."),
14035 NULL, NULL,
14036 &remote_set_cmdlist, &remote_show_cmdlist);
14037
14038 /* Install commands for configuring memory read/write packets. */
14039
14040 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14041 Set the maximum number of bytes per memory write packet (deprecated)."),
14042 &setlist);
14043 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14044 Show the maximum number of bytes per memory write packet (deprecated)."),
14045 &showlist);
14046 add_cmd ("memory-write-packet-size", no_class,
14047 set_memory_write_packet_size, _("\
14048 Set the maximum number of bytes per memory-write packet.\n\
14049 Specify the number of bytes in a packet or 0 (zero) for the\n\
14050 default packet size. The actual limit is further reduced\n\
14051 dependent on the target. Specify ``fixed'' to disable the\n\
14052 further restriction and ``limit'' to enable that restriction."),
14053 &remote_set_cmdlist);
14054 add_cmd ("memory-read-packet-size", no_class,
14055 set_memory_read_packet_size, _("\
14056 Set the maximum number of bytes per memory-read packet.\n\
14057 Specify the number of bytes in a packet or 0 (zero) for the\n\
14058 default packet size. The actual limit is further reduced\n\
14059 dependent on the target. Specify ``fixed'' to disable the\n\
14060 further restriction and ``limit'' to enable that restriction."),
14061 &remote_set_cmdlist);
14062 add_cmd ("memory-write-packet-size", no_class,
14063 show_memory_write_packet_size,
14064 _("Show the maximum number of bytes per memory-write packet."),
14065 &remote_show_cmdlist);
14066 add_cmd ("memory-read-packet-size", no_class,
14067 show_memory_read_packet_size,
14068 _("Show the maximum number of bytes per memory-read packet."),
14069 &remote_show_cmdlist);
14070
14071 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14072 &remote_hw_watchpoint_limit, _("\
14073 Set the maximum number of target hardware watchpoints."), _("\
14074 Show the maximum number of target hardware watchpoints."), _("\
14075 Specify a negative limit for unlimited."),
14076 NULL, NULL, /* FIXME: i18n: The maximum
14077 number of target hardware
14078 watchpoints is %s. */
14079 &remote_set_cmdlist, &remote_show_cmdlist);
14080 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14081 &remote_hw_watchpoint_length_limit, _("\
14082 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14083 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14084 Specify a negative limit for unlimited."),
14085 NULL, NULL, /* FIXME: i18n: The maximum
14086 length (in bytes) of a target
14087 hardware watchpoint is %s. */
14088 &remote_set_cmdlist, &remote_show_cmdlist);
14089 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14090 &remote_hw_breakpoint_limit, _("\
14091 Set the maximum number of target hardware breakpoints."), _("\
14092 Show the maximum number of target hardware breakpoints."), _("\
14093 Specify a negative limit for unlimited."),
14094 NULL, NULL, /* FIXME: i18n: The maximum
14095 number of target hardware
14096 breakpoints is %s. */
14097 &remote_set_cmdlist, &remote_show_cmdlist);
14098
14099 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14100 &remote_address_size, _("\
14101 Set the maximum size of the address (in bits) in a memory packet."), _("\
14102 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14103 NULL,
14104 NULL, /* FIXME: i18n: */
14105 &setlist, &showlist);
14106
14107 init_all_packet_configs ();
14108
14109 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14110 "X", "binary-download", 1);
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14113 "vCont", "verbose-resume", 0);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14116 "QPassSignals", "pass-signals", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14119 "QCatchSyscalls", "catch-syscalls", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14122 "QProgramSignals", "program-signals", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14125 "QSetWorkingDir", "set-working-dir", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14128 "QStartupWithShell", "startup-with-shell", 0);
14129
14130 add_packet_config_cmd (&remote_protocol_packets
14131 [PACKET_QEnvironmentHexEncoded],
14132 "QEnvironmentHexEncoded", "environment-hex-encoded",
14133 0);
14134
14135 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14136 "QEnvironmentReset", "environment-reset",
14137 0);
14138
14139 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14140 "QEnvironmentUnset", "environment-unset",
14141 0);
14142
14143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14144 "qSymbol", "symbol-lookup", 0);
14145
14146 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14147 "P", "set-register", 1);
14148
14149 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14150 "p", "fetch-register", 1);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14153 "Z0", "software-breakpoint", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14156 "Z1", "hardware-breakpoint", 0);
14157
14158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14159 "Z2", "write-watchpoint", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14162 "Z3", "read-watchpoint", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14165 "Z4", "access-watchpoint", 0);
