d7b95712e429f6c8115a5dbac9e23b7b6c5ca78b
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "xcoffsolib.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
28 #include "bfd.h"
29 #include "exceptions.h"
30 #include "gdb-stabs.h"
31 #include "regcache.h"
32 #include "arch-utils.h"
33 #include "inf-child.h"
34 #include "inf-ptrace.h"
35 #include "ppc-tdep.h"
36 #include "rs6000-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include "gdb_bfd.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct regcache *);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
204 req, id, hex_string (addr), data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (gdbarch, regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
242 (int *) nr, 0, 0);
243 else
244 {
245 /* PT_READ_GPR requires the buffer parameter to point to long long,
246 even if the register is really only 32 bits. */
247 long long buf;
248 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
249 if (register_size (gdbarch, regno) == 8)
250 memcpy (addr, &buf, 8);
251 else
252 *addr = buf;
253 }
254 }
255
256 if (!errno)
257 regcache_raw_supply (regcache, regno, (char *) addr);
258 else
259 {
260 #if 0
261 /* FIXME: this happens 3 times at the start of each 64-bit program. */
262 perror (_("ptrace read"));
263 #endif
264 errno = 0;
265 }
266 }
267
268 /* Store register REGNO back into the inferior. */
269
270 static void
271 store_register (struct regcache *regcache, int regno)
272 {
273 struct gdbarch *gdbarch = get_regcache_arch (regcache);
274 int addr[MAX_REGISTER_SIZE];
275 int nr, isfloat;
276
277 /* Fetch the register's value from the register cache. */
278 regcache_raw_collect (regcache, regno, addr);
279
280 /* -1 can be a successful return value, so infer errors from errno. */
281 errno = 0;
282
283 nr = regmap (gdbarch, regno, &isfloat);
284
285 /* Floating-point registers. */
286 if (isfloat)
287 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
288
289 /* Bogus register number. */
290 else if (nr < 0)
291 {
292 if (regno >= gdbarch_num_regs (gdbarch))
293 fprintf_unfiltered (gdb_stderr,
294 "gdb error: register no %d not implemented.\n",
295 regno);
296 }
297
298 /* Fixed-point registers. */
299 else
300 {
301 if (regno == gdbarch_sp_regnum (gdbarch))
302 /* Execute one dummy instruction (which is a breakpoint) in inferior
303 process to give kernel a chance to do internal housekeeping.
304 Otherwise the following ptrace(2) calls will mess up user stack
305 since kernel will get confused about the bottom of the stack
306 (%sp). */
307 exec_one_dummy_insn (regcache);
308
309 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
310 the register's value is passed by value, but for 64-bit inferiors,
311 the address of a buffer containing the value is passed. */
312 if (!ARCH64 ())
313 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
314 (int *) nr, *addr, 0);
315 else
316 {
317 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
318 area, even if the register is really only 32 bits. */
319 long long buf;
320 if (register_size (gdbarch, regno) == 8)
321 memcpy (&buf, addr, 8);
322 else
323 buf = *addr;
324 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
325 }
326 }
327
328 if (errno)
329 {
330 perror (_("ptrace write"));
331 errno = 0;
332 }
333 }
334
335 /* Read from the inferior all registers if REGNO == -1 and just register
336 REGNO otherwise. */
337
338 static void
339 rs6000_fetch_inferior_registers (struct target_ops *ops,
340 struct regcache *regcache, int regno)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 if (regno != -1)
344 fetch_register (regcache, regno);
345
346 else
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 /* Read 32 general purpose registers. */
351 for (regno = tdep->ppc_gp0_regnum;
352 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
353 regno++)
354 {
355 fetch_register (regcache, regno);
356 }
357
358 /* Read general purpose floating point registers. */
359 if (tdep->ppc_fp0_regnum >= 0)
360 for (regno = 0; regno < ppc_num_fprs; regno++)
361 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
362
363 /* Read special registers. */
364 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
365 fetch_register (regcache, tdep->ppc_ps_regnum);
366 fetch_register (regcache, tdep->ppc_cr_regnum);
367 fetch_register (regcache, tdep->ppc_lr_regnum);
368 fetch_register (regcache, tdep->ppc_ctr_regnum);
369 fetch_register (regcache, tdep->ppc_xer_regnum);
370 if (tdep->ppc_fpscr_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_fpscr_regnum);
372 if (tdep->ppc_mq_regnum >= 0)
373 fetch_register (regcache, tdep->ppc_mq_regnum);
374 }
375 }
376
377 /* Store our register values back into the inferior.
