*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "rs6000-tdep.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
116 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
118 /* Static function prototypes */
119
120 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
121 CORE_ADDR safety);
122 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
123 struct rs6000_framedata *);
124
125 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
126 int
127 altivec_register_p (int regno)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
130 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
131 return 0;
132 else
133 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
134 }
135
136
137 /* Return true if REGNO is an SPE register, false otherwise. */
138 int
139 spe_register_p (int regno)
140 {
141 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
142
143 /* Is it a reference to EV0 -- EV31, and do we have those? */
144 if (tdep->ppc_ev0_regnum >= 0
145 && tdep->ppc_ev31_regnum >= 0
146 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
147 return 1;
148
149 /* Is it a reference to one of the raw upper GPR halves? */
150 if (tdep->ppc_ev0_upper_regnum >= 0
151 && tdep->ppc_ev0_upper_regnum <= regno
152 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
153 return 1;
154
155 /* Is it a reference to the 64-bit accumulator, and do we have that? */
156 if (tdep->ppc_acc_regnum >= 0
157 && tdep->ppc_acc_regnum == regno)
158 return 1;
159
160 /* Is it a reference to the SPE floating-point status and control register,
161 and do we have that? */
162 if (tdep->ppc_spefscr_regnum >= 0
163 && tdep->ppc_spefscr_regnum == regno)
164 return 1;
165
166 return 0;
167 }
168
169
170 /* Return non-zero if the architecture described by GDBARCH has
171 floating-point registers (f0 --- f31 and fpscr). */
172 int
173 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
174 {
175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
176
177 return (tdep->ppc_fp0_regnum >= 0
178 && tdep->ppc_fpscr_regnum >= 0);
179 }
180
181
182 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
183 set it to SIM_REGNO.
184
185 This is a helper function for init_sim_regno_table, constructing
186 the table mapping GDB register numbers to sim register numbers; we
187 initialize every element in that table to -1 before we start
188 filling it in. */
189 static void
190 set_sim_regno (int *table, int gdb_regno, int sim_regno)
191 {
192 /* Make sure we don't try to assign any given GDB register a sim
193 register number more than once. */
194 gdb_assert (table[gdb_regno] == -1);
195 table[gdb_regno] = sim_regno;
196 }
197
198
199 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
200 numbers to simulator register numbers, based on the values placed
201 in the ARCH->tdep->ppc_foo_regnum members. */
202 static void
203 init_sim_regno_table (struct gdbarch *arch)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
206 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
207 const struct reg *regs = tdep->regs;
208 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
209 int i;
210
211 /* Presume that all registers not explicitly mentioned below are
212 unavailable from the sim. */
213 for (i = 0; i < total_regs; i++)
214 sim_regno[i] = -1;
215
216 /* General-purpose registers. */
217 for (i = 0; i < ppc_num_gprs; i++)
218 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
219
220 /* Floating-point registers. */
221 if (tdep->ppc_fp0_regnum >= 0)
222 for (i = 0; i < ppc_num_fprs; i++)
223 set_sim_regno (sim_regno,
224 tdep->ppc_fp0_regnum + i,
225 sim_ppc_f0_regnum + i);
226 if (tdep->ppc_fpscr_regnum >= 0)
227 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
228
229 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
230 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
232
233 /* Segment registers. */
234 if (tdep->ppc_sr0_regnum >= 0)
235 for (i = 0; i < ppc_num_srs; i++)
236 set_sim_regno (sim_regno,
237 tdep->ppc_sr0_regnum + i,
238 sim_ppc_sr0_regnum + i);
239
240 /* Altivec registers. */
241 if (tdep->ppc_vr0_regnum >= 0)
242 {
243 for (i = 0; i < ppc_num_vrs; i++)
244 set_sim_regno (sim_regno,
245 tdep->ppc_vr0_regnum + i,
246 sim_ppc_vr0_regnum + i);
247
248 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
249 we can treat this more like the other cases. */
250 set_sim_regno (sim_regno,
251 tdep->ppc_vr0_regnum + ppc_num_vrs,
252 sim_ppc_vscr_regnum);
253 }
254 /* vsave is a special-purpose register, so the code below handles it. */
255
256 /* SPE APU (E500) registers. */
257 if (tdep->ppc_ev0_regnum >= 0)
258 for (i = 0; i < ppc_num_gprs; i++)
259 set_sim_regno (sim_regno,
260 tdep->ppc_ev0_regnum + i,
261 sim_ppc_ev0_regnum + i);
262 if (tdep->ppc_ev0_upper_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_upper_regnum + i,
266 sim_ppc_rh0_regnum + i);
267 if (tdep->ppc_acc_regnum >= 0)
268 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
269 /* spefscr is a special-purpose register, so the code below handles it. */
270
271 /* Now handle all special-purpose registers. Verify that they
272 haven't mistakenly been assigned numbers by any of the above
273 code). */
274 for (i = 0; i < total_regs; i++)
275 if (regs[i].spr_num >= 0)
276 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
277
278 /* Drop the initialized array into place. */
279 tdep->sim_regno = sim_regno;
280 }
281
282
283 /* Given a GDB register number REG, return the corresponding SIM
284 register number. */
285 static int
286 rs6000_register_sim_regno (int reg)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
289 int sim_regno;
290
291 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
292 sim_regno = tdep->sim_regno[reg];
293
294 if (sim_regno >= 0)
295 return sim_regno;
296 else
297 return LEGACY_SIM_REGNO_IGNORE;
298 }
299
300 \f
301
302 /* Register set support functions. */
303
304 static void
305 ppc_supply_reg (struct regcache *regcache, int regnum,
306 const gdb_byte *regs, size_t offset)
307 {
308 if (regnum != -1 && offset != -1)
309 regcache_raw_supply (regcache, regnum, regs + offset);
310 }
311
312 static void
313 ppc_collect_reg (const struct regcache *regcache, int regnum,
314 gdb_byte *regs, size_t offset)
315 {
316 if (regnum != -1 && offset != -1)
317 regcache_raw_collect (regcache, regnum, regs + offset);
318 }
319
320 /* Supply register REGNUM in the general-purpose register set REGSET
321 from the buffer specified by GREGS and LEN to register cache
322 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
323
324 void
325 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
326 int regnum, const void *gregs, size_t len)
327 {
328 struct gdbarch *gdbarch = get_regcache_arch (regcache);
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 const struct ppc_reg_offsets *offsets = regset->descr;
331 size_t offset;
332 int i;
333
334 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
335 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
336 i++, offset += 4)
337 {
338 if (regnum == -1 || regnum == i)
339 ppc_supply_reg (regcache, i, gregs, offset);
340 }
341
342 if (regnum == -1 || regnum == PC_REGNUM)
343 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
344 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
345 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
346 gregs, offsets->ps_offset);
347 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
349 gregs, offsets->cr_offset);
350 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
352 gregs, offsets->lr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
355 gregs, offsets->ctr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
358 gregs, offsets->cr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
361 }
362
363 /* Supply register REGNUM in the floating-point register set REGSET
364 from the buffer specified by FPREGS and LEN to register cache
365 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
366
367 void
368 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
369 int regnum, const void *fpregs, size_t len)
370 {
371 struct gdbarch *gdbarch = get_regcache_arch (regcache);
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 const struct ppc_reg_offsets *offsets = regset->descr;
374 size_t offset;
375 int i;
376
377 gdb_assert (ppc_floating_point_unit_p (gdbarch));
378
379 offset = offsets->f0_offset;
380 for (i = tdep->ppc_fp0_regnum;
381 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
382 i++, offset += 8)
383 {
384 if (regnum == -1 || regnum == i)
385 ppc_supply_reg (regcache, i, fpregs, offset);
386 }
387
388 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
389 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
390 fpregs, offsets->fpscr_offset);
391 }
392
393 /* Collect register REGNUM in the general-purpose register set
394 REGSET. from register cache REGCACHE into the buffer specified by
395 GREGS and LEN. If REGNUM is -1, do this for all registers in
396 REGSET. */
397
398 void
399 ppc_collect_gregset (const struct regset *regset,
400 const struct regcache *regcache,
401 int regnum, void *gregs, size_t len)
402 {
403 struct gdbarch *gdbarch = get_regcache_arch (regcache);
404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
405 const struct ppc_reg_offsets *offsets = regset->descr;
406 size_t offset;
407 int i;
408
409 offset = offsets->r0_offset;
410 for (i = tdep->ppc_gp0_regnum;
411 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
412 i++, offset += 4)
413 {
414 if (regnum == -1 || regnum == i)
415 ppc_collect_reg (regcache, i, gregs, offset);
416 }
417
418 if (regnum == -1 || regnum == PC_REGNUM)
419 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
420 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
421 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
422 gregs, offsets->ps_offset);
423 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
425 gregs, offsets->cr_offset);
426 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
428 gregs, offsets->lr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
431 gregs, offsets->ctr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
434 gregs, offsets->xer_offset);
435 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
437 gregs, offsets->mq_offset);
438 }
439
440 /* Collect register REGNUM in the floating-point register set
441 REGSET. from register cache REGCACHE into the buffer specified by
442 FPREGS and LEN. If REGNUM is -1, do this for all registers in
443 REGSET. */
444
445 void
446 ppc_collect_fpregset (const struct regset *regset,
447 const struct regcache *regcache,
448 int regnum, void *fpregs, size_t len)
449 {
450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
452 const struct ppc_reg_offsets *offsets = regset->descr;
453 size_t offset;
454 int i;
455
456 gdb_assert (ppc_floating_point_unit_p (gdbarch));
457
458 offset = offsets->f0_offset;
459 for (i = tdep->ppc_fp0_regnum;
460 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
461 i++, offset += 8)
462 {
463 if (regnum == -1 || regnum == i)
464 ppc_collect_reg (regcache, i, fpregs, offset);
465 }
466
467 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
468 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
469 fpregs, offsets->fpscr_offset);
470 }
471 \f
472
473 /* Read a LEN-byte address from debugged memory address MEMADDR. */
474
475 static CORE_ADDR
476 read_memory_addr (CORE_ADDR memaddr, int len)
477 {
478 return read_memory_unsigned_integer (memaddr, len);
479 }
480
481 static CORE_ADDR
482 rs6000_skip_prologue (CORE_ADDR pc)
483 {
484 struct rs6000_framedata frame;
485 pc = skip_prologue (pc, 0, &frame);
486 return pc;
487 }
488
489 static int
490 insn_changes_sp_or_jumps (unsigned long insn)
491 {
492 int opcode = (insn >> 26) & 0x03f;
493 int sd = (insn >> 21) & 0x01f;
494 int a = (insn >> 16) & 0x01f;
495 int subcode = (insn >> 1) & 0x3ff;
496
497 /* Changes the stack pointer. */
498
499 /* NOTE: There are many ways to change the value of a given register.
500 The ways below are those used when the register is R1, the SP,
501 in a funtion's epilogue. */
502
503 if (opcode == 31 && subcode == 444 && a == 1)
504 return 1; /* mr R1,Rn */
505 if (opcode == 14 && sd == 1)
506 return 1; /* addi R1,Rn,simm */
507 if (opcode == 58 && sd == 1)
508 return 1; /* ld R1,ds(Rn) */
509
510 /* Transfers control. */
511
512 if (opcode == 18)
513 return 1; /* b */
514 if (opcode == 16)
515 return 1; /* bc */
516 if (opcode == 19 && subcode == 16)
517 return 1; /* bclr */
518 if (opcode == 19 && subcode == 528)
519 return 1; /* bcctr */
520
521 return 0;
522 }
523
524 /* Return true if we are in the function's epilogue, i.e. after the
525 instruction that destroyed the function's stack frame.
