* remote.c (remote_write_bytes): Add default case to switch
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991-2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* See the GDB User Guide for details of the GDB remote protocol. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <fcntl.h>
27 #include "frame.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 #include "gdb_wait.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39
40 #include <ctype.h>
41 #include <sys/time.h>
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include "event-loop.h"
47 #include "event-top.h"
48 #include "inf-loop.h"
49
50 #include <signal.h>
51 #include "serial.h"
52
53 /* Prototypes for local functions */
54 static void cleanup_sigint_signal_handler (void *dummy);
55 static void initialize_sigint_signal_handler (void);
56 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
57
58 static void handle_remote_sigint (int);
59 static void handle_remote_sigint_twice (int);
60 static void async_remote_interrupt (gdb_client_data);
61 void async_remote_interrupt_twice (gdb_client_data);
62
63 static void build_remote_gdbarch_data (void);
64
65 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
66
67 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
68
69 static void remote_files_info (struct target_ops *ignore);
70
71 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
72 int len, int should_write,
73 struct target_ops *target);
74
75 static void remote_prepare_to_store (void);
76
77 static void remote_fetch_registers (int regno);
78
79 static void remote_resume (int pid, int step, enum target_signal siggnal);
80 static void remote_async_resume (int pid, int step,
81 enum target_signal siggnal);
82 static int remote_start_remote (PTR);
83
84 static void remote_open (char *name, int from_tty);
85 static void remote_async_open (char *name, int from_tty);
86
87 static void extended_remote_open (char *name, int from_tty);
88 static void extended_remote_async_open (char *name, int from_tty);
89
90 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
91 static void remote_async_open_1 (char *, int, struct target_ops *,
92 int extended_p);
93
94 static void remote_close (int quitting);
95
96 static void remote_store_registers (int regno);
97
98 static void remote_mourn (void);
99 static void remote_async_mourn (void);
100
101 static void extended_remote_restart (void);
102
103 static void extended_remote_mourn (void);
104
105 static void extended_remote_create_inferior (char *, char *, char **);
106 static void extended_remote_async_create_inferior (char *, char *, char **);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char *buf, long sizeof_buf);
111
112 static int readchar (int timeout);
113
114 static int remote_wait (int pid, struct target_waitstatus *status);
115 static int remote_async_wait (int pid, struct target_waitstatus *status);
116
117 static void remote_kill (void);
118 static void remote_async_kill (void);
119
120 static int tohex (int nib);
121
122 static void remote_detach (char *args, int from_tty);
123 static void remote_async_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (int);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, char *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, char *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void init_remote_cisco_ops (void);
150
151 static struct target_ops remote_cisco_ops;
152
153 static void remote_stop (void);
154
155 static int ishex (int ch, int *val);
156
157 static int stubhex (int ch);
158
159 static int remote_query (int /*char */ , char *, char *, int *);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static unsigned long crc32 (unsigned char *, int, unsigned int);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static int remote_current_thread (int oldpid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (int currthread);
182
183 /* exported functions */
184
185 extern int fromhex (int a);
186
187 static int putpkt_binary (char *buf, int cnt);
188
189 static void check_binary_download (CORE_ADDR addr);
190
191 struct packet_config;
192
193 static void show_packet_config_cmd (struct packet_config *config);
194
195 static void update_packet_config (struct packet_config *config);
196
197 /* Define the target subroutine names */
198
199 void open_remote_target (char *, int, struct target_ops *, int);
200
201 void _initialize_remote (void);
202
203 /* */
204
205 static struct target_ops remote_ops;
206
207 static struct target_ops extended_remote_ops;
208
209 /* Temporary target ops. Just like the remote_ops and
210 extended_remote_ops, but with asynchronous support. */
211 static struct target_ops remote_async_ops;
212
213 static struct target_ops extended_async_remote_ops;
214
215 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
216 ``forever'' still use the normal timeout mechanism. This is
217 currently used by the ASYNC code to guarentee that target reads
218 during the initial connect always time-out. Once getpkt has been
219 modified to return a timeout indication and, in turn
220 remote_wait()/wait_for_inferior() have gained a timeout parameter
221 this can go away. */
222 static int wait_forever_enabled_p = 1;
223
224
225 /* This variable chooses whether to send a ^C or a break when the user
226 requests program interruption. Although ^C is usually what remote
227 systems expect, and that is the default here, sometimes a break is
228 preferable instead. */
229
230 static int remote_break;
231
232 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
233 remote_open knows that we don't have a file open when the program
234 starts. */
235 static serial_t remote_desc = NULL;
236
237 /* This is set by the target (thru the 'S' message)
238 to denote that the target is in kernel mode. */
239 static int cisco_kernel_mode = 0;
240
241 /* This variable sets the number of bits in an address that are to be
242 sent in a memory ("M" or "m") packet. Normally, after stripping
243 leading zeros, the entire address would be sent. This variable
244 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
245 initial implementation of remote.c restricted the address sent in
246 memory packets to ``host::sizeof long'' bytes - (typically 32
247 bits). Consequently, for 64 bit targets, the upper 32 bits of an
248 address was never sent. Since fixing this bug may cause a break in
249 some remote targets this variable is principly provided to
250 facilitate backward compatibility. */
251
252 static int remote_address_size;
253
254 /* Tempoary to track who currently owns the terminal. See
255 target_async_terminal_* for more details. */
256
257 static int remote_async_terminal_ours_p;
258
259 \f
260 /* This is the size (in chars) of the first response to the ``g''
261 packet. It is used as a heuristic when determining the maximum
262 size of memory-read and memory-write packets. A target will
263 typically only reserve a buffer large enough to hold the ``g''
264 packet. The size does not include packet overhead (headers and
265 trailers). */
266
267 static long actual_register_packet_size;
268
269 /* This is the maximum size (in chars) of a non read/write packet. It
270 is also used as a cap on the size of read/write packets. */
271
272 static long remote_packet_size;
273 /* compatibility. */
274 #define PBUFSIZ (remote_packet_size)
275
276 /* User configurable variables for the number of characters in a
277 memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the
278 default. Some targets need smaller values (fifo overruns, et.al.)
279 and some users need larger values (speed up transfers). The
280 variables ``preferred_*'' (the user request), ``current_*'' (what
281 was actually set) and ``forced_*'' (Positive - a soft limit,
282 negative - a hard limit). */
283
284 struct memory_packet_config
285 {
286 char *name;
287 long size;
288 int fixed_p;
289 };
290
291 /* Compute the current size of a read/write packet. Since this makes
292 use of ``actual_register_packet_size'' the computation is dynamic. */
293
294 static long
295 get_memory_packet_size (struct memory_packet_config *config)
296 {
297 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
298 law?) that some hosts don't cope very well with large alloca()
299 calls. Eventually the alloca() code will be replaced by calls to
300 xmalloc() and make_cleanups() allowing this restriction to either
301 be lifted or removed. */
302 #ifndef MAX_REMOTE_PACKET_SIZE
303 #define MAX_REMOTE_PACKET_SIZE 16384
304 #endif
305 /* NOTE: 16 is just chosen at random. */
306 #ifndef MIN_REMOTE_PACKET_SIZE
307 #define MIN_REMOTE_PACKET_SIZE 16
308 #endif
309 long what_they_get;
310 if (config->fixed_p)
311 {
312 if (config->size <= 0)
313 what_they_get = MAX_REMOTE_PACKET_SIZE;
314 else
315 what_they_get = config->size;
316 }
317 else
318 {
319 what_they_get = remote_packet_size;
320 /* Limit the packet to the size specified by the user. */
321 if (config->size > 0
322 && what_they_get > config->size)
323 what_they_get = config->size;
324 /* Limit it to the size of the targets ``g'' response. */
325 if (actual_register_packet_size > 0
326 && what_they_get > actual_register_packet_size)
327 what_they_get = actual_register_packet_size;
328 }
329 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
330 what_they_get = MAX_REMOTE_PACKET_SIZE;
331 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
332 what_they_get = MIN_REMOTE_PACKET_SIZE;
333 return what_they_get;
334 }
335
336 /* Update the size of a read/write packet. If they user wants
337 something really big then do a sanity check. */
338
339 static void
340 set_memory_packet_size (char *args, struct memory_packet_config *config)
341 {
342 int fixed_p = config->fixed_p;
343 long size = config->size;
344 if (args == NULL)
345 error ("Argument required (integer, `fixed' or `limited').");
346 else if (strcmp (args, "hard") == 0
347 || strcmp (args, "fixed") == 0)
348 fixed_p = 1;
349 else if (strcmp (args, "soft") == 0
350 || strcmp (args, "limit") == 0)
351 fixed_p = 0;
352 else
353 {
354 char *end;
355 size = strtoul (args, &end, 0);
356 if (args == end)
357 error ("Invalid %s (bad syntax).", config->name);
358 #if 0
359 /* Instead of explicitly capping the size of a packet to
360 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
361 instead allowed to set the size to something arbitrarily
362 large. */
363 if (size > MAX_REMOTE_PACKET_SIZE)
364 error ("Invalid %s (too large).", config->name);
365 #endif
366 }
367 /* Extra checks? */
368 if (fixed_p && !config->fixed_p)
369 {
370 if (! query ("The target may not be able to correctly handle a %s\n"
371 "of %ld bytes. Change the packet size? ",
372 config->name, size))
373 error ("Packet size not changed.");
374 }
375 /* Update the config. */
376 config->fixed_p = fixed_p;
377 config->size = size;
378 }
379
380 static void
381 show_memory_packet_size (struct memory_packet_config *config)
382 {
383 printf_filtered ("The %s is %ld. ", config->name, config->size);
384 if (config->fixed_p)
385 printf_filtered ("Packets are fixed at %ld bytes.\n",
386 get_memory_packet_size (config));
387 else
388 printf_filtered ("Packets are limited to %ld bytes.\n",
389 get_memory_packet_size (config));
390 }
391
392 static struct memory_packet_config memory_write_packet_config =
393 {
394 "memory-write-packet-size",
395 };
396
397 static void
398 set_memory_write_packet_size (char *args, int from_tty)
399 {
400 set_memory_packet_size (args, &memory_write_packet_config);
401 }
402
403 static void
404 show_memory_write_packet_size (char *args, int from_tty)
405 {
406 show_memory_packet_size (&memory_write_packet_config);
407 }
408
409 static long
410 get_memory_write_packet_size (void)
411 {
412 return get_memory_packet_size (&memory_write_packet_config);
413 }
414
415 static struct memory_packet_config memory_read_packet_config =
416 {
417 "memory-read-packet-size",
418 };
419
420 static void
421 set_memory_read_packet_size (char *args, int from_tty)
422 {
423 set_memory_packet_size (args, &memory_read_packet_config);
424 }
425
426 static void
427 show_memory_read_packet_size (char *args, int from_tty)
428 {
429 show_memory_packet_size (&memory_read_packet_config);
430 }
431
432 static long
433 get_memory_read_packet_size (void)
434 {
435 long size = get_memory_packet_size (&memory_read_packet_config);
436 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
437 extra buffer size argument before the memory read size can be
438 increased beyond PBUFSIZ. */
439 if (size > PBUFSIZ)
440 size = PBUFSIZ;
441 return size;
442 }
443
444 /* Register packet size initialization. Since the bounds change when
445 the architecture changes (namely REGISTER_BYTES) this all needs to
446 be multi-arched. */
447
448 static void
449 register_remote_packet_sizes (void)
450 {
451 REGISTER_GDBARCH_SWAP (remote_packet_size);
452 REGISTER_GDBARCH_SWAP (actual_register_packet_size);
453 }
454
455 static void
456 build_remote_packet_sizes (void)
457 {
458 /* Default maximum number of characters in a packet body. Many
459 remote stubs have a hardwired buffer size of 400 bytes
460 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
461 as the maximum packet-size to ensure that the packet and an extra
462 NUL character can always fit in the buffer. This stops GDB
463 trashing stubs that try to squeeze an extra NUL into what is
464 already a full buffer (As of 1999-12-04 that was most stubs. */
465 remote_packet_size = 400 - 1;
466 /* Should REGISTER_BYTES needs more space than the default, adjust
467 the size accordingly. Remember that each byte is encoded as two
468 characters. 32 is the overhead for the packet header /
469 footer. NOTE: cagney/1999-10-26: I suspect that 8
470 (``$NN:G...#NN'') is a better guess, the below has been padded a
471 little. */
472 if (REGISTER_BYTES > ((remote_packet_size - 32) / 2))
473 remote_packet_size = (REGISTER_BYTES * 2 + 32);
474
475 /* This one is filled in when a ``g'' packet is received. */
476 actual_register_packet_size = 0;
477 }
478 \f
479 /* Generic configuration support for packets the stub optionally
480 supports. Allows the user to specify the use of the packet as well
481 as allowing GDB to auto-detect support in the remote stub. */
482
483 enum packet_support
484 {
485 PACKET_SUPPORT_UNKNOWN = 0,
486 PACKET_ENABLE,
487 PACKET_DISABLE
488 };
489
490 struct packet_config
491 {
492 char *name;
493 char *title;
494 enum cmd_auto_boolean detect;
495 enum packet_support support;
496 };
497
498 /* Analyze a packet's return value and update the packet config
499 accordingly. */
500
501 enum packet_result
502 {
503 PACKET_ERROR,
504 PACKET_OK,
505 PACKET_UNKNOWN
506 };
507
508 static void
509 update_packet_config (struct packet_config *config)
510 {
511 switch (config->detect)
512 {
513 case CMD_AUTO_BOOLEAN_TRUE:
514 config->support = PACKET_ENABLE;
515 break;
516 case CMD_AUTO_BOOLEAN_FALSE:
517 config->support = PACKET_DISABLE;
518 break;
519 case CMD_AUTO_BOOLEAN_AUTO:
520 config->support = PACKET_SUPPORT_UNKNOWN;
521 break;
522 }
523 }
524
525 static void
526 show_packet_config_cmd (struct packet_config *config)
527 {
528 char *support = "internal-error";
529 switch (config->support)
530 {
531 case PACKET_ENABLE:
532 support = "enabled";
533 break;
534 case PACKET_DISABLE:
535 support = "disabled";
536 break;
537 case PACKET_SUPPORT_UNKNOWN:
538 support = "unknown";
539 break;
540 }
541 switch (config->detect)
542 {
543 case CMD_AUTO_BOOLEAN_AUTO:
544 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
545 config->name, config->title, support);
546 break;
547 case CMD_AUTO_BOOLEAN_TRUE:
548 case CMD_AUTO_BOOLEAN_FALSE:
549 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
550 config->name, config->title, support);
551 break;
552 }
553 }
554
555 static void
556 add_packet_config_cmd (struct packet_config *config,
557 char *name,
558 char *title,
559 void (*set_func) (char *args, int from_tty,
560 struct cmd_list_element *
561 c),
562 void (*show_func) (char *name,
563 int from_tty),
564 struct cmd_list_element **set_remote_list,
565 struct cmd_list_element **show_remote_list,
566 int legacy)
567 {
568 struct cmd_list_element *set_cmd;
569 struct cmd_list_element *show_cmd;
570 char *set_doc;
571 char *show_doc;
572 char *cmd_name;
573 config->name = name;
574 config->title = title;
575 config->detect = CMD_AUTO_BOOLEAN_AUTO;
576 config->support = PACKET_SUPPORT_UNKNOWN;
577 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
578 name, title);
579 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
580 name, title);
581 /* set/show TITLE-packet {auto,on,off} */
582 xasprintf (&cmd_name, "%s-packet", title);
583 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
584 &config->detect, set_doc,
585 set_remote_list);
586 set_cmd->function.sfunc = set_func;
587 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
588 show_remote_list);
589 /* set/show remote NAME-packet {auto,on,off} -- legacy */
590 if (legacy)
591 {
592 char *legacy_name;
593 xasprintf (&legacy_name, "%s-packet", name);
594 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
595 set_remote_list);
596 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
597 show_remote_list);
598 }
599 }
600
601 static enum packet_result
602 packet_ok (const char *buf, struct packet_config *config)
603 {
604 if (buf[0] != '\0')
605 {
606 /* The stub recognized the packet request. Check that the
607 operation succeeded. */
608 switch (config->support)
609 {
610 case PACKET_SUPPORT_UNKNOWN:
611 if (remote_debug)
612 fprintf_unfiltered (gdb_stdlog,
613 "Packet %s (%s) is supported\n",
614 config->name, config->title);
615 config->support = PACKET_ENABLE;
616 break;
617 case PACKET_DISABLE:
618 internal_error ("packet_ok: attempt to use a disabled packet");
619 break;
620 case PACKET_ENABLE:
621 break;
622 }
623 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
624 /* "OK" - definitly OK. */
625 return PACKET_OK;
626 if (buf[0] == 'E'
627 && isxdigit (buf[1]) && isxdigit (buf[2])
628 && buf[3] == '\0')
629 /* "Enn" - definitly an error. */
630 return PACKET_ERROR;
631 /* The packet may or may not be OK. Just assume it is */
632 return PACKET_OK;
633 }
634 else
635 {
636 /* The stub does not support the packet. */
637 switch (config->support)
638 {
639 case PACKET_ENABLE:
640 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
641 /* If the stub previously indicated that the packet was
642 supported then there is a protocol error.. */
643 error ("Protocol error: %s (%s) conflicting enabled responses.",
644 config->name, config->title);
645 else
646 /* The user set it wrong. */
647 error ("Enabled packet %s (%s) not recognized by stub",
648 config->name, config->title);
649 break;
650 case PACKET_SUPPORT_UNKNOWN:
651 if (remote_debug)
652 fprintf_unfiltered (gdb_stdlog,
653 "Packet %s (%s) is NOT supported\n",
654 config->name, config->title);
655 config->support = PACKET_DISABLE;
656 break;
657 case PACKET_DISABLE:
658 break;
659 }
660 return PACKET_UNKNOWN;
661 }
662 }
663
664 /* Should we try the 'P' (set register) request? */
665
666 static struct packet_config remote_protocol_P;
667
668 static void
669 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
670 struct cmd_list_element *c)
671 {
672 update_packet_config (&remote_protocol_P);
673 }
674
675 static void
676 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
677 {
678 show_packet_config_cmd (&remote_protocol_P);
679 }
680
681 /* Should we try one of the 'Z' requests? */
682
683 enum Z_packet_type
684 {
685 Z_PACKET_SOFTWARE_BP,
686 Z_PACKET_HARDWARE_BP,
687 Z_PACKET_WRITE_WP,
688 Z_PACKET_READ_WP,
689 Z_PACKET_ACCESS_WP,
690 NR_Z_PACKET_TYPES
691 };
692
693 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
694
695 /* FIXME: Instead of having all these boiler plate functions, the
696 command callback should include a context argument. */
697
698 static void
699 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
700 struct cmd_list_element *c)
701 {
702 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
703 }
704
705 static void
706 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
707 {
708 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
709 }
710
711 static void
712 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
713 struct cmd_list_element *c)
714 {
715 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
716 }
717
718 static void
719 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
720 {
721 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
722 }
723
724 static void
725 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
726 struct cmd_list_element *c)
727 {
728 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
729 }
730
731 static void
732 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
733 {
734 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
735 }
736
737 static void
738 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
739 struct cmd_list_element *c)
740 {
741 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
742 }
743
744 static void
745 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
746 {
747 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
748 }
749
750 static void
751 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
752 struct cmd_list_element *c)
753 {
754 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
755 }
756
757 static void
758 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
759 {
760 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
761 }
762
763 /* For compatibility with older distributions. Provide a ``set remote
764 Z-packet ...'' command that updates all the Z packet types. */
765
766 static enum cmd_auto_boolean remote_Z_packet_detect;
767
768 static void
769 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
770 struct cmd_list_element *c)
771 {
772 int i;
773 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
774 {
775 remote_protocol_Z[i].detect = remote_Z_packet_detect;
776 update_packet_config (&remote_protocol_Z[i]);
777 }
778 }
779
780 static void
781 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
782 {
783 int i;
784 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
785 {
786 show_packet_config_cmd (&remote_protocol_Z[i]);
787 }
788 }
789
790 /* Should we try the 'X' (remote binary download) packet?
791
792 This variable (available to the user via "set remote X-packet")
793 dictates whether downloads are sent in binary (via the 'X' packet).
794 We assume that the stub can, and attempt to do it. This will be
795 cleared if the stub does not understand it. This switch is still
796 needed, though in cases when the packet is supported in the stub,
797 but the connection does not allow it (i.e., 7-bit serial connection
798 only). */
799
800 static struct packet_config remote_protocol_binary_download;
801
802 /* Should we try the 'ThreadInfo' query packet?
803
804 This variable (NOT available to the user: auto-detect only!)
805 determines whether GDB will use the new, simpler "ThreadInfo"
806 query or the older, more complex syntax for thread queries.
