gdb/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59 #include "gdb/fileio.h"
60 #include "gdb_stat.h"
61 #include "xml-support.h"
62
63 #include "memory-map.h"
64
65 #include "tracepoint.h"
66 #include "ax.h"
67 #include "ax-gdb.h"
68
69 /* Temp hacks for tracepoint encoding migration. */
70 static char *target_buf;
71 static long target_buf_size;
72 /*static*/ void
73 encode_actions (struct breakpoint *t, struct bp_location *tloc,
74 char ***tdp_actions, char ***stepping_actions);
75
76 /* The size to align memory write packets, when practical. The protocol
77 does not guarantee any alignment, and gdb will generate short
78 writes and unaligned writes, but even as a best-effort attempt this
79 can improve bulk transfers. For instance, if a write is misaligned
80 relative to the target's data bus, the stub may need to make an extra
81 round trip fetching data from the target. This doesn't make a
82 huge difference, but it's easy to do, so we try to be helpful.
83
84 The alignment chosen is arbitrary; usually data bus width is
85 important here, not the possibly larger cache line size. */
86 enum { REMOTE_ALIGN_WRITES = 16 };
87
88 /* Prototypes for local functions. */
89 static void cleanup_sigint_signal_handler (void *dummy);
90 static void initialize_sigint_signal_handler (void);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever);
94
95 static void handle_remote_sigint (int);
96 static void handle_remote_sigint_twice (int);
97 static void async_remote_interrupt (gdb_client_data);
98 void async_remote_interrupt_twice (gdb_client_data);
99
100 static void remote_files_info (struct target_ops *ignore);
101
102 static void remote_prepare_to_store (struct regcache *regcache);
103
104 static void remote_open (char *name, int from_tty);
105
106 static void extended_remote_open (char *name, int from_tty);
107
108 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
109
110 static void remote_close (int quitting);
111
112 static void remote_mourn (struct target_ops *ops);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (struct target_ops *);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static void remote_kill (struct target_ops *ops);
125
126 static int tohex (int nib);
127
128 static int remote_can_async_p (void);
129
130 static int remote_is_async_p (void);
131
132 static void remote_async (void (*callback) (enum inferior_event_type event_type,
133 void *context), void *context);
134
135 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
136
137 static void remote_interrupt (int signo);
138
139 static void remote_interrupt_twice (int signo);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (struct ptid ptid);
144 static void set_continue_thread (struct ptid ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (ptid_t);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (ptid_t currthread);
183
184 static int fromhex (int a);
185
186 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
209 static ptid_t read_ptid (char *buf, char **obuf);
210
211 static void remote_set_permissions (void);
212
213 struct remote_state;
214 static int remote_get_trace_status (struct trace_status *ts);
215
216 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
217
218 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
219
220 static void remote_query_supported (void);
221
222 static void remote_check_symbols (struct objfile *objfile);
223
224 void _initialize_remote (void);
225
226 struct stop_reply;
227 static struct stop_reply *stop_reply_xmalloc (void);
228 static void stop_reply_xfree (struct stop_reply *);
229 static void do_stop_reply_xfree (void *arg);
230 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
231 static void push_stop_reply (struct stop_reply *);
232 static void remote_get_pending_stop_replies (void);
233 static void discard_pending_stop_replies (int pid);
234 static int peek_stop_reply (ptid_t ptid);
235
236 static void remote_async_inferior_event_handler (gdb_client_data);
237 static void remote_async_get_pending_events_handler (gdb_client_data);
238
239 static void remote_terminal_ours (void);
240
241 static int remote_read_description_p (struct target_ops *target);
242
243 static void remote_console_output (char *msg);
244
245 /* The non-stop remote protocol provisions for one pending stop reply.
246 This is where we keep it until it is acknowledged. */
247
248 static struct stop_reply *pending_stop_reply = NULL;
249
250 /* For "remote". */
251
252 static struct cmd_list_element *remote_cmdlist;
253
254 /* For "set remote" and "show remote". */
255
256 static struct cmd_list_element *remote_set_cmdlist;
257 static struct cmd_list_element *remote_show_cmdlist;
258
259 /* Description of the remote protocol state for the currently
260 connected target. This is per-target state, and independent of the
261 selected architecture. */
262
263 struct remote_state
264 {
265 /* A buffer to use for incoming packets, and its current size. The
266 buffer is grown dynamically for larger incoming packets.
267 Outgoing packets may also be constructed in this buffer.
268 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
269 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
270 packets. */
271 char *buf;
272 long buf_size;
273
274 /* If we negotiated packet size explicitly (and thus can bypass
275 heuristics for the largest packet size that will not overflow
276 a buffer in the stub), this will be set to that packet size.
277 Otherwise zero, meaning to use the guessed size. */
278 long explicit_packet_size;
279
280 /* remote_wait is normally called when the target is running and
281 waits for a stop reply packet. But sometimes we need to call it
282 when the target is already stopped. We can send a "?" packet
283 and have remote_wait read the response. Or, if we already have
284 the response, we can stash it in BUF and tell remote_wait to
285 skip calling getpkt. This flag is set when BUF contains a
286 stop reply packet and the target is not waiting. */
287 int cached_wait_status;
288
289 /* True, if in no ack mode. That is, neither GDB nor the stub will
290 expect acks from each other. The connection is assumed to be
291 reliable. */
292 int noack_mode;
293
294 /* True if we're connected in extended remote mode. */
295 int extended;
296
297 /* True if the stub reported support for multi-process
298 extensions. */
299 int multi_process_aware;
300
301 /* True if we resumed the target and we're waiting for the target to
302 stop. In the mean time, we can't start another command/query.
303 The remote server wouldn't be ready to process it, so we'd
304 timeout waiting for a reply that would never come and eventually
305 we'd close the connection. This can happen in asynchronous mode
306 because we allow GDB commands while the target is running. */
307 int waiting_for_stop_reply;
308
309 /* True if the stub reports support for non-stop mode. */
310 int non_stop_aware;
311
312 /* True if the stub reports support for vCont;t. */
313 int support_vCont_t;
314
315 /* True if the stub reports support for conditional tracepoints. */
316 int cond_tracepoints;
317
318 /* True if the stub reports support for fast tracepoints. */
319 int fast_tracepoints;
320
321 /* True if the stub reports support for static tracepoints. */
322 int static_tracepoints;
323
324 /* True if the stub reports support for installing tracepoint while
325 tracing. */
326 int install_in_trace;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* True if the stub reports support for enabling and disabling
333 tracepoints while a trace experiment is running. */
334 int enable_disable_tracepoints;
335
336 /* True if the stub can collect strings using tracenz bytecode. */
337 int string_tracing;
338
339 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
340 responded to that. */
341 int ctrlc_pending_p;
342 };
343
344 /* Private data that we'll store in (struct thread_info)->private. */
345 struct private_thread_info
346 {
347 char *extra;
348 int core;
349 };
350
351 static void
352 free_private_thread_info (struct private_thread_info *info)
353 {
354 xfree (info->extra);
355 xfree (info);
356 }
357
358 /* Returns true if the multi-process extensions are in effect. */
359 static int
360 remote_multi_process_p (struct remote_state *rs)
361 {
362 return rs->multi_process_aware;
363 }
364
365 /* This data could be associated with a target, but we do not always
366 have access to the current target when we need it, so for now it is
367 static. This will be fine for as long as only one target is in use
368 at a time. */
369 static struct remote_state remote_state;
370
371 static struct remote_state *
372 get_remote_state_raw (void)
373 {
374 return &remote_state;
375 }
376
377 /* Description of the remote protocol for a given architecture. */
378
379 struct packet_reg
380 {
381 long offset; /* Offset into G packet. */
382 long regnum; /* GDB's internal register number. */
383 LONGEST pnum; /* Remote protocol register number. */
384 int in_g_packet; /* Always part of G packet. */
385 /* long size in bytes; == register_size (target_gdbarch, regnum);
386 at present. */
387 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
388 at present. */
389 };
390
391 struct remote_arch_state
392 {
393 /* Description of the remote protocol registers. */
394 long sizeof_g_packet;
395
396 /* Description of the remote protocol registers indexed by REGNUM
397 (making an array gdbarch_num_regs in size). */
398 struct packet_reg *regs;
399
400 /* This is the size (in chars) of the first response to the ``g''
401 packet. It is used as a heuristic when determining the maximum
402 size of memory-read and memory-write packets. A target will
403 typically only reserve a buffer large enough to hold the ``g''
404 packet. The size does not include packet overhead (headers and
405 trailers). */
406 long actual_register_packet_size;
407
408 /* This is the maximum size (in chars) of a non read/write packet.
409 It is also used as a cap on the size of read/write packets. */
410 long remote_packet_size;
411 };
412
413 long sizeof_pkt = 2000;
414
415 /* Utility: generate error from an incoming stub packet. */
416 static void
417 trace_error (char *buf)
418 {
419 if (*buf++ != 'E')
420 return; /* not an error msg */
421 switch (*buf)
422 {
423 case '1': /* malformed packet error */
424 if (*++buf == '0') /* general case: */
425 error (_("remote.c: error in outgoing packet."));
426 else
427 error (_("remote.c: error in outgoing packet at field #%ld."),
428 strtol (buf, NULL, 16));
429 case '2':
430 error (_("trace API error 0x%s."), ++buf);
431 default:
432 error (_("Target returns error code '%s'."), buf);
433 }
434 }
435
436 /* Utility: wait for reply from stub, while accepting "O" packets. */
437 static char *
438 remote_get_noisy_reply (char **buf_p,
439 long *sizeof_buf)
440 {
441 do /* Loop on reply from remote stub. */
442 {
443 char *buf;
444
445 QUIT; /* Allow user to bail out with ^C. */
446 getpkt (buf_p, sizeof_buf, 0);
447 buf = *buf_p;
448 if (buf[0] == 'E')
449 trace_error (buf);
450 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
451 {
452 ULONGEST ul;
453 CORE_ADDR from, to, org_to;
454 char *p, *pp;
455 int adjusted_size = 0;
456 volatile struct gdb_exception ex;
457
458 p = buf + strlen ("qRelocInsn:");
459 pp = unpack_varlen_hex (p, &ul);
460 if (*pp != ';')
461 error (_("invalid qRelocInsn packet: %s"), buf);
462 from = ul;
463
464 p = pp + 1;
465 unpack_varlen_hex (p, &ul);
466 to = ul;
467
468 org_to = to;
469
470 TRY_CATCH (ex, RETURN_MASK_ALL)
471 {
472 gdbarch_relocate_instruction (target_gdbarch, &to, from);
473 }
474 if (ex.reason >= 0)
475 {
476 adjusted_size = to - org_to;
477
478 sprintf (buf, "qRelocInsn:%x", adjusted_size);
479 putpkt (buf);
480 }
481 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
482 {
483 /* Propagate memory errors silently back to the target.
484 The stub may have limited the range of addresses we
485 can write to, for example. */
486 putpkt ("E01");
487 }
488 else
489 {
490 /* Something unexpectedly bad happened. Be verbose so
491 we can tell what, and propagate the error back to the
492 stub, so it doesn't get stuck waiting for a
493 response. */
494 exception_fprintf (gdb_stderr, ex,
495 _("warning: relocating instruction: "));
496 putpkt ("E01");
497 }
498 }
499 else if (buf[0] == 'O' && buf[1] != 'K')
500 remote_console_output (buf + 1); /* 'O' message from stub */
501 else
502 return buf; /* Here's the actual reply. */
503 }
504 while (1);
505 }
506
507 /* Handle for retreving the remote protocol data from gdbarch. */
508 static struct gdbarch_data *remote_gdbarch_data_handle;
509
510 static struct remote_arch_state *
511 get_remote_arch_state (void)
512 {
513 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
514 }
515
516 /* Fetch the global remote target state. */
517
518 static struct remote_state *
519 get_remote_state (void)
520 {
521 /* Make sure that the remote architecture state has been
522 initialized, because doing so might reallocate rs->buf. Any
523 function which calls getpkt also needs to be mindful of changes
524 to rs->buf, but this call limits the number of places which run
525 into trouble. */
526 get_remote_arch_state ();
527
528 return get_remote_state_raw ();
529 }
530
531 static int
532 compare_pnums (const void *lhs_, const void *rhs_)
533 {
534 const struct packet_reg * const *lhs = lhs_;
535 const struct packet_reg * const *rhs = rhs_;
536
537 if ((*lhs)->pnum < (*rhs)->pnum)
538 return -1;
539 else if ((*lhs)->pnum == (*rhs)->pnum)
540 return 0;
541 else
542 return 1;
543 }
544
545 static int
546 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
547 {
548 int regnum, num_remote_regs, offset;
549 struct packet_reg **remote_regs;
550
551 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
552 {
553 struct packet_reg *r = &regs[regnum];
554
555 if (register_size (gdbarch, regnum) == 0)
556 /* Do not try to fetch zero-sized (placeholder) registers. */
557 r->pnum = -1;
558 else
559 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
560
561 r->regnum = regnum;
562 }
563
564 /* Define the g/G packet format as the contents of each register
565 with a remote protocol number, in order of ascending protocol
566 number. */
567
568 remote_regs = alloca (gdbarch_num_regs (gdbarch)
569 * sizeof (struct packet_reg *));
570 for (num_remote_regs = 0, regnum = 0;
571 regnum < gdbarch_num_regs (gdbarch);
572 regnum++)
573 if (regs[regnum].pnum != -1)
574 remote_regs[num_remote_regs++] = &regs[regnum];
575
576 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
577 compare_pnums);
578
579 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
580 {
581 remote_regs[regnum]->in_g_packet = 1;
582 remote_regs[regnum]->offset = offset;
583 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
584 }
585
586 return offset;
587 }
588
589 /* Given the architecture described by GDBARCH, return the remote
590 protocol register's number and the register's offset in the g/G
591 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
592 If the target does not have a mapping for REGNUM, return false,
593 otherwise, return true. */
594
595 int
596 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
597 int *pnum, int *poffset)
598 {
599 int sizeof_g_packet;
600 struct packet_reg *regs;
601 struct cleanup *old_chain;
602
603 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
604
605 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
606 old_chain = make_cleanup (xfree, regs);
607
608 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
609
610 *pnum = regs[regnum].pnum;
611 *poffset = regs[regnum].offset;
612
613 do_cleanups (old_chain);
614
615 return *pnum != -1;
616 }
617
618 static void *
619 init_remote_state (struct gdbarch *gdbarch)
620 {
621 struct remote_state *rs = get_remote_state_raw ();
622 struct remote_arch_state *rsa;
623
624 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
625
626 /* Use the architecture to build a regnum<->pnum table, which will be
627 1:1 unless a feature set specifies otherwise. */
628 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
629 gdbarch_num_regs (gdbarch),
630 struct packet_reg);
631
632 /* Record the maximum possible size of the g packet - it may turn out
633 to be smaller. */
634 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
635
636 /* Default maximum number of characters in a packet body. Many
637 remote stubs have a hardwired buffer size of 400 bytes
638 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
639 as the maximum packet-size to ensure that the packet and an extra
640 NUL character can always fit in the buffer. This stops GDB
641 trashing stubs that try to squeeze an extra NUL into what is
642 already a full buffer (As of 1999-12-04 that was most stubs). */
643 rsa->remote_packet_size = 400 - 1;
644
645 /* This one is filled in when a ``g'' packet is received. */
646 rsa->actual_register_packet_size = 0;
647
648 /* Should rsa->sizeof_g_packet needs more space than the
649 default, adjust the size accordingly. Remember that each byte is
650 encoded as two characters. 32 is the overhead for the packet
651 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
652 (``$NN:G...#NN'') is a better guess, the below has been padded a
653 little. */
654 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
655 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
656
657 /* Make sure that the packet buffer is plenty big enough for
658 this architecture. */
659 if (rs->buf_size < rsa->remote_packet_size)
660 {
661 rs->buf_size = 2 * rsa->remote_packet_size;
662 rs->buf = xrealloc (rs->buf, rs->buf_size);
663 }
664
665 return rsa;
666 }
667
668 /* Return the current allowed size of a remote packet. This is
669 inferred from the current architecture, and should be used to
670 limit the length of outgoing packets. */
671 static long
672 get_remote_packet_size (void)
673 {
674 struct remote_state *rs = get_remote_state ();
675 struct remote_arch_state *rsa = get_remote_arch_state ();
676
677 if (rs->explicit_packet_size)
678 return rs->explicit_packet_size;
679
680 return rsa->remote_packet_size;
681 }
682
683 static struct packet_reg *
684 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
685 {
686 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
687 return NULL;
688 else
689 {
690 struct packet_reg *r = &rsa->regs[regnum];
691
692 gdb_assert (r->regnum == regnum);
693 return r;
694 }
695 }
696
697 static struct packet_reg *
698 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
699 {
700 int i;
701
702 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
703 {
704 struct packet_reg *r = &rsa->regs[i];
705
706 if (r->pnum == pnum)
707 return r;
708 }
709 return NULL;
710 }
711
712 /* FIXME: graces/2002-08-08: These variables should eventually be
713 bound to an instance of the target object (as in gdbarch-tdep()),
714 when such a thing exists. */
715
716 /* This is set to the data address of the access causing the target
717 to stop for a watchpoint. */
718 static CORE_ADDR remote_watch_data_address;
719
720 /* This is non-zero if target stopped for a watchpoint. */
721 static int remote_stopped_by_watchpoint_p;
722
723 static struct target_ops remote_ops;
724
725 static struct target_ops extended_remote_ops;
726
727 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
728 ``forever'' still use the normal timeout mechanism. This is
729 currently used by the ASYNC code to guarentee that target reads
730 during the initial connect always time-out. Once getpkt has been
731 modified to return a timeout indication and, in turn
732 remote_wait()/wait_for_inferior() have gained a timeout parameter
733 this can go away. */
734 static int wait_forever_enabled_p = 1;
735
736 /* Allow the user to specify what sequence to send to the remote
737 when he requests a program interruption: Although ^C is usually
738 what remote systems expect (this is the default, here), it is
739 sometimes preferable to send a break. On other systems such
740 as the Linux kernel, a break followed by g, which is Magic SysRq g
741 is required in order to interrupt the execution. */
742 const char interrupt_sequence_control_c[] = "Ctrl-C";
743 const char interrupt_sequence_break[] = "BREAK";
744 const char interrupt_sequence_break_g[] = "BREAK-g";
745 static const char *const interrupt_sequence_modes[] =
746 {
747 interrupt_sequence_control_c,
748 interrupt_sequence_break,
749 interrupt_sequence_break_g,
750 NULL
751 };
752 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
753
754 static void
755 show_interrupt_sequence (struct ui_file *file, int from_tty,
756 struct cmd_list_element *c,
757 const char *value)
758 {
759 if (interrupt_sequence_mode == interrupt_sequence_control_c)
760 fprintf_filtered (file,
761 _("Send the ASCII ETX character (Ctrl-c) "
762 "to the remote target to interrupt the "
763 "execution of the program.\n"));
764 else if (interrupt_sequence_mode == interrupt_sequence_break)
765 fprintf_filtered (file,
766 _("send a break signal to the remote target "
767 "to interrupt the execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
769 fprintf_filtered (file,
770 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
771 "the remote target to interrupt the execution "
772 "of Linux kernel.\n"));
773 else
774 internal_error (__FILE__, __LINE__,
775 _("Invalid value for interrupt_sequence_mode: %s."),
776 interrupt_sequence_mode);
777 }
778
779 /* This boolean variable specifies whether interrupt_sequence is sent
780 to the remote target when gdb connects to it.
781 This is mostly needed when you debug the Linux kernel: The Linux kernel
782 expects BREAK g which is Magic SysRq g for connecting gdb. */
783 static int interrupt_on_connect = 0;
784
785 /* This variable is used to implement the "set/show remotebreak" commands.
786 Since these commands are now deprecated in favor of "set/show remote
787 interrupt-sequence", it no longer has any effect on the code. */
788 static int remote_break;
789
790 static void
791 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
792 {
793 if (remote_break)
794 interrupt_sequence_mode = interrupt_sequence_break;
795 else
796 interrupt_sequence_mode = interrupt_sequence_control_c;
797 }
798
799 static void
800 show_remotebreak (struct ui_file *file, int from_tty,
801 struct cmd_list_element *c,
802 const char *value)
803 {
804 }
805
806 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
807 remote_open knows that we don't have a file open when the program
808 starts. */
809 static struct serial *remote_desc = NULL;
810
811 /* This variable sets the number of bits in an address that are to be
812 sent in a memory ("M" or "m") packet. Normally, after stripping
813 leading zeros, the entire address would be sent. This variable
814 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
815 initial implementation of remote.c restricted the address sent in
816 memory packets to ``host::sizeof long'' bytes - (typically 32
817 bits). Consequently, for 64 bit targets, the upper 32 bits of an
818 address was never sent. Since fixing this bug may cause a break in
819 some remote targets this variable is principly provided to
820 facilitate backward compatibility. */
821
822 static int remote_address_size;
823
824 /* Temporary to track who currently owns the terminal. See
825 remote_terminal_* for more details. */
826
827 static int remote_async_terminal_ours_p;
828
829 /* The executable file to use for "run" on the remote side. */
830
831 static char *remote_exec_file = "";
832
833 \f
834 /* User configurable variables for the number of characters in a
835 memory read/write packet. MIN (rsa->remote_packet_size,
836 rsa->sizeof_g_packet) is the default. Some targets need smaller
837 values (fifo overruns, et.al.) and some users need larger values
838 (speed up transfers). The variables ``preferred_*'' (the user
839 request), ``current_*'' (what was actually set) and ``forced_*''
840 (Positive - a soft limit, negative - a hard limit). */
841
842 struct memory_packet_config
843 {
844 char *name;
845 long size;
846 int fixed_p;
847 };
848
849 /* Compute the current size of a read/write packet. Since this makes
850 use of ``actual_register_packet_size'' the computation is dynamic. */
851
852 static long
853 get_memory_packet_size (struct memory_packet_config *config)
854 {
855 struct remote_state *rs = get_remote_state ();
856 struct remote_arch_state *rsa = get_remote_arch_state ();
857
858 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
859 law?) that some hosts don't cope very well with large alloca()
860 calls. Eventually the alloca() code will be replaced by calls to
861 xmalloc() and make_cleanups() allowing this restriction to either
862 be lifted or removed. */
863 #ifndef MAX_REMOTE_PACKET_SIZE
864 #define MAX_REMOTE_PACKET_SIZE 16384
865 #endif
866 /* NOTE: 20 ensures we can write at least one byte. */
867 #ifndef MIN_REMOTE_PACKET_SIZE
868 #define MIN_REMOTE_PACKET_SIZE 20
869 #endif
870 long what_they_get;
871 if (config->fixed_p)
872 {
873 if (config->size <= 0)
874 what_they_get = MAX_REMOTE_PACKET_SIZE;
875 else
876 what_they_get = config->size;
877 }
878 else
879 {
880 what_they_get = get_remote_packet_size ();
881 /* Limit the packet to the size specified by the user. */
882 if (config->size > 0
883 && what_they_get > config->size)
884 what_they_get = config->size;
885
886 /* Limit it to the size of the targets ``g'' response unless we have
887 permission from the stub to use a larger packet size. */
888 if (rs->explicit_packet_size == 0
889 && rsa->actual_register_packet_size > 0
890 && what_they_get > rsa->actual_register_packet_size)
891 what_they_get = rsa->actual_register_packet_size;
892 }
893 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
894 what_they_get = MAX_REMOTE_PACKET_SIZE;
895 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
896 what_they_get = MIN_REMOTE_PACKET_SIZE;
897
898 /* Make sure there is room in the global buffer for this packet
899 (including its trailing NUL byte). */
900 if (rs->buf_size < what_they_get + 1)
901 {
902 rs->buf_size = 2 * what_they_get;
903 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
904 }
905
906 return what_they_get;
907 }
908
909 /* Update the size of a read/write packet. If they user wants
910 something really big then do a sanity check. */
911
912 static void
913 set_memory_packet_size (char *args, struct memory_packet_config *config)
914 {
915 int fixed_p = config->fixed_p;
916 long size = config->size;
917
918 if (args == NULL)
919 error (_("Argument required (integer, `fixed' or `limited')."));
920 else if (strcmp (args, "hard") == 0
921 || strcmp (args, "fixed") == 0)
922 fixed_p = 1;
923 else if (strcmp (args, "soft") == 0
924 || strcmp (args, "limit") == 0)
925 fixed_p = 0;
926 else
927 {
928 char *end;
929
930 size = strtoul (args, &end, 0);
931 if (args == end)
932 error (_("Invalid %s (bad syntax)."), config->name);
933 #if 0
934 /* Instead of explicitly capping the size of a packet to
935 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
936 instead allowed to set the size to something arbitrarily
937 large. */
938 if (size > MAX_REMOTE_PACKET_SIZE)
939 error (_("Invalid %s (too large)."), config->name);
940 #endif
941 }
942 /* Extra checks? */
943 if (fixed_p && !config->fixed_p)
944 {
945 if (! query (_("The target may not be able to correctly handle a %s\n"
946 "of %ld bytes. Change the packet size? "),
947 config->name, size))
948 error (_("Packet size not changed."));
949 }
950 /* Update the config. */
951 config->fixed_p = fixed_p;
952 config->size = size;
953 }
954
955 static void
956 show_memory_packet_size (struct memory_packet_config *config)
957 {
958 printf_filtered (_("The %s is %ld. "), config->name, config->size);
959 if (config->fixed_p)
960 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
961 get_memory_packet_size (config));
962 else
963 printf_filtered (_("Packets are limited to %ld bytes.\n"),
964 get_memory_packet_size (config));
965 }
966
967 static struct memory_packet_config memory_write_packet_config =
968 {
969 "memory-write-packet-size",
970 };
971
972 static void
973 set_memory_write_packet_size (char *args, int from_tty)
974 {
975 set_memory_packet_size (args, &memory_write_packet_config);
976 }
977
978 static void
979 show_memory_write_packet_size (char *args, int from_tty)
980 {
981 show_memory_packet_size (&memory_write_packet_config);
982 }
983
984 static long
985 get_memory_write_packet_size (void)
986 {
987 return get_memory_packet_size (&memory_write_packet_config);
988 }
989
990 static struct memory_packet_config memory_read_packet_config =
991 {
992 "memory-read-packet-size",
993 };
994
995 static void
996 set_memory_read_packet_size (char *args, int from_tty)
997 {
998 set_memory_packet_size (args, &memory_read_packet_config);
999 }
1000
1001 static void
1002 show_memory_read_packet_size (char *args, int from_tty)
1003 {
1004 show_memory_packet_size (&memory_read_packet_config);
1005 }
1006
1007 static long
1008 get_memory_read_packet_size (void)
1009 {
1010 long size = get_memory_packet_size (&memory_read_packet_config);
1011
1012 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1013 extra buffer size argument before the memory read size can be
1014 increased beyond this. */
1015 if (size > get_remote_packet_size ())
1016 size = get_remote_packet_size ();
1017 return size;
1018 }
1019
1020 \f
1021 /* Generic configuration support for packets the stub optionally
1022 supports. Allows the user to specify the use of the packet as well
1023 as allowing GDB to auto-detect support in the remote stub. */
1024
1025 enum packet_support
1026 {
1027 PACKET_SUPPORT_UNKNOWN = 0,
1028 PACKET_ENABLE,
1029 PACKET_DISABLE
1030 };
1031
1032 struct packet_config
1033 {
1034 const char *name;
1035 const char *title;
1036 enum auto_boolean detect;
1037 enum packet_support support;
1038 };
1039
1040 /* Analyze a packet's return value and update the packet config
1041 accordingly. */
1042
1043 enum packet_result
1044 {
1045 PACKET_ERROR,
1046 PACKET_OK,
1047 PACKET_UNKNOWN
1048 };
1049
1050 static void
1051 update_packet_config (struct packet_config *config)
1052 {
1053 switch (config->detect)
1054 {
1055 case AUTO_BOOLEAN_TRUE:
1056 config->support = PACKET_ENABLE;
1057 break;
1058 case AUTO_BOOLEAN_FALSE:
1059 config->support = PACKET_DISABLE;
1060 break;
1061 case AUTO_BOOLEAN_AUTO:
1062 config->support = PACKET_SUPPORT_UNKNOWN;
1063 break;
1064 }
1065 }
1066
1067 static void
1068 show_packet_config_cmd (struct packet_config *config)
1069 {
1070 char *support = "internal-error";
1071
1072 switch (config->support)
1073 {
1074 case PACKET_ENABLE:
1075 support = "enabled";
1076 break;
1077 case PACKET_DISABLE:
1078 support = "disabled";
1079 break;
1080 case PACKET_SUPPORT_UNKNOWN:
1081 support = "unknown";
1082 break;
1083 }
1084 switch (config->detect)
1085 {
1086 case AUTO_BOOLEAN_AUTO:
1087 printf_filtered (_("Support for the `%s' packet "
1088 "is auto-detected, currently %s.\n"),
1089 config->name, support);
1090 break;
1091 case AUTO_BOOLEAN_TRUE:
1092 case AUTO_BOOLEAN_FALSE:
1093 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1094 config->name, support);
1095 break;
1096 }
1097 }
1098
1099 static void
1100 add_packet_config_cmd (struct packet_config *config, const char *name,
1101 const char *title, int legacy)
1102 {
1103 char *set_doc;
1104 char *show_doc;
1105 char *cmd_name;
1106
1107 config->name = name;
1108 config->title = title;
1109 config->detect = AUTO_BOOLEAN_AUTO;
1110 config->support = PACKET_SUPPORT_UNKNOWN;
1111 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1112 name, title);
1113 show_doc = xstrprintf ("Show current use of remote "
1114 "protocol `%s' (%s) packet",
1115 name, title);
1116 /* set/show TITLE-packet {auto,on,off} */
1117 cmd_name = xstrprintf ("%s-packet", title);
1118 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1119 &config->detect, set_doc,
1120 show_doc, NULL, /* help_doc */
1121 set_remote_protocol_packet_cmd,
1122 show_remote_protocol_packet_cmd,
1123 &remote_set_cmdlist, &remote_show_cmdlist);
1124 /* The command code copies the documentation strings. */
1125 xfree (set_doc);
1126 xfree (show_doc);
1127 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1128 if (legacy)
1129 {
1130 char *legacy_name;
1131
1132 legacy_name = xstrprintf ("%s-packet", name);
1133 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1134 &remote_set_cmdlist);
1135 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1136 &remote_show_cmdlist);
1137 }
1138 }
1139
1140 static enum packet_result
1141 packet_check_result (const char *buf)
1142 {
1143 if (buf[0] != '\0')
1144 {
1145 /* The stub recognized the packet request. Check that the
1146 operation succeeded. */
1147 if (buf[0] == 'E'
1148 && isxdigit (buf[1]) && isxdigit (buf[2])
1149 && buf[3] == '\0')
1150 /* "Enn" - definitly an error. */
1151 return PACKET_ERROR;
1152
1153 /* Always treat "E." as an error. This will be used for
1154 more verbose error messages, such as E.memtypes. */
1155 if (buf[0] == 'E' && buf[1] == '.')
1156 return PACKET_ERROR;
1157
1158 /* The packet may or may not be OK. Just assume it is. */
1159 return PACKET_OK;
1160 }
1161 else
1162 /* The stub does not support the packet. */
1163 return PACKET_UNKNOWN;
1164 }
1165
1166 static enum packet_result
1167 packet_ok (const char *buf, struct packet_config *config)
1168 {
1169 enum packet_result result;
1170
1171 result = packet_check_result (buf);
1172 switch (result)
1173 {
1174 case PACKET_OK:
1175 case PACKET_ERROR:
1176 /* The stub recognized the packet request. */
1177 switch (config->support)
1178 {
1179 case PACKET_SUPPORT_UNKNOWN:
1180 if (remote_debug)
1181 fprintf_unfiltered (gdb_stdlog,
1182 "Packet %s (%s) is supported\n",
1183 config->name, config->title);
1184 config->support = PACKET_ENABLE;
1185 break;
1186 case PACKET_DISABLE:
1187 internal_error (__FILE__, __LINE__,
1188 _("packet_ok: attempt to use a disabled packet"));
1189 break;
1190 case PACKET_ENABLE:
1191 break;
1192 }
1193 break;
1194 case PACKET_UNKNOWN:
1195 /* The stub does not support the packet. */
1196 switch (config->support)
1197 {
1198 case PACKET_ENABLE:
1199 if (config->detect == AUTO_BOOLEAN_AUTO)
1200 /* If the stub previously indicated that the packet was
1201 supported then there is a protocol error.. */
1202 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1203 config->name, config->title);
1204 else
1205 /* The user set it wrong. */
1206 error (_("Enabled packet %s (%s) not recognized by stub"),
1207 config->name, config->title);
1208 break;
1209 case PACKET_SUPPORT_UNKNOWN:
1210 if (remote_debug)
1211 fprintf_unfiltered (gdb_stdlog,
1212 "Packet %s (%s) is NOT supported\n",
1213 config->name, config->title);
1214 config->support = PACKET_DISABLE;
1215 break;
1216 case PACKET_DISABLE:
1217 break;
1218 }
1219 break;
1220 }
1221
1222 return result;
1223 }
1224
1225 enum {
1226 PACKET_vCont = 0,
1227 PACKET_X,
1228 PACKET_qSymbol,
1229 PACKET_P,
1230 PACKET_p,
1231 PACKET_Z0,
1232 PACKET_Z1,
1233 PACKET_Z2,
1234 PACKET_Z3,
1235 PACKET_Z4,
1236 PACKET_vFile_open,
1237 PACKET_vFile_pread,
1238 PACKET_vFile_pwrite,
1239 PACKET_vFile_close,
1240 PACKET_vFile_unlink,
1241 PACKET_vFile_readlink,
1242 PACKET_qXfer_auxv,
1243 PACKET_qXfer_features,
1244 PACKET_qXfer_libraries,
1245 PACKET_qXfer_libraries_svr4,
1246 PACKET_qXfer_memory_map,
1247 PACKET_qXfer_spu_read,
1248 PACKET_qXfer_spu_write,
1249 PACKET_qXfer_osdata,
1250 PACKET_qXfer_threads,
1251 PACKET_qXfer_statictrace_read,
1252 PACKET_qXfer_traceframe_info,
1253 PACKET_qGetTIBAddr,
1254 PACKET_qGetTLSAddr,
1255 PACKET_qSupported,
1256 PACKET_QPassSignals,
1257 PACKET_qSearch_memory,
1258 PACKET_vAttach,
1259 PACKET_vRun,
1260 PACKET_QStartNoAckMode,
1261 PACKET_vKill,
1262 PACKET_qXfer_siginfo_read,
1263 PACKET_qXfer_siginfo_write,
1264 PACKET_qAttached,
1265 PACKET_ConditionalTracepoints,
1266 PACKET_FastTracepoints,
1267 PACKET_StaticTracepoints,
1268 PACKET_InstallInTrace,
1269 PACKET_bc,
1270 PACKET_bs,
1271 PACKET_TracepointSource,
1272 PACKET_QAllow,
1273 PACKET_qXfer_fdpic,
1274 PACKET_QDisableRandomization,
1275 PACKET_MAX
1276 };
1277
1278 static struct packet_config remote_protocol_packets[PACKET_MAX];
1279
1280 static void
1281 set_remote_protocol_packet_cmd (char *args, int from_tty,
1282 struct cmd_list_element *c)
1283 {
1284 struct packet_config *packet;
1285
1286 for (packet = remote_protocol_packets;
1287 packet < &remote_protocol_packets[PACKET_MAX];
1288 packet++)
1289 {
1290 if (&packet->detect == c->var)
1291 {
1292 update_packet_config (packet);
1293 return;
1294 }
1295 }
1296 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1297 c->name);
1298 }
1299
1300 static void
1301 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c,
1303 const char *value)
1304 {
1305 struct packet_config *packet;
1306
1307 for (packet = remote_protocol_packets;
1308 packet < &remote_protocol_packets[PACKET_MAX];
1309 packet++)
1310 {
1311 if (&packet->detect == c->var)
1312 {
1313 show_packet_config_cmd (packet);
1314 return;
1315 }
1316 }
1317 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1318 c->name);
1319 }
1320
1321 /* Should we try one of the 'Z' requests? */
1322
1323 enum Z_packet_type
1324 {
1325 Z_PACKET_SOFTWARE_BP,
1326 Z_PACKET_HARDWARE_BP,
1327 Z_PACKET_WRITE_WP,
1328 Z_PACKET_READ_WP,
1329 Z_PACKET_ACCESS_WP,
1330 NR_Z_PACKET_TYPES
1331 };
1332
1333 /* For compatibility with older distributions. Provide a ``set remote
1334 Z-packet ...'' command that updates all the Z packet types. */
1335
1336 static enum auto_boolean remote_Z_packet_detect;
1337
1338 static void
1339 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1340 struct cmd_list_element *c)
1341 {
1342 int i;
1343
1344 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1345 {
1346 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1347 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1348 }
1349 }
1350
1351 static void
1352 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c,
1354 const char *value)
1355 {
1356 int i;
1357
1358 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1359 {
1360 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1361 }
1362 }
1363
1364 /* Should we try the 'ThreadInfo' query packet?
1365
1366 This variable (NOT available to the user: auto-detect only!)
1367 determines whether GDB will use the new, simpler "ThreadInfo"
1368 query or the older, more complex syntax for thread queries.
1369 This is an auto-detect variable (set to true at each connect,
1370 and set to false when the target fails to recognize it). */
1371
1372 static int use_threadinfo_query;
1373 static int use_threadextra_query;
1374
1375 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1376 static struct async_signal_handler *sigint_remote_twice_token;
1377 static struct async_signal_handler *sigint_remote_token;
1378
1379 \f
1380 /* Asynchronous signal handle registered as event loop source for
1381 when we have pending events ready to be passed to the core. */
1382
1383 static struct async_event_handler *remote_async_inferior_event_token;
1384
1385 /* Asynchronous signal handle registered as event loop source for when
1386 the remote sent us a %Stop notification. The registered callback
1387 will do a vStopped sequence to pull the rest of the events out of
1388 the remote side into our event queue. */
1389
1390 static struct async_event_handler *remote_async_get_pending_events_token;
1391 \f
1392
1393 static ptid_t magic_null_ptid;
1394 static ptid_t not_sent_ptid;
1395 static ptid_t any_thread_ptid;
1396
1397 /* These are the threads which we last sent to the remote system. The
1398 TID member will be -1 for all or -2 for not sent yet. */
1399
1400 static ptid_t general_thread;
1401 static ptid_t continue_thread;
1402
1403 /* This the traceframe which we last selected on the remote system.
1404 It will be -1 if no traceframe is selected. */
1405 static int remote_traceframe_number = -1;
1406
1407 /* Find out if the stub attached to PID (and hence GDB should offer to
1408 detach instead of killing it when bailing out). */
1409
1410 static int
1411 remote_query_attached (int pid)
1412 {
1413 struct remote_state *rs = get_remote_state ();
1414
1415 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1416 return 0;
1417
1418 if (remote_multi_process_p (rs))
1419 sprintf (rs->buf, "qAttached:%x", pid);
1420 else
1421 sprintf (rs->buf, "qAttached");
1422
1423 putpkt (rs->buf);
1424 getpkt (&rs->buf, &rs->buf_size, 0);
1425
1426 switch (packet_ok (rs->buf,
1427 &remote_protocol_packets[PACKET_qAttached]))
1428 {
1429 case PACKET_OK:
1430 if (strcmp (rs->buf, "1") == 0)
1431 return 1;
1432 break;
1433 case PACKET_ERROR:
1434 warning (_("Remote failure reply: %s"), rs->buf);
1435 break;
1436 case PACKET_UNKNOWN:
1437 break;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1444 has been invented by GDB, instead of reported by the target. Since
1445 we can be connected to a remote system before before knowing about
1446 any inferior, mark the target with execution when we find the first
1447 inferior. If ATTACHED is 1, then we had just attached to this
1448 inferior. If it is 0, then we just created this inferior. If it
1449 is -1, then try querying the remote stub to find out if it had
1450 attached to the inferior or not. */
1451
1452 static struct inferior *
1453 remote_add_inferior (int fake_pid_p, int pid, int attached)
1454 {
1455 struct inferior *inf;
1456
1457 /* Check whether this process we're learning about is to be
1458 considered attached, or if is to be considered to have been
1459 spawned by the stub. */
1460 if (attached == -1)
1461 attached = remote_query_attached (pid);
1462
1463 if (gdbarch_has_global_solist (target_gdbarch))
1464 {
1465 /* If the target shares code across all inferiors, then every
1466 attach adds a new inferior. */
1467 inf = add_inferior (pid);
1468
1469 /* ... and every inferior is bound to the same program space.
1470 However, each inferior may still have its own address
1471 space. */
1472 inf->aspace = maybe_new_address_space ();
1473 inf->pspace = current_program_space;
1474 }
1475 else
1476 {
1477 /* In the traditional debugging scenario, there's a 1-1 match
1478 between program/address spaces. We simply bind the inferior
1479 to the program space's address space. */
1480 inf = current_inferior ();
1481 inferior_appeared (inf, pid);
1482 }
1483
1484 inf->attach_flag = attached;
1485 inf->fake_pid_p = fake_pid_p;
1486
1487 return inf;
1488 }
1489
1490 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1491 according to RUNNING. */
1492
1493 static void
1494 remote_add_thread (ptid_t ptid, int running)
1495 {
1496 add_thread (ptid);
1497
1498 set_executing (ptid, running);
1499 set_running (ptid, running);
1500 }
1501
1502 /* Come here when we learn about a thread id from the remote target.
1503 It may be the first time we hear about such thread, so take the
1504 opportunity to add it to GDB's thread list. In case this is the
1505 first time we're noticing its corresponding inferior, add it to
1506 GDB's inferior list as well. */
1507
1508 static void
1509 remote_notice_new_inferior (ptid_t currthread, int running)
1510 {
1511 /* If this is a new thread, add it to GDB's thread list.