378 If REGNO is -1, do this for all registers.
379 Otherwise, REGNO specifies which register (so we can save time). */
380
381 static void
382 rs6000_store_inferior_registers (struct target_ops *ops,
383 struct regcache *regcache, int regno)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 if (regno != -1)
387 store_register (regcache, regno);
388
389 else
390 {
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392
393 /* Write general purpose registers first. */
394 for (regno = tdep->ppc_gp0_regnum;
395 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
396 regno++)
397 {
398 store_register (regcache, regno);
399 }
400
401 /* Write floating point registers. */
402 if (tdep->ppc_fp0_regnum >= 0)
403 for (regno = 0; regno < ppc_num_fprs; regno++)
404 store_register (regcache, tdep->ppc_fp0_regnum + regno);
405
406 /* Write special registers. */
407 store_register (regcache, gdbarch_pc_regnum (gdbarch));
408 store_register (regcache, tdep->ppc_ps_regnum);
409 store_register (regcache, tdep->ppc_cr_regnum);
410 store_register (regcache, tdep->ppc_lr_regnum);
411 store_register (regcache, tdep->ppc_ctr_regnum);
412 store_register (regcache, tdep->ppc_xer_regnum);
413 if (tdep->ppc_fpscr_regnum >= 0)
414 store_register (regcache, tdep->ppc_fpscr_regnum);
415 if (tdep->ppc_mq_regnum >= 0)
416 store_register (regcache, tdep->ppc_mq_regnum);
417 }
418 }
419
420
421 /* Attempt a transfer all LEN bytes starting at OFFSET between the
422 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
423 Return the number of bytes actually transferred. */
424
425 static LONGEST
426 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
427 const char *annex, gdb_byte *readbuf,
428 const gdb_byte *writebuf,
429 ULONGEST offset, LONGEST len)
430 {
431 pid_t pid = ptid_get_pid (inferior_ptid);
432 int arch64 = ARCH64 ();
433
434 switch (object)
435 {
436 case TARGET_OBJECT_MEMORY:
437 {
438 union
439 {
440 PTRACE_TYPE_RET word;
441 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
442 } buffer;
443 ULONGEST rounded_offset;
444 LONGEST partial_len;
445
446 /* Round the start offset down to the next long word
447 boundary. */
448 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
449
450 /* Since ptrace will transfer a single word starting at that
451 rounded_offset the partial_len needs to be adjusted down to
452 that (remember this function only does a single transfer).
453 Should the required length be even less, adjust it down
454 again. */
455 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
456 if (partial_len > len)
457 partial_len = len;
458
459 if (writebuf)
460 {
461 /* If OFFSET:PARTIAL_LEN is smaller than
462 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
463 be needed. Read in the entire word. */
464 if (rounded_offset < offset
465 || (offset + partial_len
466 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
467 {
468 /* Need part of initial word -- fetch it. */
469 if (arch64)
470 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
471 rounded_offset, 0, NULL);
472 else
473 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
474 (int *) (uintptr_t)
475 rounded_offset,
476 0, NULL);
477 }
478
479 /* Copy data to be written over corresponding part of
480 buffer. */
481 memcpy (buffer.byte + (offset - rounded_offset),
482 writebuf, partial_len);
483
484 errno = 0;
485 if (arch64)
486 rs6000_ptrace64 (PT_WRITE_D, pid,
487 rounded_offset, buffer.word, NULL);
488 else
489 rs6000_ptrace32 (PT_WRITE_D, pid,
490 (int *) (uintptr_t) rounded_offset,
491 buffer.word, NULL);
492 if (errno)
493 return 0;
494 }
495
496 if (readbuf)
497 {
498 errno = 0;
499 if (arch64)
500 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
501 rounded_offset, 0, NULL);
502 else
503 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
504 (int *)(uintptr_t)rounded_offset,
505 0, NULL);
506 if (errno)
507 return 0;
508
509 /* Copy appropriate bytes out of the buffer. */
510 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
511 partial_len);
512 }
513
514 return partial_len;
515 }
516
517 default:
518 return -1;
519 }
520 }
521
522 /* Wait for the child specified by PTID to do something. Return the
523 process ID of the child, or MINUS_ONE_PTID in case of error; store
