Handle "show remote memory-write-packet-size" when not connected
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 static const target_info remote_target_info = {
88 "remote",
89 N_("Remote serial target in gdb-specific protocol"),
90 remote_doc
91 };
92
93 class remote_target : public target_ops
94 {
95 public:
96 remote_target ()
97 {
98 to_stratum = process_stratum;
99 }
100
101 const target_info &info () const override
102 { return remote_target_info; }
103
104 thread_control_capabilities get_thread_control_capabilities () override
105 { return tc_schedlock; }
106
107 /* Open a remote connection. */
108 static void open (const char *, int);
109
110 void close () override;
111
112 void detach (inferior *, int) override;
113 void disconnect (const char *, int) override;
114
115 void commit_resume () override;
116 void resume (ptid_t, int, enum gdb_signal) override;
117 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
118
119 void fetch_registers (struct regcache *, int) override;
120 void store_registers (struct regcache *, int) override;
121 void prepare_to_store (struct regcache *) override;
122
123 void files_info () override;
124
125 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
126
127 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
128 enum remove_bp_reason) override;
129
130
131 bool stopped_by_sw_breakpoint () override;
132 bool supports_stopped_by_sw_breakpoint () override;
133
134 bool stopped_by_hw_breakpoint () override;
135
136 bool supports_stopped_by_hw_breakpoint () override;
137
138 bool stopped_by_watchpoint () override;
139
140 bool stopped_data_address (CORE_ADDR *) override;
141
142 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
143
144 int can_use_hw_breakpoint (enum bptype, int, int) override;
145
146 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
147
148 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
149
150 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
151
152 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
153 struct expression *) override;
154
155 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
156 struct expression *) override;
157
158 void kill () override;
159
160 void load (const char *, int) override;
161
162 void mourn_inferior () override;
163
164 void pass_signals (int, unsigned char *) override;
165
166 int set_syscall_catchpoint (int, bool, int,
167 gdb::array_view<const int>) override;
168
169 void program_signals (int, unsigned char *) override;
170
171 bool thread_alive (ptid_t ptid) override;
172
173 const char *thread_name (struct thread_info *) override;
174
175 void update_thread_list () override;
176
177 const char *pid_to_str (ptid_t) override;
178
179 const char *extra_thread_info (struct thread_info *) override;
180
181 ptid_t get_ada_task_ptid (long lwp, long thread) override;
182
183 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
184 int handle_len,
185 inferior *inf) override;
186
187 void stop (ptid_t) override;
188
189 void interrupt () override;
190
191 void pass_ctrlc () override;
192
193 enum target_xfer_status xfer_partial (enum target_object object,
194 const char *annex,
195 gdb_byte *readbuf,
196 const gdb_byte *writebuf,
197 ULONGEST offset, ULONGEST len,
198 ULONGEST *xfered_len) override;
199
200 ULONGEST get_memory_xfer_limit () override;
201
202 void rcmd (const char *command, struct ui_file *output) override;
203
204 char *pid_to_exec_file (int pid) override;
205
206 void log_command (const char *cmd) override
207 {
208 serial_log_command (this, cmd);
209 }
210
211 CORE_ADDR get_thread_local_address (ptid_t ptid,
212 CORE_ADDR load_module_addr,
213 CORE_ADDR offset) override;
214
215 bool has_all_memory () override { return default_child_has_all_memory (); }
216 bool has_memory () override { return default_child_has_memory (); }
217 bool has_stack () override { return default_child_has_stack (); }
218 bool has_registers () override { return default_child_has_registers (); }
219 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
220
221 bool can_execute_reverse () override;
222
223 std::vector<mem_region> memory_map () override;
224
225 void flash_erase (ULONGEST address, LONGEST length) override;
226
227 void flash_done () override;
228
229 const struct target_desc *read_description () override;
230
231 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
232 const gdb_byte *pattern, ULONGEST pattern_len,
233 CORE_ADDR *found_addrp) override;
234
235 bool can_async_p () override;
236
237 bool is_async_p () override;
238
239 void async (int) override;
240
241 void thread_events (int) override;
242
243 int can_do_single_step () override;
244
245 void terminal_inferior () override;
246
247 void terminal_ours () override;
248
249 bool supports_non_stop () override;
250
251 bool supports_multi_process () override;
252
253 bool supports_disable_randomization () override;
254
255 bool filesystem_is_local () override;
256
257
258 int fileio_open (struct inferior *inf, const char *filename,
259 int flags, int mode, int warn_if_slow,
260 int *target_errno) override;
261
262 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
263 ULONGEST offset, int *target_errno) override;
264
265 int fileio_pread (int fd, gdb_byte *read_buf, int len,
266 ULONGEST offset, int *target_errno) override;
267
268 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
269
270 int fileio_close (int fd, int *target_errno) override;
271
272 int fileio_unlink (struct inferior *inf,
273 const char *filename,
274 int *target_errno) override;
275
276 gdb::optional<std::string>
277 fileio_readlink (struct inferior *inf,
278 const char *filename,
279 int *target_errno) override;
280
281 bool supports_enable_disable_tracepoint () override;
282
283 bool supports_string_tracing () override;
284
285 bool supports_evaluation_of_breakpoint_conditions () override;
286
287 bool can_run_breakpoint_commands () override;
288
289 void trace_init () override;
290
291 void download_tracepoint (struct bp_location *location) override;
292
293 bool can_download_tracepoint () override;
294
295 void download_trace_state_variable (const trace_state_variable &tsv) override;
296
297 void enable_tracepoint (struct bp_location *location) override;
298
299 void disable_tracepoint (struct bp_location *location) override;
300
301 void trace_set_readonly_regions () override;
302
303 void trace_start () override;
304
305 int get_trace_status (struct trace_status *ts) override;
306
307 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
308 override;
309
310 void trace_stop () override;
311
312 int trace_find (enum trace_find_type type, int num,
313 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
314
315 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
316
317 int save_trace_data (const char *filename) override;
318
319 int upload_tracepoints (struct uploaded_tp **utpp) override;
320
321 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
322
323 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
324
325 int get_min_fast_tracepoint_insn_len () override;
326
327 void set_disconnected_tracing (int val) override;
328
329 void set_circular_trace_buffer (int val) override;
330
331 void set_trace_buffer_size (LONGEST val) override;
332
333 bool set_trace_notes (const char *user, const char *notes,
334 const char *stopnotes) override;
335
336 int core_of_thread (ptid_t ptid) override;
337
338 int verify_memory (const gdb_byte *data,
339 CORE_ADDR memaddr, ULONGEST size) override;
340
341
342 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
343
344 void set_permissions () override;
345
346 bool static_tracepoint_marker_at (CORE_ADDR,
347 struct static_tracepoint_marker *marker)
348 override;
349
350 std::vector<static_tracepoint_marker>
351 static_tracepoint_markers_by_strid (const char *id) override;
352
353 traceframe_info_up traceframe_info () override;
354
355 bool use_agent (bool use) override;
356 bool can_use_agent () override;
357
358 struct btrace_target_info *enable_btrace (ptid_t ptid,
359 const struct btrace_config *conf) override;
360
361 void disable_btrace (struct btrace_target_info *tinfo) override;
362
363 void teardown_btrace (struct btrace_target_info *tinfo) override;
364
365 enum btrace_error read_btrace (struct btrace_data *data,
366 struct btrace_target_info *btinfo,
367 enum btrace_read_type type) override;
368
369 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
370 bool augmented_libraries_svr4_read () override;
371 int follow_fork (int, int) override;
372 void follow_exec (struct inferior *, char *) override;
373 int insert_fork_catchpoint (int) override;
374 int remove_fork_catchpoint (int) override;
375 int insert_vfork_catchpoint (int) override;
376 int remove_vfork_catchpoint (int) override;
377 int insert_exec_catchpoint (int) override;
378 int remove_exec_catchpoint (int) override;
379 enum exec_direction_kind execution_direction () override;
380
381 protected:
382 static void open_1 (const char *name, int from_tty, int extended_p);
383 void start_remote (int from_tty, int extended_p);
384 };
385
386 static const target_info extended_remote_target_info = {
387 "extended-remote",
388 N_("Extended remote serial target in gdb-specific protocol"),
389 remote_doc
390 };
391
392 /* Set up the extended remote target by extending the standard remote
393 target and adding to it. */
394
395 class extended_remote_target final : public remote_target
396 {
397 public:
398 const target_info &info () const override
399 { return extended_remote_target_info; }
400
401 /* Open an extended-remote connection. */
402 static void open (const char *, int);
403
404 bool can_create_inferior () override { return true; }
405 void create_inferior (const char *, const std::string &,
406 char **, int) override;
407
408 void detach (inferior *, int) override;
409
410 bool can_attach () override { return true; }
411 void attach (const char *, int) override;
412
413 void post_attach (int) override;
414 bool supports_disable_randomization () override;
415 };
416
417 /* Per-program-space data key. */
418 static const struct program_space_data *remote_pspace_data;
419
420 /* The variable registered as the control variable used by the
421 remote exec-file commands. While the remote exec-file setting is
422 per-program-space, the set/show machinery uses this as the
423 location of the remote exec-file value. */
424 static char *remote_exec_file_var;
425
426 /* The size to align memory write packets, when practical. The protocol
427 does not guarantee any alignment, and gdb will generate short
428 writes and unaligned writes, but even as a best-effort attempt this
429 can improve bulk transfers. For instance, if a write is misaligned
430 relative to the target's data bus, the stub may need to make an extra
431 round trip fetching data from the target. This doesn't make a
432 huge difference, but it's easy to do, so we try to be helpful.
433
434 The alignment chosen is arbitrary; usually data bus width is
435 important here, not the possibly larger cache line size. */
436 enum { REMOTE_ALIGN_WRITES = 16 };
437
438 /* Prototypes for local functions. */
439 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
440 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
441 int forever, int *is_notif);
442
443 struct remote_state;
444
445 static int remote_vkill (int pid, struct remote_state *rs);
446
447 static void remote_kill_k (void);
448
449 static int readchar (int timeout);
450
451 static void remote_serial_write (const char *str, int len);
452
453 static void interrupt_query (void);
454
455 static void set_general_thread (ptid_t ptid);
456 static void set_continue_thread (ptid_t ptid);
457
458 static void get_offsets (void);
459
460 static void skip_frame (void);
461
462 static long read_frame (char **buf_p, long *sizeof_buf);
463
464 static int hexnumlen (ULONGEST num);
465
466 static int stubhex (int ch);
467
468 static int hexnumstr (char *, ULONGEST);
469
470 static int hexnumnstr (char *, ULONGEST, int);
471
472 static CORE_ADDR remote_address_masked (CORE_ADDR);
473
474 static void print_packet (const char *);
475
476 static int stub_unpack_int (char *buff, int fieldlength);
477
478 static ptid_t remote_current_thread (ptid_t oldptid);
479
480 static int putpkt_binary (const char *buf, int cnt);
481
482 static void check_binary_download (CORE_ADDR addr);
483
484 struct packet_config;
485
486 static void show_packet_config_cmd (struct packet_config *config);
487
488 static void show_remote_protocol_packet_cmd (struct ui_file *file,
489 int from_tty,
490 struct cmd_list_element *c,
491 const char *value);
492
493 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
494 static ptid_t read_ptid (const char *buf, const char **obuf);
495
496 static void remote_query_supported (void);
497
498 static void remote_check_symbols (void);
499
500 struct stop_reply;
501 static void stop_reply_xfree (struct stop_reply *);
502 static void remote_parse_stop_reply (char *, struct stop_reply *);
503 static void push_stop_reply (struct stop_reply *);
504 static void discard_pending_stop_replies_in_queue (struct remote_state *);
505 static int peek_stop_reply (ptid_t ptid);
506
507 struct threads_listing_context;
508 static void remove_new_fork_children (struct threads_listing_context *);
509
510 static void remote_async_inferior_event_handler (gdb_client_data);
511
512 static int remote_read_description_p (struct target_ops *target);
513
514 static void remote_console_output (char *msg);
515
516 static void remote_btrace_reset (void);
517
518 static void remote_btrace_maybe_reopen (void);
519
520 static int stop_reply_queue_length (void);
521
522 static void remote_unpush_and_throw (void);
523
524 static struct remote_state *get_remote_state (void);
525
526 /* For "remote". */
527
528 static struct cmd_list_element *remote_cmdlist;
529
530 /* For "set remote" and "show remote". */
531
532 static struct cmd_list_element *remote_set_cmdlist;
533 static struct cmd_list_element *remote_show_cmdlist;
534
535 /* Stub vCont actions support.
536
537 Each field is a boolean flag indicating whether the stub reports
538 support for the corresponding action. */
539
540 struct vCont_action_support
541 {
542 /* vCont;t */
543 bool t = false;
544
545 /* vCont;r */
546 bool r = false;
547
548 /* vCont;s */
549 bool s = false;
550
551 /* vCont;S */
552 bool S = false;
553 };
554
555 /* Controls whether GDB is willing to use range stepping. */
556
557 static int use_range_stepping = 1;
558
559 #define OPAQUETHREADBYTES 8
560
561 /* a 64 bit opaque identifier */
562 typedef unsigned char threadref[OPAQUETHREADBYTES];
563
564 /* About this many threadisds fit in a packet. */
565
566 #define MAXTHREADLISTRESULTS 32
567
568 /* The max number of chars in debug output. The rest of chars are
569 omitted. */
570
571 #define REMOTE_DEBUG_MAX_CHAR 512
572
573 /* Data for the vFile:pread readahead cache. */
574
575 struct readahead_cache
576 {
577 /* Invalidate the readahead cache. */
578 void invalidate ();
579
580 /* Invalidate the readahead cache if it is holding data for FD. */
581 void invalidate_fd (int fd);
582
583 /* Serve pread from the readahead cache. Returns number of bytes
584 read, or 0 if the request can't be served from the cache. */
585 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
586
587 /* The file descriptor for the file that is being cached. -1 if the
588 cache is invalid. */
589 int fd = -1;
590
591 /* The offset into the file that the cache buffer corresponds
592 to. */
593 ULONGEST offset = 0;
594
595 /* The buffer holding the cache contents. */
596 gdb_byte *buf = nullptr;
597 /* The buffer's size. We try to read as much as fits into a packet
598 at a time. */
599 size_t bufsize = 0;
600
601 /* Cache hit and miss counters. */
602 ULONGEST hit_count = 0;
603 ULONGEST miss_count = 0;
604 };
605
606 /* Description of the remote protocol for a given architecture. */
607
608 struct packet_reg
609 {
610 long offset; /* Offset into G packet. */
611 long regnum; /* GDB's internal register number. */
612 LONGEST pnum; /* Remote protocol register number. */
613 int in_g_packet; /* Always part of G packet. */
614 /* long size in bytes; == register_size (target_gdbarch (), regnum);
615 at present. */
616 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
617 at present. */
618 };
619
620 struct remote_arch_state
621 {
622 explicit remote_arch_state (struct gdbarch *gdbarch);
623
624 /* Description of the remote protocol registers. */
625 long sizeof_g_packet;
626
627 /* Description of the remote protocol registers indexed by REGNUM
628 (making an array gdbarch_num_regs in size). */
629 std::unique_ptr<packet_reg[]> regs;
630
631 /* This is the size (in chars) of the first response to the ``g''
632 packet. It is used as a heuristic when determining the maximum
633 size of memory-read and memory-write packets. A target will
634 typically only reserve a buffer large enough to hold the ``g''
635 packet. The size does not include packet overhead (headers and
636 trailers). */
637 long actual_register_packet_size;
638
639 /* This is the maximum size (in chars) of a non read/write packet.
640 It is also used as a cap on the size of read/write packets. */
641 long remote_packet_size;
642 };
643
644 /* Description of the remote protocol state for the currently
645 connected target. This is per-target state, and independent of the
646 selected architecture. */
647
648 class remote_state
649 {
650 public:
651
652 remote_state ();
653 ~remote_state ();
654
655 /* Get the remote arch state for GDBARCH. */
656 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
657
658 public: /* data */
659
660 /* A buffer to use for incoming packets, and its current size. The
661 buffer is grown dynamically for larger incoming packets.
662 Outgoing packets may also be constructed in this buffer.
663 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
664 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
665 packets. */
666 char *buf;
667 long buf_size;
668
669 /* True if we're going through initial connection setup (finding out
670 about the remote side's threads, relocating symbols, etc.). */
671 bool starting_up = false;
672
673 /* If we negotiated packet size explicitly (and thus can bypass
674 heuristics for the largest packet size that will not overflow
675 a buffer in the stub), this will be set to that packet size.
676 Otherwise zero, meaning to use the guessed size. */
677 long explicit_packet_size = 0;
678
679 /* remote_wait is normally called when the target is running and
680 waits for a stop reply packet. But sometimes we need to call it
681 when the target is already stopped. We can send a "?" packet
682 and have remote_wait read the response. Or, if we already have
683 the response, we can stash it in BUF and tell remote_wait to
684 skip calling getpkt. This flag is set when BUF contains a
685 stop reply packet and the target is not waiting. */
686 int cached_wait_status = 0;
687
688 /* True, if in no ack mode. That is, neither GDB nor the stub will
689 expect acks from each other. The connection is assumed to be
690 reliable. */
691 bool noack_mode = false;
692
693 /* True if we're connected in extended remote mode. */
694 bool extended = false;
695
696 /* True if we resumed the target and we're waiting for the target to
697 stop. In the mean time, we can't start another command/query.
698 The remote server wouldn't be ready to process it, so we'd
699 timeout waiting for a reply that would never come and eventually
700 we'd close the connection. This can happen in asynchronous mode
701 because we allow GDB commands while the target is running. */
702 bool waiting_for_stop_reply = false;
703
704 /* The status of the stub support for the various vCont actions. */
705 vCont_action_support supports_vCont;
706
707 /* True if the user has pressed Ctrl-C, but the target hasn't
708 responded to that. */
709 bool ctrlc_pending_p = false;
710
711 /* True if we saw a Ctrl-C while reading or writing from/to the
712 remote descriptor. At that point it is not safe to send a remote
713 interrupt packet, so we instead remember we saw the Ctrl-C and
714 process it once we're done with sending/receiving the current
715 packet, which should be shortly. If however that takes too long,
716 and the user presses Ctrl-C again, we offer to disconnect. */
717 bool got_ctrlc_during_io = false;
718
719 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
720 remote_open knows that we don't have a file open when the program
721 starts. */
722 struct serial *remote_desc = nullptr;
723
724 /* These are the threads which we last sent to the remote system. The
725 TID member will be -1 for all or -2 for not sent yet. */
726 ptid_t general_thread = null_ptid;
727 ptid_t continue_thread = null_ptid;
728
729 /* This is the traceframe which we last selected on the remote system.
730 It will be -1 if no traceframe is selected. */
731 int remote_traceframe_number = -1;
732
733 char *last_pass_packet = nullptr;
734
735 /* The last QProgramSignals packet sent to the target. We bypass
736 sending a new program signals list down to the target if the new
737 packet is exactly the same as the last we sent. IOW, we only let
738 the target know about program signals list changes. */
739 char *last_program_signals_packet = nullptr;
740
741 gdb_signal last_sent_signal = GDB_SIGNAL_0;
742
743 bool last_sent_step = false;
744
745 /* The execution direction of the last resume we got. */
746 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
747
748 char *finished_object = nullptr;
749 char *finished_annex = nullptr;
750 ULONGEST finished_offset = 0;
751
752 /* Should we try the 'ThreadInfo' query packet?
753
754 This variable (NOT available to the user: auto-detect only!)
755 determines whether GDB will use the new, simpler "ThreadInfo"
756 query or the older, more complex syntax for thread queries.
757 This is an auto-detect variable (set to true at each connect,
758 and set to false when the target fails to recognize it). */
759 bool use_threadinfo_query = false;
760 bool use_threadextra_query = false;
761
762 threadref echo_nextthread {};
763 threadref nextthread {};
764 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
765
766 /* The state of remote notification. */
767 struct remote_notif_state *notif_state = nullptr;
768
769 /* The branch trace configuration. */
770 struct btrace_config btrace_config {};
771
772 /* The argument to the last "vFile:setfs:" packet we sent, used
773 to avoid sending repeated unnecessary "vFile:setfs:" packets.
774 Initialized to -1 to indicate that no "vFile:setfs:" packet
775 has yet been sent. */
776 int fs_pid = -1;
777
778 /* A readahead cache for vFile:pread. Often, reading a binary
779 involves a sequence of small reads. E.g., when parsing an ELF
780 file. A readahead cache helps mostly the case of remote
781 debugging on a connection with higher latency, due to the
782 request/reply nature of the RSP. We only cache data for a single
783 file descriptor at a time. */
784 struct readahead_cache readahead_cache;
785
786 private:
787 /* Mapping of remote protocol data for each gdbarch. Usually there
788 is only one entry here, though we may see more with stubs that
789 support multi-process. */
790 std::unordered_map<struct gdbarch *, remote_arch_state>
791 m_arch_states;
792 };
793
794 /* Private data that we'll store in (struct thread_info)->priv. */
795 struct remote_thread_info : public private_thread_info
796 {
797 std::string extra;
798 std::string name;
799 int core = -1;
800
801 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
802 sequence of bytes. */
803 gdb::byte_vector thread_handle;
804
805 /* Whether the target stopped for a breakpoint/watchpoint. */
806 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
807
808 /* This is set to the data address of the access causing the target
809 to stop for a watchpoint. */
810 CORE_ADDR watch_data_address = 0;
811
812 /* Fields used by the vCont action coalescing implemented in
813 remote_resume / remote_commit_resume. remote_resume stores each
814 thread's last resume request in these fields, so that a later
815 remote_commit_resume knows which is the proper action for this
816 thread to include in the vCont packet. */
817
818 /* True if the last target_resume call for this thread was a step
819 request, false if a continue request. */
820 int last_resume_step = 0;
821
822 /* The signal specified in the last target_resume call for this
823 thread. */
824 gdb_signal last_resume_sig = GDB_SIGNAL_0;
825
826 /* Whether this thread was already vCont-resumed on the remote
827 side. */
828 int vcont_resumed = 0;
829 };
830
831 remote_state::remote_state ()
832 {
833 /* The default buffer size is unimportant; it will be expanded
834 whenever a larger buffer is needed. */
835 this->buf_size = 400;
836 this->buf = (char *) xmalloc (this->buf_size);
837 }
838
839 remote_state::~remote_state ()
840 {
841 xfree (this->last_pass_packet);
842 xfree (this->last_program_signals_packet);
843 xfree (this->buf);
844 xfree (this->finished_object);
845 xfree (this->finished_annex);
846 }
847
848 /* This data could be associated with a target, but we do not always
849 have access to the current target when we need it, so for now it is
850 static. This will be fine for as long as only one target is in use
851 at a time. */
852 static struct remote_state *remote_state;
853
854 static struct remote_state *
855 get_remote_state_raw (void)
856 {
857 return remote_state;
858 }
859
860 /* Utility: generate error from an incoming stub packet. */
861 static void
862 trace_error (char *buf)
863 {
864 if (*buf++ != 'E')
865 return; /* not an error msg */
866 switch (*buf)
867 {
868 case '1': /* malformed packet error */
869 if (*++buf == '0') /* general case: */
870 error (_("remote.c: error in outgoing packet."));
871 else
872 error (_("remote.c: error in outgoing packet at field #%ld."),
873 strtol (buf, NULL, 16));
874 default:
875 error (_("Target returns error code '%s'."), buf);
876 }
877 }
878
879 /* Utility: wait for reply from stub, while accepting "O" packets. */
880
881 static char *
882 remote_get_noisy_reply ()
883 {
884 struct remote_state *rs = get_remote_state ();
885
886 do /* Loop on reply from remote stub. */
887 {
888 char *buf;
889
890 QUIT; /* Allow user to bail out with ^C. */
891 getpkt (&rs->buf, &rs->buf_size, 0);
892 buf = rs->buf;
893 if (buf[0] == 'E')
894 trace_error (buf);
895 else if (startswith (buf, "qRelocInsn:"))
896 {
897 ULONGEST ul;
898 CORE_ADDR from, to, org_to;
899 const char *p, *pp;
900 int adjusted_size = 0;
901 int relocated = 0;
902
903 p = buf + strlen ("qRelocInsn:");
904 pp = unpack_varlen_hex (p, &ul);
905 if (*pp != ';')
906 error (_("invalid qRelocInsn packet: %s"), buf);
907 from = ul;
908
909 p = pp + 1;
910 unpack_varlen_hex (p, &ul);
911 to = ul;
912
913 org_to = to;
914
915 TRY
916 {
917 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
918 relocated = 1;
919 }
920 CATCH (ex, RETURN_MASK_ALL)
921 {
922 if (ex.error == MEMORY_ERROR)
923 {
924 /* Propagate memory errors silently back to the
925 target. The stub may have limited the range of
926 addresses we can write to, for example. */
927 }
928 else
929 {
930 /* Something unexpectedly bad happened. Be verbose
931 so we can tell what, and propagate the error back
932 to the stub, so it doesn't get stuck waiting for
933 a response. */
934 exception_fprintf (gdb_stderr, ex,
935 _("warning: relocating instruction: "));
936 }
937 putpkt ("E01");
938 }
939 END_CATCH
940
941 if (relocated)
942 {
943 adjusted_size = to - org_to;
944
945 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
946 putpkt (buf);
947 }
948 }
949 else if (buf[0] == 'O' && buf[1] != 'K')
950 remote_console_output (buf + 1); /* 'O' message from stub */
951 else
952 return buf; /* Here's the actual reply. */
953 }
954 while (1);
955 }
956
957 struct remote_arch_state *
958 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
959 {
960 remote_arch_state *rsa;
961
962 auto it = this->m_arch_states.find (gdbarch);
963 if (it == this->m_arch_states.end ())
964 {
965 auto p = this->m_arch_states.emplace (std::piecewise_construct,
966 std::forward_as_tuple (gdbarch),
967 std::forward_as_tuple (gdbarch));
968 rsa = &p.first->second;
969
970 /* Make sure that the packet buffer is plenty big enough for
971 this architecture. */
972 if (this->buf_size < rsa->remote_packet_size)
973 {
974 this->buf_size = 2 * rsa->remote_packet_size;
975 this->buf = (char *) xrealloc (this->buf, this->buf_size);
976 }
977 }
978 else
979 rsa = &it->second;
980
981 return rsa;
982 }
983
984 /* Fetch the global remote target state. */
985
986 static struct remote_state *
987 get_remote_state (void)
988 {
989 struct remote_state *rs = get_remote_state_raw ();
990
991 /* Make sure that the remote architecture state has been
992 initialized, because doing so might reallocate rs->buf. Any
993 function which calls getpkt also needs to be mindful of changes
994 to rs->buf, but this call limits the number of places which run
995 into trouble. */
996 rs->get_remote_arch_state (target_gdbarch ());
997
998 return rs;
999 }
1000
1001 /* Cleanup routine for the remote module's pspace data. */
1002
1003 static void
1004 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1005 {
1006 char *remote_exec_file = (char *) arg;
1007
1008 xfree (remote_exec_file);
1009 }
1010
1011 /* Fetch the remote exec-file from the current program space. */
1012
1013 static const char *
1014 get_remote_exec_file (void)
1015 {
1016 char *remote_exec_file;
1017
1018 remote_exec_file
1019 = (char *) program_space_data (current_program_space,
1020 remote_pspace_data);
1021 if (remote_exec_file == NULL)
1022 return "";
1023
1024 return remote_exec_file;
1025 }
1026
1027 /* Set the remote exec file for PSPACE. */
1028
1029 static void
1030 set_pspace_remote_exec_file (struct program_space *pspace,
1031 char *remote_exec_file)
1032 {
1033 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1034
1035 xfree (old_file);
1036 set_program_space_data (pspace, remote_pspace_data,
1037 xstrdup (remote_exec_file));
1038 }
1039
1040 /* The "set/show remote exec-file" set command hook. */
1041
1042 static void
1043 set_remote_exec_file (const char *ignored, int from_tty,
1044 struct cmd_list_element *c)
1045 {
1046 gdb_assert (remote_exec_file_var != NULL);
1047 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1048 }
1049
1050 /* The "set/show remote exec-file" show command hook. */
1051
1052 static void
1053 show_remote_exec_file (struct ui_file *file, int from_tty,
1054 struct cmd_list_element *cmd, const char *value)
1055 {
1056 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1057 }
1058
1059 static int
1060 compare_pnums (const void *lhs_, const void *rhs_)
1061 {
1062 const struct packet_reg * const *lhs
1063 = (const struct packet_reg * const *) lhs_;
1064 const struct packet_reg * const *rhs
1065 = (const struct packet_reg * const *) rhs_;
1066
1067 if ((*lhs)->pnum < (*rhs)->pnum)
1068 return -1;
1069 else if ((*lhs)->pnum == (*rhs)->pnum)
1070 return 0;
1071 else
1072 return 1;
1073 }
1074
1075 static int
1076 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1077 {
1078 int regnum, num_remote_regs, offset;
1079 struct packet_reg **remote_regs;
1080
1081 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1082 {
1083 struct packet_reg *r = &regs[regnum];
1084
1085 if (register_size (gdbarch, regnum) == 0)
1086 /* Do not try to fetch zero-sized (placeholder) registers. */
1087 r->pnum = -1;
1088 else
1089 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1090
1091 r->regnum = regnum;
1092 }
1093
1094 /* Define the g/G packet format as the contents of each register
1095 with a remote protocol number, in order of ascending protocol
1096 number. */
1097
1098 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1099 for (num_remote_regs = 0, regnum = 0;
1100 regnum < gdbarch_num_regs (gdbarch);
1101 regnum++)
1102 if (regs[regnum].pnum != -1)
1103 remote_regs[num_remote_regs++] = &regs[regnum];
1104
1105 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1106 compare_pnums);
1107
1108 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1109 {
1110 remote_regs[regnum]->in_g_packet = 1;
1111 remote_regs[regnum]->offset = offset;
1112 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1113 }
1114
1115 return offset;
1116 }
1117
1118 /* Given the architecture described by GDBARCH, return the remote
1119 protocol register's number and the register's offset in the g/G
1120 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1121 If the target does not have a mapping for REGNUM, return false,
1122 otherwise, return true. */
1123
1124 int
1125 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1126 int *pnum, int *poffset)
1127 {
1128 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1129
1130 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1131
1132 map_regcache_remote_table (gdbarch, regs.data ());
1133
1134 *pnum = regs[regnum].pnum;
1135 *poffset = regs[regnum].offset;
1136
1137 return *pnum != -1;
1138 }
1139
1140 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1141 {
1142 /* Use the architecture to build a regnum<->pnum table, which will be
1143 1:1 unless a feature set specifies otherwise. */
1144 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1145
1146 /* Record the maximum possible size of the g packet - it may turn out
1147 to be smaller. */
1148 this->sizeof_g_packet
1149 = map_regcache_remote_table (gdbarch, this->regs.get ());
1150
1151 /* Default maximum number of characters in a packet body. Many
1152 remote stubs have a hardwired buffer size of 400 bytes
1153 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1154 as the maximum packet-size to ensure that the packet and an extra
1155 NUL character can always fit in the buffer. This stops GDB
1156 trashing stubs that try to squeeze an extra NUL into what is
1157 already a full buffer (As of 1999-12-04 that was most stubs). */
1158 this->remote_packet_size = 400 - 1;
1159
1160 /* This one is filled in when a ``g'' packet is received. */
1161 this->actual_register_packet_size = 0;
1162
1163 /* Should rsa->sizeof_g_packet needs more space than the
1164 default, adjust the size accordingly. Remember that each byte is
1165 encoded as two characters. 32 is the overhead for the packet
1166 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1167 (``$NN:G...#NN'') is a better guess, the below has been padded a
1168 little. */
1169 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1170 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1171 }
1172
1173 /* Return the current allowed size of a remote packet. This is
1174 inferred from the current architecture, and should be used to
1175 limit the length of outgoing packets. */
1176 static long
1177 get_remote_packet_size (void)
1178 {
1179 struct remote_state *rs = get_remote_state ();
1180 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1181
1182 if (rs->explicit_packet_size)
1183 return rs->explicit_packet_size;
1184
1185 return rsa->remote_packet_size;
1186 }
1187
1188 static struct packet_reg *
1189 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1190 long regnum)
1191 {
1192 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1193 return NULL;
1194 else
1195 {
1196 struct packet_reg *r = &rsa->regs[regnum];
1197
1198 gdb_assert (r->regnum == regnum);
1199 return r;
1200 }
1201 }
1202
1203 static struct packet_reg *
1204 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1205 LONGEST pnum)
1206 {
1207 int i;
1208
1209 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1210 {
1211 struct packet_reg *r = &rsa->regs[i];
1212
1213 if (r->pnum == pnum)
1214 return r;
1215 }
1216 return NULL;
1217 }
1218
1219 static remote_target remote_ops;
1220
1221 static extended_remote_target extended_remote_ops;
1222
1223 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
1224 ``forever'' still use the normal timeout mechanism. This is
1225 currently used by the ASYNC code to guarentee that target reads
1226 during the initial connect always time-out. Once getpkt has been
1227 modified to return a timeout indication and, in turn
1228 remote_wait()/wait_for_inferior() have gained a timeout parameter
1229 this can go away. */
1230 static int wait_forever_enabled_p = 1;
1231
1232 /* Allow the user to specify what sequence to send to the remote
1233 when he requests a program interruption: Although ^C is usually
1234 what remote systems expect (this is the default, here), it is
1235 sometimes preferable to send a break. On other systems such
1236 as the Linux kernel, a break followed by g, which is Magic SysRq g
1237 is required in order to interrupt the execution. */
1238 const char interrupt_sequence_control_c[] = "Ctrl-C";
1239 const char interrupt_sequence_break[] = "BREAK";
1240 const char interrupt_sequence_break_g[] = "BREAK-g";
1241 static const char *const interrupt_sequence_modes[] =
1242 {
1243 interrupt_sequence_control_c,
1244 interrupt_sequence_break,
1245 interrupt_sequence_break_g,
1246 NULL
1247 };
1248 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1249
1250 static void
1251 show_interrupt_sequence (struct ui_file *file, int from_tty,
1252 struct cmd_list_element *c,
1253 const char *value)
1254 {
1255 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1256 fprintf_filtered (file,
1257 _("Send the ASCII ETX character (Ctrl-c) "
1258 "to the remote target to interrupt the "
1259 "execution of the program.\n"));
1260 else if (interrupt_sequence_mode == interrupt_sequence_break)
1261 fprintf_filtered (file,
1262 _("send a break signal to the remote target "
1263 "to interrupt the execution of the program.\n"));
1264 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1265 fprintf_filtered (file,
1266 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1267 "the remote target to interrupt the execution "
1268 "of Linux kernel.\n"));
1269 else
1270 internal_error (__FILE__, __LINE__,
1271 _("Invalid value for interrupt_sequence_mode: %s."),
1272 interrupt_sequence_mode);
1273 }
1274
1275 /* This boolean variable specifies whether interrupt_sequence is sent
1276 to the remote target when gdb connects to it.
1277 This is mostly needed when you debug the Linux kernel: The Linux kernel
1278 expects BREAK g which is Magic SysRq g for connecting gdb. */
1279 static int interrupt_on_connect = 0;
1280
1281 /* This variable is used to implement the "set/show remotebreak" commands.
1282 Since these commands are now deprecated in favor of "set/show remote
1283 interrupt-sequence", it no longer has any effect on the code. */
1284 static int remote_break;
1285
1286 static void
1287 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1288 {
1289 if (remote_break)
1290 interrupt_sequence_mode = interrupt_sequence_break;
1291 else
1292 interrupt_sequence_mode = interrupt_sequence_control_c;
1293 }
1294
1295 static void
1296 show_remotebreak (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *c,
1298 const char *value)
1299 {
1300 }
1301
1302 /* This variable sets the number of bits in an address that are to be
1303 sent in a memory ("M" or "m") packet. Normally, after stripping
1304 leading zeros, the entire address would be sent. This variable
1305 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1306 initial implementation of remote.c restricted the address sent in
1307 memory packets to ``host::sizeof long'' bytes - (typically 32
1308 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1309 address was never sent. Since fixing this bug may cause a break in
1310 some remote targets this variable is principly provided to
1311 facilitate backward compatibility. */
1312
1313 static unsigned int remote_address_size;
1314
1315 \f
1316 /* User configurable variables for the number of characters in a
1317 memory read/write packet. MIN (rsa->remote_packet_size,
1318 rsa->sizeof_g_packet) is the default. Some targets need smaller
1319 values (fifo overruns, et.al.) and some users need larger values
1320 (speed up transfers). The variables ``preferred_*'' (the user
1321 request), ``current_*'' (what was actually set) and ``forced_*''
1322 (Positive - a soft limit, negative - a hard limit). */
1323
1324 struct memory_packet_config
1325 {
1326 const char *name;
1327 long size;
1328 int fixed_p;
1329 };
1330
1331 /* The default max memory-write-packet-size, when the setting is
1332 "fixed". The 16k is historical. (It came from older GDB's using
1333 alloca for buffers and the knowledge (folklore?) that some hosts
1334 don't cope very well with large alloca calls.) */
1335 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1336
1337 /* The minimum remote packet size for memory transfers. Ensures we
1338 can write at least one byte. */
1339 #define MIN_MEMORY_PACKET_SIZE 20
1340
1341 /* Get the memory packet size, assuming it is fixed. */
1342
1343 static long
1344 get_fixed_memory_packet_size (struct memory_packet_config *config)
1345 {
1346 gdb_assert (config->fixed_p);
1347
1348 if (config->size <= 0)
1349 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1350 else
1351 return config->size;
1352 }
1353
1354 /* Compute the current size of a read/write packet. Since this makes
1355 use of ``actual_register_packet_size'' the computation is dynamic. */
1356
1357 static long
1358 get_memory_packet_size (struct memory_packet_config *config)
1359 {
1360 struct remote_state *rs = get_remote_state ();
1361 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1362
1363 long what_they_get;
1364 if (config->fixed_p)
1365 what_they_get = get_fixed_memory_packet_size (config);
1366 else
1367 {
1368 what_they_get = get_remote_packet_size ();
1369 /* Limit the packet to the size specified by the user. */
1370 if (config->size > 0
1371 && what_they_get > config->size)
1372 what_they_get = config->size;
1373
1374 /* Limit it to the size of the targets ``g'' response unless we have
1375 permission from the stub to use a larger packet size. */
1376 if (rs->explicit_packet_size == 0
1377 && rsa->actual_register_packet_size > 0
1378 && what_they_get > rsa->actual_register_packet_size)
1379 what_they_get = rsa->actual_register_packet_size;
1380 }
1381 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1382 what_they_get = MIN_MEMORY_PACKET_SIZE;
1383
1384 /* Make sure there is room in the global buffer for this packet
1385 (including its trailing NUL byte). */
1386 if (rs->buf_size < what_they_get + 1)
1387 {
1388 rs->buf_size = 2 * what_they_get;
1389 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1390 }
1391
1392 return what_they_get;
1393 }
1394
1395 /* Update the size of a read/write packet. If they user wants
1396 something really big then do a sanity check. */
1397
1398 static void
1399 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1400 {
1401 int fixed_p = config->fixed_p;
1402 long size = config->size;
1403
1404 if (args == NULL)
1405 error (_("Argument required (integer, `fixed' or `limited')."));
1406 else if (strcmp (args, "hard") == 0
1407 || strcmp (args, "fixed") == 0)
1408 fixed_p = 1;
1409 else if (strcmp (args, "soft") == 0
1410 || strcmp (args, "limit") == 0)
1411 fixed_p = 0;
1412 else
1413 {
1414 char *end;
1415
1416 size = strtoul (args, &end, 0);
1417 if (args == end)
1418 error (_("Invalid %s (bad syntax)."), config->name);
1419
1420 /* Instead of explicitly capping the size of a packet to or
1421 disallowing it, the user is allowed to set the size to
1422 something arbitrarily large. */
1423 }
1424
1425 /* Extra checks? */
1426 if (fixed_p && !config->fixed_p)
1427 {
1428 /* So that the query shows the correct value. */
1429 long query_size = (size <= 0
1430 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1431 : size);
1432
1433 if (! query (_("The target may not be able to correctly handle a %s\n"
1434 "of %ld bytes. Change the packet size? "),
1435 config->name, query_size))
1436 error (_("Packet size not changed."));
1437 }
1438 /* Update the config. */
1439 config->fixed_p = fixed_p;
1440 config->size = size;
1441 }
1442
1443 static void
1444 show_memory_packet_size (struct memory_packet_config *config)
1445 {
1446 if (config->size == 0)
1447 printf_filtered (_("The %s is 0 (default). "), config->name);
1448 else
1449 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1450 if (config->fixed_p)
1451 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1452 get_fixed_memory_packet_size (config));
1453 else
1454 {
1455 struct remote_state *rs = get_remote_state ();
1456
1457 if (rs->remote_desc != NULL)
1458 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1459 get_memory_packet_size (config));
1460 else
1461 puts_filtered ("The actual limit will be further reduced "
1462 "dependent on the target.\n");
1463 }
1464 }
1465
1466 static struct memory_packet_config memory_write_packet_config =
1467 {
1468 "memory-write-packet-size",
1469 };
1470
1471 static void
1472 set_memory_write_packet_size (const char *args, int from_tty)
1473 {
1474 set_memory_packet_size (args, &memory_write_packet_config);
1475 }
1476
1477 static void
1478 show_memory_write_packet_size (const char *args, int from_tty)
1479 {
1480 show_memory_packet_size (&memory_write_packet_config);
1481 }
1482
1483 static long
1484 get_memory_write_packet_size (void)
1485 {
1486 return get_memory_packet_size (&memory_write_packet_config);
1487 }
1488
1489 static struct memory_packet_config memory_read_packet_config =
1490 {
1491 "memory-read-packet-size",
1492 };
1493
1494 static void
1495 set_memory_read_packet_size (const char *args, int from_tty)
1496 {
1497 set_memory_packet_size (args, &memory_read_packet_config);
1498 }
1499
1500 static void
1501 show_memory_read_packet_size (const char *args, int from_tty)
1502 {
1503 show_memory_packet_size (&memory_read_packet_config);
1504 }
1505
1506 static long
1507 get_memory_read_packet_size (void)
1508 {
1509 long size = get_memory_packet_size (&memory_read_packet_config);
1510
1511 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1512 extra buffer size argument before the memory read size can be
1513 increased beyond this. */
1514 if (size > get_remote_packet_size ())
1515 size = get_remote_packet_size ();
1516 return size;
1517 }
1518
1519 \f
1520 /* Generic configuration support for packets the stub optionally
1521 supports. Allows the user to specify the use of the packet as well
1522 as allowing GDB to auto-detect support in the remote stub. */
1523
1524 enum packet_support
1525 {
1526 PACKET_SUPPORT_UNKNOWN = 0,
1527 PACKET_ENABLE,
1528 PACKET_DISABLE
1529 };
1530
1531 struct packet_config
1532 {
1533 const char *name;
1534 const char *title;
1535
1536 /* If auto, GDB auto-detects support for this packet or feature,
1537 either through qSupported, or by trying the packet and looking
1538 at the response. If true, GDB assumes the target supports this
1539 packet. If false, the packet is disabled. Configs that don't
1540 have an associated command always have this set to auto. */
1541 enum auto_boolean detect;
1542
1543 /* Does the target support this packet? */
1544 enum packet_support support;
1545 };
1546
1547 /* Analyze a packet's return value and update the packet config
1548 accordingly. */
1549
1550 enum packet_result
1551 {
1552 PACKET_ERROR,
1553 PACKET_OK,
1554 PACKET_UNKNOWN
1555 };
1556
1557 static enum packet_support packet_config_support (struct packet_config *config);
1558 static enum packet_support packet_support (int packet);
1559
1560 static void
1561 show_packet_config_cmd (struct packet_config *config)
1562 {
1563 const char *support = "internal-error";
1564
1565 switch (packet_config_support (config))
1566 {
1567 case PACKET_ENABLE:
1568 support = "enabled";
1569 break;
1570 case PACKET_DISABLE:
1571 support = "disabled";
1572 break;
1573 case PACKET_SUPPORT_UNKNOWN:
1574 support = "unknown";
1575 break;
1576 }
1577 switch (config->detect)
1578 {
1579 case AUTO_BOOLEAN_AUTO:
1580 printf_filtered (_("Support for the `%s' packet "
1581 "is auto-detected, currently %s.\n"),
1582 config->name, support);
1583 break;
1584 case AUTO_BOOLEAN_TRUE:
1585 case AUTO_BOOLEAN_FALSE:
1586 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1587 config->name, support);
1588 break;
1589 }
1590 }
1591
1592 static void
1593 add_packet_config_cmd (struct packet_config *config, const char *name,
1594 const char *title, int legacy)
1595 {
1596 char *set_doc;
1597 char *show_doc;
1598 char *cmd_name;
1599
1600 config->name = name;
1601 config->title = title;
1602 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1603 name, title);
1604 show_doc = xstrprintf ("Show current use of remote "
1605 "protocol `%s' (%s) packet",
1606 name, title);
1607 /* set/show TITLE-packet {auto,on,off} */
1608 cmd_name = xstrprintf ("%s-packet", title);
1609 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1610 &config->detect, set_doc,
1611 show_doc, NULL, /* help_doc */
1612 NULL,
1613 show_remote_protocol_packet_cmd,
1614 &remote_set_cmdlist, &remote_show_cmdlist);
1615 /* The command code copies the documentation strings. */
1616 xfree (set_doc);
1617 xfree (show_doc);
1618 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1619 if (legacy)
1620 {
1621 char *legacy_name;
1622
1623 legacy_name = xstrprintf ("%s-packet", name);
1624 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1625 &remote_set_cmdlist);
1626 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1627 &remote_show_cmdlist);
1628 }
1629 }
1630
1631 static enum packet_result
1632 packet_check_result (const char *buf)
1633 {
1634 if (buf[0] != '\0')
1635 {
1636 /* The stub recognized the packet request. Check that the
1637 operation succeeded. */
1638 if (buf[0] == 'E'
1639 && isxdigit (buf[1]) && isxdigit (buf[2])
1640 && buf[3] == '\0')
1641 /* "Enn" - definitly an error. */
1642 return PACKET_ERROR;
1643
1644 /* Always treat "E." as an error. This will be used for
1645 more verbose error messages, such as E.memtypes. */
1646 if (buf[0] == 'E' && buf[1] == '.')
1647 return PACKET_ERROR;
1648
1649 /* The packet may or may not be OK. Just assume it is. */
1650 return PACKET_OK;
1651 }
1652 else
1653 /* The stub does not support the packet. */
1654 return PACKET_UNKNOWN;
1655 }
1656
1657 static enum packet_result
1658 packet_ok (const char *buf, struct packet_config *config)
1659 {
1660 enum packet_result result;
1661
1662 if (config->detect != AUTO_BOOLEAN_TRUE
1663 && config->support == PACKET_DISABLE)
1664 internal_error (__FILE__, __LINE__,
1665 _("packet_ok: attempt to use a disabled packet"));
1666
1667 result = packet_check_result (buf);
1668 switch (result)
1669 {
1670 case PACKET_OK:
1671 case PACKET_ERROR:
1672 /* The stub recognized the packet request. */
1673 if (config->support == PACKET_SUPPORT_UNKNOWN)
1674 {
1675 if (remote_debug)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "Packet %s (%s) is supported\n",
1678 config->name, config->title);
1679 config->support = PACKET_ENABLE;
1680 }
1681 break;
1682 case PACKET_UNKNOWN:
1683 /* The stub does not support the packet. */
1684 if (config->detect == AUTO_BOOLEAN_AUTO
1685 && config->support == PACKET_ENABLE)
1686 {
1687 /* If the stub previously indicated that the packet was
1688 supported then there is a protocol error. */
1689 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1690 config->name, config->title);
1691 }
1692 else if (config->detect == AUTO_BOOLEAN_TRUE)
1693 {
1694 /* The user set it wrong. */
1695 error (_("Enabled packet %s (%s) not recognized by stub"),
1696 config->name, config->title);
1697 }
1698
1699 if (remote_debug)
1700 fprintf_unfiltered (gdb_stdlog,
1701 "Packet %s (%s) is NOT supported\n",
1702 config->name, config->title);
1703 config->support = PACKET_DISABLE;
1704 break;
1705 }
1706
1707 return result;
1708 }
1709
1710 enum {
1711 PACKET_vCont = 0,
1712 PACKET_X,
1713 PACKET_qSymbol,
1714 PACKET_P,
1715 PACKET_p,
1716 PACKET_Z0,
1717 PACKET_Z1,
1718 PACKET_Z2,
1719 PACKET_Z3,
1720 PACKET_Z4,
1721 PACKET_vFile_setfs,
1722 PACKET_vFile_open,
1723 PACKET_vFile_pread,
1724 PACKET_vFile_pwrite,
1725 PACKET_vFile_close,
1726 PACKET_vFile_unlink,
1727 PACKET_vFile_readlink,
1728 PACKET_vFile_fstat,
1729 PACKET_qXfer_auxv,
1730 PACKET_qXfer_features,
1731 PACKET_qXfer_exec_file,
1732 PACKET_qXfer_libraries,
1733 PACKET_qXfer_libraries_svr4,
1734 PACKET_qXfer_memory_map,
1735 PACKET_qXfer_spu_read,
1736 PACKET_qXfer_spu_write,
1737 PACKET_qXfer_osdata,
1738 PACKET_qXfer_threads,
1739 PACKET_qXfer_statictrace_read,
1740 PACKET_qXfer_traceframe_info,
1741 PACKET_qXfer_uib,
1742 PACKET_qGetTIBAddr,
1743 PACKET_qGetTLSAddr,
1744 PACKET_qSupported,
1745 PACKET_qTStatus,
1746 PACKET_QPassSignals,
1747 PACKET_QCatchSyscalls,
1748 PACKET_QProgramSignals,
1749 PACKET_QSetWorkingDir,
1750 PACKET_QStartupWithShell,
1751 PACKET_QEnvironmentHexEncoded,
1752 PACKET_QEnvironmentReset,
1753 PACKET_QEnvironmentUnset,
1754 PACKET_qCRC,
1755 PACKET_qSearch_memory,
1756 PACKET_vAttach,
1757 PACKET_vRun,
1758 PACKET_QStartNoAckMode,
1759 PACKET_vKill,
1760 PACKET_qXfer_siginfo_read,
1761 PACKET_qXfer_siginfo_write,
1762 PACKET_qAttached,
1763
1764 /* Support for conditional tracepoints. */
1765 PACKET_ConditionalTracepoints,
1766
1767 /* Support for target-side breakpoint conditions. */
1768 PACKET_ConditionalBreakpoints,
1769
1770 /* Support for target-side breakpoint commands. */
1771 PACKET_BreakpointCommands,
1772
1773 /* Support for fast tracepoints. */
1774 PACKET_FastTracepoints,
1775
1776 /* Support for static tracepoints. */
1777 PACKET_StaticTracepoints,
1778
1779 /* Support for installing tracepoints while a trace experiment is
1780 running. */
1781 PACKET_InstallInTrace,
1782
1783 PACKET_bc,
1784 PACKET_bs,
1785 PACKET_TracepointSource,
1786 PACKET_QAllow,
1787 PACKET_qXfer_fdpic,
1788 PACKET_QDisableRandomization,
1789 PACKET_QAgent,
1790 PACKET_QTBuffer_size,
1791 PACKET_Qbtrace_off,
1792 PACKET_Qbtrace_bts,
1793 PACKET_Qbtrace_pt,
1794 PACKET_qXfer_btrace,
1795
1796 /* Support for the QNonStop packet. */
1797 PACKET_QNonStop,
1798
1799 /* Support for the QThreadEvents packet. */
1800 PACKET_QThreadEvents,
1801
1802 /* Support for multi-process extensions. */
1803 PACKET_multiprocess_feature,
1804
1805 /* Support for enabling and disabling tracepoints while a trace
1806 experiment is running. */
1807 PACKET_EnableDisableTracepoints_feature,
1808
1809 /* Support for collecting strings using the tracenz bytecode. */
1810 PACKET_tracenz_feature,
1811
1812 /* Support for continuing to run a trace experiment while GDB is
1813 disconnected. */
1814 PACKET_DisconnectedTracing_feature,
1815
1816 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1817 PACKET_augmented_libraries_svr4_read_feature,
1818
1819 /* Support for the qXfer:btrace-conf:read packet. */
1820 PACKET_qXfer_btrace_conf,
1821
1822 /* Support for the Qbtrace-conf:bts:size packet. */
1823 PACKET_Qbtrace_conf_bts_size,
1824
1825 /* Support for swbreak+ feature. */
1826 PACKET_swbreak_feature,
1827
1828 /* Support for hwbreak+ feature. */
1829 PACKET_hwbreak_feature,
1830
1831 /* Support for fork events. */
1832 PACKET_fork_event_feature,
1833
1834 /* Support for vfork events. */
1835 PACKET_vfork_event_feature,
1836
1837 /* Support for the Qbtrace-conf:pt:size packet. */
1838 PACKET_Qbtrace_conf_pt_size,
1839
1840 /* Support for exec events. */
1841 PACKET_exec_event_feature,
1842
1843 /* Support for query supported vCont actions. */
1844 PACKET_vContSupported,
1845
1846 /* Support remote CTRL-C. */
1847 PACKET_vCtrlC,
1848
1849 /* Support TARGET_WAITKIND_NO_RESUMED. */
1850 PACKET_no_resumed,
1851
1852 PACKET_MAX
1853 };
1854
1855 static struct packet_config remote_protocol_packets[PACKET_MAX];
1856
1857 /* Returns the packet's corresponding "set remote foo-packet" command
1858 state. See struct packet_config for more details. */
1859
1860 static enum auto_boolean
1861 packet_set_cmd_state (int packet)
1862 {
1863 return remote_protocol_packets[packet].detect;
1864 }
1865
1866 /* Returns whether a given packet or feature is supported. This takes
1867 into account the state of the corresponding "set remote foo-packet"
1868 command, which may be used to bypass auto-detection. */
1869
1870 static enum packet_support
1871 packet_config_support (struct packet_config *config)
1872 {
1873 switch (config->detect)
1874 {
1875 case AUTO_BOOLEAN_TRUE:
1876 return PACKET_ENABLE;
1877 case AUTO_BOOLEAN_FALSE:
1878 return PACKET_DISABLE;
1879 case AUTO_BOOLEAN_AUTO:
1880 return config->support;
1881 default:
1882 gdb_assert_not_reached (_("bad switch"));
1883 }
1884 }
1885
1886 /* Same as packet_config_support, but takes the packet's enum value as
1887 argument. */
1888
1889 static enum packet_support
1890 packet_support (int packet)
1891 {
1892 struct packet_config *config = &remote_protocol_packets[packet];
1893
1894 return packet_config_support (config);
1895 }
1896
1897 static void
1898 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1899 struct cmd_list_element *c,
1900 const char *value)
1901 {
1902 struct packet_config *packet;
1903
1904 for (packet = remote_protocol_packets;
1905 packet < &remote_protocol_packets[PACKET_MAX];
1906 packet++)
1907 {
1908 if (&packet->detect == c->var)
1909 {
1910 show_packet_config_cmd (packet);
1911 return;
1912 }
1913 }
1914 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1915 c->name);
1916 }
1917
1918 /* Should we try one of the 'Z' requests? */
1919
1920 enum Z_packet_type
1921 {
1922 Z_PACKET_SOFTWARE_BP,
1923 Z_PACKET_HARDWARE_BP,
1924 Z_PACKET_WRITE_WP,
1925 Z_PACKET_READ_WP,
1926 Z_PACKET_ACCESS_WP,
1927 NR_Z_PACKET_TYPES
1928 };
1929
1930 /* For compatibility with older distributions. Provide a ``set remote
1931 Z-packet ...'' command that updates all the Z packet types. */
1932
1933 static enum auto_boolean remote_Z_packet_detect;
1934
1935 static void
1936 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1937 struct cmd_list_element *c)
1938 {
1939 int i;
1940
1941 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1942 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1943 }
1944
1945 static void
1946 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1947 struct cmd_list_element *c,
1948 const char *value)
1949 {
1950 int i;
1951
1952 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1953 {
1954 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1955 }
1956 }
1957
1958 /* Returns true if the multi-process extensions are in effect. */
1959
1960 static int
1961 remote_multi_process_p (struct remote_state *rs)
1962 {
1963 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1964 }
1965
1966 /* Returns true if fork events are supported. */
1967
1968 static int
1969 remote_fork_event_p (struct remote_state *rs)
1970 {
1971 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1972 }
1973
1974 /* Returns true if vfork events are supported. */
1975
1976 static int
1977 remote_vfork_event_p (struct remote_state *rs)
1978 {
1979 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1980 }
1981
1982 /* Returns true if exec events are supported. */
1983
1984 static int
1985 remote_exec_event_p (struct remote_state *rs)
1986 {
1987 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1988 }
1989
1990 /* Insert fork catchpoint target routine. If fork events are enabled
1991 then return success, nothing more to do. */
1992
1993 int
1994 remote_target::insert_fork_catchpoint (int pid)
1995 {
1996 struct remote_state *rs = get_remote_state ();
1997
1998 return !remote_fork_event_p (rs);
1999 }
2000
2001 /* Remove fork catchpoint target routine. Nothing to do, just
2002 return success. */
2003
2004 int
2005 remote_target::remove_fork_catchpoint (int pid)
2006 {
2007 return 0;
2008 }
2009
2010 /* Insert vfork catchpoint target routine. If vfork events are enabled
2011 then return success, nothing more to do. */
2012
2013 int
2014 remote_target::insert_vfork_catchpoint (int pid)
2015 {
2016 struct remote_state *rs = get_remote_state ();
2017
2018 return !remote_vfork_event_p (rs);
2019 }
2020
2021 /* Remove vfork catchpoint target routine. Nothing to do, just
2022 return success. */
2023
2024 int
2025 remote_target::remove_vfork_catchpoint (int pid)
2026 {
2027 return 0;
2028 }
2029
2030 /* Insert exec catchpoint target routine. If exec events are
2031 enabled, just return success. */
2032
2033 int
2034 remote_target::insert_exec_catchpoint (int pid)
2035 {
2036 struct remote_state *rs = get_remote_state ();
2037
2038 return !remote_exec_event_p (rs);
2039 }
2040
2041 /* Remove exec catchpoint target routine. Nothing to do, just
2042 return success. */
2043
2044 int
2045 remote_target::remove_exec_catchpoint (int pid)
2046 {
2047 return 0;
2048 }
2049
2050 \f
2051 /* Asynchronous signal handle registered as event loop source for
2052 when we have pending events ready to be passed to the core. */
2053
2054 static struct async_event_handler *remote_async_inferior_event_token;
2055
2056 \f
2057
2058 static ptid_t magic_null_ptid;
2059 static ptid_t not_sent_ptid;
2060 static ptid_t any_thread_ptid;
2061
2062 /* Find out if the stub attached to PID (and hence GDB should offer to
2063 detach instead of killing it when bailing out). */
2064
2065 static int
2066 remote_query_attached (int pid)
2067 {
2068 struct remote_state *rs = get_remote_state ();
2069 size_t size = get_remote_packet_size ();
2070
2071 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2072 return 0;
2073
2074 if (remote_multi_process_p (rs))
2075 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2076 else
2077 xsnprintf (rs->buf, size, "qAttached");
2078
2079 putpkt (rs->buf);
2080 getpkt (&rs->buf, &rs->buf_size, 0);
2081
2082 switch (packet_ok (rs->buf,
2083 &remote_protocol_packets[PACKET_qAttached]))
2084 {
2085 case PACKET_OK:
2086 if (strcmp (rs->buf, "1") == 0)
2087 return 1;
2088 break;
2089 case PACKET_ERROR:
2090 warning (_("Remote failure reply: %s"), rs->buf);
2091 break;
2092 case PACKET_UNKNOWN:
2093 break;
2094 }
2095
2096 return 0;
2097 }
2098
2099 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2100 has been invented by GDB, instead of reported by the target. Since
2101 we can be connected to a remote system before before knowing about
2102 any inferior, mark the target with execution when we find the first
2103 inferior. If ATTACHED is 1, then we had just attached to this
2104 inferior. If it is 0, then we just created this inferior. If it
2105 is -1, then try querying the remote stub to find out if it had
2106 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2107 attempt to open this inferior's executable as the main executable
2108 if no main executable is open already. */
2109
2110 static struct inferior *
2111 remote_add_inferior (int fake_pid_p, int pid, int attached,
2112 int try_open_exec)
2113 {
2114 struct inferior *inf;
2115
2116 /* Check whether this process we're learning about is to be
2117 considered attached, or if is to be considered to have been
2118 spawned by the stub. */
2119 if (attached == -1)
2120 attached = remote_query_attached (pid);
2121
2122 if (gdbarch_has_global_solist (target_gdbarch ()))
2123 {
2124 /* If the target shares code across all inferiors, then every
2125 attach adds a new inferior. */
2126 inf = add_inferior (pid);
2127
2128 /* ... and every inferior is bound to the same program space.