807 This is an auto-detect variable (set to true at each connect,
808 and set to false when the target fails to recognize it). */
809
810 static int use_threadinfo_query;
811 static int use_threadextra_query;
812
813 static void
814 set_remote_protocol_binary_download_cmd (char *args,
815 int from_tty,
816 struct cmd_list_element *c)
817 {
818 update_packet_config (&remote_protocol_binary_download);
819 }
820
821 static void
822 show_remote_protocol_binary_download_cmd (char *args,
823 int from_tty)
824 {
825 show_packet_config_cmd (&remote_protocol_binary_download);
826 }
827
828
829 /* Tokens for use by the asynchronous signal handlers for SIGINT */
830 PTR sigint_remote_twice_token;
831 PTR sigint_remote_token;
832
833 /* These are pointers to hook functions that may be set in order to
834 modify resume/wait behavior for a particular architecture. */
835
836 void (*target_resume_hook) (void);
837 void (*target_wait_loop_hook) (void);
838 \f
839
840
841 /* These are the threads which we last sent to the remote system.
842 -1 for all or -2 for not sent yet. */
843 static int general_thread;
844 static int continue_thread;
845
846 /* Call this function as a result of
847 1) A halt indication (T packet) containing a thread id
848 2) A direct query of currthread
849 3) Successful execution of set thread
850 */
851
852 static void
853 record_currthread (int currthread)
854 {
855 general_thread = currthread;
856
857 /* If this is a new thread, add it to GDB's thread list.
858 If we leave it up to WFI to do this, bad things will happen. */
859 if (!in_thread_list (currthread))
860 {
861 add_thread (currthread);
862 #ifdef UI_OUT
863 ui_out_text (uiout, "[New ");
864 ui_out_text (uiout, target_pid_to_str (currthread));
865 ui_out_text (uiout, "]\n");
866 #else
867 printf_filtered ("[New %s]\n", target_pid_to_str (currthread));
868 #endif
869 }
870 }
871
872 #define MAGIC_NULL_PID 42000
873
874 static void
875 set_thread (int th, int gen)
876 {
877 char *buf = alloca (PBUFSIZ);
878 int state = gen ? general_thread : continue_thread;
879
880 if (state == th)
881 return;
882
883 buf[0] = 'H';
884 buf[1] = gen ? 'g' : 'c';
885 if (th == MAGIC_NULL_PID)
886 {
887 buf[2] = '0';
888 buf[3] = '\0';
889 }
890 else if (th < 0)
891 sprintf (&buf[2], "-%x", -th);
892 else
893 sprintf (&buf[2], "%x", th);
894 putpkt (buf);
895 getpkt (buf, PBUFSIZ, 0);
896 if (gen)
897 general_thread = th;
898 else
899 continue_thread = th;
900 }
901 \f
902 /* Return nonzero if the thread TH is still alive on the remote system. */
903
904 static int
905 remote_thread_alive (int tid)
906 {
907 char buf[16];
908
909 if (tid < 0)
910 sprintf (buf, "T-%08x", -tid);
911 else
912 sprintf (buf, "T%08x", tid);
913 putpkt (buf);
914 getpkt (buf, sizeof (buf), 0);
915 return (buf[0] == 'O' && buf[1] == 'K');
916 }
917
918 /* About these extended threadlist and threadinfo packets. They are
919 variable length packets but, the fields within them are often fixed
920 length. They are redundent enough to send over UDP as is the
921 remote protocol in general. There is a matching unit test module
922 in libstub. */
923
924 #define OPAQUETHREADBYTES 8
925
926 /* a 64 bit opaque identifier */
927 typedef unsigned char threadref[OPAQUETHREADBYTES];
928
929 /* WARNING: This threadref data structure comes from the remote O.S., libstub
930 protocol encoding, and remote.c. it is not particularly changable */
931
932 /* Right now, the internal structure is int. We want it to be bigger.
933 Plan to fix this.
934 */
935
936 typedef int gdb_threadref; /* internal GDB thread reference */
937
938 /* gdb_ext_thread_info is an internal GDB data structure which is
939 equivalint to the reply of the remote threadinfo packet */
940
941 struct gdb_ext_thread_info
942 {
943 threadref threadid; /* External form of thread reference */
944 int active; /* Has state interesting to GDB? , regs, stack */
945 char display[256]; /* Brief state display, name, blocked/syspended */
946 char shortname[32]; /* To be used to name threads */
947 char more_display[256]; /* Long info, statistics, queue depth, whatever */
948 };
949
950 /* The volume of remote transfers can be limited by submitting
951 a mask containing bits specifying the desired information.
952 Use a union of these values as the 'selection' parameter to
953 get_thread_info. FIXME: Make these TAG names more thread specific.
954 */
955
956 #define TAG_THREADID 1
957 #define TAG_EXISTS 2
958 #define TAG_DISPLAY 4
959 #define TAG_THREADNAME 8
960 #define TAG_MOREDISPLAY 16
961
962 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
963
964 char *unpack_varlen_hex (char *buff, int *result);
965
966 static char *unpack_nibble (char *buf, int *val);
967
968 static char *pack_nibble (char *buf, int nibble);
969
970 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
971
972 static char *unpack_byte (char *buf, int *value);
973
974 static char *pack_int (char *buf, int value);
975
976 static char *unpack_int (char *buf, int *value);
977
978 static char *unpack_string (char *src, char *dest, int length);
979
980 static char *pack_threadid (char *pkt, threadref * id);
981
982 static char *unpack_threadid (char *inbuf, threadref * id);
983
984 void int_to_threadref (threadref * id, int value);
985
986 static int threadref_to_int (threadref * ref);
987
988 static void copy_threadref (threadref * dest, threadref * src);
989
990 static int threadmatch (threadref * dest, threadref * src);
991
992 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
993
994 static int remote_unpack_thread_info_response (char *pkt,
995 threadref * expectedref,
996 struct gdb_ext_thread_info
997 *info);
998
999
1000 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1001 struct gdb_ext_thread_info *info);
1002
1003 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1004 int selection,
1005 struct gdb_ext_thread_info *info);
1006
1007 static char *pack_threadlist_request (char *pkt, int startflag,
1008 int threadcount,
1009 threadref * nextthread);
1010
1011 static int parse_threadlist_response (char *pkt,
1012 int result_limit,
1013 threadref * original_echo,
1014 threadref * resultlist, int *doneflag);
1015
1016 static int remote_get_threadlist (int startflag,
1017 threadref * nextthread,
1018 int result_limit,
1019 int *done,
1020 int *result_count, threadref * threadlist);
1021
1022 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1023
1024 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1025 void *context, int looplimit);
1026
1027 static int remote_newthread_step (threadref * ref, void *context);
1028
1029 /* encode 64 bits in 16 chars of hex */
1030
1031 static const char hexchars[] = "0123456789abcdef";
1032
1033 static int
1034 ishex (int ch, int *val)
1035 {
1036 if ((ch >= 'a') && (ch <= 'f'))
1037 {
1038 *val = ch - 'a' + 10;
1039 return 1;
1040 }
1041 if ((ch >= 'A') && (ch <= 'F'))
1042 {
1043 *val = ch - 'A' + 10;
1044 return 1;
1045 }
1046 if ((ch >= '0') && (ch <= '9'))
1047 {
1048 *val = ch - '0';
1049 return 1;
1050 }
1051 return 0;
1052 }
1053
1054 static int
1055 stubhex (int ch)
1056 {
1057 if (ch >= 'a' && ch <= 'f')
1058 return ch - 'a' + 10;
1059 if (ch >= '0' && ch <= '9')
1060 return ch - '0';
1061 if (ch >= 'A' && ch <= 'F')
1062 return ch - 'A' + 10;
1063 return -1;
1064 }
1065
1066 static int
1067 stub_unpack_int (char *buff, int fieldlength)
1068 {
1069 int nibble;
1070 int retval = 0;
1071
1072 while (fieldlength)
1073 {
1074 nibble = stubhex (*buff++);
1075 retval |= nibble;
1076 fieldlength--;
1077 if (fieldlength)
1078 retval = retval << 4;
1079 }
1080 return retval;
1081 }
1082
1083 char *
1084 unpack_varlen_hex (char *buff, /* packet to parse */
1085 int *result)
1086 {
1087 int nibble;
1088 int retval = 0;
1089
1090 while (ishex (*buff, &nibble))
1091 {
1092 buff++;
1093 retval = retval << 4;
1094 retval |= nibble & 0x0f;
1095 }
1096 *result = retval;
1097 return buff;
1098 }
1099
1100 static char *
1101 unpack_nibble (char *buf, int *val)
1102 {
1103 ishex (*buf++, val);
1104 return buf;
1105 }
1106
1107 static char *
1108 pack_nibble (char *buf, int nibble)
1109 {
1110 *buf++ = hexchars[(nibble & 0x0f)];
1111 return buf;
1112 }
1113
1114 static char *
1115 pack_hex_byte (char *pkt, int byte)
1116 {
1117 *pkt++ = hexchars[(byte >> 4) & 0xf];
1118 *pkt++ = hexchars[(byte & 0xf)];
1119 return pkt;
1120 }
1121
1122 static char *
1123 unpack_byte (char *buf, int *value)
1124 {
1125 *value = stub_unpack_int (buf, 2);
1126 return buf + 2;
1127 }
1128
1129 static char *
1130 pack_int (char *buf, int value)
1131 {
1132 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1133 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1134 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1135 buf = pack_hex_byte (buf, (value & 0xff));
1136 return buf;
1137 }
1138
1139 static char *
1140 unpack_int (char *buf, int *value)
1141 {
1142 *value = stub_unpack_int (buf, 8);
1143 return buf + 8;
1144 }
1145
1146 #if 0 /* currently unused, uncomment when needed */
1147 static char *pack_string (char *pkt, char *string);
1148
1149 static char *
1150 pack_string (char *pkt, char *string)
1151 {
1152 char ch;
1153 int len;
1154
1155 len = strlen (string);
1156 if (len > 200)
1157 len = 200; /* Bigger than most GDB packets, junk??? */
1158 pkt = pack_hex_byte (pkt, len);
1159 while (len-- > 0)
1160 {
1161 ch = *string++;
1162 if ((ch == '\0') || (ch == '#'))
1163 ch = '*'; /* Protect encapsulation */
1164 *pkt++ = ch;
1165 }
1166 return pkt;
1167 }
1168 #endif /* 0 (unused) */
1169
1170 static char *
1171 unpack_string (char *src, char *dest, int length)
1172 {
1173 while (length--)
1174 *dest++ = *src++;
1175 *dest = '\0';
1176 return src;
1177 }
1178
1179 static char *
1180 pack_threadid (char *pkt, threadref *id)
1181 {
1182 char *limit;
1183 unsigned char *altid;
1184
1185 altid = (unsigned char *) id;
1186 limit = pkt + BUF_THREAD_ID_SIZE;
1187 while (pkt < limit)
1188 pkt = pack_hex_byte (pkt, *altid++);
1189 return pkt;
1190 }
1191
1192
1193 static char *
1194 unpack_threadid (char *inbuf, threadref *id)
1195 {
1196 char *altref;
1197 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1198 int x, y;
1199
1200 altref = (char *) id;
1201
1202 while (inbuf < limit)
1203 {
1204 x = stubhex (*inbuf++);
1205 y = stubhex (*inbuf++);
1206 *altref++ = (x << 4) | y;
1207 }
1208 return inbuf;
1209 }
1210
1211 /* Externally, threadrefs are 64 bits but internally, they are still
1212 ints. This is due to a mismatch of specifications. We would like
1213 to use 64bit thread references internally. This is an adapter
1214 function. */
1215
1216 void
1217 int_to_threadref (threadref *id, int value)
1218 {
1219 unsigned char *scan;
1220
1221 scan = (unsigned char *) id;
1222 {
1223 int i = 4;
1224 while (i--)
1225 *scan++ = 0;
1226 }
1227 *scan++ = (value >> 24) & 0xff;
1228 *scan++ = (value >> 16) & 0xff;
1229 *scan++ = (value >> 8) & 0xff;
1230 *scan++ = (value & 0xff);
1231 }
1232
1233 static int
1234 threadref_to_int (threadref *ref)
1235 {
1236 int i, value = 0;
1237 unsigned char *scan;
1238
1239 scan = (char *) ref;
1240 scan += 4;
1241 i = 4;
1242 while (i-- > 0)
1243 value = (value << 8) | ((*scan++) & 0xff);
1244 return value;
1245 }
1246
1247 static void
1248 copy_threadref (threadref *dest, threadref *src)
1249 {
1250 int i;
1251 unsigned char *csrc, *cdest;
1252
1253 csrc = (unsigned char *) src;
1254 cdest = (unsigned char *) dest;
1255 i = 8;
1256 while (i--)
1257 *cdest++ = *csrc++;
1258 }
1259
1260 static int
1261 threadmatch (threadref *dest, threadref *src)
1262 {
1263 /* things are broken right now, so just assume we got a match */
1264 #if 0
1265 unsigned char *srcp, *destp;
1266 int i, result;
1267 srcp = (char *) src;
1268 destp = (char *) dest;
1269
1270 result = 1;
1271 while (i-- > 0)
1272 result &= (*srcp++ == *destp++) ? 1 : 0;
1273 return result;
1274 #endif
1275 return 1;
1276 }
1277
1278 /*
1279 threadid:1, # always request threadid
1280 context_exists:2,
1281 display:4,
1282 unique_name:8,
1283 more_display:16
1284 */
1285
1286 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1287
1288 static char *
1289 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1290 {
1291 *pkt++ = 'q'; /* Info Query */
1292 *pkt++ = 'P'; /* process or thread info */
1293 pkt = pack_int (pkt, mode); /* mode */
1294 pkt = pack_threadid (pkt, id); /* threadid */
1295 *pkt = '\0'; /* terminate */
1296 return pkt;
1297 }
1298
1299 /* These values tag the fields in a thread info response packet */
1300 /* Tagging the fields allows us to request specific fields and to
1301 add more fields as time goes by */
1302
1303 #define TAG_THREADID 1 /* Echo the thread identifier */
1304 #define TAG_EXISTS 2 /* Is this process defined enough to
1305 fetch registers and its stack */
1306 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1307 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1308 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1309 the process */
1310
1311 static int
1312 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1313 struct gdb_ext_thread_info *info)
1314 {
1315 int mask, length;
1316 unsigned int tag;
1317 threadref ref;
1318 char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
1319 int retval = 1;
1320
1321 /* info->threadid = 0; FIXME: implement zero_threadref */
1322 info->active = 0;
1323 info->display[0] = '\0';
1324 info->shortname[0] = '\0';
1325 info->more_display[0] = '\0';
1326
1327 /* Assume the characters indicating the packet type have been stripped */
1328 pkt = unpack_int (pkt, &mask); /* arg mask */
1329 pkt = unpack_threadid (pkt, &ref);
1330
1331 if (mask == 0)
1332 warning ("Incomplete response to threadinfo request\n");
1333 if (!threadmatch (&ref, expectedref))
1334 { /* This is an answer to a different request */
1335 warning ("ERROR RMT Thread info mismatch\n");
1336 return 0;
1337 }
1338 copy_threadref (&info->threadid, &ref);
1339
1340 /* Loop on tagged fields , try to bail if somthing goes wrong */
1341
1342 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1343 {
1344 pkt = unpack_int (pkt, &tag); /* tag */
1345 pkt = unpack_byte (pkt, &length); /* length */
1346 if (!(tag & mask)) /* tags out of synch with mask */
1347 {
1348 warning ("ERROR RMT: threadinfo tag mismatch\n");
1349 retval = 0;
1350 break;
1351 }
1352 if (tag == TAG_THREADID)
1353 {
1354 if (length != 16)
1355 {
1356 warning ("ERROR RMT: length of threadid is not 16\n");
1357 retval = 0;
1358 break;
1359 }
1360 pkt = unpack_threadid (pkt, &ref);
1361 mask = mask & ~TAG_THREADID;
1362 continue;
1363 }
1364 if (tag == TAG_EXISTS)
1365 {
1366 info->active = stub_unpack_int (pkt, length);
1367 pkt += length;
1368 mask = mask & ~(TAG_EXISTS);
1369 if (length > 8)
1370 {
1371 warning ("ERROR RMT: 'exists' length too long\n");
1372 retval = 0;
1373 break;
1374 }
1375 continue;
1376 }
1377 if (tag == TAG_THREADNAME)
1378 {
1379 pkt = unpack_string (pkt, &info->shortname[0], length);
1380 mask = mask & ~TAG_THREADNAME;
1381 continue;
1382 }
1383 if (tag == TAG_DISPLAY)
1384 {
1385 pkt = unpack_string (pkt, &info->display[0], length);
1386 mask = mask & ~TAG_DISPLAY;
1387 continue;
1388 }
1389 if (tag == TAG_MOREDISPLAY)
1390 {
1391 pkt = unpack_string (pkt, &info->more_display[0], length);
1392 mask = mask & ~TAG_MOREDISPLAY;
1393 continue;
1394 }
1395 warning ("ERROR RMT: unknown thread info tag\n");
1396 break; /* Not a tag we know about */
1397 }
1398 return retval;
1399 }
1400
1401 static int
1402 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1403 struct gdb_ext_thread_info *info)
1404 {
1405 int result;
1406 char *threadinfo_pkt = alloca (PBUFSIZ);
1407
1408 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1409 putpkt (threadinfo_pkt);
1410 getpkt (threadinfo_pkt, PBUFSIZ, 0);
1411 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1412 info);
1413 return result;
1414 }
1415
1416 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1417 representation of a threadid. */
1418
1419 static int
1420 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1421 struct gdb_ext_thread_info *info)
1422 {
1423 threadref lclref;
1424
1425 int_to_threadref (&lclref, *ref);
1426 return remote_get_threadinfo (&lclref, selection, info);
1427 }
1428
1429 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1430
1431 static char *
1432 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1433 threadref *nextthread)
1434 {
1435 *pkt++ = 'q'; /* info query packet */
1436 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1437 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1438 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1439 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1440 *pkt = '\0';
1441 return pkt;
1442 }
1443
1444 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1445
1446 static int
1447 parse_threadlist_response (char *pkt, int result_limit,
1448 threadref *original_echo, threadref *resultlist,
1449 int *doneflag)
1450 {
1451 char *limit;
1452 int count, resultcount, done;
1453
1454 resultcount = 0;
1455 /* Assume the 'q' and 'M chars have been stripped. */
1456 limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
1457 pkt = unpack_byte (pkt, &count); /* count field */
1458 pkt = unpack_nibble (pkt, &done);
1459 /* The first threadid is the argument threadid. */
1460 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1461 while ((count-- > 0) && (pkt < limit))
1462 {
1463 pkt = unpack_threadid (pkt, resultlist++);
1464 if (resultcount++ >= result_limit)
1465 break;
1466 }
1467 if (doneflag)
1468 *doneflag = done;
1469 return resultcount;
1470 }
1471
1472 static int
1473 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1474 int *done, int *result_count, threadref *threadlist)
1475 {
1476 static threadref echo_nextthread;
1477 char *threadlist_packet = alloca (PBUFSIZ);
1478 char *t_response = alloca (PBUFSIZ);
1479 int result = 1;
1480
1481 /* Trancate result limit to be smaller than the packet size */
1482 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
1483 result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
1484
1485 pack_threadlist_request (threadlist_packet,
1486 startflag, result_limit, nextthread);
1487 putpkt (threadlist_packet);
1488 getpkt (t_response, PBUFSIZ, 0);
1489
1490 *result_count =
1491 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1492 threadlist, done);
1493
1494 if (!threadmatch (&echo_nextthread, nextthread))
1495 {
1496 /* FIXME: This is a good reason to drop the packet */
1497 /* Possably, there is a duplicate response */
1498 /* Possabilities :
1499 retransmit immediatly - race conditions
1500 retransmit after timeout - yes
1501 exit
1502 wait for packet, then exit
1503 */
1504 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1505 return 0; /* I choose simply exiting */
1506 }
1507 if (*result_count <= 0)
1508 {
1509 if (*done != 1)
1510 {
1511 warning ("RMT ERROR : failed to get remote thread list\n");
1512 result = 0;
1513 }
1514 return result; /* break; */
1515 }
1516 if (*result_count > result_limit)
1517 {
1518 *result_count = 0;
1519 warning ("RMT ERROR: threadlist response longer than requested\n");
1520 return 0;
1521 }
1522 return result;
1523 }
1524
1525 /* This is the interface between remote and threads, remotes upper interface */
1526
1527 /* remote_find_new_threads retrieves the thread list and for each
1528 thread in the list, looks up the thread in GDB's internal list,
1529 ading the thread if it does not already exist. This involves
1530 getting partial thread lists from the remote target so, polling the
1531 quit_flag is required. */
1532
1533
1534 /* About this many threadisds fit in a packet. */
1535
1536 #define MAXTHREADLISTRESULTS 32
1537
1538 static int
1539 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1540 int looplimit)
1541 {
1542 int done, i, result_count;
1543 int startflag = 1;
1544 int result = 1;
1545 int loopcount = 0;
1546 static threadref nextthread;
1547 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1548
1549 done = 0;
1550 while (!done)
1551 {
1552 if (loopcount++ > looplimit)
1553 {
1554 result = 0;
1555 warning ("Remote fetch threadlist -infinite loop-\n");
1556 break;
1557 }
1558 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1559 &done, &result_count, resultthreadlist))
1560 {
1561 result = 0;
1562 break;
1563 }
1564 /* clear for later iterations */
1565 startflag = 0;
1566 /* Setup to resume next batch of thread references, set nextthread. */
1567 if (result_count >= 1)
1568 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1569 i = 0;
1570 while (result_count--)
1571 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1572 break;
1573 }
1574 return result;
1575 }
1576
1577 static int
1578 remote_newthread_step (threadref *ref, void *context)
1579 {
1580 int pid;
1581
1582 pid = threadref_to_int (ref);
1583 if (!in_thread_list (pid))
1584 add_thread (pid);
1585 return 1; /* continue iterator */
1586 }
1587
1588 #define CRAZY_MAX_THREADS 1000
1589
1590 static int
1591 remote_current_thread (int oldpid)
1592 {
1593 char *buf = alloca (PBUFSIZ);
1594
1595 putpkt ("qC");
1596 getpkt (buf, PBUFSIZ, 0);
1597 if (buf[0] == 'Q' && buf[1] == 'C')
1598 return strtol (&buf[2], NULL, 16);
1599 else
1600 return oldpid;
1601 }
1602
1603 /* Find new threads for info threads command.