524 the status in *OURSTATUS. */
525
526 static ptid_t
527 rs6000_wait (struct target_ops *ops,
528 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
529 {
530 pid_t pid;
531 int status, save_errno;
532
533 do
534 {
535 set_sigint_trap ();
536
537 do
538 {
539 pid = waitpid (ptid_get_pid (ptid), &status, 0);
540 save_errno = errno;
541 }
542 while (pid == -1 && errno == EINTR);
543
544 clear_sigint_trap ();
545
546 if (pid == -1)
547 {
548 fprintf_unfiltered (gdb_stderr,
549 _("Child process unexpectedly missing: %s.\n"),
550 safe_strerror (save_errno));
551
552 /* Claim it exited with unknown signal. */
553 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
554 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
555 return inferior_ptid;
556 }
557
558 /* Ignore terminated detached child processes. */
559 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
560 pid = -1;
561 }
562 while (pid == -1);
563
564 /* AIX has a couple of strange returns from wait(). */
565
566 /* stop after load" status. */
567 if (status == 0x57c)
568 ourstatus->kind = TARGET_WAITKIND_LOADED;
569 /* signal 0. I have no idea why wait(2) returns with this status word. */
570 else if (status == 0x7f)
571 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
572 /* A normal waitstatus. Let the usual macros deal with it. */
573 else
574 store_waitstatus (ourstatus, status);
575
576 return pid_to_ptid (pid);
577 }
578
579 /* Execute one dummy breakpoint instruction. This way we give the kernel
580 a chance to do some housekeeping and update inferior's internal data,
581 including u_area. */
582
583 static void
584 exec_one_dummy_insn (struct regcache *regcache)
585 {
586 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
587
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 int ret, status, pid;
590 CORE_ADDR prev_pc;
591 void *bp;
592
593 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
594 assume that this address will never be executed again by the real
595 code. */
596
597 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
598
599 /* You might think this could be done with a single ptrace call, and
600 you'd be correct for just about every platform I've ever worked
601 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
602 the inferior never hits the breakpoint (it's also worth noting
603 powerpc-ibm-aix4.1.3 works correctly). */
604 prev_pc = regcache_read_pc (regcache);
605 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
606 if (ARCH64 ())
607 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
608 else
609 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
610 (int *) 1, 0, NULL);
611
612 if (ret != 0)
613 perror (_("pt_continue"));
614
615 do
616 {
617 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
618 }
619 while (pid != PIDGET (inferior_ptid));
620
621 regcache_write_pc (regcache, prev_pc);
622 deprecated_remove_raw_breakpoint (gdbarch, bp);
623 }
624 \f
625
626 /* Copy information about text and data sections from LDI to VP for a 64-bit
627 process if ARCH64 and for a 32-bit process otherwise. */
628
629 static void
630 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
631 {
632 if (arch64)
633 {
634 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
635 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
636 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
637 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
638 }
639 else
640 {
641 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
642 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
643 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
644 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
645 }
646
647 /* The run time loader maps the file header in addition to the text
648 section and returns a pointer to the header in ldinfo_textorg.
649 Adjust the text start address to point to the real start address
650 of the text section. */
651 vp->tstart += vp->toffs;
652 }
653
654 /* Handle symbol translation on vmapping. */
655
656 static void
657 vmap_symtab (struct vmap *vp)
658 {
659 struct objfile *objfile;
660 struct section_offsets *new_offsets;
661 int i;
662
663 objfile = vp->objfile;
664 if (objfile == NULL)
665 {
666 /* OK, it's not an objfile we opened ourselves.