526
527 1) scan forward from the point of execution:
528 a) If you find an instruction that modifies the stack pointer
529 or transfers control (except a return), execution is not in
530 an epilogue, return.
531 b) Stop scanning if you find a return instruction or reach the
532 end of the function or reach the hard limit for the size of
533 an epilogue.
534 2) scan backward from the point of execution:
535 a) If you find an instruction that modifies the stack pointer,
536 execution *is* in an epilogue, return.
537 b) Stop scanning if you reach an instruction that transfers
538 control or the beginning of the function or reach the hard
539 limit for the size of an epilogue. */
540
541 static int
542 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
543 {
544 bfd_byte insn_buf[PPC_INSN_SIZE];
545 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
546 unsigned long insn;
547 struct frame_info *curfrm;
548
549 /* Find the search limits based on function boundaries and hard limit. */
550
551 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
552 return 0;
553
554 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
555 if (epilogue_start < func_start) epilogue_start = func_start;
556
557 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
558 if (epilogue_end > func_end) epilogue_end = func_end;
559
560 curfrm = get_current_frame ();
561
562 /* Scan forward until next 'blr'. */
563
564 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
565 {
566 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
567 return 0;
568 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
569 if (insn == 0x4e800020)
570 break;
571 if (insn_changes_sp_or_jumps (insn))
572 return 0;
573 }
574
575 /* Scan backward until adjustment to stack pointer (R1). */
576
577 for (scan_pc = pc - PPC_INSN_SIZE;
578 scan_pc >= epilogue_start;
579 scan_pc -= PPC_INSN_SIZE)
580 {
581 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
582 return 0;
583 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
584 if (insn_changes_sp_or_jumps (insn))
585 return 1;
586 }
587
588 return 0;
589 }
590
591
592 /* Fill in fi->saved_regs */
593
594 struct frame_extra_info
595 {
596 /* Functions calling alloca() change the value of the stack
597 pointer. We need to use initial stack pointer (which is saved in
598 r31 by gcc) in such cases. If a compiler emits traceback table,
599 then we should use the alloca register specified in traceback
600 table. FIXME. */
601 CORE_ADDR initial_sp; /* initial stack pointer. */
602 };
603
604 /* Get the ith function argument for the current function. */
605 static CORE_ADDR
606 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
607 struct type *type)
608 {
609 return get_frame_register_unsigned (frame, 3 + argi);
610 }
611
612 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
613
614 static CORE_ADDR
615 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
616 {
617 CORE_ADDR dest;
618 int immediate;
619 int absolute;
620 int ext_op;
621
622 absolute = (int) ((instr >> 1) & 1);
623
624 switch (opcode)
625 {
626 case 18:
627 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
628 if (absolute)
629 dest = immediate;
630 else
631 dest = pc + immediate;
632 break;
633
634 case 16:
635 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
636 if (absolute)
637 dest = immediate;
638 else
639 dest = pc + immediate;
640 break;
641
642 case 19:
643 ext_op = (instr >> 1) & 0x3ff;
644
645 if (ext_op == 16) /* br conditional register */
646 {
647 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
648
649 /* If we are about to return from a signal handler, dest is
650 something like 0x3c90. The current frame is a signal handler
651 caller frame, upon completion of the sigreturn system call
652 execution will return to the saved PC in the frame. */
653 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
654 {
655 struct frame_info *fi;
656
657 fi = get_current_frame ();
658 if (fi != NULL)
659 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
660 gdbarch_tdep (current_gdbarch)->wordsize);
661 }
662 }
663
664 else if (ext_op == 528) /* br cond to count reg */
665 {
666 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
667
668 /* If we are about to execute a system call, dest is something
669 like 0x22fc or 0x3b00. Upon completion the system call
670 will return to the address in the link register. */
671 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
672 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
673 }
674 else
675 return -1;
676 break;
677
678 default:
679 return -1;
680 }
681 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
682 }
683
684
685 /* Sequence of bytes for breakpoint instruction. */
686
687 const static unsigned char *
688 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
689 {
690 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
691 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
692 *bp_size = 4;
693 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
694 return big_breakpoint;
695 else
696 return little_breakpoint;
697 }
698
699
700 /* AIX does not support PT_STEP. Simulate it. */
701
702 void
703 rs6000_software_single_step (enum target_signal signal,
704 int insert_breakpoints_p)
705 {
706 CORE_ADDR dummy;
707 int breakp_sz;
708 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
709 int ii, insn;
710 CORE_ADDR loc;
711 CORE_ADDR breaks[2];
712 int opcode;
713
714 if (insert_breakpoints_p)
715 {
716 loc = read_pc ();
717
718 insn = read_memory_integer (loc, 4);
719
720 breaks[0] = loc + breakp_sz;
721 opcode = insn >> 26;
722 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
723
724 /* Don't put two breakpoints on the same address. */
725 if (breaks[1] == breaks[0])
726 breaks[1] = -1;
727
728 for (ii = 0; ii < 2; ++ii)
729 {
730 /* ignore invalid breakpoint. */
731 if (breaks[ii] == -1)
732 continue;
733 insert_single_step_breakpoint (breaks[ii]);
734 }
735 }
736 else
737 remove_single_step_breakpoints ();
738
739 errno = 0; /* FIXME, don't ignore errors! */
740 /* What errors? {read,write}_memory call error(). */
741 }
742
743
744 /* return pc value after skipping a function prologue and also return
745 information about a function frame.
746
747 in struct rs6000_framedata fdata:
748 - frameless is TRUE, if function does not have a frame.
749 - nosavedpc is TRUE, if function does not save %pc value in its frame.
750 - offset is the initial size of this stack frame --- the amount by
751 which we decrement the sp to allocate the frame.
752 - saved_gpr is the number of the first saved gpr.
753 - saved_fpr is the number of the first saved fpr.
754 - saved_vr is the number of the first saved vr.
755 - saved_ev is the number of the first saved ev.
756 - alloca_reg is the number of the register used for alloca() handling.
757 Otherwise -1.
758 - gpr_offset is the offset of the first saved gpr from the previous frame.
759 - fpr_offset is the offset of the first saved fpr from the previous frame.
760 - vr_offset is the offset of the first saved vr from the previous frame.
761 - ev_offset is the offset of the first saved ev from the previous frame.
762 - lr_offset is the offset of the saved lr
763 - cr_offset is the offset of the saved cr
764 - vrsave_offset is the offset of the saved vrsave register
765 */
766
767 #define SIGNED_SHORT(x) \
768 ((sizeof (short) == 2) \
769 ? ((int)(short)(x)) \
770 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
771
772 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
773
774 /* Limit the number of skipped non-prologue instructions, as the examining
775 of the prologue is expensive. */
776 static int max_skip_non_prologue_insns = 10;
777
778 /* Given PC representing the starting address of a function, and
779 LIM_PC which is the (sloppy) limit to which to scan when looking
780 for a prologue, attempt to further refine this limit by using
781 the line data in the symbol table. If successful, a better guess
782 on where the prologue ends is returned, otherwise the previous
783 value of lim_pc is returned. */
784
785 /* FIXME: cagney/2004-02-14: This function and logic have largely been
786 superseded by skip_prologue_using_sal. */
787
788 static CORE_ADDR
789 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
790 {
791 struct symtab_and_line prologue_sal;
792
793 prologue_sal = find_pc_line (pc, 0);
794 if (prologue_sal.line != 0)
795 {
796 int i;
797 CORE_ADDR addr = prologue_sal.end;
798
799 /* Handle the case in which compiler's optimizer/scheduler
800 has moved instructions into the prologue. We scan ahead
801 in the function looking for address ranges whose corresponding
802 line number is less than or equal to the first one that we
803 found for the function. (It can be less than when the
804 scheduler puts a body instruction before the first prologue
805 instruction.) */
806 for (i = 2 * max_skip_non_prologue_insns;
807 i > 0 && (lim_pc == 0 || addr < lim_pc);
808 i--)
809 {
810 struct symtab_and_line sal;
811
812 sal = find_pc_line (addr, 0);
813 if (sal.line == 0)
814 break;
815 if (sal.line <= prologue_sal.line
816 && sal.symtab == prologue_sal.symtab)
817 {
818 prologue_sal = sal;
819 }
820 addr = sal.end;
821 }
822
823 if (lim_pc == 0 || prologue_sal.end < lim_pc)
824 lim_pc = prologue_sal.end;
825 }
826 return lim_pc;
827 }
828
829 /* Return nonzero if the given instruction OP can be part of the prologue
830 of a function and saves a parameter on the stack. FRAMEP should be
831 set if one of the previous instructions in the function has set the
832 Frame Pointer. */
833
834 static int
835 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
836 {
837 /* Move parameters from argument registers to temporary register. */
838 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
839 {
840 /* Rx must be scratch register r0. */
841 const int rx_regno = (op >> 16) & 31;
842 /* Ry: Only r3 - r10 are used for parameter passing. */
843 const int ry_regno = GET_SRC_REG (op);
844
845 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
846 {
847 *r0_contains_arg = 1;
848 return 1;
849 }
850 else
851 return 0;
852 }
853
854 /* Save a General Purpose Register on stack. */
855
856 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
857 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
858 {
859 /* Rx: Only r3 - r10 are used for parameter passing. */
860 const int rx_regno = GET_SRC_REG (op);
861
862 return (rx_regno >= 3 && rx_regno <= 10);
863 }
864
865 /* Save a General Purpose Register on stack via the Frame Pointer. */
866
867 if (framep &&
868 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
869 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
870 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
871 {
872 /* Rx: Usually, only r3 - r10 are used for parameter passing.
873 However, the compiler sometimes uses r0 to hold an argument. */
874 const int rx_regno = GET_SRC_REG (op);
875
876 return ((rx_regno >= 3 && rx_regno <= 10)
877 || (rx_regno == 0 && *r0_contains_arg));
878 }
879
880 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
881 {
882 /* Only f2 - f8 are used for parameter passing. */
883 const int src_regno = GET_SRC_REG (op);
884
885 return (src_regno >= 2 && src_regno <= 8);
886 }
887
888 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
889 {
890 /* Only f2 - f8 are used for parameter passing. */
891 const int src_regno = GET_SRC_REG (op);
892
893 return (src_regno >= 2 && src_regno <= 8);
894 }
895
896 /* Not an insn that saves a parameter on stack. */
897 return 0;
898 }
899
900 /* Assuming that INSN is a "bl" instruction located at PC, return
901 nonzero if the destination of the branch is a "blrl" instruction.
