Make target_wait options use enum flags
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80 #include "async-event.h"
81
82 /* The remote target. */
83
84 static const char remote_doc[] = N_("\
85 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
86 Specify the serial device it is connected to\n\
87 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
88
89 #define OPAQUETHREADBYTES 8
90
91 /* a 64 bit opaque identifier */
92 typedef unsigned char threadref[OPAQUETHREADBYTES];
93
94 struct gdb_ext_thread_info;
95 struct threads_listing_context;
96 typedef int (*rmt_thread_action) (threadref *ref, void *context);
97 struct protocol_feature;
98 struct packet_reg;
99
100 struct stop_reply;
101 typedef std::unique_ptr<stop_reply> stop_reply_up;
102
103 /* Generic configuration support for packets the stub optionally
104 supports. Allows the user to specify the use of the packet as well
105 as allowing GDB to auto-detect support in the remote stub. */
106
107 enum packet_support
108 {
109 PACKET_SUPPORT_UNKNOWN = 0,
110 PACKET_ENABLE,
111 PACKET_DISABLE
112 };
113
114 /* Analyze a packet's return value and update the packet config
115 accordingly. */
116
117 enum packet_result
118 {
119 PACKET_ERROR,
120 PACKET_OK,
121 PACKET_UNKNOWN
122 };
123
124 struct threads_listing_context;
125
126 /* Stub vCont actions support.
127
128 Each field is a boolean flag indicating whether the stub reports
129 support for the corresponding action. */
130
131 struct vCont_action_support
132 {
133 /* vCont;t */
134 bool t = false;
135
136 /* vCont;r */
137 bool r = false;
138
139 /* vCont;s */
140 bool s = false;
141
142 /* vCont;S */
143 bool S = false;
144 };
145
146 /* About this many threadids fit in a packet. */
147
148 #define MAXTHREADLISTRESULTS 32
149
150 /* Data for the vFile:pread readahead cache. */
151
152 struct readahead_cache
153 {
154 /* Invalidate the readahead cache. */
155 void invalidate ();
156
157 /* Invalidate the readahead cache if it is holding data for FD. */
158 void invalidate_fd (int fd);
159
160 /* Serve pread from the readahead cache. Returns number of bytes
161 read, or 0 if the request can't be served from the cache. */
162 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
163
164 /* The file descriptor for the file that is being cached. -1 if the
165 cache is invalid. */
166 int fd = -1;
167
168 /* The offset into the file that the cache buffer corresponds
169 to. */
170 ULONGEST offset = 0;
171
172 /* The buffer holding the cache contents. */
173 gdb_byte *buf = nullptr;
174 /* The buffer's size. We try to read as much as fits into a packet
175 at a time. */
176 size_t bufsize = 0;
177
178 /* Cache hit and miss counters. */
179 ULONGEST hit_count = 0;
180 ULONGEST miss_count = 0;
181 };
182
183 /* Description of the remote protocol for a given architecture. */
184
185 struct packet_reg
186 {
187 long offset; /* Offset into G packet. */
188 long regnum; /* GDB's internal register number. */
189 LONGEST pnum; /* Remote protocol register number. */
190 int in_g_packet; /* Always part of G packet. */
191 /* long size in bytes; == register_size (target_gdbarch (), regnum);
192 at present. */
193 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
194 at present. */
195 };
196
197 struct remote_arch_state
198 {
199 explicit remote_arch_state (struct gdbarch *gdbarch);
200
201 /* Description of the remote protocol registers. */
202 long sizeof_g_packet;
203
204 /* Description of the remote protocol registers indexed by REGNUM
205 (making an array gdbarch_num_regs in size). */
206 std::unique_ptr<packet_reg[]> regs;
207
208 /* This is the size (in chars) of the first response to the ``g''
209 packet. It is used as a heuristic when determining the maximum
210 size of memory-read and memory-write packets. A target will
211 typically only reserve a buffer large enough to hold the ``g''
212 packet. The size does not include packet overhead (headers and
213 trailers). */
214 long actual_register_packet_size;
215
216 /* This is the maximum size (in chars) of a non read/write packet.
217 It is also used as a cap on the size of read/write packets. */
218 long remote_packet_size;
219 };
220
221 /* Description of the remote protocol state for the currently
222 connected target. This is per-target state, and independent of the
223 selected architecture. */
224
225 class remote_state
226 {
227 public:
228
229 remote_state ();
230 ~remote_state ();
231
232 /* Get the remote arch state for GDBARCH. */
233 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
234
235 public: /* data */
236
237 /* A buffer to use for incoming packets, and its current size. The
238 buffer is grown dynamically for larger incoming packets.
239 Outgoing packets may also be constructed in this buffer.
240 The size of the buffer is always at least REMOTE_PACKET_SIZE;
241 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
242 packets. */
243 gdb::char_vector buf;
244
245 /* True if we're going through initial connection setup (finding out
246 about the remote side's threads, relocating symbols, etc.). */
247 bool starting_up = false;
248
249 /* If we negotiated packet size explicitly (and thus can bypass
250 heuristics for the largest packet size that will not overflow
251 a buffer in the stub), this will be set to that packet size.
252 Otherwise zero, meaning to use the guessed size. */
253 long explicit_packet_size = 0;
254
255 /* remote_wait is normally called when the target is running and
256 waits for a stop reply packet. But sometimes we need to call it
257 when the target is already stopped. We can send a "?" packet
258 and have remote_wait read the response. Or, if we already have
259 the response, we can stash it in BUF and tell remote_wait to
260 skip calling getpkt. This flag is set when BUF contains a
261 stop reply packet and the target is not waiting. */
262 int cached_wait_status = 0;
263
264 /* True, if in no ack mode. That is, neither GDB nor the stub will
265 expect acks from each other. The connection is assumed to be
266 reliable. */
267 bool noack_mode = false;
268
269 /* True if we're connected in extended remote mode. */
270 bool extended = false;
271
272 /* True if we resumed the target and we're waiting for the target to
273 stop. In the mean time, we can't start another command/query.
274 The remote server wouldn't be ready to process it, so we'd
275 timeout waiting for a reply that would never come and eventually
276 we'd close the connection. This can happen in asynchronous mode
277 because we allow GDB commands while the target is running. */
278 bool waiting_for_stop_reply = false;
279
280 /* The status of the stub support for the various vCont actions. */
281 vCont_action_support supports_vCont;
282 /* Whether vCont support was probed already. This is a workaround
283 until packet_support is per-connection. */
284 bool supports_vCont_probed;
285
286 /* True if the user has pressed Ctrl-C, but the target hasn't
287 responded to that. */
288 bool ctrlc_pending_p = false;
289
290 /* True if we saw a Ctrl-C while reading or writing from/to the
291 remote descriptor. At that point it is not safe to send a remote
292 interrupt packet, so we instead remember we saw the Ctrl-C and
293 process it once we're done with sending/receiving the current
294 packet, which should be shortly. If however that takes too long,
295 and the user presses Ctrl-C again, we offer to disconnect. */
296 bool got_ctrlc_during_io = false;
297
298 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
299 remote_open knows that we don't have a file open when the program
300 starts. */
301 struct serial *remote_desc = nullptr;
302
303 /* These are the threads which we last sent to the remote system. The
304 TID member will be -1 for all or -2 for not sent yet. */
305 ptid_t general_thread = null_ptid;
306 ptid_t continue_thread = null_ptid;
307
308 /* This is the traceframe which we last selected on the remote system.
309 It will be -1 if no traceframe is selected. */
310 int remote_traceframe_number = -1;
311
312 char *last_pass_packet = nullptr;
313
314 /* The last QProgramSignals packet sent to the target. We bypass
315 sending a new program signals list down to the target if the new
316 packet is exactly the same as the last we sent. IOW, we only let
317 the target know about program signals list changes. */
318 char *last_program_signals_packet = nullptr;
319
320 gdb_signal last_sent_signal = GDB_SIGNAL_0;
321
322 bool last_sent_step = false;
323
324 /* The execution direction of the last resume we got. */
325 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
326
327 char *finished_object = nullptr;
328 char *finished_annex = nullptr;
329 ULONGEST finished_offset = 0;
330
331 /* Should we try the 'ThreadInfo' query packet?
332
333 This variable (NOT available to the user: auto-detect only!)
334 determines whether GDB will use the new, simpler "ThreadInfo"
335 query or the older, more complex syntax for thread queries.
336 This is an auto-detect variable (set to true at each connect,
337 and set to false when the target fails to recognize it). */
338 bool use_threadinfo_query = false;
339 bool use_threadextra_query = false;
340
341 threadref echo_nextthread {};
342 threadref nextthread {};
343 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
344
345 /* The state of remote notification. */
346 struct remote_notif_state *notif_state = nullptr;
347
348 /* The branch trace configuration. */
349 struct btrace_config btrace_config {};
350
351 /* The argument to the last "vFile:setfs:" packet we sent, used
352 to avoid sending repeated unnecessary "vFile:setfs:" packets.
353 Initialized to -1 to indicate that no "vFile:setfs:" packet
354 has yet been sent. */
355 int fs_pid = -1;
356
357 /* A readahead cache for vFile:pread. Often, reading a binary
358 involves a sequence of small reads. E.g., when parsing an ELF
359 file. A readahead cache helps mostly the case of remote
360 debugging on a connection with higher latency, due to the
361 request/reply nature of the RSP. We only cache data for a single
362 file descriptor at a time. */
363 struct readahead_cache readahead_cache;
364
365 /* The list of already fetched and acknowledged stop events. This
366 queue is used for notification Stop, and other notifications
367 don't need queue for their events, because the notification
368 events of Stop can't be consumed immediately, so that events
369 should be queued first, and be consumed by remote_wait_{ns,as}
370 one per time. Other notifications can consume their events
371 immediately, so queue is not needed for them. */
372 std::vector<stop_reply_up> stop_reply_queue;
373
374 /* Asynchronous signal handle registered as event loop source for
375 when we have pending events ready to be passed to the core. */
376 struct async_event_handler *remote_async_inferior_event_token = nullptr;
377
378 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
379 ``forever'' still use the normal timeout mechanism. This is
380 currently used by the ASYNC code to guarentee that target reads
381 during the initial connect always time-out. Once getpkt has been
382 modified to return a timeout indication and, in turn
383 remote_wait()/wait_for_inferior() have gained a timeout parameter
384 this can go away. */
385 int wait_forever_enabled_p = 1;
386
387 private:
388 /* Mapping of remote protocol data for each gdbarch. Usually there
389 is only one entry here, though we may see more with stubs that
390 support multi-process. */
391 std::unordered_map<struct gdbarch *, remote_arch_state>
392 m_arch_states;
393 };
394
395 static const target_info remote_target_info = {
396 "remote",
397 N_("Remote serial target in gdb-specific protocol"),
398 remote_doc
399 };
400
401 class remote_target : public process_stratum_target
402 {
403 public:
404 remote_target () = default;
405 ~remote_target () override;
406
407 const target_info &info () const override
408 { return remote_target_info; }
409
410 const char *connection_string () override;
411
412 thread_control_capabilities get_thread_control_capabilities () override
413 { return tc_schedlock; }
414
415 /* Open a remote connection. */
416 static void open (const char *, int);
417
418 void close () override;
419
420 void detach (inferior *, int) override;
421 void disconnect (const char *, int) override;
422
423 void commit_resume () override;
424 void resume (ptid_t, int, enum gdb_signal) override;
425 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
426
427 void fetch_registers (struct regcache *, int) override;
428 void store_registers (struct regcache *, int) override;
429 void prepare_to_store (struct regcache *) override;
430
431 void files_info () override;
432
433 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
434
435 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
436 enum remove_bp_reason) override;
437
438
439 bool stopped_by_sw_breakpoint () override;
440 bool supports_stopped_by_sw_breakpoint () override;
441
442 bool stopped_by_hw_breakpoint () override;
443
444 bool supports_stopped_by_hw_breakpoint () override;
445
446 bool stopped_by_watchpoint () override;
447
448 bool stopped_data_address (CORE_ADDR *) override;
449
450 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
451
452 int can_use_hw_breakpoint (enum bptype, int, int) override;
453
454 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
457
458 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
459
460 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 void kill () override;
467
468 void load (const char *, int) override;
469
470 void mourn_inferior () override;
471
472 void pass_signals (gdb::array_view<const unsigned char>) override;
473
474 int set_syscall_catchpoint (int, bool, int,
475 gdb::array_view<const int>) override;
476
477 void program_signals (gdb::array_view<const unsigned char>) override;
478
479 bool thread_alive (ptid_t ptid) override;
480
481 const char *thread_name (struct thread_info *) override;
482
483 void update_thread_list () override;
484
485 std::string pid_to_str (ptid_t) override;
486
487 const char *extra_thread_info (struct thread_info *) override;
488
489 ptid_t get_ada_task_ptid (long lwp, long thread) override;
490
491 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
492 int handle_len,
493 inferior *inf) override;
494
495 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
496 override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 int async_wait_fd () override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 bool follow_fork (bool, bool) override;
679 void follow_exec (struct inferior *, const char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 target_wait_flags options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 target_wait_flags options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (const char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 int putpkt (const gdb::char_vector &buf)
897 {
898 return putpkt (buf.data ());
899 }
900
901 void skip_frame ();
902 long read_frame (gdb::char_vector *buf_p);
903 void getpkt (gdb::char_vector *buf, int forever);
904 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
905 int expecting_notif, int *is_notif);
906 int getpkt_sane (gdb::char_vector *buf, int forever);
907 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
908 int *is_notif);
909 int remote_vkill (int pid);
910 void remote_kill_k ();
911
912 void extended_remote_disable_randomization (int val);
913 int extended_remote_run (const std::string &args);
914
915 void send_environment_packet (const char *action,
916 const char *packet,
917 const char *value);
918
919 void extended_remote_environment_support ();
920 void extended_remote_set_inferior_cwd ();
921
922 target_xfer_status remote_write_qxfer (const char *object_name,
923 const char *annex,
924 const gdb_byte *writebuf,
925 ULONGEST offset, LONGEST len,
926 ULONGEST *xfered_len,
927 struct packet_config *packet);
928
929 target_xfer_status remote_read_qxfer (const char *object_name,
930 const char *annex,
931 gdb_byte *readbuf, ULONGEST offset,
932 LONGEST len,
933 ULONGEST *xfered_len,
934 struct packet_config *packet);
935
936 void push_stop_reply (struct stop_reply *new_event);
937
938 bool vcont_r_supported ();
939
940 void packet_command (const char *args, int from_tty);
941
942 private: /* data fields */
943
944 /* The remote state. Don't reference this directly. Use the
945 get_remote_state method instead. */
946 remote_state m_remote_state;
947 };
948
949 static const target_info extended_remote_target_info = {
950 "extended-remote",
951 N_("Extended remote serial target in gdb-specific protocol"),
952 remote_doc
953 };
954
955 /* Set up the extended remote target by extending the standard remote
956 target and adding to it. */
957
958 class extended_remote_target final : public remote_target
959 {
960 public:
961 const target_info &info () const override
962 { return extended_remote_target_info; }
963
964 /* Open an extended-remote connection. */
965 static void open (const char *, int);
966
967 bool can_create_inferior () override { return true; }
968 void create_inferior (const char *, const std::string &,
969 char **, int) override;
970
971 void detach (inferior *, int) override;
972
973 bool can_attach () override { return true; }
974 void attach (const char *, int) override;
975
976 void post_attach (int) override;
977 bool supports_disable_randomization () override;
978 };
979
980 /* Per-program-space data key. */
981 static const struct program_space_key<char, gdb::xfree_deleter<char>>
982 remote_pspace_data;
983
984 /* The variable registered as the control variable used by the
985 remote exec-file commands. While the remote exec-file setting is
986 per-program-space, the set/show machinery uses this as the
987 location of the remote exec-file value. */
988 static char *remote_exec_file_var;
989
990 /* The size to align memory write packets, when practical. The protocol
991 does not guarantee any alignment, and gdb will generate short
992 writes and unaligned writes, but even as a best-effort attempt this
993 can improve bulk transfers. For instance, if a write is misaligned
994 relative to the target's data bus, the stub may need to make an extra
995 round trip fetching data from the target. This doesn't make a
996 huge difference, but it's easy to do, so we try to be helpful.
997
998 The alignment chosen is arbitrary; usually data bus width is
999 important here, not the possibly larger cache line size. */
1000 enum { REMOTE_ALIGN_WRITES = 16 };
1001
1002 /* Prototypes for local functions. */
1003
1004 static int hexnumlen (ULONGEST num);
1005
1006 static int stubhex (int ch);
1007
1008 static int hexnumstr (char *, ULONGEST);
1009
1010 static int hexnumnstr (char *, ULONGEST, int);
1011
1012 static CORE_ADDR remote_address_masked (CORE_ADDR);
1013
1014 static void print_packet (const char *);
1015
1016 static int stub_unpack_int (char *buff, int fieldlength);
1017
1018 struct packet_config;
1019
1020 static void show_packet_config_cmd (struct packet_config *config);
1021
1022 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1023 int from_tty,
1024 struct cmd_list_element *c,
1025 const char *value);
1026
1027 static ptid_t read_ptid (const char *buf, const char **obuf);
1028
1029 static void remote_async_inferior_event_handler (gdb_client_data);
1030
1031 static bool remote_read_description_p (struct target_ops *target);
1032
1033 static void remote_console_output (const char *msg);
1034
1035 static void remote_btrace_reset (remote_state *rs);
1036
1037 static void remote_unpush_and_throw (remote_target *target);
1038
1039 /* For "remote". */
1040
1041 static struct cmd_list_element *remote_cmdlist;
1042
1043 /* For "set remote" and "show remote". */
1044
1045 static struct cmd_list_element *remote_set_cmdlist;
1046 static struct cmd_list_element *remote_show_cmdlist;
1047
1048 /* Controls whether GDB is willing to use range stepping. */
1049
1050 static bool use_range_stepping = true;
1051
1052 /* Private data that we'll store in (struct thread_info)->priv. */
1053 struct remote_thread_info : public private_thread_info
1054 {
1055 std::string extra;
1056 std::string name;
1057 int core = -1;
1058
1059 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1060 sequence of bytes. */
1061 gdb::byte_vector thread_handle;
1062
1063 /* Whether the target stopped for a breakpoint/watchpoint. */
1064 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1065
1066 /* This is set to the data address of the access causing the target
1067 to stop for a watchpoint. */
1068 CORE_ADDR watch_data_address = 0;
1069
1070 /* Fields used by the vCont action coalescing implemented in
1071 remote_resume / remote_commit_resume. remote_resume stores each
1072 thread's last resume request in these fields, so that a later
1073 remote_commit_resume knows which is the proper action for this
1074 thread to include in the vCont packet. */
1075
1076 /* True if the last target_resume call for this thread was a step
1077 request, false if a continue request. */
1078 int last_resume_step = 0;
1079
1080 /* The signal specified in the last target_resume call for this
1081 thread. */
1082 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1083
1084 /* Whether this thread was already vCont-resumed on the remote
1085 side. */
1086 int vcont_resumed = 0;
1087 };
1088
1089 remote_state::remote_state ()
1090 : buf (400)
1091 {
1092 }
1093
1094 remote_state::~remote_state ()
1095 {
1096 xfree (this->last_pass_packet);
1097 xfree (this->last_program_signals_packet);
1098 xfree (this->finished_object);
1099 xfree (this->finished_annex);
1100 }
1101
1102 /* Utility: generate error from an incoming stub packet. */
1103 static void
1104 trace_error (char *buf)
1105 {
1106 if (*buf++ != 'E')
1107 return; /* not an error msg */
1108 switch (*buf)
1109 {
1110 case '1': /* malformed packet error */
1111 if (*++buf == '0') /* general case: */
1112 error (_("remote.c: error in outgoing packet."));
1113 else
1114 error (_("remote.c: error in outgoing packet at field #%ld."),
1115 strtol (buf, NULL, 16));
1116 default:
1117 error (_("Target returns error code '%s'."), buf);
1118 }
1119 }
1120
1121 /* Utility: wait for reply from stub, while accepting "O" packets. */
1122
1123 char *
1124 remote_target::remote_get_noisy_reply ()
1125 {
1126 struct remote_state *rs = get_remote_state ();
1127
1128 do /* Loop on reply from remote stub. */
1129 {
1130 char *buf;
1131
1132 QUIT; /* Allow user to bail out with ^C. */
1133 getpkt (&rs->buf, 0);
1134 buf = rs->buf.data ();
1135 if (buf[0] == 'E')
1136 trace_error (buf);
1137 else if (startswith (buf, "qRelocInsn:"))
1138 {
1139 ULONGEST ul;
1140 CORE_ADDR from, to, org_to;
1141 const char *p, *pp;
1142 int adjusted_size = 0;
1143 int relocated = 0;
1144
1145 p = buf + strlen ("qRelocInsn:");
1146 pp = unpack_varlen_hex (p, &ul);
1147 if (*pp != ';')
1148 error (_("invalid qRelocInsn packet: %s"), buf);
1149 from = ul;
1150
1151 p = pp + 1;
1152 unpack_varlen_hex (p, &ul);
1153 to = ul;
1154
1155 org_to = to;
1156
1157 try
1158 {
1159 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1160 relocated = 1;
1161 }
1162 catch (const gdb_exception &ex)
1163 {
1164 if (ex.error == MEMORY_ERROR)
1165 {
1166 /* Propagate memory errors silently back to the
1167 target. The stub may have limited the range of
1168 addresses we can write to, for example. */
1169 }
1170 else
1171 {
1172 /* Something unexpectedly bad happened. Be verbose
1173 so we can tell what, and propagate the error back
1174 to the stub, so it doesn't get stuck waiting for
1175 a response. */
1176 exception_fprintf (gdb_stderr, ex,
1177 _("warning: relocating instruction: "));
1178 }
1179 putpkt ("E01");
1180 }
1181
1182 if (relocated)
1183 {
1184 adjusted_size = to - org_to;
1185
1186 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1187 putpkt (buf);
1188 }
1189 }
1190 else if (buf[0] == 'O' && buf[1] != 'K')
1191 remote_console_output (buf + 1); /* 'O' message from stub */
1192 else
1193 return buf; /* Here's the actual reply. */
1194 }
1195 while (1);
1196 }
1197
1198 struct remote_arch_state *
1199 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1200 {
1201 remote_arch_state *rsa;
1202
1203 auto it = this->m_arch_states.find (gdbarch);
1204 if (it == this->m_arch_states.end ())
1205 {
1206 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1207 std::forward_as_tuple (gdbarch),
1208 std::forward_as_tuple (gdbarch));
1209 rsa = &p.first->second;
1210
1211 /* Make sure that the packet buffer is plenty big enough for
1212 this architecture. */
1213 if (this->buf.size () < rsa->remote_packet_size)
1214 this->buf.resize (2 * rsa->remote_packet_size);
1215 }
1216 else
1217 rsa = &it->second;
1218
1219 return rsa;
1220 }
1221
1222 /* Fetch the global remote target state. */
1223
1224 remote_state *
1225 remote_target::get_remote_state ()
1226 {
1227 /* Make sure that the remote architecture state has been
1228 initialized, because doing so might reallocate rs->buf. Any
1229 function which calls getpkt also needs to be mindful of changes
1230 to rs->buf, but this call limits the number of places which run
1231 into trouble. */
1232 m_remote_state.get_remote_arch_state (target_gdbarch ());
1233
1234 return &m_remote_state;
1235 }
1236
1237 /* Fetch the remote exec-file from the current program space. */
1238
1239 static const char *
1240 get_remote_exec_file (void)
1241 {
1242 char *remote_exec_file;
1243
1244 remote_exec_file = remote_pspace_data.get (current_program_space);
1245 if (remote_exec_file == NULL)
1246 return "";
1247
1248 return remote_exec_file;
1249 }
1250
1251 /* Set the remote exec file for PSPACE. */
1252
1253 static void
1254 set_pspace_remote_exec_file (struct program_space *pspace,
1255 const char *remote_exec_file)
1256 {
1257 char *old_file = remote_pspace_data.get (pspace);
1258
1259 xfree (old_file);
1260 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1261 }
1262
1263 /* The "set/show remote exec-file" set command hook. */
1264
1265 static void
1266 set_remote_exec_file (const char *ignored, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 gdb_assert (remote_exec_file_var != NULL);
1270 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1271 }
1272
1273 /* The "set/show remote exec-file" show command hook. */
1274
1275 static void
1276 show_remote_exec_file (struct ui_file *file, int from_tty,
1277 struct cmd_list_element *cmd, const char *value)
1278 {
1279 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1280 }
1281
1282 static int
1283 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1284 {
1285 int regnum, num_remote_regs, offset;
1286 struct packet_reg **remote_regs;
1287
1288 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1289 {
1290 struct packet_reg *r = &regs[regnum];
1291
1292 if (register_size (gdbarch, regnum) == 0)
1293 /* Do not try to fetch zero-sized (placeholder) registers. */
1294 r->pnum = -1;
1295 else
1296 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1297
1298 r->regnum = regnum;
1299 }
1300
1301 /* Define the g/G packet format as the contents of each register
1302 with a remote protocol number, in order of ascending protocol
1303 number. */
1304
1305 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1306 for (num_remote_regs = 0, regnum = 0;
1307 regnum < gdbarch_num_regs (gdbarch);
1308 regnum++)
1309 if (regs[regnum].pnum != -1)
1310 remote_regs[num_remote_regs++] = &regs[regnum];
1311
1312 std::sort (remote_regs, remote_regs + num_remote_regs,
1313 [] (const packet_reg *a, const packet_reg *b)
1314 { return a->pnum < b->pnum; });
1315
1316 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1317 {
1318 remote_regs[regnum]->in_g_packet = 1;
1319 remote_regs[regnum]->offset = offset;
1320 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1321 }
1322
1323 return offset;
1324 }
1325
1326 /* Given the architecture described by GDBARCH, return the remote
1327 protocol register's number and the register's offset in the g/G
1328 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1329 If the target does not have a mapping for REGNUM, return false,
1330 otherwise, return true. */
1331
1332 int
1333 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1334 int *pnum, int *poffset)
1335 {
1336 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1337
1338 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1339
1340 map_regcache_remote_table (gdbarch, regs.data ());
1341
1342 *pnum = regs[regnum].pnum;
1343 *poffset = regs[regnum].offset;
1344
1345 return *pnum != -1;
1346 }
1347
1348 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1349 {
1350 /* Use the architecture to build a regnum<->pnum table, which will be
1351 1:1 unless a feature set specifies otherwise. */
1352 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1353
1354 /* Record the maximum possible size of the g packet - it may turn out
1355 to be smaller. */
1356 this->sizeof_g_packet
1357 = map_regcache_remote_table (gdbarch, this->regs.get ());
1358
1359 /* Default maximum number of characters in a packet body. Many
1360 remote stubs have a hardwired buffer size of 400 bytes
1361 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1362 as the maximum packet-size to ensure that the packet and an extra
1363 NUL character can always fit in the buffer. This stops GDB
1364 trashing stubs that try to squeeze an extra NUL into what is
1365 already a full buffer (As of 1999-12-04 that was most stubs). */
1366 this->remote_packet_size = 400 - 1;
1367
1368 /* This one is filled in when a ``g'' packet is received. */
1369 this->actual_register_packet_size = 0;
1370
1371 /* Should rsa->sizeof_g_packet needs more space than the
1372 default, adjust the size accordingly. Remember that each byte is
1373 encoded as two characters. 32 is the overhead for the packet
1374 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1375 (``$NN:G...#NN'') is a better guess, the below has been padded a
1376 little. */
1377 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1378 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1379 }
1380
1381 /* Get a pointer to the current remote target. If not connected to a
1382 remote target, return NULL. */
1383
1384 static remote_target *
1385 get_current_remote_target ()
1386 {
1387 target_ops *proc_target = current_inferior ()->process_target ();
1388 return dynamic_cast<remote_target *> (proc_target);
1389 }
1390
1391 /* Return the current allowed size of a remote packet. This is
1392 inferred from the current architecture, and should be used to
1393 limit the length of outgoing packets. */
1394 long
1395 remote_target::get_remote_packet_size ()
1396 {
1397 struct remote_state *rs = get_remote_state ();
1398 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1399
1400 if (rs->explicit_packet_size)
1401 return rs->explicit_packet_size;
1402
1403 return rsa->remote_packet_size;
1404 }
1405
1406 static struct packet_reg *
1407 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1408 long regnum)
1409 {
1410 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1411 return NULL;
1412 else
1413 {
1414 struct packet_reg *r = &rsa->regs[regnum];
1415
1416 gdb_assert (r->regnum == regnum);
1417 return r;
1418 }
1419 }
1420
1421 static struct packet_reg *
1422 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1423 LONGEST pnum)
1424 {
1425 int i;
1426
1427 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1428 {
1429 struct packet_reg *r = &rsa->regs[i];
1430
1431 if (r->pnum == pnum)
1432 return r;
1433 }
1434 return NULL;
1435 }
1436
1437 /* Allow the user to specify what sequence to send to the remote
1438 when he requests a program interruption: Although ^C is usually
1439 what remote systems expect (this is the default, here), it is
1440 sometimes preferable to send a break. On other systems such
1441 as the Linux kernel, a break followed by g, which is Magic SysRq g
1442 is required in order to interrupt the execution. */
1443 const char interrupt_sequence_control_c[] = "Ctrl-C";
1444 const char interrupt_sequence_break[] = "BREAK";
1445 const char interrupt_sequence_break_g[] = "BREAK-g";
1446 static const char *const interrupt_sequence_modes[] =
1447 {
1448 interrupt_sequence_control_c,
1449 interrupt_sequence_break,
1450 interrupt_sequence_break_g,
1451 NULL
1452 };
1453 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1454
1455 static void
1456 show_interrupt_sequence (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c,
1458 const char *value)
1459 {
1460 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1461 fprintf_filtered (file,
1462 _("Send the ASCII ETX character (Ctrl-c) "
1463 "to the remote target to interrupt the "
1464 "execution of the program.\n"));
1465 else if (interrupt_sequence_mode == interrupt_sequence_break)
1466 fprintf_filtered (file,
1467 _("send a break signal to the remote target "
1468 "to interrupt the execution of the program.\n"));
1469 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1470 fprintf_filtered (file,
1471 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1472 "the remote target to interrupt the execution "
1473 "of Linux kernel.\n"));
1474 else
1475 internal_error (__FILE__, __LINE__,
1476 _("Invalid value for interrupt_sequence_mode: %s."),
1477 interrupt_sequence_mode);
1478 }
1479
1480 /* This boolean variable specifies whether interrupt_sequence is sent
1481 to the remote target when gdb connects to it.
1482 This is mostly needed when you debug the Linux kernel: The Linux kernel
1483 expects BREAK g which is Magic SysRq g for connecting gdb. */
1484 static bool interrupt_on_connect = false;
1485
1486 /* This variable is used to implement the "set/show remotebreak" commands.
1487 Since these commands are now deprecated in favor of "set/show remote
1488 interrupt-sequence", it no longer has any effect on the code. */
1489 static bool remote_break;
1490
1491 static void
1492 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1493 {
1494 if (remote_break)
1495 interrupt_sequence_mode = interrupt_sequence_break;
1496 else
1497 interrupt_sequence_mode = interrupt_sequence_control_c;
1498 }
1499
1500 static void
1501 show_remotebreak (struct ui_file *file, int from_tty,
1502 struct cmd_list_element *c,
1503 const char *value)
1504 {
1505 }
1506
1507 /* This variable sets the number of bits in an address that are to be
1508 sent in a memory ("M" or "m") packet. Normally, after stripping
1509 leading zeros, the entire address would be sent. This variable
1510 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1511 initial implementation of remote.c restricted the address sent in
1512 memory packets to ``host::sizeof long'' bytes - (typically 32
1513 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1514 address was never sent. Since fixing this bug may cause a break in
1515 some remote targets this variable is principally provided to
1516 facilitate backward compatibility. */
1517
1518 static unsigned int remote_address_size;
1519
1520 \f
1521 /* User configurable variables for the number of characters in a
1522 memory read/write packet. MIN (rsa->remote_packet_size,
1523 rsa->sizeof_g_packet) is the default. Some targets need smaller
1524 values (fifo overruns, et.al.) and some users need larger values
1525 (speed up transfers). The variables ``preferred_*'' (the user
1526 request), ``current_*'' (what was actually set) and ``forced_*''
1527 (Positive - a soft limit, negative - a hard limit). */
1528
1529 struct memory_packet_config
1530 {
1531 const char *name;
1532 long size;
1533 int fixed_p;
1534 };
1535
1536 /* The default max memory-write-packet-size, when the setting is
1537 "fixed". The 16k is historical. (It came from older GDB's using
1538 alloca for buffers and the knowledge (folklore?) that some hosts
1539 don't cope very well with large alloca calls.) */
1540 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1541
1542 /* The minimum remote packet size for memory transfers. Ensures we
1543 can write at least one byte. */
1544 #define MIN_MEMORY_PACKET_SIZE 20
1545
1546 /* Get the memory packet size, assuming it is fixed. */
1547
1548 static long
1549 get_fixed_memory_packet_size (struct memory_packet_config *config)
1550 {
1551 gdb_assert (config->fixed_p);
1552
1553 if (config->size <= 0)
1554 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1555 else
1556 return config->size;
1557 }
1558
1559 /* Compute the current size of a read/write packet. Since this makes
1560 use of ``actual_register_packet_size'' the computation is dynamic. */
1561
1562 long
1563 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1567
1568 long what_they_get;
1569 if (config->fixed_p)
1570 what_they_get = get_fixed_memory_packet_size (config);
1571 else
1572 {
1573 what_they_get = get_remote_packet_size ();
1574 /* Limit the packet to the size specified by the user. */
1575 if (config->size > 0
1576 && what_they_get > config->size)
1577 what_they_get = config->size;
1578
1579 /* Limit it to the size of the targets ``g'' response unless we have
1580 permission from the stub to use a larger packet size. */
1581 if (rs->explicit_packet_size == 0
1582 && rsa->actual_register_packet_size > 0
1583 && what_they_get > rsa->actual_register_packet_size)
1584 what_they_get = rsa->actual_register_packet_size;
1585 }
1586 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1587 what_they_get = MIN_MEMORY_PACKET_SIZE;
1588
1589 /* Make sure there is room in the global buffer for this packet
1590 (including its trailing NUL byte). */
1591 if (rs->buf.size () < what_they_get + 1)
1592 rs->buf.resize (2 * what_they_get);
1593
1594 return what_they_get;
1595 }
1596
1597 /* Update the size of a read/write packet. If they user wants
1598 something really big then do a sanity check. */
1599
1600 static void
1601 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1602 {
1603 int fixed_p = config->fixed_p;
1604 long size = config->size;
1605
1606 if (args == NULL)
1607 error (_("Argument required (integer, `fixed' or `limited')."));
1608 else if (strcmp (args, "hard") == 0
1609 || strcmp (args, "fixed") == 0)
1610 fixed_p = 1;
1611 else if (strcmp (args, "soft") == 0
1612 || strcmp (args, "limit") == 0)
1613 fixed_p = 0;
1614 else
1615 {
1616 char *end;
1617
1618 size = strtoul (args, &end, 0);
1619 if (args == end)
1620 error (_("Invalid %s (bad syntax)."), config->name);
1621
1622 /* Instead of explicitly capping the size of a packet to or
1623 disallowing it, the user is allowed to set the size to
1624 something arbitrarily large. */
1625 }
1626
1627 /* Extra checks? */
1628 if (fixed_p && !config->fixed_p)
1629 {
1630 /* So that the query shows the correct value. */
1631 long query_size = (size <= 0
1632 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1633 : size);
1634
1635 if (! query (_("The target may not be able to correctly handle a %s\n"
1636 "of %ld bytes. Change the packet size? "),
1637 config->name, query_size))
1638 error (_("Packet size not changed."));
1639 }
1640 /* Update the config. */
1641 config->fixed_p = fixed_p;
1642 config->size = size;
1643 }
1644
1645 static void
1646 show_memory_packet_size (struct memory_packet_config *config)
1647 {
1648 if (config->size == 0)
1649 printf_filtered (_("The %s is 0 (default). "), config->name);
1650 else
1651 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1652 if (config->fixed_p)
1653 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1654 get_fixed_memory_packet_size (config));
1655 else
1656 {
1657 remote_target *remote = get_current_remote_target ();
1658
1659 if (remote != NULL)
1660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1661 remote->get_memory_packet_size (config));
1662 else
1663 puts_filtered ("The actual limit will be further reduced "
1664 "dependent on the target.\n");
1665 }
1666 }
1667
1668 /* FIXME: needs to be per-remote-target. */
1669 static struct memory_packet_config memory_write_packet_config =
1670 {
1671 "memory-write-packet-size",
1672 };
1673
1674 static void
1675 set_memory_write_packet_size (const char *args, int from_tty)
1676 {
1677 set_memory_packet_size (args, &memory_write_packet_config);
1678 }
1679
1680 static void
1681 show_memory_write_packet_size (const char *args, int from_tty)
1682 {
1683 show_memory_packet_size (&memory_write_packet_config);
1684 }
1685
1686 /* Show the number of hardware watchpoints that can be used. */
1687
1688 static void
1689 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1690 struct cmd_list_element *c,
1691 const char *value)
1692 {
1693 fprintf_filtered (file, _("The maximum number of target hardware "
1694 "watchpoints is %s.\n"), value);
1695 }
1696
1697 /* Show the length limit (in bytes) for hardware watchpoints. */
1698
1699 static void
1700 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1701 struct cmd_list_element *c,
1702 const char *value)
1703 {
1704 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1705 "hardware watchpoint is %s.\n"), value);
1706 }
1707
1708 /* Show the number of hardware breakpoints that can be used. */
1709
1710 static void
1711 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1712 struct cmd_list_element *c,
1713 const char *value)
1714 {
1715 fprintf_filtered (file, _("The maximum number of target hardware "
1716 "breakpoints is %s.\n"), value);
1717 }
1718
1719 /* Controls the maximum number of characters to display in the debug output
1720 for each remote packet. The remaining characters are omitted. */
1721
1722 static int remote_packet_max_chars = 512;
1723
1724 /* Show the maximum number of characters to display for each remote packet
1725 when remote debugging is enabled. */
1726
1727 static void
1728 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1729 struct cmd_list_element *c,
1730 const char *value)
1731 {
1732 fprintf_filtered (file, _("Number of remote packet characters to "
1733 "display is %s.\n"), value);
1734 }
1735
1736 long
1737 remote_target::get_memory_write_packet_size ()
1738 {
1739 return get_memory_packet_size (&memory_write_packet_config);
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_read_packet_config =
1744 {
1745 "memory-read-packet-size",
1746 };
1747
1748 static void
1749 set_memory_read_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_read_packet_config);
1752 }
1753
1754 static void
1755 show_memory_read_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_read_packet_config);
1758 }
1759
1760 long
1761 remote_target::get_memory_read_packet_size ()
1762 {
1763 long size = get_memory_packet_size (&memory_read_packet_config);
1764
1765 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1766 extra buffer size argument before the memory read size can be
1767 increased beyond this. */
1768 if (size > get_remote_packet_size ())
1769 size = get_remote_packet_size ();
1770 return size;
1771 }
1772
1773 \f
1774
1775 struct packet_config
1776 {
1777 const char *name;
1778 const char *title;
1779
1780 /* If auto, GDB auto-detects support for this packet or feature,
1781 either through qSupported, or by trying the packet and looking
1782 at the response. If true, GDB assumes the target supports this
1783 packet. If false, the packet is disabled. Configs that don't
1784 have an associated command always have this set to auto. */
1785 enum auto_boolean detect;
1786
1787 /* Does the target support this packet? */
1788 enum packet_support support;
1789 };
1790
1791 static enum packet_support packet_config_support (struct packet_config *config);
1792 static enum packet_support packet_support (int packet);
1793
1794 static void
1795 show_packet_config_cmd (struct packet_config *config)
1796 {
1797 const char *support = "internal-error";
1798
1799 switch (packet_config_support (config))
1800 {
1801 case PACKET_ENABLE:
1802 support = "enabled";
1803 break;
1804 case PACKET_DISABLE:
1805 support = "disabled";
1806 break;
1807 case PACKET_SUPPORT_UNKNOWN:
1808 support = "unknown";
1809 break;
1810 }
1811 switch (config->detect)
1812 {
1813 case AUTO_BOOLEAN_AUTO:
1814 printf_filtered (_("Support for the `%s' packet "
1815 "is auto-detected, currently %s.\n"),
1816 config->name, support);
1817 break;
1818 case AUTO_BOOLEAN_TRUE:
1819 case AUTO_BOOLEAN_FALSE:
1820 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1821 config->name, support);
1822 break;
1823 }
1824 }
1825
1826 static void
1827 add_packet_config_cmd (struct packet_config *config, const char *name,
1828 const char *title, int legacy)
1829 {
1830 char *set_doc;
1831 char *show_doc;
1832 char *cmd_name;
1833
1834 config->name = name;
1835 config->title = title;
1836 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1837 name, title);
1838 show_doc = xstrprintf ("Show current use of remote "
1839 "protocol `%s' (%s) packet.",
1840 name, title);
1841 /* set/show TITLE-packet {auto,on,off} */
1842 cmd_name = xstrprintf ("%s-packet", title);
1843 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1844 &config->detect, set_doc,
1845 show_doc, NULL, /* help_doc */
1846 NULL,
1847 show_remote_protocol_packet_cmd,
1848 &remote_set_cmdlist, &remote_show_cmdlist);
1849 /* The command code copies the documentation strings. */
1850 xfree (set_doc);
1851 xfree (show_doc);
1852 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1853 if (legacy)
1854 {
1855 char *legacy_name;
1856
1857 legacy_name = xstrprintf ("%s-packet", name);
1858 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1859 &remote_set_cmdlist);
1860 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1861 &remote_show_cmdlist);
1862 }
1863 }
1864
1865 static enum packet_result
1866 packet_check_result (const char *buf)
1867 {
1868 if (buf[0] != '\0')
1869 {
1870 /* The stub recognized the packet request. Check that the
1871 operation succeeded. */
1872 if (buf[0] == 'E'
1873 && isxdigit (buf[1]) && isxdigit (buf[2])
1874 && buf[3] == '\0')
1875 /* "Enn" - definitely an error. */
1876 return PACKET_ERROR;
1877
1878 /* Always treat "E." as an error. This will be used for
1879 more verbose error messages, such as E.memtypes. */
1880 if (buf[0] == 'E' && buf[1] == '.')
1881 return PACKET_ERROR;
1882
1883 /* The packet may or may not be OK. Just assume it is. */
1884 return PACKET_OK;
1885 }
1886 else
1887 /* The stub does not support the packet. */
1888 return PACKET_UNKNOWN;
1889 }
1890
1891 static enum packet_result
1892 packet_check_result (const gdb::char_vector &buf)
1893 {
1894 return packet_check_result (buf.data ());
1895 }
1896
1897 static enum packet_result
1898 packet_ok (const char *buf, struct packet_config *config)
1899 {
1900 enum packet_result result;
1901
1902 if (config->detect != AUTO_BOOLEAN_TRUE
1903 && config->support == PACKET_DISABLE)
1904 internal_error (__FILE__, __LINE__,
1905 _("packet_ok: attempt to use a disabled packet"));
1906
1907 result = packet_check_result (buf);
1908 switch (result)
1909 {
1910 case PACKET_OK:
1911 case PACKET_ERROR:
1912 /* The stub recognized the packet request. */
1913 if (config->support == PACKET_SUPPORT_UNKNOWN)
1914 {
1915 if (remote_debug)
1916 fprintf_unfiltered (gdb_stdlog,
1917 "Packet %s (%s) is supported\n",
1918 config->name, config->title);
1919 config->support = PACKET_ENABLE;
1920 }
1921 break;
1922 case PACKET_UNKNOWN:
1923 /* The stub does not support the packet. */
1924 if (config->detect == AUTO_BOOLEAN_AUTO
1925 && config->support == PACKET_ENABLE)
1926 {
1927 /* If the stub previously indicated that the packet was
1928 supported then there is a protocol error. */
1929 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1930 config->name, config->title);
1931 }
1932 else if (config->detect == AUTO_BOOLEAN_TRUE)
1933 {
1934 /* The user set it wrong. */
1935 error (_("Enabled packet %s (%s) not recognized by stub"),
1936 config->name, config->title);
1937 }
1938
1939 if (remote_debug)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "Packet %s (%s) is NOT supported\n",
1942 config->name, config->title);
1943 config->support = PACKET_DISABLE;
1944 break;
1945 }
1946
1947 return result;
1948 }
1949
1950 static enum packet_result
1951 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1952 {
1953 return packet_ok (buf.data (), config);
1954 }
1955
1956 enum {
1957 PACKET_vCont = 0,
1958 PACKET_X,
1959 PACKET_qSymbol,
1960 PACKET_P,
1961 PACKET_p,
1962 PACKET_Z0,
1963 PACKET_Z1,
1964 PACKET_Z2,
1965 PACKET_Z3,
1966 PACKET_Z4,
1967 PACKET_vFile_setfs,
1968 PACKET_vFile_open,
1969 PACKET_vFile_pread,
1970 PACKET_vFile_pwrite,
1971 PACKET_vFile_close,
1972 PACKET_vFile_unlink,
1973 PACKET_vFile_readlink,
1974 PACKET_vFile_fstat,
1975 PACKET_qXfer_auxv,
1976 PACKET_qXfer_features,
1977 PACKET_qXfer_exec_file,
1978 PACKET_qXfer_libraries,
1979 PACKET_qXfer_libraries_svr4,
1980 PACKET_qXfer_memory_map,
1981 PACKET_qXfer_osdata,
1982 PACKET_qXfer_threads,
1983 PACKET_qXfer_statictrace_read,
1984 PACKET_qXfer_traceframe_info,
1985 PACKET_qXfer_uib,
1986 PACKET_qGetTIBAddr,
1987 PACKET_qGetTLSAddr,
1988 PACKET_qSupported,
1989 PACKET_qTStatus,
1990 PACKET_QPassSignals,
1991 PACKET_QCatchSyscalls,
1992 PACKET_QProgramSignals,
1993 PACKET_QSetWorkingDir,
1994 PACKET_QStartupWithShell,
1995 PACKET_QEnvironmentHexEncoded,
1996 PACKET_QEnvironmentReset,
1997 PACKET_QEnvironmentUnset,
1998 PACKET_qCRC,
1999 PACKET_qSearch_memory,
2000 PACKET_vAttach,
2001 PACKET_vRun,
2002 PACKET_QStartNoAckMode,
2003 PACKET_vKill,
2004 PACKET_qXfer_siginfo_read,
2005 PACKET_qXfer_siginfo_write,
2006 PACKET_qAttached,
2007
2008 /* Support for conditional tracepoints. */
2009 PACKET_ConditionalTracepoints,
2010
2011 /* Support for target-side breakpoint conditions. */
2012 PACKET_ConditionalBreakpoints,
2013
2014 /* Support for target-side breakpoint commands. */
2015 PACKET_BreakpointCommands,
2016
2017 /* Support for fast tracepoints. */
2018 PACKET_FastTracepoints,
2019
2020 /* Support for static tracepoints. */
2021 PACKET_StaticTracepoints,
2022
2023 /* Support for installing tracepoints while a trace experiment is
2024 running. */
2025 PACKET_InstallInTrace,
2026
2027 PACKET_bc,
2028 PACKET_bs,
2029 PACKET_TracepointSource,
2030 PACKET_QAllow,
2031 PACKET_qXfer_fdpic,
2032 PACKET_QDisableRandomization,
2033 PACKET_QAgent,
2034 PACKET_QTBuffer_size,
2035 PACKET_Qbtrace_off,
2036 PACKET_Qbtrace_bts,
2037 PACKET_Qbtrace_pt,
2038 PACKET_qXfer_btrace,
2039
2040 /* Support for the QNonStop packet. */
2041 PACKET_QNonStop,
2042
2043 /* Support for the QThreadEvents packet. */
2044 PACKET_QThreadEvents,
2045
2046 /* Support for multi-process extensions. */
2047 PACKET_multiprocess_feature,
2048
2049 /* Support for enabling and disabling tracepoints while a trace
2050 experiment is running. */
2051 PACKET_EnableDisableTracepoints_feature,
2052
2053 /* Support for collecting strings using the tracenz bytecode. */
2054 PACKET_tracenz_feature,
2055
2056 /* Support for continuing to run a trace experiment while GDB is
2057 disconnected. */
2058 PACKET_DisconnectedTracing_feature,
2059
2060 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2061 PACKET_augmented_libraries_svr4_read_feature,
2062
2063 /* Support for the qXfer:btrace-conf:read packet. */
2064 PACKET_qXfer_btrace_conf,
2065
2066 /* Support for the Qbtrace-conf:bts:size packet. */
2067 PACKET_Qbtrace_conf_bts_size,
2068
2069 /* Support for swbreak+ feature. */
2070 PACKET_swbreak_feature,
2071
2072 /* Support for hwbreak+ feature. */
2073 PACKET_hwbreak_feature,
2074
2075 /* Support for fork events. */
2076 PACKET_fork_event_feature,
2077
2078 /* Support for vfork events. */
2079 PACKET_vfork_event_feature,
2080
2081 /* Support for the Qbtrace-conf:pt:size packet. */
2082 PACKET_Qbtrace_conf_pt_size,
2083
2084 /* Support for exec events. */
2085 PACKET_exec_event_feature,
2086
2087 /* Support for query supported vCont actions. */
2088 PACKET_vContSupported,
2089
2090 /* Support remote CTRL-C. */
2091 PACKET_vCtrlC,
2092
2093 /* Support TARGET_WAITKIND_NO_RESUMED. */
2094 PACKET_no_resumed,
2095
2096 PACKET_MAX
2097 };
2098
2099 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2100 assuming all remote targets are the same server (thus all support
2101 the same packets). */
2102 static struct packet_config remote_protocol_packets[PACKET_MAX];
2103
2104 /* Returns the packet's corresponding "set remote foo-packet" command
2105 state. See struct packet_config for more details. */
2106
2107 static enum auto_boolean
2108 packet_set_cmd_state (int packet)
2109 {
2110 return remote_protocol_packets[packet].detect;
2111 }
2112
2113 /* Returns whether a given packet or feature is supported. This takes
2114 into account the state of the corresponding "set remote foo-packet"
2115 command, which may be used to bypass auto-detection. */
2116
2117 static enum packet_support
2118 packet_config_support (struct packet_config *config)
2119 {
2120 switch (config->detect)
2121 {
2122 case AUTO_BOOLEAN_TRUE:
2123 return PACKET_ENABLE;
2124 case AUTO_BOOLEAN_FALSE:
2125 return PACKET_DISABLE;
2126 case AUTO_BOOLEAN_AUTO:
2127 return config->support;
2128 default:
2129 gdb_assert_not_reached (_("bad switch"));
2130 }
2131 }
2132
2133 /* Same as packet_config_support, but takes the packet's enum value as
2134 argument. */
2135
2136 static enum packet_support
2137 packet_support (int packet)
2138 {
2139 struct packet_config *config = &remote_protocol_packets[packet];
2140
2141 return packet_config_support (config);
2142 }
2143
2144 static void
2145 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2146 struct cmd_list_element *c,
2147 const char *value)
2148 {
2149 struct packet_config *packet;
2150
2151 for (packet = remote_protocol_packets;
2152 packet < &remote_protocol_packets[PACKET_MAX];
2153 packet++)
2154 {
2155 if (&packet->detect == c->var)
2156 {
2157 show_packet_config_cmd (packet);
2158 return;
2159 }
2160 }
2161 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2162 c->name);
2163 }
2164
2165 /* Should we try one of the 'Z' requests? */
2166
2167 enum Z_packet_type
2168 {
2169 Z_PACKET_SOFTWARE_BP,
2170 Z_PACKET_HARDWARE_BP,
2171 Z_PACKET_WRITE_WP,
2172 Z_PACKET_READ_WP,
2173 Z_PACKET_ACCESS_WP,
2174 NR_Z_PACKET_TYPES
2175 };
2176
2177 /* For compatibility with older distributions. Provide a ``set remote
2178 Z-packet ...'' command that updates all the Z packet types. */
2179
2180 static enum auto_boolean remote_Z_packet_detect;
2181
2182 static void
2183 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2184 struct cmd_list_element *c)
2185 {
2186 int i;
2187
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2190 }
2191
2192 static void
2193 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2194 struct cmd_list_element *c,
2195 const char *value)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 {
2201 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2202 }
2203 }
2204
2205 /* Returns true if the multi-process extensions are in effect. */
2206
2207 static int
2208 remote_multi_process_p (struct remote_state *rs)
2209 {
2210 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2211 }
2212
2213 /* Returns true if fork events are supported. */
2214
2215 static int
2216 remote_fork_event_p (struct remote_state *rs)
2217 {
2218 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2219 }
2220
2221 /* Returns true if vfork events are supported. */
2222
2223 static int
2224 remote_vfork_event_p (struct remote_state *rs)
2225 {
2226 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2227 }
2228
2229 /* Returns true if exec events are supported. */
2230
2231 static int
2232 remote_exec_event_p (struct remote_state *rs)
2233 {
2234 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2235 }
2236
2237 /* Insert fork catchpoint target routine. If fork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_fork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_fork_event_p (rs);
2246 }
2247
2248 /* Remove fork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_fork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert vfork catchpoint target routine. If vfork events are enabled
2258 then return success, nothing more to do. */
2259
2260 int
2261 remote_target::insert_vfork_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_vfork_event_p (rs);
2266 }
2267
2268 /* Remove vfork catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_vfork_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 /* Insert exec catchpoint target routine. If exec events are
2278 enabled, just return success. */
2279
2280 int
2281 remote_target::insert_exec_catchpoint (int pid)
2282 {
2283 struct remote_state *rs = get_remote_state ();
2284
2285 return !remote_exec_event_p (rs);
2286 }
2287
2288 /* Remove exec catchpoint target routine. Nothing to do, just
2289 return success. */
2290
2291 int
2292 remote_target::remove_exec_catchpoint (int pid)
2293 {
2294 return 0;
2295 }
2296
2297 \f
2298
2299 /* Take advantage of the fact that the TID field is not used, to tag
2300 special ptids with it set to != 0. */
2301 static const ptid_t magic_null_ptid (42000, -1, 1);
2302 static const ptid_t not_sent_ptid (42000, -2, 1);
2303 static const ptid_t any_thread_ptid (42000, 0, 1);
2304
2305 /* Find out if the stub attached to PID (and hence GDB should offer to
2306 detach instead of killing it when bailing out). */
2307
2308 int
2309 remote_target::remote_query_attached (int pid)
2310 {
2311 struct remote_state *rs = get_remote_state ();
2312 size_t size = get_remote_packet_size ();
2313
2314 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2315 return 0;
2316
2317 if (remote_multi_process_p (rs))
2318 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2319 else
2320 xsnprintf (rs->buf.data (), size, "qAttached");
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, 0);
2324
2325 switch (packet_ok (rs->buf,
2326 &remote_protocol_packets[PACKET_qAttached]))
2327 {
2328 case PACKET_OK:
2329 if (strcmp (rs->buf.data (), "1") == 0)
2330 return 1;
2331 break;
2332 case PACKET_ERROR:
2333 warning (_("Remote failure reply: %s"), rs->buf.data ());
2334 break;
2335 case PACKET_UNKNOWN:
2336 break;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2343 has been invented by GDB, instead of reported by the target. Since
2344 we can be connected to a remote system before before knowing about
2345 any inferior, mark the target with execution when we find the first
2346 inferior. If ATTACHED is 1, then we had just attached to this
2347 inferior. If it is 0, then we just created this inferior. If it
2348 is -1, then try querying the remote stub to find out if it had
2349 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2350 attempt to open this inferior's executable as the main executable
2351 if no main executable is open already. */
2352
2353 inferior *
2354 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2355 int try_open_exec)
2356 {
2357 struct inferior *inf;
2358
2359 /* Check whether this process we're learning about is to be
2360 considered attached, or if is to be considered to have been
2361 spawned by the stub. */
2362 if (attached == -1)
2363 attached = remote_query_attached (pid);
2364
2365 if (gdbarch_has_global_solist (target_gdbarch ()))
2366 {
2367 /* If the target shares code across all inferiors, then every
2368 attach adds a new inferior. */
2369 inf = add_inferior (pid);
2370
2371 /* ... and every inferior is bound to the same program space.