2129 However, each inferior may still have its own address
2130 space. */
2131 inf->aspace = maybe_new_address_space ();
2132 inf->pspace = current_program_space;
2133 }
2134 else
2135 {
2136 /* In the traditional debugging scenario, there's a 1-1 match
2137 between program/address spaces. We simply bind the inferior
2138 to the program space's address space. */
2139 inf = current_inferior ();
2140 inferior_appeared (inf, pid);
2141 }
2142
2143 inf->attach_flag = attached;
2144 inf->fake_pid_p = fake_pid_p;
2145
2146 /* If no main executable is currently open then attempt to
2147 open the file that was executed to create this inferior. */
2148 if (try_open_exec && get_exec_file (0) == NULL)
2149 exec_file_locate_attach (pid, 0, 1);
2150
2151 return inf;
2152 }
2153
2154 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2155
2156 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2157 according to RUNNING. */
2158
2159 static void
2160 remote_add_thread (ptid_t ptid, int running, int executing)
2161 {
2162 struct remote_state *rs = get_remote_state ();
2163 struct thread_info *thread;
2164
2165 /* GDB historically didn't pull threads in the initial connection
2166 setup. If the remote target doesn't even have a concept of
2167 threads (e.g., a bare-metal target), even if internally we
2168 consider that a single-threaded target, mentioning a new thread
2169 might be confusing to the user. Be silent then, preserving the
2170 age old behavior. */
2171 if (rs->starting_up)
2172 thread = add_thread_silent (ptid);
2173 else
2174 thread = add_thread (ptid);
2175
2176 get_remote_thread_info (thread)->vcont_resumed = executing;
2177 set_executing (ptid, executing);
2178 set_running (ptid, running);
2179 }
2180
2181 /* Come here when we learn about a thread id from the remote target.
2182 It may be the first time we hear about such thread, so take the
2183 opportunity to add it to GDB's thread list. In case this is the
2184 first time we're noticing its corresponding inferior, add it to
2185 GDB's inferior list as well. EXECUTING indicates whether the
2186 thread is (internally) executing or stopped. */
2187
2188 static void
2189 remote_notice_new_inferior (ptid_t currthread, int executing)
2190 {
2191 /* In non-stop mode, we assume new found threads are (externally)
2192 running until proven otherwise with a stop reply. In all-stop,
2193 we can only get here if all threads are stopped. */
2194 int running = target_is_non_stop_p () ? 1 : 0;
2195
2196 /* If this is a new thread, add it to GDB's thread list.
2197 If we leave it up to WFI to do this, bad things will happen. */
2198
2199 if (in_thread_list (currthread) && is_exited (currthread))
2200 {
2201 /* We're seeing an event on a thread id we knew had exited.
2202 This has to be a new thread reusing the old id. Add it. */
2203 remote_add_thread (currthread, running, executing);
2204 return;
2205 }
2206
2207 if (!in_thread_list (currthread))
2208 {
2209 struct inferior *inf = NULL;
2210 int pid = ptid_get_pid (currthread);
2211
2212 if (ptid_is_pid (inferior_ptid)
2213 && pid == ptid_get_pid (inferior_ptid))
2214 {
2215 /* inferior_ptid has no thread member yet. This can happen
2216 with the vAttach -> remote_wait,"TAAthread:" path if the
2217 stub doesn't support qC. This is the first stop reported
2218 after an attach, so this is the main thread. Update the
2219 ptid in the thread list. */
2220 if (in_thread_list (pid_to_ptid (pid)))
2221 thread_change_ptid (inferior_ptid, currthread);
2222 else
2223 {
2224 remote_add_thread (currthread, running, executing);
2225 inferior_ptid = currthread;
2226 }
2227 return;
2228 }
2229
2230 if (ptid_equal (magic_null_ptid, inferior_ptid))
2231 {
2232 /* inferior_ptid is not set yet. This can happen with the
2233 vRun -> remote_wait,"TAAthread:" path if the stub
2234 doesn't support qC. This is the first stop reported
2235 after an attach, so this is the main thread. Update the
2236 ptid in the thread list. */
2237 thread_change_ptid (inferior_ptid, currthread);
2238 return;
2239 }
2240
2241 /* When connecting to a target remote, or to a target
2242 extended-remote which already was debugging an inferior, we
2243 may not know about it yet. Add it before adding its child
2244 thread, so notifications are emitted in a sensible order. */
2245 if (!in_inferior_list (ptid_get_pid (currthread)))
2246 {
2247 struct remote_state *rs = get_remote_state ();
2248 int fake_pid_p = !remote_multi_process_p (rs);
2249
2250 inf = remote_add_inferior (fake_pid_p,
2251 ptid_get_pid (currthread), -1, 1);
2252 }
2253
2254 /* This is really a new thread. Add it. */
2255 remote_add_thread (currthread, running, executing);
2256
2257 /* If we found a new inferior, let the common code do whatever
2258 it needs to with it (e.g., read shared libraries, insert
2259 breakpoints), unless we're just setting up an all-stop
2260 connection. */
2261 if (inf != NULL)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 if (!rs->starting_up)
2266 notice_new_inferior (currthread, executing, 0);
2267 }
2268 }
2269 }
2270
2271 /* Return THREAD's private thread data, creating it if necessary. */
2272
2273 static remote_thread_info *
2274 get_remote_thread_info (thread_info *thread)
2275 {
2276 gdb_assert (thread != NULL);
2277
2278 if (thread->priv == NULL)
2279 thread->priv.reset (new remote_thread_info);
2280
2281 return static_cast<remote_thread_info *> (thread->priv.get ());
2282 }
2283
2284 /* Return PTID's private thread data, creating it if necessary. */
2285
2286 static remote_thread_info *
2287 get_remote_thread_info (ptid_t ptid)
2288 {
2289 struct thread_info *info = find_thread_ptid (ptid);
2290
2291 return get_remote_thread_info (info);
2292 }
2293
2294 /* Call this function as a result of
2295 1) A halt indication (T packet) containing a thread id
2296 2) A direct query of currthread
2297 3) Successful execution of set thread */
2298
2299 static void
2300 record_currthread (struct remote_state *rs, ptid_t currthread)
2301 {
2302 rs->general_thread = currthread;
2303 }
2304
2305 /* If 'QPassSignals' is supported, tell the remote stub what signals
2306 it can simply pass through to the inferior without reporting. */
2307
2308 void
2309 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2310 {
2311 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2312 {
2313 char *pass_packet, *p;
2314 int count = 0, i;
2315 struct remote_state *rs = get_remote_state ();
2316
2317 gdb_assert (numsigs < 256);
2318 for (i = 0; i < numsigs; i++)
2319 {
2320 if (pass_signals[i])
2321 count++;
2322 }
2323 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2324 strcpy (pass_packet, "QPassSignals:");
2325 p = pass_packet + strlen (pass_packet);
2326 for (i = 0; i < numsigs; i++)
2327 {
2328 if (pass_signals[i])
2329 {
2330 if (i >= 16)
2331 *p++ = tohex (i >> 4);
2332 *p++ = tohex (i & 15);
2333 if (count)
2334 *p++ = ';';
2335 else
2336 break;
2337 count--;
2338 }
2339 }
2340 *p = 0;
2341 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2342 {
2343 putpkt (pass_packet);
2344 getpkt (&rs->buf, &rs->buf_size, 0);
2345 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2346 if (rs->last_pass_packet)
2347 xfree (rs->last_pass_packet);
2348 rs->last_pass_packet = pass_packet;
2349 }
2350 else
2351 xfree (pass_packet);
2352 }
2353 }
2354
2355 /* If 'QCatchSyscalls' is supported, tell the remote stub
2356 to report syscalls to GDB. */
2357
2358 int
2359 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2360 gdb::array_view<const int> syscall_counts)
2361 {
2362 const char *catch_packet;
2363 enum packet_result result;
2364 int n_sysno = 0;
2365
2366 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2367 {
2368 /* Not supported. */
2369 return 1;
2370 }
2371
2372 if (needed && any_count == 0)
2373 {
2374 /* Count how many syscalls are to be caught. */
2375 for (size_t i = 0; i < syscall_counts.size (); i++)
2376 {
2377 if (syscall_counts[i] != 0)
2378 n_sysno++;
2379 }
2380 }
2381
2382 if (remote_debug)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "remote_set_syscall_catchpoint "
2386 "pid %d needed %d any_count %d n_sysno %d\n",
2387 pid, needed, any_count, n_sysno);
2388 }
2389
2390 std::string built_packet;
2391 if (needed)
2392 {
2393 /* Prepare a packet with the sysno list, assuming max 8+1
2394 characters for a sysno. If the resulting packet size is too
2395 big, fallback on the non-selective packet. */
2396 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2397 built_packet.reserve (maxpktsz);
2398 built_packet = "QCatchSyscalls:1";
2399 if (any_count == 0)
2400 {
2401 /* Add in each syscall to be caught. */
2402 for (size_t i = 0; i < syscall_counts.size (); i++)
2403 {
2404 if (syscall_counts[i] != 0)
2405 string_appendf (built_packet, ";%zx", i);
2406 }
2407 }
2408 if (built_packet.size () > get_remote_packet_size ())
2409 {
2410 /* catch_packet too big. Fallback to less efficient
2411 non selective mode, with GDB doing the filtering. */
2412 catch_packet = "QCatchSyscalls:1";
2413 }
2414 else
2415 catch_packet = built_packet.c_str ();
2416 }
2417 else
2418 catch_packet = "QCatchSyscalls:0";
2419
2420 struct remote_state *rs = get_remote_state ();
2421
2422 putpkt (catch_packet);
2423 getpkt (&rs->buf, &rs->buf_size, 0);
2424 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2425 if (result == PACKET_OK)
2426 return 0;
2427 else
2428 return -1;
2429 }
2430
2431 /* If 'QProgramSignals' is supported, tell the remote stub what
2432 signals it should pass through to the inferior when detaching. */
2433
2434 void
2435 remote_target::program_signals (int numsigs, unsigned char *signals)
2436 {
2437 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2438 {
2439 char *packet, *p;
2440 int count = 0, i;
2441 struct remote_state *rs = get_remote_state ();
2442
2443 gdb_assert (numsigs < 256);
2444 for (i = 0; i < numsigs; i++)
2445 {
2446 if (signals[i])
2447 count++;
2448 }
2449 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2450 strcpy (packet, "QProgramSignals:");
2451 p = packet + strlen (packet);
2452 for (i = 0; i < numsigs; i++)
2453 {
2454 if (signal_pass_state (i))
2455 {
2456 if (i >= 16)
2457 *p++ = tohex (i >> 4);
2458 *p++ = tohex (i & 15);
2459 if (count)
2460 *p++ = ';';
2461 else
2462 break;
2463 count--;
2464 }
2465 }
2466 *p = 0;
2467 if (!rs->last_program_signals_packet
2468 || strcmp (rs->last_program_signals_packet, packet) != 0)
2469 {
2470 putpkt (packet);
2471 getpkt (&rs->buf, &rs->buf_size, 0);
2472 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2473 xfree (rs->last_program_signals_packet);
2474 rs->last_program_signals_packet = packet;
2475 }
2476 else
2477 xfree (packet);
2478 }
2479 }
2480
2481 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2482 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2483 thread. If GEN is set, set the general thread, if not, then set
2484 the step/continue thread. */
2485 static void
2486 set_thread (ptid_t ptid, int gen)
2487 {
2488 struct remote_state *rs = get_remote_state ();
2489 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2490 char *buf = rs->buf;
2491 char *endbuf = rs->buf + get_remote_packet_size ();
2492
2493 if (ptid_equal (state, ptid))
2494 return;
2495
2496 *buf++ = 'H';
2497 *buf++ = gen ? 'g' : 'c';
2498 if (ptid_equal (ptid, magic_null_ptid))
2499 xsnprintf (buf, endbuf - buf, "0");
2500 else if (ptid_equal (ptid, any_thread_ptid))
2501 xsnprintf (buf, endbuf - buf, "0");
2502 else if (ptid_equal (ptid, minus_one_ptid))
2503 xsnprintf (buf, endbuf - buf, "-1");
2504 else
2505 write_ptid (buf, endbuf, ptid);
2506 putpkt (rs->buf);
2507 getpkt (&rs->buf, &rs->buf_size, 0);
2508 if (gen)
2509 rs->general_thread = ptid;
2510 else
2511 rs->continue_thread = ptid;
2512 }
2513
2514 static void
2515 set_general_thread (ptid_t ptid)
2516 {
2517 set_thread (ptid, 1);
2518 }
2519
2520 static void
2521 set_continue_thread (ptid_t ptid)
2522 {
2523 set_thread (ptid, 0);
2524 }
2525
2526 /* Change the remote current process. Which thread within the process
2527 ends up selected isn't important, as long as it is the same process
2528 as what INFERIOR_PTID points to.
2529
2530 This comes from that fact that there is no explicit notion of
2531 "selected process" in the protocol. The selected process for
2532 general operations is the process the selected general thread
2533 belongs to. */
2534
2535 static void
2536 set_general_process (void)
2537 {
2538 struct remote_state *rs = get_remote_state ();
2539
2540 /* If the remote can't handle multiple processes, don't bother. */
2541 if (!remote_multi_process_p (rs))
2542 return;
2543
2544 /* We only need to change the remote current thread if it's pointing
2545 at some other process. */
2546 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2547 set_general_thread (inferior_ptid);
2548 }
2549
2550 \f
2551 /* Return nonzero if this is the main thread that we made up ourselves
2552 to model non-threaded targets as single-threaded. */
2553
2554 static int
2555 remote_thread_always_alive (ptid_t ptid)
2556 {
2557 if (ptid_equal (ptid, magic_null_ptid))
2558 /* The main thread is always alive. */
2559 return 1;
2560
2561 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2562 /* The main thread is always alive. This can happen after a
2563 vAttach, if the remote side doesn't support
2564 multi-threading. */
2565 return 1;
2566
2567 return 0;
2568 }
2569
2570 /* Return nonzero if the thread PTID is still alive on the remote
2571 system. */
2572
2573 bool
2574 remote_target::thread_alive (ptid_t ptid)
2575 {
2576 struct remote_state *rs = get_remote_state ();
2577 char *p, *endp;
2578
2579 /* Check if this is a thread that we made up ourselves to model
2580 non-threaded targets as single-threaded. */
2581 if (remote_thread_always_alive (ptid))
2582 return 1;
2583
2584 p = rs->buf;
2585 endp = rs->buf + get_remote_packet_size ();
2586
2587 *p++ = 'T';
2588 write_ptid (p, endp, ptid);
2589
2590 putpkt (rs->buf);
2591 getpkt (&rs->buf, &rs->buf_size, 0);
2592 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2593 }
2594
2595 /* Return a pointer to a thread name if we know it and NULL otherwise.
2596 The thread_info object owns the memory for the name. */
2597
2598 const char *
2599 remote_target::thread_name (struct thread_info *info)
2600 {
2601 if (info->priv != NULL)
2602 {
2603 const std::string &name = get_remote_thread_info (info)->name;
2604 return !name.empty () ? name.c_str () : NULL;
2605 }
2606
2607 return NULL;
2608 }
2609
2610 /* About these extended threadlist and threadinfo packets. They are
2611 variable length packets but, the fields within them are often fixed
2612 length. They are redundent enough to send over UDP as is the
2613 remote protocol in general. There is a matching unit test module
2614 in libstub. */
2615
2616 /* WARNING: This threadref data structure comes from the remote O.S.,
2617 libstub protocol encoding, and remote.c. It is not particularly
2618 changable. */
2619
2620 /* Right now, the internal structure is int. We want it to be bigger.
2621 Plan to fix this. */
2622
2623 typedef int gdb_threadref; /* Internal GDB thread reference. */
2624
2625 /* gdb_ext_thread_info is an internal GDB data structure which is
2626 equivalent to the reply of the remote threadinfo packet. */
2627
2628 struct gdb_ext_thread_info
2629 {
2630 threadref threadid; /* External form of thread reference. */
2631 int active; /* Has state interesting to GDB?
2632 regs, stack. */
2633 char display[256]; /* Brief state display, name,
2634 blocked/suspended. */
2635 char shortname[32]; /* To be used to name threads. */
2636 char more_display[256]; /* Long info, statistics, queue depth,
2637 whatever. */
2638 };
2639
2640 /* The volume of remote transfers can be limited by submitting
2641 a mask containing bits specifying the desired information.
2642 Use a union of these values as the 'selection' parameter to
2643 get_thread_info. FIXME: Make these TAG names more thread specific. */
2644
2645 #define TAG_THREADID 1
2646 #define TAG_EXISTS 2
2647 #define TAG_DISPLAY 4
2648 #define TAG_THREADNAME 8
2649 #define TAG_MOREDISPLAY 16
2650
2651 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2652
2653 static char *unpack_nibble (char *buf, int *val);
2654
2655 static char *unpack_byte (char *buf, int *value);
2656
2657 static char *pack_int (char *buf, int value);
2658
2659 static char *unpack_int (char *buf, int *value);
2660
2661 static char *unpack_string (char *src, char *dest, int length);
2662
2663 static char *pack_threadid (char *pkt, threadref *id);
2664
2665 static char *unpack_threadid (char *inbuf, threadref *id);
2666
2667 void int_to_threadref (threadref *id, int value);
2668
2669 static int threadref_to_int (threadref *ref);
2670
2671 static void copy_threadref (threadref *dest, threadref *src);
2672
2673 static int threadmatch (threadref *dest, threadref *src);
2674
2675 static char *pack_threadinfo_request (char *pkt, int mode,
2676 threadref *id);
2677
2678 static int remote_unpack_thread_info_response (char *pkt,
2679 threadref *expectedref,
2680 struct gdb_ext_thread_info
2681 *info);
2682
2683
2684 static int remote_get_threadinfo (threadref *threadid,
2685 int fieldset, /*TAG mask */
2686 struct gdb_ext_thread_info *info);
2687
2688 static char *pack_threadlist_request (char *pkt, int startflag,
2689 int threadcount,
2690 threadref *nextthread);
2691
2692 static int parse_threadlist_response (char *pkt,
2693 int result_limit,
2694 threadref *original_echo,
2695 threadref *resultlist,
2696 int *doneflag);
2697
2698 static int remote_get_threadlist (int startflag,
2699 threadref *nextthread,
2700 int result_limit,
2701 int *done,
2702 int *result_count,
2703 threadref *threadlist);
2704
2705 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2706
2707 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2708 void *context, int looplimit);
2709
2710 static int remote_newthread_step (threadref *ref, void *context);
2711
2712
2713 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2714 buffer we're allowed to write to. Returns
2715 BUF+CHARACTERS_WRITTEN. */
2716
2717 static char *
2718 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2719 {
2720 int pid, tid;
2721 struct remote_state *rs = get_remote_state ();
2722
2723 if (remote_multi_process_p (rs))
2724 {
2725 pid = ptid_get_pid (ptid);
2726 if (pid < 0)
2727 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2728 else
2729 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2730 }
2731 tid = ptid_get_lwp (ptid);
2732 if (tid < 0)
2733 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2734 else
2735 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2736
2737 return buf;
2738 }
2739
2740 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2741 last parsed char. Returns null_ptid if no thread id is found, and
2742 throws an error if the thread id has an invalid format. */
2743
2744 static ptid_t
2745 read_ptid (const char *buf, const char **obuf)
2746 {
2747 const char *p = buf;
2748 const char *pp;
2749 ULONGEST pid = 0, tid = 0;
2750
2751 if (*p == 'p')
2752 {
2753 /* Multi-process ptid. */
2754 pp = unpack_varlen_hex (p + 1, &pid);
2755 if (*pp != '.')
2756 error (_("invalid remote ptid: %s"), p);
2757
2758 p = pp;
2759 pp = unpack_varlen_hex (p + 1, &tid);
2760 if (obuf)
2761 *obuf = pp;
2762 return ptid_build (pid, tid, 0);
2763 }
2764
2765 /* No multi-process. Just a tid. */
2766 pp = unpack_varlen_hex (p, &tid);
2767
2768 /* Return null_ptid when no thread id is found. */
2769 if (p == pp)
2770 {
2771 if (obuf)
2772 *obuf = pp;
2773 return null_ptid;
2774 }
2775
2776 /* Since the stub is not sending a process id, then default to
2777 what's in inferior_ptid, unless it's null at this point. If so,
2778 then since there's no way to know the pid of the reported
2779 threads, use the magic number. */
2780 if (ptid_equal (inferior_ptid, null_ptid))
2781 pid = ptid_get_pid (magic_null_ptid);
2782 else
2783 pid = ptid_get_pid (inferior_ptid);
2784
2785 if (obuf)
2786 *obuf = pp;
2787 return ptid_build (pid, tid, 0);
2788 }
2789
2790 static int
2791 stubhex (int ch)
2792 {
2793 if (ch >= 'a' && ch <= 'f')
2794 return ch - 'a' + 10;
2795 if (ch >= '0' && ch <= '9')
2796 return ch - '0';
2797 if (ch >= 'A' && ch <= 'F')
2798 return ch - 'A' + 10;
2799 return -1;
2800 }
2801
2802 static int
2803 stub_unpack_int (char *buff, int fieldlength)
2804 {
2805 int nibble;
2806 int retval = 0;
2807
2808 while (fieldlength)
2809 {
2810 nibble = stubhex (*buff++);
2811 retval |= nibble;
2812 fieldlength--;
2813 if (fieldlength)
2814 retval = retval << 4;
2815 }
2816 return retval;
2817 }
2818
2819 static char *
2820 unpack_nibble (char *buf, int *val)
2821 {
2822 *val = fromhex (*buf++);
2823 return buf;
2824 }
2825
2826 static char *
2827 unpack_byte (char *buf, int *value)
2828 {
2829 *value = stub_unpack_int (buf, 2);
2830 return buf + 2;
2831 }
2832
2833 static char *
2834 pack_int (char *buf, int value)
2835 {
2836 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2837 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2838 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2839 buf = pack_hex_byte (buf, (value & 0xff));
2840 return buf;
2841 }
2842
2843 static char *
2844 unpack_int (char *buf, int *value)
2845 {
2846 *value = stub_unpack_int (buf, 8);
2847 return buf + 8;
2848 }
2849
2850 #if 0 /* Currently unused, uncomment when needed. */
2851 static char *pack_string (char *pkt, char *string);
2852
2853 static char *
2854 pack_string (char *pkt, char *string)
2855 {
2856 char ch;
2857 int len;
2858
2859 len = strlen (string);
2860 if (len > 200)
2861 len = 200; /* Bigger than most GDB packets, junk??? */
2862 pkt = pack_hex_byte (pkt, len);
2863 while (len-- > 0)
2864 {
2865 ch = *string++;
2866 if ((ch == '\0') || (ch == '#'))
2867 ch = '*'; /* Protect encapsulation. */
2868 *pkt++ = ch;
2869 }
2870 return pkt;
2871 }
2872 #endif /* 0 (unused) */
2873
2874 static char *
2875 unpack_string (char *src, char *dest, int length)
2876 {
2877 while (length--)
2878 *dest++ = *src++;
2879 *dest = '\0';
2880 return src;
2881 }
2882
2883 static char *
2884 pack_threadid (char *pkt, threadref *id)
2885 {
2886 char *limit;
2887 unsigned char *altid;
2888
2889 altid = (unsigned char *) id;
2890 limit = pkt + BUF_THREAD_ID_SIZE;
2891 while (pkt < limit)
2892 pkt = pack_hex_byte (pkt, *altid++);
2893 return pkt;
2894 }
2895
2896
2897 static char *
2898 unpack_threadid (char *inbuf, threadref *id)
2899 {
2900 char *altref;
2901 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2902 int x, y;
2903
2904 altref = (char *) id;
2905
2906 while (inbuf < limit)
2907 {
2908 x = stubhex (*inbuf++);
2909 y = stubhex (*inbuf++);
2910 *altref++ = (x << 4) | y;
2911 }
2912 return inbuf;
2913 }
2914
2915 /* Externally, threadrefs are 64 bits but internally, they are still
2916 ints. This is due to a mismatch of specifications. We would like
2917 to use 64bit thread references internally. This is an adapter
2918 function. */
2919
2920 void
2921 int_to_threadref (threadref *id, int value)
2922 {
2923 unsigned char *scan;
2924
2925 scan = (unsigned char *) id;
2926 {
2927 int i = 4;
2928 while (i--)
2929 *scan++ = 0;
2930 }
2931 *scan++ = (value >> 24) & 0xff;
2932 *scan++ = (value >> 16) & 0xff;
2933 *scan++ = (value >> 8) & 0xff;
2934 *scan++ = (value & 0xff);
2935 }
2936
2937 static int
2938 threadref_to_int (threadref *ref)
2939 {
2940 int i, value = 0;
2941 unsigned char *scan;
2942
2943 scan = *ref;
2944 scan += 4;
2945 i = 4;
2946 while (i-- > 0)
2947 value = (value << 8) | ((*scan++) & 0xff);
2948 return value;
2949 }
2950
2951 static void
2952 copy_threadref (threadref *dest, threadref *src)
2953 {
2954 int i;
2955 unsigned char *csrc, *cdest;
2956
2957 csrc = (unsigned char *) src;
2958 cdest = (unsigned char *) dest;
2959 i = 8;
2960 while (i--)
2961 *cdest++ = *csrc++;
2962 }
2963
2964 static int
2965 threadmatch (threadref *dest, threadref *src)
2966 {
2967 /* Things are broken right now, so just assume we got a match. */
2968 #if 0
2969 unsigned char *srcp, *destp;
2970 int i, result;
2971 srcp = (char *) src;
2972 destp = (char *) dest;
2973
2974 result = 1;
2975 while (i-- > 0)
2976 result &= (*srcp++ == *destp++) ? 1 : 0;
2977 return result;
2978 #endif
2979 return 1;
2980 }
2981
2982 /*
2983 threadid:1, # always request threadid
2984 context_exists:2,
2985 display:4,
2986 unique_name:8,
2987 more_display:16
2988 */
2989
2990 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2991
2992 static char *
2993 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2994 {
2995 *pkt++ = 'q'; /* Info Query */
2996 *pkt++ = 'P'; /* process or thread info */
2997 pkt = pack_int (pkt, mode); /* mode */
2998 pkt = pack_threadid (pkt, id); /* threadid */
2999 *pkt = '\0'; /* terminate */
3000 return pkt;
3001 }
3002
3003 /* These values tag the fields in a thread info response packet. */
3004 /* Tagging the fields allows us to request specific fields and to
3005 add more fields as time goes by. */
3006
3007 #define TAG_THREADID 1 /* Echo the thread identifier. */
3008 #define TAG_EXISTS 2 /* Is this process defined enough to
3009 fetch registers and its stack? */
3010 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3011 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3012 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3013 the process. */
3014
3015 static int
3016 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
3017 struct gdb_ext_thread_info *info)
3018 {
3019 struct remote_state *rs = get_remote_state ();
3020 int mask, length;
3021 int tag;
3022 threadref ref;
3023 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3024 int retval = 1;
3025
3026 /* info->threadid = 0; FIXME: implement zero_threadref. */
3027 info->active = 0;
3028 info->display[0] = '\0';
3029 info->shortname[0] = '\0';
3030 info->more_display[0] = '\0';
3031
3032 /* Assume the characters indicating the packet type have been
3033 stripped. */
3034 pkt = unpack_int (pkt, &mask); /* arg mask */
3035 pkt = unpack_threadid (pkt, &ref);
3036
3037 if (mask == 0)
3038 warning (_("Incomplete response to threadinfo request."));
3039 if (!threadmatch (&ref, expectedref))
3040 { /* This is an answer to a different request. */
3041 warning (_("ERROR RMT Thread info mismatch."));
3042 return 0;
3043 }
3044 copy_threadref (&info->threadid, &ref);
3045
3046 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3047
3048 /* Packets are terminated with nulls. */
3049 while ((pkt < limit) && mask && *pkt)
3050 {
3051 pkt = unpack_int (pkt, &tag); /* tag */
3052 pkt = unpack_byte (pkt, &length); /* length */
3053 if (!(tag & mask)) /* Tags out of synch with mask. */
3054 {
3055 warning (_("ERROR RMT: threadinfo tag mismatch."));
3056 retval = 0;
3057 break;
3058 }
3059 if (tag == TAG_THREADID)
3060 {
3061 if (length != 16)
3062 {
3063 warning (_("ERROR RMT: length of threadid is not 16."));
3064 retval = 0;
3065 break;
3066 }
3067 pkt = unpack_threadid (pkt, &ref);
3068 mask = mask & ~TAG_THREADID;
3069 continue;
3070 }
3071 if (tag == TAG_EXISTS)
3072 {
3073 info->active = stub_unpack_int (pkt, length);
3074 pkt += length;
3075 mask = mask & ~(TAG_EXISTS);
3076 if (length > 8)
3077 {
3078 warning (_("ERROR RMT: 'exists' length too long."));
3079 retval = 0;
3080 break;
3081 }
3082 continue;
3083 }
3084 if (tag == TAG_THREADNAME)
3085 {
3086 pkt = unpack_string (pkt, &info->shortname[0], length);
3087 mask = mask & ~TAG_THREADNAME;
3088 continue;
3089 }
3090 if (tag == TAG_DISPLAY)
3091 {
3092 pkt = unpack_string (pkt, &info->display[0], length);
3093 mask = mask & ~TAG_DISPLAY;
3094 continue;
3095 }
3096 if (tag == TAG_MOREDISPLAY)
3097 {
3098 pkt = unpack_string (pkt, &info->more_display[0], length);
3099 mask = mask & ~TAG_MOREDISPLAY;
3100 continue;
3101 }
3102 warning (_("ERROR RMT: unknown thread info tag."));
3103 break; /* Not a tag we know about. */
3104 }
3105 return retval;
3106 }
3107
3108 static int
3109 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
3110 struct gdb_ext_thread_info *info)
3111 {
3112 struct remote_state *rs = get_remote_state ();
3113 int result;
3114
3115 pack_threadinfo_request (rs->buf, fieldset, threadid);
3116 putpkt (rs->buf);
3117 getpkt (&rs->buf, &rs->buf_size, 0);
3118
3119 if (rs->buf[0] == '\0')
3120 return 0;
3121
3122 result = remote_unpack_thread_info_response (rs->buf + 2,
3123 threadid, info);
3124 return result;
3125 }
3126
3127 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3128
3129 static char *
3130 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3131 threadref *nextthread)
3132 {
3133 *pkt++ = 'q'; /* info query packet */
3134 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3135 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3136 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3137 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3138 *pkt = '\0';
3139 return pkt;
3140 }
3141
3142 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3143
3144 static int
3145 parse_threadlist_response (char *pkt, int result_limit,
3146 threadref *original_echo, threadref *resultlist,
3147 int *doneflag)
3148 {
3149 struct remote_state *rs = get_remote_state ();
3150 char *limit;
3151 int count, resultcount, done;
3152
3153 resultcount = 0;
3154 /* Assume the 'q' and 'M chars have been stripped. */
3155 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3156 /* done parse past here */
3157 pkt = unpack_byte (pkt, &count); /* count field */
3158 pkt = unpack_nibble (pkt, &done);
3159 /* The first threadid is the argument threadid. */
3160 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3161 while ((count-- > 0) && (pkt < limit))
3162 {
3163 pkt = unpack_threadid (pkt, resultlist++);
3164 if (resultcount++ >= result_limit)
3165 break;
3166 }
3167 if (doneflag)
3168 *doneflag = done;
3169 return resultcount;
3170 }
3171
3172 /* Fetch the next batch of threads from the remote. Returns -1 if the
3173 qL packet is not supported, 0 on error and 1 on success. */
3174
3175 static int
3176 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
3177 int *done, int *result_count, threadref *threadlist)
3178 {
3179 struct remote_state *rs = get_remote_state ();
3180 int result = 1;
3181
3182 /* Trancate result limit to be smaller than the packet size. */
3183 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3184 >= get_remote_packet_size ())
3185 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3186
3187 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3188 putpkt (rs->buf);
3189 getpkt (&rs->buf, &rs->buf_size, 0);
3190 if (*rs->buf == '\0')
3191 {
3192 /* Packet not supported. */
3193 return -1;
3194 }
3195
3196 *result_count =
3197 parse_threadlist_response (rs->buf + 2, result_limit,
3198 &rs->echo_nextthread, threadlist, done);
3199
3200 if (!threadmatch (&rs->echo_nextthread, nextthread))
3201 {
3202 /* FIXME: This is a good reason to drop the packet. */
3203 /* Possably, there is a duplicate response. */
3204 /* Possabilities :
3205 retransmit immediatly - race conditions
3206 retransmit after timeout - yes
3207 exit
3208 wait for packet, then exit
3209 */
3210 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3211 return 0; /* I choose simply exiting. */
3212 }
3213 if (*result_count <= 0)
3214 {
3215 if (*done != 1)
3216 {
3217 warning (_("RMT ERROR : failed to get remote thread list."));
3218 result = 0;
3219 }
3220 return result; /* break; */
3221 }
3222 if (*result_count > result_limit)
3223 {
3224 *result_count = 0;
3225 warning (_("RMT ERROR: threadlist response longer than requested."));
3226 return 0;
3227 }
3228 return result;
3229 }
3230
3231 /* Fetch the list of remote threads, with the qL packet, and call
3232 STEPFUNCTION for each thread found. Stops iterating and returns 1
3233 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3234 STEPFUNCTION returns false. If the packet is not supported,
3235 returns -1. */
3236
3237 static int
3238 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
3239 int looplimit)
3240 {
3241 struct remote_state *rs = get_remote_state ();
3242 int done, i, result_count;
3243 int startflag = 1;
3244 int result = 1;
3245 int loopcount = 0;
3246
3247 done = 0;
3248 while (!done)
3249 {
3250 if (loopcount++ > looplimit)
3251 {
3252 result = 0;
3253 warning (_("Remote fetch threadlist -infinite loop-."));
3254 break;
3255 }
3256 result = remote_get_threadlist (startflag, &rs->nextthread,
3257 MAXTHREADLISTRESULTS,
3258 &done, &result_count,
3259 rs->resultthreadlist);
3260 if (result <= 0)
3261 break;
3262 /* Clear for later iterations. */
3263 startflag = 0;
3264 /* Setup to resume next batch of thread references, set nextthread. */
3265 if (result_count >= 1)
3266 copy_threadref (&rs->nextthread,
3267 &rs->resultthreadlist[result_count - 1]);
3268 i = 0;
3269 while (result_count--)
3270 {
3271 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3272 {
3273 result = 0;
3274 break;
3275 }
3276 }
3277 }
3278 return result;
3279 }
3280
3281 /* A thread found on the remote target. */
3282
3283 struct thread_item
3284 {
3285 explicit thread_item (ptid_t ptid_)
3286 : ptid (ptid_)
3287 {}
3288
3289 thread_item (thread_item &&other) = default;
3290 thread_item &operator= (thread_item &&other) = default;
3291
3292 DISABLE_COPY_AND_ASSIGN (thread_item);
3293
3294 /* The thread's PTID. */
3295 ptid_t ptid;
3296
3297 /* The thread's extra info. */
3298 std::string extra;
3299
3300 /* The thread's name. */
3301 std::string name;
3302
3303 /* The core the thread was running on. -1 if not known. */
3304 int core = -1;
3305
3306 /* The thread handle associated with the thread. */
3307 gdb::byte_vector thread_handle;
3308 };
3309
3310 /* Context passed around to the various methods listing remote
3311 threads. As new threads are found, they're added to the ITEMS
3312 vector. */
3313
3314 struct threads_listing_context
3315 {
3316 /* Return true if this object contains an entry for a thread with ptid
3317 PTID. */
3318
3319 bool contains_thread (ptid_t ptid) const
3320 {
3321 auto match_ptid = [&] (const thread_item &item)
3322 {
3323 return item.ptid == ptid;
3324 };
3325
3326 auto it = std::find_if (this->items.begin (),
3327 this->items.end (),
3328 match_ptid);
3329
3330 return it != this->items.end ();
3331 }
3332
3333 /* Remove the thread with ptid PTID. */
3334
3335 void remove_thread (ptid_t ptid)
3336 {
3337 auto match_ptid = [&] (const thread_item &item)
3338 {
3339 return item.ptid == ptid;
3340 };
3341
3342 auto it = std::remove_if (this->items.begin (),
3343 this->items.end (),
3344 match_ptid);
3345
3346 if (it != this->items.end ())
3347 this->items.erase (it);
3348 }
3349
3350 /* The threads found on the remote target. */
3351 std::vector<thread_item> items;
3352 };
3353
3354 static int
3355 remote_newthread_step (threadref *ref, void *data)
3356 {
3357 struct threads_listing_context *context
3358 = (struct threads_listing_context *) data;
3359 int pid = inferior_ptid.pid ();
3360 int lwp = threadref_to_int (ref);
3361 ptid_t ptid (pid, lwp);
3362
3363 context->items.emplace_back (ptid);
3364
3365 return 1; /* continue iterator */
3366 }
3367
3368 #define CRAZY_MAX_THREADS 1000
3369
3370 static ptid_t
3371 remote_current_thread (ptid_t oldpid)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374
3375 putpkt ("qC");
3376 getpkt (&rs->buf, &rs->buf_size, 0);
3377 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3378 {
3379 const char *obuf;
3380 ptid_t result;
3381
3382 result = read_ptid (&rs->buf[2], &obuf);
3383 if (*obuf != '\0' && remote_debug)
3384 fprintf_unfiltered (gdb_stdlog,
3385 "warning: garbage in qC reply\n");
3386
3387 return result;
3388 }
3389 else
3390 return oldpid;
3391 }
3392
3393 /* List remote threads using the deprecated qL packet. */
3394
3395 static int
3396 remote_get_threads_with_ql (struct target_ops *ops,
3397 struct threads_listing_context *context)
3398 {
3399 if (remote_threadlist_iterator (remote_newthread_step, context,
3400 CRAZY_MAX_THREADS) >= 0)
3401 return 1;
3402
3403 return 0;
3404 }
3405
3406 #if defined(HAVE_LIBEXPAT)
3407
3408 static void
3409 start_thread (struct gdb_xml_parser *parser,
3410 const struct gdb_xml_element *element,
3411 void *user_data,
3412 std::vector<gdb_xml_value> &attributes)
3413 {
3414 struct threads_listing_context *data
3415 = (struct threads_listing_context *) user_data;
3416 struct gdb_xml_value *attr;
3417
3418 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3419 ptid_t ptid = read_ptid (id, NULL);
3420
3421 data->items.emplace_back (ptid);
3422 thread_item &item = data->items.back ();
3423
3424 attr = xml_find_attribute (attributes, "core");
3425 if (attr != NULL)
3426 item.core = *(ULONGEST *) attr->value.get ();
3427
3428 attr = xml_find_attribute (attributes, "name");
3429 if (attr != NULL)
3430 item.name = (const char *) attr->value.get ();
3431
3432 attr = xml_find_attribute (attributes, "handle");
3433 if (attr != NULL)
3434 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3435 }
3436
3437 static void
3438 end_thread (struct gdb_xml_parser *parser,
3439 const struct gdb_xml_element *element,
3440 void *user_data, const char *body_text)
3441 {
3442 struct threads_listing_context *data
3443 = (struct threads_listing_context *) user_data;
3444
3445 if (body_text != NULL && *body_text != '\0')
3446 data->items.back ().extra = body_text;
3447 }
3448
3449 const struct gdb_xml_attribute thread_attributes[] = {
3450 { "id", GDB_XML_AF_NONE, NULL, NULL },
3451 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3452 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3453 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3454 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3455 };
3456
3457 const struct gdb_xml_element thread_children[] = {
3458 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3459 };
3460
3461 const struct gdb_xml_element threads_children[] = {
3462 { "thread", thread_attributes, thread_children,
3463 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3464 start_thread, end_thread },
3465 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3466 };
3467
3468 const struct gdb_xml_element threads_elements[] = {
3469 { "threads", NULL, threads_children,
3470 GDB_XML_EF_NONE, NULL, NULL },
3471 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3472 };
3473
3474 #endif
3475
3476 /* List remote threads using qXfer:threads:read. */
3477
3478 static int
3479 remote_get_threads_with_qxfer (struct target_ops *ops,
3480 struct threads_listing_context *context)
3481 {
3482 #if defined(HAVE_LIBEXPAT)
3483 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3484 {
3485 gdb::optional<gdb::char_vector> xml
3486 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3487
3488 if (xml && (*xml)[0] != '\0')
3489 {
3490 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3491 threads_elements, xml->data (), context);
3492 }
3493
3494 return 1;
3495 }
3496 #endif
3497
3498 return 0;
3499 }
3500
3501 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3502
3503 static int
3504 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3505 struct threads_listing_context *context)
3506 {
3507 struct remote_state *rs = get_remote_state ();
3508
3509 if (rs->use_threadinfo_query)
3510 {
3511 const char *bufp;
3512
3513 putpkt ("qfThreadInfo");
3514 getpkt (&rs->buf, &rs->buf_size, 0);
3515 bufp = rs->buf;
3516 if (bufp[0] != '\0') /* q packet recognized */
3517 {
3518 while (*bufp++ == 'm') /* reply contains one or more TID */
3519 {
3520 do
3521 {
3522 ptid_t ptid = read_ptid (bufp, &bufp);
3523 context->items.emplace_back (ptid);
3524 }
3525 while (*bufp++ == ','); /* comma-separated list */
3526 putpkt ("qsThreadInfo");
3527 getpkt (&rs->buf, &rs->buf_size, 0);
3528 bufp = rs->buf;
3529 }
3530 return 1;
3531 }
3532 else
3533 {
3534 /* Packet not recognized. */
3535 rs->use_threadinfo_query = 0;
3536 }
3537 }
3538
3539 return 0;
3540 }
3541
3542 /* Implement the to_update_thread_list function for the remote
3543 targets. */
3544
3545 void
3546 remote_target::update_thread_list ()
3547 {
3548 struct threads_listing_context context;
3549 int got_list = 0;
3550
3551 /* We have a few different mechanisms to fetch the thread list. Try
3552 them all, starting with the most preferred one first, falling
3553 back to older methods. */
3554 if (remote_get_threads_with_qxfer (this, &context)
3555 || remote_get_threads_with_qthreadinfo (this, &context)
3556 || remote_get_threads_with_ql (this, &context))
3557 {
3558 struct thread_info *tp, *tmp;
3559
3560 got_list = 1;
3561
3562 if (context.items.empty ()
3563 && remote_thread_always_alive (inferior_ptid))
3564 {
3565 /* Some targets don't really support threads, but still
3566 reply an (empty) thread list in response to the thread
3567 listing packets, instead of replying "packet not
3568 supported". Exit early so we don't delete the main
3569 thread. */
3570 return;
3571 }
3572
3573 /* CONTEXT now holds the current thread list on the remote
3574 target end. Delete GDB-side threads no longer found on the
3575 target. */
3576 ALL_THREADS_SAFE (tp, tmp)
3577 {
3578 if (!context.contains_thread (tp->ptid))
3579 {
3580 /* Not found. */
3581 delete_thread (tp->ptid);
3582 }
3583 }
3584
3585 /* Remove any unreported fork child threads from CONTEXT so
3586 that we don't interfere with follow fork, which is where
3587 creation of such threads is handled. */
3588 remove_new_fork_children (&context);
3589
3590 /* And now add threads we don't know about yet to our list. */
3591 for (thread_item &item : context.items)
3592 {
3593 if (item.ptid != null_ptid)
3594 {
3595 /* In non-stop mode, we assume new found threads are
3596 executing until proven otherwise with a stop reply.
3597 In all-stop, we can only get here if all threads are
3598 stopped. */
3599 int executing = target_is_non_stop_p () ? 1 : 0;
3600
3601 remote_notice_new_inferior (item.ptid, executing);
3602
3603 remote_thread_info *info = get_remote_thread_info (item.ptid);
3604 info->core = item.core;
3605 info->extra = std::move (item.extra);
3606 info->name = std::move (item.name);
3607 info->thread_handle = std::move (item.thread_handle);
3608 }
3609 }
3610 }
3611
3612 if (!got_list)
3613 {
3614 /* If no thread listing method is supported, then query whether
3615 each known thread is alive, one by one, with the T packet.
3616 If the target doesn't support threads at all, then this is a
3617 no-op. See remote_thread_alive. */
3618 prune_threads ();
3619 }
3620 }
3621
3622 /*
3623 * Collect a descriptive string about the given thread.
3624 * The target may say anything it wants to about the thread
3625 * (typically info about its blocked / runnable state, name, etc.).
3626 * This string will appear in the info threads display.
3627 *
3628 * Optional: targets are not required to implement this function.
3629 */
3630
3631 const char *
3632 remote_target::extra_thread_info (thread_info *tp)
3633 {
3634 struct remote_state *rs = get_remote_state ();
3635 int result;
3636 int set;
3637 threadref id;
3638 struct gdb_ext_thread_info threadinfo;
3639 static char display_buf[100]; /* arbitrary... */
3640 int n = 0; /* position in display_buf */
3641
3642 if (rs->remote_desc == 0) /* paranoia */
3643 internal_error (__FILE__, __LINE__,
3644 _("remote_threads_extra_info"));
3645
3646 if (ptid_equal (tp->ptid, magic_null_ptid)
3647 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3648 /* This is the main thread which was added by GDB. The remote
3649 server doesn't know about it. */
3650 return NULL;
3651
3652 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3653 {
3654 struct thread_info *info = find_thread_ptid (tp->ptid);
3655
3656 if (info != NULL && info->priv != NULL)
3657 {
3658 const std::string &extra = get_remote_thread_info (info)->extra;
3659 return !extra.empty () ? extra.c_str () : NULL;
3660 }
3661 else
3662 return NULL;
3663 }
3664
3665 if (rs->use_threadextra_query)
3666 {
3667 char *b = rs->buf;
3668 char *endb = rs->buf + get_remote_packet_size ();
3669
3670 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3671 b += strlen (b);
3672 write_ptid (b, endb, tp->ptid);
3673
3674 putpkt (rs->buf);
3675 getpkt (&rs->buf, &rs->buf_size, 0);
3676 if (rs->buf[0] != 0)
3677 {
3678 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3679 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3680 display_buf [result] = '\0';
3681 return display_buf;
3682 }
3683 }
3684
3685 /* If the above query fails, fall back to the old method. */
3686 rs->use_threadextra_query = 0;
3687 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3688 | TAG_MOREDISPLAY | TAG_DISPLAY;
3689 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3690 if (remote_get_threadinfo (&id, set, &threadinfo))
3691 if (threadinfo.active)
3692 {
3693 if (*threadinfo.shortname)
3694 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3695 " Name: %s,", threadinfo.shortname);
3696 if (*threadinfo.display)
3697 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3698 " State: %s,", threadinfo.display);
3699 if (*threadinfo.more_display)
3700 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3701 " Priority: %s", threadinfo.more_display);
3702
3703 if (n > 0)
3704 {
3705 /* For purely cosmetic reasons, clear up trailing commas. */
3706 if (',' == display_buf[n-1])
3707 display_buf[n-1] = ' ';
3708 return display_buf;
3709 }
3710 }
3711 return NULL;
3712 }
3713 \f
3714
3715 bool
3716 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3717 struct static_tracepoint_marker *marker)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720 char *p = rs->buf;
3721
3722 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3723 p += strlen (p);
3724 p += hexnumstr (p, addr);
3725 putpkt (rs->buf);
3726 getpkt (&rs->buf, &rs->buf_size, 0);
3727 p = rs->buf;
3728
3729 if (*p == 'E')
3730 error (_("Remote failure reply: %s"), p);
3731
3732 if (*p++ == 'm')
3733 {
3734 parse_static_tracepoint_marker_definition (p, NULL, marker);
3735 return true;
3736 }
3737
3738 return false;
3739 }
3740
3741 std::vector<static_tracepoint_marker>
3742 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3743 {
3744 struct remote_state *rs = get_remote_state ();
3745 std::vector<static_tracepoint_marker> markers;
3746 const char *p;
3747 static_tracepoint_marker marker;
3748
3749 /* Ask for a first packet of static tracepoint marker
3750 definition. */
3751 putpkt ("qTfSTM");
3752 getpkt (&rs->buf, &rs->buf_size, 0);
3753 p = rs->buf;
3754 if (*p == 'E')
3755 error (_("Remote failure reply: %s"), p);
3756
3757 while (*p++ == 'm')
3758 {
3759 do
3760 {
3761 parse_static_tracepoint_marker_definition (p, &p, &marker);
3762
3763 if (strid == NULL || marker.str_id == strid)
3764 markers.push_back (std::move (marker));
3765 }
3766 while (*p++ == ','); /* comma-separated list */
3767 /* Ask for another packet of static tracepoint definition. */
3768 putpkt ("qTsSTM");
3769 getpkt (&rs->buf, &rs->buf_size, 0);
3770 p = rs->buf;
3771 }
3772
3773 return markers;
3774 }
3775
3776 \f
3777 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3778
3779 ptid_t
3780 remote_target::get_ada_task_ptid (long lwp, long thread)
3781 {
3782 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3783 }
3784 \f
3785
3786 /* Restart the remote side; this is an extended protocol operation. */
3787
3788 static void
3789 extended_remote_restart (void)
3790 {
3791 struct remote_state *rs = get_remote_state ();
3792
3793 /* Send the restart command; for reasons I don't understand the
3794 remote side really expects a number after the "R". */
3795 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3796 putpkt (rs->buf);
3797
3798 remote_fileio_reset ();
3799 }
3800 \f
3801 /* Clean up connection to a remote debugger. */
3802
3803 void
3804 remote_target::close ()
3805 {
3806 struct remote_state *rs = get_remote_state ();
3807
3808 if (rs->remote_desc == NULL)
3809 return; /* already closed */
3810
3811 /* Make sure we leave stdin registered in the event loop. */
3812 terminal_ours ();
3813
3814 serial_close (rs->remote_desc);
3815 rs->remote_desc = NULL;
3816
3817 /* We don't have a connection to the remote stub anymore. Get rid
3818 of all the inferiors and their threads we were controlling.