667 Currently, that can only happen with the exec file, so
668 relocate the symbols for the symfile. */
669 if (symfile_objfile == NULL)
670 return;
671 objfile = symfile_objfile;
672 }
673 else if (!vp->loaded)
674 /* If symbols are not yet loaded, offsets are not yet valid. */
675 return;
676
677 new_offsets =
678 (struct section_offsets *)
679 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
680
681 for (i = 0; i < objfile->num_sections; ++i)
682 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
683
684 /* The symbols in the object file are linked to the VMA of the section,
685 relocate them VMA relative. */
686 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
687 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
688 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
689
690 objfile_relocate (objfile, new_offsets);
691 }
692 \f
693 /* Add symbols for an objfile. */
694
695 static int
696 objfile_symbol_add (void *arg)
697 {
698 struct objfile *obj = (struct objfile *) arg;
699
700 syms_from_objfile (obj, NULL, 0, 0, 0);
701 new_symfile_objfile (obj, 0);
702 return 1;
703 }
704
705 /* Add symbols for a vmap. Return zero upon error. */
706
707 int
708 vmap_add_symbols (struct vmap *vp)
709 {
710 if (catch_errors (objfile_symbol_add, vp->objfile,
711 "Error while reading shared library symbols:\n",
712 RETURN_MASK_ALL))
713 {
714 /* Note this is only done if symbol reading was successful. */
715 vp->loaded = 1;
716 vmap_symtab (vp);
717 return 1;
718 }
719 return 0;
720 }
721
722 /* Add a new vmap entry based on ldinfo() information.
723
724 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
725 core file), the caller should set it to -1, and we will open the file.
726
727 Return the vmap new entry. */
728
729 static struct vmap *
730 add_vmap (LdInfo *ldi)
731 {
732 bfd *abfd, *last;
733 char *mem, *filename;
734 struct objfile *obj;
735 struct vmap *vp;
736 int fd;
737 ARCH64_DECL (arch64);
738
739 /* This ldi structure was allocated using alloca() in
740 xcoff_relocate_symtab(). Now we need to have persistent object
741 and member names, so we should save them. */
742
743 filename = LDI_FILENAME (ldi, arch64);
744 mem = filename + strlen (filename) + 1;
745 mem = xstrdup (mem);
746
747 fd = LDI_FD (ldi, arch64);
748 abfd = gdb_bfd_open (filename, gnutarget, fd < 0 ? -1 : fd);
749 if (!abfd)
750 {
751 warning (_("Could not open `%s' as an executable file: %s"),
752 filename, bfd_errmsg (bfd_get_error ()));
753 return NULL;
754 }
755
756 /* Make sure we have an object file. */
757
758 if (bfd_check_format (abfd, bfd_object))
759 vp = map_vmap (abfd, 0);
760
761 else if (bfd_check_format (abfd, bfd_archive))
762 {
763 last = gdb_bfd_openr_next_archived_file (abfd, NULL);
764 while (last != NULL)
765 {
766 bfd *next;
767
768 if (strcmp (mem, last->filename) == 0)
769 break;
770
771 next = gdb_bfd_openr_next_archived_file (abfd, last);
772 gdb_bfd_unref (last);
773 last = next;
774 }
775
776 if (!last)
777 {
778 warning (_("\"%s\": member \"%s\" missing."), filename, mem);
779 gdb_bfd_unref (abfd);
780 return NULL;
781 }
782
783 if (!bfd_check_format (last, bfd_object))
784 {
785 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
786 filename, mem, bfd_errmsg (bfd_get_error ()));
787 gdb_bfd_unref (last);
788 gdb_bfd_unref (abfd);
789 return NULL;
790 }
791
792 vp = map_vmap (last, abfd);
793 /* map_vmap acquired a reference to LAST, so we can release
794 ours. */
795 gdb_bfd_unref (last);
796 }
797 else
798 {
799 warning (_("\"%s\": not in executable format: %s."),
800 filename, bfd_errmsg (bfd_get_error ()));
801 gdb_bfd_unref (abfd);
802 return NULL;
803 }
804 obj = allocate_objfile (vp->bfd, 0);
805 vp->objfile = obj;
806
807 /* Always add symbols for the main objfile. */
808 if (vp == vmap || auto_solib_add)
809 vmap_add_symbols (vp);
810
811 /* Anything needing a reference to ABFD has already acquired it, so
812 release our local reference. */
813 gdb_bfd_unref (abfd);
814
815 return vp;
816 }
817 \f
818 /* update VMAP info with ldinfo() information
819 Input is ptr to ldinfo() results. */
820
821 static void
822 vmap_ldinfo (LdInfo *ldi)
823 {
824 struct stat ii, vi;
825 struct vmap *vp;
826 int got_one, retried;
827 int got_exec_file = 0;
828 uint next;
829 int arch64 = ARCH64 ();
830
831 /* For each *ldi, see if we have a corresponding *vp.