2372 However, each inferior may still have its own address
2373 space. */
2374 inf->aspace = maybe_new_address_space ();
2375 inf->pspace = current_program_space;
2376 }
2377 else
2378 {
2379 /* In the traditional debugging scenario, there's a 1-1 match
2380 between program/address spaces. We simply bind the inferior
2381 to the program space's address space. */
2382 inf = current_inferior ();
2383
2384 /* However, if the current inferior is already bound to a
2385 process, find some other empty inferior. */
2386 if (inf->pid != 0)
2387 {
2388 inf = nullptr;
2389 for (inferior *it : all_inferiors ())
2390 if (it->pid == 0)
2391 {
2392 inf = it;
2393 break;
2394 }
2395 }
2396 if (inf == nullptr)
2397 {
2398 /* Since all inferiors were already bound to a process, add
2399 a new inferior. */
2400 inf = add_inferior_with_spaces ();
2401 }
2402 switch_to_inferior_no_thread (inf);
2403 push_target (this);
2404 inferior_appeared (inf, pid);
2405 }
2406
2407 inf->attach_flag = attached;
2408 inf->fake_pid_p = fake_pid_p;
2409
2410 /* If no main executable is currently open then attempt to
2411 open the file that was executed to create this inferior. */
2412 if (try_open_exec && get_exec_file (0) == NULL)
2413 exec_file_locate_attach (pid, 0, 1);
2414
2415 /* Check for exec file mismatch, and let the user solve it. */
2416 validate_exec_file (1);
2417
2418 return inf;
2419 }
2420
2421 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2422 static remote_thread_info *get_remote_thread_info (remote_target *target,
2423 ptid_t ptid);
2424
2425 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2426 according to RUNNING. */
2427
2428 thread_info *
2429 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2430 {
2431 struct remote_state *rs = get_remote_state ();
2432 struct thread_info *thread;
2433
2434 /* GDB historically didn't pull threads in the initial connection
2435 setup. If the remote target doesn't even have a concept of
2436 threads (e.g., a bare-metal target), even if internally we
2437 consider that a single-threaded target, mentioning a new thread
2438 might be confusing to the user. Be silent then, preserving the
2439 age old behavior. */
2440 if (rs->starting_up)
2441 thread = add_thread_silent (this, ptid);
2442 else
2443 thread = add_thread (this, ptid);
2444
2445 get_remote_thread_info (thread)->vcont_resumed = executing;
2446 set_executing (this, ptid, executing);
2447 set_running (this, ptid, running);
2448
2449 return thread;
2450 }
2451
2452 /* Come here when we learn about a thread id from the remote target.
2453 It may be the first time we hear about such thread, so take the
2454 opportunity to add it to GDB's thread list. In case this is the
2455 first time we're noticing its corresponding inferior, add it to
2456 GDB's inferior list as well. EXECUTING indicates whether the
2457 thread is (internally) executing or stopped. */
2458
2459 void
2460 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2461 {
2462 /* In non-stop mode, we assume new found threads are (externally)
2463 running until proven otherwise with a stop reply. In all-stop,
2464 we can only get here if all threads are stopped. */
2465 int running = target_is_non_stop_p () ? 1 : 0;
2466
2467 /* If this is a new thread, add it to GDB's thread list.
2468 If we leave it up to WFI to do this, bad things will happen. */
2469
2470 thread_info *tp = find_thread_ptid (this, currthread);
2471 if (tp != NULL && tp->state == THREAD_EXITED)
2472 {
2473 /* We're seeing an event on a thread id we knew had exited.
2474 This has to be a new thread reusing the old id. Add it. */
2475 remote_add_thread (currthread, running, executing);
2476 return;
2477 }
2478
2479 if (!in_thread_list (this, currthread))
2480 {
2481 struct inferior *inf = NULL;
2482 int pid = currthread.pid ();
2483
2484 if (inferior_ptid.is_pid ()
2485 && pid == inferior_ptid.pid ())
2486 {
2487 /* inferior_ptid has no thread member yet. This can happen
2488 with the vAttach -> remote_wait,"TAAthread:" path if the
2489 stub doesn't support qC. This is the first stop reported
2490 after an attach, so this is the main thread. Update the
2491 ptid in the thread list. */
2492 if (in_thread_list (this, ptid_t (pid)))
2493 thread_change_ptid (this, inferior_ptid, currthread);
2494 else
2495 {
2496 thread_info *thr
2497 = remote_add_thread (currthread, running, executing);
2498 switch_to_thread (thr);
2499 }
2500 return;
2501 }
2502
2503 if (magic_null_ptid == inferior_ptid)
2504 {
2505 /* inferior_ptid is not set yet. This can happen with the
2506 vRun -> remote_wait,"TAAthread:" path if the stub
2507 doesn't support qC. This is the first stop reported
2508 after an attach, so this is the main thread. Update the
2509 ptid in the thread list. */
2510 thread_change_ptid (this, inferior_ptid, currthread);
2511 return;
2512 }
2513
2514 /* When connecting to a target remote, or to a target
2515 extended-remote which already was debugging an inferior, we
2516 may not know about it yet. Add it before adding its child
2517 thread, so notifications are emitted in a sensible order. */
2518 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521 bool fake_pid_p = !remote_multi_process_p (rs);
2522
2523 inf = remote_add_inferior (fake_pid_p,
2524 currthread.pid (), -1, 1);
2525 }
2526
2527 /* This is really a new thread. Add it. */
2528 thread_info *new_thr
2529 = remote_add_thread (currthread, running, executing);
2530
2531 /* If we found a new inferior, let the common code do whatever
2532 it needs to with it (e.g., read shared libraries, insert
2533 breakpoints), unless we're just setting up an all-stop
2534 connection. */
2535 if (inf != NULL)
2536 {
2537 struct remote_state *rs = get_remote_state ();
2538
2539 if (!rs->starting_up)
2540 notice_new_inferior (new_thr, executing, 0);
2541 }
2542 }
2543 }
2544
2545 /* Return THREAD's private thread data, creating it if necessary. */
2546
2547 static remote_thread_info *
2548 get_remote_thread_info (thread_info *thread)
2549 {
2550 gdb_assert (thread != NULL);
2551
2552 if (thread->priv == NULL)
2553 thread->priv.reset (new remote_thread_info);
2554
2555 return static_cast<remote_thread_info *> (thread->priv.get ());
2556 }
2557
2558 /* Return PTID's private thread data, creating it if necessary. */
2559
2560 static remote_thread_info *
2561 get_remote_thread_info (remote_target *target, ptid_t ptid)
2562 {
2563 thread_info *thr = find_thread_ptid (target, ptid);
2564 return get_remote_thread_info (thr);
2565 }
2566
2567 /* Call this function as a result of
2568 1) A halt indication (T packet) containing a thread id
2569 2) A direct query of currthread
2570 3) Successful execution of set thread */
2571
2572 static void
2573 record_currthread (struct remote_state *rs, ptid_t currthread)
2574 {
2575 rs->general_thread = currthread;
2576 }
2577
2578 /* If 'QPassSignals' is supported, tell the remote stub what signals
2579 it can simply pass through to the inferior without reporting. */
2580
2581 void
2582 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2583 {
2584 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2585 {
2586 char *pass_packet, *p;
2587 int count = 0;
2588 struct remote_state *rs = get_remote_state ();
2589
2590 gdb_assert (pass_signals.size () < 256);
2591 for (size_t i = 0; i < pass_signals.size (); i++)
2592 {
2593 if (pass_signals[i])
2594 count++;
2595 }
2596 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2597 strcpy (pass_packet, "QPassSignals:");
2598 p = pass_packet + strlen (pass_packet);
2599 for (size_t i = 0; i < pass_signals.size (); i++)
2600 {
2601 if (pass_signals[i])
2602 {
2603 if (i >= 16)
2604 *p++ = tohex (i >> 4);
2605 *p++ = tohex (i & 15);
2606 if (count)
2607 *p++ = ';';
2608 else
2609 break;
2610 count--;
2611 }
2612 }
2613 *p = 0;
2614 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2615 {
2616 putpkt (pass_packet);
2617 getpkt (&rs->buf, 0);
2618 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2619 xfree (rs->last_pass_packet);
2620 rs->last_pass_packet = pass_packet;
2621 }
2622 else
2623 xfree (pass_packet);
2624 }
2625 }
2626
2627 /* If 'QCatchSyscalls' is supported, tell the remote stub
2628 to report syscalls to GDB. */
2629
2630 int
2631 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2632 gdb::array_view<const int> syscall_counts)
2633 {
2634 const char *catch_packet;
2635 enum packet_result result;
2636 int n_sysno = 0;
2637
2638 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2639 {
2640 /* Not supported. */
2641 return 1;
2642 }
2643
2644 if (needed && any_count == 0)
2645 {
2646 /* Count how many syscalls are to be caught. */
2647 for (size_t i = 0; i < syscall_counts.size (); i++)
2648 {
2649 if (syscall_counts[i] != 0)
2650 n_sysno++;
2651 }
2652 }
2653
2654 if (remote_debug)
2655 {
2656 fprintf_unfiltered (gdb_stdlog,
2657 "remote_set_syscall_catchpoint "
2658 "pid %d needed %d any_count %d n_sysno %d\n",
2659 pid, needed, any_count, n_sysno);
2660 }
2661
2662 std::string built_packet;
2663 if (needed)
2664 {
2665 /* Prepare a packet with the sysno list, assuming max 8+1
2666 characters for a sysno. If the resulting packet size is too
2667 big, fallback on the non-selective packet. */
2668 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2669 built_packet.reserve (maxpktsz);
2670 built_packet = "QCatchSyscalls:1";
2671 if (any_count == 0)
2672 {
2673 /* Add in each syscall to be caught. */
2674 for (size_t i = 0; i < syscall_counts.size (); i++)
2675 {
2676 if (syscall_counts[i] != 0)
2677 string_appendf (built_packet, ";%zx", i);
2678 }
2679 }
2680 if (built_packet.size () > get_remote_packet_size ())
2681 {
2682 /* catch_packet too big. Fallback to less efficient
2683 non selective mode, with GDB doing the filtering. */
2684 catch_packet = "QCatchSyscalls:1";
2685 }
2686 else
2687 catch_packet = built_packet.c_str ();
2688 }
2689 else
2690 catch_packet = "QCatchSyscalls:0";
2691
2692 struct remote_state *rs = get_remote_state ();
2693
2694 putpkt (catch_packet);
2695 getpkt (&rs->buf, 0);
2696 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2697 if (result == PACKET_OK)
2698 return 0;
2699 else
2700 return -1;
2701 }
2702
2703 /* If 'QProgramSignals' is supported, tell the remote stub what
2704 signals it should pass through to the inferior when detaching. */
2705
2706 void
2707 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2708 {
2709 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2710 {
2711 char *packet, *p;
2712 int count = 0;
2713 struct remote_state *rs = get_remote_state ();
2714
2715 gdb_assert (signals.size () < 256);
2716 for (size_t i = 0; i < signals.size (); i++)
2717 {
2718 if (signals[i])
2719 count++;
2720 }
2721 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2722 strcpy (packet, "QProgramSignals:");
2723 p = packet + strlen (packet);
2724 for (size_t i = 0; i < signals.size (); i++)
2725 {
2726 if (signal_pass_state (i))
2727 {
2728 if (i >= 16)
2729 *p++ = tohex (i >> 4);
2730 *p++ = tohex (i & 15);
2731 if (count)
2732 *p++ = ';';
2733 else
2734 break;
2735 count--;
2736 }
2737 }
2738 *p = 0;
2739 if (!rs->last_program_signals_packet
2740 || strcmp (rs->last_program_signals_packet, packet) != 0)
2741 {
2742 putpkt (packet);
2743 getpkt (&rs->buf, 0);
2744 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2745 xfree (rs->last_program_signals_packet);
2746 rs->last_program_signals_packet = packet;
2747 }
2748 else
2749 xfree (packet);
2750 }
2751 }
2752
2753 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2754 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2755 thread. If GEN is set, set the general thread, if not, then set
2756 the step/continue thread. */
2757 void
2758 remote_target::set_thread (ptid_t ptid, int gen)
2759 {
2760 struct remote_state *rs = get_remote_state ();
2761 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2762 char *buf = rs->buf.data ();
2763 char *endbuf = buf + get_remote_packet_size ();
2764
2765 if (state == ptid)
2766 return;
2767
2768 *buf++ = 'H';
2769 *buf++ = gen ? 'g' : 'c';
2770 if (ptid == magic_null_ptid)
2771 xsnprintf (buf, endbuf - buf, "0");
2772 else if (ptid == any_thread_ptid)
2773 xsnprintf (buf, endbuf - buf, "0");
2774 else if (ptid == minus_one_ptid)
2775 xsnprintf (buf, endbuf - buf, "-1");
2776 else
2777 write_ptid (buf, endbuf, ptid);
2778 putpkt (rs->buf);
2779 getpkt (&rs->buf, 0);
2780 if (gen)
2781 rs->general_thread = ptid;
2782 else
2783 rs->continue_thread = ptid;
2784 }
2785
2786 void
2787 remote_target::set_general_thread (ptid_t ptid)
2788 {
2789 set_thread (ptid, 1);
2790 }
2791
2792 void
2793 remote_target::set_continue_thread (ptid_t ptid)
2794 {
2795 set_thread (ptid, 0);
2796 }
2797
2798 /* Change the remote current process. Which thread within the process
2799 ends up selected isn't important, as long as it is the same process
2800 as what INFERIOR_PTID points to.
2801
2802 This comes from that fact that there is no explicit notion of
2803 "selected process" in the protocol. The selected process for
2804 general operations is the process the selected general thread
2805 belongs to. */
2806
2807 void
2808 remote_target::set_general_process ()
2809 {
2810 struct remote_state *rs = get_remote_state ();
2811
2812 /* If the remote can't handle multiple processes, don't bother. */
2813 if (!remote_multi_process_p (rs))
2814 return;
2815
2816 /* We only need to change the remote current thread if it's pointing
2817 at some other process. */
2818 if (rs->general_thread.pid () != inferior_ptid.pid ())
2819 set_general_thread (inferior_ptid);
2820 }
2821
2822 \f
2823 /* Return nonzero if this is the main thread that we made up ourselves
2824 to model non-threaded targets as single-threaded. */
2825
2826 static int
2827 remote_thread_always_alive (ptid_t ptid)
2828 {
2829 if (ptid == magic_null_ptid)
2830 /* The main thread is always alive. */
2831 return 1;
2832
2833 if (ptid.pid () != 0 && ptid.lwp () == 0)
2834 /* The main thread is always alive. This can happen after a
2835 vAttach, if the remote side doesn't support
2836 multi-threading. */
2837 return 1;
2838
2839 return 0;
2840 }
2841
2842 /* Return nonzero if the thread PTID is still alive on the remote
2843 system. */
2844
2845 bool
2846 remote_target::thread_alive (ptid_t ptid)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 char *p, *endp;
2850
2851 /* Check if this is a thread that we made up ourselves to model
2852 non-threaded targets as single-threaded. */
2853 if (remote_thread_always_alive (ptid))
2854 return 1;
2855
2856 p = rs->buf.data ();
2857 endp = p + get_remote_packet_size ();
2858
2859 *p++ = 'T';
2860 write_ptid (p, endp, ptid);
2861
2862 putpkt (rs->buf);
2863 getpkt (&rs->buf, 0);
2864 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2865 }
2866
2867 /* Return a pointer to a thread name if we know it and NULL otherwise.
2868 The thread_info object owns the memory for the name. */
2869
2870 const char *
2871 remote_target::thread_name (struct thread_info *info)
2872 {
2873 if (info->priv != NULL)
2874 {
2875 const std::string &name = get_remote_thread_info (info)->name;
2876 return !name.empty () ? name.c_str () : NULL;
2877 }
2878
2879 return NULL;
2880 }
2881
2882 /* About these extended threadlist and threadinfo packets. They are
2883 variable length packets but, the fields within them are often fixed
2884 length. They are redundant enough to send over UDP as is the
2885 remote protocol in general. There is a matching unit test module
2886 in libstub. */
2887
2888 /* WARNING: This threadref data structure comes from the remote O.S.,
2889 libstub protocol encoding, and remote.c. It is not particularly
2890 changable. */
2891
2892 /* Right now, the internal structure is int. We want it to be bigger.
2893 Plan to fix this. */
2894
2895 typedef int gdb_threadref; /* Internal GDB thread reference. */
2896
2897 /* gdb_ext_thread_info is an internal GDB data structure which is
2898 equivalent to the reply of the remote threadinfo packet. */
2899
2900 struct gdb_ext_thread_info
2901 {
2902 threadref threadid; /* External form of thread reference. */
2903 int active; /* Has state interesting to GDB?
2904 regs, stack. */
2905 char display[256]; /* Brief state display, name,
2906 blocked/suspended. */
2907 char shortname[32]; /* To be used to name threads. */
2908 char more_display[256]; /* Long info, statistics, queue depth,
2909 whatever. */
2910 };
2911
2912 /* The volume of remote transfers can be limited by submitting
2913 a mask containing bits specifying the desired information.
2914 Use a union of these values as the 'selection' parameter to
2915 get_thread_info. FIXME: Make these TAG names more thread specific. */
2916
2917 #define TAG_THREADID 1
2918 #define TAG_EXISTS 2
2919 #define TAG_DISPLAY 4
2920 #define TAG_THREADNAME 8
2921 #define TAG_MOREDISPLAY 16
2922
2923 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2924
2925 static char *unpack_nibble (char *buf, int *val);
2926
2927 static char *unpack_byte (char *buf, int *value);
2928
2929 static char *pack_int (char *buf, int value);
2930
2931 static char *unpack_int (char *buf, int *value);
2932
2933 static char *unpack_string (char *src, char *dest, int length);
2934
2935 static char *pack_threadid (char *pkt, threadref *id);
2936
2937 static char *unpack_threadid (char *inbuf, threadref *id);
2938
2939 void int_to_threadref (threadref *id, int value);
2940
2941 static int threadref_to_int (threadref *ref);
2942
2943 static void copy_threadref (threadref *dest, threadref *src);
2944
2945 static int threadmatch (threadref *dest, threadref *src);
2946
2947 static char *pack_threadinfo_request (char *pkt, int mode,
2948 threadref *id);
2949
2950 static char *pack_threadlist_request (char *pkt, int startflag,
2951 int threadcount,
2952 threadref *nextthread);
2953
2954 static int remote_newthread_step (threadref *ref, void *context);
2955
2956
2957 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2958 buffer we're allowed to write to. Returns
2959 BUF+CHARACTERS_WRITTEN. */
2960
2961 char *
2962 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2963 {
2964 int pid, tid;
2965 struct remote_state *rs = get_remote_state ();
2966
2967 if (remote_multi_process_p (rs))
2968 {
2969 pid = ptid.pid ();
2970 if (pid < 0)
2971 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2972 else
2973 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2974 }
2975 tid = ptid.lwp ();
2976 if (tid < 0)
2977 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2978 else
2979 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2980
2981 return buf;
2982 }
2983
2984 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2985 last parsed char. Returns null_ptid if no thread id is found, and
2986 throws an error if the thread id has an invalid format. */
2987
2988 static ptid_t
2989 read_ptid (const char *buf, const char **obuf)
2990 {
2991 const char *p = buf;
2992 const char *pp;
2993 ULONGEST pid = 0, tid = 0;
2994
2995 if (*p == 'p')
2996 {
2997 /* Multi-process ptid. */
2998 pp = unpack_varlen_hex (p + 1, &pid);
2999 if (*pp != '.')
3000 error (_("invalid remote ptid: %s"), p);
3001
3002 p = pp;
3003 pp = unpack_varlen_hex (p + 1, &tid);
3004 if (obuf)
3005 *obuf = pp;
3006 return ptid_t (pid, tid, 0);
3007 }
3008
3009 /* No multi-process. Just a tid. */
3010 pp = unpack_varlen_hex (p, &tid);
3011
3012 /* Return null_ptid when no thread id is found. */
3013 if (p == pp)
3014 {
3015 if (obuf)
3016 *obuf = pp;
3017 return null_ptid;
3018 }
3019
3020 /* Since the stub is not sending a process id, then default to
3021 what's in inferior_ptid, unless it's null at this point. If so,
3022 then since there's no way to know the pid of the reported
3023 threads, use the magic number. */
3024 if (inferior_ptid == null_ptid)
3025 pid = magic_null_ptid.pid ();
3026 else
3027 pid = inferior_ptid.pid ();
3028
3029 if (obuf)
3030 *obuf = pp;
3031 return ptid_t (pid, tid, 0);
3032 }
3033
3034 static int
3035 stubhex (int ch)
3036 {
3037 if (ch >= 'a' && ch <= 'f')
3038 return ch - 'a' + 10;
3039 if (ch >= '0' && ch <= '9')
3040 return ch - '0';
3041 if (ch >= 'A' && ch <= 'F')
3042 return ch - 'A' + 10;
3043 return -1;
3044 }
3045
3046 static int
3047 stub_unpack_int (char *buff, int fieldlength)
3048 {
3049 int nibble;
3050 int retval = 0;
3051
3052 while (fieldlength)
3053 {
3054 nibble = stubhex (*buff++);
3055 retval |= nibble;
3056 fieldlength--;
3057 if (fieldlength)
3058 retval = retval << 4;
3059 }
3060 return retval;
3061 }
3062
3063 static char *
3064 unpack_nibble (char *buf, int *val)
3065 {
3066 *val = fromhex (*buf++);
3067 return buf;
3068 }
3069
3070 static char *
3071 unpack_byte (char *buf, int *value)
3072 {
3073 *value = stub_unpack_int (buf, 2);
3074 return buf + 2;
3075 }
3076
3077 static char *
3078 pack_int (char *buf, int value)
3079 {
3080 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3083 buf = pack_hex_byte (buf, (value & 0xff));
3084 return buf;
3085 }
3086
3087 static char *
3088 unpack_int (char *buf, int *value)
3089 {
3090 *value = stub_unpack_int (buf, 8);
3091 return buf + 8;
3092 }
3093
3094 #if 0 /* Currently unused, uncomment when needed. */
3095 static char *pack_string (char *pkt, char *string);
3096
3097 static char *
3098 pack_string (char *pkt, char *string)
3099 {
3100 char ch;
3101 int len;
3102
3103 len = strlen (string);
3104 if (len > 200)
3105 len = 200; /* Bigger than most GDB packets, junk??? */
3106 pkt = pack_hex_byte (pkt, len);
3107 while (len-- > 0)
3108 {
3109 ch = *string++;
3110 if ((ch == '\0') || (ch == '#'))
3111 ch = '*'; /* Protect encapsulation. */
3112 *pkt++ = ch;
3113 }
3114 return pkt;
3115 }
3116 #endif /* 0 (unused) */
3117
3118 static char *
3119 unpack_string (char *src, char *dest, int length)
3120 {
3121 while (length--)
3122 *dest++ = *src++;
3123 *dest = '\0';
3124 return src;
3125 }
3126
3127 static char *
3128 pack_threadid (char *pkt, threadref *id)
3129 {
3130 char *limit;
3131 unsigned char *altid;
3132
3133 altid = (unsigned char *) id;
3134 limit = pkt + BUF_THREAD_ID_SIZE;
3135 while (pkt < limit)
3136 pkt = pack_hex_byte (pkt, *altid++);
3137 return pkt;
3138 }
3139
3140
3141 static char *
3142 unpack_threadid (char *inbuf, threadref *id)
3143 {
3144 char *altref;
3145 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3146 int x, y;
3147
3148 altref = (char *) id;
3149
3150 while (inbuf < limit)
3151 {
3152 x = stubhex (*inbuf++);
3153 y = stubhex (*inbuf++);
3154 *altref++ = (x << 4) | y;
3155 }
3156 return inbuf;
3157 }
3158
3159 /* Externally, threadrefs are 64 bits but internally, they are still
3160 ints. This is due to a mismatch of specifications. We would like
3161 to use 64bit thread references internally. This is an adapter
3162 function. */
3163
3164 void
3165 int_to_threadref (threadref *id, int value)
3166 {
3167 unsigned char *scan;
3168
3169 scan = (unsigned char *) id;
3170 {
3171 int i = 4;
3172 while (i--)
3173 *scan++ = 0;
3174 }
3175 *scan++ = (value >> 24) & 0xff;
3176 *scan++ = (value >> 16) & 0xff;
3177 *scan++ = (value >> 8) & 0xff;
3178 *scan++ = (value & 0xff);
3179 }
3180
3181 static int
3182 threadref_to_int (threadref *ref)
3183 {
3184 int i, value = 0;
3185 unsigned char *scan;
3186
3187 scan = *ref;
3188 scan += 4;
3189 i = 4;
3190 while (i-- > 0)
3191 value = (value << 8) | ((*scan++) & 0xff);
3192 return value;
3193 }
3194
3195 static void
3196 copy_threadref (threadref *dest, threadref *src)
3197 {
3198 int i;
3199 unsigned char *csrc, *cdest;
3200
3201 csrc = (unsigned char *) src;
3202 cdest = (unsigned char *) dest;
3203 i = 8;
3204 while (i--)
3205 *cdest++ = *csrc++;
3206 }
3207
3208 static int
3209 threadmatch (threadref *dest, threadref *src)
3210 {
3211 /* Things are broken right now, so just assume we got a match. */
3212 #if 0
3213 unsigned char *srcp, *destp;
3214 int i, result;
3215 srcp = (char *) src;
3216 destp = (char *) dest;
3217
3218 result = 1;
3219 while (i-- > 0)
3220 result &= (*srcp++ == *destp++) ? 1 : 0;
3221 return result;
3222 #endif
3223 return 1;
3224 }
3225
3226 /*
3227 threadid:1, # always request threadid
3228 context_exists:2,
3229 display:4,
3230 unique_name:8,
3231 more_display:16
3232 */
3233
3234 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3235
3236 static char *
3237 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3238 {
3239 *pkt++ = 'q'; /* Info Query */
3240 *pkt++ = 'P'; /* process or thread info */
3241 pkt = pack_int (pkt, mode); /* mode */
3242 pkt = pack_threadid (pkt, id); /* threadid */
3243 *pkt = '\0'; /* terminate */
3244 return pkt;
3245 }
3246
3247 /* These values tag the fields in a thread info response packet. */
3248 /* Tagging the fields allows us to request specific fields and to
3249 add more fields as time goes by. */
3250
3251 #define TAG_THREADID 1 /* Echo the thread identifier. */
3252 #define TAG_EXISTS 2 /* Is this process defined enough to
3253 fetch registers and its stack? */
3254 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3255 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3256 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3257 the process. */
3258
3259 int
3260 remote_target::remote_unpack_thread_info_response (char *pkt,
3261 threadref *expectedref,
3262 gdb_ext_thread_info *info)
3263 {
3264 struct remote_state *rs = get_remote_state ();
3265 int mask, length;
3266 int tag;
3267 threadref ref;
3268 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3269 int retval = 1;
3270
3271 /* info->threadid = 0; FIXME: implement zero_threadref. */
3272 info->active = 0;
3273 info->display[0] = '\0';
3274 info->shortname[0] = '\0';
3275 info->more_display[0] = '\0';
3276
3277 /* Assume the characters indicating the packet type have been
3278 stripped. */
3279 pkt = unpack_int (pkt, &mask); /* arg mask */
3280 pkt = unpack_threadid (pkt, &ref);
3281
3282 if (mask == 0)
3283 warning (_("Incomplete response to threadinfo request."));
3284 if (!threadmatch (&ref, expectedref))
3285 { /* This is an answer to a different request. */
3286 warning (_("ERROR RMT Thread info mismatch."));
3287 return 0;
3288 }
3289 copy_threadref (&info->threadid, &ref);
3290
3291 /* Loop on tagged fields , try to bail if something goes wrong. */
3292
3293 /* Packets are terminated with nulls. */
3294 while ((pkt < limit) && mask && *pkt)
3295 {
3296 pkt = unpack_int (pkt, &tag); /* tag */
3297 pkt = unpack_byte (pkt, &length); /* length */
3298 if (!(tag & mask)) /* Tags out of synch with mask. */
3299 {
3300 warning (_("ERROR RMT: threadinfo tag mismatch."));
3301 retval = 0;
3302 break;
3303 }
3304 if (tag == TAG_THREADID)
3305 {
3306 if (length != 16)
3307 {
3308 warning (_("ERROR RMT: length of threadid is not 16."));
3309 retval = 0;
3310 break;
3311 }
3312 pkt = unpack_threadid (pkt, &ref);
3313 mask = mask & ~TAG_THREADID;
3314 continue;
3315 }
3316 if (tag == TAG_EXISTS)
3317 {
3318 info->active = stub_unpack_int (pkt, length);
3319 pkt += length;
3320 mask = mask & ~(TAG_EXISTS);
3321 if (length > 8)
3322 {
3323 warning (_("ERROR RMT: 'exists' length too long."));
3324 retval = 0;
3325 break;
3326 }
3327 continue;
3328 }
3329 if (tag == TAG_THREADNAME)
3330 {
3331 pkt = unpack_string (pkt, &info->shortname[0], length);
3332 mask = mask & ~TAG_THREADNAME;
3333 continue;
3334 }
3335 if (tag == TAG_DISPLAY)
3336 {
3337 pkt = unpack_string (pkt, &info->display[0], length);
3338 mask = mask & ~TAG_DISPLAY;
3339 continue;
3340 }
3341 if (tag == TAG_MOREDISPLAY)
3342 {
3343 pkt = unpack_string (pkt, &info->more_display[0], length);
3344 mask = mask & ~TAG_MOREDISPLAY;
3345 continue;
3346 }
3347 warning (_("ERROR RMT: unknown thread info tag."));
3348 break; /* Not a tag we know about. */
3349 }
3350 return retval;
3351 }
3352
3353 int
3354 remote_target::remote_get_threadinfo (threadref *threadid,
3355 int fieldset,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int result;
3360
3361 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, 0);
3364
3365 if (rs->buf[0] == '\0')
3366 return 0;
3367
3368 result = remote_unpack_thread_info_response (&rs->buf[2],
3369 threadid, info);
3370 return result;
3371 }
3372
3373 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3374
3375 static char *
3376 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3377 threadref *nextthread)
3378 {
3379 *pkt++ = 'q'; /* info query packet */
3380 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3381 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3382 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3383 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3384 *pkt = '\0';
3385 return pkt;
3386 }
3387
3388 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3389
3390 int
3391 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3392 threadref *original_echo,
3393 threadref *resultlist,
3394 int *doneflag)
3395 {
3396 struct remote_state *rs = get_remote_state ();
3397 char *limit;
3398 int count, resultcount, done;
3399
3400 resultcount = 0;
3401 /* Assume the 'q' and 'M chars have been stripped. */
3402 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3403 /* done parse past here */
3404 pkt = unpack_byte (pkt, &count); /* count field */
3405 pkt = unpack_nibble (pkt, &done);
3406 /* The first threadid is the argument threadid. */
3407 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3408 while ((count-- > 0) && (pkt < limit))
3409 {
3410 pkt = unpack_threadid (pkt, resultlist++);
3411 if (resultcount++ >= result_limit)
3412 break;
3413 }
3414 if (doneflag)
3415 *doneflag = done;
3416 return resultcount;
3417 }
3418
3419 /* Fetch the next batch of threads from the remote. Returns -1 if the
3420 qL packet is not supported, 0 on error and 1 on success. */
3421
3422 int
3423 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3424 int result_limit, int *done, int *result_count,
3425 threadref *threadlist)
3426 {
3427 struct remote_state *rs = get_remote_state ();
3428 int result = 1;
3429
3430 /* Truncate result limit to be smaller than the packet size. */
3431 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3432 >= get_remote_packet_size ())
3433 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3434
3435 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3436 nextthread);
3437 putpkt (rs->buf);
3438 getpkt (&rs->buf, 0);
3439 if (rs->buf[0] == '\0')
3440 {
3441 /* Packet not supported. */
3442 return -1;
3443 }
3444
3445 *result_count =
3446 parse_threadlist_response (&rs->buf[2], result_limit,
3447 &rs->echo_nextthread, threadlist, done);
3448
3449 if (!threadmatch (&rs->echo_nextthread, nextthread))
3450 {
3451 /* FIXME: This is a good reason to drop the packet. */
3452 /* Possibly, there is a duplicate response. */
3453 /* Possibilities :
3454 retransmit immediatly - race conditions
3455 retransmit after timeout - yes
3456 exit
3457 wait for packet, then exit
3458 */
3459 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3460 return 0; /* I choose simply exiting. */
3461 }
3462 if (*result_count <= 0)
3463 {
3464 if (*done != 1)
3465 {
3466 warning (_("RMT ERROR : failed to get remote thread list."));
3467 result = 0;
3468 }
3469 return result; /* break; */
3470 }
3471 if (*result_count > result_limit)
3472 {
3473 *result_count = 0;
3474 warning (_("RMT ERROR: threadlist response longer than requested."));
3475 return 0;
3476 }
3477 return result;
3478 }
3479
3480 /* Fetch the list of remote threads, with the qL packet, and call
3481 STEPFUNCTION for each thread found. Stops iterating and returns 1
3482 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3483 STEPFUNCTION returns false. If the packet is not supported,
3484 returns -1. */
3485
3486 int
3487 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3488 void *context, int looplimit)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int done, i, result_count;
3492 int startflag = 1;
3493 int result = 1;
3494 int loopcount = 0;
3495
3496 done = 0;
3497 while (!done)
3498 {
3499 if (loopcount++ > looplimit)
3500 {
3501 result = 0;
3502 warning (_("Remote fetch threadlist -infinite loop-."));
3503 break;
3504 }
3505 result = remote_get_threadlist (startflag, &rs->nextthread,
3506 MAXTHREADLISTRESULTS,
3507 &done, &result_count,
3508 rs->resultthreadlist);
3509 if (result <= 0)
3510 break;
3511 /* Clear for later iterations. */
3512 startflag = 0;
3513 /* Setup to resume next batch of thread references, set nextthread. */
3514 if (result_count >= 1)
3515 copy_threadref (&rs->nextthread,
3516 &rs->resultthreadlist[result_count - 1]);
3517 i = 0;
3518 while (result_count--)
3519 {
3520 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3521 {
3522 result = 0;
3523 break;
3524 }
3525 }
3526 }
3527 return result;
3528 }
3529
3530 /* A thread found on the remote target. */
3531
3532 struct thread_item
3533 {
3534 explicit thread_item (ptid_t ptid_)
3535 : ptid (ptid_)
3536 {}
3537
3538 thread_item (thread_item &&other) = default;
3539 thread_item &operator= (thread_item &&other) = default;
3540
3541 DISABLE_COPY_AND_ASSIGN (thread_item);
3542
3543 /* The thread's PTID. */
3544 ptid_t ptid;
3545
3546 /* The thread's extra info. */
3547 std::string extra;
3548
3549 /* The thread's name. */
3550 std::string name;
3551
3552 /* The core the thread was running on. -1 if not known. */
3553 int core = -1;
3554
3555 /* The thread handle associated with the thread. */
3556 gdb::byte_vector thread_handle;
3557 };
3558
3559 /* Context passed around to the various methods listing remote
3560 threads. As new threads are found, they're added to the ITEMS
3561 vector. */
3562
3563 struct threads_listing_context
3564 {
3565 /* Return true if this object contains an entry for a thread with ptid
3566 PTID. */
3567
3568 bool contains_thread (ptid_t ptid) const
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::find_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 return it != this->items.end ();
3580 }
3581
3582 /* Remove the thread with ptid PTID. */
3583
3584 void remove_thread (ptid_t ptid)
3585 {
3586 auto match_ptid = [&] (const thread_item &item)
3587 {
3588 return item.ptid == ptid;
3589 };
3590
3591 auto it = std::remove_if (this->items.begin (),
3592 this->items.end (),
3593 match_ptid);
3594
3595 if (it != this->items.end ())
3596 this->items.erase (it);
3597 }
3598
3599 /* The threads found on the remote target. */
3600 std::vector<thread_item> items;
3601 };
3602
3603 static int
3604 remote_newthread_step (threadref *ref, void *data)
3605 {
3606 struct threads_listing_context *context
3607 = (struct threads_listing_context *) data;
3608 int pid = inferior_ptid.pid ();
3609 int lwp = threadref_to_int (ref);
3610 ptid_t ptid (pid, lwp);
3611
3612 context->items.emplace_back (ptid);
3613
3614 return 1; /* continue iterator */
3615 }
3616
3617 #define CRAZY_MAX_THREADS 1000
3618
3619 ptid_t
3620 remote_target::remote_current_thread (ptid_t oldpid)
3621 {
3622 struct remote_state *rs = get_remote_state ();
3623
3624 putpkt ("qC");
3625 getpkt (&rs->buf, 0);
3626 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3627 {
3628 const char *obuf;
3629 ptid_t result;
3630
3631 result = read_ptid (&rs->buf[2], &obuf);
3632 if (*obuf != '\0' && remote_debug)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "warning: garbage in qC reply\n");
3635
3636 return result;
3637 }
3638 else
3639 return oldpid;
3640 }
3641
3642 /* List remote threads using the deprecated qL packet. */
3643
3644 int
3645 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3646 {
3647 if (remote_threadlist_iterator (remote_newthread_step, context,
3648 CRAZY_MAX_THREADS) >= 0)
3649 return 1;
3650
3651 return 0;
3652 }
3653
3654 #if defined(HAVE_LIBEXPAT)
3655
3656 static void
3657 start_thread (struct gdb_xml_parser *parser,
3658 const struct gdb_xml_element *element,
3659 void *user_data,
3660 std::vector<gdb_xml_value> &attributes)
3661 {
3662 struct threads_listing_context *data
3663 = (struct threads_listing_context *) user_data;
3664 struct gdb_xml_value *attr;
3665
3666 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3667 ptid_t ptid = read_ptid (id, NULL);
3668
3669 data->items.emplace_back (ptid);
3670 thread_item &item = data->items.back ();
3671
3672 attr = xml_find_attribute (attributes, "core");
3673 if (attr != NULL)
3674 item.core = *(ULONGEST *) attr->value.get ();
3675
3676 attr = xml_find_attribute (attributes, "name");
3677 if (attr != NULL)
3678 item.name = (const char *) attr->value.get ();
3679
3680 attr = xml_find_attribute (attributes, "handle");
3681 if (attr != NULL)
3682 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3683 }
3684
3685 static void
3686 end_thread (struct gdb_xml_parser *parser,
3687 const struct gdb_xml_element *element,
3688 void *user_data, const char *body_text)
3689 {
3690 struct threads_listing_context *data
3691 = (struct threads_listing_context *) user_data;
3692
3693 if (body_text != NULL && *body_text != '\0')
3694 data->items.back ().extra = body_text;
3695 }
3696
3697 const struct gdb_xml_attribute thread_attributes[] = {
3698 { "id", GDB_XML_AF_NONE, NULL, NULL },
3699 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3700 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3703 };
3704
3705 const struct gdb_xml_element thread_children[] = {
3706 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3707 };
3708
3709 const struct gdb_xml_element threads_children[] = {
3710 { "thread", thread_attributes, thread_children,
3711 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3712 start_thread, end_thread },
3713 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3714 };
3715
3716 const struct gdb_xml_element threads_elements[] = {
3717 { "threads", NULL, threads_children,
3718 GDB_XML_EF_NONE, NULL, NULL },
3719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3720 };
3721
3722 #endif
3723
3724 /* List remote threads using qXfer:threads:read. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3728 {
3729 #if defined(HAVE_LIBEXPAT)
3730 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3731 {
3732 gdb::optional<gdb::char_vector> xml
3733 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3734
3735 if (xml && (*xml)[0] != '\0')
3736 {
3737 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3738 threads_elements, xml->data (), context);
3739 }
3740
3741 return 1;
3742 }
3743 #endif
3744
3745 return 0;
3746 }
3747
3748 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3749
3750 int
3751 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3752 {
3753 struct remote_state *rs = get_remote_state ();
3754
3755 if (rs->use_threadinfo_query)
3756 {
3757 const char *bufp;
3758
3759 putpkt ("qfThreadInfo");
3760 getpkt (&rs->buf, 0);
3761 bufp = rs->buf.data ();
3762 if (bufp[0] != '\0') /* q packet recognized */
3763 {
3764 while (*bufp++ == 'm') /* reply contains one or more TID */
3765 {
3766 do
3767 {
3768 ptid_t ptid = read_ptid (bufp, &bufp);
3769 context->items.emplace_back (ptid);
3770 }
3771 while (*bufp++ == ','); /* comma-separated list */
3772 putpkt ("qsThreadInfo");
3773 getpkt (&rs->buf, 0);
3774 bufp = rs->buf.data ();
3775 }
3776 return 1;
3777 }
3778 else
3779 {
3780 /* Packet not recognized. */
3781 rs->use_threadinfo_query = 0;
3782 }
3783 }
3784
3785 return 0;
3786 }
3787
3788 /* Return true if INF only has one non-exited thread. */
3789
3790 static bool
3791 has_single_non_exited_thread (inferior *inf)
3792 {
3793 int count = 0;
3794 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3795 if (++count > 1)
3796 break;
3797 return count == 1;
3798 }
3799
3800 /* Implement the to_update_thread_list function for the remote
3801 targets. */
3802
3803 void
3804 remote_target::update_thread_list ()
3805 {
3806 struct threads_listing_context context;
3807 int got_list = 0;
3808
3809 /* We have a few different mechanisms to fetch the thread list. Try
3810 them all, starting with the most preferred one first, falling
3811 back to older methods. */
3812 if (remote_get_threads_with_qxfer (&context)
3813 || remote_get_threads_with_qthreadinfo (&context)
3814 || remote_get_threads_with_ql (&context))
3815 {
3816 got_list = 1;
3817
3818 if (context.items.empty ()
3819 && remote_thread_always_alive (inferior_ptid))
3820 {
3821 /* Some targets don't really support threads, but still
3822 reply an (empty) thread list in response to the thread
3823 listing packets, instead of replying "packet not
3824 supported". Exit early so we don't delete the main
3825 thread. */
3826 return;
3827 }
3828
3829 /* CONTEXT now holds the current thread list on the remote
3830 target end. Delete GDB-side threads no longer found on the
3831 target. */
3832 for (thread_info *tp : all_threads_safe ())
3833 {
3834 if (tp->inf->process_target () != this)
3835 continue;
3836
3837 if (!context.contains_thread (tp->ptid))
3838 {
3839 /* Do not remove the thread if it is the last thread in
3840 the inferior. This situation happens when we have a
3841 pending exit process status to process. Otherwise we
3842 may end up with a seemingly live inferior (i.e. pid
3843 != 0) that has no threads. */
3844 if (has_single_non_exited_thread (tp->inf))
3845 continue;
3846
3847 /* Not found. */
3848 delete_thread (tp);
3849 }
3850 }
3851
3852 /* Remove any unreported fork child threads from CONTEXT so
3853 that we don't interfere with follow fork, which is where
3854 creation of such threads is handled. */
3855 remove_new_fork_children (&context);
3856
3857 /* And now add threads we don't know about yet to our list. */
3858 for (thread_item &item : context.items)
3859 {
3860 if (item.ptid != null_ptid)
3861 {
3862 /* In non-stop mode, we assume new found threads are
3863 executing until proven otherwise with a stop reply.
3864 In all-stop, we can only get here if all threads are
3865 stopped. */
3866 int executing = target_is_non_stop_p () ? 1 : 0;
3867
3868 remote_notice_new_inferior (item.ptid, executing);
3869
3870 thread_info *tp = find_thread_ptid (this, item.ptid);
3871 remote_thread_info *info = get_remote_thread_info (tp);
3872 info->core = item.core;
3873 info->extra = std::move (item.extra);
3874 info->name = std::move (item.name);
3875 info->thread_handle = std::move (item.thread_handle);
3876 }
3877 }
3878 }
3879
3880 if (!got_list)
3881 {
3882 /* If no thread listing method is supported, then query whether
3883 each known thread is alive, one by one, with the T packet.
3884 If the target doesn't support threads at all, then this is a
3885 no-op. See remote_thread_alive. */
3886 prune_threads ();
3887 }
3888 }
3889
3890 /*
3891 * Collect a descriptive string about the given thread.
3892 * The target may say anything it wants to about the thread
3893 * (typically info about its blocked / runnable state, name, etc.).
3894 * This string will appear in the info threads display.
3895 *
3896 * Optional: targets are not required to implement this function.