3819 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3820 will be unable to find the thread corresponding to (pid, 0, 0). */
3821 inferior_ptid = null_ptid;
3822 discard_all_inferiors ();
3823
3824 /* We are closing the remote target, so we should discard
3825 everything of this target. */
3826 discard_pending_stop_replies_in_queue (rs);
3827
3828 if (remote_async_inferior_event_token)
3829 delete_async_event_handler (&remote_async_inferior_event_token);
3830
3831 remote_notif_state_xfree (rs->notif_state);
3832
3833 trace_reset_local_state ();
3834 }
3835
3836 /* Query the remote side for the text, data and bss offsets. */
3837
3838 static void
3839 get_offsets (void)
3840 {
3841 struct remote_state *rs = get_remote_state ();
3842 char *buf;
3843 char *ptr;
3844 int lose, num_segments = 0, do_sections, do_segments;
3845 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3846 struct section_offsets *offs;
3847 struct symfile_segment_data *data;
3848
3849 if (symfile_objfile == NULL)
3850 return;
3851
3852 putpkt ("qOffsets");
3853 getpkt (&rs->buf, &rs->buf_size, 0);
3854 buf = rs->buf;
3855
3856 if (buf[0] == '\000')
3857 return; /* Return silently. Stub doesn't support
3858 this command. */
3859 if (buf[0] == 'E')
3860 {
3861 warning (_("Remote failure reply: %s"), buf);
3862 return;
3863 }
3864
3865 /* Pick up each field in turn. This used to be done with scanf, but
3866 scanf will make trouble if CORE_ADDR size doesn't match
3867 conversion directives correctly. The following code will work
3868 with any size of CORE_ADDR. */
3869 text_addr = data_addr = bss_addr = 0;
3870 ptr = buf;
3871 lose = 0;
3872
3873 if (startswith (ptr, "Text="))
3874 {
3875 ptr += 5;
3876 /* Don't use strtol, could lose on big values. */
3877 while (*ptr && *ptr != ';')
3878 text_addr = (text_addr << 4) + fromhex (*ptr++);
3879
3880 if (startswith (ptr, ";Data="))
3881 {
3882 ptr += 6;
3883 while (*ptr && *ptr != ';')
3884 data_addr = (data_addr << 4) + fromhex (*ptr++);
3885 }
3886 else
3887 lose = 1;
3888
3889 if (!lose && startswith (ptr, ";Bss="))
3890 {
3891 ptr += 5;
3892 while (*ptr && *ptr != ';')
3893 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3894
3895 if (bss_addr != data_addr)
3896 warning (_("Target reported unsupported offsets: %s"), buf);
3897 }
3898 else
3899 lose = 1;
3900 }
3901 else if (startswith (ptr, "TextSeg="))
3902 {
3903 ptr += 8;
3904 /* Don't use strtol, could lose on big values. */
3905 while (*ptr && *ptr != ';')
3906 text_addr = (text_addr << 4) + fromhex (*ptr++);
3907 num_segments = 1;
3908
3909 if (startswith (ptr, ";DataSeg="))
3910 {
3911 ptr += 9;
3912 while (*ptr && *ptr != ';')
3913 data_addr = (data_addr << 4) + fromhex (*ptr++);
3914 num_segments++;
3915 }
3916 }
3917 else
3918 lose = 1;
3919
3920 if (lose)
3921 error (_("Malformed response to offset query, %s"), buf);
3922 else if (*ptr != '\0')
3923 warning (_("Target reported unsupported offsets: %s"), buf);
3924
3925 offs = ((struct section_offsets *)
3926 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3927 memcpy (offs, symfile_objfile->section_offsets,
3928 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3929
3930 data = get_symfile_segment_data (symfile_objfile->obfd);
3931 do_segments = (data != NULL);
3932 do_sections = num_segments == 0;
3933
3934 if (num_segments > 0)
3935 {
3936 segments[0] = text_addr;
3937 segments[1] = data_addr;
3938 }
3939 /* If we have two segments, we can still try to relocate everything
3940 by assuming that the .text and .data offsets apply to the whole
3941 text and data segments. Convert the offsets given in the packet
3942 to base addresses for symfile_map_offsets_to_segments. */
3943 else if (data && data->num_segments == 2)
3944 {
3945 segments[0] = data->segment_bases[0] + text_addr;
3946 segments[1] = data->segment_bases[1] + data_addr;
3947 num_segments = 2;
3948 }
3949 /* If the object file has only one segment, assume that it is text
3950 rather than data; main programs with no writable data are rare,
3951 but programs with no code are useless. Of course the code might
3952 have ended up in the data segment... to detect that we would need
3953 the permissions here. */
3954 else if (data && data->num_segments == 1)
3955 {
3956 segments[0] = data->segment_bases[0] + text_addr;
3957 num_segments = 1;
3958 }
3959 /* There's no way to relocate by segment. */
3960 else
3961 do_segments = 0;
3962
3963 if (do_segments)
3964 {
3965 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3966 offs, num_segments, segments);
3967
3968 if (ret == 0 && !do_sections)
3969 error (_("Can not handle qOffsets TextSeg "
3970 "response with this symbol file"));
3971
3972 if (ret > 0)
3973 do_sections = 0;
3974 }
3975
3976 if (data)
3977 free_symfile_segment_data (data);
3978
3979 if (do_sections)
3980 {
3981 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3982
3983 /* This is a temporary kludge to force data and bss to use the
3984 same offsets because that's what nlmconv does now. The real
3985 solution requires changes to the stub and remote.c that I
3986 don't have time to do right now. */
3987
3988 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3989 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3990 }
3991
3992 objfile_relocate (symfile_objfile, offs);
3993 }
3994
3995 /* Send interrupt_sequence to remote target. */
3996 static void
3997 send_interrupt_sequence (void)
3998 {
3999 struct remote_state *rs = get_remote_state ();
4000
4001 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4002 remote_serial_write ("\x03", 1);
4003 else if (interrupt_sequence_mode == interrupt_sequence_break)
4004 serial_send_break (rs->remote_desc);
4005 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4006 {
4007 serial_send_break (rs->remote_desc);
4008 remote_serial_write ("g", 1);
4009 }
4010 else
4011 internal_error (__FILE__, __LINE__,
4012 _("Invalid value for interrupt_sequence_mode: %s."),
4013 interrupt_sequence_mode);
4014 }
4015
4016
4017 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4018 and extract the PTID. Returns NULL_PTID if not found. */
4019
4020 static ptid_t
4021 stop_reply_extract_thread (char *stop_reply)
4022 {
4023 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4024 {
4025 const char *p;
4026
4027 /* Txx r:val ; r:val (...) */
4028 p = &stop_reply[3];
4029
4030 /* Look for "register" named "thread". */
4031 while (*p != '\0')
4032 {
4033 const char *p1;
4034
4035 p1 = strchr (p, ':');
4036 if (p1 == NULL)
4037 return null_ptid;
4038
4039 if (strncmp (p, "thread", p1 - p) == 0)
4040 return read_ptid (++p1, &p);
4041
4042 p1 = strchr (p, ';');
4043 if (p1 == NULL)
4044 return null_ptid;
4045 p1++;
4046
4047 p = p1;
4048 }
4049 }
4050
4051 return null_ptid;
4052 }
4053
4054 /* Determine the remote side's current thread. If we have a stop
4055 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4056 "thread" register we can extract the current thread from. If not,
4057 ask the remote which is the current thread with qC. The former
4058 method avoids a roundtrip. */
4059
4060 static ptid_t
4061 get_current_thread (char *wait_status)
4062 {
4063 ptid_t ptid = null_ptid;
4064
4065 /* Note we don't use remote_parse_stop_reply as that makes use of
4066 the target architecture, which we haven't yet fully determined at
4067 this point. */
4068 if (wait_status != NULL)
4069 ptid = stop_reply_extract_thread (wait_status);
4070 if (ptid_equal (ptid, null_ptid))
4071 ptid = remote_current_thread (inferior_ptid);
4072
4073 return ptid;
4074 }
4075
4076 /* Query the remote target for which is the current thread/process,
4077 add it to our tables, and update INFERIOR_PTID. The caller is
4078 responsible for setting the state such that the remote end is ready
4079 to return the current thread.
4080
4081 This function is called after handling the '?' or 'vRun' packets,
4082 whose response is a stop reply from which we can also try
4083 extracting the thread. If the target doesn't support the explicit
4084 qC query, we infer the current thread from that stop reply, passed
4085 in in WAIT_STATUS, which may be NULL. */
4086
4087 static void
4088 add_current_inferior_and_thread (char *wait_status)
4089 {
4090 struct remote_state *rs = get_remote_state ();
4091 int fake_pid_p = 0;
4092
4093 inferior_ptid = null_ptid;
4094
4095 /* Now, if we have thread information, update inferior_ptid. */
4096 ptid_t curr_ptid = get_current_thread (wait_status);
4097
4098 if (curr_ptid != null_ptid)
4099 {
4100 if (!remote_multi_process_p (rs))
4101 fake_pid_p = 1;
4102 }
4103 else
4104 {
4105 /* Without this, some commands which require an active target
4106 (such as kill) won't work. This variable serves (at least)
4107 double duty as both the pid of the target process (if it has
4108 such), and as a flag indicating that a target is active. */
4109 curr_ptid = magic_null_ptid;
4110 fake_pid_p = 1;
4111 }
4112
4113 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
4114
4115 /* Add the main thread and switch to it. Don't try reading
4116 registers yet, since we haven't fetched the target description
4117 yet. */
4118 thread_info *tp = add_thread_silent (curr_ptid);
4119 switch_to_thread_no_regs (tp);
4120 }
4121
4122 /* Print info about a thread that was found already stopped on
4123 connection. */
4124
4125 static void
4126 print_one_stopped_thread (struct thread_info *thread)
4127 {
4128 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4129
4130 switch_to_thread (thread->ptid);
4131 stop_pc = get_frame_pc (get_current_frame ());
4132 set_current_sal_from_frame (get_current_frame ());
4133
4134 thread->suspend.waitstatus_pending_p = 0;
4135
4136 if (ws->kind == TARGET_WAITKIND_STOPPED)
4137 {
4138 enum gdb_signal sig = ws->value.sig;
4139
4140 if (signal_print_state (sig))
4141 gdb::observers::signal_received.notify (sig);
4142 }
4143 gdb::observers::normal_stop.notify (NULL, 1);
4144 }
4145
4146 /* Process all initial stop replies the remote side sent in response
4147 to the ? packet. These indicate threads that were already stopped
4148 on initial connection. We mark these threads as stopped and print
4149 their current frame before giving the user the prompt. */
4150
4151 static void
4152 process_initial_stop_replies (int from_tty)
4153 {
4154 int pending_stop_replies = stop_reply_queue_length ();
4155 struct inferior *inf;
4156 struct thread_info *thread;
4157 struct thread_info *selected = NULL;
4158 struct thread_info *lowest_stopped = NULL;
4159 struct thread_info *first = NULL;
4160
4161 /* Consume the initial pending events. */
4162 while (pending_stop_replies-- > 0)
4163 {
4164 ptid_t waiton_ptid = minus_one_ptid;
4165 ptid_t event_ptid;
4166 struct target_waitstatus ws;
4167 int ignore_event = 0;
4168 struct thread_info *thread;
4169
4170 memset (&ws, 0, sizeof (ws));
4171 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4172 if (remote_debug)
4173 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4174
4175 switch (ws.kind)
4176 {
4177 case TARGET_WAITKIND_IGNORE:
4178 case TARGET_WAITKIND_NO_RESUMED:
4179 case TARGET_WAITKIND_SIGNALLED:
4180 case TARGET_WAITKIND_EXITED:
4181 /* We shouldn't see these, but if we do, just ignore. */
4182 if (remote_debug)
4183 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4184 ignore_event = 1;
4185 break;
4186
4187 case TARGET_WAITKIND_EXECD:
4188 xfree (ws.value.execd_pathname);
4189 break;
4190 default:
4191 break;
4192 }
4193
4194 if (ignore_event)
4195 continue;
4196
4197 thread = find_thread_ptid (event_ptid);
4198
4199 if (ws.kind == TARGET_WAITKIND_STOPPED)
4200 {
4201 enum gdb_signal sig = ws.value.sig;
4202
4203 /* Stubs traditionally report SIGTRAP as initial signal,
4204 instead of signal 0. Suppress it. */
4205 if (sig == GDB_SIGNAL_TRAP)
4206 sig = GDB_SIGNAL_0;
4207 thread->suspend.stop_signal = sig;
4208 ws.value.sig = sig;
4209 }
4210
4211 thread->suspend.waitstatus = ws;
4212
4213 if (ws.kind != TARGET_WAITKIND_STOPPED
4214 || ws.value.sig != GDB_SIGNAL_0)
4215 thread->suspend.waitstatus_pending_p = 1;
4216
4217 set_executing (event_ptid, 0);
4218 set_running (event_ptid, 0);
4219 get_remote_thread_info (thread)->vcont_resumed = 0;
4220 }
4221
4222 /* "Notice" the new inferiors before anything related to
4223 registers/memory. */
4224 ALL_INFERIORS (inf)
4225 {
4226 if (inf->pid == 0)
4227 continue;
4228
4229 inf->needs_setup = 1;
4230
4231 if (non_stop)
4232 {
4233 thread = any_live_thread_of_process (inf->pid);
4234 notice_new_inferior (thread->ptid,
4235 thread->state == THREAD_RUNNING,
4236 from_tty);
4237 }
4238 }
4239
4240 /* If all-stop on top of non-stop, pause all threads. Note this
4241 records the threads' stop pc, so must be done after "noticing"
4242 the inferiors. */
4243 if (!non_stop)
4244 {
4245 stop_all_threads ();
4246
4247 /* If all threads of an inferior were already stopped, we
4248 haven't setup the inferior yet. */
4249 ALL_INFERIORS (inf)
4250 {
4251 if (inf->pid == 0)
4252 continue;
4253
4254 if (inf->needs_setup)
4255 {
4256 thread = any_live_thread_of_process (inf->pid);
4257 switch_to_thread_no_regs (thread);
4258 setup_inferior (0);
4259 }
4260 }
4261 }
4262
4263 /* Now go over all threads that are stopped, and print their current
4264 frame. If all-stop, then if there's a signalled thread, pick
4265 that as current. */
4266 ALL_NON_EXITED_THREADS (thread)
4267 {
4268 if (first == NULL)
4269 first = thread;
4270
4271 if (!non_stop)
4272 set_running (thread->ptid, 0);
4273 else if (thread->state != THREAD_STOPPED)
4274 continue;
4275
4276 if (selected == NULL
4277 && thread->suspend.waitstatus_pending_p)
4278 selected = thread;
4279
4280 if (lowest_stopped == NULL
4281 || thread->inf->num < lowest_stopped->inf->num
4282 || thread->per_inf_num < lowest_stopped->per_inf_num)
4283 lowest_stopped = thread;
4284
4285 if (non_stop)
4286 print_one_stopped_thread (thread);
4287 }
4288
4289 /* In all-stop, we only print the status of one thread, and leave
4290 others with their status pending. */
4291 if (!non_stop)
4292 {
4293 thread = selected;
4294 if (thread == NULL)
4295 thread = lowest_stopped;
4296 if (thread == NULL)
4297 thread = first;
4298
4299 print_one_stopped_thread (thread);
4300 }
4301
4302 /* For "info program". */
4303 thread = inferior_thread ();
4304 if (thread->state == THREAD_STOPPED)
4305 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4306 }
4307
4308 /* Start the remote connection and sync state. */
4309
4310 void
4311 remote_target::start_remote (int from_tty, int extended_p)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 struct packet_config *noack_config;
4315 char *wait_status = NULL;
4316
4317 /* Signal other parts that we're going through the initial setup,
4318 and so things may not be stable yet. E.g., we don't try to
4319 install tracepoints until we've relocated symbols. Also, a
4320 Ctrl-C before we're connected and synced up can't interrupt the
4321 target. Instead, it offers to drop the (potentially wedged)
4322 connection. */
4323 rs->starting_up = 1;
4324
4325 QUIT;
4326
4327 if (interrupt_on_connect)
4328 send_interrupt_sequence ();
4329
4330 /* Ack any packet which the remote side has already sent. */
4331 remote_serial_write ("+", 1);
4332
4333 /* The first packet we send to the target is the optional "supported
4334 packets" request. If the target can answer this, it will tell us
4335 which later probes to skip. */
4336 remote_query_supported ();
4337
4338 /* If the stub wants to get a QAllow, compose one and send it. */
4339 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4340 set_permissions ();
4341
4342 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4343 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4344 as a reply to known packet. For packet "vFile:setfs:" it is an
4345 invalid reply and GDB would return error in
4346 remote_hostio_set_filesystem, making remote files access impossible.
4347 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4348 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4349 {
4350 const char v_mustreplyempty[] = "vMustReplyEmpty";
4351
4352 putpkt (v_mustreplyempty);
4353 getpkt (&rs->buf, &rs->buf_size, 0);
4354 if (strcmp (rs->buf, "OK") == 0)
4355 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4356 else if (strcmp (rs->buf, "") != 0)
4357 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4358 rs->buf);
4359 }
4360
4361 /* Next, we possibly activate noack mode.
4362
4363 If the QStartNoAckMode packet configuration is set to AUTO,
4364 enable noack mode if the stub reported a wish for it with
4365 qSupported.
4366
4367 If set to TRUE, then enable noack mode even if the stub didn't
4368 report it in qSupported. If the stub doesn't reply OK, the
4369 session ends with an error.
4370
4371 If FALSE, then don't activate noack mode, regardless of what the
4372 stub claimed should be the default with qSupported. */
4373
4374 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4375 if (packet_config_support (noack_config) != PACKET_DISABLE)
4376 {
4377 putpkt ("QStartNoAckMode");
4378 getpkt (&rs->buf, &rs->buf_size, 0);
4379 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4380 rs->noack_mode = 1;
4381 }
4382
4383 if (extended_p)
4384 {
4385 /* Tell the remote that we are using the extended protocol. */
4386 putpkt ("!");
4387 getpkt (&rs->buf, &rs->buf_size, 0);
4388 }
4389
4390 /* Let the target know which signals it is allowed to pass down to
4391 the program. */
4392 update_signals_program_target ();
4393
4394 /* Next, if the target can specify a description, read it. We do
4395 this before anything involving memory or registers. */
4396 target_find_description ();
4397
4398 /* Next, now that we know something about the target, update the
4399 address spaces in the program spaces. */
4400 update_address_spaces ();
4401
4402 /* On OSs where the list of libraries is global to all
4403 processes, we fetch them early. */
4404 if (gdbarch_has_global_solist (target_gdbarch ()))
4405 solib_add (NULL, from_tty, auto_solib_add);
4406
4407 if (target_is_non_stop_p ())
4408 {
4409 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4410 error (_("Non-stop mode requested, but remote "
4411 "does not support non-stop"));
4412
4413 putpkt ("QNonStop:1");
4414 getpkt (&rs->buf, &rs->buf_size, 0);
4415
4416 if (strcmp (rs->buf, "OK") != 0)
4417 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4418
4419 /* Find about threads and processes the stub is already
4420 controlling. We default to adding them in the running state.
4421 The '?' query below will then tell us about which threads are
4422 stopped. */
4423 this->update_thread_list ();
4424 }
4425 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4426 {
4427 /* Don't assume that the stub can operate in all-stop mode.
4428 Request it explicitly. */
4429 putpkt ("QNonStop:0");
4430 getpkt (&rs->buf, &rs->buf_size, 0);
4431
4432 if (strcmp (rs->buf, "OK") != 0)
4433 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4434 }
4435
4436 /* Upload TSVs regardless of whether the target is running or not. The
4437 remote stub, such as GDBserver, may have some predefined or builtin
4438 TSVs, even if the target is not running. */
4439 if (get_trace_status (current_trace_status ()) != -1)
4440 {
4441 struct uploaded_tsv *uploaded_tsvs = NULL;
4442
4443 upload_trace_state_variables (&uploaded_tsvs);
4444 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4445 }
4446
4447 /* Check whether the target is running now. */
4448 putpkt ("?");
4449 getpkt (&rs->buf, &rs->buf_size, 0);
4450
4451 if (!target_is_non_stop_p ())
4452 {
4453 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4454 {
4455 if (!extended_p)
4456 error (_("The target is not running (try extended-remote?)"));
4457
4458 /* We're connected, but not running. Drop out before we
4459 call start_remote. */
4460 rs->starting_up = 0;
4461 return;
4462 }
4463 else
4464 {
4465 /* Save the reply for later. */
4466 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4467 strcpy (wait_status, rs->buf);
4468 }
4469
4470 /* Fetch thread list. */
4471 target_update_thread_list ();
4472
4473 /* Let the stub know that we want it to return the thread. */
4474 set_continue_thread (minus_one_ptid);
4475
4476 if (thread_count () == 0)
4477 {
4478 /* Target has no concept of threads at all. GDB treats
4479 non-threaded target as single-threaded; add a main
4480 thread. */
4481 add_current_inferior_and_thread (wait_status);
4482 }
4483 else
4484 {
4485 /* We have thread information; select the thread the target
4486 says should be current. If we're reconnecting to a
4487 multi-threaded program, this will ideally be the thread
4488 that last reported an event before GDB disconnected. */
4489 inferior_ptid = get_current_thread (wait_status);
4490 if (ptid_equal (inferior_ptid, null_ptid))
4491 {
4492 /* Odd... The target was able to list threads, but not
4493 tell us which thread was current (no "thread"
4494 register in T stop reply?). Just pick the first
4495 thread in the thread list then. */
4496
4497 if (remote_debug)
4498 fprintf_unfiltered (gdb_stdlog,
4499 "warning: couldn't determine remote "
4500 "current thread; picking first in list.\n");
4501
4502 inferior_ptid = thread_list->ptid;
4503 }
4504 }
4505
4506 /* init_wait_for_inferior should be called before get_offsets in order
4507 to manage `inserted' flag in bp loc in a correct state.
4508 breakpoint_init_inferior, called from init_wait_for_inferior, set
4509 `inserted' flag to 0, while before breakpoint_re_set, called from
4510 start_remote, set `inserted' flag to 1. In the initialization of
4511 inferior, breakpoint_init_inferior should be called first, and then
4512 breakpoint_re_set can be called. If this order is broken, state of
4513 `inserted' flag is wrong, and cause some problems on breakpoint
4514 manipulation. */
4515 init_wait_for_inferior ();
4516
4517 get_offsets (); /* Get text, data & bss offsets. */
4518
4519 /* If we could not find a description using qXfer, and we know
4520 how to do it some other way, try again. This is not
4521 supported for non-stop; it could be, but it is tricky if
4522 there are no stopped threads when we connect. */
4523 if (remote_read_description_p (this)
4524 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4525 {
4526 target_clear_description ();
4527 target_find_description ();
4528 }
4529
4530 /* Use the previously fetched status. */
4531 gdb_assert (wait_status != NULL);
4532 strcpy (rs->buf, wait_status);
4533 rs->cached_wait_status = 1;
4534
4535 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4536 }
4537 else
4538 {
4539 /* Clear WFI global state. Do this before finding about new
4540 threads and inferiors, and setting the current inferior.
4541 Otherwise we would clear the proceed status of the current
4542 inferior when we want its stop_soon state to be preserved
4543 (see notice_new_inferior). */
4544 init_wait_for_inferior ();
4545
4546 /* In non-stop, we will either get an "OK", meaning that there
4547 are no stopped threads at this time; or, a regular stop
4548 reply. In the latter case, there may be more than one thread
4549 stopped --- we pull them all out using the vStopped
4550 mechanism. */
4551 if (strcmp (rs->buf, "OK") != 0)
4552 {
4553 struct notif_client *notif = &notif_client_stop;
4554
4555 /* remote_notif_get_pending_replies acks this one, and gets
4556 the rest out. */
4557 rs->notif_state->pending_event[notif_client_stop.id]
4558 = remote_notif_parse (notif, rs->buf);
4559 remote_notif_get_pending_events (notif);
4560 }
4561
4562 if (thread_count () == 0)
4563 {
4564 if (!extended_p)
4565 error (_("The target is not running (try extended-remote?)"));
4566
4567 /* We're connected, but not running. Drop out before we
4568 call start_remote. */
4569 rs->starting_up = 0;
4570 return;
4571 }
4572
4573 /* In non-stop mode, any cached wait status will be stored in
4574 the stop reply queue. */
4575 gdb_assert (wait_status == NULL);
4576
4577 /* Report all signals during attach/startup. */
4578 pass_signals (0, NULL);
4579
4580 /* If there are already stopped threads, mark them stopped and
4581 report their stops before giving the prompt to the user. */
4582 process_initial_stop_replies (from_tty);
4583
4584 if (target_can_async_p ())
4585 target_async (1);
4586 }
4587
4588 /* If we connected to a live target, do some additional setup. */
4589 if (target_has_execution)
4590 {
4591 if (symfile_objfile) /* No use without a symbol-file. */
4592 remote_check_symbols ();
4593 }
4594
4595 /* Possibly the target has been engaged in a trace run started
4596 previously; find out where things are at. */
4597 if (get_trace_status (current_trace_status ()) != -1)
4598 {
4599 struct uploaded_tp *uploaded_tps = NULL;
4600
4601 if (current_trace_status ()->running)
4602 printf_filtered (_("Trace is already running on the target.\n"));
4603
4604 upload_tracepoints (&uploaded_tps);
4605
4606 merge_uploaded_tracepoints (&uploaded_tps);
4607 }
4608
4609 /* Possibly the target has been engaged in a btrace record started
4610 previously; find out where things are at. */
4611 remote_btrace_maybe_reopen ();
4612
4613 /* The thread and inferior lists are now synchronized with the
4614 target, our symbols have been relocated, and we're merged the
4615 target's tracepoints with ours. We're done with basic start
4616 up. */
4617 rs->starting_up = 0;
4618
4619 /* Maybe breakpoints are global and need to be inserted now. */
4620 if (breakpoints_should_be_inserted_now ())
4621 insert_breakpoints ();
4622 }
4623
4624 /* Open a connection to a remote debugger.
4625 NAME is the filename used for communication. */
4626
4627 void
4628 remote_target::open (const char *name, int from_tty)
4629 {
4630 open_1 (name, from_tty, 0);
4631 }
4632
4633 /* Open a connection to a remote debugger using the extended
4634 remote gdb protocol. NAME is the filename used for communication. */
4635
4636 void
4637 extended_remote_target::open (const char *name, int from_tty)
4638 {
4639 open_1 (name, from_tty, 1 /*extended_p */);
4640 }
4641
4642 /* Reset all packets back to "unknown support". Called when opening a
4643 new connection to a remote target. */
4644
4645 static void
4646 reset_all_packet_configs_support (void)
4647 {
4648 int i;
4649
4650 for (i = 0; i < PACKET_MAX; i++)
4651 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4652 }
4653
4654 /* Initialize all packet configs. */
4655
4656 static void
4657 init_all_packet_configs (void)
4658 {
4659 int i;
4660
4661 for (i = 0; i < PACKET_MAX; i++)
4662 {
4663 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4664 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4665 }
4666 }
4667
4668 /* Symbol look-up. */
4669
4670 static void
4671 remote_check_symbols (void)
4672 {
4673 char *msg, *reply, *tmp;
4674 int end;
4675 long reply_size;
4676 struct cleanup *old_chain;
4677
4678 /* The remote side has no concept of inferiors that aren't running
4679 yet, it only knows about running processes. If we're connected
4680 but our current inferior is not running, we should not invite the
4681 remote target to request symbol lookups related to its
4682 (unrelated) current process. */
4683 if (!target_has_execution)
4684 return;
4685
4686 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4687 return;
4688
4689 /* Make sure the remote is pointing at the right process. Note
4690 there's no way to select "no process". */
4691 set_general_process ();
4692
4693 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4694 because we need both at the same time. */
4695 msg = (char *) xmalloc (get_remote_packet_size ());
4696 old_chain = make_cleanup (xfree, msg);
4697 reply = (char *) xmalloc (get_remote_packet_size ());
4698 make_cleanup (free_current_contents, &reply);
4699 reply_size = get_remote_packet_size ();
4700
4701 /* Invite target to request symbol lookups. */
4702
4703 putpkt ("qSymbol::");
4704 getpkt (&reply, &reply_size, 0);
4705 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4706
4707 while (startswith (reply, "qSymbol:"))
4708 {
4709 struct bound_minimal_symbol sym;
4710
4711 tmp = &reply[8];
4712 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4713 msg[end] = '\0';
4714 sym = lookup_minimal_symbol (msg, NULL, NULL);
4715 if (sym.minsym == NULL)
4716 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4717 else
4718 {
4719 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4720 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4721
4722 /* If this is a function address, return the start of code
4723 instead of any data function descriptor. */
4724 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4725 sym_addr,
4726 target_stack);
4727
4728 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4729 phex_nz (sym_addr, addr_size), &reply[8]);
4730 }
4731
4732 putpkt (msg);
4733 getpkt (&reply, &reply_size, 0);
4734 }
4735
4736 do_cleanups (old_chain);
4737 }
4738
4739 static struct serial *
4740 remote_serial_open (const char *name)
4741 {
4742 static int udp_warning = 0;
4743
4744 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4745 of in ser-tcp.c, because it is the remote protocol assuming that the
4746 serial connection is reliable and not the serial connection promising
4747 to be. */
4748 if (!udp_warning && startswith (name, "udp:"))
4749 {
4750 warning (_("The remote protocol may be unreliable over UDP.\n"
4751 "Some events may be lost, rendering further debugging "
4752 "impossible."));
4753 udp_warning = 1;
4754 }
4755
4756 return serial_open (name);
4757 }
4758
4759 /* Inform the target of our permission settings. The permission flags
4760 work without this, but if the target knows the settings, it can do
4761 a couple things. First, it can add its own check, to catch cases
4762 that somehow manage to get by the permissions checks in target
4763 methods. Second, if the target is wired to disallow particular
4764 settings (for instance, a system in the field that is not set up to
4765 be able to stop at a breakpoint), it can object to any unavailable
4766 permissions. */
4767
4768 void
4769 remote_target::set_permissions ()
4770 {
4771 struct remote_state *rs = get_remote_state ();
4772
4773 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4774 "WriteReg:%x;WriteMem:%x;"
4775 "InsertBreak:%x;InsertTrace:%x;"
4776 "InsertFastTrace:%x;Stop:%x",
4777 may_write_registers, may_write_memory,
4778 may_insert_breakpoints, may_insert_tracepoints,
4779 may_insert_fast_tracepoints, may_stop);
4780 putpkt (rs->buf);
4781 getpkt (&rs->buf, &rs->buf_size, 0);
4782
4783 /* If the target didn't like the packet, warn the user. Do not try
4784 to undo the user's settings, that would just be maddening. */
4785 if (strcmp (rs->buf, "OK") != 0)
4786 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4787 }
4788
4789 /* This type describes each known response to the qSupported
4790 packet. */
4791 struct protocol_feature
4792 {
4793 /* The name of this protocol feature. */
4794 const char *name;
4795
4796 /* The default for this protocol feature. */
4797 enum packet_support default_support;
4798
4799 /* The function to call when this feature is reported, or after
4800 qSupported processing if the feature is not supported.
4801 The first argument points to this structure. The second
4802 argument indicates whether the packet requested support be
4803 enabled, disabled, or probed (or the default, if this function
4804 is being called at the end of processing and this feature was
4805 not reported). The third argument may be NULL; if not NULL, it
4806 is a NUL-terminated string taken from the packet following
4807 this feature's name and an equals sign. */
4808 void (*func) (const struct protocol_feature *, enum packet_support,
4809 const char *);
4810
4811 /* The corresponding packet for this feature. Only used if
4812 FUNC is remote_supported_packet. */
4813 int packet;
4814 };
4815
4816 static void
4817 remote_supported_packet (const struct protocol_feature *feature,
4818 enum packet_support support,
4819 const char *argument)
4820 {
4821 if (argument)
4822 {
4823 warning (_("Remote qSupported response supplied an unexpected value for"
4824 " \"%s\"."), feature->name);
4825 return;
4826 }
4827
4828 remote_protocol_packets[feature->packet].support = support;
4829 }
4830
4831 static void
4832 remote_packet_size (const struct protocol_feature *feature,
4833 enum packet_support support, const char *value)
4834 {
4835 struct remote_state *rs = get_remote_state ();
4836
4837 int packet_size;
4838 char *value_end;
4839
4840 if (support != PACKET_ENABLE)
4841 return;
4842
4843 if (value == NULL || *value == '\0')
4844 {
4845 warning (_("Remote target reported \"%s\" without a size."),
4846 feature->name);
4847 return;
4848 }
4849
4850 errno = 0;
4851 packet_size = strtol (value, &value_end, 16);
4852 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4853 {
4854 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4855 feature->name, value);
4856 return;
4857 }
4858
4859 /* Record the new maximum packet size. */
4860 rs->explicit_packet_size = packet_size;
4861 }
4862
4863 static const struct protocol_feature remote_protocol_features[] = {
4864 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4865 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4866 PACKET_qXfer_auxv },
4867 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4868 PACKET_qXfer_exec_file },
4869 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4870 PACKET_qXfer_features },
4871 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4872 PACKET_qXfer_libraries },
4873 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4874 PACKET_qXfer_libraries_svr4 },
4875 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4876 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4877 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4878 PACKET_qXfer_memory_map },
4879 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4880 PACKET_qXfer_spu_read },
4881 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4882 PACKET_qXfer_spu_write },
4883 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4884 PACKET_qXfer_osdata },
4885 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4886 PACKET_qXfer_threads },
4887 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4888 PACKET_qXfer_traceframe_info },
4889 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4890 PACKET_QPassSignals },
4891 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4892 PACKET_QCatchSyscalls },
4893 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4894 PACKET_QProgramSignals },
4895 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4896 PACKET_QSetWorkingDir },
4897 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4898 PACKET_QStartupWithShell },
4899 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4900 PACKET_QEnvironmentHexEncoded },
4901 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4902 PACKET_QEnvironmentReset },
4903 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4904 PACKET_QEnvironmentUnset },
4905 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4906 PACKET_QStartNoAckMode },
4907 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4908 PACKET_multiprocess_feature },
4909 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4910 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4911 PACKET_qXfer_siginfo_read },
4912 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4913 PACKET_qXfer_siginfo_write },
4914 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4915 PACKET_ConditionalTracepoints },
4916 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4917 PACKET_ConditionalBreakpoints },
4918 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4919 PACKET_BreakpointCommands },
4920 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4921 PACKET_FastTracepoints },
4922 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4923 PACKET_StaticTracepoints },
4924 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4925 PACKET_InstallInTrace},
4926 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4927 PACKET_DisconnectedTracing_feature },
4928 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4929 PACKET_bc },
4930 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4931 PACKET_bs },
4932 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4933 PACKET_TracepointSource },
4934 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4935 PACKET_QAllow },
4936 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4937 PACKET_EnableDisableTracepoints_feature },
4938 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4939 PACKET_qXfer_fdpic },
4940 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4941 PACKET_qXfer_uib },
4942 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4943 PACKET_QDisableRandomization },
4944 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4945 { "QTBuffer:size", PACKET_DISABLE,
4946 remote_supported_packet, PACKET_QTBuffer_size},
4947 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4948 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4949 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4950 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4951 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4952 PACKET_qXfer_btrace },
4953 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4954 PACKET_qXfer_btrace_conf },
4955 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4956 PACKET_Qbtrace_conf_bts_size },
4957 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4958 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4959 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4960 PACKET_fork_event_feature },
4961 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4962 PACKET_vfork_event_feature },
4963 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4964 PACKET_exec_event_feature },
4965 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4966 PACKET_Qbtrace_conf_pt_size },
4967 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4968 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4969 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4970 };
4971
4972 static char *remote_support_xml;
4973
4974 /* Register string appended to "xmlRegisters=" in qSupported query. */
4975
4976 void
4977 register_remote_support_xml (const char *xml)
4978 {
4979 #if defined(HAVE_LIBEXPAT)
4980 if (remote_support_xml == NULL)
4981 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4982 else
4983 {
4984 char *copy = xstrdup (remote_support_xml + 13);
4985 char *p = strtok (copy, ",");
4986
4987 do
4988 {
4989 if (strcmp (p, xml) == 0)
4990 {
4991 /* already there */
4992 xfree (copy);
4993 return;
4994 }
4995 }
4996 while ((p = strtok (NULL, ",")) != NULL);
4997 xfree (copy);
4998
4999 remote_support_xml = reconcat (remote_support_xml,
5000 remote_support_xml, ",", xml,
5001 (char *) NULL);
5002 }
5003 #endif
5004 }
5005
5006 static void
5007 remote_query_supported_append (std::string *msg, const char *append)
5008 {
5009 if (!msg->empty ())
5010 msg->append (";");
5011 msg->append (append);
5012 }
5013
5014 static void
5015 remote_query_supported (void)
5016 {
5017 struct remote_state *rs = get_remote_state ();
5018 char *next;
5019 int i;
5020 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5021
5022 /* The packet support flags are handled differently for this packet
5023 than for most others. We treat an error, a disabled packet, and
5024 an empty response identically: any features which must be reported
5025 to be used will be automatically disabled. An empty buffer
5026 accomplishes this, since that is also the representation for a list
5027 containing no features. */
5028
5029 rs->buf[0] = 0;
5030 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5031 {
5032 std::string q;
5033
5034 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5035 remote_query_supported_append (&q, "multiprocess+");
5036
5037 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5038 remote_query_supported_append (&q, "swbreak+");
5039 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5040 remote_query_supported_append (&q, "hwbreak+");
5041
5042 remote_query_supported_append (&q, "qRelocInsn+");
5043
5044 if (packet_set_cmd_state (PACKET_fork_event_feature)
5045 != AUTO_BOOLEAN_FALSE)
5046 remote_query_supported_append (&q, "fork-events+");
5047 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5048 != AUTO_BOOLEAN_FALSE)
5049 remote_query_supported_append (&q, "vfork-events+");
5050 if (packet_set_cmd_state (PACKET_exec_event_feature)
5051 != AUTO_BOOLEAN_FALSE)
5052 remote_query_supported_append (&q, "exec-events+");
5053
5054 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5055 remote_query_supported_append (&q, "vContSupported+");
5056
5057 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5058 remote_query_supported_append (&q, "QThreadEvents+");
5059
5060 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5061 remote_query_supported_append (&q, "no-resumed+");
5062
5063 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5064 the qSupported:xmlRegisters=i386 handling. */
5065 if (remote_support_xml != NULL
5066 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5067 remote_query_supported_append (&q, remote_support_xml);
5068
5069 q = "qSupported:" + q;
5070 putpkt (q.c_str ());
5071
5072 getpkt (&rs->buf, &rs->buf_size, 0);
5073
5074 /* If an error occured, warn, but do not return - just reset the
5075 buffer to empty and go on to disable features. */
5076 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5077 == PACKET_ERROR)
5078 {
5079 warning (_("Remote failure reply: %s"), rs->buf);
5080 rs->buf[0] = 0;
5081 }
5082 }
5083
5084 memset (seen, 0, sizeof (seen));
5085
5086 next = rs->buf;
5087 while (*next)
5088 {
5089 enum packet_support is_supported;
5090 char *p, *end, *name_end, *value;
5091
5092 /* First separate out this item from the rest of the packet. If
5093 there's another item after this, we overwrite the separator
5094 (terminated strings are much easier to work with). */
5095 p = next;
5096 end = strchr (p, ';');
5097 if (end == NULL)
5098 {
5099 end = p + strlen (p);
5100 next = end;
5101 }
5102 else
5103 {
5104 *end = '\0';
5105 next = end + 1;
5106
5107 if (end == p)
5108 {
5109 warning (_("empty item in \"qSupported\" response"));
5110 continue;
5111 }
5112 }
5113
5114 name_end = strchr (p, '=');
5115 if (name_end)
5116 {
5117 /* This is a name=value entry. */
5118 is_supported = PACKET_ENABLE;
5119 value = name_end + 1;
5120 *name_end = '\0';
5121 }
5122 else
5123 {
5124 value = NULL;
5125 switch (end[-1])
5126 {
5127 case '+':
5128 is_supported = PACKET_ENABLE;
5129 break;
5130
5131 case '-':
5132 is_supported = PACKET_DISABLE;
5133 break;
5134
5135 case '?':
5136 is_supported = PACKET_SUPPORT_UNKNOWN;
5137 break;
5138
5139 default:
5140 warning (_("unrecognized item \"%s\" "
5141 "in \"qSupported\" response"), p);
5142 continue;
5143 }
5144 end[-1] = '\0';
5145 }
5146
5147 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5148 if (strcmp (remote_protocol_features[i].name, p) == 0)
5149 {
5150 const struct protocol_feature *feature;
5151
5152 seen[i] = 1;
5153 feature = &remote_protocol_features[i];
5154 feature->func (feature, is_supported, value);
5155 break;
5156 }
5157 }
5158
5159 /* If we increased the packet size, make sure to increase the global
5160 buffer size also. We delay this until after parsing the entire
5161 qSupported packet, because this is the same buffer we were
5162 parsing. */
5163 if (rs->buf_size < rs->explicit_packet_size)
5164 {
5165 rs->buf_size = rs->explicit_packet_size;
5166 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5167 }
5168
5169 /* Handle the defaults for unmentioned features. */
5170 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5171 if (!seen[i])
5172 {
5173 const struct protocol_feature *feature;
5174
5175 feature = &remote_protocol_features[i];
5176 feature->func (feature, feature->default_support, NULL);
5177 }
5178 }
5179
5180 /* Serial QUIT handler for the remote serial descriptor.
5181
5182 Defers handling a Ctrl-C until we're done with the current
5183 command/response packet sequence, unless:
5184
5185 - We're setting up the connection. Don't send a remote interrupt
5186 request, as we're not fully synced yet. Quit immediately
5187 instead.
5188
5189 - The target has been resumed in the foreground
5190 (target_terminal::is_ours is false) with a synchronous resume
5191 packet, and we're blocked waiting for the stop reply, thus a
5192 Ctrl-C should be immediately sent to the target.
5193
5194 - We get a second Ctrl-C while still within the same serial read or
5195 write. In that case the serial is seemingly wedged --- offer to
5196 quit/disconnect.
5197
5198 - We see a second Ctrl-C without target response, after having
5199 previously interrupted the target. In that case the target/stub
5200 is probably wedged --- offer to quit/disconnect.
5201 */
5202
5203 static void
5204 remote_serial_quit_handler (void)
5205 {
5206 struct remote_state *rs = get_remote_state ();
5207
5208 if (check_quit_flag ())
5209 {
5210 /* If we're starting up, we're not fully synced yet. Quit
5211 immediately. */
5212 if (rs->starting_up)
5213 quit ();
5214 else if (rs->got_ctrlc_during_io)
5215 {
5216 if (query (_("The target is not responding to GDB commands.\n"
5217 "Stop debugging it? ")))
5218 remote_unpush_and_throw ();
5219 }
5220 /* If ^C has already been sent once, offer to disconnect. */
5221 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5222 interrupt_query ();
5223 /* All-stop protocol, and blocked waiting for stop reply. Send
5224 an interrupt request. */
5225 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5226 target_interrupt ();
5227 else
5228 rs->got_ctrlc_during_io = 1;
5229 }
5230 }
5231
5232 /* Remove any of the remote.c targets from target stack. Upper targets depend
5233 on it so remove them first. */
5234
5235 static void
5236 remote_unpush_target (void)
5237 {
5238 pop_all_targets_at_and_above (process_stratum);
5239 }
5240
5241 static void
5242 remote_unpush_and_throw (void)
5243 {
5244 remote_unpush_target ();
5245 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5246 }
5247
5248 void
5249 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5250 {
5251 struct remote_state *rs = get_remote_state ();
5252
5253 if (name == 0)
5254 error (_("To open a remote debug connection, you need to specify what\n"
5255 "serial device is attached to the remote system\n"
5256 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5257
5258 /* See FIXME above. */
5259 if (!target_async_permitted)
5260 wait_forever_enabled_p = 1;
5261
5262 /* If we're connected to a running target, target_preopen will kill it.
5263 Ask this question first, before target_preopen has a chance to kill
5264 anything. */
5265 if (rs->remote_desc != NULL && !have_inferiors ())
5266 {
5267 if (from_tty
5268 && !query (_("Already connected to a remote target. Disconnect? ")))
5269 error (_("Still connected."));
5270 }
5271
5272 /* Here the possibly existing remote target gets unpushed. */
5273 target_preopen (from_tty);
5274
5275 /* Make sure we send the passed signals list the next time we resume. */
5276 xfree (rs->last_pass_packet);
5277 rs->last_pass_packet = NULL;
5278
5279 /* Make sure we send the program signals list the next time we
5280 resume. */
5281 xfree (rs->last_program_signals_packet);
5282 rs->last_program_signals_packet = NULL;
5283
5284 remote_fileio_reset ();
5285 reopen_exec_file ();
5286 reread_symbols ();
5287
5288 rs->remote_desc = remote_serial_open (name);
5289 if (!rs->remote_desc)
5290 perror_with_name (name);
5291
5292 if (baud_rate != -1)
5293 {
5294 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5295 {
5296 /* The requested speed could not be set. Error out to
5297 top level after closing remote_desc. Take care to
5298 set remote_desc to NULL to avoid closing remote_desc
5299 more than once. */
5300 serial_close (rs->remote_desc);
5301 rs->remote_desc = NULL;
5302 perror_with_name (name);
5303 }
5304 }
5305
5306 serial_setparity (rs->remote_desc, serial_parity);
5307 serial_raw (rs->remote_desc);
5308
5309 /* If there is something sitting in the buffer we might take it as a
5310 response to a command, which would be bad. */
5311 serial_flush_input (rs->remote_desc);
5312
5313 if (from_tty)
5314 {
5315 puts_filtered ("Remote debugging using ");
5316 puts_filtered (name);
5317 puts_filtered ("\n");
5318 }
5319
5320 remote_target *target
5321 = extended_p ? &extended_remote_ops : &remote_ops;
5322 push_target (target); /* Switch to using remote target now. */
5323
5324 /* Register extra event sources in the event loop. */
5325 remote_async_inferior_event_token
5326 = create_async_event_handler (remote_async_inferior_event_handler,
5327 NULL);
5328 rs->notif_state = remote_notif_state_allocate ();
5329
5330 /* Reset the target state; these things will be queried either by
5331 remote_query_supported or as they are needed. */
5332 reset_all_packet_configs_support ();
5333 rs->cached_wait_status = 0;
5334 rs->explicit_packet_size = 0;
5335 rs->noack_mode = 0;
5336 rs->extended = extended_p;
5337 rs->waiting_for_stop_reply = 0;
5338 rs->ctrlc_pending_p = 0;
5339 rs->got_ctrlc_during_io = 0;
5340
5341 rs->general_thread = not_sent_ptid;
5342 rs->continue_thread = not_sent_ptid;
5343 rs->remote_traceframe_number = -1;
5344
5345 rs->last_resume_exec_dir = EXEC_FORWARD;
5346
5347 /* Probe for ability to use "ThreadInfo" query, as required. */
5348 rs->use_threadinfo_query = 1;
5349 rs->use_threadextra_query = 1;
5350
5351 rs->readahead_cache.invalidate ();
5352
5353 if (target_async_permitted)
5354 {
5355 /* FIXME: cagney/1999-09-23: During the initial connection it is
5356 assumed that the target is already ready and able to respond to
5357 requests. Unfortunately remote_start_remote() eventually calls
5358 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5359 around this. Eventually a mechanism that allows
5360 wait_for_inferior() to expect/get timeouts will be
5361 implemented. */
5362 wait_forever_enabled_p = 0;
5363 }
5364
5365 /* First delete any symbols previously loaded from shared libraries. */
5366 no_shared_libraries (NULL, 0);
5367
5368 /* Start afresh. */
5369 init_thread_list ();
5370
5371 /* Start the remote connection. If error() or QUIT, discard this
5372 target (we'd otherwise be in an inconsistent state) and then
5373 propogate the error on up the exception chain. This ensures that
5374 the caller doesn't stumble along blindly assuming that the
5375 function succeeded. The CLI doesn't have this problem but other
5376 UI's, such as MI do.
5377
5378 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5379 this function should return an error indication letting the
5380 caller restore the previous state. Unfortunately the command
5381 ``target remote'' is directly wired to this function making that
5382 impossible. On a positive note, the CLI side of this problem has
5383 been fixed - the function set_cmd_context() makes it possible for
5384 all the ``target ....'' commands to share a common callback
5385 function. See cli-dump.c. */
5386 {
5387
5388 TRY
5389 {
5390 target->start_remote (from_tty, extended_p);
5391 }
5392 CATCH (ex, RETURN_MASK_ALL)
5393 {
5394 /* Pop the partially set up target - unless something else did
5395 already before throwing the exception. */
5396 if (rs->remote_desc != NULL)
5397 remote_unpush_target ();
5398 if (target_async_permitted)
5399 wait_forever_enabled_p = 1;
5400 throw_exception (ex);
5401 }
5402 END_CATCH
5403 }
5404
5405 remote_btrace_reset ();
5406
5407 if (target_async_permitted)
5408 wait_forever_enabled_p = 1;
5409 }
5410
5411 /* Detach the specified process. */
5412
5413 static void
5414 remote_detach_pid (int pid)
5415 {
5416 struct remote_state *rs = get_remote_state ();
5417
5418 if (remote_multi_process_p (rs))
5419 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5420 else
5421 strcpy (rs->buf, "D");
5422
5423 putpkt (rs->buf);
5424 getpkt (&rs->buf, &rs->buf_size, 0);
5425
5426 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5427 ;
5428 else if (rs->buf[0] == '\0')
5429 error (_("Remote doesn't know how to detach"));
5430 else
5431 error (_("Can't detach process."));
5432 }
5433
5434 /* This detaches a program to which we previously attached, using
5435 inferior_ptid to identify the process. After this is done, GDB
5436 can be used to debug some other program. We better not have left
5437 any breakpoints in the target program or it'll die when it hits
5438 one. */
5439
5440 static void
5441 remote_detach_1 (int from_tty, inferior *inf)
5442 {
5443 int pid = ptid_get_pid (inferior_ptid);
5444 struct remote_state *rs = get_remote_state ();
5445 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5446 int is_fork_parent;
5447
5448 if (!target_has_execution)
5449 error (_("No process to detach from."));
5450
5451 target_announce_detach (from_tty);
5452
5453 /* Tell the remote target to detach. */
5454 remote_detach_pid (pid);
5455
5456 /* Exit only if this is the only active inferior. */
5457 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5458 puts_filtered (_("Ending remote debugging.\n"));
5459
5460 /* Check to see if we are detaching a fork parent. Note that if we
5461 are detaching a fork child, tp == NULL. */
5462 is_fork_parent = (tp != NULL
5463 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5464
5465 /* If doing detach-on-fork, we don't mourn, because that will delete
5466 breakpoints that should be available for the followed inferior. */
5467 if (!is_fork_parent)
5468 {
5469 /* Save the pid as a string before mourning, since that will
5470 unpush the remote target, and we need the string after. */
5471 std::string infpid = target_pid_to_str (pid_to_ptid (pid));
5472
5473 target_mourn_inferior (inferior_ptid);
5474 if (print_inferior_events)
5475 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5476 inf->num, infpid.c_str ());
5477 }
5478 else
5479 {
5480 inferior_ptid = null_ptid;
5481 detach_inferior (pid);
5482 }
5483 }
5484
5485 void
5486 remote_target::detach (inferior *inf, int from_tty)
5487 {
5488 remote_detach_1 (from_tty, inf);
5489 }
5490
5491 void
5492 extended_remote_target::detach (inferior *inf, int from_tty)
5493 {
5494 remote_detach_1 (from_tty, inf);
5495 }
5496
5497 /* Target follow-fork function for remote targets. On entry, and
5498 at return, the current inferior is the fork parent.