832 If so, update the mapping, and symbol table.
833 If not, add an entry and symbol table. */
834
835 do
836 {
837 char *name = LDI_FILENAME (ldi, arch64);
838 char *memb = name + strlen (name) + 1;
839 int fd = LDI_FD (ldi, arch64);
840
841 retried = 0;
842
843 if (fstat (fd, &ii) < 0)
844 {
845 /* The kernel sets ld_info to -1, if the process is still using the
846 object, and the object is removed. Keep the symbol info for the
847 removed object and issue a warning. */
848 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
849 name, fd);
850 continue;
851 }
852 retry:
853 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
854 {
855 struct objfile *objfile;
856
857 /* First try to find a `vp', which is the same as in ldinfo.
858 If not the same, just continue and grep the next `vp'. If same,
859 relocate its tstart, tend, dstart, dend values. If no such `vp'
860 found, get out of this for loop, add this ldi entry as a new vmap
861 (add_vmap) and come back, find its `vp' and so on... */
862
863 /* The filenames are not always sufficient to match on. */
864
865 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
866 || (memb[0] && strcmp (memb, vp->member) != 0))
867 continue;
868
869 /* See if we are referring to the same file.
870 We have to check objfile->obfd, symfile.c:reread_symbols might
871 have updated the obfd after a change. */
872 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
873 if (objfile == NULL
874 || objfile->obfd == NULL
875 || bfd_stat (objfile->obfd, &vi) < 0)
876 {
877 warning (_("Unable to stat %s, keeping its symbols"), name);
878 continue;
879 }
880
881 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
882 continue;
883
884 if (!retried)
885 close (fd);
886
887 ++got_one;
888
889 /* Found a corresponding VMAP. Remap! */
890
891 vmap_secs (vp, ldi, arch64);
892
893 /* The objfile is only NULL for the exec file. */
894 if (vp->objfile == NULL)
895 got_exec_file = 1;
896
897 /* relocate symbol table(s). */
898 vmap_symtab (vp);
899
900 /* Announce new object files. Doing this after symbol relocation
901 makes aix-thread.c's job easier. */
902 if (vp->objfile)
903 observer_notify_new_objfile (vp->objfile);
904
905 /* There may be more, so we don't break out of the loop. */
906 }
907
908 /* If there was no matching *vp, we must perforce create the
909 sucker(s). */
910 if (!got_one && !retried)
911 {
912 add_vmap (ldi);
913 ++retried;
914 goto retry;
915 }
916 }
917 while ((next = LDI_NEXT (ldi, arch64))
918 && (ldi = (void *) (next + (char *) ldi)));
919
920 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
921 is unlikely that the symbol file is relocated to the proper
922 address. And we might have attached to a process which is
923 running a different copy of the same executable. */
924 if (symfile_objfile != NULL && !got_exec_file)
925 {
926 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
927 If in fact that file has symbols which the mapped files listed by\n\
928 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
929 \"add-symbol-file\" commands (note that you must take care of relocating\n\
930 symbols to the proper address)."),
931 symfile_objfile->name);
932 free_objfile (symfile_objfile);
933 gdb_assert (symfile_objfile == NULL);
934 }
935 breakpoint_re_set ();
936 }
937 \f
938 /* As well as symbol tables, exec_sections need relocation. After
939 the inferior process' termination, there will be a relocated symbol
940 table exist with no corresponding inferior process. At that time, we
941 need to use `exec' bfd, rather than the inferior process's memory space
942 to look up symbols.