3897 */
3898
3899 const char *
3900 remote_target::extra_thread_info (thread_info *tp)
3901 {
3902 struct remote_state *rs = get_remote_state ();
3903 int set;
3904 threadref id;
3905 struct gdb_ext_thread_info threadinfo;
3906
3907 if (rs->remote_desc == 0) /* paranoia */
3908 internal_error (__FILE__, __LINE__,
3909 _("remote_threads_extra_info"));
3910
3911 if (tp->ptid == magic_null_ptid
3912 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3913 /* This is the main thread which was added by GDB. The remote
3914 server doesn't know about it. */
3915 return NULL;
3916
3917 std::string &extra = get_remote_thread_info (tp)->extra;
3918
3919 /* If already have cached info, use it. */
3920 if (!extra.empty ())
3921 return extra.c_str ();
3922
3923 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3924 {
3925 /* If we're using qXfer:threads:read, then the extra info is
3926 included in the XML. So if we didn't have anything cached,
3927 it's because there's really no extra info. */
3928 return NULL;
3929 }
3930
3931 if (rs->use_threadextra_query)
3932 {
3933 char *b = rs->buf.data ();
3934 char *endb = b + get_remote_packet_size ();
3935
3936 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3937 b += strlen (b);
3938 write_ptid (b, endb, tp->ptid);
3939
3940 putpkt (rs->buf);
3941 getpkt (&rs->buf, 0);
3942 if (rs->buf[0] != 0)
3943 {
3944 extra.resize (strlen (rs->buf.data ()) / 2);
3945 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3946 return extra.c_str ();
3947 }
3948 }
3949
3950 /* If the above query fails, fall back to the old method. */
3951 rs->use_threadextra_query = 0;
3952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3953 | TAG_MOREDISPLAY | TAG_DISPLAY;
3954 int_to_threadref (&id, tp->ptid.lwp ());
3955 if (remote_get_threadinfo (&id, set, &threadinfo))
3956 if (threadinfo.active)
3957 {
3958 if (*threadinfo.shortname)
3959 string_appendf (extra, " Name: %s", threadinfo.shortname);
3960 if (*threadinfo.display)
3961 {
3962 if (!extra.empty ())
3963 extra += ',';
3964 string_appendf (extra, " State: %s", threadinfo.display);
3965 }
3966 if (*threadinfo.more_display)
3967 {
3968 if (!extra.empty ())
3969 extra += ',';
3970 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3971 }
3972 return extra.c_str ();
3973 }
3974 return NULL;
3975 }
3976 \f
3977
3978 bool
3979 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3980 struct static_tracepoint_marker *marker)
3981 {
3982 struct remote_state *rs = get_remote_state ();
3983 char *p = rs->buf.data ();
3984
3985 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3986 p += strlen (p);
3987 p += hexnumstr (p, addr);
3988 putpkt (rs->buf);
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991
3992 if (*p == 'E')
3993 error (_("Remote failure reply: %s"), p);
3994
3995 if (*p++ == 'm')
3996 {
3997 parse_static_tracepoint_marker_definition (p, NULL, marker);
3998 return true;
3999 }
4000
4001 return false;
4002 }
4003
4004 std::vector<static_tracepoint_marker>
4005 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008 std::vector<static_tracepoint_marker> markers;
4009 const char *p;
4010 static_tracepoint_marker marker;
4011
4012 /* Ask for a first packet of static tracepoint marker
4013 definition. */
4014 putpkt ("qTfSTM");
4015 getpkt (&rs->buf, 0);
4016 p = rs->buf.data ();
4017 if (*p == 'E')
4018 error (_("Remote failure reply: %s"), p);
4019
4020 while (*p++ == 'm')
4021 {
4022 do
4023 {
4024 parse_static_tracepoint_marker_definition (p, &p, &marker);
4025
4026 if (strid == NULL || marker.str_id == strid)
4027 markers.push_back (std::move (marker));
4028 }
4029 while (*p++ == ','); /* comma-separated list */
4030 /* Ask for another packet of static tracepoint definition. */
4031 putpkt ("qTsSTM");
4032 getpkt (&rs->buf, 0);
4033 p = rs->buf.data ();
4034 }
4035
4036 return markers;
4037 }
4038
4039 \f
4040 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4041
4042 ptid_t
4043 remote_target::get_ada_task_ptid (long lwp, long thread)
4044 {
4045 return ptid_t (inferior_ptid.pid (), lwp, 0);
4046 }
4047 \f
4048
4049 /* Restart the remote side; this is an extended protocol operation. */
4050
4051 void
4052 remote_target::extended_remote_restart ()
4053 {
4054 struct remote_state *rs = get_remote_state ();
4055
4056 /* Send the restart command; for reasons I don't understand the
4057 remote side really expects a number after the "R". */
4058 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4059 putpkt (rs->buf);
4060
4061 remote_fileio_reset ();
4062 }
4063 \f
4064 /* Clean up connection to a remote debugger. */
4065
4066 void
4067 remote_target::close ()
4068 {
4069 /* Make sure we leave stdin registered in the event loop. */
4070 terminal_ours ();
4071
4072 trace_reset_local_state ();
4073
4074 delete this;
4075 }
4076
4077 remote_target::~remote_target ()
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080
4081 /* Check for NULL because we may get here with a partially
4082 constructed target/connection. */
4083 if (rs->remote_desc == nullptr)
4084 return;
4085
4086 serial_close (rs->remote_desc);
4087
4088 /* We are destroying the remote target, so we should discard
4089 everything of this target. */
4090 discard_pending_stop_replies_in_queue ();
4091
4092 if (rs->remote_async_inferior_event_token)
4093 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4094
4095 delete rs->notif_state;
4096 }
4097
4098 /* Query the remote side for the text, data and bss offsets. */
4099
4100 void
4101 remote_target::get_offsets ()
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 char *buf;
4105 char *ptr;
4106 int lose, num_segments = 0, do_sections, do_segments;
4107 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4108
4109 if (symfile_objfile == NULL)
4110 return;
4111
4112 putpkt ("qOffsets");
4113 getpkt (&rs->buf, 0);
4114 buf = rs->buf.data ();
4115
4116 if (buf[0] == '\000')
4117 return; /* Return silently. Stub doesn't support
4118 this command. */
4119 if (buf[0] == 'E')
4120 {
4121 warning (_("Remote failure reply: %s"), buf);
4122 return;
4123 }
4124
4125 /* Pick up each field in turn. This used to be done with scanf, but
4126 scanf will make trouble if CORE_ADDR size doesn't match
4127 conversion directives correctly. The following code will work
4128 with any size of CORE_ADDR. */
4129 text_addr = data_addr = bss_addr = 0;
4130 ptr = buf;
4131 lose = 0;
4132
4133 if (startswith (ptr, "Text="))
4134 {
4135 ptr += 5;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139
4140 if (startswith (ptr, ";Data="))
4141 {
4142 ptr += 6;
4143 while (*ptr && *ptr != ';')
4144 data_addr = (data_addr << 4) + fromhex (*ptr++);
4145 }
4146 else
4147 lose = 1;
4148
4149 if (!lose && startswith (ptr, ";Bss="))
4150 {
4151 ptr += 5;
4152 while (*ptr && *ptr != ';')
4153 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4154
4155 if (bss_addr != data_addr)
4156 warning (_("Target reported unsupported offsets: %s"), buf);
4157 }
4158 else
4159 lose = 1;
4160 }
4161 else if (startswith (ptr, "TextSeg="))
4162 {
4163 ptr += 8;
4164 /* Don't use strtol, could lose on big values. */
4165 while (*ptr && *ptr != ';')
4166 text_addr = (text_addr << 4) + fromhex (*ptr++);
4167 num_segments = 1;
4168
4169 if (startswith (ptr, ";DataSeg="))
4170 {
4171 ptr += 9;
4172 while (*ptr && *ptr != ';')
4173 data_addr = (data_addr << 4) + fromhex (*ptr++);
4174 num_segments++;
4175 }
4176 }
4177 else
4178 lose = 1;
4179
4180 if (lose)
4181 error (_("Malformed response to offset query, %s"), buf);
4182 else if (*ptr != '\0')
4183 warning (_("Target reported unsupported offsets: %s"), buf);
4184
4185 section_offsets offs = symfile_objfile->section_offsets;
4186
4187 symfile_segment_data_up data
4188 = get_symfile_segment_data (symfile_objfile->obfd);
4189 do_segments = (data != NULL);
4190 do_sections = num_segments == 0;
4191
4192 if (num_segments > 0)
4193 {
4194 segments[0] = text_addr;
4195 segments[1] = data_addr;
4196 }
4197 /* If we have two segments, we can still try to relocate everything
4198 by assuming that the .text and .data offsets apply to the whole
4199 text and data segments. Convert the offsets given in the packet
4200 to base addresses for symfile_map_offsets_to_segments. */
4201 else if (data != nullptr && data->segments.size () == 2)
4202 {
4203 segments[0] = data->segments[0].base + text_addr;
4204 segments[1] = data->segments[1].base + data_addr;
4205 num_segments = 2;
4206 }
4207 /* If the object file has only one segment, assume that it is text
4208 rather than data; main programs with no writable data are rare,
4209 but programs with no code are useless. Of course the code might
4210 have ended up in the data segment... to detect that we would need
4211 the permissions here. */
4212 else if (data && data->segments.size () == 1)
4213 {
4214 segments[0] = data->segments[0].base + text_addr;
4215 num_segments = 1;
4216 }
4217 /* There's no way to relocate by segment. */
4218 else
4219 do_segments = 0;
4220
4221 if (do_segments)
4222 {
4223 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd,
4224 data.get (), offs,
4225 num_segments, segments);
4226
4227 if (ret == 0 && !do_sections)
4228 error (_("Can not handle qOffsets TextSeg "
4229 "response with this symbol file"));
4230
4231 if (ret > 0)
4232 do_sections = 0;
4233 }
4234
4235 if (do_sections)
4236 {
4237 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4238
4239 /* This is a temporary kludge to force data and bss to use the
4240 same offsets because that's what nlmconv does now. The real
4241 solution requires changes to the stub and remote.c that I
4242 don't have time to do right now. */
4243
4244 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4245 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4246 }
4247
4248 objfile_relocate (symfile_objfile, offs);
4249 }
4250
4251 /* Send interrupt_sequence to remote target. */
4252
4253 void
4254 remote_target::send_interrupt_sequence ()
4255 {
4256 struct remote_state *rs = get_remote_state ();
4257
4258 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4259 remote_serial_write ("\x03", 1);
4260 else if (interrupt_sequence_mode == interrupt_sequence_break)
4261 serial_send_break (rs->remote_desc);
4262 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4263 {
4264 serial_send_break (rs->remote_desc);
4265 remote_serial_write ("g", 1);
4266 }
4267 else
4268 internal_error (__FILE__, __LINE__,
4269 _("Invalid value for interrupt_sequence_mode: %s."),
4270 interrupt_sequence_mode);
4271 }
4272
4273
4274 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4275 and extract the PTID. Returns NULL_PTID if not found. */
4276
4277 static ptid_t
4278 stop_reply_extract_thread (char *stop_reply)
4279 {
4280 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4281 {
4282 const char *p;
4283
4284 /* Txx r:val ; r:val (...) */
4285 p = &stop_reply[3];
4286
4287 /* Look for "register" named "thread". */
4288 while (*p != '\0')
4289 {
4290 const char *p1;
4291
4292 p1 = strchr (p, ':');
4293 if (p1 == NULL)
4294 return null_ptid;
4295
4296 if (strncmp (p, "thread", p1 - p) == 0)
4297 return read_ptid (++p1, &p);
4298
4299 p1 = strchr (p, ';');
4300 if (p1 == NULL)
4301 return null_ptid;
4302 p1++;
4303
4304 p = p1;
4305 }
4306 }
4307
4308 return null_ptid;
4309 }
4310
4311 /* Determine the remote side's current thread. If we have a stop
4312 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4313 "thread" register we can extract the current thread from. If not,
4314 ask the remote which is the current thread with qC. The former
4315 method avoids a roundtrip. */
4316
4317 ptid_t
4318 remote_target::get_current_thread (char *wait_status)
4319 {
4320 ptid_t ptid = null_ptid;
4321
4322 /* Note we don't use remote_parse_stop_reply as that makes use of
4323 the target architecture, which we haven't yet fully determined at
4324 this point. */
4325 if (wait_status != NULL)
4326 ptid = stop_reply_extract_thread (wait_status);
4327 if (ptid == null_ptid)
4328 ptid = remote_current_thread (inferior_ptid);
4329
4330 return ptid;
4331 }
4332
4333 /* Query the remote target for which is the current thread/process,
4334 add it to our tables, and update INFERIOR_PTID. The caller is
4335 responsible for setting the state such that the remote end is ready
4336 to return the current thread.
4337
4338 This function is called after handling the '?' or 'vRun' packets,
4339 whose response is a stop reply from which we can also try
4340 extracting the thread. If the target doesn't support the explicit
4341 qC query, we infer the current thread from that stop reply, passed
4342 in in WAIT_STATUS, which may be NULL. */
4343
4344 void
4345 remote_target::add_current_inferior_and_thread (char *wait_status)
4346 {
4347 struct remote_state *rs = get_remote_state ();
4348 bool fake_pid_p = false;
4349
4350 switch_to_no_thread ();
4351
4352 /* Now, if we have thread information, update the current thread's
4353 ptid. */
4354 ptid_t curr_ptid = get_current_thread (wait_status);
4355
4356 if (curr_ptid != null_ptid)
4357 {
4358 if (!remote_multi_process_p (rs))
4359 fake_pid_p = true;
4360 }
4361 else
4362 {
4363 /* Without this, some commands which require an active target
4364 (such as kill) won't work. This variable serves (at least)
4365 double duty as both the pid of the target process (if it has
4366 such), and as a flag indicating that a target is active. */
4367 curr_ptid = magic_null_ptid;
4368 fake_pid_p = true;
4369 }
4370
4371 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4372
4373 /* Add the main thread and switch to it. Don't try reading
4374 registers yet, since we haven't fetched the target description
4375 yet. */
4376 thread_info *tp = add_thread_silent (this, curr_ptid);
4377 switch_to_thread_no_regs (tp);
4378 }
4379
4380 /* Print info about a thread that was found already stopped on
4381 connection. */
4382
4383 static void
4384 print_one_stopped_thread (struct thread_info *thread)
4385 {
4386 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4387
4388 switch_to_thread (thread);
4389 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4390 set_current_sal_from_frame (get_current_frame ());
4391
4392 thread->suspend.waitstatus_pending_p = 0;
4393
4394 if (ws->kind == TARGET_WAITKIND_STOPPED)
4395 {
4396 enum gdb_signal sig = ws->value.sig;
4397
4398 if (signal_print_state (sig))
4399 gdb::observers::signal_received.notify (sig);
4400 }
4401 gdb::observers::normal_stop.notify (NULL, 1);
4402 }
4403
4404 /* Process all initial stop replies the remote side sent in response
4405 to the ? packet. These indicate threads that were already stopped
4406 on initial connection. We mark these threads as stopped and print
4407 their current frame before giving the user the prompt. */
4408
4409 void
4410 remote_target::process_initial_stop_replies (int from_tty)
4411 {
4412 int pending_stop_replies = stop_reply_queue_length ();
4413 struct thread_info *selected = NULL;
4414 struct thread_info *lowest_stopped = NULL;
4415 struct thread_info *first = NULL;
4416
4417 /* Consume the initial pending events. */
4418 while (pending_stop_replies-- > 0)
4419 {
4420 ptid_t waiton_ptid = minus_one_ptid;
4421 ptid_t event_ptid;
4422 struct target_waitstatus ws;
4423 int ignore_event = 0;
4424
4425 memset (&ws, 0, sizeof (ws));
4426 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4427 if (remote_debug)
4428 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4429
4430 switch (ws.kind)
4431 {
4432 case TARGET_WAITKIND_IGNORE:
4433 case TARGET_WAITKIND_NO_RESUMED:
4434 case TARGET_WAITKIND_SIGNALLED:
4435 case TARGET_WAITKIND_EXITED:
4436 /* We shouldn't see these, but if we do, just ignore. */
4437 if (remote_debug)
4438 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4439 ignore_event = 1;
4440 break;
4441
4442 case TARGET_WAITKIND_EXECD:
4443 xfree (ws.value.execd_pathname);
4444 break;
4445 default:
4446 break;
4447 }
4448
4449 if (ignore_event)
4450 continue;
4451
4452 thread_info *evthread = find_thread_ptid (this, event_ptid);
4453
4454 if (ws.kind == TARGET_WAITKIND_STOPPED)
4455 {
4456 enum gdb_signal sig = ws.value.sig;
4457
4458 /* Stubs traditionally report SIGTRAP as initial signal,
4459 instead of signal 0. Suppress it. */
4460 if (sig == GDB_SIGNAL_TRAP)
4461 sig = GDB_SIGNAL_0;
4462 evthread->suspend.stop_signal = sig;
4463 ws.value.sig = sig;
4464 }
4465
4466 evthread->suspend.waitstatus = ws;
4467
4468 if (ws.kind != TARGET_WAITKIND_STOPPED
4469 || ws.value.sig != GDB_SIGNAL_0)
4470 evthread->suspend.waitstatus_pending_p = 1;
4471
4472 set_executing (this, event_ptid, false);
4473 set_running (this, event_ptid, false);
4474 get_remote_thread_info (evthread)->vcont_resumed = 0;
4475 }
4476
4477 /* "Notice" the new inferiors before anything related to
4478 registers/memory. */
4479 for (inferior *inf : all_non_exited_inferiors (this))
4480 {
4481 inf->needs_setup = 1;
4482
4483 if (non_stop)
4484 {
4485 thread_info *thread = any_live_thread_of_inferior (inf);
4486 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4487 from_tty);
4488 }
4489 }
4490
4491 /* If all-stop on top of non-stop, pause all threads. Note this
4492 records the threads' stop pc, so must be done after "noticing"
4493 the inferiors. */
4494 if (!non_stop)
4495 {
4496 stop_all_threads ();
4497
4498 /* If all threads of an inferior were already stopped, we
4499 haven't setup the inferior yet. */
4500 for (inferior *inf : all_non_exited_inferiors (this))
4501 {
4502 if (inf->needs_setup)
4503 {
4504 thread_info *thread = any_live_thread_of_inferior (inf);
4505 switch_to_thread_no_regs (thread);
4506 setup_inferior (0);
4507 }
4508 }
4509 }
4510
4511 /* Now go over all threads that are stopped, and print their current
4512 frame. If all-stop, then if there's a signalled thread, pick
4513 that as current. */
4514 for (thread_info *thread : all_non_exited_threads (this))
4515 {
4516 if (first == NULL)
4517 first = thread;
4518
4519 if (!non_stop)
4520 thread->set_running (false);
4521 else if (thread->state != THREAD_STOPPED)
4522 continue;
4523
4524 if (selected == NULL
4525 && thread->suspend.waitstatus_pending_p)
4526 selected = thread;
4527
4528 if (lowest_stopped == NULL
4529 || thread->inf->num < lowest_stopped->inf->num
4530 || thread->per_inf_num < lowest_stopped->per_inf_num)
4531 lowest_stopped = thread;
4532
4533 if (non_stop)
4534 print_one_stopped_thread (thread);
4535 }
4536
4537 /* In all-stop, we only print the status of one thread, and leave
4538 others with their status pending. */
4539 if (!non_stop)
4540 {
4541 thread_info *thread = selected;
4542 if (thread == NULL)
4543 thread = lowest_stopped;
4544 if (thread == NULL)
4545 thread = first;
4546
4547 print_one_stopped_thread (thread);
4548 }
4549
4550 /* For "info program". */
4551 thread_info *thread = inferior_thread ();
4552 if (thread->state == THREAD_STOPPED)
4553 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4554 }
4555
4556 /* Start the remote connection and sync state. */
4557
4558 void
4559 remote_target::start_remote (int from_tty, int extended_p)
4560 {
4561 struct remote_state *rs = get_remote_state ();
4562 struct packet_config *noack_config;
4563 char *wait_status = NULL;
4564
4565 /* Signal other parts that we're going through the initial setup,
4566 and so things may not be stable yet. E.g., we don't try to
4567 install tracepoints until we've relocated symbols. Also, a
4568 Ctrl-C before we're connected and synced up can't interrupt the
4569 target. Instead, it offers to drop the (potentially wedged)
4570 connection. */
4571 rs->starting_up = 1;
4572
4573 QUIT;
4574
4575 if (interrupt_on_connect)
4576 send_interrupt_sequence ();
4577
4578 /* Ack any packet which the remote side has already sent. */
4579 remote_serial_write ("+", 1);
4580
4581 /* The first packet we send to the target is the optional "supported
4582 packets" request. If the target can answer this, it will tell us
4583 which later probes to skip. */
4584 remote_query_supported ();
4585
4586 /* If the stub wants to get a QAllow, compose one and send it. */
4587 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4588 set_permissions ();
4589
4590 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4591 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4592 as a reply to known packet. For packet "vFile:setfs:" it is an
4593 invalid reply and GDB would return error in
4594 remote_hostio_set_filesystem, making remote files access impossible.
4595 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4596 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4597 {
4598 const char v_mustreplyempty[] = "vMustReplyEmpty";
4599
4600 putpkt (v_mustreplyempty);
4601 getpkt (&rs->buf, 0);
4602 if (strcmp (rs->buf.data (), "OK") == 0)
4603 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4604 else if (strcmp (rs->buf.data (), "") != 0)
4605 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4606 rs->buf.data ());
4607 }
4608
4609 /* Next, we possibly activate noack mode.
4610
4611 If the QStartNoAckMode packet configuration is set to AUTO,
4612 enable noack mode if the stub reported a wish for it with
4613 qSupported.
4614
4615 If set to TRUE, then enable noack mode even if the stub didn't
4616 report it in qSupported. If the stub doesn't reply OK, the
4617 session ends with an error.
4618
4619 If FALSE, then don't activate noack mode, regardless of what the
4620 stub claimed should be the default with qSupported. */
4621
4622 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4623 if (packet_config_support (noack_config) != PACKET_DISABLE)
4624 {
4625 putpkt ("QStartNoAckMode");
4626 getpkt (&rs->buf, 0);
4627 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4628 rs->noack_mode = 1;
4629 }
4630
4631 if (extended_p)
4632 {
4633 /* Tell the remote that we are using the extended protocol. */
4634 putpkt ("!");
4635 getpkt (&rs->buf, 0);
4636 }
4637
4638 /* Let the target know which signals it is allowed to pass down to
4639 the program. */
4640 update_signals_program_target ();
4641
4642 /* Next, if the target can specify a description, read it. We do
4643 this before anything involving memory or registers. */
4644 target_find_description ();
4645
4646 /* Next, now that we know something about the target, update the
4647 address spaces in the program spaces. */
4648 update_address_spaces ();
4649
4650 /* On OSs where the list of libraries is global to all
4651 processes, we fetch them early. */
4652 if (gdbarch_has_global_solist (target_gdbarch ()))
4653 solib_add (NULL, from_tty, auto_solib_add);
4654
4655 if (target_is_non_stop_p ())
4656 {
4657 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4658 error (_("Non-stop mode requested, but remote "
4659 "does not support non-stop"));
4660
4661 putpkt ("QNonStop:1");
4662 getpkt (&rs->buf, 0);
4663
4664 if (strcmp (rs->buf.data (), "OK") != 0)
4665 error (_("Remote refused setting non-stop mode with: %s"),
4666 rs->buf.data ());
4667
4668 /* Find about threads and processes the stub is already
4669 controlling. We default to adding them in the running state.
4670 The '?' query below will then tell us about which threads are
4671 stopped. */
4672 this->update_thread_list ();
4673 }
4674 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4675 {
4676 /* Don't assume that the stub can operate in all-stop mode.
4677 Request it explicitly. */
4678 putpkt ("QNonStop:0");
4679 getpkt (&rs->buf, 0);
4680
4681 if (strcmp (rs->buf.data (), "OK") != 0)
4682 error (_("Remote refused setting all-stop mode with: %s"),
4683 rs->buf.data ());
4684 }
4685
4686 /* Upload TSVs regardless of whether the target is running or not. The
4687 remote stub, such as GDBserver, may have some predefined or builtin
4688 TSVs, even if the target is not running. */
4689 if (get_trace_status (current_trace_status ()) != -1)
4690 {
4691 struct uploaded_tsv *uploaded_tsvs = NULL;
4692
4693 upload_trace_state_variables (&uploaded_tsvs);
4694 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4695 }
4696
4697 /* Check whether the target is running now. */
4698 putpkt ("?");
4699 getpkt (&rs->buf, 0);
4700
4701 if (!target_is_non_stop_p ())
4702 {
4703 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4704 {
4705 if (!extended_p)
4706 error (_("The target is not running (try extended-remote?)"));
4707
4708 /* We're connected, but not running. Drop out before we
4709 call start_remote. */
4710 rs->starting_up = 0;
4711 return;
4712 }
4713 else
4714 {
4715 /* Save the reply for later. */
4716 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4717 strcpy (wait_status, rs->buf.data ());
4718 }
4719
4720 /* Fetch thread list. */
4721 target_update_thread_list ();
4722
4723 /* Let the stub know that we want it to return the thread. */
4724 set_continue_thread (minus_one_ptid);
4725
4726 if (thread_count (this) == 0)
4727 {
4728 /* Target has no concept of threads at all. GDB treats
4729 non-threaded target as single-threaded; add a main
4730 thread. */
4731 add_current_inferior_and_thread (wait_status);
4732 }
4733 else
4734 {
4735 /* We have thread information; select the thread the target
4736 says should be current. If we're reconnecting to a
4737 multi-threaded program, this will ideally be the thread
4738 that last reported an event before GDB disconnected. */
4739 ptid_t curr_thread = get_current_thread (wait_status);
4740 if (curr_thread == null_ptid)
4741 {
4742 /* Odd... The target was able to list threads, but not
4743 tell us which thread was current (no "thread"
4744 register in T stop reply?). Just pick the first
4745 thread in the thread list then. */
4746
4747 if (remote_debug)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "warning: couldn't determine remote "
4750 "current thread; picking first in list.\n");
4751
4752 for (thread_info *tp : all_non_exited_threads (this,
4753 minus_one_ptid))
4754 {
4755 switch_to_thread (tp);
4756 break;
4757 }
4758 }
4759 else
4760 switch_to_thread (find_thread_ptid (this, curr_thread));
4761 }
4762
4763 /* init_wait_for_inferior should be called before get_offsets in order
4764 to manage `inserted' flag in bp loc in a correct state.
4765 breakpoint_init_inferior, called from init_wait_for_inferior, set
4766 `inserted' flag to 0, while before breakpoint_re_set, called from
4767 start_remote, set `inserted' flag to 1. In the initialization of
4768 inferior, breakpoint_init_inferior should be called first, and then
4769 breakpoint_re_set can be called. If this order is broken, state of
4770 `inserted' flag is wrong, and cause some problems on breakpoint
4771 manipulation. */
4772 init_wait_for_inferior ();
4773
4774 get_offsets (); /* Get text, data & bss offsets. */
4775
4776 /* If we could not find a description using qXfer, and we know
4777 how to do it some other way, try again. This is not
4778 supported for non-stop; it could be, but it is tricky if
4779 there are no stopped threads when we connect. */
4780 if (remote_read_description_p (this)
4781 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4782 {
4783 target_clear_description ();
4784 target_find_description ();
4785 }
4786
4787 /* Use the previously fetched status. */
4788 gdb_assert (wait_status != NULL);
4789 strcpy (rs->buf.data (), wait_status);
4790 rs->cached_wait_status = 1;
4791
4792 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4793 }
4794 else
4795 {
4796 /* Clear WFI global state. Do this before finding about new
4797 threads and inferiors, and setting the current inferior.
4798 Otherwise we would clear the proceed status of the current
4799 inferior when we want its stop_soon state to be preserved
4800 (see notice_new_inferior). */
4801 init_wait_for_inferior ();
4802
4803 /* In non-stop, we will either get an "OK", meaning that there
4804 are no stopped threads at this time; or, a regular stop
4805 reply. In the latter case, there may be more than one thread
4806 stopped --- we pull them all out using the vStopped
4807 mechanism. */
4808 if (strcmp (rs->buf.data (), "OK") != 0)
4809 {
4810 struct notif_client *notif = &notif_client_stop;
4811
4812 /* remote_notif_get_pending_replies acks this one, and gets
4813 the rest out. */
4814 rs->notif_state->pending_event[notif_client_stop.id]
4815 = remote_notif_parse (this, notif, rs->buf.data ());
4816 remote_notif_get_pending_events (notif);
4817 }
4818
4819 if (thread_count (this) == 0)
4820 {
4821 if (!extended_p)
4822 error (_("The target is not running (try extended-remote?)"));
4823
4824 /* We're connected, but not running. Drop out before we
4825 call start_remote. */
4826 rs->starting_up = 0;
4827 return;
4828 }
4829
4830 /* In non-stop mode, any cached wait status will be stored in
4831 the stop reply queue. */
4832 gdb_assert (wait_status == NULL);
4833
4834 /* Report all signals during attach/startup. */
4835 pass_signals ({});
4836
4837 /* If there are already stopped threads, mark them stopped and
4838 report their stops before giving the prompt to the user. */
4839 process_initial_stop_replies (from_tty);
4840
4841 if (target_can_async_p ())
4842 target_async (1);
4843 }
4844
4845 /* If we connected to a live target, do some additional setup. */
4846 if (target_has_execution)
4847 {
4848 if (symfile_objfile) /* No use without a symbol-file. */
4849 remote_check_symbols ();
4850 }
4851
4852 /* Possibly the target has been engaged in a trace run started
4853 previously; find out where things are at. */
4854 if (get_trace_status (current_trace_status ()) != -1)
4855 {
4856 struct uploaded_tp *uploaded_tps = NULL;
4857
4858 if (current_trace_status ()->running)
4859 printf_filtered (_("Trace is already running on the target.\n"));
4860
4861 upload_tracepoints (&uploaded_tps);
4862
4863 merge_uploaded_tracepoints (&uploaded_tps);
4864 }
4865
4866 /* Possibly the target has been engaged in a btrace record started
4867 previously; find out where things are at. */
4868 remote_btrace_maybe_reopen ();
4869
4870 /* The thread and inferior lists are now synchronized with the
4871 target, our symbols have been relocated, and we're merged the
4872 target's tracepoints with ours. We're done with basic start
4873 up. */
4874 rs->starting_up = 0;
4875
4876 /* Maybe breakpoints are global and need to be inserted now. */
4877 if (breakpoints_should_be_inserted_now ())
4878 insert_breakpoints ();
4879 }
4880
4881 const char *
4882 remote_target::connection_string ()
4883 {
4884 remote_state *rs = get_remote_state ();
4885
4886 if (rs->remote_desc->name != NULL)
4887 return rs->remote_desc->name;
4888 else
4889 return NULL;
4890 }
4891
4892 /* Open a connection to a remote debugger.
4893 NAME is the filename used for communication. */
4894
4895 void
4896 remote_target::open (const char *name, int from_tty)
4897 {
4898 open_1 (name, from_tty, 0);
4899 }
4900
4901 /* Open a connection to a remote debugger using the extended
4902 remote gdb protocol. NAME is the filename used for communication. */
4903
4904 void
4905 extended_remote_target::open (const char *name, int from_tty)
4906 {
4907 open_1 (name, from_tty, 1 /*extended_p */);
4908 }
4909
4910 /* Reset all packets back to "unknown support". Called when opening a
4911 new connection to a remote target. */
4912
4913 static void
4914 reset_all_packet_configs_support (void)
4915 {
4916 int i;
4917
4918 for (i = 0; i < PACKET_MAX; i++)
4919 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4920 }
4921
4922 /* Initialize all packet configs. */
4923
4924 static void
4925 init_all_packet_configs (void)
4926 {
4927 int i;
4928
4929 for (i = 0; i < PACKET_MAX; i++)
4930 {
4931 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4932 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4933 }
4934 }
4935
4936 /* Symbol look-up. */
4937
4938 void
4939 remote_target::remote_check_symbols ()
4940 {
4941 char *tmp;
4942 int end;
4943
4944 /* The remote side has no concept of inferiors that aren't running
4945 yet, it only knows about running processes. If we're connected
4946 but our current inferior is not running, we should not invite the
4947 remote target to request symbol lookups related to its
4948 (unrelated) current process. */
4949 if (!target_has_execution)
4950 return;
4951
4952 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4953 return;
4954
4955 /* Make sure the remote is pointing at the right process. Note
4956 there's no way to select "no process". */
4957 set_general_process ();
4958
4959 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4960 because we need both at the same time. */
4961 gdb::char_vector msg (get_remote_packet_size ());
4962 gdb::char_vector reply (get_remote_packet_size ());
4963
4964 /* Invite target to request symbol lookups. */
4965
4966 putpkt ("qSymbol::");
4967 getpkt (&reply, 0);
4968 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4969
4970 while (startswith (reply.data (), "qSymbol:"))
4971 {
4972 struct bound_minimal_symbol sym;
4973
4974 tmp = &reply[8];
4975 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4976 strlen (tmp) / 2);
4977 msg[end] = '\0';
4978 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4979 if (sym.minsym == NULL)
4980 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4981 &reply[8]);
4982 else
4983 {
4984 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4985 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4986
4987 /* If this is a function address, return the start of code
4988 instead of any data function descriptor. */
4989 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4990 sym_addr,
4991 current_top_target ());
4992
4993 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4994 phex_nz (sym_addr, addr_size), &reply[8]);
4995 }
4996
4997 putpkt (msg.data ());
4998 getpkt (&reply, 0);
4999 }
5000 }
5001
5002 static struct serial *
5003 remote_serial_open (const char *name)
5004 {
5005 static int udp_warning = 0;
5006
5007 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5008 of in ser-tcp.c, because it is the remote protocol assuming that the
5009 serial connection is reliable and not the serial connection promising
5010 to be. */
5011 if (!udp_warning && startswith (name, "udp:"))
5012 {
5013 warning (_("The remote protocol may be unreliable over UDP.\n"
5014 "Some events may be lost, rendering further debugging "
5015 "impossible."));
5016 udp_warning = 1;
5017 }
5018
5019 return serial_open (name);
5020 }
5021
5022 /* Inform the target of our permission settings. The permission flags
5023 work without this, but if the target knows the settings, it can do
5024 a couple things. First, it can add its own check, to catch cases
5025 that somehow manage to get by the permissions checks in target
5026 methods. Second, if the target is wired to disallow particular
5027 settings (for instance, a system in the field that is not set up to
5028 be able to stop at a breakpoint), it can object to any unavailable
5029 permissions. */
5030
5031 void
5032 remote_target::set_permissions ()
5033 {
5034 struct remote_state *rs = get_remote_state ();
5035
5036 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5037 "WriteReg:%x;WriteMem:%x;"
5038 "InsertBreak:%x;InsertTrace:%x;"
5039 "InsertFastTrace:%x;Stop:%x",
5040 may_write_registers, may_write_memory,
5041 may_insert_breakpoints, may_insert_tracepoints,
5042 may_insert_fast_tracepoints, may_stop);
5043 putpkt (rs->buf);
5044 getpkt (&rs->buf, 0);
5045
5046 /* If the target didn't like the packet, warn the user. Do not try
5047 to undo the user's settings, that would just be maddening. */
5048 if (strcmp (rs->buf.data (), "OK") != 0)
5049 warning (_("Remote refused setting permissions with: %s"),
5050 rs->buf.data ());
5051 }
5052
5053 /* This type describes each known response to the qSupported
5054 packet. */
5055 struct protocol_feature
5056 {
5057 /* The name of this protocol feature. */
5058 const char *name;
5059
5060 /* The default for this protocol feature. */
5061 enum packet_support default_support;
5062
5063 /* The function to call when this feature is reported, or after
5064 qSupported processing if the feature is not supported.
5065 The first argument points to this structure. The second
5066 argument indicates whether the packet requested support be
5067 enabled, disabled, or probed (or the default, if this function
5068 is being called at the end of processing and this feature was
5069 not reported). The third argument may be NULL; if not NULL, it
5070 is a NUL-terminated string taken from the packet following
5071 this feature's name and an equals sign. */
5072 void (*func) (remote_target *remote, const struct protocol_feature *,
5073 enum packet_support, const char *);
5074
5075 /* The corresponding packet for this feature. Only used if
5076 FUNC is remote_supported_packet. */
5077 int packet;
5078 };
5079
5080 static void
5081 remote_supported_packet (remote_target *remote,
5082 const struct protocol_feature *feature,
5083 enum packet_support support,
5084 const char *argument)
5085 {
5086 if (argument)
5087 {
5088 warning (_("Remote qSupported response supplied an unexpected value for"
5089 " \"%s\"."), feature->name);
5090 return;
5091 }
5092
5093 remote_protocol_packets[feature->packet].support = support;
5094 }
5095
5096 void
5097 remote_target::remote_packet_size (const protocol_feature *feature,
5098 enum packet_support support, const char *value)
5099 {
5100 struct remote_state *rs = get_remote_state ();
5101
5102 int packet_size;
5103 char *value_end;
5104
5105 if (support != PACKET_ENABLE)
5106 return;
5107
5108 if (value == NULL || *value == '\0')
5109 {
5110 warning (_("Remote target reported \"%s\" without a size."),
5111 feature->name);
5112 return;
5113 }
5114
5115 errno = 0;
5116 packet_size = strtol (value, &value_end, 16);
5117 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5118 {
5119 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5120 feature->name, value);
5121 return;
5122 }
5123
5124 /* Record the new maximum packet size. */
5125 rs->explicit_packet_size = packet_size;
5126 }
5127
5128 static void
5129 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5130 enum packet_support support, const char *value)
5131 {
5132 remote->remote_packet_size (feature, support, value);
5133 }
5134
5135 static const struct protocol_feature remote_protocol_features[] = {
5136 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5137 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_auxv },
5139 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_qXfer_exec_file },
5141 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_qXfer_features },
5143 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_qXfer_libraries },
5145 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_qXfer_libraries_svr4 },
5147 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5148 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5149 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_qXfer_memory_map },
5151 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_qXfer_osdata },
5153 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_threads },
5155 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_traceframe_info },
5157 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_QPassSignals },
5159 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QCatchSyscalls },
5161 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_QProgramSignals },
5163 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_QSetWorkingDir },
5165 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_QStartupWithShell },
5167 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QEnvironmentHexEncoded },
5169 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_QEnvironmentReset },
5171 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_QEnvironmentUnset },
5173 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_QStartNoAckMode },
5175 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_multiprocess_feature },
5177 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5178 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_siginfo_read },
5180 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_qXfer_siginfo_write },
5182 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_ConditionalTracepoints },
5184 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_ConditionalBreakpoints },
5186 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_BreakpointCommands },
5188 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_FastTracepoints },
5190 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_StaticTracepoints },
5192 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5193 PACKET_InstallInTrace},
5194 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5195 PACKET_DisconnectedTracing_feature },
5196 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5197 PACKET_bc },
5198 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5199 PACKET_bs },
5200 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_TracepointSource },
5202 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5203 PACKET_QAllow },
5204 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_EnableDisableTracepoints_feature },
5206 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5207 PACKET_qXfer_fdpic },
5208 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_qXfer_uib },
5210 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_QDisableRandomization },
5212 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5213 { "QTBuffer:size", PACKET_DISABLE,
5214 remote_supported_packet, PACKET_QTBuffer_size},
5215 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5216 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5217 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5218 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5219 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5220 PACKET_qXfer_btrace },
5221 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5222 PACKET_qXfer_btrace_conf },
5223 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_Qbtrace_conf_bts_size },
5225 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5226 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5227 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5228 PACKET_fork_event_feature },
5229 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_vfork_event_feature },
5231 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_exec_event_feature },
5233 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_Qbtrace_conf_pt_size },
5235 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5236 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5237 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5238 };
5239
5240 static char *remote_support_xml;
5241
5242 /* Register string appended to "xmlRegisters=" in qSupported query. */
5243
5244 void
5245 register_remote_support_xml (const char *xml)
5246 {
5247 #if defined(HAVE_LIBEXPAT)
5248 if (remote_support_xml == NULL)
5249 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5250 else
5251 {
5252 char *copy = xstrdup (remote_support_xml + 13);
5253 char *saveptr;
5254 char *p = strtok_r (copy, ",", &saveptr);
5255
5256 do
5257 {
5258 if (strcmp (p, xml) == 0)
5259 {
5260 /* already there */
5261 xfree (copy);
5262 return;
5263 }
5264 }
5265 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5266 xfree (copy);
5267
5268 remote_support_xml = reconcat (remote_support_xml,
5269 remote_support_xml, ",", xml,
5270 (char *) NULL);
5271 }
5272 #endif
5273 }
5274
5275 static void
5276 remote_query_supported_append (std::string *msg, const char *append)
5277 {
5278 if (!msg->empty ())
5279 msg->append (";");
5280 msg->append (append);
5281 }
5282
5283 void
5284 remote_target::remote_query_supported ()
5285 {
5286 struct remote_state *rs = get_remote_state ();
5287 char *next;
5288 int i;
5289 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5290
5291 /* The packet support flags are handled differently for this packet
5292 than for most others. We treat an error, a disabled packet, and
5293 an empty response identically: any features which must be reported
5294 to be used will be automatically disabled. An empty buffer
5295 accomplishes this, since that is also the representation for a list
5296 containing no features. */
5297
5298 rs->buf[0] = 0;
5299 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5300 {
5301 std::string q;
5302
5303 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "multiprocess+");
5305
5306 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "swbreak+");
5308 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5309 remote_query_supported_append (&q, "hwbreak+");
5310
5311 remote_query_supported_append (&q, "qRelocInsn+");
5312
5313 if (packet_set_cmd_state (PACKET_fork_event_feature)
5314 != AUTO_BOOLEAN_FALSE)
5315 remote_query_supported_append (&q, "fork-events+");
5316 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5317 != AUTO_BOOLEAN_FALSE)
5318 remote_query_supported_append (&q, "vfork-events+");
5319 if (packet_set_cmd_state (PACKET_exec_event_feature)
5320 != AUTO_BOOLEAN_FALSE)
5321 remote_query_supported_append (&q, "exec-events+");
5322
5323 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5324 remote_query_supported_append (&q, "vContSupported+");
5325
5326 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5327 remote_query_supported_append (&q, "QThreadEvents+");
5328
5329 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5330 remote_query_supported_append (&q, "no-resumed+");
5331
5332 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5333 the qSupported:xmlRegisters=i386 handling. */
5334 if (remote_support_xml != NULL
5335 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5336 remote_query_supported_append (&q, remote_support_xml);
5337
5338 q = "qSupported:" + q;
5339 putpkt (q.c_str ());
5340
5341 getpkt (&rs->buf, 0);
5342
5343 /* If an error occured, warn, but do not return - just reset the
5344 buffer to empty and go on to disable features. */
5345 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5346 == PACKET_ERROR)
5347 {
5348 warning (_("Remote failure reply: %s"), rs->buf.data ());
5349 rs->buf[0] = 0;
5350 }
5351 }
5352
5353 memset (seen, 0, sizeof (seen));
5354
5355 next = rs->buf.data ();
5356 while (*next)
5357 {
5358 enum packet_support is_supported;
5359 char *p, *end, *name_end, *value;
5360
5361 /* First separate out this item from the rest of the packet. If
5362 there's another item after this, we overwrite the separator
5363 (terminated strings are much easier to work with). */
5364 p = next;
5365 end = strchr (p, ';');
5366 if (end == NULL)
5367 {
5368 end = p + strlen (p);
5369 next = end;
5370 }
5371 else
5372 {
5373 *end = '\0';
5374 next = end + 1;
5375
5376 if (end == p)
5377 {
5378 warning (_("empty item in \"qSupported\" response"));
5379 continue;
5380 }
5381 }
5382
5383 name_end = strchr (p, '=');
5384 if (name_end)
5385 {
5386 /* This is a name=value entry. */
5387 is_supported = PACKET_ENABLE;
5388 value = name_end + 1;
5389 *name_end = '\0';
5390 }
5391 else
5392 {
5393 value = NULL;
5394 switch (end[-1])
5395 {
5396 case '+':
5397 is_supported = PACKET_ENABLE;
5398 break;
5399
5400 case '-':
5401 is_supported = PACKET_DISABLE;
5402 break;
5403
5404 case '?':
5405 is_supported = PACKET_SUPPORT_UNKNOWN;
5406 break;
5407
5408 default:
5409 warning (_("unrecognized item \"%s\" "
5410 "in \"qSupported\" response"), p);
5411 continue;
5412 }
5413 end[-1] = '\0';
5414 }
5415
5416 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5417 if (strcmp (remote_protocol_features[i].name, p) == 0)
5418 {
5419 const struct protocol_feature *feature;
5420
5421 seen[i] = 1;
5422 feature = &remote_protocol_features[i];
5423 feature->func (this, feature, is_supported, value);
5424 break;
5425 }
5426 }
5427
5428 /* If we increased the packet size, make sure to increase the global
5429 buffer size also. We delay this until after parsing the entire
5430 qSupported packet, because this is the same buffer we were
5431 parsing. */
5432 if (rs->buf.size () < rs->explicit_packet_size)
5433 rs->buf.resize (rs->explicit_packet_size);
5434
5435 /* Handle the defaults for unmentioned features. */
5436 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5437 if (!seen[i])
5438 {
5439 const struct protocol_feature *feature;
5440
5441 feature = &remote_protocol_features[i];
5442 feature->func (this, feature, feature->default_support, NULL);
5443 }
5444 }
5445
5446 /* Serial QUIT handler for the remote serial descriptor.
5447
5448 Defers handling a Ctrl-C until we're done with the current
5449 command/response packet sequence, unless:
5450
5451 - We're setting up the connection. Don't send a remote interrupt
5452 request, as we're not fully synced yet. Quit immediately
5453 instead.
5454
5455 - The target has been resumed in the foreground
5456 (target_terminal::is_ours is false) with a synchronous resume
5457 packet, and we're blocked waiting for the stop reply, thus a
5458 Ctrl-C should be immediately sent to the target.
5459
5460 - We get a second Ctrl-C while still within the same serial read or
5461 write. In that case the serial is seemingly wedged --- offer to
5462 quit/disconnect.
5463
5464 - We see a second Ctrl-C without target response, after having
5465 previously interrupted the target. In that case the target/stub
5466 is probably wedged --- offer to quit/disconnect.
5467 */
5468
5469 void
5470 remote_target::remote_serial_quit_handler ()
5471 {
5472 struct remote_state *rs = get_remote_state ();
5473
5474 if (check_quit_flag ())
5475 {
5476 /* If we're starting up, we're not fully synced yet. Quit
5477 immediately. */
5478 if (rs->starting_up)
5479 quit ();
5480 else if (rs->got_ctrlc_during_io)
5481 {
5482 if (query (_("The target is not responding to GDB commands.\n"
5483 "Stop debugging it? ")))
5484 remote_unpush_and_throw (this);
5485 }
5486 /* If ^C has already been sent once, offer to disconnect. */
5487 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5488 interrupt_query ();
5489 /* All-stop protocol, and blocked waiting for stop reply. Send
5490 an interrupt request. */
5491 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5492 target_interrupt ();
5493 else
5494 rs->got_ctrlc_during_io = 1;
5495 }
5496 }
5497
5498 /* The remote_target that is current while the quit handler is
5499 overridden with remote_serial_quit_handler. */
5500 static remote_target *curr_quit_handler_target;
5501
5502 static void
5503 remote_serial_quit_handler ()
5504 {
5505 curr_quit_handler_target->remote_serial_quit_handler ();
5506 }
5507
5508 /* Remove the remote target from the target stack of each inferior
5509 that is using it. Upper targets depend on it so remove them
5510 first. */
5511
5512 static void
5513 remote_unpush_target (remote_target *target)
5514 {
5515 /* We have to unpush the target from all inferiors, even those that
5516 aren't running. */
5517 scoped_restore_current_inferior restore_current_inferior;
5518
5519 for (inferior *inf : all_inferiors (target))
5520 {
5521 switch_to_inferior_no_thread (inf);
5522 pop_all_targets_at_and_above (process_stratum);
5523 generic_mourn_inferior ();
5524 }
5525 }
5526
5527 static void
5528 remote_unpush_and_throw (remote_target *target)
5529 {
5530 remote_unpush_target (target);
5531 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5532 }
5533
5534 void
5535 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5536 {
5537 remote_target *curr_remote = get_current_remote_target ();
5538
5539 if (name == 0)
5540 error (_("To open a remote debug connection, you need to specify what\n"
5541 "serial device is attached to the remote system\n"
5542 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5543
5544 /* If we're connected to a running target, target_preopen will kill it.
5545 Ask this question first, before target_preopen has a chance to kill
5546 anything. */
5547 if (curr_remote != NULL && !target_has_execution)
5548 {
5549 if (from_tty
5550 && !query (_("Already connected to a remote target. Disconnect? ")))
5551 error (_("Still connected."));
5552 }
5553
5554 /* Here the possibly existing remote target gets unpushed. */
5555 target_preopen (from_tty);
5556
5557 remote_fileio_reset ();
5558 reopen_exec_file ();
5559 reread_symbols ();
5560
5561 remote_target *remote
5562 = (extended_p ? new extended_remote_target () : new remote_target ());
5563 target_ops_up target_holder (remote);
5564
5565 remote_state *rs = remote->get_remote_state ();
5566
5567 /* See FIXME above. */
5568 if (!target_async_permitted)
5569 rs->wait_forever_enabled_p = 1;
5570
5571 rs->remote_desc = remote_serial_open (name);
5572 if (!rs->remote_desc)
5573 perror_with_name (name);
5574
5575 if (baud_rate != -1)
5576 {
5577 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5578 {
5579 /* The requested speed could not be set. Error out to
5580 top level after closing remote_desc. Take care to
5581 set remote_desc to NULL to avoid closing remote_desc
5582 more than once. */
5583 serial_close (rs->remote_desc);
5584 rs->remote_desc = NULL;
5585 perror_with_name (name);
5586 }
5587 }
5588
5589 serial_setparity (rs->remote_desc, serial_parity);
5590 serial_raw (rs->remote_desc);
5591
5592 /* If there is something sitting in the buffer we might take it as a
5593 response to a command, which would be bad. */
5594 serial_flush_input (rs->remote_desc);
5595
5596 if (from_tty)
5597 {
5598 puts_filtered ("Remote debugging using ");
5599 puts_filtered (name);
5600 puts_filtered ("\n");
5601 }
5602
5603 /* Switch to using the remote target now. */
5604 push_target (std::move (target_holder));
5605
5606 /* Register extra event sources in the event loop. */
5607 rs->remote_async_inferior_event_token
5608 = create_async_event_handler (remote_async_inferior_event_handler, remote);
5609 rs->notif_state = remote_notif_state_allocate (remote);
5610
5611 /* Reset the target state; these things will be queried either by
5612 remote_query_supported or as they are needed. */
5613 reset_all_packet_configs_support ();
5614 rs->cached_wait_status = 0;
5615 rs->explicit_packet_size = 0;
5616 rs->noack_mode = 0;
5617 rs->extended = extended_p;
5618 rs->waiting_for_stop_reply = 0;
5619 rs->ctrlc_pending_p = 0;
5620 rs->got_ctrlc_during_io = 0;
5621
5622 rs->general_thread = not_sent_ptid;
5623 rs->continue_thread = not_sent_ptid;
5624 rs->remote_traceframe_number = -1;
5625
5626 rs->last_resume_exec_dir = EXEC_FORWARD;
5627
5628 /* Probe for ability to use "ThreadInfo" query, as required. */
5629 rs->use_threadinfo_query = 1;
5630 rs->use_threadextra_query = 1;
5631
5632 rs->readahead_cache.invalidate ();
5633
5634 if (target_async_permitted)
5635 {
5636 /* FIXME: cagney/1999-09-23: During the initial connection it is
5637 assumed that the target is already ready and able to respond to
5638 requests. Unfortunately remote_start_remote() eventually calls
5639 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5640 around this. Eventually a mechanism that allows
5641 wait_for_inferior() to expect/get timeouts will be
5642 implemented. */
5643 rs->wait_forever_enabled_p = 0;
5644 }
5645
5646 /* First delete any symbols previously loaded from shared libraries. */
5647 no_shared_libraries (NULL, 0);
5648
5649 /* Start the remote connection. If error() or QUIT, discard this
5650 target (we'd otherwise be in an inconsistent state) and then
5651 propogate the error on up the exception chain. This ensures that
5652 the caller doesn't stumble along blindly assuming that the
5653 function succeeded. The CLI doesn't have this problem but other
5654 UI's, such as MI do.
5655
5656 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5657 this function should return an error indication letting the
5658 caller restore the previous state. Unfortunately the command
5659 ``target remote'' is directly wired to this function making that
5660 impossible. On a positive note, the CLI side of this problem has
5661 been fixed - the function set_cmd_context() makes it possible for
5662 all the ``target ....'' commands to share a common callback
5663 function. See cli-dump.c. */
5664 {
5665
5666 try
5667 {
5668 remote->start_remote (from_tty, extended_p);
5669 }
5670 catch (const gdb_exception &ex)
5671 {
5672 /* Pop the partially set up target - unless something else did
5673 already before throwing the exception. */
5674 if (ex.error != TARGET_CLOSE_ERROR)
5675 remote_unpush_target (remote);
5676 throw;
5677 }
5678 }
5679
5680 remote_btrace_reset (rs);
5681
5682 if (target_async_permitted)
5683 rs->wait_forever_enabled_p = 1;
5684 }
5685
5686 /* Detach the specified process. */
5687
5688 void
5689 remote_target::remote_detach_pid (int pid)
5690 {
5691 struct remote_state *rs = get_remote_state ();
5692
5693 /* This should not be necessary, but the handling for D;PID in
5694 GDBserver versions prior to 8.2 incorrectly assumes that the
5695 selected process points to the same process we're detaching,
5696 leading to misbehavior (and possibly GDBserver crashing) when it
5697 does not. Since it's easy and cheap, work around it by forcing
5698 GDBserver to select GDB's current process. */
5699 set_general_process ();
5700
5701 if (remote_multi_process_p (rs))
5702 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5703 else
5704 strcpy (rs->buf.data (), "D");
5705
5706 putpkt (rs->buf);
5707 getpkt (&rs->buf, 0);
5708
5709 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5710 ;
5711 else if (rs->buf[0] == '\0')
5712 error (_("Remote doesn't know how to detach"));
5713 else
5714 error (_("Can't detach process."));
5715 }
5716
5717 /* This detaches a program to which we previously attached, using
5718 inferior_ptid to identify the process. After this is done, GDB
5719 can be used to debug some other program. We better not have left
5720 any breakpoints in the target program or it'll die when it hits
5721 one. */
5722
5723 void
5724 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5725 {
5726 int pid = inferior_ptid.pid ();
5727 struct remote_state *rs = get_remote_state ();
5728 int is_fork_parent;
5729
5730 if (!target_has_execution)
5731 error (_("No process to detach from."));
5732
5733 target_announce_detach (from_tty);
5734
5735 /* Tell the remote target to detach. */
5736 remote_detach_pid (pid);
5737
5738 /* Exit only if this is the only active inferior. */
5739 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5740 puts_filtered (_("Ending remote debugging.\n"));
5741
5742 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5743
5744 /* Check to see if we are detaching a fork parent. Note that if we
5745 are detaching a fork child, tp == NULL. */
5746 is_fork_parent = (tp != NULL
5747 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5748
5749 /* If doing detach-on-fork, we don't mourn, because that will delete
5750 breakpoints that should be available for the followed inferior. */
5751 if (!is_fork_parent)
5752 {
5753 /* Save the pid as a string before mourning, since that will
5754 unpush the remote target, and we need the string after. */
5755 std::string infpid = target_pid_to_str (ptid_t (pid));
5756
5757 target_mourn_inferior (inferior_ptid);
5758 if (print_inferior_events)
5759 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5760 inf->num, infpid.c_str ());
5761 }
5762 else
5763 {
5764 switch_to_no_thread ();
5765 detach_inferior (current_inferior ());
5766 }
5767 }
5768
5769 void
5770 remote_target::detach (inferior *inf, int from_tty)
5771 {
5772 remote_detach_1 (inf, from_tty);
5773 }
5774
5775 void
5776 extended_remote_target::detach (inferior *inf, int from_tty)
5777 {
5778 remote_detach_1 (inf, from_tty);
5779 }
5780
5781 /* Target follow-fork function for remote targets. On entry, and
5782 at return, the current inferior is the fork parent.