14166
14167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14168 "qXfer:auxv:read", "read-aux-vector", 0);
14169
14170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14171 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14172
14173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14174 "qXfer:features:read", "target-features", 0);
14175
14176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14177 "qXfer:libraries:read", "library-info", 0);
14178
14179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14180 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14181
14182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14183 "qXfer:memory-map:read", "memory-map", 0);
14184
14185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14186 "qXfer:spu:read", "read-spu-object", 0);
14187
14188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14189 "qXfer:spu:write", "write-spu-object", 0);
14190
14191 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14192 "qXfer:osdata:read", "osdata", 0);
14193
14194 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14195 "qXfer:threads:read", "threads", 0);
14196
14197 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14198 "qXfer:siginfo:read", "read-siginfo-object", 0);
14199
14200 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14201 "qXfer:siginfo:write", "write-siginfo-object", 0);
14202
14203 add_packet_config_cmd
14204 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14205 "qXfer:traceframe-info:read", "traceframe-info", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14208 "qXfer:uib:read", "unwind-info-block", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14211 "qGetTLSAddr", "get-thread-local-storage-address",
14212 0);
14213
14214 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14215 "qGetTIBAddr", "get-thread-information-block-address",
14216 0);
14217
14218 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14219 "bc", "reverse-continue", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14222 "bs", "reverse-step", 0);
14223
14224 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14225 "qSupported", "supported-packets", 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14228 "qSearch:memory", "search-memory", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14231 "qTStatus", "trace-status", 0);
14232
14233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14234 "vFile:setfs", "hostio-setfs", 0);
14235
14236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14237 "vFile:open", "hostio-open", 0);
14238
14239 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14240 "vFile:pread", "hostio-pread", 0);
14241
14242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14243 "vFile:pwrite", "hostio-pwrite", 0);
14244
14245 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14246 "vFile:close", "hostio-close", 0);
14247
14248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14249 "vFile:unlink", "hostio-unlink", 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14252 "vFile:readlink", "hostio-readlink", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14255 "vFile:fstat", "hostio-fstat", 0);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14258 "vAttach", "attach", 0);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14261 "vRun", "run", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14264 "QStartNoAckMode", "noack", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14267 "vKill", "kill", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14270 "qAttached", "query-attached", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14273 "ConditionalTracepoints",
14274 "conditional-tracepoints", 0);
14275
14276 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14277 "ConditionalBreakpoints",
14278 "conditional-breakpoints", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14281 "BreakpointCommands",
14282 "breakpoint-commands", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14285 "FastTracepoints", "fast-tracepoints", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14288 "TracepointSource", "TracepointSource", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14291 "QAllow", "allow", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14294 "StaticTracepoints", "static-tracepoints", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14297 "InstallInTrace", "install-in-trace", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14300 "qXfer:statictrace:read", "read-sdata-object", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14303 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14306 "QDisableRandomization", "disable-randomization", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14309 "QAgent", "agent", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14312 "QTBuffer:size", "trace-buffer-size", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14315 "Qbtrace:off", "disable-btrace", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14318 "Qbtrace:bts", "enable-btrace-bts", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14321 "Qbtrace:pt", "enable-btrace-pt", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14324 "qXfer:btrace", "read-btrace", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14327 "qXfer:btrace-conf", "read-btrace-conf", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14330 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14333 "multiprocess-feature", "multiprocess-feature", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14336 "swbreak-feature", "swbreak-feature", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14339 "hwbreak-feature", "hwbreak-feature", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14342 "fork-event-feature", "fork-event-feature", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14345 "vfork-event-feature", "vfork-event-feature", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14348 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14351 "vContSupported", "verbose-resume-supported", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14354 "exec-event-feature", "exec-event-feature", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14357 "vCtrlC", "ctrl-c", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14360 "QThreadEvents", "thread-events", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14363 "N stop reply", "no-resumed-stop-reply", 0);
14364
14365 /* Assert that we've registered "set remote foo-packet" commands
14366 for all packet configs. */
14367 {
14368 int i;
14369
14370 for (i = 0; i < PACKET_MAX; i++)
14371 {
14372 /* Ideally all configs would have a command associated. Some
14373 still don't though. */
14374 int excepted;
14375
14376 switch (i)
14377 {
14378 case PACKET_QNonStop:
14379 case PACKET_EnableDisableTracepoints_feature:
14380 case PACKET_tracenz_feature:
14381 case PACKET_DisconnectedTracing_feature:
14382 case PACKET_augmented_libraries_svr4_read_feature:
14383 case PACKET_qCRC:
14384 /* Additions to this list need to be well justified:
14385 pre-existing packets are OK; new packets are not. */
14386 excepted = 1;
14387 break;
14388 default:
14389 excepted = 0;
14390 break;
14391 }
14392
14393 /* This catches both forgetting to add a config command, and
14394 forgetting to remove a packet from the exception list. */
14395 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14396 }
14397 }
14398
14399 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14400 Z sub-packet has its own set and show commands, but users may
14401 have sets to this variable in their .gdbinit files (or in their
14402 documentation). */
14403 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14404 &remote_Z_packet_detect, _("\
14405 Set use of remote protocol `Z' packets"), _("\
14406 Show use of remote protocol `Z' packets "), _("\
14407 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14408 packets."),
14409 set_remote_protocol_Z_packet_cmd,
14410 show_remote_protocol_Z_packet_cmd,
14411 /* FIXME: i18n: Use of remote protocol
14412 `Z' packets is %s. */
14413 &remote_set_cmdlist, &remote_show_cmdlist);
14414
14415 add_prefix_cmd ("remote", class_files, remote_command, _("\
14416 Manipulate files on the remote system\n\
14417 Transfer files to and from the remote target system."),
14418 &remote_cmdlist, "remote ",
14419 0 /* allow-unknown */, &cmdlist);
14420
14421 add_cmd ("put", class_files, remote_put_command,
14422 _("Copy a local file to the remote system."),
14423 &remote_cmdlist);
14424
14425 add_cmd ("get", class_files, remote_get_command,
14426 _("Copy a remote file to the local system."),
14427 &remote_cmdlist);
14428
14429 add_cmd ("delete", class_files, remote_delete_command,
14430 _("Delete a remote file."),
14431 &remote_cmdlist);
14432
14433 add_setshow_string_noescape_cmd ("exec-file", class_files,
14434 &remote_exec_file_var, _("\
14435 Set the remote pathname for \"run\""), _("\
14436 Show the remote pathname for \"run\""), NULL,
14437 set_remote_exec_file,
14438 show_remote_exec_file,
14439 &remote_set_cmdlist,
14440 &remote_show_cmdlist);
14441
14442 add_setshow_boolean_cmd ("range-stepping", class_run,
14443 &use_range_stepping, _("\
14444 Enable or disable range stepping."), _("\
14445 Show whether target-assisted range stepping is enabled."), _("\
14446 If on, and the target supports it, when stepping a source line, GDB\n\
14447 tells the target to step the corresponding range of addresses itself instead\n\
14448 of issuing multiple single-steps. This speeds up source level\n\
14449 stepping. If off, GDB always issues single-steps, even if range\n\
14450 stepping is supported by the target. The default is on."),
14451 set_range_stepping,
14452 show_range_stepping,
14453 &setlist,
14454 &showlist);
14455
14456 /* Eventually initialize fileio. See fileio.c */
14457 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14458
14459 /* Take advantage of the fact that the TID field is not used, to tag
14460 special ptids with it set to != 0. */
14461 magic_null_ptid = ptid_build (42000, -1, 1);
14462 not_sent_ptid = ptid_build (42000, -2, 1);
14463 any_thread_ptid = ptid_build (42000, 0, 1);
14464 }
This page took 0.302003 seconds and 5 git commands to generate.