1512 If we leave it up to WFI to do this, bad things will happen. */
1513
1514 if (in_thread_list (currthread) && is_exited (currthread))
1515 {
1516 /* We're seeing an event on a thread id we knew had exited.
1517 This has to be a new thread reusing the old id. Add it. */
1518 remote_add_thread (currthread, running);
1519 return;
1520 }
1521
1522 if (!in_thread_list (currthread))
1523 {
1524 struct inferior *inf = NULL;
1525 int pid = ptid_get_pid (currthread);
1526
1527 if (ptid_is_pid (inferior_ptid)
1528 && pid == ptid_get_pid (inferior_ptid))
1529 {
1530 /* inferior_ptid has no thread member yet. This can happen
1531 with the vAttach -> remote_wait,"TAAthread:" path if the
1532 stub doesn't support qC. This is the first stop reported
1533 after an attach, so this is the main thread. Update the
1534 ptid in the thread list. */
1535 if (in_thread_list (pid_to_ptid (pid)))
1536 thread_change_ptid (inferior_ptid, currthread);
1537 else
1538 {
1539 remote_add_thread (currthread, running);
1540 inferior_ptid = currthread;
1541 }
1542 return;
1543 }
1544
1545 if (ptid_equal (magic_null_ptid, inferior_ptid))
1546 {
1547 /* inferior_ptid is not set yet. This can happen with the
1548 vRun -> remote_wait,"TAAthread:" path if the stub
1549 doesn't support qC. This is the first stop reported
1550 after an attach, so this is the main thread. Update the
1551 ptid in the thread list. */
1552 thread_change_ptid (inferior_ptid, currthread);
1553 return;
1554 }
1555
1556 /* When connecting to a target remote, or to a target
1557 extended-remote which already was debugging an inferior, we
1558 may not know about it yet. Add it before adding its child
1559 thread, so notifications are emitted in a sensible order. */
1560 if (!in_inferior_list (ptid_get_pid (currthread)))
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 int fake_pid_p = !remote_multi_process_p (rs);
1564
1565 inf = remote_add_inferior (fake_pid_p,
1566 ptid_get_pid (currthread), -1);
1567 }
1568
1569 /* This is really a new thread. Add it. */
1570 remote_add_thread (currthread, running);
1571
1572 /* If we found a new inferior, let the common code do whatever
1573 it needs to with it (e.g., read shared libraries, insert
1574 breakpoints). */
1575 if (inf != NULL)
1576 notice_new_inferior (currthread, running, 0);
1577 }
1578 }
1579
1580 /* Return the private thread data, creating it if necessary. */
1581
1582 struct private_thread_info *
1583 demand_private_info (ptid_t ptid)
1584 {
1585 struct thread_info *info = find_thread_ptid (ptid);
1586
1587 gdb_assert (info);
1588
1589 if (!info->private)
1590 {
1591 info->private = xmalloc (sizeof (*(info->private)));
1592 info->private_dtor = free_private_thread_info;
1593 info->private->core = -1;
1594 info->private->extra = 0;
1595 }
1596
1597 return info->private;
1598 }
1599
1600 /* Call this function as a result of
1601 1) A halt indication (T packet) containing a thread id
1602 2) A direct query of currthread
1603 3) Successful execution of set thread */
1604
1605 static void
1606 record_currthread (ptid_t currthread)
1607 {
1608 general_thread = currthread;
1609 }
1610
1611 static char *last_pass_packet;
1612
1613 /* If 'QPassSignals' is supported, tell the remote stub what signals
1614 it can simply pass through to the inferior without reporting. */
1615
1616 static void
1617 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1618 {
1619 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1620 {
1621 char *pass_packet, *p;
1622 int count = 0, i;
1623
1624 gdb_assert (numsigs < 256);
1625 for (i = 0; i < numsigs; i++)
1626 {
1627 if (pass_signals[i])
1628 count++;
1629 }
1630 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1631 strcpy (pass_packet, "QPassSignals:");
1632 p = pass_packet + strlen (pass_packet);
1633 for (i = 0; i < numsigs; i++)
1634 {
1635 if (pass_signals[i])
1636 {
1637 if (i >= 16)
1638 *p++ = tohex (i >> 4);
1639 *p++ = tohex (i & 15);
1640 if (count)
1641 *p++ = ';';
1642 else
1643 break;
1644 count--;
1645 }
1646 }
1647 *p = 0;
1648 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1649 {
1650 struct remote_state *rs = get_remote_state ();
1651 char *buf = rs->buf;
1652
1653 putpkt (pass_packet);
1654 getpkt (&rs->buf, &rs->buf_size, 0);
1655 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1656 if (last_pass_packet)
1657 xfree (last_pass_packet);
1658 last_pass_packet = pass_packet;
1659 }
1660 else
1661 xfree (pass_packet);
1662 }
1663 }
1664
1665 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1666 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1667 thread. If GEN is set, set the general thread, if not, then set
1668 the step/continue thread. */
1669 static void
1670 set_thread (struct ptid ptid, int gen)
1671 {
1672 struct remote_state *rs = get_remote_state ();
1673 ptid_t state = gen ? general_thread : continue_thread;
1674 char *buf = rs->buf;
1675 char *endbuf = rs->buf + get_remote_packet_size ();
1676
1677 if (ptid_equal (state, ptid))
1678 return;
1679
1680 *buf++ = 'H';
1681 *buf++ = gen ? 'g' : 'c';
1682 if (ptid_equal (ptid, magic_null_ptid))
1683 xsnprintf (buf, endbuf - buf, "0");
1684 else if (ptid_equal (ptid, any_thread_ptid))
1685 xsnprintf (buf, endbuf - buf, "0");
1686 else if (ptid_equal (ptid, minus_one_ptid))
1687 xsnprintf (buf, endbuf - buf, "-1");
1688 else
1689 write_ptid (buf, endbuf, ptid);
1690 putpkt (rs->buf);
1691 getpkt (&rs->buf, &rs->buf_size, 0);
1692 if (gen)
1693 general_thread = ptid;
1694 else
1695 continue_thread = ptid;
1696 }
1697
1698 static void
1699 set_general_thread (struct ptid ptid)
1700 {
1701 set_thread (ptid, 1);
1702 }
1703
1704 static void
1705 set_continue_thread (struct ptid ptid)
1706 {
1707 set_thread (ptid, 0);
1708 }
1709
1710 /* Change the remote current process. Which thread within the process
1711 ends up selected isn't important, as long as it is the same process
1712 as what INFERIOR_PTID points to.
1713
1714 This comes from that fact that there is no explicit notion of
1715 "selected process" in the protocol. The selected process for
1716 general operations is the process the selected general thread
1717 belongs to. */
1718
1719 static void
1720 set_general_process (void)
1721 {
1722 struct remote_state *rs = get_remote_state ();
1723
1724 /* If the remote can't handle multiple processes, don't bother. */
1725 if (!rs->extended || !remote_multi_process_p (rs))
1726 return;
1727
1728 /* We only need to change the remote current thread if it's pointing
1729 at some other process. */
1730 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1731 set_general_thread (inferior_ptid);
1732 }
1733
1734 \f
1735 /* Return nonzero if the thread PTID is still alive on the remote
1736 system. */
1737
1738 static int
1739 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1740 {
1741 struct remote_state *rs = get_remote_state ();
1742 char *p, *endp;
1743
1744 if (ptid_equal (ptid, magic_null_ptid))
1745 /* The main thread is always alive. */
1746 return 1;
1747
1748 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1749 /* The main thread is always alive. This can happen after a
1750 vAttach, if the remote side doesn't support
1751 multi-threading. */
1752 return 1;
1753
1754 p = rs->buf;
1755 endp = rs->buf + get_remote_packet_size ();
1756
1757 *p++ = 'T';
1758 write_ptid (p, endp, ptid);
1759
1760 putpkt (rs->buf);
1761 getpkt (&rs->buf, &rs->buf_size, 0);
1762 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1763 }
1764
1765 /* About these extended threadlist and threadinfo packets. They are
1766 variable length packets but, the fields within them are often fixed
1767 length. They are redundent enough to send over UDP as is the
1768 remote protocol in general. There is a matching unit test module
1769 in libstub. */
1770
1771 #define OPAQUETHREADBYTES 8
1772
1773 /* a 64 bit opaque identifier */
1774 typedef unsigned char threadref[OPAQUETHREADBYTES];
1775
1776 /* WARNING: This threadref data structure comes from the remote O.S.,
1777 libstub protocol encoding, and remote.c. It is not particularly
1778 changable. */
1779
1780 /* Right now, the internal structure is int. We want it to be bigger.
1781 Plan to fix this. */
1782
1783 typedef int gdb_threadref; /* Internal GDB thread reference. */
1784
1785 /* gdb_ext_thread_info is an internal GDB data structure which is
1786 equivalent to the reply of the remote threadinfo packet. */
1787
1788 struct gdb_ext_thread_info
1789 {
1790 threadref threadid; /* External form of thread reference. */
1791 int active; /* Has state interesting to GDB?
1792 regs, stack. */
1793 char display[256]; /* Brief state display, name,
1794 blocked/suspended. */
1795 char shortname[32]; /* To be used to name threads. */
1796 char more_display[256]; /* Long info, statistics, queue depth,
1797 whatever. */
1798 };
1799
1800 /* The volume of remote transfers can be limited by submitting
1801 a mask containing bits specifying the desired information.
1802 Use a union of these values as the 'selection' parameter to
1803 get_thread_info. FIXME: Make these TAG names more thread specific. */
1804
1805 #define TAG_THREADID 1
1806 #define TAG_EXISTS 2
1807 #define TAG_DISPLAY 4
1808 #define TAG_THREADNAME 8
1809 #define TAG_MOREDISPLAY 16
1810
1811 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1812
1813 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1814
1815 static char *unpack_nibble (char *buf, int *val);
1816
1817 static char *pack_nibble (char *buf, int nibble);
1818
1819 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1820
1821 static char *unpack_byte (char *buf, int *value);
1822
1823 static char *pack_int (char *buf, int value);
1824
1825 static char *unpack_int (char *buf, int *value);
1826
1827 static char *unpack_string (char *src, char *dest, int length);
1828
1829 static char *pack_threadid (char *pkt, threadref *id);
1830
1831 static char *unpack_threadid (char *inbuf, threadref *id);
1832
1833 void int_to_threadref (threadref *id, int value);
1834
1835 static int threadref_to_int (threadref *ref);
1836
1837 static void copy_threadref (threadref *dest, threadref *src);
1838
1839 static int threadmatch (threadref *dest, threadref *src);
1840
1841 static char *pack_threadinfo_request (char *pkt, int mode,
1842 threadref *id);
1843
1844 static int remote_unpack_thread_info_response (char *pkt,
1845 threadref *expectedref,
1846 struct gdb_ext_thread_info
1847 *info);
1848
1849
1850 static int remote_get_threadinfo (threadref *threadid,
1851 int fieldset, /*TAG mask */
1852 struct gdb_ext_thread_info *info);
1853
1854 static char *pack_threadlist_request (char *pkt, int startflag,
1855 int threadcount,
1856 threadref *nextthread);
1857
1858 static int parse_threadlist_response (char *pkt,
1859 int result_limit,
1860 threadref *original_echo,
1861 threadref *resultlist,
1862 int *doneflag);
1863
1864 static int remote_get_threadlist (int startflag,
1865 threadref *nextthread,
1866 int result_limit,
1867 int *done,
1868 int *result_count,
1869 threadref *threadlist);
1870
1871 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1872
1873 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1874 void *context, int looplimit);
1875
1876 static int remote_newthread_step (threadref *ref, void *context);
1877
1878
1879 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1880 buffer we're allowed to write to. Returns
1881 BUF+CHARACTERS_WRITTEN. */
1882
1883 static char *
1884 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1885 {
1886 int pid, tid;
1887 struct remote_state *rs = get_remote_state ();
1888
1889 if (remote_multi_process_p (rs))
1890 {
1891 pid = ptid_get_pid (ptid);
1892 if (pid < 0)
1893 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1894 else
1895 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1896 }
1897 tid = ptid_get_tid (ptid);
1898 if (tid < 0)
1899 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1900 else
1901 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1902
1903 return buf;
1904 }
1905
1906 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1907 passed the last parsed char. Returns null_ptid on error. */
1908
1909 static ptid_t
1910 read_ptid (char *buf, char **obuf)
1911 {
1912 char *p = buf;
1913 char *pp;
1914 ULONGEST pid = 0, tid = 0;
1915
1916 if (*p == 'p')
1917 {
1918 /* Multi-process ptid. */
1919 pp = unpack_varlen_hex (p + 1, &pid);
1920 if (*pp != '.')
1921 error (_("invalid remote ptid: %s"), p);
1922
1923 p = pp;
1924 pp = unpack_varlen_hex (p + 1, &tid);
1925 if (obuf)
1926 *obuf = pp;
1927 return ptid_build (pid, 0, tid);
1928 }
1929
1930 /* No multi-process. Just a tid. */
1931 pp = unpack_varlen_hex (p, &tid);
1932
1933 /* Since the stub is not sending a process id, then default to
1934 what's in inferior_ptid, unless it's null at this point. If so,
1935 then since there's no way to know the pid of the reported
1936 threads, use the magic number. */
1937 if (ptid_equal (inferior_ptid, null_ptid))
1938 pid = ptid_get_pid (magic_null_ptid);
1939 else
1940 pid = ptid_get_pid (inferior_ptid);
1941
1942 if (obuf)
1943 *obuf = pp;
1944 return ptid_build (pid, 0, tid);
1945 }
1946
1947 /* Encode 64 bits in 16 chars of hex. */
1948
1949 static const char hexchars[] = "0123456789abcdef";
1950
1951 static int
1952 ishex (int ch, int *val)
1953 {
1954 if ((ch >= 'a') && (ch <= 'f'))
1955 {
1956 *val = ch - 'a' + 10;
1957 return 1;
1958 }
1959 if ((ch >= 'A') && (ch <= 'F'))
1960 {
1961 *val = ch - 'A' + 10;
1962 return 1;
1963 }
1964 if ((ch >= '0') && (ch <= '9'))
1965 {
1966 *val = ch - '0';
1967 return 1;
1968 }
1969 return 0;
1970 }
1971
1972 static int
1973 stubhex (int ch)
1974 {
1975 if (ch >= 'a' && ch <= 'f')
1976 return ch - 'a' + 10;
1977 if (ch >= '0' && ch <= '9')
1978 return ch - '0';
1979 if (ch >= 'A' && ch <= 'F')
1980 return ch - 'A' + 10;
1981 return -1;
1982 }
1983
1984 static int
1985 stub_unpack_int (char *buff, int fieldlength)
1986 {
1987 int nibble;
1988 int retval = 0;
1989
1990 while (fieldlength)
1991 {
1992 nibble = stubhex (*buff++);
1993 retval |= nibble;
1994 fieldlength--;
1995 if (fieldlength)
1996 retval = retval << 4;
1997 }
1998 return retval;
1999 }
2000
2001 char *
2002 unpack_varlen_hex (char *buff, /* packet to parse */
2003 ULONGEST *result)
2004 {
2005 int nibble;
2006 ULONGEST retval = 0;
2007
2008 while (ishex (*buff, &nibble))
2009 {
2010 buff++;
2011 retval = retval << 4;
2012 retval |= nibble & 0x0f;
2013 }
2014 *result = retval;
2015 return buff;
2016 }
2017
2018 static char *
2019 unpack_nibble (char *buf, int *val)
2020 {
2021 *val = fromhex (*buf++);
2022 return buf;
2023 }
2024
2025 static char *
2026 pack_nibble (char *buf, int nibble)
2027 {
2028 *buf++ = hexchars[(nibble & 0x0f)];
2029 return buf;
2030 }
2031
2032 static char *
2033 pack_hex_byte (char *pkt, int byte)
2034 {
2035 *pkt++ = hexchars[(byte >> 4) & 0xf];
2036 *pkt++ = hexchars[(byte & 0xf)];
2037 return pkt;
2038 }
2039
2040 static char *
2041 unpack_byte (char *buf, int *value)
2042 {
2043 *value = stub_unpack_int (buf, 2);
2044 return buf + 2;
2045 }
2046
2047 static char *
2048 pack_int (char *buf, int value)
2049 {
2050 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2051 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2052 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2053 buf = pack_hex_byte (buf, (value & 0xff));
2054 return buf;
2055 }
2056
2057 static char *
2058 unpack_int (char *buf, int *value)
2059 {
2060 *value = stub_unpack_int (buf, 8);
2061 return buf + 8;
2062 }
2063
2064 #if 0 /* Currently unused, uncomment when needed. */
2065 static char *pack_string (char *pkt, char *string);
2066
2067 static char *
2068 pack_string (char *pkt, char *string)
2069 {
2070 char ch;
2071 int len;
2072
2073 len = strlen (string);
2074 if (len > 200)
2075 len = 200; /* Bigger than most GDB packets, junk??? */
2076 pkt = pack_hex_byte (pkt, len);
2077 while (len-- > 0)
2078 {
2079 ch = *string++;
2080 if ((ch == '\0') || (ch == '#'))
2081 ch = '*'; /* Protect encapsulation. */
2082 *pkt++ = ch;
2083 }
2084 return pkt;
2085 }
2086 #endif /* 0 (unused) */
2087
2088 static char *
2089 unpack_string (char *src, char *dest, int length)
2090 {
2091 while (length--)
2092 *dest++ = *src++;
2093 *dest = '\0';
2094 return src;
2095 }
2096
2097 static char *
2098 pack_threadid (char *pkt, threadref *id)
2099 {
2100 char *limit;
2101 unsigned char *altid;
2102
2103 altid = (unsigned char *) id;
2104 limit = pkt + BUF_THREAD_ID_SIZE;
2105 while (pkt < limit)
2106 pkt = pack_hex_byte (pkt, *altid++);
2107 return pkt;
2108 }
2109
2110
2111 static char *
2112 unpack_threadid (char *inbuf, threadref *id)
2113 {
2114 char *altref;
2115 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2116 int x, y;
2117
2118 altref = (char *) id;
2119
2120 while (inbuf < limit)
2121 {
2122 x = stubhex (*inbuf++);
2123 y = stubhex (*inbuf++);
2124 *altref++ = (x << 4) | y;
2125 }
2126 return inbuf;
2127 }
2128
2129 /* Externally, threadrefs are 64 bits but internally, they are still
2130 ints. This is due to a mismatch of specifications. We would like
2131 to use 64bit thread references internally. This is an adapter
2132 function. */
2133
2134 void
2135 int_to_threadref (threadref *id, int value)
2136 {
2137 unsigned char *scan;
2138
2139 scan = (unsigned char *) id;
2140 {
2141 int i = 4;
2142 while (i--)
2143 *scan++ = 0;
2144 }
2145 *scan++ = (value >> 24) & 0xff;
2146 *scan++ = (value >> 16) & 0xff;
2147 *scan++ = (value >> 8) & 0xff;
2148 *scan++ = (value & 0xff);
2149 }
2150
2151 static int
2152 threadref_to_int (threadref *ref)
2153 {
2154 int i, value = 0;
2155 unsigned char *scan;
2156
2157 scan = *ref;
2158 scan += 4;
2159 i = 4;
2160 while (i-- > 0)
2161 value = (value << 8) | ((*scan++) & 0xff);
2162 return value;
2163 }
2164
2165 static void
2166 copy_threadref (threadref *dest, threadref *src)
2167 {
2168 int i;
2169 unsigned char *csrc, *cdest;
2170
2171 csrc = (unsigned char *) src;
2172 cdest = (unsigned char *) dest;
2173 i = 8;
2174 while (i--)
2175 *cdest++ = *csrc++;
2176 }
2177
2178 static int
2179 threadmatch (threadref *dest, threadref *src)
2180 {
2181 /* Things are broken right now, so just assume we got a match. */
2182 #if 0
2183 unsigned char *srcp, *destp;
2184 int i, result;
2185 srcp = (char *) src;
2186 destp = (char *) dest;
2187
2188 result = 1;
2189 while (i-- > 0)
2190 result &= (*srcp++ == *destp++) ? 1 : 0;
2191 return result;
2192 #endif
2193 return 1;
2194 }
2195
2196 /*
2197 threadid:1, # always request threadid
2198 context_exists:2,
2199 display:4,
2200 unique_name:8,
2201 more_display:16
2202 */
2203
2204 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2205
2206 static char *
2207 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2208 {
2209 *pkt++ = 'q'; /* Info Query */
2210 *pkt++ = 'P'; /* process or thread info */
2211 pkt = pack_int (pkt, mode); /* mode */
2212 pkt = pack_threadid (pkt, id); /* threadid */
2213 *pkt = '\0'; /* terminate */
2214 return pkt;
2215 }
2216
2217 /* These values tag the fields in a thread info response packet. */
2218 /* Tagging the fields allows us to request specific fields and to
2219 add more fields as time goes by. */
2220
2221 #define TAG_THREADID 1 /* Echo the thread identifier. */
2222 #define TAG_EXISTS 2 /* Is this process defined enough to
2223 fetch registers and its stack? */
2224 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2225 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2226 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2227 the process. */
2228
2229 static int
2230 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2231 struct gdb_ext_thread_info *info)
2232 {
2233 struct remote_state *rs = get_remote_state ();
2234 int mask, length;
2235 int tag;
2236 threadref ref;
2237 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2238 int retval = 1;
2239
2240 /* info->threadid = 0; FIXME: implement zero_threadref. */
2241 info->active = 0;
2242 info->display[0] = '\0';
2243 info->shortname[0] = '\0';
2244 info->more_display[0] = '\0';
2245
2246 /* Assume the characters indicating the packet type have been
2247 stripped. */
2248 pkt = unpack_int (pkt, &mask); /* arg mask */
2249 pkt = unpack_threadid (pkt, &ref);
2250
2251 if (mask == 0)
2252 warning (_("Incomplete response to threadinfo request."));
2253 if (!threadmatch (&ref, expectedref))
2254 { /* This is an answer to a different request. */
2255 warning (_("ERROR RMT Thread info mismatch."));
2256 return 0;
2257 }
2258 copy_threadref (&info->threadid, &ref);
2259
2260 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2261
2262 /* Packets are terminated with nulls. */
2263 while ((pkt < limit) && mask && *pkt)
2264 {
2265 pkt = unpack_int (pkt, &tag); /* tag */
2266 pkt = unpack_byte (pkt, &length); /* length */
2267 if (!(tag & mask)) /* Tags out of synch with mask. */
2268 {
2269 warning (_("ERROR RMT: threadinfo tag mismatch."));
2270 retval = 0;
2271 break;
2272 }
2273 if (tag == TAG_THREADID)
2274 {
2275 if (length != 16)
2276 {
2277 warning (_("ERROR RMT: length of threadid is not 16."));
2278 retval = 0;
2279 break;
2280 }
2281 pkt = unpack_threadid (pkt, &ref);
2282 mask = mask & ~TAG_THREADID;
2283 continue;
2284 }
2285 if (tag == TAG_EXISTS)
2286 {
2287 info->active = stub_unpack_int (pkt, length);
2288 pkt += length;
2289 mask = mask & ~(TAG_EXISTS);
2290 if (length > 8)
2291 {
2292 warning (_("ERROR RMT: 'exists' length too long."));
2293 retval = 0;
2294 break;
2295 }
2296 continue;
2297 }
2298 if (tag == TAG_THREADNAME)
2299 {
2300 pkt = unpack_string (pkt, &info->shortname[0], length);
2301 mask = mask & ~TAG_THREADNAME;
2302 continue;
2303 }
2304 if (tag == TAG_DISPLAY)
2305 {
2306 pkt = unpack_string (pkt, &info->display[0], length);
2307 mask = mask & ~TAG_DISPLAY;
2308 continue;
2309 }
2310 if (tag == TAG_MOREDISPLAY)
2311 {
2312 pkt = unpack_string (pkt, &info->more_display[0], length);
2313 mask = mask & ~TAG_MOREDISPLAY;
2314 continue;
2315 }
2316 warning (_("ERROR RMT: unknown thread info tag."));
2317 break; /* Not a tag we know about. */
2318 }
2319 return retval;
2320 }
2321
2322 static int
2323 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2324 struct gdb_ext_thread_info *info)
2325 {
2326 struct remote_state *rs = get_remote_state ();
2327 int result;
2328
2329 pack_threadinfo_request (rs->buf, fieldset, threadid);
2330 putpkt (rs->buf);
2331 getpkt (&rs->buf, &rs->buf_size, 0);
2332
2333 if (rs->buf[0] == '\0')
2334 return 0;
2335
2336 result = remote_unpack_thread_info_response (rs->buf + 2,
2337 threadid, info);
2338 return result;
2339 }
2340
2341 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2342
2343 static char *
2344 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2345 threadref *nextthread)
2346 {
2347 *pkt++ = 'q'; /* info query packet */
2348 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2349 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2350 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2351 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2352 *pkt = '\0';
2353 return pkt;
2354 }
2355
2356 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2357
2358 static int
2359 parse_threadlist_response (char *pkt, int result_limit,
2360 threadref *original_echo, threadref *resultlist,
2361 int *doneflag)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364 char *limit;
2365 int count, resultcount, done;
2366
2367 resultcount = 0;
2368 /* Assume the 'q' and 'M chars have been stripped. */
2369 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2370 /* done parse past here */
2371 pkt = unpack_byte (pkt, &count); /* count field */
2372 pkt = unpack_nibble (pkt, &done);
2373 /* The first threadid is the argument threadid. */
2374 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2375 while ((count-- > 0) && (pkt < limit))
2376 {
2377 pkt = unpack_threadid (pkt, resultlist++);
2378 if (resultcount++ >= result_limit)
2379 break;
2380 }
2381 if (doneflag)
2382 *doneflag = done;
2383 return resultcount;
2384 }
2385
2386 static int
2387 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2388 int *done, int *result_count, threadref *threadlist)
2389 {
2390 struct remote_state *rs = get_remote_state ();
2391 static threadref echo_nextthread;
2392 int result = 1;
2393
2394 /* Trancate result limit to be smaller than the packet size. */
2395 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2396 >= get_remote_packet_size ())
2397 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2398
2399 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2400 putpkt (rs->buf);
2401 getpkt (&rs->buf, &rs->buf_size, 0);
2402
2403 if (*rs->buf == '\0')
2404 return 0;
2405 else
2406 *result_count =
2407 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2408 threadlist, done);
2409
2410 if (!threadmatch (&echo_nextthread, nextthread))
2411 {
2412 /* FIXME: This is a good reason to drop the packet. */
2413 /* Possably, there is a duplicate response. */
2414 /* Possabilities :
2415 retransmit immediatly - race conditions
2416 retransmit after timeout - yes
2417 exit
2418 wait for packet, then exit
2419 */
2420 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2421 return 0; /* I choose simply exiting. */
2422 }
2423 if (*result_count <= 0)
2424 {
2425 if (*done != 1)
2426 {
2427 warning (_("RMT ERROR : failed to get remote thread list."));
2428 result = 0;
2429 }
2430 return result; /* break; */
2431 }
2432 if (*result_count > result_limit)
2433 {
2434 *result_count = 0;
2435 warning (_("RMT ERROR: threadlist response longer than requested."));
2436 return 0;
2437 }
2438 return result;
2439 }
2440
2441 /* This is the interface between remote and threads, remotes upper
2442 interface. */
2443
2444 /* remote_find_new_threads retrieves the thread list and for each
2445 thread in the list, looks up the thread in GDB's internal list,
2446 adding the thread if it does not already exist. This involves
2447 getting partial thread lists from the remote target so, polling the
2448 quit_flag is required. */
2449
2450
2451 /* About this many threadisds fit in a packet. */
2452
2453 #define MAXTHREADLISTRESULTS 32
2454
2455 static int
2456 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2457 int looplimit)
2458 {
2459 int done, i, result_count;
2460 int startflag = 1;
2461 int result = 1;
2462 int loopcount = 0;
2463 static threadref nextthread;
2464 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2465
2466 done = 0;
2467 while (!done)
2468 {
2469 if (loopcount++ > looplimit)
2470 {
2471 result = 0;
2472 warning (_("Remote fetch threadlist -infinite loop-."));
2473 break;
2474 }
2475 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2476 &done, &result_count, resultthreadlist))
2477 {
2478 result = 0;
2479 break;
2480 }
2481 /* Clear for later iterations. */
2482 startflag = 0;
2483 /* Setup to resume next batch of thread references, set nextthread. */
2484 if (result_count >= 1)
2485 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2486 i = 0;
2487 while (result_count--)
2488 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2489 break;
2490 }
2491 return result;
2492 }
2493
2494 static int
2495 remote_newthread_step (threadref *ref, void *context)
2496 {
2497 int pid = ptid_get_pid (inferior_ptid);
2498 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2499
2500 if (!in_thread_list (ptid))
2501 add_thread (ptid);
2502 return 1; /* continue iterator */
2503 }
2504
2505 #define CRAZY_MAX_THREADS 1000
2506
2507 static ptid_t
2508 remote_current_thread (ptid_t oldpid)
2509 {
2510 struct remote_state *rs = get_remote_state ();
2511
2512 putpkt ("qC");
2513 getpkt (&rs->buf, &rs->buf_size, 0);
2514 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2515 return read_ptid (&rs->buf[2], NULL);
2516 else
2517 return oldpid;
2518 }
2519
2520 /* Find new threads for info threads command.
2521 * Original version, using John Metzler's thread protocol.
2522 */
2523
2524 static void
2525 remote_find_new_threads (void)
2526 {
2527 remote_threadlist_iterator (remote_newthread_step, 0,
2528 CRAZY_MAX_THREADS);
2529 }
2530
2531 #if defined(HAVE_LIBEXPAT)
2532
2533 typedef struct thread_item
2534 {
2535 ptid_t ptid;
2536 char *extra;
2537 int core;
2538 } thread_item_t;
2539 DEF_VEC_O(thread_item_t);
2540
2541 struct threads_parsing_context
2542 {
2543 VEC (thread_item_t) *items;
2544 };
2545
2546 static void
2547 start_thread (struct gdb_xml_parser *parser,
2548 const struct gdb_xml_element *element,
2549 void *user_data, VEC(gdb_xml_value_s) *attributes)
2550 {
2551 struct threads_parsing_context *data = user_data;
2552
2553 struct thread_item item;
2554 char *id;
2555 struct gdb_xml_value *attr;
2556
2557 id = xml_find_attribute (attributes, "id")->value;
2558 item.ptid = read_ptid (id, NULL);
2559
2560 attr = xml_find_attribute (attributes, "core");
2561 if (attr != NULL)
2562 item.core = *(ULONGEST *) attr->value;
2563 else
2564 item.core = -1;
2565
2566 item.extra = 0;
2567
2568 VEC_safe_push (thread_item_t, data->items, &item);
2569 }
2570
2571 static void
2572 end_thread (struct gdb_xml_parser *parser,
2573 const struct gdb_xml_element *element,
2574 void *user_data, const char *body_text)
2575 {
2576 struct threads_parsing_context *data = user_data;
2577
2578 if (body_text && *body_text)
2579 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2580 }
2581
2582 const struct gdb_xml_attribute thread_attributes[] = {
2583 { "id", GDB_XML_AF_NONE, NULL, NULL },
2584 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2585 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2586 };
2587
2588 const struct gdb_xml_element thread_children[] = {
2589 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2590 };
2591
2592 const struct gdb_xml_element threads_children[] = {
2593 { "thread", thread_attributes, thread_children,
2594 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2595 start_thread, end_thread },
2596 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2597 };
2598
2599 const struct gdb_xml_element threads_elements[] = {
2600 { "threads", NULL, threads_children,
2601 GDB_XML_EF_NONE, NULL, NULL },
2602 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2603 };
2604
2605 /* Discard the contents of the constructed thread info context. */
2606
2607 static void
2608 clear_threads_parsing_context (void *p)
2609 {
2610 struct threads_parsing_context *context = p;
2611 int i;
2612 struct thread_item *item;
2613
2614 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2615 xfree (item->extra);
2616
2617 VEC_free (thread_item_t, context->items);
2618 }
2619
2620 #endif
2621
2622 /*
2623 * Find all threads for info threads command.
2624 * Uses new thread protocol contributed by Cisco.
2625 * Falls back and attempts to use the older method (above)
2626 * if the target doesn't respond to the new method.
2627 */
2628
2629 static void
2630 remote_threads_info (struct target_ops *ops)
2631 {
2632 struct remote_state *rs = get_remote_state ();
2633 char *bufp;
2634 ptid_t new_thread;
2635
2636 if (remote_desc == 0) /* paranoia */
2637 error (_("Command can only be used when connected to the remote target."));
2638
2639 #if defined(HAVE_LIBEXPAT)
2640 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2641 {
2642 char *xml = target_read_stralloc (&current_target,
2643 TARGET_OBJECT_THREADS, NULL);
2644
2645 struct cleanup *back_to = make_cleanup (xfree, xml);
2646
2647 if (xml && *xml)
2648 {
2649 struct threads_parsing_context context;
2650
2651 context.items = NULL;
2652 make_cleanup (clear_threads_parsing_context, &context);
2653
2654 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2655 threads_elements, xml, &context) == 0)
2656 {
2657 int i;
2658 struct thread_item *item;
2659
2660 for (i = 0;
2661 VEC_iterate (thread_item_t, context.items, i, item);
2662 ++i)
2663 {
2664 if (!ptid_equal (item->ptid, null_ptid))
2665 {
2666 struct private_thread_info *info;
2667 /* In non-stop mode, we assume new found threads
2668 are running until proven otherwise with a
2669 stop reply. In all-stop, we can only get
2670 here if all threads are stopped. */
2671 int running = non_stop ? 1 : 0;
2672
2673 remote_notice_new_inferior (item->ptid, running);
2674
2675 info = demand_private_info (item->ptid);
2676 info->core = item->core;
2677 info->extra = item->extra;
2678 item->extra = NULL;
2679 }
2680 }
2681 }
2682 }
2683
2684 do_cleanups (back_to);
2685 return;
2686 }
2687 #endif
2688
2689 if (use_threadinfo_query)
2690 {
2691 putpkt ("qfThreadInfo");
2692 getpkt (&rs->buf, &rs->buf_size, 0);
2693 bufp = rs->buf;
2694 if (bufp[0] != '\0') /* q packet recognized */
2695 {
2696 while (*bufp++ == 'm') /* reply contains one or more TID */
2697 {
2698 do
2699 {
2700 new_thread = read_ptid (bufp, &bufp);
2701 if (!ptid_equal (new_thread, null_ptid))
2702 {
2703 /* In non-stop mode, we assume new found threads
2704 are running until proven otherwise with a
2705 stop reply. In all-stop, we can only get
2706 here if all threads are stopped. */
2707 int running = non_stop ? 1 : 0;
2708
2709 remote_notice_new_inferior (new_thread, running);
2710 }
2711 }
2712 while (*bufp++ == ','); /* comma-separated list */
2713 putpkt ("qsThreadInfo");
2714 getpkt (&rs->buf, &rs->buf_size, 0);
2715 bufp = rs->buf;
2716 }
2717 return; /* done */
2718 }
2719 }
2720
2721 /* Only qfThreadInfo is supported in non-stop mode. */
2722 if (non_stop)
2723 return;
2724
2725 /* Else fall back to old method based on jmetzler protocol. */
2726 use_threadinfo_query = 0;
2727 remote_find_new_threads ();
2728 return;
2729 }
2730
2731 /*
2732 * Collect a descriptive string about the given thread.
2733 * The target may say anything it wants to about the thread
2734 * (typically info about its blocked / runnable state, name, etc.).
2735 * This string will appear in the info threads display.
2736 *
2737 * Optional: targets are not required to implement this function.
2738 */
2739
2740 static char *
2741 remote_threads_extra_info (struct thread_info *tp)
2742 {
2743 struct remote_state *rs = get_remote_state ();
2744 int result;
2745 int set;
2746 threadref id;
2747 struct gdb_ext_thread_info threadinfo;
2748 static char display_buf[100]; /* arbitrary... */
2749 int n = 0; /* position in display_buf */
2750
2751 if (remote_desc == 0) /* paranoia */
2752 internal_error (__FILE__, __LINE__,
2753 _("remote_threads_extra_info"));
2754
2755 if (ptid_equal (tp->ptid, magic_null_ptid)
2756 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2757 /* This is the main thread which was added by GDB. The remote
2758 server doesn't know about it. */
2759 return NULL;
2760
2761 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2762 {
2763 struct thread_info *info = find_thread_ptid (tp->ptid);
2764
2765 if (info && info->private)
2766 return info->private->extra;
2767 else
2768 return NULL;
2769 }
2770
2771 if (use_threadextra_query)
2772 {
2773 char *b = rs->buf;
2774 char *endb = rs->buf + get_remote_packet_size ();
2775
2776 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2777 b += strlen (b);
2778 write_ptid (b, endb, tp->ptid);
2779
2780 putpkt (rs->buf);
2781 getpkt (&rs->buf, &rs->buf_size, 0);
2782 if (rs->buf[0] != 0)
2783 {
2784 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2785 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2786 display_buf [result] = '\0';
2787 return display_buf;
2788 }
2789 }
2790
2791 /* If the above query fails, fall back to the old method. */
2792 use_threadextra_query = 0;
2793 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2794 | TAG_MOREDISPLAY | TAG_DISPLAY;
2795 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2796 if (remote_get_threadinfo (&id, set, &threadinfo))
2797 if (threadinfo.active)
2798 {
2799 if (*threadinfo.shortname)
2800 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2801 " Name: %s,", threadinfo.shortname);
2802 if (*threadinfo.display)
2803 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2804 " State: %s,", threadinfo.display);
2805 if (*threadinfo.more_display)
2806 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2807 " Priority: %s", threadinfo.more_display);
2808
2809 if (n > 0)
2810 {
2811 /* For purely cosmetic reasons, clear up trailing commas. */
2812 if (',' == display_buf[n-1])
2813 display_buf[n-1] = ' ';
2814 return display_buf;
2815 }
2816 }
2817 return NULL;
2818 }
2819 \f
2820
2821 static int
2822 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2823 struct static_tracepoint_marker *marker)
2824 {
2825 struct remote_state *rs = get_remote_state ();
2826 char *p = rs->buf;
2827
2828 sprintf (p, "qTSTMat:");
2829 p += strlen (p);
2830 p += hexnumstr (p, addr);
2831 putpkt (rs->buf);
2832 getpkt (&rs->buf, &rs->buf_size, 0);
2833 p = rs->buf;
2834
2835 if (*p == 'E')
2836 error (_("Remote failure reply: %s"), p);
2837
2838 if (*p++ == 'm')
2839 {
2840 parse_static_tracepoint_marker_definition (p, &p, marker);
2841 return 1;
2842 }
2843
2844 return 0;
2845 }
2846
2847 static void
2848 free_current_marker (void *arg)
2849 {
2850 struct static_tracepoint_marker **marker_p = arg;
2851
2852 if (*marker_p != NULL)
2853 {
2854 release_static_tracepoint_marker (*marker_p);
2855 xfree (*marker_p);
2856 }
2857 else
2858 *marker_p = NULL;
2859 }
2860
2861 static VEC(static_tracepoint_marker_p) *
2862 remote_static_tracepoint_markers_by_strid (const char *strid)
2863 {
2864 struct remote_state *rs = get_remote_state ();
2865 VEC(static_tracepoint_marker_p) *markers = NULL;
2866 struct static_tracepoint_marker *marker = NULL;
2867 struct cleanup *old_chain;
2868 char *p;
2869
2870 /* Ask for a first packet of static tracepoint marker
2871 definition. */
2872 putpkt ("qTfSTM");
2873 getpkt (&rs->buf, &rs->buf_size, 0);
2874 p = rs->buf;
2875 if (*p == 'E')
2876 error (_("Remote failure reply: %s"), p);
2877
2878 old_chain = make_cleanup (free_current_marker, &marker);
2879
2880 while (*p++ == 'm')
2881 {
2882 if (marker == NULL)
2883 marker = XCNEW (struct static_tracepoint_marker);
2884
2885 do
2886 {
2887 parse_static_tracepoint_marker_definition (p, &p, marker);
2888
2889 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2890 {
2891 VEC_safe_push (static_tracepoint_marker_p,
2892 markers, marker);
2893 marker = NULL;
2894 }
2895 else
2896 {
2897 release_static_tracepoint_marker (marker);
2898 memset (marker, 0, sizeof (*marker));
2899 }
2900 }
2901 while (*p++ == ','); /* comma-separated list */
2902 /* Ask for another packet of static tracepoint definition. */
2903 putpkt ("qTsSTM");
2904 getpkt (&rs->buf, &rs->buf_size, 0);
2905 p = rs->buf;
2906 }
2907
2908 do_cleanups (old_chain);
2909 return markers;
2910 }
2911
2912 \f
2913 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2914
2915 static ptid_t
2916 remote_get_ada_task_ptid (long lwp, long thread)
2917 {
2918 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2919 }
2920 \f
2921
2922 /* Restart the remote side; this is an extended protocol operation. */
2923
2924 static void
2925 extended_remote_restart (void)
2926 {
2927 struct remote_state *rs = get_remote_state ();
2928
2929 /* Send the restart command; for reasons I don't understand the
2930 remote side really expects a number after the "R". */
2931 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2932 putpkt (rs->buf);
2933
2934 remote_fileio_reset ();
2935 }
2936 \f
2937 /* Clean up connection to a remote debugger. */
2938
2939 static void
2940 remote_close (int quitting)
2941 {
2942 if (remote_desc == NULL)
2943 return; /* already closed */
2944
2945 /* Make sure we leave stdin registered in the event loop, and we
2946 don't leave the async SIGINT signal handler installed. */
2947 remote_terminal_ours ();
2948
2949 serial_close (remote_desc);
2950 remote_desc = NULL;
2951
2952 /* We don't have a connection to the remote stub anymore. Get rid
2953 of all the inferiors and their threads we were controlling.
