Simplify tui_update_source_windows_with_line
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "bfd.h"
27 #include "gdb-stabs.h"
28 #include "regcache.h"
29 #include "arch-utils.h"
30 #include "inf-child.h"
31 #include "inf-ptrace.h"
32 #include "ppc-tdep.h"
33 #include "rs6000-tdep.h"
34 #include "rs6000-aix-tdep.h"
35 #include "exec.h"
36 #include "observable.h"
37 #include "xcoffread.h"
38
39 #include <sys/ptrace.h>
40 #include <sys/reg.h>
41
42 #include <sys/dir.h>
43 #include <sys/user.h>
44 #include <signal.h>
45 #include <sys/ioctl.h>
46 #include <fcntl.h>
47
48 #include <a.out.h>
49 #include <sys/file.h>
50 #include <sys/stat.h>
51 #include "gdb_bfd.h"
52 #include <sys/core.h>
53 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
54 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
55 #include <sys/ldr.h>
56 #include <sys/systemcfg.h>
57
58 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
59 debugging 32-bit and 64-bit processes. Define a typedef and macros for
60 accessing fields in the appropriate structures. */
61
62 /* In 32-bit compilation mode (which is the only mode from which ptrace()
63 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
64
65 #if defined (__ld_info32) || defined (__ld_info64)
66 # define ARCH3264
67 #endif
68
69 /* Return whether the current architecture is 64-bit. */
70
71 #ifndef ARCH3264
72 # define ARCH64() 0
73 #else
74 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
75 #endif
76
77 class rs6000_nat_target final : public inf_ptrace_target
78 {
79 public:
80 void fetch_registers (struct regcache *, int) override;
81 void store_registers (struct regcache *, int) override;
82
83 enum target_xfer_status xfer_partial (enum target_object object,
84 const char *annex,
85 gdb_byte *readbuf,
86 const gdb_byte *writebuf,
87 ULONGEST offset, ULONGEST len,
88 ULONGEST *xfered_len) override;
89
90 void create_inferior (const char *, const std::string &,
91 char **, int) override;
92
93 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
94
95 private:
96 enum target_xfer_status
97 xfer_shared_libraries (enum target_object object,
98 const char *annex, gdb_byte *readbuf,
99 const gdb_byte *writebuf,
100 ULONGEST offset, ULONGEST len,
101 ULONGEST *xfered_len);
102 };
103
104 static rs6000_nat_target the_rs6000_nat_target;
105
106 /* Given REGNO, a gdb register number, return the corresponding
107 number suitable for use as a ptrace() parameter. Return -1 if
108 there's no suitable mapping. Also, set the int pointed to by
109 ISFLOAT to indicate whether REGNO is a floating point register. */
110
111 static int
112 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
113 {
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
115
116 *isfloat = 0;
117 if (tdep->ppc_gp0_regnum <= regno
118 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
119 return regno;
120 else if (tdep->ppc_fp0_regnum >= 0
121 && tdep->ppc_fp0_regnum <= regno
122 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
123 {
124 *isfloat = 1;
125 return regno - tdep->ppc_fp0_regnum + FPR0;
126 }
127 else if (regno == gdbarch_pc_regnum (gdbarch))
128 return IAR;
129 else if (regno == tdep->ppc_ps_regnum)
130 return MSR;
131 else if (regno == tdep->ppc_cr_regnum)
132 return CR;
133 else if (regno == tdep->ppc_lr_regnum)
134 return LR;
135 else if (regno == tdep->ppc_ctr_regnum)
136 return CTR;
137 else if (regno == tdep->ppc_xer_regnum)
138 return XER;
139 else if (tdep->ppc_fpscr_regnum >= 0
140 && regno == tdep->ppc_fpscr_regnum)
141 return FPSCR;
142 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
143 return MQ;
144 else
145 return -1;
146 }
147
148 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
149
150 static int
151 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
152 {
153 #ifdef HAVE_PTRACE64
154 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
155 #else
156 int ret = ptrace (req, id, (int *)addr, data, buf);
157 #endif
158 #if 0
159 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
160 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
161 #endif
162 return ret;
163 }
164
165 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
166
167 static int
168 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
169 {
170 #ifdef ARCH3264
171 # ifdef HAVE_PTRACE64
172 int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
173 # else
174 int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
175 # endif
176 #else
177 int ret = 0;
178 #endif
179 #if 0
180 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
