* doc/c-xtensa.texi (Literal Directive): Spelling correction.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "reggroups.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Breakpoint shadows for the single step instructions will be kept here. */
113
114 static struct sstep_breaks
115 {
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 char data[4];
120 }
121 stepBreaks[2];
122
123 /* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
127 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129 /* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132 void (*rs6000_set_host_arch_hook) (int) = NULL;
133
134 /* Static function prototypes */
135
136 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
138 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
140
141 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142 int
143 altivec_register_p (int regno)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150 }
151
152
153 /* Return true if REGNO is an SPE register, false otherwise. */
154 int
155 spe_register_p (int regno)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183 }
184
185
186 /* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
188 int
189 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
195 }
196
197
198 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
205 static void
206 set_sim_regno (int *table, int gdb_regno, int sim_regno)
207 {
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212 }
213
214
215 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
218 static void
219 init_sim_regno_table (struct gdbarch *arch)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296 }
297
298
299 /* Given a GDB register number REG, return the corresponding SIM
300 register number. */
301 static int
302 rs6000_register_sim_regno (int reg)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314 }
315
316 \f
317
318 /* Register set support functions. */
319
320 static void
321 ppc_supply_reg (struct regcache *regcache, int regnum,
322 const char *regs, size_t offset)
323 {
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326 }
327
328 static void
329 ppc_collect_reg (const struct regcache *regcache, int regnum,
330 char *regs, size_t offset)
331 {
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334 }
335
336 /* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340 void
341 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343 {
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
352 i++, offset += 4)
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377 }
378
379 /* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383 void
384 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
395 offset = offsets->f0_offset;
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
398 i++, offset += 8)
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407 }
408
409 /* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414 void
415 ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418 {
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
426 for (i = tdep->ppc_gp0_regnum;
427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
428 i++, offset += 4)
429 {
430 if (regnum == -1 || regnum == i)
431 ppc_collect_reg (regcache, i, gregs, offset);
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454 }
455
456 /* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461 void
462 ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465 {
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
474 offset = offsets->f0_offset;
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 {
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, i, fpregs, offset);
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486 }
487 \f
488
489 /* Read a LEN-byte address from debugged memory address MEMADDR. */
490
491 static CORE_ADDR
492 read_memory_addr (CORE_ADDR memaddr, int len)
493 {
494 return read_memory_unsigned_integer (memaddr, len);
495 }
496
497 static CORE_ADDR
498 rs6000_skip_prologue (CORE_ADDR pc)
499 {
500 struct rs6000_framedata frame;
501 pc = skip_prologue (pc, 0, &frame);
502 return pc;
503 }
504
505
506 /* Fill in fi->saved_regs */
507
508 struct frame_extra_info
509 {
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
515 CORE_ADDR initial_sp; /* initial stack pointer. */
516 };
517
518 /* Get the ith function argument for the current function. */
519 static CORE_ADDR
520 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522 {
523 CORE_ADDR addr;
524 get_frame_register (frame, 3 + argi, &addr);
525 return addr;
526 }
527
528 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
529
530 static CORE_ADDR
531 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
532 {
533 CORE_ADDR dest;
534 int immediate;
535 int absolute;
536 int ext_op;
537
538 absolute = (int) ((instr >> 1) & 1);
539
540 switch (opcode)
541 {
542 case 18:
543 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
544 if (absolute)
545 dest = immediate;
546 else
547 dest = pc + immediate;
548 break;
549
550 case 16:
551 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
552 if (absolute)
553 dest = immediate;
554 else
555 dest = pc + immediate;
556 break;
557
558 case 19:
559 ext_op = (instr >> 1) & 0x3ff;
560
561 if (ext_op == 16) /* br conditional register */
562 {
563 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
564
565 /* If we are about to return from a signal handler, dest is
566 something like 0x3c90. The current frame is a signal handler
567 caller frame, upon completion of the sigreturn system call
568 execution will return to the saved PC in the frame. */
569 if (dest < TEXT_SEGMENT_BASE)
570 {
571 struct frame_info *fi;
572
573 fi = get_current_frame ();
574 if (fi != NULL)
575 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
576 gdbarch_tdep (current_gdbarch)->wordsize);
577 }
578 }
579
580 else if (ext_op == 528) /* br cond to count reg */
581 {
582 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
583
584 /* If we are about to execute a system call, dest is something
585 like 0x22fc or 0x3b00. Upon completion the system call
586 will return to the address in the link register. */
587 if (dest < TEXT_SEGMENT_BASE)
588 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
589 }
590 else
591 return -1;
592 break;
593
594 default:
595 return -1;
596 }
597 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
598 }
599
600
601 /* Sequence of bytes for breakpoint instruction. */
602
603 const static unsigned char *
604 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
605 {
606 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
607 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
608 *bp_size = 4;
609 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
610 return big_breakpoint;
611 else
612 return little_breakpoint;
613 }
614
615
616 /* AIX does not support PT_STEP. Simulate it. */
617
618 void
619 rs6000_software_single_step (enum target_signal signal,
620 int insert_breakpoints_p)
621 {
622 CORE_ADDR dummy;
623 int breakp_sz;
624 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
625 int ii, insn;
626 CORE_ADDR loc;
627 CORE_ADDR breaks[2];
628 int opcode;
629
630 if (insert_breakpoints_p)
631 {
632
633 loc = read_pc ();
634
635 insn = read_memory_integer (loc, 4);
636
637 breaks[0] = loc + breakp_sz;
638 opcode = insn >> 26;
639 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
640
641 /* Don't put two breakpoints on the same address. */
642 if (breaks[1] == breaks[0])
643 breaks[1] = -1;
644
645 stepBreaks[1].address = 0;
646
647 for (ii = 0; ii < 2; ++ii)
648 {
649
650 /* ignore invalid breakpoint. */
651 if (breaks[ii] == -1)
652 continue;
653 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
654 stepBreaks[ii].address = breaks[ii];
655 }
656
657 }
658 else
659 {
660
661 /* remove step breakpoints. */
662 for (ii = 0; ii < 2; ++ii)
663 if (stepBreaks[ii].address != 0)
664 target_remove_breakpoint (stepBreaks[ii].address,
665 stepBreaks[ii].data);
666 }
667 errno = 0; /* FIXME, don't ignore errors! */
668 /* What errors? {read,write}_memory call error(). */
669 }
670
671
672 /* return pc value after skipping a function prologue and also return
673 information about a function frame.
674
675 in struct rs6000_framedata fdata:
676 - frameless is TRUE, if function does not have a frame.
677 - nosavedpc is TRUE, if function does not save %pc value in its frame.
678 - offset is the initial size of this stack frame --- the amount by
679 which we decrement the sp to allocate the frame.
680 - saved_gpr is the number of the first saved gpr.
681 - saved_fpr is the number of the first saved fpr.
682 - saved_vr is the number of the first saved vr.
683 - saved_ev is the number of the first saved ev.
684 - alloca_reg is the number of the register used for alloca() handling.
685 Otherwise -1.
686 - gpr_offset is the offset of the first saved gpr from the previous frame.
687 - fpr_offset is the offset of the first saved fpr from the previous frame.
688 - vr_offset is the offset of the first saved vr from the previous frame.
689 - ev_offset is the offset of the first saved ev from the previous frame.
690 - lr_offset is the offset of the saved lr
691 - cr_offset is the offset of the saved cr
692 - vrsave_offset is the offset of the saved vrsave register
693 */
694
695 #define SIGNED_SHORT(x) \
696 ((sizeof (short) == 2) \
697 ? ((int)(short)(x)) \
698 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
699
700 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
701
702 /* Limit the number of skipped non-prologue instructions, as the examining
703 of the prologue is expensive. */
704 static int max_skip_non_prologue_insns = 10;
705
706 /* Given PC representing the starting address of a function, and
707 LIM_PC which is the (sloppy) limit to which to scan when looking
708 for a prologue, attempt to further refine this limit by using
709 the line data in the symbol table. If successful, a better guess
710 on where the prologue ends is returned, otherwise the previous
711 value of lim_pc is returned. */
712
713 /* FIXME: cagney/2004-02-14: This function and logic have largely been
714 superseded by skip_prologue_using_sal. */
715
716 static CORE_ADDR
717 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
718 {
719 struct symtab_and_line prologue_sal;
720
721 prologue_sal = find_pc_line (pc, 0);
722 if (prologue_sal.line != 0)
723 {
724 int i;
725 CORE_ADDR addr = prologue_sal.end;
726
727 /* Handle the case in which compiler's optimizer/scheduler
728 has moved instructions into the prologue. We scan ahead
729 in the function looking for address ranges whose corresponding
730 line number is less than or equal to the first one that we
731 found for the function. (It can be less than when the
732 scheduler puts a body instruction before the first prologue
733 instruction.) */
734 for (i = 2 * max_skip_non_prologue_insns;
735 i > 0 && (lim_pc == 0 || addr < lim_pc);
736 i--)
737 {
738 struct symtab_and_line sal;
739
740 sal = find_pc_line (addr, 0);
741 if (sal.line == 0)
742 break;
743 if (sal.line <= prologue_sal.line
744 && sal.symtab == prologue_sal.symtab)
745 {
746 prologue_sal = sal;
747 }
748 addr = sal.end;
749 }
750
751 if (lim_pc == 0 || prologue_sal.end < lim_pc)
752 lim_pc = prologue_sal.end;
753 }
754 return lim_pc;
755 }
756
757 /* Return nonzero if the given instruction OP can be part of the prologue
758 of a function and saves a parameter on the stack. FRAMEP should be
759 set if one of the previous instructions in the function has set the
760 Frame Pointer. */
761
762 static int
763 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
764 {
765 /* Move parameters from argument registers to temporary register. */
766 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
767 {
768 /* Rx must be scratch register r0. */
769 const int rx_regno = (op >> 16) & 31;
770 /* Ry: Only r3 - r10 are used for parameter passing. */
771 const int ry_regno = GET_SRC_REG (op);
772
773 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
774 {
775 *r0_contains_arg = 1;
776 return 1;
777 }
778 else
779 return 0;
780 }
781
782 /* Save a General Purpose Register on stack. */
783
784 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
785 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
786 {
787 /* Rx: Only r3 - r10 are used for parameter passing. */
788 const int rx_regno = GET_SRC_REG (op);
789
790 return (rx_regno >= 3 && rx_regno <= 10);
791 }
792
793 /* Save a General Purpose Register on stack via the Frame Pointer. */
794
795 if (framep &&
796 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
797 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
798 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
799 {
800 /* Rx: Usually, only r3 - r10 are used for parameter passing.