902
903 This sequence is sometimes found in certain function prologues.
904 It allows the function to load the LR register with a value that
905 they can use to access PIC data using PC-relative offsets. */
906
907 static int
908 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
909 {
910 const int opcode = 18;
911 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
912 int dest_insn;
913
914 if (dest == -1)
915 return 0; /* Should never happen, but just return zero to be safe. */
916
917 dest_insn = read_memory_integer (dest, 4);
918 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
919 return 1;
920
921 return 0;
922 }
923
924 static CORE_ADDR
925 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
926 {
927 CORE_ADDR orig_pc = pc;
928 CORE_ADDR last_prologue_pc = pc;
929 CORE_ADDR li_found_pc = 0;
930 gdb_byte buf[4];
931 unsigned long op;
932 long offset = 0;
933 long vr_saved_offset = 0;
934 int lr_reg = -1;
935 int cr_reg = -1;
936 int vr_reg = -1;
937 int ev_reg = -1;
938 long ev_offset = 0;
939 int vrsave_reg = -1;
940 int reg;
941 int framep = 0;
942 int minimal_toc_loaded = 0;
943 int prev_insn_was_prologue_insn = 1;
944 int num_skip_non_prologue_insns = 0;
945 int r0_contains_arg = 0;
946 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
947 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
948
949 /* Attempt to find the end of the prologue when no limit is specified.
950 Note that refine_prologue_limit() has been written so that it may
951 be used to "refine" the limits of non-zero PC values too, but this
952 is only safe if we 1) trust the line information provided by the
953 compiler and 2) iterate enough to actually find the end of the
954 prologue.
955
956 It may become a good idea at some point (for both performance and
957 accuracy) to unconditionally call refine_prologue_limit(). But,
958 until we can make a clear determination that this is beneficial,
959 we'll play it safe and only use it to obtain a limit when none
960 has been specified. */
961 if (lim_pc == 0)
962 lim_pc = refine_prologue_limit (pc, lim_pc);
963
964 memset (fdata, 0, sizeof (struct rs6000_framedata));
965 fdata->saved_gpr = -1;
966 fdata->saved_fpr = -1;
967 fdata->saved_vr = -1;
968 fdata->saved_ev = -1;
969 fdata->alloca_reg = -1;
970 fdata->frameless = 1;
971 fdata->nosavedpc = 1;
972
973 for (;; pc += 4)
974 {
975 /* Sometimes it isn't clear if an instruction is a prologue
976 instruction or not. When we encounter one of these ambiguous
977 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
978 Otherwise, we'll assume that it really is a prologue instruction. */
979 if (prev_insn_was_prologue_insn)
980 last_prologue_pc = pc;
981
982 /* Stop scanning if we've hit the limit. */
983 if (lim_pc != 0 && pc >= lim_pc)
984 break;
985
986 prev_insn_was_prologue_insn = 1;
987
988 /* Fetch the instruction and convert it to an integer. */
989 if (target_read_memory (pc, buf, 4))
990 break;
991 op = extract_signed_integer (buf, 4);
992
993 if ((op & 0xfc1fffff) == 0x7c0802a6)
994 { /* mflr Rx */
995 /* Since shared library / PIC code, which needs to get its
996 address at runtime, can appear to save more than one link
997 register vis:
998
999 *INDENT-OFF*
1000 stwu r1,-304(r1)
1001 mflr r3
1002 bl 0xff570d0 (blrl)
1003 stw r30,296(r1)
1004 mflr r30
1005 stw r31,300(r1)
1006 stw r3,308(r1);
1007 ...
1008 *INDENT-ON*
1009
1010 remember just the first one, but skip over additional
1011 ones. */
1012 if (lr_reg == -1)
1013 lr_reg = (op & 0x03e00000);
1014 if (lr_reg == 0)
1015 r0_contains_arg = 0;
1016 continue;
1017 }
1018 else if ((op & 0xfc1fffff) == 0x7c000026)
1019 { /* mfcr Rx */
1020 cr_reg = (op & 0x03e00000);
1021 if (cr_reg == 0)
1022 r0_contains_arg = 0;
1023 continue;
1024
1025 }
1026 else if ((op & 0xfc1f0000) == 0xd8010000)
1027 { /* stfd Rx,NUM(r1) */
1028 reg = GET_SRC_REG (op);
1029 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1030 {
1031 fdata->saved_fpr = reg;
1032 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1033 }
1034 continue;
1035
1036 }
1037 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1038 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1039 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1040 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1041 {
1042
1043 reg = GET_SRC_REG (op);
1044 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1045 {
1046 fdata->saved_gpr = reg;
1047 if ((op & 0xfc1f0003) == 0xf8010000)
1048 op &= ~3UL;
1049 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1050 }
1051 continue;
1052
1053 }
1054 else if ((op & 0xffff0000) == 0x60000000)
1055 {
1056 /* nop */
1057 /* Allow nops in the prologue, but do not consider them to
1058 be part of the prologue unless followed by other prologue
1059 instructions. */
1060 prev_insn_was_prologue_insn = 0;
1061 continue;
1062
1063 }
1064 else if ((op & 0xffff0000) == 0x3c000000)
1065 { /* addis 0,0,NUM, used
1066 for >= 32k frames */
1067 fdata->offset = (op & 0x0000ffff) << 16;
1068 fdata->frameless = 0;
1069 r0_contains_arg = 0;
1070 continue;
1071
1072 }
1073 else if ((op & 0xffff0000) == 0x60000000)
1074 { /* ori 0,0,NUM, 2nd ha
1075 lf of >= 32k frames */
1076 fdata->offset |= (op & 0x0000ffff);
1077 fdata->frameless = 0;
1078 r0_contains_arg = 0;
1079 continue;
1080
1081 }
1082 else if (lr_reg >= 0 &&
1083 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1084 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1085 /* stw Rx, NUM(r1) */
1086 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1087 /* stwu Rx, NUM(r1) */
1088 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1089 { /* where Rx == lr */
1090 fdata->lr_offset = offset;
1091 fdata->nosavedpc = 0;
1092 /* Invalidate lr_reg, but don't set it to -1.
1093 That would mean that it had never been set. */
1094 lr_reg = -2;
1095 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1096 (op & 0xfc000000) == 0x90000000) /* stw */
1097 {
1098 /* Does not update r1, so add displacement to lr_offset. */
1099 fdata->lr_offset += SIGNED_SHORT (op);
1100 }
1101 continue;
1102
1103 }
1104 else if (cr_reg >= 0 &&
1105 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1106 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1107 /* stw Rx, NUM(r1) */
1108 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1109 /* stwu Rx, NUM(r1) */
1110 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1111 { /* where Rx == cr */
1112 fdata->cr_offset = offset;
1113 /* Invalidate cr_reg, but don't set it to -1.
1114 That would mean that it had never been set. */
1115 cr_reg = -2;
1116 if ((op & 0xfc000003) == 0xf8000000 ||
1117 (op & 0xfc000000) == 0x90000000)
1118 {
1119 /* Does not update r1, so add displacement to cr_offset. */
1120 fdata->cr_offset += SIGNED_SHORT (op);
1121 }
1122 continue;
1123
1124 }
1125 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1126 {
1127 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1128 prediction bits. If the LR has already been saved, we can
1129 skip it. */
1130 continue;
1131 }
1132 else if (op == 0x48000005)
1133 { /* bl .+4 used in
1134 -mrelocatable */
1135 continue;
1136
1137 }
1138 else if (op == 0x48000004)
1139 { /* b .+4 (xlc) */
1140 break;
1141
1142 }
1143 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1144 in V.4 -mminimal-toc */
1145 (op & 0xffff0000) == 0x3bde0000)
1146 { /* addi 30,30,foo@l */
1147 continue;
1148
1149 }
1150 else if ((op & 0xfc000001) == 0x48000001)
1151 { /* bl foo,
1152 to save fprs??? */
1153
1154 fdata->frameless = 0;
1155
1156 /* If the return address has already been saved, we can skip
1157 calls to blrl (for PIC). */
1158 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1159 continue;
1160
1161 /* Don't skip over the subroutine call if it is not within
1162 the first three instructions of the prologue and either
1163 we have no line table information or the line info tells
1164 us that the subroutine call is not part of the line
1165 associated with the prologue. */
1166 if ((pc - orig_pc) > 8)
1167 {
1168 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1169 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1170
1171 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1172 break;
1173 }
1174
1175 op = read_memory_integer (pc + 4, 4);
1176
1177 /* At this point, make sure this is not a trampoline
1178 function (a function that simply calls another functions,
1179 and nothing else). If the next is not a nop, this branch
1180 was part of the function prologue. */
1181
1182 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1183 break; /* don't skip over
1184 this branch */
1185 continue;
1186
1187 }
1188 /* update stack pointer */
1189 else if ((op & 0xfc1f0000) == 0x94010000)
1190 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1191 fdata->frameless = 0;
1192 fdata->offset = SIGNED_SHORT (op);
1193 offset = fdata->offset;
1194 continue;
1195 }
1196 else if ((op & 0xfc1f016a) == 0x7c01016e)
1197 { /* stwux rX,r1,rY */
1198 /* no way to figure out what r1 is going to be */
1199 fdata->frameless = 0;
1200 offset = fdata->offset;
1201 continue;
1202 }
1203 else if ((op & 0xfc1f0003) == 0xf8010001)
1204 { /* stdu rX,NUM(r1) */
1205 fdata->frameless = 0;
1206 fdata->offset = SIGNED_SHORT (op & ~3UL);
1207 offset = fdata->offset;
1208 continue;
1209 }
1210 else if ((op & 0xfc1f016a) == 0x7c01016a)
1211 { /* stdux rX,r1,rY */
1212 /* no way to figure out what r1 is going to be */
1213 fdata->frameless = 0;
1214 offset = fdata->offset;
1215 continue;
1216 }
1217 else if ((op & 0xffff0000) == 0x38210000)
1218 { /* addi r1,r1,SIMM */
1219 fdata->frameless = 0;
1220 fdata->offset += SIGNED_SHORT (op);
1221 offset = fdata->offset;
1222 continue;
1223 }
1224 /* Load up minimal toc pointer */
1225 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1226 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1227 && !minimal_toc_loaded)
1228 {
1229 minimal_toc_loaded = 1;
1230 continue;
1231
1232 /* move parameters from argument registers to local variable
1233 registers */
1234 }
1235 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1236 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1237 (((op >> 21) & 31) <= 10) &&
1238 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1239 {
1240 continue;
1241
1242 /* store parameters in stack */
1243 }
1244 /* Move parameters from argument registers to temporary register. */
1245 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1246 {
1247 continue;
1248
1249 /* Set up frame pointer */
1250 }
1251 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1252 || op == 0x7c3f0b78)
1253 { /* mr r31, r1 */
1254 fdata->frameless = 0;
1255 framep = 1;
1256 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1257 continue;
1258
1259 /* Another way to set up the frame pointer. */
1260 }
1261 else if ((op & 0xfc1fffff) == 0x38010000)
1262 { /* addi rX, r1, 0x0 */
1263 fdata->frameless = 0;
1264 framep = 1;
1265 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1266 + ((op & ~0x38010000) >> 21));
1267 continue;
1268 }
1269 /* AltiVec related instructions. */
1270 /* Store the vrsave register (spr 256) in another register for
1271 later manipulation, or load a register into the vrsave
1272 register. 2 instructions are used: mfvrsave and
1273 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1274 and mtspr SPR256, Rn. */
1275 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1276 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1277 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1278 {
1279 vrsave_reg = GET_SRC_REG (op);
1280 continue;
1281 }
1282 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1283 {
1284 continue;
1285 }
1286 /* Store the register where vrsave was saved to onto the stack:
1287 rS is the register where vrsave was stored in a previous
1288 instruction. */
1289 /* 100100 sssss 00001 dddddddd dddddddd */
1290 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1291 {
1292 if (vrsave_reg == GET_SRC_REG (op))
1293 {
1294 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1295 vrsave_reg = -1;
1296 }
1297 continue;
1298 }
1299 /* Compute the new value of vrsave, by modifying the register
1300 where vrsave was saved to. */
1301 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1302 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1303 {
1304 continue;
1305 }
1306 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1307 in a pair of insns to save the vector registers on the
1308 stack. */
1309 /* 001110 00000 00000 iiii iiii iiii iiii */
1310 /* 001110 01110 00000 iiii iiii iiii iiii */
1311 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1312 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1313 {
1314 if ((op & 0xffff0000) == 0x38000000)
1315 r0_contains_arg = 0;
1316 li_found_pc = pc;
1317 vr_saved_offset = SIGNED_SHORT (op);
1318
1319 /* This insn by itself is not part of the prologue, unless
1320 if part of the pair of insns mentioned above. So do not
1321 record this insn as part of the prologue yet. */
1322 prev_insn_was_prologue_insn = 0;
1323 }
1324 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1325 /* 011111 sssss 11111 00000 00111001110 */
1326 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1327 {
1328 if (pc == (li_found_pc + 4))
1329 {
1330 vr_reg = GET_SRC_REG (op);
1331 /* If this is the first vector reg to be saved, or if
1332 it has a lower number than others previously seen,
1333 reupdate the frame info. */
1334 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1335 {
1336 fdata->saved_vr = vr_reg;
1337 fdata->vr_offset = vr_saved_offset + offset;
1338 }
1339 vr_saved_offset = -1;
1340 vr_reg = -1;
1341 li_found_pc = 0;
1342 }
1343 }
1344 /* End AltiVec related instructions. */
1345
1346 /* Start BookE related instructions. */
1347 /* Store gen register S at (r31+uimm).