181 req, id, hex_string (addr), data, (unsigned int)buf, ret);
182 #endif
183 return ret;
184 }
185
186 /* Fetch register REGNO from the inferior. */
187
188 static void
189 fetch_register (struct regcache *regcache, int regno)
190 {
191 struct gdbarch *gdbarch = regcache->arch ();
192 int addr[PPC_MAX_REGISTER_SIZE];
193 int nr, isfloat;
194 pid_t pid = regcache->ptid ().pid ();
195
196 /* Retrieved values may be -1, so infer errors from errno. */
197 errno = 0;
198
199 nr = regmap (gdbarch, regno, &isfloat);
200
201 /* Floating-point registers. */
202 if (isfloat)
203 rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0);
204
205 /* Bogus register number. */
206 else if (nr < 0)
207 {
208 if (regno >= gdbarch_num_regs (gdbarch))
209 fprintf_unfiltered (gdb_stderr,
210 "gdb error: register no %d not implemented.\n",
211 regno);
212 return;
213 }
214
215 /* Fixed-point registers. */
216 else
217 {
218 if (!ARCH64 ())
219 *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0);
220 else
221 {
222 /* PT_READ_GPR requires the buffer parameter to point to long long,
223 even if the register is really only 32 bits. */
224 long long buf;
225 rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf);
226 if (register_size (gdbarch, regno) == 8)
227 memcpy (addr, &buf, 8);
228 else
229 *addr = buf;
230 }
231 }
232
233 if (!errno)
234 regcache->raw_supply (regno, (char *) addr);
235 else
236 {
237 #if 0
238 /* FIXME: this happens 3 times at the start of each 64-bit program. */
239 perror (_("ptrace read"));
240 #endif
241 errno = 0;
242 }
243 }
244
245 /* Store register REGNO back into the inferior. */
246
247 static void
248 store_register (struct regcache *regcache, int regno)
249 {
250 struct gdbarch *gdbarch = regcache->arch ();
251 int addr[PPC_MAX_REGISTER_SIZE];
252 int nr, isfloat;
253 pid_t pid = regcache->ptid ().pid ();
254
255 /* Fetch the register's value from the register cache. */
256 regcache->raw_collect (regno, addr);
257
258 /* -1 can be a successful return value, so infer errors from errno. */
259 errno = 0;
260
261 nr = regmap (gdbarch, regno, &isfloat);
262
263 /* Floating-point registers. */
264 if (isfloat)
265 rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0);
266
267 /* Bogus register number. */
268 else if (nr < 0)
269 {
270 if (regno >= gdbarch_num_regs (gdbarch))
271 fprintf_unfiltered (gdb_stderr,
272 "gdb error: register no %d not implemented.\n",
273 regno);
274 }
275
276 /* Fixed-point registers. */
277 else
278 {
279 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
280 the register's value is passed by value, but for 64-bit inferiors,
281 the address of a buffer containing the value is passed. */
282 if (!ARCH64 ())
283 rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0);
284 else
285 {
286 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
287 area, even if the register is really only 32 bits. */
288 long long buf;
289 if (register_size (gdbarch, regno) == 8)
290 memcpy (&buf, addr, 8);
291 else
292 buf = *addr;
293 rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf);
294 }
295 }
296
297 if (errno)
298 {
299 perror (_("ptrace write"));
300 errno = 0;
301 }
302 }
303
304 /* Read from the inferior all registers if REGNO == -1 and just register
305 REGNO otherwise. */
306
307 void
308 rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno)
309 {
310 struct gdbarch *gdbarch = regcache->arch ();
311 if (regno != -1)
312 fetch_register (regcache, regno);
313
314 else
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317
318 /* Read 32 general purpose registers. */
319 for (regno = tdep->ppc_gp0_regnum;
320 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
321 regno++)
322 {
323 fetch_register (regcache, regno);
324 }
325
326 /* Read general purpose floating point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (regno = 0; regno < ppc_num_fprs; regno++)
329 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
330
331 /* Read special registers. */
332 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
333 fetch_register (regcache, tdep->ppc_ps_regnum);
334 fetch_register (regcache, tdep->ppc_cr_regnum);
335 fetch_register (regcache, tdep->ppc_lr_regnum);
336 fetch_register (regcache, tdep->ppc_ctr_regnum);
337 fetch_register (regcache, tdep->ppc_xer_regnum);
338 if (tdep->ppc_fpscr_regnum >= 0)
339 fetch_register (regcache, tdep->ppc_fpscr_regnum);
340 if (tdep->ppc_mq_regnum >= 0)
341 fetch_register (regcache, tdep->ppc_mq_regnum);
342 }
343 }
344
345 /* Store our register values back into the inferior.