5499
5500 Note that although this is currently only used for extended-remote,
5501 it is named remote_follow_fork in anticipation of using it for the
5502 remote target as well. */
5503
5504 int
5505 remote_target::follow_fork (int follow_child, int detach_fork)
5506 {
5507 struct remote_state *rs = get_remote_state ();
5508 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5509
5510 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5511 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5512 {
5513 /* When following the parent and detaching the child, we detach
5514 the child here. For the case of following the child and
5515 detaching the parent, the detach is done in the target-
5516 independent follow fork code in infrun.c. We can't use
5517 target_detach when detaching an unfollowed child because
5518 the client side doesn't know anything about the child. */
5519 if (detach_fork && !follow_child)
5520 {
5521 /* Detach the fork child. */
5522 ptid_t child_ptid;
5523 pid_t child_pid;
5524
5525 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5526 child_pid = ptid_get_pid (child_ptid);
5527
5528 remote_detach_pid (child_pid);
5529 }
5530 }
5531 return 0;
5532 }
5533
5534 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5535 in the program space of the new inferior. On entry and at return the
5536 current inferior is the exec'ing inferior. INF is the new exec'd
5537 inferior, which may be the same as the exec'ing inferior unless
5538 follow-exec-mode is "new". */
5539
5540 void
5541 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5542 {
5543 /* We know that this is a target file name, so if it has the "target:"
5544 prefix we strip it off before saving it in the program space. */
5545 if (is_target_filename (execd_pathname))
5546 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5547
5548 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5549 }
5550
5551 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5552
5553 void
5554 remote_target::disconnect (const char *args, int from_tty)
5555 {
5556 if (args)
5557 error (_("Argument given to \"disconnect\" when remotely debugging."));
5558
5559 /* Make sure we unpush even the extended remote targets. Calling
5560 target_mourn_inferior won't unpush, and remote_mourn won't
5561 unpush if there is more than one inferior left. */
5562 unpush_target (this);
5563 generic_mourn_inferior ();
5564
5565 if (from_tty)
5566 puts_filtered ("Ending remote debugging.\n");
5567 }
5568
5569 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5570 be chatty about it. */
5571
5572 void
5573 extended_remote_target::attach (const char *args, int from_tty)
5574 {
5575 struct remote_state *rs = get_remote_state ();
5576 int pid;
5577 char *wait_status = NULL;
5578
5579 pid = parse_pid_to_attach (args);
5580
5581 /* Remote PID can be freely equal to getpid, do not check it here the same
5582 way as in other targets. */
5583
5584 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5585 error (_("This target does not support attaching to a process"));
5586
5587 if (from_tty)
5588 {
5589 char *exec_file = get_exec_file (0);
5590
5591 if (exec_file)
5592 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5593 target_pid_to_str (pid_to_ptid (pid)));
5594 else
5595 printf_unfiltered (_("Attaching to %s\n"),
5596 target_pid_to_str (pid_to_ptid (pid)));
5597
5598 gdb_flush (gdb_stdout);
5599 }
5600
5601 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5602 putpkt (rs->buf);
5603 getpkt (&rs->buf, &rs->buf_size, 0);
5604
5605 switch (packet_ok (rs->buf,
5606 &remote_protocol_packets[PACKET_vAttach]))
5607 {
5608 case PACKET_OK:
5609 if (!target_is_non_stop_p ())
5610 {
5611 /* Save the reply for later. */
5612 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5613 strcpy (wait_status, rs->buf);
5614 }
5615 else if (strcmp (rs->buf, "OK") != 0)
5616 error (_("Attaching to %s failed with: %s"),
5617 target_pid_to_str (pid_to_ptid (pid)),
5618 rs->buf);
5619 break;
5620 case PACKET_UNKNOWN:
5621 error (_("This target does not support attaching to a process"));
5622 default:
5623 error (_("Attaching to %s failed"),
5624 target_pid_to_str (pid_to_ptid (pid)));
5625 }
5626
5627 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5628
5629 inferior_ptid = pid_to_ptid (pid);
5630
5631 if (target_is_non_stop_p ())
5632 {
5633 struct thread_info *thread;
5634
5635 /* Get list of threads. */
5636 update_thread_list ();
5637
5638 thread = first_thread_of_process (pid);
5639 if (thread)
5640 inferior_ptid = thread->ptid;
5641 else
5642 inferior_ptid = pid_to_ptid (pid);
5643
5644 /* Invalidate our notion of the remote current thread. */
5645 record_currthread (rs, minus_one_ptid);
5646 }
5647 else
5648 {
5649 /* Now, if we have thread information, update inferior_ptid. */
5650 inferior_ptid = remote_current_thread (inferior_ptid);
5651
5652 /* Add the main thread to the thread list. */
5653 thread_info *thr = add_thread_silent (inferior_ptid);
5654 /* Don't consider the thread stopped until we've processed the
5655 saved stop reply. */
5656 set_executing (thr->ptid, true);
5657 }
5658
5659 /* Next, if the target can specify a description, read it. We do
5660 this before anything involving memory or registers. */
5661 target_find_description ();
5662
5663 if (!target_is_non_stop_p ())
5664 {
5665 /* Use the previously fetched status. */
5666 gdb_assert (wait_status != NULL);
5667
5668 if (target_can_async_p ())
5669 {
5670 struct notif_event *reply
5671 = remote_notif_parse (&notif_client_stop, wait_status);
5672
5673 push_stop_reply ((struct stop_reply *) reply);
5674
5675 target_async (1);
5676 }
5677 else
5678 {
5679 gdb_assert (wait_status != NULL);
5680 strcpy (rs->buf, wait_status);
5681 rs->cached_wait_status = 1;
5682 }
5683 }
5684 else
5685 gdb_assert (wait_status == NULL);
5686 }
5687
5688 /* Implementation of the to_post_attach method. */
5689
5690 void
5691 extended_remote_target::post_attach (int pid)
5692 {
5693 /* Get text, data & bss offsets. */
5694 get_offsets ();
5695
5696 /* In certain cases GDB might not have had the chance to start
5697 symbol lookup up until now. This could happen if the debugged
5698 binary is not using shared libraries, the vsyscall page is not
5699 present (on Linux) and the binary itself hadn't changed since the
5700 debugging process was started. */
5701 if (symfile_objfile != NULL)
5702 remote_check_symbols();
5703 }
5704
5705 \f
5706 /* Check for the availability of vCont. This function should also check
5707 the response. */
5708
5709 static void
5710 remote_vcont_probe (struct remote_state *rs)
5711 {
5712 char *buf;
5713
5714 strcpy (rs->buf, "vCont?");
5715 putpkt (rs->buf);
5716 getpkt (&rs->buf, &rs->buf_size, 0);
5717 buf = rs->buf;
5718
5719 /* Make sure that the features we assume are supported. */
5720 if (startswith (buf, "vCont"))
5721 {
5722 char *p = &buf[5];
5723 int support_c, support_C;
5724
5725 rs->supports_vCont.s = 0;
5726 rs->supports_vCont.S = 0;
5727 support_c = 0;
5728 support_C = 0;
5729 rs->supports_vCont.t = 0;
5730 rs->supports_vCont.r = 0;
5731 while (p && *p == ';')
5732 {
5733 p++;
5734 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5735 rs->supports_vCont.s = 1;
5736 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5737 rs->supports_vCont.S = 1;
5738 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5739 support_c = 1;
5740 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5741 support_C = 1;
5742 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5743 rs->supports_vCont.t = 1;
5744 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5745 rs->supports_vCont.r = 1;
5746
5747 p = strchr (p, ';');
5748 }
5749
5750 /* If c, and C are not all supported, we can't use vCont. Clearing
5751 BUF will make packet_ok disable the packet. */
5752 if (!support_c || !support_C)
5753 buf[0] = 0;
5754 }
5755
5756 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5757 }
5758
5759 /* Helper function for building "vCont" resumptions. Write a
5760 resumption to P. ENDP points to one-passed-the-end of the buffer
5761 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5762 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5763 resumed thread should be single-stepped and/or signalled. If PTID
5764 equals minus_one_ptid, then all threads are resumed; if PTID
5765 represents a process, then all threads of the process are resumed;
5766 the thread to be stepped and/or signalled is given in the global
5767 INFERIOR_PTID. */
5768
5769 static char *
5770 append_resumption (char *p, char *endp,
5771 ptid_t ptid, int step, enum gdb_signal siggnal)
5772 {
5773 struct remote_state *rs = get_remote_state ();
5774
5775 if (step && siggnal != GDB_SIGNAL_0)
5776 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5777 else if (step
5778 /* GDB is willing to range step. */
5779 && use_range_stepping
5780 /* Target supports range stepping. */
5781 && rs->supports_vCont.r
5782 /* We don't currently support range stepping multiple
5783 threads with a wildcard (though the protocol allows it,
5784 so stubs shouldn't make an active effort to forbid
5785 it). */
5786 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5787 {
5788 struct thread_info *tp;
5789
5790 if (ptid_equal (ptid, minus_one_ptid))
5791 {
5792 /* If we don't know about the target thread's tid, then
5793 we're resuming magic_null_ptid (see caller). */
5794 tp = find_thread_ptid (magic_null_ptid);
5795 }
5796 else
5797 tp = find_thread_ptid (ptid);
5798 gdb_assert (tp != NULL);
5799
5800 if (tp->control.may_range_step)
5801 {
5802 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5803
5804 p += xsnprintf (p, endp - p, ";r%s,%s",
5805 phex_nz (tp->control.step_range_start,
5806 addr_size),
5807 phex_nz (tp->control.step_range_end,
5808 addr_size));
5809 }
5810 else
5811 p += xsnprintf (p, endp - p, ";s");
5812 }
5813 else if (step)
5814 p += xsnprintf (p, endp - p, ";s");
5815 else if (siggnal != GDB_SIGNAL_0)
5816 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5817 else
5818 p += xsnprintf (p, endp - p, ";c");
5819
5820 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5821 {
5822 ptid_t nptid;
5823
5824 /* All (-1) threads of process. */
5825 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5826
5827 p += xsnprintf (p, endp - p, ":");
5828 p = write_ptid (p, endp, nptid);
5829 }
5830 else if (!ptid_equal (ptid, minus_one_ptid))
5831 {
5832 p += xsnprintf (p, endp - p, ":");
5833 p = write_ptid (p, endp, ptid);
5834 }
5835
5836 return p;
5837 }
5838
5839 /* Clear the thread's private info on resume. */
5840
5841 static void
5842 resume_clear_thread_private_info (struct thread_info *thread)
5843 {
5844 if (thread->priv != NULL)
5845 {
5846 remote_thread_info *priv = get_remote_thread_info (thread);
5847
5848 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5849 priv->watch_data_address = 0;
5850 }
5851 }
5852
5853 /* Append a vCont continue-with-signal action for threads that have a
5854 non-zero stop signal. */
5855
5856 static char *
5857 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5858 {
5859 struct thread_info *thread;
5860
5861 ALL_NON_EXITED_THREADS (thread)
5862 if (ptid_match (thread->ptid, ptid)
5863 && !ptid_equal (inferior_ptid, thread->ptid)
5864 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5865 {
5866 p = append_resumption (p, endp, thread->ptid,
5867 0, thread->suspend.stop_signal);
5868 thread->suspend.stop_signal = GDB_SIGNAL_0;
5869 resume_clear_thread_private_info (thread);
5870 }
5871
5872 return p;
5873 }
5874
5875 /* Set the target running, using the packets that use Hc
5876 (c/s/C/S). */
5877
5878 static void
5879 remote_resume_with_hc (struct target_ops *ops,
5880 ptid_t ptid, int step, enum gdb_signal siggnal)
5881 {
5882 struct remote_state *rs = get_remote_state ();
5883 struct thread_info *thread;
5884 char *buf;
5885
5886 rs->last_sent_signal = siggnal;
5887 rs->last_sent_step = step;
5888
5889 /* The c/s/C/S resume packets use Hc, so set the continue
5890 thread. */
5891 if (ptid_equal (ptid, minus_one_ptid))
5892 set_continue_thread (any_thread_ptid);
5893 else
5894 set_continue_thread (ptid);
5895
5896 ALL_NON_EXITED_THREADS (thread)
5897 resume_clear_thread_private_info (thread);
5898
5899 buf = rs->buf;
5900 if (execution_direction == EXEC_REVERSE)
5901 {
5902 /* We don't pass signals to the target in reverse exec mode. */
5903 if (info_verbose && siggnal != GDB_SIGNAL_0)
5904 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5905 siggnal);
5906
5907 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5908 error (_("Remote reverse-step not supported."));
5909 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5910 error (_("Remote reverse-continue not supported."));
5911
5912 strcpy (buf, step ? "bs" : "bc");
5913 }
5914 else if (siggnal != GDB_SIGNAL_0)
5915 {
5916 buf[0] = step ? 'S' : 'C';
5917 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5918 buf[2] = tohex (((int) siggnal) & 0xf);
5919 buf[3] = '\0';
5920 }
5921 else
5922 strcpy (buf, step ? "s" : "c");
5923
5924 putpkt (buf);
5925 }
5926
5927 /* Resume the remote inferior by using a "vCont" packet. The thread
5928 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5929 resumed thread should be single-stepped and/or signalled. If PTID
5930 equals minus_one_ptid, then all threads are resumed; the thread to
5931 be stepped and/or signalled is given in the global INFERIOR_PTID.
5932 This function returns non-zero iff it resumes the inferior.
5933
5934 This function issues a strict subset of all possible vCont commands
5935 at the moment. */
5936
5937 static int
5938 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5939 {
5940 struct remote_state *rs = get_remote_state ();
5941 char *p;
5942 char *endp;
5943
5944 /* No reverse execution actions defined for vCont. */
5945 if (execution_direction == EXEC_REVERSE)
5946 return 0;
5947
5948 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5949 remote_vcont_probe (rs);
5950
5951 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5952 return 0;
5953
5954 p = rs->buf;
5955 endp = rs->buf + get_remote_packet_size ();
5956
5957 /* If we could generate a wider range of packets, we'd have to worry
5958 about overflowing BUF. Should there be a generic
5959 "multi-part-packet" packet? */
5960
5961 p += xsnprintf (p, endp - p, "vCont");
5962
5963 if (ptid_equal (ptid, magic_null_ptid))
5964 {
5965 /* MAGIC_NULL_PTID means that we don't have any active threads,
5966 so we don't have any TID numbers the inferior will
5967 understand. Make sure to only send forms that do not specify
5968 a TID. */
5969 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5970 }
5971 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5972 {
5973 /* Resume all threads (of all processes, or of a single
5974 process), with preference for INFERIOR_PTID. This assumes
5975 inferior_ptid belongs to the set of all threads we are about
5976 to resume. */
5977 if (step || siggnal != GDB_SIGNAL_0)
5978 {
5979 /* Step inferior_ptid, with or without signal. */
5980 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5981 }
5982
5983 /* Also pass down any pending signaled resumption for other
5984 threads not the current. */
5985 p = append_pending_thread_resumptions (p, endp, ptid);
5986
5987 /* And continue others without a signal. */
5988 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5989 }
5990 else
5991 {
5992 /* Scheduler locking; resume only PTID. */
5993 append_resumption (p, endp, ptid, step, siggnal);
5994 }
5995
5996 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5997 putpkt (rs->buf);
5998
5999 if (target_is_non_stop_p ())
6000 {
6001 /* In non-stop, the stub replies to vCont with "OK". The stop
6002 reply will be reported asynchronously by means of a `%Stop'
6003 notification. */
6004 getpkt (&rs->buf, &rs->buf_size, 0);
6005 if (strcmp (rs->buf, "OK") != 0)
6006 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6007 }
6008
6009 return 1;
6010 }
6011
6012 /* Tell the remote machine to resume. */
6013
6014 void
6015 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6016 {
6017 struct remote_state *rs = get_remote_state ();
6018
6019 /* When connected in non-stop mode, the core resumes threads
6020 individually. Resuming remote threads directly in target_resume
6021 would thus result in sending one packet per thread. Instead, to
6022 minimize roundtrip latency, here we just store the resume
6023 request; the actual remote resumption will be done in
6024 target_commit_resume / remote_commit_resume, where we'll be able
6025 to do vCont action coalescing. */
6026 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6027 {
6028 remote_thread_info *remote_thr;
6029
6030 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
6031 remote_thr = get_remote_thread_info (inferior_ptid);
6032 else
6033 remote_thr = get_remote_thread_info (ptid);
6034
6035 remote_thr->last_resume_step = step;
6036 remote_thr->last_resume_sig = siggnal;
6037 return;
6038 }
6039
6040 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6041 (explained in remote-notif.c:handle_notification) so
6042 remote_notif_process is not called. We need find a place where
6043 it is safe to start a 'vNotif' sequence. It is good to do it
6044 before resuming inferior, because inferior was stopped and no RSP
6045 traffic at that moment. */
6046 if (!target_is_non_stop_p ())
6047 remote_notif_process (rs->notif_state, &notif_client_stop);
6048
6049 rs->last_resume_exec_dir = ::execution_direction;
6050
6051 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6052 if (!remote_resume_with_vcont (ptid, step, siggnal))
6053 remote_resume_with_hc (this, ptid, step, siggnal);
6054
6055 /* We are about to start executing the inferior, let's register it
6056 with the event loop. NOTE: this is the one place where all the
6057 execution commands end up. We could alternatively do this in each
6058 of the execution commands in infcmd.c. */
6059 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6060 into infcmd.c in order to allow inferior function calls to work
6061 NOT asynchronously. */
6062 if (target_can_async_p ())
6063 target_async (1);
6064
6065 /* We've just told the target to resume. The remote server will
6066 wait for the inferior to stop, and then send a stop reply. In
6067 the mean time, we can't start another command/query ourselves
6068 because the stub wouldn't be ready to process it. This applies
6069 only to the base all-stop protocol, however. In non-stop (which
6070 only supports vCont), the stub replies with an "OK", and is
6071 immediate able to process further serial input. */
6072 if (!target_is_non_stop_p ())
6073 rs->waiting_for_stop_reply = 1;
6074 }
6075
6076 static void check_pending_events_prevent_wildcard_vcont
6077 (int *may_global_wildcard_vcont);
6078 static int is_pending_fork_parent_thread (struct thread_info *thread);
6079
6080 /* Private per-inferior info for target remote processes. */
6081
6082 struct remote_inferior : public private_inferior
6083 {
6084 /* Whether we can send a wildcard vCont for this process. */
6085 bool may_wildcard_vcont = true;
6086 };
6087
6088 /* Get the remote private inferior data associated to INF. */
6089
6090 static remote_inferior *
6091 get_remote_inferior (inferior *inf)
6092 {
6093 if (inf->priv == NULL)
6094 inf->priv.reset (new remote_inferior);
6095
6096 return static_cast<remote_inferior *> (inf->priv.get ());
6097 }
6098
6099 /* Structure used to track the construction of a vCont packet in the
6100 outgoing packet buffer. This is used to send multiple vCont
6101 packets if we have more actions than would fit a single packet. */
6102
6103 struct vcont_builder
6104 {
6105 /* Pointer to the first action. P points here if no action has been
6106 appended yet. */
6107 char *first_action;
6108
6109 /* Where the next action will be appended. */
6110 char *p;
6111
6112 /* The end of the buffer. Must never write past this. */
6113 char *endp;
6114 };
6115
6116 /* Prepare the outgoing buffer for a new vCont packet. */
6117
6118 static void
6119 vcont_builder_restart (struct vcont_builder *builder)
6120 {
6121 struct remote_state *rs = get_remote_state ();
6122
6123 builder->p = rs->buf;
6124 builder->endp = rs->buf + get_remote_packet_size ();
6125 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
6126 builder->first_action = builder->p;
6127 }
6128
6129 /* If the vCont packet being built has any action, send it to the
6130 remote end. */
6131
6132 static void
6133 vcont_builder_flush (struct vcont_builder *builder)
6134 {
6135 struct remote_state *rs;
6136
6137 if (builder->p == builder->first_action)
6138 return;
6139
6140 rs = get_remote_state ();
6141 putpkt (rs->buf);
6142 getpkt (&rs->buf, &rs->buf_size, 0);
6143 if (strcmp (rs->buf, "OK") != 0)
6144 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6145 }
6146
6147 /* The largest action is range-stepping, with its two addresses. This
6148 is more than sufficient. If a new, bigger action is created, it'll
6149 quickly trigger a failed assertion in append_resumption (and we'll
6150 just bump this). */
6151 #define MAX_ACTION_SIZE 200
6152
6153 /* Append a new vCont action in the outgoing packet being built. If
6154 the action doesn't fit the packet along with previous actions, push
6155 what we've got so far to the remote end and start over a new vCont
6156 packet (with the new action). */
6157
6158 static void
6159 vcont_builder_push_action (struct vcont_builder *builder,
6160 ptid_t ptid, int step, enum gdb_signal siggnal)
6161 {
6162 char buf[MAX_ACTION_SIZE + 1];
6163 char *endp;
6164 size_t rsize;
6165
6166 endp = append_resumption (buf, buf + sizeof (buf),
6167 ptid, step, siggnal);
6168
6169 /* Check whether this new action would fit in the vCont packet along
6170 with previous actions. If not, send what we've got so far and
6171 start a new vCont packet. */
6172 rsize = endp - buf;
6173 if (rsize > builder->endp - builder->p)
6174 {
6175 vcont_builder_flush (builder);
6176 vcont_builder_restart (builder);
6177
6178 /* Should now fit. */
6179 gdb_assert (rsize <= builder->endp - builder->p);
6180 }
6181
6182 memcpy (builder->p, buf, rsize);
6183 builder->p += rsize;
6184 *builder->p = '\0';
6185 }
6186
6187 /* to_commit_resume implementation. */
6188
6189 void
6190 remote_target::commit_resume ()
6191 {
6192 struct inferior *inf;
6193 struct thread_info *tp;
6194 int any_process_wildcard;
6195 int may_global_wildcard_vcont;
6196 struct vcont_builder vcont_builder;
6197
6198 /* If connected in all-stop mode, we'd send the remote resume
6199 request directly from remote_resume. Likewise if
6200 reverse-debugging, as there are no defined vCont actions for
6201 reverse execution. */
6202 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6203 return;
6204
6205 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6206 instead of resuming all threads of each process individually.
6207 However, if any thread of a process must remain halted, we can't
6208 send wildcard resumes and must send one action per thread.
6209
6210 Care must be taken to not resume threads/processes the server
6211 side already told us are stopped, but the core doesn't know about
6212 yet, because the events are still in the vStopped notification
6213 queue. For example:
6214
6215 #1 => vCont s:p1.1;c
6216 #2 <= OK
6217 #3 <= %Stopped T05 p1.1
6218 #4 => vStopped
6219 #5 <= T05 p1.2
6220 #6 => vStopped
6221 #7 <= OK
6222 #8 (infrun handles the stop for p1.1 and continues stepping)
6223 #9 => vCont s:p1.1;c
6224
6225 The last vCont above would resume thread p1.2 by mistake, because
6226 the server has no idea that the event for p1.2 had not been
6227 handled yet.
6228
6229 The server side must similarly ignore resume actions for the
6230 thread that has a pending %Stopped notification (and any other
6231 threads with events pending), until GDB acks the notification
6232 with vStopped. Otherwise, e.g., the following case is
6233 mishandled:
6234
6235 #1 => g (or any other packet)
6236 #2 <= [registers]
6237 #3 <= %Stopped T05 p1.2
6238 #4 => vCont s:p1.1;c
6239 #5 <= OK
6240
6241 Above, the server must not resume thread p1.2. GDB can't know
6242 that p1.2 stopped until it acks the %Stopped notification, and
6243 since from GDB's perspective all threads should be running, it
6244 sends a "c" action.
6245
6246 Finally, special care must also be given to handling fork/vfork
6247 events. A (v)fork event actually tells us that two processes
6248 stopped -- the parent and the child. Until we follow the fork,
6249 we must not resume the child. Therefore, if we have a pending
6250 fork follow, we must not send a global wildcard resume action
6251 (vCont;c). We can still send process-wide wildcards though. */
6252
6253 /* Start by assuming a global wildcard (vCont;c) is possible. */
6254 may_global_wildcard_vcont = 1;
6255
6256 /* And assume every process is individually wildcard-able too. */
6257 ALL_NON_EXITED_INFERIORS (inf)
6258 {
6259 remote_inferior *priv = get_remote_inferior (inf);
6260
6261 priv->may_wildcard_vcont = true;
6262 }
6263
6264 /* Check for any pending events (not reported or processed yet) and
6265 disable process and global wildcard resumes appropriately. */
6266 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6267
6268 ALL_NON_EXITED_THREADS (tp)
6269 {
6270 /* If a thread of a process is not meant to be resumed, then we
6271 can't wildcard that process. */
6272 if (!tp->executing)
6273 {
6274 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6275
6276 /* And if we can't wildcard a process, we can't wildcard
6277 everything either. */
6278 may_global_wildcard_vcont = 0;
6279 continue;
6280 }
6281
6282 /* If a thread is the parent of an unfollowed fork, then we
6283 can't do a global wildcard, as that would resume the fork
6284 child. */
6285 if (is_pending_fork_parent_thread (tp))
6286 may_global_wildcard_vcont = 0;
6287 }
6288
6289 /* Now let's build the vCont packet(s). Actions must be appended
6290 from narrower to wider scopes (thread -> process -> global). If
6291 we end up with too many actions for a single packet vcont_builder
6292 flushes the current vCont packet to the remote side and starts a
6293 new one. */
6294 vcont_builder_restart (&vcont_builder);
6295
6296 /* Threads first. */
6297 ALL_NON_EXITED_THREADS (tp)
6298 {
6299 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6300
6301 if (!tp->executing || remote_thr->vcont_resumed)
6302 continue;
6303
6304 gdb_assert (!thread_is_in_step_over_chain (tp));
6305
6306 if (!remote_thr->last_resume_step
6307 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6308 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6309 {
6310 /* We'll send a wildcard resume instead. */
6311 remote_thr->vcont_resumed = 1;
6312 continue;
6313 }
6314
6315 vcont_builder_push_action (&vcont_builder, tp->ptid,
6316 remote_thr->last_resume_step,
6317 remote_thr->last_resume_sig);
6318 remote_thr->vcont_resumed = 1;
6319 }
6320
6321 /* Now check whether we can send any process-wide wildcard. This is
6322 to avoid sending a global wildcard in the case nothing is
6323 supposed to be resumed. */
6324 any_process_wildcard = 0;
6325
6326 ALL_NON_EXITED_INFERIORS (inf)
6327 {
6328 if (get_remote_inferior (inf)->may_wildcard_vcont)
6329 {
6330 any_process_wildcard = 1;
6331 break;
6332 }
6333 }
6334
6335 if (any_process_wildcard)
6336 {
6337 /* If all processes are wildcard-able, then send a single "c"
6338 action, otherwise, send an "all (-1) threads of process"
6339 continue action for each running process, if any. */
6340 if (may_global_wildcard_vcont)
6341 {
6342 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6343 0, GDB_SIGNAL_0);
6344 }
6345 else
6346 {
6347 ALL_NON_EXITED_INFERIORS (inf)
6348 {
6349 if (get_remote_inferior (inf)->may_wildcard_vcont)
6350 {
6351 vcont_builder_push_action (&vcont_builder,
6352 pid_to_ptid (inf->pid),
6353 0, GDB_SIGNAL_0);
6354 }
6355 }
6356 }
6357 }
6358
6359 vcont_builder_flush (&vcont_builder);
6360 }
6361
6362 \f
6363
6364 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6365 thread, all threads of a remote process, or all threads of all
6366 processes. */
6367
6368 static void
6369 remote_stop_ns (ptid_t ptid)
6370 {
6371 struct remote_state *rs = get_remote_state ();
6372 char *p = rs->buf;
6373 char *endp = rs->buf + get_remote_packet_size ();
6374
6375 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6376 remote_vcont_probe (rs);
6377
6378 if (!rs->supports_vCont.t)
6379 error (_("Remote server does not support stopping threads"));
6380
6381 if (ptid_equal (ptid, minus_one_ptid)
6382 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6383 p += xsnprintf (p, endp - p, "vCont;t");
6384 else
6385 {
6386 ptid_t nptid;
6387
6388 p += xsnprintf (p, endp - p, "vCont;t:");
6389
6390 if (ptid_is_pid (ptid))
6391 /* All (-1) threads of process. */
6392 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6393 else
6394 {
6395 /* Small optimization: if we already have a stop reply for
6396 this thread, no use in telling the stub we want this
6397 stopped. */
6398 if (peek_stop_reply (ptid))
6399 return;
6400
6401 nptid = ptid;
6402 }
6403
6404 write_ptid (p, endp, nptid);
6405 }
6406
6407 /* In non-stop, we get an immediate OK reply. The stop reply will
6408 come in asynchronously by notification. */
6409 putpkt (rs->buf);
6410 getpkt (&rs->buf, &rs->buf_size, 0);
6411 if (strcmp (rs->buf, "OK") != 0)
6412 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6413 }
6414
6415 /* All-stop version of target_interrupt. Sends a break or a ^C to
6416 interrupt the remote target. It is undefined which thread of which
6417 process reports the interrupt. */
6418
6419 static void
6420 remote_interrupt_as (void)
6421 {
6422 struct remote_state *rs = get_remote_state ();
6423
6424 rs->ctrlc_pending_p = 1;
6425
6426 /* If the inferior is stopped already, but the core didn't know
6427 about it yet, just ignore the request. The cached wait status
6428 will be collected in remote_wait. */
6429 if (rs->cached_wait_status)
6430 return;
6431
6432 /* Send interrupt_sequence to remote target. */
6433 send_interrupt_sequence ();
6434 }
6435
6436 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6437 the remote target. It is undefined which thread of which process
6438 reports the interrupt. Throws an error if the packet is not
6439 supported by the server. */
6440
6441 static void
6442 remote_interrupt_ns (void)
6443 {
6444 struct remote_state *rs = get_remote_state ();
6445 char *p = rs->buf;
6446 char *endp = rs->buf + get_remote_packet_size ();
6447
6448 xsnprintf (p, endp - p, "vCtrlC");
6449
6450 /* In non-stop, we get an immediate OK reply. The stop reply will
6451 come in asynchronously by notification. */
6452 putpkt (rs->buf);
6453 getpkt (&rs->buf, &rs->buf_size, 0);
6454
6455 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6456 {
6457 case PACKET_OK:
6458 break;
6459 case PACKET_UNKNOWN:
6460 error (_("No support for interrupting the remote target."));
6461 case PACKET_ERROR:
6462 error (_("Interrupting target failed: %s"), rs->buf);
6463 }
6464 }
6465
6466 /* Implement the to_stop function for the remote targets. */
6467
6468 void
6469 remote_target::stop (ptid_t ptid)
6470 {
6471 if (remote_debug)
6472 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6473
6474 if (target_is_non_stop_p ())
6475 remote_stop_ns (ptid);
6476 else
6477 {
6478 /* We don't currently have a way to transparently pause the
6479 remote target in all-stop mode. Interrupt it instead. */
6480 remote_interrupt_as ();
6481 }
6482 }
6483
6484 /* Implement the to_interrupt function for the remote targets. */
6485
6486 void
6487 remote_target::interrupt ()
6488 {
6489 if (remote_debug)
6490 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6491
6492 if (target_is_non_stop_p ())
6493 remote_interrupt_ns ();
6494 else
6495 remote_interrupt_as ();
6496 }
6497
6498 /* Implement the to_pass_ctrlc function for the remote targets. */
6499
6500 void
6501 remote_target::pass_ctrlc ()
6502 {
6503 struct remote_state *rs = get_remote_state ();
6504
6505 if (remote_debug)
6506 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6507
6508 /* If we're starting up, we're not fully synced yet. Quit
6509 immediately. */
6510 if (rs->starting_up)
6511 quit ();
6512 /* If ^C has already been sent once, offer to disconnect. */
6513 else if (rs->ctrlc_pending_p)
6514 interrupt_query ();
6515 else
6516 target_interrupt ();
6517 }
6518
6519 /* Ask the user what to do when an interrupt is received. */
6520
6521 static void
6522 interrupt_query (void)
6523 {
6524 struct remote_state *rs = get_remote_state ();
6525
6526 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6527 {
6528 if (query (_("The target is not responding to interrupt requests.\n"
6529 "Stop debugging it? ")))
6530 {
6531 remote_unpush_target ();
6532 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6533 }
6534 }
6535 else
6536 {
6537 if (query (_("Interrupted while waiting for the program.\n"
6538 "Give up waiting? ")))
6539 quit ();
6540 }
6541 }
6542
6543 /* Enable/disable target terminal ownership. Most targets can use
6544 terminal groups to control terminal ownership. Remote targets are
6545 different in that explicit transfer of ownership to/from GDB/target
6546 is required. */
6547
6548 void
6549 remote_target::terminal_inferior ()
6550 {
6551 /* NOTE: At this point we could also register our selves as the
6552 recipient of all input. Any characters typed could then be
6553 passed on down to the target. */
6554 }
6555
6556 void
6557 remote_target::terminal_ours ()
6558 {
6559 }
6560
6561 static void
6562 remote_console_output (char *msg)
6563 {
6564 char *p;
6565
6566 for (p = msg; p[0] && p[1]; p += 2)
6567 {
6568 char tb[2];
6569 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6570
6571 tb[0] = c;
6572 tb[1] = 0;
6573 fputs_unfiltered (tb, gdb_stdtarg);
6574 }
6575 gdb_flush (gdb_stdtarg);
6576 }
6577
6578 DEF_VEC_O(cached_reg_t);
6579
6580 typedef struct stop_reply
6581 {
6582 struct notif_event base;
6583
6584 /* The identifier of the thread about this event */
6585 ptid_t ptid;
6586
6587 /* The remote state this event is associated with. When the remote
6588 connection, represented by a remote_state object, is closed,
6589 all the associated stop_reply events should be released. */
6590 struct remote_state *rs;
6591
6592 struct target_waitstatus ws;
6593
6594 /* The architecture associated with the expedited registers. */
6595 gdbarch *arch;
6596
6597 /* Expedited registers. This makes remote debugging a bit more
6598 efficient for those targets that provide critical registers as
6599 part of their normal status mechanism (as another roundtrip to
6600 fetch them is avoided). */
6601 VEC(cached_reg_t) *regcache;
6602
6603 enum target_stop_reason stop_reason;
6604
6605 CORE_ADDR watch_data_address;
6606
6607 int core;
6608 } *stop_reply_p;
6609
6610 DECLARE_QUEUE_P (stop_reply_p);
6611 DEFINE_QUEUE_P (stop_reply_p);
6612 /* The list of already fetched and acknowledged stop events. This
6613 queue is used for notification Stop, and other notifications
6614 don't need queue for their events, because the notification events
6615 of Stop can't be consumed immediately, so that events should be
6616 queued first, and be consumed by remote_wait_{ns,as} one per
6617 time. Other notifications can consume their events immediately,
6618 so queue is not needed for them. */
6619 static QUEUE (stop_reply_p) *stop_reply_queue;
6620
6621 static void
6622 stop_reply_xfree (struct stop_reply *r)
6623 {
6624 notif_event_xfree ((struct notif_event *) r);
6625 }
6626
6627 /* Return the length of the stop reply queue. */
6628
6629 static int
6630 stop_reply_queue_length (void)
6631 {
6632 return QUEUE_length (stop_reply_p, stop_reply_queue);
6633 }
6634
6635 static void
6636 remote_notif_stop_parse (struct notif_client *self, char *buf,
6637 struct notif_event *event)
6638 {
6639 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6640 }
6641
6642 static void
6643 remote_notif_stop_ack (struct notif_client *self, char *buf,
6644 struct notif_event *event)
6645 {
6646 struct stop_reply *stop_reply = (struct stop_reply *) event;
6647
6648 /* acknowledge */
6649 putpkt (self->ack_command);
6650
6651 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6652 /* We got an unknown stop reply. */
6653 error (_("Unknown stop reply"));
6654
6655 push_stop_reply (stop_reply);
6656 }
6657
6658 static int
6659 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6660 {
6661 /* We can't get pending events in remote_notif_process for
6662 notification stop, and we have to do this in remote_wait_ns
6663 instead. If we fetch all queued events from stub, remote stub
6664 may exit and we have no chance to process them back in
6665 remote_wait_ns. */
6666 mark_async_event_handler (remote_async_inferior_event_token);
6667 return 0;
6668 }
6669
6670 static void
6671 stop_reply_dtr (struct notif_event *event)
6672 {
6673 struct stop_reply *r = (struct stop_reply *) event;
6674 cached_reg_t *reg;
6675 int ix;
6676
6677 for (ix = 0;
6678 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6679 ix++)
6680 xfree (reg->data);
6681
6682 VEC_free (cached_reg_t, r->regcache);
6683 }
6684
6685 static struct notif_event *
6686 remote_notif_stop_alloc_reply (void)
6687 {
6688 /* We cast to a pointer to the "base class". */
6689 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6690
6691 r->dtr = stop_reply_dtr;
6692
6693 return r;
6694 }
6695
6696 /* A client of notification Stop. */
6697
6698 struct notif_client notif_client_stop =
6699 {
6700 "Stop",
6701 "vStopped",
6702 remote_notif_stop_parse,
6703 remote_notif_stop_ack,
6704 remote_notif_stop_can_get_pending_events,
6705 remote_notif_stop_alloc_reply,
6706 REMOTE_NOTIF_STOP,
6707 };
6708
6709 /* A parameter to pass data in and out. */
6710
6711 struct queue_iter_param
6712 {
6713 void *input;
6714 struct stop_reply *output;
6715 };
6716
6717 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6718 the pid of the process that owns the threads we want to check, or
6719 -1 if we want to check all threads. */
6720
6721 static int
6722 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6723 ptid_t thread_ptid)
6724 {
6725 if (ws->kind == TARGET_WAITKIND_FORKED
6726 || ws->kind == TARGET_WAITKIND_VFORKED)
6727 {
6728 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6729 return 1;
6730 }
6731
6732 return 0;
6733 }
6734
6735 /* Return the thread's pending status used to determine whether the
6736 thread is a fork parent stopped at a fork event. */
6737
6738 static struct target_waitstatus *
6739 thread_pending_fork_status (struct thread_info *thread)
6740 {
6741 if (thread->suspend.waitstatus_pending_p)
6742 return &thread->suspend.waitstatus;
6743 else
6744 return &thread->pending_follow;
6745 }
6746
6747 /* Determine if THREAD is a pending fork parent thread. */
6748
6749 static int
6750 is_pending_fork_parent_thread (struct thread_info *thread)
6751 {
6752 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6753 int pid = -1;
6754
6755 return is_pending_fork_parent (ws, pid, thread->ptid);
6756 }
6757
6758 /* Check whether EVENT is a fork event, and if it is, remove the
6759 fork child from the context list passed in DATA. */
6760
6761 static int
6762 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6763 QUEUE_ITER (stop_reply_p) *iter,
6764 stop_reply_p event,
6765 void *data)
6766 {
6767 struct queue_iter_param *param = (struct queue_iter_param *) data;
6768 struct threads_listing_context *context
6769 = (struct threads_listing_context *) param->input;
6770
6771 if (event->ws.kind == TARGET_WAITKIND_FORKED
6772 || event->ws.kind == TARGET_WAITKIND_VFORKED
6773 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6774 context->remove_thread (event->ws.value.related_pid);
6775
6776 return 1;
6777 }
6778
6779 /* If CONTEXT contains any fork child threads that have not been
6780 reported yet, remove them from the CONTEXT list. If such a
6781 thread exists it is because we are stopped at a fork catchpoint
6782 and have not yet called follow_fork, which will set up the
6783 host-side data structures for the new process. */
6784
6785 static void
6786 remove_new_fork_children (struct threads_listing_context *context)
6787 {
6788 struct thread_info * thread;
6789 int pid = -1;
6790 struct notif_client *notif = &notif_client_stop;
6791 struct queue_iter_param param;
6792
6793 /* For any threads stopped at a fork event, remove the corresponding
6794 fork child threads from the CONTEXT list. */
6795 ALL_NON_EXITED_THREADS (thread)
6796 {
6797 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6798
6799 if (is_pending_fork_parent (ws, pid, thread->ptid))
6800 context->remove_thread (ws->value.related_pid);
6801 }
6802
6803 /* Check for any pending fork events (not reported or processed yet)
6804 in process PID and remove those fork child threads from the
6805 CONTEXT list as well. */
6806 remote_notif_get_pending_events (notif);
6807 param.input = context;
6808 param.output = NULL;
6809 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6810 remove_child_of_pending_fork, &param);
6811 }
6812
6813 /* Check whether EVENT would prevent a global or process wildcard
6814 vCont action. */
6815
6816 static int
6817 check_pending_event_prevents_wildcard_vcont_callback
6818 (QUEUE (stop_reply_p) *q,
6819 QUEUE_ITER (stop_reply_p) *iter,
6820 stop_reply_p event,
6821 void *data)
6822 {
6823 struct inferior *inf;
6824 int *may_global_wildcard_vcont = (int *) data;
6825
6826 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6827 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6828 return 1;
6829
6830 if (event->ws.kind == TARGET_WAITKIND_FORKED
6831 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6832 *may_global_wildcard_vcont = 0;
6833
6834 inf = find_inferior_ptid (event->ptid);
6835
6836 /* This may be the first time we heard about this process.
6837 Regardless, we must not do a global wildcard resume, otherwise
6838 we'd resume this process too. */
6839 *may_global_wildcard_vcont = 0;
6840 if (inf != NULL)
6841 get_remote_inferior (inf)->may_wildcard_vcont = false;
6842
6843 return 1;
6844 }
6845
6846 /* Check whether any event pending in the vStopped queue would prevent
6847 a global or process wildcard vCont action. Clear
6848 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6849 and clear the event inferior's may_wildcard_vcont flag if we can't
6850 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6851
6852 static void
6853 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6854 {
6855 struct notif_client *notif = &notif_client_stop;
6856
6857 remote_notif_get_pending_events (notif);
6858 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6859 check_pending_event_prevents_wildcard_vcont_callback,
6860 may_global_wildcard);
6861 }
6862
6863 /* Remove stop replies in the queue if its pid is equal to the given
6864 inferior's pid. */
6865
6866 static int
6867 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6868 QUEUE_ITER (stop_reply_p) *iter,
6869 stop_reply_p event,
6870 void *data)
6871 {
6872 struct queue_iter_param *param = (struct queue_iter_param *) data;
6873 struct inferior *inf = (struct inferior *) param->input;
6874
6875 if (ptid_get_pid (event->ptid) == inf->pid)
6876 {
6877 stop_reply_xfree (event);
6878 QUEUE_remove_elem (stop_reply_p, q, iter);
6879 }
6880
6881 return 1;
6882 }
6883
6884 /* Discard all pending stop replies of inferior INF. */
6885
6886 static void
6887 discard_pending_stop_replies (struct inferior *inf)
6888 {
6889 struct queue_iter_param param;
6890 struct stop_reply *reply;
6891 struct remote_state *rs = get_remote_state ();
6892 struct remote_notif_state *rns = rs->notif_state;
6893
6894 /* This function can be notified when an inferior exists. When the
6895 target is not remote, the notification state is NULL. */
6896 if (rs->remote_desc == NULL)
6897 return;
6898
6899 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6900
6901 /* Discard the in-flight notification. */
6902 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6903 {
6904 stop_reply_xfree (reply);
6905 rns->pending_event[notif_client_stop.id] = NULL;
6906 }
6907
6908 param.input = inf;
6909 param.output = NULL;
6910 /* Discard the stop replies we have already pulled with
6911 vStopped. */
6912 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6913 remove_stop_reply_for_inferior, &param);
6914 }
6915
6916 /* If its remote state is equal to the given remote state,
6917 remove EVENT from the stop reply queue. */
6918
6919 static int
6920 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6921 QUEUE_ITER (stop_reply_p) *iter,
6922 stop_reply_p event,
6923 void *data)
6924 {
6925 struct queue_iter_param *param = (struct queue_iter_param *) data;
6926 struct remote_state *rs = (struct remote_state *) param->input;
6927
6928 if (event->rs == rs)
6929 {
6930 stop_reply_xfree (event);
6931 QUEUE_remove_elem (stop_reply_p, q, iter);
6932 }
6933
6934 return 1;
6935 }
6936
6937 /* Discard the stop replies for RS in stop_reply_queue. */
6938
6939 static void
6940 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6941 {
6942 struct queue_iter_param param;
6943
6944 param.input = rs;
6945 param.output = NULL;
6946 /* Discard the stop replies we have already pulled with
6947 vStopped. */
6948 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6949 remove_stop_reply_of_remote_state, &param);
6950 }
6951
6952 /* A parameter to pass data in and out. */
6953
6954 static int
6955 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6956 QUEUE_ITER (stop_reply_p) *iter,
6957 stop_reply_p event,
6958 void *data)
6959 {
6960 struct queue_iter_param *param = (struct queue_iter_param *) data;
6961 ptid_t *ptid = (ptid_t *) param->input;
6962
6963 if (ptid_match (event->ptid, *ptid))
6964 {
6965 param->output = event;
6966 QUEUE_remove_elem (stop_reply_p, q, iter);
6967 return 0;
6968 }
6969
6970 return 1;
6971 }
6972
6973 /* Remove the first reply in 'stop_reply_queue' which matches
6974 PTID. */
6975
6976 static struct stop_reply *
6977 remote_notif_remove_queued_reply (ptid_t ptid)
6978 {
6979 struct queue_iter_param param;
6980
6981 param.input = &ptid;
6982 param.output = NULL;
6983
6984 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6985 remote_notif_remove_once_on_match, &param);
6986 if (notif_debug)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "notif: discard queued event: 'Stop' in %s\n",
6989 target_pid_to_str (ptid));
6990
6991 return param.output;
6992 }
6993
6994 /* Look for a queued stop reply belonging to PTID. If one is found,
6995 remove it from the queue, and return it. Returns NULL if none is
6996 found. If there are still queued events left to process, tell the
6997 event loop to get back to target_wait soon. */
6998
6999 static struct stop_reply *
7000 queued_stop_reply (ptid_t ptid)
7001 {
7002 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7003
7004 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7005 /* There's still at least an event left. */
7006 mark_async_event_handler (remote_async_inferior_event_token);
7007
7008 return r;
7009 }
7010
7011 /* Push a fully parsed stop reply in the stop reply queue. Since we
7012 know that we now have at least one queued event left to pass to the
7013 core side, tell the event loop to get back to target_wait soon. */
7014
7015 static void
7016 push_stop_reply (struct stop_reply *new_event)
7017 {
7018 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
7019
7020 if (notif_debug)
7021 fprintf_unfiltered (gdb_stdlog,
7022 "notif: push 'Stop' %s to queue %d\n",
7023 target_pid_to_str (new_event->ptid),
7024 QUEUE_length (stop_reply_p,
7025 stop_reply_queue));
7026
7027 mark_async_event_handler (remote_async_inferior_event_token);
7028 }
7029
7030 static int
7031 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
7032 QUEUE_ITER (stop_reply_p) *iter,
7033 struct stop_reply *event,
7034 void *data)
7035 {
7036 ptid_t *ptid = (ptid_t *) data;
7037
7038 return !(ptid_equal (*ptid, event->ptid)
7039 && event->ws.kind == TARGET_WAITKIND_STOPPED);
7040 }
7041
7042 /* Returns true if we have a stop reply for PTID. */
7043
7044 static int
7045 peek_stop_reply (ptid_t ptid)
7046 {
7047 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
7048 stop_reply_match_ptid_and_ws, &ptid);
7049 }
7050
7051 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7052 starting with P and ending with PEND matches PREFIX. */
7053
7054 static int
7055 strprefix (const char *p, const char *pend, const char *prefix)
7056 {
7057 for ( ; p < pend; p++, prefix++)
7058 if (*p != *prefix)
7059 return 0;
7060 return *prefix == '\0';
7061 }
7062
7063 /* Parse the stop reply in BUF. Either the function succeeds, and the
7064 result is stored in EVENT, or throws an error. */
7065
7066 static void
7067 remote_parse_stop_reply (char *buf, struct stop_reply *event)
7068 {
7069 remote_arch_state *rsa = NULL;
7070 ULONGEST addr;
7071 const char *p;
7072 int skipregs = 0;
7073
7074 event->ptid = null_ptid;
7075 event->rs = get_remote_state ();
7076 event->ws.kind = TARGET_WAITKIND_IGNORE;
7077 event->ws.value.integer = 0;
7078 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7079 event->regcache = NULL;
7080 event->core = -1;
7081
7082 switch (buf[0])
7083 {
7084 case 'T': /* Status with PC, SP, FP, ... */
7085 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7086 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7087 ss = signal number
7088 n... = register number
7089 r... = register contents
7090 */
7091
7092 p = &buf[3]; /* after Txx */
7093 while (*p)
7094 {
7095 const char *p1;
7096 int fieldsize;
7097
7098 p1 = strchr (p, ':');
7099 if (p1 == NULL)
7100 error (_("Malformed packet(a) (missing colon): %s\n\
7101 Packet: '%s'\n"),
7102 p, buf);
7103 if (p == p1)
7104 error (_("Malformed packet(a) (missing register number): %s\n\
7105 Packet: '%s'\n"),
7106 p, buf);
7107
7108 /* Some "registers" are actually extended stop information.
7109 Note if you're adding a new entry here: GDB 7.9 and
7110 earlier assume that all register "numbers" that start
7111 with an hex digit are real register numbers. Make sure
7112 the server only sends such a packet if it knows the
7113 client understands it. */
7114
7115 if (strprefix (p, p1, "thread"))
7116 event->ptid = read_ptid (++p1, &p);
7117 else if (strprefix (p, p1, "syscall_entry"))
7118 {
7119 ULONGEST sysno;
7120
7121 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7122 p = unpack_varlen_hex (++p1, &sysno);
7123 event->ws.value.syscall_number = (int) sysno;
7124 }
7125 else if (strprefix (p, p1, "syscall_return"))
7126 {
7127 ULONGEST sysno;
7128
7129 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7130 p = unpack_varlen_hex (++p1, &sysno);
7131 event->ws.value.syscall_number = (int) sysno;
7132 }
7133 else if (strprefix (p, p1, "watch")
7134 || strprefix (p, p1, "rwatch")
7135 || strprefix (p, p1, "awatch"))
7136 {
7137 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7138 p = unpack_varlen_hex (++p1, &addr);
7139 event->watch_data_address = (CORE_ADDR) addr;
7140 }
7141 else if (strprefix (p, p1, "swbreak"))
7142 {
7143 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7144
7145 /* Make sure the stub doesn't forget to indicate support
7146 with qSupported. */
7147 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7148 error (_("Unexpected swbreak stop reason"));
7149
7150 /* The value part is documented as "must be empty",
7151 though we ignore it, in case we ever decide to make
7152 use of it in a backward compatible way. */
7153 p = strchrnul (p1 + 1, ';');
7154 }
7155 else if (strprefix (p, p1, "hwbreak"))
7156 {
7157 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7158
7159 /* Make sure the stub doesn't forget to indicate support
7160 with qSupported. */
7161 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7162 error (_("Unexpected hwbreak stop reason"));
7163
7164 /* See above. */
7165 p = strchrnul (p1 + 1, ';');
7166 }
7167 else if (strprefix (p, p1, "library"))
7168 {
7169 event->ws.kind = TARGET_WAITKIND_LOADED;
7170 p = strchrnul (p1 + 1, ';');
7171 }
7172 else if (strprefix (p, p1, "replaylog"))
7173 {
7174 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7175 /* p1 will indicate "begin" or "end", but it makes
7176 no difference for now, so ignore it. */
7177 p = strchrnul (p1 + 1, ';');
7178 }
7179 else if (strprefix (p, p1, "core"))
7180 {
7181 ULONGEST c;
7182
7183 p = unpack_varlen_hex (++p1, &c);
7184 event->core = c;
7185 }
7186 else if (strprefix (p, p1, "fork"))
7187 {
7188 event->ws.value.related_pid = read_ptid (++p1, &p);
7189 event->ws.kind = TARGET_WAITKIND_FORKED;
7190 }
7191 else if (strprefix (p, p1, "vfork"))
7192 {
7193 event->ws.value.related_pid = read_ptid (++p1, &p);
7194 event->ws.kind = TARGET_WAITKIND_VFORKED;
7195 }
7196 else if (strprefix (p, p1, "vforkdone"))
7197 {
7198 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7199 p = strchrnul (p1 + 1, ';');
7200 }
7201 else if (strprefix (p, p1, "exec"))
7202 {
7203 ULONGEST ignored;
7204 char pathname[PATH_MAX];
7205 int pathlen;
7206
7207 /* Determine the length of the execd pathname. */
7208 p = unpack_varlen_hex (++p1, &ignored);
7209 pathlen = (p - p1) / 2;
7210
7211 /* Save the pathname for event reporting and for
7212 the next run command. */
7213 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7214 pathname[pathlen] = '\0';
7215
7216 /* This is freed during event handling. */
7217 event->ws.value.execd_pathname = xstrdup (pathname);
7218 event->ws.kind = TARGET_WAITKIND_EXECD;
7219
7220 /* Skip the registers included in this packet, since
7221 they may be for an architecture different from the
7222 one used by the original program. */
7223 skipregs = 1;
7224 }
7225 else if (strprefix (p, p1, "create"))
7226 {
7227 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7228 p = strchrnul (p1 + 1, ';');
7229 }
7230 else
7231 {
7232 ULONGEST pnum;
7233 const char *p_temp;
7234
7235 if (skipregs)
7236 {
7237 p = strchrnul (p1 + 1, ';');
7238 p++;
7239 continue;
7240 }
7241
7242 /* Maybe a real ``P'' register number. */
7243 p_temp = unpack_varlen_hex (p, &pnum);
7244 /* If the first invalid character is the colon, we got a
7245 register number. Otherwise, it's an unknown stop
7246 reason. */
7247 if (p_temp == p1)
7248 {
7249 /* If we haven't parsed the event's thread yet, find
7250 it now, in order to find the architecture of the
7251 reported expedited registers. */
7252 if (event->ptid == null_ptid)
7253 {
7254 const char *thr = strstr (p1 + 1, ";thread:");
7255 if (thr != NULL)
7256 event->ptid = read_ptid (thr + strlen (";thread:"),
7257 NULL);
7258 else
7259 {
7260 /* Either the current thread hasn't changed,
7261 or the inferior is not multi-threaded.