1604 * Original version, using John Metzler's thread protocol.
1605 */
1606
1607 static void
1608 remote_find_new_threads (void)
1609 {
1610 remote_threadlist_iterator (remote_newthread_step, 0,
1611 CRAZY_MAX_THREADS);
1612 if (inferior_pid == MAGIC_NULL_PID) /* ack ack ack */
1613 inferior_pid = remote_current_thread (inferior_pid);
1614 }
1615
1616 /*
1617 * Find all threads for info threads command.
1618 * Uses new thread protocol contributed by Cisco.
1619 * Falls back and attempts to use the older method (above)
1620 * if the target doesn't respond to the new method.
1621 */
1622
1623 static void
1624 remote_threads_info (void)
1625 {
1626 char *buf = alloca (PBUFSIZ);
1627 char *bufp;
1628 int tid;
1629
1630 if (remote_desc == 0) /* paranoia */
1631 error ("Command can only be used when connected to the remote target.");
1632
1633 if (use_threadinfo_query)
1634 {
1635 putpkt ("qfThreadInfo");
1636 bufp = buf;
1637 getpkt (bufp, PBUFSIZ, 0);
1638 if (bufp[0] != '\0') /* q packet recognized */
1639 {
1640 while (*bufp++ == 'm') /* reply contains one or more TID */
1641 {
1642 do
1643 {
1644 tid = strtol (bufp, &bufp, 16);
1645 if (tid != 0 && !in_thread_list (tid))
1646 add_thread (tid);
1647 }
1648 while (*bufp++ == ','); /* comma-separated list */
1649 putpkt ("qsThreadInfo");
1650 bufp = buf;
1651 getpkt (bufp, PBUFSIZ, 0);
1652 }
1653 return; /* done */
1654 }
1655 }
1656
1657 /* Else fall back to old method based on jmetzler protocol. */
1658 use_threadinfo_query = 0;
1659 remote_find_new_threads ();
1660 return;
1661 }
1662
1663 /*
1664 * Collect a descriptive string about the given thread.
1665 * The target may say anything it wants to about the thread
1666 * (typically info about its blocked / runnable state, name, etc.).
1667 * This string will appear in the info threads display.
1668 *
1669 * Optional: targets are not required to implement this function.
1670 */
1671
1672 static char *
1673 remote_threads_extra_info (struct thread_info *tp)
1674 {
1675 int result;
1676 int set;
1677 threadref id;
1678 struct gdb_ext_thread_info threadinfo;
1679 static char display_buf[100]; /* arbitrary... */
1680 char *bufp = alloca (PBUFSIZ);
1681 int n = 0; /* position in display_buf */
1682
1683 if (remote_desc == 0) /* paranoia */
1684 internal_error ("remote_threads_extra_info");
1685
1686 if (use_threadextra_query)
1687 {
1688 sprintf (bufp, "qThreadExtraInfo,%x", tp->pid);
1689 putpkt (bufp);
1690 getpkt (bufp, PBUFSIZ, 0);
1691 if (bufp[0] != 0)
1692 {
1693 char *p;
1694
1695 for (p = display_buf;
1696 p < display_buf + sizeof(display_buf) - 1 &&
1697 bufp[0] != 0 &&
1698 bufp[1] != 0;
1699 p++, bufp+=2)
1700 {
1701 *p = fromhex (bufp[0]) * 16 + fromhex (bufp[1]);
1702 }
1703 *p = 0;
1704 return display_buf;
1705 }
1706 }
1707
1708 /* If the above query fails, fall back to the old method. */
1709 use_threadextra_query = 0;
1710 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1711 | TAG_MOREDISPLAY | TAG_DISPLAY;
1712 int_to_threadref (&id, tp->pid);
1713 if (remote_get_threadinfo (&id, set, &threadinfo))
1714 if (threadinfo.active)
1715 {
1716 if (*threadinfo.shortname)
1717 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1718 if (*threadinfo.display)
1719 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1720 if (*threadinfo.more_display)
1721 n += sprintf(&display_buf[n], " Priority: %s",
1722 threadinfo.more_display);
1723
1724 if (n > 0)
1725 {
1726 /* for purely cosmetic reasons, clear up trailing commas */
1727 if (',' == display_buf[n-1])
1728 display_buf[n-1] = ' ';
1729 return display_buf;
1730 }
1731 }
1732 return NULL;
1733 }
1734
1735 \f
1736
1737 /* Restart the remote side; this is an extended protocol operation. */
1738
1739 static void
1740 extended_remote_restart (void)
1741 {
1742 char *buf = alloca (PBUFSIZ);
1743
1744 /* Send the restart command; for reasons I don't understand the
1745 remote side really expects a number after the "R". */
1746 buf[0] = 'R';
1747 sprintf (&buf[1], "%x", 0);
1748 putpkt (buf);
1749
1750 /* Now query for status so this looks just like we restarted
1751 gdbserver from scratch. */
1752 putpkt ("?");
1753 getpkt (buf, PBUFSIZ, 0);
1754 }
1755 \f
1756 /* Clean up connection to a remote debugger. */
1757
1758 /* ARGSUSED */
1759 static void
1760 remote_close (int quitting)
1761 {
1762 if (remote_desc)
1763 SERIAL_CLOSE (remote_desc);
1764 remote_desc = NULL;
1765 }
1766
1767 /* Query the remote side for the text, data and bss offsets. */
1768
1769 static void
1770 get_offsets (void)
1771 {
1772 char *buf = alloca (PBUFSIZ);
1773 char *ptr;
1774 int lose;
1775 CORE_ADDR text_addr, data_addr, bss_addr;
1776 struct section_offsets *offs;
1777
1778 putpkt ("qOffsets");
1779
1780 getpkt (buf, PBUFSIZ, 0);
1781
1782 if (buf[0] == '\000')
1783 return; /* Return silently. Stub doesn't support
1784 this command. */
1785 if (buf[0] == 'E')
1786 {
1787 warning ("Remote failure reply: %s", buf);
1788 return;
1789 }
1790
1791 /* Pick up each field in turn. This used to be done with scanf, but
1792 scanf will make trouble if CORE_ADDR size doesn't match
1793 conversion directives correctly. The following code will work
1794 with any size of CORE_ADDR. */
1795 text_addr = data_addr = bss_addr = 0;
1796 ptr = buf;
1797 lose = 0;
1798
1799 if (strncmp (ptr, "Text=", 5) == 0)
1800 {
1801 ptr += 5;
1802 /* Don't use strtol, could lose on big values. */
1803 while (*ptr && *ptr != ';')
1804 text_addr = (text_addr << 4) + fromhex (*ptr++);
1805 }
1806 else
1807 lose = 1;
1808
1809 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1810 {
1811 ptr += 6;
1812 while (*ptr && *ptr != ';')
1813 data_addr = (data_addr << 4) + fromhex (*ptr++);
1814 }
1815 else
1816 lose = 1;
1817
1818 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1819 {
1820 ptr += 5;
1821 while (*ptr && *ptr != ';')
1822 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1823 }
1824 else
1825 lose = 1;
1826
1827 if (lose)
1828 error ("Malformed response to offset query, %s", buf);
1829
1830 if (symfile_objfile == NULL)
1831 return;
1832
1833 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1834 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1835
1836 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1837
1838 /* This is a temporary kludge to force data and bss to use the same offsets
1839 because that's what nlmconv does now. The real solution requires changes
1840 to the stub and remote.c that I don't have time to do right now. */
1841
1842 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1843 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1844
1845 objfile_relocate (symfile_objfile, offs);
1846 }
1847
1848 /*
1849 * Cisco version of section offsets:
1850 *
1851 * Instead of having GDB query the target for the section offsets,
1852 * Cisco lets the target volunteer the information! It's also in
1853 * a different format, so here are the functions that will decode
1854 * a section offset packet from a Cisco target.
1855 */
1856
1857 /*
1858 * Function: remote_cisco_section_offsets
1859 *
1860 * Returns: zero for success, non-zero for failure
1861 */
1862
1863 static int
1864 remote_cisco_section_offsets (bfd_vma text_addr,
1865 bfd_vma data_addr,
1866 bfd_vma bss_addr,
1867 bfd_signed_vma *text_offs,
1868 bfd_signed_vma *data_offs,
1869 bfd_signed_vma *bss_offs)
1870 {
1871 bfd_vma text_base, data_base, bss_base;
1872 struct minimal_symbol *start;
1873 asection *sect;
1874 bfd *abfd;
1875 int len;
1876 char *p;
1877
1878 if (symfile_objfile == NULL)
1879 return -1; /* no can do nothin' */
1880
1881 start = lookup_minimal_symbol ("_start", NULL, NULL);
1882 if (start == NULL)
1883 return -1; /* Can't find "_start" symbol */
1884
1885 data_base = bss_base = 0;
1886 text_base = SYMBOL_VALUE_ADDRESS (start);
1887
1888 abfd = symfile_objfile->obfd;
1889 for (sect = abfd->sections;
1890 sect != 0;
1891 sect = sect->next)
1892 {
1893 p = (unsigned char *) bfd_get_section_name (abfd, sect);
1894 len = strlen (p);
1895 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
1896 if (data_base == 0 ||
1897 data_base > bfd_get_section_vma (abfd, sect))
1898 data_base = bfd_get_section_vma (abfd, sect);
1899 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
1900 if (bss_base == 0 ||
1901 bss_base > bfd_get_section_vma (abfd, sect))
1902 bss_base = bfd_get_section_vma (abfd, sect);
1903 }
1904 *text_offs = text_addr - text_base;
1905 *data_offs = data_addr - data_base;
1906 *bss_offs = bss_addr - bss_base;
1907 if (remote_debug)
1908 {
1909 char tmp[128];
1910
1911 sprintf (tmp, "VMA: text = 0x");
1912 sprintf_vma (tmp + strlen (tmp), text_addr);
1913 sprintf (tmp + strlen (tmp), " data = 0x");
1914 sprintf_vma (tmp + strlen (tmp), data_addr);
1915 sprintf (tmp + strlen (tmp), " bss = 0x");
1916 sprintf_vma (tmp + strlen (tmp), bss_addr);
1917 fprintf_filtered (gdb_stdlog, tmp);
1918 fprintf_filtered (gdb_stdlog,
1919 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
1920 paddr_nz (*text_offs),
1921 paddr_nz (*data_offs),
1922 paddr_nz (*bss_offs));
1923 }
1924
1925 return 0;
1926 }
1927
1928 /*
1929 * Function: remote_cisco_objfile_relocate
1930 *
1931 * Relocate the symbol file for a remote target.
1932 */
1933
1934 void
1935 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
1936 bfd_signed_vma bss_off)
1937 {
1938 struct section_offsets *offs;
1939
1940 if (text_off != 0 || data_off != 0 || bss_off != 0)
1941 {
1942 /* FIXME: This code assumes gdb-stabs.h is being used; it's
1943 broken for xcoff, dwarf, sdb-coff, etc. But there is no
1944 simple canonical representation for this stuff. */
1945
1946 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1947 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1948
1949 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
1950 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
1951 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
1952
1953 /* First call the standard objfile_relocate. */
1954 objfile_relocate (symfile_objfile, offs);
1955
1956 /* Now we need to fix up the section entries already attached to
1957 the exec target. These entries will control memory transfers
1958 from the exec file. */
1959
1960 exec_set_section_offsets (text_off, data_off, bss_off);
1961 }
1962 }
1963
1964 /* Stub for catch_errors. */
1965
1966 static int
1967 remote_start_remote_dummy (void *dummy)
1968 {
1969 start_remote (); /* Initialize gdb process mechanisms */
1970 return 1;
1971 }
1972
1973 static int
1974 remote_start_remote (PTR dummy)
1975 {
1976 immediate_quit++; /* Allow user to interrupt it */
1977
1978 /* Ack any packet which the remote side has already sent. */
1979 SERIAL_WRITE (remote_desc, "+", 1);
1980
1981 /* Let the stub know that we want it to return the thread. */
1982 set_thread (-1, 0);
1983
1984 inferior_pid = remote_current_thread (inferior_pid);
1985
1986 get_offsets (); /* Get text, data & bss offsets */
1987
1988 putpkt ("?"); /* initiate a query from remote machine */
1989 immediate_quit--;
1990
1991 return remote_start_remote_dummy (dummy);
1992 }
1993
1994 /* Open a connection to a remote debugger.
1995 NAME is the filename used for communication. */
1996
1997 static void
1998 remote_open (char *name, int from_tty)
1999 {
2000 remote_open_1 (name, from_tty, &remote_ops, 0);
2001 }
2002
2003 /* Just like remote_open, but with asynchronous support. */
2004 static void
2005 remote_async_open (char *name, int from_tty)
2006 {
2007 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2008 }
2009
2010 /* Open a connection to a remote debugger using the extended
2011 remote gdb protocol. NAME is the filename used for communication. */
2012
2013 static void
2014 extended_remote_open (char *name, int from_tty)
2015 {
2016 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2017 }
2018
2019 /* Just like extended_remote_open, but with asynchronous support. */
2020 static void
2021 extended_remote_async_open (char *name, int from_tty)
2022 {
2023 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2024 }
2025
2026 /* Generic code for opening a connection to a remote target. */
2027
2028 static void
2029 init_all_packet_configs (void)
2030 {
2031 int i;
2032 update_packet_config (&remote_protocol_P);
2033 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2034 update_packet_config (&remote_protocol_Z[i]);
2035 /* Force remote_write_bytes to check whether target supports binary
2036 downloading. */
2037 update_packet_config (&remote_protocol_binary_download);
2038 }
2039
2040 static void
2041 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2042 int extended_p)
2043 {
2044 if (name == 0)
2045 error ("To open a remote debug connection, you need to specify what\n\
2046 serial device is attached to the remote system\n\
2047 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2048
2049 /* See FIXME above */
2050 wait_forever_enabled_p = 1;
2051
2052 target_preopen (from_tty);
2053
2054 unpush_target (target);
2055
2056 remote_desc = SERIAL_OPEN (name);
2057 if (!remote_desc)
2058 perror_with_name (name);
2059
2060 if (baud_rate != -1)
2061 {
2062 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2063 {
2064 SERIAL_CLOSE (remote_desc);
2065 perror_with_name (name);
2066 }
2067 }
2068
2069 SERIAL_RAW (remote_desc);
2070
2071 /* If there is something sitting in the buffer we might take it as a
2072 response to a command, which would be bad. */
2073 SERIAL_FLUSH_INPUT (remote_desc);
2074
2075 if (from_tty)
2076 {
2077 puts_filtered ("Remote debugging using ");
2078 puts_filtered (name);
2079 puts_filtered ("\n");
2080 }
2081 push_target (target); /* Switch to using remote target now */
2082
2083 init_all_packet_configs ();
2084
2085 general_thread = -2;
2086 continue_thread = -2;
2087
2088 /* Probe for ability to use "ThreadInfo" query, as required. */
2089 use_threadinfo_query = 1;
2090 use_threadextra_query = 1;
2091
2092 /* Without this, some commands which require an active target (such
2093 as kill) won't work. This variable serves (at least) double duty
2094 as both the pid of the target process (if it has such), and as a
2095 flag indicating that a target is active. These functions should
2096 be split out into seperate variables, especially since GDB will
2097 someday have a notion of debugging several processes. */
2098
2099 inferior_pid = MAGIC_NULL_PID;
2100 /* Start the remote connection; if error (0), discard this target.
2101 In particular, if the user quits, be sure to discard it
2102 (we'd be in an inconsistent state otherwise). */
2103 if (!catch_errors (remote_start_remote, NULL,
2104 "Couldn't establish connection to remote target\n",
2105 RETURN_MASK_ALL))
2106 {
2107 pop_target ();
2108 return;
2109 }
2110
2111 if (extended_p)
2112 {
2113 /* tell the remote that we're using the extended protocol. */
2114 char *buf = alloca (PBUFSIZ);
2115 putpkt ("!");
2116 getpkt (buf, PBUFSIZ, 0);
2117 }
2118 }
2119
2120 /* Just like remote_open but with asynchronous support. */
2121 static void
2122 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2123 int extended_p)
2124 {
2125 if (name == 0)
2126 error ("To open a remote debug connection, you need to specify what\n\
2127 serial device is attached to the remote system\n\
2128 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2129
2130 target_preopen (from_tty);
2131
2132 unpush_target (target);
2133
2134 remote_desc = SERIAL_OPEN (name);
2135 if (!remote_desc)
2136 perror_with_name (name);
2137
2138 if (baud_rate != -1)
2139 {
2140 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2141 {
2142 SERIAL_CLOSE (remote_desc);
2143 perror_with_name (name);
2144 }
2145 }
2146
2147 SERIAL_RAW (remote_desc);
2148
2149 /* If there is something sitting in the buffer we might take it as a
2150 response to a command, which would be bad. */
2151 SERIAL_FLUSH_INPUT (remote_desc);
2152
2153 if (from_tty)
2154 {
2155 puts_filtered ("Remote debugging using ");
2156 puts_filtered (name);
2157 puts_filtered ("\n");
2158 }
2159
2160 push_target (target); /* Switch to using remote target now */
2161
2162 init_all_packet_configs ();
2163
2164 general_thread = -2;
2165 continue_thread = -2;
2166
2167 /* Probe for ability to use "ThreadInfo" query, as required. */
2168 use_threadinfo_query = 1;
2169 use_threadextra_query = 1;
2170
2171 /* Without this, some commands which require an active target (such
2172 as kill) won't work. This variable serves (at least) double duty
2173 as both the pid of the target process (if it has such), and as a
2174 flag indicating that a target is active. These functions should
2175 be split out into seperate variables, especially since GDB will
2176 someday have a notion of debugging several processes. */
2177 inferior_pid = MAGIC_NULL_PID;
2178
2179 /* With this target we start out by owning the terminal. */
2180 remote_async_terminal_ours_p = 1;
2181
2182 /* FIXME: cagney/1999-09-23: During the initial connection it is
2183 assumed that the target is already ready and able to respond to
2184 requests. Unfortunately remote_start_remote() eventually calls
2185 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2186 around this. Eventually a mechanism that allows
2187 wait_for_inferior() to expect/get timeouts will be
2188 implemented. */
2189 wait_forever_enabled_p = 0;
2190
2191 /* Start the remote connection; if error (0), discard this target.