801 However, the compiler sometimes uses r0 to hold an argument. */
802 const int rx_regno = GET_SRC_REG (op);
803
804 return ((rx_regno >= 3 && rx_regno <= 10)
805 || (rx_regno == 0 && *r0_contains_arg));
806 }
807
808 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
809 {
810 /* Only f2 - f8 are used for parameter passing. */
811 const int src_regno = GET_SRC_REG (op);
812
813 return (src_regno >= 2 && src_regno <= 8);
814 }
815
816 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
817 {
818 /* Only f2 - f8 are used for parameter passing. */
819 const int src_regno = GET_SRC_REG (op);
820
821 return (src_regno >= 2 && src_regno <= 8);
822 }
823
824 /* Not an insn that saves a parameter on stack. */
825 return 0;
826 }
827
828 static CORE_ADDR
829 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
830 {
831 CORE_ADDR orig_pc = pc;
832 CORE_ADDR last_prologue_pc = pc;
833 CORE_ADDR li_found_pc = 0;
834 char buf[4];
835 unsigned long op;
836 long offset = 0;
837 long vr_saved_offset = 0;
838 int lr_reg = -1;
839 int cr_reg = -1;
840 int vr_reg = -1;
841 int ev_reg = -1;
842 long ev_offset = 0;
843 int vrsave_reg = -1;
844 int reg;
845 int framep = 0;
846 int minimal_toc_loaded = 0;
847 int prev_insn_was_prologue_insn = 1;
848 int num_skip_non_prologue_insns = 0;
849 int r0_contains_arg = 0;
850 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
852
853 /* Attempt to find the end of the prologue when no limit is specified.
854 Note that refine_prologue_limit() has been written so that it may
855 be used to "refine" the limits of non-zero PC values too, but this
856 is only safe if we 1) trust the line information provided by the
857 compiler and 2) iterate enough to actually find the end of the
858 prologue.
859
860 It may become a good idea at some point (for both performance and
861 accuracy) to unconditionally call refine_prologue_limit(). But,
862 until we can make a clear determination that this is beneficial,
863 we'll play it safe and only use it to obtain a limit when none
864 has been specified. */
865 if (lim_pc == 0)
866 lim_pc = refine_prologue_limit (pc, lim_pc);
867
868 memset (fdata, 0, sizeof (struct rs6000_framedata));
869 fdata->saved_gpr = -1;
870 fdata->saved_fpr = -1;
871 fdata->saved_vr = -1;
872 fdata->saved_ev = -1;
873 fdata->alloca_reg = -1;
874 fdata->frameless = 1;
875 fdata->nosavedpc = 1;
876
877 for (;; pc += 4)
878 {
879 /* Sometimes it isn't clear if an instruction is a prologue
880 instruction or not. When we encounter one of these ambiguous
881 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
882 Otherwise, we'll assume that it really is a prologue instruction. */
883 if (prev_insn_was_prologue_insn)
884 last_prologue_pc = pc;
885
886 /* Stop scanning if we've hit the limit. */
887 if (lim_pc != 0 && pc >= lim_pc)
888 break;
889
890 prev_insn_was_prologue_insn = 1;
891
892 /* Fetch the instruction and convert it to an integer. */
893 if (target_read_memory (pc, buf, 4))
894 break;
895 op = extract_signed_integer (buf, 4);
896
897 if ((op & 0xfc1fffff) == 0x7c0802a6)
898 { /* mflr Rx */
899 /* Since shared library / PIC code, which needs to get its
900 address at runtime, can appear to save more than one link
901 register vis:
902
903 *INDENT-OFF*
904 stwu r1,-304(r1)
905 mflr r3
906 bl 0xff570d0 (blrl)
907 stw r30,296(r1)
908 mflr r30
909 stw r31,300(r1)
910 stw r3,308(r1);
911 ...
912 *INDENT-ON*
913
914 remember just the first one, but skip over additional
915 ones. */
916 if (lr_reg < 0)
917 lr_reg = (op & 0x03e00000);
918 if (lr_reg == 0)
919 r0_contains_arg = 0;
920 continue;
921 }
922 else if ((op & 0xfc1fffff) == 0x7c000026)
923 { /* mfcr Rx */
924 cr_reg = (op & 0x03e00000);
925 if (cr_reg == 0)
926 r0_contains_arg = 0;
927 continue;
928
929 }
930 else if ((op & 0xfc1f0000) == 0xd8010000)
931 { /* stfd Rx,NUM(r1) */
932 reg = GET_SRC_REG (op);
933 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
934 {
935 fdata->saved_fpr = reg;
936 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
937 }
938 continue;
939
940 }
941 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
942 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
943 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
944 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
945 {
946
947 reg = GET_SRC_REG (op);
948 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
949 {
950 fdata->saved_gpr = reg;
951 if ((op & 0xfc1f0003) == 0xf8010000)
952 op &= ~3UL;
953 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
954 }
955 continue;
956
957 }
958 else if ((op & 0xffff0000) == 0x60000000)
959 {
960 /* nop */
961 /* Allow nops in the prologue, but do not consider them to
962 be part of the prologue unless followed by other prologue
963 instructions. */
964 prev_insn_was_prologue_insn = 0;
965 continue;
966
967 }
968 else if ((op & 0xffff0000) == 0x3c000000)
969 { /* addis 0,0,NUM, used
970 for >= 32k frames */
971 fdata->offset = (op & 0x0000ffff) << 16;
972 fdata->frameless = 0;
973 r0_contains_arg = 0;
974 continue;
975
976 }
977 else if ((op & 0xffff0000) == 0x60000000)
978 { /* ori 0,0,NUM, 2nd ha
979 lf of >= 32k frames */
980 fdata->offset |= (op & 0x0000ffff);
981 fdata->frameless = 0;
982 r0_contains_arg = 0;
983 continue;
984
985 }
986 else if (lr_reg >= 0 &&
987 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
988 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
989 /* stw Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
991 /* stwu Rx, NUM(r1) */
992 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
993 { /* where Rx == lr */
994 fdata->lr_offset = offset;
995 fdata->nosavedpc = 0;
996 /* Invalidate lr_reg, but don't set it to -1.
997 That would mean that it had never been set. */
998 lr_reg = -2;
999 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1000 (op & 0xfc000000) == 0x90000000) /* stw */
1001 {
1002 /* Does not update r1, so add displacement to lr_offset. */
1003 fdata->lr_offset += SIGNED_SHORT (op);
1004 }
1005 continue;
1006
1007 }
1008 else if (cr_reg >= 0 &&
1009 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1010 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1011 /* stw Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1013 /* stwu Rx, NUM(r1) */
1014 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1015 { /* where Rx == cr */
1016 fdata->cr_offset = offset;
1017 /* Invalidate cr_reg, but don't set it to -1.
1018 That would mean that it had never been set. */
1019 cr_reg = -2;
1020 if ((op & 0xfc000003) == 0xf8000000 ||
1021 (op & 0xfc000000) == 0x90000000)
1022 {
1023 /* Does not update r1, so add displacement to cr_offset. */
1024 fdata->cr_offset += SIGNED_SHORT (op);
1025 }
1026 continue;
1027
1028 }
1029 else if (op == 0x48000005)
1030 { /* bl .+4 used in
1031 -mrelocatable */
1032 continue;
1033
1034 }
1035 else if (op == 0x48000004)
1036 { /* b .+4 (xlc) */
1037 break;
1038
1039 }
1040 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1041 in V.4 -mminimal-toc */
1042 (op & 0xffff0000) == 0x3bde0000)
1043 { /* addi 30,30,foo@l */
1044 continue;
1045
1046 }
1047 else if ((op & 0xfc000001) == 0x48000001)
1048 { /* bl foo,
1049 to save fprs??? */
1050
1051 fdata->frameless = 0;
1052 /* Don't skip over the subroutine call if it is not within
1053 the first three instructions of the prologue and either
1054 we have no line table information or the line info tells
1055 us that the subroutine call is not part of the line
1056 associated with the prologue. */
1057 if ((pc - orig_pc) > 8)
1058 {
1059 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1060 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1061
1062 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1063 break;
1064 }
1065
1066 op = read_memory_integer (pc + 4, 4);
1067
1068 /* At this point, make sure this is not a trampoline
1069 function (a function that simply calls another functions,
1070 and nothing else). If the next is not a nop, this branch
1071 was part of the function prologue. */
1072
1073 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1074 break; /* don't skip over
1075 this branch */
1076 continue;
1077
1078 }
1079 /* update stack pointer */
1080 else if ((op & 0xfc1f0000) == 0x94010000)
1081 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1082 fdata->frameless = 0;
1083 fdata->offset = SIGNED_SHORT (op);
1084 offset = fdata->offset;
1085 continue;
1086 }
1087 else if ((op & 0xfc1f016a) == 0x7c01016e)
1088 { /* stwux rX,r1,rY */
1089 /* no way to figure out what r1 is going to be */
1090 fdata->frameless = 0;
1091 offset = fdata->offset;
1092 continue;
1093 }
1094 else if ((op & 0xfc1f0003) == 0xf8010001)
1095 { /* stdu rX,NUM(r1) */
1096 fdata->frameless = 0;
1097 fdata->offset = SIGNED_SHORT (op & ~3UL);
1098 offset = fdata->offset;
1099 continue;
1100 }
1101 else if ((op & 0xfc1f016a) == 0x7c01016a)
1102 { /* stdux rX,r1,rY */
1103 /* no way to figure out what r1 is going to be */
1104 fdata->frameless = 0;
1105 offset = fdata->offset;
1106 continue;
1107 }
1108 /* Load up minimal toc pointer */
1109 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1110 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1111 && !minimal_toc_loaded)
1112 {
1113 minimal_toc_loaded = 1;
1114 continue;
1115
1116 /* move parameters from argument registers to local variable
1117 registers */
1118 }
1119 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1120 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1121 (((op >> 21) & 31) <= 10) &&
1122 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1123 {
1124 continue;
1125
1126 /* store parameters in stack */
1127 }
1128 /* Move parameters from argument registers to temporary register. */
1129 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1130 {
1131 continue;
1132
1133 /* Set up frame pointer */
1134 }
1135 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1136 || op == 0x7c3f0b78)
1137 { /* mr r31, r1 */
1138 fdata->frameless = 0;
1139 framep = 1;
1140 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1141 continue;
1142
1143 /* Another way to set up the frame pointer. */
1144 }
1145 else if ((op & 0xfc1fffff) == 0x38010000)
1146 { /* addi rX, r1, 0x0 */
1147 fdata->frameless = 0;
1148 framep = 1;
1149 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1150 + ((op & ~0x38010000) >> 21));
1151 continue;
1152 }
1153 /* AltiVec related instructions. */
1154 /* Store the vrsave register (spr 256) in another register for
1155 later manipulation, or load a register into the vrsave
1156 register. 2 instructions are used: mfvrsave and
1157 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1158 and mtspr SPR256, Rn. */
1159 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1160 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1161 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1162 {
1163 vrsave_reg = GET_SRC_REG (op);
1164 continue;
1165 }
1166 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1167 {
1168 continue;
1169 }
1170 /* Store the register where vrsave was saved to onto the stack:
1171 rS is the register where vrsave was stored in a previous
1172 instruction. */
1173 /* 100100 sssss 00001 dddddddd dddddddd */
1174 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1175 {
1176 if (vrsave_reg == GET_SRC_REG (op))
1177 {
1178 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1179 vrsave_reg = -1;
1180 }
1181 continue;
1182 }
1183 /* Compute the new value of vrsave, by modifying the register
1184 where vrsave was saved to. */
1185 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1186 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1187 {
1188 continue;
1189 }
1190 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1191 in a pair of insns to save the vector registers on the
1192 stack. */
1193 /* 001110 00000 00000 iiii iiii iiii iiii */
1194 /* 001110 01110 00000 iiii iiii iiii iiii */
1195 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1196 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1197 {
1198 if ((op & 0xffff0000) == 0x38000000)
1199 r0_contains_arg = 0;
1200 li_found_pc = pc;
1201 vr_saved_offset = SIGNED_SHORT (op);
1202
1203 /* This insn by itself is not part of the prologue, unless
1204 if part of the pair of insns mentioned above. So do not
1205 record this insn as part of the prologue yet. */
1206 prev_insn_was_prologue_insn = 0;
1207 }
1208 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1209 /* 011111 sssss 11111 00000 00111001110 */
1210 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1211 {
1212 if (pc == (li_found_pc + 4))
1213 {
1214 vr_reg = GET_SRC_REG (op);
1215 /* If this is the first vector reg to be saved, or if
1216 it has a lower number than others previously seen,
1217 reupdate the frame info. */
1218 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1219 {
1220 fdata->saved_vr = vr_reg;
1221 fdata->vr_offset = vr_saved_offset + offset;
1222 }
1223 vr_saved_offset = -1;
1224 vr_reg = -1;
1225 li_found_pc = 0;
1226 }
1227 }
1228 /* End AltiVec related instructions. */
1229
1230 /* Start BookE related instructions. */
1231 /* Store gen register S at (r31+uimm).