1348 Any register less than r13 is volatile, so we don't care. */
1349 /* 000100 sssss 11111 iiiii 01100100001 */
1350 else if (arch_info->mach == bfd_mach_ppc_e500
1351 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1352 {
1353 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1354 {
1355 unsigned int imm;
1356 ev_reg = GET_SRC_REG (op);
1357 imm = (op >> 11) & 0x1f;
1358 ev_offset = imm * 8;
1359 /* If this is the first vector reg to be saved, or if
1360 it has a lower number than others previously seen,
1361 reupdate the frame info. */
1362 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1363 {
1364 fdata->saved_ev = ev_reg;
1365 fdata->ev_offset = ev_offset + offset;
1366 }
1367 }
1368 continue;
1369 }
1370 /* Store gen register rS at (r1+rB). */
1371 /* 000100 sssss 00001 bbbbb 01100100000 */
1372 else if (arch_info->mach == bfd_mach_ppc_e500
1373 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1374 {
1375 if (pc == (li_found_pc + 4))
1376 {
1377 ev_reg = GET_SRC_REG (op);
1378 /* If this is the first vector reg to be saved, or if
1379 it has a lower number than others previously seen,
1380 reupdate the frame info. */
1381 /* We know the contents of rB from the previous instruction. */
1382 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1383 {
1384 fdata->saved_ev = ev_reg;
1385 fdata->ev_offset = vr_saved_offset + offset;
1386 }
1387 vr_saved_offset = -1;
1388 ev_reg = -1;
1389 li_found_pc = 0;
1390 }
1391 continue;
1392 }
1393 /* Store gen register r31 at (rA+uimm). */
1394 /* 000100 11111 aaaaa iiiii 01100100001 */
1395 else if (arch_info->mach == bfd_mach_ppc_e500
1396 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1397 {
1398 /* Wwe know that the source register is 31 already, but
1399 it can't hurt to compute it. */
1400 ev_reg = GET_SRC_REG (op);
1401 ev_offset = ((op >> 11) & 0x1f) * 8;
1402 /* If this is the first vector reg to be saved, or if
1403 it has a lower number than others previously seen,
1404 reupdate the frame info. */
1405 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1406 {
1407 fdata->saved_ev = ev_reg;
1408 fdata->ev_offset = ev_offset + offset;
1409 }
1410
1411 continue;
1412 }
1413 /* Store gen register S at (r31+r0).
1414 Store param on stack when offset from SP bigger than 4 bytes. */
1415 /* 000100 sssss 11111 00000 01100100000 */
1416 else if (arch_info->mach == bfd_mach_ppc_e500
1417 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1418 {
1419 if (pc == (li_found_pc + 4))
1420 {
1421 if ((op & 0x03e00000) >= 0x01a00000)
1422 {
1423 ev_reg = GET_SRC_REG (op);
1424 /* If this is the first vector reg to be saved, or if
1425 it has a lower number than others previously seen,
1426 reupdate the frame info. */
1427 /* We know the contents of r0 from the previous
1428 instruction. */
1429 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1430 {
1431 fdata->saved_ev = ev_reg;
1432 fdata->ev_offset = vr_saved_offset + offset;
1433 }
1434 ev_reg = -1;
1435 }
1436 vr_saved_offset = -1;
1437 li_found_pc = 0;
1438 continue;
1439 }
1440 }
1441 /* End BookE related instructions. */
1442
1443 else
1444 {
1445 /* Not a recognized prologue instruction.
1446 Handle optimizer code motions into the prologue by continuing
1447 the search if we have no valid frame yet or if the return
1448 address is not yet saved in the frame. */
1449 if (fdata->frameless == 0
1450 && (lr_reg == -1 || fdata->nosavedpc == 0))
1451 break;
1452
1453 if (op == 0x4e800020 /* blr */
1454 || op == 0x4e800420) /* bctr */
1455 /* Do not scan past epilogue in frameless functions or
1456 trampolines. */
1457 break;
1458 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1459 /* Never skip branches. */
1460 break;
1461
1462 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1463 /* Do not scan too many insns, scanning insns is expensive with
1464 remote targets. */
1465 break;
1466
1467 /* Continue scanning. */
1468 prev_insn_was_prologue_insn = 0;
1469 continue;
1470 }
1471 }
1472
1473 #if 0
1474 /* I have problems with skipping over __main() that I need to address
1475 * sometime. Previously, I used to use misc_function_vector which
1476 * didn't work as well as I wanted to be. -MGO */
1477
1478 /* If the first thing after skipping a prolog is a branch to a function,
1479 this might be a call to an initializer in main(), introduced by gcc2.
1480 We'd like to skip over it as well. Fortunately, xlc does some extra
1481 work before calling a function right after a prologue, thus we can
1482 single out such gcc2 behaviour. */
1483
1484
1485 if ((op & 0xfc000001) == 0x48000001)
1486 { /* bl foo, an initializer function? */
1487 op = read_memory_integer (pc + 4, 4);
1488
1489 if (op == 0x4def7b82)
1490 { /* cror 0xf, 0xf, 0xf (nop) */
1491
1492 /* Check and see if we are in main. If so, skip over this
1493 initializer function as well. */
1494
1495 tmp = find_pc_misc_function (pc);
1496 if (tmp >= 0
1497 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1498 return pc + 8;
1499 }
1500 }
1501 #endif /* 0 */
1502
1503 fdata->offset = -fdata->offset;
1504 return last_prologue_pc;
1505 }
1506
1507
1508 /*************************************************************************
1509 Support for creating pushing a dummy frame into the stack, and popping
1510 frames, etc.
1511 *************************************************************************/
1512
1513
1514 /* All the ABI's require 16 byte alignment. */
1515 static CORE_ADDR
1516 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1517 {
1518 return (addr & -16);
1519 }
1520
1521 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1522 the first eight words of the argument list (that might be less than
1523 eight parameters if some parameters occupy more than one word) are
1524 passed in r3..r10 registers. float and double parameters are
1525 passed in fpr's, in addition to that. Rest of the parameters if any
1526 are passed in user stack. There might be cases in which half of the
1527 parameter is copied into registers, the other half is pushed into
1528 stack.
1529
1530 Stack must be aligned on 64-bit boundaries when synthesizing
1531 function calls.
1532
1533 If the function is returning a structure, then the return address is passed
1534 in r3, then the first 7 words of the parameters can be passed in registers,
1535 starting from r4. */
1536
1537 static CORE_ADDR
1538 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1539 struct regcache *regcache, CORE_ADDR bp_addr,
1540 int nargs, struct value **args, CORE_ADDR sp,
1541 int struct_return, CORE_ADDR struct_addr)
1542 {
1543 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1544 int ii;
1545 int len = 0;
1546 int argno; /* current argument number */
1547 int argbytes; /* current argument byte */
1548 gdb_byte tmp_buffer[50];
1549 int f_argno = 0; /* current floating point argno */
1550 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1551 CORE_ADDR func_addr = find_function_addr (function, NULL);
1552
1553 struct value *arg = 0;
1554 struct type *type;
1555
1556 CORE_ADDR saved_sp;
1557
1558 /* The calling convention this function implements assumes the
1559 processor has floating-point registers. We shouldn't be using it
1560 on PPC variants that lack them. */
1561 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1562
1563 /* The first eight words of ther arguments are passed in registers.
1564 Copy them appropriately. */
1565 ii = 0;
1566
1567 /* If the function is returning a `struct', then the first word
1568 (which will be passed in r3) is used for struct return address.
1569 In that case we should advance one word and start from r4
1570 register to copy parameters. */
1571 if (struct_return)
1572 {
1573 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1574 struct_addr);
1575 ii++;
1576 }
1577
1578 /*
1579 effectively indirect call... gcc does...
1580
1581 return_val example( float, int);
1582
1583 eabi:
1584 float in fp0, int in r3
1585 offset of stack on overflow 8/16
1586 for varargs, must go by type.
1587 power open:
1588 float in r3&r4, int in r5
1589 offset of stack on overflow different
1590 both:
1591 return in r3 or f0. If no float, must study how gcc emulates floats;
1592 pay attention to arg promotion.
1593 User may have to cast\args to handle promotion correctly
1594 since gdb won't know if prototype supplied or not.
1595 */
1596
1597 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1598 {
1599 int reg_size = register_size (current_gdbarch, ii + 3);
1600
1601 arg = args[argno];
1602 type = check_typedef (value_type (arg));
1603 len = TYPE_LENGTH (type);
1604
1605 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1606 {
1607
1608 /* Floating point arguments are passed in fpr's, as well as gpr's.