2954 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2955 will be unable to find the thread corresponding to (pid, 0, 0). */
2956 inferior_ptid = null_ptid;
2957 discard_all_inferiors ();
2958
2959 /* We're no longer interested in any of these events. */
2960 discard_pending_stop_replies (-1);
2961
2962 if (remote_async_inferior_event_token)
2963 delete_async_event_handler (&remote_async_inferior_event_token);
2964 if (remote_async_get_pending_events_token)
2965 delete_async_event_handler (&remote_async_get_pending_events_token);
2966 }
2967
2968 /* Query the remote side for the text, data and bss offsets. */
2969
2970 static void
2971 get_offsets (void)
2972 {
2973 struct remote_state *rs = get_remote_state ();
2974 char *buf;
2975 char *ptr;
2976 int lose, num_segments = 0, do_sections, do_segments;
2977 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2978 struct section_offsets *offs;
2979 struct symfile_segment_data *data;
2980
2981 if (symfile_objfile == NULL)
2982 return;
2983
2984 putpkt ("qOffsets");
2985 getpkt (&rs->buf, &rs->buf_size, 0);
2986 buf = rs->buf;
2987
2988 if (buf[0] == '\000')
2989 return; /* Return silently. Stub doesn't support
2990 this command. */
2991 if (buf[0] == 'E')
2992 {
2993 warning (_("Remote failure reply: %s"), buf);
2994 return;
2995 }
2996
2997 /* Pick up each field in turn. This used to be done with scanf, but
2998 scanf will make trouble if CORE_ADDR size doesn't match
2999 conversion directives correctly. The following code will work
3000 with any size of CORE_ADDR. */
3001 text_addr = data_addr = bss_addr = 0;
3002 ptr = buf;
3003 lose = 0;
3004
3005 if (strncmp (ptr, "Text=", 5) == 0)
3006 {
3007 ptr += 5;
3008 /* Don't use strtol, could lose on big values. */
3009 while (*ptr && *ptr != ';')
3010 text_addr = (text_addr << 4) + fromhex (*ptr++);
3011
3012 if (strncmp (ptr, ";Data=", 6) == 0)
3013 {
3014 ptr += 6;
3015 while (*ptr && *ptr != ';')
3016 data_addr = (data_addr << 4) + fromhex (*ptr++);
3017 }
3018 else
3019 lose = 1;
3020
3021 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3022 {
3023 ptr += 5;
3024 while (*ptr && *ptr != ';')
3025 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3026
3027 if (bss_addr != data_addr)
3028 warning (_("Target reported unsupported offsets: %s"), buf);
3029 }
3030 else
3031 lose = 1;
3032 }
3033 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3034 {
3035 ptr += 8;
3036 /* Don't use strtol, could lose on big values. */
3037 while (*ptr && *ptr != ';')
3038 text_addr = (text_addr << 4) + fromhex (*ptr++);
3039 num_segments = 1;
3040
3041 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3042 {
3043 ptr += 9;
3044 while (*ptr && *ptr != ';')
3045 data_addr = (data_addr << 4) + fromhex (*ptr++);
3046 num_segments++;
3047 }
3048 }
3049 else
3050 lose = 1;
3051
3052 if (lose)
3053 error (_("Malformed response to offset query, %s"), buf);
3054 else if (*ptr != '\0')
3055 warning (_("Target reported unsupported offsets: %s"), buf);
3056
3057 offs = ((struct section_offsets *)
3058 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3059 memcpy (offs, symfile_objfile->section_offsets,
3060 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3061
3062 data = get_symfile_segment_data (symfile_objfile->obfd);
3063 do_segments = (data != NULL);
3064 do_sections = num_segments == 0;
3065
3066 if (num_segments > 0)
3067 {
3068 segments[0] = text_addr;
3069 segments[1] = data_addr;
3070 }
3071 /* If we have two segments, we can still try to relocate everything
3072 by assuming that the .text and .data offsets apply to the whole
3073 text and data segments. Convert the offsets given in the packet
3074 to base addresses for symfile_map_offsets_to_segments. */
3075 else if (data && data->num_segments == 2)
3076 {
3077 segments[0] = data->segment_bases[0] + text_addr;
3078 segments[1] = data->segment_bases[1] + data_addr;
3079 num_segments = 2;
3080 }
3081 /* If the object file has only one segment, assume that it is text
3082 rather than data; main programs with no writable data are rare,
3083 but programs with no code are useless. Of course the code might
3084 have ended up in the data segment... to detect that we would need
3085 the permissions here. */
3086 else if (data && data->num_segments == 1)
3087 {
3088 segments[0] = data->segment_bases[0] + text_addr;
3089 num_segments = 1;
3090 }
3091 /* There's no way to relocate by segment. */
3092 else
3093 do_segments = 0;
3094
3095 if (do_segments)
3096 {
3097 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3098 offs, num_segments, segments);
3099
3100 if (ret == 0 && !do_sections)
3101 error (_("Can not handle qOffsets TextSeg "
3102 "response with this symbol file"));
3103
3104 if (ret > 0)
3105 do_sections = 0;
3106 }
3107
3108 if (data)
3109 free_symfile_segment_data (data);
3110
3111 if (do_sections)
3112 {
3113 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3114
3115 /* This is a temporary kludge to force data and bss to use the
3116 same offsets because that's what nlmconv does now. The real
3117 solution requires changes to the stub and remote.c that I
3118 don't have time to do right now. */
3119
3120 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3121 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3122 }
3123
3124 objfile_relocate (symfile_objfile, offs);
3125 }
3126
3127 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3128 threads we know are stopped already. This is used during the
3129 initial remote connection in non-stop mode --- threads that are
3130 reported as already being stopped are left stopped. */
3131
3132 static int
3133 set_stop_requested_callback (struct thread_info *thread, void *data)
3134 {
3135 /* If we have a stop reply for this thread, it must be stopped. */
3136 if (peek_stop_reply (thread->ptid))
3137 set_stop_requested (thread->ptid, 1);
3138
3139 return 0;
3140 }
3141
3142 /* Send interrupt_sequence to remote target. */
3143 static void
3144 send_interrupt_sequence (void)
3145 {
3146 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3147 serial_write (remote_desc, "\x03", 1);
3148 else if (interrupt_sequence_mode == interrupt_sequence_break)
3149 serial_send_break (remote_desc);
3150 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3151 {
3152 serial_send_break (remote_desc);
3153 serial_write (remote_desc, "g", 1);
3154 }
3155 else
3156 internal_error (__FILE__, __LINE__,
3157 _("Invalid value for interrupt_sequence_mode: %s."),
3158 interrupt_sequence_mode);
3159 }
3160
3161 /* Query the remote target for which is the current thread/process,
3162 add it to our tables, and update INFERIOR_PTID. The caller is
3163 responsible for setting the state such that the remote end is ready
3164 to return the current thread. */
3165
3166 static void
3167 add_current_inferior_and_thread (void)
3168 {
3169 struct remote_state *rs = get_remote_state ();
3170 int fake_pid_p = 0;
3171 ptid_t ptid;
3172
3173 inferior_ptid = null_ptid;
3174
3175 /* Now, if we have thread information, update inferior_ptid. */
3176 ptid = remote_current_thread (inferior_ptid);
3177 if (!ptid_equal (ptid, null_ptid))
3178 {
3179 if (!remote_multi_process_p (rs))
3180 fake_pid_p = 1;
3181
3182 inferior_ptid = ptid;
3183 }
3184 else
3185 {
3186 /* Without this, some commands which require an active target
3187 (such as kill) won't work. This variable serves (at least)
3188 double duty as both the pid of the target process (if it has
3189 such), and as a flag indicating that a target is active. */
3190 inferior_ptid = magic_null_ptid;
3191 fake_pid_p = 1;
3192 }
3193
3194 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3195
3196 /* Add the main thread. */
3197 add_thread_silent (inferior_ptid);
3198 }
3199
3200 static void
3201 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3202 {
3203 struct remote_state *rs = get_remote_state ();
3204 struct packet_config *noack_config;
3205 char *wait_status = NULL;
3206
3207 immediate_quit++; /* Allow user to interrupt it. */
3208
3209 if (interrupt_on_connect)
3210 send_interrupt_sequence ();
3211
3212 /* Ack any packet which the remote side has already sent. */
3213 serial_write (remote_desc, "+", 1);
3214
3215 /* The first packet we send to the target is the optional "supported
3216 packets" request. If the target can answer this, it will tell us
3217 which later probes to skip. */
3218 remote_query_supported ();
3219
3220 /* If the stub wants to get a QAllow, compose one and send it. */
3221 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3222 remote_set_permissions ();
3223
3224 /* Next, we possibly activate noack mode.
3225
3226 If the QStartNoAckMode packet configuration is set to AUTO,
3227 enable noack mode if the stub reported a wish for it with
3228 qSupported.
3229
3230 If set to TRUE, then enable noack mode even if the stub didn't
3231 report it in qSupported. If the stub doesn't reply OK, the
3232 session ends with an error.
3233
3234 If FALSE, then don't activate noack mode, regardless of what the
3235 stub claimed should be the default with qSupported. */
3236
3237 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3238
3239 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3240 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3241 && noack_config->support == PACKET_ENABLE))
3242 {
3243 putpkt ("QStartNoAckMode");
3244 getpkt (&rs->buf, &rs->buf_size, 0);
3245 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3246 rs->noack_mode = 1;
3247 }
3248
3249 if (extended_p)
3250 {
3251 /* Tell the remote that we are using the extended protocol. */
3252 putpkt ("!");
3253 getpkt (&rs->buf, &rs->buf_size, 0);
3254 }
3255
3256 /* Next, if the target can specify a description, read it. We do
3257 this before anything involving memory or registers. */
3258 target_find_description ();
3259
3260 /* Next, now that we know something about the target, update the
3261 address spaces in the program spaces. */
3262 update_address_spaces ();
3263
3264 /* On OSs where the list of libraries is global to all
3265 processes, we fetch them early. */
3266 if (gdbarch_has_global_solist (target_gdbarch))
3267 solib_add (NULL, from_tty, target, auto_solib_add);
3268
3269 if (non_stop)
3270 {
3271 if (!rs->non_stop_aware)
3272 error (_("Non-stop mode requested, but remote "
3273 "does not support non-stop"));
3274
3275 putpkt ("QNonStop:1");
3276 getpkt (&rs->buf, &rs->buf_size, 0);
3277
3278 if (strcmp (rs->buf, "OK") != 0)
3279 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3280
3281 /* Find about threads and processes the stub is already
3282 controlling. We default to adding them in the running state.
3283 The '?' query below will then tell us about which threads are
3284 stopped. */
3285 remote_threads_info (target);
3286 }
3287 else if (rs->non_stop_aware)
3288 {
3289 /* Don't assume that the stub can operate in all-stop mode.
3290 Request it explicitely. */
3291 putpkt ("QNonStop:0");
3292 getpkt (&rs->buf, &rs->buf_size, 0);
3293
3294 if (strcmp (rs->buf, "OK") != 0)
3295 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3296 }
3297
3298 /* Check whether the target is running now. */
3299 putpkt ("?");
3300 getpkt (&rs->buf, &rs->buf_size, 0);
3301
3302 if (!non_stop)
3303 {
3304 ptid_t ptid;
3305 int fake_pid_p = 0;
3306 struct inferior *inf;
3307
3308 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3309 {
3310 if (!extended_p)
3311 error (_("The target is not running (try extended-remote?)"));
3312
3313 /* We're connected, but not running. Drop out before we
3314 call start_remote. */
3315 return;
3316 }
3317 else
3318 {
3319 /* Save the reply for later. */
3320 wait_status = alloca (strlen (rs->buf) + 1);
3321 strcpy (wait_status, rs->buf);
3322 }
3323
3324 /* Let the stub know that we want it to return the thread. */
3325 set_continue_thread (minus_one_ptid);
3326
3327 add_current_inferior_and_thread ();
3328
3329 /* init_wait_for_inferior should be called before get_offsets in order
3330 to manage `inserted' flag in bp loc in a correct state.
3331 breakpoint_init_inferior, called from init_wait_for_inferior, set
3332 `inserted' flag to 0, while before breakpoint_re_set, called from
3333 start_remote, set `inserted' flag to 1. In the initialization of
3334 inferior, breakpoint_init_inferior should be called first, and then
3335 breakpoint_re_set can be called. If this order is broken, state of
3336 `inserted' flag is wrong, and cause some problems on breakpoint
3337 manipulation. */
3338 init_wait_for_inferior ();
3339
3340 get_offsets (); /* Get text, data & bss offsets. */
3341
3342 /* If we could not find a description using qXfer, and we know
3343 how to do it some other way, try again. This is not
3344 supported for non-stop; it could be, but it is tricky if
3345 there are no stopped threads when we connect. */
3346 if (remote_read_description_p (target)
3347 && gdbarch_target_desc (target_gdbarch) == NULL)
3348 {
3349 target_clear_description ();
3350 target_find_description ();
3351 }
3352
3353 /* Use the previously fetched status. */
3354 gdb_assert (wait_status != NULL);
3355 strcpy (rs->buf, wait_status);
3356 rs->cached_wait_status = 1;
3357
3358 immediate_quit--;
3359 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3360 }
3361 else
3362 {
3363 /* Clear WFI global state. Do this before finding about new
3364 threads and inferiors, and setting the current inferior.
3365 Otherwise we would clear the proceed status of the current
3366 inferior when we want its stop_soon state to be preserved
3367 (see notice_new_inferior). */
3368 init_wait_for_inferior ();
3369
3370 /* In non-stop, we will either get an "OK", meaning that there
3371 are no stopped threads at this time; or, a regular stop
3372 reply. In the latter case, there may be more than one thread
3373 stopped --- we pull them all out using the vStopped
3374 mechanism. */
3375 if (strcmp (rs->buf, "OK") != 0)
3376 {
3377 struct stop_reply *stop_reply;
3378 struct cleanup *old_chain;
3379
3380 stop_reply = stop_reply_xmalloc ();
3381 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3382
3383 remote_parse_stop_reply (rs->buf, stop_reply);
3384 discard_cleanups (old_chain);
3385
3386 /* get_pending_stop_replies acks this one, and gets the rest
3387 out. */
3388 pending_stop_reply = stop_reply;
3389 remote_get_pending_stop_replies ();
3390
3391 /* Make sure that threads that were stopped remain
3392 stopped. */
3393 iterate_over_threads (set_stop_requested_callback, NULL);
3394 }
3395
3396 if (target_can_async_p ())
3397 target_async (inferior_event_handler, 0);
3398
3399 if (thread_count () == 0)
3400 {
3401 if (!extended_p)
3402 error (_("The target is not running (try extended-remote?)"));
3403
3404 /* We're connected, but not running. Drop out before we
3405 call start_remote. */
3406 return;
3407 }
3408
3409 /* Let the stub know that we want it to return the thread. */
3410
3411 /* Force the stub to choose a thread. */
3412 set_general_thread (null_ptid);
3413
3414 /* Query it. */
3415 inferior_ptid = remote_current_thread (minus_one_ptid);
3416 if (ptid_equal (inferior_ptid, minus_one_ptid))
3417 error (_("remote didn't report the current thread in non-stop mode"));
3418
3419 get_offsets (); /* Get text, data & bss offsets. */
3420
3421 /* In non-stop mode, any cached wait status will be stored in
3422 the stop reply queue. */
3423 gdb_assert (wait_status == NULL);
3424
3425 /* Report all signals during attach/startup. */
3426 remote_pass_signals (0, NULL);
3427 }
3428
3429 /* If we connected to a live target, do some additional setup. */
3430 if (target_has_execution)
3431 {
3432 if (exec_bfd) /* No use without an exec file. */
3433 remote_check_symbols (symfile_objfile);
3434 }
3435
3436 /* Possibly the target has been engaged in a trace run started
3437 previously; find out where things are at. */
3438 if (remote_get_trace_status (current_trace_status ()) != -1)
3439 {
3440 struct uploaded_tp *uploaded_tps = NULL;
3441 struct uploaded_tsv *uploaded_tsvs = NULL;
3442
3443 if (current_trace_status ()->running)
3444 printf_filtered (_("Trace is already running on the target.\n"));
3445
3446 /* Get trace state variables first, they may be checked when
3447 parsing uploaded commands. */
3448
3449 remote_upload_trace_state_variables (&uploaded_tsvs);
3450
3451 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3452
3453 remote_upload_tracepoints (&uploaded_tps);
3454
3455 merge_uploaded_tracepoints (&uploaded_tps);
3456 }
3457
3458 /* If breakpoints are global, insert them now. */
3459 if (gdbarch_has_global_breakpoints (target_gdbarch)
3460 && breakpoints_always_inserted_mode ())
3461 insert_breakpoints ();
3462 }
3463
3464 /* Open a connection to a remote debugger.
3465 NAME is the filename used for communication. */
3466
3467 static void
3468 remote_open (char *name, int from_tty)
3469 {
3470 remote_open_1 (name, from_tty, &remote_ops, 0);
3471 }
3472
3473 /* Open a connection to a remote debugger using the extended
3474 remote gdb protocol. NAME is the filename used for communication. */
3475
3476 static void
3477 extended_remote_open (char *name, int from_tty)
3478 {
3479 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3480 }
3481
3482 /* Generic code for opening a connection to a remote target. */
3483
3484 static void
3485 init_all_packet_configs (void)
3486 {
3487 int i;
3488
3489 for (i = 0; i < PACKET_MAX; i++)
3490 update_packet_config (&remote_protocol_packets[i]);
3491 }
3492
3493 /* Symbol look-up. */
3494
3495 static void
3496 remote_check_symbols (struct objfile *objfile)
3497 {
3498 struct remote_state *rs = get_remote_state ();
3499 char *msg, *reply, *tmp;
3500 struct minimal_symbol *sym;
3501 int end;
3502
3503 /* The remote side has no concept of inferiors that aren't running
3504 yet, it only knows about running processes. If we're connected
3505 but our current inferior is not running, we should not invite the
3506 remote target to request symbol lookups related to its
3507 (unrelated) current process. */
3508 if (!target_has_execution)
3509 return;
3510
3511 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3512 return;
3513
3514 /* Make sure the remote is pointing at the right process. Note
3515 there's no way to select "no process". */
3516 set_general_process ();
3517
3518 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3519 because we need both at the same time. */
3520 msg = alloca (get_remote_packet_size ());
3521
3522 /* Invite target to request symbol lookups. */
3523
3524 putpkt ("qSymbol::");
3525 getpkt (&rs->buf, &rs->buf_size, 0);
3526 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3527 reply = rs->buf;
3528
3529 while (strncmp (reply, "qSymbol:", 8) == 0)
3530 {
3531 tmp = &reply[8];
3532 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3533 msg[end] = '\0';
3534 sym = lookup_minimal_symbol (msg, NULL, NULL);
3535 if (sym == NULL)
3536 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3537 else
3538 {
3539 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3540 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3541
3542 /* If this is a function address, return the start of code
3543 instead of any data function descriptor. */
3544 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3545 sym_addr,
3546 &current_target);
3547
3548 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3549 phex_nz (sym_addr, addr_size), &reply[8]);
3550 }
3551
3552 putpkt (msg);
3553 getpkt (&rs->buf, &rs->buf_size, 0);
3554 reply = rs->buf;
3555 }
3556 }
3557
3558 static struct serial *
3559 remote_serial_open (char *name)
3560 {
3561 static int udp_warning = 0;
3562
3563 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3564 of in ser-tcp.c, because it is the remote protocol assuming that the
3565 serial connection is reliable and not the serial connection promising
3566 to be. */
3567 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3568 {
3569 warning (_("The remote protocol may be unreliable over UDP.\n"
3570 "Some events may be lost, rendering further debugging "
3571 "impossible."));
3572 udp_warning = 1;
3573 }
3574
3575 return serial_open (name);
3576 }
3577
3578 /* Inform the target of our permission settings. The permission flags
3579 work without this, but if the target knows the settings, it can do
3580 a couple things. First, it can add its own check, to catch cases
3581 that somehow manage to get by the permissions checks in target
3582 methods. Second, if the target is wired to disallow particular
3583 settings (for instance, a system in the field that is not set up to
3584 be able to stop at a breakpoint), it can object to any unavailable
3585 permissions. */
3586
3587 void
3588 remote_set_permissions (void)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591
3592 sprintf (rs->buf, "QAllow:"
3593 "WriteReg:%x;WriteMem:%x;"
3594 "InsertBreak:%x;InsertTrace:%x;"
3595 "InsertFastTrace:%x;Stop:%x",
3596 may_write_registers, may_write_memory,
3597 may_insert_breakpoints, may_insert_tracepoints,
3598 may_insert_fast_tracepoints, may_stop);
3599 putpkt (rs->buf);
3600 getpkt (&rs->buf, &rs->buf_size, 0);
3601
3602 /* If the target didn't like the packet, warn the user. Do not try
3603 to undo the user's settings, that would just be maddening. */
3604 if (strcmp (rs->buf, "OK") != 0)
3605 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3606 }
3607
3608 /* This type describes each known response to the qSupported
3609 packet. */
3610 struct protocol_feature
3611 {
3612 /* The name of this protocol feature. */
3613 const char *name;
3614
3615 /* The default for this protocol feature. */
3616 enum packet_support default_support;
3617
3618 /* The function to call when this feature is reported, or after
3619 qSupported processing if the feature is not supported.
3620 The first argument points to this structure. The second
3621 argument indicates whether the packet requested support be
3622 enabled, disabled, or probed (or the default, if this function
3623 is being called at the end of processing and this feature was
3624 not reported). The third argument may be NULL; if not NULL, it
3625 is a NUL-terminated string taken from the packet following
3626 this feature's name and an equals sign. */
3627 void (*func) (const struct protocol_feature *, enum packet_support,
3628 const char *);
3629
3630 /* The corresponding packet for this feature. Only used if
3631 FUNC is remote_supported_packet. */
3632 int packet;
3633 };
3634
3635 static void
3636 remote_supported_packet (const struct protocol_feature *feature,
3637 enum packet_support support,
3638 const char *argument)
3639 {
3640 if (argument)
3641 {
3642 warning (_("Remote qSupported response supplied an unexpected value for"
3643 " \"%s\"."), feature->name);
3644 return;
3645 }
3646
3647 if (remote_protocol_packets[feature->packet].support
3648 == PACKET_SUPPORT_UNKNOWN)
3649 remote_protocol_packets[feature->packet].support = support;
3650 }
3651
3652 static void
3653 remote_packet_size (const struct protocol_feature *feature,
3654 enum packet_support support, const char *value)
3655 {
3656 struct remote_state *rs = get_remote_state ();
3657
3658 int packet_size;
3659 char *value_end;
3660
3661 if (support != PACKET_ENABLE)
3662 return;
3663
3664 if (value == NULL || *value == '\0')
3665 {
3666 warning (_("Remote target reported \"%s\" without a size."),
3667 feature->name);
3668 return;
3669 }
3670
3671 errno = 0;
3672 packet_size = strtol (value, &value_end, 16);
3673 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3674 {
3675 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3676 feature->name, value);
3677 return;
3678 }
3679
3680 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3681 {
3682 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3683 packet_size, MAX_REMOTE_PACKET_SIZE);
3684 packet_size = MAX_REMOTE_PACKET_SIZE;
3685 }
3686
3687 /* Record the new maximum packet size. */
3688 rs->explicit_packet_size = packet_size;
3689 }
3690
3691 static void
3692 remote_multi_process_feature (const struct protocol_feature *feature,
3693 enum packet_support support, const char *value)
3694 {
3695 struct remote_state *rs = get_remote_state ();
3696
3697 rs->multi_process_aware = (support == PACKET_ENABLE);
3698 }
3699
3700 static void
3701 remote_non_stop_feature (const struct protocol_feature *feature,
3702 enum packet_support support, const char *value)
3703 {
3704 struct remote_state *rs = get_remote_state ();
3705
3706 rs->non_stop_aware = (support == PACKET_ENABLE);
3707 }
3708
3709 static void
3710 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3711 enum packet_support support,
3712 const char *value)
3713 {
3714 struct remote_state *rs = get_remote_state ();
3715
3716 rs->cond_tracepoints = (support == PACKET_ENABLE);
3717 }
3718
3719 static void
3720 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3721 enum packet_support support,
3722 const char *value)
3723 {
3724 struct remote_state *rs = get_remote_state ();
3725
3726 rs->fast_tracepoints = (support == PACKET_ENABLE);
3727 }
3728
3729 static void
3730 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3731 enum packet_support support,
3732 const char *value)
3733 {
3734 struct remote_state *rs = get_remote_state ();
3735
3736 rs->static_tracepoints = (support == PACKET_ENABLE);
3737 }
3738
3739 static void
3740 remote_install_in_trace_feature (const struct protocol_feature *feature,
3741 enum packet_support support,
3742 const char *value)
3743 {
3744 struct remote_state *rs = get_remote_state ();
3745
3746 rs->install_in_trace = (support == PACKET_ENABLE);
3747 }
3748
3749 static void
3750 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3751 enum packet_support support,
3752 const char *value)
3753 {
3754 struct remote_state *rs = get_remote_state ();
3755
3756 rs->disconnected_tracing = (support == PACKET_ENABLE);
3757 }
3758
3759 static void
3760 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3761 enum packet_support support,
3762 const char *value)
3763 {
3764 struct remote_state *rs = get_remote_state ();
3765
3766 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3767 }
3768
3769 static void
3770 remote_string_tracing_feature (const struct protocol_feature *feature,
3771 enum packet_support support,
3772 const char *value)
3773 {
3774 struct remote_state *rs = get_remote_state ();
3775
3776 rs->string_tracing = (support == PACKET_ENABLE);
3777 }
3778
3779 static struct protocol_feature remote_protocol_features[] = {
3780 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3781 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3782 PACKET_qXfer_auxv },
3783 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3784 PACKET_qXfer_features },
3785 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3786 PACKET_qXfer_libraries },
3787 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3788 PACKET_qXfer_libraries_svr4 },
3789 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3790 PACKET_qXfer_memory_map },
3791 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3792 PACKET_qXfer_spu_read },
3793 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3794 PACKET_qXfer_spu_write },
3795 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3796 PACKET_qXfer_osdata },
3797 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3798 PACKET_qXfer_threads },
3799 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3800 PACKET_qXfer_traceframe_info },
3801 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3802 PACKET_QPassSignals },
3803 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3804 PACKET_QStartNoAckMode },
3805 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3806 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3807 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3808 PACKET_qXfer_siginfo_read },
3809 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3810 PACKET_qXfer_siginfo_write },
3811 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3812 PACKET_ConditionalTracepoints },
3813 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3814 PACKET_FastTracepoints },
3815 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3816 PACKET_StaticTracepoints },
3817 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3818 PACKET_InstallInTrace},
3819 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3820 -1 },
3821 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3822 PACKET_bc },
3823 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3824 PACKET_bs },
3825 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3826 PACKET_TracepointSource },
3827 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3828 PACKET_QAllow },
3829 { "EnableDisableTracepoints", PACKET_DISABLE,
3830 remote_enable_disable_tracepoint_feature, -1 },
3831 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3832 PACKET_qXfer_fdpic },
3833 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3834 PACKET_QDisableRandomization },
3835 { "tracenz", PACKET_DISABLE,
3836 remote_string_tracing_feature, -1 },
3837 };
3838
3839 static char *remote_support_xml;
3840
3841 /* Register string appended to "xmlRegisters=" in qSupported query. */
3842
3843 void
3844 register_remote_support_xml (const char *xml)
3845 {
3846 #if defined(HAVE_LIBEXPAT)
3847 if (remote_support_xml == NULL)
3848 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3849 else
3850 {
3851 char *copy = xstrdup (remote_support_xml + 13);
3852 char *p = strtok (copy, ",");
3853
3854 do
3855 {
3856 if (strcmp (p, xml) == 0)
3857 {
3858 /* already there */
3859 xfree (copy);
3860 return;
3861 }
3862 }
3863 while ((p = strtok (NULL, ",")) != NULL);
3864 xfree (copy);
3865
3866 remote_support_xml = reconcat (remote_support_xml,
3867 remote_support_xml, ",", xml,
3868 (char *) NULL);
3869 }
3870 #endif
3871 }
3872
3873 static char *
3874 remote_query_supported_append (char *msg, const char *append)
3875 {
3876 if (msg)
3877 return reconcat (msg, msg, ";", append, (char *) NULL);
3878 else
3879 return xstrdup (append);
3880 }
3881
3882 static void
3883 remote_query_supported (void)
3884 {
3885 struct remote_state *rs = get_remote_state ();
3886 char *next;
3887 int i;
3888 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3889
3890 /* The packet support flags are handled differently for this packet
3891 than for most others. We treat an error, a disabled packet, and
3892 an empty response identically: any features which must be reported
3893 to be used will be automatically disabled. An empty buffer
3894 accomplishes this, since that is also the representation for a list
3895 containing no features. */
3896
3897 rs->buf[0] = 0;
3898 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3899 {
3900 char *q = NULL;
3901 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3902
3903 q = remote_query_supported_append (q, "multiprocess+");
3904
3905 if (remote_support_xml)
3906 q = remote_query_supported_append (q, remote_support_xml);
3907
3908 q = remote_query_supported_append (q, "qRelocInsn+");
3909
3910 q = reconcat (q, "qSupported:", q, (char *) NULL);
3911 putpkt (q);
3912
3913 do_cleanups (old_chain);
3914
3915 getpkt (&rs->buf, &rs->buf_size, 0);
3916
3917 /* If an error occured, warn, but do not return - just reset the
3918 buffer to empty and go on to disable features. */
3919 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3920 == PACKET_ERROR)
3921 {
3922 warning (_("Remote failure reply: %s"), rs->buf);
3923 rs->buf[0] = 0;
3924 }
3925 }
3926
3927 memset (seen, 0, sizeof (seen));
3928
3929 next = rs->buf;
3930 while (*next)
3931 {
3932 enum packet_support is_supported;
3933 char *p, *end, *name_end, *value;
3934
3935 /* First separate out this item from the rest of the packet. If
3936 there's another item after this, we overwrite the separator
3937 (terminated strings are much easier to work with). */
3938 p = next;
3939 end = strchr (p, ';');
3940 if (end == NULL)
3941 {
3942 end = p + strlen (p);
3943 next = end;
3944 }
3945 else
3946 {
3947 *end = '\0';
3948 next = end + 1;
3949
3950 if (end == p)
3951 {
3952 warning (_("empty item in \"qSupported\" response"));
3953 continue;
3954 }
3955 }
3956
3957 name_end = strchr (p, '=');
3958 if (name_end)
3959 {
3960 /* This is a name=value entry. */
3961 is_supported = PACKET_ENABLE;
3962 value = name_end + 1;
3963 *name_end = '\0';
3964 }
3965 else
3966 {
3967 value = NULL;
3968 switch (end[-1])
3969 {
3970 case '+':
3971 is_supported = PACKET_ENABLE;
3972 break;
3973
3974 case '-':
3975 is_supported = PACKET_DISABLE;
3976 break;
3977
3978 case '?':
3979 is_supported = PACKET_SUPPORT_UNKNOWN;
3980 break;
3981
3982 default:
3983 warning (_("unrecognized item \"%s\" "
3984 "in \"qSupported\" response"), p);
3985 continue;
3986 }
3987 end[-1] = '\0';
3988 }
3989
3990 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3991 if (strcmp (remote_protocol_features[i].name, p) == 0)
3992 {
3993 const struct protocol_feature *feature;
3994
3995 seen[i] = 1;
3996 feature = &remote_protocol_features[i];
3997 feature->func (feature, is_supported, value);
3998 break;
3999 }
4000 }
4001
4002 /* If we increased the packet size, make sure to increase the global
4003 buffer size also. We delay this until after parsing the entire
4004 qSupported packet, because this is the same buffer we were
4005 parsing. */
4006 if (rs->buf_size < rs->explicit_packet_size)
4007 {
4008 rs->buf_size = rs->explicit_packet_size;
4009 rs->buf = xrealloc (rs->buf, rs->buf_size);
4010 }
4011
4012 /* Handle the defaults for unmentioned features. */
4013 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4014 if (!seen[i])
4015 {
4016 const struct protocol_feature *feature;
4017
4018 feature = &remote_protocol_features[i];
4019 feature->func (feature, feature->default_support, NULL);
4020 }
4021 }
4022
4023
4024 static void
4025 remote_open_1 (char *name, int from_tty,
4026 struct target_ops *target, int extended_p)
4027 {
4028 struct remote_state *rs = get_remote_state ();
4029
4030 if (name == 0)
4031 error (_("To open a remote debug connection, you need to specify what\n"
4032 "serial device is attached to the remote system\n"
4033 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4034
4035 /* See FIXME above. */
4036 if (!target_async_permitted)
4037 wait_forever_enabled_p = 1;
4038
4039 /* If we're connected to a running target, target_preopen will kill it.
4040 But if we're connected to a target system with no running process,
4041 then we will still be connected when it returns. Ask this question
4042 first, before target_preopen has a chance to kill anything. */
4043 if (remote_desc != NULL && !have_inferiors ())
4044 {
4045 if (!from_tty
4046 || query (_("Already connected to a remote target. Disconnect? ")))
4047 pop_target ();
4048 else
4049 error (_("Still connected."));
4050 }
4051
4052 target_preopen (from_tty);
4053
4054 unpush_target (target);
4055
4056 /* This time without a query. If we were connected to an
4057 extended-remote target and target_preopen killed the running
4058 process, we may still be connected. If we are starting "target
4059 remote" now, the extended-remote target will not have been
4060 removed by unpush_target. */
4061 if (remote_desc != NULL && !have_inferiors ())
4062 pop_target ();
4063
4064 /* Make sure we send the passed signals list the next time we resume. */
4065 xfree (last_pass_packet);
4066 last_pass_packet = NULL;
4067
4068 remote_fileio_reset ();
4069 reopen_exec_file ();
4070 reread_symbols ();
4071
4072 remote_desc = remote_serial_open (name);
4073 if (!remote_desc)
4074 perror_with_name (name);
4075
4076 if (baud_rate != -1)
4077 {
4078 if (serial_setbaudrate (remote_desc, baud_rate))
4079 {
4080 /* The requested speed could not be set. Error out to
4081 top level after closing remote_desc. Take care to
4082 set remote_desc to NULL to avoid closing remote_desc
4083 more than once. */
4084 serial_close (remote_desc);
4085 remote_desc = NULL;
4086 perror_with_name (name);
4087 }
4088 }
4089
4090 serial_raw (remote_desc);
4091
4092 /* If there is something sitting in the buffer we might take it as a
4093 response to a command, which would be bad. */
4094 serial_flush_input (remote_desc);
4095
4096 if (from_tty)
4097 {
4098 puts_filtered ("Remote debugging using ");
4099 puts_filtered (name);
4100 puts_filtered ("\n");
4101 }
4102 push_target (target); /* Switch to using remote target now. */
4103
4104 /* Register extra event sources in the event loop. */
4105 remote_async_inferior_event_token
4106 = create_async_event_handler (remote_async_inferior_event_handler,
4107 NULL);
4108 remote_async_get_pending_events_token
4109 = create_async_event_handler (remote_async_get_pending_events_handler,
4110 NULL);
4111
4112 /* Reset the target state; these things will be queried either by
4113 remote_query_supported or as they are needed. */
4114 init_all_packet_configs ();
4115 rs->cached_wait_status = 0;
4116 rs->explicit_packet_size = 0;
4117 rs->noack_mode = 0;
4118 rs->multi_process_aware = 0;
4119 rs->extended = extended_p;
4120 rs->non_stop_aware = 0;
4121 rs->waiting_for_stop_reply = 0;
4122 rs->ctrlc_pending_p = 0;
4123
4124 general_thread = not_sent_ptid;
4125 continue_thread = not_sent_ptid;
4126 remote_traceframe_number = -1;
4127
4128 /* Probe for ability to use "ThreadInfo" query, as required. */
4129 use_threadinfo_query = 1;
4130 use_threadextra_query = 1;
4131
4132 if (target_async_permitted)
4133 {
4134 /* With this target we start out by owning the terminal. */
4135 remote_async_terminal_ours_p = 1;
4136
4137 /* FIXME: cagney/1999-09-23: During the initial connection it is
4138 assumed that the target is already ready and able to respond to
4139 requests. Unfortunately remote_start_remote() eventually calls
4140 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4141 around this. Eventually a mechanism that allows
4142 wait_for_inferior() to expect/get timeouts will be
4143 implemented. */
4144 wait_forever_enabled_p = 0;
4145 }
4146
4147 /* First delete any symbols previously loaded from shared libraries. */
4148 no_shared_libraries (NULL, 0);
4149
4150 /* Start afresh. */
4151 init_thread_list ();
4152
4153 /* Start the remote connection. If error() or QUIT, discard this
4154 target (we'd otherwise be in an inconsistent state) and then
4155 propogate the error on up the exception chain. This ensures that
4156 the caller doesn't stumble along blindly assuming that the
4157 function succeeded. The CLI doesn't have this problem but other
4158 UI's, such as MI do.
4159
4160 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4161 this function should return an error indication letting the
4162 caller restore the previous state. Unfortunately the command
4163 ``target remote'' is directly wired to this function making that
4164 impossible. On a positive note, the CLI side of this problem has
4165 been fixed - the function set_cmd_context() makes it possible for
4166 all the ``target ....'' commands to share a common callback
4167 function. See cli-dump.c. */
4168 {
4169 volatile struct gdb_exception ex;
4170
4171 TRY_CATCH (ex, RETURN_MASK_ALL)
4172 {
4173 remote_start_remote (from_tty, target, extended_p);
4174 }
4175 if (ex.reason < 0)
4176 {
4177 /* Pop the partially set up target - unless something else did
4178 already before throwing the exception. */
4179 if (remote_desc != NULL)
4180 pop_target ();
4181 if (target_async_permitted)
4182 wait_forever_enabled_p = 1;
4183 throw_exception (ex);
4184 }
4185 }
4186
4187 if (target_async_permitted)
4188 wait_forever_enabled_p = 1;
4189 }
4190
4191 /* This takes a program previously attached to and detaches it. After
4192 this is done, GDB can be used to debug some other program. We
4193 better not have left any breakpoints in the target program or it'll
4194 die when it hits one. */
4195
4196 static void
4197 remote_detach_1 (char *args, int from_tty, int extended)
4198 {
4199 int pid = ptid_get_pid (inferior_ptid);
4200 struct remote_state *rs = get_remote_state ();
4201
4202 if (args)
4203 error (_("Argument given to \"detach\" when remotely debugging."));
4204
4205 if (!target_has_execution)
4206 error (_("No process to detach from."));
4207
4208 if (from_tty)
4209 {
4210 char *exec_file = get_exec_file (0);
4211 if (exec_file == NULL)
4212 exec_file = "";
4213 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4214 target_pid_to_str (pid_to_ptid (pid)));
4215 gdb_flush (gdb_stdout);
4216 }
4217
4218 /* Tell the remote target to detach. */
4219 if (remote_multi_process_p (rs))
4220 sprintf (rs->buf, "D;%x", pid);
4221 else
4222 strcpy (rs->buf, "D");
4223
4224 putpkt (rs->buf);
4225 getpkt (&rs->buf, &rs->buf_size, 0);
4226
4227 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4228 ;
4229 else if (rs->buf[0] == '\0')
4230 error (_("Remote doesn't know how to detach"));
4231 else
4232 error (_("Can't detach process."));
4233
4234 if (from_tty && !extended)
4235 puts_filtered (_("Ending remote debugging.\n"));
4236
4237 discard_pending_stop_replies (pid);
4238 target_mourn_inferior ();
4239 }
4240
4241 static void
4242 remote_detach (struct target_ops *ops, char *args, int from_tty)
4243 {
4244 remote_detach_1 (args, from_tty, 0);
4245 }
4246
4247 static void
4248 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4249 {
4250 remote_detach_1 (args, from_tty, 1);
4251 }
4252
4253 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4254
4255 static void
4256 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4257 {
4258 if (args)
4259 error (_("Argument given to \"disconnect\" when remotely debugging."));
4260
4261 /* Make sure we unpush even the extended remote targets; mourn
4262 won't do it. So call remote_mourn_1 directly instead of
4263 target_mourn_inferior. */
4264 remote_mourn_1 (target);
4265
4266 if (from_tty)
4267 puts_filtered ("Ending remote debugging.\n");
4268 }
4269
4270 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4271 be chatty about it. */
4272
4273 static void
4274 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4275 {
4276 struct remote_state *rs = get_remote_state ();
4277 int pid;
4278 char *wait_status = NULL;
4279
4280 pid = parse_pid_to_attach (args);
4281
4282 /* Remote PID can be freely equal to getpid, do not check it here the same
4283 way as in other targets. */
4284
4285 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4286 error (_("This target does not support attaching to a process"));
4287
4288 if (from_tty)
4289 {
4290 char *exec_file = get_exec_file (0);
4291
4292 if (exec_file)
4293 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4294 target_pid_to_str (pid_to_ptid (pid)));
4295 else
4296 printf_unfiltered (_("Attaching to %s\n"),
4297 target_pid_to_str (pid_to_ptid (pid)));
4298
4299 gdb_flush (gdb_stdout);
4300 }
4301
4302 sprintf (rs->buf, "vAttach;%x", pid);
4303 putpkt (rs->buf);
4304 getpkt (&rs->buf, &rs->buf_size, 0);
4305
4306 if (packet_ok (rs->buf,
4307 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4308 {
4309 if (!non_stop)
4310 {
4311 /* Save the reply for later. */
4312 wait_status = alloca (strlen (rs->buf) + 1);
4313 strcpy (wait_status, rs->buf);
4314 }
4315 else if (strcmp (rs->buf, "OK") != 0)
4316 error (_("Attaching to %s failed with: %s"),
4317 target_pid_to_str (pid_to_ptid (pid)),
4318 rs->buf);
4319 }
4320 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4321 error (_("This target does not support attaching to a process"));
4322 else
4323 error (_("Attaching to %s failed"),
4324 target_pid_to_str (pid_to_ptid (pid)));
4325
4326 set_current_inferior (remote_add_inferior (0, pid, 1));
4327
4328 inferior_ptid = pid_to_ptid (pid);
4329
4330 if (non_stop)
4331 {
4332 struct thread_info *thread;
4333
4334 /* Get list of threads. */
4335 remote_threads_info (target);
4336
4337 thread = first_thread_of_process (pid);
4338 if (thread)
4339 inferior_ptid = thread->ptid;
4340 else
4341 inferior_ptid = pid_to_ptid (pid);
4342
4343 /* Invalidate our notion of the remote current thread. */
4344 record_currthread (minus_one_ptid);
4345 }
4346 else
4347 {
4348 /* Now, if we have thread information, update inferior_ptid. */
4349 inferior_ptid = remote_current_thread (inferior_ptid);
4350
4351 /* Add the main thread to the thread list. */
4352 add_thread_silent (inferior_ptid);
4353 }
4354
4355 /* Next, if the target can specify a description, read it. We do
4356 this before anything involving memory or registers. */
4357 target_find_description ();
4358
4359 if (!non_stop)
4360 {
4361 /* Use the previously fetched status. */
4362 gdb_assert (wait_status != NULL);
4363
4364 if (target_can_async_p ())
4365 {
4366 struct stop_reply *stop_reply;
4367 struct cleanup *old_chain;
4368
4369 stop_reply = stop_reply_xmalloc ();
4370 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4371 remote_parse_stop_reply (wait_status, stop_reply);
4372 discard_cleanups (old_chain);
4373 push_stop_reply (stop_reply);
4374
4375 target_async (inferior_event_handler, 0);
4376 }
4377 else
4378 {
4379 gdb_assert (wait_status != NULL);
4380 strcpy (rs->buf, wait_status);
4381 rs->cached_wait_status = 1;
4382 }
4383 }
4384 else
4385 gdb_assert (wait_status == NULL);
4386 }
4387
4388 static void
4389 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4390 {
4391 extended_remote_attach_1 (ops, args, from_tty);
4392 }
4393
4394 /* Convert hex digit A to a number. */
4395
4396 static int
4397 fromhex (int a)
4398 {
4399 if (a >= '0' && a <= '9')
4400 return a - '0';
4401 else if (a >= 'a' && a <= 'f')
4402 return a - 'a' + 10;
4403 else if (a >= 'A' && a <= 'F')
4404 return a - 'A' + 10;
4405 else
4406 error (_("Reply contains invalid hex digit %d"), a);
4407 }
4408
4409 int
4410 hex2bin (const char *hex, gdb_byte *bin, int count)
4411 {
4412 int i;
4413
4414 for (i = 0; i < count; i++)
4415 {
4416 if (hex[0] == 0 || hex[1] == 0)
4417 {
4418 /* Hex string is short, or of uneven length.