1232 Any register less than r13 is volatile, so we don't care. */
1233 /* 000100 sssss 11111 iiiii 01100100001 */
1234 else if (arch_info->mach == bfd_mach_ppc_e500
1235 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1236 {
1237 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1238 {
1239 unsigned int imm;
1240 ev_reg = GET_SRC_REG (op);
1241 imm = (op >> 11) & 0x1f;
1242 ev_offset = imm * 8;
1243 /* If this is the first vector reg to be saved, or if
1244 it has a lower number than others previously seen,
1245 reupdate the frame info. */
1246 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1247 {
1248 fdata->saved_ev = ev_reg;
1249 fdata->ev_offset = ev_offset + offset;
1250 }
1251 }
1252 continue;
1253 }
1254 /* Store gen register rS at (r1+rB). */
1255 /* 000100 sssss 00001 bbbbb 01100100000 */
1256 else if (arch_info->mach == bfd_mach_ppc_e500
1257 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1258 {
1259 if (pc == (li_found_pc + 4))
1260 {
1261 ev_reg = GET_SRC_REG (op);
1262 /* If this is the first vector reg to be saved, or if
1263 it has a lower number than others previously seen,
1264 reupdate the frame info. */
1265 /* We know the contents of rB from the previous instruction. */
1266 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1267 {
1268 fdata->saved_ev = ev_reg;
1269 fdata->ev_offset = vr_saved_offset + offset;
1270 }
1271 vr_saved_offset = -1;
1272 ev_reg = -1;
1273 li_found_pc = 0;
1274 }
1275 continue;
1276 }
1277 /* Store gen register r31 at (rA+uimm). */
1278 /* 000100 11111 aaaaa iiiii 01100100001 */
1279 else if (arch_info->mach == bfd_mach_ppc_e500
1280 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1281 {
1282 /* Wwe know that the source register is 31 already, but
1283 it can't hurt to compute it. */
1284 ev_reg = GET_SRC_REG (op);
1285 ev_offset = ((op >> 11) & 0x1f) * 8;
1286 /* If this is the first vector reg to be saved, or if
1287 it has a lower number than others previously seen,
1288 reupdate the frame info. */
1289 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1290 {
1291 fdata->saved_ev = ev_reg;
1292 fdata->ev_offset = ev_offset + offset;
1293 }
1294
1295 continue;
1296 }
1297 /* Store gen register S at (r31+r0).
1298 Store param on stack when offset from SP bigger than 4 bytes. */
1299 /* 000100 sssss 11111 00000 01100100000 */
1300 else if (arch_info->mach == bfd_mach_ppc_e500
1301 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1302 {
1303 if (pc == (li_found_pc + 4))
1304 {
1305 if ((op & 0x03e00000) >= 0x01a00000)
1306 {
1307 ev_reg = GET_SRC_REG (op);
1308 /* If this is the first vector reg to be saved, or if
1309 it has a lower number than others previously seen,
1310 reupdate the frame info. */
1311 /* We know the contents of r0 from the previous
1312 instruction. */
1313 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1314 {
1315 fdata->saved_ev = ev_reg;
1316 fdata->ev_offset = vr_saved_offset + offset;
1317 }
1318 ev_reg = -1;
1319 }
1320 vr_saved_offset = -1;
1321 li_found_pc = 0;
1322 continue;
1323 }
1324 }
1325 /* End BookE related instructions. */
1326
1327 else
1328 {
1329 /* Not a recognized prologue instruction.
1330 Handle optimizer code motions into the prologue by continuing
1331 the search if we have no valid frame yet or if the return
1332 address is not yet saved in the frame. */
1333 if (fdata->frameless == 0
1334 && (lr_reg == -1 || fdata->nosavedpc == 0))
1335 break;
1336
1337 if (op == 0x4e800020 /* blr */
1338 || op == 0x4e800420) /* bctr */
1339 /* Do not scan past epilogue in frameless functions or
1340 trampolines. */
1341 break;
1342 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1343 /* Never skip branches. */
1344 break;
1345
1346 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1347 /* Do not scan too many insns, scanning insns is expensive with
1348 remote targets. */
1349 break;
1350
1351 /* Continue scanning. */
1352 prev_insn_was_prologue_insn = 0;
1353 continue;
1354 }
1355 }
1356
1357 #if 0
1358 /* I have problems with skipping over __main() that I need to address
1359 * sometime. Previously, I used to use misc_function_vector which
1360 * didn't work as well as I wanted to be. -MGO */
1361
1362 /* If the first thing after skipping a prolog is a branch to a function,
1363 this might be a call to an initializer in main(), introduced by gcc2.
1364 We'd like to skip over it as well. Fortunately, xlc does some extra
1365 work before calling a function right after a prologue, thus we can
1366 single out such gcc2 behaviour. */
1367
1368
1369 if ((op & 0xfc000001) == 0x48000001)
1370 { /* bl foo, an initializer function? */
1371 op = read_memory_integer (pc + 4, 4);
1372
1373 if (op == 0x4def7b82)
1374 { /* cror 0xf, 0xf, 0xf (nop) */
1375
1376 /* Check and see if we are in main. If so, skip over this
1377 initializer function as well. */
1378
1379 tmp = find_pc_misc_function (pc);
1380 if (tmp >= 0
1381 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1382 return pc + 8;
1383 }
1384 }
1385 #endif /* 0 */
1386
1387 fdata->offset = -fdata->offset;
1388 return last_prologue_pc;
1389 }
1390
1391
1392 /*************************************************************************
1393 Support for creating pushing a dummy frame into the stack, and popping
1394 frames, etc.
1395 *************************************************************************/
1396
1397
1398 /* All the ABI's require 16 byte alignment. */
1399 static CORE_ADDR
1400 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1401 {
1402 return (addr & -16);
1403 }
1404
1405 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1406 the first eight words of the argument list (that might be less than
1407 eight parameters if some parameters occupy more than one word) are
1408 passed in r3..r10 registers. float and double parameters are
1409 passed in fpr's, in addition to that. Rest of the parameters if any
1410 are passed in user stack. There might be cases in which half of the
1411 parameter is copied into registers, the other half is pushed into
1412 stack.
1413
1414 Stack must be aligned on 64-bit boundaries when synthesizing
1415 function calls.
1416
1417 If the function is returning a structure, then the return address is passed
1418 in r3, then the first 7 words of the parameters can be passed in registers,
1419 starting from r4. */
1420
1421 static CORE_ADDR
1422 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1423 struct regcache *regcache, CORE_ADDR bp_addr,
1424 int nargs, struct value **args, CORE_ADDR sp,
1425 int struct_return, CORE_ADDR struct_addr)
1426 {
1427 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1428 int ii;
1429 int len = 0;
1430 int argno; /* current argument number */
1431 int argbytes; /* current argument byte */
1432 char tmp_buffer[50];
1433 int f_argno = 0; /* current floating point argno */
1434 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1435 CORE_ADDR func_addr = find_function_addr (function, NULL);
1436
1437 struct value *arg = 0;
1438 struct type *type;
1439
1440 CORE_ADDR saved_sp;
1441
1442 /* The calling convention this function implements assumes the
1443 processor has floating-point registers. We shouldn't be using it
1444 on PPC variants that lack them. */
1445 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1446
1447 /* The first eight words of ther arguments are passed in registers.
1448 Copy them appropriately. */
1449 ii = 0;
1450
1451 /* If the function is returning a `struct', then the first word
1452 (which will be passed in r3) is used for struct return address.
1453 In that case we should advance one word and start from r4
1454 register to copy parameters. */
1455 if (struct_return)
1456 {
1457 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1458 struct_addr);
1459 ii++;
1460 }
1461
1462 /*
1463 effectively indirect call... gcc does...
1464
1465 return_val example( float, int);
1466
1467 eabi:
1468 float in fp0, int in r3
1469 offset of stack on overflow 8/16
1470 for varargs, must go by type.
1471 power open:
1472 float in r3&r4, int in r5
1473 offset of stack on overflow different
1474 both:
1475 return in r3 or f0. If no float, must study how gcc emulates floats;
1476 pay attention to arg promotion.
1477 User may have to cast\args to handle promotion correctly
1478 since gdb won't know if prototype supplied or not.
1479 */
1480
1481 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1482 {
1483 int reg_size = register_size (current_gdbarch, ii + 3);
1484
1485 arg = args[argno];
1486 type = check_typedef (value_type (arg));
1487 len = TYPE_LENGTH (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1490 {
1491
1492 /* Floating point arguments are passed in fpr's, as well as gpr's.