2192 In particular, if the user quits, be sure to discard it
2193 (we'd be in an inconsistent state otherwise). */
2194 if (!catch_errors (remote_start_remote, NULL,
2195 "Couldn't establish connection to remote target\n",
2196 RETURN_MASK_ALL))
2197 {
2198 pop_target ();
2199 wait_forever_enabled_p = 1;
2200 return;
2201 }
2202
2203 wait_forever_enabled_p = 1;
2204
2205 if (extended_p)
2206 {
2207 /* tell the remote that we're using the extended protocol. */
2208 char *buf = alloca (PBUFSIZ);
2209 putpkt ("!");
2210 getpkt (buf, PBUFSIZ, 0);
2211 }
2212 }
2213
2214 /* This takes a program previously attached to and detaches it. After
2215 this is done, GDB can be used to debug some other program. We
2216 better not have left any breakpoints in the target program or it'll
2217 die when it hits one. */
2218
2219 static void
2220 remote_detach (char *args, int from_tty)
2221 {
2222 char *buf = alloca (PBUFSIZ);
2223
2224 if (args)
2225 error ("Argument given to \"detach\" when remotely debugging.");
2226
2227 /* Tell the remote target to detach. */
2228 strcpy (buf, "D");
2229 remote_send (buf, PBUFSIZ);
2230
2231 target_mourn_inferior ();
2232 if (from_tty)
2233 puts_filtered ("Ending remote debugging.\n");
2234
2235 }
2236
2237 /* Same as remote_detach, but with async support. */
2238 static void
2239 remote_async_detach (char *args, int from_tty)
2240 {
2241 char *buf = alloca (PBUFSIZ);
2242
2243 if (args)
2244 error ("Argument given to \"detach\" when remotely debugging.");
2245
2246 /* Tell the remote target to detach. */
2247 strcpy (buf, "D");
2248 remote_send (buf, PBUFSIZ);
2249
2250 /* Unregister the file descriptor from the event loop. */
2251 if (target_is_async_p ())
2252 SERIAL_ASYNC (remote_desc, NULL, 0);
2253
2254 target_mourn_inferior ();
2255 if (from_tty)
2256 puts_filtered ("Ending remote debugging.\n");
2257 }
2258
2259 /* Convert hex digit A to a number. */
2260
2261 int
2262 fromhex (int a)
2263 {
2264 if (a >= '0' && a <= '9')
2265 return a - '0';
2266 else if (a >= 'a' && a <= 'f')
2267 return a - 'a' + 10;
2268 else if (a >= 'A' && a <= 'F')
2269 return a - 'A' + 10;
2270 else
2271 error ("Reply contains invalid hex digit %d", a);
2272 }
2273
2274 /* Convert number NIB to a hex digit. */
2275
2276 static int
2277 tohex (int nib)
2278 {
2279 if (nib < 10)
2280 return '0' + nib;
2281 else
2282 return 'a' + nib - 10;
2283 }
2284 \f
2285 /* Tell the remote machine to resume. */
2286
2287 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2288
2289 static int last_sent_step;
2290
2291 static void
2292 remote_resume (int pid, int step, enum target_signal siggnal)
2293 {
2294 char *buf = alloca (PBUFSIZ);
2295
2296 if (pid == -1)
2297 set_thread (0, 0); /* run any thread */
2298 else
2299 set_thread (pid, 0); /* run this thread */
2300
2301 last_sent_signal = siggnal;
2302 last_sent_step = step;
2303
2304 /* A hook for when we need to do something at the last moment before
2305 resumption. */
2306 if (target_resume_hook)
2307 (*target_resume_hook) ();
2308
2309 if (siggnal != TARGET_SIGNAL_0)
2310 {
2311 buf[0] = step ? 'S' : 'C';
2312 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2313 buf[2] = tohex ((int) siggnal & 0xf);
2314 buf[3] = '\0';
2315 }
2316 else
2317 strcpy (buf, step ? "s" : "c");
2318
2319 putpkt (buf);
2320 }
2321
2322 /* Same as remote_resume, but with async support. */
2323 static void
2324 remote_async_resume (int pid, int step, enum target_signal siggnal)
2325 {
2326 char *buf = alloca (PBUFSIZ);
2327
2328 if (pid == -1)
2329 set_thread (0, 0); /* run any thread */
2330 else
2331 set_thread (pid, 0); /* run this thread */
2332
2333 last_sent_signal = siggnal;
2334 last_sent_step = step;
2335
2336 /* A hook for when we need to do something at the last moment before
2337 resumption. */
2338 if (target_resume_hook)
2339 (*target_resume_hook) ();
2340
2341 if (siggnal != TARGET_SIGNAL_0)
2342 {
2343 buf[0] = step ? 'S' : 'C';
2344 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2345 buf[2] = tohex ((int) siggnal & 0xf);
2346 buf[3] = '\0';
2347 }
2348 else
2349 strcpy (buf, step ? "s" : "c");
2350
2351 /* We are about to start executing the inferior, let's register it
2352 with the event loop. NOTE: this is the one place where all the
2353 execution commands end up. We could alternatively do this in each
2354 of the execution commands in infcmd.c.*/
2355 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2356 into infcmd.c in order to allow inferior function calls to work
2357 NOT asynchronously. */
2358 if (event_loop_p && target_can_async_p ())
2359 target_async (inferior_event_handler, 0);
2360 /* Tell the world that the target is now executing. */
2361 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2362 this? Instead, should the client of target just assume (for
2363 async targets) that the target is going to start executing? Is
2364 this information already found in the continuation block? */
2365 if (target_is_async_p ())
2366 target_executing = 1;
2367 putpkt (buf);
2368 }
2369 \f
2370
2371 /* Set up the signal handler for SIGINT, while the target is
2372 executing, ovewriting the 'regular' SIGINT signal handler. */
2373 static void
2374 initialize_sigint_signal_handler (void)
2375 {
2376 sigint_remote_token =
2377 create_async_signal_handler (async_remote_interrupt, NULL);
2378 signal (SIGINT, handle_remote_sigint);
2379 }
2380
2381 /* Signal handler for SIGINT, while the target is executing. */
2382 static void
2383 handle_remote_sigint (int sig)
2384 {
2385 signal (sig, handle_remote_sigint_twice);
2386 sigint_remote_twice_token =
2387 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2388 mark_async_signal_handler_wrapper (sigint_remote_token);
2389 }
2390
2391 /* Signal handler for SIGINT, installed after SIGINT has already been
2392 sent once. It will take effect the second time that the user sends
2393 a ^C. */
2394 static void
2395 handle_remote_sigint_twice (int sig)
2396 {
2397 signal (sig, handle_sigint);
2398 sigint_remote_twice_token =
2399 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2400 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2401 }
2402
2403 /* Perform the real interruption of the target execution, in response
2404 to a ^C. */
2405 static void
2406 async_remote_interrupt (gdb_client_data arg)
2407 {
2408 if (remote_debug)
2409 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2410
2411 target_stop ();
2412 }
2413
2414 /* Perform interrupt, if the first attempt did not succeed. Just give
2415 up on the target alltogether. */
2416 void
2417 async_remote_interrupt_twice (gdb_client_data arg)
2418 {
2419 if (remote_debug)
2420 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2421 /* Do something only if the target was not killed by the previous
2422 cntl-C. */
2423 if (target_executing)
2424 {
2425 interrupt_query ();
2426 signal (SIGINT, handle_remote_sigint);
2427 }
2428 }
2429
2430 /* Reinstall the usual SIGINT handlers, after the target has
2431 stopped. */
2432 static void
2433 cleanup_sigint_signal_handler (void *dummy)
2434 {
2435 signal (SIGINT, handle_sigint);
2436 if (sigint_remote_twice_token)
2437 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2438 if (sigint_remote_token)
2439 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2440 }
2441
2442 /* Send ^C to target to halt it. Target will respond, and send us a
2443 packet. */
2444 static void (*ofunc) (int);
2445
2446 /* The command line interface's stop routine. This function is installed
2447 as a signal handler for SIGINT. The first time a user requests a
2448 stop, we call remote_stop to send a break or ^C. If there is no
2449 response from the target (it didn't stop when the user requested it),
2450 we ask the user if he'd like to detach from the target. */
2451 static void
2452 remote_interrupt (int signo)
2453 {
2454 /* If this doesn't work, try more severe steps. */
2455 signal (signo, remote_interrupt_twice);
2456
2457 if (remote_debug)
2458 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2459
2460 target_stop ();
2461 }
2462
2463 /* The user typed ^C twice. */
2464
2465 static void
2466 remote_interrupt_twice (int signo)
2467 {
2468 signal (signo, ofunc);
2469 interrupt_query ();
2470 signal (signo, remote_interrupt);
2471 }
2472
2473 /* This is the generic stop called via the target vector. When a target
2474 interrupt is requested, either by the command line or the GUI, we
2475 will eventually end up here. */
2476 static void
2477 remote_stop (void)
2478 {
2479 /* Send a break or a ^C, depending on user preference. */
2480 if (remote_debug)
2481 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2482
2483 if (remote_break)
2484 SERIAL_SEND_BREAK (remote_desc);
2485 else
2486 SERIAL_WRITE (remote_desc, "\003", 1);
2487 }
2488
2489 /* Ask the user what to do when an interrupt is received. */
2490
2491 static void
2492 interrupt_query (void)
2493 {
2494 target_terminal_ours ();
2495
2496 if (query ("Interrupted while waiting for the program.\n\
2497 Give up (and stop debugging it)? "))
2498 {
2499 target_mourn_inferior ();
2500 return_to_top_level (RETURN_QUIT);
2501 }
2502
2503 target_terminal_inferior ();
2504 }
2505
2506 /* Enable/disable target terminal ownership. Most targets can use
2507 terminal groups to control terminal ownership. Remote targets are
2508 different in that explicit transfer of ownership to/from GDB/target
2509 is required. */
2510
2511 static void
2512 remote_async_terminal_inferior (void)
2513 {
2514 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2515 sync_execution here. This function should only be called when
2516 GDB is resuming the inferior in the forground. A background
2517 resume (``run&'') should leave GDB in control of the terminal and
2518 consequently should not call this code. */
2519 if (!sync_execution)
2520 return;
2521 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2522 calls target_terminal_*() idenpotent. The event-loop GDB talking
2523 to an asynchronous target with a synchronous command calls this
2524 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2525 stops trying to transfer the terminal to the target when it
2526 shouldn't this guard can go away. */
2527 if (!remote_async_terminal_ours_p)
2528 return;
2529 delete_file_handler (input_fd);
2530 remote_async_terminal_ours_p = 0;
2531 initialize_sigint_signal_handler ();
2532 /* NOTE: At this point we could also register our selves as the
2533 recipient of all input. Any characters typed could then be
2534 passed on down to the target. */
2535 }
2536
2537 static void
2538 remote_async_terminal_ours (void)
2539 {
2540 /* See FIXME in remote_async_terminal_inferior. */
2541 if (!sync_execution)
2542 return;
2543 /* See FIXME in remote_async_terminal_inferior. */
2544 if (remote_async_terminal_ours_p)
2545 return;
2546 cleanup_sigint_signal_handler (NULL);
2547 add_file_handler (input_fd, stdin_event_handler, 0);
2548 remote_async_terminal_ours_p = 1;
2549 }
2550
2551 /* If nonzero, ignore the next kill. */
2552
2553 int kill_kludge;
2554
2555 void
2556 remote_console_output (char *msg)
2557 {
2558 char *p;
2559
2560 for (p = msg; p[0] && p[1]; p += 2)
2561 {
2562 char tb[2];
2563 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2564 tb[0] = c;
2565 tb[1] = 0;
2566 fputs_unfiltered (tb, gdb_stdtarg);
2567 }
2568 gdb_flush (gdb_stdtarg);
2569 }
2570
2571 /* Wait until the remote machine stops, then return,
2572 storing status in STATUS just as `wait' would.
2573 Returns "pid", which in the case of a multi-threaded
2574 remote OS, is the thread-id. */
2575
2576 static int
2577 remote_wait (int pid, struct target_waitstatus *status)
2578 {
2579 unsigned char *buf = alloca (PBUFSIZ);
2580 int thread_num = -1;
2581
2582 status->kind = TARGET_WAITKIND_EXITED;
2583 status->value.integer = 0;
2584
2585 while (1)
2586 {
2587 unsigned char *p;
2588
2589 ofunc = signal (SIGINT, remote_interrupt);
2590 getpkt (buf, PBUFSIZ, 1);
2591 signal (SIGINT, ofunc);
2592
2593 /* This is a hook for when we need to do something (perhaps the
2594 collection of trace data) every time the target stops. */
2595 if (target_wait_loop_hook)
2596 (*target_wait_loop_hook) ();
2597
2598 switch (buf[0])
2599 {
2600 case 'E': /* Error of some sort */
2601 warning ("Remote failure reply: %s", buf);
2602 continue;
2603 case 'T': /* Status with PC, SP, FP, ... */
2604 {
2605 int i;
2606 long regno;
2607 char regs[MAX_REGISTER_RAW_SIZE];
2608
2609 /* Expedited reply, containing Signal, {regno, reg} repeat */
2610 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2611 ss = signal number
2612 n... = register number
2613 r... = register contents
2614 */
2615 p = &buf[3]; /* after Txx */
2616
2617 while (*p)
2618 {
2619 unsigned char *p1;
2620 char *p_temp;
2621
2622 /* Read the register number */
2623 regno = strtol ((const char *) p, &p_temp, 16);
2624 p1 = (unsigned char *) p_temp;
2625
2626 if (p1 == p) /* No register number present here */
2627 {
2628 p1 = (unsigned char *) strchr ((const char *) p, ':');
2629 if (p1 == NULL)
2630 warning ("Malformed packet(a) (missing colon): %s\n\
2631 Packet: '%s'\n",
2632 p, buf);
2633 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2634 {
2635 p_temp = unpack_varlen_hex (++p1, &thread_num);
2636 record_currthread (thread_num);
2637 p = (unsigned char *) p_temp;
2638 }
2639 }
2640 else
2641 {
2642 p = p1;
2643
2644 if (*p++ != ':')
2645 warning ("Malformed packet(b) (missing colon): %s\n\
2646 Packet: '%s'\n",
2647 p, buf);
2648
2649 if (regno >= NUM_REGS)
2650 warning ("Remote sent bad register number %ld: %s\n\
2651 Packet: '%s'\n",
2652 regno, p, buf);
2653
2654 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2655 {
2656 if (p[0] == 0 || p[1] == 0)
2657 warning ("Remote reply is too short: %s", buf);
2658 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2659 p += 2;
2660 }
2661 supply_register (regno, regs);
2662 }
2663
2664 if (*p++ != ';')
2665 {
2666 warning ("Remote register badly formatted: %s", buf);
2667 warning (" here: %s", p);
2668 }
2669 }
2670 }
2671 /* fall through */
2672 case 'S': /* Old style status, just signal only */
2673 status->kind = TARGET_WAITKIND_STOPPED;
2674 status->value.sig = (enum target_signal)
2675 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2676
2677 if (buf[3] == 'p')
2678 {
2679 /* Export Cisco kernel mode as a convenience variable
2680 (so that it can be used in the GDB prompt if desired). */
2681
2682 if (cisco_kernel_mode == 1)
2683 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2684 value_from_string ("PDEBUG-"));
2685 cisco_kernel_mode = 0;
2686 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2687 record_currthread (thread_num);
2688 }
2689 else if (buf[3] == 'k')
2690 {
2691 /* Export Cisco kernel mode as a convenience variable
2692 (so that it can be used in the GDB prompt if desired). */
2693
2694 if (cisco_kernel_mode == 1)
2695 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2696 value_from_string ("KDEBUG-"));
2697 cisco_kernel_mode = 1;
2698 }
2699 goto got_status;
2700 case 'N': /* Cisco special: status and offsets */
2701 {
2702 bfd_vma text_addr, data_addr, bss_addr;
2703 bfd_signed_vma text_off, data_off, bss_off;
2704 unsigned char *p1;
2705
2706 status->kind = TARGET_WAITKIND_STOPPED;
2707 status->value.sig = (enum target_signal)
2708 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2709
2710 if (symfile_objfile == NULL)
2711 {
2712 warning ("Relocation packet received with no symbol file. \
2713 Packet Dropped");
2714 goto got_status;
2715 }
2716
2717 /* Relocate object file. Buffer format is NAATT;DD;BB
2718 * where AA is the signal number, TT is the new text
2719 * address, DD * is the new data address, and BB is the
2720 * new bss address. */
2721
2722 p = &buf[3];
2723 text_addr = strtoul (p, (char **) &p1, 16);
2724 if (p1 == p || *p1 != ';')
2725 warning ("Malformed relocation packet: Packet '%s'", buf);
2726 p = p1 + 1;
2727 data_addr = strtoul (p, (char **) &p1, 16);
2728 if (p1 == p || *p1 != ';')
2729 warning ("Malformed relocation packet: Packet '%s'", buf);
2730 p = p1 + 1;
2731 bss_addr = strtoul (p, (char **) &p1, 16);
2732 if (p1 == p)
2733 warning ("Malformed relocation packet: Packet '%s'", buf);
2734
2735 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2736 &text_off, &data_off, &bss_off)
2737 == 0)
2738 if (text_off != 0 || data_off != 0 || bss_off != 0)
2739 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2740
2741 goto got_status;
2742 }
2743 case 'W': /* Target exited */
2744 {
2745 /* The remote process exited. */
2746 status->kind = TARGET_WAITKIND_EXITED;
2747 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2748 goto got_status;
2749 }
2750 case 'X':
2751 status->kind = TARGET_WAITKIND_SIGNALLED;
2752 status->value.sig = (enum target_signal)
2753 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2754 kill_kludge = 1;
2755
2756 goto got_status;
2757 case 'O': /* Console output */
2758 remote_console_output (buf + 1);
2759 continue;
2760 case '\0':
2761 if (last_sent_signal != TARGET_SIGNAL_0)
2762 {
2763 /* Zero length reply means that we tried 'S' or 'C' and
2764 the remote system doesn't support it. */
2765 target_terminal_ours_for_output ();
2766 printf_filtered
2767 ("Can't send signals to this remote system. %s not sent.\n",
2768 target_signal_to_name (last_sent_signal));
2769 last_sent_signal = TARGET_SIGNAL_0;
2770 target_terminal_inferior ();
2771
2772 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2773 putpkt ((char *) buf);
2774 continue;
2775 }
2776 /* else fallthrough */
2777 default:
2778 warning ("Invalid remote reply: %s", buf);
2779 continue;
2780 }
2781 }
2782 got_status:
2783 if (thread_num != -1)
2784 {
2785 return thread_num;
2786 }
2787 return inferior_pid;
2788 }
2789
2790 /* Async version of remote_wait. */
2791 static int
2792 remote_async_wait (int pid, struct target_waitstatus *status)
2793 {
2794 unsigned char *buf = alloca (PBUFSIZ);
2795 int thread_num = -1;
2796
2797 status->kind = TARGET_WAITKIND_EXITED;
2798 status->value.integer = 0;
2799
2800 while (1)
2801 {
2802 unsigned char *p;
2803
2804 if (!target_is_async_p ())
2805 ofunc = signal (SIGINT, remote_interrupt);
2806 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2807 _never_ wait for ever -> test on target_is_async_p().