5783
5784 Note that although this is currently only used for extended-remote,
5785 it is named remote_follow_fork in anticipation of using it for the
5786 remote target as well. */
5787
5788 bool
5789 remote_target::follow_fork (bool follow_child, bool detach_fork)
5790 {
5791 struct remote_state *rs = get_remote_state ();
5792 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5793
5794 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5795 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5796 {
5797 /* When following the parent and detaching the child, we detach
5798 the child here. For the case of following the child and
5799 detaching the parent, the detach is done in the target-
5800 independent follow fork code in infrun.c. We can't use
5801 target_detach when detaching an unfollowed child because
5802 the client side doesn't know anything about the child. */
5803 if (detach_fork && !follow_child)
5804 {
5805 /* Detach the fork child. */
5806 ptid_t child_ptid;
5807 pid_t child_pid;
5808
5809 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5810 child_pid = child_ptid.pid ();
5811
5812 remote_detach_pid (child_pid);
5813 }
5814 }
5815
5816 return false;
5817 }
5818
5819 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5820 in the program space of the new inferior. On entry and at return the
5821 current inferior is the exec'ing inferior. INF is the new exec'd
5822 inferior, which may be the same as the exec'ing inferior unless
5823 follow-exec-mode is "new". */
5824
5825 void
5826 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5827 {
5828 /* We know that this is a target file name, so if it has the "target:"
5829 prefix we strip it off before saving it in the program space. */
5830 if (is_target_filename (execd_pathname))
5831 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5832
5833 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5834 }
5835
5836 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5837
5838 void
5839 remote_target::disconnect (const char *args, int from_tty)
5840 {
5841 if (args)
5842 error (_("Argument given to \"disconnect\" when remotely debugging."));
5843
5844 /* Make sure we unpush even the extended remote targets. Calling
5845 target_mourn_inferior won't unpush, and
5846 remote_target::mourn_inferior won't unpush if there is more than
5847 one inferior left. */
5848 remote_unpush_target (this);
5849
5850 if (from_tty)
5851 puts_filtered ("Ending remote debugging.\n");
5852 }
5853
5854 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5855 be chatty about it. */
5856
5857 void
5858 extended_remote_target::attach (const char *args, int from_tty)
5859 {
5860 struct remote_state *rs = get_remote_state ();
5861 int pid;
5862 char *wait_status = NULL;
5863
5864 pid = parse_pid_to_attach (args);
5865
5866 /* Remote PID can be freely equal to getpid, do not check it here the same
5867 way as in other targets. */
5868
5869 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5870 error (_("This target does not support attaching to a process"));
5871
5872 if (from_tty)
5873 {
5874 const char *exec_file = get_exec_file (0);
5875
5876 if (exec_file)
5877 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5878 target_pid_to_str (ptid_t (pid)).c_str ());
5879 else
5880 printf_unfiltered (_("Attaching to %s\n"),
5881 target_pid_to_str (ptid_t (pid)).c_str ());
5882 }
5883
5884 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5885 putpkt (rs->buf);
5886 getpkt (&rs->buf, 0);
5887
5888 switch (packet_ok (rs->buf,
5889 &remote_protocol_packets[PACKET_vAttach]))
5890 {
5891 case PACKET_OK:
5892 if (!target_is_non_stop_p ())
5893 {
5894 /* Save the reply for later. */
5895 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5896 strcpy (wait_status, rs->buf.data ());
5897 }
5898 else if (strcmp (rs->buf.data (), "OK") != 0)
5899 error (_("Attaching to %s failed with: %s"),
5900 target_pid_to_str (ptid_t (pid)).c_str (),
5901 rs->buf.data ());
5902 break;
5903 case PACKET_UNKNOWN:
5904 error (_("This target does not support attaching to a process"));
5905 default:
5906 error (_("Attaching to %s failed"),
5907 target_pid_to_str (ptid_t (pid)).c_str ());
5908 }
5909
5910 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5911
5912 inferior_ptid = ptid_t (pid);
5913
5914 if (target_is_non_stop_p ())
5915 {
5916 /* Get list of threads. */
5917 update_thread_list ();
5918
5919 thread_info *thread = first_thread_of_inferior (current_inferior ());
5920 if (thread != nullptr)
5921 switch_to_thread (thread);
5922
5923 /* Invalidate our notion of the remote current thread. */
5924 record_currthread (rs, minus_one_ptid);
5925 }
5926 else
5927 {
5928 /* Now, if we have thread information, update the main thread's
5929 ptid. */
5930 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
5931
5932 /* Add the main thread to the thread list. */
5933 thread_info *thr = add_thread_silent (this, curr_ptid);
5934
5935 switch_to_thread (thr);
5936
5937 /* Don't consider the thread stopped until we've processed the
5938 saved stop reply. */
5939 set_executing (this, thr->ptid, true);
5940 }
5941
5942 /* Next, if the target can specify a description, read it. We do
5943 this before anything involving memory or registers. */
5944 target_find_description ();
5945
5946 if (!target_is_non_stop_p ())
5947 {
5948 /* Use the previously fetched status. */
5949 gdb_assert (wait_status != NULL);
5950
5951 if (target_can_async_p ())
5952 {
5953 struct notif_event *reply
5954 = remote_notif_parse (this, &notif_client_stop, wait_status);
5955
5956 push_stop_reply ((struct stop_reply *) reply);
5957
5958 target_async (1);
5959 }
5960 else
5961 {
5962 gdb_assert (wait_status != NULL);
5963 strcpy (rs->buf.data (), wait_status);
5964 rs->cached_wait_status = 1;
5965 }
5966 }
5967 else
5968 gdb_assert (wait_status == NULL);
5969 }
5970
5971 /* Implementation of the to_post_attach method. */
5972
5973 void
5974 extended_remote_target::post_attach (int pid)
5975 {
5976 /* Get text, data & bss offsets. */
5977 get_offsets ();
5978
5979 /* In certain cases GDB might not have had the chance to start
5980 symbol lookup up until now. This could happen if the debugged
5981 binary is not using shared libraries, the vsyscall page is not
5982 present (on Linux) and the binary itself hadn't changed since the
5983 debugging process was started. */
5984 if (symfile_objfile != NULL)
5985 remote_check_symbols();
5986 }
5987
5988 \f
5989 /* Check for the availability of vCont. This function should also check
5990 the response. */
5991
5992 void
5993 remote_target::remote_vcont_probe ()
5994 {
5995 remote_state *rs = get_remote_state ();
5996 char *buf;
5997
5998 strcpy (rs->buf.data (), "vCont?");
5999 putpkt (rs->buf);
6000 getpkt (&rs->buf, 0);
6001 buf = rs->buf.data ();
6002
6003 /* Make sure that the features we assume are supported. */
6004 if (startswith (buf, "vCont"))
6005 {
6006 char *p = &buf[5];
6007 int support_c, support_C;
6008
6009 rs->supports_vCont.s = 0;
6010 rs->supports_vCont.S = 0;
6011 support_c = 0;
6012 support_C = 0;
6013 rs->supports_vCont.t = 0;
6014 rs->supports_vCont.r = 0;
6015 while (p && *p == ';')
6016 {
6017 p++;
6018 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6019 rs->supports_vCont.s = 1;
6020 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6021 rs->supports_vCont.S = 1;
6022 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6023 support_c = 1;
6024 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6025 support_C = 1;
6026 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6027 rs->supports_vCont.t = 1;
6028 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6029 rs->supports_vCont.r = 1;
6030
6031 p = strchr (p, ';');
6032 }
6033
6034 /* If c, and C are not all supported, we can't use vCont. Clearing
6035 BUF will make packet_ok disable the packet. */
6036 if (!support_c || !support_C)
6037 buf[0] = 0;
6038 }
6039
6040 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6041 rs->supports_vCont_probed = true;
6042 }
6043
6044 /* Helper function for building "vCont" resumptions. Write a
6045 resumption to P. ENDP points to one-passed-the-end of the buffer
6046 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6047 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6048 resumed thread should be single-stepped and/or signalled. If PTID
6049 equals minus_one_ptid, then all threads are resumed; if PTID
6050 represents a process, then all threads of the process are resumed;
6051 the thread to be stepped and/or signalled is given in the global
6052 INFERIOR_PTID. */
6053
6054 char *
6055 remote_target::append_resumption (char *p, char *endp,
6056 ptid_t ptid, int step, gdb_signal siggnal)
6057 {
6058 struct remote_state *rs = get_remote_state ();
6059
6060 if (step && siggnal != GDB_SIGNAL_0)
6061 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6062 else if (step
6063 /* GDB is willing to range step. */
6064 && use_range_stepping
6065 /* Target supports range stepping. */
6066 && rs->supports_vCont.r
6067 /* We don't currently support range stepping multiple
6068 threads with a wildcard (though the protocol allows it,
6069 so stubs shouldn't make an active effort to forbid
6070 it). */
6071 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6072 {
6073 struct thread_info *tp;
6074
6075 if (ptid == minus_one_ptid)
6076 {
6077 /* If we don't know about the target thread's tid, then
6078 we're resuming magic_null_ptid (see caller). */
6079 tp = find_thread_ptid (this, magic_null_ptid);
6080 }
6081 else
6082 tp = find_thread_ptid (this, ptid);
6083 gdb_assert (tp != NULL);
6084
6085 if (tp->control.may_range_step)
6086 {
6087 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6088
6089 p += xsnprintf (p, endp - p, ";r%s,%s",
6090 phex_nz (tp->control.step_range_start,
6091 addr_size),
6092 phex_nz (tp->control.step_range_end,
6093 addr_size));
6094 }
6095 else
6096 p += xsnprintf (p, endp - p, ";s");
6097 }
6098 else if (step)
6099 p += xsnprintf (p, endp - p, ";s");
6100 else if (siggnal != GDB_SIGNAL_0)
6101 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6102 else
6103 p += xsnprintf (p, endp - p, ";c");
6104
6105 if (remote_multi_process_p (rs) && ptid.is_pid ())
6106 {
6107 ptid_t nptid;
6108
6109 /* All (-1) threads of process. */
6110 nptid = ptid_t (ptid.pid (), -1, 0);
6111
6112 p += xsnprintf (p, endp - p, ":");
6113 p = write_ptid (p, endp, nptid);
6114 }
6115 else if (ptid != minus_one_ptid)
6116 {
6117 p += xsnprintf (p, endp - p, ":");
6118 p = write_ptid (p, endp, ptid);
6119 }
6120
6121 return p;
6122 }
6123
6124 /* Clear the thread's private info on resume. */
6125
6126 static void
6127 resume_clear_thread_private_info (struct thread_info *thread)
6128 {
6129 if (thread->priv != NULL)
6130 {
6131 remote_thread_info *priv = get_remote_thread_info (thread);
6132
6133 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6134 priv->watch_data_address = 0;
6135 }
6136 }
6137
6138 /* Append a vCont continue-with-signal action for threads that have a
6139 non-zero stop signal. */
6140
6141 char *
6142 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6143 ptid_t ptid)
6144 {
6145 for (thread_info *thread : all_non_exited_threads (this, ptid))
6146 if (inferior_ptid != thread->ptid
6147 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6148 {
6149 p = append_resumption (p, endp, thread->ptid,
6150 0, thread->suspend.stop_signal);
6151 thread->suspend.stop_signal = GDB_SIGNAL_0;
6152 resume_clear_thread_private_info (thread);
6153 }
6154
6155 return p;
6156 }
6157
6158 /* Set the target running, using the packets that use Hc
6159 (c/s/C/S). */
6160
6161 void
6162 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6163 gdb_signal siggnal)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *buf;
6167
6168 rs->last_sent_signal = siggnal;
6169 rs->last_sent_step = step;
6170
6171 /* The c/s/C/S resume packets use Hc, so set the continue
6172 thread. */
6173 if (ptid == minus_one_ptid)
6174 set_continue_thread (any_thread_ptid);
6175 else
6176 set_continue_thread (ptid);
6177
6178 for (thread_info *thread : all_non_exited_threads (this))
6179 resume_clear_thread_private_info (thread);
6180
6181 buf = rs->buf.data ();
6182 if (::execution_direction == EXEC_REVERSE)
6183 {
6184 /* We don't pass signals to the target in reverse exec mode. */
6185 if (info_verbose && siggnal != GDB_SIGNAL_0)
6186 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6187 siggnal);
6188
6189 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6190 error (_("Remote reverse-step not supported."));
6191 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6192 error (_("Remote reverse-continue not supported."));
6193
6194 strcpy (buf, step ? "bs" : "bc");
6195 }
6196 else if (siggnal != GDB_SIGNAL_0)
6197 {
6198 buf[0] = step ? 'S' : 'C';
6199 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6200 buf[2] = tohex (((int) siggnal) & 0xf);
6201 buf[3] = '\0';
6202 }
6203 else
6204 strcpy (buf, step ? "s" : "c");
6205
6206 putpkt (buf);
6207 }
6208
6209 /* Resume the remote inferior by using a "vCont" packet. The thread
6210 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6211 resumed thread should be single-stepped and/or signalled. If PTID
6212 equals minus_one_ptid, then all threads are resumed; the thread to
6213 be stepped and/or signalled is given in the global INFERIOR_PTID.
6214 This function returns non-zero iff it resumes the inferior.
6215
6216 This function issues a strict subset of all possible vCont commands
6217 at the moment. */
6218
6219 int
6220 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6221 enum gdb_signal siggnal)
6222 {
6223 struct remote_state *rs = get_remote_state ();
6224 char *p;
6225 char *endp;
6226
6227 /* No reverse execution actions defined for vCont. */
6228 if (::execution_direction == EXEC_REVERSE)
6229 return 0;
6230
6231 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6232 remote_vcont_probe ();
6233
6234 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6235 return 0;
6236
6237 p = rs->buf.data ();
6238 endp = p + get_remote_packet_size ();
6239
6240 /* If we could generate a wider range of packets, we'd have to worry
6241 about overflowing BUF. Should there be a generic
6242 "multi-part-packet" packet? */
6243
6244 p += xsnprintf (p, endp - p, "vCont");
6245
6246 if (ptid == magic_null_ptid)
6247 {
6248 /* MAGIC_NULL_PTID means that we don't have any active threads,
6249 so we don't have any TID numbers the inferior will
6250 understand. Make sure to only send forms that do not specify
6251 a TID. */
6252 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6253 }
6254 else if (ptid == minus_one_ptid || ptid.is_pid ())
6255 {
6256 /* Resume all threads (of all processes, or of a single
6257 process), with preference for INFERIOR_PTID. This assumes
6258 inferior_ptid belongs to the set of all threads we are about
6259 to resume. */
6260 if (step || siggnal != GDB_SIGNAL_0)
6261 {
6262 /* Step inferior_ptid, with or without signal. */
6263 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6264 }
6265
6266 /* Also pass down any pending signaled resumption for other
6267 threads not the current. */
6268 p = append_pending_thread_resumptions (p, endp, ptid);
6269
6270 /* And continue others without a signal. */
6271 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6272 }
6273 else
6274 {
6275 /* Scheduler locking; resume only PTID. */
6276 append_resumption (p, endp, ptid, step, siggnal);
6277 }
6278
6279 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6280 putpkt (rs->buf);
6281
6282 if (target_is_non_stop_p ())
6283 {
6284 /* In non-stop, the stub replies to vCont with "OK". The stop
6285 reply will be reported asynchronously by means of a `%Stop'
6286 notification. */
6287 getpkt (&rs->buf, 0);
6288 if (strcmp (rs->buf.data (), "OK") != 0)
6289 error (_("Unexpected vCont reply in non-stop mode: %s"),
6290 rs->buf.data ());
6291 }
6292
6293 return 1;
6294 }
6295
6296 /* Tell the remote machine to resume. */
6297
6298 void
6299 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6300 {
6301 struct remote_state *rs = get_remote_state ();
6302
6303 /* When connected in non-stop mode, the core resumes threads
6304 individually. Resuming remote threads directly in target_resume
6305 would thus result in sending one packet per thread. Instead, to
6306 minimize roundtrip latency, here we just store the resume
6307 request; the actual remote resumption will be done in
6308 target_commit_resume / remote_commit_resume, where we'll be able
6309 to do vCont action coalescing. */
6310 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6311 {
6312 remote_thread_info *remote_thr;
6313
6314 if (minus_one_ptid == ptid || ptid.is_pid ())
6315 remote_thr = get_remote_thread_info (this, inferior_ptid);
6316 else
6317 remote_thr = get_remote_thread_info (this, ptid);
6318
6319 remote_thr->last_resume_step = step;
6320 remote_thr->last_resume_sig = siggnal;
6321 return;
6322 }
6323
6324 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6325 (explained in remote-notif.c:handle_notification) so
6326 remote_notif_process is not called. We need find a place where
6327 it is safe to start a 'vNotif' sequence. It is good to do it
6328 before resuming inferior, because inferior was stopped and no RSP
6329 traffic at that moment. */
6330 if (!target_is_non_stop_p ())
6331 remote_notif_process (rs->notif_state, &notif_client_stop);
6332
6333 rs->last_resume_exec_dir = ::execution_direction;
6334
6335 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6336 if (!remote_resume_with_vcont (ptid, step, siggnal))
6337 remote_resume_with_hc (ptid, step, siggnal);
6338
6339 /* We are about to start executing the inferior, let's register it
6340 with the event loop. NOTE: this is the one place where all the
6341 execution commands end up. We could alternatively do this in each
6342 of the execution commands in infcmd.c. */
6343 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6344 into infcmd.c in order to allow inferior function calls to work
6345 NOT asynchronously. */
6346 if (target_can_async_p ())
6347 target_async (1);
6348
6349 /* We've just told the target to resume. The remote server will
6350 wait for the inferior to stop, and then send a stop reply. In
6351 the mean time, we can't start another command/query ourselves
6352 because the stub wouldn't be ready to process it. This applies
6353 only to the base all-stop protocol, however. In non-stop (which
6354 only supports vCont), the stub replies with an "OK", and is
6355 immediate able to process further serial input. */
6356 if (!target_is_non_stop_p ())
6357 rs->waiting_for_stop_reply = 1;
6358 }
6359
6360 static int is_pending_fork_parent_thread (struct thread_info *thread);
6361
6362 /* Private per-inferior info for target remote processes. */
6363
6364 struct remote_inferior : public private_inferior
6365 {
6366 /* Whether we can send a wildcard vCont for this process. */
6367 bool may_wildcard_vcont = true;
6368 };
6369
6370 /* Get the remote private inferior data associated to INF. */
6371
6372 static remote_inferior *
6373 get_remote_inferior (inferior *inf)
6374 {
6375 if (inf->priv == NULL)
6376 inf->priv.reset (new remote_inferior);
6377
6378 return static_cast<remote_inferior *> (inf->priv.get ());
6379 }
6380
6381 /* Class used to track the construction of a vCont packet in the
6382 outgoing packet buffer. This is used to send multiple vCont
6383 packets if we have more actions than would fit a single packet. */
6384
6385 class vcont_builder
6386 {
6387 public:
6388 explicit vcont_builder (remote_target *remote)
6389 : m_remote (remote)
6390 {
6391 restart ();
6392 }
6393
6394 void flush ();
6395 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6396
6397 private:
6398 void restart ();
6399
6400 /* The remote target. */
6401 remote_target *m_remote;
6402
6403 /* Pointer to the first action. P points here if no action has been
6404 appended yet. */
6405 char *m_first_action;
6406
6407 /* Where the next action will be appended. */
6408 char *m_p;
6409
6410 /* The end of the buffer. Must never write past this. */
6411 char *m_endp;
6412 };
6413
6414 /* Prepare the outgoing buffer for a new vCont packet. */
6415
6416 void
6417 vcont_builder::restart ()
6418 {
6419 struct remote_state *rs = m_remote->get_remote_state ();
6420
6421 m_p = rs->buf.data ();
6422 m_endp = m_p + m_remote->get_remote_packet_size ();
6423 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6424 m_first_action = m_p;
6425 }
6426
6427 /* If the vCont packet being built has any action, send it to the
6428 remote end. */
6429
6430 void
6431 vcont_builder::flush ()
6432 {
6433 struct remote_state *rs;
6434
6435 if (m_p == m_first_action)
6436 return;
6437
6438 rs = m_remote->get_remote_state ();
6439 m_remote->putpkt (rs->buf);
6440 m_remote->getpkt (&rs->buf, 0);
6441 if (strcmp (rs->buf.data (), "OK") != 0)
6442 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6443 }
6444
6445 /* The largest action is range-stepping, with its two addresses. This
6446 is more than sufficient. If a new, bigger action is created, it'll
6447 quickly trigger a failed assertion in append_resumption (and we'll
6448 just bump this). */
6449 #define MAX_ACTION_SIZE 200
6450
6451 /* Append a new vCont action in the outgoing packet being built. If
6452 the action doesn't fit the packet along with previous actions, push
6453 what we've got so far to the remote end and start over a new vCont
6454 packet (with the new action). */
6455
6456 void
6457 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6458 {
6459 char buf[MAX_ACTION_SIZE + 1];
6460
6461 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6462 ptid, step, siggnal);
6463
6464 /* Check whether this new action would fit in the vCont packet along
6465 with previous actions. If not, send what we've got so far and
6466 start a new vCont packet. */
6467 size_t rsize = endp - buf;
6468 if (rsize > m_endp - m_p)
6469 {
6470 flush ();
6471 restart ();
6472
6473 /* Should now fit. */
6474 gdb_assert (rsize <= m_endp - m_p);
6475 }
6476
6477 memcpy (m_p, buf, rsize);
6478 m_p += rsize;
6479 *m_p = '\0';
6480 }
6481
6482 /* to_commit_resume implementation. */
6483
6484 void
6485 remote_target::commit_resume ()
6486 {
6487 int any_process_wildcard;
6488 int may_global_wildcard_vcont;
6489
6490 /* If connected in all-stop mode, we'd send the remote resume
6491 request directly from remote_resume. Likewise if
6492 reverse-debugging, as there are no defined vCont actions for
6493 reverse execution. */
6494 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6495 return;
6496
6497 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6498 instead of resuming all threads of each process individually.
6499 However, if any thread of a process must remain halted, we can't
6500 send wildcard resumes and must send one action per thread.
6501
6502 Care must be taken to not resume threads/processes the server
6503 side already told us are stopped, but the core doesn't know about
6504 yet, because the events are still in the vStopped notification
6505 queue. For example:
6506
6507 #1 => vCont s:p1.1;c
6508 #2 <= OK
6509 #3 <= %Stopped T05 p1.1
6510 #4 => vStopped
6511 #5 <= T05 p1.2
6512 #6 => vStopped
6513 #7 <= OK
6514 #8 (infrun handles the stop for p1.1 and continues stepping)
6515 #9 => vCont s:p1.1;c
6516
6517 The last vCont above would resume thread p1.2 by mistake, because
6518 the server has no idea that the event for p1.2 had not been
6519 handled yet.
6520
6521 The server side must similarly ignore resume actions for the
6522 thread that has a pending %Stopped notification (and any other
6523 threads with events pending), until GDB acks the notification
6524 with vStopped. Otherwise, e.g., the following case is
6525 mishandled:
6526
6527 #1 => g (or any other packet)
6528 #2 <= [registers]
6529 #3 <= %Stopped T05 p1.2
6530 #4 => vCont s:p1.1;c
6531 #5 <= OK
6532
6533 Above, the server must not resume thread p1.2. GDB can't know
6534 that p1.2 stopped until it acks the %Stopped notification, and
6535 since from GDB's perspective all threads should be running, it
6536 sends a "c" action.
6537
6538 Finally, special care must also be given to handling fork/vfork
6539 events. A (v)fork event actually tells us that two processes
6540 stopped -- the parent and the child. Until we follow the fork,
6541 we must not resume the child. Therefore, if we have a pending
6542 fork follow, we must not send a global wildcard resume action
6543 (vCont;c). We can still send process-wide wildcards though. */
6544
6545 /* Start by assuming a global wildcard (vCont;c) is possible. */
6546 may_global_wildcard_vcont = 1;
6547
6548 /* And assume every process is individually wildcard-able too. */
6549 for (inferior *inf : all_non_exited_inferiors (this))
6550 {
6551 remote_inferior *priv = get_remote_inferior (inf);
6552
6553 priv->may_wildcard_vcont = true;
6554 }
6555
6556 /* Check for any pending events (not reported or processed yet) and
6557 disable process and global wildcard resumes appropriately. */
6558 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6559
6560 for (thread_info *tp : all_non_exited_threads (this))
6561 {
6562 /* If a thread of a process is not meant to be resumed, then we
6563 can't wildcard that process. */
6564 if (!tp->executing)
6565 {
6566 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6567
6568 /* And if we can't wildcard a process, we can't wildcard
6569 everything either. */
6570 may_global_wildcard_vcont = 0;
6571 continue;
6572 }
6573
6574 /* If a thread is the parent of an unfollowed fork, then we
6575 can't do a global wildcard, as that would resume the fork
6576 child. */
6577 if (is_pending_fork_parent_thread (tp))
6578 may_global_wildcard_vcont = 0;
6579 }
6580
6581 /* Now let's build the vCont packet(s). Actions must be appended
6582 from narrower to wider scopes (thread -> process -> global). If
6583 we end up with too many actions for a single packet vcont_builder
6584 flushes the current vCont packet to the remote side and starts a
6585 new one. */
6586 struct vcont_builder vcont_builder (this);
6587
6588 /* Threads first. */
6589 for (thread_info *tp : all_non_exited_threads (this))
6590 {
6591 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6592
6593 if (!tp->executing || remote_thr->vcont_resumed)
6594 continue;
6595
6596 gdb_assert (!thread_is_in_step_over_chain (tp));
6597
6598 if (!remote_thr->last_resume_step
6599 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6600 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6601 {
6602 /* We'll send a wildcard resume instead. */
6603 remote_thr->vcont_resumed = 1;
6604 continue;
6605 }
6606
6607 vcont_builder.push_action (tp->ptid,
6608 remote_thr->last_resume_step,
6609 remote_thr->last_resume_sig);
6610 remote_thr->vcont_resumed = 1;
6611 }
6612
6613 /* Now check whether we can send any process-wide wildcard. This is
6614 to avoid sending a global wildcard in the case nothing is
6615 supposed to be resumed. */
6616 any_process_wildcard = 0;
6617
6618 for (inferior *inf : all_non_exited_inferiors (this))
6619 {
6620 if (get_remote_inferior (inf)->may_wildcard_vcont)
6621 {
6622 any_process_wildcard = 1;
6623 break;
6624 }
6625 }
6626
6627 if (any_process_wildcard)
6628 {
6629 /* If all processes are wildcard-able, then send a single "c"
6630 action, otherwise, send an "all (-1) threads of process"
6631 continue action for each running process, if any. */
6632 if (may_global_wildcard_vcont)
6633 {
6634 vcont_builder.push_action (minus_one_ptid,
6635 false, GDB_SIGNAL_0);
6636 }
6637 else
6638 {
6639 for (inferior *inf : all_non_exited_inferiors (this))
6640 {
6641 if (get_remote_inferior (inf)->may_wildcard_vcont)
6642 {
6643 vcont_builder.push_action (ptid_t (inf->pid),
6644 false, GDB_SIGNAL_0);
6645 }
6646 }
6647 }
6648 }
6649
6650 vcont_builder.flush ();
6651 }
6652
6653 \f
6654
6655 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6656 thread, all threads of a remote process, or all threads of all
6657 processes. */
6658
6659 void
6660 remote_target::remote_stop_ns (ptid_t ptid)
6661 {
6662 struct remote_state *rs = get_remote_state ();
6663 char *p = rs->buf.data ();
6664 char *endp = p + get_remote_packet_size ();
6665
6666 /* FIXME: This supports_vCont_probed check is a workaround until
6667 packet_support is per-connection. */
6668 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6669 || !rs->supports_vCont_probed)
6670 remote_vcont_probe ();
6671
6672 if (!rs->supports_vCont.t)
6673 error (_("Remote server does not support stopping threads"));
6674
6675 if (ptid == minus_one_ptid
6676 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6677 p += xsnprintf (p, endp - p, "vCont;t");
6678 else
6679 {
6680 ptid_t nptid;
6681
6682 p += xsnprintf (p, endp - p, "vCont;t:");
6683
6684 if (ptid.is_pid ())
6685 /* All (-1) threads of process. */
6686 nptid = ptid_t (ptid.pid (), -1, 0);
6687 else
6688 {
6689 /* Small optimization: if we already have a stop reply for
6690 this thread, no use in telling the stub we want this
6691 stopped. */
6692 if (peek_stop_reply (ptid))
6693 return;
6694
6695 nptid = ptid;
6696 }
6697
6698 write_ptid (p, endp, nptid);
6699 }
6700
6701 /* In non-stop, we get an immediate OK reply. The stop reply will
6702 come in asynchronously by notification. */
6703 putpkt (rs->buf);
6704 getpkt (&rs->buf, 0);
6705 if (strcmp (rs->buf.data (), "OK") != 0)
6706 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6707 rs->buf.data ());
6708 }
6709
6710 /* All-stop version of target_interrupt. Sends a break or a ^C to
6711 interrupt the remote target. It is undefined which thread of which
6712 process reports the interrupt. */
6713
6714 void
6715 remote_target::remote_interrupt_as ()
6716 {
6717 struct remote_state *rs = get_remote_state ();
6718
6719 rs->ctrlc_pending_p = 1;
6720
6721 /* If the inferior is stopped already, but the core didn't know
6722 about it yet, just ignore the request. The cached wait status
6723 will be collected in remote_wait. */
6724 if (rs->cached_wait_status)
6725 return;
6726
6727 /* Send interrupt_sequence to remote target. */
6728 send_interrupt_sequence ();
6729 }
6730
6731 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6732 the remote target. It is undefined which thread of which process
6733 reports the interrupt. Throws an error if the packet is not
6734 supported by the server. */
6735
6736 void
6737 remote_target::remote_interrupt_ns ()
6738 {
6739 struct remote_state *rs = get_remote_state ();
6740 char *p = rs->buf.data ();
6741 char *endp = p + get_remote_packet_size ();
6742
6743 xsnprintf (p, endp - p, "vCtrlC");
6744
6745 /* In non-stop, we get an immediate OK reply. The stop reply will
6746 come in asynchronously by notification. */
6747 putpkt (rs->buf);
6748 getpkt (&rs->buf, 0);
6749
6750 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6751 {
6752 case PACKET_OK:
6753 break;
6754 case PACKET_UNKNOWN:
6755 error (_("No support for interrupting the remote target."));
6756 case PACKET_ERROR:
6757 error (_("Interrupting target failed: %s"), rs->buf.data ());
6758 }
6759 }
6760
6761 /* Implement the to_stop function for the remote targets. */
6762
6763 void
6764 remote_target::stop (ptid_t ptid)
6765 {
6766 if (remote_debug)
6767 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6768
6769 if (target_is_non_stop_p ())
6770 remote_stop_ns (ptid);
6771 else
6772 {
6773 /* We don't currently have a way to transparently pause the
6774 remote target in all-stop mode. Interrupt it instead. */
6775 remote_interrupt_as ();
6776 }
6777 }
6778
6779 /* Implement the to_interrupt function for the remote targets. */
6780
6781 void
6782 remote_target::interrupt ()
6783 {
6784 if (remote_debug)
6785 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6786
6787 if (target_is_non_stop_p ())
6788 remote_interrupt_ns ();
6789 else
6790 remote_interrupt_as ();
6791 }
6792
6793 /* Implement the to_pass_ctrlc function for the remote targets. */
6794
6795 void
6796 remote_target::pass_ctrlc ()
6797 {
6798 struct remote_state *rs = get_remote_state ();
6799
6800 if (remote_debug)
6801 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6802
6803 /* If we're starting up, we're not fully synced yet. Quit
6804 immediately. */
6805 if (rs->starting_up)
6806 quit ();
6807 /* If ^C has already been sent once, offer to disconnect. */
6808 else if (rs->ctrlc_pending_p)
6809 interrupt_query ();
6810 else
6811 target_interrupt ();
6812 }
6813
6814 /* Ask the user what to do when an interrupt is received. */
6815
6816 void
6817 remote_target::interrupt_query ()
6818 {
6819 struct remote_state *rs = get_remote_state ();
6820
6821 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6822 {
6823 if (query (_("The target is not responding to interrupt requests.\n"
6824 "Stop debugging it? ")))
6825 {
6826 remote_unpush_target (this);
6827 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6828 }
6829 }
6830 else
6831 {
6832 if (query (_("Interrupted while waiting for the program.\n"
6833 "Give up waiting? ")))
6834 quit ();
6835 }
6836 }
6837
6838 /* Enable/disable target terminal ownership. Most targets can use
6839 terminal groups to control terminal ownership. Remote targets are
6840 different in that explicit transfer of ownership to/from GDB/target
6841 is required. */
6842
6843 void
6844 remote_target::terminal_inferior ()
6845 {
6846 /* NOTE: At this point we could also register our selves as the
6847 recipient of all input. Any characters typed could then be
6848 passed on down to the target. */
6849 }
6850
6851 void
6852 remote_target::terminal_ours ()
6853 {
6854 }
6855
6856 static void
6857 remote_console_output (const char *msg)
6858 {
6859 const char *p;
6860
6861 for (p = msg; p[0] && p[1]; p += 2)
6862 {
6863 char tb[2];
6864 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6865
6866 tb[0] = c;
6867 tb[1] = 0;
6868 gdb_stdtarg->puts (tb);
6869 }
6870 gdb_stdtarg->flush ();
6871 }
6872
6873 struct stop_reply : public notif_event
6874 {
6875 ~stop_reply ();
6876
6877 /* The identifier of the thread about this event */
6878 ptid_t ptid;
6879
6880 /* The remote state this event is associated with. When the remote
6881 connection, represented by a remote_state object, is closed,
6882 all the associated stop_reply events should be released. */
6883 struct remote_state *rs;
6884
6885 struct target_waitstatus ws;
6886
6887 /* The architecture associated with the expedited registers. */
6888 gdbarch *arch;
6889
6890 /* Expedited registers. This makes remote debugging a bit more
6891 efficient for those targets that provide critical registers as
6892 part of their normal status mechanism (as another roundtrip to
6893 fetch them is avoided). */
6894 std::vector<cached_reg_t> regcache;
6895
6896 enum target_stop_reason stop_reason;
6897
6898 CORE_ADDR watch_data_address;
6899
6900 int core;
6901 };
6902
6903 /* Return the length of the stop reply queue. */
6904
6905 int
6906 remote_target::stop_reply_queue_length ()
6907 {
6908 remote_state *rs = get_remote_state ();
6909 return rs->stop_reply_queue.size ();
6910 }
6911
6912 static void
6913 remote_notif_stop_parse (remote_target *remote,
6914 struct notif_client *self, const char *buf,
6915 struct notif_event *event)
6916 {
6917 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6918 }
6919
6920 static void
6921 remote_notif_stop_ack (remote_target *remote,
6922 struct notif_client *self, const char *buf,
6923 struct notif_event *event)
6924 {
6925 struct stop_reply *stop_reply = (struct stop_reply *) event;
6926
6927 /* acknowledge */
6928 putpkt (remote, self->ack_command);
6929
6930 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6931 {
6932 /* We got an unknown stop reply. */
6933 error (_("Unknown stop reply"));
6934 }
6935
6936 remote->push_stop_reply (stop_reply);
6937 }
6938
6939 static int
6940 remote_notif_stop_can_get_pending_events (remote_target *remote,
6941 struct notif_client *self)
6942 {
6943 /* We can't get pending events in remote_notif_process for
6944 notification stop, and we have to do this in remote_wait_ns
6945 instead. If we fetch all queued events from stub, remote stub
6946 may exit and we have no chance to process them back in
6947 remote_wait_ns. */
6948 remote_state *rs = remote->get_remote_state ();
6949 mark_async_event_handler (rs->remote_async_inferior_event_token);
6950 return 0;
6951 }
6952
6953 stop_reply::~stop_reply ()
6954 {
6955 for (cached_reg_t &reg : regcache)
6956 xfree (reg.data);
6957 }
6958
6959 static notif_event_up
6960 remote_notif_stop_alloc_reply ()
6961 {
6962 return notif_event_up (new struct stop_reply ());
6963 }
6964
6965 /* A client of notification Stop. */
6966
6967 struct notif_client notif_client_stop =
6968 {
6969 "Stop",
6970 "vStopped",
6971 remote_notif_stop_parse,
6972 remote_notif_stop_ack,
6973 remote_notif_stop_can_get_pending_events,
6974 remote_notif_stop_alloc_reply,
6975 REMOTE_NOTIF_STOP,
6976 };
6977
6978 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6979 the pid of the process that owns the threads we want to check, or
6980 -1 if we want to check all threads. */
6981
6982 static int
6983 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6984 ptid_t thread_ptid)
6985 {
6986 if (ws->kind == TARGET_WAITKIND_FORKED
6987 || ws->kind == TARGET_WAITKIND_VFORKED)
6988 {
6989 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6990 return 1;
6991 }
6992
6993 return 0;
6994 }
6995
6996 /* Return the thread's pending status used to determine whether the
6997 thread is a fork parent stopped at a fork event. */
6998
6999 static struct target_waitstatus *
7000 thread_pending_fork_status (struct thread_info *thread)
7001 {
7002 if (thread->suspend.waitstatus_pending_p)
7003 return &thread->suspend.waitstatus;
7004 else
7005 return &thread->pending_follow;
7006 }
7007
7008 /* Determine if THREAD is a pending fork parent thread. */
7009
7010 static int
7011 is_pending_fork_parent_thread (struct thread_info *thread)
7012 {
7013 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7014 int pid = -1;
7015
7016 return is_pending_fork_parent (ws, pid, thread->ptid);
7017 }
7018
7019 /* If CONTEXT contains any fork child threads that have not been
7020 reported yet, remove them from the CONTEXT list. If such a
7021 thread exists it is because we are stopped at a fork catchpoint
7022 and have not yet called follow_fork, which will set up the
7023 host-side data structures for the new process. */
7024
7025 void
7026 remote_target::remove_new_fork_children (threads_listing_context *context)
7027 {
7028 int pid = -1;
7029 struct notif_client *notif = &notif_client_stop;
7030
7031 /* For any threads stopped at a fork event, remove the corresponding
7032 fork child threads from the CONTEXT list. */
7033 for (thread_info *thread : all_non_exited_threads (this))
7034 {
7035 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7036
7037 if (is_pending_fork_parent (ws, pid, thread->ptid))
7038 context->remove_thread (ws->value.related_pid);
7039 }
7040
7041 /* Check for any pending fork events (not reported or processed yet)
7042 in process PID and remove those fork child threads from the
7043 CONTEXT list as well. */
7044 remote_notif_get_pending_events (notif);
7045 for (auto &event : get_remote_state ()->stop_reply_queue)
7046 if (event->ws.kind == TARGET_WAITKIND_FORKED
7047 || event->ws.kind == TARGET_WAITKIND_VFORKED
7048 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7049 context->remove_thread (event->ws.value.related_pid);
7050 }
7051
7052 /* Check whether any event pending in the vStopped queue would prevent
7053 a global or process wildcard vCont action. Clear
7054 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7055 and clear the event inferior's may_wildcard_vcont flag if we can't
7056 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7057
7058 void
7059 remote_target::check_pending_events_prevent_wildcard_vcont
7060 (int *may_global_wildcard)
7061 {
7062 struct notif_client *notif = &notif_client_stop;
7063
7064 remote_notif_get_pending_events (notif);
7065 for (auto &event : get_remote_state ()->stop_reply_queue)
7066 {
7067 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7068 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7069 continue;
7070
7071 if (event->ws.kind == TARGET_WAITKIND_FORKED
7072 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7073 *may_global_wildcard = 0;
7074
7075 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7076
7077 /* This may be the first time we heard about this process.
7078 Regardless, we must not do a global wildcard resume, otherwise
7079 we'd resume this process too. */
7080 *may_global_wildcard = 0;
7081 if (inf != NULL)
7082 get_remote_inferior (inf)->may_wildcard_vcont = false;
7083 }
7084 }
7085
7086 /* Discard all pending stop replies of inferior INF. */
7087
7088 void
7089 remote_target::discard_pending_stop_replies (struct inferior *inf)
7090 {
7091 struct stop_reply *reply;
7092 struct remote_state *rs = get_remote_state ();
7093 struct remote_notif_state *rns = rs->notif_state;
7094
7095 /* This function can be notified when an inferior exists. When the
7096 target is not remote, the notification state is NULL. */
7097 if (rs->remote_desc == NULL)
7098 return;
7099
7100 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7101
7102 /* Discard the in-flight notification. */
7103 if (reply != NULL && reply->ptid.pid () == inf->pid)
7104 {
7105 delete reply;
7106 rns->pending_event[notif_client_stop.id] = NULL;
7107 }
7108
7109 /* Discard the stop replies we have already pulled with
7110 vStopped. */
7111 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7112 rs->stop_reply_queue.end (),
7113 [=] (const stop_reply_up &event)
7114 {
7115 return event->ptid.pid () == inf->pid;
7116 });
7117 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7118 }
7119
7120 /* Discard the stop replies for RS in stop_reply_queue. */
7121
7122 void
7123 remote_target::discard_pending_stop_replies_in_queue ()
7124 {
7125 remote_state *rs = get_remote_state ();
7126
7127 /* Discard the stop replies we have already pulled with
7128 vStopped. */
7129 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7130 rs->stop_reply_queue.end (),
7131 [=] (const stop_reply_up &event)
7132 {
7133 return event->rs == rs;
7134 });
7135 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7136 }
7137
7138 /* Remove the first reply in 'stop_reply_queue' which matches
7139 PTID. */
7140
7141 struct stop_reply *
7142 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7143 {
7144 remote_state *rs = get_remote_state ();
7145
7146 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7147 rs->stop_reply_queue.end (),
7148 [=] (const stop_reply_up &event)
7149 {
7150 return event->ptid.matches (ptid);
7151 });
7152 struct stop_reply *result;
7153 if (iter == rs->stop_reply_queue.end ())
7154 result = nullptr;
7155 else
7156 {
7157 result = iter->release ();
7158 rs->stop_reply_queue.erase (iter);
7159 }
7160
7161 if (notif_debug)
7162 fprintf_unfiltered (gdb_stdlog,
7163 "notif: discard queued event: 'Stop' in %s\n",
7164 target_pid_to_str (ptid).c_str ());
7165
7166 return result;
7167 }
7168
7169 /* Look for a queued stop reply belonging to PTID. If one is found,
7170 remove it from the queue, and return it. Returns NULL if none is
7171 found. If there are still queued events left to process, tell the
7172 event loop to get back to target_wait soon. */
7173
7174 struct stop_reply *
7175 remote_target::queued_stop_reply (ptid_t ptid)
7176 {
7177 remote_state *rs = get_remote_state ();
7178 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7179
7180 if (!rs->stop_reply_queue.empty ())
7181 {
7182 /* There's still at least an event left. */
7183 mark_async_event_handler (rs->remote_async_inferior_event_token);
7184 }
7185
7186 return r;
7187 }
7188
7189 /* Push a fully parsed stop reply in the stop reply queue. Since we
7190 know that we now have at least one queued event left to pass to the
7191 core side, tell the event loop to get back to target_wait soon. */
7192
7193 void
7194 remote_target::push_stop_reply (struct stop_reply *new_event)
7195 {
7196 remote_state *rs = get_remote_state ();
7197 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7198
7199 if (notif_debug)
7200 fprintf_unfiltered (gdb_stdlog,
7201 "notif: push 'Stop' %s to queue %d\n",
7202 target_pid_to_str (new_event->ptid).c_str (),
7203 int (rs->stop_reply_queue.size ()));
7204
7205 mark_async_event_handler (rs->remote_async_inferior_event_token);
7206 }
7207
7208 /* Returns true if we have a stop reply for PTID. */
7209
7210 int
7211 remote_target::peek_stop_reply (ptid_t ptid)
7212 {
7213 remote_state *rs = get_remote_state ();
7214 for (auto &event : rs->stop_reply_queue)
7215 if (ptid == event->ptid
7216 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7217 return 1;
7218 return 0;
7219 }
7220
7221 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7222 starting with P and ending with PEND matches PREFIX. */
7223
7224 static int
7225 strprefix (const char *p, const char *pend, const char *prefix)
7226 {
7227 for ( ; p < pend; p++, prefix++)
7228 if (*p != *prefix)
7229 return 0;
7230 return *prefix == '\0';
7231 }
7232
7233 /* Parse the stop reply in BUF. Either the function succeeds, and the
7234 result is stored in EVENT, or throws an error. */
7235
7236 void
7237 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7238 {
7239 remote_arch_state *rsa = NULL;
7240 ULONGEST addr;
7241 const char *p;
7242 int skipregs = 0;
7243
7244 event->ptid = null_ptid;
7245 event->rs = get_remote_state ();
7246 event->ws.kind = TARGET_WAITKIND_IGNORE;
7247 event->ws.value.integer = 0;
7248 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7249 event->regcache.clear ();
7250 event->core = -1;
7251
7252 switch (buf[0])
7253 {
7254 case 'T': /* Status with PC, SP, FP, ... */
7255 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7256 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7257 ss = signal number
7258 n... = register number
7259 r... = register contents
7260 */
7261
7262 p = &buf[3]; /* after Txx */
7263 while (*p)
7264 {
7265 const char *p1;
7266 int fieldsize;
7267
7268 p1 = strchr (p, ':');
7269 if (p1 == NULL)
7270 error (_("Malformed packet(a) (missing colon): %s\n\
7271 Packet: '%s'\n"),
7272 p, buf);
7273 if (p == p1)
7274 error (_("Malformed packet(a) (missing register number): %s\n\
7275 Packet: '%s'\n"),
7276 p, buf);
7277
7278 /* Some "registers" are actually extended stop information.
7279 Note if you're adding a new entry here: GDB 7.9 and
7280 earlier assume that all register "numbers" that start
7281 with an hex digit are real register numbers. Make sure
7282 the server only sends such a packet if it knows the
7283 client understands it. */
7284
7285 if (strprefix (p, p1, "thread"))
7286 event->ptid = read_ptid (++p1, &p);
7287 else if (strprefix (p, p1, "syscall_entry"))
7288 {
7289 ULONGEST sysno;
7290
7291 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7292 p = unpack_varlen_hex (++p1, &sysno);
7293 event->ws.value.syscall_number = (int) sysno;
7294 }
7295 else if (strprefix (p, p1, "syscall_return"))
7296 {
7297 ULONGEST sysno;
7298
7299 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7300 p = unpack_varlen_hex (++p1, &sysno);
7301 event->ws.value.syscall_number = (int) sysno;
7302 }
7303 else if (strprefix (p, p1, "watch")
7304 || strprefix (p, p1, "rwatch")
7305 || strprefix (p, p1, "awatch"))
7306 {
7307 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7308 p = unpack_varlen_hex (++p1, &addr);
7309 event->watch_data_address = (CORE_ADDR) addr;
7310 }
7311 else if (strprefix (p, p1, "swbreak"))
7312 {
7313 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7314
7315 /* Make sure the stub doesn't forget to indicate support
7316 with qSupported. */
7317 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7318 error (_("Unexpected swbreak stop reason"));
7319
7320 /* The value part is documented as "must be empty",
7321 though we ignore it, in case we ever decide to make
7322 use of it in a backward compatible way. */
7323 p = strchrnul (p1 + 1, ';');
7324 }
7325 else if (strprefix (p, p1, "hwbreak"))
7326 {
7327 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7328
7329 /* Make sure the stub doesn't forget to indicate support
7330 with qSupported. */
7331 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7332 error (_("Unexpected hwbreak stop reason"));
7333
7334 /* See above. */
7335 p = strchrnul (p1 + 1, ';');
7336 }
7337 else if (strprefix (p, p1, "library"))
7338 {
7339 event->ws.kind = TARGET_WAITKIND_LOADED;
7340 p = strchrnul (p1 + 1, ';');
7341 }
7342 else if (strprefix (p, p1, "replaylog"))
7343 {
7344 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7345 /* p1 will indicate "begin" or "end", but it makes
7346 no difference for now, so ignore it. */
7347 p = strchrnul (p1 + 1, ';');
7348 }
7349 else if (strprefix (p, p1, "core"))
7350 {
7351 ULONGEST c;
7352
7353 p = unpack_varlen_hex (++p1, &c);
7354 event->core = c;
7355 }
7356 else if (strprefix (p, p1, "fork"))
7357 {
7358 event->ws.value.related_pid = read_ptid (++p1, &p);
7359 event->ws.kind = TARGET_WAITKIND_FORKED;
7360 }
7361 else if (strprefix (p, p1, "vfork"))
7362 {
7363 event->ws.value.related_pid = read_ptid (++p1, &p);
7364 event->ws.kind = TARGET_WAITKIND_VFORKED;
7365 }
7366 else if (strprefix (p, p1, "vforkdone"))
7367 {
7368 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7369 p = strchrnul (p1 + 1, ';');
7370 }
7371 else if (strprefix (p, p1, "exec"))
7372 {
7373 ULONGEST ignored;
7374 int pathlen;
7375
7376 /* Determine the length of the execd pathname. */
7377 p = unpack_varlen_hex (++p1, &ignored);
7378 pathlen = (p - p1) / 2;
7379
7380 /* Save the pathname for event reporting and for
7381 the next run command. */
7382 gdb::unique_xmalloc_ptr<char[]> pathname
7383 ((char *) xmalloc (pathlen + 1));
7384 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7385 pathname[pathlen] = '\0';
7386
7387 /* This is freed during event handling. */
7388 event->ws.value.execd_pathname = pathname.release ();
7389 event->ws.kind = TARGET_WAITKIND_EXECD;
7390
7391 /* Skip the registers included in this packet, since
7392 they may be for an architecture different from the
7393 one used by the original program. */
7394 skipregs = 1;
7395 }
7396 else if (strprefix (p, p1, "create"))
7397 {
7398 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7399 p = strchrnul (p1 + 1, ';');
7400 }
7401 else
7402 {
7403 ULONGEST pnum;
7404 const char *p_temp;
7405
7406 if (skipregs)
7407 {
7408 p = strchrnul (p1 + 1, ';');
7409 p++;
7410 continue;
7411 }
7412
7413 /* Maybe a real ``P'' register number. */
7414 p_temp = unpack_varlen_hex (p, &pnum);
7415 /* If the first invalid character is the colon, we got a
7416 register number. Otherwise, it's an unknown stop
7417 reason. */
7418 if (p_temp == p1)
7419 {
7420 /* If we haven't parsed the event's thread yet, find
7421 it now, in order to find the architecture of the
7422 reported expedited registers. */
7423 if (event->ptid == null_ptid)
7424 {
7425 /* If there is no thread-id information then leave
7426 the event->ptid as null_ptid. Later in
7427 process_stop_reply we will pick a suitable
7428 thread. */
7429 const char *thr = strstr (p1 + 1, ";thread:");
7430 if (thr != NULL)
7431 event->ptid = read_ptid (thr + strlen (";thread:"),
7432 NULL);
7433 }
7434
7435 if (rsa == NULL)
7436 {
7437 inferior *inf
7438 = (event->ptid == null_ptid
7439 ? NULL
7440 : find_inferior_ptid (this, event->ptid));
7441 /* If this is the first time we learn anything
7442 about this process, skip the registers
7443 included in this packet, since we don't yet
7444 know which architecture to use to parse them.
7445 We'll determine the architecture later when
7446 we process the stop reply and retrieve the
7447 target description, via
7448 remote_notice_new_inferior ->
7449 post_create_inferior. */
7450 if (inf == NULL)
7451 {
7452 p = strchrnul (p1 + 1, ';');
7453 p++;
7454 continue;
7455 }
7456
7457 event->arch = inf->gdbarch;
7458 rsa = event->rs->get_remote_arch_state (event->arch);
7459 }
7460
7461 packet_reg *reg
7462 = packet_reg_from_pnum (event->arch, rsa, pnum);
7463 cached_reg_t cached_reg;
7464
7465 if (reg == NULL)
7466 error (_("Remote sent bad register number %s: %s\n\
7467 Packet: '%s'\n"),
7468 hex_string (pnum), p, buf);
7469
7470 cached_reg.num = reg->regnum;
7471 cached_reg.data = (gdb_byte *)
7472 xmalloc (register_size (event->arch, reg->regnum));
7473
7474 p = p1 + 1;
7475 fieldsize = hex2bin (p, cached_reg.data,
7476 register_size (event->arch, reg->regnum));
7477 p += 2 * fieldsize;
7478 if (fieldsize < register_size (event->arch, reg->regnum))
7479 warning (_("Remote reply is too short: %s"), buf);
7480
7481 event->regcache.push_back (cached_reg);
7482 }
7483 else
7484 {
7485 /* Not a number. Silently skip unknown optional
7486 info. */
7487 p = strchrnul (p1 + 1, ';');
7488 }
7489 }
7490
7491 if (*p != ';')
7492 error (_("Remote register badly formatted: %s\nhere: %s"),
7493 buf, p);
7494 ++p;
7495 }
7496
7497 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7498 break;
7499
7500 /* fall through */
7501 case 'S': /* Old style status, just signal only. */
7502 {
7503 int sig;
7504
7505 event->ws.kind = TARGET_WAITKIND_STOPPED;
7506 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7507 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7508 event->ws.value.sig = (enum gdb_signal) sig;
7509 else
7510 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7511 }
7512 break;
7513 case 'w': /* Thread exited. */
7514 {
7515 ULONGEST value;
7516
7517 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7518 p = unpack_varlen_hex (&buf[1], &value);
7519 event->ws.value.integer = value;
7520 if (*p != ';')
7521 error (_("stop reply packet badly formatted: %s"), buf);
7522 event->ptid = read_ptid (++p, NULL);
7523 break;
7524 }
7525 case 'W': /* Target exited. */
7526 case 'X':
7527 {
7528 ULONGEST value;
7529
7530 /* GDB used to accept only 2 hex chars here. Stubs should
7531 only send more if they detect GDB supports multi-process
7532 support. */
7533 p = unpack_varlen_hex (&buf[1], &value);
7534
7535 if (buf[0] == 'W')
7536 {
7537 /* The remote process exited. */
7538 event->ws.kind = TARGET_WAITKIND_EXITED;
7539 event->ws.value.integer = value;
7540 }
7541 else
7542 {
7543 /* The remote process exited with a signal. */
7544 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7545 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7546 event->ws.value.sig = (enum gdb_signal) value;
7547 else
7548 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7549 }
7550
7551 /* If no process is specified, return null_ptid, and let the
7552 caller figure out the right process to use. */
7553 int pid = 0;
7554 if (*p == '\0')
7555 ;
7556 else if (*p == ';')
7557 {
7558 p++;
7559
7560 if (*p == '\0')
7561 ;
7562 else if (startswith (p, "process:"))
7563 {
7564 ULONGEST upid;
7565
7566 p += sizeof ("process:") - 1;
7567 unpack_varlen_hex (p, &upid);
7568 pid = upid;
7569 }
7570 else
7571 error (_("unknown stop reply packet: %s"), buf);
7572 }
7573 else
7574 error (_("unknown stop reply packet: %s"), buf);
7575 event->ptid = ptid_t (pid);
7576 }
7577 break;
7578 case 'N':
7579 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7580 event->ptid = minus_one_ptid;
7581 break;
7582 }
7583 }
7584
7585 /* When the stub wants to tell GDB about a new notification reply, it
7586 sends a notification (%Stop, for example). Those can come it at
7587 any time, hence, we have to make sure that any pending
7588 putpkt/getpkt sequence we're making is finished, before querying
7589 the stub for more events with the corresponding ack command
7590 (vStopped, for example). E.g., if we started a vStopped sequence
7591 immediately upon receiving the notification, something like this
7592 could happen:
7593
7594 1.1) --> Hg 1
7595 1.2) <-- OK
7596 1.3) --> g
7597 1.4) <-- %Stop
7598 1.5) --> vStopped
7599 1.6) <-- (registers reply to step #1.3)
7600
7601 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7602 query.