1493 There are 13 fpr's reserved for passing parameters. At this point
1494 there is no way we would run out of them. */
1495
1496 gdb_assert (len <= 8);
1497
1498 regcache_cooked_write (regcache,
1499 tdep->ppc_fp0_regnum + 1 + f_argno,
1500 value_contents (arg));
1501 ++f_argno;
1502 }
1503
1504 if (len > reg_size)
1505 {
1506
1507 /* Argument takes more than one register. */
1508 while (argbytes < len)
1509 {
1510 char word[MAX_REGISTER_SIZE];
1511 memset (word, 0, reg_size);
1512 memcpy (word,
1513 ((char *) value_contents (arg)) + argbytes,
1514 (len - argbytes) > reg_size
1515 ? reg_size : len - argbytes);
1516 regcache_cooked_write (regcache,
1517 tdep->ppc_gp0_regnum + 3 + ii,
1518 word);
1519 ++ii, argbytes += reg_size;
1520
1521 if (ii >= 8)
1522 goto ran_out_of_registers_for_arguments;
1523 }
1524 argbytes = 0;
1525 --ii;
1526 }
1527 else
1528 {
1529 /* Argument can fit in one register. No problem. */
1530 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1531 char word[MAX_REGISTER_SIZE];
1532
1533 memset (word, 0, reg_size);
1534 memcpy (word, value_contents (arg), len);
1535 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1536 }
1537 ++argno;
1538 }
1539
1540 ran_out_of_registers_for_arguments:
1541
1542 saved_sp = read_sp ();
1543
1544 /* Location for 8 parameters are always reserved. */
1545 sp -= wordsize * 8;
1546
1547 /* Another six words for back chain, TOC register, link register, etc. */
1548 sp -= wordsize * 6;
1549
1550 /* Stack pointer must be quadword aligned. */
1551 sp &= -16;
1552
1553 /* If there are more arguments, allocate space for them in
1554 the stack, then push them starting from the ninth one. */
1555
1556 if ((argno < nargs) || argbytes)
1557 {
1558 int space = 0, jj;
1559
1560 if (argbytes)
1561 {
1562 space += ((len - argbytes + 3) & -4);
1563 jj = argno + 1;
1564 }
1565 else
1566 jj = argno;
1567
1568 for (; jj < nargs; ++jj)
1569 {
1570 struct value *val = args[jj];
1571 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1572 }
1573
1574 /* Add location required for the rest of the parameters. */
1575 space = (space + 15) & -16;
1576 sp -= space;
1577
1578 /* This is another instance we need to be concerned about
1579 securing our stack space. If we write anything underneath %sp
1580 (r1), we might conflict with the kernel who thinks he is free
1581 to use this area. So, update %sp first before doing anything
1582 else. */
1583
1584 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1585
1586 /* If the last argument copied into the registers didn't fit there
1587 completely, push the rest of it into stack. */
1588
1589 if (argbytes)
1590 {
1591 write_memory (sp + 24 + (ii * 4),
1592 ((char *) value_contents (arg)) + argbytes,
1593 len - argbytes);
1594 ++argno;
1595 ii += ((len - argbytes + 3) & -4) / 4;
1596 }
1597
1598 /* Push the rest of the arguments into stack. */
1599 for (; argno < nargs; ++argno)
1600 {
1601
1602 arg = args[argno];
1603 type = check_typedef (value_type (arg));
1604 len = TYPE_LENGTH (type);
1605
1606
1607 /* Float types should be passed in fpr's, as well as in the
1608 stack. */
1609 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1610 {
1611
1612 gdb_assert (len <= 8);
1613
1614 regcache_cooked_write (regcache,
1615 tdep->ppc_fp0_regnum + 1 + f_argno,
1616 value_contents (arg));
1617 ++f_argno;
1618 }
1619
1620 write_memory (sp + 24 + (ii * 4),
1621 (char *) value_contents (arg),
1622 len);
1623 ii += ((len + 3) & -4) / 4;
1624 }
1625 }
1626
1627 /* Set the stack pointer. According to the ABI, the SP is meant to
1628 be set _before_ the corresponding stack space is used. On AIX,
1629 this even applies when the target has been completely stopped!
1630 Not doing this can lead to conflicts with the kernel which thinks
1631 that it still has control over this not-yet-allocated stack
1632 region. */
1633 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1634
1635 /* Set back chain properly. */
1636 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1637 write_memory (sp, tmp_buffer, 4);
1638
1639 /* Point the inferior function call's return address at the dummy's
1640 breakpoint. */
1641 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1642
1643 /* Set the TOC register, get the value from the objfile reader
1644 which, in turn, gets it from the VMAP table. */
1645 if (rs6000_find_toc_address_hook != NULL)
1646 {
1647 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1648 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1649 }
1650
1651 target_store_registers (-1);
1652 return sp;
1653 }
1654
1655 /* PowerOpen always puts structures in memory. Vectors, which were
1656 added later, do get returned in a register though. */
1657
1658 static int
1659 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1660 {
1661 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1662 && TYPE_VECTOR (value_type))
1663 return 0;
1664 return 1;
1665 }
1666
1667 static void
1668 rs6000_extract_return_value (struct type *valtype, bfd_byte *regbuf,
1669 bfd_byte *valbuf)
1670 {
1671 int offset = 0;
1672 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1673
1674 /* The calling convention this function implements assumes the
1675 processor has floating-point registers. We shouldn't be using it
1676 on PPC variants that lack them. */
1677 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1678
1679 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1680 {
1681
1682 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1683 We need to truncate the return value into float size (4 byte) if
1684 necessary. */
1685
1686 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1687 (tdep->ppc_fp0_regnum + 1)],
1688 builtin_type_double,
1689 valbuf,
1690 valtype);
1691 }
1692 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1693 && TYPE_LENGTH (valtype) == 16
1694 && TYPE_VECTOR (valtype))
1695 {
1696 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1697 TYPE_LENGTH (valtype));
1698 }
1699 else
1700 {
1701 /* return value is copied starting from r3. */
1702 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1703 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1704 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1705
1706 memcpy (valbuf,
1707 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1708 TYPE_LENGTH (valtype));
1709 }
1710 }
1711
1712 /* Return whether handle_inferior_event() should proceed through code
1713 starting at PC in function NAME when stepping.
1714
1715 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1716 handle memory references that are too distant to fit in instructions
1717 generated by the compiler. For example, if 'foo' in the following
1718 instruction:
1719
1720 lwz r9,foo(r2)
1721
1722 is greater than 32767, the linker might replace the lwz with a branch to
1723 somewhere in @FIX1 that does the load in 2 instructions and then branches
1724 back to where execution should continue.
1725
1726 GDB should silently step over @FIX code, just like AIX dbx does.
1727 Unfortunately, the linker uses the "b" instruction for the
1728 branches, meaning that the link register doesn't get set.
1729 Therefore, GDB's usual step_over_function () mechanism won't work.
1730
1731 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1732 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1733 @FIX code. */
1734
1735 int
1736 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1737 {
1738 return name && !strncmp (name, "@FIX", 4);
1739 }
1740
1741 /* Skip code that the user doesn't want to see when stepping:
1742
1743 1. Indirect function calls use a piece of trampoline code to do context
1744 switching, i.e. to set the new TOC table. Skip such code if we are on
1745 its first instruction (as when we have single-stepped to here).
1746
1747 2. Skip shared library trampoline code (which is different from
1748 indirect function call trampolines).
1749
1750 3. Skip bigtoc fixup code.
1751
1752 Result is desired PC to step until, or NULL if we are not in
1753 code that should be skipped. */
1754
1755 CORE_ADDR
1756 rs6000_skip_trampoline_code (CORE_ADDR pc)
1757 {
1758 unsigned int ii, op;
1759 int rel;
1760 CORE_ADDR solib_target_pc;
1761 struct minimal_symbol *msymbol;
1762
1763 static unsigned trampoline_code[] =
1764 {
1765 0x800b0000, /* l r0,0x0(r11) */
1766 0x90410014, /* st r2,0x14(r1) */
1767 0x7c0903a6, /* mtctr r0 */
1768 0x804b0004, /* l r2,0x4(r11) */
1769 0x816b0008, /* l r11,0x8(r11) */
1770 0x4e800420, /* bctr */
1771 0x4e800020, /* br */
1772 0
1773 };
1774
1775 /* Check for bigtoc fixup code. */
1776 msymbol = lookup_minimal_symbol_by_pc (pc);
1777 if (msymbol
1778 && rs6000_in_solib_return_trampoline (pc,
1779 DEPRECATED_SYMBOL_NAME (msymbol)))
1780 {
1781 /* Double-check that the third instruction from PC is relative "b". */
1782 op = read_memory_integer (pc + 8, 4);
1783 if ((op & 0xfc000003) == 0x48000000)
1784 {
1785 /* Extract bits 6-29 as a signed 24-bit relative word address and
1786 add it to the containing PC. */
1787 rel = ((int)(op << 6) >> 6);
1788 return pc + 8 + rel;
1789 }
1790 }
1791
1792 /* If pc is in a shared library trampoline, return its target. */
1793 solib_target_pc = find_solib_trampoline_target (pc);
1794 if (solib_target_pc)
1795 return solib_target_pc;
1796
1797 for (ii = 0; trampoline_code[ii]; ++ii)
1798 {
1799 op = read_memory_integer (pc + (ii * 4), 4);
1800 if (op != trampoline_code[ii])
1801 return 0;
1802 }
1803 ii = read_register (11); /* r11 holds destination addr */
1804 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1805 return pc;
1806 }
1807
1808 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1809 isn't available with that word size, return 0. */
1810
1811 static int
1812 regsize (const struct reg *reg, int wordsize)
1813 {
1814 return wordsize == 8 ? reg->sz64 : reg->sz32;
1815 }
1816
1817 /* Return the name of register number N, or null if no such register exists
1818 in the current architecture. */
1819
1820 static const char *
1821 rs6000_register_name (int n)
1822 {
1823 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1824 const struct reg *reg = tdep->regs + n;
1825
1826 if (!regsize (reg, tdep->wordsize))
1827 return NULL;
1828 return reg->name;
1829 }
1830
1831 /* Return the GDB type object for the "standard" data type
1832 of data in register N. */
1833
1834 static struct type *
1835 rs6000_register_type (struct gdbarch *gdbarch, int n)
1836 {
1837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1838 const struct reg *reg = tdep->regs + n;
1839
1840 if (reg->fpr)
1841 return builtin_type_double;
1842 else
1843 {
1844 int size = regsize (reg, tdep->wordsize);
1845 switch (size)
1846 {
1847 case 0:
1848 return builtin_type_int0;
1849 case 4:
1850 return builtin_type_uint32;
1851 case 8:
1852 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1853 return builtin_type_vec64;
1854 else
1855 return builtin_type_uint64;
1856 break;
1857 case 16:
1858 return builtin_type_vec128;
1859 break;
1860 default:
1861 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1862 n, size);
1863 }
1864 }
1865 }
1866
1867 /* Is REGNUM a member of REGGROUP? */
1868 static int
1869 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1870 struct reggroup *group)
1871 {
1872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1873 int float_p;
1874 int vector_p;
1875 int general_p;
1876
1877 if (REGISTER_NAME (regnum) == NULL
1878 || *REGISTER_NAME (regnum) == '\0')
1879 return 0;
1880 if (group == all_reggroup)
1881 return 1;
1882
1883 float_p = (regnum == tdep->ppc_fpscr_regnum
1884 || (regnum >= tdep->ppc_fp0_regnum
1885 && regnum < tdep->ppc_fp0_regnum + 32));
1886 if (group == float_reggroup)
1887 return float_p;
1888
1889 vector_p = ((regnum >= tdep->ppc_vr0_regnum
1890 && regnum < tdep->ppc_vr0_regnum + 32)
1891 || (regnum >= tdep->ppc_ev0_regnum
1892 && regnum < tdep->ppc_ev0_regnum + 32)
1893 || regnum == tdep->ppc_vrsave_regnum
1894 || regnum == tdep->ppc_acc_regnum
1895 || regnum == tdep->ppc_spefscr_regnum);
1896 if (group == vector_reggroup)
1897 return vector_p;
1898
1899 /* Note that PS aka MSR isn't included - it's a system register (and
1900 besides, due to GCC's CFI foobar you do not want to restore
1901 it). */
1902 general_p = ((regnum >= tdep->ppc_gp0_regnum
1903 && regnum < tdep->ppc_gp0_regnum + 32)
1904 || regnum == tdep->ppc_toc_regnum
1905 || regnum == tdep->ppc_cr_regnum
1906 || regnum == tdep->ppc_lr_regnum
1907 || regnum == tdep->ppc_ctr_regnum
1908 || regnum == tdep->ppc_xer_regnum
1909 || regnum == PC_REGNUM);
1910 if (group == general_reggroup)
1911 return general_p;
1912
1913 if (group == save_reggroup || group == restore_reggroup)
1914 return general_p || vector_p || float_p;
1915
1916 return 0;
1917 }
1918
1919 /* The register format for RS/6000 floating point registers is always
1920 double, we need a conversion if the memory format is float. */
1921
1922 static int
1923 rs6000_convert_register_p (int regnum, struct type *type)
1924 {
1925 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1926
1927 return (reg->fpr
1928 && TYPE_CODE (type) == TYPE_CODE_FLT
1929 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1930 }
1931
1932 static void
1933 rs6000_register_to_value (struct frame_info *frame,
1934 int regnum,
1935 struct type *type,
1936 void *to)
1937 {
1938 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1939 char from[MAX_REGISTER_SIZE];
1940
1941 gdb_assert (reg->fpr);
1942 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1943
1944 get_frame_register (frame, regnum, from);
1945 convert_typed_floating (from, builtin_type_double, to, type);
1946 }
1947
1948 static void
1949 rs6000_value_to_register (struct frame_info *frame,
1950 int regnum,
1951 struct type *type,
1952 const void *from)
1953 {
1954 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1955 char to[MAX_REGISTER_SIZE];
1956
1957 gdb_assert (reg->fpr);
1958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1959
1960 convert_typed_floating (from, type, to, builtin_type_double);
1961 put_frame_register (frame, regnum, to);
1962 }
1963
1964 /* Move SPE vector register values between a 64-bit buffer and the two
1965 32-bit raw register halves in a regcache. This function handles
1966 both splitting a 64-bit value into two 32-bit halves, and joining
1967 two halves into a whole 64-bit value, depending on the function
1968 passed as the MOVE argument.