7262 The event must be for the thread we last
7263 set as (or learned as being) current. */
7264 event->ptid = event->rs->general_thread;
7265 }
7266 }
7267
7268 if (rsa == NULL)
7269 {
7270 inferior *inf = (event->ptid == null_ptid
7271 ? NULL
7272 : find_inferior_ptid (event->ptid));
7273 /* If this is the first time we learn anything
7274 about this process, skip the registers
7275 included in this packet, since we don't yet
7276 know which architecture to use to parse them.
7277 We'll determine the architecture later when
7278 we process the stop reply and retrieve the
7279 target description, via
7280 remote_notice_new_inferior ->
7281 post_create_inferior. */
7282 if (inf == NULL)
7283 {
7284 p = strchrnul (p1 + 1, ';');
7285 p++;
7286 continue;
7287 }
7288
7289 event->arch = inf->gdbarch;
7290 rsa = event->rs->get_remote_arch_state (event->arch);
7291 }
7292
7293 packet_reg *reg
7294 = packet_reg_from_pnum (event->arch, rsa, pnum);
7295 cached_reg_t cached_reg;
7296
7297 if (reg == NULL)
7298 error (_("Remote sent bad register number %s: %s\n\
7299 Packet: '%s'\n"),
7300 hex_string (pnum), p, buf);
7301
7302 cached_reg.num = reg->regnum;
7303 cached_reg.data = (gdb_byte *)
7304 xmalloc (register_size (event->arch, reg->regnum));
7305
7306 p = p1 + 1;
7307 fieldsize = hex2bin (p, cached_reg.data,
7308 register_size (event->arch, reg->regnum));
7309 p += 2 * fieldsize;
7310 if (fieldsize < register_size (event->arch, reg->regnum))
7311 warning (_("Remote reply is too short: %s"), buf);
7312
7313 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7314 }
7315 else
7316 {
7317 /* Not a number. Silently skip unknown optional
7318 info. */
7319 p = strchrnul (p1 + 1, ';');
7320 }
7321 }
7322
7323 if (*p != ';')
7324 error (_("Remote register badly formatted: %s\nhere: %s"),
7325 buf, p);
7326 ++p;
7327 }
7328
7329 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7330 break;
7331
7332 /* fall through */
7333 case 'S': /* Old style status, just signal only. */
7334 {
7335 int sig;
7336
7337 event->ws.kind = TARGET_WAITKIND_STOPPED;
7338 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7339 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7340 event->ws.value.sig = (enum gdb_signal) sig;
7341 else
7342 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7343 }
7344 break;
7345 case 'w': /* Thread exited. */
7346 {
7347 const char *p;
7348 ULONGEST value;
7349
7350 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7351 p = unpack_varlen_hex (&buf[1], &value);
7352 event->ws.value.integer = value;
7353 if (*p != ';')
7354 error (_("stop reply packet badly formatted: %s"), buf);
7355 event->ptid = read_ptid (++p, NULL);
7356 break;
7357 }
7358 case 'W': /* Target exited. */
7359 case 'X':
7360 {
7361 const char *p;
7362 int pid;
7363 ULONGEST value;
7364
7365 /* GDB used to accept only 2 hex chars here. Stubs should
7366 only send more if they detect GDB supports multi-process
7367 support. */
7368 p = unpack_varlen_hex (&buf[1], &value);
7369
7370 if (buf[0] == 'W')
7371 {
7372 /* The remote process exited. */
7373 event->ws.kind = TARGET_WAITKIND_EXITED;
7374 event->ws.value.integer = value;
7375 }
7376 else
7377 {
7378 /* The remote process exited with a signal. */
7379 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7380 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7381 event->ws.value.sig = (enum gdb_signal) value;
7382 else
7383 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7384 }
7385
7386 /* If no process is specified, assume inferior_ptid. */
7387 pid = ptid_get_pid (inferior_ptid);
7388 if (*p == '\0')
7389 ;
7390 else if (*p == ';')
7391 {
7392 p++;
7393
7394 if (*p == '\0')
7395 ;
7396 else if (startswith (p, "process:"))
7397 {
7398 ULONGEST upid;
7399
7400 p += sizeof ("process:") - 1;
7401 unpack_varlen_hex (p, &upid);
7402 pid = upid;
7403 }
7404 else
7405 error (_("unknown stop reply packet: %s"), buf);
7406 }
7407 else
7408 error (_("unknown stop reply packet: %s"), buf);
7409 event->ptid = pid_to_ptid (pid);
7410 }
7411 break;
7412 case 'N':
7413 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7414 event->ptid = minus_one_ptid;
7415 break;
7416 }
7417
7418 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7419 error (_("No process or thread specified in stop reply: %s"), buf);
7420 }
7421
7422 /* When the stub wants to tell GDB about a new notification reply, it
7423 sends a notification (%Stop, for example). Those can come it at
7424 any time, hence, we have to make sure that any pending
7425 putpkt/getpkt sequence we're making is finished, before querying
7426 the stub for more events with the corresponding ack command
7427 (vStopped, for example). E.g., if we started a vStopped sequence
7428 immediately upon receiving the notification, something like this
7429 could happen:
7430
7431 1.1) --> Hg 1
7432 1.2) <-- OK
7433 1.3) --> g
7434 1.4) <-- %Stop
7435 1.5) --> vStopped
7436 1.6) <-- (registers reply to step #1.3)
7437
7438 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7439 query.
7440
7441 To solve this, whenever we parse a %Stop notification successfully,
7442 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7443 doing whatever we were doing:
7444
7445 2.1) --> Hg 1
7446 2.2) <-- OK
7447 2.3) --> g
7448 2.4) <-- %Stop
7449 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7450 2.5) <-- (registers reply to step #2.3)
7451
7452 Eventualy after step #2.5, we return to the event loop, which
7453 notices there's an event on the
7454 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7455 associated callback --- the function below. At this point, we're
7456 always safe to start a vStopped sequence. :
7457
7458 2.6) --> vStopped
7459 2.7) <-- T05 thread:2
7460 2.8) --> vStopped
7461 2.9) --> OK
7462 */
7463
7464 void
7465 remote_notif_get_pending_events (struct notif_client *nc)
7466 {
7467 struct remote_state *rs = get_remote_state ();
7468
7469 if (rs->notif_state->pending_event[nc->id] != NULL)
7470 {
7471 if (notif_debug)
7472 fprintf_unfiltered (gdb_stdlog,
7473 "notif: process: '%s' ack pending event\n",
7474 nc->name);
7475
7476 /* acknowledge */
7477 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7478 rs->notif_state->pending_event[nc->id] = NULL;
7479
7480 while (1)
7481 {
7482 getpkt (&rs->buf, &rs->buf_size, 0);
7483 if (strcmp (rs->buf, "OK") == 0)
7484 break;
7485 else
7486 remote_notif_ack (nc, rs->buf);
7487 }
7488 }
7489 else
7490 {
7491 if (notif_debug)
7492 fprintf_unfiltered (gdb_stdlog,
7493 "notif: process: '%s' no pending reply\n",
7494 nc->name);
7495 }
7496 }
7497
7498 /* Called when it is decided that STOP_REPLY holds the info of the
7499 event that is to be returned to the core. This function always
7500 destroys STOP_REPLY. */
7501
7502 static ptid_t
7503 process_stop_reply (struct stop_reply *stop_reply,
7504 struct target_waitstatus *status)
7505 {
7506 ptid_t ptid;
7507
7508 *status = stop_reply->ws;
7509 ptid = stop_reply->ptid;
7510
7511 /* If no thread/process was reported by the stub, assume the current
7512 inferior. */
7513 if (ptid_equal (ptid, null_ptid))
7514 ptid = inferior_ptid;
7515
7516 if (status->kind != TARGET_WAITKIND_EXITED
7517 && status->kind != TARGET_WAITKIND_SIGNALLED
7518 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7519 {
7520 /* Expedited registers. */
7521 if (stop_reply->regcache)
7522 {
7523 struct regcache *regcache
7524 = get_thread_arch_regcache (ptid, stop_reply->arch);
7525 cached_reg_t *reg;
7526 int ix;
7527
7528 for (ix = 0;
7529 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7530 ix++)
7531 {
7532 regcache_raw_supply (regcache, reg->num, reg->data);
7533 xfree (reg->data);
7534 }
7535
7536 VEC_free (cached_reg_t, stop_reply->regcache);
7537 }
7538
7539 remote_notice_new_inferior (ptid, 0);
7540 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7541 remote_thr->core = stop_reply->core;
7542 remote_thr->stop_reason = stop_reply->stop_reason;
7543 remote_thr->watch_data_address = stop_reply->watch_data_address;
7544 remote_thr->vcont_resumed = 0;
7545 }
7546
7547 stop_reply_xfree (stop_reply);
7548 return ptid;
7549 }
7550
7551 /* The non-stop mode version of target_wait. */
7552
7553 static ptid_t
7554 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7555 {
7556 struct remote_state *rs = get_remote_state ();
7557 struct stop_reply *stop_reply;
7558 int ret;
7559 int is_notif = 0;
7560
7561 /* If in non-stop mode, get out of getpkt even if a
7562 notification is received. */
7563
7564 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7565 0 /* forever */, &is_notif);
7566 while (1)
7567 {
7568 if (ret != -1 && !is_notif)
7569 switch (rs->buf[0])
7570 {
7571 case 'E': /* Error of some sort. */
7572 /* We're out of sync with the target now. Did it continue
7573 or not? We can't tell which thread it was in non-stop,
7574 so just ignore this. */
7575 warning (_("Remote failure reply: %s"), rs->buf);
7576 break;
7577 case 'O': /* Console output. */
7578 remote_console_output (rs->buf + 1);
7579 break;
7580 default:
7581 warning (_("Invalid remote reply: %s"), rs->buf);
7582 break;
7583 }
7584
7585 /* Acknowledge a pending stop reply that may have arrived in the
7586 mean time. */
7587 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7588 remote_notif_get_pending_events (&notif_client_stop);
7589
7590 /* If indeed we noticed a stop reply, we're done. */
7591 stop_reply = queued_stop_reply (ptid);
7592 if (stop_reply != NULL)
7593 return process_stop_reply (stop_reply, status);
7594
7595 /* Still no event. If we're just polling for an event, then
7596 return to the event loop. */
7597 if (options & TARGET_WNOHANG)
7598 {
7599 status->kind = TARGET_WAITKIND_IGNORE;
7600 return minus_one_ptid;
7601 }
7602
7603 /* Otherwise do a blocking wait. */
7604 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7605 1 /* forever */, &is_notif);
7606 }
7607 }
7608
7609 /* Wait until the remote machine stops, then return, storing status in
7610 STATUS just as `wait' would. */
7611
7612 static ptid_t
7613 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7614 {
7615 struct remote_state *rs = get_remote_state ();
7616 ptid_t event_ptid = null_ptid;
7617 char *buf;
7618 struct stop_reply *stop_reply;
7619
7620 again:
7621
7622 status->kind = TARGET_WAITKIND_IGNORE;
7623 status->value.integer = 0;
7624
7625 stop_reply = queued_stop_reply (ptid);
7626 if (stop_reply != NULL)
7627 return process_stop_reply (stop_reply, status);
7628
7629 if (rs->cached_wait_status)
7630 /* Use the cached wait status, but only once. */
7631 rs->cached_wait_status = 0;
7632 else
7633 {
7634 int ret;
7635 int is_notif;
7636 int forever = ((options & TARGET_WNOHANG) == 0
7637 && wait_forever_enabled_p);
7638
7639 if (!rs->waiting_for_stop_reply)
7640 {
7641 status->kind = TARGET_WAITKIND_NO_RESUMED;
7642 return minus_one_ptid;
7643 }
7644
7645 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7646 _never_ wait for ever -> test on target_is_async_p().
7647 However, before we do that we need to ensure that the caller
7648 knows how to take the target into/out of async mode. */
7649 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7650 forever, &is_notif);
7651
7652 /* GDB gets a notification. Return to core as this event is
7653 not interesting. */
7654 if (ret != -1 && is_notif)
7655 return minus_one_ptid;
7656
7657 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7658 return minus_one_ptid;
7659 }
7660
7661 buf = rs->buf;
7662
7663 /* Assume that the target has acknowledged Ctrl-C unless we receive
7664 an 'F' or 'O' packet. */
7665 if (buf[0] != 'F' && buf[0] != 'O')
7666 rs->ctrlc_pending_p = 0;
7667
7668 switch (buf[0])
7669 {
7670 case 'E': /* Error of some sort. */
7671 /* We're out of sync with the target now. Did it continue or
7672 not? Not is more likely, so report a stop. */
7673 rs->waiting_for_stop_reply = 0;
7674
7675 warning (_("Remote failure reply: %s"), buf);
7676 status->kind = TARGET_WAITKIND_STOPPED;
7677 status->value.sig = GDB_SIGNAL_0;
7678 break;
7679 case 'F': /* File-I/O request. */
7680 /* GDB may access the inferior memory while handling the File-I/O
7681 request, but we don't want GDB accessing memory while waiting
7682 for a stop reply. See the comments in putpkt_binary. Set
7683 waiting_for_stop_reply to 0 temporarily. */
7684 rs->waiting_for_stop_reply = 0;
7685 remote_fileio_request (buf, rs->ctrlc_pending_p);
7686 rs->ctrlc_pending_p = 0;
7687 /* GDB handled the File-I/O request, and the target is running
7688 again. Keep waiting for events. */
7689 rs->waiting_for_stop_reply = 1;
7690 break;
7691 case 'N': case 'T': case 'S': case 'X': case 'W':
7692 {
7693 struct stop_reply *stop_reply;
7694
7695 /* There is a stop reply to handle. */
7696 rs->waiting_for_stop_reply = 0;
7697
7698 stop_reply
7699 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7700 rs->buf);
7701
7702 event_ptid = process_stop_reply (stop_reply, status);
7703 break;
7704 }
7705 case 'O': /* Console output. */
7706 remote_console_output (buf + 1);
7707 break;
7708 case '\0':
7709 if (rs->last_sent_signal != GDB_SIGNAL_0)
7710 {
7711 /* Zero length reply means that we tried 'S' or 'C' and the
7712 remote system doesn't support it. */
7713 target_terminal::ours_for_output ();
7714 printf_filtered
7715 ("Can't send signals to this remote system. %s not sent.\n",
7716 gdb_signal_to_name (rs->last_sent_signal));
7717 rs->last_sent_signal = GDB_SIGNAL_0;
7718 target_terminal::inferior ();
7719
7720 strcpy (buf, rs->last_sent_step ? "s" : "c");
7721 putpkt (buf);
7722 break;
7723 }
7724 /* fallthrough */
7725 default:
7726 warning (_("Invalid remote reply: %s"), buf);
7727 break;
7728 }
7729
7730 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7731 return minus_one_ptid;
7732 else if (status->kind == TARGET_WAITKIND_IGNORE)
7733 {
7734 /* Nothing interesting happened. If we're doing a non-blocking
7735 poll, we're done. Otherwise, go back to waiting. */
7736 if (options & TARGET_WNOHANG)
7737 return minus_one_ptid;
7738 else
7739 goto again;
7740 }
7741 else if (status->kind != TARGET_WAITKIND_EXITED
7742 && status->kind != TARGET_WAITKIND_SIGNALLED)
7743 {
7744 if (!ptid_equal (event_ptid, null_ptid))
7745 record_currthread (rs, event_ptid);
7746 else
7747 event_ptid = inferior_ptid;
7748 }
7749 else
7750 /* A process exit. Invalidate our notion of current thread. */
7751 record_currthread (rs, minus_one_ptid);
7752
7753 return event_ptid;
7754 }
7755
7756 /* Wait until the remote machine stops, then return, storing status in
7757 STATUS just as `wait' would. */
7758
7759 ptid_t
7760 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7761 {
7762 ptid_t event_ptid;
7763
7764 if (target_is_non_stop_p ())
7765 event_ptid = remote_wait_ns (ptid, status, options);
7766 else
7767 event_ptid = remote_wait_as (ptid, status, options);
7768
7769 if (target_is_async_p ())
7770 {
7771 /* If there are are events left in the queue tell the event loop
7772 to return here. */
7773 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7774 mark_async_event_handler (remote_async_inferior_event_token);
7775 }
7776
7777 return event_ptid;
7778 }
7779
7780 /* Fetch a single register using a 'p' packet. */
7781
7782 static int
7783 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7784 {
7785 struct gdbarch *gdbarch = regcache->arch ();
7786 struct remote_state *rs = get_remote_state ();
7787 char *buf, *p;
7788 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7789 int i;
7790
7791 if (packet_support (PACKET_p) == PACKET_DISABLE)
7792 return 0;
7793
7794 if (reg->pnum == -1)
7795 return 0;
7796
7797 p = rs->buf;
7798 *p++ = 'p';
7799 p += hexnumstr (p, reg->pnum);
7800 *p++ = '\0';
7801 putpkt (rs->buf);
7802 getpkt (&rs->buf, &rs->buf_size, 0);
7803
7804 buf = rs->buf;
7805
7806 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7807 {
7808 case PACKET_OK:
7809 break;
7810 case PACKET_UNKNOWN:
7811 return 0;
7812 case PACKET_ERROR:
7813 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7814 gdbarch_register_name (regcache->arch (),
7815 reg->regnum),
7816 buf);
7817 }
7818
7819 /* If this register is unfetchable, tell the regcache. */
7820 if (buf[0] == 'x')
7821 {
7822 regcache_raw_supply (regcache, reg->regnum, NULL);
7823 return 1;
7824 }
7825
7826 /* Otherwise, parse and supply the value. */
7827 p = buf;
7828 i = 0;
7829 while (p[0] != 0)
7830 {
7831 if (p[1] == 0)
7832 error (_("fetch_register_using_p: early buf termination"));
7833
7834 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7835 p += 2;
7836 }
7837 regcache_raw_supply (regcache, reg->regnum, regp);
7838 return 1;
7839 }
7840
7841 /* Fetch the registers included in the target's 'g' packet. */
7842
7843 static int
7844 send_g_packet (void)
7845 {
7846 struct remote_state *rs = get_remote_state ();
7847 int buf_len;
7848
7849 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7850 putpkt (rs->buf);
7851 getpkt (&rs->buf, &rs->buf_size, 0);
7852 if (packet_check_result (rs->buf) == PACKET_ERROR)
7853 error (_("Could not read registers; remote failure reply '%s'"),
7854 rs->buf);
7855
7856 /* We can get out of synch in various cases. If the first character
7857 in the buffer is not a hex character, assume that has happened
7858 and try to fetch another packet to read. */
7859 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7860 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7861 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7862 && rs->buf[0] != 'x') /* New: unavailable register value. */
7863 {
7864 if (remote_debug)
7865 fprintf_unfiltered (gdb_stdlog,
7866 "Bad register packet; fetching a new packet\n");
7867 getpkt (&rs->buf, &rs->buf_size, 0);
7868 }
7869
7870 buf_len = strlen (rs->buf);
7871
7872 /* Sanity check the received packet. */
7873 if (buf_len % 2 != 0)
7874 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7875
7876 return buf_len / 2;
7877 }
7878
7879 static void
7880 process_g_packet (struct regcache *regcache)
7881 {
7882 struct gdbarch *gdbarch = regcache->arch ();
7883 struct remote_state *rs = get_remote_state ();
7884 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7885 int i, buf_len;
7886 char *p;
7887 char *regs;
7888
7889 buf_len = strlen (rs->buf);
7890
7891 /* Further sanity checks, with knowledge of the architecture. */
7892 if (buf_len > 2 * rsa->sizeof_g_packet)
7893 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7894 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7895
7896 /* Save the size of the packet sent to us by the target. It is used
7897 as a heuristic when determining the max size of packets that the
7898 target can safely receive. */
7899 if (rsa->actual_register_packet_size == 0)
7900 rsa->actual_register_packet_size = buf_len;
7901
7902 /* If this is smaller than we guessed the 'g' packet would be,
7903 update our records. A 'g' reply that doesn't include a register's
7904 value implies either that the register is not available, or that
7905 the 'p' packet must be used. */
7906 if (buf_len < 2 * rsa->sizeof_g_packet)
7907 {
7908 long sizeof_g_packet = buf_len / 2;
7909
7910 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7911 {
7912 long offset = rsa->regs[i].offset;
7913 long reg_size = register_size (gdbarch, i);
7914
7915 if (rsa->regs[i].pnum == -1)
7916 continue;
7917
7918 if (offset >= sizeof_g_packet)
7919 rsa->regs[i].in_g_packet = 0;
7920 else if (offset + reg_size > sizeof_g_packet)
7921 error (_("Truncated register %d in remote 'g' packet"), i);
7922 else
7923 rsa->regs[i].in_g_packet = 1;
7924 }
7925
7926 /* Looks valid enough, we can assume this is the correct length
7927 for a 'g' packet. It's important not to adjust
7928 rsa->sizeof_g_packet if we have truncated registers otherwise
7929 this "if" won't be run the next time the method is called
7930 with a packet of the same size and one of the internal errors
7931 below will trigger instead. */
7932 rsa->sizeof_g_packet = sizeof_g_packet;
7933 }
7934
7935 regs = (char *) alloca (rsa->sizeof_g_packet);
7936
7937 /* Unimplemented registers read as all bits zero. */
7938 memset (regs, 0, rsa->sizeof_g_packet);
7939
7940 /* Reply describes registers byte by byte, each byte encoded as two
7941 hex characters. Suck them all up, then supply them to the
7942 register cacheing/storage mechanism. */
7943
7944 p = rs->buf;
7945 for (i = 0; i < rsa->sizeof_g_packet; i++)
7946 {
7947 if (p[0] == 0 || p[1] == 0)
7948 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7949 internal_error (__FILE__, __LINE__,
7950 _("unexpected end of 'g' packet reply"));
7951
7952 if (p[0] == 'x' && p[1] == 'x')
7953 regs[i] = 0; /* 'x' */
7954 else
7955 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7956 p += 2;
7957 }
7958
7959 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7960 {
7961 struct packet_reg *r = &rsa->regs[i];
7962 long reg_size = register_size (gdbarch, i);
7963
7964 if (r->in_g_packet)
7965 {
7966 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7967 /* This shouldn't happen - we adjusted in_g_packet above. */
7968 internal_error (__FILE__, __LINE__,
7969 _("unexpected end of 'g' packet reply"));
7970 else if (rs->buf[r->offset * 2] == 'x')
7971 {
7972 gdb_assert (r->offset * 2 < strlen (rs->buf));
7973 /* The register isn't available, mark it as such (at
7974 the same time setting the value to zero). */
7975 regcache_raw_supply (regcache, r->regnum, NULL);
7976 }
7977 else
7978 regcache_raw_supply (regcache, r->regnum,
7979 regs + r->offset);
7980 }
7981 }
7982 }
7983
7984 static void
7985 fetch_registers_using_g (struct regcache *regcache)
7986 {
7987 send_g_packet ();
7988 process_g_packet (regcache);
7989 }
7990
7991 /* Make the remote selected traceframe match GDB's selected
7992 traceframe. */
7993
7994 static void
7995 set_remote_traceframe (void)
7996 {
7997 int newnum;
7998 struct remote_state *rs = get_remote_state ();
7999
8000 if (rs->remote_traceframe_number == get_traceframe_number ())
8001 return;
8002
8003 /* Avoid recursion, remote_trace_find calls us again. */
8004 rs->remote_traceframe_number = get_traceframe_number ();
8005
8006 newnum = target_trace_find (tfind_number,
8007 get_traceframe_number (), 0, 0, NULL);
8008
8009 /* Should not happen. If it does, all bets are off. */
8010 if (newnum != get_traceframe_number ())
8011 warning (_("could not set remote traceframe"));
8012 }
8013
8014 void
8015 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8016 {
8017 struct gdbarch *gdbarch = regcache->arch ();
8018 struct remote_state *rs = get_remote_state ();
8019 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8020 int i;
8021
8022 set_remote_traceframe ();
8023 set_general_thread (regcache_get_ptid (regcache));
8024
8025 if (regnum >= 0)
8026 {
8027 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8028
8029 gdb_assert (reg != NULL);
8030
8031 /* If this register might be in the 'g' packet, try that first -
8032 we are likely to read more than one register. If this is the
8033 first 'g' packet, we might be overly optimistic about its
8034 contents, so fall back to 'p'. */
8035 if (reg->in_g_packet)
8036 {
8037 fetch_registers_using_g (regcache);
8038 if (reg->in_g_packet)
8039 return;
8040 }
8041
8042 if (fetch_register_using_p (regcache, reg))
8043 return;
8044
8045 /* This register is not available. */
8046 regcache_raw_supply (regcache, reg->regnum, NULL);
8047
8048 return;
8049 }
8050
8051 fetch_registers_using_g (regcache);
8052
8053 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8054 if (!rsa->regs[i].in_g_packet)
8055 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8056 {
8057 /* This register is not available. */
8058 regcache_raw_supply (regcache, i, NULL);
8059 }
8060 }
8061
8062 /* Prepare to store registers. Since we may send them all (using a
8063 'G' request), we have to read out the ones we don't want to change
8064 first. */
8065
8066 void
8067 remote_target::prepare_to_store (struct regcache *regcache)
8068 {
8069 struct remote_state *rs = get_remote_state ();
8070 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8071 int i;
8072
8073 /* Make sure the entire registers array is valid. */
8074 switch (packet_support (PACKET_P))
8075 {
8076 case PACKET_DISABLE:
8077 case PACKET_SUPPORT_UNKNOWN:
8078 /* Make sure all the necessary registers are cached. */
8079 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8080 if (rsa->regs[i].in_g_packet)
8081 regcache_raw_update (regcache, rsa->regs[i].regnum);
8082 break;
8083 case PACKET_ENABLE:
8084 break;
8085 }
8086 }
8087
8088 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8089 packet was not recognized. */
8090
8091 static int
8092 store_register_using_P (const struct regcache *regcache,
8093 struct packet_reg *reg)
8094 {
8095 struct gdbarch *gdbarch = regcache->arch ();
8096 struct remote_state *rs = get_remote_state ();
8097 /* Try storing a single register. */
8098 char *buf = rs->buf;
8099 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8100 char *p;
8101
8102 if (packet_support (PACKET_P) == PACKET_DISABLE)
8103 return 0;
8104
8105 if (reg->pnum == -1)
8106 return 0;
8107
8108 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8109 p = buf + strlen (buf);
8110 regcache_raw_collect (regcache, reg->regnum, regp);
8111 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8112 putpkt (rs->buf);
8113 getpkt (&rs->buf, &rs->buf_size, 0);
8114
8115 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8116 {
8117 case PACKET_OK:
8118 return 1;
8119 case PACKET_ERROR:
8120 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8121 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8122 case PACKET_UNKNOWN:
8123 return 0;
8124 default:
8125 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8126 }
8127 }
8128
8129 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8130 contents of the register cache buffer. FIXME: ignores errors. */
8131
8132 static void
8133 store_registers_using_G (const struct regcache *regcache)
8134 {
8135 struct remote_state *rs = get_remote_state ();
8136 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8137 gdb_byte *regs;
8138 char *p;
8139
8140 /* Extract all the registers in the regcache copying them into a
8141 local buffer. */
8142 {
8143 int i;
8144
8145 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8146 memset (regs, 0, rsa->sizeof_g_packet);
8147 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8148 {
8149 struct packet_reg *r = &rsa->regs[i];
8150
8151 if (r->in_g_packet)
8152 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
8153 }
8154 }
8155
8156 /* Command describes registers byte by byte,
8157 each byte encoded as two hex characters. */
8158 p = rs->buf;
8159 *p++ = 'G';
8160 bin2hex (regs, p, rsa->sizeof_g_packet);
8161 putpkt (rs->buf);
8162 getpkt (&rs->buf, &rs->buf_size, 0);
8163 if (packet_check_result (rs->buf) == PACKET_ERROR)
8164 error (_("Could not write registers; remote failure reply '%s'"),
8165 rs->buf);
8166 }
8167
8168 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8169 of the register cache buffer. FIXME: ignores errors. */
8170
8171 void
8172 remote_target::store_registers (struct regcache *regcache, int regnum)
8173 {
8174 struct gdbarch *gdbarch = regcache->arch ();
8175 struct remote_state *rs = get_remote_state ();
8176 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8177 int i;
8178
8179 set_remote_traceframe ();
8180 set_general_thread (regcache_get_ptid (regcache));
8181
8182 if (regnum >= 0)
8183 {
8184 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8185
8186 gdb_assert (reg != NULL);
8187
8188 /* Always prefer to store registers using the 'P' packet if
8189 possible; we often change only a small number of registers.
8190 Sometimes we change a larger number; we'd need help from a
8191 higher layer to know to use 'G'. */
8192 if (store_register_using_P (regcache, reg))
8193 return;
8194
8195 /* For now, don't complain if we have no way to write the
8196 register. GDB loses track of unavailable registers too
8197 easily. Some day, this may be an error. We don't have
8198 any way to read the register, either... */
8199 if (!reg->in_g_packet)
8200 return;
8201
8202 store_registers_using_G (regcache);
8203 return;
8204 }
8205
8206 store_registers_using_G (regcache);
8207
8208 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8209 if (!rsa->regs[i].in_g_packet)
8210 if (!store_register_using_P (regcache, &rsa->regs[i]))
8211 /* See above for why we do not issue an error here. */
8212 continue;
8213 }
8214 \f
8215
8216 /* Return the number of hex digits in num. */
8217
8218 static int
8219 hexnumlen (ULONGEST num)
8220 {
8221 int i;
8222
8223 for (i = 0; num != 0; i++)
8224 num >>= 4;
8225
8226 return std::max (i, 1);
8227 }
8228
8229 /* Set BUF to the minimum number of hex digits representing NUM. */
8230
8231 static int
8232 hexnumstr (char *buf, ULONGEST num)
8233 {
8234 int len = hexnumlen (num);
8235
8236 return hexnumnstr (buf, num, len);
8237 }
8238
8239
8240 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8241
8242 static int
8243 hexnumnstr (char *buf, ULONGEST num, int width)
8244 {
8245 int i;
8246
8247 buf[width] = '\0';
8248
8249 for (i = width - 1; i >= 0; i--)
8250 {
8251 buf[i] = "0123456789abcdef"[(num & 0xf)];
8252 num >>= 4;
8253 }
8254
8255 return width;
8256 }
8257
8258 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8259
8260 static CORE_ADDR
8261 remote_address_masked (CORE_ADDR addr)
8262 {
8263 unsigned int address_size = remote_address_size;
8264
8265 /* If "remoteaddresssize" was not set, default to target address size. */
8266 if (!address_size)
8267 address_size = gdbarch_addr_bit (target_gdbarch ());
8268
8269 if (address_size > 0
8270 && address_size < (sizeof (ULONGEST) * 8))
8271 {
8272 /* Only create a mask when that mask can safely be constructed
8273 in a ULONGEST variable. */
8274 ULONGEST mask = 1;
8275
8276 mask = (mask << address_size) - 1;
8277 addr &= mask;
8278 }
8279 return addr;
8280 }
8281
8282 /* Determine whether the remote target supports binary downloading.
8283 This is accomplished by sending a no-op memory write of zero length
8284 to the target at the specified address. It does not suffice to send
8285 the whole packet, since many stubs strip the eighth bit and
8286 subsequently compute a wrong checksum, which causes real havoc with
8287 remote_write_bytes.
8288
8289 NOTE: This can still lose if the serial line is not eight-bit
8290 clean. In cases like this, the user should clear "remote
8291 X-packet". */
8292
8293 static void
8294 check_binary_download (CORE_ADDR addr)
8295 {
8296 struct remote_state *rs = get_remote_state ();
8297
8298 switch (packet_support (PACKET_X))
8299 {
8300 case PACKET_DISABLE:
8301 break;
8302 case PACKET_ENABLE:
8303 break;
8304 case PACKET_SUPPORT_UNKNOWN:
8305 {
8306 char *p;
8307
8308 p = rs->buf;
8309 *p++ = 'X';
8310 p += hexnumstr (p, (ULONGEST) addr);
8311 *p++ = ',';
8312 p += hexnumstr (p, (ULONGEST) 0);
8313 *p++ = ':';
8314 *p = '\0';
8315
8316 putpkt_binary (rs->buf, (int) (p - rs->buf));
8317 getpkt (&rs->buf, &rs->buf_size, 0);
8318
8319 if (rs->buf[0] == '\0')
8320 {
8321 if (remote_debug)
8322 fprintf_unfiltered (gdb_stdlog,
8323 "binary downloading NOT "
8324 "supported by target\n");
8325 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8326 }
8327 else
8328 {
8329 if (remote_debug)
8330 fprintf_unfiltered (gdb_stdlog,
8331 "binary downloading supported by target\n");
8332 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8333 }
8334 break;
8335 }
8336 }
8337 }
8338
8339 /* Helper function to resize the payload in order to try to get a good
8340 alignment. We try to write an amount of data such that the next write will
8341 start on an address aligned on REMOTE_ALIGN_WRITES. */
8342
8343 static int
8344 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8345 {
8346 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8347 }
8348
8349 /* Write memory data directly to the remote machine.
8350 This does not inform the data cache; the data cache uses this.
8351 HEADER is the starting part of the packet.
8352 MEMADDR is the address in the remote memory space.
8353 MYADDR is the address of the buffer in our space.
8354 LEN_UNITS is the number of addressable units to write.
8355 UNIT_SIZE is the length in bytes of an addressable unit.
8356 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8357 should send data as binary ('X'), or hex-encoded ('M').
8358
8359 The function creates packet of the form
8360 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8361
8362 where encoding of <DATA> is terminated by PACKET_FORMAT.
8363
8364 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8365 are omitted.
8366
8367 Return the transferred status, error or OK (an
8368 'enum target_xfer_status' value). Save the number of addressable units
8369 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8370
8371 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8372 exchange between gdb and the stub could look like (?? in place of the
8373 checksum):
8374
8375 -> $m1000,4#??
8376 <- aaaabbbbccccdddd
8377
8378 -> $M1000,3:eeeeffffeeee#??
8379 <- OK
8380
8381 -> $m1000,4#??
8382 <- eeeeffffeeeedddd */
8383
8384 static enum target_xfer_status
8385 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8386 const gdb_byte *myaddr, ULONGEST len_units,
8387 int unit_size, ULONGEST *xfered_len_units,
8388 char packet_format, int use_length)
8389 {
8390 struct remote_state *rs = get_remote_state ();
8391 char *p;
8392 char *plen = NULL;
8393 int plenlen = 0;
8394 int todo_units;
8395 int units_written;
8396 int payload_capacity_bytes;
8397 int payload_length_bytes;
8398
8399 if (packet_format != 'X' && packet_format != 'M')
8400 internal_error (__FILE__, __LINE__,
8401 _("remote_write_bytes_aux: bad packet format"));
8402
8403 if (len_units == 0)
8404 return TARGET_XFER_EOF;
8405
8406 payload_capacity_bytes = get_memory_write_packet_size ();
8407
8408 /* The packet buffer will be large enough for the payload;
8409 get_memory_packet_size ensures this. */
8410 rs->buf[0] = '\0';
8411
8412 /* Compute the size of the actual payload by subtracting out the
8413 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8414
8415 payload_capacity_bytes -= strlen ("$,:#NN");
8416 if (!use_length)
8417 /* The comma won't be used. */
8418 payload_capacity_bytes += 1;
8419 payload_capacity_bytes -= strlen (header);
8420 payload_capacity_bytes -= hexnumlen (memaddr);
8421
8422 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8423
8424 strcat (rs->buf, header);
8425 p = rs->buf + strlen (header);
8426
8427 /* Compute a best guess of the number of bytes actually transfered. */
8428 if (packet_format == 'X')
8429 {
8430 /* Best guess at number of bytes that will fit. */
8431 todo_units = std::min (len_units,
8432 (ULONGEST) payload_capacity_bytes / unit_size);
8433 if (use_length)
8434 payload_capacity_bytes -= hexnumlen (todo_units);
8435 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8436 }
8437 else
8438 {
8439 /* Number of bytes that will fit. */
8440 todo_units
8441 = std::min (len_units,
8442 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8443 if (use_length)
8444 payload_capacity_bytes -= hexnumlen (todo_units);
8445 todo_units = std::min (todo_units,
8446 (payload_capacity_bytes / unit_size) / 2);
8447 }
8448
8449 if (todo_units <= 0)
8450 internal_error (__FILE__, __LINE__,
8451 _("minimum packet size too small to write data"));
8452
8453 /* If we already need another packet, then try to align the end
8454 of this packet to a useful boundary. */
8455 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8456 todo_units = align_for_efficient_write (todo_units, memaddr);
8457
8458 /* Append "<memaddr>". */
8459 memaddr = remote_address_masked (memaddr);
8460 p += hexnumstr (p, (ULONGEST) memaddr);
8461
8462 if (use_length)
8463 {
8464 /* Append ",". */
8465 *p++ = ',';
8466
8467 /* Append the length and retain its location and size. It may need to be
8468 adjusted once the packet body has been created. */
8469 plen = p;
8470 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8471 p += plenlen;
8472 }
8473
8474 /* Append ":". */
8475 *p++ = ':';
8476 *p = '\0';
8477
8478 /* Append the packet body. */
8479 if (packet_format == 'X')
8480 {
8481 /* Binary mode. Send target system values byte by byte, in
8482 increasing byte addresses. Only escape certain critical
8483 characters. */
8484 payload_length_bytes =
8485 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8486 &units_written, payload_capacity_bytes);
8487
8488 /* If not all TODO units fit, then we'll need another packet. Make
8489 a second try to keep the end of the packet aligned. Don't do
8490 this if the packet is tiny. */
8491 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8492 {
8493 int new_todo_units;
8494
8495 new_todo_units = align_for_efficient_write (units_written, memaddr);
8496
8497 if (new_todo_units != units_written)
8498 payload_length_bytes =
8499 remote_escape_output (myaddr, new_todo_units, unit_size,
8500 (gdb_byte *) p, &units_written,
8501 payload_capacity_bytes);
8502 }
8503
8504 p += payload_length_bytes;
8505 if (use_length && units_written < todo_units)
8506 {
8507 /* Escape chars have filled up the buffer prematurely,
8508 and we have actually sent fewer units than planned.
8509 Fix-up the length field of the packet. Use the same
8510 number of characters as before. */
8511 plen += hexnumnstr (plen, (ULONGEST) units_written,
8512 plenlen);
8513 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8514 }
8515 }
8516 else
8517 {
8518 /* Normal mode: Send target system values byte by byte, in
8519 increasing byte addresses. Each byte is encoded as a two hex
8520 value. */
8521 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8522 units_written = todo_units;
8523 }
8524
8525 putpkt_binary (rs->buf, (int) (p - rs->buf));
8526 getpkt (&rs->buf, &rs->buf_size, 0);
8527
8528 if (rs->buf[0] == 'E')
8529 return TARGET_XFER_E_IO;
8530
8531 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8532 send fewer units than we'd planned. */
8533 *xfered_len_units = (ULONGEST) units_written;
8534 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8535 }
8536
8537 /* Write memory data directly to the remote machine.
8538 This does not inform the data cache; the data cache uses this.
8539 MEMADDR is the address in the remote memory space.
8540 MYADDR is the address of the buffer in our space.
8541 LEN is the number of bytes.
8542
8543 Return the transferred status, error or OK (an
8544 'enum target_xfer_status' value). Save the number of bytes
8545 transferred in *XFERED_LEN. Only transfer a single packet. */
8546
8547 static enum target_xfer_status
8548 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8549 int unit_size, ULONGEST *xfered_len)
8550 {
8551 const char *packet_format = NULL;
8552
8553 /* Check whether the target supports binary download. */
8554 check_binary_download (memaddr);
8555
8556 switch (packet_support (PACKET_X))
8557 {
8558 case PACKET_ENABLE:
8559 packet_format = "X";
8560 break;
8561 case PACKET_DISABLE:
8562 packet_format = "M";
8563 break;
8564 case PACKET_SUPPORT_UNKNOWN:
8565 internal_error (__FILE__, __LINE__,
8566 _("remote_write_bytes: bad internal state"));
8567 default:
8568 internal_error (__FILE__, __LINE__, _("bad switch"));
8569 }
8570
8571 return remote_write_bytes_aux (packet_format,
8572 memaddr, myaddr, len, unit_size, xfered_len,
8573 packet_format[0], 1);
8574 }
8575
8576 /* Read memory data directly from the remote machine.
8577 This does not use the data cache; the data cache uses this.
8578 MEMADDR is the address in the remote memory space.
8579 MYADDR is the address of the buffer in our space.
8580 LEN_UNITS is the number of addressable memory units to read..
8581 UNIT_SIZE is the length in bytes of an addressable unit.
8582
8583 Return the transferred status, error or OK (an
8584 'enum target_xfer_status' value). Save the number of bytes
8585 transferred in *XFERED_LEN_UNITS.
8586
8587 See the comment of remote_write_bytes_aux for an example of
8588 memory read/write exchange between gdb and the stub. */
8589
8590 static enum target_xfer_status
8591 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8592 int unit_size, ULONGEST *xfered_len_units)
8593 {
8594 struct remote_state *rs = get_remote_state ();
8595 int buf_size_bytes; /* Max size of packet output buffer. */
8596 char *p;
8597 int todo_units;
8598 int decoded_bytes;
8599
8600 buf_size_bytes = get_memory_read_packet_size ();
8601 /* The packet buffer will be large enough for the payload;
8602 get_memory_packet_size ensures this. */
8603
8604 /* Number of units that will fit. */
8605 todo_units = std::min (len_units,
8606 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8607
8608 /* Construct "m"<memaddr>","<len>". */
8609 memaddr = remote_address_masked (memaddr);
8610 p = rs->buf;
8611 *p++ = 'm';
8612 p += hexnumstr (p, (ULONGEST) memaddr);
8613 *p++ = ',';
8614 p += hexnumstr (p, (ULONGEST) todo_units);
8615 *p = '\0';
8616 putpkt (rs->buf);
8617 getpkt (&rs->buf, &rs->buf_size, 0);
8618 if (rs->buf[0] == 'E'
8619 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8620 && rs->buf[3] == '\0')
8621 return TARGET_XFER_E_IO;
8622 /* Reply describes memory byte by byte, each byte encoded as two hex
8623 characters. */
8624 p = rs->buf;
8625 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8626 /* Return what we have. Let higher layers handle partial reads. */
8627 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8628 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8629 }
8630
8631 /* Using the set of read-only target sections of remote, read live
8632 read-only memory.
8633
8634 For interface/parameters/return description see target.h,
8635 to_xfer_partial. */
8636
8637 static enum target_xfer_status
8638 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8639 ULONGEST memaddr, ULONGEST len,
8640 int unit_size, ULONGEST *xfered_len)
8641 {
8642 struct target_section *secp;
8643 struct target_section_table *table;
8644
8645 secp = target_section_by_addr (ops, memaddr);
8646 if (secp != NULL
8647 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8648 secp->the_bfd_section)
8649 & SEC_READONLY))
8650 {
8651 struct target_section *p;
8652 ULONGEST memend = memaddr + len;
8653
8654 table = target_get_section_table (ops);
8655
8656 for (p = table->sections; p < table->sections_end; p++)
8657 {
8658 if (memaddr >= p->addr)
8659 {
8660 if (memend <= p->endaddr)
8661 {
8662 /* Entire transfer is within this section. */
8663 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8664 xfered_len);
8665 }
8666 else if (memaddr >= p->endaddr)
8667 {
8668 /* This section ends before the transfer starts. */
8669 continue;
8670 }
8671 else
8672 {
8673 /* This section overlaps the transfer. Just do half. */
8674 len = p->endaddr - memaddr;
8675 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8676 xfered_len);
8677 }
8678 }
8679 }
8680 }
8681
8682 return TARGET_XFER_EOF;
8683 }
8684
8685 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8686 first if the requested memory is unavailable in traceframe.
8687 Otherwise, fall back to remote_read_bytes_1. */
8688
8689 static enum target_xfer_status
8690 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8691 gdb_byte *myaddr, ULONGEST len, int unit_size,
8692 ULONGEST *xfered_len)
8693 {
8694 if (len == 0)
8695 return TARGET_XFER_EOF;
8696
8697 if (get_traceframe_number () != -1)
8698 {
8699 std::vector<mem_range> available;
8700
8701 /* If we fail to get the set of available memory, then the
8702 target does not support querying traceframe info, and so we
8703 attempt reading from the traceframe anyway (assuming the
8704 target implements the old QTro packet then). */
8705 if (traceframe_available_memory (&available, memaddr, len))
8706 {
8707 if (available.empty () || available[0].start != memaddr)
8708 {
8709 enum target_xfer_status res;
8710
8711 /* Don't read into the traceframe's available
8712 memory. */
8713 if (!available.empty ())
8714 {
8715 LONGEST oldlen = len;
8716
8717 len = available[0].start - memaddr;
8718 gdb_assert (len <= oldlen);
8719 }
8720
8721 /* This goes through the topmost target again. */
8722 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8723 len, unit_size, xfered_len);
8724 if (res == TARGET_XFER_OK)
8725 return TARGET_XFER_OK;
8726 else
8727 {
8728 /* No use trying further, we know some memory starting
8729 at MEMADDR isn't available. */
8730 *xfered_len = len;
8731 return (*xfered_len != 0) ?
8732 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8733 }
8734 }
8735
8736 /* Don't try to read more than how much is available, in
8737 case the target implements the deprecated QTro packet to
8738 cater for older GDBs (the target's knowledge of read-only
8739 sections may be outdated by now). */
8740 len = available[0].length;
8741 }
8742 }
8743
8744 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8745 }
8746
8747 \f
8748
8749 /* Sends a packet with content determined by the printf format string
8750 FORMAT and the remaining arguments, then gets the reply. Returns
8751 whether the packet was a success, a failure, or unknown. */
8752
8753 static enum packet_result remote_send_printf (const char *format, ...)
8754 ATTRIBUTE_PRINTF (1, 2);
8755
8756 static enum packet_result
8757 remote_send_printf (const char *format, ...)
8758 {
8759 struct remote_state *rs = get_remote_state ();
8760 int max_size = get_remote_packet_size ();
8761 va_list ap;
8762
8763 va_start (ap, format);
8764
8765 rs->buf[0] = '\0';
8766 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8767 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8768
8769 if (putpkt (rs->buf) < 0)
8770 error (_("Communication problem with target."));
8771
8772 rs->buf[0] = '\0';
8773 getpkt (&rs->buf, &rs->buf_size, 0);
8774
8775 return packet_check_result (rs->buf);
8776 }
8777
8778 /* Flash writing can take quite some time. We'll set
8779 effectively infinite timeout for flash operations.
8780 In future, we'll need to decide on a better approach. */
8781 static const int remote_flash_timeout = 1000;
8782
8783 void
8784 remote_target::flash_erase (ULONGEST address, LONGEST length)
8785 {
8786 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8787 enum packet_result ret;
8788 scoped_restore restore_timeout
8789 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8790
8791 ret = remote_send_printf ("vFlashErase:%s,%s",
8792 phex (address, addr_size),
8793 phex (length, 4));
8794 switch (ret)
8795 {
8796 case PACKET_UNKNOWN:
8797 error (_("Remote target does not support flash erase"));
8798 case PACKET_ERROR:
8799 error (_("Error erasing flash with vFlashErase packet"));
8800 default:
8801 break;
8802 }
8803 }
8804
8805 static enum target_xfer_status
8806 remote_flash_write (struct target_ops *ops, ULONGEST address,
8807 ULONGEST length, ULONGEST *xfered_len,
8808 const gdb_byte *data)
8809 {
8810 scoped_restore restore_timeout
8811 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8812 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8813 xfered_len,'X', 0);
8814 }
8815
8816 void
8817 remote_target::flash_done ()
8818 {
8819 int ret;
8820
8821 scoped_restore restore_timeout
8822 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8823
8824 ret = remote_send_printf ("vFlashDone");
8825
8826 switch (ret)
8827 {
8828 case PACKET_UNKNOWN:
8829 error (_("Remote target does not support vFlashDone"));
8830 case PACKET_ERROR:
8831 error (_("Error finishing flash operation"));
8832 default:
8833 break;
8834 }
8835 }
8836
8837 void
8838 remote_target::files_info ()
8839 {
8840 puts_filtered ("Debugging a target over a serial line.\n");
8841 }
8842 \f
8843 /* Stuff for dealing with the packets which are part of this protocol.
8844 See comment at top of file for details. */
8845
8846 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8847 error to higher layers. Called when a serial error is detected.
8848 The exception message is STRING, followed by a colon and a blank,
8849 the system error message for errno at function entry and final dot
8850 for output compatibility with throw_perror_with_name. */
8851
8852 static void
8853 unpush_and_perror (const char *string)
8854 {
8855 int saved_errno = errno;
8856
8857 remote_unpush_target ();
8858 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8859 safe_strerror (saved_errno));
8860 }
8861
8862 /* Read a single character from the remote end. The current quit
8863 handler is overridden to avoid quitting in the middle of packet
8864 sequence, as that would break communication with the remote server.
8865 See remote_serial_quit_handler for more detail. */
8866
8867 static int
8868 readchar (int timeout)
8869 {
8870 int ch;
8871 struct remote_state *rs = get_remote_state ();
8872
8873 {
8874 scoped_restore restore_quit
8875 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8876
8877 rs->got_ctrlc_during_io = 0;
8878
8879 ch = serial_readchar (rs->remote_desc, timeout);
8880
8881 if (rs->got_ctrlc_during_io)
8882 set_quit_flag ();
8883 }
8884
8885 if (ch >= 0)
8886 return ch;
8887
8888 switch ((enum serial_rc) ch)
8889 {
8890 case SERIAL_EOF:
8891 remote_unpush_target ();
8892 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8893 /* no return */
8894 case SERIAL_ERROR:
8895 unpush_and_perror (_("Remote communication error. "
8896 "Target disconnected."));
8897 /* no return */
8898 case SERIAL_TIMEOUT:
8899 break;
8900 }
8901 return ch;
8902 }
8903
8904 /* Wrapper for serial_write that closes the target and throws if
8905 writing fails. The current quit handler is overridden to avoid
8906 quitting in the middle of packet sequence, as that would break
8907 communication with the remote server. See
8908 remote_serial_quit_handler for more detail. */
8909
8910 static void
8911 remote_serial_write (const char *str, int len)
8912 {
8913 struct remote_state *rs = get_remote_state ();
8914
8915 scoped_restore restore_quit
8916 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8917
8918 rs->got_ctrlc_during_io = 0;
8919
8920 if (serial_write (rs->remote_desc, str, len))
8921 {
8922 unpush_and_perror (_("Remote communication error. "
8923 "Target disconnected."));
8924 }
8925
8926 if (rs->got_ctrlc_during_io)
8927 set_quit_flag ();
8928 }
8929
8930 /* Return a string representing an escaped version of BUF, of len N.
8931 E.g. \n is converted to \\n, \t to \\t, etc. */
8932
8933 static std::string
8934 escape_buffer (const char *buf, int n)
8935 {
8936 string_file stb;
8937
8938 stb.putstrn (buf, n, '\\');
8939 return std::move (stb.string ());
8940 }
8941
8942 /* Display a null-terminated packet on stdout, for debugging, using C
8943 string notation. */
8944
8945 static void
8946 print_packet (const char *buf)
8947 {
8948 puts_filtered ("\"");
8949 fputstr_filtered (buf, '"', gdb_stdout);
8950 puts_filtered ("\"");
8951 }
8952
8953 int
8954 putpkt (const char *buf)
8955 {
8956 return putpkt_binary (buf, strlen (buf));
8957 }
8958
8959 /* Send a packet to the remote machine, with error checking. The data
8960 of the packet is in BUF. The string in BUF can be at most
8961 get_remote_packet_size () - 5 to account for the $, # and checksum,
8962 and for a possible /0 if we are debugging (remote_debug) and want
8963 to print the sent packet as a string. */
8964
8965 static int
8966 putpkt_binary (const char *buf, int cnt)
8967 {
8968 struct remote_state *rs = get_remote_state ();
8969 int i;
8970 unsigned char csum = 0;
8971 gdb::def_vector<char> data (cnt + 6);
8972 char *buf2 = data.data ();
8973
8974 int ch;
8975 int tcount = 0;
8976 char *p;
8977
8978 /* Catch cases like trying to read memory or listing threads while
8979 we're waiting for a stop reply. The remote server wouldn't be
8980 ready to handle this request, so we'd hang and timeout. We don't
8981 have to worry about this in synchronous mode, because in that
8982 case it's not possible to issue a command while the target is
8983 running. This is not a problem in non-stop mode, because in that
8984 case, the stub is always ready to process serial input. */
8985 if (!target_is_non_stop_p ()
8986 && target_is_async_p ()
8987 && rs->waiting_for_stop_reply)
8988 {
8989 error (_("Cannot execute this command while the target is running.\n"
8990 "Use the \"interrupt\" command to stop the target\n"
8991 "and then try again."));
8992 }
8993
8994 /* We're sending out a new packet. Make sure we don't look at a
8995 stale cached response. */
8996 rs->cached_wait_status = 0;
8997
8998 /* Copy the packet into buffer BUF2, encapsulating it
8999 and giving it a checksum. */
9000
9001 p = buf2;
9002 *p++ = '$';
9003
9004 for (i = 0; i < cnt; i++)
9005 {
9006 csum += buf[i];
9007 *p++ = buf[i];
9008 }
9009 *p++ = '#';
9010 *p++ = tohex ((csum >> 4) & 0xf);
9011 *p++ = tohex (csum & 0xf);
9012
9013 /* Send it over and over until we get a positive ack. */
9014
9015 while (1)
9016 {
9017 int started_error_output = 0;
9018
9019 if (remote_debug)
9020 {
9021 *p = '\0';
9022
9023 int len = (int) (p - buf2);
9024
9025 std::string str
9026 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9027
9028 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9029
9030 if (len > REMOTE_DEBUG_MAX_CHAR)
9031 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9032 len - REMOTE_DEBUG_MAX_CHAR);
9033
9034 fprintf_unfiltered (gdb_stdlog, "...");
9035
9036 gdb_flush (gdb_stdlog);
9037 }
9038 remote_serial_write (buf2, p - buf2);
9039
9040 /* If this is a no acks version of the remote protocol, send the
9041 packet and move on. */
9042 if (rs->noack_mode)
9043 break;
9044
9045 /* Read until either a timeout occurs (-2) or '+' is read.