7603
7604 To solve this, whenever we parse a %Stop notification successfully,
7605 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7606 doing whatever we were doing:
7607
7608 2.1) --> Hg 1
7609 2.2) <-- OK
7610 2.3) --> g
7611 2.4) <-- %Stop
7612 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7613 2.5) <-- (registers reply to step #2.3)
7614
7615 Eventually after step #2.5, we return to the event loop, which
7616 notices there's an event on the
7617 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7618 associated callback --- the function below. At this point, we're
7619 always safe to start a vStopped sequence. :
7620
7621 2.6) --> vStopped
7622 2.7) <-- T05 thread:2
7623 2.8) --> vStopped
7624 2.9) --> OK
7625 */
7626
7627 void
7628 remote_target::remote_notif_get_pending_events (notif_client *nc)
7629 {
7630 struct remote_state *rs = get_remote_state ();
7631
7632 if (rs->notif_state->pending_event[nc->id] != NULL)
7633 {
7634 if (notif_debug)
7635 fprintf_unfiltered (gdb_stdlog,
7636 "notif: process: '%s' ack pending event\n",
7637 nc->name);
7638
7639 /* acknowledge */
7640 nc->ack (this, nc, rs->buf.data (),
7641 rs->notif_state->pending_event[nc->id]);
7642 rs->notif_state->pending_event[nc->id] = NULL;
7643
7644 while (1)
7645 {
7646 getpkt (&rs->buf, 0);
7647 if (strcmp (rs->buf.data (), "OK") == 0)
7648 break;
7649 else
7650 remote_notif_ack (this, nc, rs->buf.data ());
7651 }
7652 }
7653 else
7654 {
7655 if (notif_debug)
7656 fprintf_unfiltered (gdb_stdlog,
7657 "notif: process: '%s' no pending reply\n",
7658 nc->name);
7659 }
7660 }
7661
7662 /* Wrapper around remote_target::remote_notif_get_pending_events to
7663 avoid having to export the whole remote_target class. */
7664
7665 void
7666 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7667 {
7668 remote->remote_notif_get_pending_events (nc);
7669 }
7670
7671 /* Called when it is decided that STOP_REPLY holds the info of the
7672 event that is to be returned to the core. This function always
7673 destroys STOP_REPLY. */
7674
7675 ptid_t
7676 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7677 struct target_waitstatus *status)
7678 {
7679 ptid_t ptid;
7680
7681 *status = stop_reply->ws;
7682 ptid = stop_reply->ptid;
7683
7684 /* If no thread/process was reported by the stub then use the first
7685 non-exited thread in the current target. */
7686 if (ptid == null_ptid)
7687 {
7688 /* Some stop events apply to all threads in an inferior, while others
7689 only apply to a single thread. */
7690 bool is_stop_for_all_threads
7691 = (status->kind == TARGET_WAITKIND_EXITED
7692 || status->kind == TARGET_WAITKIND_SIGNALLED);
7693
7694 for (thread_info *thr : all_non_exited_threads (this))
7695 {
7696 if (ptid != null_ptid
7697 && (!is_stop_for_all_threads
7698 || ptid.pid () != thr->ptid.pid ()))
7699 {
7700 static bool warned = false;
7701
7702 if (!warned)
7703 {
7704 /* If you are seeing this warning then the remote target
7705 has stopped without specifying a thread-id, but the
7706 target does have multiple threads (or inferiors), and
7707 so GDB is having to guess which thread stopped.
7708
7709 Examples of what might cause this are the target
7710 sending and 'S' stop packet, or a 'T' stop packet and
7711 not including a thread-id.
7712
7713 Additionally, the target might send a 'W' or 'X
7714 packet without including a process-id, when the target
7715 has multiple running inferiors. */
7716 if (is_stop_for_all_threads)
7717 warning (_("multi-inferior target stopped without "
7718 "sending a process-id, using first "
7719 "non-exited inferior"));
7720 else
7721 warning (_("multi-threaded target stopped without "
7722 "sending a thread-id, using first "
7723 "non-exited thread"));
7724 warned = true;
7725 }
7726 break;
7727 }
7728
7729 /* If this is a stop for all threads then don't use a particular
7730 threads ptid, instead create a new ptid where only the pid
7731 field is set. */
7732 if (is_stop_for_all_threads)
7733 ptid = ptid_t (thr->ptid.pid ());
7734 else
7735 ptid = thr->ptid;
7736 }
7737 gdb_assert (ptid != null_ptid);
7738 }
7739
7740 if (status->kind != TARGET_WAITKIND_EXITED
7741 && status->kind != TARGET_WAITKIND_SIGNALLED
7742 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7743 {
7744 /* Expedited registers. */
7745 if (!stop_reply->regcache.empty ())
7746 {
7747 struct regcache *regcache
7748 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7749
7750 for (cached_reg_t &reg : stop_reply->regcache)
7751 {
7752 regcache->raw_supply (reg.num, reg.data);
7753 xfree (reg.data);
7754 }
7755
7756 stop_reply->regcache.clear ();
7757 }
7758
7759 remote_notice_new_inferior (ptid, 0);
7760 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7761 remote_thr->core = stop_reply->core;
7762 remote_thr->stop_reason = stop_reply->stop_reason;
7763 remote_thr->watch_data_address = stop_reply->watch_data_address;
7764 remote_thr->vcont_resumed = 0;
7765 }
7766
7767 delete stop_reply;
7768 return ptid;
7769 }
7770
7771 /* The non-stop mode version of target_wait. */
7772
7773 ptid_t
7774 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7775 target_wait_flags options)
7776 {
7777 struct remote_state *rs = get_remote_state ();
7778 struct stop_reply *stop_reply;
7779 int ret;
7780 int is_notif = 0;
7781
7782 /* If in non-stop mode, get out of getpkt even if a
7783 notification is received. */
7784
7785 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7786 while (1)
7787 {
7788 if (ret != -1 && !is_notif)
7789 switch (rs->buf[0])
7790 {
7791 case 'E': /* Error of some sort. */
7792 /* We're out of sync with the target now. Did it continue
7793 or not? We can't tell which thread it was in non-stop,
7794 so just ignore this. */
7795 warning (_("Remote failure reply: %s"), rs->buf.data ());
7796 break;
7797 case 'O': /* Console output. */
7798 remote_console_output (&rs->buf[1]);
7799 break;
7800 default:
7801 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7802 break;
7803 }
7804
7805 /* Acknowledge a pending stop reply that may have arrived in the
7806 mean time. */
7807 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7808 remote_notif_get_pending_events (&notif_client_stop);
7809
7810 /* If indeed we noticed a stop reply, we're done. */
7811 stop_reply = queued_stop_reply (ptid);
7812 if (stop_reply != NULL)
7813 return process_stop_reply (stop_reply, status);
7814
7815 /* Still no event. If we're just polling for an event, then
7816 return to the event loop. */
7817 if (options & TARGET_WNOHANG)
7818 {
7819 status->kind = TARGET_WAITKIND_IGNORE;
7820 return minus_one_ptid;
7821 }
7822
7823 /* Otherwise do a blocking wait. */
7824 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7825 }
7826 }
7827
7828 /* Return the first resumed thread. */
7829
7830 static ptid_t
7831 first_remote_resumed_thread (remote_target *target)
7832 {
7833 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7834 if (tp->resumed)
7835 return tp->ptid;
7836 return null_ptid;
7837 }
7838
7839 /* Wait until the remote machine stops, then return, storing status in
7840 STATUS just as `wait' would. */
7841
7842 ptid_t
7843 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
7844 target_wait_flags options)
7845 {
7846 struct remote_state *rs = get_remote_state ();
7847 ptid_t event_ptid = null_ptid;
7848 char *buf;
7849 struct stop_reply *stop_reply;
7850
7851 again:
7852
7853 status->kind = TARGET_WAITKIND_IGNORE;
7854 status->value.integer = 0;
7855
7856 stop_reply = queued_stop_reply (ptid);
7857 if (stop_reply != NULL)
7858 return process_stop_reply (stop_reply, status);
7859
7860 if (rs->cached_wait_status)
7861 /* Use the cached wait status, but only once. */
7862 rs->cached_wait_status = 0;
7863 else
7864 {
7865 int ret;
7866 int is_notif;
7867 int forever = ((options & TARGET_WNOHANG) == 0
7868 && rs->wait_forever_enabled_p);
7869
7870 if (!rs->waiting_for_stop_reply)
7871 {
7872 status->kind = TARGET_WAITKIND_NO_RESUMED;
7873 return minus_one_ptid;
7874 }
7875
7876 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7877 _never_ wait for ever -> test on target_is_async_p().
7878 However, before we do that we need to ensure that the caller
7879 knows how to take the target into/out of async mode. */
7880 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7881
7882 /* GDB gets a notification. Return to core as this event is
7883 not interesting. */
7884 if (ret != -1 && is_notif)
7885 return minus_one_ptid;
7886
7887 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7888 return minus_one_ptid;
7889 }
7890
7891 buf = rs->buf.data ();
7892
7893 /* Assume that the target has acknowledged Ctrl-C unless we receive
7894 an 'F' or 'O' packet. */
7895 if (buf[0] != 'F' && buf[0] != 'O')
7896 rs->ctrlc_pending_p = 0;
7897
7898 switch (buf[0])
7899 {
7900 case 'E': /* Error of some sort. */
7901 /* We're out of sync with the target now. Did it continue or
7902 not? Not is more likely, so report a stop. */
7903 rs->waiting_for_stop_reply = 0;
7904
7905 warning (_("Remote failure reply: %s"), buf);
7906 status->kind = TARGET_WAITKIND_STOPPED;
7907 status->value.sig = GDB_SIGNAL_0;
7908 break;
7909 case 'F': /* File-I/O request. */
7910 /* GDB may access the inferior memory while handling the File-I/O
7911 request, but we don't want GDB accessing memory while waiting
7912 for a stop reply. See the comments in putpkt_binary. Set
7913 waiting_for_stop_reply to 0 temporarily. */
7914 rs->waiting_for_stop_reply = 0;
7915 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7916 rs->ctrlc_pending_p = 0;
7917 /* GDB handled the File-I/O request, and the target is running
7918 again. Keep waiting for events. */
7919 rs->waiting_for_stop_reply = 1;
7920 break;
7921 case 'N': case 'T': case 'S': case 'X': case 'W':
7922 {
7923 /* There is a stop reply to handle. */
7924 rs->waiting_for_stop_reply = 0;
7925
7926 stop_reply
7927 = (struct stop_reply *) remote_notif_parse (this,
7928 &notif_client_stop,
7929 rs->buf.data ());
7930
7931 event_ptid = process_stop_reply (stop_reply, status);
7932 break;
7933 }
7934 case 'O': /* Console output. */
7935 remote_console_output (buf + 1);
7936 break;
7937 case '\0':
7938 if (rs->last_sent_signal != GDB_SIGNAL_0)
7939 {
7940 /* Zero length reply means that we tried 'S' or 'C' and the
7941 remote system doesn't support it. */
7942 target_terminal::ours_for_output ();
7943 printf_filtered
7944 ("Can't send signals to this remote system. %s not sent.\n",
7945 gdb_signal_to_name (rs->last_sent_signal));
7946 rs->last_sent_signal = GDB_SIGNAL_0;
7947 target_terminal::inferior ();
7948
7949 strcpy (buf, rs->last_sent_step ? "s" : "c");
7950 putpkt (buf);
7951 break;
7952 }
7953 /* fallthrough */
7954 default:
7955 warning (_("Invalid remote reply: %s"), buf);
7956 break;
7957 }
7958
7959 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7960 return minus_one_ptid;
7961 else if (status->kind == TARGET_WAITKIND_IGNORE)
7962 {
7963 /* Nothing interesting happened. If we're doing a non-blocking
7964 poll, we're done. Otherwise, go back to waiting. */
7965 if (options & TARGET_WNOHANG)
7966 return minus_one_ptid;
7967 else
7968 goto again;
7969 }
7970 else if (status->kind != TARGET_WAITKIND_EXITED
7971 && status->kind != TARGET_WAITKIND_SIGNALLED)
7972 {
7973 if (event_ptid != null_ptid)
7974 record_currthread (rs, event_ptid);
7975 else
7976 event_ptid = first_remote_resumed_thread (this);
7977 }
7978 else
7979 {
7980 /* A process exit. Invalidate our notion of current thread. */
7981 record_currthread (rs, minus_one_ptid);
7982 /* It's possible that the packet did not include a pid. */
7983 if (event_ptid == null_ptid)
7984 event_ptid = first_remote_resumed_thread (this);
7985 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7986 if (event_ptid == null_ptid)
7987 event_ptid = magic_null_ptid;
7988 }
7989
7990 return event_ptid;
7991 }
7992
7993 /* Wait until the remote machine stops, then return, storing status in
7994 STATUS just as `wait' would. */
7995
7996 ptid_t
7997 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
7998 target_wait_flags options)
7999 {
8000 ptid_t event_ptid;
8001
8002 if (target_is_non_stop_p ())
8003 event_ptid = wait_ns (ptid, status, options);
8004 else
8005 event_ptid = wait_as (ptid, status, options);
8006
8007 if (target_is_async_p ())
8008 {
8009 remote_state *rs = get_remote_state ();
8010
8011 /* If there are are events left in the queue tell the event loop
8012 to return here. */
8013 if (!rs->stop_reply_queue.empty ())
8014 mark_async_event_handler (rs->remote_async_inferior_event_token);
8015 }
8016
8017 return event_ptid;
8018 }
8019
8020 /* Fetch a single register using a 'p' packet. */
8021
8022 int
8023 remote_target::fetch_register_using_p (struct regcache *regcache,
8024 packet_reg *reg)
8025 {
8026 struct gdbarch *gdbarch = regcache->arch ();
8027 struct remote_state *rs = get_remote_state ();
8028 char *buf, *p;
8029 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8030 int i;
8031
8032 if (packet_support (PACKET_p) == PACKET_DISABLE)
8033 return 0;
8034
8035 if (reg->pnum == -1)
8036 return 0;
8037
8038 p = rs->buf.data ();
8039 *p++ = 'p';
8040 p += hexnumstr (p, reg->pnum);
8041 *p++ = '\0';
8042 putpkt (rs->buf);
8043 getpkt (&rs->buf, 0);
8044
8045 buf = rs->buf.data ();
8046
8047 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8048 {
8049 case PACKET_OK:
8050 break;
8051 case PACKET_UNKNOWN:
8052 return 0;
8053 case PACKET_ERROR:
8054 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8055 gdbarch_register_name (regcache->arch (),
8056 reg->regnum),
8057 buf);
8058 }
8059
8060 /* If this register is unfetchable, tell the regcache. */
8061 if (buf[0] == 'x')
8062 {
8063 regcache->raw_supply (reg->regnum, NULL);
8064 return 1;
8065 }
8066
8067 /* Otherwise, parse and supply the value. */
8068 p = buf;
8069 i = 0;
8070 while (p[0] != 0)
8071 {
8072 if (p[1] == 0)
8073 error (_("fetch_register_using_p: early buf termination"));
8074
8075 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8076 p += 2;
8077 }
8078 regcache->raw_supply (reg->regnum, regp);
8079 return 1;
8080 }
8081
8082 /* Fetch the registers included in the target's 'g' packet. */
8083
8084 int
8085 remote_target::send_g_packet ()
8086 {
8087 struct remote_state *rs = get_remote_state ();
8088 int buf_len;
8089
8090 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8091 putpkt (rs->buf);
8092 getpkt (&rs->buf, 0);
8093 if (packet_check_result (rs->buf) == PACKET_ERROR)
8094 error (_("Could not read registers; remote failure reply '%s'"),
8095 rs->buf.data ());
8096
8097 /* We can get out of synch in various cases. If the first character
8098 in the buffer is not a hex character, assume that has happened
8099 and try to fetch another packet to read. */
8100 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8101 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8102 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8103 && rs->buf[0] != 'x') /* New: unavailable register value. */
8104 {
8105 if (remote_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Bad register packet; fetching a new packet\n");
8108 getpkt (&rs->buf, 0);
8109 }
8110
8111 buf_len = strlen (rs->buf.data ());
8112
8113 /* Sanity check the received packet. */
8114 if (buf_len % 2 != 0)
8115 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8116
8117 return buf_len / 2;
8118 }
8119
8120 void
8121 remote_target::process_g_packet (struct regcache *regcache)
8122 {
8123 struct gdbarch *gdbarch = regcache->arch ();
8124 struct remote_state *rs = get_remote_state ();
8125 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8126 int i, buf_len;
8127 char *p;
8128 char *regs;
8129
8130 buf_len = strlen (rs->buf.data ());
8131
8132 /* Further sanity checks, with knowledge of the architecture. */
8133 if (buf_len > 2 * rsa->sizeof_g_packet)
8134 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8135 "bytes): %s"),
8136 rsa->sizeof_g_packet, buf_len / 2,
8137 rs->buf.data ());
8138
8139 /* Save the size of the packet sent to us by the target. It is used
8140 as a heuristic when determining the max size of packets that the
8141 target can safely receive. */
8142 if (rsa->actual_register_packet_size == 0)
8143 rsa->actual_register_packet_size = buf_len;
8144
8145 /* If this is smaller than we guessed the 'g' packet would be,
8146 update our records. A 'g' reply that doesn't include a register's
8147 value implies either that the register is not available, or that
8148 the 'p' packet must be used. */
8149 if (buf_len < 2 * rsa->sizeof_g_packet)
8150 {
8151 long sizeof_g_packet = buf_len / 2;
8152
8153 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8154 {
8155 long offset = rsa->regs[i].offset;
8156 long reg_size = register_size (gdbarch, i);
8157
8158 if (rsa->regs[i].pnum == -1)
8159 continue;
8160
8161 if (offset >= sizeof_g_packet)
8162 rsa->regs[i].in_g_packet = 0;
8163 else if (offset + reg_size > sizeof_g_packet)
8164 error (_("Truncated register %d in remote 'g' packet"), i);
8165 else
8166 rsa->regs[i].in_g_packet = 1;
8167 }
8168
8169 /* Looks valid enough, we can assume this is the correct length
8170 for a 'g' packet. It's important not to adjust
8171 rsa->sizeof_g_packet if we have truncated registers otherwise
8172 this "if" won't be run the next time the method is called
8173 with a packet of the same size and one of the internal errors
8174 below will trigger instead. */
8175 rsa->sizeof_g_packet = sizeof_g_packet;
8176 }
8177
8178 regs = (char *) alloca (rsa->sizeof_g_packet);
8179
8180 /* Unimplemented registers read as all bits zero. */
8181 memset (regs, 0, rsa->sizeof_g_packet);
8182
8183 /* Reply describes registers byte by byte, each byte encoded as two
8184 hex characters. Suck them all up, then supply them to the
8185 register cacheing/storage mechanism. */
8186
8187 p = rs->buf.data ();
8188 for (i = 0; i < rsa->sizeof_g_packet; i++)
8189 {
8190 if (p[0] == 0 || p[1] == 0)
8191 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8192 internal_error (__FILE__, __LINE__,
8193 _("unexpected end of 'g' packet reply"));
8194
8195 if (p[0] == 'x' && p[1] == 'x')
8196 regs[i] = 0; /* 'x' */
8197 else
8198 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8199 p += 2;
8200 }
8201
8202 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8203 {
8204 struct packet_reg *r = &rsa->regs[i];
8205 long reg_size = register_size (gdbarch, i);
8206
8207 if (r->in_g_packet)
8208 {
8209 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8210 /* This shouldn't happen - we adjusted in_g_packet above. */
8211 internal_error (__FILE__, __LINE__,
8212 _("unexpected end of 'g' packet reply"));
8213 else if (rs->buf[r->offset * 2] == 'x')
8214 {
8215 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8216 /* The register isn't available, mark it as such (at
8217 the same time setting the value to zero). */
8218 regcache->raw_supply (r->regnum, NULL);
8219 }
8220 else
8221 regcache->raw_supply (r->regnum, regs + r->offset);
8222 }
8223 }
8224 }
8225
8226 void
8227 remote_target::fetch_registers_using_g (struct regcache *regcache)
8228 {
8229 send_g_packet ();
8230 process_g_packet (regcache);
8231 }
8232
8233 /* Make the remote selected traceframe match GDB's selected
8234 traceframe. */
8235
8236 void
8237 remote_target::set_remote_traceframe ()
8238 {
8239 int newnum;
8240 struct remote_state *rs = get_remote_state ();
8241
8242 if (rs->remote_traceframe_number == get_traceframe_number ())
8243 return;
8244
8245 /* Avoid recursion, remote_trace_find calls us again. */
8246 rs->remote_traceframe_number = get_traceframe_number ();
8247
8248 newnum = target_trace_find (tfind_number,
8249 get_traceframe_number (), 0, 0, NULL);
8250
8251 /* Should not happen. If it does, all bets are off. */
8252 if (newnum != get_traceframe_number ())
8253 warning (_("could not set remote traceframe"));
8254 }
8255
8256 void
8257 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8258 {
8259 struct gdbarch *gdbarch = regcache->arch ();
8260 struct remote_state *rs = get_remote_state ();
8261 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8262 int i;
8263
8264 set_remote_traceframe ();
8265 set_general_thread (regcache->ptid ());
8266
8267 if (regnum >= 0)
8268 {
8269 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8270
8271 gdb_assert (reg != NULL);
8272
8273 /* If this register might be in the 'g' packet, try that first -
8274 we are likely to read more than one register. If this is the
8275 first 'g' packet, we might be overly optimistic about its
8276 contents, so fall back to 'p'. */
8277 if (reg->in_g_packet)
8278 {
8279 fetch_registers_using_g (regcache);
8280 if (reg->in_g_packet)
8281 return;
8282 }
8283
8284 if (fetch_register_using_p (regcache, reg))
8285 return;
8286
8287 /* This register is not available. */
8288 regcache->raw_supply (reg->regnum, NULL);
8289
8290 return;
8291 }
8292
8293 fetch_registers_using_g (regcache);
8294
8295 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8296 if (!rsa->regs[i].in_g_packet)
8297 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8298 {
8299 /* This register is not available. */
8300 regcache->raw_supply (i, NULL);
8301 }
8302 }
8303
8304 /* Prepare to store registers. Since we may send them all (using a
8305 'G' request), we have to read out the ones we don't want to change
8306 first. */
8307
8308 void
8309 remote_target::prepare_to_store (struct regcache *regcache)
8310 {
8311 struct remote_state *rs = get_remote_state ();
8312 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8313 int i;
8314
8315 /* Make sure the entire registers array is valid. */
8316 switch (packet_support (PACKET_P))
8317 {
8318 case PACKET_DISABLE:
8319 case PACKET_SUPPORT_UNKNOWN:
8320 /* Make sure all the necessary registers are cached. */
8321 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8322 if (rsa->regs[i].in_g_packet)
8323 regcache->raw_update (rsa->regs[i].regnum);
8324 break;
8325 case PACKET_ENABLE:
8326 break;
8327 }
8328 }
8329
8330 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8331 packet was not recognized. */
8332
8333 int
8334 remote_target::store_register_using_P (const struct regcache *regcache,
8335 packet_reg *reg)
8336 {
8337 struct gdbarch *gdbarch = regcache->arch ();
8338 struct remote_state *rs = get_remote_state ();
8339 /* Try storing a single register. */
8340 char *buf = rs->buf.data ();
8341 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8342 char *p;
8343
8344 if (packet_support (PACKET_P) == PACKET_DISABLE)
8345 return 0;
8346
8347 if (reg->pnum == -1)
8348 return 0;
8349
8350 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8351 p = buf + strlen (buf);
8352 regcache->raw_collect (reg->regnum, regp);
8353 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8354 putpkt (rs->buf);
8355 getpkt (&rs->buf, 0);
8356
8357 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8358 {
8359 case PACKET_OK:
8360 return 1;
8361 case PACKET_ERROR:
8362 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8363 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8364 case PACKET_UNKNOWN:
8365 return 0;
8366 default:
8367 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8368 }
8369 }
8370
8371 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8372 contents of the register cache buffer. FIXME: ignores errors. */
8373
8374 void
8375 remote_target::store_registers_using_G (const struct regcache *regcache)
8376 {
8377 struct remote_state *rs = get_remote_state ();
8378 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8379 gdb_byte *regs;
8380 char *p;
8381
8382 /* Extract all the registers in the regcache copying them into a
8383 local buffer. */
8384 {
8385 int i;
8386
8387 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8388 memset (regs, 0, rsa->sizeof_g_packet);
8389 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8390 {
8391 struct packet_reg *r = &rsa->regs[i];
8392
8393 if (r->in_g_packet)
8394 regcache->raw_collect (r->regnum, regs + r->offset);
8395 }
8396 }
8397
8398 /* Command describes registers byte by byte,
8399 each byte encoded as two hex characters. */
8400 p = rs->buf.data ();
8401 *p++ = 'G';
8402 bin2hex (regs, p, rsa->sizeof_g_packet);
8403 putpkt (rs->buf);
8404 getpkt (&rs->buf, 0);
8405 if (packet_check_result (rs->buf) == PACKET_ERROR)
8406 error (_("Could not write registers; remote failure reply '%s'"),
8407 rs->buf.data ());
8408 }
8409
8410 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8411 of the register cache buffer. FIXME: ignores errors. */
8412
8413 void
8414 remote_target::store_registers (struct regcache *regcache, int regnum)
8415 {
8416 struct gdbarch *gdbarch = regcache->arch ();
8417 struct remote_state *rs = get_remote_state ();
8418 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8419 int i;
8420
8421 set_remote_traceframe ();
8422 set_general_thread (regcache->ptid ());
8423
8424 if (regnum >= 0)
8425 {
8426 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8427
8428 gdb_assert (reg != NULL);
8429
8430 /* Always prefer to store registers using the 'P' packet if
8431 possible; we often change only a small number of registers.
8432 Sometimes we change a larger number; we'd need help from a
8433 higher layer to know to use 'G'. */
8434 if (store_register_using_P (regcache, reg))
8435 return;
8436
8437 /* For now, don't complain if we have no way to write the
8438 register. GDB loses track of unavailable registers too
8439 easily. Some day, this may be an error. We don't have
8440 any way to read the register, either... */
8441 if (!reg->in_g_packet)
8442 return;
8443
8444 store_registers_using_G (regcache);
8445 return;
8446 }
8447
8448 store_registers_using_G (regcache);
8449
8450 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8451 if (!rsa->regs[i].in_g_packet)
8452 if (!store_register_using_P (regcache, &rsa->regs[i]))
8453 /* See above for why we do not issue an error here. */
8454 continue;
8455 }
8456 \f
8457
8458 /* Return the number of hex digits in num. */
8459
8460 static int
8461 hexnumlen (ULONGEST num)
8462 {
8463 int i;
8464
8465 for (i = 0; num != 0; i++)
8466 num >>= 4;
8467
8468 return std::max (i, 1);
8469 }
8470
8471 /* Set BUF to the minimum number of hex digits representing NUM. */
8472
8473 static int
8474 hexnumstr (char *buf, ULONGEST num)
8475 {
8476 int len = hexnumlen (num);
8477
8478 return hexnumnstr (buf, num, len);
8479 }
8480
8481
8482 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8483
8484 static int
8485 hexnumnstr (char *buf, ULONGEST num, int width)
8486 {
8487 int i;
8488
8489 buf[width] = '\0';
8490
8491 for (i = width - 1; i >= 0; i--)
8492 {
8493 buf[i] = "0123456789abcdef"[(num & 0xf)];
8494 num >>= 4;
8495 }
8496
8497 return width;
8498 }
8499
8500 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8501
8502 static CORE_ADDR
8503 remote_address_masked (CORE_ADDR addr)
8504 {
8505 unsigned int address_size = remote_address_size;
8506
8507 /* If "remoteaddresssize" was not set, default to target address size. */
8508 if (!address_size)
8509 address_size = gdbarch_addr_bit (target_gdbarch ());
8510
8511 if (address_size > 0
8512 && address_size < (sizeof (ULONGEST) * 8))
8513 {
8514 /* Only create a mask when that mask can safely be constructed
8515 in a ULONGEST variable. */
8516 ULONGEST mask = 1;
8517
8518 mask = (mask << address_size) - 1;
8519 addr &= mask;
8520 }
8521 return addr;
8522 }
8523
8524 /* Determine whether the remote target supports binary downloading.
8525 This is accomplished by sending a no-op memory write of zero length
8526 to the target at the specified address. It does not suffice to send
8527 the whole packet, since many stubs strip the eighth bit and
8528 subsequently compute a wrong checksum, which causes real havoc with
8529 remote_write_bytes.
8530
8531 NOTE: This can still lose if the serial line is not eight-bit
8532 clean. In cases like this, the user should clear "remote
8533 X-packet". */
8534
8535 void
8536 remote_target::check_binary_download (CORE_ADDR addr)
8537 {
8538 struct remote_state *rs = get_remote_state ();
8539
8540 switch (packet_support (PACKET_X))
8541 {
8542 case PACKET_DISABLE:
8543 break;
8544 case PACKET_ENABLE:
8545 break;
8546 case PACKET_SUPPORT_UNKNOWN:
8547 {
8548 char *p;
8549
8550 p = rs->buf.data ();
8551 *p++ = 'X';
8552 p += hexnumstr (p, (ULONGEST) addr);
8553 *p++ = ',';
8554 p += hexnumstr (p, (ULONGEST) 0);
8555 *p++ = ':';
8556 *p = '\0';
8557
8558 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8559 getpkt (&rs->buf, 0);
8560
8561 if (rs->buf[0] == '\0')
8562 {
8563 if (remote_debug)
8564 fprintf_unfiltered (gdb_stdlog,
8565 "binary downloading NOT "
8566 "supported by target\n");
8567 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8568 }
8569 else
8570 {
8571 if (remote_debug)
8572 fprintf_unfiltered (gdb_stdlog,
8573 "binary downloading supported by target\n");
8574 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8575 }
8576 break;
8577 }
8578 }
8579 }
8580
8581 /* Helper function to resize the payload in order to try to get a good
8582 alignment. We try to write an amount of data such that the next write will
8583 start on an address aligned on REMOTE_ALIGN_WRITES. */
8584
8585 static int
8586 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8587 {
8588 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8589 }
8590
8591 /* Write memory data directly to the remote machine.
8592 This does not inform the data cache; the data cache uses this.
8593 HEADER is the starting part of the packet.
8594 MEMADDR is the address in the remote memory space.
8595 MYADDR is the address of the buffer in our space.
8596 LEN_UNITS is the number of addressable units to write.
8597 UNIT_SIZE is the length in bytes of an addressable unit.
8598 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8599 should send data as binary ('X'), or hex-encoded ('M').
8600
8601 The function creates packet of the form
8602 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8603
8604 where encoding of <DATA> is terminated by PACKET_FORMAT.
8605
8606 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8607 are omitted.
8608
8609 Return the transferred status, error or OK (an
8610 'enum target_xfer_status' value). Save the number of addressable units
8611 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8612
8613 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8614 exchange between gdb and the stub could look like (?? in place of the
8615 checksum):
8616
8617 -> $m1000,4#??
8618 <- aaaabbbbccccdddd
8619
8620 -> $M1000,3:eeeeffffeeee#??
8621 <- OK
8622
8623 -> $m1000,4#??
8624 <- eeeeffffeeeedddd */
8625
8626 target_xfer_status
8627 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8628 const gdb_byte *myaddr,
8629 ULONGEST len_units,
8630 int unit_size,
8631 ULONGEST *xfered_len_units,
8632 char packet_format, int use_length)
8633 {
8634 struct remote_state *rs = get_remote_state ();
8635 char *p;
8636 char *plen = NULL;
8637 int plenlen = 0;
8638 int todo_units;
8639 int units_written;
8640 int payload_capacity_bytes;
8641 int payload_length_bytes;
8642
8643 if (packet_format != 'X' && packet_format != 'M')
8644 internal_error (__FILE__, __LINE__,
8645 _("remote_write_bytes_aux: bad packet format"));
8646
8647 if (len_units == 0)
8648 return TARGET_XFER_EOF;
8649
8650 payload_capacity_bytes = get_memory_write_packet_size ();
8651
8652 /* The packet buffer will be large enough for the payload;
8653 get_memory_packet_size ensures this. */
8654 rs->buf[0] = '\0';
8655
8656 /* Compute the size of the actual payload by subtracting out the
8657 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8658
8659 payload_capacity_bytes -= strlen ("$,:#NN");
8660 if (!use_length)
8661 /* The comma won't be used. */
8662 payload_capacity_bytes += 1;
8663 payload_capacity_bytes -= strlen (header);
8664 payload_capacity_bytes -= hexnumlen (memaddr);
8665
8666 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8667
8668 strcat (rs->buf.data (), header);
8669 p = rs->buf.data () + strlen (header);
8670
8671 /* Compute a best guess of the number of bytes actually transfered. */
8672 if (packet_format == 'X')
8673 {
8674 /* Best guess at number of bytes that will fit. */
8675 todo_units = std::min (len_units,
8676 (ULONGEST) payload_capacity_bytes / unit_size);
8677 if (use_length)
8678 payload_capacity_bytes -= hexnumlen (todo_units);
8679 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8680 }
8681 else
8682 {
8683 /* Number of bytes that will fit. */
8684 todo_units
8685 = std::min (len_units,
8686 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8687 if (use_length)
8688 payload_capacity_bytes -= hexnumlen (todo_units);
8689 todo_units = std::min (todo_units,
8690 (payload_capacity_bytes / unit_size) / 2);
8691 }
8692
8693 if (todo_units <= 0)
8694 internal_error (__FILE__, __LINE__,
8695 _("minimum packet size too small to write data"));
8696
8697 /* If we already need another packet, then try to align the end
8698 of this packet to a useful boundary. */
8699 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8700 todo_units = align_for_efficient_write (todo_units, memaddr);
8701
8702 /* Append "<memaddr>". */
8703 memaddr = remote_address_masked (memaddr);
8704 p += hexnumstr (p, (ULONGEST) memaddr);
8705
8706 if (use_length)
8707 {
8708 /* Append ",". */
8709 *p++ = ',';
8710
8711 /* Append the length and retain its location and size. It may need to be
8712 adjusted once the packet body has been created. */
8713 plen = p;
8714 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8715 p += plenlen;
8716 }
8717
8718 /* Append ":". */
8719 *p++ = ':';
8720 *p = '\0';
8721
8722 /* Append the packet body. */
8723 if (packet_format == 'X')
8724 {
8725 /* Binary mode. Send target system values byte by byte, in
8726 increasing byte addresses. Only escape certain critical
8727 characters. */
8728 payload_length_bytes =
8729 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8730 &units_written, payload_capacity_bytes);
8731
8732 /* If not all TODO units fit, then we'll need another packet. Make
8733 a second try to keep the end of the packet aligned. Don't do
8734 this if the packet is tiny. */
8735 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8736 {
8737 int new_todo_units;
8738
8739 new_todo_units = align_for_efficient_write (units_written, memaddr);
8740
8741 if (new_todo_units != units_written)
8742 payload_length_bytes =
8743 remote_escape_output (myaddr, new_todo_units, unit_size,
8744 (gdb_byte *) p, &units_written,
8745 payload_capacity_bytes);
8746 }
8747
8748 p += payload_length_bytes;
8749 if (use_length && units_written < todo_units)
8750 {
8751 /* Escape chars have filled up the buffer prematurely,
8752 and we have actually sent fewer units than planned.
8753 Fix-up the length field of the packet. Use the same
8754 number of characters as before. */
8755 plen += hexnumnstr (plen, (ULONGEST) units_written,
8756 plenlen);
8757 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8758 }
8759 }
8760 else
8761 {
8762 /* Normal mode: Send target system values byte by byte, in
8763 increasing byte addresses. Each byte is encoded as a two hex
8764 value. */
8765 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8766 units_written = todo_units;
8767 }
8768
8769 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8770 getpkt (&rs->buf, 0);
8771
8772 if (rs->buf[0] == 'E')
8773 return TARGET_XFER_E_IO;
8774
8775 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8776 send fewer units than we'd planned. */
8777 *xfered_len_units = (ULONGEST) units_written;
8778 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8779 }
8780
8781 /* Write memory data directly to the remote machine.
8782 This does not inform the data cache; the data cache uses this.
8783 MEMADDR is the address in the remote memory space.
8784 MYADDR is the address of the buffer in our space.
8785 LEN is the number of bytes.
8786
8787 Return the transferred status, error or OK (an
8788 'enum target_xfer_status' value). Save the number of bytes
8789 transferred in *XFERED_LEN. Only transfer a single packet. */
8790
8791 target_xfer_status
8792 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8793 ULONGEST len, int unit_size,
8794 ULONGEST *xfered_len)
8795 {
8796 const char *packet_format = NULL;
8797
8798 /* Check whether the target supports binary download. */
8799 check_binary_download (memaddr);
8800
8801 switch (packet_support (PACKET_X))
8802 {
8803 case PACKET_ENABLE:
8804 packet_format = "X";
8805 break;
8806 case PACKET_DISABLE:
8807 packet_format = "M";
8808 break;
8809 case PACKET_SUPPORT_UNKNOWN:
8810 internal_error (__FILE__, __LINE__,
8811 _("remote_write_bytes: bad internal state"));
8812 default:
8813 internal_error (__FILE__, __LINE__, _("bad switch"));
8814 }
8815
8816 return remote_write_bytes_aux (packet_format,
8817 memaddr, myaddr, len, unit_size, xfered_len,
8818 packet_format[0], 1);
8819 }
8820
8821 /* Read memory data directly from the remote machine.
8822 This does not use the data cache; the data cache uses this.
8823 MEMADDR is the address in the remote memory space.
8824 MYADDR is the address of the buffer in our space.
8825 LEN_UNITS is the number of addressable memory units to read..
8826 UNIT_SIZE is the length in bytes of an addressable unit.
8827
8828 Return the transferred status, error or OK (an
8829 'enum target_xfer_status' value). Save the number of bytes
8830 transferred in *XFERED_LEN_UNITS.
8831
8832 See the comment of remote_write_bytes_aux for an example of
8833 memory read/write exchange between gdb and the stub. */
8834
8835 target_xfer_status
8836 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8837 ULONGEST len_units,
8838 int unit_size, ULONGEST *xfered_len_units)
8839 {
8840 struct remote_state *rs = get_remote_state ();
8841 int buf_size_bytes; /* Max size of packet output buffer. */
8842 char *p;
8843 int todo_units;
8844 int decoded_bytes;
8845
8846 buf_size_bytes = get_memory_read_packet_size ();
8847 /* The packet buffer will be large enough for the payload;
8848 get_memory_packet_size ensures this. */
8849
8850 /* Number of units that will fit. */
8851 todo_units = std::min (len_units,
8852 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8853
8854 /* Construct "m"<memaddr>","<len>". */
8855 memaddr = remote_address_masked (memaddr);
8856 p = rs->buf.data ();
8857 *p++ = 'm';
8858 p += hexnumstr (p, (ULONGEST) memaddr);
8859 *p++ = ',';
8860 p += hexnumstr (p, (ULONGEST) todo_units);
8861 *p = '\0';
8862 putpkt (rs->buf);
8863 getpkt (&rs->buf, 0);
8864 if (rs->buf[0] == 'E'
8865 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8866 && rs->buf[3] == '\0')
8867 return TARGET_XFER_E_IO;
8868 /* Reply describes memory byte by byte, each byte encoded as two hex
8869 characters. */
8870 p = rs->buf.data ();
8871 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8872 /* Return what we have. Let higher layers handle partial reads. */
8873 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8874 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8875 }
8876
8877 /* Using the set of read-only target sections of remote, read live
8878 read-only memory.
8879
8880 For interface/parameters/return description see target.h,
8881 to_xfer_partial. */
8882
8883 target_xfer_status
8884 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8885 ULONGEST memaddr,
8886 ULONGEST len,
8887 int unit_size,
8888 ULONGEST *xfered_len)
8889 {
8890 struct target_section *secp;
8891 struct target_section_table *table;
8892
8893 secp = target_section_by_addr (this, memaddr);
8894 if (secp != NULL
8895 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8896 {
8897 struct target_section *p;
8898 ULONGEST memend = memaddr + len;
8899
8900 table = target_get_section_table (this);
8901
8902 for (p = table->sections; p < table->sections_end; p++)
8903 {
8904 if (memaddr >= p->addr)
8905 {
8906 if (memend <= p->endaddr)
8907 {
8908 /* Entire transfer is within this section. */
8909 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8910 xfered_len);
8911 }
8912 else if (memaddr >= p->endaddr)
8913 {
8914 /* This section ends before the transfer starts. */
8915 continue;
8916 }
8917 else
8918 {
8919 /* This section overlaps the transfer. Just do half. */
8920 len = p->endaddr - memaddr;
8921 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8922 xfered_len);
8923 }
8924 }
8925 }
8926 }
8927
8928 return TARGET_XFER_EOF;
8929 }
8930
8931 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8932 first if the requested memory is unavailable in traceframe.
8933 Otherwise, fall back to remote_read_bytes_1. */
8934
8935 target_xfer_status
8936 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8937 gdb_byte *myaddr, ULONGEST len, int unit_size,
8938 ULONGEST *xfered_len)
8939 {
8940 if (len == 0)
8941 return TARGET_XFER_EOF;
8942
8943 if (get_traceframe_number () != -1)
8944 {
8945 std::vector<mem_range> available;
8946
8947 /* If we fail to get the set of available memory, then the
8948 target does not support querying traceframe info, and so we
8949 attempt reading from the traceframe anyway (assuming the
8950 target implements the old QTro packet then). */
8951 if (traceframe_available_memory (&available, memaddr, len))
8952 {
8953 if (available.empty () || available[0].start != memaddr)
8954 {
8955 enum target_xfer_status res;
8956
8957 /* Don't read into the traceframe's available
8958 memory. */
8959 if (!available.empty ())
8960 {
8961 LONGEST oldlen = len;
8962
8963 len = available[0].start - memaddr;
8964 gdb_assert (len <= oldlen);
8965 }
8966
8967 /* This goes through the topmost target again. */
8968 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8969 len, unit_size, xfered_len);
8970 if (res == TARGET_XFER_OK)
8971 return TARGET_XFER_OK;
8972 else
8973 {
8974 /* No use trying further, we know some memory starting
8975 at MEMADDR isn't available. */
8976 *xfered_len = len;
8977 return (*xfered_len != 0) ?
8978 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8979 }
8980 }
8981
8982 /* Don't try to read more than how much is available, in
8983 case the target implements the deprecated QTro packet to
8984 cater for older GDBs (the target's knowledge of read-only
8985 sections may be outdated by now). */
8986 len = available[0].length;
8987 }
8988 }
8989
8990 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8991 }
8992
8993 \f
8994
8995 /* Sends a packet with content determined by the printf format string
8996 FORMAT and the remaining arguments, then gets the reply. Returns
8997 whether the packet was a success, a failure, or unknown. */
8998
8999 packet_result
9000 remote_target::remote_send_printf (const char *format, ...)
9001 {
9002 struct remote_state *rs = get_remote_state ();
9003 int max_size = get_remote_packet_size ();
9004 va_list ap;
9005
9006 va_start (ap, format);
9007
9008 rs->buf[0] = '\0';
9009 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9010
9011 va_end (ap);
9012
9013 if (size >= max_size)
9014 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9015
9016 if (putpkt (rs->buf) < 0)
9017 error (_("Communication problem with target."));
9018
9019 rs->buf[0] = '\0';
9020 getpkt (&rs->buf, 0);
9021
9022 return packet_check_result (rs->buf);
9023 }
9024
9025 /* Flash writing can take quite some time. We'll set
9026 effectively infinite timeout for flash operations.
9027 In future, we'll need to decide on a better approach. */
9028 static const int remote_flash_timeout = 1000;
9029
9030 void
9031 remote_target::flash_erase (ULONGEST address, LONGEST length)
9032 {
9033 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9034 enum packet_result ret;
9035 scoped_restore restore_timeout
9036 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9037
9038 ret = remote_send_printf ("vFlashErase:%s,%s",
9039 phex (address, addr_size),
9040 phex (length, 4));
9041 switch (ret)
9042 {
9043 case PACKET_UNKNOWN:
9044 error (_("Remote target does not support flash erase"));
9045 case PACKET_ERROR:
9046 error (_("Error erasing flash with vFlashErase packet"));
9047 default:
9048 break;
9049 }
9050 }
9051
9052 target_xfer_status
9053 remote_target::remote_flash_write (ULONGEST address,
9054 ULONGEST length, ULONGEST *xfered_len,
9055 const gdb_byte *data)
9056 {
9057 scoped_restore restore_timeout
9058 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9059 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9060 xfered_len,'X', 0);
9061 }
9062
9063 void
9064 remote_target::flash_done ()
9065 {
9066 int ret;
9067
9068 scoped_restore restore_timeout
9069 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9070
9071 ret = remote_send_printf ("vFlashDone");
9072
9073 switch (ret)
9074 {
9075 case PACKET_UNKNOWN:
9076 error (_("Remote target does not support vFlashDone"));
9077 case PACKET_ERROR:
9078 error (_("Error finishing flash operation"));
9079 default:
9080 break;
9081 }
9082 }
9083
9084 void
9085 remote_target::files_info ()
9086 {
9087 puts_filtered ("Debugging a target over a serial line.\n");
9088 }
9089 \f
9090 /* Stuff for dealing with the packets which are part of this protocol.
9091 See comment at top of file for details. */
9092
9093 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9094 error to higher layers. Called when a serial error is detected.
9095 The exception message is STRING, followed by a colon and a blank,
9096 the system error message for errno at function entry and final dot
9097 for output compatibility with throw_perror_with_name. */
9098
9099 static void
9100 unpush_and_perror (remote_target *target, const char *string)
9101 {
9102 int saved_errno = errno;
9103
9104 remote_unpush_target (target);
9105 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9106 safe_strerror (saved_errno));
9107 }
9108
9109 /* Read a single character from the remote end. The current quit
9110 handler is overridden to avoid quitting in the middle of packet
9111 sequence, as that would break communication with the remote server.
9112 See remote_serial_quit_handler for more detail. */
9113
9114 int
9115 remote_target::readchar (int timeout)
9116 {
9117 int ch;
9118 struct remote_state *rs = get_remote_state ();
9119
9120 {
9121 scoped_restore restore_quit_target
9122 = make_scoped_restore (&curr_quit_handler_target, this);
9123 scoped_restore restore_quit
9124 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9125
9126 rs->got_ctrlc_during_io = 0;
9127
9128 ch = serial_readchar (rs->remote_desc, timeout);
9129
9130 if (rs->got_ctrlc_during_io)
9131 set_quit_flag ();
9132 }
9133
9134 if (ch >= 0)
9135 return ch;
9136
9137 switch ((enum serial_rc) ch)
9138 {
9139 case SERIAL_EOF:
9140 remote_unpush_target (this);
9141 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9142 /* no return */
9143 case SERIAL_ERROR:
9144 unpush_and_perror (this, _("Remote communication error. "
9145 "Target disconnected."));
9146 /* no return */
9147 case SERIAL_TIMEOUT:
9148 break;
9149 }
9150 return ch;
9151 }
9152
9153 /* Wrapper for serial_write that closes the target and throws if
9154 writing fails. The current quit handler is overridden to avoid
9155 quitting in the middle of packet sequence, as that would break
9156 communication with the remote server. See
9157 remote_serial_quit_handler for more detail. */
9158
9159 void
9160 remote_target::remote_serial_write (const char *str, int len)
9161 {
9162 struct remote_state *rs = get_remote_state ();
9163
9164 scoped_restore restore_quit_target
9165 = make_scoped_restore (&curr_quit_handler_target, this);
9166 scoped_restore restore_quit
9167 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9168
9169 rs->got_ctrlc_during_io = 0;
9170
9171 if (serial_write (rs->remote_desc, str, len))
9172 {
9173 unpush_and_perror (this, _("Remote communication error. "
9174 "Target disconnected."));
9175 }
9176
9177 if (rs->got_ctrlc_during_io)
9178 set_quit_flag ();
9179 }
9180
9181 /* Return a string representing an escaped version of BUF, of len N.
9182 E.g. \n is converted to \\n, \t to \\t, etc. */
9183
9184 static std::string
9185 escape_buffer (const char *buf, int n)
9186 {
9187 string_file stb;
9188
9189 stb.putstrn (buf, n, '\\');
9190 return std::move (stb.string ());
9191 }
9192
9193 /* Display a null-terminated packet on stdout, for debugging, using C
9194 string notation. */
9195
9196 static void
9197 print_packet (const char *buf)
9198 {
9199 puts_filtered ("\"");
9200 fputstr_filtered (buf, '"', gdb_stdout);
9201 puts_filtered ("\"");
9202 }
9203
9204 int
9205 remote_target::putpkt (const char *buf)
9206 {
9207 return putpkt_binary (buf, strlen (buf));
9208 }
9209
9210 /* Wrapper around remote_target::putpkt to avoid exporting
9211 remote_target. */
9212
9213 int
9214 putpkt (remote_target *remote, const char *buf)
9215 {
9216 return remote->putpkt (buf);
9217 }
9218
9219 /* Send a packet to the remote machine, with error checking. The data
9220 of the packet is in BUF. The string in BUF can be at most
9221 get_remote_packet_size () - 5 to account for the $, # and checksum,
9222 and for a possible /0 if we are debugging (remote_debug) and want
9223 to print the sent packet as a string. */
9224
9225 int
9226 remote_target::putpkt_binary (const char *buf, int cnt)
9227 {
9228 struct remote_state *rs = get_remote_state ();
9229 int i;
9230 unsigned char csum = 0;
9231 gdb::def_vector<char> data (cnt + 6);
9232 char *buf2 = data.data ();
9233
9234 int ch;
9235 int tcount = 0;
9236 char *p;
9237
9238 /* Catch cases like trying to read memory or listing threads while
9239 we're waiting for a stop reply. The remote server wouldn't be
9240 ready to handle this request, so we'd hang and timeout. We don't
9241 have to worry about this in synchronous mode, because in that
9242 case it's not possible to issue a command while the target is
9243 running. This is not a problem in non-stop mode, because in that
9244 case, the stub is always ready to process serial input. */
9245 if (!target_is_non_stop_p ()
9246 && target_is_async_p ()
9247 && rs->waiting_for_stop_reply)
9248 {
9249 error (_("Cannot execute this command while the target is running.\n"
9250 "Use the \"interrupt\" command to stop the target\n"
9251 "and then try again."));
9252 }
9253
9254 /* We're sending out a new packet. Make sure we don't look at a
9255 stale cached response. */
9256 rs->cached_wait_status = 0;
9257
9258 /* Copy the packet into buffer BUF2, encapsulating it
9259 and giving it a checksum. */
9260
9261 p = buf2;
9262 *p++ = '$';
9263
9264 for (i = 0; i < cnt; i++)
9265 {
9266 csum += buf[i];
9267 *p++ = buf[i];
9268 }
9269 *p++ = '#';
9270 *p++ = tohex ((csum >> 4) & 0xf);
9271 *p++ = tohex (csum & 0xf);
9272
9273 /* Send it over and over until we get a positive ack. */
9274
9275 while (1)
9276 {
9277 int started_error_output = 0;
9278
9279 if (remote_debug)
9280 {
9281 *p = '\0';
9282
9283 int len = (int) (p - buf2);
9284 int max_chars;
9285
9286 if (remote_packet_max_chars < 0)
9287 max_chars = len;
9288 else
9289 max_chars = remote_packet_max_chars;
9290
9291 std::string str
9292 = escape_buffer (buf2, std::min (len, max_chars));
9293
9294 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9295
9296 if (len > max_chars)
9297 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9298 len - max_chars);
9299
9300 fprintf_unfiltered (gdb_stdlog, "...");
9301
9302 gdb_flush (gdb_stdlog);
9303 }
9304 remote_serial_write (buf2, p - buf2);
9305
9306 /* If this is a no acks version of the remote protocol, send the
9307 packet and move on. */
9308 if (rs->noack_mode)
9309 break;
9310
9311 /* Read until either a timeout occurs (-2) or '+' is read.