1969
1970 EV_REG must be the number of an SPE evN vector register --- a
1971 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1972 64-bit buffer.
1973
1974 Call MOVE once for each 32-bit half of that register, passing
1975 REGCACHE, the number of the raw register corresponding to that
1976 half, and the address of the appropriate half of BUFFER.
1977
1978 For example, passing 'regcache_raw_read' as the MOVE function will
1979 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1980 'regcache_raw_supply' will supply the contents of BUFFER to the
1981 appropriate pair of raw registers in REGCACHE.
1982
1983 You may need to cast away some 'const' qualifiers when passing
1984 MOVE, since this function can't tell at compile-time which of
1985 REGCACHE or BUFFER is acting as the source of the data. If C had
1986 co-variant type qualifiers, ... */
1987 static void
1988 e500_move_ev_register (void (*move) (struct regcache *regcache,
1989 int regnum, void *buf),
1990 struct regcache *regcache, int ev_reg,
1991 void *buffer)
1992 {
1993 struct gdbarch *arch = get_regcache_arch (regcache);
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1995 int reg_index;
1996 char *byte_buffer = buffer;
1997
1998 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1999 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2000
2001 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2002
2003 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2004 {
2005 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2006 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2007 }
2008 else
2009 {
2010 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2011 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2012 }
2013 }
2014
2015 static void
2016 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2017 int reg_nr, void *buffer)
2018 {
2019 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2021
2022 gdb_assert (regcache_arch == gdbarch);
2023
2024 if (tdep->ppc_ev0_regnum <= reg_nr
2025 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2026 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2027 else
2028 internal_error (__FILE__, __LINE__,
2029 _("e500_pseudo_register_read: "
2030 "called on unexpected register '%s' (%d)"),
2031 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2032 }
2033
2034 static void
2035 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2036 int reg_nr, const void *buffer)
2037 {
2038 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2040
2041 gdb_assert (regcache_arch == gdbarch);
2042
2043 if (tdep->ppc_ev0_regnum <= reg_nr
2044 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2045 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
2046 regcache_raw_write,
2047 regcache, reg_nr, (void *) buffer);
2048 else
2049 internal_error (__FILE__, __LINE__,
2050 _("e500_pseudo_register_read: "
2051 "called on unexpected register '%s' (%d)"),
2052 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2053 }
2054
2055 /* The E500 needs a custom reggroup function: it has anonymous raw
2056 registers, and default_register_reggroup_p assumes that anonymous
2057 registers are not members of any reggroup. */
2058 static int
2059 e500_register_reggroup_p (struct gdbarch *gdbarch,
2060 int regnum,
2061 struct reggroup *group)
2062 {
2063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2064
2065 /* The save and restore register groups need to include the
2066 upper-half registers, even though they're anonymous. */
2067 if ((group == save_reggroup
2068 || group == restore_reggroup)
2069 && (tdep->ppc_ev0_upper_regnum <= regnum
2070 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2071 return 1;
2072
2073 /* In all other regards, the default reggroup definition is fine. */
2074 return default_register_reggroup_p (gdbarch, regnum, group);
2075 }
2076
2077 /* Convert a DBX STABS register number to a GDB register number. */
2078 static int
2079 rs6000_stab_reg_to_regnum (int num)
2080 {
2081 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2082
2083 if (0 <= num && num <= 31)
2084 return tdep->ppc_gp0_regnum + num;
2085 else if (32 <= num && num <= 63)
2086 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2087 specifies registers the architecture doesn't have? Our
2088 callers don't check the value we return. */
2089 return tdep->ppc_fp0_regnum + (num - 32);
2090 else if (77 <= num && num <= 108)
2091 return tdep->ppc_vr0_regnum + (num - 77);
2092 else if (1200 <= num && num < 1200 + 32)
2093 return tdep->ppc_ev0_regnum + (num - 1200);
2094 else
2095 switch (num)
2096 {
2097 case 64:
2098 return tdep->ppc_mq_regnum;
2099 case 65:
2100 return tdep->ppc_lr_regnum;
2101 case 66:
2102 return tdep->ppc_ctr_regnum;
2103 case 76:
2104 return tdep->ppc_xer_regnum;
2105 case 109:
2106 return tdep->ppc_vrsave_regnum;
2107 case 110:
2108 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2109 case 111:
2110 return tdep->ppc_acc_regnum;
2111 case 112:
2112 return tdep->ppc_spefscr_regnum;
2113 default:
2114 return num;
2115 }
2116 }
2117
2118
2119 /* Convert a Dwarf 2 register number to a GDB register number. */
2120 static int
2121 rs6000_dwarf2_reg_to_regnum (int num)
2122 {
2123 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2124
2125 if (0 <= num && num <= 31)
2126 return tdep->ppc_gp0_regnum + num;
2127 else if (32 <= num && num <= 63)
2128 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2129 specifies registers the architecture doesn't have? Our
2130 callers don't check the value we return. */
2131 return tdep->ppc_fp0_regnum + (num - 32);
2132 else if (1124 <= num && num < 1124 + 32)
2133 return tdep->ppc_vr0_regnum + (num - 1124);
2134 else if (1200 <= num && num < 1200 + 32)
2135 return tdep->ppc_ev0_regnum + (num - 1200);
2136 else
2137 switch (num)
2138 {
2139 case 67:
2140 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2141 case 99:
2142 return tdep->ppc_acc_regnum;
2143 case 100:
2144 return tdep->ppc_mq_regnum;
2145 case 101:
2146 return tdep->ppc_xer_regnum;
2147 case 108:
2148 return tdep->ppc_lr_regnum;
2149 case 109:
2150 return tdep->ppc_ctr_regnum;
2151 case 356:
2152 return tdep->ppc_vrsave_regnum;
2153 case 612:
2154 return tdep->ppc_spefscr_regnum;
2155 default:
2156 return num;
2157 }
2158 }
2159
2160
2161 static void
2162 rs6000_store_return_value (struct type *type,
2163 struct regcache *regcache,
2164 const void *valbuf)
2165 {
2166 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2168 int regnum = -1;
2169
2170 /* The calling convention this function implements assumes the
2171 processor has floating-point registers. We shouldn't be using it
2172 on PPC variants that lack them. */
2173 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2174
2175 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2176 /* Floating point values are returned starting from FPR1 and up.
2177 Say a double_double_double type could be returned in
2178 FPR1/FPR2/FPR3 triple. */
2179 regnum = tdep->ppc_fp0_regnum + 1;
2180 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2181 {
2182 if (TYPE_LENGTH (type) == 16
2183 && TYPE_VECTOR (type))
2184 regnum = tdep->ppc_vr0_regnum + 2;
2185 else
2186 internal_error (__FILE__, __LINE__,
2187 _("rs6000_store_return_value: "
2188 "unexpected array return type"));
2189 }
2190 else
2191 /* Everything else is returned in GPR3 and up. */
2192 regnum = tdep->ppc_gp0_regnum + 3;
2193
2194 {
2195 size_t bytes_written = 0;
2196
2197 while (bytes_written < TYPE_LENGTH (type))
2198 {
2199 /* How much of this value can we write to this register? */
2200 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2201 register_size (gdbarch, regnum));
2202 regcache_cooked_write_part (regcache, regnum,
2203 0, bytes_to_write,
2204 (char *) valbuf + bytes_written);
2205 regnum++;
2206 bytes_written += bytes_to_write;
2207 }
2208 }
2209 }
2210
2211
2212 /* Extract from an array REGBUF containing the (raw) register state
2213 the address in which a function should return its structure value,
2214 as a CORE_ADDR (or an expression that can be used as one). */
2215
2216 static CORE_ADDR
2217 rs6000_extract_struct_value_address (struct regcache *regcache)
2218 {
2219 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2220 function call GDB knows the address of the struct return value
2221 and hence, should not need to call this function. Unfortunately,
2222 the current call_function_by_hand() code only saves the most
2223 recent struct address leading to occasional calls. The code
2224 should instead maintain a stack of such addresses (in the dummy
2225 frame object). */
2226 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2227 really got no idea where the return value is being stored. While
2228 r3, on function entry, contained the address it will have since
2229 been reused (scratch) and hence wouldn't be valid */
2230 return 0;
2231 }
2232
2233 /* Hook called when a new child process is started. */
2234
2235 void
2236 rs6000_create_inferior (int pid)
2237 {
2238 if (rs6000_set_host_arch_hook)
2239 rs6000_set_host_arch_hook (pid);
2240 }
2241 \f
2242 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2243
2244 Usually a function pointer's representation is simply the address
2245 of the function. On the RS/6000 however, a function pointer is
2246 represented by a pointer to a TOC entry. This TOC entry contains
2247 three words, the first word is the address of the function, the
2248 second word is the TOC pointer (r2), and the third word is the
2249 static chain value. Throughout GDB it is currently assumed that a
2250 function pointer contains the address of the function, which is not
2251 easy to fix. In addition, the conversion of a function address to
2252 a function pointer would require allocation of a TOC entry in the
2253 inferior's memory space, with all its drawbacks. To be able to
2254 call C++ virtual methods in the inferior (which are called via
2255 function pointers), find_function_addr uses this function to get the
2256 function address from a function pointer. */
2257
2258 /* Return real function address if ADDR (a function pointer) is in the data
2259 space and is therefore a special function pointer. */
2260
2261 static CORE_ADDR
2262 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2263 CORE_ADDR addr,
2264 struct target_ops *targ)
2265 {
2266 struct obj_section *s;
2267
2268 s = find_pc_section (addr);
2269 if (s && s->the_bfd_section->flags & SEC_CODE)
2270 return addr;
2271
2272 /* ADDR is in the data space, so it's a special function pointer. */
2273 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2274 }
2275 \f
2276
2277 /* Handling the various POWER/PowerPC variants. */
2278
2279
2280 /* The arrays here called registers_MUMBLE hold information about available
2281 registers.