346 If REGNO is -1, do this for all registers.
347 Otherwise, REGNO specifies which register (so we can save time). */
348
349 void
350 rs6000_nat_target::store_registers (struct regcache *regcache, int regno)
351 {
352 struct gdbarch *gdbarch = regcache->arch ();
353 if (regno != -1)
354 store_register (regcache, regno);
355
356 else
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 /* Write general purpose registers first. */
361 for (regno = tdep->ppc_gp0_regnum;
362 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
363 regno++)
364 {
365 store_register (regcache, regno);
366 }
367
368 /* Write floating point registers. */
369 if (tdep->ppc_fp0_regnum >= 0)
370 for (regno = 0; regno < ppc_num_fprs; regno++)
371 store_register (regcache, tdep->ppc_fp0_regnum + regno);
372
373 /* Write special registers. */
374 store_register (regcache, gdbarch_pc_regnum (gdbarch));
375 store_register (regcache, tdep->ppc_ps_regnum);
376 store_register (regcache, tdep->ppc_cr_regnum);
377 store_register (regcache, tdep->ppc_lr_regnum);
378 store_register (regcache, tdep->ppc_ctr_regnum);
379 store_register (regcache, tdep->ppc_xer_regnum);
380 if (tdep->ppc_fpscr_regnum >= 0)
381 store_register (regcache, tdep->ppc_fpscr_regnum);
382 if (tdep->ppc_mq_regnum >= 0)
383 store_register (regcache, tdep->ppc_mq_regnum);
384 }
385 }
386
387 /* Implement the to_xfer_partial target_ops method. */
388
389 enum target_xfer_status
390 rs6000_nat_target::xfer_partial (enum target_object object,
391 const char *annex, gdb_byte *readbuf,
392 const gdb_byte *writebuf,
393 ULONGEST offset, ULONGEST len,
394 ULONGEST *xfered_len)
395 {
396 pid_t pid = inferior_ptid.pid ();
397 int arch64 = ARCH64 ();
398
399 switch (object)
400 {
401 case TARGET_OBJECT_LIBRARIES_AIX:
402 return xfer_shared_libraries (object, annex,
403 readbuf, writebuf,
404 offset, len, xfered_len);
405 case TARGET_OBJECT_MEMORY:
406 {
407 union
408 {
409 PTRACE_TYPE_RET word;
410 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
411 } buffer;
412 ULONGEST rounded_offset;
413 LONGEST partial_len;
414
415 /* Round the start offset down to the next long word
416 boundary. */
417 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
418
419 /* Since ptrace will transfer a single word starting at that
420 rounded_offset the partial_len needs to be adjusted down to
421 that (remember this function only does a single transfer).
422 Should the required length be even less, adjust it down
423 again. */
424 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
425 if (partial_len > len)
426 partial_len = len;
427
428 if (writebuf)
429 {
430 /* If OFFSET:PARTIAL_LEN is smaller than
431 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
432 be needed. Read in the entire word. */
433 if (rounded_offset < offset
434 || (offset + partial_len
435 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
436 {
437 /* Need part of initial word -- fetch it. */
438 if (arch64)
439 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
440 rounded_offset, 0, NULL);
441 else
442 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
443 (int *) (uintptr_t)
444 rounded_offset,
445 0, NULL);
446 }
447
448 /* Copy data to be written over corresponding part of
449 buffer. */
450 memcpy (buffer.byte + (offset - rounded_offset),
451 writebuf, partial_len);
452
453 errno = 0;
454 if (arch64)
455 rs6000_ptrace64 (PT_WRITE_D, pid,
456 rounded_offset, buffer.word, NULL);
457 else
458 rs6000_ptrace32 (PT_WRITE_D, pid,
459 (int *) (uintptr_t) rounded_offset,
460 buffer.word, NULL);
461 if (errno)
462 return TARGET_XFER_EOF;
463 }
464
465 if (readbuf)
466 {
467 errno = 0;
468 if (arch64)
469 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
470 rounded_offset, 0, NULL);
471 else
472 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
473 (int *)(uintptr_t)rounded_offset,
474 0, NULL);
475 if (errno)
476 return TARGET_XFER_EOF;
477
478 /* Copy appropriate bytes out of the buffer. */
479 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
480 partial_len);
481 }
482
483 *xfered_len = (ULONGEST) partial_len;
484 return TARGET_XFER_OK;
485 }
486
487 default:
488 return TARGET_XFER_E_IO;
489 }
490 }
491
492 /* Wait for the child specified by PTID to do something. Return the
493 process ID of the child, or MINUS_ONE_PTID in case of error; store
494 the status in *OURSTATUS. */
495
496 ptid_t
497 rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
498 int options)
499 {
500 pid_t pid;
501 int status, save_errno;
502
503 do
504 {
505 set_sigint_trap ();
506
507 do