2808 However, before we do that we need to ensure that the caller
2809 knows how to take the target into/out of async mode. */
2810 getpkt (buf, PBUFSIZ, wait_forever_enabled_p);
2811 if (!target_is_async_p ())
2812 signal (SIGINT, ofunc);
2813
2814 /* This is a hook for when we need to do something (perhaps the
2815 collection of trace data) every time the target stops. */
2816 if (target_wait_loop_hook)
2817 (*target_wait_loop_hook) ();
2818
2819 switch (buf[0])
2820 {
2821 case 'E': /* Error of some sort */
2822 warning ("Remote failure reply: %s", buf);
2823 continue;
2824 case 'T': /* Status with PC, SP, FP, ... */
2825 {
2826 int i;
2827 long regno;
2828 char regs[MAX_REGISTER_RAW_SIZE];
2829
2830 /* Expedited reply, containing Signal, {regno, reg} repeat */
2831 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2832 ss = signal number
2833 n... = register number
2834 r... = register contents
2835 */
2836 p = &buf[3]; /* after Txx */
2837
2838 while (*p)
2839 {
2840 unsigned char *p1;
2841 char *p_temp;
2842
2843 /* Read the register number */
2844 regno = strtol ((const char *) p, &p_temp, 16);
2845 p1 = (unsigned char *) p_temp;
2846
2847 if (p1 == p) /* No register number present here */
2848 {
2849 p1 = (unsigned char *) strchr ((const char *) p, ':');
2850 if (p1 == NULL)
2851 warning ("Malformed packet(a) (missing colon): %s\n\
2852 Packet: '%s'\n",
2853 p, buf);
2854 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2855 {
2856 p_temp = unpack_varlen_hex (++p1, &thread_num);
2857 record_currthread (thread_num);
2858 p = (unsigned char *) p_temp;
2859 }
2860 }
2861 else
2862 {
2863 p = p1;
2864
2865 if (*p++ != ':')
2866 warning ("Malformed packet(b) (missing colon): %s\n\
2867 Packet: '%s'\n",
2868 p, buf);
2869
2870 if (regno >= NUM_REGS)
2871 warning ("Remote sent bad register number %ld: %s\n\
2872 Packet: '%s'\n",
2873 regno, p, buf);
2874
2875 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2876 {
2877 if (p[0] == 0 || p[1] == 0)
2878 warning ("Remote reply is too short: %s", buf);
2879 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2880 p += 2;
2881 }
2882 supply_register (regno, regs);
2883 }
2884
2885 if (*p++ != ';')
2886 {
2887 warning ("Remote register badly formatted: %s", buf);
2888 warning (" here: %s", p);
2889 }
2890 }
2891 }
2892 /* fall through */
2893 case 'S': /* Old style status, just signal only */
2894 status->kind = TARGET_WAITKIND_STOPPED;
2895 status->value.sig = (enum target_signal)
2896 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2897
2898 if (buf[3] == 'p')
2899 {
2900 /* Export Cisco kernel mode as a convenience variable
2901 (so that it can be used in the GDB prompt if desired). */
2902
2903 if (cisco_kernel_mode == 1)
2904 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2905 value_from_string ("PDEBUG-"));
2906 cisco_kernel_mode = 0;
2907 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2908 record_currthread (thread_num);
2909 }
2910 else if (buf[3] == 'k')
2911 {
2912 /* Export Cisco kernel mode as a convenience variable
2913 (so that it can be used in the GDB prompt if desired). */
2914
2915 if (cisco_kernel_mode == 1)
2916 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2917 value_from_string ("KDEBUG-"));
2918 cisco_kernel_mode = 1;
2919 }
2920 goto got_status;
2921 case 'N': /* Cisco special: status and offsets */
2922 {
2923 bfd_vma text_addr, data_addr, bss_addr;
2924 bfd_signed_vma text_off, data_off, bss_off;
2925 unsigned char *p1;
2926
2927 status->kind = TARGET_WAITKIND_STOPPED;
2928 status->value.sig = (enum target_signal)
2929 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2930
2931 if (symfile_objfile == NULL)
2932 {
2933 warning ("Relocation packet recieved with no symbol file. \
2934 Packet Dropped");
2935 goto got_status;
2936 }
2937
2938 /* Relocate object file. Buffer format is NAATT;DD;BB
2939 * where AA is the signal number, TT is the new text
2940 * address, DD * is the new data address, and BB is the
2941 * new bss address. */
2942
2943 p = &buf[3];
2944 text_addr = strtoul (p, (char **) &p1, 16);
2945 if (p1 == p || *p1 != ';')
2946 warning ("Malformed relocation packet: Packet '%s'", buf);
2947 p = p1 + 1;
2948 data_addr = strtoul (p, (char **) &p1, 16);
2949 if (p1 == p || *p1 != ';')
2950 warning ("Malformed relocation packet: Packet '%s'", buf);
2951 p = p1 + 1;
2952 bss_addr = strtoul (p, (char **) &p1, 16);
2953 if (p1 == p)
2954 warning ("Malformed relocation packet: Packet '%s'", buf);
2955
2956 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2957 &text_off, &data_off, &bss_off)
2958 == 0)
2959 if (text_off != 0 || data_off != 0 || bss_off != 0)
2960 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2961
2962 goto got_status;
2963 }
2964 case 'W': /* Target exited */
2965 {
2966 /* The remote process exited. */
2967 status->kind = TARGET_WAITKIND_EXITED;
2968 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2969 goto got_status;
2970 }
2971 case 'X':
2972 status->kind = TARGET_WAITKIND_SIGNALLED;
2973 status->value.sig = (enum target_signal)
2974 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2975 kill_kludge = 1;
2976
2977 goto got_status;
2978 case 'O': /* Console output */
2979 remote_console_output (buf + 1);
2980 /* Return immediately to the event loop. The event loop will
2981 still be waiting on the inferior afterwards. */
2982 status->kind = TARGET_WAITKIND_IGNORE;
2983 goto got_status;
2984 case '\0':
2985 if (last_sent_signal != TARGET_SIGNAL_0)
2986 {
2987 /* Zero length reply means that we tried 'S' or 'C' and
2988 the remote system doesn't support it. */
2989 target_terminal_ours_for_output ();
2990 printf_filtered
2991 ("Can't send signals to this remote system. %s not sent.\n",
2992 target_signal_to_name (last_sent_signal));
2993 last_sent_signal = TARGET_SIGNAL_0;
2994 target_terminal_inferior ();
2995
2996 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2997 putpkt ((char *) buf);
2998 continue;
2999 }
3000 /* else fallthrough */
3001 default:
3002 warning ("Invalid remote reply: %s", buf);
3003 continue;
3004 }
3005 }
3006 got_status:
3007 if (thread_num != -1)
3008 {
3009 return thread_num;
3010 }
3011 return inferior_pid;
3012 }
3013
3014 /* Number of bytes of registers this stub implements. */
3015
3016 static int register_bytes_found;
3017
3018 /* Read the remote registers into the block REGS. */
3019 /* Currently we just read all the registers, so we don't use regno. */
3020
3021 /* ARGSUSED */
3022 static void
3023 remote_fetch_registers (int regno)
3024 {
3025 char *buf = alloca (PBUFSIZ);
3026 int i;
3027 char *p;
3028 char regs[REGISTER_BYTES];
3029
3030 set_thread (inferior_pid, 1);
3031
3032 sprintf (buf, "g");
3033 remote_send (buf, PBUFSIZ);
3034
3035 /* Save the size of the packet sent to us by the target. Its used
3036 as a heuristic when determining the max size of packets that the
3037 target can safely receive. */
3038 if (actual_register_packet_size == 0)
3039 actual_register_packet_size = strlen (buf);
3040
3041 /* Unimplemented registers read as all bits zero. */
3042 memset (regs, 0, REGISTER_BYTES);
3043
3044 /* We can get out of synch in various cases. If the first character
3045 in the buffer is not a hex character, assume that has happened
3046 and try to fetch another packet to read. */
3047 while ((buf[0] < '0' || buf[0] > '9')
3048 && (buf[0] < 'a' || buf[0] > 'f')
3049 && buf[0] != 'x') /* New: unavailable register value */
3050 {
3051 if (remote_debug)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "Bad register packet; fetching a new packet\n");
3054 getpkt (buf, PBUFSIZ, 0);
3055 }
3056
3057 /* Reply describes registers byte by byte, each byte encoded as two
3058 hex characters. Suck them all up, then supply them to the
3059 register cacheing/storage mechanism. */
3060
3061 p = buf;
3062 for (i = 0; i < REGISTER_BYTES; i++)
3063 {
3064 if (p[0] == 0)
3065 break;
3066 if (p[1] == 0)
3067 {
3068 warning ("Remote reply is of odd length: %s", buf);
3069 /* Don't change register_bytes_found in this case, and don't
3070 print a second warning. */
3071 goto supply_them;
3072 }
3073 if (p[0] == 'x' && p[1] == 'x')
3074 regs[i] = 0; /* 'x' */
3075 else
3076 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3077 p += 2;
3078 }
3079
3080 if (i != register_bytes_found)
3081 {
3082 register_bytes_found = i;
3083 #ifdef REGISTER_BYTES_OK
3084 if (!REGISTER_BYTES_OK (i))
3085 warning ("Remote reply is too short: %s", buf);
3086 #endif
3087 }
3088
3089 supply_them:
3090 for (i = 0; i < NUM_REGS; i++)
3091 {
3092 supply_register (i, &regs[REGISTER_BYTE (i)]);
3093 if (buf[REGISTER_BYTE (i) * 2] == 'x')
3094 register_valid[i] = -1; /* register value not available */
3095 }
3096 }
3097
3098 /* Prepare to store registers. Since we may send them all (using a
3099 'G' request), we have to read out the ones we don't want to change
3100 first. */
3101
3102 static void
3103 remote_prepare_to_store (void)
3104 {
3105 /* Make sure the entire registers array is valid. */
3106 switch (remote_protocol_P.support)
3107 {
3108 case PACKET_DISABLE:
3109 case PACKET_SUPPORT_UNKNOWN:
3110 read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
3111 break;
3112 case PACKET_ENABLE:
3113 break;
3114 }
3115 }
3116
3117 /* Helper: Attempt to store REGNO using the P packet. Return fail IFF
3118 packet was not recognized. */
3119
3120 static int
3121 store_register_using_P (int regno)
3122 {
3123 /* Try storing a single register. */
3124 char *buf = alloca (PBUFSIZ);
3125 char *regp;
3126 char *p;
3127 int i;
3128
3129 sprintf (buf, "P%x=", regno);
3130 p = buf + strlen (buf);
3131 regp = &registers[REGISTER_BYTE (regno)];
3132 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
3133 {
3134 *p++ = tohex ((regp[i] >> 4) & 0xf);
3135 *p++ = tohex (regp[i] & 0xf);
3136 }
3137 *p = '\0';
3138 remote_send (buf, PBUFSIZ);
3139
3140 return buf[0] != '\0';
3141 }
3142
3143
3144 /* Store register REGNO, or all registers if REGNO == -1, from the contents
3145 of REGISTERS. FIXME: ignores errors. */
3146
3147 static void
3148 remote_store_registers (int regno)
3149 {
3150 char *buf = alloca (PBUFSIZ);
3151 int i;
3152 char *p;
3153
3154 set_thread (inferior_pid, 1);
3155
3156 if (regno >= 0)
3157 {
3158 switch (remote_protocol_P.support)
3159 {
3160 case PACKET_DISABLE:
3161 break;
3162 case PACKET_ENABLE:
3163 if (store_register_using_P (regno))
3164 return;
3165 else
3166 error ("Protocol error: P packet not recognized by stub");
3167 case PACKET_SUPPORT_UNKNOWN:
3168 if (store_register_using_P (regno))
3169 {
3170 /* The stub recognized the 'P' packet. Remember this. */
3171 remote_protocol_P.support = PACKET_ENABLE;
3172 return;
3173 }
3174 else
3175 {
3176 /* The stub does not support the 'P' packet. Use 'G'
3177 instead, and don't try using 'P' in the future (it
3178 will just waste our time). */
3179 remote_protocol_P.support = PACKET_DISABLE;
3180 break;
3181 }
3182 }
3183 }
3184
3185 buf[0] = 'G';
3186
3187 /* Command describes registers byte by byte,
3188 each byte encoded as two hex characters. */
3189
3190 p = buf + 1;
3191 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3192 for (i = 0; i < register_bytes_found; i++)
3193 {
3194 *p++ = tohex ((registers[i] >> 4) & 0xf);
3195 *p++ = tohex (registers[i] & 0xf);
3196 }
3197 *p = '\0';
3198
3199 remote_send (buf, PBUFSIZ);
3200 }
3201 \f
3202
3203 /* Return the number of hex digits in num. */
3204
3205 static int
3206 hexnumlen (ULONGEST num)
3207 {
3208 int i;
3209
3210 for (i = 0; num != 0; i++)
3211 num >>= 4;
3212
3213 return max (i, 1);
3214 }
3215
3216 /* Set BUF to the minimum number of hex digits representing NUM. */
3217
3218 static int
3219 hexnumstr (char *buf, ULONGEST num)
3220 {
3221 int len = hexnumlen (num);
3222 return hexnumnstr (buf, num, len);
3223 }
3224
3225
3226 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3227
3228 static int
3229 hexnumnstr (char *buf, ULONGEST num, int width)
3230 {
3231 int i;
3232
3233 buf[width] = '\0';
3234
3235 for (i = width - 1; i >= 0; i--)
3236 {
3237 buf[i] = "0123456789abcdef"[(num & 0xf)];
3238 num >>= 4;
3239 }
3240
3241 return width;
3242 }
3243
3244 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3245
3246 static CORE_ADDR
3247 remote_address_masked (CORE_ADDR addr)
3248 {
3249 if (remote_address_size > 0
3250 && remote_address_size < (sizeof (ULONGEST) * 8))
3251 {
3252 /* Only create a mask when that mask can safely be constructed
3253 in a ULONGEST variable. */
3254 ULONGEST mask = 1;
3255 mask = (mask << remote_address_size) - 1;
3256 addr &= mask;
3257 }
3258 return addr;
3259 }
3260
3261 /* Determine whether the remote target supports binary downloading.
3262 This is accomplished by sending a no-op memory write of zero length
3263 to the target at the specified address. It does not suffice to send
3264 the whole packet, since many stubs strip the eighth bit and subsequently
3265 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3266
3267 NOTE: This can still lose if the serial line is not eight-bit
3268 clean. In cases like this, the user should clear "remote
3269 X-packet". */
3270
3271 static void
3272 check_binary_download (CORE_ADDR addr)
3273 {
3274 switch (remote_protocol_binary_download.support)
3275 {
3276 case PACKET_DISABLE:
3277 break;
3278 case PACKET_ENABLE:
3279 break;
3280 case PACKET_SUPPORT_UNKNOWN:
3281 {
3282 char *buf = alloca (PBUFSIZ);
3283 char *p;
3284
3285 p = buf;
3286 *p++ = 'X';
3287 p += hexnumstr (p, (ULONGEST) addr);
3288 *p++ = ',';
3289 p += hexnumstr (p, (ULONGEST) 0);
3290 *p++ = ':';
3291 *p = '\0';
3292
3293 putpkt_binary (buf, (int) (p - buf));
3294 getpkt (buf, PBUFSIZ, 0);
3295
3296 if (buf[0] == '\0')
3297 {
3298 if (remote_debug)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "binary downloading NOT suppported by target\n");
3301 remote_protocol_binary_download.support = PACKET_DISABLE;
3302 }
3303 else
3304 {
3305 if (remote_debug)
3306 fprintf_unfiltered (gdb_stdlog,
3307 "binary downloading suppported by target\n");
3308 remote_protocol_binary_download.support = PACKET_ENABLE;
3309 }
3310 break;
3311 }
3312 }
3313 }
3314
3315 /* Write memory data directly to the remote machine.
3316 This does not inform the data cache; the data cache uses this.
3317 MEMADDR is the address in the remote memory space.
3318 MYADDR is the address of the buffer in our space.
3319 LEN is the number of bytes.
3320
3321 Returns number of bytes transferred, or 0 (setting errno) for
3322 error. Only transfer a single packet. */
3323
3324 static int
3325 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3326 {
3327 unsigned char *buf;
3328 int max_buf_size; /* Max size of packet output buffer */
3329 unsigned char *p;
3330 unsigned char *plen;
3331 long sizeof_buf;
3332 int plenlen;
3333 int todo;
3334 int nr_bytes;
3335
3336 /* Verify that the target can support a binary download */
3337 check_binary_download (memaddr);
3338
3339 /* Determine the max packet size. */
3340 max_buf_size = get_memory_write_packet_size ();
3341 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3342 buf = alloca (sizeof_buf);
3343
3344 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3345 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3346
3347 /* construct "M"<memaddr>","<len>":" */
3348 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3349 p = buf;
3350
3351 /* Append [XM]. Compute a best guess of the number of bytes
3352 actually transfered. */
3353 switch (remote_protocol_binary_download.support)
3354 {
3355 case PACKET_ENABLE:
3356 *p++ = 'X';
3357 /* Best guess at number of bytes that will fit. */
3358 todo = min (len, max_buf_size);
3359 break;
3360 case PACKET_DISABLE:
3361 *p++ = 'M';
3362 /* num bytes that will fit */
3363 todo = min (len, max_buf_size / 2);
3364 break;
3365 case PACKET_SUPPORT_UNKNOWN:
3366 internal_error ("%s:%d: remote_write_bytes: bad internal state",
3367 __FILE__, __LINE__);
3368 default:
3369 internal_error ("%s:%d: bad switch", __FILE__, __LINE__);
3370 }
3371
3372 /* Append <memaddr> */
3373 memaddr = remote_address_masked (memaddr);
3374 p += hexnumstr (p, (ULONGEST) memaddr);
3375 *p++ = ',';
3376
3377 /* Append <len>. Retain the location/size of <len>. It may
3378 need to be adjusted once the packet body has been created. */
3379 plen = p;
3380 plenlen = hexnumstr (p, (ULONGEST) todo);
3381 p += plenlen;
3382 *p++ = ':';
3383 *p = '\0';
3384
3385 /* Append the packet body. */
3386 switch (remote_protocol_binary_download.support)
3387 {
3388 case PACKET_ENABLE:
3389 /* Binary mode. Send target system values byte by byte, in
3390 increasing byte addresses. Only escape certain critical
3391 characters. */
3392 for (nr_bytes = 0;
3393 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3394 nr_bytes++)
3395 {
3396 switch (myaddr[nr_bytes] & 0xff)
3397 {
3398 case '$':
3399 case '#':
3400 case 0x7d:
3401 /* These must be escaped */
3402 *p++ = 0x7d;
3403 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3404 break;
3405 default:
3406 *p++ = myaddr[nr_bytes] & 0xff;
3407 break;
3408 }
3409 }
3410 if (nr_bytes < todo)
3411 {
3412 /* Escape chars have filled up the buffer prematurely,
3413 and we have actually sent fewer bytes than planned.
3414 Fix-up the length field of the packet. Use the same
3415 number of characters as before. */
3416
3417 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3418 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3419 }
3420 break;
3421 case PACKET_DISABLE:
3422 /* Normal mode: Send target system values byte by byte, in
3423 increasing byte addresses. Each byte is encoded as a two hex
3424 value. */
3425 for (nr_bytes = 0; nr_bytes < todo; nr_bytes++)
3426 {
3427 *p++ = tohex ((myaddr[nr_bytes] >> 4) & 0xf);
3428 *p++ = tohex (myaddr[nr_bytes] & 0xf);
3429 }
3430 *p = '\0';
3431 break;
3432 case PACKET_SUPPORT_UNKNOWN:
3433 internal_error ("%s:%d: remote_write_bytes: bad internal state",
3434 __FILE__, __LINE__);
3435 default:
3436 internal_error ("%s:%d: bad switch", __FILE__, __LINE__);
3437 }
3438
3439 putpkt_binary (buf, (int) (p - buf));
3440 getpkt (buf, sizeof_buf, 0);
3441
3442 if (buf[0] == 'E')
3443 {
3444 /* There is no correspondance between what the remote protocol
3445 uses for errors and errno codes. We would like a cleaner way
3446 of representing errors (big enough to include errno codes,
3447 bfd_error codes, and others). But for now just return EIO. */
3448 errno = EIO;
3449 return 0;
3450 }
3451
3452 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3453 bytes than we'd planned. */
3454 return nr_bytes;
3455 }
3456
3457 /* Read memory data directly from the remote machine.
3458 This does not use the data cache; the data cache uses this.
3459 MEMADDR is the address in the remote memory space.
3460 MYADDR is the address of the buffer in our space.
3461 LEN is the number of bytes.
3462
3463 Returns number of bytes transferred, or 0 for error. */
3464
3465 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3466 remote targets) shouldn't attempt to read the entire buffer.
3467 Instead it should read a single packet worth of data and then
3468 return the byte size of that packet to the caller. The caller (its
3469 caller and its callers caller ;-) already contains code for
3470 handling partial reads. */
3471
3472 static int
3473 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3474 {
3475 char *buf;
3476 int max_buf_size; /* Max size of packet output buffer */
3477 long sizeof_buf;
3478 int origlen;
3479
3480 /* Create a buffer big enough for this packet. */
3481 max_buf_size = get_memory_read_packet_size ();
3482 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3483 buf = alloca (sizeof_buf);
3484
3485 origlen = len;
3486 while (len > 0)
3487 {
3488 char *p;
3489 int todo;
3490 int i;
3491
3492 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3493
3494 /* construct "m"<memaddr>","<len>" */
3495 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3496 memaddr = remote_address_masked (memaddr);
3497 p = buf;
3498 *p++ = 'm';
3499 p += hexnumstr (p, (ULONGEST) memaddr);
3500 *p++ = ',';
3501 p += hexnumstr (p, (ULONGEST) todo);
3502 *p = '\0';
3503
3504 putpkt (buf);
3505 getpkt (buf, sizeof_buf, 0);
3506
3507 if (buf[0] == 'E')
3508 {
3509 /* There is no correspondance between what the remote protocol uses
3510 for errors and errno codes. We would like a cleaner way of
3511 representing errors (big enough to include errno codes, bfd_error
3512 codes, and others). But for now just return EIO. */
3513 errno = EIO;
3514 return 0;
3515 }
3516
3517 /* Reply describes memory byte by byte,
3518 each byte encoded as two hex characters. */
3519
3520 p = buf;
3521 for (i = 0; i < todo; i++)
3522 {
3523 if (p[0] == 0 || p[1] == 0)
3524 /* Reply is short. This means that we were able to read
3525 only part of what we wanted to. */
3526 return i + (origlen - len);
3527 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3528 p += 2;
3529 }
3530 myaddr += todo;
3531 memaddr += todo;
3532 len -= todo;
3533 }
3534 return origlen;
3535 }
3536 \f
3537 /* Read or write LEN bytes from inferior memory at MEMADDR,
3538 transferring to or from debugger address BUFFER. Write to inferior if
3539 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3540 for error. TARGET is unused. */
3541
3542 /* ARGSUSED */
3543 static int
3544 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3545 int should_write, struct target_ops *target)
3546 {
3547 CORE_ADDR targ_addr;
3548 int targ_len;
3549 int res;
3550
3551 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3552 if (targ_len <= 0)
3553 return 0;
3554
3555 if (should_write)
3556 res = remote_write_bytes (targ_addr, buffer, targ_len);
3557 else
3558 res = remote_read_bytes (targ_addr, buffer, targ_len);
3559
3560 return res;
3561 }
3562
3563
3564 #if 0
3565 /* Enable after 4.12. */
3566
3567 void
3568 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3569 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3570 CORE_ADDR *addr_found, char *data_found)
3571 {
3572 if (increment == -4 && len == 4)
3573 {
3574 long mask_long, data_long;
3575 long data_found_long;
3576 CORE_ADDR addr_we_found;
3577 char *buf = alloca (PBUFSIZ);
3578 long returned_long[2];
3579 char *p;
3580
3581 mask_long = extract_unsigned_integer (mask, len);
3582 data_long = extract_unsigned_integer (data, len);
3583 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3584 putpkt (buf);
3585 getpkt (buf, PBUFSIZ, 0);
3586 if (buf[0] == '\0')
3587 {
3588 /* The stub doesn't support the 't' request. We might want to
3589 remember this fact, but on the other hand the stub could be
3590 switched on us. Maybe we should remember it only until
3591 the next "target remote". */
3592 generic_search (len, data, mask, startaddr, increment, lorange,
3593 hirange, addr_found, data_found);
3594 return;
3595 }
3596
3597 if (buf[0] == 'E')
3598 /* There is no correspondance between what the remote protocol uses
3599 for errors and errno codes. We would like a cleaner way of
3600 representing errors (big enough to include errno codes, bfd_error
3601 codes, and others). But for now just use EIO. */
3602 memory_error (EIO, startaddr);
3603 p = buf;
3604 addr_we_found = 0;
3605 while (*p != '\0' && *p != ',')
3606 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3607 if (*p == '\0')
3608 error ("Protocol error: short return for search");
3609
3610 data_found_long = 0;
3611 while (*p != '\0' && *p != ',')
3612 data_found_long = (data_found_long << 4) + fromhex (*p++);
3613 /* Ignore anything after this comma, for future extensions. */
3614
3615 if (addr_we_found < lorange || addr_we_found >= hirange)
3616 {
3617 *addr_found = 0;
3618 return;
3619 }
3620
3621 *addr_found = addr_we_found;
3622 *data_found = store_unsigned_integer (data_we_found, len);
3623 return;
3624 }
3625 generic_search (len, data, mask, startaddr, increment, lorange,
3626 hirange, addr_found, data_found);
3627 }
3628 #endif /* 0 */
3629 \f
3630 static void
3631 remote_files_info (struct target_ops *ignore)
3632 {
3633 puts_filtered ("Debugging a target over a serial line.\n");
3634 }
3635 \f
3636 /* Stuff for dealing with the packets which are part of this protocol.