943
944 `exec_sections' need to be relocated only once, as long as the exec
945 file remains unchanged. */
946
947 static void
948 vmap_exec (void)
949 {
950 static bfd *execbfd;
951 int i;
952 struct target_section_table *table = target_get_section_table (&exec_ops);
953
954 if (execbfd == exec_bfd)
955 return;
956
957 execbfd = exec_bfd;
958
959 if (!vmap || !table->sections)
960 error (_("vmap_exec: vmap or table->sections == 0."));
961
962 for (i = 0; &table->sections[i] < table->sections_end; i++)
963 {
964 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
965 {
966 table->sections[i].addr += vmap->tstart - vmap->tvma;
967 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
968 }
969 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
970 {
971 table->sections[i].addr += vmap->dstart - vmap->dvma;
972 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
973 }
974 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
975 {
976 table->sections[i].addr += vmap->dstart - vmap->dvma;
977 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
978 }
979 }
980 }
981
982 /* Set the current architecture from the host running GDB. Called when
983 starting a child process. */
984
985 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
986 char *allargs, char **env, int from_tty);
987 static void
988 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
989 char *allargs, char **env, int from_tty)
990 {
991 enum bfd_architecture arch;
992 unsigned long mach;
993 bfd abfd;
994 struct gdbarch_info info;
995
996 super_create_inferior (ops, exec_file, allargs, env, from_tty);
997
998 if (__power_rs ())
999 {
1000 arch = bfd_arch_rs6000;
1001 mach = bfd_mach_rs6k;
1002 }
1003 else
1004 {
1005 arch = bfd_arch_powerpc;
1006 mach = bfd_mach_ppc;
1007 }
1008
1009 /* FIXME: schauer/2002-02-25:
1010 We don't know if we are executing a 32 or 64 bit executable,
1011 and have no way to pass the proper word size to rs6000_gdbarch_init.
1012 So we have to avoid switching to a new architecture, if the architecture
1013 matches already.
1014 Blindly calling rs6000_gdbarch_init used to work in older versions of
1015 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1016 determine the wordsize. */
1017 if (exec_bfd)
1018 {
1019 const struct bfd_arch_info *exec_bfd_arch_info;
1020
1021 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1022 if (arch == exec_bfd_arch_info->arch)
1023 return;
1024 }
1025
1026 bfd_default_set_arch_mach (&abfd, arch, mach);
1027
1028 gdbarch_info_init (&info);
1029 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1030 info.abfd = exec_bfd;
1031
1032 if (!gdbarch_update_p (info))
1033 internal_error (__FILE__, __LINE__,
1034 _("rs6000_create_inferior: failed "
1035 "to select architecture"));
1036 }
1037
1038 \f
1039 /* xcoff_relocate_symtab - hook for symbol table relocation.
1040
1041 This is only applicable to live processes, and is a no-op when
1042 debugging a core file. */
1043
1044 void
1045 xcoff_relocate_symtab (unsigned int pid)
1046 {
1047 int load_segs = 64; /* number of load segments */
1048 int rc;
1049 LdInfo *ldi = NULL;
1050 int arch64 = ARCH64 ();
1051 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1052 int size;
1053
1054 /* Nothing to do if we are debugging a core file. */
1055 if (!target_has_execution)
1056 return;
1057
1058 do
1059 {
1060 size = load_segs * ldisize;
1061 ldi = (void *) xrealloc (ldi, size);
1062
1063 #if 0
1064 /* According to my humble theory, AIX has some timing problems and
1065 when the user stack grows, kernel doesn't update stack info in time
1066 and ptrace calls step on user stack. That is why we sleep here a
1067 little, and give kernel to update its internals. */
1068 usleep (36000);
1069 #endif
1070
1071 if (arch64)
1072 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1073 else
1074 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1075
1076 if (rc == -1)
1077 {
1078 if (errno == ENOMEM)
1079 load_segs *= 2;
1080 else
1081 perror_with_name (_("ptrace ldinfo"));
1082 }
1083 else
1084 {
1085 vmap_ldinfo (ldi);
1086 vmap_exec (); /* relocate the exec and core sections as well. */
1087 }
1088 } while (rc == -1);
1089 if (ldi)
1090 xfree (ldi);
1091 }
1092 \f
1093 /* Core file stuff. */