9312 Handle any notification that arrives in the mean time. */
9313 while (1)
9314 {
9315 ch = readchar (remote_timeout);
9316
9317 if (remote_debug)
9318 {
9319 switch (ch)
9320 {
9321 case '+':
9322 case '-':
9323 case SERIAL_TIMEOUT:
9324 case '$':
9325 case '%':
9326 if (started_error_output)
9327 {
9328 putchar_unfiltered ('\n');
9329 started_error_output = 0;
9330 }
9331 }
9332 }
9333
9334 switch (ch)
9335 {
9336 case '+':
9337 if (remote_debug)
9338 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9339 return 1;
9340 case '-':
9341 if (remote_debug)
9342 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9343 /* FALLTHROUGH */
9344 case SERIAL_TIMEOUT:
9345 tcount++;
9346 if (tcount > 3)
9347 return 0;
9348 break; /* Retransmit buffer. */
9349 case '$':
9350 {
9351 if (remote_debug)
9352 fprintf_unfiltered (gdb_stdlog,
9353 "Packet instead of Ack, ignoring it\n");
9354 /* It's probably an old response sent because an ACK
9355 was lost. Gobble up the packet and ack it so it
9356 doesn't get retransmitted when we resend this
9357 packet. */
9358 skip_frame ();
9359 remote_serial_write ("+", 1);
9360 continue; /* Now, go look for +. */
9361 }
9362
9363 case '%':
9364 {
9365 int val;
9366
9367 /* If we got a notification, handle it, and go back to looking
9368 for an ack. */
9369 /* We've found the start of a notification. Now
9370 collect the data. */
9371 val = read_frame (&rs->buf);
9372 if (val >= 0)
9373 {
9374 if (remote_debug)
9375 {
9376 std::string str = escape_buffer (rs->buf.data (), val);
9377
9378 fprintf_unfiltered (gdb_stdlog,
9379 " Notification received: %s\n",
9380 str.c_str ());
9381 }
9382 handle_notification (rs->notif_state, rs->buf.data ());
9383 /* We're in sync now, rewait for the ack. */
9384 tcount = 0;
9385 }
9386 else
9387 {
9388 if (remote_debug)
9389 {
9390 if (!started_error_output)
9391 {
9392 started_error_output = 1;
9393 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9394 }
9395 fputc_unfiltered (ch & 0177, gdb_stdlog);
9396 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9397 }
9398 }
9399 continue;
9400 }
9401 /* fall-through */
9402 default:
9403 if (remote_debug)
9404 {
9405 if (!started_error_output)
9406 {
9407 started_error_output = 1;
9408 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9409 }
9410 fputc_unfiltered (ch & 0177, gdb_stdlog);
9411 }
9412 continue;
9413 }
9414 break; /* Here to retransmit. */
9415 }
9416
9417 #if 0
9418 /* This is wrong. If doing a long backtrace, the user should be
9419 able to get out next time we call QUIT, without anything as
9420 violent as interrupt_query. If we want to provide a way out of
9421 here without getting to the next QUIT, it should be based on
9422 hitting ^C twice as in remote_wait. */
9423 if (quit_flag)
9424 {
9425 quit_flag = 0;
9426 interrupt_query ();
9427 }
9428 #endif
9429 }
9430
9431 return 0;
9432 }
9433
9434 /* Come here after finding the start of a frame when we expected an
9435 ack. Do our best to discard the rest of this packet. */
9436
9437 void
9438 remote_target::skip_frame ()
9439 {
9440 int c;
9441
9442 while (1)
9443 {
9444 c = readchar (remote_timeout);
9445 switch (c)
9446 {
9447 case SERIAL_TIMEOUT:
9448 /* Nothing we can do. */
9449 return;
9450 case '#':
9451 /* Discard the two bytes of checksum and stop. */
9452 c = readchar (remote_timeout);
9453 if (c >= 0)
9454 c = readchar (remote_timeout);
9455
9456 return;
9457 case '*': /* Run length encoding. */
9458 /* Discard the repeat count. */
9459 c = readchar (remote_timeout);
9460 if (c < 0)
9461 return;
9462 break;
9463 default:
9464 /* A regular character. */
9465 break;
9466 }
9467 }
9468 }
9469
9470 /* Come here after finding the start of the frame. Collect the rest
9471 into *BUF, verifying the checksum, length, and handling run-length
9472 compression. NUL terminate the buffer. If there is not enough room,
9473 expand *BUF.
9474
9475 Returns -1 on error, number of characters in buffer (ignoring the
9476 trailing NULL) on success. (could be extended to return one of the
9477 SERIAL status indications). */
9478
9479 long
9480 remote_target::read_frame (gdb::char_vector *buf_p)
9481 {
9482 unsigned char csum;
9483 long bc;
9484 int c;
9485 char *buf = buf_p->data ();
9486 struct remote_state *rs = get_remote_state ();
9487
9488 csum = 0;
9489 bc = 0;
9490
9491 while (1)
9492 {
9493 c = readchar (remote_timeout);
9494 switch (c)
9495 {
9496 case SERIAL_TIMEOUT:
9497 if (remote_debug)
9498 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9499 return -1;
9500 case '$':
9501 if (remote_debug)
9502 fputs_filtered ("Saw new packet start in middle of old one\n",
9503 gdb_stdlog);
9504 return -1; /* Start a new packet, count retries. */
9505 case '#':
9506 {
9507 unsigned char pktcsum;
9508 int check_0 = 0;
9509 int check_1 = 0;
9510
9511 buf[bc] = '\0';
9512
9513 check_0 = readchar (remote_timeout);
9514 if (check_0 >= 0)
9515 check_1 = readchar (remote_timeout);
9516
9517 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9518 {
9519 if (remote_debug)
9520 fputs_filtered ("Timeout in checksum, retrying\n",
9521 gdb_stdlog);
9522 return -1;
9523 }
9524 else if (check_0 < 0 || check_1 < 0)
9525 {
9526 if (remote_debug)
9527 fputs_filtered ("Communication error in checksum\n",
9528 gdb_stdlog);
9529 return -1;
9530 }
9531
9532 /* Don't recompute the checksum; with no ack packets we
9533 don't have any way to indicate a packet retransmission
9534 is necessary. */
9535 if (rs->noack_mode)
9536 return bc;
9537
9538 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9539 if (csum == pktcsum)
9540 return bc;
9541
9542 if (remote_debug)
9543 {
9544 std::string str = escape_buffer (buf, bc);
9545
9546 fprintf_unfiltered (gdb_stdlog,
9547 "Bad checksum, sentsum=0x%x, "
9548 "csum=0x%x, buf=%s\n",
9549 pktcsum, csum, str.c_str ());
9550 }
9551 /* Number of characters in buffer ignoring trailing
9552 NULL. */
9553 return -1;
9554 }
9555 case '*': /* Run length encoding. */
9556 {
9557 int repeat;
9558
9559 csum += c;
9560 c = readchar (remote_timeout);
9561 csum += c;
9562 repeat = c - ' ' + 3; /* Compute repeat count. */
9563
9564 /* The character before ``*'' is repeated. */
9565
9566 if (repeat > 0 && repeat <= 255 && bc > 0)
9567 {
9568 if (bc + repeat - 1 >= buf_p->size () - 1)
9569 {
9570 /* Make some more room in the buffer. */
9571 buf_p->resize (buf_p->size () + repeat);
9572 buf = buf_p->data ();
9573 }
9574
9575 memset (&buf[bc], buf[bc - 1], repeat);
9576 bc += repeat;
9577 continue;
9578 }
9579
9580 buf[bc] = '\0';
9581 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9582 return -1;
9583 }
9584 default:
9585 if (bc >= buf_p->size () - 1)
9586 {
9587 /* Make some more room in the buffer. */
9588 buf_p->resize (buf_p->size () * 2);
9589 buf = buf_p->data ();
9590 }
9591
9592 buf[bc++] = c;
9593 csum += c;
9594 continue;
9595 }
9596 }
9597 }
9598
9599 /* Set this to the maximum number of seconds to wait instead of waiting forever
9600 in target_wait(). If this timer times out, then it generates an error and
9601 the command is aborted. This replaces most of the need for timeouts in the
9602 GDB test suite, and makes it possible to distinguish between a hung target
9603 and one with slow communications. */
9604
9605 static int watchdog = 0;
9606 static void
9607 show_watchdog (struct ui_file *file, int from_tty,
9608 struct cmd_list_element *c, const char *value)
9609 {
9610 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9611 }
9612
9613 /* Read a packet from the remote machine, with error checking, and
9614 store it in *BUF. Resize *BUF if necessary to hold the result. If
9615 FOREVER, wait forever rather than timing out; this is used (in
9616 synchronous mode) to wait for a target that is is executing user
9617 code to stop. */
9618 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9619 don't have to change all the calls to getpkt to deal with the
9620 return value, because at the moment I don't know what the right
9621 thing to do it for those. */
9622
9623 void
9624 remote_target::getpkt (gdb::char_vector *buf, int forever)
9625 {
9626 getpkt_sane (buf, forever);
9627 }
9628
9629
9630 /* Read a packet from the remote machine, with error checking, and
9631 store it in *BUF. Resize *BUF if necessary to hold the result. If
9632 FOREVER, wait forever rather than timing out; this is used (in
9633 synchronous mode) to wait for a target that is is executing user
9634 code to stop. If FOREVER == 0, this function is allowed to time
9635 out gracefully and return an indication of this to the caller.
9636 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9637 consider receiving a notification enough reason to return to the
9638 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9639 holds a notification or not (a regular packet). */
9640
9641 int
9642 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9643 int forever, int expecting_notif,
9644 int *is_notif)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647 int c;
9648 int tries;
9649 int timeout;
9650 int val = -1;
9651
9652 /* We're reading a new response. Make sure we don't look at a
9653 previously cached response. */
9654 rs->cached_wait_status = 0;
9655
9656 strcpy (buf->data (), "timeout");
9657
9658 if (forever)
9659 timeout = watchdog > 0 ? watchdog : -1;
9660 else if (expecting_notif)
9661 timeout = 0; /* There should already be a char in the buffer. If
9662 not, bail out. */
9663 else
9664 timeout = remote_timeout;
9665
9666 #define MAX_TRIES 3
9667
9668 /* Process any number of notifications, and then return when
9669 we get a packet. */
9670 for (;;)
9671 {
9672 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9673 times. */
9674 for (tries = 1; tries <= MAX_TRIES; tries++)
9675 {
9676 /* This can loop forever if the remote side sends us
9677 characters continuously, but if it pauses, we'll get
9678 SERIAL_TIMEOUT from readchar because of timeout. Then
9679 we'll count that as a retry.
9680
9681 Note that even when forever is set, we will only wait
9682 forever prior to the start of a packet. After that, we
9683 expect characters to arrive at a brisk pace. They should
9684 show up within remote_timeout intervals. */
9685 do
9686 c = readchar (timeout);
9687 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9688
9689 if (c == SERIAL_TIMEOUT)
9690 {
9691 if (expecting_notif)
9692 return -1; /* Don't complain, it's normal to not get
9693 anything in this case. */
9694
9695 if (forever) /* Watchdog went off? Kill the target. */
9696 {
9697 remote_unpush_target (this);
9698 throw_error (TARGET_CLOSE_ERROR,
9699 _("Watchdog timeout has expired. "
9700 "Target detached."));
9701 }
9702 if (remote_debug)
9703 fputs_filtered ("Timed out.\n", gdb_stdlog);
9704 }
9705 else
9706 {
9707 /* We've found the start of a packet or notification.
9708 Now collect the data. */
9709 val = read_frame (buf);
9710 if (val >= 0)
9711 break;
9712 }
9713
9714 remote_serial_write ("-", 1);
9715 }
9716
9717 if (tries > MAX_TRIES)
9718 {
9719 /* We have tried hard enough, and just can't receive the
9720 packet/notification. Give up. */
9721 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9722
9723 /* Skip the ack char if we're in no-ack mode. */
9724 if (!rs->noack_mode)
9725 remote_serial_write ("+", 1);
9726 return -1;
9727 }
9728
9729 /* If we got an ordinary packet, return that to our caller. */
9730 if (c == '$')
9731 {
9732 if (remote_debug)
9733 {
9734 int max_chars;
9735
9736 if (remote_packet_max_chars < 0)
9737 max_chars = val;
9738 else
9739 max_chars = remote_packet_max_chars;
9740
9741 std::string str
9742 = escape_buffer (buf->data (),
9743 std::min (val, max_chars));
9744
9745 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9746 str.c_str ());
9747
9748 if (val > max_chars)
9749 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9750 val - max_chars);
9751
9752 fprintf_unfiltered (gdb_stdlog, "\n");
9753 }
9754
9755 /* Skip the ack char if we're in no-ack mode. */
9756 if (!rs->noack_mode)
9757 remote_serial_write ("+", 1);
9758 if (is_notif != NULL)
9759 *is_notif = 0;
9760 return val;
9761 }
9762
9763 /* If we got a notification, handle it, and go back to looking
9764 for a packet. */
9765 else
9766 {
9767 gdb_assert (c == '%');
9768
9769 if (remote_debug)
9770 {
9771 std::string str = escape_buffer (buf->data (), val);
9772
9773 fprintf_unfiltered (gdb_stdlog,
9774 " Notification received: %s\n",
9775 str.c_str ());
9776 }
9777 if (is_notif != NULL)
9778 *is_notif = 1;
9779
9780 handle_notification (rs->notif_state, buf->data ());
9781
9782 /* Notifications require no acknowledgement. */
9783
9784 if (expecting_notif)
9785 return val;
9786 }
9787 }
9788 }
9789
9790 int
9791 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9792 {
9793 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9794 }
9795
9796 int
9797 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9798 int *is_notif)
9799 {
9800 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9801 }
9802
9803 /* Kill any new fork children of process PID that haven't been
9804 processed by follow_fork. */
9805
9806 void
9807 remote_target::kill_new_fork_children (int pid)
9808 {
9809 remote_state *rs = get_remote_state ();
9810 struct notif_client *notif = &notif_client_stop;
9811
9812 /* Kill the fork child threads of any threads in process PID
9813 that are stopped at a fork event. */
9814 for (thread_info *thread : all_non_exited_threads (this))
9815 {
9816 struct target_waitstatus *ws = &thread->pending_follow;
9817
9818 if (is_pending_fork_parent (ws, pid, thread->ptid))
9819 {
9820 int child_pid = ws->value.related_pid.pid ();
9821 int res;
9822
9823 res = remote_vkill (child_pid);
9824 if (res != 0)
9825 error (_("Can't kill fork child process %d"), child_pid);
9826 }
9827 }
9828
9829 /* Check for any pending fork events (not reported or processed yet)
9830 in process PID and kill those fork child threads as well. */
9831 remote_notif_get_pending_events (notif);
9832 for (auto &event : rs->stop_reply_queue)
9833 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9834 {
9835 int child_pid = event->ws.value.related_pid.pid ();
9836 int res;
9837
9838 res = remote_vkill (child_pid);
9839 if (res != 0)
9840 error (_("Can't kill fork child process %d"), child_pid);
9841 }
9842 }
9843
9844 \f
9845 /* Target hook to kill the current inferior. */
9846
9847 void
9848 remote_target::kill ()
9849 {
9850 int res = -1;
9851 int pid = inferior_ptid.pid ();
9852 struct remote_state *rs = get_remote_state ();
9853
9854 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9855 {
9856 /* If we're stopped while forking and we haven't followed yet,
9857 kill the child task. We need to do this before killing the
9858 parent task because if this is a vfork then the parent will
9859 be sleeping. */
9860 kill_new_fork_children (pid);
9861
9862 res = remote_vkill (pid);
9863 if (res == 0)
9864 {
9865 target_mourn_inferior (inferior_ptid);
9866 return;
9867 }
9868 }
9869
9870 /* If we are in 'target remote' mode and we are killing the only
9871 inferior, then we will tell gdbserver to exit and unpush the
9872 target. */
9873 if (res == -1 && !remote_multi_process_p (rs)
9874 && number_of_live_inferiors (this) == 1)
9875 {
9876 remote_kill_k ();
9877
9878 /* We've killed the remote end, we get to mourn it. If we are
9879 not in extended mode, mourning the inferior also unpushes
9880 remote_ops from the target stack, which closes the remote
9881 connection. */
9882 target_mourn_inferior (inferior_ptid);
9883
9884 return;
9885 }
9886
9887 error (_("Can't kill process"));
9888 }
9889
9890 /* Send a kill request to the target using the 'vKill' packet. */
9891
9892 int
9893 remote_target::remote_vkill (int pid)
9894 {
9895 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9896 return -1;
9897
9898 remote_state *rs = get_remote_state ();
9899
9900 /* Tell the remote target to detach. */
9901 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9902 putpkt (rs->buf);
9903 getpkt (&rs->buf, 0);
9904
9905 switch (packet_ok (rs->buf,
9906 &remote_protocol_packets[PACKET_vKill]))
9907 {
9908 case PACKET_OK:
9909 return 0;
9910 case PACKET_ERROR:
9911 return 1;
9912 case PACKET_UNKNOWN:
9913 return -1;
9914 default:
9915 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9916 }
9917 }
9918
9919 /* Send a kill request to the target using the 'k' packet. */
9920
9921 void
9922 remote_target::remote_kill_k ()
9923 {
9924 /* Catch errors so the user can quit from gdb even when we
9925 aren't on speaking terms with the remote system. */
9926 try
9927 {
9928 putpkt ("k");
9929 }
9930 catch (const gdb_exception_error &ex)
9931 {
9932 if (ex.error == TARGET_CLOSE_ERROR)
9933 {
9934 /* If we got an (EOF) error that caused the target
9935 to go away, then we're done, that's what we wanted.
9936 "k" is susceptible to cause a premature EOF, given
9937 that the remote server isn't actually required to
9938 reply to "k", and it can happen that it doesn't
9939 even get to reply ACK to the "k". */
9940 return;
9941 }
9942
9943 /* Otherwise, something went wrong. We didn't actually kill
9944 the target. Just propagate the exception, and let the
9945 user or higher layers decide what to do. */
9946 throw;
9947 }
9948 }
9949
9950 void
9951 remote_target::mourn_inferior ()
9952 {
9953 struct remote_state *rs = get_remote_state ();
9954
9955 /* We're no longer interested in notification events of an inferior
9956 that exited or was killed/detached. */
9957 discard_pending_stop_replies (current_inferior ());
9958
9959 /* In 'target remote' mode with one inferior, we close the connection. */
9960 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9961 {
9962 remote_unpush_target (this);
9963 return;
9964 }
9965
9966 /* In case we got here due to an error, but we're going to stay
9967 connected. */
9968 rs->waiting_for_stop_reply = 0;
9969
9970 /* If the current general thread belonged to the process we just
9971 detached from or has exited, the remote side current general
9972 thread becomes undefined. Considering a case like this:
9973
9974 - We just got here due to a detach.
9975 - The process that we're detaching from happens to immediately
9976 report a global breakpoint being hit in non-stop mode, in the
9977 same thread we had selected before.
9978 - GDB attaches to this process again.
9979 - This event happens to be the next event we handle.
9980
9981 GDB would consider that the current general thread didn't need to
9982 be set on the stub side (with Hg), since for all it knew,
9983 GENERAL_THREAD hadn't changed.
9984
9985 Notice that although in all-stop mode, the remote server always
9986 sets the current thread to the thread reporting the stop event,
9987 that doesn't happen in non-stop mode; in non-stop, the stub *must
9988 not* change the current thread when reporting a breakpoint hit,
9989 due to the decoupling of event reporting and event handling.
9990
9991 To keep things simple, we always invalidate our notion of the
9992 current thread. */
9993 record_currthread (rs, minus_one_ptid);
9994
9995 /* Call common code to mark the inferior as not running. */
9996 generic_mourn_inferior ();
9997 }
9998
9999 bool
10000 extended_remote_target::supports_disable_randomization ()
10001 {
10002 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10003 }
10004
10005 void
10006 remote_target::extended_remote_disable_randomization (int val)
10007 {
10008 struct remote_state *rs = get_remote_state ();
10009 char *reply;
10010
10011 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10012 "QDisableRandomization:%x", val);
10013 putpkt (rs->buf);
10014 reply = remote_get_noisy_reply ();
10015 if (*reply == '\0')
10016 error (_("Target does not support QDisableRandomization."));
10017 if (strcmp (reply, "OK") != 0)
10018 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10019 }
10020
10021 int
10022 remote_target::extended_remote_run (const std::string &args)
10023 {
10024 struct remote_state *rs = get_remote_state ();
10025 int len;
10026 const char *remote_exec_file = get_remote_exec_file ();
10027
10028 /* If the user has disabled vRun support, or we have detected that
10029 support is not available, do not try it. */
10030 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10031 return -1;
10032
10033 strcpy (rs->buf.data (), "vRun;");
10034 len = strlen (rs->buf.data ());
10035
10036 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10037 error (_("Remote file name too long for run packet"));
10038 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10039 strlen (remote_exec_file));
10040
10041 if (!args.empty ())
10042 {
10043 int i;
10044
10045 gdb_argv argv (args.c_str ());
10046 for (i = 0; argv[i] != NULL; i++)
10047 {
10048 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10049 error (_("Argument list too long for run packet"));
10050 rs->buf[len++] = ';';
10051 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10052 strlen (argv[i]));
10053 }
10054 }
10055
10056 rs->buf[len++] = '\0';
10057
10058 putpkt (rs->buf);
10059 getpkt (&rs->buf, 0);
10060
10061 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10062 {
10063 case PACKET_OK:
10064 /* We have a wait response. All is well. */
10065 return 0;
10066 case PACKET_UNKNOWN:
10067 return -1;
10068 case PACKET_ERROR:
10069 if (remote_exec_file[0] == '\0')
10070 error (_("Running the default executable on the remote target failed; "
10071 "try \"set remote exec-file\"?"));
10072 else
10073 error (_("Running \"%s\" on the remote target failed"),
10074 remote_exec_file);
10075 default:
10076 gdb_assert_not_reached (_("bad switch"));
10077 }
10078 }
10079
10080 /* Helper function to send set/unset environment packets. ACTION is
10081 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10082 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10083 sent. */
10084
10085 void
10086 remote_target::send_environment_packet (const char *action,
10087 const char *packet,
10088 const char *value)
10089 {
10090 remote_state *rs = get_remote_state ();
10091
10092 /* Convert the environment variable to an hex string, which
10093 is the best format to be transmitted over the wire. */
10094 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10095 strlen (value));
10096
10097 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10098 "%s:%s", packet, encoded_value.c_str ());
10099
10100 putpkt (rs->buf);
10101 getpkt (&rs->buf, 0);
10102 if (strcmp (rs->buf.data (), "OK") != 0)
10103 warning (_("Unable to %s environment variable '%s' on remote."),
10104 action, value);
10105 }
10106
10107 /* Helper function to handle the QEnvironment* packets. */
10108
10109 void
10110 remote_target::extended_remote_environment_support ()
10111 {
10112 remote_state *rs = get_remote_state ();
10113
10114 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10115 {
10116 putpkt ("QEnvironmentReset");
10117 getpkt (&rs->buf, 0);
10118 if (strcmp (rs->buf.data (), "OK") != 0)
10119 warning (_("Unable to reset environment on remote."));
10120 }
10121
10122 gdb_environ *e = &current_inferior ()->environment;
10123
10124 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10125 for (const std::string &el : e->user_set_env ())
10126 send_environment_packet ("set", "QEnvironmentHexEncoded",
10127 el.c_str ());
10128
10129 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10130 for (const std::string &el : e->user_unset_env ())
10131 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10132 }
10133
10134 /* Helper function to set the current working directory for the
10135 inferior in the remote target. */
10136
10137 void
10138 remote_target::extended_remote_set_inferior_cwd ()
10139 {
10140 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10141 {
10142 const char *inferior_cwd = get_inferior_cwd ();
10143 remote_state *rs = get_remote_state ();
10144
10145 if (inferior_cwd != NULL)
10146 {
10147 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10148 strlen (inferior_cwd));
10149
10150 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10151 "QSetWorkingDir:%s", hexpath.c_str ());
10152 }
10153 else
10154 {
10155 /* An empty inferior_cwd means that the user wants us to
10156 reset the remote server's inferior's cwd. */
10157 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10158 "QSetWorkingDir:");
10159 }
10160
10161 putpkt (rs->buf);
10162 getpkt (&rs->buf, 0);
10163 if (packet_ok (rs->buf,
10164 &remote_protocol_packets[PACKET_QSetWorkingDir])
10165 != PACKET_OK)
10166 error (_("\
10167 Remote replied unexpectedly while setting the inferior's working\n\
10168 directory: %s"),
10169 rs->buf.data ());
10170
10171 }
10172 }
10173
10174 /* In the extended protocol we want to be able to do things like
10175 "run" and have them basically work as expected. So we need
10176 a special create_inferior function. We support changing the
10177 executable file and the command line arguments, but not the
10178 environment. */
10179
10180 void
10181 extended_remote_target::create_inferior (const char *exec_file,
10182 const std::string &args,
10183 char **env, int from_tty)
10184 {
10185 int run_worked;
10186 char *stop_reply;
10187 struct remote_state *rs = get_remote_state ();
10188 const char *remote_exec_file = get_remote_exec_file ();
10189
10190 /* If running asynchronously, register the target file descriptor
10191 with the event loop. */
10192 if (target_can_async_p ())
10193 target_async (1);
10194
10195 /* Disable address space randomization if requested (and supported). */
10196 if (supports_disable_randomization ())
10197 extended_remote_disable_randomization (disable_randomization);
10198
10199 /* If startup-with-shell is on, we inform gdbserver to start the
10200 remote inferior using a shell. */
10201 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10202 {
10203 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10204 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10205 putpkt (rs->buf);
10206 getpkt (&rs->buf, 0);
10207 if (strcmp (rs->buf.data (), "OK") != 0)
10208 error (_("\
10209 Remote replied unexpectedly while setting startup-with-shell: %s"),
10210 rs->buf.data ());
10211 }
10212
10213 extended_remote_environment_support ();
10214
10215 extended_remote_set_inferior_cwd ();
10216
10217 /* Now restart the remote server. */
10218 run_worked = extended_remote_run (args) != -1;
10219 if (!run_worked)
10220 {
10221 /* vRun was not supported. Fail if we need it to do what the
10222 user requested. */
10223 if (remote_exec_file[0])
10224 error (_("Remote target does not support \"set remote exec-file\""));
10225 if (!args.empty ())
10226 error (_("Remote target does not support \"set args\" or run ARGS"));
10227
10228 /* Fall back to "R". */
10229 extended_remote_restart ();
10230 }
10231
10232 /* vRun's success return is a stop reply. */
10233 stop_reply = run_worked ? rs->buf.data () : NULL;
10234 add_current_inferior_and_thread (stop_reply);
10235
10236 /* Get updated offsets, if the stub uses qOffsets. */
10237 get_offsets ();
10238 }
10239 \f
10240
10241 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10242 the list of conditions (in agent expression bytecode format), if any, the
10243 target needs to evaluate. The output is placed into the packet buffer
10244 started from BUF and ended at BUF_END. */
10245
10246 static int
10247 remote_add_target_side_condition (struct gdbarch *gdbarch,
10248 struct bp_target_info *bp_tgt, char *buf,
10249 char *buf_end)
10250 {
10251 if (bp_tgt->conditions.empty ())
10252 return 0;
10253
10254 buf += strlen (buf);
10255 xsnprintf (buf, buf_end - buf, "%s", ";");
10256 buf++;
10257
10258 /* Send conditions to the target. */
10259 for (agent_expr *aexpr : bp_tgt->conditions)
10260 {
10261 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10262 buf += strlen (buf);
10263 for (int i = 0; i < aexpr->len; ++i)
10264 buf = pack_hex_byte (buf, aexpr->buf[i]);
10265 *buf = '\0';
10266 }
10267 return 0;
10268 }
10269
10270 static void
10271 remote_add_target_side_commands (struct gdbarch *gdbarch,
10272 struct bp_target_info *bp_tgt, char *buf)
10273 {
10274 if (bp_tgt->tcommands.empty ())
10275 return;
10276
10277 buf += strlen (buf);
10278
10279 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10280 buf += strlen (buf);
10281
10282 /* Concatenate all the agent expressions that are commands into the
10283 cmds parameter. */
10284 for (agent_expr *aexpr : bp_tgt->tcommands)
10285 {
10286 sprintf (buf, "X%x,", aexpr->len);
10287 buf += strlen (buf);
10288 for (int i = 0; i < aexpr->len; ++i)
10289 buf = pack_hex_byte (buf, aexpr->buf[i]);
10290 *buf = '\0';
10291 }
10292 }
10293
10294 /* Insert a breakpoint. On targets that have software breakpoint
10295 support, we ask the remote target to do the work; on targets
10296 which don't, we insert a traditional memory breakpoint. */
10297
10298 int
10299 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10300 struct bp_target_info *bp_tgt)
10301 {
10302 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10303 If it succeeds, then set the support to PACKET_ENABLE. If it
10304 fails, and the user has explicitly requested the Z support then
10305 report an error, otherwise, mark it disabled and go on. */
10306
10307 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10308 {
10309 CORE_ADDR addr = bp_tgt->reqstd_address;
10310 struct remote_state *rs;
10311 char *p, *endbuf;
10312
10313 /* Make sure the remote is pointing at the right process, if
10314 necessary. */
10315 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10316 set_general_process ();
10317
10318 rs = get_remote_state ();
10319 p = rs->buf.data ();
10320 endbuf = p + get_remote_packet_size ();
10321
10322 *(p++) = 'Z';
10323 *(p++) = '0';
10324 *(p++) = ',';
10325 addr = (ULONGEST) remote_address_masked (addr);
10326 p += hexnumstr (p, addr);
10327 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10328
10329 if (supports_evaluation_of_breakpoint_conditions ())
10330 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10331
10332 if (can_run_breakpoint_commands ())
10333 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10334
10335 putpkt (rs->buf);
10336 getpkt (&rs->buf, 0);
10337
10338 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10339 {
10340 case PACKET_ERROR:
10341 return -1;
10342 case PACKET_OK:
10343 return 0;
10344 case PACKET_UNKNOWN:
10345 break;
10346 }
10347 }
10348
10349 /* If this breakpoint has target-side commands but this stub doesn't
10350 support Z0 packets, throw error. */
10351 if (!bp_tgt->tcommands.empty ())
10352 throw_error (NOT_SUPPORTED_ERROR, _("\
10353 Target doesn't support breakpoints that have target side commands."));
10354
10355 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10356 }
10357
10358 int
10359 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10360 struct bp_target_info *bp_tgt,
10361 enum remove_bp_reason reason)
10362 {
10363 CORE_ADDR addr = bp_tgt->placed_address;
10364 struct remote_state *rs = get_remote_state ();
10365
10366 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10367 {
10368 char *p = rs->buf.data ();
10369 char *endbuf = p + get_remote_packet_size ();
10370
10371 /* Make sure the remote is pointing at the right process, if
10372 necessary. */
10373 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10374 set_general_process ();
10375
10376 *(p++) = 'z';
10377 *(p++) = '0';
10378 *(p++) = ',';
10379
10380 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10381 p += hexnumstr (p, addr);
10382 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10383
10384 putpkt (rs->buf);
10385 getpkt (&rs->buf, 0);
10386
10387 return (rs->buf[0] == 'E');
10388 }
10389
10390 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10391 }
10392
10393 static enum Z_packet_type
10394 watchpoint_to_Z_packet (int type)
10395 {
10396 switch (type)
10397 {
10398 case hw_write:
10399 return Z_PACKET_WRITE_WP;
10400 break;
10401 case hw_read:
10402 return Z_PACKET_READ_WP;
10403 break;
10404 case hw_access:
10405 return Z_PACKET_ACCESS_WP;
10406 break;
10407 default:
10408 internal_error (__FILE__, __LINE__,
10409 _("hw_bp_to_z: bad watchpoint type %d"), type);
10410 }
10411 }
10412
10413 int
10414 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10415 enum target_hw_bp_type type, struct expression *cond)
10416 {
10417 struct remote_state *rs = get_remote_state ();
10418 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10419 char *p;
10420 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10421
10422 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10423 return 1;
10424
10425 /* Make sure the remote is pointing at the right process, if
10426 necessary. */
10427 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10428 set_general_process ();
10429
10430 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10431 p = strchr (rs->buf.data (), '\0');
10432 addr = remote_address_masked (addr);
10433 p += hexnumstr (p, (ULONGEST) addr);
10434 xsnprintf (p, endbuf - p, ",%x", len);
10435
10436 putpkt (rs->buf);
10437 getpkt (&rs->buf, 0);
10438
10439 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10440 {
10441 case PACKET_ERROR:
10442 return -1;
10443 case PACKET_UNKNOWN:
10444 return 1;
10445 case PACKET_OK:
10446 return 0;
10447 }
10448 internal_error (__FILE__, __LINE__,
10449 _("remote_insert_watchpoint: reached end of function"));
10450 }
10451
10452 bool
10453 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10454 CORE_ADDR start, int length)
10455 {
10456 CORE_ADDR diff = remote_address_masked (addr - start);
10457
10458 return diff < length;
10459 }
10460
10461
10462 int
10463 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10464 enum target_hw_bp_type type, struct expression *cond)
10465 {
10466 struct remote_state *rs = get_remote_state ();
10467 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10468 char *p;
10469 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10470
10471 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10472 return -1;
10473
10474 /* Make sure the remote is pointing at the right process, if
10475 necessary. */
10476 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10477 set_general_process ();
10478
10479 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10480 p = strchr (rs->buf.data (), '\0');
10481 addr = remote_address_masked (addr);
10482 p += hexnumstr (p, (ULONGEST) addr);
10483 xsnprintf (p, endbuf - p, ",%x", len);
10484 putpkt (rs->buf);
10485 getpkt (&rs->buf, 0);
10486
10487 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10488 {
10489 case PACKET_ERROR:
10490 case PACKET_UNKNOWN:
10491 return -1;
10492 case PACKET_OK:
10493 return 0;
10494 }
10495 internal_error (__FILE__, __LINE__,
10496 _("remote_remove_watchpoint: reached end of function"));
10497 }
10498
10499
10500 static int remote_hw_watchpoint_limit = -1;
10501 static int remote_hw_watchpoint_length_limit = -1;
10502 static int remote_hw_breakpoint_limit = -1;
10503
10504 int
10505 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10506 {
10507 if (remote_hw_watchpoint_length_limit == 0)
10508 return 0;
10509 else if (remote_hw_watchpoint_length_limit < 0)
10510 return 1;
10511 else if (len <= remote_hw_watchpoint_length_limit)
10512 return 1;
10513 else
10514 return 0;
10515 }
10516
10517 int
10518 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10519 {
10520 if (type == bp_hardware_breakpoint)
10521 {
10522 if (remote_hw_breakpoint_limit == 0)
10523 return 0;
10524 else if (remote_hw_breakpoint_limit < 0)
10525 return 1;
10526 else if (cnt <= remote_hw_breakpoint_limit)
10527 return 1;
10528 }
10529 else
10530 {
10531 if (remote_hw_watchpoint_limit == 0)
10532 return 0;
10533 else if (remote_hw_watchpoint_limit < 0)
10534 return 1;
10535 else if (ot)
10536 return -1;
10537 else if (cnt <= remote_hw_watchpoint_limit)
10538 return 1;
10539 }
10540 return -1;
10541 }
10542
10543 /* The to_stopped_by_sw_breakpoint method of target remote. */
10544
10545 bool
10546 remote_target::stopped_by_sw_breakpoint ()
10547 {
10548 struct thread_info *thread = inferior_thread ();
10549
10550 return (thread->priv != NULL
10551 && (get_remote_thread_info (thread)->stop_reason
10552 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10553 }
10554
10555 /* The to_supports_stopped_by_sw_breakpoint method of target
10556 remote. */
10557
10558 bool
10559 remote_target::supports_stopped_by_sw_breakpoint ()
10560 {
10561 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10562 }
10563
10564 /* The to_stopped_by_hw_breakpoint method of target remote. */
10565
10566 bool
10567 remote_target::stopped_by_hw_breakpoint ()
10568 {
10569 struct thread_info *thread = inferior_thread ();
10570
10571 return (thread->priv != NULL
10572 && (get_remote_thread_info (thread)->stop_reason
10573 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10574 }
10575
10576 /* The to_supports_stopped_by_hw_breakpoint method of target
10577 remote. */
10578
10579 bool
10580 remote_target::supports_stopped_by_hw_breakpoint ()
10581 {
10582 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10583 }
10584
10585 bool
10586 remote_target::stopped_by_watchpoint ()
10587 {
10588 struct thread_info *thread = inferior_thread ();
10589
10590 return (thread->priv != NULL
10591 && (get_remote_thread_info (thread)->stop_reason
10592 == TARGET_STOPPED_BY_WATCHPOINT));
10593 }
10594
10595 bool
10596 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10597 {
10598 struct thread_info *thread = inferior_thread ();
10599
10600 if (thread->priv != NULL
10601 && (get_remote_thread_info (thread)->stop_reason
10602 == TARGET_STOPPED_BY_WATCHPOINT))
10603 {
10604 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10605 return true;
10606 }
10607
10608 return false;
10609 }
10610
10611
10612 int
10613 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10614 struct bp_target_info *bp_tgt)
10615 {
10616 CORE_ADDR addr = bp_tgt->reqstd_address;
10617 struct remote_state *rs;
10618 char *p, *endbuf;
10619 char *message;
10620
10621 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10622 return -1;
10623
10624 /* Make sure the remote is pointing at the right process, if
10625 necessary. */
10626 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10627 set_general_process ();
10628
10629 rs = get_remote_state ();
10630 p = rs->buf.data ();
10631 endbuf = p + get_remote_packet_size ();
10632
10633 *(p++) = 'Z';
10634 *(p++) = '1';
10635 *(p++) = ',';
10636
10637 addr = remote_address_masked (addr);
10638 p += hexnumstr (p, (ULONGEST) addr);
10639 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10640
10641 if (supports_evaluation_of_breakpoint_conditions ())
10642 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10643
10644 if (can_run_breakpoint_commands ())
10645 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10646
10647 putpkt (rs->buf);
10648 getpkt (&rs->buf, 0);
10649
10650 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10651 {
10652 case PACKET_ERROR:
10653 if (rs->buf[1] == '.')
10654 {
10655 message = strchr (&rs->buf[2], '.');
10656 if (message)
10657 error (_("Remote failure reply: %s"), message + 1);
10658 }
10659 return -1;
10660 case PACKET_UNKNOWN:
10661 return -1;
10662 case PACKET_OK:
10663 return 0;
10664 }
10665 internal_error (__FILE__, __LINE__,
10666 _("remote_insert_hw_breakpoint: reached end of function"));
10667 }
10668
10669
10670 int
10671 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10672 struct bp_target_info *bp_tgt)
10673 {
10674 CORE_ADDR addr;
10675 struct remote_state *rs = get_remote_state ();
10676 char *p = rs->buf.data ();
10677 char *endbuf = p + get_remote_packet_size ();
10678
10679 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10680 return -1;
10681
10682 /* Make sure the remote is pointing at the right process, if
10683 necessary. */
10684 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10685 set_general_process ();
10686
10687 *(p++) = 'z';
10688 *(p++) = '1';
10689 *(p++) = ',';
10690
10691 addr = remote_address_masked (bp_tgt->placed_address);
10692 p += hexnumstr (p, (ULONGEST) addr);
10693 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10694
10695 putpkt (rs->buf);
10696 getpkt (&rs->buf, 0);
10697
10698 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10699 {
10700 case PACKET_ERROR:
10701 case PACKET_UNKNOWN:
10702 return -1;
10703 case PACKET_OK:
10704 return 0;
10705 }
10706 internal_error (__FILE__, __LINE__,
10707 _("remote_remove_hw_breakpoint: reached end of function"));
10708 }
10709
10710 /* Verify memory using the "qCRC:" request. */
10711
10712 int
10713 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10714 {
10715 struct remote_state *rs = get_remote_state ();
10716 unsigned long host_crc, target_crc;
10717 char *tmp;
10718
10719 /* It doesn't make sense to use qCRC if the remote target is
10720 connected but not running. */
10721 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10722 {
10723 enum packet_result result;
10724
10725 /* Make sure the remote is pointing at the right process. */
10726 set_general_process ();
10727
10728 /* FIXME: assumes lma can fit into long. */
10729 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10730 (long) lma, (long) size);
10731 putpkt (rs->buf);
10732
10733 /* Be clever; compute the host_crc before waiting for target
10734 reply. */
10735 host_crc = xcrc32 (data, size, 0xffffffff);
10736
10737 getpkt (&rs->buf, 0);
10738
10739 result = packet_ok (rs->buf,
10740 &remote_protocol_packets[PACKET_qCRC]);
10741 if (result == PACKET_ERROR)
10742 return -1;
10743 else if (result == PACKET_OK)
10744 {
10745 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10746 target_crc = target_crc * 16 + fromhex (*tmp);
10747
10748 return (host_crc == target_crc);
10749 }
10750 }
10751
10752 return simple_verify_memory (this, data, lma, size);
10753 }
10754
10755 /* compare-sections command
10756
10757 With no arguments, compares each loadable section in the exec bfd
10758 with the same memory range on the target, and reports mismatches.
10759 Useful for verifying the image on the target against the exec file. */
10760
10761 static void
10762 compare_sections_command (const char *args, int from_tty)
10763 {
10764 asection *s;
10765 const char *sectname;
10766 bfd_size_type size;
10767 bfd_vma lma;
10768 int matched = 0;
10769 int mismatched = 0;
10770 int res;
10771 int read_only = 0;
10772
10773 if (!exec_bfd)
10774 error (_("command cannot be used without an exec file"));
10775
10776 if (args != NULL && strcmp (args, "-r") == 0)
10777 {
10778 read_only = 1;
10779 args = NULL;
10780 }
10781
10782 for (s = exec_bfd->sections; s; s = s->next)
10783 {
10784 if (!(s->flags & SEC_LOAD))
10785 continue; /* Skip non-loadable section. */
10786
10787 if (read_only && (s->flags & SEC_READONLY) == 0)
10788 continue; /* Skip writeable sections */
10789
10790 size = bfd_section_size (s);
10791 if (size == 0)
10792 continue; /* Skip zero-length section. */
10793
10794 sectname = bfd_section_name (s);
10795 if (args && strcmp (args, sectname) != 0)
10796 continue; /* Not the section selected by user. */
10797
10798 matched = 1; /* Do this section. */
10799 lma = s->lma;
10800
10801 gdb::byte_vector sectdata (size);
10802 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10803
10804 res = target_verify_memory (sectdata.data (), lma, size);
10805
10806 if (res == -1)
10807 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10808 paddress (target_gdbarch (), lma),
10809 paddress (target_gdbarch (), lma + size));
10810
10811 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10812 paddress (target_gdbarch (), lma),
10813 paddress (target_gdbarch (), lma + size));
10814 if (res)
10815 printf_filtered ("matched.\n");
10816 else
10817 {
10818 printf_filtered ("MIS-MATCHED!\n");
10819 mismatched++;
10820 }
10821 }
10822 if (mismatched > 0)
10823 warning (_("One or more sections of the target image does not match\n\
10824 the loaded file\n"));
10825 if (args && !matched)
10826 printf_filtered (_("No loaded section named '%s'.\n"), args);
10827 }
10828
10829 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10830 into remote target. The number of bytes written to the remote
10831 target is returned, or -1 for error. */
10832
10833 target_xfer_status
10834 remote_target::remote_write_qxfer (const char *object_name,
10835 const char *annex, const gdb_byte *writebuf,
10836 ULONGEST offset, LONGEST len,
10837 ULONGEST *xfered_len,
10838 struct packet_config *packet)
10839 {
10840 int i, buf_len;
10841 ULONGEST n;
10842 struct remote_state *rs = get_remote_state ();
10843 int max_size = get_memory_write_packet_size ();
10844
10845 if (packet_config_support (packet) == PACKET_DISABLE)
10846 return TARGET_XFER_E_IO;
10847
10848 /* Insert header. */
10849 i = snprintf (rs->buf.data (), max_size,
10850 "qXfer:%s:write:%s:%s:",
10851 object_name, annex ? annex : "",
10852 phex_nz (offset, sizeof offset));
10853 max_size -= (i + 1);
10854
10855 /* Escape as much data as fits into rs->buf. */
10856 buf_len = remote_escape_output
10857 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10858
10859 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10860 || getpkt_sane (&rs->buf, 0) < 0
10861 || packet_ok (rs->buf, packet) != PACKET_OK)
10862 return TARGET_XFER_E_IO;
10863
10864 unpack_varlen_hex (rs->buf.data (), &n);
10865
10866 *xfered_len = n;
10867 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10868 }
10869
10870 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10871 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10872 number of bytes read is returned, or 0 for EOF, or -1 for error.
10873 The number of bytes read may be less than LEN without indicating an
10874 EOF. PACKET is checked and updated to indicate whether the remote
10875 target supports this object. */
10876
10877 target_xfer_status
10878 remote_target::remote_read_qxfer (const char *object_name,
10879 const char *annex,
10880 gdb_byte *readbuf, ULONGEST offset,
10881 LONGEST len,
10882 ULONGEST *xfered_len,
10883 struct packet_config *packet)
10884 {
10885 struct remote_state *rs = get_remote_state ();
10886 LONGEST i, n, packet_len;
10887
10888 if (packet_config_support (packet) == PACKET_DISABLE)
10889 return TARGET_XFER_E_IO;
10890
10891 /* Check whether we've cached an end-of-object packet that matches
10892 this request. */
10893 if (rs->finished_object)
10894 {
10895 if (strcmp (object_name, rs->finished_object) == 0
10896 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10897 && offset == rs->finished_offset)
10898 return TARGET_XFER_EOF;
10899
10900
10901 /* Otherwise, we're now reading something different. Discard
10902 the cache. */
10903 xfree (rs->finished_object);
10904 xfree (rs->finished_annex);
10905 rs->finished_object = NULL;
10906 rs->finished_annex = NULL;
10907 }
10908
10909 /* Request only enough to fit in a single packet. The actual data
10910 may not, since we don't know how much of it will need to be escaped;
10911 the target is free to respond with slightly less data. We subtract
10912 five to account for the response type and the protocol frame. */
10913 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10914 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10915 "qXfer:%s:read:%s:%s,%s",
10916 object_name, annex ? annex : "",
10917 phex_nz (offset, sizeof offset),
10918 phex_nz (n, sizeof n));
10919 i = putpkt (rs->buf);
10920 if (i < 0)
10921 return TARGET_XFER_E_IO;
10922
10923 rs->buf[0] = '\0';
10924 packet_len = getpkt_sane (&rs->buf, 0);
10925 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10926 return TARGET_XFER_E_IO;
10927
10928 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10929 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10930
10931 /* 'm' means there is (or at least might be) more data after this
10932 batch. That does not make sense unless there's at least one byte
10933 of data in this reply. */
10934 if (rs->buf[0] == 'm' && packet_len == 1)
10935 error (_("Remote qXfer reply contained no data."));
10936
10937 /* Got some data. */
10938 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10939 packet_len - 1, readbuf, n);
10940
10941 /* 'l' is an EOF marker, possibly including a final block of data,
10942 or possibly empty. If we have the final block of a non-empty
10943 object, record this fact to bypass a subsequent partial read. */
10944 if (rs->buf[0] == 'l' && offset + i > 0)
10945 {
10946 rs->finished_object = xstrdup (object_name);
10947 rs->finished_annex = xstrdup (annex ? annex : "");
10948 rs->finished_offset = offset + i;
10949 }
10950
10951 if (i == 0)
10952 return TARGET_XFER_EOF;
10953 else
10954 {
10955 *xfered_len = i;
10956 return TARGET_XFER_OK;
10957 }
10958 }
10959
10960 enum target_xfer_status
10961 remote_target::xfer_partial (enum target_object object,
10962 const char *annex, gdb_byte *readbuf,
10963 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10964 ULONGEST *xfered_len)
10965 {
10966 struct remote_state *rs;
10967 int i;
10968 char *p2;
10969 char query_type;
10970 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10971
10972 set_remote_traceframe ();
10973 set_general_thread (inferior_ptid);
10974
10975 rs = get_remote_state ();
10976
10977 /* Handle memory using the standard memory routines. */
10978 if (object == TARGET_OBJECT_MEMORY)
10979 {
10980 /* If the remote target is connected but not running, we should
10981 pass this request down to a lower stratum (e.g. the executable
10982 file). */
10983 if (!target_has_execution)
10984 return TARGET_XFER_EOF;
10985
10986 if (writebuf != NULL)
10987 return remote_write_bytes (offset, writebuf, len, unit_size,
10988 xfered_len);
10989 else
10990 return remote_read_bytes (offset, readbuf, len, unit_size,
10991 xfered_len);
10992 }
10993
10994 /* Handle extra signal info using qxfer packets. */
10995 if (object == TARGET_OBJECT_SIGNAL_INFO)
10996 {
10997 if (readbuf)
10998 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10999 xfered_len, &remote_protocol_packets
11000 [PACKET_qXfer_siginfo_read]);
11001 else
11002 return remote_write_qxfer ("siginfo", annex,
11003 writebuf, offset, len, xfered_len,
11004 &remote_protocol_packets
11005 [PACKET_qXfer_siginfo_write]);
11006 }
11007
11008 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11009 {
11010 if (readbuf)
11011 return remote_read_qxfer ("statictrace", annex,
11012 readbuf, offset, len, xfered_len,
11013 &remote_protocol_packets
11014 [PACKET_qXfer_statictrace_read]);
11015 else
11016 return TARGET_XFER_E_IO;
11017 }
11018
11019 /* Only handle flash writes. */
11020 if (writebuf != NULL)
11021 {
11022 switch (object)
11023 {
11024 case TARGET_OBJECT_FLASH:
11025 return remote_flash_write (offset, len, xfered_len,
11026 writebuf);
11027
11028 default:
11029 return TARGET_XFER_E_IO;
11030 }
11031 }
11032
11033 /* Map pre-existing objects onto letters. DO NOT do this for new
11034 objects!!! Instead specify new query packets. */
11035 switch (object)
11036 {
11037 case TARGET_OBJECT_AVR:
11038 query_type = 'R';
11039 break;
11040
11041 case TARGET_OBJECT_AUXV:
11042 gdb_assert (annex == NULL);
11043 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11044 xfered_len,
11045 &remote_protocol_packets[PACKET_qXfer_auxv]);
11046
11047 case TARGET_OBJECT_AVAILABLE_FEATURES:
11048 return remote_read_qxfer
11049 ("features", annex, readbuf, offset, len, xfered_len,
11050 &remote_protocol_packets[PACKET_qXfer_features]);
11051
11052 case TARGET_OBJECT_LIBRARIES:
11053 return remote_read_qxfer
11054 ("libraries", annex, readbuf, offset, len, xfered_len,
11055 &remote_protocol_packets[PACKET_qXfer_libraries]);
11056
11057 case TARGET_OBJECT_LIBRARIES_SVR4:
11058 return remote_read_qxfer
11059 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11060 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11061
11062 case TARGET_OBJECT_MEMORY_MAP:
11063 gdb_assert (annex == NULL);
11064 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11065 xfered_len,
11066 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11067
11068 case TARGET_OBJECT_OSDATA:
11069 /* Should only get here if we're connected. */
11070 gdb_assert (rs->remote_desc);
11071 return remote_read_qxfer
11072 ("osdata", annex, readbuf, offset, len, xfered_len,
11073 &remote_protocol_packets[PACKET_qXfer_osdata]);
11074
11075 case TARGET_OBJECT_THREADS:
11076 gdb_assert (annex == NULL);
11077 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11078 xfered_len,
11079 &remote_protocol_packets[PACKET_qXfer_threads]);
11080
11081 case TARGET_OBJECT_TRACEFRAME_INFO:
11082 gdb_assert (annex == NULL);
11083 return remote_read_qxfer
11084 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11085 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11086
11087 case TARGET_OBJECT_FDPIC:
11088 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11089 xfered_len,
11090 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11091
11092 case TARGET_OBJECT_OPENVMS_UIB:
11093 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11094 xfered_len,
11095 &remote_protocol_packets[PACKET_qXfer_uib]);
11096
11097 case TARGET_OBJECT_BTRACE:
11098 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11099 xfered_len,
11100 &remote_protocol_packets[PACKET_qXfer_btrace]);
11101
11102 case TARGET_OBJECT_BTRACE_CONF:
11103 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11104 len, xfered_len,
11105 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11106
11107 case TARGET_OBJECT_EXEC_FILE:
11108 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11109 len, xfered_len,
11110 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11111
11112 default:
11113 return TARGET_XFER_E_IO;
11114 }
11115
11116 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11117 large enough let the caller deal with it. */
11118 if (len < get_remote_packet_size ())
11119 return TARGET_XFER_E_IO;
11120 len = get_remote_packet_size ();
11121
11122 /* Except for querying the minimum buffer size, target must be open. */
11123 if (!rs->remote_desc)
11124 error (_("remote query is only available after target open"));
11125
11126 gdb_assert (annex != NULL);
11127 gdb_assert (readbuf != NULL);
11128
11129 p2 = rs->buf.data ();
11130 *p2++ = 'q';
11131 *p2++ = query_type;
11132
11133 /* We used one buffer char for the remote protocol q command and
11134 another for the query type. As the remote protocol encapsulation
11135 uses 4 chars plus one extra in case we are debugging
11136 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11137 string. */
11138 i = 0;
11139 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11140 {
11141 /* Bad caller may have sent forbidden characters. */
11142 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11143 *p2++ = annex[i];
11144 i++;
11145 }
11146 *p2 = '\0';
11147 gdb_assert (annex[i] == '\0');
11148
11149 i = putpkt (rs->buf);
11150 if (i < 0)
11151 return TARGET_XFER_E_IO;
11152
11153 getpkt (&rs->buf, 0);
11154 strcpy ((char *) readbuf, rs->buf.data ());
11155
11156 *xfered_len = strlen ((char *) readbuf);
11157 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11158 }
11159
11160 /* Implementation of to_get_memory_xfer_limit. */
11161
11162 ULONGEST
11163 remote_target::get_memory_xfer_limit ()
11164 {
11165 return get_memory_write_packet_size ();
11166 }
11167
11168 int
11169 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11170 const gdb_byte *pattern, ULONGEST pattern_len,
11171 CORE_ADDR *found_addrp)
11172 {
11173 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11174 struct remote_state *rs = get_remote_state ();
11175 int max_size = get_memory_write_packet_size ();
11176 struct packet_config *packet =
11177 &remote_protocol_packets[PACKET_qSearch_memory];
11178 /* Number of packet bytes used to encode the pattern;
11179 this could be more than PATTERN_LEN due to escape characters. */
11180 int escaped_pattern_len;
11181 /* Amount of pattern that was encodable in the packet. */
11182 int used_pattern_len;
11183 int i;
11184 int found;
11185 ULONGEST found_addr;
11186
11187 /* Don't go to the target if we don't have to. This is done before
11188 checking packet_config_support to avoid the possibility that a
11189 success for this edge case means the facility works in
11190 general. */
11191 if (pattern_len > search_space_len)
11192 return 0;
11193 if (pattern_len == 0)
11194 {
11195 *found_addrp = start_addr;
11196 return 1;
11197 }
11198
11199 /* If we already know the packet isn't supported, fall back to the simple
11200 way of searching memory. */
11201
11202 if (packet_config_support (packet) == PACKET_DISABLE)
11203 {
11204 /* Target doesn't provided special support, fall back and use the
11205 standard support (copy memory and do the search here). */
11206 return simple_search_memory (this, start_addr, search_space_len,
11207 pattern, pattern_len, found_addrp);
11208 }
11209
11210 /* Make sure the remote is pointing at the right process. */
11211 set_general_process ();
11212
11213 /* Insert header. */
11214 i = snprintf (rs->buf.data (), max_size,
11215 "qSearch:memory:%s;%s;",
11216 phex_nz (start_addr, addr_size),
11217 phex_nz (search_space_len, sizeof (search_space_len)));
11218 max_size -= (i + 1);
11219
11220 /* Escape as much data as fits into rs->buf. */
11221 escaped_pattern_len =
11222 remote_escape_output (pattern, pattern_len, 1,
11223 (gdb_byte *) rs->buf.data () + i,
11224 &used_pattern_len, max_size);
11225
11226 /* Bail if the pattern is too large. */
11227 if (used_pattern_len != pattern_len)
11228 error (_("Pattern is too large to transmit to remote target."));
11229
11230 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11231 || getpkt_sane (&rs->buf, 0) < 0
11232 || packet_ok (rs->buf, packet) != PACKET_OK)
11233 {
11234 /* The request may not have worked because the command is not
11235 supported. If so, fall back to the simple way. */
11236 if (packet_config_support (packet) == PACKET_DISABLE)
11237 {
11238 return simple_search_memory (this, start_addr, search_space_len,
11239 pattern, pattern_len, found_addrp);
11240 }
11241 return -1;
11242 }
11243
11244 if (rs->buf[0] == '0')
11245 found = 0;
11246 else if (rs->buf[0] == '1')
11247 {
11248 found = 1;
11249 if (rs->buf[1] != ',')
11250 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11251 unpack_varlen_hex (&rs->buf[2], &found_addr);
11252 *found_addrp = found_addr;
11253 }
11254 else
11255 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11256
11257 return found;
11258 }
11259
11260 void
11261 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11262 {
11263 struct remote_state *rs = get_remote_state ();
11264 char *p = rs->buf.data ();
11265
11266 if (!rs->remote_desc)
11267 error (_("remote rcmd is only available after target open"));
11268
11269 /* Send a NULL command across as an empty command. */
11270 if (command == NULL)
11271 command = "";
11272
11273 /* The query prefix. */
11274 strcpy (rs->buf.data (), "qRcmd,");
11275 p = strchr (rs->buf.data (), '\0');
11276
11277 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11278 > get_remote_packet_size ())
11279 error (_("\"monitor\" command ``%s'' is too long."), command);
11280
11281 /* Encode the actual command. */
11282 bin2hex ((const gdb_byte *) command, p, strlen (command));
11283
11284 if (putpkt (rs->buf) < 0)
11285 error (_("Communication problem with target."));
11286
11287 /* get/display the response */
11288 while (1)
11289 {
11290 char *buf;
11291
11292 /* XXX - see also remote_get_noisy_reply(). */
11293 QUIT; /* Allow user to bail out with ^C. */
11294 rs->buf[0] = '\0';
11295 if (getpkt_sane (&rs->buf, 0) == -1)
11296 {
11297 /* Timeout. Continue to (try to) read responses.