9046 Handle any notification that arrives in the mean time. */
9047 while (1)
9048 {
9049 ch = readchar (remote_timeout);
9050
9051 if (remote_debug)
9052 {
9053 switch (ch)
9054 {
9055 case '+':
9056 case '-':
9057 case SERIAL_TIMEOUT:
9058 case '$':
9059 case '%':
9060 if (started_error_output)
9061 {
9062 putchar_unfiltered ('\n');
9063 started_error_output = 0;
9064 }
9065 }
9066 }
9067
9068 switch (ch)
9069 {
9070 case '+':
9071 if (remote_debug)
9072 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9073 return 1;
9074 case '-':
9075 if (remote_debug)
9076 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9077 /* FALLTHROUGH */
9078 case SERIAL_TIMEOUT:
9079 tcount++;
9080 if (tcount > 3)
9081 return 0;
9082 break; /* Retransmit buffer. */
9083 case '$':
9084 {
9085 if (remote_debug)
9086 fprintf_unfiltered (gdb_stdlog,
9087 "Packet instead of Ack, ignoring it\n");
9088 /* It's probably an old response sent because an ACK
9089 was lost. Gobble up the packet and ack it so it
9090 doesn't get retransmitted when we resend this
9091 packet. */
9092 skip_frame ();
9093 remote_serial_write ("+", 1);
9094 continue; /* Now, go look for +. */
9095 }
9096
9097 case '%':
9098 {
9099 int val;
9100
9101 /* If we got a notification, handle it, and go back to looking
9102 for an ack. */
9103 /* We've found the start of a notification. Now
9104 collect the data. */
9105 val = read_frame (&rs->buf, &rs->buf_size);
9106 if (val >= 0)
9107 {
9108 if (remote_debug)
9109 {
9110 std::string str = escape_buffer (rs->buf, val);
9111
9112 fprintf_unfiltered (gdb_stdlog,
9113 " Notification received: %s\n",
9114 str.c_str ());
9115 }
9116 handle_notification (rs->notif_state, rs->buf);
9117 /* We're in sync now, rewait for the ack. */
9118 tcount = 0;
9119 }
9120 else
9121 {
9122 if (remote_debug)
9123 {
9124 if (!started_error_output)
9125 {
9126 started_error_output = 1;
9127 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9128 }
9129 fputc_unfiltered (ch & 0177, gdb_stdlog);
9130 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9131 }
9132 }
9133 continue;
9134 }
9135 /* fall-through */
9136 default:
9137 if (remote_debug)
9138 {
9139 if (!started_error_output)
9140 {
9141 started_error_output = 1;
9142 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9143 }
9144 fputc_unfiltered (ch & 0177, gdb_stdlog);
9145 }
9146 continue;
9147 }
9148 break; /* Here to retransmit. */
9149 }
9150
9151 #if 0
9152 /* This is wrong. If doing a long backtrace, the user should be
9153 able to get out next time we call QUIT, without anything as
9154 violent as interrupt_query. If we want to provide a way out of
9155 here without getting to the next QUIT, it should be based on
9156 hitting ^C twice as in remote_wait. */
9157 if (quit_flag)
9158 {
9159 quit_flag = 0;
9160 interrupt_query ();
9161 }
9162 #endif
9163 }
9164
9165 return 0;
9166 }
9167
9168 /* Come here after finding the start of a frame when we expected an
9169 ack. Do our best to discard the rest of this packet. */
9170
9171 static void
9172 skip_frame (void)
9173 {
9174 int c;
9175
9176 while (1)
9177 {
9178 c = readchar (remote_timeout);
9179 switch (c)
9180 {
9181 case SERIAL_TIMEOUT:
9182 /* Nothing we can do. */
9183 return;
9184 case '#':
9185 /* Discard the two bytes of checksum and stop. */
9186 c = readchar (remote_timeout);
9187 if (c >= 0)
9188 c = readchar (remote_timeout);
9189
9190 return;
9191 case '*': /* Run length encoding. */
9192 /* Discard the repeat count. */
9193 c = readchar (remote_timeout);
9194 if (c < 0)
9195 return;
9196 break;
9197 default:
9198 /* A regular character. */
9199 break;
9200 }
9201 }
9202 }
9203
9204 /* Come here after finding the start of the frame. Collect the rest
9205 into *BUF, verifying the checksum, length, and handling run-length
9206 compression. NUL terminate the buffer. If there is not enough room,
9207 expand *BUF using xrealloc.
9208
9209 Returns -1 on error, number of characters in buffer (ignoring the
9210 trailing NULL) on success. (could be extended to return one of the
9211 SERIAL status indications). */
9212
9213 static long
9214 read_frame (char **buf_p,
9215 long *sizeof_buf)
9216 {
9217 unsigned char csum;
9218 long bc;
9219 int c;
9220 char *buf = *buf_p;
9221 struct remote_state *rs = get_remote_state ();
9222
9223 csum = 0;
9224 bc = 0;
9225
9226 while (1)
9227 {
9228 c = readchar (remote_timeout);
9229 switch (c)
9230 {
9231 case SERIAL_TIMEOUT:
9232 if (remote_debug)
9233 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9234 return -1;
9235 case '$':
9236 if (remote_debug)
9237 fputs_filtered ("Saw new packet start in middle of old one\n",
9238 gdb_stdlog);
9239 return -1; /* Start a new packet, count retries. */
9240 case '#':
9241 {
9242 unsigned char pktcsum;
9243 int check_0 = 0;
9244 int check_1 = 0;
9245
9246 buf[bc] = '\0';
9247
9248 check_0 = readchar (remote_timeout);
9249 if (check_0 >= 0)
9250 check_1 = readchar (remote_timeout);
9251
9252 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9253 {
9254 if (remote_debug)
9255 fputs_filtered ("Timeout in checksum, retrying\n",
9256 gdb_stdlog);
9257 return -1;
9258 }
9259 else if (check_0 < 0 || check_1 < 0)
9260 {
9261 if (remote_debug)
9262 fputs_filtered ("Communication error in checksum\n",
9263 gdb_stdlog);
9264 return -1;
9265 }
9266
9267 /* Don't recompute the checksum; with no ack packets we
9268 don't have any way to indicate a packet retransmission
9269 is necessary. */
9270 if (rs->noack_mode)
9271 return bc;
9272
9273 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9274 if (csum == pktcsum)
9275 return bc;
9276
9277 if (remote_debug)
9278 {
9279 std::string str = escape_buffer (buf, bc);
9280
9281 fprintf_unfiltered (gdb_stdlog,
9282 "Bad checksum, sentsum=0x%x, "
9283 "csum=0x%x, buf=%s\n",
9284 pktcsum, csum, str.c_str ());
9285 }
9286 /* Number of characters in buffer ignoring trailing
9287 NULL. */
9288 return -1;
9289 }
9290 case '*': /* Run length encoding. */
9291 {
9292 int repeat;
9293
9294 csum += c;
9295 c = readchar (remote_timeout);
9296 csum += c;
9297 repeat = c - ' ' + 3; /* Compute repeat count. */
9298
9299 /* The character before ``*'' is repeated. */
9300
9301 if (repeat > 0 && repeat <= 255 && bc > 0)
9302 {
9303 if (bc + repeat - 1 >= *sizeof_buf - 1)
9304 {
9305 /* Make some more room in the buffer. */
9306 *sizeof_buf += repeat;
9307 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9308 buf = *buf_p;
9309 }
9310
9311 memset (&buf[bc], buf[bc - 1], repeat);
9312 bc += repeat;
9313 continue;
9314 }
9315
9316 buf[bc] = '\0';
9317 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9318 return -1;
9319 }
9320 default:
9321 if (bc >= *sizeof_buf - 1)
9322 {
9323 /* Make some more room in the buffer. */
9324 *sizeof_buf *= 2;
9325 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9326 buf = *buf_p;
9327 }
9328
9329 buf[bc++] = c;
9330 csum += c;
9331 continue;
9332 }
9333 }
9334 }
9335
9336 /* Read a packet from the remote machine, with error checking, and
9337 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9338 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9339 rather than timing out; this is used (in synchronous mode) to wait
9340 for a target that is is executing user code to stop. */
9341 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9342 don't have to change all the calls to getpkt to deal with the
9343 return value, because at the moment I don't know what the right
9344 thing to do it for those. */
9345 void
9346 getpkt (char **buf,
9347 long *sizeof_buf,
9348 int forever)
9349 {
9350 getpkt_sane (buf, sizeof_buf, forever);
9351 }
9352
9353
9354 /* Read a packet from the remote machine, with error checking, and
9355 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9356 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9357 rather than timing out; this is used (in synchronous mode) to wait
9358 for a target that is is executing user code to stop. If FOREVER ==
9359 0, this function is allowed to time out gracefully and return an
9360 indication of this to the caller. Otherwise return the number of
9361 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9362 enough reason to return to the caller. *IS_NOTIF is an output
9363 boolean that indicates whether *BUF holds a notification or not
9364 (a regular packet). */
9365
9366 static int
9367 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9368 int expecting_notif, int *is_notif)
9369 {
9370 struct remote_state *rs = get_remote_state ();
9371 int c;
9372 int tries;
9373 int timeout;
9374 int val = -1;
9375
9376 /* We're reading a new response. Make sure we don't look at a
9377 previously cached response. */
9378 rs->cached_wait_status = 0;
9379
9380 strcpy (*buf, "timeout");
9381
9382 if (forever)
9383 timeout = watchdog > 0 ? watchdog : -1;
9384 else if (expecting_notif)
9385 timeout = 0; /* There should already be a char in the buffer. If
9386 not, bail out. */
9387 else
9388 timeout = remote_timeout;
9389
9390 #define MAX_TRIES 3
9391
9392 /* Process any number of notifications, and then return when
9393 we get a packet. */
9394 for (;;)
9395 {
9396 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9397 times. */
9398 for (tries = 1; tries <= MAX_TRIES; tries++)
9399 {
9400 /* This can loop forever if the remote side sends us
9401 characters continuously, but if it pauses, we'll get
9402 SERIAL_TIMEOUT from readchar because of timeout. Then
9403 we'll count that as a retry.
9404
9405 Note that even when forever is set, we will only wait
9406 forever prior to the start of a packet. After that, we
9407 expect characters to arrive at a brisk pace. They should
9408 show up within remote_timeout intervals. */
9409 do
9410 c = readchar (timeout);
9411 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9412
9413 if (c == SERIAL_TIMEOUT)
9414 {
9415 if (expecting_notif)
9416 return -1; /* Don't complain, it's normal to not get
9417 anything in this case. */
9418
9419 if (forever) /* Watchdog went off? Kill the target. */
9420 {
9421 remote_unpush_target ();
9422 throw_error (TARGET_CLOSE_ERROR,
9423 _("Watchdog timeout has expired. "
9424 "Target detached."));
9425 }
9426 if (remote_debug)
9427 fputs_filtered ("Timed out.\n", gdb_stdlog);
9428 }
9429 else
9430 {
9431 /* We've found the start of a packet or notification.
9432 Now collect the data. */
9433 val = read_frame (buf, sizeof_buf);
9434 if (val >= 0)
9435 break;
9436 }
9437
9438 remote_serial_write ("-", 1);
9439 }
9440
9441 if (tries > MAX_TRIES)
9442 {
9443 /* We have tried hard enough, and just can't receive the
9444 packet/notification. Give up. */
9445 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9446
9447 /* Skip the ack char if we're in no-ack mode. */
9448 if (!rs->noack_mode)
9449 remote_serial_write ("+", 1);
9450 return -1;
9451 }
9452
9453 /* If we got an ordinary packet, return that to our caller. */
9454 if (c == '$')
9455 {
9456 if (remote_debug)
9457 {
9458 std::string str
9459 = escape_buffer (*buf,
9460 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9461
9462 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9463 str.c_str ());
9464
9465 if (val > REMOTE_DEBUG_MAX_CHAR)
9466 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9467 val - REMOTE_DEBUG_MAX_CHAR);
9468
9469 fprintf_unfiltered (gdb_stdlog, "\n");
9470 }
9471
9472 /* Skip the ack char if we're in no-ack mode. */
9473 if (!rs->noack_mode)
9474 remote_serial_write ("+", 1);
9475 if (is_notif != NULL)
9476 *is_notif = 0;
9477 return val;
9478 }
9479
9480 /* If we got a notification, handle it, and go back to looking
9481 for a packet. */
9482 else
9483 {
9484 gdb_assert (c == '%');
9485
9486 if (remote_debug)
9487 {
9488 std::string str = escape_buffer (*buf, val);
9489
9490 fprintf_unfiltered (gdb_stdlog,
9491 " Notification received: %s\n",
9492 str.c_str ());
9493 }
9494 if (is_notif != NULL)
9495 *is_notif = 1;
9496
9497 handle_notification (rs->notif_state, *buf);
9498
9499 /* Notifications require no acknowledgement. */
9500
9501 if (expecting_notif)
9502 return val;
9503 }
9504 }
9505 }
9506
9507 static int
9508 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9509 {
9510 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9511 }
9512
9513 static int
9514 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9515 int *is_notif)
9516 {
9517 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9518 is_notif);
9519 }
9520
9521 /* Check whether EVENT is a fork event for the process specified
9522 by the pid passed in DATA, and if it is, kill the fork child. */
9523
9524 static int
9525 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9526 QUEUE_ITER (stop_reply_p) *iter,
9527 stop_reply_p event,
9528 void *data)
9529 {
9530 struct queue_iter_param *param = (struct queue_iter_param *) data;
9531 int parent_pid = *(int *) param->input;
9532
9533 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9534 {
9535 struct remote_state *rs = get_remote_state ();
9536 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9537 int res;
9538
9539 res = remote_vkill (child_pid, rs);
9540 if (res != 0)
9541 error (_("Can't kill fork child process %d"), child_pid);
9542 }
9543
9544 return 1;
9545 }
9546
9547 /* Kill any new fork children of process PID that haven't been
9548 processed by follow_fork. */
9549
9550 static void
9551 kill_new_fork_children (int pid, struct remote_state *rs)
9552 {
9553 struct thread_info *thread;
9554 struct notif_client *notif = &notif_client_stop;
9555 struct queue_iter_param param;
9556
9557 /* Kill the fork child threads of any threads in process PID
9558 that are stopped at a fork event. */
9559 ALL_NON_EXITED_THREADS (thread)
9560 {
9561 struct target_waitstatus *ws = &thread->pending_follow;
9562
9563 if (is_pending_fork_parent (ws, pid, thread->ptid))
9564 {
9565 struct remote_state *rs = get_remote_state ();
9566 int child_pid = ptid_get_pid (ws->value.related_pid);
9567 int res;
9568
9569 res = remote_vkill (child_pid, rs);
9570 if (res != 0)
9571 error (_("Can't kill fork child process %d"), child_pid);
9572 }
9573 }
9574
9575 /* Check for any pending fork events (not reported or processed yet)
9576 in process PID and kill those fork child threads as well. */
9577 remote_notif_get_pending_events (notif);
9578 param.input = &pid;
9579 param.output = NULL;
9580 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9581 kill_child_of_pending_fork, &param);
9582 }
9583
9584 \f
9585 /* Target hook to kill the current inferior. */
9586
9587 void
9588 remote_target::kill ()
9589 {
9590 int res = -1;
9591 int pid = ptid_get_pid (inferior_ptid);
9592 struct remote_state *rs = get_remote_state ();
9593
9594 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9595 {
9596 /* If we're stopped while forking and we haven't followed yet,
9597 kill the child task. We need to do this before killing the
9598 parent task because if this is a vfork then the parent will
9599 be sleeping. */
9600 kill_new_fork_children (pid, rs);
9601
9602 res = remote_vkill (pid, rs);
9603 if (res == 0)
9604 {
9605 target_mourn_inferior (inferior_ptid);
9606 return;
9607 }
9608 }
9609
9610 /* If we are in 'target remote' mode and we are killing the only
9611 inferior, then we will tell gdbserver to exit and unpush the
9612 target. */
9613 if (res == -1 && !remote_multi_process_p (rs)
9614 && number_of_live_inferiors () == 1)
9615 {
9616 remote_kill_k ();
9617
9618 /* We've killed the remote end, we get to mourn it. If we are
9619 not in extended mode, mourning the inferior also unpushes
9620 remote_ops from the target stack, which closes the remote
9621 connection. */
9622 target_mourn_inferior (inferior_ptid);
9623
9624 return;
9625 }
9626
9627 error (_("Can't kill process"));
9628 }
9629
9630 /* Send a kill request to the target using the 'vKill' packet. */
9631
9632 static int
9633 remote_vkill (int pid, struct remote_state *rs)
9634 {
9635 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9636 return -1;
9637
9638 /* Tell the remote target to detach. */
9639 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9640 putpkt (rs->buf);
9641 getpkt (&rs->buf, &rs->buf_size, 0);
9642
9643 switch (packet_ok (rs->buf,
9644 &remote_protocol_packets[PACKET_vKill]))
9645 {
9646 case PACKET_OK:
9647 return 0;
9648 case PACKET_ERROR:
9649 return 1;
9650 case PACKET_UNKNOWN:
9651 return -1;
9652 default:
9653 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9654 }
9655 }
9656
9657 /* Send a kill request to the target using the 'k' packet. */
9658
9659 static void
9660 remote_kill_k (void)
9661 {
9662 /* Catch errors so the user can quit from gdb even when we
9663 aren't on speaking terms with the remote system. */
9664 TRY
9665 {
9666 putpkt ("k");
9667 }
9668 CATCH (ex, RETURN_MASK_ERROR)
9669 {
9670 if (ex.error == TARGET_CLOSE_ERROR)
9671 {
9672 /* If we got an (EOF) error that caused the target
9673 to go away, then we're done, that's what we wanted.
9674 "k" is susceptible to cause a premature EOF, given
9675 that the remote server isn't actually required to
9676 reply to "k", and it can happen that it doesn't
9677 even get to reply ACK to the "k". */
9678 return;
9679 }
9680
9681 /* Otherwise, something went wrong. We didn't actually kill
9682 the target. Just propagate the exception, and let the
9683 user or higher layers decide what to do. */
9684 throw_exception (ex);
9685 }
9686 END_CATCH
9687 }
9688
9689 void
9690 remote_target::mourn_inferior ()
9691 {
9692 struct remote_state *rs = get_remote_state ();
9693
9694 /* We're no longer interested in notification events of an inferior
9695 that exited or was killed/detached. */
9696 discard_pending_stop_replies (current_inferior ());
9697
9698 /* In 'target remote' mode with one inferior, we close the connection. */
9699 if (!rs->extended && number_of_live_inferiors () <= 1)
9700 {
9701 unpush_target (this);
9702
9703 /* remote_close takes care of doing most of the clean up. */
9704 generic_mourn_inferior ();
9705 return;
9706 }
9707
9708 /* In case we got here due to an error, but we're going to stay
9709 connected. */
9710 rs->waiting_for_stop_reply = 0;
9711
9712 /* If the current general thread belonged to the process we just
9713 detached from or has exited, the remote side current general
9714 thread becomes undefined. Considering a case like this:
9715
9716 - We just got here due to a detach.
9717 - The process that we're detaching from happens to immediately
9718 report a global breakpoint being hit in non-stop mode, in the
9719 same thread we had selected before.
9720 - GDB attaches to this process again.
9721 - This event happens to be the next event we handle.
9722
9723 GDB would consider that the current general thread didn't need to
9724 be set on the stub side (with Hg), since for all it knew,
9725 GENERAL_THREAD hadn't changed.
9726
9727 Notice that although in all-stop mode, the remote server always
9728 sets the current thread to the thread reporting the stop event,
9729 that doesn't happen in non-stop mode; in non-stop, the stub *must
9730 not* change the current thread when reporting a breakpoint hit,
9731 due to the decoupling of event reporting and event handling.
9732
9733 To keep things simple, we always invalidate our notion of the
9734 current thread. */
9735 record_currthread (rs, minus_one_ptid);
9736
9737 /* Call common code to mark the inferior as not running. */
9738 generic_mourn_inferior ();
9739
9740 if (!have_inferiors ())
9741 {
9742 if (!remote_multi_process_p (rs))
9743 {
9744 /* Check whether the target is running now - some remote stubs
9745 automatically restart after kill. */
9746 putpkt ("?");
9747 getpkt (&rs->buf, &rs->buf_size, 0);
9748
9749 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9750 {
9751 /* Assume that the target has been restarted. Set
9752 inferior_ptid so that bits of core GDB realizes
9753 there's something here, e.g., so that the user can
9754 say "kill" again. */
9755 inferior_ptid = magic_null_ptid;
9756 }
9757 }
9758 }
9759 }
9760
9761 bool
9762 extended_remote_target::supports_disable_randomization ()
9763 {
9764 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9765 }
9766
9767 static void
9768 extended_remote_disable_randomization (int val)
9769 {
9770 struct remote_state *rs = get_remote_state ();
9771 char *reply;
9772
9773 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9774 val);
9775 putpkt (rs->buf);
9776 reply = remote_get_noisy_reply ();
9777 if (*reply == '\0')
9778 error (_("Target does not support QDisableRandomization."));
9779 if (strcmp (reply, "OK") != 0)
9780 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9781 }
9782
9783 static int
9784 extended_remote_run (const std::string &args)
9785 {
9786 struct remote_state *rs = get_remote_state ();
9787 int len;
9788 const char *remote_exec_file = get_remote_exec_file ();
9789
9790 /* If the user has disabled vRun support, or we have detected that
9791 support is not available, do not try it. */
9792 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9793 return -1;
9794
9795 strcpy (rs->buf, "vRun;");
9796 len = strlen (rs->buf);
9797
9798 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9799 error (_("Remote file name too long for run packet"));
9800 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9801 strlen (remote_exec_file));
9802
9803 if (!args.empty ())
9804 {
9805 int i;
9806
9807 gdb_argv argv (args.c_str ());
9808 for (i = 0; argv[i] != NULL; i++)
9809 {
9810 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9811 error (_("Argument list too long for run packet"));
9812 rs->buf[len++] = ';';
9813 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9814 strlen (argv[i]));
9815 }
9816 }
9817
9818 rs->buf[len++] = '\0';
9819
9820 putpkt (rs->buf);
9821 getpkt (&rs->buf, &rs->buf_size, 0);
9822
9823 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9824 {
9825 case PACKET_OK:
9826 /* We have a wait response. All is well. */
9827 return 0;
9828 case PACKET_UNKNOWN:
9829 return -1;
9830 case PACKET_ERROR:
9831 if (remote_exec_file[0] == '\0')
9832 error (_("Running the default executable on the remote target failed; "
9833 "try \"set remote exec-file\"?"));
9834 else
9835 error (_("Running \"%s\" on the remote target failed"),
9836 remote_exec_file);
9837 default:
9838 gdb_assert_not_reached (_("bad switch"));
9839 }
9840 }
9841
9842 /* Helper function to send set/unset environment packets. ACTION is
9843 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9844 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9845 sent. */
9846
9847 static void
9848 send_environment_packet (struct remote_state *rs,
9849 const char *action,
9850 const char *packet,
9851 const char *value)
9852 {
9853 /* Convert the environment variable to an hex string, which
9854 is the best format to be transmitted over the wire. */
9855 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9856 strlen (value));
9857
9858 xsnprintf (rs->buf, get_remote_packet_size (),
9859 "%s:%s", packet, encoded_value.c_str ());
9860
9861 putpkt (rs->buf);
9862 getpkt (&rs->buf, &rs->buf_size, 0);
9863 if (strcmp (rs->buf, "OK") != 0)
9864 warning (_("Unable to %s environment variable '%s' on remote."),
9865 action, value);
9866 }
9867
9868 /* Helper function to handle the QEnvironment* packets. */
9869
9870 static void
9871 extended_remote_environment_support (struct remote_state *rs)
9872 {
9873 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9874 {
9875 putpkt ("QEnvironmentReset");
9876 getpkt (&rs->buf, &rs->buf_size, 0);
9877 if (strcmp (rs->buf, "OK") != 0)
9878 warning (_("Unable to reset environment on remote."));
9879 }
9880
9881 gdb_environ *e = &current_inferior ()->environment;
9882
9883 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9884 for (const std::string &el : e->user_set_env ())
9885 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9886 el.c_str ());
9887
9888 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9889 for (const std::string &el : e->user_unset_env ())
9890 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9891 }
9892
9893 /* Helper function to set the current working directory for the
9894 inferior in the remote target. */
9895
9896 static void
9897 extended_remote_set_inferior_cwd (struct remote_state *rs)
9898 {
9899 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9900 {
9901 const char *inferior_cwd = get_inferior_cwd ();
9902
9903 if (inferior_cwd != NULL)
9904 {
9905 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9906 strlen (inferior_cwd));
9907
9908 xsnprintf (rs->buf, get_remote_packet_size (),
9909 "QSetWorkingDir:%s", hexpath.c_str ());
9910 }
9911 else
9912 {
9913 /* An empty inferior_cwd means that the user wants us to
9914 reset the remote server's inferior's cwd. */
9915 xsnprintf (rs->buf, get_remote_packet_size (),
9916 "QSetWorkingDir:");
9917 }
9918
9919 putpkt (rs->buf);
9920 getpkt (&rs->buf, &rs->buf_size, 0);
9921 if (packet_ok (rs->buf,
9922 &remote_protocol_packets[PACKET_QSetWorkingDir])
9923 != PACKET_OK)
9924 error (_("\
9925 Remote replied unexpectedly while setting the inferior's working\n\
9926 directory: %s"),
9927 rs->buf);
9928
9929 }
9930 }
9931
9932 /* In the extended protocol we want to be able to do things like
9933 "run" and have them basically work as expected. So we need
9934 a special create_inferior function. We support changing the
9935 executable file and the command line arguments, but not the
9936 environment. */
9937
9938 void
9939 extended_remote_target::create_inferior (const char *exec_file,
9940 const std::string &args,
9941 char **env, int from_tty)
9942 {
9943 int run_worked;
9944 char *stop_reply;
9945 struct remote_state *rs = get_remote_state ();
9946 const char *remote_exec_file = get_remote_exec_file ();
9947
9948 /* If running asynchronously, register the target file descriptor
9949 with the event loop. */
9950 if (target_can_async_p ())
9951 target_async (1);
9952
9953 /* Disable address space randomization if requested (and supported). */
9954 if (supports_disable_randomization ())
9955 extended_remote_disable_randomization (disable_randomization);
9956
9957 /* If startup-with-shell is on, we inform gdbserver to start the
9958 remote inferior using a shell. */
9959 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9960 {
9961 xsnprintf (rs->buf, get_remote_packet_size (),
9962 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9963 putpkt (rs->buf);
9964 getpkt (&rs->buf, &rs->buf_size, 0);
9965 if (strcmp (rs->buf, "OK") != 0)
9966 error (_("\
9967 Remote replied unexpectedly while setting startup-with-shell: %s"),
9968 rs->buf);
9969 }
9970
9971 extended_remote_environment_support (rs);
9972
9973 extended_remote_set_inferior_cwd (rs);
9974
9975 /* Now restart the remote server. */
9976 run_worked = extended_remote_run (args) != -1;
9977 if (!run_worked)
9978 {
9979 /* vRun was not supported. Fail if we need it to do what the
9980 user requested. */
9981 if (remote_exec_file[0])
9982 error (_("Remote target does not support \"set remote exec-file\""));
9983 if (!args.empty ())
9984 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9985
9986 /* Fall back to "R". */
9987 extended_remote_restart ();
9988 }
9989
9990 if (!have_inferiors ())
9991 {
9992 /* Clean up from the last time we ran, before we mark the target
9993 running again. This will mark breakpoints uninserted, and
9994 get_offsets may insert breakpoints. */
9995 init_thread_list ();
9996 init_wait_for_inferior ();
9997 }
9998
9999 /* vRun's success return is a stop reply. */
10000 stop_reply = run_worked ? rs->buf : NULL;
10001 add_current_inferior_and_thread (stop_reply);
10002
10003 /* Get updated offsets, if the stub uses qOffsets. */
10004 get_offsets ();
10005 }
10006 \f
10007
10008 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10009 the list of conditions (in agent expression bytecode format), if any, the
10010 target needs to evaluate. The output is placed into the packet buffer
10011 started from BUF and ended at BUF_END. */
10012
10013 static int
10014 remote_add_target_side_condition (struct gdbarch *gdbarch,
10015 struct bp_target_info *bp_tgt, char *buf,
10016 char *buf_end)
10017 {
10018 if (bp_tgt->conditions.empty ())
10019 return 0;
10020
10021 buf += strlen (buf);
10022 xsnprintf (buf, buf_end - buf, "%s", ";");
10023 buf++;
10024
10025 /* Send conditions to the target. */
10026 for (agent_expr *aexpr : bp_tgt->conditions)
10027 {
10028 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10029 buf += strlen (buf);
10030 for (int i = 0; i < aexpr->len; ++i)
10031 buf = pack_hex_byte (buf, aexpr->buf[i]);
10032 *buf = '\0';
10033 }
10034 return 0;
10035 }
10036
10037 static void
10038 remote_add_target_side_commands (struct gdbarch *gdbarch,
10039 struct bp_target_info *bp_tgt, char *buf)
10040 {
10041 if (bp_tgt->tcommands.empty ())
10042 return;
10043
10044 buf += strlen (buf);
10045
10046 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10047 buf += strlen (buf);
10048
10049 /* Concatenate all the agent expressions that are commands into the
10050 cmds parameter. */
10051 for (agent_expr *aexpr : bp_tgt->tcommands)
10052 {
10053 sprintf (buf, "X%x,", aexpr->len);
10054 buf += strlen (buf);
10055 for (int i = 0; i < aexpr->len; ++i)
10056 buf = pack_hex_byte (buf, aexpr->buf[i]);
10057 *buf = '\0';
10058 }
10059 }
10060
10061 /* Insert a breakpoint. On targets that have software breakpoint
10062 support, we ask the remote target to do the work; on targets
10063 which don't, we insert a traditional memory breakpoint. */
10064
10065 int
10066 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10067 struct bp_target_info *bp_tgt)
10068 {
10069 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10070 If it succeeds, then set the support to PACKET_ENABLE. If it
10071 fails, and the user has explicitly requested the Z support then
10072 report an error, otherwise, mark it disabled and go on. */
10073
10074 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10075 {
10076 CORE_ADDR addr = bp_tgt->reqstd_address;
10077 struct remote_state *rs;
10078 char *p, *endbuf;
10079
10080 /* Make sure the remote is pointing at the right process, if
10081 necessary. */
10082 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10083 set_general_process ();
10084
10085 rs = get_remote_state ();
10086 p = rs->buf;
10087 endbuf = rs->buf + get_remote_packet_size ();
10088
10089 *(p++) = 'Z';
10090 *(p++) = '0';
10091 *(p++) = ',';
10092 addr = (ULONGEST) remote_address_masked (addr);
10093 p += hexnumstr (p, addr);
10094 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10095
10096 if (supports_evaluation_of_breakpoint_conditions ())
10097 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10098
10099 if (can_run_breakpoint_commands ())
10100 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10101
10102 putpkt (rs->buf);
10103 getpkt (&rs->buf, &rs->buf_size, 0);
10104
10105 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10106 {
10107 case PACKET_ERROR:
10108 return -1;
10109 case PACKET_OK:
10110 return 0;
10111 case PACKET_UNKNOWN:
10112 break;
10113 }
10114 }
10115
10116 /* If this breakpoint has target-side commands but this stub doesn't
10117 support Z0 packets, throw error. */
10118 if (!bp_tgt->tcommands.empty ())
10119 throw_error (NOT_SUPPORTED_ERROR, _("\
10120 Target doesn't support breakpoints that have target side commands."));
10121
10122 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10123 }
10124
10125 int
10126 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10127 struct bp_target_info *bp_tgt,
10128 enum remove_bp_reason reason)
10129 {
10130 CORE_ADDR addr = bp_tgt->placed_address;
10131 struct remote_state *rs = get_remote_state ();
10132
10133 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10134 {
10135 char *p = rs->buf;
10136 char *endbuf = rs->buf + get_remote_packet_size ();
10137
10138 /* Make sure the remote is pointing at the right process, if
10139 necessary. */
10140 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10141 set_general_process ();
10142
10143 *(p++) = 'z';
10144 *(p++) = '0';
10145 *(p++) = ',';
10146
10147 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10148 p += hexnumstr (p, addr);
10149 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10150
10151 putpkt (rs->buf);
10152 getpkt (&rs->buf, &rs->buf_size, 0);
10153
10154 return (rs->buf[0] == 'E');
10155 }
10156
10157 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10158 }
10159
10160 static enum Z_packet_type
10161 watchpoint_to_Z_packet (int type)
10162 {
10163 switch (type)
10164 {
10165 case hw_write:
10166 return Z_PACKET_WRITE_WP;
10167 break;
10168 case hw_read:
10169 return Z_PACKET_READ_WP;
10170 break;
10171 case hw_access:
10172 return Z_PACKET_ACCESS_WP;
10173 break;
10174 default:
10175 internal_error (__FILE__, __LINE__,
10176 _("hw_bp_to_z: bad watchpoint type %d"), type);
10177 }
10178 }
10179
10180 int
10181 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10182 enum target_hw_bp_type type, struct expression *cond)
10183 {
10184 struct remote_state *rs = get_remote_state ();
10185 char *endbuf = rs->buf + get_remote_packet_size ();
10186 char *p;
10187 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10188
10189 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10190 return 1;
10191
10192 /* Make sure the remote is pointing at the right process, if
10193 necessary. */
10194 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10195 set_general_process ();
10196
10197 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10198 p = strchr (rs->buf, '\0');
10199 addr = remote_address_masked (addr);
10200 p += hexnumstr (p, (ULONGEST) addr);
10201 xsnprintf (p, endbuf - p, ",%x", len);
10202
10203 putpkt (rs->buf);
10204 getpkt (&rs->buf, &rs->buf_size, 0);
10205
10206 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10207 {
10208 case PACKET_ERROR:
10209 return -1;
10210 case PACKET_UNKNOWN:
10211 return 1;
10212 case PACKET_OK:
10213 return 0;
10214 }
10215 internal_error (__FILE__, __LINE__,
10216 _("remote_insert_watchpoint: reached end of function"));
10217 }
10218
10219 bool
10220 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10221 CORE_ADDR start, int length)
10222 {
10223 CORE_ADDR diff = remote_address_masked (addr - start);
10224
10225 return diff < length;
10226 }
10227
10228
10229 int
10230 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10231 enum target_hw_bp_type type, struct expression *cond)
10232 {
10233 struct remote_state *rs = get_remote_state ();
10234 char *endbuf = rs->buf + get_remote_packet_size ();
10235 char *p;
10236 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10237
10238 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10239 return -1;
10240
10241 /* Make sure the remote is pointing at the right process, if
10242 necessary. */
10243 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10244 set_general_process ();
10245
10246 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10247 p = strchr (rs->buf, '\0');
10248 addr = remote_address_masked (addr);
10249 p += hexnumstr (p, (ULONGEST) addr);
10250 xsnprintf (p, endbuf - p, ",%x", len);
10251 putpkt (rs->buf);
10252 getpkt (&rs->buf, &rs->buf_size, 0);
10253
10254 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10255 {
10256 case PACKET_ERROR:
10257 case PACKET_UNKNOWN:
10258 return -1;
10259 case PACKET_OK:
10260 return 0;
10261 }
10262 internal_error (__FILE__, __LINE__,
10263 _("remote_remove_watchpoint: reached end of function"));
10264 }
10265
10266
10267 int remote_hw_watchpoint_limit = -1;
10268 int remote_hw_watchpoint_length_limit = -1;
10269 int remote_hw_breakpoint_limit = -1;
10270
10271 int
10272 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10273 {
10274 if (remote_hw_watchpoint_length_limit == 0)
10275 return 0;
10276 else if (remote_hw_watchpoint_length_limit < 0)
10277 return 1;
10278 else if (len <= remote_hw_watchpoint_length_limit)
10279 return 1;
10280 else
10281 return 0;
10282 }
10283
10284 int
10285 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10286 {
10287 if (type == bp_hardware_breakpoint)
10288 {
10289 if (remote_hw_breakpoint_limit == 0)
10290 return 0;
10291 else if (remote_hw_breakpoint_limit < 0)
10292 return 1;
10293 else if (cnt <= remote_hw_breakpoint_limit)
10294 return 1;
10295 }
10296 else
10297 {
10298 if (remote_hw_watchpoint_limit == 0)
10299 return 0;
10300 else if (remote_hw_watchpoint_limit < 0)
10301 return 1;
10302 else if (ot)
10303 return -1;
10304 else if (cnt <= remote_hw_watchpoint_limit)
10305 return 1;
10306 }
10307 return -1;
10308 }
10309
10310 /* The to_stopped_by_sw_breakpoint method of target remote. */
10311
10312 bool
10313 remote_target::stopped_by_sw_breakpoint ()
10314 {
10315 struct thread_info *thread = inferior_thread ();
10316
10317 return (thread->priv != NULL
10318 && (get_remote_thread_info (thread)->stop_reason
10319 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10320 }
10321
10322 /* The to_supports_stopped_by_sw_breakpoint method of target
10323 remote. */
10324
10325 bool
10326 remote_target::supports_stopped_by_sw_breakpoint ()
10327 {
10328 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10329 }
10330
10331 /* The to_stopped_by_hw_breakpoint method of target remote. */
10332
10333 bool
10334 remote_target::stopped_by_hw_breakpoint ()
10335 {
10336 struct thread_info *thread = inferior_thread ();
10337
10338 return (thread->priv != NULL
10339 && (get_remote_thread_info (thread)->stop_reason
10340 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10341 }
10342
10343 /* The to_supports_stopped_by_hw_breakpoint method of target
10344 remote. */
10345
10346 bool
10347 remote_target::supports_stopped_by_hw_breakpoint ()
10348 {
10349 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10350 }
10351
10352 bool
10353 remote_target::stopped_by_watchpoint ()
10354 {
10355 struct thread_info *thread = inferior_thread ();
10356
10357 return (thread->priv != NULL
10358 && (get_remote_thread_info (thread)->stop_reason
10359 == TARGET_STOPPED_BY_WATCHPOINT));
10360 }
10361
10362 bool
10363 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10364 {
10365 struct thread_info *thread = inferior_thread ();
10366
10367 if (thread->priv != NULL
10368 && (get_remote_thread_info (thread)->stop_reason
10369 == TARGET_STOPPED_BY_WATCHPOINT))
10370 {
10371 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10372 return true;
10373 }
10374
10375 return false;
10376 }
10377
10378
10379 int
10380 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10381 struct bp_target_info *bp_tgt)
10382 {
10383 CORE_ADDR addr = bp_tgt->reqstd_address;
10384 struct remote_state *rs;
10385 char *p, *endbuf;
10386 char *message;
10387
10388 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10389 return -1;
10390
10391 /* Make sure the remote is pointing at the right process, if
10392 necessary. */
10393 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10394 set_general_process ();
10395
10396 rs = get_remote_state ();
10397 p = rs->buf;
10398 endbuf = rs->buf + get_remote_packet_size ();
10399
10400 *(p++) = 'Z';
10401 *(p++) = '1';
10402 *(p++) = ',';
10403
10404 addr = remote_address_masked (addr);
10405 p += hexnumstr (p, (ULONGEST) addr);
10406 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10407
10408 if (supports_evaluation_of_breakpoint_conditions ())
10409 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10410
10411 if (can_run_breakpoint_commands ())
10412 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10413
10414 putpkt (rs->buf);
10415 getpkt (&rs->buf, &rs->buf_size, 0);
10416
10417 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10418 {
10419 case PACKET_ERROR:
10420 if (rs->buf[1] == '.')
10421 {
10422 message = strchr (rs->buf + 2, '.');
10423 if (message)
10424 error (_("Remote failure reply: %s"), message + 1);
10425 }
10426 return -1;
10427 case PACKET_UNKNOWN:
10428 return -1;
10429 case PACKET_OK:
10430 return 0;
10431 }
10432 internal_error (__FILE__, __LINE__,
10433 _("remote_insert_hw_breakpoint: reached end of function"));
10434 }
10435
10436
10437 int
10438 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10439 struct bp_target_info *bp_tgt)
10440 {
10441 CORE_ADDR addr;
10442 struct remote_state *rs = get_remote_state ();
10443 char *p = rs->buf;
10444 char *endbuf = rs->buf + get_remote_packet_size ();
10445
10446 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10447 return -1;
10448
10449 /* Make sure the remote is pointing at the right process, if
10450 necessary. */
10451 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10452 set_general_process ();
10453
10454 *(p++) = 'z';
10455 *(p++) = '1';
10456 *(p++) = ',';
10457
10458 addr = remote_address_masked (bp_tgt->placed_address);
10459 p += hexnumstr (p, (ULONGEST) addr);
10460 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10461
10462 putpkt (rs->buf);
10463 getpkt (&rs->buf, &rs->buf_size, 0);
10464
10465 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10466 {
10467 case PACKET_ERROR:
10468 case PACKET_UNKNOWN:
10469 return -1;
10470 case PACKET_OK:
10471 return 0;
10472 }
10473 internal_error (__FILE__, __LINE__,
10474 _("remote_remove_hw_breakpoint: reached end of function"));
10475 }
10476
10477 /* Verify memory using the "qCRC:" request. */
10478
10479 int
10480 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10481 {
10482 struct remote_state *rs = get_remote_state ();
10483 unsigned long host_crc, target_crc;
10484 char *tmp;
10485
10486 /* It doesn't make sense to use qCRC if the remote target is
10487 connected but not running. */
10488 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10489 {
10490 enum packet_result result;
10491
10492 /* Make sure the remote is pointing at the right process. */
10493 set_general_process ();
10494
10495 /* FIXME: assumes lma can fit into long. */
10496 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10497 (long) lma, (long) size);
10498 putpkt (rs->buf);
10499
10500 /* Be clever; compute the host_crc before waiting for target
10501 reply. */
10502 host_crc = xcrc32 (data, size, 0xffffffff);
10503
10504 getpkt (&rs->buf, &rs->buf_size, 0);
10505
10506 result = packet_ok (rs->buf,
10507 &remote_protocol_packets[PACKET_qCRC]);
10508 if (result == PACKET_ERROR)
10509 return -1;
10510 else if (result == PACKET_OK)
10511 {
10512 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10513 target_crc = target_crc * 16 + fromhex (*tmp);
10514
10515 return (host_crc == target_crc);
10516 }
10517 }
10518
10519 return simple_verify_memory (this, data, lma, size);
10520 }
10521
10522 /* compare-sections command
10523
10524 With no arguments, compares each loadable section in the exec bfd
10525 with the same memory range on the target, and reports mismatches.
10526 Useful for verifying the image on the target against the exec file. */
10527
10528 static void
10529 compare_sections_command (const char *args, int from_tty)
10530 {
10531 asection *s;
10532 const char *sectname;
10533 bfd_size_type size;
10534 bfd_vma lma;
10535 int matched = 0;
10536 int mismatched = 0;
10537 int res;
10538 int read_only = 0;
10539
10540 if (!exec_bfd)
10541 error (_("command cannot be used without an exec file"));
10542
10543 if (args != NULL && strcmp (args, "-r") == 0)
10544 {
10545 read_only = 1;
10546 args = NULL;
10547 }
10548
10549 for (s = exec_bfd->sections; s; s = s->next)
10550 {
10551 if (!(s->flags & SEC_LOAD))
10552 continue; /* Skip non-loadable section. */
10553
10554 if (read_only && (s->flags & SEC_READONLY) == 0)
10555 continue; /* Skip writeable sections */
10556
10557 size = bfd_get_section_size (s);
10558 if (size == 0)
10559 continue; /* Skip zero-length section. */
10560
10561 sectname = bfd_get_section_name (exec_bfd, s);
10562 if (args && strcmp (args, sectname) != 0)
10563 continue; /* Not the section selected by user. */
10564
10565 matched = 1; /* Do this section. */
10566 lma = s->lma;
10567
10568 gdb::byte_vector sectdata (size);
10569 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10570
10571 res = target_verify_memory (sectdata.data (), lma, size);
10572
10573 if (res == -1)
10574 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10575 paddress (target_gdbarch (), lma),
10576 paddress (target_gdbarch (), lma + size));
10577
10578 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10579 paddress (target_gdbarch (), lma),
10580 paddress (target_gdbarch (), lma + size));
10581 if (res)
10582 printf_filtered ("matched.\n");
10583 else
10584 {
10585 printf_filtered ("MIS-MATCHED!\n");
10586 mismatched++;
10587 }
10588 }
10589 if (mismatched > 0)
10590 warning (_("One or more sections of the target image does not match\n\
10591 the loaded file\n"));
10592 if (args && !matched)
10593 printf_filtered (_("No loaded section named '%s'.\n"), args);
10594 }
10595
10596 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10597 into remote target. The number of bytes written to the remote
10598 target is returned, or -1 for error. */
10599
10600 static enum target_xfer_status
10601 remote_write_qxfer (const char *object_name,
10602 const char *annex, const gdb_byte *writebuf,
10603 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10604 struct packet_config *packet)
10605 {
10606 int i, buf_len;
10607 ULONGEST n;
10608 struct remote_state *rs = get_remote_state ();
10609 int max_size = get_memory_write_packet_size ();
10610
10611 if (packet_config_support (packet) == PACKET_DISABLE)
10612 return TARGET_XFER_E_IO;
10613
10614 /* Insert header. */
10615 i = snprintf (rs->buf, max_size,
10616 "qXfer:%s:write:%s:%s:",
10617 object_name, annex ? annex : "",
10618 phex_nz (offset, sizeof offset));
10619 max_size -= (i + 1);
10620
10621 /* Escape as much data as fits into rs->buf. */
10622 buf_len = remote_escape_output
10623 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10624
10625 if (putpkt_binary (rs->buf, i + buf_len) < 0
10626 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10627 || packet_ok (rs->buf, packet) != PACKET_OK)
10628 return TARGET_XFER_E_IO;
10629
10630 unpack_varlen_hex (rs->buf, &n);
10631
10632 *xfered_len = n;
10633 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10634 }
10635
10636 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10637 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10638 number of bytes read is returned, or 0 for EOF, or -1 for error.
10639 The number of bytes read may be less than LEN without indicating an
10640 EOF. PACKET is checked and updated to indicate whether the remote
10641 target supports this object. */
10642
10643 static enum target_xfer_status
10644 remote_read_qxfer (const char *object_name,
10645 const char *annex,
10646 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10647 ULONGEST *xfered_len,
10648 struct packet_config *packet)
10649 {
10650 struct remote_state *rs = get_remote_state ();
10651 LONGEST i, n, packet_len;
10652
10653 if (packet_config_support (packet) == PACKET_DISABLE)
10654 return TARGET_XFER_E_IO;
10655
10656 /* Check whether we've cached an end-of-object packet that matches
10657 this request. */
10658 if (rs->finished_object)
10659 {
10660 if (strcmp (object_name, rs->finished_object) == 0
10661 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10662 && offset == rs->finished_offset)
10663 return TARGET_XFER_EOF;
10664
10665
10666 /* Otherwise, we're now reading something different. Discard
10667 the cache. */
10668 xfree (rs->finished_object);
10669 xfree (rs->finished_annex);
10670 rs->finished_object = NULL;
10671 rs->finished_annex = NULL;
10672 }
10673
10674 /* Request only enough to fit in a single packet. The actual data
10675 may not, since we don't know how much of it will need to be escaped;
10676 the target is free to respond with slightly less data. We subtract
10677 five to account for the response type and the protocol frame. */
10678 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10679 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10680 object_name, annex ? annex : "",
10681 phex_nz (offset, sizeof offset),
10682 phex_nz (n, sizeof n));
10683 i = putpkt (rs->buf);
10684 if (i < 0)
10685 return TARGET_XFER_E_IO;
10686
10687 rs->buf[0] = '\0';
10688 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10689 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10690 return TARGET_XFER_E_IO;
10691
10692 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10693 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10694
10695 /* 'm' means there is (or at least might be) more data after this
10696 batch. That does not make sense unless there's at least one byte
10697 of data in this reply. */
10698 if (rs->buf[0] == 'm' && packet_len == 1)
10699 error (_("Remote qXfer reply contained no data."));
10700
10701 /* Got some data. */
10702 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10703 packet_len - 1, readbuf, n);
10704
10705 /* 'l' is an EOF marker, possibly including a final block of data,
10706 or possibly empty. If we have the final block of a non-empty
10707 object, record this fact to bypass a subsequent partial read. */
10708 if (rs->buf[0] == 'l' && offset + i > 0)
10709 {
10710 rs->finished_object = xstrdup (object_name);
10711 rs->finished_annex = xstrdup (annex ? annex : "");
10712 rs->finished_offset = offset + i;
10713 }
10714
10715 if (i == 0)
10716 return TARGET_XFER_EOF;
10717 else
10718 {
10719 *xfered_len = i;
10720 return TARGET_XFER_OK;
10721 }
10722 }
10723
10724 enum target_xfer_status
10725 remote_target::xfer_partial (enum target_object object,
10726 const char *annex, gdb_byte *readbuf,
10727 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10728 ULONGEST *xfered_len)
10729 {
10730 struct remote_state *rs;
10731 int i;
10732 char *p2;
10733 char query_type;
10734 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10735
10736 set_remote_traceframe ();
10737 set_general_thread (inferior_ptid);
10738
10739 rs = get_remote_state ();
10740
10741 /* Handle memory using the standard memory routines. */
10742 if (object == TARGET_OBJECT_MEMORY)
10743 {
10744 /* If the remote target is connected but not running, we should
10745 pass this request down to a lower stratum (e.g. the executable
10746 file). */
10747 if (!target_has_execution)
10748 return TARGET_XFER_EOF;
10749
10750 if (writebuf != NULL)
10751 return remote_write_bytes (offset, writebuf, len, unit_size,
10752 xfered_len);
10753 else
10754 return remote_read_bytes (this, offset, readbuf, len, unit_size,
10755 xfered_len);
10756 }
10757
10758 /* Handle SPU memory using qxfer packets. */
10759 if (object == TARGET_OBJECT_SPU)
10760 {
10761 if (readbuf)
10762 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10763 xfered_len, &remote_protocol_packets
10764 [PACKET_qXfer_spu_read]);
10765 else
10766 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10767 xfered_len, &remote_protocol_packets
10768 [PACKET_qXfer_spu_write]);
10769 }
10770
10771 /* Handle extra signal info using qxfer packets. */
10772 if (object == TARGET_OBJECT_SIGNAL_INFO)
10773 {
10774 if (readbuf)
10775 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10776 xfered_len, &remote_protocol_packets
10777 [PACKET_qXfer_siginfo_read]);
10778 else
10779 return remote_write_qxfer ("siginfo", annex,
10780 writebuf, offset, len, xfered_len,
10781 &remote_protocol_packets
10782 [PACKET_qXfer_siginfo_write]);
10783 }
10784
10785 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10786 {
10787 if (readbuf)
10788 return remote_read_qxfer ("statictrace", annex,
10789 readbuf, offset, len, xfered_len,
10790 &remote_protocol_packets
10791 [PACKET_qXfer_statictrace_read]);
10792 else
10793 return TARGET_XFER_E_IO;
10794 }
10795
10796 /* Only handle flash writes. */
10797 if (writebuf != NULL)
10798 {
10799 switch (object)
10800 {
10801 case TARGET_OBJECT_FLASH:
10802 return remote_flash_write (this, offset, len, xfered_len,
10803 writebuf);
10804
10805 default:
10806 return TARGET_XFER_E_IO;
10807 }
10808 }
10809
10810 /* Map pre-existing objects onto letters. DO NOT do this for new
10811 objects!!! Instead specify new query packets. */
10812 switch (object)
10813 {
10814 case TARGET_OBJECT_AVR:
10815 query_type = 'R';
10816 break;
10817
10818 case TARGET_OBJECT_AUXV:
10819 gdb_assert (annex == NULL);
10820 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10821 xfered_len,
10822 &remote_protocol_packets[PACKET_qXfer_auxv]);
10823
10824 case TARGET_OBJECT_AVAILABLE_FEATURES:
10825 return remote_read_qxfer
10826 ("features", annex, readbuf, offset, len, xfered_len,
10827 &remote_protocol_packets[PACKET_qXfer_features]);
10828
10829 case TARGET_OBJECT_LIBRARIES:
10830 return remote_read_qxfer
10831 ("libraries", annex, readbuf, offset, len, xfered_len,
10832 &remote_protocol_packets[PACKET_qXfer_libraries]);
10833
10834 case TARGET_OBJECT_LIBRARIES_SVR4:
10835 return remote_read_qxfer
10836 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10837 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10838
10839 case TARGET_OBJECT_MEMORY_MAP:
10840 gdb_assert (annex == NULL);
10841 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10842 xfered_len,
10843 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10844
10845 case TARGET_OBJECT_OSDATA:
10846 /* Should only get here if we're connected. */
10847 gdb_assert (rs->remote_desc);
10848 return remote_read_qxfer
10849 ("osdata", annex, readbuf, offset, len, xfered_len,
10850 &remote_protocol_packets[PACKET_qXfer_osdata]);
10851
10852 case TARGET_OBJECT_THREADS:
10853 gdb_assert (annex == NULL);
10854 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10855 xfered_len,
10856 &remote_protocol_packets[PACKET_qXfer_threads]);
10857
10858 case TARGET_OBJECT_TRACEFRAME_INFO:
10859 gdb_assert (annex == NULL);
10860 return remote_read_qxfer
10861 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10862 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10863
10864 case TARGET_OBJECT_FDPIC:
10865 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10866 xfered_len,
10867 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10868
10869 case TARGET_OBJECT_OPENVMS_UIB:
10870 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10871 xfered_len,
10872 &remote_protocol_packets[PACKET_qXfer_uib]);
10873
10874 case TARGET_OBJECT_BTRACE:
10875 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10876 xfered_len,
10877 &remote_protocol_packets[PACKET_qXfer_btrace]);
10878
10879 case TARGET_OBJECT_BTRACE_CONF:
10880 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10881 len, xfered_len,
10882 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10883
10884 case TARGET_OBJECT_EXEC_FILE:
10885 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10886 len, xfered_len,
10887 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10888
10889 default:
10890 return TARGET_XFER_E_IO;
10891 }
10892
10893 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10894 large enough let the caller deal with it. */
10895 if (len < get_remote_packet_size ())
10896 return TARGET_XFER_E_IO;
10897 len = get_remote_packet_size ();
10898
10899 /* Except for querying the minimum buffer size, target must be open. */
10900 if (!rs->remote_desc)
10901 error (_("remote query is only available after target open"));
10902
10903 gdb_assert (annex != NULL);
10904 gdb_assert (readbuf != NULL);
10905
10906 p2 = rs->buf;
10907 *p2++ = 'q';
10908 *p2++ = query_type;
10909
10910 /* We used one buffer char for the remote protocol q command and
10911 another for the query type. As the remote protocol encapsulation
10912 uses 4 chars plus one extra in case we are debugging
10913 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10914 string. */
10915 i = 0;
10916 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10917 {
10918 /* Bad caller may have sent forbidden characters. */
10919 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10920 *p2++ = annex[i];
10921 i++;
10922 }
10923 *p2 = '\0';
10924 gdb_assert (annex[i] == '\0');
10925
10926 i = putpkt (rs->buf);
10927 if (i < 0)
10928 return TARGET_XFER_E_IO;
10929
10930 getpkt (&rs->buf, &rs->buf_size, 0);
10931 strcpy ((char *) readbuf, rs->buf);
10932
10933 *xfered_len = strlen ((char *) readbuf);
10934 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10935 }
10936
10937 /* Implementation of to_get_memory_xfer_limit. */
10938
10939 ULONGEST
10940 remote_target::get_memory_xfer_limit ()
10941 {
10942 return get_memory_write_packet_size ();
10943 }
10944
10945 int
10946 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
10947 const gdb_byte *pattern, ULONGEST pattern_len,
10948 CORE_ADDR *found_addrp)
10949 {
10950 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10951 struct remote_state *rs = get_remote_state ();
10952 int max_size = get_memory_write_packet_size ();
10953 struct packet_config *packet =
10954 &remote_protocol_packets[PACKET_qSearch_memory];
10955 /* Number of packet bytes used to encode the pattern;
10956 this could be more than PATTERN_LEN due to escape characters. */
10957 int escaped_pattern_len;
10958 /* Amount of pattern that was encodable in the packet. */
10959 int used_pattern_len;
10960 int i;
10961 int found;
10962 ULONGEST found_addr;
10963
10964 /* Don't go to the target if we don't have to. This is done before
10965 checking packet_config_support to avoid the possibility that a
10966 success for this edge case means the facility works in
10967 general. */
10968 if (pattern_len > search_space_len)
10969 return 0;
10970 if (pattern_len == 0)
10971 {
10972 *found_addrp = start_addr;
10973 return 1;
10974 }
10975
10976 /* If we already know the packet isn't supported, fall back to the simple
10977 way of searching memory. */
10978
10979 if (packet_config_support (packet) == PACKET_DISABLE)
10980 {
10981 /* Target doesn't provided special support, fall back and use the
10982 standard support (copy memory and do the search here). */
10983 return simple_search_memory (this, start_addr, search_space_len,
10984 pattern, pattern_len, found_addrp);
10985 }
10986
10987 /* Make sure the remote is pointing at the right process. */
10988 set_general_process ();
10989
10990 /* Insert header. */
10991 i = snprintf (rs->buf, max_size,
10992 "qSearch:memory:%s;%s;",
10993 phex_nz (start_addr, addr_size),
10994 phex_nz (search_space_len, sizeof (search_space_len)));
10995 max_size -= (i + 1);
10996
10997 /* Escape as much data as fits into rs->buf. */
10998 escaped_pattern_len =
10999 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11000 &used_pattern_len, max_size);
11001
11002 /* Bail if the pattern is too large. */
11003 if (used_pattern_len != pattern_len)
11004 error (_("Pattern is too large to transmit to remote target."));
11005
11006 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11007 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11008 || packet_ok (rs->buf, packet) != PACKET_OK)
11009 {
11010 /* The request may not have worked because the command is not
11011 supported. If so, fall back to the simple way. */
11012 if (packet_config_support (packet) == PACKET_DISABLE)
11013 {
11014 return simple_search_memory (this, start_addr, search_space_len,
11015 pattern, pattern_len, found_addrp);
11016 }
11017 return -1;
11018 }
11019
11020 if (rs->buf[0] == '0')
11021 found = 0;
11022 else if (rs->buf[0] == '1')
11023 {
11024 found = 1;
11025 if (rs->buf[1] != ',')
11026 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11027 unpack_varlen_hex (rs->buf + 2, &found_addr);
11028 *found_addrp = found_addr;
11029 }
11030 else
11031 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11032
11033 return found;
11034 }
11035
11036 void
11037 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11038 {
11039 struct remote_state *rs = get_remote_state ();
11040 char *p = rs->buf;
11041
11042 if (!rs->remote_desc)
11043 error (_("remote rcmd is only available after target open"));
11044
11045 /* Send a NULL command across as an empty command. */
11046 if (command == NULL)
11047 command = "";
11048
11049 /* The query prefix. */
11050 strcpy (rs->buf, "qRcmd,");
11051 p = strchr (rs->buf, '\0');
11052
11053 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11054 > get_remote_packet_size ())
11055 error (_("\"monitor\" command ``%s'' is too long."), command);
11056
11057 /* Encode the actual command. */
11058 bin2hex ((const gdb_byte *) command, p, strlen (command));
11059
11060 if (putpkt (rs->buf) < 0)
11061 error (_("Communication problem with target."));
11062
11063 /* get/display the response */
11064 while (1)
11065 {
11066 char *buf;
11067
11068 /* XXX - see also remote_get_noisy_reply(). */
11069 QUIT; /* Allow user to bail out with ^C. */
11070 rs->buf[0] = '\0';
11071 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11072 {
11073 /* Timeout. Continue to (try to) read responses.