4419 Return the count that has been converted so far. */
4420 return i;
4421 }
4422 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4423 hex += 2;
4424 }
4425 return i;
4426 }
4427
4428 /* Convert number NIB to a hex digit. */
4429
4430 static int
4431 tohex (int nib)
4432 {
4433 if (nib < 10)
4434 return '0' + nib;
4435 else
4436 return 'a' + nib - 10;
4437 }
4438
4439 int
4440 bin2hex (const gdb_byte *bin, char *hex, int count)
4441 {
4442 int i;
4443
4444 /* May use a length, or a nul-terminated string as input. */
4445 if (count == 0)
4446 count = strlen ((char *) bin);
4447
4448 for (i = 0; i < count; i++)
4449 {
4450 *hex++ = tohex ((*bin >> 4) & 0xf);
4451 *hex++ = tohex (*bin++ & 0xf);
4452 }
4453 *hex = 0;
4454 return i;
4455 }
4456 \f
4457 /* Check for the availability of vCont. This function should also check
4458 the response. */
4459
4460 static void
4461 remote_vcont_probe (struct remote_state *rs)
4462 {
4463 char *buf;
4464
4465 strcpy (rs->buf, "vCont?");
4466 putpkt (rs->buf);
4467 getpkt (&rs->buf, &rs->buf_size, 0);
4468 buf = rs->buf;
4469
4470 /* Make sure that the features we assume are supported. */
4471 if (strncmp (buf, "vCont", 5) == 0)
4472 {
4473 char *p = &buf[5];
4474 int support_s, support_S, support_c, support_C;
4475
4476 support_s = 0;
4477 support_S = 0;
4478 support_c = 0;
4479 support_C = 0;
4480 rs->support_vCont_t = 0;
4481 while (p && *p == ';')
4482 {
4483 p++;
4484 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4485 support_s = 1;
4486 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4487 support_S = 1;
4488 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4489 support_c = 1;
4490 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4491 support_C = 1;
4492 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4493 rs->support_vCont_t = 1;
4494
4495 p = strchr (p, ';');
4496 }
4497
4498 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4499 BUF will make packet_ok disable the packet. */
4500 if (!support_s || !support_S || !support_c || !support_C)
4501 buf[0] = 0;
4502 }
4503
4504 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4505 }
4506
4507 /* Helper function for building "vCont" resumptions. Write a
4508 resumption to P. ENDP points to one-passed-the-end of the buffer
4509 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4510 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4511 resumed thread should be single-stepped and/or signalled. If PTID
4512 equals minus_one_ptid, then all threads are resumed; if PTID
4513 represents a process, then all threads of the process are resumed;
4514 the thread to be stepped and/or signalled is given in the global
4515 INFERIOR_PTID. */
4516
4517 static char *
4518 append_resumption (char *p, char *endp,
4519 ptid_t ptid, int step, enum target_signal siggnal)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522
4523 if (step && siggnal != TARGET_SIGNAL_0)
4524 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4525 else if (step)
4526 p += xsnprintf (p, endp - p, ";s");
4527 else if (siggnal != TARGET_SIGNAL_0)
4528 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4529 else
4530 p += xsnprintf (p, endp - p, ";c");
4531
4532 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4533 {
4534 ptid_t nptid;
4535
4536 /* All (-1) threads of process. */
4537 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4538
4539 p += xsnprintf (p, endp - p, ":");
4540 p = write_ptid (p, endp, nptid);
4541 }
4542 else if (!ptid_equal (ptid, minus_one_ptid))
4543 {
4544 p += xsnprintf (p, endp - p, ":");
4545 p = write_ptid (p, endp, ptid);
4546 }
4547
4548 return p;
4549 }
4550
4551 /* Resume the remote inferior by using a "vCont" packet. The thread
4552 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4553 resumed thread should be single-stepped and/or signalled. If PTID
4554 equals minus_one_ptid, then all threads are resumed; the thread to
4555 be stepped and/or signalled is given in the global INFERIOR_PTID.
4556 This function returns non-zero iff it resumes the inferior.
4557
4558 This function issues a strict subset of all possible vCont commands at the
4559 moment. */
4560
4561 static int
4562 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4563 {
4564 struct remote_state *rs = get_remote_state ();
4565 char *p;
4566 char *endp;
4567
4568 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4569 remote_vcont_probe (rs);
4570
4571 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4572 return 0;
4573
4574 p = rs->buf;
4575 endp = rs->buf + get_remote_packet_size ();
4576
4577 /* If we could generate a wider range of packets, we'd have to worry
4578 about overflowing BUF. Should there be a generic
4579 "multi-part-packet" packet? */
4580
4581 p += xsnprintf (p, endp - p, "vCont");
4582
4583 if (ptid_equal (ptid, magic_null_ptid))
4584 {
4585 /* MAGIC_NULL_PTID means that we don't have any active threads,
4586 so we don't have any TID numbers the inferior will
4587 understand. Make sure to only send forms that do not specify
4588 a TID. */
4589 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4590 }
4591 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4592 {
4593 /* Resume all threads (of all processes, or of a single
4594 process), with preference for INFERIOR_PTID. This assumes
4595 inferior_ptid belongs to the set of all threads we are about
4596 to resume. */
4597 if (step || siggnal != TARGET_SIGNAL_0)
4598 {
4599 /* Step inferior_ptid, with or without signal. */
4600 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4601 }
4602
4603 /* And continue others without a signal. */
4604 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4605 }
4606 else
4607 {
4608 /* Scheduler locking; resume only PTID. */
4609 append_resumption (p, endp, ptid, step, siggnal);
4610 }
4611
4612 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4613 putpkt (rs->buf);
4614
4615 if (non_stop)
4616 {
4617 /* In non-stop, the stub replies to vCont with "OK". The stop
4618 reply will be reported asynchronously by means of a `%Stop'
4619 notification. */
4620 getpkt (&rs->buf, &rs->buf_size, 0);
4621 if (strcmp (rs->buf, "OK") != 0)
4622 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4623 }
4624
4625 return 1;
4626 }
4627
4628 /* Tell the remote machine to resume. */
4629
4630 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4631
4632 static int last_sent_step;
4633
4634 static void
4635 remote_resume (struct target_ops *ops,
4636 ptid_t ptid, int step, enum target_signal siggnal)
4637 {
4638 struct remote_state *rs = get_remote_state ();
4639 char *buf;
4640
4641 last_sent_signal = siggnal;
4642 last_sent_step = step;
4643
4644 /* The vCont packet doesn't need to specify threads via Hc. */
4645 /* No reverse support (yet) for vCont. */
4646 if (execution_direction != EXEC_REVERSE)
4647 if (remote_vcont_resume (ptid, step, siggnal))
4648 goto done;
4649
4650 /* All other supported resume packets do use Hc, so set the continue
4651 thread. */
4652 if (ptid_equal (ptid, minus_one_ptid))
4653 set_continue_thread (any_thread_ptid);
4654 else
4655 set_continue_thread (ptid);
4656
4657 buf = rs->buf;
4658 if (execution_direction == EXEC_REVERSE)
4659 {
4660 /* We don't pass signals to the target in reverse exec mode. */
4661 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4662 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4663 siggnal);
4664
4665 if (step
4666 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4667 error (_("Remote reverse-step not supported."));
4668 if (!step
4669 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4670 error (_("Remote reverse-continue not supported."));
4671
4672 strcpy (buf, step ? "bs" : "bc");
4673 }
4674 else if (siggnal != TARGET_SIGNAL_0)
4675 {
4676 buf[0] = step ? 'S' : 'C';
4677 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4678 buf[2] = tohex (((int) siggnal) & 0xf);
4679 buf[3] = '\0';
4680 }
4681 else
4682 strcpy (buf, step ? "s" : "c");
4683
4684 putpkt (buf);
4685
4686 done:
4687 /* We are about to start executing the inferior, let's register it
4688 with the event loop. NOTE: this is the one place where all the
4689 execution commands end up. We could alternatively do this in each
4690 of the execution commands in infcmd.c. */
4691 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4692 into infcmd.c in order to allow inferior function calls to work
4693 NOT asynchronously. */
4694 if (target_can_async_p ())
4695 target_async (inferior_event_handler, 0);
4696
4697 /* We've just told the target to resume. The remote server will
4698 wait for the inferior to stop, and then send a stop reply. In
4699 the mean time, we can't start another command/query ourselves
4700 because the stub wouldn't be ready to process it. This applies
4701 only to the base all-stop protocol, however. In non-stop (which
4702 only supports vCont), the stub replies with an "OK", and is
4703 immediate able to process further serial input. */
4704 if (!non_stop)
4705 rs->waiting_for_stop_reply = 1;
4706 }
4707 \f
4708
4709 /* Set up the signal handler for SIGINT, while the target is
4710 executing, ovewriting the 'regular' SIGINT signal handler. */
4711 static void
4712 initialize_sigint_signal_handler (void)
4713 {
4714 signal (SIGINT, handle_remote_sigint);
4715 }
4716
4717 /* Signal handler for SIGINT, while the target is executing. */
4718 static void
4719 handle_remote_sigint (int sig)
4720 {
4721 signal (sig, handle_remote_sigint_twice);
4722 mark_async_signal_handler_wrapper (sigint_remote_token);
4723 }
4724
4725 /* Signal handler for SIGINT, installed after SIGINT has already been
4726 sent once. It will take effect the second time that the user sends
4727 a ^C. */
4728 static void
4729 handle_remote_sigint_twice (int sig)
4730 {
4731 signal (sig, handle_remote_sigint);
4732 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4733 }
4734
4735 /* Perform the real interruption of the target execution, in response
4736 to a ^C. */
4737 static void
4738 async_remote_interrupt (gdb_client_data arg)
4739 {
4740 if (remote_debug)
4741 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4742
4743 target_stop (inferior_ptid);
4744 }
4745
4746 /* Perform interrupt, if the first attempt did not succeed. Just give
4747 up on the target alltogether. */
4748 void
4749 async_remote_interrupt_twice (gdb_client_data arg)
4750 {
4751 if (remote_debug)
4752 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4753
4754 interrupt_query ();
4755 }
4756
4757 /* Reinstall the usual SIGINT handlers, after the target has
4758 stopped. */
4759 static void
4760 cleanup_sigint_signal_handler (void *dummy)
4761 {
4762 signal (SIGINT, handle_sigint);
4763 }
4764
4765 /* Send ^C to target to halt it. Target will respond, and send us a
4766 packet. */
4767 static void (*ofunc) (int);
4768
4769 /* The command line interface's stop routine. This function is installed
4770 as a signal handler for SIGINT. The first time a user requests a
4771 stop, we call remote_stop to send a break or ^C. If there is no
4772 response from the target (it didn't stop when the user requested it),
4773 we ask the user if he'd like to detach from the target. */
4774 static void
4775 remote_interrupt (int signo)
4776 {
4777 /* If this doesn't work, try more severe steps. */
4778 signal (signo, remote_interrupt_twice);
4779
4780 gdb_call_async_signal_handler (sigint_remote_token, 1);
4781 }
4782
4783 /* The user typed ^C twice. */
4784
4785 static void
4786 remote_interrupt_twice (int signo)
4787 {
4788 signal (signo, ofunc);
4789 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4790 signal (signo, remote_interrupt);
4791 }
4792
4793 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4794 thread, all threads of a remote process, or all threads of all
4795 processes. */
4796
4797 static void
4798 remote_stop_ns (ptid_t ptid)
4799 {
4800 struct remote_state *rs = get_remote_state ();
4801 char *p = rs->buf;
4802 char *endp = rs->buf + get_remote_packet_size ();
4803
4804 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4805 remote_vcont_probe (rs);
4806
4807 if (!rs->support_vCont_t)
4808 error (_("Remote server does not support stopping threads"));
4809
4810 if (ptid_equal (ptid, minus_one_ptid)
4811 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4812 p += xsnprintf (p, endp - p, "vCont;t");
4813 else
4814 {
4815 ptid_t nptid;
4816
4817 p += xsnprintf (p, endp - p, "vCont;t:");
4818
4819 if (ptid_is_pid (ptid))
4820 /* All (-1) threads of process. */
4821 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4822 else
4823 {
4824 /* Small optimization: if we already have a stop reply for
4825 this thread, no use in telling the stub we want this
4826 stopped. */
4827 if (peek_stop_reply (ptid))
4828 return;
4829
4830 nptid = ptid;
4831 }
4832
4833 write_ptid (p, endp, nptid);
4834 }
4835
4836 /* In non-stop, we get an immediate OK reply. The stop reply will
4837 come in asynchronously by notification. */
4838 putpkt (rs->buf);
4839 getpkt (&rs->buf, &rs->buf_size, 0);
4840 if (strcmp (rs->buf, "OK") != 0)
4841 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4842 }
4843
4844 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4845 remote target. It is undefined which thread of which process
4846 reports the stop. */
4847
4848 static void
4849 remote_stop_as (ptid_t ptid)
4850 {
4851 struct remote_state *rs = get_remote_state ();
4852
4853 rs->ctrlc_pending_p = 1;
4854
4855 /* If the inferior is stopped already, but the core didn't know
4856 about it yet, just ignore the request. The cached wait status
4857 will be collected in remote_wait. */
4858 if (rs->cached_wait_status)
4859 return;
4860
4861 /* Send interrupt_sequence to remote target. */
4862 send_interrupt_sequence ();
4863 }
4864
4865 /* This is the generic stop called via the target vector. When a target
4866 interrupt is requested, either by the command line or the GUI, we
4867 will eventually end up here. */
4868
4869 static void
4870 remote_stop (ptid_t ptid)
4871 {
4872 if (remote_debug)
4873 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4874
4875 if (non_stop)
4876 remote_stop_ns (ptid);
4877 else
4878 remote_stop_as (ptid);
4879 }
4880
4881 /* Ask the user what to do when an interrupt is received. */
4882
4883 static void
4884 interrupt_query (void)
4885 {
4886 target_terminal_ours ();
4887
4888 if (target_can_async_p ())
4889 {
4890 signal (SIGINT, handle_sigint);
4891 deprecated_throw_reason (RETURN_QUIT);
4892 }
4893 else
4894 {
4895 if (query (_("Interrupted while waiting for the program.\n\
4896 Give up (and stop debugging it)? ")))
4897 {
4898 pop_target ();
4899 deprecated_throw_reason (RETURN_QUIT);
4900 }
4901 }
4902
4903 target_terminal_inferior ();
4904 }
4905
4906 /* Enable/disable target terminal ownership. Most targets can use
4907 terminal groups to control terminal ownership. Remote targets are
4908 different in that explicit transfer of ownership to/from GDB/target
4909 is required. */
4910
4911 static void
4912 remote_terminal_inferior (void)
4913 {
4914 if (!target_async_permitted)
4915 /* Nothing to do. */
4916 return;
4917
4918 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4919 idempotent. The event-loop GDB talking to an asynchronous target
4920 with a synchronous command calls this function from both
4921 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4922 transfer the terminal to the target when it shouldn't this guard
4923 can go away. */
4924 if (!remote_async_terminal_ours_p)
4925 return;
4926 delete_file_handler (input_fd);
4927 remote_async_terminal_ours_p = 0;
4928 initialize_sigint_signal_handler ();
4929 /* NOTE: At this point we could also register our selves as the
4930 recipient of all input. Any characters typed could then be
4931 passed on down to the target. */
4932 }
4933
4934 static void
4935 remote_terminal_ours (void)
4936 {
4937 if (!target_async_permitted)
4938 /* Nothing to do. */
4939 return;
4940
4941 /* See FIXME in remote_terminal_inferior. */
4942 if (remote_async_terminal_ours_p)
4943 return;
4944 cleanup_sigint_signal_handler (NULL);
4945 add_file_handler (input_fd, stdin_event_handler, 0);
4946 remote_async_terminal_ours_p = 1;
4947 }
4948
4949 static void
4950 remote_console_output (char *msg)
4951 {
4952 char *p;
4953
4954 for (p = msg; p[0] && p[1]; p += 2)
4955 {
4956 char tb[2];
4957 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4958
4959 tb[0] = c;
4960 tb[1] = 0;
4961 fputs_unfiltered (tb, gdb_stdtarg);
4962 }
4963 gdb_flush (gdb_stdtarg);
4964 }
4965
4966 typedef struct cached_reg
4967 {
4968 int num;
4969 gdb_byte data[MAX_REGISTER_SIZE];
4970 } cached_reg_t;
4971
4972 DEF_VEC_O(cached_reg_t);
4973
4974 struct stop_reply
4975 {
4976 struct stop_reply *next;
4977
4978 ptid_t ptid;
4979
4980 struct target_waitstatus ws;
4981
4982 /* Expedited registers. This makes remote debugging a bit more
4983 efficient for those targets that provide critical registers as
4984 part of their normal status mechanism (as another roundtrip to
4985 fetch them is avoided). */
4986 VEC(cached_reg_t) *regcache;
4987
4988 int stopped_by_watchpoint_p;
4989 CORE_ADDR watch_data_address;
4990
4991 int solibs_changed;
4992 int replay_event;
4993
4994 int core;
4995 };
4996
4997 /* The list of already fetched and acknowledged stop events. */
4998 static struct stop_reply *stop_reply_queue;
4999
5000 static struct stop_reply *
5001 stop_reply_xmalloc (void)
5002 {
5003 struct stop_reply *r = XMALLOC (struct stop_reply);
5004
5005 r->next = NULL;
5006 return r;
5007 }
5008
5009 static void
5010 stop_reply_xfree (struct stop_reply *r)
5011 {
5012 if (r != NULL)
5013 {
5014 VEC_free (cached_reg_t, r->regcache);
5015 xfree (r);
5016 }
5017 }
5018
5019 /* Discard all pending stop replies of inferior PID. If PID is -1,
5020 discard everything. */
5021
5022 static void
5023 discard_pending_stop_replies (int pid)
5024 {
5025 struct stop_reply *prev = NULL, *reply, *next;
5026
5027 /* Discard the in-flight notification. */
5028 if (pending_stop_reply != NULL
5029 && (pid == -1
5030 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5031 {
5032 stop_reply_xfree (pending_stop_reply);
5033 pending_stop_reply = NULL;
5034 }
5035
5036 /* Discard the stop replies we have already pulled with
5037 vStopped. */
5038 for (reply = stop_reply_queue; reply; reply = next)
5039 {
5040 next = reply->next;
5041 if (pid == -1
5042 || ptid_get_pid (reply->ptid) == pid)
5043 {
5044 if (reply == stop_reply_queue)
5045 stop_reply_queue = reply->next;
5046 else
5047 prev->next = reply->next;
5048
5049 stop_reply_xfree (reply);
5050 }
5051 else
5052 prev = reply;
5053 }
5054 }
5055
5056 /* Cleanup wrapper. */
5057
5058 static void
5059 do_stop_reply_xfree (void *arg)
5060 {
5061 struct stop_reply *r = arg;
5062
5063 stop_reply_xfree (r);
5064 }
5065
5066 /* Look for a queued stop reply belonging to PTID. If one is found,
5067 remove it from the queue, and return it. Returns NULL if none is
5068 found. If there are still queued events left to process, tell the
5069 event loop to get back to target_wait soon. */
5070
5071 static struct stop_reply *
5072 queued_stop_reply (ptid_t ptid)
5073 {
5074 struct stop_reply *it;
5075 struct stop_reply **it_link;
5076
5077 it = stop_reply_queue;
5078 it_link = &stop_reply_queue;
5079 while (it)
5080 {
5081 if (ptid_match (it->ptid, ptid))
5082 {
5083 *it_link = it->next;
5084 it->next = NULL;
5085 break;
5086 }
5087
5088 it_link = &it->next;
5089 it = *it_link;
5090 }
5091
5092 if (stop_reply_queue)
5093 /* There's still at least an event left. */
5094 mark_async_event_handler (remote_async_inferior_event_token);
5095
5096 return it;
5097 }
5098
5099 /* Push a fully parsed stop reply in the stop reply queue. Since we
5100 know that we now have at least one queued event left to pass to the
5101 core side, tell the event loop to get back to target_wait soon. */
5102
5103 static void
5104 push_stop_reply (struct stop_reply *new_event)
5105 {
5106 struct stop_reply *event;
5107
5108 if (stop_reply_queue)
5109 {
5110 for (event = stop_reply_queue;
5111 event && event->next;
5112 event = event->next)
5113 ;
5114
5115 event->next = new_event;
5116 }
5117 else
5118 stop_reply_queue = new_event;
5119
5120 mark_async_event_handler (remote_async_inferior_event_token);
5121 }
5122
5123 /* Returns true if we have a stop reply for PTID. */
5124
5125 static int
5126 peek_stop_reply (ptid_t ptid)
5127 {
5128 struct stop_reply *it;
5129
5130 for (it = stop_reply_queue; it; it = it->next)
5131 if (ptid_equal (ptid, it->ptid))
5132 {
5133 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5134 return 1;
5135 }
5136
5137 return 0;
5138 }
5139
5140 /* Parse the stop reply in BUF. Either the function succeeds, and the
5141 result is stored in EVENT, or throws an error. */
5142
5143 static void
5144 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5145 {
5146 struct remote_arch_state *rsa = get_remote_arch_state ();
5147 ULONGEST addr;
5148 char *p;
5149
5150 event->ptid = null_ptid;
5151 event->ws.kind = TARGET_WAITKIND_IGNORE;
5152 event->ws.value.integer = 0;
5153 event->solibs_changed = 0;
5154 event->replay_event = 0;
5155 event->stopped_by_watchpoint_p = 0;
5156 event->regcache = NULL;
5157 event->core = -1;
5158
5159 switch (buf[0])
5160 {
5161 case 'T': /* Status with PC, SP, FP, ... */
5162 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5163 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5164 ss = signal number
5165 n... = register number
5166 r... = register contents
5167 */
5168
5169 p = &buf[3]; /* after Txx */
5170 while (*p)
5171 {
5172 char *p1;
5173 char *p_temp;
5174 int fieldsize;
5175 LONGEST pnum = 0;
5176
5177 /* If the packet contains a register number, save it in
5178 pnum and set p1 to point to the character following it.
5179 Otherwise p1 points to p. */
5180
5181 /* If this packet is an awatch packet, don't parse the 'a'
5182 as a register number. */
5183
5184 if (strncmp (p, "awatch", strlen("awatch")) != 0
5185 && strncmp (p, "core", strlen ("core") != 0))
5186 {
5187 /* Read the ``P'' register number. */
5188 pnum = strtol (p, &p_temp, 16);
5189 p1 = p_temp;
5190 }
5191 else
5192 p1 = p;
5193
5194 if (p1 == p) /* No register number present here. */
5195 {
5196 p1 = strchr (p, ':');
5197 if (p1 == NULL)
5198 error (_("Malformed packet(a) (missing colon): %s\n\
5199 Packet: '%s'\n"),
5200 p, buf);
5201 if (strncmp (p, "thread", p1 - p) == 0)
5202 event->ptid = read_ptid (++p1, &p);
5203 else if ((strncmp (p, "watch", p1 - p) == 0)
5204 || (strncmp (p, "rwatch", p1 - p) == 0)
5205 || (strncmp (p, "awatch", p1 - p) == 0))
5206 {
5207 event->stopped_by_watchpoint_p = 1;
5208 p = unpack_varlen_hex (++p1, &addr);
5209 event->watch_data_address = (CORE_ADDR) addr;
5210 }
5211 else if (strncmp (p, "library", p1 - p) == 0)
5212 {
5213 p1++;
5214 p_temp = p1;
5215 while (*p_temp && *p_temp != ';')
5216 p_temp++;
5217
5218 event->solibs_changed = 1;
5219 p = p_temp;
5220 }
5221 else if (strncmp (p, "replaylog", p1 - p) == 0)
5222 {
5223 /* NO_HISTORY event.
5224 p1 will indicate "begin" or "end", but
5225 it makes no difference for now, so ignore it. */
5226 event->replay_event = 1;
5227 p_temp = strchr (p1 + 1, ';');
5228 if (p_temp)
5229 p = p_temp;
5230 }
5231 else if (strncmp (p, "core", p1 - p) == 0)
5232 {
5233 ULONGEST c;
5234
5235 p = unpack_varlen_hex (++p1, &c);
5236 event->core = c;
5237 }
5238 else
5239 {
5240 /* Silently skip unknown optional info. */
5241 p_temp = strchr (p1 + 1, ';');
5242 if (p_temp)
5243 p = p_temp;
5244 }
5245 }
5246 else
5247 {
5248 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5249 cached_reg_t cached_reg;
5250
5251 p = p1;
5252
5253 if (*p != ':')
5254 error (_("Malformed packet(b) (missing colon): %s\n\
5255 Packet: '%s'\n"),
5256 p, buf);
5257 ++p;
5258
5259 if (reg == NULL)
5260 error (_("Remote sent bad register number %s: %s\n\
5261 Packet: '%s'\n"),
5262 hex_string (pnum), p, buf);
5263
5264 cached_reg.num = reg->regnum;
5265
5266 fieldsize = hex2bin (p, cached_reg.data,
5267 register_size (target_gdbarch,
5268 reg->regnum));
5269 p += 2 * fieldsize;
5270 if (fieldsize < register_size (target_gdbarch,
5271 reg->regnum))
5272 warning (_("Remote reply is too short: %s"), buf);
5273
5274 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5275 }
5276
5277 if (*p != ';')
5278 error (_("Remote register badly formatted: %s\nhere: %s"),
5279 buf, p);
5280 ++p;
5281 }
5282 /* fall through */
5283 case 'S': /* Old style status, just signal only. */
5284 if (event->solibs_changed)
5285 event->ws.kind = TARGET_WAITKIND_LOADED;
5286 else if (event->replay_event)
5287 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5288 else
5289 {
5290 event->ws.kind = TARGET_WAITKIND_STOPPED;
5291 event->ws.value.sig = (enum target_signal)
5292 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5293 }
5294 break;
5295 case 'W': /* Target exited. */
5296 case 'X':
5297 {
5298 char *p;
5299 int pid;
5300 ULONGEST value;
5301
5302 /* GDB used to accept only 2 hex chars here. Stubs should
5303 only send more if they detect GDB supports multi-process
5304 support. */
5305 p = unpack_varlen_hex (&buf[1], &value);
5306
5307 if (buf[0] == 'W')
5308 {
5309 /* The remote process exited. */
5310 event->ws.kind = TARGET_WAITKIND_EXITED;
5311 event->ws.value.integer = value;
5312 }
5313 else
5314 {
5315 /* The remote process exited with a signal. */
5316 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5317 event->ws.value.sig = (enum target_signal) value;
5318 }
5319
5320 /* If no process is specified, assume inferior_ptid. */
5321 pid = ptid_get_pid (inferior_ptid);
5322 if (*p == '\0')
5323 ;
5324 else if (*p == ';')
5325 {
5326 p++;
5327
5328 if (p == '\0')
5329 ;
5330 else if (strncmp (p,
5331 "process:", sizeof ("process:") - 1) == 0)
5332 {
5333 ULONGEST upid;
5334
5335 p += sizeof ("process:") - 1;
5336 unpack_varlen_hex (p, &upid);
5337 pid = upid;
5338 }
5339 else
5340 error (_("unknown stop reply packet: %s"), buf);
5341 }
5342 else
5343 error (_("unknown stop reply packet: %s"), buf);
5344 event->ptid = pid_to_ptid (pid);
5345 }
5346 break;
5347 }
5348
5349 if (non_stop && ptid_equal (event->ptid, null_ptid))
5350 error (_("No process or thread specified in stop reply: %s"), buf);
5351 }
5352
5353 /* When the stub wants to tell GDB about a new stop reply, it sends a
5354 stop notification (%Stop). Those can come it at any time, hence,
5355 we have to make sure that any pending putpkt/getpkt sequence we're
5356 making is finished, before querying the stub for more events with
5357 vStopped. E.g., if we started a vStopped sequence immediatelly
5358 upon receiving the %Stop notification, something like this could
5359 happen:
5360
5361 1.1) --> Hg 1
5362 1.2) <-- OK
5363 1.3) --> g
5364 1.4) <-- %Stop
5365 1.5) --> vStopped
5366 1.6) <-- (registers reply to step #1.3)
5367
5368 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5369 query.
5370
5371 To solve this, whenever we parse a %Stop notification sucessfully,
5372 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5373 doing whatever we were doing:
5374
5375 2.1) --> Hg 1
5376 2.2) <-- OK
5377 2.3) --> g
5378 2.4) <-- %Stop
5379 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5380 2.5) <-- (registers reply to step #2.3)
5381
5382 Eventualy after step #2.5, we return to the event loop, which
5383 notices there's an event on the
5384 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5385 associated callback --- the function below. At this point, we're
5386 always safe to start a vStopped sequence. :
5387
5388 2.6) --> vStopped
5389 2.7) <-- T05 thread:2
5390 2.8) --> vStopped
5391 2.9) --> OK
5392 */
5393
5394 static void
5395 remote_get_pending_stop_replies (void)
5396 {
5397 struct remote_state *rs = get_remote_state ();
5398
5399 if (pending_stop_reply)
5400 {
5401 /* acknowledge */
5402 putpkt ("vStopped");
5403
5404 /* Now we can rely on it. */
5405 push_stop_reply (pending_stop_reply);
5406 pending_stop_reply = NULL;
5407
5408 while (1)
5409 {
5410 getpkt (&rs->buf, &rs->buf_size, 0);
5411 if (strcmp (rs->buf, "OK") == 0)
5412 break;
5413 else
5414 {
5415 struct cleanup *old_chain;
5416 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5417
5418 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5419 remote_parse_stop_reply (rs->buf, stop_reply);
5420
5421 /* acknowledge */
5422 putpkt ("vStopped");
5423
5424 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5425 {
5426 /* Now we can rely on it. */
5427 discard_cleanups (old_chain);
5428 push_stop_reply (stop_reply);
5429 }
5430 else
5431 /* We got an unknown stop reply. */
5432 do_cleanups (old_chain);
5433 }
5434 }
5435 }
5436 }
5437
5438
5439 /* Called when it is decided that STOP_REPLY holds the info of the
5440 event that is to be returned to the core. This function always
5441 destroys STOP_REPLY. */
5442
5443 static ptid_t
5444 process_stop_reply (struct stop_reply *stop_reply,
5445 struct target_waitstatus *status)
5446 {
5447 ptid_t ptid;
5448
5449 *status = stop_reply->ws;
5450 ptid = stop_reply->ptid;
5451
5452 /* If no thread/process was reported by the stub, assume the current
5453 inferior. */
5454 if (ptid_equal (ptid, null_ptid))
5455 ptid = inferior_ptid;
5456
5457 if (status->kind != TARGET_WAITKIND_EXITED
5458 && status->kind != TARGET_WAITKIND_SIGNALLED)
5459 {
5460 /* Expedited registers. */
5461 if (stop_reply->regcache)
5462 {
5463 struct regcache *regcache
5464 = get_thread_arch_regcache (ptid, target_gdbarch);
5465 cached_reg_t *reg;
5466 int ix;
5467
5468 for (ix = 0;
5469 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5470 ix++)
5471 regcache_raw_supply (regcache, reg->num, reg->data);
5472 VEC_free (cached_reg_t, stop_reply->regcache);
5473 }
5474
5475 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5476 remote_watch_data_address = stop_reply->watch_data_address;
5477
5478 remote_notice_new_inferior (ptid, 0);
5479 demand_private_info (ptid)->core = stop_reply->core;
5480 }
5481
5482 stop_reply_xfree (stop_reply);
5483 return ptid;
5484 }
5485
5486 /* The non-stop mode version of target_wait. */
5487
5488 static ptid_t
5489 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5490 {
5491 struct remote_state *rs = get_remote_state ();
5492 struct stop_reply *stop_reply;
5493 int ret;
5494
5495 /* If in non-stop mode, get out of getpkt even if a
5496 notification is received. */
5497
5498 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5499 0 /* forever */);
5500 while (1)
5501 {
5502 if (ret != -1)
5503 switch (rs->buf[0])
5504 {
5505 case 'E': /* Error of some sort. */
5506 /* We're out of sync with the target now. Did it continue
5507 or not? We can't tell which thread it was in non-stop,
5508 so just ignore this. */
5509 warning (_("Remote failure reply: %s"), rs->buf);
5510 break;
5511 case 'O': /* Console output. */
5512 remote_console_output (rs->buf + 1);
5513 break;
5514 default:
5515 warning (_("Invalid remote reply: %s"), rs->buf);
5516 break;
5517 }
5518
5519 /* Acknowledge a pending stop reply that may have arrived in the
5520 mean time. */
5521 if (pending_stop_reply != NULL)
5522 remote_get_pending_stop_replies ();
5523
5524 /* If indeed we noticed a stop reply, we're done. */
5525 stop_reply = queued_stop_reply (ptid);
5526 if (stop_reply != NULL)
5527 return process_stop_reply (stop_reply, status);
5528
5529 /* Still no event. If we're just polling for an event, then
5530 return to the event loop. */
5531 if (options & TARGET_WNOHANG)
5532 {
5533 status->kind = TARGET_WAITKIND_IGNORE;
5534 return minus_one_ptid;
5535 }
5536
5537 /* Otherwise do a blocking wait. */
5538 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5539 1 /* forever */);
5540 }
5541 }
5542
5543 /* Wait until the remote machine stops, then return, storing status in
5544 STATUS just as `wait' would. */
5545
5546 static ptid_t
5547 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5548 {
5549 struct remote_state *rs = get_remote_state ();
5550 ptid_t event_ptid = null_ptid;
5551 char *buf;
5552 struct stop_reply *stop_reply;
5553
5554 again:
5555
5556 status->kind = TARGET_WAITKIND_IGNORE;
5557 status->value.integer = 0;
5558
5559 stop_reply = queued_stop_reply (ptid);
5560 if (stop_reply != NULL)
5561 return process_stop_reply (stop_reply, status);
5562
5563 if (rs->cached_wait_status)
5564 /* Use the cached wait status, but only once. */
5565 rs->cached_wait_status = 0;
5566 else
5567 {
5568 int ret;
5569
5570 if (!target_is_async_p ())
5571 {
5572 ofunc = signal (SIGINT, remote_interrupt);
5573 /* If the user hit C-c before this packet, or between packets,
5574 pretend that it was hit right here. */
5575 if (quit_flag)
5576 {
5577 quit_flag = 0;
5578 remote_interrupt (SIGINT);
5579 }
5580 }
5581
5582 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5583 _never_ wait for ever -> test on target_is_async_p().