3637 See comment at top of file for details. */
3638
3639 /* Read a single character from the remote end, masking it down to 7 bits. */
3640
3641 static int
3642 readchar (int timeout)
3643 {
3644 int ch;
3645
3646 ch = SERIAL_READCHAR (remote_desc, timeout);
3647
3648 if (ch >= 0)
3649 return (ch & 0x7f);
3650
3651 switch ((enum serial_rc) ch)
3652 {
3653 case SERIAL_EOF:
3654 target_mourn_inferior ();
3655 error ("Remote connection closed");
3656 /* no return */
3657 case SERIAL_ERROR:
3658 perror_with_name ("Remote communication error");
3659 /* no return */
3660 case SERIAL_TIMEOUT:
3661 break;
3662 }
3663 return ch;
3664 }
3665
3666 /* Send the command in BUF to the remote machine, and read the reply
3667 into BUF. Report an error if we get an error reply. */
3668
3669 static void
3670 remote_send (char *buf,
3671 long sizeof_buf)
3672 {
3673 putpkt (buf);
3674 getpkt (buf, sizeof_buf, 0);
3675
3676 if (buf[0] == 'E')
3677 error ("Remote failure reply: %s", buf);
3678 }
3679
3680 /* Display a null-terminated packet on stdout, for debugging, using C
3681 string notation. */
3682
3683 static void
3684 print_packet (char *buf)
3685 {
3686 puts_filtered ("\"");
3687 fputstr_filtered (buf, '"', gdb_stdout);
3688 puts_filtered ("\"");
3689 }
3690
3691 int
3692 putpkt (char *buf)
3693 {
3694 return putpkt_binary (buf, strlen (buf));
3695 }
3696
3697 /* Send a packet to the remote machine, with error checking. The data
3698 of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
3699 to account for the $, # and checksum, and for a possible /0 if we are
3700 debugging (remote_debug) and want to print the sent packet as a string */
3701
3702 static int
3703 putpkt_binary (char *buf, int cnt)
3704 {
3705 int i;
3706 unsigned char csum = 0;
3707 char *buf2 = alloca (cnt + 6);
3708 long sizeof_junkbuf = PBUFSIZ;
3709 char *junkbuf = alloca (sizeof_junkbuf);
3710
3711 int ch;
3712 int tcount = 0;
3713 char *p;
3714
3715 /* Copy the packet into buffer BUF2, encapsulating it
3716 and giving it a checksum. */
3717
3718 p = buf2;
3719 *p++ = '$';
3720
3721 for (i = 0; i < cnt; i++)
3722 {
3723 csum += buf[i];
3724 *p++ = buf[i];
3725 }
3726 *p++ = '#';
3727 *p++ = tohex ((csum >> 4) & 0xf);
3728 *p++ = tohex (csum & 0xf);
3729
3730 /* Send it over and over until we get a positive ack. */
3731
3732 while (1)
3733 {
3734 int started_error_output = 0;
3735
3736 if (remote_debug)
3737 {
3738 *p = '\0';
3739 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3740 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3741 fprintf_unfiltered (gdb_stdlog, "...");
3742 gdb_flush (gdb_stdlog);
3743 }
3744 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
3745 perror_with_name ("putpkt: write failed");
3746
3747 /* read until either a timeout occurs (-2) or '+' is read */
3748 while (1)
3749 {
3750 ch = readchar (remote_timeout);
3751
3752 if (remote_debug)
3753 {
3754 switch (ch)
3755 {
3756 case '+':
3757 case '-':
3758 case SERIAL_TIMEOUT:
3759 case '$':
3760 if (started_error_output)
3761 {
3762 putchar_unfiltered ('\n');
3763 started_error_output = 0;
3764 }
3765 }
3766 }
3767
3768 switch (ch)
3769 {
3770 case '+':
3771 if (remote_debug)
3772 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3773 return 1;
3774 case '-':
3775 if (remote_debug)
3776 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3777 case SERIAL_TIMEOUT:
3778 tcount++;
3779 if (tcount > 3)
3780 return 0;
3781 break; /* Retransmit buffer */
3782 case '$':
3783 {
3784 if (remote_debug)
3785 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3786 /* It's probably an old response, and we're out of sync.
3787 Just gobble up the packet and ignore it. */
3788 read_frame (junkbuf, sizeof_junkbuf);
3789 continue; /* Now, go look for + */
3790 }
3791 default:
3792 if (remote_debug)
3793 {
3794 if (!started_error_output)
3795 {
3796 started_error_output = 1;
3797 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3798 }
3799 fputc_unfiltered (ch & 0177, gdb_stdlog);
3800 }
3801 continue;
3802 }
3803 break; /* Here to retransmit */
3804 }
3805
3806 #if 0
3807 /* This is wrong. If doing a long backtrace, the user should be
3808 able to get out next time we call QUIT, without anything as
3809 violent as interrupt_query. If we want to provide a way out of
3810 here without getting to the next QUIT, it should be based on
3811 hitting ^C twice as in remote_wait. */
3812 if (quit_flag)
3813 {
3814 quit_flag = 0;
3815 interrupt_query ();
3816 }
3817 #endif
3818 }
3819 }
3820
3821 static int remote_cisco_mode;
3822
3823 /* Come here after finding the start of the frame. Collect the rest
3824 into BUF, verifying the checksum, length, and handling run-length
3825 compression. No more than sizeof_buf-1 characters are read so that
3826 the buffer can be NUL terminated.
3827
3828 Returns -1 on error, number of characters in buffer (ignoring the
3829 trailing NULL) on success. (could be extended to return one of the
3830 SERIAL status indications). */
3831
3832 static long
3833 read_frame (char *buf,
3834 long sizeof_buf)
3835 {
3836 unsigned char csum;
3837 long bc;
3838 int c;
3839
3840 csum = 0;
3841 bc = 0;
3842
3843 while (1)
3844 {
3845 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
3846 c = readchar (remote_timeout);
3847 switch (c)
3848 {
3849 case SERIAL_TIMEOUT:
3850 if (remote_debug)
3851 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
3852 return -1;
3853 case '$':
3854 if (remote_debug)
3855 fputs_filtered ("Saw new packet start in middle of old one\n",
3856 gdb_stdlog);
3857 return -1; /* Start a new packet, count retries */
3858 case '#':
3859 {
3860 unsigned char pktcsum;
3861 int check_0 = 0;
3862 int check_1 = 0;
3863
3864 buf[bc] = '\0';
3865
3866 check_0 = readchar (remote_timeout);
3867 if (check_0 >= 0)
3868 check_1 = readchar (remote_timeout);
3869
3870 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
3871 {
3872 if (remote_debug)
3873 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
3874 return -1;
3875 }
3876 else if (check_0 < 0 || check_1 < 0)
3877 {
3878 if (remote_debug)
3879 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
3880 return -1;
3881 }
3882
3883 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
3884 if (csum == pktcsum)
3885 return bc;
3886
3887 if (remote_debug)
3888 {
3889 fprintf_filtered (gdb_stdlog,
3890 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
3891 pktcsum, csum);
3892 fputs_filtered (buf, gdb_stdlog);
3893 fputs_filtered ("\n", gdb_stdlog);
3894 }
3895 /* Number of characters in buffer ignoring trailing
3896 NUL. */
3897 return -1;
3898 }
3899 case '*': /* Run length encoding */
3900 {
3901 int repeat;
3902 csum += c;
3903
3904 if (remote_cisco_mode == 0)
3905 {
3906 c = readchar (remote_timeout);
3907 csum += c;
3908 repeat = c - ' ' + 3; /* Compute repeat count */
3909 }
3910 else
3911 {
3912 /* Cisco's run-length encoding variant uses two
3913 hex chars to represent the repeat count. */
3914
3915 c = readchar (remote_timeout);
3916 csum += c;
3917 repeat = fromhex (c) << 4;
3918 c = readchar (remote_timeout);
3919 csum += c;
3920 repeat += fromhex (c);
3921 }
3922
3923 /* The character before ``*'' is repeated. */
3924
3925 if (repeat > 0 && repeat <= 255
3926 && bc > 0
3927 && bc + repeat < sizeof_buf - 1)
3928 {
3929 memset (&buf[bc], buf[bc - 1], repeat);
3930 bc += repeat;
3931 continue;
3932 }
3933
3934 buf[bc] = '\0';
3935 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
3936 puts_filtered (buf);
3937 puts_filtered ("\n");
3938 return -1;
3939 }
3940 default:
3941 if (bc < sizeof_buf - 1)
3942 {
3943 buf[bc++] = c;
3944 csum += c;
3945 continue;
3946 }
3947
3948 buf[bc] = '\0';
3949 puts_filtered ("Remote packet too long: ");
3950 puts_filtered (buf);
3951 puts_filtered ("\n");
3952
3953 return -1;
3954 }
3955 }
3956 }
3957
3958 /* Read a packet from the remote machine, with error checking, and
3959 store it in BUF. If FOREVER, wait forever rather than timing out;
3960 this is used (in synchronous mode) to wait for a target that is is
3961 executing user code to stop. */
3962 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
3963 don't have to change all the calls to getpkt to deal with the
3964 return value, because at the moment I don't know what the right
3965 thing to do it for those. */
3966 void
3967 getpkt (char *buf,
3968 long sizeof_buf,
3969 int forever)
3970 {
3971 int timed_out;
3972
3973 timed_out = getpkt_sane (buf, sizeof_buf, forever);
3974 }
3975
3976
3977 /* Read a packet from the remote machine, with error checking, and
3978 store it in BUF. If FOREVER, wait forever rather than timing out;
3979 this is used (in synchronous mode) to wait for a target that is is
3980 executing user code to stop. If FOREVER == 0, this function is
3981 allowed to time out gracefully and return an indication of this to
3982 the caller. */
3983 int
3984 getpkt_sane (char *buf,
3985 long sizeof_buf,
3986 int forever)
3987 {
3988 int c;
3989 int tries;
3990 int timeout;
3991 int val;
3992
3993 strcpy (buf, "timeout");
3994
3995 if (forever)
3996 {
3997 timeout = watchdog > 0 ? watchdog : -1;
3998 }
3999
4000 else
4001 timeout = remote_timeout;
4002
4003 #define MAX_TRIES 3
4004
4005 for (tries = 1; tries <= MAX_TRIES; tries++)
4006 {
4007 /* This can loop forever if the remote side sends us characters
4008 continuously, but if it pauses, we'll get a zero from readchar
4009 because of timeout. Then we'll count that as a retry. */
4010
4011 /* Note that we will only wait forever prior to the start of a packet.
4012 After that, we expect characters to arrive at a brisk pace. They
4013 should show up within remote_timeout intervals. */
4014
4015 do
4016 {
4017 c = readchar (timeout);
4018
4019 if (c == SERIAL_TIMEOUT)
4020 {
4021 if (forever) /* Watchdog went off? Kill the target. */
4022 {
4023 QUIT;
4024 target_mourn_inferior ();
4025 error ("Watchdog has expired. Target detached.\n");
4026 }
4027 if (remote_debug)
4028 fputs_filtered ("Timed out.\n", gdb_stdlog);
4029 goto retry;
4030 }
4031 }
4032 while (c != '$');
4033
4034 /* We've found the start of a packet, now collect the data. */
4035
4036 val = read_frame (buf, sizeof_buf);
4037
4038 if (val >= 0)
4039 {
4040 if (remote_debug)
4041 {
4042 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4043 fputstr_unfiltered (buf, 0, gdb_stdlog);
4044 fprintf_unfiltered (gdb_stdlog, "\n");
4045 }
4046 SERIAL_WRITE (remote_desc, "+", 1);
4047 return 0;
4048 }
4049
4050 /* Try the whole thing again. */
4051 retry:
4052 SERIAL_WRITE (remote_desc, "-", 1);
4053 }
4054
4055 /* We have tried hard enough, and just can't receive the packet. Give up. */
4056
4057 printf_unfiltered ("Ignoring packet error, continuing...\n");
4058 SERIAL_WRITE (remote_desc, "+", 1);
4059 return 1;
4060 }
4061 \f
4062 static void
4063 remote_kill (void)
4064 {
4065 /* For some mysterious reason, wait_for_inferior calls kill instead of
4066 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4067 if (kill_kludge)
4068 {
4069 kill_kludge = 0;
4070 target_mourn_inferior ();
4071 return;
4072 }
4073
4074 /* Use catch_errors so the user can quit from gdb even when we aren't on
4075 speaking terms with the remote system. */
4076 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4077
4078 /* Don't wait for it to die. I'm not really sure it matters whether
4079 we do or not. For the existing stubs, kill is a noop. */
4080 target_mourn_inferior ();
4081 }
4082
4083 /* Async version of remote_kill. */
4084 static void
4085 remote_async_kill (void)
4086 {
4087 /* Unregister the file descriptor from the event loop. */
4088 if (target_is_async_p ())
4089 SERIAL_ASYNC (remote_desc, NULL, 0);
4090
4091 /* For some mysterious reason, wait_for_inferior calls kill instead of
4092 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4093 if (kill_kludge)
4094 {
4095 kill_kludge = 0;
4096 target_mourn_inferior ();
4097 return;
4098 }
4099
4100 /* Use catch_errors so the user can quit from gdb even when we aren't on
4101 speaking terms with the remote system. */
4102 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4103
4104 /* Don't wait for it to die. I'm not really sure it matters whether
4105 we do or not. For the existing stubs, kill is a noop. */
4106 target_mourn_inferior ();
4107 }
4108
4109 static void
4110 remote_mourn (void)
4111 {
4112 remote_mourn_1 (&remote_ops);
4113 }
4114
4115 static void
4116 remote_async_mourn (void)
4117 {
4118 remote_mourn_1 (&remote_async_ops);
4119 }
4120
4121 static void
4122 extended_remote_mourn (void)
4123 {
4124 /* We do _not_ want to mourn the target like this; this will
4125 remove the extended remote target from the target stack,
4126 and the next time the user says "run" it'll fail.
4127
4128 FIXME: What is the right thing to do here? */
4129 #if 0
4130 remote_mourn_1 (&extended_remote_ops);
4131 #endif
4132 }
4133
4134 /* Worker function for remote_mourn. */
4135 static void
4136 remote_mourn_1 (struct target_ops *target)
4137 {
4138 unpush_target (target);
4139 generic_mourn_inferior ();
4140 }
4141
4142 /* In the extended protocol we want to be able to do things like
4143 "run" and have them basically work as expected. So we need
4144 a special create_inferior function.
4145
4146 FIXME: One day add support for changing the exec file
4147 we're debugging, arguments and an environment. */
4148
4149 static void
4150 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4151 {
4152 /* Rip out the breakpoints; we'll reinsert them after restarting
4153 the remote server. */
4154 remove_breakpoints ();
4155
4156 /* Now restart the remote server. */
4157 extended_remote_restart ();
4158
4159 /* Now put the breakpoints back in. This way we're safe if the
4160 restart function works via a unix fork on the remote side. */
4161 insert_breakpoints ();
4162
4163 /* Clean up from the last time we were running. */
4164 clear_proceed_status ();
4165
4166 /* Let the remote process run. */
4167 proceed (-1, TARGET_SIGNAL_0, 0);
4168 }
4169
4170 /* Async version of extended_remote_create_inferior. */
4171 static void
4172 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4173 {
4174 /* Rip out the breakpoints; we'll reinsert them after restarting
4175 the remote server. */
4176 remove_breakpoints ();
4177
4178 /* If running asynchronously, register the target file descriptor
4179 with the event loop. */
4180 if (event_loop_p && target_can_async_p ())
4181 target_async (inferior_event_handler, 0);
4182
4183 /* Now restart the remote server. */
4184 extended_remote_restart ();
4185
4186 /* Now put the breakpoints back in. This way we're safe if the
4187 restart function works via a unix fork on the remote side. */
4188 insert_breakpoints ();
4189
4190 /* Clean up from the last time we were running. */
4191 clear_proceed_status ();
4192
4193 /* Let the remote process run. */
4194 proceed (-1, TARGET_SIGNAL_0, 0);
4195 }
4196 \f
4197
4198 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4199 than other targets; in those use REMOTE_BREAKPOINT instead of just
4200 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4201 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4202 the standard routines that are in mem-break.c. */
4203
4204 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4205 the choice of breakpoint instruction affects target program design and
4206 vice versa, and by making it user-tweakable, the special code here
4207 goes away and we need fewer special GDB configurations. */
4208
4209 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4210 #define REMOTE_BREAKPOINT
4211 #endif
4212
4213 #ifdef REMOTE_BREAKPOINT
4214
4215 /* If the target isn't bi-endian, just pretend it is. */
4216 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4217 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4218 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4219 #endif
4220
4221 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4222 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4223
4224 #endif /* REMOTE_BREAKPOINT */
4225
4226 /* Insert a breakpoint on targets that don't have any better breakpoint
4227 support. We read the contents of the target location and stash it,
4228 then overwrite it with a breakpoint instruction. ADDR is the target
4229 location in the target machine. CONTENTS_CACHE is a pointer to
4230 memory allocated for saving the target contents. It is guaranteed
4231 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4232 is accomplished via BREAKPOINT_MAX). */
4233
4234 static int
4235 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4236 {
4237 #ifdef REMOTE_BREAKPOINT
4238 int val;
4239 #endif
4240 int bp_size;
4241
4242 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4243 If it succeeds, then set the support to PACKET_ENABLE. If it
4244 fails, and the user has explicitly requested the Z support then
4245 report an error, otherwise, mark it disabled and go on. */
4246
4247 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4248 {
4249 char *buf = alloca (PBUFSIZ);
4250 char *p = buf;
4251
4252 addr = remote_address_masked (addr);
4253 *(p++) = 'Z';
4254 *(p++) = '0';
4255 *(p++) = ',';
4256 p += hexnumstr (p, (ULONGEST) addr);
4257 BREAKPOINT_FROM_PC (&addr, &bp_size);
4258 sprintf (p, ",%d", bp_size);
4259
4260 putpkt (buf);
4261 getpkt (buf, PBUFSIZ, 0);
4262
4263 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4264 {
4265 case PACKET_ERROR:
4266 return -1;
4267 case PACKET_OK:
4268 return 0;
4269 case PACKET_UNKNOWN:
4270 break;
4271 }
4272 }
4273
4274 #ifdef REMOTE_BREAKPOINT
4275 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4276
4277 if (val == 0)
4278 {
4279 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4280 val = target_write_memory (addr, (char *) big_break_insn,
4281 sizeof big_break_insn);
4282 else
4283 val = target_write_memory (addr, (char *) little_break_insn,
4284 sizeof little_break_insn);
4285 }
4286
4287 return val;
4288 #else
4289 return memory_insert_breakpoint (addr, contents_cache);
4290 #endif /* REMOTE_BREAKPOINT */
4291 }
4292
4293 static int
4294 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4295 {
4296 int bp_size;
4297
4298 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4299 {
4300 char *buf = alloca (PBUFSIZ);
4301 char *p = buf;
4302
4303 *(p++) = 'z';
4304 *(p++) = '0';
4305 *(p++) = ',';
4306
4307 addr = remote_address_masked (addr);
4308 p += hexnumstr (p, (ULONGEST) addr);
4309 BREAKPOINT_FROM_PC (&addr, &bp_size);
4310 sprintf (p, ",%d", bp_size);
4311
4312 putpkt (buf);
4313 getpkt (buf, PBUFSIZ, 0);
4314
4315 return (buf[0] == 'E');
4316 }
4317
4318 #ifdef REMOTE_BREAKPOINT
4319 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4320 #else
4321 return memory_remove_breakpoint (addr, contents_cache);
4322 #endif /* REMOTE_BREAKPOINT */
4323 }
4324
4325 static int
4326 watchpoint_to_Z_packet (int type)
4327 {
4328 switch (type)
4329 {
4330 case hw_write:
4331 return 2;
4332 break;
4333 case hw_read:
4334 return 3;
4335 break;
4336 case hw_access:
4337 return 4;
4338 break;
4339 default:
4340 internal_error ("hw_bp_to_z: bad watchpoint type %d", type);
4341 }
4342 }
4343
4344 /* FIXME: This function should be static and a member of the remote
4345 target vector. */
4346
4347 int
4348 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4349 {
4350 char *buf = alloca (PBUFSIZ);
4351 char *p;
4352 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4353
4354 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4355 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4356 remote_protocol_Z[packet].name,
4357 remote_protocol_Z[packet].title);
4358
4359 sprintf (buf, "Z%x,", packet);
4360 p = strchr (buf, '\0');
4361 addr = remote_address_masked (addr);
4362 p += hexnumstr (p, (ULONGEST) addr);
4363 sprintf (p, ",%x", len);
4364
4365 putpkt (buf);
4366 getpkt (buf, PBUFSIZ, 0);
4367
4368 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4369 {
4370 case PACKET_ERROR:
4371 case PACKET_UNKNOWN:
4372 return -1;
4373 case PACKET_OK:
4374 return 0;
4375 }
4376 internal_error ("remote_insert_watchpoint: reached end of function");
4377 }
4378
4379 /* FIXME: This function should be static and a member of the remote
4380 target vector. */
4381
4382 int
4383 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4384 {
4385 char *buf = alloca (PBUFSIZ);
4386 char *p;
4387 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4388
4389 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4390 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4391 remote_protocol_Z[packet].name,
4392 remote_protocol_Z[packet].title);
4393
4394 sprintf (buf, "z%x,", packet);
4395 p = strchr (buf, '\0');
4396 addr = remote_address_masked (addr);
4397 p += hexnumstr (p, (ULONGEST) addr);
4398 sprintf (p, ",%x", len);
4399 putpkt (buf);
4400 getpkt (buf, PBUFSIZ, 0);
4401
4402 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4403 {
4404 case PACKET_ERROR:
4405 case PACKET_UNKNOWN:
4406 return -1;
4407 case PACKET_OK:
4408 return 0;
4409 }
4410 internal_error ("remote_remove_watchpoint: reached end of function");
4411 }
4412
4413 /* FIXME: This function should be static and a member of the remote
4414 target vector. */
4415
4416 int
4417 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4418 {
4419 char *buf = alloca (PBUFSIZ);
4420 char *p = buf;
4421
4422 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4423 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4424 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4425 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4426
4427 *(p++) = 'Z';
4428 *(p++) = '1';
4429 *(p++) = ',';
4430
4431 addr = remote_address_masked (addr);
4432 p += hexnumstr (p, (ULONGEST) addr);
4433 *p = '\0';
4434
4435 putpkt (buf);
4436 getpkt (buf, PBUFSIZ, 0);
4437
4438 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4439 {
4440 case PACKET_ERROR:
4441 case PACKET_UNKNOWN:
4442 return -1;
4443 case PACKET_OK:
4444 return 0;
4445 }
4446 internal_error ("remote_remove_watchpoint: reached end of function");
4447 }
4448
4449 /* FIXME: This function should be static and a member of the remote
4450 target vector. */
4451
4452 int
4453 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4454 {
4455 char *buf = alloca (PBUFSIZ);
4456 char *p = buf;
4457
4458 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4459 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4460 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4461 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4462
4463 *(p++) = 'z';
4464 *(p++) = '1';
4465 *(p++) = ',';
4466
4467 addr = remote_address_masked (addr);
4468 p += hexnumstr (p, (ULONGEST) addr);
4469 *p = '\0';
4470
4471 putpkt(buf);
4472 getpkt (buf, PBUFSIZ, 0);
4473
4474 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4475 {
4476 case PACKET_ERROR:
4477 case PACKET_UNKNOWN:
4478 return -1;
4479 case PACKET_OK:
4480 return 0;
4481 }
4482 internal_error ("remote_remove_watchpoint: reached end of function");
4483 }
4484
4485 /* Some targets are only capable of doing downloads, and afterwards
4486 they switch to the remote serial protocol. This function provides
4487 a clean way to get from the download target to the remote target.