11074 This is better than stopping with an error, assuming the stub
11075 is still executing the (long) monitor command.
11076 If needed, the user can interrupt gdb using C-c, obtaining
11077 an effect similar to stop on timeout. */
11078 continue;
11079 }
11080 buf = rs->buf;
11081 if (buf[0] == '\0')
11082 error (_("Target does not support this command."));
11083 if (buf[0] == 'O' && buf[1] != 'K')
11084 {
11085 remote_console_output (buf + 1); /* 'O' message from stub. */
11086 continue;
11087 }
11088 if (strcmp (buf, "OK") == 0)
11089 break;
11090 if (strlen (buf) == 3 && buf[0] == 'E'
11091 && isdigit (buf[1]) && isdigit (buf[2]))
11092 {
11093 error (_("Protocol error with Rcmd"));
11094 }
11095 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11096 {
11097 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11098
11099 fputc_unfiltered (c, outbuf);
11100 }
11101 break;
11102 }
11103 }
11104
11105 std::vector<mem_region>
11106 remote_target::memory_map ()
11107 {
11108 std::vector<mem_region> result;
11109 gdb::optional<gdb::char_vector> text
11110 = target_read_stralloc (target_stack, TARGET_OBJECT_MEMORY_MAP, NULL);
11111
11112 if (text)
11113 result = parse_memory_map (text->data ());
11114
11115 return result;
11116 }
11117
11118 static void
11119 packet_command (const char *args, int from_tty)
11120 {
11121 struct remote_state *rs = get_remote_state ();
11122
11123 if (!rs->remote_desc)
11124 error (_("command can only be used with remote target"));
11125
11126 if (!args)
11127 error (_("remote-packet command requires packet text as argument"));
11128
11129 puts_filtered ("sending: ");
11130 print_packet (args);
11131 puts_filtered ("\n");
11132 putpkt (args);
11133
11134 getpkt (&rs->buf, &rs->buf_size, 0);
11135 puts_filtered ("received: ");
11136 print_packet (rs->buf);
11137 puts_filtered ("\n");
11138 }
11139
11140 #if 0
11141 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11142
11143 static void display_thread_info (struct gdb_ext_thread_info *info);
11144
11145 static void threadset_test_cmd (char *cmd, int tty);
11146
11147 static void threadalive_test (char *cmd, int tty);
11148
11149 static void threadlist_test_cmd (char *cmd, int tty);
11150
11151 int get_and_display_threadinfo (threadref *ref);
11152
11153 static void threadinfo_test_cmd (char *cmd, int tty);
11154
11155 static int thread_display_step (threadref *ref, void *context);
11156
11157 static void threadlist_update_test_cmd (char *cmd, int tty);
11158
11159 static void init_remote_threadtests (void);
11160
11161 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11162
11163 static void
11164 threadset_test_cmd (const char *cmd, int tty)
11165 {
11166 int sample_thread = SAMPLE_THREAD;
11167
11168 printf_filtered (_("Remote threadset test\n"));
11169 set_general_thread (sample_thread);
11170 }
11171
11172
11173 static void
11174 threadalive_test (const char *cmd, int tty)
11175 {
11176 int sample_thread = SAMPLE_THREAD;
11177 int pid = ptid_get_pid (inferior_ptid);
11178 ptid_t ptid = ptid_build (pid, sample_thread, 0);
11179
11180 if (remote_thread_alive (ptid))
11181 printf_filtered ("PASS: Thread alive test\n");
11182 else
11183 printf_filtered ("FAIL: Thread alive test\n");
11184 }
11185
11186 void output_threadid (char *title, threadref *ref);
11187
11188 void
11189 output_threadid (char *title, threadref *ref)
11190 {
11191 char hexid[20];
11192
11193 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11194 hexid[16] = 0;
11195 printf_filtered ("%s %s\n", title, (&hexid[0]));
11196 }
11197
11198 static void
11199 threadlist_test_cmd (const char *cmd, int tty)
11200 {
11201 int startflag = 1;
11202 threadref nextthread;
11203 int done, result_count;
11204 threadref threadlist[3];
11205
11206 printf_filtered ("Remote Threadlist test\n");
11207 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11208 &result_count, &threadlist[0]))
11209 printf_filtered ("FAIL: threadlist test\n");
11210 else
11211 {
11212 threadref *scan = threadlist;
11213 threadref *limit = scan + result_count;
11214
11215 while (scan < limit)
11216 output_threadid (" thread ", scan++);
11217 }
11218 }
11219
11220 void
11221 display_thread_info (struct gdb_ext_thread_info *info)
11222 {
11223 output_threadid ("Threadid: ", &info->threadid);
11224 printf_filtered ("Name: %s\n ", info->shortname);
11225 printf_filtered ("State: %s\n", info->display);
11226 printf_filtered ("other: %s\n\n", info->more_display);
11227 }
11228
11229 int
11230 get_and_display_threadinfo (threadref *ref)
11231 {
11232 int result;
11233 int set;
11234 struct gdb_ext_thread_info threadinfo;
11235
11236 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11237 | TAG_MOREDISPLAY | TAG_DISPLAY;
11238 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11239 display_thread_info (&threadinfo);
11240 return result;
11241 }
11242
11243 static void
11244 threadinfo_test_cmd (const char *cmd, int tty)
11245 {
11246 int athread = SAMPLE_THREAD;
11247 threadref thread;
11248 int set;
11249
11250 int_to_threadref (&thread, athread);
11251 printf_filtered ("Remote Threadinfo test\n");
11252 if (!get_and_display_threadinfo (&thread))
11253 printf_filtered ("FAIL cannot get thread info\n");
11254 }
11255
11256 static int
11257 thread_display_step (threadref *ref, void *context)
11258 {
11259 /* output_threadid(" threadstep ",ref); *//* simple test */
11260 return get_and_display_threadinfo (ref);
11261 }
11262
11263 static void
11264 threadlist_update_test_cmd (const char *cmd, int tty)
11265 {
11266 printf_filtered ("Remote Threadlist update test\n");
11267 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11268 }
11269
11270 static void
11271 init_remote_threadtests (void)
11272 {
11273 add_com ("tlist", class_obscure, threadlist_test_cmd,
11274 _("Fetch and print the remote list of "
11275 "thread identifiers, one pkt only"));
11276 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11277 _("Fetch and display info about one thread"));
11278 add_com ("tset", class_obscure, threadset_test_cmd,
11279 _("Test setting to a different thread"));
11280 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11281 _("Iterate through updating all remote thread info"));
11282 add_com ("talive", class_obscure, threadalive_test,
11283 _(" Remote thread alive test "));
11284 }
11285
11286 #endif /* 0 */
11287
11288 /* Convert a thread ID to a string. Returns the string in a static
11289 buffer. */
11290
11291 const char *
11292 remote_target::pid_to_str (ptid_t ptid)
11293 {
11294 static char buf[64];
11295 struct remote_state *rs = get_remote_state ();
11296
11297 if (ptid_equal (ptid, null_ptid))
11298 return normal_pid_to_str (ptid);
11299 else if (ptid_is_pid (ptid))
11300 {
11301 /* Printing an inferior target id. */
11302
11303 /* When multi-process extensions are off, there's no way in the
11304 remote protocol to know the remote process id, if there's any
11305 at all. There's one exception --- when we're connected with
11306 target extended-remote, and we manually attached to a process
11307 with "attach PID". We don't record anywhere a flag that
11308 allows us to distinguish that case from the case of
11309 connecting with extended-remote and the stub already being
11310 attached to a process, and reporting yes to qAttached, hence
11311 no smart special casing here. */
11312 if (!remote_multi_process_p (rs))
11313 {
11314 xsnprintf (buf, sizeof buf, "Remote target");
11315 return buf;
11316 }
11317
11318 return normal_pid_to_str (ptid);
11319 }
11320 else
11321 {
11322 if (ptid_equal (magic_null_ptid, ptid))
11323 xsnprintf (buf, sizeof buf, "Thread <main>");
11324 else if (remote_multi_process_p (rs))
11325 if (ptid_get_lwp (ptid) == 0)
11326 return normal_pid_to_str (ptid);
11327 else
11328 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11329 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11330 else
11331 xsnprintf (buf, sizeof buf, "Thread %ld",
11332 ptid_get_lwp (ptid));
11333 return buf;
11334 }
11335 }
11336
11337 /* Get the address of the thread local variable in OBJFILE which is
11338 stored at OFFSET within the thread local storage for thread PTID. */
11339
11340 CORE_ADDR
11341 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11342 CORE_ADDR offset)
11343 {
11344 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11345 {
11346 struct remote_state *rs = get_remote_state ();
11347 char *p = rs->buf;
11348 char *endp = rs->buf + get_remote_packet_size ();
11349 enum packet_result result;
11350
11351 strcpy (p, "qGetTLSAddr:");
11352 p += strlen (p);
11353 p = write_ptid (p, endp, ptid);
11354 *p++ = ',';
11355 p += hexnumstr (p, offset);
11356 *p++ = ',';
11357 p += hexnumstr (p, lm);
11358 *p++ = '\0';
11359
11360 putpkt (rs->buf);
11361 getpkt (&rs->buf, &rs->buf_size, 0);
11362 result = packet_ok (rs->buf,
11363 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11364 if (result == PACKET_OK)
11365 {
11366 ULONGEST result;
11367
11368 unpack_varlen_hex (rs->buf, &result);
11369 return result;
11370 }
11371 else if (result == PACKET_UNKNOWN)
11372 throw_error (TLS_GENERIC_ERROR,
11373 _("Remote target doesn't support qGetTLSAddr packet"));
11374 else
11375 throw_error (TLS_GENERIC_ERROR,
11376 _("Remote target failed to process qGetTLSAddr request"));
11377 }
11378 else
11379 throw_error (TLS_GENERIC_ERROR,
11380 _("TLS not supported or disabled on this target"));
11381 /* Not reached. */
11382 return 0;
11383 }
11384
11385 /* Provide thread local base, i.e. Thread Information Block address.
11386 Returns 1 if ptid is found and thread_local_base is non zero. */
11387
11388 bool
11389 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11390 {
11391 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11392 {
11393 struct remote_state *rs = get_remote_state ();
11394 char *p = rs->buf;
11395 char *endp = rs->buf + get_remote_packet_size ();
11396 enum packet_result result;
11397
11398 strcpy (p, "qGetTIBAddr:");
11399 p += strlen (p);
11400 p = write_ptid (p, endp, ptid);
11401 *p++ = '\0';
11402
11403 putpkt (rs->buf);
11404 getpkt (&rs->buf, &rs->buf_size, 0);
11405 result = packet_ok (rs->buf,
11406 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11407 if (result == PACKET_OK)
11408 {
11409 ULONGEST result;
11410
11411 unpack_varlen_hex (rs->buf, &result);
11412 if (addr)
11413 *addr = (CORE_ADDR) result;
11414 return true;
11415 }
11416 else if (result == PACKET_UNKNOWN)
11417 error (_("Remote target doesn't support qGetTIBAddr packet"));
11418 else
11419 error (_("Remote target failed to process qGetTIBAddr request"));
11420 }
11421 else
11422 error (_("qGetTIBAddr not supported or disabled on this target"));
11423 /* Not reached. */
11424 return false;
11425 }
11426
11427 /* Support for inferring a target description based on the current
11428 architecture and the size of a 'g' packet. While the 'g' packet
11429 can have any size (since optional registers can be left off the
11430 end), some sizes are easily recognizable given knowledge of the
11431 approximate architecture. */
11432
11433 struct remote_g_packet_guess
11434 {
11435 int bytes;
11436 const struct target_desc *tdesc;
11437 };
11438 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11439 DEF_VEC_O(remote_g_packet_guess_s);
11440
11441 struct remote_g_packet_data
11442 {
11443 VEC(remote_g_packet_guess_s) *guesses;
11444 };
11445
11446 static struct gdbarch_data *remote_g_packet_data_handle;
11447
11448 static void *
11449 remote_g_packet_data_init (struct obstack *obstack)
11450 {
11451 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11452 }
11453
11454 void
11455 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11456 const struct target_desc *tdesc)
11457 {
11458 struct remote_g_packet_data *data
11459 = ((struct remote_g_packet_data *)
11460 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11461 struct remote_g_packet_guess new_guess, *guess;
11462 int ix;
11463
11464 gdb_assert (tdesc != NULL);
11465
11466 for (ix = 0;
11467 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11468 ix++)
11469 if (guess->bytes == bytes)
11470 internal_error (__FILE__, __LINE__,
11471 _("Duplicate g packet description added for size %d"),
11472 bytes);
11473
11474 new_guess.bytes = bytes;
11475 new_guess.tdesc = tdesc;
11476 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11477 }
11478
11479 /* Return 1 if remote_read_description would do anything on this target
11480 and architecture, 0 otherwise. */
11481
11482 static int
11483 remote_read_description_p (struct target_ops *target)
11484 {
11485 struct remote_g_packet_data *data
11486 = ((struct remote_g_packet_data *)
11487 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11488
11489 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11490 return 1;
11491
11492 return 0;
11493 }
11494
11495 const struct target_desc *
11496 remote_target::read_description ()
11497 {
11498 struct remote_g_packet_data *data
11499 = ((struct remote_g_packet_data *)
11500 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11501
11502 /* Do not try this during initial connection, when we do not know
11503 whether there is a running but stopped thread. */
11504 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11505 return beneath->read_description ();
11506
11507 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11508 {
11509 struct remote_g_packet_guess *guess;
11510 int ix;
11511 int bytes = send_g_packet ();
11512
11513 for (ix = 0;
11514 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11515 ix++)
11516 if (guess->bytes == bytes)
11517 return guess->tdesc;
11518
11519 /* We discard the g packet. A minor optimization would be to
11520 hold on to it, and fill the register cache once we have selected
11521 an architecture, but it's too tricky to do safely. */
11522 }
11523
11524 return beneath->read_description ();
11525 }
11526
11527 /* Remote file transfer support. This is host-initiated I/O, not
11528 target-initiated; for target-initiated, see remote-fileio.c. */
11529
11530 /* If *LEFT is at least the length of STRING, copy STRING to
11531 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11532 decrease *LEFT. Otherwise raise an error. */
11533
11534 static void
11535 remote_buffer_add_string (char **buffer, int *left, const char *string)
11536 {
11537 int len = strlen (string);
11538
11539 if (len > *left)
11540 error (_("Packet too long for target."));
11541
11542 memcpy (*buffer, string, len);
11543 *buffer += len;
11544 *left -= len;
11545
11546 /* NUL-terminate the buffer as a convenience, if there is
11547 room. */
11548 if (*left)
11549 **buffer = '\0';
11550 }
11551
11552 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11553 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11554 decrease *LEFT. Otherwise raise an error. */
11555
11556 static void
11557 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11558 int len)
11559 {
11560 if (2 * len > *left)
11561 error (_("Packet too long for target."));
11562
11563 bin2hex (bytes, *buffer, len);
11564 *buffer += 2 * len;
11565 *left -= 2 * len;
11566
11567 /* NUL-terminate the buffer as a convenience, if there is
11568 room. */
11569 if (*left)
11570 **buffer = '\0';
11571 }
11572
11573 /* If *LEFT is large enough, convert VALUE to hex and add it to
11574 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11575 decrease *LEFT. Otherwise raise an error. */
11576
11577 static void
11578 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11579 {
11580 int len = hexnumlen (value);
11581
11582 if (len > *left)
11583 error (_("Packet too long for target."));
11584
11585 hexnumstr (*buffer, value);
11586 *buffer += len;
11587 *left -= len;
11588
11589 /* NUL-terminate the buffer as a convenience, if there is
11590 room. */
11591 if (*left)
11592 **buffer = '\0';
11593 }
11594
11595 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11596 value, *REMOTE_ERRNO to the remote error number or zero if none
11597 was included, and *ATTACHMENT to point to the start of the annex
11598 if any. The length of the packet isn't needed here; there may
11599 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11600
11601 Return 0 if the packet could be parsed, -1 if it could not. If
11602 -1 is returned, the other variables may not be initialized. */
11603
11604 static int
11605 remote_hostio_parse_result (char *buffer, int *retcode,
11606 int *remote_errno, char **attachment)
11607 {
11608 char *p, *p2;
11609
11610 *remote_errno = 0;
11611 *attachment = NULL;
11612
11613 if (buffer[0] != 'F')
11614 return -1;
11615
11616 errno = 0;
11617 *retcode = strtol (&buffer[1], &p, 16);
11618 if (errno != 0 || p == &buffer[1])
11619 return -1;
11620
11621 /* Check for ",errno". */
11622 if (*p == ',')
11623 {
11624 errno = 0;
11625 *remote_errno = strtol (p + 1, &p2, 16);
11626 if (errno != 0 || p + 1 == p2)
11627 return -1;
11628 p = p2;
11629 }
11630
11631 /* Check for ";attachment". If there is no attachment, the
11632 packet should end here. */
11633 if (*p == ';')
11634 {
11635 *attachment = p + 1;
11636 return 0;
11637 }
11638 else if (*p == '\0')
11639 return 0;
11640 else
11641 return -1;
11642 }
11643
11644 /* Send a prepared I/O packet to the target and read its response.
11645 The prepared packet is in the global RS->BUF before this function
11646 is called, and the answer is there when we return.
11647
11648 COMMAND_BYTES is the length of the request to send, which may include
11649 binary data. WHICH_PACKET is the packet configuration to check
11650 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11651 is set to the error number and -1 is returned. Otherwise the value
11652 returned by the function is returned.
11653
11654 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11655 attachment is expected; an error will be reported if there's a
11656 mismatch. If one is found, *ATTACHMENT will be set to point into
11657 the packet buffer and *ATTACHMENT_LEN will be set to the
11658 attachment's length. */
11659
11660 static int
11661 remote_hostio_send_command (int command_bytes, int which_packet,
11662 int *remote_errno, char **attachment,
11663 int *attachment_len)
11664 {
11665 struct remote_state *rs = get_remote_state ();
11666 int ret, bytes_read;
11667 char *attachment_tmp;
11668
11669 if (packet_support (which_packet) == PACKET_DISABLE)
11670 {
11671 *remote_errno = FILEIO_ENOSYS;
11672 return -1;
11673 }
11674
11675 putpkt_binary (rs->buf, command_bytes);
11676 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11677
11678 /* If it timed out, something is wrong. Don't try to parse the
11679 buffer. */
11680 if (bytes_read < 0)
11681 {
11682 *remote_errno = FILEIO_EINVAL;
11683 return -1;
11684 }
11685
11686 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11687 {
11688 case PACKET_ERROR:
11689 *remote_errno = FILEIO_EINVAL;
11690 return -1;
11691 case PACKET_UNKNOWN:
11692 *remote_errno = FILEIO_ENOSYS;
11693 return -1;
11694 case PACKET_OK:
11695 break;
11696 }
11697
11698 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11699 &attachment_tmp))
11700 {
11701 *remote_errno = FILEIO_EINVAL;
11702 return -1;
11703 }
11704
11705 /* Make sure we saw an attachment if and only if we expected one. */
11706 if ((attachment_tmp == NULL && attachment != NULL)
11707 || (attachment_tmp != NULL && attachment == NULL))
11708 {
11709 *remote_errno = FILEIO_EINVAL;
11710 return -1;
11711 }
11712
11713 /* If an attachment was found, it must point into the packet buffer;
11714 work out how many bytes there were. */
11715 if (attachment_tmp != NULL)
11716 {
11717 *attachment = attachment_tmp;
11718 *attachment_len = bytes_read - (*attachment - rs->buf);
11719 }
11720
11721 return ret;
11722 }
11723
11724 /* See declaration.h. */
11725
11726 void
11727 readahead_cache::invalidate ()
11728 {
11729 this->fd = -1;
11730 }
11731
11732 /* See declaration.h. */
11733
11734 void
11735 readahead_cache::invalidate_fd (int fd)
11736 {
11737 if (this->fd == fd)
11738 this->fd = -1;
11739 }
11740
11741 /* Set the filesystem remote_hostio functions that take FILENAME
11742 arguments will use. Return 0 on success, or -1 if an error
11743 occurs (and set *REMOTE_ERRNO). */
11744
11745 static int
11746 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11747 {
11748 struct remote_state *rs = get_remote_state ();
11749 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11750 char *p = rs->buf;
11751 int left = get_remote_packet_size () - 1;
11752 char arg[9];
11753 int ret;
11754
11755 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11756 return 0;
11757
11758 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11759 return 0;
11760
11761 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11762
11763 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11764 remote_buffer_add_string (&p, &left, arg);
11765
11766 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11767 remote_errno, NULL, NULL);
11768
11769 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11770 return 0;
11771
11772 if (ret == 0)
11773 rs->fs_pid = required_pid;
11774
11775 return ret;
11776 }
11777
11778 /* Implementation of to_fileio_open. */
11779
11780 static int
11781 remote_hostio_open (struct target_ops *self,
11782 struct inferior *inf, const char *filename,
11783 int flags, int mode, int warn_if_slow,
11784 int *remote_errno)
11785 {
11786 struct remote_state *rs = get_remote_state ();
11787 char *p = rs->buf;
11788 int left = get_remote_packet_size () - 1;
11789
11790 if (warn_if_slow)
11791 {
11792 static int warning_issued = 0;
11793
11794 printf_unfiltered (_("Reading %s from remote target...\n"),
11795 filename);
11796
11797 if (!warning_issued)
11798 {
11799 warning (_("File transfers from remote targets can be slow."
11800 " Use \"set sysroot\" to access files locally"
11801 " instead."));
11802 warning_issued = 1;
11803 }
11804 }
11805
11806 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11807 return -1;
11808
11809 remote_buffer_add_string (&p, &left, "vFile:open:");
11810
11811 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11812 strlen (filename));
11813 remote_buffer_add_string (&p, &left, ",");
11814
11815 remote_buffer_add_int (&p, &left, flags);
11816 remote_buffer_add_string (&p, &left, ",");
11817
11818 remote_buffer_add_int (&p, &left, mode);
11819
11820 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11821 remote_errno, NULL, NULL);
11822 }
11823
11824 int
11825 remote_target::fileio_open (struct inferior *inf, const char *filename,
11826 int flags, int mode, int warn_if_slow,
11827 int *remote_errno)
11828 {
11829 return remote_hostio_open (this, inf, filename, flags, mode, warn_if_slow,
11830 remote_errno);
11831 }
11832
11833 /* Implementation of to_fileio_pwrite. */
11834
11835 static int
11836 remote_hostio_pwrite (struct target_ops *self,
11837 int fd, const gdb_byte *write_buf, int len,
11838 ULONGEST offset, int *remote_errno)
11839 {
11840 struct remote_state *rs = get_remote_state ();
11841 char *p = rs->buf;
11842 int left = get_remote_packet_size ();
11843 int out_len;
11844
11845 rs->readahead_cache.invalidate_fd (fd);
11846
11847 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11848
11849 remote_buffer_add_int (&p, &left, fd);
11850 remote_buffer_add_string (&p, &left, ",");
11851
11852 remote_buffer_add_int (&p, &left, offset);
11853 remote_buffer_add_string (&p, &left, ",");
11854
11855 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11856 get_remote_packet_size () - (p - rs->buf));
11857
11858 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11859 remote_errno, NULL, NULL);
11860 }
11861
11862 int
11863 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11864 ULONGEST offset, int *remote_errno)
11865 {
11866 return remote_hostio_pwrite (this, fd, write_buf, len, offset, remote_errno);
11867 }
11868
11869 /* Helper for the implementation of to_fileio_pread. Read the file
11870 from the remote side with vFile:pread. */
11871
11872 static int
11873 remote_hostio_pread_vFile (struct target_ops *self,
11874 int fd, gdb_byte *read_buf, int len,
11875 ULONGEST offset, int *remote_errno)
11876 {
11877 struct remote_state *rs = get_remote_state ();
11878 char *p = rs->buf;
11879 char *attachment;
11880 int left = get_remote_packet_size ();
11881 int ret, attachment_len;
11882 int read_len;
11883
11884 remote_buffer_add_string (&p, &left, "vFile:pread:");
11885
11886 remote_buffer_add_int (&p, &left, fd);
11887 remote_buffer_add_string (&p, &left, ",");
11888
11889 remote_buffer_add_int (&p, &left, len);
11890 remote_buffer_add_string (&p, &left, ",");
11891
11892 remote_buffer_add_int (&p, &left, offset);
11893
11894 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11895 remote_errno, &attachment,
11896 &attachment_len);
11897
11898 if (ret < 0)
11899 return ret;
11900
11901 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11902 read_buf, len);
11903 if (read_len != ret)
11904 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11905
11906 return ret;
11907 }
11908
11909 /* See declaration.h. */
11910
11911 int
11912 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11913 ULONGEST offset)
11914 {
11915 if (this->fd == fd
11916 && this->offset <= offset
11917 && offset < this->offset + this->bufsize)
11918 {
11919 ULONGEST max = this->offset + this->bufsize;
11920
11921 if (offset + len > max)
11922 len = max - offset;
11923
11924 memcpy (read_buf, this->buf + offset - this->offset, len);
11925 return len;
11926 }
11927
11928 return 0;
11929 }
11930
11931 /* Implementation of to_fileio_pread. */
11932
11933 static int
11934 remote_hostio_pread (struct target_ops *self,
11935 int fd, gdb_byte *read_buf, int len,
11936 ULONGEST offset, int *remote_errno)
11937 {
11938 int ret;
11939 struct remote_state *rs = get_remote_state ();
11940 readahead_cache *cache = &rs->readahead_cache;
11941
11942 ret = cache->pread (fd, read_buf, len, offset);
11943 if (ret > 0)
11944 {
11945 cache->hit_count++;
11946
11947 if (remote_debug)
11948 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11949 pulongest (cache->hit_count));
11950 return ret;
11951 }
11952
11953 cache->miss_count++;
11954 if (remote_debug)
11955 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11956 pulongest (cache->miss_count));
11957
11958 cache->fd = fd;
11959 cache->offset = offset;
11960 cache->bufsize = get_remote_packet_size ();
11961 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11962
11963 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11964 cache->offset, remote_errno);
11965 if (ret <= 0)
11966 {
11967 cache->invalidate_fd (fd);
11968 return ret;
11969 }
11970
11971 cache->bufsize = ret;
11972 return cache->pread (fd, read_buf, len, offset);
11973 }
11974
11975 int
11976 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
11977 ULONGEST offset, int *remote_errno)
11978 {
11979 return remote_hostio_pread (this, fd, read_buf, len, offset, remote_errno);
11980 }
11981
11982 /* Implementation of to_fileio_close. */
11983
11984 static int
11985 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11986 {
11987 struct remote_state *rs = get_remote_state ();
11988 char *p = rs->buf;
11989 int left = get_remote_packet_size () - 1;
11990
11991 rs->readahead_cache.invalidate_fd (fd);
11992
11993 remote_buffer_add_string (&p, &left, "vFile:close:");
11994
11995 remote_buffer_add_int (&p, &left, fd);
11996
11997 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11998 remote_errno, NULL, NULL);
11999 }
12000
12001 int
12002 remote_target::fileio_close (int fd, int *remote_errno)
12003 {
12004 return remote_hostio_close (this, fd, remote_errno);
12005 }
12006
12007 /* Implementation of to_fileio_unlink. */
12008
12009 static int
12010 remote_hostio_unlink (struct target_ops *self,
12011 struct inferior *inf, const char *filename,
12012 int *remote_errno)
12013 {
12014 struct remote_state *rs = get_remote_state ();
12015 char *p = rs->buf;
12016 int left = get_remote_packet_size () - 1;
12017
12018 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12019 return -1;
12020
12021 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12022
12023 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12024 strlen (filename));
12025
12026 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12027 remote_errno, NULL, NULL);
12028 }
12029
12030 int
12031 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12032 int *remote_errno)
12033 {
12034 return remote_hostio_unlink (this, inf, filename, remote_errno);
12035 }
12036
12037 /* Implementation of to_fileio_readlink. */
12038
12039 gdb::optional<std::string>
12040 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12041 int *remote_errno)
12042 {
12043 struct remote_state *rs = get_remote_state ();
12044 char *p = rs->buf;
12045 char *attachment;
12046 int left = get_remote_packet_size ();
12047 int len, attachment_len;
12048 int read_len;
12049
12050 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12051 return {};
12052
12053 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12054
12055 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12056 strlen (filename));
12057
12058 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12059 remote_errno, &attachment,
12060 &attachment_len);
12061
12062 if (len < 0)
12063 return {};
12064
12065 std::string ret (len, '\0');
12066
12067 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12068 (gdb_byte *) &ret[0], len);
12069 if (read_len != len)
12070 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12071
12072 return ret;
12073 }
12074
12075 /* Implementation of to_fileio_fstat. */
12076
12077 int
12078 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12079 {
12080 struct remote_state *rs = get_remote_state ();
12081 char *p = rs->buf;
12082 int left = get_remote_packet_size ();
12083 int attachment_len, ret;
12084 char *attachment;
12085 struct fio_stat fst;
12086 int read_len;
12087
12088 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12089
12090 remote_buffer_add_int (&p, &left, fd);
12091
12092 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12093 remote_errno, &attachment,
12094 &attachment_len);
12095 if (ret < 0)
12096 {
12097 if (*remote_errno != FILEIO_ENOSYS)
12098 return ret;
12099
12100 /* Strictly we should return -1, ENOSYS here, but when
12101 "set sysroot remote:" was implemented in August 2008
12102 BFD's need for a stat function was sidestepped with
12103 this hack. This was not remedied until March 2015
12104 so we retain the previous behavior to avoid breaking
12105 compatibility.
12106
12107 Note that the memset is a March 2015 addition; older
12108 GDBs set st_size *and nothing else* so the structure
12109 would have garbage in all other fields. This might
12110 break something but retaining the previous behavior
12111 here would be just too wrong. */
12112
12113 memset (st, 0, sizeof (struct stat));
12114 st->st_size = INT_MAX;
12115 return 0;
12116 }
12117
12118 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12119 (gdb_byte *) &fst, sizeof (fst));
12120
12121 if (read_len != ret)
12122 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12123
12124 if (read_len != sizeof (fst))
12125 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12126 read_len, (int) sizeof (fst));
12127
12128 remote_fileio_to_host_stat (&fst, st);
12129
12130 return 0;
12131 }
12132
12133 /* Implementation of to_filesystem_is_local. */
12134
12135 bool
12136 remote_target::filesystem_is_local ()
12137 {
12138 /* Valgrind GDB presents itself as a remote target but works
12139 on the local filesystem: it does not implement remote get
12140 and users are not expected to set a sysroot. To handle
12141 this case we treat the remote filesystem as local if the
12142 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12143 does not support vFile:open. */
12144 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12145 {
12146 enum packet_support ps = packet_support (PACKET_vFile_open);
12147
12148 if (ps == PACKET_SUPPORT_UNKNOWN)
12149 {
12150 int fd, remote_errno;
12151
12152 /* Try opening a file to probe support. The supplied
12153 filename is irrelevant, we only care about whether
12154 the stub recognizes the packet or not. */
12155 fd = remote_hostio_open (this, NULL, "just probing",
12156 FILEIO_O_RDONLY, 0700, 0,
12157 &remote_errno);
12158
12159 if (fd >= 0)
12160 remote_hostio_close (this, fd, &remote_errno);
12161
12162 ps = packet_support (PACKET_vFile_open);
12163 }
12164
12165 if (ps == PACKET_DISABLE)
12166 {
12167 static int warning_issued = 0;
12168
12169 if (!warning_issued)
12170 {
12171 warning (_("remote target does not support file"
12172 " transfer, attempting to access files"
12173 " from local filesystem."));
12174 warning_issued = 1;
12175 }
12176
12177 return true;
12178 }
12179 }
12180
12181 return false;
12182 }
12183
12184 static int
12185 remote_fileio_errno_to_host (int errnum)
12186 {
12187 switch (errnum)
12188 {
12189 case FILEIO_EPERM:
12190 return EPERM;
12191 case FILEIO_ENOENT:
12192 return ENOENT;
12193 case FILEIO_EINTR:
12194 return EINTR;
12195 case FILEIO_EIO:
12196 return EIO;
12197 case FILEIO_EBADF:
12198 return EBADF;
12199 case FILEIO_EACCES:
12200 return EACCES;
12201 case FILEIO_EFAULT:
12202 return EFAULT;
12203 case FILEIO_EBUSY:
12204 return EBUSY;
12205 case FILEIO_EEXIST:
12206 return EEXIST;
12207 case FILEIO_ENODEV:
12208 return ENODEV;
12209 case FILEIO_ENOTDIR:
12210 return ENOTDIR;
12211 case FILEIO_EISDIR:
12212 return EISDIR;
12213 case FILEIO_EINVAL:
12214 return EINVAL;
12215 case FILEIO_ENFILE:
12216 return ENFILE;
12217 case FILEIO_EMFILE:
12218 return EMFILE;
12219 case FILEIO_EFBIG:
12220 return EFBIG;
12221 case FILEIO_ENOSPC:
12222 return ENOSPC;
12223 case FILEIO_ESPIPE:
12224 return ESPIPE;
12225 case FILEIO_EROFS:
12226 return EROFS;
12227 case FILEIO_ENOSYS:
12228 return ENOSYS;
12229 case FILEIO_ENAMETOOLONG:
12230 return ENAMETOOLONG;
12231 }
12232 return -1;
12233 }
12234
12235 static char *
12236 remote_hostio_error (int errnum)
12237 {
12238 int host_error = remote_fileio_errno_to_host (errnum);
12239
12240 if (host_error == -1)
12241 error (_("Unknown remote I/O error %d"), errnum);
12242 else
12243 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12244 }
12245
12246 /* A RAII wrapper around a remote file descriptor. */
12247
12248 class scoped_remote_fd
12249 {
12250 public:
12251 explicit scoped_remote_fd (int fd)
12252 : m_fd (fd)
12253 {
12254 }
12255
12256 ~scoped_remote_fd ()
12257 {
12258 if (m_fd != -1)
12259 {
12260 try
12261 {
12262 int remote_errno;
12263 remote_hostio_close (find_target_at (process_stratum),
12264 m_fd, &remote_errno);
12265 }
12266 catch (...)