2282
2283 For each family of PPC variants, I've tried to isolate out the
2284 common registers and put them up front, so that as long as you get
2285 the general family right, GDB will correctly identify the registers
2286 common to that family. The common register sets are:
2287
2288 For the 60x family: hid0 hid1 iabr dabr pir
2289
2290 For the 505 and 860 family: eie eid nri
2291
2292 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2293 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2294 pbu1 pbl2 pbu2
2295
2296 Most of these register groups aren't anything formal. I arrived at
2297 them by looking at the registers that occurred in more than one
2298 processor.
2299
2300 Note: kevinb/2002-04-30: Support for the fpscr register was added
2301 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2302 for Power. For PowerPC, slot 70 was unused and was already in the
2303 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2304 slot 70 was being used for "mq", so the next available slot (71)
2305 was chosen. It would have been nice to be able to make the
2306 register numbers the same across processor cores, but this wasn't
2307 possible without either 1) renumbering some registers for some
2308 processors or 2) assigning fpscr to a really high slot that's
2309 larger than any current register number. Doing (1) is bad because
2310 existing stubs would break. Doing (2) is undesirable because it
2311 would introduce a really large gap between fpscr and the rest of
2312 the registers for most processors. */
2313
2314 /* Convenience macros for populating register arrays. */
2315
2316 /* Within another macro, convert S to a string. */
2317
2318 #define STR(s) #s
2319
2320 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2321 and 64 bits on 64-bit systems. */
2322 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2323
2324 /* Return a struct reg defining register NAME that's 32 bits on all
2325 systems. */
2326 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2327
2328 /* Return a struct reg defining register NAME that's 64 bits on all
2329 systems. */
2330 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2331
2332 /* Return a struct reg defining register NAME that's 128 bits on all
2333 systems. */
2334 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2335
2336 /* Return a struct reg defining floating-point register NAME. */
2337 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2338
2339 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2340 long on all systems. */
2341 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2342
2343 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2344 systems and that doesn't exist on 64-bit systems. */
2345 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2346
2347 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2348 systems and that doesn't exist on 32-bit systems. */
2349 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2350
2351 /* Return a struct reg placeholder for a register that doesn't exist. */
2352 #define R0 { 0, 0, 0, 0, 0, -1 }
2353
2354 /* Return a struct reg defining an anonymous raw register that's 32
2355 bits on all systems. */
2356 #define A4 { 0, 4, 4, 0, 0, -1 }
2357
2358 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2359 32-bit systems and 64 bits on 64-bit systems. */
2360 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2361
2362 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2363 all systems. */
2364 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2365
2366 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2367 all systems, and whose SPR number is NUMBER. */
2368 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2369
2370 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2371 64-bit systems and that doesn't exist on 32-bit systems. */
2372 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2373
2374 /* UISA registers common across all architectures, including POWER. */
2375
2376 #define COMMON_UISA_REGS \
2377 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2378 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2379 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2380 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2381 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2382 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2383 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2384 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2385 /* 64 */ R(pc), R(ps)
2386
2387 /* UISA-level SPRs for PowerPC. */
2388 #define PPC_UISA_SPRS \
2389 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2390
2391 /* UISA-level SPRs for PowerPC without floating point support. */
2392 #define PPC_UISA_NOFP_SPRS \
2393 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2394
2395 /* Segment registers, for PowerPC. */
2396 #define PPC_SEGMENT_REGS \
2397 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2398 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2399 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2400 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2401
2402 /* OEA SPRs for PowerPC. */
2403 #define PPC_OEA_SPRS \
2404 /* 87 */ S4(pvr), \
2405 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2406 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2407 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2408 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2409 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2410 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2411 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2412 /* 116 */ S4(dec), S(dabr), S4(ear)
2413
2414 /* AltiVec registers. */
2415 #define PPC_ALTIVEC_REGS \
2416 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2417 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2418 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2419 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2420 /*151*/R4(vscr), R4(vrsave)
2421
2422
2423 /* On machines supporting the SPE APU, the general-purpose registers
2424 are 64 bits long. There are SIMD vector instructions to treat them
2425 as pairs of floats, but the rest of the instruction set treats them
2426 as 32-bit registers, and only operates on their lower halves.
2427
2428 In the GDB regcache, we treat their high and low halves as separate
2429 registers. The low halves we present as the general-purpose
2430 registers, and then we have pseudo-registers that stitch together
2431 the upper and lower halves and present them as pseudo-registers. */
2432
2433 /* SPE GPR lower halves --- raw registers. */
2434 #define PPC_SPE_GP_REGS \
2435 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2436 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2437 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2438 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2439
2440 /* SPE GPR upper halves --- anonymous raw registers. */
2441 #define PPC_SPE_UPPER_GP_REGS \
2442 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2443 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2444 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2445 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2446
2447 /* SPE GPR vector registers --- pseudo registers based on underlying
2448 gprs and the anonymous upper half raw registers. */
2449 #define PPC_EV_PSEUDO_REGS \
2450 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2451 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2452 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2453 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2454
2455 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2456 user-level SPR's. */
2457 static const struct reg registers_power[] =
2458 {
2459 COMMON_UISA_REGS,
2460 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2461 /* 71 */ R4(fpscr)
2462 };
2463
2464 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2465 view of the PowerPC. */
2466 static const struct reg registers_powerpc[] =
2467 {
2468 COMMON_UISA_REGS,
2469 PPC_UISA_SPRS,
2470 PPC_ALTIVEC_REGS
2471 };
2472
2473 /* IBM PowerPC 403.
2474
2475 Some notes about the "tcr" special-purpose register:
2476 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2477 403's programmable interval timer, fixed interval timer, and
2478 watchdog timer.
2479 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2480 watchdog timer, and nothing else.
2481
2482 Some of the fields are similar between the two, but they're not
2483 compatible with each other. Since the two variants have different
2484 registers, with different numbers, but the same name, we can't
2485 splice the register name to get the SPR number. */
2486 static const struct reg registers_403[] =
2487 {
2488 COMMON_UISA_REGS,
2489 PPC_UISA_SPRS,
2490 PPC_SEGMENT_REGS,
2491 PPC_OEA_SPRS,
2492 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2493 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2494 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2495 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2496 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2497 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2498 };
2499
2500 /* IBM PowerPC 403GC.
2501 See the comments about 'tcr' for the 403, above. */
2502 static const struct reg registers_403GC[] =
2503 {
2504 COMMON_UISA_REGS,
2505 PPC_UISA_SPRS,
2506 PPC_SEGMENT_REGS,
2507 PPC_OEA_SPRS,
2508 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2509 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2510 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2511 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2512 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2513 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2514 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2515 /* 147 */ S(tbhu), S(tblu)
2516 };
2517
2518 /* Motorola PowerPC 505. */
2519 static const struct reg registers_505[] =
2520 {
2521 COMMON_UISA_REGS,
2522 PPC_UISA_SPRS,
2523 PPC_SEGMENT_REGS,
2524 PPC_OEA_SPRS,
2525 /* 119 */ S(eie), S(eid), S(nri)
2526 };
2527
2528 /* Motorola PowerPC 860 or 850. */
2529 static const struct reg registers_860[] =
2530 {
2531 COMMON_UISA_REGS,
2532 PPC_UISA_SPRS,
2533 PPC_SEGMENT_REGS,
2534 PPC_OEA_SPRS,
2535 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2536 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2537 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2538 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2539 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2540 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2541 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2542 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2543 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2544 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2545 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2546 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2547 };
2548
2549 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2550 for reading and writing RTCU and RTCL. However, how one reads and writes a
2551 register is the stub's problem. */
2552 static const struct reg registers_601[] =
2553 {
2554 COMMON_UISA_REGS,
2555 PPC_UISA_SPRS,
2556 PPC_SEGMENT_REGS,
2557 PPC_OEA_SPRS,
2558 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2559 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2560 };
2561
2562 /* Motorola PowerPC 602.