5584 However, before we do that we need to ensure that the caller
5585 knows how to take the target into/out of async mode. */
5586 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5587 if (!target_is_async_p ())
5588 signal (SIGINT, ofunc);
5589 }
5590
5591 buf = rs->buf;
5592
5593 remote_stopped_by_watchpoint_p = 0;
5594
5595 /* We got something. */
5596 rs->waiting_for_stop_reply = 0;
5597
5598 /* Assume that the target has acknowledged Ctrl-C unless we receive
5599 an 'F' or 'O' packet. */
5600 if (buf[0] != 'F' && buf[0] != 'O')
5601 rs->ctrlc_pending_p = 0;
5602
5603 switch (buf[0])
5604 {
5605 case 'E': /* Error of some sort. */
5606 /* We're out of sync with the target now. Did it continue or
5607 not? Not is more likely, so report a stop. */
5608 warning (_("Remote failure reply: %s"), buf);
5609 status->kind = TARGET_WAITKIND_STOPPED;
5610 status->value.sig = TARGET_SIGNAL_0;
5611 break;
5612 case 'F': /* File-I/O request. */
5613 remote_fileio_request (buf, rs->ctrlc_pending_p);
5614 rs->ctrlc_pending_p = 0;
5615 break;
5616 case 'T': case 'S': case 'X': case 'W':
5617 {
5618 struct stop_reply *stop_reply;
5619 struct cleanup *old_chain;
5620
5621 stop_reply = stop_reply_xmalloc ();
5622 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5623 remote_parse_stop_reply (buf, stop_reply);
5624 discard_cleanups (old_chain);
5625 event_ptid = process_stop_reply (stop_reply, status);
5626 break;
5627 }
5628 case 'O': /* Console output. */
5629 remote_console_output (buf + 1);
5630
5631 /* The target didn't really stop; keep waiting. */
5632 rs->waiting_for_stop_reply = 1;
5633
5634 break;
5635 case '\0':
5636 if (last_sent_signal != TARGET_SIGNAL_0)
5637 {
5638 /* Zero length reply means that we tried 'S' or 'C' and the
5639 remote system doesn't support it. */
5640 target_terminal_ours_for_output ();
5641 printf_filtered
5642 ("Can't send signals to this remote system. %s not sent.\n",
5643 target_signal_to_name (last_sent_signal));
5644 last_sent_signal = TARGET_SIGNAL_0;
5645 target_terminal_inferior ();
5646
5647 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5648 putpkt ((char *) buf);
5649
5650 /* We just told the target to resume, so a stop reply is in
5651 order. */
5652 rs->waiting_for_stop_reply = 1;
5653 break;
5654 }
5655 /* else fallthrough */
5656 default:
5657 warning (_("Invalid remote reply: %s"), buf);
5658 /* Keep waiting. */
5659 rs->waiting_for_stop_reply = 1;
5660 break;
5661 }
5662
5663 if (status->kind == TARGET_WAITKIND_IGNORE)
5664 {
5665 /* Nothing interesting happened. If we're doing a non-blocking
5666 poll, we're done. Otherwise, go back to waiting. */
5667 if (options & TARGET_WNOHANG)
5668 return minus_one_ptid;
5669 else
5670 goto again;
5671 }
5672 else if (status->kind != TARGET_WAITKIND_EXITED
5673 && status->kind != TARGET_WAITKIND_SIGNALLED)
5674 {
5675 if (!ptid_equal (event_ptid, null_ptid))
5676 record_currthread (event_ptid);
5677 else
5678 event_ptid = inferior_ptid;
5679 }
5680 else
5681 /* A process exit. Invalidate our notion of current thread. */
5682 record_currthread (minus_one_ptid);
5683
5684 return event_ptid;
5685 }
5686
5687 /* Wait until the remote machine stops, then return, storing status in
5688 STATUS just as `wait' would. */
5689
5690 static ptid_t
5691 remote_wait (struct target_ops *ops,
5692 ptid_t ptid, struct target_waitstatus *status, int options)
5693 {
5694 ptid_t event_ptid;
5695
5696 if (non_stop)
5697 event_ptid = remote_wait_ns (ptid, status, options);
5698 else
5699 event_ptid = remote_wait_as (ptid, status, options);
5700
5701 if (target_can_async_p ())
5702 {
5703 /* If there are are events left in the queue tell the event loop
5704 to return here. */
5705 if (stop_reply_queue)
5706 mark_async_event_handler (remote_async_inferior_event_token);
5707 }
5708
5709 return event_ptid;
5710 }
5711
5712 /* Fetch a single register using a 'p' packet. */
5713
5714 static int
5715 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5716 {
5717 struct remote_state *rs = get_remote_state ();
5718 char *buf, *p;
5719 char regp[MAX_REGISTER_SIZE];
5720 int i;
5721
5722 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5723 return 0;
5724
5725 if (reg->pnum == -1)
5726 return 0;
5727
5728 p = rs->buf;
5729 *p++ = 'p';
5730 p += hexnumstr (p, reg->pnum);
5731 *p++ = '\0';
5732 putpkt (rs->buf);
5733 getpkt (&rs->buf, &rs->buf_size, 0);
5734
5735 buf = rs->buf;
5736
5737 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5738 {
5739 case PACKET_OK:
5740 break;
5741 case PACKET_UNKNOWN:
5742 return 0;
5743 case PACKET_ERROR:
5744 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5745 gdbarch_register_name (get_regcache_arch (regcache),
5746 reg->regnum),
5747 buf);
5748 }
5749
5750 /* If this register is unfetchable, tell the regcache. */
5751 if (buf[0] == 'x')
5752 {
5753 regcache_raw_supply (regcache, reg->regnum, NULL);
5754 return 1;
5755 }
5756
5757 /* Otherwise, parse and supply the value. */
5758 p = buf;
5759 i = 0;
5760 while (p[0] != 0)
5761 {
5762 if (p[1] == 0)
5763 error (_("fetch_register_using_p: early buf termination"));
5764
5765 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5766 p += 2;
5767 }
5768 regcache_raw_supply (regcache, reg->regnum, regp);
5769 return 1;
5770 }
5771
5772 /* Fetch the registers included in the target's 'g' packet. */
5773
5774 static int
5775 send_g_packet (void)
5776 {
5777 struct remote_state *rs = get_remote_state ();
5778 int buf_len;
5779
5780 sprintf (rs->buf, "g");
5781 remote_send (&rs->buf, &rs->buf_size);
5782
5783 /* We can get out of synch in various cases. If the first character
5784 in the buffer is not a hex character, assume that has happened
5785 and try to fetch another packet to read. */
5786 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5787 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5788 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5789 && rs->buf[0] != 'x') /* New: unavailable register value. */
5790 {
5791 if (remote_debug)
5792 fprintf_unfiltered (gdb_stdlog,
5793 "Bad register packet; fetching a new packet\n");
5794 getpkt (&rs->buf, &rs->buf_size, 0);
5795 }
5796
5797 buf_len = strlen (rs->buf);
5798
5799 /* Sanity check the received packet. */
5800 if (buf_len % 2 != 0)
5801 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5802
5803 return buf_len / 2;
5804 }
5805
5806 static void
5807 process_g_packet (struct regcache *regcache)
5808 {
5809 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5810 struct remote_state *rs = get_remote_state ();
5811 struct remote_arch_state *rsa = get_remote_arch_state ();
5812 int i, buf_len;
5813 char *p;
5814 char *regs;
5815
5816 buf_len = strlen (rs->buf);
5817
5818 /* Further sanity checks, with knowledge of the architecture. */
5819 if (buf_len > 2 * rsa->sizeof_g_packet)
5820 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5821
5822 /* Save the size of the packet sent to us by the target. It is used
5823 as a heuristic when determining the max size of packets that the
5824 target can safely receive. */
5825 if (rsa->actual_register_packet_size == 0)
5826 rsa->actual_register_packet_size = buf_len;
5827
5828 /* If this is smaller than we guessed the 'g' packet would be,
5829 update our records. A 'g' reply that doesn't include a register's
5830 value implies either that the register is not available, or that
5831 the 'p' packet must be used. */
5832 if (buf_len < 2 * rsa->sizeof_g_packet)
5833 {
5834 rsa->sizeof_g_packet = buf_len / 2;
5835
5836 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5837 {
5838 if (rsa->regs[i].pnum == -1)
5839 continue;
5840
5841 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5842 rsa->regs[i].in_g_packet = 0;
5843 else
5844 rsa->regs[i].in_g_packet = 1;
5845 }
5846 }
5847
5848 regs = alloca (rsa->sizeof_g_packet);
5849
5850 /* Unimplemented registers read as all bits zero. */
5851 memset (regs, 0, rsa->sizeof_g_packet);
5852
5853 /* Reply describes registers byte by byte, each byte encoded as two
5854 hex characters. Suck them all up, then supply them to the
5855 register cacheing/storage mechanism. */
5856
5857 p = rs->buf;
5858 for (i = 0; i < rsa->sizeof_g_packet; i++)
5859 {
5860 if (p[0] == 0 || p[1] == 0)
5861 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5862 internal_error (__FILE__, __LINE__,
5863 _("unexpected end of 'g' packet reply"));
5864
5865 if (p[0] == 'x' && p[1] == 'x')
5866 regs[i] = 0; /* 'x' */
5867 else
5868 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5869 p += 2;
5870 }
5871
5872 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5873 {
5874 struct packet_reg *r = &rsa->regs[i];
5875
5876 if (r->in_g_packet)
5877 {
5878 if (r->offset * 2 >= strlen (rs->buf))
5879 /* This shouldn't happen - we adjusted in_g_packet above. */
5880 internal_error (__FILE__, __LINE__,
5881 _("unexpected end of 'g' packet reply"));
5882 else if (rs->buf[r->offset * 2] == 'x')
5883 {
5884 gdb_assert (r->offset * 2 < strlen (rs->buf));
5885 /* The register isn't available, mark it as such (at
5886 the same time setting the value to zero). */
5887 regcache_raw_supply (regcache, r->regnum, NULL);
5888 }
5889 else
5890 regcache_raw_supply (regcache, r->regnum,
5891 regs + r->offset);
5892 }
5893 }
5894 }
5895
5896 static void
5897 fetch_registers_using_g (struct regcache *regcache)
5898 {
5899 send_g_packet ();
5900 process_g_packet (regcache);
5901 }
5902
5903 /* Make the remote selected traceframe match GDB's selected
5904 traceframe. */
5905
5906 static void
5907 set_remote_traceframe (void)
5908 {
5909 int newnum;
5910
5911 if (remote_traceframe_number == get_traceframe_number ())
5912 return;
5913
5914 /* Avoid recursion, remote_trace_find calls us again. */
5915 remote_traceframe_number = get_traceframe_number ();
5916
5917 newnum = target_trace_find (tfind_number,
5918 get_traceframe_number (), 0, 0, NULL);
5919
5920 /* Should not happen. If it does, all bets are off. */
5921 if (newnum != get_traceframe_number ())
5922 warning (_("could not set remote traceframe"));
5923 }
5924
5925 static void
5926 remote_fetch_registers (struct target_ops *ops,
5927 struct regcache *regcache, int regnum)
5928 {
5929 struct remote_arch_state *rsa = get_remote_arch_state ();
5930 int i;
5931
5932 set_remote_traceframe ();
5933 set_general_thread (inferior_ptid);
5934
5935 if (regnum >= 0)
5936 {
5937 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5938
5939 gdb_assert (reg != NULL);
5940
5941 /* If this register might be in the 'g' packet, try that first -
5942 we are likely to read more than one register. If this is the
5943 first 'g' packet, we might be overly optimistic about its
5944 contents, so fall back to 'p'. */
5945 if (reg->in_g_packet)
5946 {
5947 fetch_registers_using_g (regcache);
5948 if (reg->in_g_packet)
5949 return;
5950 }
5951
5952 if (fetch_register_using_p (regcache, reg))
5953 return;
5954
5955 /* This register is not available. */
5956 regcache_raw_supply (regcache, reg->regnum, NULL);
5957
5958 return;
5959 }
5960
5961 fetch_registers_using_g (regcache);
5962
5963 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5964 if (!rsa->regs[i].in_g_packet)
5965 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5966 {
5967 /* This register is not available. */
5968 regcache_raw_supply (regcache, i, NULL);
5969 }
5970 }
5971
5972 /* Prepare to store registers. Since we may send them all (using a
5973 'G' request), we have to read out the ones we don't want to change
5974 first. */
5975
5976 static void
5977 remote_prepare_to_store (struct regcache *regcache)
5978 {
5979 struct remote_arch_state *rsa = get_remote_arch_state ();
5980 int i;
5981 gdb_byte buf[MAX_REGISTER_SIZE];
5982
5983 /* Make sure the entire registers array is valid. */
5984 switch (remote_protocol_packets[PACKET_P].support)
5985 {
5986 case PACKET_DISABLE:
5987 case PACKET_SUPPORT_UNKNOWN:
5988 /* Make sure all the necessary registers are cached. */
5989 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5990 if (rsa->regs[i].in_g_packet)
5991 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5992 break;
5993 case PACKET_ENABLE:
5994 break;
5995 }
5996 }
5997
5998 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5999 packet was not recognized. */
6000
6001 static int
6002 store_register_using_P (const struct regcache *regcache,
6003 struct packet_reg *reg)
6004 {
6005 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6006 struct remote_state *rs = get_remote_state ();
6007 /* Try storing a single register. */
6008 char *buf = rs->buf;
6009 gdb_byte regp[MAX_REGISTER_SIZE];
6010 char *p;
6011
6012 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6013 return 0;
6014
6015 if (reg->pnum == -1)
6016 return 0;
6017
6018 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6019 p = buf + strlen (buf);
6020 regcache_raw_collect (regcache, reg->regnum, regp);
6021 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6022 putpkt (rs->buf);
6023 getpkt (&rs->buf, &rs->buf_size, 0);
6024
6025 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6026 {
6027 case PACKET_OK:
6028 return 1;
6029 case PACKET_ERROR:
6030 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6031 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6032 case PACKET_UNKNOWN:
6033 return 0;
6034 default:
6035 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6036 }
6037 }
6038
6039 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6040 contents of the register cache buffer. FIXME: ignores errors. */
6041
6042 static void
6043 store_registers_using_G (const struct regcache *regcache)
6044 {
6045 struct remote_state *rs = get_remote_state ();
6046 struct remote_arch_state *rsa = get_remote_arch_state ();
6047 gdb_byte *regs;
6048 char *p;
6049
6050 /* Extract all the registers in the regcache copying them into a
6051 local buffer. */
6052 {
6053 int i;
6054
6055 regs = alloca (rsa->sizeof_g_packet);
6056 memset (regs, 0, rsa->sizeof_g_packet);
6057 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6058 {
6059 struct packet_reg *r = &rsa->regs[i];
6060
6061 if (r->in_g_packet)
6062 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6063 }
6064 }
6065
6066 /* Command describes registers byte by byte,
6067 each byte encoded as two hex characters. */
6068 p = rs->buf;
6069 *p++ = 'G';
6070 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6071 updated. */
6072 bin2hex (regs, p, rsa->sizeof_g_packet);
6073 putpkt (rs->buf);
6074 getpkt (&rs->buf, &rs->buf_size, 0);
6075 if (packet_check_result (rs->buf) == PACKET_ERROR)
6076 error (_("Could not write registers; remote failure reply '%s'"),
6077 rs->buf);
6078 }
6079
6080 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6081 of the register cache buffer. FIXME: ignores errors. */
6082
6083 static void
6084 remote_store_registers (struct target_ops *ops,
6085 struct regcache *regcache, int regnum)
6086 {
6087 struct remote_arch_state *rsa = get_remote_arch_state ();
6088 int i;
6089
6090 set_remote_traceframe ();
6091 set_general_thread (inferior_ptid);
6092
6093 if (regnum >= 0)
6094 {
6095 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6096
6097 gdb_assert (reg != NULL);
6098
6099 /* Always prefer to store registers using the 'P' packet if
6100 possible; we often change only a small number of registers.
6101 Sometimes we change a larger number; we'd need help from a
6102 higher layer to know to use 'G'. */
6103 if (store_register_using_P (regcache, reg))
6104 return;
6105
6106 /* For now, don't complain if we have no way to write the
6107 register. GDB loses track of unavailable registers too
6108 easily. Some day, this may be an error. We don't have
6109 any way to read the register, either... */
6110 if (!reg->in_g_packet)
6111 return;
6112
6113 store_registers_using_G (regcache);
6114 return;
6115 }
6116
6117 store_registers_using_G (regcache);
6118
6119 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6120 if (!rsa->regs[i].in_g_packet)
6121 if (!store_register_using_P (regcache, &rsa->regs[i]))
6122 /* See above for why we do not issue an error here. */
6123 continue;
6124 }
6125 \f
6126
6127 /* Return the number of hex digits in num. */
6128
6129 static int
6130 hexnumlen (ULONGEST num)
6131 {
6132 int i;
6133
6134 for (i = 0; num != 0; i++)
6135 num >>= 4;
6136
6137 return max (i, 1);
6138 }
6139
6140 /* Set BUF to the minimum number of hex digits representing NUM. */
6141
6142 static int
6143 hexnumstr (char *buf, ULONGEST num)
6144 {
6145 int len = hexnumlen (num);
6146
6147 return hexnumnstr (buf, num, len);
6148 }
6149
6150
6151 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6152
6153 static int
6154 hexnumnstr (char *buf, ULONGEST num, int width)
6155 {
6156 int i;
6157
6158 buf[width] = '\0';
6159
6160 for (i = width - 1; i >= 0; i--)
6161 {
6162 buf[i] = "0123456789abcdef"[(num & 0xf)];
6163 num >>= 4;
6164 }
6165
6166 return width;
6167 }
6168
6169 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6170
6171 static CORE_ADDR
6172 remote_address_masked (CORE_ADDR addr)
6173 {
6174 int address_size = remote_address_size;
6175
6176 /* If "remoteaddresssize" was not set, default to target address size. */
6177 if (!address_size)
6178 address_size = gdbarch_addr_bit (target_gdbarch);
6179
6180 if (address_size > 0
6181 && address_size < (sizeof (ULONGEST) * 8))
6182 {
6183 /* Only create a mask when that mask can safely be constructed
6184 in a ULONGEST variable. */
6185 ULONGEST mask = 1;
6186
6187 mask = (mask << address_size) - 1;
6188 addr &= mask;
6189 }
6190 return addr;
6191 }
6192
6193 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6194 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6195 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6196 (which may be more than *OUT_LEN due to escape characters). The
6197 total number of bytes in the output buffer will be at most
6198 OUT_MAXLEN. */
6199
6200 static int
6201 remote_escape_output (const gdb_byte *buffer, int len,
6202 gdb_byte *out_buf, int *out_len,
6203 int out_maxlen)
6204 {
6205 int input_index, output_index;
6206
6207 output_index = 0;
6208 for (input_index = 0; input_index < len; input_index++)
6209 {
6210 gdb_byte b = buffer[input_index];
6211
6212 if (b == '$' || b == '#' || b == '}')
6213 {
6214 /* These must be escaped. */
6215 if (output_index + 2 > out_maxlen)
6216 break;
6217 out_buf[output_index++] = '}';
6218 out_buf[output_index++] = b ^ 0x20;
6219 }
6220 else
6221 {
6222 if (output_index + 1 > out_maxlen)
6223 break;
6224 out_buf[output_index++] = b;
6225 }
6226 }
6227
6228 *out_len = input_index;
6229 return output_index;
6230 }
6231
6232 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6233 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6234 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6235
6236 This function reverses remote_escape_output. It allows more
6237 escaped characters than that function does, in particular because
6238 '*' must be escaped to avoid the run-length encoding processing
6239 in reading packets. */
6240
6241 static int
6242 remote_unescape_input (const gdb_byte *buffer, int len,
6243 gdb_byte *out_buf, int out_maxlen)
6244 {
6245 int input_index, output_index;
6246 int escaped;
6247
6248 output_index = 0;
6249 escaped = 0;
6250 for (input_index = 0; input_index < len; input_index++)
6251 {
6252 gdb_byte b = buffer[input_index];
6253
6254 if (output_index + 1 > out_maxlen)
6255 {
6256 warning (_("Received too much data from remote target;"
6257 " ignoring overflow."));
6258 return output_index;
6259 }
6260
6261 if (escaped)
6262 {
6263 out_buf[output_index++] = b ^ 0x20;
6264 escaped = 0;
6265 }
6266 else if (b == '}')
6267 escaped = 1;
6268 else
6269 out_buf[output_index++] = b;
6270 }
6271
6272 if (escaped)
6273 error (_("Unmatched escape character in target response."));
6274
6275 return output_index;
6276 }
6277
6278 /* Determine whether the remote target supports binary downloading.
6279 This is accomplished by sending a no-op memory write of zero length
6280 to the target at the specified address. It does not suffice to send
6281 the whole packet, since many stubs strip the eighth bit and
6282 subsequently compute a wrong checksum, which causes real havoc with
6283 remote_write_bytes.
6284
6285 NOTE: This can still lose if the serial line is not eight-bit
6286 clean. In cases like this, the user should clear "remote
6287 X-packet". */
6288
6289 static void
6290 check_binary_download (CORE_ADDR addr)
6291 {
6292 struct remote_state *rs = get_remote_state ();
6293
6294 switch (remote_protocol_packets[PACKET_X].support)
6295 {
6296 case PACKET_DISABLE:
6297 break;
6298 case PACKET_ENABLE:
6299 break;
6300 case PACKET_SUPPORT_UNKNOWN:
6301 {
6302 char *p;
6303
6304 p = rs->buf;
6305 *p++ = 'X';
6306 p += hexnumstr (p, (ULONGEST) addr);
6307 *p++ = ',';
6308 p += hexnumstr (p, (ULONGEST) 0);
6309 *p++ = ':';
6310 *p = '\0';
6311
6312 putpkt_binary (rs->buf, (int) (p - rs->buf));
6313 getpkt (&rs->buf, &rs->buf_size, 0);
6314
6315 if (rs->buf[0] == '\0')
6316 {
6317 if (remote_debug)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "binary downloading NOT "
6320 "supported by target\n");
6321 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6322 }
6323 else
6324 {
6325 if (remote_debug)
6326 fprintf_unfiltered (gdb_stdlog,
6327 "binary downloading supported by target\n");
6328 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6329 }
6330 break;
6331 }
6332 }
6333 }
6334
6335 /* Write memory data directly to the remote machine.
6336 This does not inform the data cache; the data cache uses this.
6337 HEADER is the starting part of the packet.
6338 MEMADDR is the address in the remote memory space.
6339 MYADDR is the address of the buffer in our space.
6340 LEN is the number of bytes.
6341 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6342 should send data as binary ('X'), or hex-encoded ('M').
6343
6344 The function creates packet of the form
6345 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6346
6347 where encoding of <DATA> is termined by PACKET_FORMAT.
6348
6349 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6350 are omitted.
6351
6352 Returns the number of bytes transferred, or 0 (setting errno) for
6353 error. Only transfer a single packet. */
6354
6355 static int
6356 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6357 const gdb_byte *myaddr, int len,
6358 char packet_format, int use_length)
6359 {
6360 struct remote_state *rs = get_remote_state ();
6361 char *p;
6362 char *plen = NULL;
6363 int plenlen = 0;
6364 int todo;
6365 int nr_bytes;
6366 int payload_size;
6367 int payload_length;
6368 int header_length;
6369
6370 if (packet_format != 'X' && packet_format != 'M')
6371 internal_error (__FILE__, __LINE__,
6372 _("remote_write_bytes_aux: bad packet format"));
6373
6374 if (len <= 0)
6375 return 0;
6376
6377 payload_size = get_memory_write_packet_size ();
6378
6379 /* The packet buffer will be large enough for the payload;
6380 get_memory_packet_size ensures this. */
6381 rs->buf[0] = '\0';
6382
6383 /* Compute the size of the actual payload by subtracting out the
6384 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6385
6386 payload_size -= strlen ("$,:#NN");
6387 if (!use_length)
6388 /* The comma won't be used. */
6389 payload_size += 1;
6390 header_length = strlen (header);
6391 payload_size -= header_length;
6392 payload_size -= hexnumlen (memaddr);
6393
6394 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6395
6396 strcat (rs->buf, header);
6397 p = rs->buf + strlen (header);
6398
6399 /* Compute a best guess of the number of bytes actually transfered. */
6400 if (packet_format == 'X')
6401 {
6402 /* Best guess at number of bytes that will fit. */
6403 todo = min (len, payload_size);
6404 if (use_length)
6405 payload_size -= hexnumlen (todo);
6406 todo = min (todo, payload_size);
6407 }
6408 else
6409 {
6410 /* Num bytes that will fit. */
6411 todo = min (len, payload_size / 2);
6412 if (use_length)
6413 payload_size -= hexnumlen (todo);
6414 todo = min (todo, payload_size / 2);
6415 }
6416
6417 if (todo <= 0)
6418 internal_error (__FILE__, __LINE__,
6419 _("minimum packet size too small to write data"));
6420
6421 /* If we already need another packet, then try to align the end
6422 of this packet to a useful boundary. */
6423 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6424 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6425
6426 /* Append "<memaddr>". */
6427 memaddr = remote_address_masked (memaddr);
6428 p += hexnumstr (p, (ULONGEST) memaddr);
6429
6430 if (use_length)
6431 {
6432 /* Append ",". */
6433 *p++ = ',';
6434
6435 /* Append <len>. Retain the location/size of <len>. It may need to
6436 be adjusted once the packet body has been created. */
6437 plen = p;
6438 plenlen = hexnumstr (p, (ULONGEST) todo);
6439 p += plenlen;
6440 }
6441
6442 /* Append ":". */
6443 *p++ = ':';
6444 *p = '\0';
6445
6446 /* Append the packet body. */
6447 if (packet_format == 'X')
6448 {
6449 /* Binary mode. Send target system values byte by byte, in
6450 increasing byte addresses. Only escape certain critical
6451 characters. */
6452 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6453 payload_size);
6454
6455 /* If not all TODO bytes fit, then we'll need another packet. Make
6456 a second try to keep the end of the packet aligned. Don't do
6457 this if the packet is tiny. */
6458 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6459 {
6460 int new_nr_bytes;
6461
6462 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6463 - memaddr);
6464 if (new_nr_bytes != nr_bytes)
6465 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6466 p, &nr_bytes,
6467 payload_size);
6468 }
6469
6470 p += payload_length;
6471 if (use_length && nr_bytes < todo)
6472 {
6473 /* Escape chars have filled up the buffer prematurely,
6474 and we have actually sent fewer bytes than planned.
6475 Fix-up the length field of the packet. Use the same
6476 number of characters as before. */
6477 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6478 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6479 }
6480 }
6481 else
6482 {
6483 /* Normal mode: Send target system values byte by byte, in
6484 increasing byte addresses. Each byte is encoded as a two hex
6485 value. */
6486 nr_bytes = bin2hex (myaddr, p, todo);
6487 p += 2 * nr_bytes;
6488 }
6489
6490 putpkt_binary (rs->buf, (int) (p - rs->buf));
6491 getpkt (&rs->buf, &rs->buf_size, 0);
6492
6493 if (rs->buf[0] == 'E')
6494 {
6495 /* There is no correspondance between what the remote protocol
6496 uses for errors and errno codes. We would like a cleaner way
6497 of representing errors (big enough to include errno codes,
6498 bfd_error codes, and others). But for now just return EIO. */
6499 errno = EIO;
6500 return 0;
6501 }
6502
6503 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6504 fewer bytes than we'd planned. */
6505 return nr_bytes;
6506 }
6507
6508 /* Write memory data directly to the remote machine.
6509 This does not inform the data cache; the data cache uses this.
6510 MEMADDR is the address in the remote memory space.
6511 MYADDR is the address of the buffer in our space.
6512 LEN is the number of bytes.
6513
6514 Returns number of bytes transferred, or 0 (setting errno) for
6515 error. Only transfer a single packet. */
6516
6517 static int
6518 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6519 {
6520 char *packet_format = 0;
6521
6522 /* Check whether the target supports binary download. */
6523 check_binary_download (memaddr);
6524
6525 switch (remote_protocol_packets[PACKET_X].support)
6526 {
6527 case PACKET_ENABLE:
6528 packet_format = "X";
6529 break;
6530 case PACKET_DISABLE:
6531 packet_format = "M";
6532 break;
6533 case PACKET_SUPPORT_UNKNOWN:
6534 internal_error (__FILE__, __LINE__,
6535 _("remote_write_bytes: bad internal state"));
6536 default:
6537 internal_error (__FILE__, __LINE__, _("bad switch"));
6538 }
6539
6540 return remote_write_bytes_aux (packet_format,
6541 memaddr, myaddr, len, packet_format[0], 1);
6542 }
6543
6544 /* Read memory data directly from the remote machine.
6545 This does not use the data cache; the data cache uses this.
6546 MEMADDR is the address in the remote memory space.
6547 MYADDR is the address of the buffer in our space.
6548 LEN is the number of bytes.
6549
6550 Returns number of bytes transferred, or 0 for error. */
6551
6552 static int
6553 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6554 {
6555 struct remote_state *rs = get_remote_state ();
6556 int max_buf_size; /* Max size of packet output buffer. */
6557 char *p;
6558 int todo;
6559 int i;
6560
6561 if (len <= 0)
6562 return 0;
6563
6564 max_buf_size = get_memory_read_packet_size ();
6565 /* The packet buffer will be large enough for the payload;
6566 get_memory_packet_size ensures this. */
6567
6568 /* Number if bytes that will fit. */
6569 todo = min (len, max_buf_size / 2);
6570
6571 /* Construct "m"<memaddr>","<len>". */
6572 memaddr = remote_address_masked (memaddr);
6573 p = rs->buf;
6574 *p++ = 'm';
6575 p += hexnumstr (p, (ULONGEST) memaddr);
6576 *p++ = ',';
6577 p += hexnumstr (p, (ULONGEST) todo);
6578 *p = '\0';
6579 putpkt (rs->buf);
6580 getpkt (&rs->buf, &rs->buf_size, 0);
6581 if (rs->buf[0] == 'E'
6582 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6583 && rs->buf[3] == '\0')
6584 {
6585 /* There is no correspondance between what the remote protocol
6586 uses for errors and errno codes. We would like a cleaner way
6587 of representing errors (big enough to include errno codes,
6588 bfd_error codes, and others). But for now just return
6589 EIO. */
6590 errno = EIO;
6591 return 0;
6592 }
6593 /* Reply describes memory byte by byte, each byte encoded as two hex
6594 characters. */
6595 p = rs->buf;
6596 i = hex2bin (p, myaddr, todo);
6597 /* Return what we have. Let higher layers handle partial reads. */
6598 return i;
6599 }
6600 \f
6601
6602 /* Remote notification handler. */
6603
6604 static void
6605 handle_notification (char *buf, size_t length)
6606 {
6607 if (strncmp (buf, "Stop:", 5) == 0)
6608 {
6609 if (pending_stop_reply)
6610 {
6611 /* We've already parsed the in-flight stop-reply, but the
6612 stub for some reason thought we didn't, possibly due to
6613 timeout on its side. Just ignore it. */
6614 if (remote_debug)
6615 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6616 }
6617 else
6618 {
6619 struct cleanup *old_chain;
6620 struct stop_reply *reply = stop_reply_xmalloc ();
6621
6622 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6623
6624 remote_parse_stop_reply (buf + 5, reply);
6625
6626 discard_cleanups (old_chain);
6627
6628 /* Be careful to only set it after parsing, since an error
6629 may be thrown then. */
6630 pending_stop_reply = reply;
6631
6632 /* Notify the event loop there's a stop reply to acknowledge
6633 and that there may be more events to fetch. */
6634 mark_async_event_handler (remote_async_get_pending_events_token);
6635
6636 if (remote_debug)
6637 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6638 }
6639 }
6640 else
6641 /* We ignore notifications we don't recognize, for compatibility
6642 with newer stubs. */
6643 ;
6644 }
6645
6646 \f
6647 /* Read or write LEN bytes from inferior memory at MEMADDR,
6648 transferring to or from debugger address BUFFER. Write to inferior
6649 if SHOULD_WRITE is nonzero. Returns length of data written or
6650 read; 0 for error. TARGET is unused. */
6651
6652 static int
6653 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6654 int should_write, struct mem_attrib *attrib,
6655 struct target_ops *target)
6656 {
6657 int res;
6658
6659 set_remote_traceframe ();
6660 set_general_thread (inferior_ptid);
6661
6662 if (should_write)
6663 res = remote_write_bytes (mem_addr, buffer, mem_len);
6664 else
6665 res = remote_read_bytes (mem_addr, buffer, mem_len);
6666
6667 return res;
6668 }
6669
6670 /* Sends a packet with content determined by the printf format string
6671 FORMAT and the remaining arguments, then gets the reply. Returns
6672 whether the packet was a success, a failure, or unknown. */
6673
6674 static enum packet_result
6675 remote_send_printf (const char *format, ...)
6676 {
6677 struct remote_state *rs = get_remote_state ();
6678 int max_size = get_remote_packet_size ();
6679 va_list ap;
6680
6681 va_start (ap, format);
6682
6683 rs->buf[0] = '\0';
6684 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6685 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6686
6687 if (putpkt (rs->buf) < 0)
6688 error (_("Communication problem with target."));
6689
6690 rs->buf[0] = '\0';
6691 getpkt (&rs->buf, &rs->buf_size, 0);
6692
6693 return packet_check_result (rs->buf);
6694 }
6695
6696 static void
6697 restore_remote_timeout (void *p)
6698 {
6699 int value = *(int *)p;
6700
6701 remote_timeout = value;
6702 }
6703
6704 /* Flash writing can take quite some time. We'll set
6705 effectively infinite timeout for flash operations.
6706 In future, we'll need to decide on a better approach. */
6707 static const int remote_flash_timeout = 1000;
6708
6709 static void
6710 remote_flash_erase (struct target_ops *ops,
6711 ULONGEST address, LONGEST length)
6712 {
6713 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6714 int saved_remote_timeout = remote_timeout;
6715 enum packet_result ret;
6716 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6717 &saved_remote_timeout);
6718
6719 remote_timeout = remote_flash_timeout;
6720
6721 ret = remote_send_printf ("vFlashErase:%s,%s",
6722 phex (address, addr_size),
6723 phex (length, 4));
6724 switch (ret)
6725 {
6726 case PACKET_UNKNOWN:
6727 error (_("Remote target does not support flash erase"));
6728 case PACKET_ERROR:
6729 error (_("Error erasing flash with vFlashErase packet"));
6730 default:
6731 break;
6732 }
6733
6734 do_cleanups (back_to);
6735 }
6736
6737 static LONGEST
6738 remote_flash_write (struct target_ops *ops,
6739 ULONGEST address, LONGEST length,
6740 const gdb_byte *data)
6741 {
6742 int saved_remote_timeout = remote_timeout;
6743 int ret;
6744 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6745 &saved_remote_timeout);
6746
6747 remote_timeout = remote_flash_timeout;
6748 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6749 do_cleanups (back_to);
6750
6751 return ret;
6752 }
6753
6754 static void
6755 remote_flash_done (struct target_ops *ops)
6756 {
6757 int saved_remote_timeout = remote_timeout;
6758 int ret;
6759 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6760 &saved_remote_timeout);
6761
6762 remote_timeout = remote_flash_timeout;
6763 ret = remote_send_printf ("vFlashDone");
6764 do_cleanups (back_to);
6765
6766 switch (ret)
6767 {
6768 case PACKET_UNKNOWN:
6769 error (_("Remote target does not support vFlashDone"));
6770 case PACKET_ERROR:
6771 error (_("Error finishing flash operation"));
6772 default:
6773 break;
6774 }
6775 }
6776
6777 static void
6778 remote_files_info (struct target_ops *ignore)
6779 {
6780 puts_filtered ("Debugging a target over a serial line.\n");
6781 }
6782 \f
6783 /* Stuff for dealing with the packets which are part of this protocol.
6784 See comment at top of file for details. */
6785
6786 /* Read a single character from the remote end. */
6787
6788 static int
6789 readchar (int timeout)
6790 {
6791 int ch;
6792
6793 ch = serial_readchar (remote_desc, timeout);
6794
6795 if (ch >= 0)
6796 return ch;
6797
6798 switch ((enum serial_rc) ch)
6799 {
6800 case SERIAL_EOF:
6801 pop_target ();
6802 error (_("Remote connection closed"));
6803 /* no return */
6804 case SERIAL_ERROR:
6805 pop_target ();
6806 perror_with_name (_("Remote communication error. "
6807 "Target disconnected."));
6808 /* no return */
6809 case SERIAL_TIMEOUT:
6810 break;
6811 }
6812 return ch;
6813 }
6814
6815 /* Send the command in *BUF to the remote machine, and read the reply
6816 into *BUF. Report an error if we get an error reply. Resize
6817 *BUF using xrealloc if necessary to hold the result, and update
6818 *SIZEOF_BUF. */
6819
6820 static void
6821 remote_send (char **buf,
6822 long *sizeof_buf)
6823 {
6824 putpkt (*buf);
6825 getpkt (buf, sizeof_buf, 0);
6826
6827 if ((*buf)[0] == 'E')
6828 error (_("Remote failure reply: %s"), *buf);
6829 }
6830
6831 /* Return a pointer to an xmalloc'ed string representing an escaped
6832 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6833 etc. The caller is responsible for releasing the returned
6834 memory. */
6835
6836 static char *
6837 escape_buffer (const char *buf, int n)
6838 {
6839 struct cleanup *old_chain;
6840 struct ui_file *stb;
6841 char *str;
6842
6843 stb = mem_fileopen ();
6844 old_chain = make_cleanup_ui_file_delete (stb);
6845
6846 fputstrn_unfiltered (buf, n, 0, stb);
6847 str = ui_file_xstrdup (stb, NULL);
6848 do_cleanups (old_chain);
6849 return str;
6850 }
6851
6852 /* Display a null-terminated packet on stdout, for debugging, using C
6853 string notation. */
6854
6855 static void
6856 print_packet (char *buf)
6857 {
6858 puts_filtered ("\"");
6859 fputstr_filtered (buf, '"', gdb_stdout);
6860 puts_filtered ("\"");
6861 }
6862
6863 int
6864 putpkt (char *buf)
6865 {
6866 return putpkt_binary (buf, strlen (buf));
6867 }
6868
6869 /* Send a packet to the remote machine, with error checking. The data
6870 of the packet is in BUF. The string in BUF can be at most
6871 get_remote_packet_size () - 5 to account for the $, # and checksum,
6872 and for a possible /0 if we are debugging (remote_debug) and want
6873 to print the sent packet as a string. */
6874
6875 static int
6876 putpkt_binary (char *buf, int cnt)
6877 {
6878 struct remote_state *rs = get_remote_state ();
6879 int i;
6880 unsigned char csum = 0;
6881 char *buf2 = alloca (cnt + 6);
6882
6883 int ch;
6884 int tcount = 0;
6885 char *p;
6886
6887 /* Catch cases like trying to read memory or listing threads while
6888 we're waiting for a stop reply. The remote server wouldn't be
6889 ready to handle this request, so we'd hang and timeout. We don't
6890 have to worry about this in synchronous mode, because in that
6891 case it's not possible to issue a command while the target is
6892 running. This is not a problem in non-stop mode, because in that
6893 case, the stub is always ready to process serial input. */
6894 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6895 error (_("Cannot execute this command while the target is running."));
6896
6897 /* We're sending out a new packet. Make sure we don't look at a
6898 stale cached response. */
6899 rs->cached_wait_status = 0;
6900
6901 /* Copy the packet into buffer BUF2, encapsulating it
6902 and giving it a checksum. */
6903
6904 p = buf2;
6905 *p++ = '$';
6906
6907 for (i = 0; i < cnt; i++)
6908 {
6909 csum += buf[i];
6910 *p++ = buf[i];
6911 }
6912 *p++ = '#';
6913 *p++ = tohex ((csum >> 4) & 0xf);
6914 *p++ = tohex (csum & 0xf);
6915
6916 /* Send it over and over until we get a positive ack. */
6917
6918 while (1)
6919 {
6920 int started_error_output = 0;
6921
6922 if (remote_debug)
6923 {
6924 struct cleanup *old_chain;
6925 char *str;
6926
6927 *p = '\0';
6928 str = escape_buffer (buf2, p - buf2);
6929 old_chain = make_cleanup (xfree, str);
6930 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6931 gdb_flush (gdb_stdlog);
6932 do_cleanups (old_chain);
6933 }
6934 if (serial_write (remote_desc, buf2, p - buf2))
6935 perror_with_name (_("putpkt: write failed"));
6936
6937 /* If this is a no acks version of the remote protocol, send the
6938 packet and move on. */
6939 if (rs->noack_mode)
6940 break;
6941
6942 /* Read until either a timeout occurs (-2) or '+' is read.
6943 Handle any notification that arrives in the mean time. */
6944 while (1)
6945 {
6946 ch = readchar (remote_timeout);
6947
6948 if (remote_debug)
6949 {
6950 switch (ch)
6951 {
6952 case '+':
6953 case '-':
6954 case SERIAL_TIMEOUT:
6955 case '$':
6956 case '%':
6957 if (started_error_output)
6958 {
6959 putchar_unfiltered ('\n');
6960 started_error_output = 0;
6961 }
6962 }
6963 }
6964
6965 switch (ch)
6966 {
6967 case '+':
6968 if (remote_debug)
6969 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6970 return 1;
6971 case '-':
6972 if (remote_debug)
6973 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6974 /* FALLTHROUGH */
6975 case SERIAL_TIMEOUT:
6976 tcount++;
6977 if (tcount > 3)
6978 return 0;
6979 break; /* Retransmit buffer. */
6980 case '$':
6981 {
6982 if (remote_debug)
6983 fprintf_unfiltered (gdb_stdlog,
6984 "Packet instead of Ack, ignoring it\n");
6985 /* It's probably an old response sent because an ACK
6986 was lost. Gobble up the packet and ack it so it
6987 doesn't get retransmitted when we resend this
6988 packet. */
6989 skip_frame ();
6990 serial_write (remote_desc, "+", 1);
6991 continue; /* Now, go look for +. */
6992 }
6993
6994 case '%':
6995 {
6996 int val;
6997
6998 /* If we got a notification, handle it, and go back to looking
6999 for an ack. */
7000 /* We've found the start of a notification. Now
7001 collect the data. */
7002 val = read_frame (&rs->buf, &rs->buf_size);
7003 if (val >= 0)
7004 {
7005 if (remote_debug)
7006 {
7007 struct cleanup *old_chain;
7008 char *str;
7009
7010 str = escape_buffer (rs->buf, val);
7011 old_chain = make_cleanup (xfree, str);
7012 fprintf_unfiltered (gdb_stdlog,
7013 " Notification received: %s\n",
7014 str);
7015 do_cleanups (old_chain);
7016 }
7017 handle_notification (rs->buf, val);
7018 /* We're in sync now, rewait for the ack. */
7019 tcount = 0;
7020 }
7021 else
7022 {
7023 if (remote_debug)
7024 {
7025 if (!started_error_output)
7026 {
7027 started_error_output = 1;
7028 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7029 }
7030 fputc_unfiltered (ch & 0177, gdb_stdlog);
7031 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7032 }
7033 }
7034 continue;
7035 }
7036 /* fall-through */
7037 default:
7038 if (remote_debug)
7039 {
7040 if (!started_error_output)
7041 {
7042 started_error_output = 1;
7043 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7044 }
7045 fputc_unfiltered (ch & 0177, gdb_stdlog);
7046 }
7047 continue;
7048 }
7049 break; /* Here to retransmit. */
7050 }
7051
7052 #if 0
7053 /* This is wrong. If doing a long backtrace, the user should be
7054 able to get out next time we call QUIT, without anything as
7055 violent as interrupt_query. If we want to provide a way out of
7056 here without getting to the next QUIT, it should be based on
7057 hitting ^C twice as in remote_wait. */
7058 if (quit_flag)
7059 {
7060 quit_flag = 0;
7061 interrupt_query ();
7062 }
7063 #endif
7064 }
7065 return 0;
7066 }
7067
7068 /* Come here after finding the start of a frame when we expected an
7069 ack. Do our best to discard the rest of this packet. */
7070
7071 static void
7072 skip_frame (void)
7073 {
7074 int c;
7075
7076 while (1)
7077 {
7078 c = readchar (remote_timeout);
7079 switch (c)
7080 {
7081 case SERIAL_TIMEOUT:
7082 /* Nothing we can do. */
7083 return;
7084 case '#':
7085 /* Discard the two bytes of checksum and stop. */
7086 c = readchar (remote_timeout);
7087 if (c >= 0)
7088 c = readchar (remote_timeout);
7089
7090 return;
7091 case '*': /* Run length encoding. */
7092 /* Discard the repeat count. */
7093 c = readchar (remote_timeout);
7094 if (c < 0)
7095 return;
7096 break;
7097 default:
7098 /* A regular character. */
7099 break;
7100 }
7101 }
7102 }
7103
7104 /* Come here after finding the start of the frame. Collect the rest
7105 into *BUF, verifying the checksum, length, and handling run-length
7106 compression. NUL terminate the buffer. If there is not enough room,
7107 expand *BUF using xrealloc.