1609 There are 13 fpr's reserved for passing parameters. At this point
1610 there is no way we would run out of them. */
1611
1612 gdb_assert (len <= 8);
1613
1614 regcache_cooked_write (regcache,
1615 tdep->ppc_fp0_regnum + 1 + f_argno,
1616 value_contents (arg));
1617 ++f_argno;
1618 }
1619
1620 if (len > reg_size)
1621 {
1622
1623 /* Argument takes more than one register. */
1624 while (argbytes < len)
1625 {
1626 gdb_byte word[MAX_REGISTER_SIZE];
1627 memset (word, 0, reg_size);
1628 memcpy (word,
1629 ((char *) value_contents (arg)) + argbytes,
1630 (len - argbytes) > reg_size
1631 ? reg_size : len - argbytes);
1632 regcache_cooked_write (regcache,
1633 tdep->ppc_gp0_regnum + 3 + ii,
1634 word);
1635 ++ii, argbytes += reg_size;
1636
1637 if (ii >= 8)
1638 goto ran_out_of_registers_for_arguments;
1639 }
1640 argbytes = 0;
1641 --ii;
1642 }
1643 else
1644 {
1645 /* Argument can fit in one register. No problem. */
1646 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1647 gdb_byte word[MAX_REGISTER_SIZE];
1648
1649 memset (word, 0, reg_size);
1650 memcpy (word, value_contents (arg), len);
1651 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1652 }
1653 ++argno;
1654 }
1655
1656 ran_out_of_registers_for_arguments:
1657
1658 saved_sp = read_sp ();
1659
1660 /* Location for 8 parameters are always reserved. */
1661 sp -= wordsize * 8;
1662
1663 /* Another six words for back chain, TOC register, link register, etc. */
1664 sp -= wordsize * 6;
1665
1666 /* Stack pointer must be quadword aligned. */
1667 sp &= -16;
1668
1669 /* If there are more arguments, allocate space for them in
1670 the stack, then push them starting from the ninth one. */
1671
1672 if ((argno < nargs) || argbytes)
1673 {
1674 int space = 0, jj;
1675
1676 if (argbytes)
1677 {
1678 space += ((len - argbytes + 3) & -4);
1679 jj = argno + 1;
1680 }
1681 else
1682 jj = argno;
1683
1684 for (; jj < nargs; ++jj)
1685 {
1686 struct value *val = args[jj];
1687 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1688 }
1689
1690 /* Add location required for the rest of the parameters. */
1691 space = (space + 15) & -16;
1692 sp -= space;
1693
1694 /* This is another instance we need to be concerned about
1695 securing our stack space. If we write anything underneath %sp
1696 (r1), we might conflict with the kernel who thinks he is free
1697 to use this area. So, update %sp first before doing anything
1698 else. */
1699
1700 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1701
1702 /* If the last argument copied into the registers didn't fit there
1703 completely, push the rest of it into stack. */
1704
1705 if (argbytes)
1706 {
1707 write_memory (sp + 24 + (ii * 4),
1708 value_contents (arg) + argbytes,
1709 len - argbytes);
1710 ++argno;
1711 ii += ((len - argbytes + 3) & -4) / 4;
1712 }
1713
1714 /* Push the rest of the arguments into stack. */
1715 for (; argno < nargs; ++argno)
1716 {
1717
1718 arg = args[argno];
1719 type = check_typedef (value_type (arg));
1720 len = TYPE_LENGTH (type);
1721
1722
1723 /* Float types should be passed in fpr's, as well as in the
1724 stack. */
1725 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1726 {
1727
1728 gdb_assert (len <= 8);
1729
1730 regcache_cooked_write (regcache,
1731 tdep->ppc_fp0_regnum + 1 + f_argno,
1732 value_contents (arg));
1733 ++f_argno;
1734 }
1735
1736 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1737 ii += ((len + 3) & -4) / 4;
1738 }
1739 }
1740
1741 /* Set the stack pointer. According to the ABI, the SP is meant to
1742 be set _before_ the corresponding stack space is used. On AIX,
1743 this even applies when the target has been completely stopped!
1744 Not doing this can lead to conflicts with the kernel which thinks
1745 that it still has control over this not-yet-allocated stack
1746 region. */
1747 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1748
1749 /* Set back chain properly. */
1750 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1751 write_memory (sp, tmp_buffer, wordsize);
1752
1753 /* Point the inferior function call's return address at the dummy's
1754 breakpoint. */
1755 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1756
1757 /* Set the TOC register, get the value from the objfile reader
1758 which, in turn, gets it from the VMAP table. */
1759 if (rs6000_find_toc_address_hook != NULL)
1760 {
1761 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1762 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1763 }
1764
1765 target_store_registers (-1);
1766 return sp;
1767 }
1768
1769 static enum return_value_convention
1770 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1771 struct regcache *regcache, gdb_byte *readbuf,
1772 const gdb_byte *writebuf)
1773 {
1774 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1775 gdb_byte buf[8];
1776
1777 /* The calling convention this function implements assumes the
1778 processor has floating-point registers. We shouldn't be using it
1779 on PowerPC variants that lack them. */
1780 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1781
1782 /* AltiVec extension: Functions that declare a vector data type as a
1783 return value place that return value in VR2. */
1784 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1785 && TYPE_LENGTH (valtype) == 16)
1786 {
1787 if (readbuf)
1788 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1789 if (writebuf)
1790 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1791
1792 return RETURN_VALUE_REGISTER_CONVENTION;
1793 }
1794
1795 /* If the called subprogram returns an aggregate, there exists an
1796 implicit first argument, whose value is the address of a caller-
1797 allocated buffer into which the callee is assumed to store its
1798 return value. All explicit parameters are appropriately
1799 relabeled. */
1800 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1801 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1802 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1803 return RETURN_VALUE_STRUCT_CONVENTION;
1804
1805 /* Scalar floating-point values are returned in FPR1 for float or
1806 double, and in FPR1:FPR2 for quadword precision. Fortran
1807 complex*8 and complex*16 are returned in FPR1:FPR2, and
1808 complex*32 is returned in FPR1:FPR4. */
1809 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1810 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1811 {
1812 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1813 gdb_byte regval[8];
1814
1815 /* FIXME: kettenis/2007-01-01: Add support for quadword
1816 precision and complex. */
1817
1818 if (readbuf)
1819 {
1820 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1821 convert_typed_floating (regval, regtype, readbuf, valtype);
1822 }
1823 if (writebuf)
1824 {
1825 convert_typed_floating (writebuf, valtype, regval, regtype);
1826 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1827 }
1828
1829 return RETURN_VALUE_REGISTER_CONVENTION;
1830 }
1831
1832 /* Values of the types int, long, short, pointer, and char (length
1833 is less than or equal to four bytes), as well as bit values of
1834 lengths less than or equal to 32 bits, must be returned right
1835 justified in GPR3 with signed values sign extended and unsigned
1836 values zero extended, as necessary. */
1837 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1838 {
1839 if (readbuf)
1840 {
1841 ULONGEST regval;
1842
1843 /* For reading we don't have to worry about sign extension. */
1844 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1845 &regval);
1846 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1847 }
1848 if (writebuf)
1849 {
1850 /* For writing, use unpack_long since that should handle any
1851 required sign extension. */
1852 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1853 unpack_long (valtype, writebuf));
1854 }
1855
1856 return RETURN_VALUE_REGISTER_CONVENTION;
1857 }
1858
1859 /* Eight-byte non-floating-point scalar values must be returned in
1860 GPR3:GPR4. */
1861
1862 if (TYPE_LENGTH (valtype) == 8)
1863 {
1864 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1865 gdb_assert (tdep->wordsize == 4);
1866
1867 if (readbuf)
1868 {
1869 gdb_byte regval[8];
1870
1871 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1872 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1873 regval + 4);
1874 memcpy (readbuf, regval, 8);
1875 }
1876 if (writebuf)
1877 {
1878 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1879 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1880 writebuf + 4);
1881 }
1882
1883 return RETURN_VALUE_REGISTER_CONVENTION;
1884 }
1885
1886 return RETURN_VALUE_STRUCT_CONVENTION;
1887 }
1888
1889 /* Return whether handle_inferior_event() should proceed through code
1890 starting at PC in function NAME when stepping.
1891
1892 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1893 handle memory references that are too distant to fit in instructions
1894 generated by the compiler. For example, if 'foo' in the following
1895 instruction:
1896
1897 lwz r9,foo(r2)
1898
1899 is greater than 32767, the linker might replace the lwz with a branch to
1900 somewhere in @FIX1 that does the load in 2 instructions and then branches
1901 back to where execution should continue.
1902
1903 GDB should silently step over @FIX code, just like AIX dbx does.
1904 Unfortunately, the linker uses the "b" instruction for the
1905 branches, meaning that the link register doesn't get set.
1906 Therefore, GDB's usual step_over_function () mechanism won't work.
1907
1908 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1909 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1910 @FIX code. */
1911
1912 int
1913 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1914 {
1915 return name && !strncmp (name, "@FIX", 4);
1916 }
1917
1918 /* Skip code that the user doesn't want to see when stepping:
1919
1920 1. Indirect function calls use a piece of trampoline code to do context
1921 switching, i.e. to set the new TOC table. Skip such code if we are on
1922 its first instruction (as when we have single-stepped to here).
1923
1924 2. Skip shared library trampoline code (which is different from
1925 indirect function call trampolines).
1926
1927 3. Skip bigtoc fixup code.