4488 It's basically just a wrapper so that we don't have to expose any
4489 of the internal workings of remote.c.
4490
4491 Prior to calling this routine, you should shutdown the current
4492 target code, else you will get the "A program is being debugged
4493 already..." message. Usually a call to pop_target() suffices. */
4494
4495 void
4496 push_remote_target (char *name, int from_tty)
4497 {
4498 printf_filtered ("Switching to remote protocol\n");
4499 remote_open (name, from_tty);
4500 }
4501
4502 /* Other targets want to use the entire remote serial module but with
4503 certain remote_ops overridden. */
4504
4505 void
4506 open_remote_target (char *name, int from_tty, struct target_ops *target,
4507 int extended_p)
4508 {
4509 printf_filtered ("Selecting the %sremote protocol\n",
4510 (extended_p ? "extended-" : ""));
4511 remote_open_1 (name, from_tty, target, extended_p);
4512 }
4513
4514 /* Table used by the crc32 function to calcuate the checksum. */
4515
4516 static unsigned long crc32_table[256] =
4517 {0, 0};
4518
4519 static unsigned long
4520 crc32 (unsigned char *buf, int len, unsigned int crc)
4521 {
4522 if (!crc32_table[1])
4523 {
4524 /* Initialize the CRC table and the decoding table. */
4525 int i, j;
4526 unsigned int c;
4527
4528 for (i = 0; i < 256; i++)
4529 {
4530 for (c = i << 24, j = 8; j > 0; --j)
4531 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4532 crc32_table[i] = c;
4533 }
4534 }
4535
4536 while (len--)
4537 {
4538 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4539 buf++;
4540 }
4541 return crc;
4542 }
4543
4544 /* compare-sections command
4545
4546 With no arguments, compares each loadable section in the exec bfd
4547 with the same memory range on the target, and reports mismatches.
4548 Useful for verifying the image on the target against the exec file.
4549 Depends on the target understanding the new "qCRC:" request. */
4550
4551 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4552 target method (target verify memory) and generic version of the
4553 actual command. This will allow other high-level code (especially
4554 generic_load()) to make use of this target functionality. */
4555
4556 static void
4557 compare_sections_command (char *args, int from_tty)
4558 {
4559 asection *s;
4560 unsigned long host_crc, target_crc;
4561 extern bfd *exec_bfd;
4562 struct cleanup *old_chain;
4563 char *tmp;
4564 char *sectdata;
4565 char *sectname;
4566 char *buf = alloca (PBUFSIZ);
4567 bfd_size_type size;
4568 bfd_vma lma;
4569 int matched = 0;
4570 int mismatched = 0;
4571
4572 if (!exec_bfd)
4573 error ("command cannot be used without an exec file");
4574 if (!current_target.to_shortname ||
4575 strcmp (current_target.to_shortname, "remote") != 0)
4576 error ("command can only be used with remote target");
4577
4578 for (s = exec_bfd->sections; s; s = s->next)
4579 {
4580 if (!(s->flags & SEC_LOAD))
4581 continue; /* skip non-loadable section */
4582
4583 size = bfd_get_section_size_before_reloc (s);
4584 if (size == 0)
4585 continue; /* skip zero-length section */
4586
4587 sectname = (char *) bfd_get_section_name (exec_bfd, s);
4588 if (args && strcmp (args, sectname) != 0)
4589 continue; /* not the section selected by user */
4590
4591 matched = 1; /* do this section */
4592 lma = s->lma;
4593 /* FIXME: assumes lma can fit into long */
4594 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4595 putpkt (buf);
4596
4597 /* be clever; compute the host_crc before waiting for target reply */
4598 sectdata = xmalloc (size);
4599 old_chain = make_cleanup (free, sectdata);
4600 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4601 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4602
4603 getpkt (buf, PBUFSIZ, 0);
4604 if (buf[0] == 'E')
4605 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
4606 sectname, lma, lma + size);
4607 if (buf[0] != 'C')
4608 error ("remote target does not support this operation");
4609
4610 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4611 target_crc = target_crc * 16 + fromhex (*tmp);
4612
4613 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4614 sectname, paddr (lma), paddr (lma + size));
4615 if (host_crc == target_crc)
4616 printf_filtered ("matched.\n");
4617 else
4618 {
4619 printf_filtered ("MIS-MATCHED!\n");
4620 mismatched++;
4621 }
4622
4623 do_cleanups (old_chain);
4624 }
4625 if (mismatched > 0)
4626 warning ("One or more sections of the remote executable does not match\n\
4627 the loaded file\n");
4628 if (args && !matched)
4629 printf_filtered ("No loaded section named '%s'.\n", args);
4630 }
4631
4632 static int
4633 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
4634 {
4635 int i;
4636 char *buf2 = alloca (PBUFSIZ);
4637 char *p2 = &buf2[0];
4638
4639 if (!bufsiz)
4640 error ("null pointer to remote bufer size specified");
4641
4642 /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
4643 the caller know and return what the minimum size is */
4644 /* Note: a zero bufsiz can be used to query the minimum buffer size */
4645 if (*bufsiz < PBUFSIZ)
4646 {
4647 *bufsiz = PBUFSIZ;
4648 return -1;
4649 }
4650
4651 /* except for querying the minimum buffer size, target must be open */
4652 if (!remote_desc)
4653 error ("remote query is only available after target open");
4654
4655 /* we only take uppercase letters as query types, at least for now */
4656 if ((query_type < 'A') || (query_type > 'Z'))
4657 error ("invalid remote query type");
4658
4659 if (!buf)
4660 error ("null remote query specified");
4661
4662 if (!outbuf)
4663 error ("remote query requires a buffer to receive data");
4664
4665 outbuf[0] = '\0';
4666
4667 *p2++ = 'q';
4668 *p2++ = query_type;
4669
4670 /* we used one buffer char for the remote protocol q command and another
4671 for the query type. As the remote protocol encapsulation uses 4 chars
4672 plus one extra in case we are debugging (remote_debug),
4673 we have PBUFZIZ - 7 left to pack the query string */
4674 i = 0;
4675 while (buf[i] && (i < (PBUFSIZ - 8)))
4676 {
4677 /* bad caller may have sent forbidden characters */
4678 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
4679 error ("illegal characters in query string");
4680
4681 *p2++ = buf[i];
4682 i++;
4683 }
4684 *p2 = buf[i];
4685
4686 if (buf[i])
4687 error ("query larger than available buffer");
4688
4689 i = putpkt (buf2);
4690 if (i < 0)
4691 return i;
4692
4693 getpkt (outbuf, *bufsiz, 0);
4694
4695 return 0;
4696 }
4697
4698 static void
4699 remote_rcmd (char *command,
4700 struct ui_file *outbuf)
4701 {
4702 int i;
4703 char *buf = alloca (PBUFSIZ);
4704 char *p = buf;
4705
4706 if (!remote_desc)
4707 error ("remote rcmd is only available after target open");
4708
4709 /* Send a NULL command across as an empty command */
4710 if (command == NULL)
4711 command = "";
4712
4713 /* The query prefix */
4714 strcpy (buf, "qRcmd,");
4715 p = strchr (buf, '\0');
4716
4717 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
4718 error ("\"monitor\" command ``%s'' is too long\n", command);
4719
4720 /* Encode the actual command */
4721 for (i = 0; command[i]; i++)
4722 {
4723 *p++ = tohex ((command[i] >> 4) & 0xf);
4724 *p++ = tohex (command[i] & 0xf);
4725 }
4726 *p = '\0';
4727
4728 if (putpkt (buf) < 0)
4729 error ("Communication problem with target\n");
4730
4731 /* get/display the response */
4732 while (1)
4733 {
4734 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4735 buf[0] = '\0';
4736 getpkt (buf, PBUFSIZ, 0);
4737 if (buf[0] == '\0')
4738 error ("Target does not support this command\n");
4739 if (buf[0] == 'O' && buf[1] != 'K')
4740 {
4741 remote_console_output (buf + 1); /* 'O' message from stub */
4742 continue;
4743 }
4744 if (strcmp (buf, "OK") == 0)
4745 break;
4746 if (strlen (buf) == 3 && buf[0] == 'E'
4747 && isdigit (buf[1]) && isdigit (buf[2]))
4748 {
4749 error ("Protocol error with Rcmd");
4750 }
4751 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4752 {
4753 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4754 fputc_unfiltered (c, outbuf);
4755 }
4756 break;
4757 }
4758 }
4759
4760 static void
4761 packet_command (char *args, int from_tty)
4762 {
4763 char *buf = alloca (PBUFSIZ);
4764
4765 if (!remote_desc)
4766 error ("command can only be used with remote target");
4767
4768 if (!args)
4769 error ("remote-packet command requires packet text as argument");
4770
4771 puts_filtered ("sending: ");
4772 print_packet (args);
4773 puts_filtered ("\n");
4774 putpkt (args);
4775
4776 getpkt (buf, PBUFSIZ, 0);
4777 puts_filtered ("received: ");
4778 print_packet (buf);
4779 puts_filtered ("\n");
4780 }
4781
4782 #if 0
4783 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4784
4785 static void display_thread_info (struct gdb_ext_thread_info *info);
4786
4787 static void threadset_test_cmd (char *cmd, int tty);
4788
4789 static void threadalive_test (char *cmd, int tty);
4790
4791 static void threadlist_test_cmd (char *cmd, int tty);
4792
4793 int get_and_display_threadinfo (threadref * ref);
4794
4795 static void threadinfo_test_cmd (char *cmd, int tty);
4796
4797 static int thread_display_step (threadref * ref, void *context);
4798
4799 static void threadlist_update_test_cmd (char *cmd, int tty);
4800
4801 static void init_remote_threadtests (void);
4802
4803 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4804
4805 static void
4806 threadset_test_cmd (char *cmd, int tty)
4807 {
4808 int sample_thread = SAMPLE_THREAD;
4809
4810 printf_filtered ("Remote threadset test\n");
4811 set_thread (sample_thread, 1);
4812 }
4813
4814
4815 static void
4816 threadalive_test (char *cmd, int tty)
4817 {
4818 int sample_thread = SAMPLE_THREAD;
4819
4820 if (remote_thread_alive (sample_thread))
4821 printf_filtered ("PASS: Thread alive test\n");
4822 else
4823 printf_filtered ("FAIL: Thread alive test\n");
4824 }
4825
4826 void output_threadid (char *title, threadref * ref);
4827
4828 void
4829 output_threadid (char *title, threadref *ref)
4830 {
4831 char hexid[20];
4832
4833 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
4834 hexid[16] = 0;
4835 printf_filtered ("%s %s\n", title, (&hexid[0]));
4836 }
4837
4838 static void
4839 threadlist_test_cmd (char *cmd, int tty)
4840 {
4841 int startflag = 1;
4842 threadref nextthread;
4843 int done, result_count;
4844 threadref threadlist[3];
4845
4846 printf_filtered ("Remote Threadlist test\n");
4847 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
4848 &result_count, &threadlist[0]))
4849 printf_filtered ("FAIL: threadlist test\n");
4850 else
4851 {
4852 threadref *scan = threadlist;
4853 threadref *limit = scan + result_count;
4854
4855 while (scan < limit)
4856 output_threadid (" thread ", scan++);
4857 }
4858 }
4859
4860 void
4861 display_thread_info (struct gdb_ext_thread_info *info)
4862 {
4863 output_threadid ("Threadid: ", &info->threadid);
4864 printf_filtered ("Name: %s\n ", info->shortname);
4865 printf_filtered ("State: %s\n", info->display);
4866 printf_filtered ("other: %s\n\n", info->more_display);
4867 }
4868
4869 int
4870 get_and_display_threadinfo (threadref *ref)
4871 {
4872 int result;
4873 int set;
4874 struct gdb_ext_thread_info threadinfo;
4875
4876 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4877 | TAG_MOREDISPLAY | TAG_DISPLAY;
4878 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
4879 display_thread_info (&threadinfo);
4880 return result;
4881 }
4882
4883 static void
4884 threadinfo_test_cmd (char *cmd, int tty)
4885 {
4886 int athread = SAMPLE_THREAD;
4887 threadref thread;
4888 int set;
4889
4890 int_to_threadref (&thread, athread);
4891 printf_filtered ("Remote Threadinfo test\n");
4892 if (!get_and_display_threadinfo (&thread))
4893 printf_filtered ("FAIL cannot get thread info\n");
4894 }
4895
4896 static int
4897 thread_display_step (threadref *ref, void *context)
4898 {
4899 /* output_threadid(" threadstep ",ref); *//* simple test */
4900 return get_and_display_threadinfo (ref);
4901 }
4902
4903 static void
4904 threadlist_update_test_cmd (char *cmd, int tty)
4905 {
4906 printf_filtered ("Remote Threadlist update test\n");
4907 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
4908 }
4909
4910 static void
4911 init_remote_threadtests (void)
4912 {
4913 add_com ("tlist", class_obscure, threadlist_test_cmd,
4914 "Fetch and print the remote list of thread identifiers, one pkt only");
4915 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
4916 "Fetch and display info about one thread");
4917 add_com ("tset", class_obscure, threadset_test_cmd,
4918 "Test setting to a different thread");
4919 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
4920 "Iterate through updating all remote thread info");
4921 add_com ("talive", class_obscure, threadalive_test,
4922 " Remote thread alive test ");
4923 }
4924
4925 #endif /* 0 */
4926
4927 static void
4928 init_remote_ops (void)
4929 {
4930 remote_ops.to_shortname = "remote";
4931 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
4932 remote_ops.to_doc =
4933 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4934 Specify the serial device it is connected to\n\
4935 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
4936 remote_ops.to_open = remote_open;
4937 remote_ops.to_close = remote_close;
4938 remote_ops.to_detach = remote_detach;
4939 remote_ops.to_resume = remote_resume;
4940 remote_ops.to_wait = remote_wait;
4941 remote_ops.to_fetch_registers = remote_fetch_registers;
4942 remote_ops.to_store_registers = remote_store_registers;
4943 remote_ops.to_prepare_to_store = remote_prepare_to_store;
4944 remote_ops.to_xfer_memory = remote_xfer_memory;
4945 remote_ops.to_files_info = remote_files_info;
4946 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
4947 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
4948 remote_ops.to_kill = remote_kill;
4949 remote_ops.to_load = generic_load;
4950 remote_ops.to_mourn_inferior = remote_mourn;
4951 remote_ops.to_thread_alive = remote_thread_alive;
4952 remote_ops.to_find_new_threads = remote_threads_info;
4953 remote_ops.to_extra_thread_info = remote_threads_extra_info;
4954 remote_ops.to_stop = remote_stop;
4955 remote_ops.to_query = remote_query;
4956 remote_ops.to_rcmd = remote_rcmd;
4957 remote_ops.to_stratum = process_stratum;
4958 remote_ops.to_has_all_memory = 1;
4959 remote_ops.to_has_memory = 1;
4960 remote_ops.to_has_stack = 1;
4961 remote_ops.to_has_registers = 1;
4962 remote_ops.to_has_execution = 1;
4963 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
4964 remote_ops.to_magic = OPS_MAGIC;
4965 }
4966
4967 /* Set up the extended remote vector by making a copy of the standard
4968 remote vector and adding to it. */
4969
4970 static void
4971 init_extended_remote_ops (void)
4972 {
4973 extended_remote_ops = remote_ops;
4974
4975 extended_remote_ops.to_shortname = "extended-remote";
4976 extended_remote_ops.to_longname =
4977 "Extended remote serial target in gdb-specific protocol";
4978 extended_remote_ops.to_doc =
4979 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4980 Specify the serial device it is connected to (e.g. /dev/ttya).",
4981 extended_remote_ops.to_open = extended_remote_open;
4982 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
4983 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
4984 }
4985
4986 /*
4987 * Command: info remote-process
4988 *
4989 * This implements Cisco's version of the "info proc" command.
4990 *
4991 * This query allows the target stub to return an arbitrary string
4992 * (or strings) giving arbitrary information about the target process.
4993 * This is optional; the target stub isn't required to implement it.