7108
7109 Returns -1 on error, number of characters in buffer (ignoring the
7110 trailing NULL) on success. (could be extended to return one of the
7111 SERIAL status indications). */
7112
7113 static long
7114 read_frame (char **buf_p,
7115 long *sizeof_buf)
7116 {
7117 unsigned char csum;
7118 long bc;
7119 int c;
7120 char *buf = *buf_p;
7121 struct remote_state *rs = get_remote_state ();
7122
7123 csum = 0;
7124 bc = 0;
7125
7126 while (1)
7127 {
7128 c = readchar (remote_timeout);
7129 switch (c)
7130 {
7131 case SERIAL_TIMEOUT:
7132 if (remote_debug)
7133 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7134 return -1;
7135 case '$':
7136 if (remote_debug)
7137 fputs_filtered ("Saw new packet start in middle of old one\n",
7138 gdb_stdlog);
7139 return -1; /* Start a new packet, count retries. */
7140 case '#':
7141 {
7142 unsigned char pktcsum;
7143 int check_0 = 0;
7144 int check_1 = 0;
7145
7146 buf[bc] = '\0';
7147
7148 check_0 = readchar (remote_timeout);
7149 if (check_0 >= 0)
7150 check_1 = readchar (remote_timeout);
7151
7152 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7153 {
7154 if (remote_debug)
7155 fputs_filtered ("Timeout in checksum, retrying\n",
7156 gdb_stdlog);
7157 return -1;
7158 }
7159 else if (check_0 < 0 || check_1 < 0)
7160 {
7161 if (remote_debug)
7162 fputs_filtered ("Communication error in checksum\n",
7163 gdb_stdlog);
7164 return -1;
7165 }
7166
7167 /* Don't recompute the checksum; with no ack packets we
7168 don't have any way to indicate a packet retransmission
7169 is necessary. */
7170 if (rs->noack_mode)
7171 return bc;
7172
7173 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7174 if (csum == pktcsum)
7175 return bc;
7176
7177 if (remote_debug)
7178 {
7179 struct cleanup *old_chain;
7180 char *str;
7181
7182 str = escape_buffer (buf, bc);
7183 old_chain = make_cleanup (xfree, str);
7184 fprintf_unfiltered (gdb_stdlog,
7185 "Bad checksum, sentsum=0x%x, "
7186 "csum=0x%x, buf=%s\n",
7187 pktcsum, csum, str);
7188 do_cleanups (old_chain);
7189 }
7190 /* Number of characters in buffer ignoring trailing
7191 NULL. */
7192 return -1;
7193 }
7194 case '*': /* Run length encoding. */
7195 {
7196 int repeat;
7197
7198 csum += c;
7199 c = readchar (remote_timeout);
7200 csum += c;
7201 repeat = c - ' ' + 3; /* Compute repeat count. */
7202
7203 /* The character before ``*'' is repeated. */
7204
7205 if (repeat > 0 && repeat <= 255 && bc > 0)
7206 {
7207 if (bc + repeat - 1 >= *sizeof_buf - 1)
7208 {
7209 /* Make some more room in the buffer. */
7210 *sizeof_buf += repeat;
7211 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7212 buf = *buf_p;
7213 }
7214
7215 memset (&buf[bc], buf[bc - 1], repeat);
7216 bc += repeat;
7217 continue;
7218 }
7219
7220 buf[bc] = '\0';
7221 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7222 return -1;
7223 }
7224 default:
7225 if (bc >= *sizeof_buf - 1)
7226 {
7227 /* Make some more room in the buffer. */
7228 *sizeof_buf *= 2;
7229 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7230 buf = *buf_p;
7231 }
7232
7233 buf[bc++] = c;
7234 csum += c;
7235 continue;
7236 }
7237 }
7238 }
7239
7240 /* Read a packet from the remote machine, with error checking, and
7241 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7242 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7243 rather than timing out; this is used (in synchronous mode) to wait
7244 for a target that is is executing user code to stop. */
7245 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7246 don't have to change all the calls to getpkt to deal with the
7247 return value, because at the moment I don't know what the right
7248 thing to do it for those. */
7249 void
7250 getpkt (char **buf,
7251 long *sizeof_buf,
7252 int forever)
7253 {
7254 int timed_out;
7255
7256 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7257 }
7258
7259
7260 /* Read a packet from the remote machine, with error checking, and
7261 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7262 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7263 rather than timing out; this is used (in synchronous mode) to wait
7264 for a target that is is executing user code to stop. If FOREVER ==
7265 0, this function is allowed to time out gracefully and return an
7266 indication of this to the caller. Otherwise return the number of
7267 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7268 enough reason to return to the caller. */
7269
7270 static int
7271 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7272 int expecting_notif)
7273 {
7274 struct remote_state *rs = get_remote_state ();
7275 int c;
7276 int tries;
7277 int timeout;
7278 int val = -1;
7279
7280 /* We're reading a new response. Make sure we don't look at a
7281 previously cached response. */
7282 rs->cached_wait_status = 0;
7283
7284 strcpy (*buf, "timeout");
7285
7286 if (forever)
7287 timeout = watchdog > 0 ? watchdog : -1;
7288 else if (expecting_notif)
7289 timeout = 0; /* There should already be a char in the buffer. If
7290 not, bail out. */
7291 else
7292 timeout = remote_timeout;
7293
7294 #define MAX_TRIES 3
7295
7296 /* Process any number of notifications, and then return when
7297 we get a packet. */
7298 for (;;)
7299 {
7300 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7301 times. */
7302 for (tries = 1; tries <= MAX_TRIES; tries++)
7303 {
7304 /* This can loop forever if the remote side sends us
7305 characters continuously, but if it pauses, we'll get
7306 SERIAL_TIMEOUT from readchar because of timeout. Then
7307 we'll count that as a retry.
7308
7309 Note that even when forever is set, we will only wait
7310 forever prior to the start of a packet. After that, we
7311 expect characters to arrive at a brisk pace. They should
7312 show up within remote_timeout intervals. */
7313 do
7314 c = readchar (timeout);
7315 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7316
7317 if (c == SERIAL_TIMEOUT)
7318 {
7319 if (expecting_notif)
7320 return -1; /* Don't complain, it's normal to not get
7321 anything in this case. */
7322
7323 if (forever) /* Watchdog went off? Kill the target. */
7324 {
7325 QUIT;
7326 pop_target ();
7327 error (_("Watchdog timeout has expired. Target detached."));
7328 }
7329 if (remote_debug)
7330 fputs_filtered ("Timed out.\n", gdb_stdlog);
7331 }
7332 else
7333 {
7334 /* We've found the start of a packet or notification.
7335 Now collect the data. */
7336 val = read_frame (buf, sizeof_buf);
7337 if (val >= 0)
7338 break;
7339 }
7340
7341 serial_write (remote_desc, "-", 1);
7342 }
7343
7344 if (tries > MAX_TRIES)
7345 {
7346 /* We have tried hard enough, and just can't receive the
7347 packet/notification. Give up. */
7348 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7349
7350 /* Skip the ack char if we're in no-ack mode. */
7351 if (!rs->noack_mode)
7352 serial_write (remote_desc, "+", 1);
7353 return -1;
7354 }
7355
7356 /* If we got an ordinary packet, return that to our caller. */
7357 if (c == '$')
7358 {
7359 if (remote_debug)
7360 {
7361 struct cleanup *old_chain;
7362 char *str;
7363
7364 str = escape_buffer (*buf, val);
7365 old_chain = make_cleanup (xfree, str);
7366 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7367 do_cleanups (old_chain);
7368 }
7369
7370 /* Skip the ack char if we're in no-ack mode. */
7371 if (!rs->noack_mode)
7372 serial_write (remote_desc, "+", 1);
7373 return val;
7374 }
7375
7376 /* If we got a notification, handle it, and go back to looking
7377 for a packet. */
7378 else
7379 {
7380 gdb_assert (c == '%');
7381
7382 if (remote_debug)
7383 {
7384 struct cleanup *old_chain;
7385 char *str;
7386
7387 str = escape_buffer (*buf, val);
7388 old_chain = make_cleanup (xfree, str);
7389 fprintf_unfiltered (gdb_stdlog,
7390 " Notification received: %s\n",
7391 str);
7392 do_cleanups (old_chain);
7393 }
7394
7395 handle_notification (*buf, val);
7396
7397 /* Notifications require no acknowledgement. */
7398
7399 if (expecting_notif)
7400 return -1;
7401 }
7402 }
7403 }
7404
7405 static int
7406 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7407 {
7408 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7409 }
7410
7411 static int
7412 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7413 {
7414 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7415 }
7416
7417 \f
7418 /* A helper function that just calls putpkt; for type correctness. */
7419
7420 static int
7421 putpkt_for_catch_errors (void *arg)
7422 {
7423 return putpkt (arg);
7424 }
7425
7426 static void
7427 remote_kill (struct target_ops *ops)
7428 {
7429 /* Use catch_errors so the user can quit from gdb even when we
7430 aren't on speaking terms with the remote system. */
7431 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7432
7433 /* Don't wait for it to die. I'm not really sure it matters whether
7434 we do or not. For the existing stubs, kill is a noop. */
7435 target_mourn_inferior ();
7436 }
7437
7438 static int
7439 remote_vkill (int pid, struct remote_state *rs)
7440 {
7441 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7442 return -1;
7443
7444 /* Tell the remote target to detach. */
7445 sprintf (rs->buf, "vKill;%x", pid);
7446 putpkt (rs->buf);
7447 getpkt (&rs->buf, &rs->buf_size, 0);
7448
7449 if (packet_ok (rs->buf,
7450 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7451 return 0;
7452 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7453 return -1;
7454 else
7455 return 1;
7456 }
7457
7458 static void
7459 extended_remote_kill (struct target_ops *ops)
7460 {
7461 int res;
7462 int pid = ptid_get_pid (inferior_ptid);
7463 struct remote_state *rs = get_remote_state ();
7464
7465 res = remote_vkill (pid, rs);
7466 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7467 {
7468 /* Don't try 'k' on a multi-process aware stub -- it has no way
7469 to specify the pid. */
7470
7471 putpkt ("k");
7472 #if 0
7473 getpkt (&rs->buf, &rs->buf_size, 0);
7474 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7475 res = 1;
7476 #else
7477 /* Don't wait for it to die. I'm not really sure it matters whether
7478 we do or not. For the existing stubs, kill is a noop. */
7479 res = 0;
7480 #endif
7481 }
7482
7483 if (res != 0)
7484 error (_("Can't kill process"));
7485
7486 target_mourn_inferior ();
7487 }
7488
7489 static void
7490 remote_mourn (struct target_ops *ops)
7491 {
7492 remote_mourn_1 (ops);
7493 }
7494
7495 /* Worker function for remote_mourn. */
7496 static void
7497 remote_mourn_1 (struct target_ops *target)
7498 {
7499 unpush_target (target);
7500
7501 /* remote_close takes care of doing most of the clean up. */
7502 generic_mourn_inferior ();
7503 }
7504
7505 static void
7506 extended_remote_mourn_1 (struct target_ops *target)
7507 {
7508 struct remote_state *rs = get_remote_state ();
7509
7510 /* In case we got here due to an error, but we're going to stay
7511 connected. */
7512 rs->waiting_for_stop_reply = 0;
7513
7514 /* We're no longer interested in these events. */
7515 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7516
7517 /* If the current general thread belonged to the process we just
7518 detached from or has exited, the remote side current general
7519 thread becomes undefined. Considering a case like this:
7520
7521 - We just got here due to a detach.
7522 - The process that we're detaching from happens to immediately
7523 report a global breakpoint being hit in non-stop mode, in the
7524 same thread we had selected before.
7525 - GDB attaches to this process again.
7526 - This event happens to be the next event we handle.
7527
7528 GDB would consider that the current general thread didn't need to
7529 be set on the stub side (with Hg), since for all it knew,
7530 GENERAL_THREAD hadn't changed.
7531
7532 Notice that although in all-stop mode, the remote server always
7533 sets the current thread to the thread reporting the stop event,
7534 that doesn't happen in non-stop mode; in non-stop, the stub *must
7535 not* change the current thread when reporting a breakpoint hit,
7536 due to the decoupling of event reporting and event handling.
7537
7538 To keep things simple, we always invalidate our notion of the
7539 current thread. */
7540 record_currthread (minus_one_ptid);
7541
7542 /* Unlike "target remote", we do not want to unpush the target; then
7543 the next time the user says "run", we won't be connected. */
7544
7545 /* Call common code to mark the inferior as not running. */
7546 generic_mourn_inferior ();
7547
7548 if (!have_inferiors ())
7549 {
7550 if (!remote_multi_process_p (rs))
7551 {
7552 /* Check whether the target is running now - some remote stubs
7553 automatically restart after kill. */
7554 putpkt ("?");
7555 getpkt (&rs->buf, &rs->buf_size, 0);
7556
7557 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7558 {
7559 /* Assume that the target has been restarted. Set
7560 inferior_ptid so that bits of core GDB realizes
7561 there's something here, e.g., so that the user can
7562 say "kill" again. */
7563 inferior_ptid = magic_null_ptid;
7564 }
7565 }
7566 }
7567 }
7568
7569 static void
7570 extended_remote_mourn (struct target_ops *ops)
7571 {
7572 extended_remote_mourn_1 (ops);
7573 }
7574
7575 static int
7576 extended_remote_supports_disable_randomization (void)
7577 {
7578 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7579 == PACKET_ENABLE);
7580 }
7581
7582 static void
7583 extended_remote_disable_randomization (int val)
7584 {
7585 struct remote_state *rs = get_remote_state ();
7586 char *reply;
7587
7588 sprintf (rs->buf, "QDisableRandomization:%x", val);
7589 putpkt (rs->buf);
7590 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7591 if (*reply == '\0')
7592 error (_("Target does not support QDisableRandomization."));
7593 if (strcmp (reply, "OK") != 0)
7594 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7595 }
7596
7597 static int
7598 extended_remote_run (char *args)
7599 {
7600 struct remote_state *rs = get_remote_state ();
7601 int len;
7602
7603 /* If the user has disabled vRun support, or we have detected that
7604 support is not available, do not try it. */
7605 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7606 return -1;
7607
7608 strcpy (rs->buf, "vRun;");
7609 len = strlen (rs->buf);
7610
7611 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7612 error (_("Remote file name too long for run packet"));
7613 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7614
7615 gdb_assert (args != NULL);
7616 if (*args)
7617 {
7618 struct cleanup *back_to;
7619 int i;
7620 char **argv;
7621
7622 argv = gdb_buildargv (args);
7623 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7624 for (i = 0; argv[i] != NULL; i++)
7625 {
7626 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7627 error (_("Argument list too long for run packet"));
7628 rs->buf[len++] = ';';
7629 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7630 }
7631 do_cleanups (back_to);
7632 }
7633
7634 rs->buf[len++] = '\0';
7635
7636 putpkt (rs->buf);
7637 getpkt (&rs->buf, &rs->buf_size, 0);
7638
7639 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7640 {
7641 /* We have a wait response; we don't need it, though. All is well. */
7642 return 0;
7643 }
7644 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7645 /* It wasn't disabled before, but it is now. */
7646 return -1;
7647 else
7648 {
7649 if (remote_exec_file[0] == '\0')
7650 error (_("Running the default executable on the remote target failed; "
7651 "try \"set remote exec-file\"?"));
7652 else
7653 error (_("Running \"%s\" on the remote target failed"),
7654 remote_exec_file);
7655 }
7656 }
7657
7658 /* In the extended protocol we want to be able to do things like
7659 "run" and have them basically work as expected. So we need
7660 a special create_inferior function. We support changing the
7661 executable file and the command line arguments, but not the
7662 environment. */
7663
7664 static void
7665 extended_remote_create_inferior_1 (char *exec_file, char *args,
7666 char **env, int from_tty)
7667 {
7668 /* If running asynchronously, register the target file descriptor
7669 with the event loop. */
7670 if (target_can_async_p ())
7671 target_async (inferior_event_handler, 0);
7672
7673 /* Disable address space randomization if requested (and supported). */
7674 if (extended_remote_supports_disable_randomization ())
7675 extended_remote_disable_randomization (disable_randomization);
7676
7677 /* Now restart the remote server. */
7678 if (extended_remote_run (args) == -1)
7679 {
7680 /* vRun was not supported. Fail if we need it to do what the
7681 user requested. */
7682 if (remote_exec_file[0])
7683 error (_("Remote target does not support \"set remote exec-file\""));
7684 if (args[0])
7685 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7686
7687 /* Fall back to "R". */
7688 extended_remote_restart ();
7689 }
7690
7691 if (!have_inferiors ())
7692 {
7693 /* Clean up from the last time we ran, before we mark the target
7694 running again. This will mark breakpoints uninserted, and
7695 get_offsets may insert breakpoints. */
7696 init_thread_list ();
7697 init_wait_for_inferior ();
7698 }
7699
7700 add_current_inferior_and_thread ();
7701
7702 /* Get updated offsets, if the stub uses qOffsets. */
7703 get_offsets ();
7704 }
7705
7706 static void
7707 extended_remote_create_inferior (struct target_ops *ops,
7708 char *exec_file, char *args,
7709 char **env, int from_tty)
7710 {
7711 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7712 }
7713 \f
7714
7715 /* Insert a breakpoint. On targets that have software breakpoint
7716 support, we ask the remote target to do the work; on targets
7717 which don't, we insert a traditional memory breakpoint. */
7718
7719 static int
7720 remote_insert_breakpoint (struct gdbarch *gdbarch,
7721 struct bp_target_info *bp_tgt)
7722 {
7723 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7724 If it succeeds, then set the support to PACKET_ENABLE. If it
7725 fails, and the user has explicitly requested the Z support then
7726 report an error, otherwise, mark it disabled and go on. */
7727
7728 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7729 {
7730 CORE_ADDR addr = bp_tgt->placed_address;
7731 struct remote_state *rs;
7732 char *p;
7733 int bpsize;
7734
7735 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7736
7737 rs = get_remote_state ();
7738 p = rs->buf;
7739
7740 *(p++) = 'Z';
7741 *(p++) = '0';
7742 *(p++) = ',';
7743 addr = (ULONGEST) remote_address_masked (addr);
7744 p += hexnumstr (p, addr);
7745 sprintf (p, ",%d", bpsize);
7746
7747 putpkt (rs->buf);
7748 getpkt (&rs->buf, &rs->buf_size, 0);
7749
7750 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7751 {
7752 case PACKET_ERROR:
7753 return -1;
7754 case PACKET_OK:
7755 bp_tgt->placed_address = addr;
7756 bp_tgt->placed_size = bpsize;
7757 return 0;
7758 case PACKET_UNKNOWN:
7759 break;
7760 }
7761 }
7762
7763 return memory_insert_breakpoint (gdbarch, bp_tgt);
7764 }
7765
7766 static int
7767 remote_remove_breakpoint (struct gdbarch *gdbarch,
7768 struct bp_target_info *bp_tgt)
7769 {
7770 CORE_ADDR addr = bp_tgt->placed_address;
7771 struct remote_state *rs = get_remote_state ();
7772
7773 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7774 {
7775 char *p = rs->buf;
7776
7777 *(p++) = 'z';
7778 *(p++) = '0';
7779 *(p++) = ',';
7780
7781 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7782 p += hexnumstr (p, addr);
7783 sprintf (p, ",%d", bp_tgt->placed_size);
7784
7785 putpkt (rs->buf);
7786 getpkt (&rs->buf, &rs->buf_size, 0);
7787
7788 return (rs->buf[0] == 'E');
7789 }
7790
7791 return memory_remove_breakpoint (gdbarch, bp_tgt);
7792 }
7793
7794 static int
7795 watchpoint_to_Z_packet (int type)
7796 {
7797 switch (type)
7798 {
7799 case hw_write:
7800 return Z_PACKET_WRITE_WP;
7801 break;
7802 case hw_read:
7803 return Z_PACKET_READ_WP;
7804 break;
7805 case hw_access:
7806 return Z_PACKET_ACCESS_WP;
7807 break;
7808 default:
7809 internal_error (__FILE__, __LINE__,
7810 _("hw_bp_to_z: bad watchpoint type %d"), type);
7811 }
7812 }
7813
7814 static int
7815 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7816 struct expression *cond)
7817 {
7818 struct remote_state *rs = get_remote_state ();
7819 char *p;
7820 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7821
7822 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7823 return 1;
7824
7825 sprintf (rs->buf, "Z%x,", packet);
7826 p = strchr (rs->buf, '\0');
7827 addr = remote_address_masked (addr);
7828 p += hexnumstr (p, (ULONGEST) addr);
7829 sprintf (p, ",%x", len);
7830
7831 putpkt (rs->buf);
7832 getpkt (&rs->buf, &rs->buf_size, 0);
7833
7834 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7835 {
7836 case PACKET_ERROR:
7837 return -1;
7838 case PACKET_UNKNOWN:
7839 return 1;
7840 case PACKET_OK:
7841 return 0;
7842 }
7843 internal_error (__FILE__, __LINE__,
7844 _("remote_insert_watchpoint: reached end of function"));
7845 }
7846
7847
7848 static int
7849 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7850 struct expression *cond)
7851 {
7852 struct remote_state *rs = get_remote_state ();
7853 char *p;
7854 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7855
7856 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7857 return -1;
7858
7859 sprintf (rs->buf, "z%x,", packet);
7860 p = strchr (rs->buf, '\0');
7861 addr = remote_address_masked (addr);
7862 p += hexnumstr (p, (ULONGEST) addr);
7863 sprintf (p, ",%x", len);
7864 putpkt (rs->buf);
7865 getpkt (&rs->buf, &rs->buf_size, 0);
7866
7867 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7868 {
7869 case PACKET_ERROR:
7870 case PACKET_UNKNOWN:
7871 return -1;
7872 case PACKET_OK:
7873 return 0;
7874 }
7875 internal_error (__FILE__, __LINE__,
7876 _("remote_remove_watchpoint: reached end of function"));
7877 }
7878
7879
7880 int remote_hw_watchpoint_limit = -1;
7881 int remote_hw_watchpoint_length_limit = -1;
7882 int remote_hw_breakpoint_limit = -1;
7883
7884 static int
7885 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7886 {
7887 if (remote_hw_watchpoint_length_limit == 0)
7888 return 0;
7889 else if (remote_hw_watchpoint_length_limit < 0)
7890 return 1;
7891 else if (len <= remote_hw_watchpoint_length_limit)
7892 return 1;
7893 else
7894 return 0;
7895 }
7896
7897 static int
7898 remote_check_watch_resources (int type, int cnt, int ot)
7899 {
7900 if (type == bp_hardware_breakpoint)
7901 {
7902 if (remote_hw_breakpoint_limit == 0)
7903 return 0;
7904 else if (remote_hw_breakpoint_limit < 0)
7905 return 1;
7906 else if (cnt <= remote_hw_breakpoint_limit)
7907 return 1;
7908 }
7909 else
7910 {
7911 if (remote_hw_watchpoint_limit == 0)
7912 return 0;
7913 else if (remote_hw_watchpoint_limit < 0)
7914 return 1;
7915 else if (ot)
7916 return -1;
7917 else if (cnt <= remote_hw_watchpoint_limit)
7918 return 1;
7919 }
7920 return -1;
7921 }
7922
7923 static int
7924 remote_stopped_by_watchpoint (void)
7925 {
7926 return remote_stopped_by_watchpoint_p;
7927 }
7928
7929 static int
7930 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7931 {
7932 int rc = 0;
7933
7934 if (remote_stopped_by_watchpoint ())
7935 {
7936 *addr_p = remote_watch_data_address;
7937 rc = 1;
7938 }
7939
7940 return rc;
7941 }
7942
7943
7944 static int
7945 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7946 struct bp_target_info *bp_tgt)
7947 {
7948 CORE_ADDR addr;
7949 struct remote_state *rs;
7950 char *p;
7951
7952 /* The length field should be set to the size of a breakpoint
7953 instruction, even though we aren't inserting one ourselves. */
7954
7955 gdbarch_remote_breakpoint_from_pc
7956 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7957
7958 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7959 return -1;
7960
7961 rs = get_remote_state ();
7962 p = rs->buf;
7963
7964 *(p++) = 'Z';
7965 *(p++) = '1';
7966 *(p++) = ',';
7967
7968 addr = remote_address_masked (bp_tgt->placed_address);
7969 p += hexnumstr (p, (ULONGEST) addr);
7970 sprintf (p, ",%x", bp_tgt->placed_size);
7971
7972 putpkt (rs->buf);
7973 getpkt (&rs->buf, &rs->buf_size, 0);
7974
7975 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7976 {
7977 case PACKET_ERROR:
7978 case PACKET_UNKNOWN:
7979 return -1;
7980 case PACKET_OK:
7981 return 0;
7982 }
7983 internal_error (__FILE__, __LINE__,
7984 _("remote_insert_hw_breakpoint: reached end of function"));
7985 }
7986
7987
7988 static int
7989 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7990 struct bp_target_info *bp_tgt)
7991 {
7992 CORE_ADDR addr;
7993 struct remote_state *rs = get_remote_state ();
7994 char *p = rs->buf;
7995
7996 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7997 return -1;
7998
7999 *(p++) = 'z';
8000 *(p++) = '1';
8001 *(p++) = ',';
8002
8003 addr = remote_address_masked (bp_tgt->placed_address);
8004 p += hexnumstr (p, (ULONGEST) addr);
8005 sprintf (p, ",%x", bp_tgt->placed_size);
8006
8007 putpkt (rs->buf);
8008 getpkt (&rs->buf, &rs->buf_size, 0);
8009
8010 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8011 {
8012 case PACKET_ERROR:
8013 case PACKET_UNKNOWN:
8014 return -1;
8015 case PACKET_OK:
8016 return 0;
8017 }
8018 internal_error (__FILE__, __LINE__,
8019 _("remote_remove_hw_breakpoint: reached end of function"));
8020 }
8021
8022 /* Table used by the crc32 function to calcuate the checksum. */
8023
8024 static unsigned long crc32_table[256] =
8025 {0, 0};
8026
8027 static unsigned long
8028 crc32 (const unsigned char *buf, int len, unsigned int crc)
8029 {
8030 if (!crc32_table[1])
8031 {
8032 /* Initialize the CRC table and the decoding table. */
8033 int i, j;
8034 unsigned int c;
8035
8036 for (i = 0; i < 256; i++)
8037 {
8038 for (c = i << 24, j = 8; j > 0; --j)
8039 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8040 crc32_table[i] = c;
8041 }
8042 }
8043
8044 while (len--)
8045 {
8046 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8047 buf++;
8048 }
8049 return crc;
8050 }
8051
8052 /* Verify memory using the "qCRC:" request. */
8053
8054 static int
8055 remote_verify_memory (struct target_ops *ops,
8056 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8057 {
8058 struct remote_state *rs = get_remote_state ();
8059 unsigned long host_crc, target_crc;
8060 char *tmp;
8061
8062 /* FIXME: assumes lma can fit into long. */
8063 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8064 (long) lma, (long) size);
8065 putpkt (rs->buf);
8066
8067 /* Be clever; compute the host_crc before waiting for target
8068 reply. */
8069 host_crc = crc32 (data, size, 0xffffffff);
8070
8071 getpkt (&rs->buf, &rs->buf_size, 0);
8072 if (rs->buf[0] == 'E')
8073 return -1;
8074
8075 if (rs->buf[0] != 'C')
8076 error (_("remote target does not support this operation"));
8077
8078 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8079 target_crc = target_crc * 16 + fromhex (*tmp);
8080
8081 return (host_crc == target_crc);
8082 }
8083
8084 /* compare-sections command
8085
8086 With no arguments, compares each loadable section in the exec bfd
8087 with the same memory range on the target, and reports mismatches.
8088 Useful for verifying the image on the target against the exec file. */
8089
8090 static void
8091 compare_sections_command (char *args, int from_tty)
8092 {
8093 asection *s;
8094 struct cleanup *old_chain;
8095 char *sectdata;
8096 const char *sectname;
8097 bfd_size_type size;
8098 bfd_vma lma;
8099 int matched = 0;
8100 int mismatched = 0;
8101 int res;
8102
8103 if (!exec_bfd)
8104 error (_("command cannot be used without an exec file"));
8105
8106 for (s = exec_bfd->sections; s; s = s->next)
8107 {
8108 if (!(s->flags & SEC_LOAD))
8109 continue; /* Skip non-loadable section. */
8110
8111 size = bfd_get_section_size (s);
8112 if (size == 0)
8113 continue; /* Skip zero-length section. */
8114
8115 sectname = bfd_get_section_name (exec_bfd, s);
8116 if (args && strcmp (args, sectname) != 0)
8117 continue; /* Not the section selected by user. */
8118
8119 matched = 1; /* Do this section. */
8120 lma = s->lma;
8121
8122 sectdata = xmalloc (size);
8123 old_chain = make_cleanup (xfree, sectdata);
8124 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8125
8126 res = target_verify_memory (sectdata, lma, size);
8127
8128 if (res == -1)
8129 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8130 paddress (target_gdbarch, lma),
8131 paddress (target_gdbarch, lma + size));
8132
8133 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8134 paddress (target_gdbarch, lma),
8135 paddress (target_gdbarch, lma + size));
8136 if (res)
8137 printf_filtered ("matched.\n");
8138 else
8139 {
8140 printf_filtered ("MIS-MATCHED!\n");
8141 mismatched++;
8142 }
8143
8144 do_cleanups (old_chain);
8145 }
8146 if (mismatched > 0)
8147 warning (_("One or more sections of the remote executable does not match\n\
8148 the loaded file\n"));
8149 if (args && !matched)
8150 printf_filtered (_("No loaded section named '%s'.\n"), args);
8151 }
8152
8153 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8154 into remote target. The number of bytes written to the remote
8155 target is returned, or -1 for error. */
8156
8157 static LONGEST
8158 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8159 const char *annex, const gdb_byte *writebuf,
8160 ULONGEST offset, LONGEST len,
8161 struct packet_config *packet)
8162 {
8163 int i, buf_len;
8164 ULONGEST n;
8165 struct remote_state *rs = get_remote_state ();
8166 int max_size = get_memory_write_packet_size ();
8167
8168 if (packet->support == PACKET_DISABLE)
8169 return -1;
8170
8171 /* Insert header. */
8172 i = snprintf (rs->buf, max_size,
8173 "qXfer:%s:write:%s:%s:",
8174 object_name, annex ? annex : "",
8175 phex_nz (offset, sizeof offset));
8176 max_size -= (i + 1);
8177
8178 /* Escape as much data as fits into rs->buf. */
8179 buf_len = remote_escape_output
8180 (writebuf, len, (rs->buf + i), &max_size, max_size);
8181
8182 if (putpkt_binary (rs->buf, i + buf_len) < 0
8183 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8184 || packet_ok (rs->buf, packet) != PACKET_OK)
8185 return -1;
8186
8187 unpack_varlen_hex (rs->buf, &n);
8188 return n;
8189 }
8190
8191 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8192 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8193 number of bytes read is returned, or 0 for EOF, or -1 for error.
8194 The number of bytes read may be less than LEN without indicating an
8195 EOF. PACKET is checked and updated to indicate whether the remote
8196 target supports this object. */
8197
8198 static LONGEST
8199 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8200 const char *annex,
8201 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8202 struct packet_config *packet)
8203 {
8204 static char *finished_object;
8205 static char *finished_annex;
8206 static ULONGEST finished_offset;
8207
8208 struct remote_state *rs = get_remote_state ();
8209 LONGEST i, n, packet_len;
8210
8211 if (packet->support == PACKET_DISABLE)
8212 return -1;
8213
8214 /* Check whether we've cached an end-of-object packet that matches
8215 this request. */
8216 if (finished_object)
8217 {
8218 if (strcmp (object_name, finished_object) == 0
8219 && strcmp (annex ? annex : "", finished_annex) == 0
8220 && offset == finished_offset)
8221 return 0;
8222
8223 /* Otherwise, we're now reading something different. Discard
8224 the cache. */
8225 xfree (finished_object);
8226 xfree (finished_annex);
8227 finished_object = NULL;
8228 finished_annex = NULL;
8229 }
8230
8231 /* Request only enough to fit in a single packet. The actual data
8232 may not, since we don't know how much of it will need to be escaped;
8233 the target is free to respond with slightly less data. We subtract
8234 five to account for the response type and the protocol frame. */
8235 n = min (get_remote_packet_size () - 5, len);
8236 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8237 object_name, annex ? annex : "",
8238 phex_nz (offset, sizeof offset),
8239 phex_nz (n, sizeof n));
8240 i = putpkt (rs->buf);
8241 if (i < 0)
8242 return -1;
8243
8244 rs->buf[0] = '\0';
8245 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8246 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8247 return -1;
8248
8249 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8250 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8251
8252 /* 'm' means there is (or at least might be) more data after this
8253 batch. That does not make sense unless there's at least one byte
8254 of data in this reply. */
8255 if (rs->buf[0] == 'm' && packet_len == 1)
8256 error (_("Remote qXfer reply contained no data."));
8257
8258 /* Got some data. */
8259 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8260
8261 /* 'l' is an EOF marker, possibly including a final block of data,
8262 or possibly empty. If we have the final block of a non-empty
8263 object, record this fact to bypass a subsequent partial read. */
8264 if (rs->buf[0] == 'l' && offset + i > 0)
8265 {
8266 finished_object = xstrdup (object_name);
8267 finished_annex = xstrdup (annex ? annex : "");
8268 finished_offset = offset + i;
8269 }
8270
8271 return i;
8272 }
8273
8274 static LONGEST
8275 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8276 const char *annex, gdb_byte *readbuf,
8277 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8278 {
8279 struct remote_state *rs;
8280 int i;
8281 char *p2;
8282 char query_type;
8283
8284 set_remote_traceframe ();
8285 set_general_thread (inferior_ptid);
8286
8287 rs = get_remote_state ();
8288
8289 /* Handle memory using the standard memory routines. */
8290 if (object == TARGET_OBJECT_MEMORY)
8291 {
8292 int xfered;
8293
8294 errno = 0;
8295
8296 /* If the remote target is connected but not running, we should
8297 pass this request down to a lower stratum (e.g. the executable
8298 file). */
8299 if (!target_has_execution)
8300 return 0;
8301
8302 if (writebuf != NULL)
8303 xfered = remote_write_bytes (offset, writebuf, len);
8304 else
8305 xfered = remote_read_bytes (offset, readbuf, len);
8306
8307 if (xfered > 0)
8308 return xfered;
8309 else if (xfered == 0 && errno == 0)
8310 return 0;
8311 else
8312 return -1;
8313 }
8314
8315 /* Handle SPU memory using qxfer packets. */
8316 if (object == TARGET_OBJECT_SPU)
8317 {
8318 if (readbuf)
8319 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8320 &remote_protocol_packets
8321 [PACKET_qXfer_spu_read]);
8322 else
8323 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8324 &remote_protocol_packets
8325 [PACKET_qXfer_spu_write]);
8326 }
8327
8328 /* Handle extra signal info using qxfer packets. */
8329 if (object == TARGET_OBJECT_SIGNAL_INFO)
8330 {
8331 if (readbuf)
8332 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8333 &remote_protocol_packets
8334 [PACKET_qXfer_siginfo_read]);
8335 else
8336 return remote_write_qxfer (ops, "siginfo", annex,
8337 writebuf, offset, len,
8338 &remote_protocol_packets
8339 [PACKET_qXfer_siginfo_write]);
8340 }
8341
8342 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8343 {
8344 if (readbuf)
8345 return remote_read_qxfer (ops, "statictrace", annex,
8346 readbuf, offset, len,
8347 &remote_protocol_packets
8348 [PACKET_qXfer_statictrace_read]);
8349 else
8350 return -1;
8351 }
8352
8353 /* Only handle flash writes. */
8354 if (writebuf != NULL)
8355 {
8356 LONGEST xfered;
8357
8358 switch (object)
8359 {
8360 case TARGET_OBJECT_FLASH:
8361 xfered = remote_flash_write (ops, offset, len, writebuf);
8362
8363 if (xfered > 0)
8364 return xfered;
8365 else if (xfered == 0 && errno == 0)
8366 return 0;
8367 else
8368 return -1;
8369
8370 default:
8371 return -1;
8372 }
8373 }
8374
8375 /* Map pre-existing objects onto letters. DO NOT do this for new
8376 objects!!! Instead specify new query packets. */
8377 switch (object)
8378 {
8379 case TARGET_OBJECT_AVR:
8380 query_type = 'R';
8381 break;
8382
8383 case TARGET_OBJECT_AUXV:
8384 gdb_assert (annex == NULL);
8385 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8386 &remote_protocol_packets[PACKET_qXfer_auxv]);
8387
8388 case TARGET_OBJECT_AVAILABLE_FEATURES:
8389 return remote_read_qxfer
8390 (ops, "features", annex, readbuf, offset, len,
8391 &remote_protocol_packets[PACKET_qXfer_features]);
8392
8393 case TARGET_OBJECT_LIBRARIES:
8394 return remote_read_qxfer
8395 (ops, "libraries", annex, readbuf, offset, len,
8396 &remote_protocol_packets[PACKET_qXfer_libraries]);
8397
8398 case TARGET_OBJECT_LIBRARIES_SVR4:
8399 return remote_read_qxfer
8400 (ops, "libraries-svr4", annex, readbuf, offset, len,
8401 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8402
8403 case TARGET_OBJECT_MEMORY_MAP:
8404 gdb_assert (annex == NULL);
8405 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8406 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8407
8408 case TARGET_OBJECT_OSDATA:
8409 /* Should only get here if we're connected. */
8410 gdb_assert (remote_desc);
8411 return remote_read_qxfer
8412 (ops, "osdata", annex, readbuf, offset, len,
8413 &remote_protocol_packets[PACKET_qXfer_osdata]);
8414
8415 case TARGET_OBJECT_THREADS:
8416 gdb_assert (annex == NULL);
8417 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8418 &remote_protocol_packets[PACKET_qXfer_threads]);
8419
8420 case TARGET_OBJECT_TRACEFRAME_INFO:
8421 gdb_assert (annex == NULL);
8422 return remote_read_qxfer
8423 (ops, "traceframe-info", annex, readbuf, offset, len,
8424 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8425
8426 case TARGET_OBJECT_FDPIC:
8427 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8428 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8429 default:
8430 return -1;
8431 }
8432
8433 /* Note: a zero OFFSET and LEN can be used to query the minimum
8434 buffer size. */
8435 if (offset == 0 && len == 0)
8436 return (get_remote_packet_size ());
8437 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8438 large enough let the caller deal with it. */
8439 if (len < get_remote_packet_size ())
8440 return -1;
8441 len = get_remote_packet_size ();
8442
8443 /* Except for querying the minimum buffer size, target must be open. */
8444 if (!remote_desc)
8445 error (_("remote query is only available after target open"));
8446
8447 gdb_assert (annex != NULL);
8448 gdb_assert (readbuf != NULL);
8449
8450 p2 = rs->buf;
8451 *p2++ = 'q';
8452 *p2++ = query_type;
8453
8454 /* We used one buffer char for the remote protocol q command and
8455 another for the query type. As the remote protocol encapsulation
8456 uses 4 chars plus one extra in case we are debugging
8457 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8458 string. */
8459 i = 0;
8460 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8461 {
8462 /* Bad caller may have sent forbidden characters. */
8463 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8464 *p2++ = annex[i];
8465 i++;
8466 }
8467 *p2 = '\0';
8468 gdb_assert (annex[i] == '\0');
8469
8470 i = putpkt (rs->buf);
8471 if (i < 0)
8472 return i;
8473
8474 getpkt (&rs->buf, &rs->buf_size, 0);
8475 strcpy ((char *) readbuf, rs->buf);
8476
8477 return strlen ((char *) readbuf);
8478 }
8479
8480 static int
8481 remote_search_memory (struct target_ops* ops,
8482 CORE_ADDR start_addr, ULONGEST search_space_len,
8483 const gdb_byte *pattern, ULONGEST pattern_len,
8484 CORE_ADDR *found_addrp)
8485 {
8486 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8487 struct remote_state *rs = get_remote_state ();
8488 int max_size = get_memory_write_packet_size ();
8489 struct packet_config *packet =
8490 &remote_protocol_packets[PACKET_qSearch_memory];
8491 /* Number of packet bytes used to encode the pattern;
8492 this could be more than PATTERN_LEN due to escape characters. */
8493 int escaped_pattern_len;
8494 /* Amount of pattern that was encodable in the packet. */
8495 int used_pattern_len;
8496 int i;
8497 int found;
8498 ULONGEST found_addr;
8499
8500 /* Don't go to the target if we don't have to.
8501 This is done before checking packet->support to avoid the possibility that
8502 a success for this edge case means the facility works in general. */
8503 if (pattern_len > search_space_len)
8504 return 0;
8505 if (pattern_len == 0)
8506 {
8507 *found_addrp = start_addr;
8508 return 1;
8509 }
8510
8511 /* If we already know the packet isn't supported, fall back to the simple
8512 way of searching memory. */
8513
8514 if (packet->support == PACKET_DISABLE)
8515 {
8516 /* Target doesn't provided special support, fall back and use the
8517 standard support (copy memory and do the search here). */
8518 return simple_search_memory (ops, start_addr, search_space_len,
8519 pattern, pattern_len, found_addrp);
8520 }
8521
8522 /* Insert header. */
8523 i = snprintf (rs->buf, max_size,
8524 "qSearch:memory:%s;%s;",
8525 phex_nz (start_addr, addr_size),
8526 phex_nz (search_space_len, sizeof (search_space_len)));
8527 max_size -= (i + 1);
8528
8529 /* Escape as much data as fits into rs->buf. */
8530 escaped_pattern_len =
8531 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8532 &used_pattern_len, max_size);
8533
8534 /* Bail if the pattern is too large. */
8535 if (used_pattern_len != pattern_len)
8536 error (_("Pattern is too large to transmit to remote target."));
8537
8538 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8539 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8540 || packet_ok (rs->buf, packet) != PACKET_OK)
8541 {
8542 /* The request may not have worked because the command is not
8543 supported. If so, fall back to the simple way. */
8544 if (packet->support == PACKET_DISABLE)
8545 {
8546 return simple_search_memory (ops, start_addr, search_space_len,
8547 pattern, pattern_len, found_addrp);
8548 }
8549 return -1;
8550 }
8551
8552 if (rs->buf[0] == '0')
8553 found = 0;
8554 else if (rs->buf[0] == '1')
8555 {
8556 found = 1;
8557 if (rs->buf[1] != ',')
8558 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8559 unpack_varlen_hex (rs->buf + 2, &found_addr);
8560 *found_addrp = found_addr;
8561 }
8562 else
8563 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8564
8565 return found;
8566 }
8567
8568 static void
8569 remote_rcmd (char *command,
8570 struct ui_file *outbuf)
8571 {
8572 struct remote_state *rs = get_remote_state ();
8573 char *p = rs->buf;
8574
8575 if (!remote_desc)
8576 error (_("remote rcmd is only available after target open"));
8577
8578 /* Send a NULL command across as an empty command. */
8579 if (command == NULL)
8580 command = "";
8581
8582 /* The query prefix. */
8583 strcpy (rs->buf, "qRcmd,");
8584 p = strchr (rs->buf, '\0');
8585
8586 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8587 > get_remote_packet_size ())
8588 error (_("\"monitor\" command ``%s'' is too long."), command);
8589
8590 /* Encode the actual command. */
8591 bin2hex ((gdb_byte *) command, p, 0);
8592
8593 if (putpkt (rs->buf) < 0)
8594 error (_("Communication problem with target."));
8595
8596 /* get/display the response */
8597 while (1)
8598 {
8599 char *buf;
8600
8601 /* XXX - see also remote_get_noisy_reply(). */
8602 QUIT; /* Allow user to bail out with ^C. */
8603 rs->buf[0] = '\0';
8604 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8605 {
8606 /* Timeout. Continue to (try to) read responses.