11298 This is better than stopping with an error, assuming the stub
11299 is still executing the (long) monitor command.
11300 If needed, the user can interrupt gdb using C-c, obtaining
11301 an effect similar to stop on timeout. */
11302 continue;
11303 }
11304 buf = rs->buf.data ();
11305 if (buf[0] == '\0')
11306 error (_("Target does not support this command."));
11307 if (buf[0] == 'O' && buf[1] != 'K')
11308 {
11309 remote_console_output (buf + 1); /* 'O' message from stub. */
11310 continue;
11311 }
11312 if (strcmp (buf, "OK") == 0)
11313 break;
11314 if (strlen (buf) == 3 && buf[0] == 'E'
11315 && isdigit (buf[1]) && isdigit (buf[2]))
11316 {
11317 error (_("Protocol error with Rcmd"));
11318 }
11319 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11320 {
11321 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11322
11323 fputc_unfiltered (c, outbuf);
11324 }
11325 break;
11326 }
11327 }
11328
11329 std::vector<mem_region>
11330 remote_target::memory_map ()
11331 {
11332 std::vector<mem_region> result;
11333 gdb::optional<gdb::char_vector> text
11334 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11335
11336 if (text)
11337 result = parse_memory_map (text->data ());
11338
11339 return result;
11340 }
11341
11342 static void
11343 packet_command (const char *args, int from_tty)
11344 {
11345 remote_target *remote = get_current_remote_target ();
11346
11347 if (remote == nullptr)
11348 error (_("command can only be used with remote target"));
11349
11350 remote->packet_command (args, from_tty);
11351 }
11352
11353 void
11354 remote_target::packet_command (const char *args, int from_tty)
11355 {
11356 if (!args)
11357 error (_("remote-packet command requires packet text as argument"));
11358
11359 puts_filtered ("sending: ");
11360 print_packet (args);
11361 puts_filtered ("\n");
11362 putpkt (args);
11363
11364 remote_state *rs = get_remote_state ();
11365
11366 getpkt (&rs->buf, 0);
11367 puts_filtered ("received: ");
11368 print_packet (rs->buf.data ());
11369 puts_filtered ("\n");
11370 }
11371
11372 #if 0
11373 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11374
11375 static void display_thread_info (struct gdb_ext_thread_info *info);
11376
11377 static void threadset_test_cmd (char *cmd, int tty);
11378
11379 static void threadalive_test (char *cmd, int tty);
11380
11381 static void threadlist_test_cmd (char *cmd, int tty);
11382
11383 int get_and_display_threadinfo (threadref *ref);
11384
11385 static void threadinfo_test_cmd (char *cmd, int tty);
11386
11387 static int thread_display_step (threadref *ref, void *context);
11388
11389 static void threadlist_update_test_cmd (char *cmd, int tty);
11390
11391 static void init_remote_threadtests (void);
11392
11393 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11394
11395 static void
11396 threadset_test_cmd (const char *cmd, int tty)
11397 {
11398 int sample_thread = SAMPLE_THREAD;
11399
11400 printf_filtered (_("Remote threadset test\n"));
11401 set_general_thread (sample_thread);
11402 }
11403
11404
11405 static void
11406 threadalive_test (const char *cmd, int tty)
11407 {
11408 int sample_thread = SAMPLE_THREAD;
11409 int pid = inferior_ptid.pid ();
11410 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11411
11412 if (remote_thread_alive (ptid))
11413 printf_filtered ("PASS: Thread alive test\n");
11414 else
11415 printf_filtered ("FAIL: Thread alive test\n");
11416 }
11417
11418 void output_threadid (char *title, threadref *ref);
11419
11420 void
11421 output_threadid (char *title, threadref *ref)
11422 {
11423 char hexid[20];
11424
11425 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11426 hexid[16] = 0;
11427 printf_filtered ("%s %s\n", title, (&hexid[0]));
11428 }
11429
11430 static void
11431 threadlist_test_cmd (const char *cmd, int tty)
11432 {
11433 int startflag = 1;
11434 threadref nextthread;
11435 int done, result_count;
11436 threadref threadlist[3];
11437
11438 printf_filtered ("Remote Threadlist test\n");
11439 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11440 &result_count, &threadlist[0]))
11441 printf_filtered ("FAIL: threadlist test\n");
11442 else
11443 {
11444 threadref *scan = threadlist;
11445 threadref *limit = scan + result_count;
11446
11447 while (scan < limit)
11448 output_threadid (" thread ", scan++);
11449 }
11450 }
11451
11452 void
11453 display_thread_info (struct gdb_ext_thread_info *info)
11454 {
11455 output_threadid ("Threadid: ", &info->threadid);
11456 printf_filtered ("Name: %s\n ", info->shortname);
11457 printf_filtered ("State: %s\n", info->display);
11458 printf_filtered ("other: %s\n\n", info->more_display);
11459 }
11460
11461 int
11462 get_and_display_threadinfo (threadref *ref)
11463 {
11464 int result;
11465 int set;
11466 struct gdb_ext_thread_info threadinfo;
11467
11468 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11469 | TAG_MOREDISPLAY | TAG_DISPLAY;
11470 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11471 display_thread_info (&threadinfo);
11472 return result;
11473 }
11474
11475 static void
11476 threadinfo_test_cmd (const char *cmd, int tty)
11477 {
11478 int athread = SAMPLE_THREAD;
11479 threadref thread;
11480 int set;
11481
11482 int_to_threadref (&thread, athread);
11483 printf_filtered ("Remote Threadinfo test\n");
11484 if (!get_and_display_threadinfo (&thread))
11485 printf_filtered ("FAIL cannot get thread info\n");
11486 }
11487
11488 static int
11489 thread_display_step (threadref *ref, void *context)
11490 {
11491 /* output_threadid(" threadstep ",ref); *//* simple test */
11492 return get_and_display_threadinfo (ref);
11493 }
11494
11495 static void
11496 threadlist_update_test_cmd (const char *cmd, int tty)
11497 {
11498 printf_filtered ("Remote Threadlist update test\n");
11499 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11500 }
11501
11502 static void
11503 init_remote_threadtests (void)
11504 {
11505 add_com ("tlist", class_obscure, threadlist_test_cmd,
11506 _("Fetch and print the remote list of "
11507 "thread identifiers, one pkt only."));
11508 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11509 _("Fetch and display info about one thread."));
11510 add_com ("tset", class_obscure, threadset_test_cmd,
11511 _("Test setting to a different thread."));
11512 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11513 _("Iterate through updating all remote thread info."));
11514 add_com ("talive", class_obscure, threadalive_test,
11515 _("Remote thread alive test."));
11516 }
11517
11518 #endif /* 0 */
11519
11520 /* Convert a thread ID to a string. */
11521
11522 std::string
11523 remote_target::pid_to_str (ptid_t ptid)
11524 {
11525 struct remote_state *rs = get_remote_state ();
11526
11527 if (ptid == null_ptid)
11528 return normal_pid_to_str (ptid);
11529 else if (ptid.is_pid ())
11530 {
11531 /* Printing an inferior target id. */
11532
11533 /* When multi-process extensions are off, there's no way in the
11534 remote protocol to know the remote process id, if there's any
11535 at all. There's one exception --- when we're connected with
11536 target extended-remote, and we manually attached to a process
11537 with "attach PID". We don't record anywhere a flag that
11538 allows us to distinguish that case from the case of
11539 connecting with extended-remote and the stub already being
11540 attached to a process, and reporting yes to qAttached, hence
11541 no smart special casing here. */
11542 if (!remote_multi_process_p (rs))
11543 return "Remote target";
11544
11545 return normal_pid_to_str (ptid);
11546 }
11547 else
11548 {
11549 if (magic_null_ptid == ptid)
11550 return "Thread <main>";
11551 else if (remote_multi_process_p (rs))
11552 if (ptid.lwp () == 0)
11553 return normal_pid_to_str (ptid);
11554 else
11555 return string_printf ("Thread %d.%ld",
11556 ptid.pid (), ptid.lwp ());
11557 else
11558 return string_printf ("Thread %ld", ptid.lwp ());
11559 }
11560 }
11561
11562 /* Get the address of the thread local variable in OBJFILE which is
11563 stored at OFFSET within the thread local storage for thread PTID. */
11564
11565 CORE_ADDR
11566 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11567 CORE_ADDR offset)
11568 {
11569 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11570 {
11571 struct remote_state *rs = get_remote_state ();
11572 char *p = rs->buf.data ();
11573 char *endp = p + get_remote_packet_size ();
11574 enum packet_result result;
11575
11576 strcpy (p, "qGetTLSAddr:");
11577 p += strlen (p);
11578 p = write_ptid (p, endp, ptid);
11579 *p++ = ',';
11580 p += hexnumstr (p, offset);
11581 *p++ = ',';
11582 p += hexnumstr (p, lm);
11583 *p++ = '\0';
11584
11585 putpkt (rs->buf);
11586 getpkt (&rs->buf, 0);
11587 result = packet_ok (rs->buf,
11588 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11589 if (result == PACKET_OK)
11590 {
11591 ULONGEST addr;
11592
11593 unpack_varlen_hex (rs->buf.data (), &addr);
11594 return addr;
11595 }
11596 else if (result == PACKET_UNKNOWN)
11597 throw_error (TLS_GENERIC_ERROR,
11598 _("Remote target doesn't support qGetTLSAddr packet"));
11599 else
11600 throw_error (TLS_GENERIC_ERROR,
11601 _("Remote target failed to process qGetTLSAddr request"));
11602 }
11603 else
11604 throw_error (TLS_GENERIC_ERROR,
11605 _("TLS not supported or disabled on this target"));
11606 /* Not reached. */
11607 return 0;
11608 }
11609
11610 /* Provide thread local base, i.e. Thread Information Block address.
11611 Returns 1 if ptid is found and thread_local_base is non zero. */
11612
11613 bool
11614 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11615 {
11616 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11617 {
11618 struct remote_state *rs = get_remote_state ();
11619 char *p = rs->buf.data ();
11620 char *endp = p + get_remote_packet_size ();
11621 enum packet_result result;
11622
11623 strcpy (p, "qGetTIBAddr:");
11624 p += strlen (p);
11625 p = write_ptid (p, endp, ptid);
11626 *p++ = '\0';
11627
11628 putpkt (rs->buf);
11629 getpkt (&rs->buf, 0);
11630 result = packet_ok (rs->buf,
11631 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11632 if (result == PACKET_OK)
11633 {
11634 ULONGEST val;
11635 unpack_varlen_hex (rs->buf.data (), &val);
11636 if (addr)
11637 *addr = (CORE_ADDR) val;
11638 return true;
11639 }
11640 else if (result == PACKET_UNKNOWN)
11641 error (_("Remote target doesn't support qGetTIBAddr packet"));
11642 else
11643 error (_("Remote target failed to process qGetTIBAddr request"));
11644 }
11645 else
11646 error (_("qGetTIBAddr not supported or disabled on this target"));
11647 /* Not reached. */
11648 return false;
11649 }
11650
11651 /* Support for inferring a target description based on the current
11652 architecture and the size of a 'g' packet. While the 'g' packet
11653 can have any size (since optional registers can be left off the
11654 end), some sizes are easily recognizable given knowledge of the
11655 approximate architecture. */
11656
11657 struct remote_g_packet_guess
11658 {
11659 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11660 : bytes (bytes_),
11661 tdesc (tdesc_)
11662 {
11663 }
11664
11665 int bytes;
11666 const struct target_desc *tdesc;
11667 };
11668
11669 struct remote_g_packet_data : public allocate_on_obstack
11670 {
11671 std::vector<remote_g_packet_guess> guesses;
11672 };
11673
11674 static struct gdbarch_data *remote_g_packet_data_handle;
11675
11676 static void *
11677 remote_g_packet_data_init (struct obstack *obstack)
11678 {
11679 return new (obstack) remote_g_packet_data;
11680 }
11681
11682 void
11683 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11684 const struct target_desc *tdesc)
11685 {
11686 struct remote_g_packet_data *data
11687 = ((struct remote_g_packet_data *)
11688 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11689
11690 gdb_assert (tdesc != NULL);
11691
11692 for (const remote_g_packet_guess &guess : data->guesses)
11693 if (guess.bytes == bytes)
11694 internal_error (__FILE__, __LINE__,
11695 _("Duplicate g packet description added for size %d"),
11696 bytes);
11697
11698 data->guesses.emplace_back (bytes, tdesc);
11699 }
11700
11701 /* Return true if remote_read_description would do anything on this target
11702 and architecture, false otherwise. */
11703
11704 static bool
11705 remote_read_description_p (struct target_ops *target)
11706 {
11707 struct remote_g_packet_data *data
11708 = ((struct remote_g_packet_data *)
11709 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11710
11711 return !data->guesses.empty ();
11712 }
11713
11714 const struct target_desc *
11715 remote_target::read_description ()
11716 {
11717 struct remote_g_packet_data *data
11718 = ((struct remote_g_packet_data *)
11719 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11720
11721 /* Do not try this during initial connection, when we do not know
11722 whether there is a running but stopped thread. */
11723 if (!target_has_execution || inferior_ptid == null_ptid)
11724 return beneath ()->read_description ();
11725
11726 if (!data->guesses.empty ())
11727 {
11728 int bytes = send_g_packet ();
11729
11730 for (const remote_g_packet_guess &guess : data->guesses)
11731 if (guess.bytes == bytes)
11732 return guess.tdesc;
11733
11734 /* We discard the g packet. A minor optimization would be to
11735 hold on to it, and fill the register cache once we have selected
11736 an architecture, but it's too tricky to do safely. */
11737 }
11738
11739 return beneath ()->read_description ();
11740 }
11741
11742 /* Remote file transfer support. This is host-initiated I/O, not
11743 target-initiated; for target-initiated, see remote-fileio.c. */
11744
11745 /* If *LEFT is at least the length of STRING, copy STRING to
11746 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11747 decrease *LEFT. Otherwise raise an error. */
11748
11749 static void
11750 remote_buffer_add_string (char **buffer, int *left, const char *string)
11751 {
11752 int len = strlen (string);
11753
11754 if (len > *left)
11755 error (_("Packet too long for target."));
11756
11757 memcpy (*buffer, string, len);
11758 *buffer += len;
11759 *left -= len;
11760
11761 /* NUL-terminate the buffer as a convenience, if there is
11762 room. */
11763 if (*left)
11764 **buffer = '\0';
11765 }
11766
11767 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11768 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11769 decrease *LEFT. Otherwise raise an error. */
11770
11771 static void
11772 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11773 int len)
11774 {
11775 if (2 * len > *left)
11776 error (_("Packet too long for target."));
11777
11778 bin2hex (bytes, *buffer, len);
11779 *buffer += 2 * len;
11780 *left -= 2 * len;
11781
11782 /* NUL-terminate the buffer as a convenience, if there is
11783 room. */
11784 if (*left)
11785 **buffer = '\0';
11786 }
11787
11788 /* If *LEFT is large enough, convert VALUE to hex and add it to
11789 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11790 decrease *LEFT. Otherwise raise an error. */
11791
11792 static void
11793 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11794 {
11795 int len = hexnumlen (value);
11796
11797 if (len > *left)
11798 error (_("Packet too long for target."));
11799
11800 hexnumstr (*buffer, value);
11801 *buffer += len;
11802 *left -= len;
11803
11804 /* NUL-terminate the buffer as a convenience, if there is
11805 room. */
11806 if (*left)
11807 **buffer = '\0';
11808 }
11809
11810 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11811 value, *REMOTE_ERRNO to the remote error number or zero if none
11812 was included, and *ATTACHMENT to point to the start of the annex
11813 if any. The length of the packet isn't needed here; there may
11814 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11815
11816 Return 0 if the packet could be parsed, -1 if it could not. If
11817 -1 is returned, the other variables may not be initialized. */
11818
11819 static int
11820 remote_hostio_parse_result (char *buffer, int *retcode,
11821 int *remote_errno, char **attachment)
11822 {
11823 char *p, *p2;
11824
11825 *remote_errno = 0;
11826 *attachment = NULL;
11827
11828 if (buffer[0] != 'F')
11829 return -1;
11830
11831 errno = 0;
11832 *retcode = strtol (&buffer[1], &p, 16);
11833 if (errno != 0 || p == &buffer[1])
11834 return -1;
11835
11836 /* Check for ",errno". */
11837 if (*p == ',')
11838 {
11839 errno = 0;
11840 *remote_errno = strtol (p + 1, &p2, 16);
11841 if (errno != 0 || p + 1 == p2)
11842 return -1;
11843 p = p2;
11844 }
11845
11846 /* Check for ";attachment". If there is no attachment, the
11847 packet should end here. */
11848 if (*p == ';')
11849 {
11850 *attachment = p + 1;
11851 return 0;
11852 }
11853 else if (*p == '\0')
11854 return 0;
11855 else
11856 return -1;
11857 }
11858
11859 /* Send a prepared I/O packet to the target and read its response.
11860 The prepared packet is in the global RS->BUF before this function
11861 is called, and the answer is there when we return.
11862
11863 COMMAND_BYTES is the length of the request to send, which may include
11864 binary data. WHICH_PACKET is the packet configuration to check
11865 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11866 is set to the error number and -1 is returned. Otherwise the value
11867 returned by the function is returned.
11868
11869 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11870 attachment is expected; an error will be reported if there's a
11871 mismatch. If one is found, *ATTACHMENT will be set to point into
11872 the packet buffer and *ATTACHMENT_LEN will be set to the
11873 attachment's length. */
11874
11875 int
11876 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11877 int *remote_errno, char **attachment,
11878 int *attachment_len)
11879 {
11880 struct remote_state *rs = get_remote_state ();
11881 int ret, bytes_read;
11882 char *attachment_tmp;
11883
11884 if (packet_support (which_packet) == PACKET_DISABLE)
11885 {
11886 *remote_errno = FILEIO_ENOSYS;
11887 return -1;
11888 }
11889
11890 putpkt_binary (rs->buf.data (), command_bytes);
11891 bytes_read = getpkt_sane (&rs->buf, 0);
11892
11893 /* If it timed out, something is wrong. Don't try to parse the
11894 buffer. */
11895 if (bytes_read < 0)
11896 {
11897 *remote_errno = FILEIO_EINVAL;
11898 return -1;
11899 }
11900
11901 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11902 {
11903 case PACKET_ERROR:
11904 *remote_errno = FILEIO_EINVAL;
11905 return -1;
11906 case PACKET_UNKNOWN:
11907 *remote_errno = FILEIO_ENOSYS;
11908 return -1;
11909 case PACKET_OK:
11910 break;
11911 }
11912
11913 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11914 &attachment_tmp))
11915 {
11916 *remote_errno = FILEIO_EINVAL;
11917 return -1;
11918 }
11919
11920 /* Make sure we saw an attachment if and only if we expected one. */
11921 if ((attachment_tmp == NULL && attachment != NULL)
11922 || (attachment_tmp != NULL && attachment == NULL))
11923 {
11924 *remote_errno = FILEIO_EINVAL;
11925 return -1;
11926 }
11927
11928 /* If an attachment was found, it must point into the packet buffer;
11929 work out how many bytes there were. */
11930 if (attachment_tmp != NULL)
11931 {
11932 *attachment = attachment_tmp;
11933 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11934 }
11935
11936 return ret;
11937 }
11938
11939 /* See declaration.h. */
11940
11941 void
11942 readahead_cache::invalidate ()
11943 {
11944 this->fd = -1;
11945 }
11946
11947 /* See declaration.h. */
11948
11949 void
11950 readahead_cache::invalidate_fd (int fd)
11951 {
11952 if (this->fd == fd)
11953 this->fd = -1;
11954 }
11955
11956 /* Set the filesystem remote_hostio functions that take FILENAME
11957 arguments will use. Return 0 on success, or -1 if an error
11958 occurs (and set *REMOTE_ERRNO). */
11959
11960 int
11961 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11962 int *remote_errno)
11963 {
11964 struct remote_state *rs = get_remote_state ();
11965 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11966 char *p = rs->buf.data ();
11967 int left = get_remote_packet_size () - 1;
11968 char arg[9];
11969 int ret;
11970
11971 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11972 return 0;
11973
11974 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11975 return 0;
11976
11977 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11978
11979 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11980 remote_buffer_add_string (&p, &left, arg);
11981
11982 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11983 remote_errno, NULL, NULL);
11984
11985 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11986 return 0;
11987
11988 if (ret == 0)
11989 rs->fs_pid = required_pid;
11990
11991 return ret;
11992 }
11993
11994 /* Implementation of to_fileio_open. */
11995
11996 int
11997 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11998 int flags, int mode, int warn_if_slow,
11999 int *remote_errno)
12000 {
12001 struct remote_state *rs = get_remote_state ();
12002 char *p = rs->buf.data ();
12003 int left = get_remote_packet_size () - 1;
12004
12005 if (warn_if_slow)
12006 {
12007 static int warning_issued = 0;
12008
12009 printf_unfiltered (_("Reading %s from remote target...\n"),
12010 filename);
12011
12012 if (!warning_issued)
12013 {
12014 warning (_("File transfers from remote targets can be slow."
12015 " Use \"set sysroot\" to access files locally"
12016 " instead."));
12017 warning_issued = 1;
12018 }
12019 }
12020
12021 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12022 return -1;
12023
12024 remote_buffer_add_string (&p, &left, "vFile:open:");
12025
12026 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12027 strlen (filename));
12028 remote_buffer_add_string (&p, &left, ",");
12029
12030 remote_buffer_add_int (&p, &left, flags);
12031 remote_buffer_add_string (&p, &left, ",");
12032
12033 remote_buffer_add_int (&p, &left, mode);
12034
12035 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12036 remote_errno, NULL, NULL);
12037 }
12038
12039 int
12040 remote_target::fileio_open (struct inferior *inf, const char *filename,
12041 int flags, int mode, int warn_if_slow,
12042 int *remote_errno)
12043 {
12044 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12045 remote_errno);
12046 }
12047
12048 /* Implementation of to_fileio_pwrite. */
12049
12050 int
12051 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12052 ULONGEST offset, int *remote_errno)
12053 {
12054 struct remote_state *rs = get_remote_state ();
12055 char *p = rs->buf.data ();
12056 int left = get_remote_packet_size ();
12057 int out_len;
12058
12059 rs->readahead_cache.invalidate_fd (fd);
12060
12061 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12062
12063 remote_buffer_add_int (&p, &left, fd);
12064 remote_buffer_add_string (&p, &left, ",");
12065
12066 remote_buffer_add_int (&p, &left, offset);
12067 remote_buffer_add_string (&p, &left, ",");
12068
12069 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12070 (get_remote_packet_size ()
12071 - (p - rs->buf.data ())));
12072
12073 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12074 remote_errno, NULL, NULL);
12075 }
12076
12077 int
12078 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12079 ULONGEST offset, int *remote_errno)
12080 {
12081 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12082 }
12083
12084 /* Helper for the implementation of to_fileio_pread. Read the file
12085 from the remote side with vFile:pread. */
12086
12087 int
12088 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12089 ULONGEST offset, int *remote_errno)
12090 {
12091 struct remote_state *rs = get_remote_state ();
12092 char *p = rs->buf.data ();
12093 char *attachment;
12094 int left = get_remote_packet_size ();
12095 int ret, attachment_len;
12096 int read_len;
12097
12098 remote_buffer_add_string (&p, &left, "vFile:pread:");
12099
12100 remote_buffer_add_int (&p, &left, fd);
12101 remote_buffer_add_string (&p, &left, ",");
12102
12103 remote_buffer_add_int (&p, &left, len);
12104 remote_buffer_add_string (&p, &left, ",");
12105
12106 remote_buffer_add_int (&p, &left, offset);
12107
12108 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12109 remote_errno, &attachment,
12110 &attachment_len);
12111
12112 if (ret < 0)
12113 return ret;
12114
12115 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12116 read_buf, len);
12117 if (read_len != ret)
12118 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12119
12120 return ret;
12121 }
12122
12123 /* See declaration.h. */
12124
12125 int
12126 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12127 ULONGEST offset)
12128 {
12129 if (this->fd == fd
12130 && this->offset <= offset
12131 && offset < this->offset + this->bufsize)
12132 {
12133 ULONGEST max = this->offset + this->bufsize;
12134
12135 if (offset + len > max)
12136 len = max - offset;
12137
12138 memcpy (read_buf, this->buf + offset - this->offset, len);
12139 return len;
12140 }
12141
12142 return 0;
12143 }
12144
12145 /* Implementation of to_fileio_pread. */
12146
12147 int
12148 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12149 ULONGEST offset, int *remote_errno)
12150 {
12151 int ret;
12152 struct remote_state *rs = get_remote_state ();
12153 readahead_cache *cache = &rs->readahead_cache;
12154
12155 ret = cache->pread (fd, read_buf, len, offset);
12156 if (ret > 0)
12157 {
12158 cache->hit_count++;
12159
12160 if (remote_debug)
12161 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12162 pulongest (cache->hit_count));
12163 return ret;
12164 }
12165
12166 cache->miss_count++;
12167 if (remote_debug)
12168 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12169 pulongest (cache->miss_count));
12170
12171 cache->fd = fd;
12172 cache->offset = offset;
12173 cache->bufsize = get_remote_packet_size ();
12174 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12175
12176 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12177 cache->offset, remote_errno);
12178 if (ret <= 0)
12179 {
12180 cache->invalidate_fd (fd);
12181 return ret;
12182 }
12183
12184 cache->bufsize = ret;
12185 return cache->pread (fd, read_buf, len, offset);
12186 }
12187
12188 int
12189 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12190 ULONGEST offset, int *remote_errno)
12191 {
12192 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12193 }
12194
12195 /* Implementation of to_fileio_close. */
12196
12197 int
12198 remote_target::remote_hostio_close (int fd, int *remote_errno)
12199 {
12200 struct remote_state *rs = get_remote_state ();
12201 char *p = rs->buf.data ();
12202 int left = get_remote_packet_size () - 1;
12203
12204 rs->readahead_cache.invalidate_fd (fd);
12205
12206 remote_buffer_add_string (&p, &left, "vFile:close:");
12207
12208 remote_buffer_add_int (&p, &left, fd);
12209
12210 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12211 remote_errno, NULL, NULL);
12212 }
12213
12214 int
12215 remote_target::fileio_close (int fd, int *remote_errno)
12216 {
12217 return remote_hostio_close (fd, remote_errno);
12218 }
12219
12220 /* Implementation of to_fileio_unlink. */
12221
12222 int
12223 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12224 int *remote_errno)
12225 {
12226 struct remote_state *rs = get_remote_state ();
12227 char *p = rs->buf.data ();
12228 int left = get_remote_packet_size () - 1;
12229
12230 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12231 return -1;
12232
12233 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12234
12235 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12236 strlen (filename));
12237
12238 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12239 remote_errno, NULL, NULL);
12240 }
12241
12242 int
12243 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12244 int *remote_errno)
12245 {
12246 return remote_hostio_unlink (inf, filename, remote_errno);
12247 }
12248
12249 /* Implementation of to_fileio_readlink. */
12250
12251 gdb::optional<std::string>
12252 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12253 int *remote_errno)
12254 {
12255 struct remote_state *rs = get_remote_state ();
12256 char *p = rs->buf.data ();
12257 char *attachment;
12258 int left = get_remote_packet_size ();
12259 int len, attachment_len;
12260 int read_len;
12261
12262 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12263 return {};
12264
12265 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12266
12267 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12268 strlen (filename));
12269
12270 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12271 remote_errno, &attachment,
12272 &attachment_len);
12273
12274 if (len < 0)
12275 return {};
12276
12277 std::string ret (len, '\0');
12278
12279 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12280 (gdb_byte *) &ret[0], len);
12281 if (read_len != len)
12282 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12283
12284 return ret;
12285 }
12286
12287 /* Implementation of to_fileio_fstat. */
12288
12289 int
12290 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12291 {
12292 struct remote_state *rs = get_remote_state ();
12293 char *p = rs->buf.data ();
12294 int left = get_remote_packet_size ();
12295 int attachment_len, ret;
12296 char *attachment;
12297 struct fio_stat fst;
12298 int read_len;
12299
12300 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12301
12302 remote_buffer_add_int (&p, &left, fd);
12303
12304 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12305 remote_errno, &attachment,
12306 &attachment_len);
12307 if (ret < 0)
12308 {
12309 if (*remote_errno != FILEIO_ENOSYS)
12310 return ret;
12311
12312 /* Strictly we should return -1, ENOSYS here, but when
12313 "set sysroot remote:" was implemented in August 2008
12314 BFD's need for a stat function was sidestepped with
12315 this hack. This was not remedied until March 2015
12316 so we retain the previous behavior to avoid breaking
12317 compatibility.
12318
12319 Note that the memset is a March 2015 addition; older
12320 GDBs set st_size *and nothing else* so the structure
12321 would have garbage in all other fields. This might
12322 break something but retaining the previous behavior
12323 here would be just too wrong. */
12324
12325 memset (st, 0, sizeof (struct stat));
12326 st->st_size = INT_MAX;
12327 return 0;
12328 }
12329
12330 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12331 (gdb_byte *) &fst, sizeof (fst));
12332
12333 if (read_len != ret)
12334 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12335
12336 if (read_len != sizeof (fst))
12337 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12338 read_len, (int) sizeof (fst));
12339
12340 remote_fileio_to_host_stat (&fst, st);
12341
12342 return 0;
12343 }
12344
12345 /* Implementation of to_filesystem_is_local. */
12346
12347 bool
12348 remote_target::filesystem_is_local ()
12349 {
12350 /* Valgrind GDB presents itself as a remote target but works
12351 on the local filesystem: it does not implement remote get
12352 and users are not expected to set a sysroot. To handle
12353 this case we treat the remote filesystem as local if the
12354 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12355 does not support vFile:open. */
12356 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12357 {
12358 enum packet_support ps = packet_support (PACKET_vFile_open);
12359
12360 if (ps == PACKET_SUPPORT_UNKNOWN)
12361 {
12362 int fd, remote_errno;
12363
12364 /* Try opening a file to probe support. The supplied
12365 filename is irrelevant, we only care about whether
12366 the stub recognizes the packet or not. */
12367 fd = remote_hostio_open (NULL, "just probing",
12368 FILEIO_O_RDONLY, 0700, 0,
12369 &remote_errno);
12370
12371 if (fd >= 0)
12372 remote_hostio_close (fd, &remote_errno);
12373
12374 ps = packet_support (PACKET_vFile_open);
12375 }
12376
12377 if (ps == PACKET_DISABLE)
12378 {
12379 static int warning_issued = 0;
12380
12381 if (!warning_issued)
12382 {
12383 warning (_("remote target does not support file"
12384 " transfer, attempting to access files"
12385 " from local filesystem."));
12386 warning_issued = 1;
12387 }
12388
12389 return true;
12390 }
12391 }
12392
12393 return false;
12394 }
12395
12396 static int
12397 remote_fileio_errno_to_host (int errnum)
12398 {
12399 switch (errnum)
12400 {
12401 case FILEIO_EPERM:
12402 return EPERM;
12403 case FILEIO_ENOENT:
12404 return ENOENT;
12405 case FILEIO_EINTR:
12406 return EINTR;
12407 case FILEIO_EIO:
12408 return EIO;
12409 case FILEIO_EBADF:
12410 return EBADF;
12411 case FILEIO_EACCES:
12412 return EACCES;
12413 case FILEIO_EFAULT:
12414 return EFAULT;
12415 case FILEIO_EBUSY:
12416 return EBUSY;
12417 case FILEIO_EEXIST:
12418 return EEXIST;
12419 case FILEIO_ENODEV:
12420 return ENODEV;
12421 case FILEIO_ENOTDIR:
12422 return ENOTDIR;
12423 case FILEIO_EISDIR:
12424 return EISDIR;
12425 case FILEIO_EINVAL:
12426 return EINVAL;
12427 case FILEIO_ENFILE:
12428 return ENFILE;
12429 case FILEIO_EMFILE:
12430 return EMFILE;
12431 case FILEIO_EFBIG:
12432 return EFBIG;
12433 case FILEIO_ENOSPC:
12434 return ENOSPC;
12435 case FILEIO_ESPIPE:
12436 return ESPIPE;
12437 case FILEIO_EROFS:
12438 return EROFS;
12439 case FILEIO_ENOSYS:
12440 return ENOSYS;
12441 case FILEIO_ENAMETOOLONG:
12442 return ENAMETOOLONG;
12443 }
12444 return -1;
12445 }
12446
12447 static char *
12448 remote_hostio_error (int errnum)
12449 {
12450 int host_error = remote_fileio_errno_to_host (errnum);
12451
12452 if (host_error == -1)
12453 error (_("Unknown remote I/O error %d"), errnum);
12454 else
12455 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12456 }
12457
12458 /* A RAII wrapper around a remote file descriptor. */
12459
12460 class scoped_remote_fd
12461 {
12462 public:
12463 scoped_remote_fd (remote_target *remote, int fd)
12464 : m_remote (remote), m_fd (fd)
12465 {
12466 }
12467
12468 ~scoped_remote_fd ()
12469 {
12470 if (m_fd != -1)
12471 {
12472 try
12473 {
12474 int remote_errno;
12475 m_remote->remote_hostio_close (m_fd, &remote_errno);
12476 }
12477 catch (...)
12478 {
12479 /* Swallow exception before it escapes the dtor. If
12480 something goes wrong, likely the connection is gone,
12481 and there's nothing else that can be done. */
12482 }
12483 }
12484 }
12485
12486 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12487
12488 /* Release ownership of the file descriptor, and return it. */
12489 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12490 {
12491 int fd = m_fd;
12492 m_fd = -1;
12493 return fd;
12494 }
12495
12496 /* Return the owned file descriptor. */
12497 int get () const noexcept
12498 {
12499 return m_fd;
12500 }
12501
12502 private:
12503 /* The remote target. */
12504 remote_target *m_remote;
12505
12506 /* The owned remote I/O file descriptor. */
12507 int m_fd;
12508 };
12509
12510 void
12511 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12512 {
12513 remote_target *remote = get_current_remote_target ();
12514
12515 if (remote == nullptr)
12516 error (_("command can only be used with remote target"));
12517
12518 remote->remote_file_put (local_file, remote_file, from_tty);
12519 }
12520
12521 void
12522 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12523 int from_tty)
12524 {
12525 int retcode, remote_errno, bytes, io_size;
12526 int bytes_in_buffer;
12527 int saw_eof;
12528 ULONGEST offset;
12529
12530 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12531 if (file == NULL)
12532 perror_with_name (local_file);
12533
12534 scoped_remote_fd fd
12535 (this, remote_hostio_open (NULL,
12536 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12537 | FILEIO_O_TRUNC),
12538 0700, 0, &remote_errno));
12539 if (fd.get () == -1)
12540 remote_hostio_error (remote_errno);
12541
12542 /* Send up to this many bytes at once. They won't all fit in the
12543 remote packet limit, so we'll transfer slightly fewer. */
12544 io_size = get_remote_packet_size ();
12545 gdb::byte_vector buffer (io_size);
12546
12547 bytes_in_buffer = 0;
12548 saw_eof = 0;
12549 offset = 0;
12550 while (bytes_in_buffer || !saw_eof)
12551 {
12552 if (!saw_eof)
12553 {
12554 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12555 io_size - bytes_in_buffer,
12556 file.get ());
12557 if (bytes == 0)
12558 {
12559 if (ferror (file.get ()))
12560 error (_("Error reading %s."), local_file);
12561 else
12562 {
12563 /* EOF. Unless there is something still in the
12564 buffer from the last iteration, we are done. */
12565 saw_eof = 1;
12566 if (bytes_in_buffer == 0)
12567 break;
12568 }
12569 }
12570 }
12571 else
12572 bytes = 0;
12573
12574 bytes += bytes_in_buffer;
12575 bytes_in_buffer = 0;
12576
12577 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12578 offset, &remote_errno);
12579
12580 if (retcode < 0)
12581 remote_hostio_error (remote_errno);
12582 else if (retcode == 0)
12583 error (_("Remote write of %d bytes returned 0!"), bytes);
12584 else if (retcode < bytes)
12585 {
12586 /* Short write. Save the rest of the read data for the next
12587 write. */
12588 bytes_in_buffer = bytes - retcode;
12589 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12590 }
12591
12592 offset += retcode;
12593 }
12594
12595 if (remote_hostio_close (fd.release (), &remote_errno))
12596 remote_hostio_error (remote_errno);
12597
12598 if (from_tty)
12599 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12600 }
12601
12602 void
12603 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12604 {
12605 remote_target *remote = get_current_remote_target ();
12606
12607 if (remote == nullptr)
12608 error (_("command can only be used with remote target"));
12609
12610 remote->remote_file_get (remote_file, local_file, from_tty);
12611 }
12612
12613 void
12614 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12615 int from_tty)
12616 {
12617 int remote_errno, bytes, io_size;
12618 ULONGEST offset;
12619
12620 scoped_remote_fd fd
12621 (this, remote_hostio_open (NULL,
12622 remote_file, FILEIO_O_RDONLY, 0, 0,
12623 &remote_errno));
12624 if (fd.get () == -1)
12625 remote_hostio_error (remote_errno);
12626
12627 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12628 if (file == NULL)
12629 perror_with_name (local_file);
12630
12631 /* Send up to this many bytes at once. They won't all fit in the
12632 remote packet limit, so we'll transfer slightly fewer. */
12633 io_size = get_remote_packet_size ();
12634 gdb::byte_vector buffer (io_size);
12635
12636 offset = 0;
12637 while (1)
12638 {
12639 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12640 &remote_errno);
12641 if (bytes == 0)
12642 /* Success, but no bytes, means end-of-file. */
12643 break;
12644 if (bytes == -1)
12645 remote_hostio_error (remote_errno);
12646
12647 offset += bytes;
12648
12649 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12650 if (bytes == 0)
12651 perror_with_name (local_file);
12652 }
12653
12654 if (remote_hostio_close (fd.release (), &remote_errno))
12655 remote_hostio_error (remote_errno);
12656
12657 if (from_tty)
12658 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12659 }
12660
12661 void
12662 remote_file_delete (const char *remote_file, int from_tty)
12663 {
12664 remote_target *remote = get_current_remote_target ();
12665
12666 if (remote == nullptr)
12667 error (_("command can only be used with remote target"));
12668
12669 remote->remote_file_delete (remote_file, from_tty);
12670 }
12671
12672 void
12673 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12674 {
12675 int retcode, remote_errno;
12676
12677 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12678 if (retcode == -1)
12679 remote_hostio_error (remote_errno);
12680
12681 if (from_tty)
12682 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12683 }
12684
12685 static void
12686 remote_put_command (const char *args, int from_tty)
12687 {
12688 if (args == NULL)
12689 error_no_arg (_("file to put"));
12690
12691 gdb_argv argv (args);
12692 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12693 error (_("Invalid parameters to remote put"));
12694
12695 remote_file_put (argv[0], argv[1], from_tty);
12696 }
12697
12698 static void
12699 remote_get_command (const char *args, int from_tty)
12700 {
12701 if (args == NULL)
12702 error_no_arg (_("file to get"));
12703
12704 gdb_argv argv (args);
12705 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12706 error (_("Invalid parameters to remote get"));
12707
12708 remote_file_get (argv[0], argv[1], from_tty);
12709 }
12710
12711 static void
12712 remote_delete_command (const char *args, int from_tty)
12713 {
12714 if (args == NULL)
12715 error_no_arg (_("file to delete"));
12716
12717 gdb_argv argv (args);
12718 if (argv[0] == NULL || argv[1] != NULL)
12719 error (_("Invalid parameters to remote delete"));
12720
12721 remote_file_delete (argv[0], from_tty);
12722 }
12723
12724 bool
12725 remote_target::can_execute_reverse ()
12726 {
12727 if (packet_support (PACKET_bs) == PACKET_ENABLE
12728 || packet_support (PACKET_bc) == PACKET_ENABLE)
12729 return true;
12730 else
12731 return false;
12732 }
12733
12734 bool
12735 remote_target::supports_non_stop ()
12736 {
12737 return true;
12738 }
12739
12740 bool
12741 remote_target::supports_disable_randomization ()
12742 {
12743 /* Only supported in extended mode. */
12744 return false;
12745 }
12746
12747 bool
12748 remote_target::supports_multi_process ()
12749 {
12750 struct remote_state *rs = get_remote_state ();
12751
12752 return remote_multi_process_p (rs);
12753 }
12754
12755 static int
12756 remote_supports_cond_tracepoints ()
12757 {
12758 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12759 }
12760
12761 bool
12762 remote_target::supports_evaluation_of_breakpoint_conditions ()
12763 {
12764 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12765 }
12766
12767 static int
12768 remote_supports_fast_tracepoints ()
12769 {
12770 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12771 }
12772
12773 static int
12774 remote_supports_static_tracepoints ()
12775 {
12776 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12777 }
12778
12779 static int
12780 remote_supports_install_in_trace ()
12781 {
12782 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12783 }
12784
12785 bool
12786 remote_target::supports_enable_disable_tracepoint ()
12787 {
12788 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12789 == PACKET_ENABLE);
12790 }
12791
12792 bool
12793 remote_target::supports_string_tracing ()
12794 {
12795 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12796 }
12797
12798 bool
12799 remote_target::can_run_breakpoint_commands ()
12800 {
12801 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12802 }
12803
12804 void
12805 remote_target::trace_init ()
12806 {
12807 struct remote_state *rs = get_remote_state ();
12808
12809 putpkt ("QTinit");
12810 remote_get_noisy_reply ();
12811 if (strcmp (rs->buf.data (), "OK") != 0)
12812 error (_("Target does not support this command."));
12813 }
12814
12815 /* Recursive routine to walk through command list including loops, and
12816 download packets for each command. */
12817
12818 void
12819 remote_target::remote_download_command_source (int num, ULONGEST addr,
12820 struct command_line *cmds)
12821 {
12822 struct remote_state *rs = get_remote_state ();
12823 struct command_line *cmd;
12824
12825 for (cmd = cmds; cmd; cmd = cmd->next)
12826 {
12827 QUIT; /* Allow user to bail out with ^C. */
12828 strcpy (rs->buf.data (), "QTDPsrc:");
12829 encode_source_string (num, addr, "cmd", cmd->line,
12830 rs->buf.data () + strlen (rs->buf.data ()),
12831 rs->buf.size () - strlen (rs->buf.data ()));
12832 putpkt (rs->buf);
12833 remote_get_noisy_reply ();
12834 if (strcmp (rs->buf.data (), "OK"))
12835 warning (_("Target does not support source download."));
12836
12837 if (cmd->control_type == while_control
12838 || cmd->control_type == while_stepping_control)
12839 {
12840 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12841
12842 QUIT; /* Allow user to bail out with ^C. */
12843 strcpy (rs->buf.data (), "QTDPsrc:");
12844 encode_source_string (num, addr, "cmd", "end",
12845 rs->buf.data () + strlen (rs->buf.data ()),
12846 rs->buf.size () - strlen (rs->buf.data ()));
12847 putpkt (rs->buf);
12848 remote_get_noisy_reply ();
12849 if (strcmp (rs->buf.data (), "OK"))
12850 warning (_("Target does not support source download."));
12851 }
12852 }
12853 }
12854
12855 void
12856 remote_target::download_tracepoint (struct bp_location *loc)
12857 {
12858 CORE_ADDR tpaddr;
12859 char addrbuf[40];
12860 std::vector<std::string> tdp_actions;
12861 std::vector<std::string> stepping_actions;
12862 char *pkt;
12863 struct breakpoint *b = loc->owner;
12864 struct tracepoint *t = (struct tracepoint *) b;
12865 struct remote_state *rs = get_remote_state ();
12866 int ret;
12867 const char *err_msg = _("Tracepoint packet too large for target.");
12868 size_t size_left;
12869
12870 /* We use a buffer other than rs->buf because we'll build strings
12871 across multiple statements, and other statements in between could
12872 modify rs->buf. */
12873 gdb::char_vector buf (get_remote_packet_size ());
12874
12875 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12876
12877 tpaddr = loc->address;
12878 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12879 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12880 b->number, addrbuf, /* address */
12881 (b->enable_state == bp_enabled ? 'E' : 'D'),
12882 t->step_count, t->pass_count);
12883
12884 if (ret < 0 || ret >= buf.size ())
12885 error ("%s", err_msg);
12886
12887 /* Fast tracepoints are mostly handled by the target, but we can
12888 tell the target how big of an instruction block should be moved
12889 around. */
12890 if (b->type == bp_fast_tracepoint)
12891 {
12892 /* Only test for support at download time; we may not know
12893 target capabilities at definition time. */
12894 if (remote_supports_fast_tracepoints ())
12895 {
12896 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12897 NULL))
12898 {
12899 size_left = buf.size () - strlen (buf.data ());
12900 ret = snprintf (buf.data () + strlen (buf.data ()),
12901 size_left, ":F%x",
12902 gdb_insn_length (loc->gdbarch, tpaddr));
12903
12904 if (ret < 0 || ret >= size_left)
12905 error ("%s", err_msg);
12906 }
12907 else
12908 /* If it passed validation at definition but fails now,
12909 something is very wrong. */
12910 internal_error (__FILE__, __LINE__,
12911 _("Fast tracepoint not "
12912 "valid during download"));
12913 }
12914 else
12915 /* Fast tracepoints are functionally identical to regular
12916 tracepoints, so don't take lack of support as a reason to
12917 give up on the trace run. */
12918 warning (_("Target does not support fast tracepoints, "
12919 "downloading %d as regular tracepoint"), b->number);
12920 }
12921 else if (b->type == bp_static_tracepoint)
12922 {
12923 /* Only test for support at download time; we may not know
12924 target capabilities at definition time. */
12925 if (remote_supports_static_tracepoints ())
12926 {
12927 struct static_tracepoint_marker marker;
12928
12929 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12930 {
12931 size_left = buf.size () - strlen (buf.data ());
12932 ret = snprintf (buf.data () + strlen (buf.data ()),
12933 size_left, ":S");
12934
12935 if (ret < 0 || ret >= size_left)
12936 error ("%s", err_msg);
12937 }
12938 else
12939 error (_("Static tracepoint not valid during download"));
12940 }
12941 else
12942 /* Fast tracepoints are functionally identical to regular
12943 tracepoints, so don't take lack of support as a reason
12944 to give up on the trace run. */
12945 error (_("Target does not support static tracepoints"));
12946 }
12947 /* If the tracepoint has a conditional, make it into an agent
12948 expression and append to the definition. */
12949 if (loc->cond)
12950 {
12951 /* Only test support at download time, we may not know target
12952 capabilities at definition time. */
12953 if (remote_supports_cond_tracepoints ())
12954 {
12955 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12956 loc->cond.get ());
12957
12958 size_left = buf.size () - strlen (buf.data ());
12959
12960 ret = snprintf (buf.data () + strlen (buf.data ()),
12961 size_left, ":X%x,", aexpr->len);
12962
12963 if (ret < 0 || ret >= size_left)
12964 error ("%s", err_msg);
12965
12966 size_left = buf.size () - strlen (buf.data ());
12967
12968 /* Two bytes to encode each aexpr byte, plus the terminating
12969 null byte. */
12970 if (aexpr->len * 2 + 1 > size_left)
12971 error ("%s", err_msg);
12972
12973 pkt = buf.data () + strlen (buf.data ());
12974
12975 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12976 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12977 *pkt = '\0';
12978 }
12979 else
12980 warning (_("Target does not support conditional tracepoints, "
12981 "ignoring tp %d cond"), b->number);
12982 }
12983
12984 if (b->commands || *default_collect)
12985 {
12986 size_left = buf.size () - strlen (buf.data ());
12987
12988 ret = snprintf (buf.data () + strlen (buf.data ()),
12989 size_left, "-");
12990
12991 if (ret < 0 || ret >= size_left)
12992 error ("%s", err_msg);
12993 }
12994
12995 putpkt (buf.data ());
12996 remote_get_noisy_reply ();
12997 if (strcmp (rs->buf.data (), "OK"))
12998 error (_("Target does not support tracepoints."));
12999
13000 /* do_single_steps (t); */
13001 for (auto action_it = tdp_actions.begin ();
13002 action_it != tdp_actions.end (); action_it++)
13003 {
13004 QUIT; /* Allow user to bail out with ^C. */
13005
13006 bool has_more = ((action_it + 1) != tdp_actions.end ()
13007 || !stepping_actions.empty ());
13008
13009 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13010 b->number, addrbuf, /* address */
13011 action_it->c_str (),
13012 has_more ? '-' : 0);
13013
13014 if (ret < 0 || ret >= buf.size ())
13015 error ("%s", err_msg);
13016
13017 putpkt (buf.data ());
13018 remote_get_noisy_reply ();
13019 if (strcmp (rs->buf.data (), "OK"))
13020 error (_("Error on target while setting tracepoints."));
13021 }
13022
13023 for (auto action_it = stepping_actions.begin ();
13024 action_it != stepping_actions.end (); action_it++)
13025 {
13026 QUIT; /* Allow user to bail out with ^C. */
13027
13028 bool is_first = action_it == stepping_actions.begin ();
13029 bool has_more = (action_it + 1) != stepping_actions.end ();
13030
13031 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13032 b->number, addrbuf, /* address */
13033 is_first ? "S" : "",
13034 action_it->c_str (),
13035 has_more ? "-" : "");
13036
13037 if (ret < 0 || ret >= buf.size ())
13038 error ("%s", err_msg);
13039
13040 putpkt (buf.data ());
13041 remote_get_noisy_reply ();
13042 if (strcmp (rs->buf.data (), "OK"))
13043 error (_("Error on target while setting tracepoints."));
13044 }
13045
13046 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13047 {
13048 if (b->location != NULL)
13049 {
13050 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13051
13052 if (ret < 0 || ret >= buf.size ())
13053 error ("%s", err_msg);
13054
13055 encode_source_string (b->number, loc->address, "at",
13056 event_location_to_string (b->location.get ()),
13057 buf.data () + strlen (buf.data ()),
13058 buf.size () - strlen (buf.data ()));
13059 putpkt (buf.data ());
13060 remote_get_noisy_reply ();
13061 if (strcmp (rs->buf.data (), "OK"))
13062 warning (_("Target does not support source download."));
13063 }
13064 if (b->cond_string)
13065 {
13066 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13067
13068 if (ret < 0 || ret >= buf.size ())
13069 error ("%s", err_msg);
13070
13071 encode_source_string (b->number, loc->address,
13072 "cond", b->cond_string,
13073 buf.data () + strlen (buf.data ()),
13074 buf.size () - strlen (buf.data ()));
13075 putpkt (buf.data ());
13076 remote_get_noisy_reply ();
13077 if (strcmp (rs->buf.data (), "OK"))
13078 warning (_("Target does not support source download."));
13079 }
13080 remote_download_command_source (b->number, loc->address,
13081 breakpoint_commands (b));
13082 }
13083 }
13084
13085 bool
13086 remote_target::can_download_tracepoint ()
13087 {
13088 struct remote_state *rs = get_remote_state ();
13089 struct trace_status *ts;
13090 int status;
13091
13092 /* Don't try to install tracepoints until we've relocated our
13093 symbols, and fetched and merged the target's tracepoint list with
13094 ours. */
13095 if (rs->starting_up)
13096 return false;
13097
13098 ts = current_trace_status ();
13099 status = get_trace_status (ts);
13100
13101 if (status == -1 || !ts->running_known || !ts->running)
13102 return false;
13103
13104 /* If we are in a tracing experiment, but remote stub doesn't support
13105 installing tracepoint in trace, we have to return. */
13106 if (!remote_supports_install_in_trace ())
13107 return false;
13108
13109 return true;
13110 }
13111
13112
13113 void
13114 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13115 {
13116 struct remote_state *rs = get_remote_state ();
13117 char *p;
13118
13119 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13120 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13121 tsv.builtin);
13122 p = rs->buf.data () + strlen (rs->buf.data ());
13123 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13124 >= get_remote_packet_size ())
13125 error (_("Trace state variable name too long for tsv definition packet"));
13126 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13127 *p++ = '\0';
13128 putpkt (rs->buf);
13129 remote_get_noisy_reply ();
13130 if (rs->buf[0] == '\0')
13131 error (_("Target does not support this command."));
13132 if (strcmp (rs->buf.data (), "OK") != 0)
13133 error (_("Error on target while downloading trace state variable."));
13134 }
13135
13136 void
13137 remote_target::enable_tracepoint (struct bp_location *location)
13138 {
13139 struct remote_state *rs = get_remote_state ();
13140
13141 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13142 location->owner->number,
13143 phex (location->address, sizeof (CORE_ADDR)));
13144 putpkt (rs->buf);
13145 remote_get_noisy_reply ();
13146 if (rs->buf[0] == '\0')
13147 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13148 if (strcmp (rs->buf.data (), "OK") != 0)
13149 error (_("Error on target while enabling tracepoint."));
13150 }
13151
13152 void
13153 remote_target::disable_tracepoint (struct bp_location *location)
13154 {
13155 struct remote_state *rs = get_remote_state ();
13156
13157 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13158 location->owner->number,
13159 phex (location->address, sizeof (CORE_ADDR)));
13160 putpkt (rs->buf);
13161 remote_get_noisy_reply ();
13162 if (rs->buf[0] == '\0')
13163 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13164 if (strcmp (rs->buf.data (), "OK") != 0)