2563 See the notes under the 403 about 'tcr'. */
2564 static const struct reg registers_602[] =
2565 {
2566 COMMON_UISA_REGS,
2567 PPC_UISA_SPRS,
2568 PPC_SEGMENT_REGS,
2569 PPC_OEA_SPRS,
2570 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2571 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2572 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2573 };
2574
2575 /* Motorola/IBM PowerPC 603 or 603e. */
2576 static const struct reg registers_603[] =
2577 {
2578 COMMON_UISA_REGS,
2579 PPC_UISA_SPRS,
2580 PPC_SEGMENT_REGS,
2581 PPC_OEA_SPRS,
2582 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2583 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2584 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2585 };
2586
2587 /* Motorola PowerPC 604 or 604e. */
2588 static const struct reg registers_604[] =
2589 {
2590 COMMON_UISA_REGS,
2591 PPC_UISA_SPRS,
2592 PPC_SEGMENT_REGS,
2593 PPC_OEA_SPRS,
2594 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2595 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2596 /* 127 */ S(sia), S(sda)
2597 };
2598
2599 /* Motorola/IBM PowerPC 750 or 740. */
2600 static const struct reg registers_750[] =
2601 {
2602 COMMON_UISA_REGS,
2603 PPC_UISA_SPRS,
2604 PPC_SEGMENT_REGS,
2605 PPC_OEA_SPRS,
2606 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2607 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2608 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2609 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2610 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2611 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2612 };
2613
2614
2615 /* Motorola PowerPC 7400. */
2616 static const struct reg registers_7400[] =
2617 {
2618 /* gpr0-gpr31, fpr0-fpr31 */
2619 COMMON_UISA_REGS,
2620 /* cr, lr, ctr, xer, fpscr */
2621 PPC_UISA_SPRS,
2622 /* sr0-sr15 */
2623 PPC_SEGMENT_REGS,
2624 PPC_OEA_SPRS,
2625 /* vr0-vr31, vrsave, vscr */
2626 PPC_ALTIVEC_REGS
2627 /* FIXME? Add more registers? */
2628 };
2629
2630 /* Motorola e500. */
2631 static const struct reg registers_e500[] =
2632 {
2633 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2634 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2635 /* 64 .. 65 */ R(pc), R(ps),
2636 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2637 /* 71 .. 72 */ R8(acc), S4(spefscr),
2638 /* NOTE: Add new registers here the end of the raw register
2639 list and just before the first pseudo register. */
2640 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2641 };
2642
2643 /* Information about a particular processor variant. */
2644
2645 struct variant
2646 {
2647 /* Name of this variant. */
2648 char *name;
2649
2650 /* English description of the variant. */
2651 char *description;
2652
2653 /* bfd_arch_info.arch corresponding to variant. */
2654 enum bfd_architecture arch;
2655
2656 /* bfd_arch_info.mach corresponding to variant. */
2657 unsigned long mach;
2658
2659 /* Number of real registers. */
2660 int nregs;
2661
2662 /* Number of pseudo registers. */
2663 int npregs;
2664
2665 /* Number of total registers (the sum of nregs and npregs). */
2666 int num_tot_regs;
2667
2668 /* Table of register names; registers[R] is the name of the register
2669 number R. */
2670 const struct reg *regs;
2671 };
2672
2673 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2674
2675 static int
2676 num_registers (const struct reg *reg_list, int num_tot_regs)
2677 {
2678 int i;
2679 int nregs = 0;
2680
2681 for (i = 0; i < num_tot_regs; i++)
2682 if (!reg_list[i].pseudo)
2683 nregs++;
2684
2685 return nregs;
2686 }
2687
2688 static int
2689 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2690 {
2691 int i;
2692 int npregs = 0;
2693
2694 for (i = 0; i < num_tot_regs; i++)
2695 if (reg_list[i].pseudo)
2696 npregs ++;
2697
2698 return npregs;
2699 }
2700
2701 /* Information in this table comes from the following web sites:
2702 IBM: http://www.chips.ibm.com:80/products/embedded/
2703 Motorola: http://www.mot.com/SPS/PowerPC/
2704
2705 I'm sure I've got some of the variant descriptions not quite right.
2706 Please report any inaccuracies you find to GDB's maintainer.
2707
2708 If you add entries to this table, please be sure to allow the new
2709 value as an argument to the --with-cpu flag, in configure.in. */
2710
2711 static struct variant variants[] =
2712 {
2713
2714 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2715 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2716 registers_powerpc},
2717 {"power", "POWER user-level", bfd_arch_rs6000,
2718 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2719 registers_power},
2720 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2721 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2722 registers_403},
2723 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2724 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2725 registers_601},
2726 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2727 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2728 registers_602},
2729 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2730 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2731 registers_603},
2732 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2733 604, -1, -1, tot_num_registers (registers_604),
2734 registers_604},
2735 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2736 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2737 registers_403GC},
2738 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2739 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2740 registers_505},
2741 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2742 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2743 registers_860},
2744 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2745 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2746 registers_750},
2747 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2748 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2749 registers_7400},
2750 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2751 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2752 registers_e500},
2753
2754 /* 64-bit */
2755 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2756 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2757 registers_powerpc},
2758 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2759 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2760 registers_powerpc},
2761 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2762 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2763 registers_powerpc},
2764 {"a35", "PowerPC A35", bfd_arch_powerpc,
2765 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2766 registers_powerpc},
2767 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2768 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2769 registers_powerpc},
2770 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2771 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2772 registers_powerpc},
2773
2774 /* FIXME: I haven't checked the register sets of the following. */
2775 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2776 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2777 registers_power},
2778 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2779 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2780 registers_power},
2781 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2782 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2783 registers_power},
2784
2785 {0, 0, 0, 0, 0, 0, 0, 0}
2786 };
2787
2788 /* Initialize the number of registers and pseudo registers in each variant. */
2789
2790 static void
2791 init_variants (void)
2792 {
2793 struct variant *v;
2794
2795 for (v = variants; v->name; v++)
2796 {
2797 if (v->nregs == -1)
2798 v->nregs = num_registers (v->regs, v->num_tot_regs);
2799 if (v->npregs == -1)
2800 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2801 }
2802 }
2803
2804 /* Return the variant corresponding to architecture ARCH and machine number
2805 MACH. If no such variant exists, return null. */
2806
2807 static const struct variant *
2808 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2809 {
2810 const struct variant *v;
2811
2812 for (v = variants; v->name; v++)
2813 if (arch == v->arch && mach == v->mach)
2814 return v;
2815
2816 return NULL;
2817 }
2818
2819 static int
2820 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2821 {
2822 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2823 return print_insn_big_powerpc (memaddr, info);
2824 else
2825 return print_insn_little_powerpc (memaddr, info);
2826 }
2827 \f
2828 static CORE_ADDR
2829 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2830 {
2831 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2832 }
2833
2834 static struct frame_id
2835 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2836 {
2837 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2838 SP_REGNUM),
2839 frame_pc_unwind (next_frame));
2840 }
2841
2842 struct rs6000_frame_cache
2843 {
2844 CORE_ADDR base;
2845 CORE_ADDR initial_sp;
2846 struct trad_frame_saved_reg *saved_regs;
2847 };
2848
2849 static struct rs6000_frame_cache *
2850 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2851 {
2852 struct rs6000_frame_cache *cache;
2853 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2855 struct rs6000_framedata fdata;
2856 int wordsize = tdep->wordsize;
2857
2858 if ((*this_cache) != NULL)
2859 return (*this_cache);
2860 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2861 (*this_cache) = cache;
2862 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2863
2864 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2865 &fdata);
2866
2867 /* If there were any saved registers, figure out parent's stack
2868 pointer. */
2869 /* The following is true only if the frame doesn't have a call to
2870 alloca(), FIXME. */
2871
2872 if (fdata.saved_fpr == 0
2873 && fdata.saved_gpr == 0
2874 && fdata.saved_vr == 0
2875 && fdata.saved_ev == 0
2876 && fdata.lr_offset == 0
2877 && fdata.cr_offset == 0
2878 && fdata.vr_offset == 0
2879 && fdata.ev_offset == 0)
2880 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2881 else
2882 {
2883 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2884 address of the current frame. Things might be easier if the
2885 ->frame pointed to the outer-most address of the frame. In
2886 the mean time, the address of the prev frame is used as the
2887 base address of this frame. */
2888 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2889 if (!fdata.frameless)
2890 /* Frameless really means stackless. */
2891 cache->base = read_memory_addr (cache->base, wordsize);
2892 }
2893 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2894
2895 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2896 All fpr's from saved_fpr to fp31 are saved. */
2897
2898 if (fdata.saved_fpr >= 0)
2899 {
2900 int i;
2901 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2902
2903 /* If skip_prologue says floating-point registers were saved,
2904 but the current architecture has no floating-point registers,
2905 then that's strange. But we have no indices to even record
2906 the addresses under, so we just ignore it. */
2907 if (ppc_floating_point_unit_p (gdbarch))
2908 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2909 {
2910 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2911 fpr_addr += 8;
2912 }
2913 }
2914
2915 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2916 All gpr's from saved_gpr to gpr31 are saved. */
2917
2918 if (fdata.saved_gpr >= 0)
2919 {
2920 int i;
2921 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2922 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2923 {
2924 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2925 gpr_addr += wordsize;
2926 }
2927 }
2928
2929 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2930 All vr's from saved_vr to vr31 are saved. */
2931 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2932 {
2933 if (fdata.saved_vr >= 0)
2934 {
2935 int i;
2936 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2937 for (i = fdata.saved_vr; i < 32; i++)
2938 {
2939 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2940 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2941 }
2942 }
2943 }
2944
2945 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2946 All vr's from saved_ev to ev31 are saved. ????? */
2947 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2948 {
2949 if (fdata.saved_ev >= 0)
2950 {
2951 int i;
2952 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2953 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2954 {
2955 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2956 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2957 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2958 }
2959 }
2960 }
2961
2962 /* If != 0, fdata.cr_offset is the offset from the frame that
2963 holds the CR. */
2964 if (fdata.cr_offset != 0)
2965 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2966
2967 /* If != 0, fdata.lr_offset is the offset from the frame that
2968 holds the LR. */
2969 if (fdata.lr_offset != 0)
2970 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2971 /* The PC is found in the link register. */
2972 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2973
2974 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2975 holds the VRSAVE. */
2976 if (fdata.vrsave_offset != 0)
2977 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2978
2979 if (fdata.alloca_reg < 0)
2980 /* If no alloca register used, then fi->frame is the value of the
2981 %sp for this frame, and it is good enough. */
2982 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2983 else
2984 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2985 fdata.alloca_reg);
2986
2987 return cache;
2988 }
2989
2990 static void
2991 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2992 struct frame_id *this_id)
2993 {
2994 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2995 this_cache);
2996 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2997 }
2998
2999 static void
3000 rs6000_frame_prev_register (struct frame_info *next_frame,
3001 void **this_cache,
3002 int regnum, int *optimizedp,
3003 enum lval_type *lvalp, CORE_ADDR *addrp,
3004 int *realnump, void *valuep)
3005 {
3006 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3007 this_cache);
3008 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3009 optimizedp, lvalp, addrp, realnump, valuep);
3010 }
3011
3012 static const struct frame_unwind rs6000_frame_unwind =
3013 {
3014 NORMAL_FRAME,
3015 rs6000_frame_this_id,
3016 rs6000_frame_prev_register
3017 };
3018
3019 static const struct frame_unwind *
3020 rs6000_frame_sniffer (struct frame_info *next_frame)
3021 {
3022 return &rs6000_frame_unwind;
3023 }
3024
3025 \f
3026
3027 static CORE_ADDR
3028 rs6000_frame_base_address (struct frame_info *next_frame,
3029 void **this_cache)
3030 {
3031 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3032 this_cache);
3033 return info->initial_sp;
3034 }
3035
3036 static const struct frame_base rs6000_frame_base = {
3037 &rs6000_frame_unwind,
3038 rs6000_frame_base_address,
3039 rs6000_frame_base_address,
3040 rs6000_frame_base_address
3041 };
3042
3043 static const struct frame_base *
3044 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3045 {
3046 return &rs6000_frame_base;
3047 }
3048
3049 /* Initialize the current architecture based on INFO. If possible, re-use an
3050 architecture from ARCHES, which is a list of architectures already created
3051 during this debugging session.