8607 This is better than stopping with an error, assuming the stub
8608 is still executing the (long) monitor command.
8609 If needed, the user can interrupt gdb using C-c, obtaining
8610 an effect similar to stop on timeout. */
8611 continue;
8612 }
8613 buf = rs->buf;
8614 if (buf[0] == '\0')
8615 error (_("Target does not support this command."));
8616 if (buf[0] == 'O' && buf[1] != 'K')
8617 {
8618 remote_console_output (buf + 1); /* 'O' message from stub. */
8619 continue;
8620 }
8621 if (strcmp (buf, "OK") == 0)
8622 break;
8623 if (strlen (buf) == 3 && buf[0] == 'E'
8624 && isdigit (buf[1]) && isdigit (buf[2]))
8625 {
8626 error (_("Protocol error with Rcmd"));
8627 }
8628 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8629 {
8630 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8631
8632 fputc_unfiltered (c, outbuf);
8633 }
8634 break;
8635 }
8636 }
8637
8638 static VEC(mem_region_s) *
8639 remote_memory_map (struct target_ops *ops)
8640 {
8641 VEC(mem_region_s) *result = NULL;
8642 char *text = target_read_stralloc (&current_target,
8643 TARGET_OBJECT_MEMORY_MAP, NULL);
8644
8645 if (text)
8646 {
8647 struct cleanup *back_to = make_cleanup (xfree, text);
8648
8649 result = parse_memory_map (text);
8650 do_cleanups (back_to);
8651 }
8652
8653 return result;
8654 }
8655
8656 static void
8657 packet_command (char *args, int from_tty)
8658 {
8659 struct remote_state *rs = get_remote_state ();
8660
8661 if (!remote_desc)
8662 error (_("command can only be used with remote target"));
8663
8664 if (!args)
8665 error (_("remote-packet command requires packet text as argument"));
8666
8667 puts_filtered ("sending: ");
8668 print_packet (args);
8669 puts_filtered ("\n");
8670 putpkt (args);
8671
8672 getpkt (&rs->buf, &rs->buf_size, 0);
8673 puts_filtered ("received: ");
8674 print_packet (rs->buf);
8675 puts_filtered ("\n");
8676 }
8677
8678 #if 0
8679 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8680
8681 static void display_thread_info (struct gdb_ext_thread_info *info);
8682
8683 static void threadset_test_cmd (char *cmd, int tty);
8684
8685 static void threadalive_test (char *cmd, int tty);
8686
8687 static void threadlist_test_cmd (char *cmd, int tty);
8688
8689 int get_and_display_threadinfo (threadref *ref);
8690
8691 static void threadinfo_test_cmd (char *cmd, int tty);
8692
8693 static int thread_display_step (threadref *ref, void *context);
8694
8695 static void threadlist_update_test_cmd (char *cmd, int tty);
8696
8697 static void init_remote_threadtests (void);
8698
8699 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8700
8701 static void
8702 threadset_test_cmd (char *cmd, int tty)
8703 {
8704 int sample_thread = SAMPLE_THREAD;
8705
8706 printf_filtered (_("Remote threadset test\n"));
8707 set_general_thread (sample_thread);
8708 }
8709
8710
8711 static void
8712 threadalive_test (char *cmd, int tty)
8713 {
8714 int sample_thread = SAMPLE_THREAD;
8715 int pid = ptid_get_pid (inferior_ptid);
8716 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8717
8718 if (remote_thread_alive (ptid))
8719 printf_filtered ("PASS: Thread alive test\n");
8720 else
8721 printf_filtered ("FAIL: Thread alive test\n");
8722 }
8723
8724 void output_threadid (char *title, threadref *ref);
8725
8726 void
8727 output_threadid (char *title, threadref *ref)
8728 {
8729 char hexid[20];
8730
8731 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8732 hexid[16] = 0;
8733 printf_filtered ("%s %s\n", title, (&hexid[0]));
8734 }
8735
8736 static void
8737 threadlist_test_cmd (char *cmd, int tty)
8738 {
8739 int startflag = 1;
8740 threadref nextthread;
8741 int done, result_count;
8742 threadref threadlist[3];
8743
8744 printf_filtered ("Remote Threadlist test\n");
8745 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8746 &result_count, &threadlist[0]))
8747 printf_filtered ("FAIL: threadlist test\n");
8748 else
8749 {
8750 threadref *scan = threadlist;
8751 threadref *limit = scan + result_count;
8752
8753 while (scan < limit)
8754 output_threadid (" thread ", scan++);
8755 }
8756 }
8757
8758 void
8759 display_thread_info (struct gdb_ext_thread_info *info)
8760 {
8761 output_threadid ("Threadid: ", &info->threadid);
8762 printf_filtered ("Name: %s\n ", info->shortname);
8763 printf_filtered ("State: %s\n", info->display);
8764 printf_filtered ("other: %s\n\n", info->more_display);
8765 }
8766
8767 int
8768 get_and_display_threadinfo (threadref *ref)
8769 {
8770 int result;
8771 int set;
8772 struct gdb_ext_thread_info threadinfo;
8773
8774 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8775 | TAG_MOREDISPLAY | TAG_DISPLAY;
8776 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8777 display_thread_info (&threadinfo);
8778 return result;
8779 }
8780
8781 static void
8782 threadinfo_test_cmd (char *cmd, int tty)
8783 {
8784 int athread = SAMPLE_THREAD;
8785 threadref thread;
8786 int set;
8787
8788 int_to_threadref (&thread, athread);
8789 printf_filtered ("Remote Threadinfo test\n");
8790 if (!get_and_display_threadinfo (&thread))
8791 printf_filtered ("FAIL cannot get thread info\n");
8792 }
8793
8794 static int
8795 thread_display_step (threadref *ref, void *context)
8796 {
8797 /* output_threadid(" threadstep ",ref); *//* simple test */
8798 return get_and_display_threadinfo (ref);
8799 }
8800
8801 static void
8802 threadlist_update_test_cmd (char *cmd, int tty)
8803 {
8804 printf_filtered ("Remote Threadlist update test\n");
8805 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8806 }
8807
8808 static void
8809 init_remote_threadtests (void)
8810 {
8811 add_com ("tlist", class_obscure, threadlist_test_cmd,
8812 _("Fetch and print the remote list of "
8813 "thread identifiers, one pkt only"));
8814 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8815 _("Fetch and display info about one thread"));
8816 add_com ("tset", class_obscure, threadset_test_cmd,
8817 _("Test setting to a different thread"));
8818 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8819 _("Iterate through updating all remote thread info"));
8820 add_com ("talive", class_obscure, threadalive_test,
8821 _(" Remote thread alive test "));
8822 }
8823
8824 #endif /* 0 */
8825
8826 /* Convert a thread ID to a string. Returns the string in a static
8827 buffer. */
8828
8829 static char *
8830 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8831 {
8832 static char buf[64];
8833 struct remote_state *rs = get_remote_state ();
8834
8835 if (ptid_equal (ptid, null_ptid))
8836 return normal_pid_to_str (ptid);
8837 else if (ptid_is_pid (ptid))
8838 {
8839 /* Printing an inferior target id. */
8840
8841 /* When multi-process extensions are off, there's no way in the
8842 remote protocol to know the remote process id, if there's any
8843 at all. There's one exception --- when we're connected with
8844 target extended-remote, and we manually attached to a process
8845 with "attach PID". We don't record anywhere a flag that
8846 allows us to distinguish that case from the case of
8847 connecting with extended-remote and the stub already being
8848 attached to a process, and reporting yes to qAttached, hence
8849 no smart special casing here. */
8850 if (!remote_multi_process_p (rs))
8851 {
8852 xsnprintf (buf, sizeof buf, "Remote target");
8853 return buf;
8854 }
8855
8856 return normal_pid_to_str (ptid);
8857 }
8858 else
8859 {
8860 if (ptid_equal (magic_null_ptid, ptid))
8861 xsnprintf (buf, sizeof buf, "Thread <main>");
8862 else if (rs->extended && remote_multi_process_p (rs))
8863 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8864 ptid_get_pid (ptid), ptid_get_tid (ptid));
8865 else
8866 xsnprintf (buf, sizeof buf, "Thread %ld",
8867 ptid_get_tid (ptid));
8868 return buf;
8869 }
8870 }
8871
8872 /* Get the address of the thread local variable in OBJFILE which is
8873 stored at OFFSET within the thread local storage for thread PTID. */
8874
8875 static CORE_ADDR
8876 remote_get_thread_local_address (struct target_ops *ops,
8877 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8878 {
8879 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8880 {
8881 struct remote_state *rs = get_remote_state ();
8882 char *p = rs->buf;
8883 char *endp = rs->buf + get_remote_packet_size ();
8884 enum packet_result result;
8885
8886 strcpy (p, "qGetTLSAddr:");
8887 p += strlen (p);
8888 p = write_ptid (p, endp, ptid);
8889 *p++ = ',';
8890 p += hexnumstr (p, offset);
8891 *p++ = ',';
8892 p += hexnumstr (p, lm);
8893 *p++ = '\0';
8894
8895 putpkt (rs->buf);
8896 getpkt (&rs->buf, &rs->buf_size, 0);
8897 result = packet_ok (rs->buf,
8898 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8899 if (result == PACKET_OK)
8900 {
8901 ULONGEST result;
8902
8903 unpack_varlen_hex (rs->buf, &result);
8904 return result;
8905 }
8906 else if (result == PACKET_UNKNOWN)
8907 throw_error (TLS_GENERIC_ERROR,
8908 _("Remote target doesn't support qGetTLSAddr packet"));
8909 else
8910 throw_error (TLS_GENERIC_ERROR,
8911 _("Remote target failed to process qGetTLSAddr request"));
8912 }
8913 else
8914 throw_error (TLS_GENERIC_ERROR,
8915 _("TLS not supported or disabled on this target"));
8916 /* Not reached. */
8917 return 0;
8918 }
8919
8920 /* Provide thread local base, i.e. Thread Information Block address.
8921 Returns 1 if ptid is found and thread_local_base is non zero. */
8922
8923 int
8924 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8925 {
8926 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8927 {
8928 struct remote_state *rs = get_remote_state ();
8929 char *p = rs->buf;
8930 char *endp = rs->buf + get_remote_packet_size ();
8931 enum packet_result result;
8932
8933 strcpy (p, "qGetTIBAddr:");
8934 p += strlen (p);
8935 p = write_ptid (p, endp, ptid);
8936 *p++ = '\0';
8937
8938 putpkt (rs->buf);
8939 getpkt (&rs->buf, &rs->buf_size, 0);
8940 result = packet_ok (rs->buf,
8941 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8942 if (result == PACKET_OK)
8943 {
8944 ULONGEST result;
8945
8946 unpack_varlen_hex (rs->buf, &result);
8947 if (addr)
8948 *addr = (CORE_ADDR) result;
8949 return 1;
8950 }
8951 else if (result == PACKET_UNKNOWN)
8952 error (_("Remote target doesn't support qGetTIBAddr packet"));
8953 else
8954 error (_("Remote target failed to process qGetTIBAddr request"));
8955 }
8956 else
8957 error (_("qGetTIBAddr not supported or disabled on this target"));
8958 /* Not reached. */
8959 return 0;
8960 }
8961
8962 /* Support for inferring a target description based on the current
8963 architecture and the size of a 'g' packet. While the 'g' packet
8964 can have any size (since optional registers can be left off the
8965 end), some sizes are easily recognizable given knowledge of the
8966 approximate architecture. */
8967
8968 struct remote_g_packet_guess
8969 {
8970 int bytes;
8971 const struct target_desc *tdesc;
8972 };
8973 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8974 DEF_VEC_O(remote_g_packet_guess_s);
8975
8976 struct remote_g_packet_data
8977 {
8978 VEC(remote_g_packet_guess_s) *guesses;
8979 };
8980
8981 static struct gdbarch_data *remote_g_packet_data_handle;
8982
8983 static void *
8984 remote_g_packet_data_init (struct obstack *obstack)
8985 {
8986 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8987 }
8988
8989 void
8990 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8991 const struct target_desc *tdesc)
8992 {
8993 struct remote_g_packet_data *data
8994 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8995 struct remote_g_packet_guess new_guess, *guess;
8996 int ix;
8997
8998 gdb_assert (tdesc != NULL);
8999
9000 for (ix = 0;
9001 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9002 ix++)
9003 if (guess->bytes == bytes)
9004 internal_error (__FILE__, __LINE__,
9005 _("Duplicate g packet description added for size %d"),
9006 bytes);
9007
9008 new_guess.bytes = bytes;
9009 new_guess.tdesc = tdesc;
9010 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9011 }
9012
9013 /* Return 1 if remote_read_description would do anything on this target
9014 and architecture, 0 otherwise. */
9015
9016 static int
9017 remote_read_description_p (struct target_ops *target)
9018 {
9019 struct remote_g_packet_data *data
9020 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9021
9022 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9023 return 1;
9024
9025 return 0;
9026 }
9027
9028 static const struct target_desc *
9029 remote_read_description (struct target_ops *target)
9030 {
9031 struct remote_g_packet_data *data
9032 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9033
9034 /* Do not try this during initial connection, when we do not know
9035 whether there is a running but stopped thread. */
9036 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9037 return NULL;
9038
9039 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9040 {
9041 struct remote_g_packet_guess *guess;
9042 int ix;
9043 int bytes = send_g_packet ();
9044
9045 for (ix = 0;
9046 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9047 ix++)
9048 if (guess->bytes == bytes)
9049 return guess->tdesc;
9050
9051 /* We discard the g packet. A minor optimization would be to
9052 hold on to it, and fill the register cache once we have selected
9053 an architecture, but it's too tricky to do safely. */
9054 }
9055
9056 return NULL;
9057 }
9058
9059 /* Remote file transfer support. This is host-initiated I/O, not
9060 target-initiated; for target-initiated, see remote-fileio.c. */
9061
9062 /* If *LEFT is at least the length of STRING, copy STRING to
9063 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9064 decrease *LEFT. Otherwise raise an error. */
9065
9066 static void
9067 remote_buffer_add_string (char **buffer, int *left, char *string)
9068 {
9069 int len = strlen (string);
9070
9071 if (len > *left)
9072 error (_("Packet too long for target."));
9073
9074 memcpy (*buffer, string, len);
9075 *buffer += len;
9076 *left -= len;
9077
9078 /* NUL-terminate the buffer as a convenience, if there is
9079 room. */
9080 if (*left)
9081 **buffer = '\0';
9082 }
9083
9084 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9085 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9086 decrease *LEFT. Otherwise raise an error. */
9087
9088 static void
9089 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9090 int len)
9091 {
9092 if (2 * len > *left)
9093 error (_("Packet too long for target."));
9094
9095 bin2hex (bytes, *buffer, len);
9096 *buffer += 2 * len;
9097 *left -= 2 * len;
9098
9099 /* NUL-terminate the buffer as a convenience, if there is
9100 room. */
9101 if (*left)
9102 **buffer = '\0';
9103 }
9104
9105 /* If *LEFT is large enough, convert VALUE to hex and add it to
9106 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9107 decrease *LEFT. Otherwise raise an error. */
9108
9109 static void
9110 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9111 {
9112 int len = hexnumlen (value);
9113
9114 if (len > *left)
9115 error (_("Packet too long for target."));
9116
9117 hexnumstr (*buffer, value);
9118 *buffer += len;
9119 *left -= len;
9120
9121 /* NUL-terminate the buffer as a convenience, if there is
9122 room. */
9123 if (*left)
9124 **buffer = '\0';
9125 }
9126
9127 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9128 value, *REMOTE_ERRNO to the remote error number or zero if none
9129 was included, and *ATTACHMENT to point to the start of the annex
9130 if any. The length of the packet isn't needed here; there may
9131 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9132
9133 Return 0 if the packet could be parsed, -1 if it could not. If
9134 -1 is returned, the other variables may not be initialized. */
9135
9136 static int
9137 remote_hostio_parse_result (char *buffer, int *retcode,
9138 int *remote_errno, char **attachment)
9139 {
9140 char *p, *p2;
9141
9142 *remote_errno = 0;
9143 *attachment = NULL;
9144
9145 if (buffer[0] != 'F')
9146 return -1;
9147
9148 errno = 0;
9149 *retcode = strtol (&buffer[1], &p, 16);
9150 if (errno != 0 || p == &buffer[1])
9151 return -1;
9152
9153 /* Check for ",errno". */
9154 if (*p == ',')
9155 {
9156 errno = 0;
9157 *remote_errno = strtol (p + 1, &p2, 16);
9158 if (errno != 0 || p + 1 == p2)
9159 return -1;
9160 p = p2;
9161 }
9162
9163 /* Check for ";attachment". If there is no attachment, the
9164 packet should end here. */
9165 if (*p == ';')
9166 {
9167 *attachment = p + 1;
9168 return 0;
9169 }
9170 else if (*p == '\0')
9171 return 0;
9172 else
9173 return -1;
9174 }
9175
9176 /* Send a prepared I/O packet to the target and read its response.
9177 The prepared packet is in the global RS->BUF before this function
9178 is called, and the answer is there when we return.
9179
9180 COMMAND_BYTES is the length of the request to send, which may include
9181 binary data. WHICH_PACKET is the packet configuration to check
9182 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9183 is set to the error number and -1 is returned. Otherwise the value
9184 returned by the function is returned.
9185
9186 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9187 attachment is expected; an error will be reported if there's a
9188 mismatch. If one is found, *ATTACHMENT will be set to point into
9189 the packet buffer and *ATTACHMENT_LEN will be set to the
9190 attachment's length. */
9191
9192 static int
9193 remote_hostio_send_command (int command_bytes, int which_packet,
9194 int *remote_errno, char **attachment,
9195 int *attachment_len)
9196 {
9197 struct remote_state *rs = get_remote_state ();
9198 int ret, bytes_read;
9199 char *attachment_tmp;
9200
9201 if (!remote_desc
9202 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9203 {
9204 *remote_errno = FILEIO_ENOSYS;
9205 return -1;
9206 }
9207
9208 putpkt_binary (rs->buf, command_bytes);
9209 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9210
9211 /* If it timed out, something is wrong. Don't try to parse the
9212 buffer. */
9213 if (bytes_read < 0)
9214 {
9215 *remote_errno = FILEIO_EINVAL;
9216 return -1;
9217 }
9218
9219 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9220 {
9221 case PACKET_ERROR:
9222 *remote_errno = FILEIO_EINVAL;
9223 return -1;
9224 case PACKET_UNKNOWN:
9225 *remote_errno = FILEIO_ENOSYS;
9226 return -1;
9227 case PACKET_OK:
9228 break;
9229 }
9230
9231 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9232 &attachment_tmp))
9233 {
9234 *remote_errno = FILEIO_EINVAL;
9235 return -1;
9236 }
9237
9238 /* Make sure we saw an attachment if and only if we expected one. */
9239 if ((attachment_tmp == NULL && attachment != NULL)
9240 || (attachment_tmp != NULL && attachment == NULL))
9241 {
9242 *remote_errno = FILEIO_EINVAL;
9243 return -1;
9244 }
9245
9246 /* If an attachment was found, it must point into the packet buffer;
9247 work out how many bytes there were. */
9248 if (attachment_tmp != NULL)
9249 {
9250 *attachment = attachment_tmp;
9251 *attachment_len = bytes_read - (*attachment - rs->buf);
9252 }
9253
9254 return ret;
9255 }
9256
9257 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9258 remote file descriptor, or -1 if an error occurs (and set
9259 *REMOTE_ERRNO). */
9260
9261 static int
9262 remote_hostio_open (const char *filename, int flags, int mode,
9263 int *remote_errno)
9264 {
9265 struct remote_state *rs = get_remote_state ();
9266 char *p = rs->buf;
9267 int left = get_remote_packet_size () - 1;
9268
9269 remote_buffer_add_string (&p, &left, "vFile:open:");
9270
9271 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9272 strlen (filename));
9273 remote_buffer_add_string (&p, &left, ",");
9274
9275 remote_buffer_add_int (&p, &left, flags);
9276 remote_buffer_add_string (&p, &left, ",");
9277
9278 remote_buffer_add_int (&p, &left, mode);
9279
9280 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9281 remote_errno, NULL, NULL);
9282 }
9283
9284 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9285 Return the number of bytes written, or -1 if an error occurs (and
9286 set *REMOTE_ERRNO). */
9287
9288 static int
9289 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9290 ULONGEST offset, int *remote_errno)
9291 {
9292 struct remote_state *rs = get_remote_state ();
9293 char *p = rs->buf;
9294 int left = get_remote_packet_size ();
9295 int out_len;
9296
9297 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9298
9299 remote_buffer_add_int (&p, &left, fd);
9300 remote_buffer_add_string (&p, &left, ",");
9301
9302 remote_buffer_add_int (&p, &left, offset);
9303 remote_buffer_add_string (&p, &left, ",");
9304
9305 p += remote_escape_output (write_buf, len, p, &out_len,
9306 get_remote_packet_size () - (p - rs->buf));
9307
9308 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9309 remote_errno, NULL, NULL);
9310 }
9311
9312 /* Read up to LEN bytes FD on the remote target into READ_BUF
9313 Return the number of bytes read, or -1 if an error occurs (and
9314 set *REMOTE_ERRNO). */
9315
9316 static int
9317 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9318 ULONGEST offset, int *remote_errno)
9319 {
9320 struct remote_state *rs = get_remote_state ();
9321 char *p = rs->buf;
9322 char *attachment;
9323 int left = get_remote_packet_size ();
9324 int ret, attachment_len;
9325 int read_len;
9326
9327 remote_buffer_add_string (&p, &left, "vFile:pread:");
9328
9329 remote_buffer_add_int (&p, &left, fd);
9330 remote_buffer_add_string (&p, &left, ",");
9331
9332 remote_buffer_add_int (&p, &left, len);
9333 remote_buffer_add_string (&p, &left, ",");
9334
9335 remote_buffer_add_int (&p, &left, offset);
9336
9337 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9338 remote_errno, &attachment,
9339 &attachment_len);
9340
9341 if (ret < 0)
9342 return ret;
9343
9344 read_len = remote_unescape_input (attachment, attachment_len,
9345 read_buf, len);
9346 if (read_len != ret)
9347 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9348
9349 return ret;
9350 }
9351
9352 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9353 (and set *REMOTE_ERRNO). */
9354
9355 static int
9356 remote_hostio_close (int fd, int *remote_errno)
9357 {
9358 struct remote_state *rs = get_remote_state ();
9359 char *p = rs->buf;
9360 int left = get_remote_packet_size () - 1;
9361
9362 remote_buffer_add_string (&p, &left, "vFile:close:");
9363
9364 remote_buffer_add_int (&p, &left, fd);
9365
9366 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9367 remote_errno, NULL, NULL);
9368 }
9369
9370 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9371 occurs (and set *REMOTE_ERRNO). */
9372
9373 static int
9374 remote_hostio_unlink (const char *filename, int *remote_errno)
9375 {
9376 struct remote_state *rs = get_remote_state ();
9377 char *p = rs->buf;
9378 int left = get_remote_packet_size () - 1;
9379
9380 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9381
9382 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9383 strlen (filename));
9384
9385 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9386 remote_errno, NULL, NULL);
9387 }
9388
9389 /* Read value of symbolic link FILENAME on the remote target. Return
9390 a null-terminated string allocated via xmalloc, or NULL if an error
9391 occurs (and set *REMOTE_ERRNO). */
9392
9393 static char *
9394 remote_hostio_readlink (const char *filename, int *remote_errno)
9395 {
9396 struct remote_state *rs = get_remote_state ();
9397 char *p = rs->buf;
9398 char *attachment;
9399 int left = get_remote_packet_size ();
9400 int len, attachment_len;
9401 int read_len;
9402 char *ret;
9403
9404 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9405
9406 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9407 strlen (filename));
9408
9409 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9410 remote_errno, &attachment,
9411 &attachment_len);
9412
9413 if (len < 0)
9414 return NULL;
9415
9416 ret = xmalloc (len + 1);
9417
9418 read_len = remote_unescape_input (attachment, attachment_len,
9419 ret, len);
9420 if (read_len != len)
9421 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9422
9423 ret[len] = '\0';
9424 return ret;
9425 }
9426
9427 static int
9428 remote_fileio_errno_to_host (int errnum)
9429 {
9430 switch (errnum)
9431 {
9432 case FILEIO_EPERM:
9433 return EPERM;
9434 case FILEIO_ENOENT:
9435 return ENOENT;
9436 case FILEIO_EINTR:
9437 return EINTR;
9438 case FILEIO_EIO:
9439 return EIO;
9440 case FILEIO_EBADF:
9441 return EBADF;
9442 case FILEIO_EACCES:
9443 return EACCES;
9444 case FILEIO_EFAULT:
9445 return EFAULT;
9446 case FILEIO_EBUSY:
9447 return EBUSY;
9448 case FILEIO_EEXIST:
9449 return EEXIST;
9450 case FILEIO_ENODEV:
9451 return ENODEV;
9452 case FILEIO_ENOTDIR:
9453 return ENOTDIR;
9454 case FILEIO_EISDIR:
9455 return EISDIR;
9456 case FILEIO_EINVAL:
9457 return EINVAL;
9458 case FILEIO_ENFILE:
9459 return ENFILE;
9460 case FILEIO_EMFILE:
9461 return EMFILE;
9462 case FILEIO_EFBIG:
9463 return EFBIG;
9464 case FILEIO_ENOSPC:
9465 return ENOSPC;
9466 case FILEIO_ESPIPE:
9467 return ESPIPE;
9468 case FILEIO_EROFS:
9469 return EROFS;
9470 case FILEIO_ENOSYS:
9471 return ENOSYS;
9472 case FILEIO_ENAMETOOLONG:
9473 return ENAMETOOLONG;
9474 }
9475 return -1;
9476 }
9477
9478 static char *
9479 remote_hostio_error (int errnum)
9480 {
9481 int host_error = remote_fileio_errno_to_host (errnum);
9482
9483 if (host_error == -1)
9484 error (_("Unknown remote I/O error %d"), errnum);
9485 else
9486 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9487 }
9488
9489 static void
9490 remote_hostio_close_cleanup (void *opaque)
9491 {
9492 int fd = *(int *) opaque;
9493 int remote_errno;
9494
9495 remote_hostio_close (fd, &remote_errno);
9496 }
9497
9498
9499 static void *
9500 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9501 {
9502 const char *filename = bfd_get_filename (abfd);
9503 int fd, remote_errno;
9504 int *stream;
9505
9506 gdb_assert (remote_filename_p (filename));
9507
9508 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9509 if (fd == -1)
9510 {
9511 errno = remote_fileio_errno_to_host (remote_errno);
9512 bfd_set_error (bfd_error_system_call);
9513 return NULL;
9514 }
9515
9516 stream = xmalloc (sizeof (int));
9517 *stream = fd;
9518 return stream;
9519 }
9520
9521 static int
9522 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9523 {
9524 int fd = *(int *)stream;
9525 int remote_errno;
9526
9527 xfree (stream);
9528
9529 /* Ignore errors on close; these may happen if the remote
9530 connection was already torn down. */
9531 remote_hostio_close (fd, &remote_errno);
9532
9533 return 1;
9534 }
9535
9536 static file_ptr
9537 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9538 file_ptr nbytes, file_ptr offset)
9539 {
9540 int fd = *(int *)stream;
9541 int remote_errno;
9542 file_ptr pos, bytes;
9543
9544 pos = 0;
9545 while (nbytes > pos)
9546 {
9547 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9548 offset + pos, &remote_errno);
9549 if (bytes == 0)
9550 /* Success, but no bytes, means end-of-file. */
9551 break;
9552 if (bytes == -1)
9553 {
9554 errno = remote_fileio_errno_to_host (remote_errno);
9555 bfd_set_error (bfd_error_system_call);
9556 return -1;
9557 }
9558
9559 pos += bytes;
9560 }
9561
9562 return pos;
9563 }
9564
9565 static int
9566 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9567 {
9568 /* FIXME: We should probably implement remote_hostio_stat. */
9569 sb->st_size = INT_MAX;
9570 return 0;
9571 }
9572
9573 int
9574 remote_filename_p (const char *filename)
9575 {
9576 return strncmp (filename, "remote:", 7) == 0;
9577 }
9578
9579 bfd *
9580 remote_bfd_open (const char *remote_file, const char *target)
9581 {
9582 return bfd_openr_iovec (remote_file, target,
9583 remote_bfd_iovec_open, NULL,
9584 remote_bfd_iovec_pread,
9585 remote_bfd_iovec_close,
9586 remote_bfd_iovec_stat);
9587 }
9588
9589 void
9590 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9591 {
9592 struct cleanup *back_to, *close_cleanup;
9593 int retcode, fd, remote_errno, bytes, io_size;
9594 FILE *file;
9595 gdb_byte *buffer;
9596 int bytes_in_buffer;
9597 int saw_eof;
9598 ULONGEST offset;
9599
9600 if (!remote_desc)
9601 error (_("command can only be used with remote target"));
9602
9603 file = fopen (local_file, "rb");
9604 if (file == NULL)
9605 perror_with_name (local_file);
9606 back_to = make_cleanup_fclose (file);
9607
9608 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9609 | FILEIO_O_TRUNC),
9610 0700, &remote_errno);
9611 if (fd == -1)
9612 remote_hostio_error (remote_errno);
9613
9614 /* Send up to this many bytes at once. They won't all fit in the
9615 remote packet limit, so we'll transfer slightly fewer. */
9616 io_size = get_remote_packet_size ();
9617 buffer = xmalloc (io_size);
9618 make_cleanup (xfree, buffer);
9619
9620 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9621
9622 bytes_in_buffer = 0;
9623 saw_eof = 0;
9624 offset = 0;
9625 while (bytes_in_buffer || !saw_eof)
9626 {
9627 if (!saw_eof)
9628 {
9629 bytes = fread (buffer + bytes_in_buffer, 1,
9630 io_size - bytes_in_buffer,
9631 file);
9632 if (bytes == 0)
9633 {
9634 if (ferror (file))
9635 error (_("Error reading %s."), local_file);
9636 else
9637 {
9638 /* EOF. Unless there is something still in the
9639 buffer from the last iteration, we are done. */
9640 saw_eof = 1;
9641 if (bytes_in_buffer == 0)
9642 break;
9643 }
9644 }
9645 }
9646 else
9647 bytes = 0;
9648
9649 bytes += bytes_in_buffer;
9650 bytes_in_buffer = 0;
9651
9652 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9653 offset, &remote_errno);
9654
9655 if (retcode < 0)
9656 remote_hostio_error (remote_errno);
9657 else if (retcode == 0)
9658 error (_("Remote write of %d bytes returned 0!"), bytes);
9659 else if (retcode < bytes)
9660 {
9661 /* Short write. Save the rest of the read data for the next
9662 write. */
9663 bytes_in_buffer = bytes - retcode;
9664 memmove (buffer, buffer + retcode, bytes_in_buffer);
9665 }
9666
9667 offset += retcode;
9668 }
9669
9670 discard_cleanups (close_cleanup);
9671 if (remote_hostio_close (fd, &remote_errno))
9672 remote_hostio_error (remote_errno);
9673
9674 if (from_tty)
9675 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9676 do_cleanups (back_to);
9677 }
9678
9679 void
9680 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9681 {
9682 struct cleanup *back_to, *close_cleanup;
9683 int fd, remote_errno, bytes, io_size;
9684 FILE *file;
9685 gdb_byte *buffer;
9686 ULONGEST offset;
9687
9688 if (!remote_desc)
9689 error (_("command can only be used with remote target"));
9690
9691 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9692 if (fd == -1)
9693 remote_hostio_error (remote_errno);
9694
9695 file = fopen (local_file, "wb");
9696 if (file == NULL)
9697 perror_with_name (local_file);
9698 back_to = make_cleanup_fclose (file);
9699
9700 /* Send up to this many bytes at once. They won't all fit in the
9701 remote packet limit, so we'll transfer slightly fewer. */
9702 io_size = get_remote_packet_size ();
9703 buffer = xmalloc (io_size);
9704 make_cleanup (xfree, buffer);
9705
9706 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9707
9708 offset = 0;
9709 while (1)
9710 {
9711 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9712 if (bytes == 0)
9713 /* Success, but no bytes, means end-of-file. */
9714 break;
9715 if (bytes == -1)
9716 remote_hostio_error (remote_errno);
9717
9718 offset += bytes;
9719
9720 bytes = fwrite (buffer, 1, bytes, file);
9721 if (bytes == 0)
9722 perror_with_name (local_file);
9723 }
9724
9725 discard_cleanups (close_cleanup);
9726 if (remote_hostio_close (fd, &remote_errno))
9727 remote_hostio_error (remote_errno);
9728
9729 if (from_tty)
9730 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9731 do_cleanups (back_to);
9732 }
9733
9734 void
9735 remote_file_delete (const char *remote_file, int from_tty)
9736 {
9737 int retcode, remote_errno;
9738
9739 if (!remote_desc)
9740 error (_("command can only be used with remote target"));
9741
9742 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9743 if (retcode == -1)
9744 remote_hostio_error (remote_errno);
9745
9746 if (from_tty)
9747 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9748 }
9749
9750 static void
9751 remote_put_command (char *args, int from_tty)
9752 {
9753 struct cleanup *back_to;
9754 char **argv;
9755
9756 if (args == NULL)
9757 error_no_arg (_("file to put"));
9758
9759 argv = gdb_buildargv (args);
9760 back_to = make_cleanup_freeargv (argv);
9761 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9762 error (_("Invalid parameters to remote put"));
9763
9764 remote_file_put (argv[0], argv[1], from_tty);
9765
9766 do_cleanups (back_to);
9767 }
9768
9769 static void
9770 remote_get_command (char *args, int from_tty)
9771 {
9772 struct cleanup *back_to;
9773 char **argv;
9774
9775 if (args == NULL)
9776 error_no_arg (_("file to get"));
9777
9778 argv = gdb_buildargv (args);
9779 back_to = make_cleanup_freeargv (argv);
9780 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9781 error (_("Invalid parameters to remote get"));
9782
9783 remote_file_get (argv[0], argv[1], from_tty);
9784
9785 do_cleanups (back_to);
9786 }
9787
9788 static void
9789 remote_delete_command (char *args, int from_tty)
9790 {
9791 struct cleanup *back_to;
9792 char **argv;
9793
9794 if (args == NULL)
9795 error_no_arg (_("file to delete"));
9796
9797 argv = gdb_buildargv (args);
9798 back_to = make_cleanup_freeargv (argv);
9799 if (argv[0] == NULL || argv[1] != NULL)
9800 error (_("Invalid parameters to remote delete"));
9801
9802 remote_file_delete (argv[0], from_tty);
9803
9804 do_cleanups (back_to);
9805 }
9806
9807 static void
9808 remote_command (char *args, int from_tty)
9809 {
9810 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9811 }
9812
9813 static int
9814 remote_can_execute_reverse (void)
9815 {
9816 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9817 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9818 return 1;
9819 else
9820 return 0;
9821 }
9822
9823 static int
9824 remote_supports_non_stop (void)
9825 {
9826 return 1;
9827 }
9828
9829 static int
9830 remote_supports_disable_randomization (void)
9831 {
9832 /* Only supported in extended mode. */
9833 return 0;
9834 }
9835
9836 static int
9837 remote_supports_multi_process (void)
9838 {
9839 struct remote_state *rs = get_remote_state ();
9840
9841 /* Only extended-remote handles being attached to multiple
9842 processes, even though plain remote can use the multi-process
9843 thread id extensions, so that GDB knows the target process's
9844 PID. */
9845 return rs->extended && remote_multi_process_p (rs);
9846 }
9847
9848 int
9849 remote_supports_cond_tracepoints (void)
9850 {
9851 struct remote_state *rs = get_remote_state ();
9852
9853 return rs->cond_tracepoints;
9854 }
9855
9856 int
9857 remote_supports_fast_tracepoints (void)
9858 {
9859 struct remote_state *rs = get_remote_state ();
9860
9861 return rs->fast_tracepoints;
9862 }
9863
9864 static int
9865 remote_supports_static_tracepoints (void)
9866 {
9867 struct remote_state *rs = get_remote_state ();
9868
9869 return rs->static_tracepoints;
9870 }
9871
9872 static int
9873 remote_supports_install_in_trace (void)
9874 {
9875 struct remote_state *rs = get_remote_state ();
9876
9877 return rs->install_in_trace;
9878 }
9879
9880 static int
9881 remote_supports_enable_disable_tracepoint (void)
9882 {
9883 struct remote_state *rs = get_remote_state ();
9884
9885 return rs->enable_disable_tracepoints;
9886 }
9887
9888 static int
9889 remote_supports_string_tracing (void)
9890 {
9891 struct remote_state *rs = get_remote_state ();
9892
9893 return rs->string_tracing;
9894 }
9895
9896 static void
9897 remote_trace_init (void)
9898 {
9899 putpkt ("QTinit");
9900 remote_get_noisy_reply (&target_buf, &target_buf_size);
9901 if (strcmp (target_buf, "OK") != 0)
9902 error (_("Target does not support this command."));
9903 }
9904
9905 static void free_actions_list (char **actions_list);
9906 static void free_actions_list_cleanup_wrapper (void *);
9907 static void
9908 free_actions_list_cleanup_wrapper (void *al)
9909 {
9910 free_actions_list (al);
9911 }
9912
9913 static void
9914 free_actions_list (char **actions_list)
9915 {
9916 int ndx;
9917
9918 if (actions_list == 0)
9919 return;
9920
9921 for (ndx = 0; actions_list[ndx]; ndx++)
9922 xfree (actions_list[ndx]);
9923
9924 xfree (actions_list);
9925 }
9926
9927 /* Recursive routine to walk through command list including loops, and
9928 download packets for each command. */
9929
9930 static void
9931 remote_download_command_source (int num, ULONGEST addr,
9932 struct command_line *cmds)
9933 {
9934 struct remote_state *rs = get_remote_state ();
9935 struct command_line *cmd;
9936
9937 for (cmd = cmds; cmd; cmd = cmd->next)
9938 {
9939 QUIT; /* Allow user to bail out with ^C. */
9940 strcpy (rs->buf, "QTDPsrc:");
9941 encode_source_string (num, addr, "cmd", cmd->line,
9942 rs->buf + strlen (rs->buf),
9943 rs->buf_size - strlen (rs->buf));
9944 putpkt (rs->buf);
9945 remote_get_noisy_reply (&target_buf, &target_buf_size);
9946 if (strcmp (target_buf, "OK"))
9947 warning (_("Target does not support source download."));
9948
9949 if (cmd->control_type == while_control
9950 || cmd->control_type == while_stepping_control)
9951 {
9952 remote_download_command_source (num, addr, *cmd->body_list);
9953
9954 QUIT; /* Allow user to bail out with ^C. */
9955 strcpy (rs->buf, "QTDPsrc:");
9956 encode_source_string (num, addr, "cmd", "end",
9957 rs->buf + strlen (rs->buf),
9958 rs->buf_size - strlen (rs->buf));
9959 putpkt (rs->buf);
9960 remote_get_noisy_reply (&target_buf, &target_buf_size);
9961 if (strcmp (target_buf, "OK"))
9962 warning (_("Target does not support source download."));
9963 }
9964 }
9965 }
9966
9967 static void
9968 remote_download_tracepoint (struct bp_location *loc)
9969 {
9970
9971 CORE_ADDR tpaddr;
9972 char addrbuf[40];
9973 char buf[2048];
9974 char **tdp_actions;
9975 char **stepping_actions;
9976 int ndx;
9977 struct cleanup *old_chain = NULL;
9978 struct agent_expr *aexpr;
9979 struct cleanup *aexpr_chain = NULL;
9980 char *pkt;
9981 struct breakpoint *b = loc->owner;
9982 struct tracepoint *t = (struct tracepoint *) b;
9983
9984 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
9985 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9986 tdp_actions);
9987 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9988 stepping_actions);
9989
9990 tpaddr = loc->address;
9991 sprintf_vma (addrbuf, tpaddr);
9992 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
9993 addrbuf, /* address */
9994 (b->enable_state == bp_enabled ? 'E' : 'D'),
9995 t->step_count, t->pass_count);
9996 /* Fast tracepoints are mostly handled by the target, but we can
9997 tell the target how big of an instruction block should be moved
9998 around. */
9999 if (b->type == bp_fast_tracepoint)
10000 {
10001 /* Only test for support at download time; we may not know
10002 target capabilities at definition time. */
10003 if (remote_supports_fast_tracepoints ())
10004 {
10005 int isize;
10006
10007 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10008 tpaddr, &isize, NULL))
10009 sprintf (buf + strlen (buf), ":F%x", isize);
10010 else
10011 /* If it passed validation at definition but fails now,
10012 something is very wrong. */
10013 internal_error (__FILE__, __LINE__,
10014 _("Fast tracepoint not "
10015 "valid during download"));
10016 }
10017 else
10018 /* Fast tracepoints are functionally identical to regular
10019 tracepoints, so don't take lack of support as a reason to
10020 give up on the trace run. */
10021 warning (_("Target does not support fast tracepoints, "
10022 "downloading %d as regular tracepoint"), b->number);
10023 }
10024 else if (b->type == bp_static_tracepoint)
10025 {
10026 /* Only test for support at download time; we may not know
10027 target capabilities at definition time. */
10028 if (remote_supports_static_tracepoints ())
10029 {
10030 struct static_tracepoint_marker marker;
10031
10032 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10033 strcat (buf, ":S");
10034 else
10035 error (_("Static tracepoint not valid during download"));
10036 }
10037 else
10038 /* Fast tracepoints are functionally identical to regular
10039 tracepoints, so don't take lack of support as a reason
10040 to give up on the trace run. */
10041 error (_("Target does not support static tracepoints"));
10042 }
10043 /* If the tracepoint has a conditional, make it into an agent
10044 expression and append to the definition. */
10045 if (loc->cond)
10046 {
10047 /* Only test support at download time, we may not know target
10048 capabilities at definition time. */
10049 if (remote_supports_cond_tracepoints ())
10050 {
10051 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10052 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10053 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
10054 pkt = buf + strlen (buf);
10055 for (ndx = 0; ndx < aexpr->len; ++ndx)
10056 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10057 *pkt = '\0';
10058 do_cleanups (aexpr_chain);
10059 }
10060 else
10061 warning (_("Target does not support conditional tracepoints, "
10062 "ignoring tp %d cond"), b->number);
10063 }
10064
10065 if (b->commands || *default_collect)
10066 strcat (buf, "-");
10067 putpkt (buf);
10068 remote_get_noisy_reply (&target_buf, &target_buf_size);
10069 if (strcmp (target_buf, "OK"))
10070 error (_("Target does not support tracepoints."));
10071
10072 /* do_single_steps (t); */
10073 if (tdp_actions)
10074 {
10075 for (ndx = 0; tdp_actions[ndx]; ndx++)
10076 {
10077 QUIT; /* Allow user to bail out with ^C. */
10078 sprintf (buf, "QTDP:-%x:%s:%s%c",
10079 b->number, addrbuf, /* address */
10080 tdp_actions[ndx],
10081 ((tdp_actions[ndx + 1] || stepping_actions)
10082 ? '-' : 0));
10083 putpkt (buf);
10084 remote_get_noisy_reply (&target_buf,
10085 &target_buf_size);
10086 if (strcmp (target_buf, "OK"))
10087 error (_("Error on target while setting tracepoints."));
10088 }
10089 }
10090 if (stepping_actions)
10091 {
10092 for (ndx = 0; stepping_actions[ndx]; ndx++)
10093 {
10094 QUIT; /* Allow user to bail out with ^C. */
10095 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
10096 b->number, addrbuf, /* address */
10097 ((ndx == 0) ? "S" : ""),
10098 stepping_actions[ndx],
10099 (stepping_actions[ndx + 1] ? "-" : ""));
10100 putpkt (buf);
10101 remote_get_noisy_reply (&target_buf,
10102 &target_buf_size);
10103 if (strcmp (target_buf, "OK"))
10104 error (_("Error on target while setting tracepoints."));
10105 }
10106 }
10107
10108 if (remote_protocol_packets[PACKET_TracepointSource].support
10109 == PACKET_ENABLE)
10110 {
10111 if (b->addr_string)
10112 {
10113 strcpy (buf, "QTDPsrc:");
10114 encode_source_string (b->number, loc->address,
10115 "at", b->addr_string, buf + strlen (buf),
10116 2048 - strlen (buf));
10117
10118 putpkt (buf);
10119 remote_get_noisy_reply (&target_buf, &target_buf_size);
10120 if (strcmp (target_buf, "OK"))
10121 warning (_("Target does not support source download."));
10122 }
10123 if (b->cond_string)
10124 {
10125 strcpy (buf, "QTDPsrc:");