1928
1929 Result is desired PC to step until, or NULL if we are not in
1930 code that should be skipped. */
1931
1932 CORE_ADDR
1933 rs6000_skip_trampoline_code (CORE_ADDR pc)
1934 {
1935 unsigned int ii, op;
1936 int rel;
1937 CORE_ADDR solib_target_pc;
1938 struct minimal_symbol *msymbol;
1939
1940 static unsigned trampoline_code[] =
1941 {
1942 0x800b0000, /* l r0,0x0(r11) */
1943 0x90410014, /* st r2,0x14(r1) */
1944 0x7c0903a6, /* mtctr r0 */
1945 0x804b0004, /* l r2,0x4(r11) */
1946 0x816b0008, /* l r11,0x8(r11) */
1947 0x4e800420, /* bctr */
1948 0x4e800020, /* br */
1949 0
1950 };
1951
1952 /* Check for bigtoc fixup code. */
1953 msymbol = lookup_minimal_symbol_by_pc (pc);
1954 if (msymbol
1955 && rs6000_in_solib_return_trampoline (pc,
1956 DEPRECATED_SYMBOL_NAME (msymbol)))
1957 {
1958 /* Double-check that the third instruction from PC is relative "b". */
1959 op = read_memory_integer (pc + 8, 4);
1960 if ((op & 0xfc000003) == 0x48000000)
1961 {
1962 /* Extract bits 6-29 as a signed 24-bit relative word address and
1963 add it to the containing PC. */
1964 rel = ((int)(op << 6) >> 6);
1965 return pc + 8 + rel;
1966 }
1967 }
1968
1969 /* If pc is in a shared library trampoline, return its target. */
1970 solib_target_pc = find_solib_trampoline_target (pc);
1971 if (solib_target_pc)
1972 return solib_target_pc;
1973
1974 for (ii = 0; trampoline_code[ii]; ++ii)
1975 {
1976 op = read_memory_integer (pc + (ii * 4), 4);
1977 if (op != trampoline_code[ii])
1978 return 0;
1979 }
1980 ii = read_register (11); /* r11 holds destination addr */
1981 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1982 return pc;
1983 }
1984
1985 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1986 isn't available with that word size, return 0. */
1987
1988 static int
1989 regsize (const struct reg *reg, int wordsize)
1990 {
1991 return wordsize == 8 ? reg->sz64 : reg->sz32;
1992 }
1993
1994 /* Return the name of register number N, or null if no such register exists
1995 in the current architecture. */
1996
1997 static const char *
1998 rs6000_register_name (int n)
1999 {
2000 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2001 const struct reg *reg = tdep->regs + n;
2002
2003 if (!regsize (reg, tdep->wordsize))
2004 return NULL;
2005 return reg->name;
2006 }
2007
2008 /* Return the GDB type object for the "standard" data type
2009 of data in register N. */
2010
2011 static struct type *
2012 rs6000_register_type (struct gdbarch *gdbarch, int n)
2013 {
2014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2015 const struct reg *reg = tdep->regs + n;
2016
2017 if (reg->fpr)
2018 return builtin_type_double;
2019 else
2020 {
2021 int size = regsize (reg, tdep->wordsize);
2022 switch (size)
2023 {
2024 case 0:
2025 return builtin_type_int0;
2026 case 4:
2027 return builtin_type_uint32;
2028 case 8:
2029 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2030 return builtin_type_vec64;
2031 else
2032 return builtin_type_uint64;
2033 break;
2034 case 16:
2035 return builtin_type_vec128;
2036 break;
2037 default:
2038 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2039 n, size);
2040 }
2041 }
2042 }
2043
2044 /* Is REGNUM a member of REGGROUP? */
2045 static int
2046 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2047 struct reggroup *group)
2048 {
2049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2050 int float_p;
2051 int vector_p;
2052 int general_p;
2053
2054 if (REGISTER_NAME (regnum) == NULL
2055 || *REGISTER_NAME (regnum) == '\0')
2056 return 0;
2057 if (group == all_reggroup)
2058 return 1;
2059
2060 float_p = (regnum == tdep->ppc_fpscr_regnum
2061 || (regnum >= tdep->ppc_fp0_regnum
2062 && regnum < tdep->ppc_fp0_regnum + 32));
2063 if (group == float_reggroup)
2064 return float_p;
2065
2066 vector_p = ((tdep->ppc_vr0_regnum >= 0
2067 && regnum >= tdep->ppc_vr0_regnum
2068 && regnum < tdep->ppc_vr0_regnum + 32)
2069 || (tdep->ppc_ev0_regnum >= 0
2070 && regnum >= tdep->ppc_ev0_regnum
2071 && regnum < tdep->ppc_ev0_regnum + 32)
2072 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2073 || regnum == tdep->ppc_vrsave_regnum
2074 || regnum == tdep->ppc_acc_regnum
2075 || regnum == tdep->ppc_spefscr_regnum);
2076 if (group == vector_reggroup)
2077 return vector_p;
2078
2079 /* Note that PS aka MSR isn't included - it's a system register (and
2080 besides, due to GCC's CFI foobar you do not want to restore
2081 it). */
2082 general_p = ((regnum >= tdep->ppc_gp0_regnum
2083 && regnum < tdep->ppc_gp0_regnum + 32)
2084 || regnum == tdep->ppc_toc_regnum
2085 || regnum == tdep->ppc_cr_regnum
2086 || regnum == tdep->ppc_lr_regnum
2087 || regnum == tdep->ppc_ctr_regnum
2088 || regnum == tdep->ppc_xer_regnum
2089 || regnum == PC_REGNUM);
2090 if (group == general_reggroup)
2091 return general_p;
2092
2093 if (group == save_reggroup || group == restore_reggroup)
2094 return general_p || vector_p || float_p;
2095
2096 return 0;
2097 }
2098
2099 /* The register format for RS/6000 floating point registers is always
2100 double, we need a conversion if the memory format is float. */
2101
2102 static int
2103 rs6000_convert_register_p (int regnum, struct type *type)
2104 {
2105 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2106
2107 return (reg->fpr
2108 && TYPE_CODE (type) == TYPE_CODE_FLT
2109 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2110 }
2111
2112 static void
2113 rs6000_register_to_value (struct frame_info *frame,
2114 int regnum,
2115 struct type *type,
2116 gdb_byte *to)
2117 {
2118 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2119 gdb_byte from[MAX_REGISTER_SIZE];
2120
2121 gdb_assert (reg->fpr);
2122 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2123
2124 get_frame_register (frame, regnum, from);
2125 convert_typed_floating (from, builtin_type_double, to, type);
2126 }
2127
2128 static void
2129 rs6000_value_to_register (struct frame_info *frame,
2130 int regnum,
2131 struct type *type,
2132 const gdb_byte *from)
2133 {
2134 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2135 gdb_byte to[MAX_REGISTER_SIZE];
2136
2137 gdb_assert (reg->fpr);
2138 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2139
2140 convert_typed_floating (from, type, to, builtin_type_double);
2141 put_frame_register (frame, regnum, to);
2142 }
2143
2144 /* Move SPE vector register values between a 64-bit buffer and the two
2145 32-bit raw register halves in a regcache. This function handles
2146 both splitting a 64-bit value into two 32-bit halves, and joining
2147 two halves into a whole 64-bit value, depending on the function
2148 passed as the MOVE argument.
2149
2150 EV_REG must be the number of an SPE evN vector register --- a
2151 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2152 64-bit buffer.
2153
2154 Call MOVE once for each 32-bit half of that register, passing
2155 REGCACHE, the number of the raw register corresponding to that
2156 half, and the address of the appropriate half of BUFFER.
2157
2158 For example, passing 'regcache_raw_read' as the MOVE function will
2159 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2160 'regcache_raw_supply' will supply the contents of BUFFER to the
2161 appropriate pair of raw registers in REGCACHE.
2162
2163 You may need to cast away some 'const' qualifiers when passing
2164 MOVE, since this function can't tell at compile-time which of
2165 REGCACHE or BUFFER is acting as the source of the data. If C had
2166 co-variant type qualifiers, ... */
2167 static void
2168 e500_move_ev_register (void (*move) (struct regcache *regcache,
2169 int regnum, gdb_byte *buf),
2170 struct regcache *regcache, int ev_reg,
2171 gdb_byte *buffer)
2172 {
2173 struct gdbarch *arch = get_regcache_arch (regcache);
2174 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2175 int reg_index;
2176 gdb_byte *byte_buffer = buffer;
2177
2178 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2179 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2180
2181 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2182
2183 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2184 {
2185 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2186 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2187 }
2188 else
2189 {
2190 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2191 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2192 }
2193 }
2194
2195 static void
2196 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2197 int reg_nr, gdb_byte *buffer)
2198 {
2199 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2201
2202 gdb_assert (regcache_arch == gdbarch);
2203
2204 if (tdep->ppc_ev0_regnum <= reg_nr
2205 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2206 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2207 else
2208 internal_error (__FILE__, __LINE__,
2209 _("e500_pseudo_register_read: "
2210 "called on unexpected register '%s' (%d)"),
2211 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2212 }
2213
2214 static void
2215 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2216 int reg_nr, const gdb_byte *buffer)
2217 {
2218 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220
2221 gdb_assert (regcache_arch == gdbarch);
2222
2223 if (tdep->ppc_ev0_regnum <= reg_nr
2224 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2225 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2226 regcache_raw_write,
2227 regcache, reg_nr, (gdb_byte *) buffer);
2228 else
2229 internal_error (__FILE__, __LINE__,
2230 _("e500_pseudo_register_read: "
2231 "called on unexpected register '%s' (%d)"),
2232 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2233 }
2234
2235 /* The E500 needs a custom reggroup function: it has anonymous raw
2236 registers, and default_register_reggroup_p assumes that anonymous
2237 registers are not members of any reggroup. */
2238 static int
2239 e500_register_reggroup_p (struct gdbarch *gdbarch,
2240 int regnum,
2241 struct reggroup *group)
2242 {
2243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2244
2245 /* The save and restore register groups need to include the
2246 upper-half registers, even though they're anonymous. */
2247 if ((group == save_reggroup
2248 || group == restore_reggroup)
2249 && (tdep->ppc_ev0_upper_regnum <= regnum
2250 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2251 return 1;
2252
2253 /* In all other regards, the default reggroup definition is fine. */
2254 return default_register_reggroup_p (gdbarch, regnum, group);
2255 }
2256
2257 /* Convert a DBX STABS register number to a GDB register number. */
2258 static int
2259 rs6000_stab_reg_to_regnum (int num)
2260 {
2261 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2262
2263 if (0 <= num && num <= 31)
2264 return tdep->ppc_gp0_regnum + num;
2265 else if (32 <= num && num <= 63)
2266 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2267 specifies registers the architecture doesn't have? Our
2268 callers don't check the value we return. */
2269 return tdep->ppc_fp0_regnum + (num - 32);
2270 else if (77 <= num && num <= 108)
2271 return tdep->ppc_vr0_regnum + (num - 77);
2272 else if (1200 <= num && num < 1200 + 32)
2273 return tdep->ppc_ev0_regnum + (num - 1200);
2274 else
2275 switch (num)
2276 {
2277 case 64:
2278 return tdep->ppc_mq_regnum;
2279 case 65:
2280 return tdep->ppc_lr_regnum;
2281 case 66:
2282 return tdep->ppc_ctr_regnum;
2283 case 76:
2284 return tdep->ppc_xer_regnum;
2285 case 109:
2286 return tdep->ppc_vrsave_regnum;
2287 case 110:
2288 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2289 case 111:
2290 return tdep->ppc_acc_regnum;
2291 case 112:
2292 return tdep->ppc_spefscr_regnum;
2293 default:
2294 return num;
2295 }
2296 }
2297
2298
2299 /* Convert a Dwarf 2 register number to a GDB register number. */
2300 static int
2301 rs6000_dwarf2_reg_to_regnum (int num)
2302 {
2303 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2304
2305 if (0 <= num && num <= 31)
2306 return tdep->ppc_gp0_regnum + num;
2307 else if (32 <= num && num <= 63)
2308 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2309 specifies registers the architecture doesn't have? Our
2310 callers don't check the value we return. */
2311 return tdep->ppc_fp0_regnum + (num - 32);
2312 else if (1124 <= num && num < 1124 + 32)
2313 return tdep->ppc_vr0_regnum + (num - 1124);
2314 else if (1200 <= num && num < 1200 + 32)
2315 return tdep->ppc_ev0_regnum + (num - 1200);
2316 else
2317 switch (num)
2318 {
2319 case 67:
2320 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2321 case 99:
2322 return tdep->ppc_acc_regnum;
2323 case 100:
2324 return tdep->ppc_mq_regnum;
2325 case 101:
2326 return tdep->ppc_xer_regnum;
2327 case 108:
2328 return tdep->ppc_lr_regnum;
2329 case 109:
2330 return tdep->ppc_ctr_regnum;
2331 case 356:
2332 return tdep->ppc_vrsave_regnum;
2333 case 612:
2334 return tdep->ppc_spefscr_regnum;
2335 default:
2336 return num;
2337 }
2338 }
2339
2340 \f
2341 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2342
2343 Usually a function pointer's representation is simply the address
2344 of the function. On the RS/6000 however, a function pointer is
2345 represented by a pointer to an OPD entry. This OPD entry contains
2346 three words, the first word is the address of the function, the
2347 second word is the TOC pointer (r2), and the third word is the
2348 static chain value. Throughout GDB it is currently assumed that a
2349 function pointer contains the address of the function, which is not
2350 easy to fix. In addition, the conversion of a function address to
2351 a function pointer would require allocation of an OPD entry in the
2352 inferior's memory space, with all its drawbacks. To be able to
2353 call C++ virtual methods in the inferior (which are called via
2354 function pointers), find_function_addr uses this function to get the
2355 function address from a function pointer. */
2356
2357 /* Return real function address if ADDR (a function pointer) is in the data
2358 space and is therefore a special function pointer. */
2359
2360 static CORE_ADDR
2361 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2362 CORE_ADDR addr,
2363 struct target_ops *targ)
2364 {
2365 struct obj_section *s;
2366
2367 s = find_pc_section (addr);
2368 if (s && s->the_bfd_section->flags & SEC_CODE)
2369 return addr;
2370
2371 /* ADDR is in the data space, so it's a special function pointer. */
2372 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2373 }
2374 \f
2375
2376 /* Handling the various POWER/PowerPC variants. */
2377
2378
2379 /* The arrays here called registers_MUMBLE hold information about available
2380 registers.