508 {
509 pid = waitpid (ptid.pid (), &status, 0);
510 save_errno = errno;
511 }
512 while (pid == -1 && errno == EINTR);
513
514 clear_sigint_trap ();
515
516 if (pid == -1)
517 {
518 fprintf_unfiltered (gdb_stderr,
519 _("Child process unexpectedly missing: %s.\n"),
520 safe_strerror (save_errno));
521
522 /* Claim it exited with unknown signal. */
523 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
524 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
525 return inferior_ptid;
526 }
527
528 /* Ignore terminated detached child processes. */
529 if (!WIFSTOPPED (status) && pid != inferior_ptid.pid ())
530 pid = -1;
531 }
532 while (pid == -1);
533
534 /* AIX has a couple of strange returns from wait(). */
535
536 /* stop after load" status. */
537 if (status == 0x57c)
538 ourstatus->kind = TARGET_WAITKIND_LOADED;
539 /* signal 0. I have no idea why wait(2) returns with this status word. */
540 else if (status == 0x7f)
541 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
542 /* A normal waitstatus. Let the usual macros deal with it. */
543 else
544 store_waitstatus (ourstatus, status);
545
546 return ptid_t (pid);
547 }
548 \f
549
550 /* Set the current architecture from the host running GDB. Called when
551 starting a child process. */
552
553 void
554 rs6000_nat_target::create_inferior (const char *exec_file,
555 const std::string &allargs,
556 char **env, int from_tty)
557 {
558 enum bfd_architecture arch;
559 unsigned long mach;
560 bfd abfd;
561 struct gdbarch_info info;
562
563 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
564
565 if (__power_rs ())
566 {
567 arch = bfd_arch_rs6000;
568 mach = bfd_mach_rs6k;
569 }
570 else
571 {
572 arch = bfd_arch_powerpc;
573 mach = bfd_mach_ppc;
574 }
575
576 /* FIXME: schauer/2002-02-25:
577 We don't know if we are executing a 32 or 64 bit executable,
578 and have no way to pass the proper word size to rs6000_gdbarch_init.
579 So we have to avoid switching to a new architecture, if the architecture
580 matches already.
581 Blindly calling rs6000_gdbarch_init used to work in older versions of
582 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
583 determine the wordsize. */
584 if (exec_bfd)
585 {
586 const struct bfd_arch_info *exec_bfd_arch_info;
587
588 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
589 if (arch == exec_bfd_arch_info->arch)
590 return;
591 }
592
593 bfd_default_set_arch_mach (&abfd, arch, mach);
594
595 gdbarch_info_init (&info);
596 info.bfd_arch_info = bfd_get_arch_info (&abfd);
597 info.abfd = exec_bfd;
598
599 if (!gdbarch_update_p (info))
600 internal_error (__FILE__, __LINE__,
601 _("rs6000_create_inferior: failed "
602 "to select architecture"));
603 }
604 \f
605
606 /* Shared Object support. */
607
608 /* Return the LdInfo data for the given process. Raises an error
609 if the data could not be obtained. */
610
611 static gdb::byte_vector
612 rs6000_ptrace_ldinfo (ptid_t ptid)
613 {
614 const int pid = ptid.pid ();
615 gdb::byte_vector ldi (1024);
616 int rc = -1;
617
618 while (1)
619 {
620 if (ARCH64 ())
621 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (),
622 ldi.size (), NULL);
623 else
624 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (),
625 ldi.size (), NULL);
626
627 if (rc != -1)
628 break; /* Success, we got the entire ld_info data. */
629
630 if (errno != ENOMEM)
631 perror_with_name (_("ptrace ldinfo"));
632
633 /* ldi is not big enough. Double it and try again. */
634 ldi.resize (ldi.size () * 2);
635 }
636
637 return ldi;
638 }
639
640 /* Implement the to_xfer_partial target_ops method for
641 TARGET_OBJECT_LIBRARIES_AIX objects. */
642
643 enum target_xfer_status
644 rs6000_nat_target::xfer_shared_libraries
645 (enum target_object object,
646 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
647 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
648 {
649 ULONGEST result;
650
651 /* This function assumes that it is being run with a live process.
652 Core files are handled via gdbarch. */
653 gdb_assert (target_has_execution);
654
655 if (writebuf)
656 return TARGET_XFER_E_IO;
657
658 gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
659 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf.data (),
660 readbuf, offset, len, 1);
661
662 if (result == 0)
663 return TARGET_XFER_EOF;
664 else
665 {
666 *xfered_len = result;
667 return TARGET_XFER_OK;
668 }
669 }
670
671 void
672 _initialize_rs6000_nat (void)
673 {
674 add_inf_child_target (&the_rs6000_nat_target);
675 }
This page took 0.046332 seconds and 4 git commands to generate.