3052
3053 Called e.g. at program startup, when reading a core file, and when reading
3054 a binary file. */
3055
3056 static struct gdbarch *
3057 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3058 {
3059 struct gdbarch *gdbarch;
3060 struct gdbarch_tdep *tdep;
3061 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3062 struct reg *regs;
3063 const struct variant *v;
3064 enum bfd_architecture arch;
3065 unsigned long mach;
3066 bfd abfd;
3067 int sysv_abi;
3068 asection *sect;
3069
3070 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3071 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3072
3073 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3074 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3075
3076 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3077
3078 /* Check word size. If INFO is from a binary file, infer it from
3079 that, else choose a likely default. */
3080 if (from_xcoff_exec)
3081 {
3082 if (bfd_xcoff_is_xcoff64 (info.abfd))
3083 wordsize = 8;
3084 else
3085 wordsize = 4;
3086 }
3087 else if (from_elf_exec)
3088 {
3089 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3090 wordsize = 8;
3091 else
3092 wordsize = 4;
3093 }
3094 else
3095 {
3096 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3097 wordsize = info.bfd_arch_info->bits_per_word /
3098 info.bfd_arch_info->bits_per_byte;
3099 else
3100 wordsize = 4;
3101 }
3102
3103 /* Find a candidate among extant architectures. */
3104 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3105 arches != NULL;
3106 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3107 {
3108 /* Word size in the various PowerPC bfd_arch_info structs isn't
3109 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3110 separate word size check. */
3111 tdep = gdbarch_tdep (arches->gdbarch);
3112 if (tdep && tdep->wordsize == wordsize)
3113 return arches->gdbarch;
3114 }
3115
3116 /* None found, create a new architecture from INFO, whose bfd_arch_info
3117 validity depends on the source:
3118 - executable useless
3119 - rs6000_host_arch() good
3120 - core file good
3121 - "set arch" trust blindly
3122 - GDB startup useless but harmless */
3123
3124 if (!from_xcoff_exec)
3125 {
3126 arch = info.bfd_arch_info->arch;
3127 mach = info.bfd_arch_info->mach;
3128 }
3129 else
3130 {
3131 arch = bfd_arch_powerpc;
3132 bfd_default_set_arch_mach (&abfd, arch, 0);
3133 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3134 mach = info.bfd_arch_info->mach;
3135 }
3136 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3137 tdep->wordsize = wordsize;
3138
3139 /* For e500 executables, the apuinfo section is of help here. Such
3140 section contains the identifier and revision number of each
3141 Application-specific Processing Unit that is present on the
3142 chip. The content of the section is determined by the assembler
3143 which looks at each instruction and determines which unit (and
3144 which version of it) can execute it. In our case we just look for
3145 the existance of the section. */
3146
3147 if (info.abfd)
3148 {
3149 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3150 if (sect)
3151 {
3152 arch = info.bfd_arch_info->arch;
3153 mach = bfd_mach_ppc_e500;
3154 bfd_default_set_arch_mach (&abfd, arch, mach);
3155 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3156 }
3157 }
3158
3159 gdbarch = gdbarch_alloc (&info, tdep);
3160
3161 /* Initialize the number of real and pseudo registers in each variant. */
3162 init_variants ();
3163
3164 /* Choose variant. */
3165 v = find_variant_by_arch (arch, mach);
3166 if (!v)
3167 return NULL;
3168
3169 tdep->regs = v->regs;
3170
3171 tdep->ppc_gp0_regnum = 0;
3172 tdep->ppc_toc_regnum = 2;
3173 tdep->ppc_ps_regnum = 65;
3174 tdep->ppc_cr_regnum = 66;
3175 tdep->ppc_lr_regnum = 67;
3176 tdep->ppc_ctr_regnum = 68;
3177 tdep->ppc_xer_regnum = 69;
3178 if (v->mach == bfd_mach_ppc_601)
3179 tdep->ppc_mq_regnum = 124;
3180 else if (arch == bfd_arch_rs6000)
3181 tdep->ppc_mq_regnum = 70;
3182 else
3183 tdep->ppc_mq_regnum = -1;
3184 tdep->ppc_fp0_regnum = 32;
3185 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3186 tdep->ppc_sr0_regnum = 71;
3187 tdep->ppc_vr0_regnum = -1;
3188 tdep->ppc_vrsave_regnum = -1;
3189 tdep->ppc_ev0_upper_regnum = -1;
3190 tdep->ppc_ev0_regnum = -1;
3191 tdep->ppc_ev31_regnum = -1;
3192 tdep->ppc_acc_regnum = -1;
3193 tdep->ppc_spefscr_regnum = -1;
3194
3195 set_gdbarch_pc_regnum (gdbarch, 64);
3196 set_gdbarch_sp_regnum (gdbarch, 1);
3197 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3198 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3199 if (sysv_abi && wordsize == 8)
3200 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3201 else if (sysv_abi && wordsize == 4)
3202 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3203 else
3204 {
3205 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3206 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3207 }
3208
3209 /* Set lr_frame_offset. */
3210 if (wordsize == 8)
3211 tdep->lr_frame_offset = 16;
3212 else if (sysv_abi)
3213 tdep->lr_frame_offset = 4;
3214 else
3215 tdep->lr_frame_offset = 8;
3216
3217 if (v->arch == bfd_arch_rs6000)
3218 tdep->ppc_sr0_regnum = -1;
3219 else if (v->arch == bfd_arch_powerpc)
3220 switch (v->mach)
3221 {
3222 case bfd_mach_ppc:
3223 tdep->ppc_sr0_regnum = -1;
3224 tdep->ppc_vr0_regnum = 71;
3225 tdep->ppc_vrsave_regnum = 104;
3226 break;
3227 case bfd_mach_ppc_7400:
3228 tdep->ppc_vr0_regnum = 119;
3229 tdep->ppc_vrsave_regnum = 152;
3230 break;
3231 case bfd_mach_ppc_e500:
3232 tdep->ppc_toc_regnum = -1;
3233 tdep->ppc_ev0_upper_regnum = 32;
3234 tdep->ppc_ev0_regnum = 73;
3235 tdep->ppc_ev31_regnum = 104;
3236 tdep->ppc_acc_regnum = 71;
3237 tdep->ppc_spefscr_regnum = 72;
3238 tdep->ppc_fp0_regnum = -1;
3239 tdep->ppc_fpscr_regnum = -1;
3240 tdep->ppc_sr0_regnum = -1;
3241 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3242 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3243 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3244 break;
3245
3246 case bfd_mach_ppc64:
3247 case bfd_mach_ppc_620:
3248 case bfd_mach_ppc_630:
3249 case bfd_mach_ppc_a35:
3250 case bfd_mach_ppc_rs64ii:
3251 case bfd_mach_ppc_rs64iii:
3252 /* These processor's register sets don't have segment registers. */
3253 tdep->ppc_sr0_regnum = -1;
3254 break;
3255 }
3256 else
3257 internal_error (__FILE__, __LINE__,
3258 _("rs6000_gdbarch_init: "
3259 "received unexpected BFD 'arch' value"));
3260
3261 /* Sanity check on registers. */
3262 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3263
3264 /* Select instruction printer. */
3265 if (arch == bfd_arch_rs6000)
3266 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3267 else
3268 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3269
3270 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3271
3272 set_gdbarch_num_regs (gdbarch, v->nregs);
3273 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3274 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3275 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3276 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3277
3278 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3279 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3280 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3281 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3282 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3283 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3284 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3285 if (sysv_abi)
3286 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3287 else
3288 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3289 set_gdbarch_char_signed (gdbarch, 0);
3290
3291 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3292 if (sysv_abi && wordsize == 8)
3293 /* PPC64 SYSV. */
3294 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3295 else if (!sysv_abi && wordsize == 4)
3296 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3297 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3298 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3299 224. */
3300 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3301
3302 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3303 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3304 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3305
3306 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3307 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3308 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3309 is correct for the SysV ABI when the wordsize is 8, but I'm also
3310 fairly certain that ppc_sysv_abi_push_arguments() will give even
3311 worse results since it only works for 32-bit code. So, for the moment,
3312 we're better off calling rs6000_push_arguments() since it works for
3313 64-bit code. At some point in the future, this matter needs to be
3314 revisited. */
3315 if (sysv_abi && wordsize == 4)
3316 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3317 else if (sysv_abi && wordsize == 8)
3318 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3319 else
3320 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3321
3322 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3323
3324 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3325 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3326 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3327
3328 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3329 for the descriptor and ".FN" for the entry-point -- a user
3330 specifying "break FN" will unexpectedly end up with a breakpoint
3331 on the descriptor and not the function. This architecture method
3332 transforms any breakpoints on descriptors into breakpoints on the
3333 corresponding entry point. */
3334 if (sysv_abi && wordsize == 8)
3335 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3336
3337 /* Not sure on this. FIXMEmgo */
3338 set_gdbarch_frame_args_skip (gdbarch, 8);
3339
3340 if (!sysv_abi)
3341 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3342
3343 if (!sysv_abi)
3344 {
3345 /* Handle RS/6000 function pointers (which are really function
3346 descriptors). */
3347 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3348 rs6000_convert_from_func_ptr_addr);
3349 }
3350
3351 /* Helpers for function argument information. */
3352 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3353
3354 /* Hook in ABI-specific overrides, if they have been registered. */
3355 gdbarch_init_osabi (info, gdbarch);
3356
3357 switch (info.osabi)
3358 {
3359 case GDB_OSABI_NETBSD_AOUT:
3360 case GDB_OSABI_NETBSD_ELF:
3361 case GDB_OSABI_UNKNOWN:
3362 case GDB_OSABI_LINUX:
3363 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3364 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3365 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3366 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3367 break;
3368 default:
3369 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3370
3371 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3372 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3373 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3374 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3375 }
3376
3377 if (from_xcoff_exec)
3378 {
3379 /* NOTE: jimix/2003-06-09: This test should really check for
3380 GDB_OSABI_AIX when that is defined and becomes
3381 available. (Actually, once things are properly split apart,
3382 the test goes away.) */
3383 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3384 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3385 }
3386
3387 init_sim_regno_table (gdbarch);
3388
3389 return gdbarch;
3390 }
3391
3392 static void
3393 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3394 {
3395 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3396
3397 if (tdep == NULL)
3398 return;
3399
3400 /* FIXME: Dump gdbarch_tdep. */
3401 }
3402
3403 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3404
3405 static void
3406 rs6000_info_powerpc_command (char *args, int from_tty)
3407 {
3408 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3409 }
3410
3411 /* Initialization code. */
3412
3413 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3414
3415 void
3416 _initialize_rs6000_tdep (void)
3417 {
3418 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3419 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3420
3421 /* Add root prefix command for "info powerpc" commands */
3422 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3423 _("Various POWERPC info specific commands."),
3424 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3425 }
This page took 0.102749 seconds and 4 git commands to generate.