13165 error (_("Error on target while disabling tracepoint."));
13166 }
13167
13168 void
13169 remote_target::trace_set_readonly_regions ()
13170 {
13171 asection *s;
13172 bfd_size_type size;
13173 bfd_vma vma;
13174 int anysecs = 0;
13175 int offset = 0;
13176
13177 if (!exec_bfd)
13178 return; /* No information to give. */
13179
13180 struct remote_state *rs = get_remote_state ();
13181
13182 strcpy (rs->buf.data (), "QTro");
13183 offset = strlen (rs->buf.data ());
13184 for (s = exec_bfd->sections; s; s = s->next)
13185 {
13186 char tmp1[40], tmp2[40];
13187 int sec_length;
13188
13189 if ((s->flags & SEC_LOAD) == 0 ||
13190 /* (s->flags & SEC_CODE) == 0 || */
13191 (s->flags & SEC_READONLY) == 0)
13192 continue;
13193
13194 anysecs = 1;
13195 vma = bfd_section_vma (s);
13196 size = bfd_section_size (s);
13197 sprintf_vma (tmp1, vma);
13198 sprintf_vma (tmp2, vma + size);
13199 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13200 if (offset + sec_length + 1 > rs->buf.size ())
13201 {
13202 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13203 warning (_("\
13204 Too many sections for read-only sections definition packet."));
13205 break;
13206 }
13207 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13208 tmp1, tmp2);
13209 offset += sec_length;
13210 }
13211 if (anysecs)
13212 {
13213 putpkt (rs->buf);
13214 getpkt (&rs->buf, 0);
13215 }
13216 }
13217
13218 void
13219 remote_target::trace_start ()
13220 {
13221 struct remote_state *rs = get_remote_state ();
13222
13223 putpkt ("QTStart");
13224 remote_get_noisy_reply ();
13225 if (rs->buf[0] == '\0')
13226 error (_("Target does not support this command."));
13227 if (strcmp (rs->buf.data (), "OK") != 0)
13228 error (_("Bogus reply from target: %s"), rs->buf.data ());
13229 }
13230
13231 int
13232 remote_target::get_trace_status (struct trace_status *ts)
13233 {
13234 /* Initialize it just to avoid a GCC false warning. */
13235 char *p = NULL;
13236 enum packet_result result;
13237 struct remote_state *rs = get_remote_state ();
13238
13239 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13240 return -1;
13241
13242 /* FIXME we need to get register block size some other way. */
13243 trace_regblock_size
13244 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13245
13246 putpkt ("qTStatus");
13247
13248 try
13249 {
13250 p = remote_get_noisy_reply ();
13251 }
13252 catch (const gdb_exception_error &ex)
13253 {
13254 if (ex.error != TARGET_CLOSE_ERROR)
13255 {
13256 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13257 return -1;
13258 }
13259 throw;
13260 }
13261
13262 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13263
13264 /* If the remote target doesn't do tracing, flag it. */
13265 if (result == PACKET_UNKNOWN)
13266 return -1;
13267
13268 /* We're working with a live target. */
13269 ts->filename = NULL;
13270
13271 if (*p++ != 'T')
13272 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13273
13274 /* Function 'parse_trace_status' sets default value of each field of
13275 'ts' at first, so we don't have to do it here. */
13276 parse_trace_status (p, ts);
13277
13278 return ts->running;
13279 }
13280
13281 void
13282 remote_target::get_tracepoint_status (struct breakpoint *bp,
13283 struct uploaded_tp *utp)
13284 {
13285 struct remote_state *rs = get_remote_state ();
13286 char *reply;
13287 struct bp_location *loc;
13288 struct tracepoint *tp = (struct tracepoint *) bp;
13289 size_t size = get_remote_packet_size ();
13290
13291 if (tp)
13292 {
13293 tp->hit_count = 0;
13294 tp->traceframe_usage = 0;
13295 for (loc = tp->loc; loc; loc = loc->next)
13296 {
13297 /* If the tracepoint was never downloaded, don't go asking for
13298 any status. */
13299 if (tp->number_on_target == 0)
13300 continue;
13301 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13302 phex_nz (loc->address, 0));
13303 putpkt (rs->buf);
13304 reply = remote_get_noisy_reply ();
13305 if (reply && *reply)
13306 {
13307 if (*reply == 'V')
13308 parse_tracepoint_status (reply + 1, bp, utp);
13309 }
13310 }
13311 }
13312 else if (utp)
13313 {
13314 utp->hit_count = 0;
13315 utp->traceframe_usage = 0;
13316 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13317 phex_nz (utp->addr, 0));
13318 putpkt (rs->buf);
13319 reply = remote_get_noisy_reply ();
13320 if (reply && *reply)
13321 {
13322 if (*reply == 'V')
13323 parse_tracepoint_status (reply + 1, bp, utp);
13324 }
13325 }
13326 }
13327
13328 void
13329 remote_target::trace_stop ()
13330 {
13331 struct remote_state *rs = get_remote_state ();
13332
13333 putpkt ("QTStop");
13334 remote_get_noisy_reply ();
13335 if (rs->buf[0] == '\0')
13336 error (_("Target does not support this command."));
13337 if (strcmp (rs->buf.data (), "OK") != 0)
13338 error (_("Bogus reply from target: %s"), rs->buf.data ());
13339 }
13340
13341 int
13342 remote_target::trace_find (enum trace_find_type type, int num,
13343 CORE_ADDR addr1, CORE_ADDR addr2,
13344 int *tpp)
13345 {
13346 struct remote_state *rs = get_remote_state ();
13347 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13348 char *p, *reply;
13349 int target_frameno = -1, target_tracept = -1;
13350
13351 /* Lookups other than by absolute frame number depend on the current
13352 trace selected, so make sure it is correct on the remote end
13353 first. */
13354 if (type != tfind_number)
13355 set_remote_traceframe ();
13356
13357 p = rs->buf.data ();
13358 strcpy (p, "QTFrame:");
13359 p = strchr (p, '\0');
13360 switch (type)
13361 {
13362 case tfind_number:
13363 xsnprintf (p, endbuf - p, "%x", num);
13364 break;
13365 case tfind_pc:
13366 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13367 break;
13368 case tfind_tp:
13369 xsnprintf (p, endbuf - p, "tdp:%x", num);
13370 break;
13371 case tfind_range:
13372 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13373 phex_nz (addr2, 0));
13374 break;
13375 case tfind_outside:
13376 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13377 phex_nz (addr2, 0));
13378 break;
13379 default:
13380 error (_("Unknown trace find type %d"), type);
13381 }
13382
13383 putpkt (rs->buf);
13384 reply = remote_get_noisy_reply ();
13385 if (*reply == '\0')
13386 error (_("Target does not support this command."));
13387
13388 while (reply && *reply)
13389 switch (*reply)
13390 {
13391 case 'F':
13392 p = ++reply;
13393 target_frameno = (int) strtol (p, &reply, 16);
13394 if (reply == p)
13395 error (_("Unable to parse trace frame number"));
13396 /* Don't update our remote traceframe number cache on failure
13397 to select a remote traceframe. */
13398 if (target_frameno == -1)
13399 return -1;
13400 break;
13401 case 'T':
13402 p = ++reply;
13403 target_tracept = (int) strtol (p, &reply, 16);
13404 if (reply == p)
13405 error (_("Unable to parse tracepoint number"));
13406 break;
13407 case 'O': /* "OK"? */
13408 if (reply[1] == 'K' && reply[2] == '\0')
13409 reply += 2;
13410 else
13411 error (_("Bogus reply from target: %s"), reply);
13412 break;
13413 default:
13414 error (_("Bogus reply from target: %s"), reply);
13415 }
13416 if (tpp)
13417 *tpp = target_tracept;
13418
13419 rs->remote_traceframe_number = target_frameno;
13420 return target_frameno;
13421 }
13422
13423 bool
13424 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13425 {
13426 struct remote_state *rs = get_remote_state ();
13427 char *reply;
13428 ULONGEST uval;
13429
13430 set_remote_traceframe ();
13431
13432 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13433 putpkt (rs->buf);
13434 reply = remote_get_noisy_reply ();
13435 if (reply && *reply)
13436 {
13437 if (*reply == 'V')
13438 {
13439 unpack_varlen_hex (reply + 1, &uval);
13440 *val = (LONGEST) uval;
13441 return true;
13442 }
13443 }
13444 return false;
13445 }
13446
13447 int
13448 remote_target::save_trace_data (const char *filename)
13449 {
13450 struct remote_state *rs = get_remote_state ();
13451 char *p, *reply;
13452
13453 p = rs->buf.data ();
13454 strcpy (p, "QTSave:");
13455 p += strlen (p);
13456 if ((p - rs->buf.data ()) + strlen (filename) * 2
13457 >= get_remote_packet_size ())
13458 error (_("Remote file name too long for trace save packet"));
13459 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13460 *p++ = '\0';
13461 putpkt (rs->buf);
13462 reply = remote_get_noisy_reply ();
13463 if (*reply == '\0')
13464 error (_("Target does not support this command."));
13465 if (strcmp (reply, "OK") != 0)
13466 error (_("Bogus reply from target: %s"), reply);
13467 return 0;
13468 }
13469
13470 /* This is basically a memory transfer, but needs to be its own packet
13471 because we don't know how the target actually organizes its trace
13472 memory, plus we want to be able to ask for as much as possible, but
13473 not be unhappy if we don't get as much as we ask for. */
13474
13475 LONGEST
13476 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13477 {
13478 struct remote_state *rs = get_remote_state ();
13479 char *reply;
13480 char *p;
13481 int rslt;
13482
13483 p = rs->buf.data ();
13484 strcpy (p, "qTBuffer:");
13485 p += strlen (p);
13486 p += hexnumstr (p, offset);
13487 *p++ = ',';
13488 p += hexnumstr (p, len);
13489 *p++ = '\0';
13490
13491 putpkt (rs->buf);
13492 reply = remote_get_noisy_reply ();
13493 if (reply && *reply)
13494 {
13495 /* 'l' by itself means we're at the end of the buffer and
13496 there is nothing more to get. */
13497 if (*reply == 'l')
13498 return 0;
13499
13500 /* Convert the reply into binary. Limit the number of bytes to
13501 convert according to our passed-in buffer size, rather than
13502 what was returned in the packet; if the target is
13503 unexpectedly generous and gives us a bigger reply than we
13504 asked for, we don't want to crash. */
13505 rslt = hex2bin (reply, buf, len);
13506 return rslt;
13507 }
13508
13509 /* Something went wrong, flag as an error. */
13510 return -1;
13511 }
13512
13513 void
13514 remote_target::set_disconnected_tracing (int val)
13515 {
13516 struct remote_state *rs = get_remote_state ();
13517
13518 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13519 {
13520 char *reply;
13521
13522 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13523 "QTDisconnected:%x", val);
13524 putpkt (rs->buf);
13525 reply = remote_get_noisy_reply ();
13526 if (*reply == '\0')
13527 error (_("Target does not support this command."));
13528 if (strcmp (reply, "OK") != 0)
13529 error (_("Bogus reply from target: %s"), reply);
13530 }
13531 else if (val)
13532 warning (_("Target does not support disconnected tracing."));
13533 }
13534
13535 int
13536 remote_target::core_of_thread (ptid_t ptid)
13537 {
13538 thread_info *info = find_thread_ptid (this, ptid);
13539
13540 if (info != NULL && info->priv != NULL)
13541 return get_remote_thread_info (info)->core;
13542
13543 return -1;
13544 }
13545
13546 void
13547 remote_target::set_circular_trace_buffer (int val)
13548 {
13549 struct remote_state *rs = get_remote_state ();
13550 char *reply;
13551
13552 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13553 "QTBuffer:circular:%x", val);
13554 putpkt (rs->buf);
13555 reply = remote_get_noisy_reply ();
13556 if (*reply == '\0')
13557 error (_("Target does not support this command."));
13558 if (strcmp (reply, "OK") != 0)
13559 error (_("Bogus reply from target: %s"), reply);
13560 }
13561
13562 traceframe_info_up
13563 remote_target::traceframe_info ()
13564 {
13565 gdb::optional<gdb::char_vector> text
13566 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13567 NULL);
13568 if (text)
13569 return parse_traceframe_info (text->data ());
13570
13571 return NULL;
13572 }
13573
13574 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13575 instruction on which a fast tracepoint may be placed. Returns -1
13576 if the packet is not supported, and 0 if the minimum instruction
13577 length is unknown. */
13578
13579 int
13580 remote_target::get_min_fast_tracepoint_insn_len ()
13581 {
13582 struct remote_state *rs = get_remote_state ();
13583 char *reply;
13584
13585 /* If we're not debugging a process yet, the IPA can't be
13586 loaded. */
13587 if (!target_has_execution)
13588 return 0;
13589
13590 /* Make sure the remote is pointing at the right process. */
13591 set_general_process ();
13592
13593 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13594 putpkt (rs->buf);
13595 reply = remote_get_noisy_reply ();
13596 if (*reply == '\0')
13597 return -1;
13598 else
13599 {
13600 ULONGEST min_insn_len;
13601
13602 unpack_varlen_hex (reply, &min_insn_len);
13603
13604 return (int) min_insn_len;
13605 }
13606 }
13607
13608 void
13609 remote_target::set_trace_buffer_size (LONGEST val)
13610 {
13611 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13612 {
13613 struct remote_state *rs = get_remote_state ();
13614 char *buf = rs->buf.data ();
13615 char *endbuf = buf + get_remote_packet_size ();
13616 enum packet_result result;
13617
13618 gdb_assert (val >= 0 || val == -1);
13619 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13620 /* Send -1 as literal "-1" to avoid host size dependency. */
13621 if (val < 0)
13622 {
13623 *buf++ = '-';
13624 buf += hexnumstr (buf, (ULONGEST) -val);
13625 }
13626 else
13627 buf += hexnumstr (buf, (ULONGEST) val);
13628
13629 putpkt (rs->buf);
13630 remote_get_noisy_reply ();
13631 result = packet_ok (rs->buf,
13632 &remote_protocol_packets[PACKET_QTBuffer_size]);
13633
13634 if (result != PACKET_OK)
13635 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13636 }
13637 }
13638
13639 bool
13640 remote_target::set_trace_notes (const char *user, const char *notes,
13641 const char *stop_notes)
13642 {
13643 struct remote_state *rs = get_remote_state ();
13644 char *reply;
13645 char *buf = rs->buf.data ();
13646 char *endbuf = buf + get_remote_packet_size ();
13647 int nbytes;
13648
13649 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13650 if (user)
13651 {
13652 buf += xsnprintf (buf, endbuf - buf, "user:");
13653 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13654 buf += 2 * nbytes;
13655 *buf++ = ';';
13656 }
13657 if (notes)
13658 {
13659 buf += xsnprintf (buf, endbuf - buf, "notes:");
13660 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13661 buf += 2 * nbytes;
13662 *buf++ = ';';
13663 }
13664 if (stop_notes)
13665 {
13666 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13667 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13668 buf += 2 * nbytes;
13669 *buf++ = ';';
13670 }
13671 /* Ensure the buffer is terminated. */
13672 *buf = '\0';
13673
13674 putpkt (rs->buf);
13675 reply = remote_get_noisy_reply ();
13676 if (*reply == '\0')
13677 return false;
13678
13679 if (strcmp (reply, "OK") != 0)
13680 error (_("Bogus reply from target: %s"), reply);
13681
13682 return true;
13683 }
13684
13685 bool
13686 remote_target::use_agent (bool use)
13687 {
13688 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13689 {
13690 struct remote_state *rs = get_remote_state ();
13691
13692 /* If the stub supports QAgent. */
13693 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13694 putpkt (rs->buf);
13695 getpkt (&rs->buf, 0);
13696
13697 if (strcmp (rs->buf.data (), "OK") == 0)
13698 {
13699 ::use_agent = use;
13700 return true;
13701 }
13702 }
13703
13704 return false;
13705 }
13706
13707 bool
13708 remote_target::can_use_agent ()
13709 {
13710 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13711 }
13712
13713 struct btrace_target_info
13714 {
13715 /* The ptid of the traced thread. */
13716 ptid_t ptid;
13717
13718 /* The obtained branch trace configuration. */
13719 struct btrace_config conf;
13720 };
13721
13722 /* Reset our idea of our target's btrace configuration. */
13723
13724 static void
13725 remote_btrace_reset (remote_state *rs)
13726 {
13727 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13728 }
13729
13730 /* Synchronize the configuration with the target. */
13731
13732 void
13733 remote_target::btrace_sync_conf (const btrace_config *conf)
13734 {
13735 struct packet_config *packet;
13736 struct remote_state *rs;
13737 char *buf, *pos, *endbuf;
13738
13739 rs = get_remote_state ();
13740 buf = rs->buf.data ();
13741 endbuf = buf + get_remote_packet_size ();
13742
13743 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13744 if (packet_config_support (packet) == PACKET_ENABLE
13745 && conf->bts.size != rs->btrace_config.bts.size)
13746 {
13747 pos = buf;
13748 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13749 conf->bts.size);
13750
13751 putpkt (buf);
13752 getpkt (&rs->buf, 0);
13753
13754 if (packet_ok (buf, packet) == PACKET_ERROR)
13755 {
13756 if (buf[0] == 'E' && buf[1] == '.')
13757 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13758 else
13759 error (_("Failed to configure the BTS buffer size."));
13760 }
13761
13762 rs->btrace_config.bts.size = conf->bts.size;
13763 }
13764
13765 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13766 if (packet_config_support (packet) == PACKET_ENABLE
13767 && conf->pt.size != rs->btrace_config.pt.size)
13768 {
13769 pos = buf;
13770 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13771 conf->pt.size);
13772
13773 putpkt (buf);
13774 getpkt (&rs->buf, 0);
13775
13776 if (packet_ok (buf, packet) == PACKET_ERROR)
13777 {
13778 if (buf[0] == 'E' && buf[1] == '.')
13779 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13780 else
13781 error (_("Failed to configure the trace buffer size."));
13782 }
13783
13784 rs->btrace_config.pt.size = conf->pt.size;
13785 }
13786 }
13787
13788 /* Read the current thread's btrace configuration from the target and
13789 store it into CONF. */
13790
13791 static void
13792 btrace_read_config (struct btrace_config *conf)
13793 {
13794 gdb::optional<gdb::char_vector> xml
13795 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13796 if (xml)
13797 parse_xml_btrace_conf (conf, xml->data ());
13798 }
13799
13800 /* Maybe reopen target btrace. */
13801
13802 void
13803 remote_target::remote_btrace_maybe_reopen ()
13804 {
13805 struct remote_state *rs = get_remote_state ();
13806 int btrace_target_pushed = 0;
13807 #if !defined (HAVE_LIBIPT)
13808 int warned = 0;
13809 #endif
13810
13811 /* Don't bother walking the entirety of the remote thread list when
13812 we know the feature isn't supported by the remote. */
13813 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13814 return;
13815
13816 scoped_restore_current_thread restore_thread;
13817
13818 for (thread_info *tp : all_non_exited_threads (this))
13819 {
13820 set_general_thread (tp->ptid);
13821
13822 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13823 btrace_read_config (&rs->btrace_config);
13824
13825 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13826 continue;
13827
13828 #if !defined (HAVE_LIBIPT)
13829 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13830 {
13831 if (!warned)
13832 {
13833 warned = 1;
13834 warning (_("Target is recording using Intel Processor Trace "
13835 "but support was disabled at compile time."));
13836 }
13837
13838 continue;
13839 }
13840 #endif /* !defined (HAVE_LIBIPT) */
13841
13842 /* Push target, once, but before anything else happens. This way our
13843 changes to the threads will be cleaned up by unpushing the target
13844 in case btrace_read_config () throws. */
13845 if (!btrace_target_pushed)
13846 {
13847 btrace_target_pushed = 1;
13848 record_btrace_push_target ();
13849 printf_filtered (_("Target is recording using %s.\n"),
13850 btrace_format_string (rs->btrace_config.format));
13851 }
13852
13853 tp->btrace.target = XCNEW (struct btrace_target_info);
13854 tp->btrace.target->ptid = tp->ptid;
13855 tp->btrace.target->conf = rs->btrace_config;
13856 }
13857 }
13858
13859 /* Enable branch tracing. */
13860
13861 struct btrace_target_info *
13862 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13863 {
13864 struct btrace_target_info *tinfo = NULL;
13865 struct packet_config *packet = NULL;
13866 struct remote_state *rs = get_remote_state ();
13867 char *buf = rs->buf.data ();
13868 char *endbuf = buf + get_remote_packet_size ();
13869
13870 switch (conf->format)
13871 {
13872 case BTRACE_FORMAT_BTS:
13873 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13874 break;
13875
13876 case BTRACE_FORMAT_PT:
13877 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13878 break;
13879 }
13880
13881 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13882 error (_("Target does not support branch tracing."));
13883
13884 btrace_sync_conf (conf);
13885
13886 set_general_thread (ptid);
13887
13888 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13889 putpkt (rs->buf);
13890 getpkt (&rs->buf, 0);
13891
13892 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13893 {
13894 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13895 error (_("Could not enable branch tracing for %s: %s"),
13896 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13897 else
13898 error (_("Could not enable branch tracing for %s."),
13899 target_pid_to_str (ptid).c_str ());
13900 }
13901
13902 tinfo = XCNEW (struct btrace_target_info);
13903 tinfo->ptid = ptid;
13904
13905 /* If we fail to read the configuration, we lose some information, but the
13906 tracing itself is not impacted. */
13907 try
13908 {
13909 btrace_read_config (&tinfo->conf);
13910 }
13911 catch (const gdb_exception_error &err)
13912 {
13913 if (err.message != NULL)
13914 warning ("%s", err.what ());
13915 }
13916
13917 return tinfo;
13918 }
13919
13920 /* Disable branch tracing. */
13921
13922 void
13923 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13924 {
13925 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13926 struct remote_state *rs = get_remote_state ();
13927 char *buf = rs->buf.data ();
13928 char *endbuf = buf + get_remote_packet_size ();
13929
13930 if (packet_config_support (packet) != PACKET_ENABLE)
13931 error (_("Target does not support branch tracing."));
13932
13933 set_general_thread (tinfo->ptid);
13934
13935 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13936 putpkt (rs->buf);
13937 getpkt (&rs->buf, 0);
13938
13939 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13940 {
13941 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13942 error (_("Could not disable branch tracing for %s: %s"),
13943 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13944 else
13945 error (_("Could not disable branch tracing for %s."),
13946 target_pid_to_str (tinfo->ptid).c_str ());
13947 }
13948
13949 xfree (tinfo);
13950 }
13951
13952 /* Teardown branch tracing. */
13953
13954 void
13955 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13956 {
13957 /* We must not talk to the target during teardown. */
13958 xfree (tinfo);
13959 }
13960
13961 /* Read the branch trace. */
13962
13963 enum btrace_error
13964 remote_target::read_btrace (struct btrace_data *btrace,
13965 struct btrace_target_info *tinfo,
13966 enum btrace_read_type type)
13967 {
13968 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13969 const char *annex;
13970
13971 if (packet_config_support (packet) != PACKET_ENABLE)
13972 error (_("Target does not support branch tracing."));
13973
13974 #if !defined(HAVE_LIBEXPAT)
13975 error (_("Cannot process branch tracing result. XML parsing not supported."));
13976 #endif
13977
13978 switch (type)
13979 {
13980 case BTRACE_READ_ALL:
13981 annex = "all";
13982 break;
13983 case BTRACE_READ_NEW:
13984 annex = "new";
13985 break;
13986 case BTRACE_READ_DELTA:
13987 annex = "delta";
13988 break;
13989 default:
13990 internal_error (__FILE__, __LINE__,
13991 _("Bad branch tracing read type: %u."),
13992 (unsigned int) type);
13993 }
13994
13995 gdb::optional<gdb::char_vector> xml
13996 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13997 if (!xml)
13998 return BTRACE_ERR_UNKNOWN;
13999
14000 parse_xml_btrace (btrace, xml->data ());
14001
14002 return BTRACE_ERR_NONE;
14003 }
14004
14005 const struct btrace_config *
14006 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14007 {
14008 return &tinfo->conf;
14009 }
14010
14011 bool
14012 remote_target::augmented_libraries_svr4_read ()
14013 {
14014 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14015 == PACKET_ENABLE);
14016 }
14017
14018 /* Implementation of to_load. */
14019
14020 void
14021 remote_target::load (const char *name, int from_tty)
14022 {
14023 generic_load (name, from_tty);
14024 }
14025
14026 /* Accepts an integer PID; returns a string representing a file that
14027 can be opened on the remote side to get the symbols for the child
14028 process. Returns NULL if the operation is not supported. */
14029
14030 char *
14031 remote_target::pid_to_exec_file (int pid)
14032 {
14033 static gdb::optional<gdb::char_vector> filename;
14034 char *annex = NULL;
14035
14036 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14037 return NULL;
14038
14039 inferior *inf = find_inferior_pid (this, pid);
14040 if (inf == NULL)
14041 internal_error (__FILE__, __LINE__,
14042 _("not currently attached to process %d"), pid);
14043
14044 if (!inf->fake_pid_p)
14045 {
14046 const int annex_size = 9;
14047
14048 annex = (char *) alloca (annex_size);
14049 xsnprintf (annex, annex_size, "%x", pid);
14050 }
14051
14052 filename = target_read_stralloc (current_top_target (),
14053 TARGET_OBJECT_EXEC_FILE, annex);
14054
14055 return filename ? filename->data () : nullptr;
14056 }
14057
14058 /* Implement the to_can_do_single_step target_ops method. */
14059
14060 int
14061 remote_target::can_do_single_step ()
14062 {
14063 /* We can only tell whether target supports single step or not by
14064 supported s and S vCont actions if the stub supports vContSupported
14065 feature. If the stub doesn't support vContSupported feature,
14066 we have conservatively to think target doesn't supports single
14067 step. */
14068 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14069 {
14070 struct remote_state *rs = get_remote_state ();
14071
14072 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14073 remote_vcont_probe ();
14074
14075 return rs->supports_vCont.s && rs->supports_vCont.S;
14076 }
14077 else
14078 return 0;
14079 }
14080
14081 /* Implementation of the to_execution_direction method for the remote
14082 target. */
14083
14084 enum exec_direction_kind
14085 remote_target::execution_direction ()
14086 {
14087 struct remote_state *rs = get_remote_state ();
14088
14089 return rs->last_resume_exec_dir;
14090 }
14091
14092 /* Return pointer to the thread_info struct which corresponds to
14093 THREAD_HANDLE (having length HANDLE_LEN). */
14094
14095 thread_info *
14096 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14097 int handle_len,
14098 inferior *inf)
14099 {
14100 for (thread_info *tp : all_non_exited_threads (this))
14101 {
14102 remote_thread_info *priv = get_remote_thread_info (tp);
14103
14104 if (tp->inf == inf && priv != NULL)
14105 {
14106 if (handle_len != priv->thread_handle.size ())
14107 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14108 handle_len, priv->thread_handle.size ());
14109 if (memcmp (thread_handle, priv->thread_handle.data (),
14110 handle_len) == 0)
14111 return tp;
14112 }
14113 }
14114
14115 return NULL;
14116 }
14117
14118 gdb::byte_vector
14119 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14120 {
14121 remote_thread_info *priv = get_remote_thread_info (tp);
14122 return priv->thread_handle;
14123 }
14124
14125 bool
14126 remote_target::can_async_p ()
14127 {
14128 struct remote_state *rs = get_remote_state ();
14129
14130 /* We don't go async if the user has explicitly prevented it with the
14131 "maint set target-async" command. */
14132 if (!target_async_permitted)
14133 return false;
14134
14135 /* We're async whenever the serial device is. */
14136 return serial_can_async_p (rs->remote_desc);
14137 }
14138
14139 bool
14140 remote_target::is_async_p ()
14141 {
14142 struct remote_state *rs = get_remote_state ();
14143
14144 if (!target_async_permitted)
14145 /* We only enable async when the user specifically asks for it. */
14146 return false;
14147
14148 /* We're async whenever the serial device is. */
14149 return serial_is_async_p (rs->remote_desc);
14150 }
14151
14152 /* Pass the SERIAL event on and up to the client. One day this code
14153 will be able to delay notifying the client of an event until the
14154 point where an entire packet has been received. */
14155
14156 static serial_event_ftype remote_async_serial_handler;
14157
14158 static void
14159 remote_async_serial_handler (struct serial *scb, void *context)
14160 {
14161 /* Don't propogate error information up to the client. Instead let
14162 the client find out about the error by querying the target. */
14163 inferior_event_handler (INF_REG_EVENT);
14164 }
14165
14166 static void
14167 remote_async_inferior_event_handler (gdb_client_data data)
14168 {
14169 inferior_event_handler (INF_REG_EVENT);
14170
14171 remote_target *remote = (remote_target *) data;
14172 remote_state *rs = remote->get_remote_state ();
14173
14174 /* inferior_event_handler may have consumed an event pending on the
14175 infrun side without calling target_wait on the REMOTE target, or
14176 may have pulled an event out of a different target. Keep trying
14177 for this remote target as long it still has either pending events
14178 or unacknowledged notifications. */
14179
14180 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL
14181 || !rs->stop_reply_queue.empty ())
14182 mark_async_event_handler (rs->remote_async_inferior_event_token);
14183 }
14184
14185 int
14186 remote_target::async_wait_fd ()
14187 {
14188 struct remote_state *rs = get_remote_state ();
14189 return rs->remote_desc->fd;
14190 }
14191
14192 void
14193 remote_target::async (int enable)
14194 {
14195 struct remote_state *rs = get_remote_state ();
14196
14197 if (enable)
14198 {
14199 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14200
14201 /* If there are pending events in the stop reply queue tell the
14202 event loop to process them. */
14203 if (!rs->stop_reply_queue.empty ())
14204 mark_async_event_handler (rs->remote_async_inferior_event_token);
14205 /* For simplicity, below we clear the pending events token
14206 without remembering whether it is marked, so here we always
14207 mark it. If there's actually no pending notification to
14208 process, this ends up being a no-op (other than a spurious
14209 event-loop wakeup). */
14210 if (target_is_non_stop_p ())
14211 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14212 }
14213 else
14214 {
14215 serial_async (rs->remote_desc, NULL, NULL);
14216 /* If the core is disabling async, it doesn't want to be
14217 disturbed with target events. Clear all async event sources
14218 too. */
14219 clear_async_event_handler (rs->remote_async_inferior_event_token);
14220 if (target_is_non_stop_p ())
14221 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14222 }
14223 }
14224
14225 /* Implementation of the to_thread_events method. */
14226
14227 void
14228 remote_target::thread_events (int enable)
14229 {
14230 struct remote_state *rs = get_remote_state ();
14231 size_t size = get_remote_packet_size ();
14232
14233 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14234 return;
14235
14236 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14237 putpkt (rs->buf);
14238 getpkt (&rs->buf, 0);
14239
14240 switch (packet_ok (rs->buf,
14241 &remote_protocol_packets[PACKET_QThreadEvents]))
14242 {
14243 case PACKET_OK:
14244 if (strcmp (rs->buf.data (), "OK") != 0)
14245 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14246 break;
14247 case PACKET_ERROR:
14248 warning (_("Remote failure reply: %s"), rs->buf.data ());
14249 break;
14250 case PACKET_UNKNOWN:
14251 break;
14252 }
14253 }
14254
14255 static void
14256 show_remote_cmd (const char *args, int from_tty)
14257 {
14258 /* We can't just use cmd_show_list here, because we want to skip
14259 the redundant "show remote Z-packet" and the legacy aliases. */
14260 struct cmd_list_element *list = remote_show_cmdlist;
14261 struct ui_out *uiout = current_uiout;
14262
14263 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14264 for (; list != NULL; list = list->next)
14265 if (strcmp (list->name, "Z-packet") == 0)
14266 continue;
14267 else if (list->type == not_set_cmd)
14268 /* Alias commands are exactly like the original, except they
14269 don't have the normal type. */
14270 continue;
14271 else
14272 {
14273 ui_out_emit_tuple option_emitter (uiout, "option");
14274
14275 uiout->field_string ("name", list->name);
14276 uiout->text (": ");
14277 if (list->type == show_cmd)
14278 do_show_command (NULL, from_tty, list);
14279 else
14280 cmd_func (list, NULL, from_tty);
14281 }
14282 }
14283
14284
14285 /* Function to be called whenever a new objfile (shlib) is detected. */
14286 static void
14287 remote_new_objfile (struct objfile *objfile)
14288 {
14289 remote_target *remote = get_current_remote_target ();
14290
14291 if (remote != NULL) /* Have a remote connection. */
14292 remote->remote_check_symbols ();
14293 }
14294
14295 /* Pull all the tracepoints defined on the target and create local
14296 data structures representing them. We don't want to create real
14297 tracepoints yet, we don't want to mess up the user's existing
14298 collection. */
14299
14300 int
14301 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14302 {
14303 struct remote_state *rs = get_remote_state ();
14304 char *p;
14305
14306 /* Ask for a first packet of tracepoint definition. */
14307 putpkt ("qTfP");
14308 getpkt (&rs->buf, 0);
14309 p = rs->buf.data ();
14310 while (*p && *p != 'l')
14311 {
14312 parse_tracepoint_definition (p, utpp);
14313 /* Ask for another packet of tracepoint definition. */
14314 putpkt ("qTsP");
14315 getpkt (&rs->buf, 0);
14316 p = rs->buf.data ();
14317 }
14318 return 0;
14319 }
14320
14321 int
14322 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14323 {
14324 struct remote_state *rs = get_remote_state ();
14325 char *p;
14326
14327 /* Ask for a first packet of variable definition. */
14328 putpkt ("qTfV");
14329 getpkt (&rs->buf, 0);
14330 p = rs->buf.data ();
14331 while (*p && *p != 'l')
14332 {
14333 parse_tsv_definition (p, utsvp);
14334 /* Ask for another packet of variable definition. */
14335 putpkt ("qTsV");
14336 getpkt (&rs->buf, 0);
14337 p = rs->buf.data ();
14338 }
14339 return 0;
14340 }
14341
14342 /* The "set/show range-stepping" show hook. */
14343
14344 static void
14345 show_range_stepping (struct ui_file *file, int from_tty,
14346 struct cmd_list_element *c,
14347 const char *value)
14348 {
14349 fprintf_filtered (file,
14350 _("Debugger's willingness to use range stepping "
14351 "is %s.\n"), value);
14352 }
14353
14354 /* Return true if the vCont;r action is supported by the remote
14355 stub. */
14356
14357 bool
14358 remote_target::vcont_r_supported ()
14359 {
14360 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14361 remote_vcont_probe ();
14362
14363 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14364 && get_remote_state ()->supports_vCont.r);
14365 }
14366
14367 /* The "set/show range-stepping" set hook. */
14368
14369 static void
14370 set_range_stepping (const char *ignore_args, int from_tty,
14371 struct cmd_list_element *c)
14372 {
14373 /* When enabling, check whether range stepping is actually supported
14374 by the target, and warn if not. */
14375 if (use_range_stepping)
14376 {
14377 remote_target *remote = get_current_remote_target ();
14378 if (remote == NULL
14379 || !remote->vcont_r_supported ())
14380 warning (_("Range stepping is not supported by the current target"));
14381 }
14382 }
14383
14384 void _initialize_remote ();
14385 void
14386 _initialize_remote ()
14387 {
14388 struct cmd_list_element *cmd;
14389 const char *cmd_name;
14390
14391 /* architecture specific data */
14392 remote_g_packet_data_handle =
14393 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14394
14395 add_target (remote_target_info, remote_target::open);
14396 add_target (extended_remote_target_info, extended_remote_target::open);
14397
14398 /* Hook into new objfile notification. */
14399 gdb::observers::new_objfile.attach (remote_new_objfile);
14400
14401 #if 0
14402 init_remote_threadtests ();
14403 #endif
14404
14405 /* set/show remote ... */
14406
14407 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14408 Remote protocol specific variables.\n\
14409 Configure various remote-protocol specific variables such as\n\
14410 the packets being used."),
14411 &remote_set_cmdlist, "set remote ",
14412 0 /* allow-unknown */, &setlist);
14413 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14414 Remote protocol specific variables.\n\
14415 Configure various remote-protocol specific variables such as\n\
14416 the packets being used."),
14417 &remote_show_cmdlist, "show remote ",
14418 0 /* allow-unknown */, &showlist);
14419
14420 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14421 Compare section data on target to the exec file.\n\
14422 Argument is a single section name (default: all loaded sections).\n\
14423 To compare only read-only loaded sections, specify the -r option."),
14424 &cmdlist);
14425
14426 add_cmd ("packet", class_maintenance, packet_command, _("\
14427 Send an arbitrary packet to a remote target.\n\
14428 maintenance packet TEXT\n\
14429 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14430 this command sends the string TEXT to the inferior, and displays the\n\
14431 response packet. GDB supplies the initial `$' character, and the\n\
14432 terminating `#' character and checksum."),
14433 &maintenancelist);
14434
14435 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14436 Set whether to send break if interrupted."), _("\
14437 Show whether to send break if interrupted."), _("\
14438 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14439 set_remotebreak, show_remotebreak,
14440 &setlist, &showlist);
14441 cmd_name = "remotebreak";
14442 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14443 deprecate_cmd (cmd, "set remote interrupt-sequence");
14444 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14445 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14446 deprecate_cmd (cmd, "show remote interrupt-sequence");
14447
14448 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14449 interrupt_sequence_modes, &interrupt_sequence_mode,
14450 _("\
14451 Set interrupt sequence to remote target."), _("\
14452 Show interrupt sequence to remote target."), _("\
14453 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14454 NULL, show_interrupt_sequence,
14455 &remote_set_cmdlist,
14456 &remote_show_cmdlist);
14457
14458 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14459 &interrupt_on_connect, _("\
14460 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14461 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14462 If set, interrupt sequence is sent to remote target."),
14463 NULL, NULL,
14464 &remote_set_cmdlist, &remote_show_cmdlist);
14465
14466 /* Install commands for configuring memory read/write packets. */
14467
14468 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14469 Set the maximum number of bytes per memory write packet (deprecated)."),
14470 &setlist);
14471 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14472 Show the maximum number of bytes per memory write packet (deprecated)."),
14473 &showlist);
14474 add_cmd ("memory-write-packet-size", no_class,
14475 set_memory_write_packet_size, _("\
14476 Set the maximum number of bytes per memory-write packet.\n\
14477 Specify the number of bytes in a packet or 0 (zero) for the\n\
14478 default packet size. The actual limit is further reduced\n\
14479 dependent on the target. Specify ``fixed'' to disable the\n\
14480 further restriction and ``limit'' to enable that restriction."),
14481 &remote_set_cmdlist);
14482 add_cmd ("memory-read-packet-size", no_class,
14483 set_memory_read_packet_size, _("\
14484 Set the maximum number of bytes per memory-read packet.\n\
14485 Specify the number of bytes in a packet or 0 (zero) for the\n\
14486 default packet size. The actual limit is further reduced\n\
14487 dependent on the target. Specify ``fixed'' to disable the\n\
14488 further restriction and ``limit'' to enable that restriction."),
14489 &remote_set_cmdlist);
14490 add_cmd ("memory-write-packet-size", no_class,
14491 show_memory_write_packet_size,
14492 _("Show the maximum number of bytes per memory-write packet."),
14493 &remote_show_cmdlist);
14494 add_cmd ("memory-read-packet-size", no_class,
14495 show_memory_read_packet_size,
14496 _("Show the maximum number of bytes per memory-read packet."),
14497 &remote_show_cmdlist);
14498
14499 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14500 &remote_hw_watchpoint_limit, _("\
14501 Set the maximum number of target hardware watchpoints."), _("\
14502 Show the maximum number of target hardware watchpoints."), _("\
14503 Specify \"unlimited\" for unlimited hardware watchpoints."),
14504 NULL, show_hardware_watchpoint_limit,
14505 &remote_set_cmdlist,
14506 &remote_show_cmdlist);
14507 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14508 no_class,
14509 &remote_hw_watchpoint_length_limit, _("\
14510 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14511 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14512 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14513 NULL, show_hardware_watchpoint_length_limit,
14514 &remote_set_cmdlist, &remote_show_cmdlist);
14515 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14516 &remote_hw_breakpoint_limit, _("\
14517 Set the maximum number of target hardware breakpoints."), _("\
14518 Show the maximum number of target hardware breakpoints."), _("\
14519 Specify \"unlimited\" for unlimited hardware breakpoints."),
14520 NULL, show_hardware_breakpoint_limit,
14521 &remote_set_cmdlist, &remote_show_cmdlist);
14522
14523 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14524 &remote_address_size, _("\
14525 Set the maximum size of the address (in bits) in a memory packet."), _("\
14526 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14527 NULL,
14528 NULL, /* FIXME: i18n: */
14529 &setlist, &showlist);
14530
14531 init_all_packet_configs ();
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14534 "X", "binary-download", 1);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14537 "vCont", "verbose-resume", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14540 "QPassSignals", "pass-signals", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14543 "QCatchSyscalls", "catch-syscalls", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14546 "QProgramSignals", "program-signals", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14549 "QSetWorkingDir", "set-working-dir", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14552 "QStartupWithShell", "startup-with-shell", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets
14555 [PACKET_QEnvironmentHexEncoded],
14556 "QEnvironmentHexEncoded", "environment-hex-encoded",
14557 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14560 "QEnvironmentReset", "environment-reset",
14561 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14564 "QEnvironmentUnset", "environment-unset",
14565 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14568 "qSymbol", "symbol-lookup", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14571 "P", "set-register", 1);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14574 "p", "fetch-register", 1);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14577 "Z0", "software-breakpoint", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14580 "Z1", "hardware-breakpoint", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14583 "Z2", "write-watchpoint", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14586 "Z3", "read-watchpoint", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14589 "Z4", "access-watchpoint", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14592 "qXfer:auxv:read", "read-aux-vector", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14595 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14598 "qXfer:features:read", "target-features", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14601 "qXfer:libraries:read", "library-info", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14604 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14605
14606 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14607 "qXfer:memory-map:read", "memory-map", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14610 "qXfer:osdata:read", "osdata", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14613 "qXfer:threads:read", "threads", 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14616 "qXfer:siginfo:read", "read-siginfo-object", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14619 "qXfer:siginfo:write", "write-siginfo-object", 0);
14620
14621 add_packet_config_cmd
14622 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14623 "qXfer:traceframe-info:read", "traceframe-info", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14626 "qXfer:uib:read", "unwind-info-block", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14629 "qGetTLSAddr", "get-thread-local-storage-address",
14630 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14633 "qGetTIBAddr", "get-thread-information-block-address",
14634 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14637 "bc", "reverse-continue", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14640 "bs", "reverse-step", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14643 "qSupported", "supported-packets", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14646 "qSearch:memory", "search-memory", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14649 "qTStatus", "trace-status", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14652 "vFile:setfs", "hostio-setfs", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14655 "vFile:open", "hostio-open", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14658 "vFile:pread", "hostio-pread", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14661 "vFile:pwrite", "hostio-pwrite", 0);
14662
14663 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14664 "vFile:close", "hostio-close", 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14667 "vFile:unlink", "hostio-unlink", 0);
14668
14669 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14670 "vFile:readlink", "hostio-readlink", 0);
14671
14672 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14673 "vFile:fstat", "hostio-fstat", 0);
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14676 "vAttach", "attach", 0);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14679 "vRun", "run", 0);
14680
14681 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14682 "QStartNoAckMode", "noack", 0);
14683
14684 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14685 "vKill", "kill", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14688 "qAttached", "query-attached", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14691 "ConditionalTracepoints",
14692 "conditional-tracepoints", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14695 "ConditionalBreakpoints",
14696 "conditional-breakpoints", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14699 "BreakpointCommands",
14700 "breakpoint-commands", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14703 "FastTracepoints", "fast-tracepoints", 0);
14704
14705 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14706 "TracepointSource", "TracepointSource", 0);
14707
14708 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14709 "QAllow", "allow", 0);
14710
14711 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14712 "StaticTracepoints", "static-tracepoints", 0);
14713
14714 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14715 "InstallInTrace", "install-in-trace", 0);
14716
14717 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14718 "qXfer:statictrace:read", "read-sdata-object", 0);
14719
14720 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14721 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14722
14723 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14724 "QDisableRandomization", "disable-randomization", 0);
14725
14726 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14727 "QAgent", "agent", 0);
14728
14729 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14730 "QTBuffer:size", "trace-buffer-size", 0);
14731
14732 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14733 "Qbtrace:off", "disable-btrace", 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14736 "Qbtrace:bts", "enable-btrace-bts", 0);
14737
14738 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14739 "Qbtrace:pt", "enable-btrace-pt", 0);
14740
14741 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14742 "qXfer:btrace", "read-btrace", 0);
14743
14744 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14745 "qXfer:btrace-conf", "read-btrace-conf", 0);
14746
14747 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14748 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14749
14750 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14751 "multiprocess-feature", "multiprocess-feature", 0);
14752
14753 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14754 "swbreak-feature", "swbreak-feature", 0);
14755
14756 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14757 "hwbreak-feature", "hwbreak-feature", 0);
14758
14759 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14760 "fork-event-feature", "fork-event-feature", 0);
14761
14762 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14763 "vfork-event-feature", "vfork-event-feature", 0);
14764
14765 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14766 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14767
14768 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14769 "vContSupported", "verbose-resume-supported", 0);
14770
14771 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14772 "exec-event-feature", "exec-event-feature", 0);
14773
14774 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14775 "vCtrlC", "ctrl-c", 0);
14776
14777 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14778 "QThreadEvents", "thread-events", 0);
14779
14780 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14781 "N stop reply", "no-resumed-stop-reply", 0);
14782
14783 /* Assert that we've registered "set remote foo-packet" commands
14784 for all packet configs. */
14785 {
14786 int i;
14787
14788 for (i = 0; i < PACKET_MAX; i++)
14789 {
14790 /* Ideally all configs would have a command associated. Some
14791 still don't though. */
14792 int excepted;
14793
14794 switch (i)
14795 {
14796 case PACKET_QNonStop:
14797 case PACKET_EnableDisableTracepoints_feature:
14798 case PACKET_tracenz_feature:
14799 case PACKET_DisconnectedTracing_feature:
14800 case PACKET_augmented_libraries_svr4_read_feature:
14801 case PACKET_qCRC:
14802 /* Additions to this list need to be well justified:
14803 pre-existing packets are OK; new packets are not. */
14804 excepted = 1;
14805 break;
14806 default:
14807 excepted = 0;
14808 break;
14809 }
14810
14811 /* This catches both forgetting to add a config command, and
14812 forgetting to remove a packet from the exception list. */
14813 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14814 }
14815 }
14816
14817 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14818 Z sub-packet has its own set and show commands, but users may
14819 have sets to this variable in their .gdbinit files (or in their
14820 documentation). */
14821 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14822 &remote_Z_packet_detect, _("\
14823 Set use of remote protocol `Z' packets."), _("\
14824 Show use of remote protocol `Z' packets."), _("\
14825 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14826 packets."),
14827 set_remote_protocol_Z_packet_cmd,
14828 show_remote_protocol_Z_packet_cmd,
14829 /* FIXME: i18n: Use of remote protocol
14830 `Z' packets is %s. */
14831 &remote_set_cmdlist, &remote_show_cmdlist);
14832
14833 add_basic_prefix_cmd ("remote", class_files, _("\
14834 Manipulate files on the remote system.\n\
14835 Transfer files to and from the remote target system."),
14836 &remote_cmdlist, "remote ",
14837 0 /* allow-unknown */, &cmdlist);
14838
14839 add_cmd ("put", class_files, remote_put_command,
14840 _("Copy a local file to the remote system."),
14841 &remote_cmdlist);
14842
14843 add_cmd ("get", class_files, remote_get_command,
14844 _("Copy a remote file to the local system."),
14845 &remote_cmdlist);
14846
14847 add_cmd ("delete", class_files, remote_delete_command,
14848 _("Delete a remote file."),
14849 &remote_cmdlist);
14850
14851 add_setshow_string_noescape_cmd ("exec-file", class_files,
14852 &remote_exec_file_var, _("\
14853 Set the remote pathname for \"run\"."), _("\
14854 Show the remote pathname for \"run\"."), NULL,
14855 set_remote_exec_file,
14856 show_remote_exec_file,
14857 &remote_set_cmdlist,
14858 &remote_show_cmdlist);
14859
14860 add_setshow_boolean_cmd ("range-stepping", class_run,
14861 &use_range_stepping, _("\
14862 Enable or disable range stepping."), _("\
14863 Show whether target-assisted range stepping is enabled."), _("\
14864 If on, and the target supports it, when stepping a source line, GDB\n\
14865 tells the target to step the corresponding range of addresses itself instead\n\
14866 of issuing multiple single-steps. This speeds up source level\n\
14867 stepping. If off, GDB always issues single-steps, even if range\n\
14868 stepping is supported by the target. The default is on."),
14869 set_range_stepping,
14870 show_range_stepping,
14871 &setlist,
14872 &showlist);
14873
14874 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14875 Set watchdog timer."), _("\
14876 Show watchdog timer."), _("\
14877 When non-zero, this timeout is used instead of waiting forever for a target\n\
14878 to finish a low-level step or continue operation. If the specified amount\n\
14879 of time passes without a response from the target, an error occurs."),
14880 NULL,
14881 show_watchdog,
14882 &setlist, &showlist);
14883
14884 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14885 &remote_packet_max_chars, _("\
14886 Set the maximum number of characters to display for each remote packet."), _("\
14887 Show the maximum number of characters to display for each remote packet."), _("\
14888 Specify \"unlimited\" to display all the characters."),
14889 NULL, show_remote_packet_max_chars,
14890 &setdebuglist, &showdebuglist);
14891
14892 /* Eventually initialize fileio. See fileio.c */
14893 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
14894 }
This page took 0.315806 seconds and 5 git commands to generate.