10126 encode_source_string (b->number, loc->address,
10127 "cond", b->cond_string, buf + strlen (buf),
10128 2048 - strlen (buf));
10129 putpkt (buf);
10130 remote_get_noisy_reply (&target_buf, &target_buf_size);
10131 if (strcmp (target_buf, "OK"))
10132 warning (_("Target does not support source download."));
10133 }
10134 remote_download_command_source (b->number, loc->address,
10135 breakpoint_commands (b));
10136 }
10137
10138 do_cleanups (old_chain);
10139 }
10140
10141 static int
10142 remote_can_download_tracepoint (void)
10143 {
10144 struct trace_status *ts = current_trace_status ();
10145 int status = remote_get_trace_status (ts);
10146
10147 if (status == -1 || !ts->running_known || !ts->running)
10148 return 0;
10149
10150 /* If we are in a tracing experiment, but remote stub doesn't support
10151 installing tracepoint in trace, we have to return. */
10152 if (!remote_supports_install_in_trace ())
10153 return 0;
10154
10155 return 1;
10156 }
10157
10158
10159 static void
10160 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10161 {
10162 struct remote_state *rs = get_remote_state ();
10163 char *p;
10164
10165 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10166 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10167 p = rs->buf + strlen (rs->buf);
10168 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10169 error (_("Trace state variable name too long for tsv definition packet"));
10170 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10171 *p++ = '\0';
10172 putpkt (rs->buf);
10173 remote_get_noisy_reply (&target_buf, &target_buf_size);
10174 if (*target_buf == '\0')
10175 error (_("Target does not support this command."));
10176 if (strcmp (target_buf, "OK") != 0)
10177 error (_("Error on target while downloading trace state variable."));
10178 }
10179
10180 static void
10181 remote_enable_tracepoint (struct bp_location *location)
10182 {
10183 struct remote_state *rs = get_remote_state ();
10184 char addr_buf[40];
10185
10186 sprintf_vma (addr_buf, location->address);
10187 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10188 putpkt (rs->buf);
10189 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10190 if (*rs->buf == '\0')
10191 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10192 if (strcmp (rs->buf, "OK") != 0)
10193 error (_("Error on target while enabling tracepoint."));
10194 }
10195
10196 static void
10197 remote_disable_tracepoint (struct bp_location *location)
10198 {
10199 struct remote_state *rs = get_remote_state ();
10200 char addr_buf[40];
10201
10202 sprintf_vma (addr_buf, location->address);
10203 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10204 putpkt (rs->buf);
10205 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10206 if (*rs->buf == '\0')
10207 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10208 if (strcmp (rs->buf, "OK") != 0)
10209 error (_("Error on target while disabling tracepoint."));
10210 }
10211
10212 static void
10213 remote_trace_set_readonly_regions (void)
10214 {
10215 asection *s;
10216 bfd_size_type size;
10217 bfd_vma vma;
10218 int anysecs = 0;
10219 int offset = 0;
10220
10221 if (!exec_bfd)
10222 return; /* No information to give. */
10223
10224 strcpy (target_buf, "QTro");
10225 for (s = exec_bfd->sections; s; s = s->next)
10226 {
10227 char tmp1[40], tmp2[40];
10228 int sec_length;
10229
10230 if ((s->flags & SEC_LOAD) == 0 ||
10231 /* (s->flags & SEC_CODE) == 0 || */
10232 (s->flags & SEC_READONLY) == 0)
10233 continue;
10234
10235 anysecs = 1;
10236 vma = bfd_get_section_vma (,s);
10237 size = bfd_get_section_size (s);
10238 sprintf_vma (tmp1, vma);
10239 sprintf_vma (tmp2, vma + size);
10240 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10241 if (offset + sec_length + 1 > target_buf_size)
10242 {
10243 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10244 != PACKET_ENABLE)
10245 warning (_("\
10246 Too many sections for read-only sections definition packet."));
10247 break;
10248 }
10249 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10250 offset += sec_length;
10251 }
10252 if (anysecs)
10253 {
10254 putpkt (target_buf);
10255 getpkt (&target_buf, &target_buf_size, 0);
10256 }
10257 }
10258
10259 static void
10260 remote_trace_start (void)
10261 {
10262 putpkt ("QTStart");
10263 remote_get_noisy_reply (&target_buf, &target_buf_size);
10264 if (*target_buf == '\0')
10265 error (_("Target does not support this command."));
10266 if (strcmp (target_buf, "OK") != 0)
10267 error (_("Bogus reply from target: %s"), target_buf);
10268 }
10269
10270 static int
10271 remote_get_trace_status (struct trace_status *ts)
10272 {
10273 /* Initialize it just to avoid a GCC false warning. */
10274 char *p = NULL;
10275 /* FIXME we need to get register block size some other way. */
10276 extern int trace_regblock_size;
10277 volatile struct gdb_exception ex;
10278
10279 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10280
10281 putpkt ("qTStatus");
10282
10283 TRY_CATCH (ex, RETURN_MASK_ERROR)
10284 {
10285 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10286 }
10287 if (ex.reason < 0)
10288 {
10289 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10290 return -1;
10291 }
10292
10293 /* If the remote target doesn't do tracing, flag it. */
10294 if (*p == '\0')
10295 return -1;
10296
10297 /* We're working with a live target. */
10298 ts->from_file = 0;
10299
10300 /* Set some defaults. */
10301 ts->running_known = 0;
10302 ts->stop_reason = trace_stop_reason_unknown;
10303 ts->traceframe_count = -1;
10304 ts->buffer_free = 0;
10305
10306 if (*p++ != 'T')
10307 error (_("Bogus trace status reply from target: %s"), target_buf);
10308
10309 parse_trace_status (p, ts);
10310
10311 return ts->running;
10312 }
10313
10314 void
10315 remote_get_tracepoint_status (struct breakpoint *bp,
10316 struct uploaded_tp *utp)
10317 {
10318 struct remote_state *rs = get_remote_state ();
10319 char *reply;
10320 struct bp_location *loc;
10321 struct tracepoint *tp = (struct tracepoint *) bp;
10322
10323 if (tp)
10324 {
10325 tp->base.hit_count = 0;
10326 tp->traceframe_usage = 0;
10327 for (loc = tp->base.loc; loc; loc = loc->next)
10328 {
10329 /* If the tracepoint was never downloaded, don't go asking for
10330 any status. */
10331 if (tp->number_on_target == 0)
10332 continue;
10333 sprintf (rs->buf, "qTP:%x:%s", tp->number_on_target,
10334 phex_nz (loc->address, 0));
10335 putpkt (rs->buf);
10336 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10337 if (reply && *reply)
10338 {
10339 if (*reply == 'V')
10340 parse_tracepoint_status (reply + 1, bp, utp);
10341 }
10342 }
10343 }
10344 else if (utp)
10345 {
10346 utp->hit_count = 0;
10347 utp->traceframe_usage = 0;
10348 sprintf (rs->buf, "qTP:%x:%s", utp->number, phex_nz (utp->addr, 0));
10349 putpkt (rs->buf);
10350 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10351 if (reply && *reply)
10352 {
10353 if (*reply == 'V')
10354 parse_tracepoint_status (reply + 1, bp, utp);
10355 }
10356 }
10357 }
10358
10359 static void
10360 remote_trace_stop (void)
10361 {
10362 putpkt ("QTStop");
10363 remote_get_noisy_reply (&target_buf, &target_buf_size);
10364 if (*target_buf == '\0')
10365 error (_("Target does not support this command."));
10366 if (strcmp (target_buf, "OK") != 0)
10367 error (_("Bogus reply from target: %s"), target_buf);
10368 }
10369
10370 static int
10371 remote_trace_find (enum trace_find_type type, int num,
10372 ULONGEST addr1, ULONGEST addr2,
10373 int *tpp)
10374 {
10375 struct remote_state *rs = get_remote_state ();
10376 char *p, *reply;
10377 int target_frameno = -1, target_tracept = -1;
10378
10379 /* Lookups other than by absolute frame number depend on the current
10380 trace selected, so make sure it is correct on the remote end
10381 first. */
10382 if (type != tfind_number)
10383 set_remote_traceframe ();
10384
10385 p = rs->buf;
10386 strcpy (p, "QTFrame:");
10387 p = strchr (p, '\0');
10388 switch (type)
10389 {
10390 case tfind_number:
10391 sprintf (p, "%x", num);
10392 break;
10393 case tfind_pc:
10394 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10395 break;
10396 case tfind_tp:
10397 sprintf (p, "tdp:%x", num);
10398 break;
10399 case tfind_range:
10400 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10401 break;
10402 case tfind_outside:
10403 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10404 break;
10405 default:
10406 error (_("Unknown trace find type %d"), type);
10407 }
10408
10409 putpkt (rs->buf);
10410 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10411 if (*reply == '\0')
10412 error (_("Target does not support this command."));
10413
10414 while (reply && *reply)
10415 switch (*reply)
10416 {
10417 case 'F':
10418 p = ++reply;
10419 target_frameno = (int) strtol (p, &reply, 16);
10420 if (reply == p)
10421 error (_("Unable to parse trace frame number"));
10422 /* Don't update our remote traceframe number cache on failure
10423 to select a remote traceframe. */
10424 if (target_frameno == -1)
10425 return -1;
10426 break;
10427 case 'T':
10428 p = ++reply;
10429 target_tracept = (int) strtol (p, &reply, 16);
10430 if (reply == p)
10431 error (_("Unable to parse tracepoint number"));
10432 break;
10433 case 'O': /* "OK"? */
10434 if (reply[1] == 'K' && reply[2] == '\0')
10435 reply += 2;
10436 else
10437 error (_("Bogus reply from target: %s"), reply);
10438 break;
10439 default:
10440 error (_("Bogus reply from target: %s"), reply);
10441 }
10442 if (tpp)
10443 *tpp = target_tracept;
10444
10445 remote_traceframe_number = target_frameno;
10446 return target_frameno;
10447 }
10448
10449 static int
10450 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10451 {
10452 struct remote_state *rs = get_remote_state ();
10453 char *reply;
10454 ULONGEST uval;
10455
10456 set_remote_traceframe ();
10457
10458 sprintf (rs->buf, "qTV:%x", tsvnum);
10459 putpkt (rs->buf);
10460 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10461 if (reply && *reply)
10462 {
10463 if (*reply == 'V')
10464 {
10465 unpack_varlen_hex (reply + 1, &uval);
10466 *val = (LONGEST) uval;
10467 return 1;
10468 }
10469 }
10470 return 0;
10471 }
10472
10473 static int
10474 remote_save_trace_data (const char *filename)
10475 {
10476 struct remote_state *rs = get_remote_state ();
10477 char *p, *reply;
10478
10479 p = rs->buf;
10480 strcpy (p, "QTSave:");
10481 p += strlen (p);
10482 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10483 error (_("Remote file name too long for trace save packet"));
10484 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10485 *p++ = '\0';
10486 putpkt (rs->buf);
10487 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10488 if (*reply == '\0')
10489 error (_("Target does not support this command."));
10490 if (strcmp (reply, "OK") != 0)
10491 error (_("Bogus reply from target: %s"), reply);
10492 return 0;
10493 }
10494
10495 /* This is basically a memory transfer, but needs to be its own packet
10496 because we don't know how the target actually organizes its trace
10497 memory, plus we want to be able to ask for as much as possible, but
10498 not be unhappy if we don't get as much as we ask for. */
10499
10500 static LONGEST
10501 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10502 {
10503 struct remote_state *rs = get_remote_state ();
10504 char *reply;
10505 char *p;
10506 int rslt;
10507
10508 p = rs->buf;
10509 strcpy (p, "qTBuffer:");
10510 p += strlen (p);
10511 p += hexnumstr (p, offset);
10512 *p++ = ',';
10513 p += hexnumstr (p, len);
10514 *p++ = '\0';
10515
10516 putpkt (rs->buf);
10517 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10518 if (reply && *reply)
10519 {
10520 /* 'l' by itself means we're at the end of the buffer and
10521 there is nothing more to get. */
10522 if (*reply == 'l')
10523 return 0;
10524
10525 /* Convert the reply into binary. Limit the number of bytes to
10526 convert according to our passed-in buffer size, rather than
10527 what was returned in the packet; if the target is
10528 unexpectedly generous and gives us a bigger reply than we
10529 asked for, we don't want to crash. */
10530 rslt = hex2bin (target_buf, buf, len);
10531 return rslt;
10532 }
10533
10534 /* Something went wrong, flag as an error. */
10535 return -1;
10536 }
10537
10538 static void
10539 remote_set_disconnected_tracing (int val)
10540 {
10541 struct remote_state *rs = get_remote_state ();
10542
10543 if (rs->disconnected_tracing)
10544 {
10545 char *reply;
10546
10547 sprintf (rs->buf, "QTDisconnected:%x", val);
10548 putpkt (rs->buf);
10549 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10550 if (*reply == '\0')
10551 error (_("Target does not support this command."));
10552 if (strcmp (reply, "OK") != 0)
10553 error (_("Bogus reply from target: %s"), reply);
10554 }
10555 else if (val)
10556 warning (_("Target does not support disconnected tracing."));
10557 }
10558
10559 static int
10560 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10561 {
10562 struct thread_info *info = find_thread_ptid (ptid);
10563
10564 if (info && info->private)
10565 return info->private->core;
10566 return -1;
10567 }
10568
10569 static void
10570 remote_set_circular_trace_buffer (int val)
10571 {
10572 struct remote_state *rs = get_remote_state ();
10573 char *reply;
10574
10575 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10576 putpkt (rs->buf);
10577 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10578 if (*reply == '\0')
10579 error (_("Target does not support this command."));
10580 if (strcmp (reply, "OK") != 0)
10581 error (_("Bogus reply from target: %s"), reply);
10582 }
10583
10584 static struct traceframe_info *
10585 remote_traceframe_info (void)
10586 {
10587 char *text;
10588
10589 text = target_read_stralloc (&current_target,
10590 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10591 if (text != NULL)
10592 {
10593 struct traceframe_info *info;
10594 struct cleanup *back_to = make_cleanup (xfree, text);
10595
10596 info = parse_traceframe_info (text);
10597 do_cleanups (back_to);
10598 return info;
10599 }
10600
10601 return NULL;
10602 }
10603
10604 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10605 instruction on which a fast tracepoint may be placed. Returns -1
10606 if the packet is not supported, and 0 if the minimum instruction
10607 length is unknown. */
10608
10609 static int
10610 remote_get_min_fast_tracepoint_insn_len (void)
10611 {
10612 struct remote_state *rs = get_remote_state ();
10613 char *reply;
10614
10615 /* If we're not debugging a process yet, the IPA can't be
10616 loaded. */
10617 if (!target_has_execution)
10618 return 0;
10619
10620 /* Make sure the remote is pointing at the right process. */
10621 set_general_process ();
10622
10623 sprintf (rs->buf, "qTMinFTPILen");
10624 putpkt (rs->buf);
10625 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10626 if (*reply == '\0')
10627 return -1;
10628 else
10629 {
10630 ULONGEST min_insn_len;
10631
10632 unpack_varlen_hex (reply, &min_insn_len);
10633
10634 return (int) min_insn_len;
10635 }
10636 }
10637
10638 static int
10639 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10640 {
10641 struct remote_state *rs = get_remote_state ();
10642 char *reply;
10643 char *buf = rs->buf;
10644 char *endbuf = rs->buf + get_remote_packet_size ();
10645 int nbytes;
10646
10647 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10648 if (user)
10649 {
10650 buf += xsnprintf (buf, endbuf - buf, "user:");
10651 nbytes = bin2hex (user, buf, 0);
10652 buf += 2 * nbytes;
10653 *buf++ = ';';
10654 }
10655 if (notes)
10656 {
10657 buf += xsnprintf (buf, endbuf - buf, "notes:");
10658 nbytes = bin2hex (notes, buf, 0);
10659 buf += 2 * nbytes;
10660 *buf++ = ';';
10661 }
10662 if (stop_notes)
10663 {
10664 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10665 nbytes = bin2hex (stop_notes, buf, 0);
10666 buf += 2 * nbytes;
10667 *buf++ = ';';
10668 }
10669 /* Ensure the buffer is terminated. */
10670 *buf = '\0';
10671
10672 putpkt (rs->buf);
10673 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10674 if (*reply == '\0')
10675 return 0;
10676
10677 if (strcmp (reply, "OK") != 0)
10678 error (_("Bogus reply from target: %s"), reply);
10679
10680 return 1;
10681 }
10682
10683 static void
10684 init_remote_ops (void)
10685 {
10686 remote_ops.to_shortname = "remote";
10687 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10688 remote_ops.to_doc =
10689 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10690 Specify the serial device it is connected to\n\
10691 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10692 remote_ops.to_open = remote_open;
10693 remote_ops.to_close = remote_close;
10694 remote_ops.to_detach = remote_detach;
10695 remote_ops.to_disconnect = remote_disconnect;
10696 remote_ops.to_resume = remote_resume;
10697 remote_ops.to_wait = remote_wait;
10698 remote_ops.to_fetch_registers = remote_fetch_registers;
10699 remote_ops.to_store_registers = remote_store_registers;
10700 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10701 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10702 remote_ops.to_files_info = remote_files_info;
10703 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10704 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10705 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10706 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10707 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10708 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10709 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10710 remote_ops.to_region_ok_for_hw_watchpoint
10711 = remote_region_ok_for_hw_watchpoint;
10712 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10713 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10714 remote_ops.to_kill = remote_kill;
10715 remote_ops.to_load = generic_load;
10716 remote_ops.to_mourn_inferior = remote_mourn;
10717 remote_ops.to_pass_signals = remote_pass_signals;
10718 remote_ops.to_thread_alive = remote_thread_alive;
10719 remote_ops.to_find_new_threads = remote_threads_info;
10720 remote_ops.to_pid_to_str = remote_pid_to_str;
10721 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10722 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10723 remote_ops.to_stop = remote_stop;
10724 remote_ops.to_xfer_partial = remote_xfer_partial;
10725 remote_ops.to_rcmd = remote_rcmd;
10726 remote_ops.to_log_command = serial_log_command;
10727 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10728 remote_ops.to_stratum = process_stratum;
10729 remote_ops.to_has_all_memory = default_child_has_all_memory;
10730 remote_ops.to_has_memory = default_child_has_memory;
10731 remote_ops.to_has_stack = default_child_has_stack;
10732 remote_ops.to_has_registers = default_child_has_registers;
10733 remote_ops.to_has_execution = default_child_has_execution;
10734 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10735 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10736 remote_ops.to_magic = OPS_MAGIC;
10737 remote_ops.to_memory_map = remote_memory_map;
10738 remote_ops.to_flash_erase = remote_flash_erase;
10739 remote_ops.to_flash_done = remote_flash_done;
10740 remote_ops.to_read_description = remote_read_description;
10741 remote_ops.to_search_memory = remote_search_memory;
10742 remote_ops.to_can_async_p = remote_can_async_p;
10743 remote_ops.to_is_async_p = remote_is_async_p;
10744 remote_ops.to_async = remote_async;
10745 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10746 remote_ops.to_terminal_ours = remote_terminal_ours;
10747 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10748 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10749 remote_ops.to_supports_disable_randomization
10750 = remote_supports_disable_randomization;
10751 remote_ops.to_fileio_open = remote_hostio_open;
10752 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
10753 remote_ops.to_fileio_pread = remote_hostio_pread;
10754 remote_ops.to_fileio_close = remote_hostio_close;
10755 remote_ops.to_fileio_unlink = remote_hostio_unlink;
10756 remote_ops.to_fileio_readlink = remote_hostio_readlink;
10757 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10758 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10759 remote_ops.to_trace_init = remote_trace_init;
10760 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10761 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10762 remote_ops.to_download_trace_state_variable
10763 = remote_download_trace_state_variable;
10764 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10765 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10766 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10767 remote_ops.to_trace_start = remote_trace_start;
10768 remote_ops.to_get_trace_status = remote_get_trace_status;
10769 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
10770 remote_ops.to_trace_stop = remote_trace_stop;
10771 remote_ops.to_trace_find = remote_trace_find;
10772 remote_ops.to_get_trace_state_variable_value
10773 = remote_get_trace_state_variable_value;
10774 remote_ops.to_save_trace_data = remote_save_trace_data;
10775 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10776 remote_ops.to_upload_trace_state_variables
10777 = remote_upload_trace_state_variables;
10778 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10779 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
10780 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10781 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10782 remote_ops.to_set_trace_notes = remote_set_trace_notes;
10783 remote_ops.to_core_of_thread = remote_core_of_thread;
10784 remote_ops.to_verify_memory = remote_verify_memory;
10785 remote_ops.to_get_tib_address = remote_get_tib_address;
10786 remote_ops.to_set_permissions = remote_set_permissions;
10787 remote_ops.to_static_tracepoint_marker_at
10788 = remote_static_tracepoint_marker_at;
10789 remote_ops.to_static_tracepoint_markers_by_strid
10790 = remote_static_tracepoint_markers_by_strid;
10791 remote_ops.to_traceframe_info = remote_traceframe_info;
10792 }
10793
10794 /* Set up the extended remote vector by making a copy of the standard
10795 remote vector and adding to it. */
10796
10797 static void
10798 init_extended_remote_ops (void)
10799 {
10800 extended_remote_ops = remote_ops;
10801
10802 extended_remote_ops.to_shortname = "extended-remote";
10803 extended_remote_ops.to_longname =
10804 "Extended remote serial target in gdb-specific protocol";
10805 extended_remote_ops.to_doc =
10806 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10807 Specify the serial device it is connected to (e.g. /dev/ttya).";
10808 extended_remote_ops.to_open = extended_remote_open;
10809 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10810 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10811 extended_remote_ops.to_detach = extended_remote_detach;
10812 extended_remote_ops.to_attach = extended_remote_attach;
10813 extended_remote_ops.to_kill = extended_remote_kill;
10814 extended_remote_ops.to_supports_disable_randomization
10815 = extended_remote_supports_disable_randomization;
10816 }
10817
10818 static int
10819 remote_can_async_p (void)
10820 {
10821 if (!target_async_permitted)
10822 /* We only enable async when the user specifically asks for it. */
10823 return 0;
10824
10825 /* We're async whenever the serial device is. */
10826 return serial_can_async_p (remote_desc);
10827 }
10828
10829 static int
10830 remote_is_async_p (void)
10831 {
10832 if (!target_async_permitted)
10833 /* We only enable async when the user specifically asks for it. */
10834 return 0;
10835
10836 /* We're async whenever the serial device is. */
10837 return serial_is_async_p (remote_desc);
10838 }
10839
10840 /* Pass the SERIAL event on and up to the client. One day this code
10841 will be able to delay notifying the client of an event until the
10842 point where an entire packet has been received. */
10843
10844 static void (*async_client_callback) (enum inferior_event_type event_type,
10845 void *context);
10846 static void *async_client_context;
10847 static serial_event_ftype remote_async_serial_handler;
10848
10849 static void
10850 remote_async_serial_handler (struct serial *scb, void *context)
10851 {
10852 /* Don't propogate error information up to the client. Instead let
10853 the client find out about the error by querying the target. */
10854 async_client_callback (INF_REG_EVENT, async_client_context);
10855 }
10856
10857 static void
10858 remote_async_inferior_event_handler (gdb_client_data data)
10859 {
10860 inferior_event_handler (INF_REG_EVENT, NULL);
10861 }
10862
10863 static void
10864 remote_async_get_pending_events_handler (gdb_client_data data)
10865 {
10866 remote_get_pending_stop_replies ();
10867 }
10868
10869 static void
10870 remote_async (void (*callback) (enum inferior_event_type event_type,
10871 void *context), void *context)
10872 {
10873 if (callback != NULL)
10874 {
10875 serial_async (remote_desc, remote_async_serial_handler, NULL);
10876 async_client_callback = callback;
10877 async_client_context = context;
10878 }
10879 else
10880 serial_async (remote_desc, NULL, NULL);
10881 }
10882
10883 static void
10884 set_remote_cmd (char *args, int from_tty)
10885 {
10886 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10887 }
10888
10889 static void
10890 show_remote_cmd (char *args, int from_tty)
10891 {
10892 /* We can't just use cmd_show_list here, because we want to skip
10893 the redundant "show remote Z-packet" and the legacy aliases. */
10894 struct cleanup *showlist_chain;
10895 struct cmd_list_element *list = remote_show_cmdlist;
10896 struct ui_out *uiout = current_uiout;
10897
10898 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10899 for (; list != NULL; list = list->next)
10900 if (strcmp (list->name, "Z-packet") == 0)
10901 continue;
10902 else if (list->type == not_set_cmd)
10903 /* Alias commands are exactly like the original, except they
10904 don't have the normal type. */
10905 continue;
10906 else
10907 {
10908 struct cleanup *option_chain
10909 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10910
10911 ui_out_field_string (uiout, "name", list->name);
10912 ui_out_text (uiout, ": ");
10913 if (list->type == show_cmd)
10914 do_setshow_command ((char *) NULL, from_tty, list);
10915 else
10916 cmd_func (list, NULL, from_tty);
10917 /* Close the tuple. */
10918 do_cleanups (option_chain);
10919 }
10920
10921 /* Close the tuple. */
10922 do_cleanups (showlist_chain);
10923 }
10924
10925
10926 /* Function to be called whenever a new objfile (shlib) is detected. */
10927 static void
10928 remote_new_objfile (struct objfile *objfile)
10929 {
10930 if (remote_desc != 0) /* Have a remote connection. */
10931 remote_check_symbols (objfile);
10932 }
10933
10934 /* Pull all the tracepoints defined on the target and create local
10935 data structures representing them. We don't want to create real
10936 tracepoints yet, we don't want to mess up the user's existing
10937 collection. */
10938
10939 static int
10940 remote_upload_tracepoints (struct uploaded_tp **utpp)
10941 {
10942 struct remote_state *rs = get_remote_state ();
10943 char *p;
10944
10945 /* Ask for a first packet of tracepoint definition. */
10946 putpkt ("qTfP");
10947 getpkt (&rs->buf, &rs->buf_size, 0);
10948 p = rs->buf;
10949 while (*p && *p != 'l')
10950 {
10951 parse_tracepoint_definition (p, utpp);
10952 /* Ask for another packet of tracepoint definition. */
10953 putpkt ("qTsP");
10954 getpkt (&rs->buf, &rs->buf_size, 0);
10955 p = rs->buf;
10956 }
10957 return 0;
10958 }
10959
10960 static int
10961 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10962 {
10963 struct remote_state *rs = get_remote_state ();
10964 char *p;
10965
10966 /* Ask for a first packet of variable definition. */
10967 putpkt ("qTfV");
10968 getpkt (&rs->buf, &rs->buf_size, 0);
10969 p = rs->buf;
10970 while (*p && *p != 'l')
10971 {
10972 parse_tsv_definition (p, utsvp);
10973 /* Ask for another packet of variable definition. */
10974 putpkt ("qTsV");
10975 getpkt (&rs->buf, &rs->buf_size, 0);
10976 p = rs->buf;
10977 }
10978 return 0;
10979 }
10980
10981 void
10982 _initialize_remote (void)
10983 {
10984 struct remote_state *rs;
10985 struct cmd_list_element *cmd;
10986 char *cmd_name;
10987
10988 /* architecture specific data */
10989 remote_gdbarch_data_handle =
10990 gdbarch_data_register_post_init (init_remote_state);
10991 remote_g_packet_data_handle =
10992 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10993
10994 /* Initialize the per-target state. At the moment there is only one
10995 of these, not one per target. Only one target is active at a
10996 time. The default buffer size is unimportant; it will be expanded
10997 whenever a larger buffer is needed. */
10998 rs = get_remote_state_raw ();
10999 rs->buf_size = 400;
11000 rs->buf = xmalloc (rs->buf_size);
11001
11002 init_remote_ops ();
11003 add_target (&remote_ops);
11004
11005 init_extended_remote_ops ();
11006 add_target (&extended_remote_ops);
11007
11008 /* Hook into new objfile notification. */
11009 observer_attach_new_objfile (remote_new_objfile);
11010
11011 /* Set up signal handlers. */
11012 sigint_remote_token =
11013 create_async_signal_handler (async_remote_interrupt, NULL);
11014 sigint_remote_twice_token =
11015 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11016
11017 #if 0
11018 init_remote_threadtests ();
11019 #endif
11020
11021 /* set/show remote ... */
11022
11023 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11024 Remote protocol specific variables\n\
11025 Configure various remote-protocol specific variables such as\n\
11026 the packets being used"),
11027 &remote_set_cmdlist, "set remote ",
11028 0 /* allow-unknown */, &setlist);
11029 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11030 Remote protocol specific variables\n\
11031 Configure various remote-protocol specific variables such as\n\
11032 the packets being used"),
11033 &remote_show_cmdlist, "show remote ",
11034 0 /* allow-unknown */, &showlist);
11035
11036 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11037 Compare section data on target to the exec file.\n\
11038 Argument is a single section name (default: all loaded sections)."),
11039 &cmdlist);
11040
11041 add_cmd ("packet", class_maintenance, packet_command, _("\
11042 Send an arbitrary packet to a remote target.\n\
11043 maintenance packet TEXT\n\
11044 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11045 this command sends the string TEXT to the inferior, and displays the\n\
11046 response packet. GDB supplies the initial `$' character, and the\n\
11047 terminating `#' character and checksum."),
11048 &maintenancelist);
11049
11050 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11051 Set whether to send break if interrupted."), _("\
11052 Show whether to send break if interrupted."), _("\
11053 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11054 set_remotebreak, show_remotebreak,
11055 &setlist, &showlist);
11056 cmd_name = "remotebreak";
11057 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11058 deprecate_cmd (cmd, "set remote interrupt-sequence");
11059 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11060 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11061 deprecate_cmd (cmd, "show remote interrupt-sequence");
11062
11063 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11064 interrupt_sequence_modes, &interrupt_sequence_mode,
11065 _("\
11066 Set interrupt sequence to remote target."), _("\
11067 Show interrupt sequence to remote target."), _("\
11068 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11069 NULL, show_interrupt_sequence,
11070 &remote_set_cmdlist,
11071 &remote_show_cmdlist);
11072
11073 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11074 &interrupt_on_connect, _("\
11075 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11076 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11077 If set, interrupt sequence is sent to remote target."),
11078 NULL, NULL,
11079 &remote_set_cmdlist, &remote_show_cmdlist);
11080
11081 /* Install commands for configuring memory read/write packets. */
11082
11083 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11084 Set the maximum number of bytes per memory write packet (deprecated)."),
11085 &setlist);
11086 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11087 Show the maximum number of bytes per memory write packet (deprecated)."),
11088 &showlist);
11089 add_cmd ("memory-write-packet-size", no_class,
11090 set_memory_write_packet_size, _("\
11091 Set the maximum number of bytes per memory-write packet.\n\
11092 Specify the number of bytes in a packet or 0 (zero) for the\n\
11093 default packet size. The actual limit is further reduced\n\
11094 dependent on the target. Specify ``fixed'' to disable the\n\
11095 further restriction and ``limit'' to enable that restriction."),
11096 &remote_set_cmdlist);
11097 add_cmd ("memory-read-packet-size", no_class,
11098 set_memory_read_packet_size, _("\
11099 Set the maximum number of bytes per memory-read packet.\n\
11100 Specify the number of bytes in a packet or 0 (zero) for the\n\
11101 default packet size. The actual limit is further reduced\n\
11102 dependent on the target. Specify ``fixed'' to disable the\n\
11103 further restriction and ``limit'' to enable that restriction."),
11104 &remote_set_cmdlist);
11105 add_cmd ("memory-write-packet-size", no_class,
11106 show_memory_write_packet_size,
11107 _("Show the maximum number of bytes per memory-write packet."),
11108 &remote_show_cmdlist);
11109 add_cmd ("memory-read-packet-size", no_class,
11110 show_memory_read_packet_size,
11111 _("Show the maximum number of bytes per memory-read packet."),
11112 &remote_show_cmdlist);
11113
11114 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11115 &remote_hw_watchpoint_limit, _("\
11116 Set the maximum number of target hardware watchpoints."), _("\
11117 Show the maximum number of target hardware watchpoints."), _("\
11118 Specify a negative limit for unlimited."),
11119 NULL, NULL, /* FIXME: i18n: The maximum
11120 number of target hardware
11121 watchpoints is %s. */
11122 &remote_set_cmdlist, &remote_show_cmdlist);
11123 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11124 &remote_hw_watchpoint_length_limit, _("\
11125 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11126 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11127 Specify a negative limit for unlimited."),
11128 NULL, NULL, /* FIXME: i18n: The maximum
11129 length (in bytes) of a target
11130 hardware watchpoint is %s. */
11131 &remote_set_cmdlist, &remote_show_cmdlist);
11132 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11133 &remote_hw_breakpoint_limit, _("\
11134 Set the maximum number of target hardware breakpoints."), _("\
11135 Show the maximum number of target hardware breakpoints."), _("\
11136 Specify a negative limit for unlimited."),
11137 NULL, NULL, /* FIXME: i18n: The maximum
11138 number of target hardware
11139 breakpoints is %s. */
11140 &remote_set_cmdlist, &remote_show_cmdlist);
11141
11142 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11143 &remote_address_size, _("\
11144 Set the maximum size of the address (in bits) in a memory packet."), _("\
11145 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11146 NULL,
11147 NULL, /* FIXME: i18n: */
11148 &setlist, &showlist);
11149
11150 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11151 "X", "binary-download", 1);
11152
11153 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11154 "vCont", "verbose-resume", 0);
11155
11156 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11157 "QPassSignals", "pass-signals", 0);
11158
11159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11160 "qSymbol", "symbol-lookup", 0);
11161
11162 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11163 "P", "set-register", 1);
11164
11165 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11166 "p", "fetch-register", 1);
11167
11168 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11169 "Z0", "software-breakpoint", 0);
11170
11171 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11172 "Z1", "hardware-breakpoint", 0);
11173
11174 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11175 "Z2", "write-watchpoint", 0);
11176
11177 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11178 "Z3", "read-watchpoint", 0);
11179
11180 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11181 "Z4", "access-watchpoint", 0);
11182
11183 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11184 "qXfer:auxv:read", "read-aux-vector", 0);
11185
11186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11187 "qXfer:features:read", "target-features", 0);
11188
11189 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11190 "qXfer:libraries:read", "library-info", 0);
11191
11192 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11193 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11194
11195 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11196 "qXfer:memory-map:read", "memory-map", 0);
11197
11198 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11199 "qXfer:spu:read", "read-spu-object", 0);
11200
11201 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11202 "qXfer:spu:write", "write-spu-object", 0);
11203
11204 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11205 "qXfer:osdata:read", "osdata", 0);
11206
11207 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11208 "qXfer:threads:read", "threads", 0);
11209
11210 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11211 "qXfer:siginfo:read", "read-siginfo-object", 0);
11212
11213 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11214 "qXfer:siginfo:write", "write-siginfo-object", 0);
11215
11216 add_packet_config_cmd
11217 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11218 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11219
11220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11221 "qGetTLSAddr", "get-thread-local-storage-address",
11222 0);
11223
11224 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11225 "qGetTIBAddr", "get-thread-information-block-address",
11226 0);
11227
11228 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11229 "bc", "reverse-continue", 0);
11230
11231 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11232 "bs", "reverse-step", 0);
11233
11234 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11235 "qSupported", "supported-packets", 0);
11236
11237 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11238 "qSearch:memory", "search-memory", 0);
11239
11240 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11241 "vFile:open", "hostio-open", 0);
11242
11243 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11244 "vFile:pread", "hostio-pread", 0);
11245
11246 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11247 "vFile:pwrite", "hostio-pwrite", 0);
11248
11249 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11250 "vFile:close", "hostio-close", 0);
11251
11252 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11253 "vFile:unlink", "hostio-unlink", 0);
11254
11255 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11256 "vFile:readlink", "hostio-readlink", 0);
11257
11258 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11259 "vAttach", "attach", 0);
11260
11261 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11262 "vRun", "run", 0);
11263
11264 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11265 "QStartNoAckMode", "noack", 0);
11266
11267 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11268 "vKill", "kill", 0);
11269
11270 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11271 "qAttached", "query-attached", 0);
11272
11273 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11274 "ConditionalTracepoints",
11275 "conditional-tracepoints", 0);
11276 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11277 "FastTracepoints", "fast-tracepoints", 0);
11278
11279 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11280 "TracepointSource", "TracepointSource", 0);
11281
11282 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11283 "QAllow", "allow", 0);
11284
11285 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11286 "StaticTracepoints", "static-tracepoints", 0);
11287
11288 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11289 "InstallInTrace", "install-in-trace", 0);
11290
11291 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11292 "qXfer:statictrace:read", "read-sdata-object", 0);
11293
11294 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11295 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11296
11297 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11298 "QDisableRandomization", "disable-randomization", 0);
11299
11300 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11301 Z sub-packet has its own set and show commands, but users may
11302 have sets to this variable in their .gdbinit files (or in their
11303 documentation). */
11304 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11305 &remote_Z_packet_detect, _("\
11306 Set use of remote protocol `Z' packets"), _("\
11307 Show use of remote protocol `Z' packets "), _("\
11308 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11309 packets."),
11310 set_remote_protocol_Z_packet_cmd,
11311 show_remote_protocol_Z_packet_cmd,
11312 /* FIXME: i18n: Use of remote protocol
11313 `Z' packets is %s. */
11314 &remote_set_cmdlist, &remote_show_cmdlist);
11315
11316 add_prefix_cmd ("remote", class_files, remote_command, _("\
11317 Manipulate files on the remote system\n\
11318 Transfer files to and from the remote target system."),
11319 &remote_cmdlist, "remote ",
11320 0 /* allow-unknown */, &cmdlist);
11321
11322 add_cmd ("put", class_files, remote_put_command,
11323 _("Copy a local file to the remote system."),
11324 &remote_cmdlist);
11325
11326 add_cmd ("get", class_files, remote_get_command,
11327 _("Copy a remote file to the local system."),
11328 &remote_cmdlist);
11329
11330 add_cmd ("delete", class_files, remote_delete_command,
11331 _("Delete a remote file."),
11332 &remote_cmdlist);
11333
11334 remote_exec_file = xstrdup ("");
11335 add_setshow_string_noescape_cmd ("exec-file", class_files,
11336 &remote_exec_file, _("\
11337 Set the remote pathname for \"run\""), _("\
11338 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11339 &remote_set_cmdlist, &remote_show_cmdlist);
11340
11341 /* Eventually initialize fileio. See fileio.c */
11342 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11343
11344 /* Take advantage of the fact that the LWP field is not used, to tag
11345 special ptids with it set to != 0. */
11346 magic_null_ptid = ptid_build (42000, 1, -1);
11347 not_sent_ptid = ptid_build (42000, 1, -2);
11348 any_thread_ptid = ptid_build (42000, 1, 0);
11349
11350 target_buf_size = 2048;
11351 target_buf = xmalloc (target_buf_size);
11352 }
11353
This page took 0.416094 seconds and 5 git commands to generate.