4994 *
4995 * Syntax: qfProcessInfo request first string
4996 * qsProcessInfo request subsequent string
4997 * reply: 'O'<hex-encoded-string>
4998 * 'l' last reply (empty)
4999 */
5000
5001 static void
5002 remote_info_process (char *args, int from_tty)
5003 {
5004 char *buf = alloca (PBUFSIZ);
5005
5006 if (remote_desc == 0)
5007 error ("Command can only be used when connected to the remote target.");
5008
5009 putpkt ("qfProcessInfo");
5010 getpkt (buf, PBUFSIZ, 0);
5011 if (buf[0] == 0)
5012 return; /* Silently: target does not support this feature. */
5013
5014 if (buf[0] == 'E')
5015 error ("info proc: target error.");
5016
5017 while (buf[0] == 'O') /* Capitol-O packet */
5018 {
5019 remote_console_output (&buf[1]);
5020 putpkt ("qsProcessInfo");
5021 getpkt (buf, PBUFSIZ, 0);
5022 }
5023 }
5024
5025 /*
5026 * Target Cisco
5027 */
5028
5029 static void
5030 remote_cisco_open (char *name, int from_tty)
5031 {
5032 if (name == 0)
5033 error (
5034 "To open a remote debug connection, you need to specify what \n\
5035 device is attached to the remote system (e.g. host:port).");
5036
5037 /* See FIXME above */
5038 wait_forever_enabled_p = 1;
5039
5040 target_preopen (from_tty);
5041
5042 unpush_target (&remote_cisco_ops);
5043
5044 remote_desc = SERIAL_OPEN (name);
5045 if (!remote_desc)
5046 perror_with_name (name);
5047
5048 /*
5049 * If a baud rate was specified on the gdb command line it will
5050 * be greater than the initial value of -1. If it is, use it otherwise
5051 * default to 9600
5052 */
5053
5054 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5055 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
5056 {
5057 SERIAL_CLOSE (remote_desc);
5058 perror_with_name (name);
5059 }
5060
5061 SERIAL_RAW (remote_desc);
5062
5063 /* If there is something sitting in the buffer we might take it as a
5064 response to a command, which would be bad. */
5065 SERIAL_FLUSH_INPUT (remote_desc);
5066
5067 if (from_tty)
5068 {
5069 puts_filtered ("Remote debugging using ");
5070 puts_filtered (name);
5071 puts_filtered ("\n");
5072 }
5073
5074 remote_cisco_mode = 1;
5075
5076 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5077
5078 init_all_packet_configs ();
5079
5080 general_thread = -2;
5081 continue_thread = -2;
5082
5083 /* Probe for ability to use "ThreadInfo" query, as required. */
5084 use_threadinfo_query = 1;
5085 use_threadextra_query = 1;
5086
5087 /* Without this, some commands which require an active target (such
5088 as kill) won't work. This variable serves (at least) double duty
5089 as both the pid of the target process (if it has such), and as a
5090 flag indicating that a target is active. These functions should
5091 be split out into seperate variables, especially since GDB will
5092 someday have a notion of debugging several processes. */
5093 inferior_pid = MAGIC_NULL_PID;
5094
5095 /* Start the remote connection; if error (0), discard this target. */
5096
5097 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5098 "Couldn't establish connection to remote target\n",
5099 RETURN_MASK_ALL))
5100 {
5101 pop_target ();
5102 return;
5103 }
5104 }
5105
5106 static void
5107 remote_cisco_close (int quitting)
5108 {
5109 remote_cisco_mode = 0;
5110 remote_close (quitting);
5111 }
5112
5113 static void
5114 remote_cisco_mourn (void)
5115 {
5116 remote_mourn_1 (&remote_cisco_ops);
5117 }
5118
5119 enum
5120 {
5121 READ_MORE,
5122 FATAL_ERROR,
5123 ENTER_DEBUG,
5124 DISCONNECT_TELNET
5125 }
5126 minitelnet_return;
5127
5128 /* shared between readsocket() and readtty() */
5129 static char *tty_input;
5130
5131 static int escape_count;
5132 static int echo_check;
5133 extern int quit_flag;
5134
5135 static int
5136 readsocket (void)
5137 {
5138 int data;
5139
5140 /* Loop until the socket doesn't have any more data */
5141
5142 while ((data = readchar (0)) >= 0)
5143 {
5144 /* Check for the escape sequence */
5145 if (data == '|')
5146 {
5147 /* If this is the fourth escape, get out */
5148 if (++escape_count == 4)
5149 {
5150 return ENTER_DEBUG;
5151 }
5152 else
5153 { /* This is a '|', but not the fourth in a row.
5154 Continue without echoing it. If it isn't actually
5155 one of four in a row, it'll be echoed later. */
5156 continue;
5157 }
5158 }
5159 else
5160 /* Not a '|' */
5161 {
5162 /* Ensure any pending '|'s are flushed. */
5163
5164 for (; escape_count > 0; escape_count--)
5165 putchar ('|');
5166 }
5167
5168 if (data == '\r') /* If this is a return character, */
5169 continue; /* - just supress it. */
5170
5171 if (echo_check != -1) /* Check for echo of user input. */
5172 {
5173 if (tty_input[echo_check] == data)
5174 {
5175 echo_check++; /* Character matched user input: */
5176 continue; /* Continue without echoing it. */
5177 }
5178 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5179 { /* End of the line (and of echo checking). */
5180 echo_check = -1; /* No more echo supression */
5181 continue; /* Continue without echoing. */
5182 }
5183 else
5184 { /* Failed check for echo of user input.
5185 We now have some suppressed output to flush! */
5186 int j;
5187
5188 for (j = 0; j < echo_check; j++)
5189 putchar (tty_input[j]);
5190 echo_check = -1;
5191 }
5192 }
5193 putchar (data); /* Default case: output the char. */
5194 }
5195
5196 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5197 return READ_MORE; /* Try to read some more */
5198 else
5199 return FATAL_ERROR; /* Trouble, bail out */
5200 }
5201
5202 static int
5203 readtty (void)
5204 {
5205 int tty_bytecount;
5206
5207 /* First, read a buffer full from the terminal */
5208 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5209 if (tty_bytecount == -1)
5210 {
5211 perror ("readtty: read failed");
5212 return FATAL_ERROR;
5213 }
5214
5215 /* Remove a quoted newline. */
5216 if (tty_input[tty_bytecount - 1] == '\n' &&
5217 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5218 {
5219 tty_input[--tty_bytecount] = 0; /* remove newline */
5220 tty_input[--tty_bytecount] = 0; /* remove backslash */
5221 }
5222
5223 /* Turn trailing newlines into returns */
5224 if (tty_input[tty_bytecount - 1] == '\n')
5225 tty_input[tty_bytecount - 1] = '\r';
5226
5227 /* If the line consists of a ~, enter debugging mode. */
5228 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5229 return ENTER_DEBUG;
5230
5231 /* Make this a zero terminated string and write it out */
5232 tty_input[tty_bytecount] = 0;
5233 if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount))
5234 {
5235 perror_with_name ("readtty: write failed");
5236 return FATAL_ERROR;
5237 }
5238
5239 return READ_MORE;
5240 }
5241
5242 static int
5243 minitelnet (void)
5244 {
5245 fd_set input; /* file descriptors for select */
5246 int tablesize; /* max number of FDs for select */
5247 int status;
5248 int quit_count = 0;
5249
5250 extern int escape_count; /* global shared by readsocket */
5251 extern int echo_check; /* ditto */
5252
5253 escape_count = 0;
5254 echo_check = -1;
5255
5256 tablesize = 8 * sizeof (input);
5257
5258 for (;;)
5259 {
5260 /* Check for anything from our socket - doesn't block. Note that
5261 this must be done *before* the select as there may be
5262 buffered I/O waiting to be processed. */
5263
5264 if ((status = readsocket ()) == FATAL_ERROR)
5265 {
5266 error ("Debugging terminated by communications error");
5267 }
5268 else if (status != READ_MORE)
5269 {
5270 return (status);
5271 }
5272
5273 fflush (stdout); /* Flush output before blocking */
5274
5275 /* Now block on more socket input or TTY input */
5276
5277 FD_ZERO (&input);
5278 FD_SET (fileno (stdin), &input);
5279 FD_SET (DEPRECATED_SERIAL_FD (remote_desc), &input);
5280
5281 status = select (tablesize, &input, 0, 0, 0);
5282 if ((status == -1) && (errno != EINTR))
5283 {
5284 error ("Communications error on select %d", errno);
5285 }
5286
5287 /* Handle Control-C typed */
5288
5289 if (quit_flag)
5290 {
5291 if ((++quit_count) == 2)
5292 {
5293 if (query ("Interrupt GDB? "))
5294 {
5295 printf_filtered ("Interrupted by user.\n");
5296 return_to_top_level (RETURN_QUIT);
5297 }
5298 quit_count = 0;
5299 }
5300 quit_flag = 0;
5301
5302 if (remote_break)
5303 SERIAL_SEND_BREAK (remote_desc);
5304 else
5305 SERIAL_WRITE (remote_desc, "\003", 1);
5306
5307 continue;
5308 }
5309
5310 /* Handle console input */
5311
5312 if (FD_ISSET (fileno (stdin), &input))
5313 {
5314 quit_count = 0;
5315 echo_check = 0;
5316 status = readtty ();
5317 if (status == READ_MORE)
5318 continue;
5319
5320 return status; /* telnet session ended */
5321 }
5322 }
5323 }
5324
5325 static int
5326 remote_cisco_wait (int pid, struct target_waitstatus *status)
5327 {
5328 if (minitelnet () != ENTER_DEBUG)
5329 {
5330 error ("Debugging session terminated by protocol error");
5331 }
5332 putpkt ("?");
5333 return remote_wait (pid, status);
5334 }
5335
5336 static void
5337 init_remote_cisco_ops (void)
5338 {
5339 remote_cisco_ops.to_shortname = "cisco";
5340 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5341 remote_cisco_ops.to_doc =
5342 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5343 Specify the serial device it is connected to (e.g. host:2020).";
5344 remote_cisco_ops.to_open = remote_cisco_open;
5345 remote_cisco_ops.to_close = remote_cisco_close;
5346 remote_cisco_ops.to_detach = remote_detach;
5347 remote_cisco_ops.to_resume = remote_resume;
5348 remote_cisco_ops.to_wait = remote_cisco_wait;
5349 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5350 remote_cisco_ops.to_store_registers = remote_store_registers;
5351 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5352 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5353 remote_cisco_ops.to_files_info = remote_files_info;
5354 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5355 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5356 remote_cisco_ops.to_kill = remote_kill;
5357 remote_cisco_ops.to_load = generic_load;
5358 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5359 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5360 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5361 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5362 remote_cisco_ops.to_stratum = process_stratum;
5363 remote_cisco_ops.to_has_all_memory = 1;
5364 remote_cisco_ops.to_has_memory = 1;
5365 remote_cisco_ops.to_has_stack = 1;
5366 remote_cisco_ops.to_has_registers = 1;
5367 remote_cisco_ops.to_has_execution = 1;
5368 remote_cisco_ops.to_magic = OPS_MAGIC;
5369 }
5370
5371 static int
5372 remote_can_async_p (void)
5373 {
5374 /* We're async whenever the serial device is. */
5375 return (current_target.to_async_mask_value) && SERIAL_CAN_ASYNC_P (remote_desc);
5376 }
5377
5378 static int
5379 remote_is_async_p (void)
5380 {
5381 /* We're async whenever the serial device is. */
5382 return (current_target.to_async_mask_value) && SERIAL_IS_ASYNC_P (remote_desc);
5383 }
5384
5385 /* Pass the SERIAL event on and up to the client. One day this code
5386 will be able to delay notifying the client of an event until the
5387 point where an entire packet has been received. */
5388
5389 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5390 static void *async_client_context;
5391 static serial_event_ftype remote_async_serial_handler;
5392
5393 static void
5394 remote_async_serial_handler (serial_t scb, void *context)
5395 {
5396 /* Don't propogate error information up to the client. Instead let
5397 the client find out about the error by querying the target. */
5398 async_client_callback (INF_REG_EVENT, async_client_context);
5399 }
5400
5401 static void
5402 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5403 {
5404 if (current_target.to_async_mask_value == 0)
5405 internal_error ("Calling remote_async when async is masked");
5406
5407 if (callback != NULL)
5408 {
5409 SERIAL_ASYNC (remote_desc, remote_async_serial_handler, NULL);
5410 async_client_callback = callback;
5411 async_client_context = context;
5412 }
5413 else
5414 SERIAL_ASYNC (remote_desc, NULL, NULL);
5415 }
5416
5417 /* Target async and target extended-async.
5418
5419 This are temporary targets, until it is all tested. Eventually
5420 async support will be incorporated int the usual 'remote'
5421 target. */
5422
5423 static void
5424 init_remote_async_ops (void)
5425 {
5426 remote_async_ops.to_shortname = "async";
5427 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5428 remote_async_ops.to_doc =
5429 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5430 Specify the serial device it is connected to (e.g. /dev/ttya).";
5431 remote_async_ops.to_open = remote_async_open;
5432 remote_async_ops.to_close = remote_close;
5433 remote_async_ops.to_detach = remote_async_detach;
5434 remote_async_ops.to_resume = remote_async_resume;
5435 remote_async_ops.to_wait = remote_async_wait;
5436 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5437 remote_async_ops.to_store_registers = remote_store_registers;
5438 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5439 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5440 remote_async_ops.to_files_info = remote_files_info;
5441 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5442 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5443 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5444 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5445 remote_async_ops.to_kill = remote_async_kill;
5446 remote_async_ops.to_load = generic_load;
5447 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5448 remote_async_ops.to_thread_alive = remote_thread_alive;
5449 remote_async_ops.to_find_new_threads = remote_threads_info;
5450 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5451 remote_async_ops.to_stop = remote_stop;
5452 remote_async_ops.to_query = remote_query;
5453 remote_async_ops.to_rcmd = remote_rcmd;
5454 remote_async_ops.to_stratum = process_stratum;
5455 remote_async_ops.to_has_all_memory = 1;
5456 remote_async_ops.to_has_memory = 1;
5457 remote_async_ops.to_has_stack = 1;
5458 remote_async_ops.to_has_registers = 1;
5459 remote_async_ops.to_has_execution = 1;
5460 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5461 remote_async_ops.to_can_async_p = remote_can_async_p;
5462 remote_async_ops.to_is_async_p = remote_is_async_p;
5463 remote_async_ops.to_async = remote_async;
5464 remote_async_ops.to_async_mask_value = 1;
5465 remote_async_ops.to_magic = OPS_MAGIC;
5466 }
5467
5468 /* Set up the async extended remote vector by making a copy of the standard
5469 remote vector and adding to it. */
5470
5471 static void
5472 init_extended_async_remote_ops (void)
5473 {
5474 extended_async_remote_ops = remote_async_ops;
5475
5476 extended_async_remote_ops.to_shortname = "extended-async";
5477 extended_async_remote_ops.to_longname =
5478 "Extended remote serial target in async gdb-specific protocol";
5479 extended_async_remote_ops.to_doc =
5480 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5481 Specify the serial device it is connected to (e.g. /dev/ttya).",
5482 extended_async_remote_ops.to_open = extended_remote_async_open;
5483 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5484 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5485 }
5486
5487 static void
5488 set_remote_cmd (char *args, int from_tty)
5489 {
5490
5491 }
5492
5493 static void
5494 show_remote_cmd (char *args, int from_tty)
5495 {
5496 show_remote_protocol_Z_packet_cmd (args, from_tty);
5497 show_remote_protocol_P_packet_cmd (args, from_tty);
5498 show_remote_protocol_binary_download_cmd (args, from_tty);
5499 }
5500
5501 static void
5502 build_remote_gdbarch_data (void)
5503 {
5504 build_remote_packet_sizes ();
5505
5506 /* Cisco stuff */
5507 tty_input = xmalloc (PBUFSIZ);
5508 remote_address_size = TARGET_PTR_BIT;
5509 }
5510
5511 void
5512 _initialize_remote (void)
5513 {
5514 static struct cmd_list_element *remote_set_cmdlist;
5515 static struct cmd_list_element *remote_show_cmdlist;
5516 struct cmd_list_element *tmpcmd;
5517
5518 /* architecture specific data */
5519 build_remote_gdbarch_data ();
5520 register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
5521 register_remote_packet_sizes ();
5522 register_gdbarch_swap (&remote_address_size,
5523 sizeof (&remote_address_size), NULL);
5524 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5525
5526 init_remote_ops ();
5527 add_target (&remote_ops);
5528
5529 init_extended_remote_ops ();
5530 add_target (&extended_remote_ops);
5531
5532 init_remote_async_ops ();
5533 add_target (&remote_async_ops);
5534
5535 init_extended_async_remote_ops ();
5536 add_target (&extended_async_remote_ops);
5537
5538 init_remote_cisco_ops ();
5539 add_target (&remote_cisco_ops);
5540
5541 #if 0
5542 init_remote_threadtests ();
5543 #endif
5544
5545 /* set/show remote ... */
5546
5547 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5548 Remote protocol specific variables\n\
5549 Configure various remote-protocol specific variables such as\n\
5550 the packets being used",
5551 &remote_set_cmdlist, "set remote ",
5552 0/*allow-unknown*/, &setlist);
5553 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5554 Remote protocol specific variables\n\
5555 Configure various remote-protocol specific variables such as\n\
5556 the packets being used",
5557 &remote_show_cmdlist, "show remote ",
5558 0/*allow-unknown*/, &showlist);
5559
5560 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5561 "Compare section data on target to the exec file.\n\
5562 Argument is a single section name (default: all loaded sections).",
5563 &cmdlist);
5564
5565 add_cmd ("packet", class_maintenance, packet_command,
5566 "Send an arbitrary packet to a remote target.\n\
5567 maintenance packet TEXT\n\
5568 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5569 this command sends the string TEXT to the inferior, and displays the\n\
5570 response packet. GDB supplies the initial `$' character, and the\n\
5571 terminating `#' character and checksum.",
5572 &maintenancelist);
5573
5574 add_show_from_set
5575 (add_set_cmd ("remotebreak", no_class,
5576 var_boolean, (char *) &remote_break,
5577 "Set whether to send break if interrupted.\n",
5578 &setlist),
5579 &showlist);
5580
5581 /* Install commands for configuring memory read/write packets. */
5582
5583 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5584 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5585 &setlist);
5586 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5587 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5588 &showlist);
5589 add_cmd ("memory-write-packet-size", no_class,
5590 set_memory_write_packet_size,
5591 "Set the maximum number of bytes per memory-write packet.\n"
5592 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5593 "default packet size. The actual limit is further reduced\n"
5594 "dependent on the target. Specify ``fixed'' to disable the\n"
5595 "further restriction and ``limit'' to enable that restriction\n",
5596 &remote_set_cmdlist);
5597 add_cmd ("memory-read-packet-size", no_class,
5598 set_memory_read_packet_size,
5599 "Set the maximum number of bytes per memory-read packet.\n"
5600 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5601 "default packet size. The actual limit is further reduced\n"
5602 "dependent on the target. Specify ``fixed'' to disable the\n"
5603 "further restriction and ``limit'' to enable that restriction\n",
5604 &remote_set_cmdlist);
5605 add_cmd ("memory-write-packet-size", no_class,
5606 show_memory_write_packet_size,
5607 "Show the maximum number of bytes per memory-write packet.\n",
5608 &remote_show_cmdlist);
5609 add_cmd ("memory-read-packet-size", no_class,
5610 show_memory_read_packet_size,
5611 "Show the maximum number of bytes per memory-read packet.\n",
5612 &remote_show_cmdlist);
5613
5614 add_show_from_set
5615 (add_set_cmd ("remoteaddresssize", class_obscure,
5616 var_integer, (char *) &remote_address_size,
5617 "Set the maximum size of the address (in bits) \
5618 in a memory packet.\n",
5619 &setlist),
5620 &showlist);
5621
5622 add_packet_config_cmd (&remote_protocol_binary_download,
5623 "X", "binary-download",
5624 set_remote_protocol_binary_download_cmd,
5625 show_remote_protocol_binary_download_cmd,
5626 &remote_set_cmdlist, &remote_show_cmdlist,
5627 1);
5628 #if 0
5629 /* XXXX - should ``set remotebinarydownload'' be retained for
5630 compatibility. */
5631 add_show_from_set
5632 (add_set_cmd ("remotebinarydownload", no_class,
5633 var_boolean, (char *) &remote_binary_download,
5634 "Set binary downloads.\n", &setlist),
5635 &showlist);
5636 #endif
5637
5638 add_info ("remote-process", remote_info_process,
5639 "Query the remote system for process info.");
5640
5641 add_packet_config_cmd (&remote_protocol_P,
5642 "P", "set-register",
5643 set_remote_protocol_P_packet_cmd,
5644 show_remote_protocol_P_packet_cmd,
5645 &remote_set_cmdlist, &remote_show_cmdlist,
5646 1);
5647
5648 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5649 "Z0", "software-breakpoint",
5650 set_remote_protocol_Z_software_bp_packet_cmd,
5651 show_remote_protocol_Z_software_bp_packet_cmd,
5652 &remote_set_cmdlist, &remote_show_cmdlist,
5653 0);
5654
5655 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5656 "Z1", "hardware-breakpoint",
5657 set_remote_protocol_Z_hardware_bp_packet_cmd,
5658 show_remote_protocol_Z_hardware_bp_packet_cmd,
5659 &remote_set_cmdlist, &remote_show_cmdlist,
5660 0);
5661
5662 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5663 "Z2", "write-watchpoint",
5664 set_remote_protocol_Z_write_wp_packet_cmd,
5665 show_remote_protocol_Z_write_wp_packet_cmd,
5666 &remote_set_cmdlist, &remote_show_cmdlist,
5667 0);
5668
5669 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5670 "Z3", "read-watchpoint",
5671 set_remote_protocol_Z_read_wp_packet_cmd,
5672 show_remote_protocol_Z_read_wp_packet_cmd,
5673 &remote_set_cmdlist, &remote_show_cmdlist,
5674 0);
5675
5676 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5677 "Z4", "access-watchpoint",
5678 set_remote_protocol_Z_access_wp_packet_cmd,
5679 show_remote_protocol_Z_access_wp_packet_cmd,
5680 &remote_set_cmdlist, &remote_show_cmdlist,
5681 0);
5682
5683 /* Keep the old ``set remote Z-packet ...'' working. */
5684 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
5685 &remote_Z_packet_detect,
5686 "\
5687 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
5688 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
5689 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
5690 "Show use of remote protocol `Z' packets ",
5691 &remote_show_cmdlist);
5692 }
This page took 0.164408 seconds and 5 git commands to generate.