1094
1095 /* Relocate symtabs and read in shared library info, based on symbols
1096 from the core file. */
1097
1098 void
1099 xcoff_relocate_core (struct target_ops *target)
1100 {
1101 struct bfd_section *ldinfo_sec;
1102 int offset = 0;
1103 LdInfo *ldi;
1104 struct vmap *vp;
1105 int arch64 = ARCH64 ();
1106
1107 /* Size of a struct ld_info except for the variable-length filename. */
1108 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1109
1110 /* Allocated size of buffer. */
1111 int buffer_size = nonfilesz;
1112 char *buffer = xmalloc (buffer_size);
1113 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1114
1115 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1116 if (ldinfo_sec == NULL)
1117 {
1118 bfd_err:
1119 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1120 bfd_errmsg (bfd_get_error ()));
1121 do_cleanups (old);
1122 return;
1123 }
1124 do
1125 {
1126 int i;
1127 int names_found = 0;
1128
1129 /* Read in everything but the name. */
1130 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1131 offset, nonfilesz) == 0)
1132 goto bfd_err;
1133
1134 /* Now the name. */
1135 i = nonfilesz;
1136 do
1137 {
1138 if (i == buffer_size)
1139 {
1140 buffer_size *= 2;
1141 buffer = xrealloc (buffer, buffer_size);
1142 }
1143 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1144 offset + i, 1) == 0)
1145 goto bfd_err;
1146 if (buffer[i++] == '\0')
1147 ++names_found;
1148 }
1149 while (names_found < 2);
1150
1151 ldi = (LdInfo *) buffer;
1152
1153 /* Can't use a file descriptor from the core file; need to open it. */
1154 if (arch64)
1155 ldi->l64.ldinfo_fd = -1;
1156 else
1157 ldi->l32.ldinfo_fd = -1;
1158
1159 /* The first ldinfo is for the exec file, allocated elsewhere. */
1160 if (offset == 0 && vmap != NULL)
1161 vp = vmap;
1162 else
1163 vp = add_vmap (ldi);
1164
1165 /* Process next shared library upon error. */
1166 offset += LDI_NEXT (ldi, arch64);
1167 if (vp == NULL)
1168 continue;
1169
1170 vmap_secs (vp, ldi, arch64);
1171
1172 /* Unless this is the exec file,
1173 add our sections to the section table for the core target. */
1174 if (vp != vmap)
1175 {
1176 struct target_section *stp;
1177
1178 stp = deprecated_core_resize_section_table (2);
1179
1180 stp->bfd = vp->bfd;
1181 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1182 stp->addr = vp->tstart;
1183 stp->endaddr = vp->tend;
1184 stp++;
1185
1186 stp->bfd = vp->bfd;
1187 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1188 stp->addr = vp->dstart;
1189 stp->endaddr = vp->dend;
1190 }
1191
1192 vmap_symtab (vp);
1193
1194 if (vp != vmap && vp->objfile)
1195 observer_notify_new_objfile (vp->objfile);
1196 }
1197 while (LDI_NEXT (ldi, arch64) != 0);
1198 vmap_exec ();
1199 breakpoint_re_set ();
1200 do_cleanups (old);
1201 }
1202 \f
1203 /* Under AIX, we have to pass the correct TOC pointer to a function
1204 when calling functions in the inferior.
1205 We try to find the relative toc offset of the objfile containing PC
1206 and add the current load address of the data segment from the vmap. */
1207
1208 static CORE_ADDR
1209 find_toc_address (CORE_ADDR pc)
1210 {
1211 struct vmap *vp;
1212
1213 for (vp = vmap; vp; vp = vp->nxt)
1214 {
1215 if (pc >= vp->tstart && pc < vp->tend)
1216 {
1217 /* vp->objfile is only NULL for the exec file. */
1218 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1219 ? symfile_objfile
1220 : vp->objfile);
1221 }
1222 }
1223 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1224 }
1225 \f
1226
1227 void _initialize_rs6000_nat (void);
1228
1229 void
1230 _initialize_rs6000_nat (void)
1231 {
1232 struct target_ops *t;
1233
1234 t = inf_ptrace_target ();
1235 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1236 t->to_store_registers = rs6000_store_inferior_registers;
1237 t->to_xfer_partial = rs6000_xfer_partial;
1238
1239 super_create_inferior = t->to_create_inferior;
1240 t->to_create_inferior = rs6000_create_inferior;
1241
1242 t->to_wait = rs6000_wait;
1243
1244 add_target (t);
1245
1246 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1247 when calling functions in the inferior. */
1248 rs6000_find_toc_address_hook = find_toc_address;
1249 }
This page took 0.055267 seconds and 4 git commands to generate.