12267 {
12268 /* Swallow exception before it escapes the dtor. If
12269 something goes wrong, likely the connection is gone,
12270 and there's nothing else that can be done. */
12271 }
12272 }
12273 }
12274
12275 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12276
12277 /* Release ownership of the file descriptor, and return it. */
12278 int release () noexcept
12279 {
12280 int fd = m_fd;
12281 m_fd = -1;
12282 return fd;
12283 }
12284
12285 /* Return the owned file descriptor. */
12286 int get () const noexcept
12287 {
12288 return m_fd;
12289 }
12290
12291 private:
12292 /* The owned remote I/O file descriptor. */
12293 int m_fd;
12294 };
12295
12296 void
12297 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12298 {
12299 struct cleanup *back_to;
12300 int retcode, remote_errno, bytes, io_size;
12301 gdb_byte *buffer;
12302 int bytes_in_buffer;
12303 int saw_eof;
12304 ULONGEST offset;
12305 struct remote_state *rs = get_remote_state ();
12306
12307 if (!rs->remote_desc)
12308 error (_("command can only be used with remote target"));
12309
12310 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12311 if (file == NULL)
12312 perror_with_name (local_file);
12313
12314 scoped_remote_fd fd
12315 (remote_hostio_open (find_target_at (process_stratum), NULL,
12316 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12317 | FILEIO_O_TRUNC),
12318 0700, 0, &remote_errno));
12319 if (fd.get () == -1)
12320 remote_hostio_error (remote_errno);
12321
12322 /* Send up to this many bytes at once. They won't all fit in the
12323 remote packet limit, so we'll transfer slightly fewer. */
12324 io_size = get_remote_packet_size ();
12325 buffer = (gdb_byte *) xmalloc (io_size);
12326 back_to = make_cleanup (xfree, buffer);
12327
12328 bytes_in_buffer = 0;
12329 saw_eof = 0;
12330 offset = 0;
12331 while (bytes_in_buffer || !saw_eof)
12332 {
12333 if (!saw_eof)
12334 {
12335 bytes = fread (buffer + bytes_in_buffer, 1,
12336 io_size - bytes_in_buffer,
12337 file.get ());
12338 if (bytes == 0)
12339 {
12340 if (ferror (file.get ()))
12341 error (_("Error reading %s."), local_file);
12342 else
12343 {
12344 /* EOF. Unless there is something still in the
12345 buffer from the last iteration, we are done. */
12346 saw_eof = 1;
12347 if (bytes_in_buffer == 0)
12348 break;
12349 }
12350 }
12351 }
12352 else
12353 bytes = 0;
12354
12355 bytes += bytes_in_buffer;
12356 bytes_in_buffer = 0;
12357
12358 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12359 fd.get (), buffer, bytes,
12360 offset, &remote_errno);
12361
12362 if (retcode < 0)
12363 remote_hostio_error (remote_errno);
12364 else if (retcode == 0)
12365 error (_("Remote write of %d bytes returned 0!"), bytes);
12366 else if (retcode < bytes)
12367 {
12368 /* Short write. Save the rest of the read data for the next
12369 write. */
12370 bytes_in_buffer = bytes - retcode;
12371 memmove (buffer, buffer + retcode, bytes_in_buffer);
12372 }
12373
12374 offset += retcode;
12375 }
12376
12377 if (remote_hostio_close (find_target_at (process_stratum),
12378 fd.release (), &remote_errno))
12379 remote_hostio_error (remote_errno);
12380
12381 if (from_tty)
12382 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12383 do_cleanups (back_to);
12384 }
12385
12386 void
12387 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12388 {
12389 struct cleanup *back_to;
12390 int remote_errno, bytes, io_size;
12391 gdb_byte *buffer;
12392 ULONGEST offset;
12393 struct remote_state *rs = get_remote_state ();
12394
12395 if (!rs->remote_desc)
12396 error (_("command can only be used with remote target"));
12397
12398 scoped_remote_fd fd
12399 (remote_hostio_open (find_target_at (process_stratum), NULL,
12400 remote_file, FILEIO_O_RDONLY, 0, 0,
12401 &remote_errno));
12402 if (fd.get () == -1)
12403 remote_hostio_error (remote_errno);
12404
12405 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12406 if (file == NULL)
12407 perror_with_name (local_file);
12408
12409 /* Send up to this many bytes at once. They won't all fit in the
12410 remote packet limit, so we'll transfer slightly fewer. */
12411 io_size = get_remote_packet_size ();
12412 buffer = (gdb_byte *) xmalloc (io_size);
12413 back_to = make_cleanup (xfree, buffer);
12414
12415 offset = 0;
12416 while (1)
12417 {
12418 bytes = remote_hostio_pread (find_target_at (process_stratum),
12419 fd.get (), buffer, io_size, offset,
12420 &remote_errno);
12421 if (bytes == 0)
12422 /* Success, but no bytes, means end-of-file. */
12423 break;
12424 if (bytes == -1)
12425 remote_hostio_error (remote_errno);
12426
12427 offset += bytes;
12428
12429 bytes = fwrite (buffer, 1, bytes, file.get ());
12430 if (bytes == 0)
12431 perror_with_name (local_file);
12432 }
12433
12434 if (remote_hostio_close (find_target_at (process_stratum),
12435 fd.release (), &remote_errno))
12436 remote_hostio_error (remote_errno);
12437
12438 if (from_tty)
12439 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12440 do_cleanups (back_to);
12441 }
12442
12443 void
12444 remote_file_delete (const char *remote_file, int from_tty)
12445 {
12446 int retcode, remote_errno;
12447 struct remote_state *rs = get_remote_state ();
12448
12449 if (!rs->remote_desc)
12450 error (_("command can only be used with remote target"));
12451
12452 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12453 NULL, remote_file, &remote_errno);
12454 if (retcode == -1)
12455 remote_hostio_error (remote_errno);
12456
12457 if (from_tty)
12458 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12459 }
12460
12461 static void
12462 remote_put_command (const char *args, int from_tty)
12463 {
12464 if (args == NULL)
12465 error_no_arg (_("file to put"));
12466
12467 gdb_argv argv (args);
12468 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12469 error (_("Invalid parameters to remote put"));
12470
12471 remote_file_put (argv[0], argv[1], from_tty);
12472 }
12473
12474 static void
12475 remote_get_command (const char *args, int from_tty)
12476 {
12477 if (args == NULL)
12478 error_no_arg (_("file to get"));
12479
12480 gdb_argv argv (args);
12481 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12482 error (_("Invalid parameters to remote get"));
12483
12484 remote_file_get (argv[0], argv[1], from_tty);
12485 }
12486
12487 static void
12488 remote_delete_command (const char *args, int from_tty)
12489 {
12490 if (args == NULL)
12491 error_no_arg (_("file to delete"));
12492
12493 gdb_argv argv (args);
12494 if (argv[0] == NULL || argv[1] != NULL)
12495 error (_("Invalid parameters to remote delete"));
12496
12497 remote_file_delete (argv[0], from_tty);
12498 }
12499
12500 static void
12501 remote_command (const char *args, int from_tty)
12502 {
12503 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12504 }
12505
12506 bool
12507 remote_target::can_execute_reverse ()
12508 {
12509 if (packet_support (PACKET_bs) == PACKET_ENABLE
12510 || packet_support (PACKET_bc) == PACKET_ENABLE)
12511 return true;
12512 else
12513 return false;
12514 }
12515
12516 bool
12517 remote_target::supports_non_stop ()
12518 {
12519 return true;
12520 }
12521
12522 bool
12523 remote_target::supports_disable_randomization ()
12524 {
12525 /* Only supported in extended mode. */
12526 return false;
12527 }
12528
12529 bool
12530 remote_target::supports_multi_process ()
12531 {
12532 struct remote_state *rs = get_remote_state ();
12533
12534 return remote_multi_process_p (rs);
12535 }
12536
12537 static int
12538 remote_supports_cond_tracepoints ()
12539 {
12540 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12541 }
12542
12543 bool
12544 remote_target::supports_evaluation_of_breakpoint_conditions ()
12545 {
12546 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12547 }
12548
12549 static int
12550 remote_supports_fast_tracepoints ()
12551 {
12552 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12553 }
12554
12555 static int
12556 remote_supports_static_tracepoints ()
12557 {
12558 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12559 }
12560
12561 static int
12562 remote_supports_install_in_trace ()
12563 {
12564 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12565 }
12566
12567 bool
12568 remote_target::supports_enable_disable_tracepoint ()
12569 {
12570 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12571 == PACKET_ENABLE);
12572 }
12573
12574 bool
12575 remote_target::supports_string_tracing ()
12576 {
12577 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12578 }
12579
12580 bool
12581 remote_target::can_run_breakpoint_commands ()
12582 {
12583 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12584 }
12585
12586 void
12587 remote_target::trace_init ()
12588 {
12589 struct remote_state *rs = get_remote_state ();
12590
12591 putpkt ("QTinit");
12592 remote_get_noisy_reply ();
12593 if (strcmp (rs->buf, "OK") != 0)
12594 error (_("Target does not support this command."));
12595 }
12596
12597 /* Recursive routine to walk through command list including loops, and
12598 download packets for each command. */
12599
12600 static void
12601 remote_download_command_source (int num, ULONGEST addr,
12602 struct command_line *cmds)
12603 {
12604 struct remote_state *rs = get_remote_state ();
12605 struct command_line *cmd;
12606
12607 for (cmd = cmds; cmd; cmd = cmd->next)
12608 {
12609 QUIT; /* Allow user to bail out with ^C. */
12610 strcpy (rs->buf, "QTDPsrc:");
12611 encode_source_string (num, addr, "cmd", cmd->line,
12612 rs->buf + strlen (rs->buf),
12613 rs->buf_size - strlen (rs->buf));
12614 putpkt (rs->buf);
12615 remote_get_noisy_reply ();
12616 if (strcmp (rs->buf, "OK"))
12617 warning (_("Target does not support source download."));
12618
12619 if (cmd->control_type == while_control
12620 || cmd->control_type == while_stepping_control)
12621 {
12622 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12623
12624 QUIT; /* Allow user to bail out with ^C. */
12625 strcpy (rs->buf, "QTDPsrc:");
12626 encode_source_string (num, addr, "cmd", "end",
12627 rs->buf + strlen (rs->buf),
12628 rs->buf_size - strlen (rs->buf));
12629 putpkt (rs->buf);
12630 remote_get_noisy_reply ();
12631 if (strcmp (rs->buf, "OK"))
12632 warning (_("Target does not support source download."));
12633 }
12634 }
12635 }
12636
12637 void
12638 remote_target::download_tracepoint (struct bp_location *loc)
12639 {
12640 #define BUF_SIZE 2048
12641
12642 CORE_ADDR tpaddr;
12643 char addrbuf[40];
12644 char buf[BUF_SIZE];
12645 std::vector<std::string> tdp_actions;
12646 std::vector<std::string> stepping_actions;
12647 char *pkt;
12648 struct breakpoint *b = loc->owner;
12649 struct tracepoint *t = (struct tracepoint *) b;
12650 struct remote_state *rs = get_remote_state ();
12651
12652 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12653
12654 tpaddr = loc->address;
12655 sprintf_vma (addrbuf, tpaddr);
12656 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12657 addrbuf, /* address */
12658 (b->enable_state == bp_enabled ? 'E' : 'D'),
12659 t->step_count, t->pass_count);
12660 /* Fast tracepoints are mostly handled by the target, but we can
12661 tell the target how big of an instruction block should be moved
12662 around. */
12663 if (b->type == bp_fast_tracepoint)
12664 {
12665 /* Only test for support at download time; we may not know
12666 target capabilities at definition time. */
12667 if (remote_supports_fast_tracepoints ())
12668 {
12669 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12670 NULL))
12671 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12672 gdb_insn_length (loc->gdbarch, tpaddr));
12673 else
12674 /* If it passed validation at definition but fails now,
12675 something is very wrong. */
12676 internal_error (__FILE__, __LINE__,
12677 _("Fast tracepoint not "
12678 "valid during download"));
12679 }
12680 else
12681 /* Fast tracepoints are functionally identical to regular
12682 tracepoints, so don't take lack of support as a reason to
12683 give up on the trace run. */
12684 warning (_("Target does not support fast tracepoints, "
12685 "downloading %d as regular tracepoint"), b->number);
12686 }
12687 else if (b->type == bp_static_tracepoint)
12688 {
12689 /* Only test for support at download time; we may not know
12690 target capabilities at definition time. */
12691 if (remote_supports_static_tracepoints ())
12692 {
12693 struct static_tracepoint_marker marker;
12694
12695 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12696 strcat (buf, ":S");
12697 else
12698 error (_("Static tracepoint not valid during download"));
12699 }
12700 else
12701 /* Fast tracepoints are functionally identical to regular
12702 tracepoints, so don't take lack of support as a reason
12703 to give up on the trace run. */
12704 error (_("Target does not support static tracepoints"));
12705 }
12706 /* If the tracepoint has a conditional, make it into an agent
12707 expression and append to the definition. */
12708 if (loc->cond)
12709 {
12710 /* Only test support at download time, we may not know target
12711 capabilities at definition time. */
12712 if (remote_supports_cond_tracepoints ())
12713 {
12714 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12715 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12716 aexpr->len);
12717 pkt = buf + strlen (buf);
12718 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12719 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12720 *pkt = '\0';
12721 }
12722 else
12723 warning (_("Target does not support conditional tracepoints, "
12724 "ignoring tp %d cond"), b->number);
12725 }
12726
12727 if (b->commands || *default_collect)
12728 strcat (buf, "-");
12729 putpkt (buf);
12730 remote_get_noisy_reply ();
12731 if (strcmp (rs->buf, "OK"))
12732 error (_("Target does not support tracepoints."));
12733
12734 /* do_single_steps (t); */
12735 for (auto action_it = tdp_actions.begin ();
12736 action_it != tdp_actions.end (); action_it++)
12737 {
12738 QUIT; /* Allow user to bail out with ^C. */
12739
12740 bool has_more = (action_it != tdp_actions.end ()
12741 || !stepping_actions.empty ());
12742
12743 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12744 b->number, addrbuf, /* address */
12745 action_it->c_str (),
12746 has_more ? '-' : 0);
12747 putpkt (buf);
12748 remote_get_noisy_reply ();
12749 if (strcmp (rs->buf, "OK"))
12750 error (_("Error on target while setting tracepoints."));
12751 }
12752
12753 for (auto action_it = stepping_actions.begin ();
12754 action_it != stepping_actions.end (); action_it++)
12755 {
12756 QUIT; /* Allow user to bail out with ^C. */
12757
12758 bool is_first = action_it == stepping_actions.begin ();
12759 bool has_more = action_it != stepping_actions.end ();
12760
12761 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12762 b->number, addrbuf, /* address */
12763 is_first ? "S" : "",
12764 action_it->c_str (),
12765 has_more ? "-" : "");
12766 putpkt (buf);
12767 remote_get_noisy_reply ();
12768 if (strcmp (rs->buf, "OK"))
12769 error (_("Error on target while setting tracepoints."));
12770 }
12771
12772 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12773 {
12774 if (b->location != NULL)
12775 {
12776 strcpy (buf, "QTDPsrc:");
12777 encode_source_string (b->number, loc->address, "at",
12778 event_location_to_string (b->location.get ()),
12779 buf + strlen (buf), 2048 - strlen (buf));
12780 putpkt (buf);
12781 remote_get_noisy_reply ();
12782 if (strcmp (rs->buf, "OK"))
12783 warning (_("Target does not support source download."));
12784 }
12785 if (b->cond_string)
12786 {
12787 strcpy (buf, "QTDPsrc:");
12788 encode_source_string (b->number, loc->address,
12789 "cond", b->cond_string, buf + strlen (buf),
12790 2048 - strlen (buf));
12791 putpkt (buf);
12792 remote_get_noisy_reply ();
12793 if (strcmp (rs->buf, "OK"))
12794 warning (_("Target does not support source download."));
12795 }
12796 remote_download_command_source (b->number, loc->address,
12797 breakpoint_commands (b));
12798 }
12799 }
12800
12801 bool
12802 remote_target::can_download_tracepoint ()
12803 {
12804 struct remote_state *rs = get_remote_state ();
12805 struct trace_status *ts;
12806 int status;
12807
12808 /* Don't try to install tracepoints until we've relocated our
12809 symbols, and fetched and merged the target's tracepoint list with
12810 ours. */
12811 if (rs->starting_up)
12812 return false;
12813
12814 ts = current_trace_status ();
12815 status = get_trace_status (ts);
12816
12817 if (status == -1 || !ts->running_known || !ts->running)
12818 return false;
12819
12820 /* If we are in a tracing experiment, but remote stub doesn't support
12821 installing tracepoint in trace, we have to return. */
12822 if (!remote_supports_install_in_trace ())
12823 return false;
12824
12825 return true;
12826 }
12827
12828
12829 void
12830 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12831 {
12832 struct remote_state *rs = get_remote_state ();
12833 char *p;
12834
12835 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12836 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12837 tsv.builtin);
12838 p = rs->buf + strlen (rs->buf);
12839 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12840 error (_("Trace state variable name too long for tsv definition packet"));
12841 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12842 *p++ = '\0';
12843 putpkt (rs->buf);
12844 remote_get_noisy_reply ();
12845 if (*rs->buf == '\0')
12846 error (_("Target does not support this command."));
12847 if (strcmp (rs->buf, "OK") != 0)
12848 error (_("Error on target while downloading trace state variable."));
12849 }
12850
12851 void
12852 remote_target::enable_tracepoint (struct bp_location *location)
12853 {
12854 struct remote_state *rs = get_remote_state ();
12855 char addr_buf[40];
12856
12857 sprintf_vma (addr_buf, location->address);
12858 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12859 location->owner->number, addr_buf);
12860 putpkt (rs->buf);
12861 remote_get_noisy_reply ();
12862 if (*rs->buf == '\0')
12863 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12864 if (strcmp (rs->buf, "OK") != 0)
12865 error (_("Error on target while enabling tracepoint."));
12866 }
12867
12868 void
12869 remote_target::disable_tracepoint (struct bp_location *location)
12870 {
12871 struct remote_state *rs = get_remote_state ();
12872 char addr_buf[40];
12873
12874 sprintf_vma (addr_buf, location->address);
12875 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12876 location->owner->number, addr_buf);
12877 putpkt (rs->buf);
12878 remote_get_noisy_reply ();
12879 if (*rs->buf == '\0')
12880 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12881 if (strcmp (rs->buf, "OK") != 0)
12882 error (_("Error on target while disabling tracepoint."));
12883 }
12884
12885 void
12886 remote_target::trace_set_readonly_regions ()
12887 {
12888 asection *s;
12889 bfd *abfd = NULL;
12890 bfd_size_type size;
12891 bfd_vma vma;
12892 int anysecs = 0;
12893 int offset = 0;
12894
12895 if (!exec_bfd)
12896 return; /* No information to give. */
12897
12898 struct remote_state *rs = get_remote_state ();
12899
12900 strcpy (rs->buf, "QTro");
12901 offset = strlen (rs->buf);
12902 for (s = exec_bfd->sections; s; s = s->next)
12903 {
12904 char tmp1[40], tmp2[40];
12905 int sec_length;
12906
12907 if ((s->flags & SEC_LOAD) == 0 ||
12908 /* (s->flags & SEC_CODE) == 0 || */
12909 (s->flags & SEC_READONLY) == 0)
12910 continue;
12911
12912 anysecs = 1;
12913 vma = bfd_get_section_vma (abfd, s);
12914 size = bfd_get_section_size (s);
12915 sprintf_vma (tmp1, vma);
12916 sprintf_vma (tmp2, vma + size);
12917 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12918 if (offset + sec_length + 1 > rs->buf_size)
12919 {
12920 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12921 warning (_("\
12922 Too many sections for read-only sections definition packet."));
12923 break;
12924 }
12925 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12926 tmp1, tmp2);
12927 offset += sec_length;
12928 }
12929 if (anysecs)
12930 {
12931 putpkt (rs->buf);
12932 getpkt (&rs->buf, &rs->buf_size, 0);
12933 }
12934 }
12935
12936 void
12937 remote_target::trace_start ()
12938 {
12939 struct remote_state *rs = get_remote_state ();
12940
12941 putpkt ("QTStart");
12942 remote_get_noisy_reply ();
12943 if (*rs->buf == '\0')
12944 error (_("Target does not support this command."));
12945 if (strcmp (rs->buf, "OK") != 0)
12946 error (_("Bogus reply from target: %s"), rs->buf);
12947 }
12948
12949 int
12950 remote_target::get_trace_status (struct trace_status *ts)
12951 {
12952 /* Initialize it just to avoid a GCC false warning. */
12953 char *p = NULL;
12954 /* FIXME we need to get register block size some other way. */
12955 extern int trace_regblock_size;
12956 enum packet_result result;
12957 struct remote_state *rs = get_remote_state ();
12958
12959 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12960 return -1;
12961
12962 trace_regblock_size
12963 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12964
12965 putpkt ("qTStatus");
12966
12967 TRY
12968 {
12969 p = remote_get_noisy_reply ();
12970 }
12971 CATCH (ex, RETURN_MASK_ERROR)
12972 {
12973 if (ex.error != TARGET_CLOSE_ERROR)
12974 {
12975 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12976 return -1;
12977 }
12978 throw_exception (ex);
12979 }
12980 END_CATCH
12981
12982 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12983
12984 /* If the remote target doesn't do tracing, flag it. */
12985 if (result == PACKET_UNKNOWN)
12986 return -1;
12987
12988 /* We're working with a live target. */
12989 ts->filename = NULL;
12990
12991 if (*p++ != 'T')
12992 error (_("Bogus trace status reply from target: %s"), rs->buf);
12993
12994 /* Function 'parse_trace_status' sets default value of each field of
12995 'ts' at first, so we don't have to do it here. */
12996 parse_trace_status (p, ts);
12997
12998 return ts->running;
12999 }
13000
13001 void
13002 remote_target::get_tracepoint_status (struct breakpoint *bp,
13003 struct uploaded_tp *utp)
13004 {
13005 struct remote_state *rs = get_remote_state ();
13006 char *reply;
13007 struct bp_location *loc;
13008 struct tracepoint *tp = (struct tracepoint *) bp;
13009 size_t size = get_remote_packet_size ();
13010
13011 if (tp)
13012 {
13013 tp->hit_count = 0;
13014 tp->traceframe_usage = 0;
13015 for (loc = tp->loc; loc; loc = loc->next)
13016 {
13017 /* If the tracepoint was never downloaded, don't go asking for
13018 any status. */
13019 if (tp->number_on_target == 0)
13020 continue;
13021 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13022 phex_nz (loc->address, 0));
13023 putpkt (rs->buf);
13024 reply = remote_get_noisy_reply ();
13025 if (reply && *reply)
13026 {
13027 if (*reply == 'V')
13028 parse_tracepoint_status (reply + 1, bp, utp);
13029 }
13030 }
13031 }
13032 else if (utp)
13033 {
13034 utp->hit_count = 0;
13035 utp->traceframe_usage = 0;
13036 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13037 phex_nz (utp->addr, 0));
13038 putpkt (rs->buf);
13039 reply = remote_get_noisy_reply ();
13040 if (reply && *reply)
13041 {
13042 if (*reply == 'V')
13043 parse_tracepoint_status (reply + 1, bp, utp);
13044 }
13045 }
13046 }
13047
13048 void
13049 remote_target::trace_stop ()
13050 {
13051 struct remote_state *rs = get_remote_state ();
13052
13053 putpkt ("QTStop");
13054 remote_get_noisy_reply ();
13055 if (*rs->buf == '\0')
13056 error (_("Target does not support this command."));
13057 if (strcmp (rs->buf, "OK") != 0)
13058 error (_("Bogus reply from target: %s"), rs->buf);
13059 }
13060
13061 int
13062 remote_target::trace_find (enum trace_find_type type, int num,
13063 CORE_ADDR addr1, CORE_ADDR addr2,
13064 int *tpp)
13065 {
13066 struct remote_state *rs = get_remote_state ();
13067 char *endbuf = rs->buf + get_remote_packet_size ();
13068 char *p, *reply;
13069 int target_frameno = -1, target_tracept = -1;
13070
13071 /* Lookups other than by absolute frame number depend on the current
13072 trace selected, so make sure it is correct on the remote end
13073 first. */
13074 if (type != tfind_number)
13075 set_remote_traceframe ();
13076
13077 p = rs->buf;
13078 strcpy (p, "QTFrame:");
13079 p = strchr (p, '\0');
13080 switch (type)
13081 {
13082 case tfind_number:
13083 xsnprintf (p, endbuf - p, "%x", num);
13084 break;
13085 case tfind_pc:
13086 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13087 break;
13088 case tfind_tp:
13089 xsnprintf (p, endbuf - p, "tdp:%x", num);
13090 break;
13091 case tfind_range:
13092 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13093 phex_nz (addr2, 0));
13094 break;
13095 case tfind_outside:
13096 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13097 phex_nz (addr2, 0));
13098 break;
13099 default:
13100 error (_("Unknown trace find type %d"), type);
13101 }
13102
13103 putpkt (rs->buf);
13104 reply = remote_get_noisy_reply ();
13105 if (*reply == '\0')
13106 error (_("Target does not support this command."));
13107
13108 while (reply && *reply)
13109 switch (*reply)
13110 {
13111 case 'F':
13112 p = ++reply;
13113 target_frameno = (int) strtol (p, &reply, 16);
13114 if (reply == p)
13115 error (_("Unable to parse trace frame number"));
13116 /* Don't update our remote traceframe number cache on failure
13117 to select a remote traceframe. */
13118 if (target_frameno == -1)
13119 return -1;
13120 break;
13121 case 'T':
13122 p = ++reply;
13123 target_tracept = (int) strtol (p, &reply, 16);
13124 if (reply == p)
13125 error (_("Unable to parse tracepoint number"));
13126 break;
13127 case 'O': /* "OK"? */
13128 if (reply[1] == 'K' && reply[2] == '\0')
13129 reply += 2;
13130 else
13131 error (_("Bogus reply from target: %s"), reply);
13132 break;
13133 default:
13134 error (_("Bogus reply from target: %s"), reply);
13135 }
13136 if (tpp)
13137 *tpp = target_tracept;
13138
13139 rs->remote_traceframe_number = target_frameno;
13140 return target_frameno;
13141 }
13142
13143 bool
13144 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13145 {
13146 struct remote_state *rs = get_remote_state ();
13147 char *reply;
13148 ULONGEST uval;
13149
13150 set_remote_traceframe ();
13151
13152 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13153 putpkt (rs->buf);
13154 reply = remote_get_noisy_reply ();
13155 if (reply && *reply)
13156 {
13157 if (*reply == 'V')
13158 {
13159 unpack_varlen_hex (reply + 1, &uval);
13160 *val = (LONGEST) uval;
13161 return true;
13162 }
13163 }
13164 return false;
13165 }
13166
13167 int
13168 remote_target::save_trace_data (const char *filename)
13169 {
13170 struct remote_state *rs = get_remote_state ();
13171 char *p, *reply;
13172
13173 p = rs->buf;
13174 strcpy (p, "QTSave:");
13175 p += strlen (p);
13176 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13177 error (_("Remote file name too long for trace save packet"));
13178 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13179 *p++ = '\0';
13180 putpkt (rs->buf);
13181 reply = remote_get_noisy_reply ();
13182 if (*reply == '\0')
13183 error (_("Target does not support this command."));
13184 if (strcmp (reply, "OK") != 0)
13185 error (_("Bogus reply from target: %s"), reply);
13186 return 0;
13187 }
13188
13189 /* This is basically a memory transfer, but needs to be its own packet
13190 because we don't know how the target actually organizes its trace
13191 memory, plus we want to be able to ask for as much as possible, but
13192 not be unhappy if we don't get as much as we ask for. */
13193
13194 LONGEST
13195 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13196 {
13197 struct remote_state *rs = get_remote_state ();
13198 char *reply;
13199 char *p;
13200 int rslt;
13201
13202 p = rs->buf;
13203 strcpy (p, "qTBuffer:");
13204 p += strlen (p);
13205 p += hexnumstr (p, offset);
13206 *p++ = ',';
13207 p += hexnumstr (p, len);
13208 *p++ = '\0';
13209
13210 putpkt (rs->buf);
13211 reply = remote_get_noisy_reply ();
13212 if (reply && *reply)
13213 {
13214 /* 'l' by itself means we're at the end of the buffer and
13215 there is nothing more to get. */
13216 if (*reply == 'l')
13217 return 0;
13218
13219 /* Convert the reply into binary. Limit the number of bytes to
13220 convert according to our passed-in buffer size, rather than
13221 what was returned in the packet; if the target is
13222 unexpectedly generous and gives us a bigger reply than we
13223 asked for, we don't want to crash. */
13224 rslt = hex2bin (reply, buf, len);
13225 return rslt;
13226 }
13227
13228 /* Something went wrong, flag as an error. */
13229 return -1;
13230 }
13231
13232 void
13233 remote_target::set_disconnected_tracing (int val)
13234 {
13235 struct remote_state *rs = get_remote_state ();
13236
13237 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13238 {
13239 char *reply;
13240
13241 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13242 putpkt (rs->buf);
13243 reply = remote_get_noisy_reply ();
13244 if (*reply == '\0')
13245 error (_("Target does not support this command."));
13246 if (strcmp (reply, "OK") != 0)
13247 error (_("Bogus reply from target: %s"), reply);
13248 }
13249 else if (val)
13250 warning (_("Target does not support disconnected tracing."));
13251 }
13252
13253 int
13254 remote_target::core_of_thread (ptid_t ptid)
13255 {
13256 struct thread_info *info = find_thread_ptid (ptid);
13257
13258 if (info != NULL && info->priv != NULL)
13259 return get_remote_thread_info (info)->core;
13260
13261 return -1;
13262 }
13263
13264 void
13265 remote_target::set_circular_trace_buffer (int val)
13266 {
13267 struct remote_state *rs = get_remote_state ();
13268 char *reply;
13269
13270 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13271 putpkt (rs->buf);
13272 reply = remote_get_noisy_reply ();
13273 if (*reply == '\0')
13274 error (_("Target does not support this command."));
13275 if (strcmp (reply, "OK") != 0)
13276 error (_("Bogus reply from target: %s"), reply);
13277 }
13278
13279 traceframe_info_up
13280 remote_target::traceframe_info ()
13281 {
13282 gdb::optional<gdb::char_vector> text
13283 = target_read_stralloc (target_stack, TARGET_OBJECT_TRACEFRAME_INFO,
13284 NULL);
13285 if (text)
13286 return parse_traceframe_info (text->data ());
13287
13288 return NULL;
13289 }
13290
13291 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13292 instruction on which a fast tracepoint may be placed. Returns -1
13293 if the packet is not supported, and 0 if the minimum instruction
13294 length is unknown. */
13295
13296 int
13297 remote_target::get_min_fast_tracepoint_insn_len ()
13298 {
13299 struct remote_state *rs = get_remote_state ();
13300 char *reply;
13301
13302 /* If we're not debugging a process yet, the IPA can't be
13303 loaded. */
13304 if (!target_has_execution)
13305 return 0;
13306
13307 /* Make sure the remote is pointing at the right process. */
13308 set_general_process ();
13309
13310 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13311 putpkt (rs->buf);
13312 reply = remote_get_noisy_reply ();
13313 if (*reply == '\0')
13314 return -1;
13315 else
13316 {
13317 ULONGEST min_insn_len;
13318
13319 unpack_varlen_hex (reply, &min_insn_len);
13320
13321 return (int) min_insn_len;
13322 }
13323 }
13324
13325 void
13326 remote_target::set_trace_buffer_size (LONGEST val)
13327 {
13328 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13329 {
13330 struct remote_state *rs = get_remote_state ();
13331 char *buf = rs->buf;
13332 char *endbuf = rs->buf + get_remote_packet_size ();
13333 enum packet_result result;
13334
13335 gdb_assert (val >= 0 || val == -1);
13336 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13337 /* Send -1 as literal "-1" to avoid host size dependency. */
13338 if (val < 0)
13339 {
13340 *buf++ = '-';
13341 buf += hexnumstr (buf, (ULONGEST) -val);
13342 }
13343 else
13344 buf += hexnumstr (buf, (ULONGEST) val);
13345
13346 putpkt (rs->buf);
13347 remote_get_noisy_reply ();
13348 result = packet_ok (rs->buf,
13349 &remote_protocol_packets[PACKET_QTBuffer_size]);
13350
13351 if (result != PACKET_OK)
13352 warning (_("Bogus reply from target: %s"), rs->buf);
13353 }
13354 }
13355
13356 bool
13357 remote_target::set_trace_notes (const char *user, const char *notes,
13358 const char *stop_notes)
13359 {
13360 struct remote_state *rs = get_remote_state ();
13361 char *reply;
13362 char *buf = rs->buf;
13363 char *endbuf = rs->buf + get_remote_packet_size ();
13364 int nbytes;
13365
13366 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13367 if (user)
13368 {
13369 buf += xsnprintf (buf, endbuf - buf, "user:");
13370 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13371 buf += 2 * nbytes;
13372 *buf++ = ';';
13373 }
13374 if (notes)
13375 {
13376 buf += xsnprintf (buf, endbuf - buf, "notes:");
13377 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13378 buf += 2 * nbytes;
13379 *buf++ = ';';
13380 }
13381 if (stop_notes)
13382 {
13383 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13384 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13385 buf += 2 * nbytes;
13386 *buf++ = ';';
13387 }
13388 /* Ensure the buffer is terminated. */
13389 *buf = '\0';
13390
13391 putpkt (rs->buf);
13392 reply = remote_get_noisy_reply ();
13393 if (*reply == '\0')
13394 return false;
13395
13396 if (strcmp (reply, "OK") != 0)
13397 error (_("Bogus reply from target: %s"), reply);
13398
13399 return true;
13400 }
13401
13402 bool
13403 remote_target::use_agent (bool use)
13404 {
13405 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13406 {
13407 struct remote_state *rs = get_remote_state ();
13408
13409 /* If the stub supports QAgent. */
13410 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13411 putpkt (rs->buf);
13412 getpkt (&rs->buf, &rs->buf_size, 0);
13413
13414 if (strcmp (rs->buf, "OK") == 0)
13415 {
13416 ::use_agent = use;
13417 return true;
13418 }
13419 }
13420
13421 return false;
13422 }
13423
13424 bool
13425 remote_target::can_use_agent ()
13426 {
13427 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13428 }
13429
13430 struct btrace_target_info
13431 {
13432 /* The ptid of the traced thread. */
13433 ptid_t ptid;
13434
13435 /* The obtained branch trace configuration. */
13436 struct btrace_config conf;
13437 };
13438
13439 /* Reset our idea of our target's btrace configuration. */
13440
13441 static void
13442 remote_btrace_reset (void)
13443 {
13444 struct remote_state *rs = get_remote_state ();
13445
13446 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13447 }
13448
13449 /* Synchronize the configuration with the target. */
13450
13451 static void
13452 btrace_sync_conf (const struct btrace_config *conf)
13453 {
13454 struct packet_config *packet;
13455 struct remote_state *rs;
13456 char *buf, *pos, *endbuf;
13457
13458 rs = get_remote_state ();
13459 buf = rs->buf;
13460 endbuf = buf + get_remote_packet_size ();
13461
13462 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13463 if (packet_config_support (packet) == PACKET_ENABLE
13464 && conf->bts.size != rs->btrace_config.bts.size)
13465 {
13466 pos = buf;
13467 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13468 conf->bts.size);
13469
13470 putpkt (buf);
13471 getpkt (&buf, &rs->buf_size, 0);
13472
13473 if (packet_ok (buf, packet) == PACKET_ERROR)
13474 {
13475 if (buf[0] == 'E' && buf[1] == '.')
13476 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13477 else
13478 error (_("Failed to configure the BTS buffer size."));
13479 }
13480
13481 rs->btrace_config.bts.size = conf->bts.size;
13482 }
13483
13484 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13485 if (packet_config_support (packet) == PACKET_ENABLE
13486 && conf->pt.size != rs->btrace_config.pt.size)
13487 {
13488 pos = buf;
13489 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13490 conf->pt.size);
13491
13492 putpkt (buf);
13493 getpkt (&buf, &rs->buf_size, 0);
13494
13495 if (packet_ok (buf, packet) == PACKET_ERROR)
13496 {
13497 if (buf[0] == 'E' && buf[1] == '.')
13498 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13499 else
13500 error (_("Failed to configure the trace buffer size."));
13501 }
13502
13503 rs->btrace_config.pt.size = conf->pt.size;
13504 }
13505 }
13506
13507 /* Read the current thread's btrace configuration from the target and
13508 store it into CONF. */
13509
13510 static void
13511 btrace_read_config (struct btrace_config *conf)
13512 {
13513 gdb::optional<gdb::char_vector> xml
13514 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE_CONF, "");
13515 if (xml)
13516 parse_xml_btrace_conf (conf, xml->data ());
13517 }
13518
13519 /* Maybe reopen target btrace. */
13520
13521 static void
13522 remote_btrace_maybe_reopen (void)
13523 {
13524 struct remote_state *rs = get_remote_state ();
13525 struct thread_info *tp;
13526 int btrace_target_pushed = 0;
13527 int warned = 0;
13528
13529 scoped_restore_current_thread restore_thread;
13530
13531 ALL_NON_EXITED_THREADS (tp)
13532 {
13533 set_general_thread (tp->ptid);
13534
13535 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13536 btrace_read_config (&rs->btrace_config);
13537
13538 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13539 continue;
13540
13541 #if !defined (HAVE_LIBIPT)
13542 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13543 {
13544 if (!warned)
13545 {
13546 warned = 1;
13547 warning (_("Target is recording using Intel Processor Trace "
13548 "but support was disabled at compile time."));
13549 }
13550
13551 continue;
13552 }
13553 #endif /* !defined (HAVE_LIBIPT) */
13554
13555 /* Push target, once, but before anything else happens. This way our
13556 changes to the threads will be cleaned up by unpushing the target
13557 in case btrace_read_config () throws. */
13558 if (!btrace_target_pushed)
13559 {
13560 btrace_target_pushed = 1;
13561 record_btrace_push_target ();
13562 printf_filtered (_("Target is recording using %s.\n"),
13563 btrace_format_string (rs->btrace_config.format));
13564 }
13565
13566 tp->btrace.target = XCNEW (struct btrace_target_info);
13567 tp->btrace.target->ptid = tp->ptid;
13568 tp->btrace.target->conf = rs->btrace_config;
13569 }
13570 }
13571
13572 /* Enable branch tracing. */
13573
13574 struct btrace_target_info *
13575 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13576 {
13577 struct btrace_target_info *tinfo = NULL;
13578 struct packet_config *packet = NULL;
13579 struct remote_state *rs = get_remote_state ();
13580 char *buf = rs->buf;
13581 char *endbuf = rs->buf + get_remote_packet_size ();
13582
13583 switch (conf->format)
13584 {
13585 case BTRACE_FORMAT_BTS:
13586 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13587 break;
13588
13589 case BTRACE_FORMAT_PT:
13590 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13591 break;
13592 }
13593
13594 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13595 error (_("Target does not support branch tracing."));
13596
13597 btrace_sync_conf (conf);
13598
13599 set_general_thread (ptid);
13600
13601 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13602 putpkt (rs->buf);
13603 getpkt (&rs->buf, &rs->buf_size, 0);
13604
13605 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13606 {
13607 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13608 error (_("Could not enable branch tracing for %s: %s"),
13609 target_pid_to_str (ptid), rs->buf + 2);
13610 else
13611 error (_("Could not enable branch tracing for %s."),
13612 target_pid_to_str (ptid));
13613 }
13614
13615 tinfo = XCNEW (struct btrace_target_info);
13616 tinfo->ptid = ptid;
13617
13618 /* If we fail to read the configuration, we lose some information, but the
13619 tracing itself is not impacted. */
13620 TRY
13621 {
13622 btrace_read_config (&tinfo->conf);
13623 }
13624 CATCH (err, RETURN_MASK_ERROR)
13625 {
13626 if (err.message != NULL)
13627 warning ("%s", err.message);
13628 }
13629 END_CATCH
13630
13631 return tinfo;
13632 }
13633
13634 /* Disable branch tracing. */
13635
13636 void
13637 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13638 {
13639 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13640 struct remote_state *rs = get_remote_state ();
13641 char *buf = rs->buf;
13642 char *endbuf = rs->buf + get_remote_packet_size ();
13643
13644 if (packet_config_support (packet) != PACKET_ENABLE)
13645 error (_("Target does not support branch tracing."));
13646
13647 set_general_thread (tinfo->ptid);
13648
13649 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13650 putpkt (rs->buf);
13651 getpkt (&rs->buf, &rs->buf_size, 0);
13652
13653 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13654 {
13655 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13656 error (_("Could not disable branch tracing for %s: %s"),
13657 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13658 else
13659 error (_("Could not disable branch tracing for %s."),
13660 target_pid_to_str (tinfo->ptid));
13661 }
13662
13663 xfree (tinfo);
13664 }
13665
13666 /* Teardown branch tracing. */
13667
13668 void
13669 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13670 {
13671 /* We must not talk to the target during teardown. */
13672 xfree (tinfo);
13673 }
13674
13675 /* Read the branch trace. */
13676
13677 enum btrace_error
13678 remote_target::read_btrace (struct btrace_data *btrace,
13679 struct btrace_target_info *tinfo,
13680 enum btrace_read_type type)
13681 {
13682 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13683 const char *annex;
13684
13685 if (packet_config_support (packet) != PACKET_ENABLE)
13686 error (_("Target does not support branch tracing."));
13687
13688 #if !defined(HAVE_LIBEXPAT)
13689 error (_("Cannot process branch tracing result. XML parsing not supported."));
13690 #endif
13691
13692 switch (type)
13693 {
13694 case BTRACE_READ_ALL:
13695 annex = "all";
13696 break;
13697 case BTRACE_READ_NEW:
13698 annex = "new";
13699 break;
13700 case BTRACE_READ_DELTA:
13701 annex = "delta";
13702 break;
13703 default:
13704 internal_error (__FILE__, __LINE__,
13705 _("Bad branch tracing read type: %u."),
13706 (unsigned int) type);
13707 }
13708
13709 gdb::optional<gdb::char_vector> xml
13710 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE, annex);
13711 if (!xml)
13712 return BTRACE_ERR_UNKNOWN;
13713
13714 parse_xml_btrace (btrace, xml->data ());
13715
13716 return BTRACE_ERR_NONE;
13717 }
13718
13719 const struct btrace_config *
13720 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13721 {
13722 return &tinfo->conf;
13723 }
13724
13725 bool
13726 remote_target::augmented_libraries_svr4_read ()
13727 {
13728 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13729 == PACKET_ENABLE);
13730 }
13731
13732 /* Implementation of to_load. */
13733
13734 void
13735 remote_target::load (const char *name, int from_tty)
13736 {
13737 generic_load (name, from_tty);
13738 }
13739
13740 /* Accepts an integer PID; returns a string representing a file that
13741 can be opened on the remote side to get the symbols for the child
13742 process. Returns NULL if the operation is not supported. */
13743
13744 char *
13745 remote_target::pid_to_exec_file (int pid)
13746 {
13747 static gdb::optional<gdb::char_vector> filename;
13748 struct inferior *inf;
13749 char *annex = NULL;
13750
13751 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13752 return NULL;
13753
13754 inf = find_inferior_pid (pid);
13755 if (inf == NULL)
13756 internal_error (__FILE__, __LINE__,
13757 _("not currently attached to process %d"), pid);
13758
13759 if (!inf->fake_pid_p)
13760 {
13761 const int annex_size = 9;
13762
13763 annex = (char *) alloca (annex_size);
13764 xsnprintf (annex, annex_size, "%x", pid);
13765 }
13766
13767 filename = target_read_stralloc (target_stack,
13768 TARGET_OBJECT_EXEC_FILE, annex);
13769
13770 return filename ? filename->data () : nullptr;
13771 }
13772
13773 /* Implement the to_can_do_single_step target_ops method. */
13774
13775 int
13776 remote_target::can_do_single_step ()
13777 {
13778 /* We can only tell whether target supports single step or not by
13779 supported s and S vCont actions if the stub supports vContSupported
13780 feature. If the stub doesn't support vContSupported feature,
13781 we have conservatively to think target doesn't supports single
13782 step. */
13783 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13784 {
13785 struct remote_state *rs = get_remote_state ();
13786
13787 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13788 remote_vcont_probe (rs);
13789
13790 return rs->supports_vCont.s && rs->supports_vCont.S;
13791 }
13792 else
13793 return 0;
13794 }
13795
13796 /* Implementation of the to_execution_direction method for the remote
13797 target. */
13798
13799 enum exec_direction_kind
13800 remote_target::execution_direction ()
13801 {
13802 struct remote_state *rs = get_remote_state ();
13803
13804 return rs->last_resume_exec_dir;
13805 }
13806
13807 /* Return pointer to the thread_info struct which corresponds to
13808 THREAD_HANDLE (having length HANDLE_LEN). */
13809
13810 thread_info *
13811 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13812 int handle_len,
13813 inferior *inf)
13814 {
13815 struct thread_info *tp;
13816
13817 ALL_NON_EXITED_THREADS (tp)
13818 {
13819 remote_thread_info *priv = get_remote_thread_info (tp);
13820
13821 if (tp->inf == inf && priv != NULL)
13822 {
13823 if (handle_len != priv->thread_handle.size ())
13824 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13825 handle_len, priv->thread_handle.size ());
13826 if (memcmp (thread_handle, priv->thread_handle.data (),
13827 handle_len) == 0)
13828 return tp;
13829 }
13830 }
13831
13832 return NULL;
13833 }
13834
13835 bool
13836 remote_target::can_async_p ()
13837 {
13838 struct remote_state *rs = get_remote_state ();
13839
13840 /* We don't go async if the user has explicitly prevented it with the
13841 "maint set target-async" command. */
13842 if (!target_async_permitted)
13843 return false;
13844
13845 /* We're async whenever the serial device is. */
13846 return serial_can_async_p (rs->remote_desc);
13847 }
13848
13849 bool
13850 remote_target::is_async_p ()
13851 {
13852 struct remote_state *rs = get_remote_state ();
13853
13854 if (!target_async_permitted)
13855 /* We only enable async when the user specifically asks for it. */
13856 return false;
13857
13858 /* We're async whenever the serial device is. */
13859 return serial_is_async_p (rs->remote_desc);
13860 }
13861
13862 /* Pass the SERIAL event on and up to the client. One day this code
13863 will be able to delay notifying the client of an event until the
13864 point where an entire packet has been received. */
13865
13866 static serial_event_ftype remote_async_serial_handler;
13867
13868 static void
13869 remote_async_serial_handler (struct serial *scb, void *context)
13870 {
13871 /* Don't propogate error information up to the client. Instead let
13872 the client find out about the error by querying the target. */
13873 inferior_event_handler (INF_REG_EVENT, NULL);
13874 }
13875
13876 static void
13877 remote_async_inferior_event_handler (gdb_client_data data)
13878 {
13879 inferior_event_handler (INF_REG_EVENT, NULL);
13880 }
13881
13882 void
13883 remote_target::async (int enable)
13884 {
13885 struct remote_state *rs = get_remote_state ();
13886
13887 if (enable)
13888 {
13889 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13890
13891 /* If there are pending events in the stop reply queue tell the
13892 event loop to process them. */
13893 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13894 mark_async_event_handler (remote_async_inferior_event_token);
13895 /* For simplicity, below we clear the pending events token
13896 without remembering whether it is marked, so here we always
13897 mark it. If there's actually no pending notification to
13898 process, this ends up being a no-op (other than a spurious
13899 event-loop wakeup). */
13900 if (target_is_non_stop_p ())
13901 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13902 }
13903 else
13904 {
13905 serial_async (rs->remote_desc, NULL, NULL);
13906 /* If the core is disabling async, it doesn't want to be
13907 disturbed with target events. Clear all async event sources
13908 too. */
13909 clear_async_event_handler (remote_async_inferior_event_token);
13910 if (target_is_non_stop_p ())
13911 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13912 }
13913 }
13914
13915 /* Implementation of the to_thread_events method. */
13916
13917 void
13918 remote_target::thread_events (int enable)
13919 {
13920 struct remote_state *rs = get_remote_state ();
13921 size_t size = get_remote_packet_size ();
13922
13923 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13924 return;
13925
13926 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13927 putpkt (rs->buf);
13928 getpkt (&rs->buf, &rs->buf_size, 0);
13929
13930 switch (packet_ok (rs->buf,
13931 &remote_protocol_packets[PACKET_QThreadEvents]))
13932 {
13933 case PACKET_OK:
13934 if (strcmp (rs->buf, "OK") != 0)
13935 error (_("Remote refused setting thread events: %s"), rs->buf);
13936 break;
13937 case PACKET_ERROR:
13938 warning (_("Remote failure reply: %s"), rs->buf);
13939 break;
13940 case PACKET_UNKNOWN:
13941 break;
13942 }
13943 }
13944
13945 static void
13946 set_remote_cmd (const char *args, int from_tty)
13947 {
13948 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13949 }
13950
13951 static void
13952 show_remote_cmd (const char *args, int from_tty)
13953 {
13954 /* We can't just use cmd_show_list here, because we want to skip
13955 the redundant "show remote Z-packet" and the legacy aliases. */
13956 struct cmd_list_element *list = remote_show_cmdlist;
13957 struct ui_out *uiout = current_uiout;
13958
13959 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13960 for (; list != NULL; list = list->next)
13961 if (strcmp (list->name, "Z-packet") == 0)
13962 continue;
13963 else if (list->type == not_set_cmd)
13964 /* Alias commands are exactly like the original, except they
13965 don't have the normal type. */
13966 continue;
13967 else
13968 {
13969 ui_out_emit_tuple option_emitter (uiout, "option");
13970
13971 uiout->field_string ("name", list->name);
13972 uiout->text (": ");
13973 if (list->type == show_cmd)
13974 do_show_command (NULL, from_tty, list);
13975 else
13976 cmd_func (list, NULL, from_tty);
13977 }
13978 }
13979
13980
13981 /* Function to be called whenever a new objfile (shlib) is detected. */
13982 static void
13983 remote_new_objfile (struct objfile *objfile)
13984 {
13985 struct remote_state *rs = get_remote_state ();
13986
13987 if (rs->remote_desc != 0) /* Have a remote connection. */
13988 remote_check_symbols ();
13989 }
13990
13991 /* Pull all the tracepoints defined on the target and create local
13992 data structures representing them. We don't want to create real
13993 tracepoints yet, we don't want to mess up the user's existing
13994 collection. */
13995
13996 int
13997 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
13998 {
13999 struct remote_state *rs = get_remote_state ();
14000 char *p;
14001
14002 /* Ask for a first packet of tracepoint definition. */
14003 putpkt ("qTfP");
14004 getpkt (&rs->buf, &rs->buf_size, 0);
14005 p = rs->buf;
14006 while (*p && *p != 'l')
14007 {
14008 parse_tracepoint_definition (p, utpp);
14009 /* Ask for another packet of tracepoint definition. */
14010 putpkt ("qTsP");
14011 getpkt (&rs->buf, &rs->buf_size, 0);
14012 p = rs->buf;
14013 }
14014 return 0;
14015 }
14016
14017 int
14018 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14019 {
14020 struct remote_state *rs = get_remote_state ();
14021 char *p;
14022
14023 /* Ask for a first packet of variable definition. */
14024 putpkt ("qTfV");
14025 getpkt (&rs->buf, &rs->buf_size, 0);
14026 p = rs->buf;
14027 while (*p && *p != 'l')
14028 {
14029 parse_tsv_definition (p, utsvp);
14030 /* Ask for another packet of variable definition. */
14031 putpkt ("qTsV");
14032 getpkt (&rs->buf, &rs->buf_size, 0);
14033 p = rs->buf;
14034 }
14035 return 0;
14036 }
14037
14038 /* The "set/show range-stepping" show hook. */
14039
14040 static void
14041 show_range_stepping (struct ui_file *file, int from_tty,
14042 struct cmd_list_element *c,
14043 const char *value)
14044 {
14045 fprintf_filtered (file,
14046 _("Debugger's willingness to use range stepping "
14047 "is %s.\n"), value);
14048 }
14049
14050 /* The "set/show range-stepping" set hook. */
14051
14052 static void
14053 set_range_stepping (const char *ignore_args, int from_tty,
14054 struct cmd_list_element *c)
14055 {
14056 struct remote_state *rs = get_remote_state ();
14057
14058 /* Whene enabling, check whether range stepping is actually
14059 supported by the target, and warn if not. */
14060 if (use_range_stepping)
14061 {
14062 if (rs->remote_desc != NULL)
14063 {
14064 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14065 remote_vcont_probe (rs);
14066
14067 if (packet_support (PACKET_vCont) == PACKET_ENABLE
14068 && rs->supports_vCont.r)
14069 return;
14070 }
14071
14072 warning (_("Range stepping is not supported by the current target"));
14073 }
14074 }
14075
14076 void
14077 _initialize_remote (void)
14078 {
14079 struct cmd_list_element *cmd;
14080 const char *cmd_name;
14081
14082 /* architecture specific data */
14083 remote_g_packet_data_handle =
14084 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14085
14086 remote_pspace_data
14087 = register_program_space_data_with_cleanup (NULL,
14088 remote_pspace_data_cleanup);
14089
14090 /* Initialize the per-target state. At the moment there is only one
14091 of these, not one per target. Only one target is active at a
14092 time. */
14093 remote_state = new struct remote_state ();
14094
14095 add_target (remote_target_info, remote_target::open);
14096 add_target (extended_remote_target_info, extended_remote_target::open);
14097
14098 /* Hook into new objfile notification. */
14099 gdb::observers::new_objfile.attach (remote_new_objfile);
14100
14101 #if 0
14102 init_remote_threadtests ();
14103 #endif
14104
14105 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14106 /* set/show remote ... */
14107
14108 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14109 Remote protocol specific variables\n\
14110 Configure various remote-protocol specific variables such as\n\
14111 the packets being used"),
14112 &remote_set_cmdlist, "set remote ",
14113 0 /* allow-unknown */, &setlist);
14114 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14115 Remote protocol specific variables\n\
14116 Configure various remote-protocol specific variables such as\n\
14117 the packets being used"),
14118 &remote_show_cmdlist, "show remote ",
14119 0 /* allow-unknown */, &showlist);
14120
14121 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14122 Compare section data on target to the exec file.\n\
14123 Argument is a single section name (default: all loaded sections).\n\
14124 To compare only read-only loaded sections, specify the -r option."),
14125 &cmdlist);
14126
14127 add_cmd ("packet", class_maintenance, packet_command, _("\
14128 Send an arbitrary packet to a remote target.\n\
14129 maintenance packet TEXT\n\
14130 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14131 this command sends the string TEXT to the inferior, and displays the\n\
14132 response packet. GDB supplies the initial `$' character, and the\n\
14133 terminating `#' character and checksum."),
14134 &maintenancelist);
14135
14136 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14137 Set whether to send break if interrupted."), _("\
14138 Show whether to send break if interrupted."), _("\
14139 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14140 set_remotebreak, show_remotebreak,
14141 &setlist, &showlist);
14142 cmd_name = "remotebreak";
14143 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14144 deprecate_cmd (cmd, "set remote interrupt-sequence");
14145 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14146 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14147 deprecate_cmd (cmd, "show remote interrupt-sequence");
14148
14149 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14150 interrupt_sequence_modes, &interrupt_sequence_mode,
14151 _("\
14152 Set interrupt sequence to remote target."), _("\
14153 Show interrupt sequence to remote target."), _("\
14154 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14155 NULL, show_interrupt_sequence,
14156 &remote_set_cmdlist,
14157 &remote_show_cmdlist);
14158
14159 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14160 &interrupt_on_connect, _("\
14161 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14162 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14163 If set, interrupt sequence is sent to remote target."),
14164 NULL, NULL,
14165 &remote_set_cmdlist, &remote_show_cmdlist);
14166
14167 /* Install commands for configuring memory read/write packets. */
14168
14169 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14170 Set the maximum number of bytes per memory write packet (deprecated)."),
14171 &setlist);
14172 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14173 Show the maximum number of bytes per memory write packet (deprecated)."),
14174 &showlist);
14175 add_cmd ("memory-write-packet-size", no_class,
14176 set_memory_write_packet_size, _("\
14177 Set the maximum number of bytes per memory-write packet.\n\
14178 Specify the number of bytes in a packet or 0 (zero) for the\n\
14179 default packet size. The actual limit is further reduced\n\
14180 dependent on the target. Specify ``fixed'' to disable the\n\
14181 further restriction and ``limit'' to enable that restriction."),
14182 &remote_set_cmdlist);
14183 add_cmd ("memory-read-packet-size", no_class,
14184 set_memory_read_packet_size, _("\
14185 Set the maximum number of bytes per memory-read packet.\n\
14186 Specify the number of bytes in a packet or 0 (zero) for the\n\
14187 default packet size. The actual limit is further reduced\n\
14188 dependent on the target. Specify ``fixed'' to disable the\n\
14189 further restriction and ``limit'' to enable that restriction."),
14190 &remote_set_cmdlist);
14191 add_cmd ("memory-write-packet-size", no_class,
14192 show_memory_write_packet_size,
14193 _("Show the maximum number of bytes per memory-write packet."),
14194 &remote_show_cmdlist);
14195 add_cmd ("memory-read-packet-size", no_class,
14196 show_memory_read_packet_size,
14197 _("Show the maximum number of bytes per memory-read packet."),
14198 &remote_show_cmdlist);
14199
14200 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14201 &remote_hw_watchpoint_limit, _("\
14202 Set the maximum number of target hardware watchpoints."), _("\
14203 Show the maximum number of target hardware watchpoints."), _("\
14204 Specify a negative limit for unlimited."),
14205 NULL, NULL, /* FIXME: i18n: The maximum
14206 number of target hardware
14207 watchpoints is %s. */
14208 &remote_set_cmdlist, &remote_show_cmdlist);
14209 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14210 &remote_hw_watchpoint_length_limit, _("\
14211 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14212 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14213 Specify a negative limit for unlimited."),
14214 NULL, NULL, /* FIXME: i18n: The maximum
14215 length (in bytes) of a target
14216 hardware watchpoint is %s. */
14217 &remote_set_cmdlist, &remote_show_cmdlist);
14218 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14219 &remote_hw_breakpoint_limit, _("\
14220 Set the maximum number of target hardware breakpoints."), _("\
14221 Show the maximum number of target hardware breakpoints."), _("\
14222 Specify a negative limit for unlimited."),
14223 NULL, NULL, /* FIXME: i18n: The maximum
14224 number of target hardware
14225 breakpoints is %s. */
14226 &remote_set_cmdlist, &remote_show_cmdlist);
14227
14228 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14229 &remote_address_size, _("\
14230 Set the maximum size of the address (in bits) in a memory packet."), _("\
14231 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14232 NULL,
14233 NULL, /* FIXME: i18n: */
14234 &setlist, &showlist);
14235
14236 init_all_packet_configs ();
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14239 "X", "binary-download", 1);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14242 "vCont", "verbose-resume", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14245 "QPassSignals", "pass-signals", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14248 "QCatchSyscalls", "catch-syscalls", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14251 "QProgramSignals", "program-signals", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14254 "QSetWorkingDir", "set-working-dir", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14257 "QStartupWithShell", "startup-with-shell", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets
14260 [PACKET_QEnvironmentHexEncoded],
14261 "QEnvironmentHexEncoded", "environment-hex-encoded",
14262 0);
14263
14264 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14265 "QEnvironmentReset", "environment-reset",
14266 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14269 "QEnvironmentUnset", "environment-unset",
14270 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14273 "qSymbol", "symbol-lookup", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14276 "P", "set-register", 1);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14279 "p", "fetch-register", 1);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14282 "Z0", "software-breakpoint", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14285 "Z1", "hardware-breakpoint", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14288 "Z2", "write-watchpoint", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14291 "Z3", "read-watchpoint", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14294 "Z4", "access-watchpoint", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14297 "qXfer:auxv:read", "read-aux-vector", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14300 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14303 "qXfer:features:read", "target-features", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14306 "qXfer:libraries:read", "library-info", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14309 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14310
14311 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14312 "qXfer:memory-map:read", "memory-map", 0);
14313
14314 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14315 "qXfer:spu:read", "read-spu-object", 0);
14316
14317 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14318 "qXfer:spu:write", "write-spu-object", 0);
14319
14320 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14321 "qXfer:osdata:read", "osdata", 0);
14322
14323 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14324 "qXfer:threads:read", "threads", 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14327 "qXfer:siginfo:read", "read-siginfo-object", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14330 "qXfer:siginfo:write", "write-siginfo-object", 0);
14331
14332 add_packet_config_cmd
14333 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14334 "qXfer:traceframe-info:read", "traceframe-info", 0);
14335
14336 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14337 "qXfer:uib:read", "unwind-info-block", 0);
14338
14339 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14340 "qGetTLSAddr", "get-thread-local-storage-address",
14341 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14344 "qGetTIBAddr", "get-thread-information-block-address",
14345 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14348 "bc", "reverse-continue", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14351 "bs", "reverse-step", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14354 "qSupported", "supported-packets", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14357 "qSearch:memory", "search-memory", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14360 "qTStatus", "trace-status", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14363 "vFile:setfs", "hostio-setfs", 0);
14364
14365 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14366 "vFile:open", "hostio-open", 0);
14367
14368 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14369 "vFile:pread", "hostio-pread", 0);
14370
14371 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14372 "vFile:pwrite", "hostio-pwrite", 0);
14373
14374 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14375 "vFile:close", "hostio-close", 0);
14376
14377 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14378 "vFile:unlink", "hostio-unlink", 0);
14379
14380 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14381 "vFile:readlink", "hostio-readlink", 0);
14382
14383 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14384 "vFile:fstat", "hostio-fstat", 0);
14385
14386 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14387 "vAttach", "attach", 0);
14388
14389 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14390 "vRun", "run", 0);
14391
14392 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14393 "QStartNoAckMode", "noack", 0);
14394
14395 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14396 "vKill", "kill", 0);
14397
14398 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14399 "qAttached", "query-attached", 0);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14402 "ConditionalTracepoints",
14403 "conditional-tracepoints", 0);
14404
14405 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14406 "ConditionalBreakpoints",
14407 "conditional-breakpoints", 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14410 "BreakpointCommands",
14411 "breakpoint-commands", 0);
14412
14413 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14414 "FastTracepoints", "fast-tracepoints", 0);
14415
14416 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14417 "TracepointSource", "TracepointSource", 0);
14418
14419 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14420 "QAllow", "allow", 0);
14421
14422 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14423 "StaticTracepoints", "static-tracepoints", 0);
14424
14425 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14426 "InstallInTrace", "install-in-trace", 0);
14427
14428 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14429 "qXfer:statictrace:read", "read-sdata-object", 0);
14430
14431 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14432 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14435 "QDisableRandomization", "disable-randomization", 0);
14436
14437 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14438 "QAgent", "agent", 0);
14439
14440 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14441 "QTBuffer:size", "trace-buffer-size", 0);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14444 "Qbtrace:off", "disable-btrace", 0);
14445
14446 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14447 "Qbtrace:bts", "enable-btrace-bts", 0);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14450 "Qbtrace:pt", "enable-btrace-pt", 0);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14453 "qXfer:btrace", "read-btrace", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14456 "qXfer:btrace-conf", "read-btrace-conf", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14459 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14462 "multiprocess-feature", "multiprocess-feature", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14465 "swbreak-feature", "swbreak-feature", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14468 "hwbreak-feature", "hwbreak-feature", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14471 "fork-event-feature", "fork-event-feature", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14474 "vfork-event-feature", "vfork-event-feature", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14477 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14480 "vContSupported", "verbose-resume-supported", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14483 "exec-event-feature", "exec-event-feature", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14486 "vCtrlC", "ctrl-c", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14489 "QThreadEvents", "thread-events", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14492 "N stop reply", "no-resumed-stop-reply", 0);
14493
14494 /* Assert that we've registered "set remote foo-packet" commands
14495 for all packet configs. */
14496 {
14497 int i;
14498
14499 for (i = 0; i < PACKET_MAX; i++)
14500 {
14501 /* Ideally all configs would have a command associated. Some
14502 still don't though. */
14503 int excepted;
14504
14505 switch (i)
14506 {
14507 case PACKET_QNonStop:
14508 case PACKET_EnableDisableTracepoints_feature:
14509 case PACKET_tracenz_feature:
14510 case PACKET_DisconnectedTracing_feature:
14511 case PACKET_augmented_libraries_svr4_read_feature:
14512 case PACKET_qCRC:
14513 /* Additions to this list need to be well justified:
14514 pre-existing packets are OK; new packets are not. */
14515 excepted = 1;
14516 break;
14517 default:
14518 excepted = 0;
14519 break;
14520 }
14521
14522 /* This catches both forgetting to add a config command, and
14523 forgetting to remove a packet from the exception list. */
14524 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14525 }
14526 }
14527
14528 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14529 Z sub-packet has its own set and show commands, but users may
14530 have sets to this variable in their .gdbinit files (or in their
14531 documentation). */
14532 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14533 &remote_Z_packet_detect, _("\
14534 Set use of remote protocol `Z' packets"), _("\
14535 Show use of remote protocol `Z' packets "), _("\
14536 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14537 packets."),
14538 set_remote_protocol_Z_packet_cmd,
14539 show_remote_protocol_Z_packet_cmd,
14540 /* FIXME: i18n: Use of remote protocol
14541 `Z' packets is %s. */
14542 &remote_set_cmdlist, &remote_show_cmdlist);
14543
14544 add_prefix_cmd ("remote", class_files, remote_command, _("\
14545 Manipulate files on the remote system\n\
14546 Transfer files to and from the remote target system."),
14547 &remote_cmdlist, "remote ",
14548 0 /* allow-unknown */, &cmdlist);
14549
14550 add_cmd ("put", class_files, remote_put_command,
14551 _("Copy a local file to the remote system."),
14552 &remote_cmdlist);
14553
14554 add_cmd ("get", class_files, remote_get_command,
14555 _("Copy a remote file to the local system."),
14556 &remote_cmdlist);
14557
14558 add_cmd ("delete", class_files, remote_delete_command,
14559 _("Delete a remote file."),
14560 &remote_cmdlist);
14561
14562 add_setshow_string_noescape_cmd ("exec-file", class_files,
14563 &remote_exec_file_var, _("\
14564 Set the remote pathname for \"run\""), _("\
14565 Show the remote pathname for \"run\""), NULL,
14566 set_remote_exec_file,
14567 show_remote_exec_file,
14568 &remote_set_cmdlist,
14569 &remote_show_cmdlist);
14570
14571 add_setshow_boolean_cmd ("range-stepping", class_run,
14572 &use_range_stepping, _("\
14573 Enable or disable range stepping."), _("\
14574 Show whether target-assisted range stepping is enabled."), _("\
14575 If on, and the target supports it, when stepping a source line, GDB\n\
14576 tells the target to step the corresponding range of addresses itself instead\n\
14577 of issuing multiple single-steps. This speeds up source level\n\
14578 stepping. If off, GDB always issues single-steps, even if range\n\
14579 stepping is supported by the target. The default is on."),
14580 set_range_stepping,
14581 show_range_stepping,
14582 &setlist,
14583 &showlist);
14584
14585 /* Eventually initialize fileio. See fileio.c */
14586 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14587
14588 /* Take advantage of the fact that the TID field is not used, to tag
14589 special ptids with it set to != 0. */
14590 magic_null_ptid = ptid_build (42000, -1, 1);
14591 not_sent_ptid = ptid_build (42000, -2, 1);
14592 any_thread_ptid = ptid_build (42000, 0, 1);
14593 }
This page took 0.334448 seconds and 5 git commands to generate.