2381
2382 For each family of PPC variants, I've tried to isolate out the
2383 common registers and put them up front, so that as long as you get
2384 the general family right, GDB will correctly identify the registers
2385 common to that family. The common register sets are:
2386
2387 For the 60x family: hid0 hid1 iabr dabr pir
2388
2389 For the 505 and 860 family: eie eid nri
2390
2391 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2392 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2393 pbu1 pbl2 pbu2
2394
2395 Most of these register groups aren't anything formal. I arrived at
2396 them by looking at the registers that occurred in more than one
2397 processor.
2398
2399 Note: kevinb/2002-04-30: Support for the fpscr register was added
2400 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2401 for Power. For PowerPC, slot 70 was unused and was already in the
2402 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2403 slot 70 was being used for "mq", so the next available slot (71)
2404 was chosen. It would have been nice to be able to make the
2405 register numbers the same across processor cores, but this wasn't
2406 possible without either 1) renumbering some registers for some
2407 processors or 2) assigning fpscr to a really high slot that's
2408 larger than any current register number. Doing (1) is bad because
2409 existing stubs would break. Doing (2) is undesirable because it
2410 would introduce a really large gap between fpscr and the rest of
2411 the registers for most processors. */
2412
2413 /* Convenience macros for populating register arrays. */
2414
2415 /* Within another macro, convert S to a string. */
2416
2417 #define STR(s) #s
2418
2419 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2420 and 64 bits on 64-bit systems. */
2421 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2422
2423 /* Return a struct reg defining register NAME that's 32 bits on all
2424 systems. */
2425 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2426
2427 /* Return a struct reg defining register NAME that's 64 bits on all
2428 systems. */
2429 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2430
2431 /* Return a struct reg defining register NAME that's 128 bits on all
2432 systems. */
2433 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2434
2435 /* Return a struct reg defining floating-point register NAME. */
2436 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2437
2438 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2439 long on all systems. */
2440 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2441
2442 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2443 systems and that doesn't exist on 64-bit systems. */
2444 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2445
2446 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2447 systems and that doesn't exist on 32-bit systems. */
2448 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2449
2450 /* Return a struct reg placeholder for a register that doesn't exist. */
2451 #define R0 { 0, 0, 0, 0, 0, -1 }
2452
2453 /* Return a struct reg defining an anonymous raw register that's 32
2454 bits on all systems. */
2455 #define A4 { 0, 4, 4, 0, 0, -1 }
2456
2457 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2458 32-bit systems and 64 bits on 64-bit systems. */
2459 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2460
2461 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2462 all systems. */
2463 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2464
2465 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2466 all systems, and whose SPR number is NUMBER. */
2467 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2468
2469 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2470 64-bit systems and that doesn't exist on 32-bit systems. */
2471 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2472
2473 /* UISA registers common across all architectures, including POWER. */
2474
2475 #define COMMON_UISA_REGS \
2476 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2477 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2478 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2479 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2480 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2481 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2482 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2483 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2484 /* 64 */ R(pc), R(ps)
2485
2486 /* UISA-level SPRs for PowerPC. */
2487 #define PPC_UISA_SPRS \
2488 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2489
2490 /* UISA-level SPRs for PowerPC without floating point support. */
2491 #define PPC_UISA_NOFP_SPRS \
2492 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2493
2494 /* Segment registers, for PowerPC. */
2495 #define PPC_SEGMENT_REGS \
2496 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2497 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2498 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2499 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2500
2501 /* OEA SPRs for PowerPC. */
2502 #define PPC_OEA_SPRS \
2503 /* 87 */ S4(pvr), \
2504 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2505 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2506 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2507 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2508 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2509 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2510 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2511 /* 116 */ S4(dec), S(dabr), S4(ear)
2512
2513 /* AltiVec registers. */
2514 #define PPC_ALTIVEC_REGS \
2515 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2516 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2517 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2518 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2519 /*151*/R4(vscr), R4(vrsave)
2520
2521
2522 /* On machines supporting the SPE APU, the general-purpose registers
2523 are 64 bits long. There are SIMD vector instructions to treat them
2524 as pairs of floats, but the rest of the instruction set treats them
2525 as 32-bit registers, and only operates on their lower halves.
2526
2527 In the GDB regcache, we treat their high and low halves as separate
2528 registers. The low halves we present as the general-purpose
2529 registers, and then we have pseudo-registers that stitch together
2530 the upper and lower halves and present them as pseudo-registers. */
2531
2532 /* SPE GPR lower halves --- raw registers. */
2533 #define PPC_SPE_GP_REGS \
2534 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2535 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2536 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2537 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2538
2539 /* SPE GPR upper halves --- anonymous raw registers. */
2540 #define PPC_SPE_UPPER_GP_REGS \
2541 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2542 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2543 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2544 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2545
2546 /* SPE GPR vector registers --- pseudo registers based on underlying
2547 gprs and the anonymous upper half raw registers. */
2548 #define PPC_EV_PSEUDO_REGS \
2549 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2550 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2551 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2552 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2553
2554 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2555 user-level SPR's. */
2556 static const struct reg registers_power[] =
2557 {
2558 COMMON_UISA_REGS,
2559 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2560 /* 71 */ R4(fpscr)
2561 };
2562
2563 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2564 view of the PowerPC. */
2565 static const struct reg registers_powerpc[] =
2566 {
2567 COMMON_UISA_REGS,
2568 PPC_UISA_SPRS,
2569 PPC_ALTIVEC_REGS
2570 };
2571
2572 /* IBM PowerPC 403.
2573
2574 Some notes about the "tcr" special-purpose register:
2575 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2576 403's programmable interval timer, fixed interval timer, and
2577 watchdog timer.
2578 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2579 watchdog timer, and nothing else.
2580
2581 Some of the fields are similar between the two, but they're not
2582 compatible with each other. Since the two variants have different
2583 registers, with different numbers, but the same name, we can't
2584 splice the register name to get the SPR number. */
2585 static const struct reg registers_403[] =
2586 {
2587 COMMON_UISA_REGS,
2588 PPC_UISA_SPRS,
2589 PPC_SEGMENT_REGS,
2590 PPC_OEA_SPRS,
2591 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2592 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2593 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2594 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2595 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2596 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2597 };
2598
2599 /* IBM PowerPC 403GC.
2600 See the comments about 'tcr' for the 403, above. */
2601 static const struct reg registers_403GC[] =
2602 {
2603 COMMON_UISA_REGS,
2604 PPC_UISA_SPRS,
2605 PPC_SEGMENT_REGS,
2606 PPC_OEA_SPRS,
2607 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2608 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2609 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2610 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2611 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2612 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2613 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2614 /* 147 */ S(tbhu), S(tblu)
2615 };
2616
2617 /* Motorola PowerPC 505. */
2618 static const struct reg registers_505[] =
2619 {
2620 COMMON_UISA_REGS,
2621 PPC_UISA_SPRS,
2622 PPC_SEGMENT_REGS,
2623 PPC_OEA_SPRS,
2624 /* 119 */ S(eie), S(eid), S(nri)
2625 };
2626
2627 /* Motorola PowerPC 860 or 850. */
2628 static const struct reg registers_860[] =
2629 {
2630 COMMON_UISA_REGS,
2631 PPC_UISA_SPRS,
2632 PPC_SEGMENT_REGS,
2633 PPC_OEA_SPRS,
2634 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2635 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2636 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2637 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2638 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2639 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2640 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2641 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2642 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2643 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2644 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2645 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2646 };
2647
2648 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2649 for reading and writing RTCU and RTCL. However, how one reads and writes a
2650 register is the stub's problem. */
2651 static const struct reg registers_601[] =
2652 {
2653 COMMON_UISA_REGS,
2654 PPC_UISA_SPRS,
2655 PPC_SEGMENT_REGS,
2656 PPC_OEA_SPRS,
2657 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2658 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2659 };
2660
2661 /* Motorola PowerPC 602.
2662 See the notes under the 403 about 'tcr'. */
2663 static const struct reg registers_602[] =
2664 {
2665 COMMON_UISA_REGS,
2666 PPC_UISA_SPRS,
2667 PPC_SEGMENT_REGS,
2668 PPC_OEA_SPRS,
2669 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2670 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2671 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2672 };
2673
2674 /* Motorola/IBM PowerPC 603 or 603e. */
2675 static const struct reg registers_603[] =
2676 {
2677 COMMON_UISA_REGS,
2678 PPC_UISA_SPRS,
2679 PPC_SEGMENT_REGS,
2680 PPC_OEA_SPRS,
2681 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2682 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2683 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2684 };
2685
2686 /* Motorola PowerPC 604 or 604e. */
2687 static const struct reg registers_604[] =
2688 {
2689 COMMON_UISA_REGS,
2690 PPC_UISA_SPRS,
2691 PPC_SEGMENT_REGS,
2692 PPC_OEA_SPRS,
2693 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2694 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2695 /* 127 */ S(sia), S(sda)
2696 };
2697
2698 /* Motorola/IBM PowerPC 750 or 740. */
2699 static const struct reg registers_750[] =
2700 {
2701 COMMON_UISA_REGS,
2702 PPC_UISA_SPRS,
2703 PPC_SEGMENT_REGS,
2704 PPC_OEA_SPRS,
2705 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2706 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2707 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2708 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2709 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2710 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2711 };
2712
2713
2714 /* Motorola PowerPC 7400. */
2715 static const struct reg registers_7400[] =
2716 {
2717 /* gpr0-gpr31, fpr0-fpr31 */
2718 COMMON_UISA_REGS,
2719 /* cr, lr, ctr, xer, fpscr */
2720 PPC_UISA_SPRS,
2721 /* sr0-sr15 */
2722 PPC_SEGMENT_REGS,
2723 PPC_OEA_SPRS,
2724 /* vr0-vr31, vrsave, vscr */
2725 PPC_ALTIVEC_REGS
2726 /* FIXME? Add more registers? */
2727 };
2728
2729 /* Motorola e500. */
2730 static const struct reg registers_e500[] =
2731 {
2732 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2733 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2734 /* 64 .. 65 */ R(pc), R(ps),
2735 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2736 /* 71 .. 72 */ R8(acc), S4(spefscr),
2737 /* NOTE: Add new registers here the end of the raw register
2738 list and just before the first pseudo register. */
2739 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2740 };
2741
2742 /* Information about a particular processor variant. */
2743
2744 struct variant
2745 {
2746 /* Name of this variant. */
2747 char *name;
2748
2749 /* English description of the variant. */
2750 char *description;
2751
2752 /* bfd_arch_info.arch corresponding to variant. */
2753 enum bfd_architecture arch;
2754
2755 /* bfd_arch_info.mach corresponding to variant. */
2756 unsigned long mach;
2757
2758 /* Number of real registers. */
2759 int nregs;
2760
2761 /* Number of pseudo registers. */
2762 int npregs;
2763
2764 /* Number of total registers (the sum of nregs and npregs). */
2765 int num_tot_regs;
2766
2767 /* Table of register names; registers[R] is the name of the register
2768 number R. */
2769 const struct reg *regs;
2770 };
2771
2772 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2773
2774 static int
2775 num_registers (const struct reg *reg_list, int num_tot_regs)
2776 {
2777 int i;
2778 int nregs = 0;
2779
2780 for (i = 0; i < num_tot_regs; i++)
2781 if (!reg_list[i].pseudo)
2782 nregs++;
2783
2784 return nregs;
2785 }
2786
2787 static int
2788 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2789 {
2790 int i;
2791 int npregs = 0;
2792
2793 for (i = 0; i < num_tot_regs; i++)
2794 if (reg_list[i].pseudo)
2795 npregs ++;
2796
2797 return npregs;
2798 }
2799
2800 /* Information in this table comes from the following web sites:
2801 IBM: http://www.chips.ibm.com:80/products/embedded/
2802 Motorola: http://www.mot.com/SPS/PowerPC/
2803
2804 I'm sure I've got some of the variant descriptions not quite right.
2805 Please report any inaccuracies you find to GDB's maintainer.
2806
2807 If you add entries to this table, please be sure to allow the new
2808 value as an argument to the --with-cpu flag, in configure.in. */
2809
2810 static struct variant variants[] =
2811 {
2812
2813 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2814 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2815 registers_powerpc},
2816 {"power", "POWER user-level", bfd_arch_rs6000,
2817 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2818 registers_power},
2819 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2820 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2821 registers_403},
2822 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2823 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2824 registers_601},
2825 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2826 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2827 registers_602},
2828 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2829 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2830 registers_603},
2831 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2832 604, -1, -1, tot_num_registers (registers_604),
2833 registers_604},
2834 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2835 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2836 registers_403GC},
2837 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2838 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2839 registers_505},
2840 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2841 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2842 registers_860},
2843 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2844 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2845 registers_750},
2846 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2847 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2848 registers_7400},
2849 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2850 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2851 registers_e500},
2852
2853 /* 64-bit */
2854 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2855 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2856 registers_powerpc},
2857 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2858 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2859 registers_powerpc},
2860 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2861 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2862 registers_powerpc},
2863 {"a35", "PowerPC A35", bfd_arch_powerpc,
2864 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2865 registers_powerpc},
2866 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2867 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2868 registers_powerpc},
2869 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2870 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2871 registers_powerpc},
2872
2873 /* FIXME: I haven't checked the register sets of the following. */
2874 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2875 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2876 registers_power},
2877 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2878 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2879 registers_power},
2880 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2881 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2882 registers_power},
2883
2884 {0, 0, 0, 0, 0, 0, 0, 0}
2885 };
2886
2887 /* Initialize the number of registers and pseudo registers in each variant. */
2888
2889 static void
2890 init_variants (void)
2891 {
2892 struct variant *v;
2893
2894 for (v = variants; v->name; v++)
2895 {
2896 if (v->nregs == -1)
2897 v->nregs = num_registers (v->regs, v->num_tot_regs);
2898 if (v->npregs == -1)
2899 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2900 }
2901 }
2902
2903 /* Return the variant corresponding to architecture ARCH and machine number
2904 MACH. If no such variant exists, return null. */
2905
2906 static const struct variant *
2907 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2908 {
2909 const struct variant *v;
2910
2911 for (v = variants; v->name; v++)
2912 if (arch == v->arch && mach == v->mach)
2913 return v;
2914
2915 return NULL;
2916 }
2917
2918 static int
2919 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2920 {
2921 if (!info->disassembler_options)
2922 info->disassembler_options = "any";
2923
2924 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2925 return print_insn_big_powerpc (memaddr, info);
2926 else
2927 return print_insn_little_powerpc (memaddr, info);
2928 }
2929 \f
2930 static CORE_ADDR
2931 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2932 {
2933 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2934 }
2935
2936 static struct frame_id
2937 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2938 {
2939 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2940 SP_REGNUM),
2941 frame_pc_unwind (next_frame));
2942 }
2943
2944 struct rs6000_frame_cache
2945 {
2946 CORE_ADDR base;
2947 CORE_ADDR initial_sp;
2948 struct trad_frame_saved_reg *saved_regs;
2949 };
2950
2951 static struct rs6000_frame_cache *
2952 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2953 {
2954 struct rs6000_frame_cache *cache;
2955 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2957 struct rs6000_framedata fdata;
2958 int wordsize = tdep->wordsize;
2959 CORE_ADDR func, pc;
2960
2961 if ((*this_cache) != NULL)
2962 return (*this_cache);
2963 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2964 (*this_cache) = cache;
2965 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2966
2967 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2968 pc = frame_pc_unwind (next_frame);
2969 skip_prologue (func, pc, &fdata);
2970
2971 /* Figure out the parent's stack pointer. */
2972
2973 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2974 address of the current frame. Things might be easier if the
2975 ->frame pointed to the outer-most address of the frame. In
2976 the mean time, the address of the prev frame is used as the
2977 base address of this frame. */
2978 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2979
2980 /* If the function appears to be frameless, check a couple of likely
2981 indicators that we have simply failed to find the frame setup.
2982 Two common cases of this are missing symbols (i.e.
2983 frame_func_unwind returns the wrong address or 0), and assembly
2984 stubs which have a fast exit path but set up a frame on the slow
2985 path.
2986
2987 If the LR appears to return to this function, then presume that
2988 we have an ABI compliant frame that we failed to find. */
2989 if (fdata.frameless && fdata.lr_offset == 0)
2990 {
2991 CORE_ADDR saved_lr;
2992 int make_frame = 0;
2993
2994 saved_lr = frame_unwind_register_unsigned (next_frame,
2995 tdep->ppc_lr_regnum);
2996 if (func == 0 && saved_lr == pc)
2997 make_frame = 1;
2998 else if (func != 0)
2999 {
3000 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3001 if (func == saved_func)
3002 make_frame = 1;
3003 }
3004
3005 if (make_frame)
3006 {
3007 fdata.frameless = 0;
3008 fdata.lr_offset = wordsize;
3009 }
3010 }
3011
3012 if (!fdata.frameless)
3013 /* Frameless really means stackless. */
3014 cache->base = read_memory_addr (cache->base, wordsize);
3015
3016 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3017
3018 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3019 All fpr's from saved_fpr to fp31 are saved. */
3020
3021 if (fdata.saved_fpr >= 0)
3022 {
3023 int i;
3024 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3025
3026 /* If skip_prologue says floating-point registers were saved,
3027 but the current architecture has no floating-point registers,
3028 then that's strange. But we have no indices to even record
3029 the addresses under, so we just ignore it. */
3030 if (ppc_floating_point_unit_p (gdbarch))
3031 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3032 {
3033 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3034 fpr_addr += 8;
3035 }
3036 }
3037
3038 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3039 All gpr's from saved_gpr to gpr31 are saved. */
3040
3041 if (fdata.saved_gpr >= 0)
3042 {
3043 int i;
3044 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3045 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3046 {
3047 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3048 gpr_addr += wordsize;
3049 }
3050 }
3051
3052 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3053 All vr's from saved_vr to vr31 are saved. */
3054 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3055 {
3056 if (fdata.saved_vr >= 0)
3057 {
3058 int i;
3059 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3060 for (i = fdata.saved_vr; i < 32; i++)
3061 {
3062 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3063 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3064 }
3065 }
3066 }
3067
3068 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3069 All vr's from saved_ev to ev31 are saved. ????? */
3070 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3071 {
3072 if (fdata.saved_ev >= 0)
3073 {
3074 int i;
3075 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3076 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3077 {
3078 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3079 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3080 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3081 }
3082 }
3083 }
3084
3085 /* If != 0, fdata.cr_offset is the offset from the frame that
3086 holds the CR. */
3087 if (fdata.cr_offset != 0)
3088 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3089
3090 /* If != 0, fdata.lr_offset is the offset from the frame that
3091 holds the LR. */
3092 if (fdata.lr_offset != 0)
3093 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3094 /* The PC is found in the link register. */
3095 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3096
3097 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3098 holds the VRSAVE. */
3099 if (fdata.vrsave_offset != 0)
3100 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3101
3102 if (fdata.alloca_reg < 0)
3103 /* If no alloca register used, then fi->frame is the value of the
3104 %sp for this frame, and it is good enough. */
3105 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3106 else
3107 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3108 fdata.alloca_reg);
3109
3110 return cache;
3111 }
3112
3113 static void
3114 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3115 struct frame_id *this_id)
3116 {
3117 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3118 this_cache);
3119 (*this_id) = frame_id_build (info->base,
3120 frame_func_unwind (next_frame, NORMAL_FRAME));
3121 }
3122
3123 static void
3124 rs6000_frame_prev_register (struct frame_info *next_frame,
3125 void **this_cache,
3126 int regnum, int *optimizedp,
3127 enum lval_type *lvalp, CORE_ADDR *addrp,
3128 int *realnump, gdb_byte *valuep)
3129 {
3130 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3131 this_cache);
3132 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3133 optimizedp, lvalp, addrp, realnump, valuep);
3134 }
3135
3136 static const struct frame_unwind rs6000_frame_unwind =
3137 {
3138 NORMAL_FRAME,
3139 rs6000_frame_this_id,
3140 rs6000_frame_prev_register
3141 };
3142
3143 static const struct frame_unwind *
3144 rs6000_frame_sniffer (struct frame_info *next_frame)
3145 {
3146 return &rs6000_frame_unwind;
3147 }
3148
3149 \f
3150
3151 static CORE_ADDR
3152 rs6000_frame_base_address (struct frame_info *next_frame,
3153 void **this_cache)
3154 {
3155 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3156 this_cache);
3157 return info->initial_sp;
3158 }
3159
3160 static const struct frame_base rs6000_frame_base = {
3161 &rs6000_frame_unwind,
3162 rs6000_frame_base_address,
3163 rs6000_frame_base_address,
3164 rs6000_frame_base_address
3165 };
3166
3167 static const struct frame_base *
3168 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3169 {
3170 return &rs6000_frame_base;
3171 }
3172
3173 /* Initialize the current architecture based on INFO. If possible, re-use an
3174 architecture from ARCHES, which is a list of architectures already created
3175 during this debugging session.
3176
3177 Called e.g. at program startup, when reading a core file, and when reading
3178 a binary file. */
3179
3180 static struct gdbarch *
3181 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3182 {
3183 struct gdbarch *gdbarch;
3184 struct gdbarch_tdep *tdep;
3185 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3186 struct reg *regs;
3187 const struct variant *v;
3188 enum bfd_architecture arch;
3189 unsigned long mach;
3190 bfd abfd;
3191 int sysv_abi;
3192 asection *sect;
3193
3194 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3195 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3196
3197 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3198 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3199
3200 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3201
3202 /* Check word size. If INFO is from a binary file, infer it from
3203 that, else choose a likely default. */
3204 if (from_xcoff_exec)
3205 {
3206 if (bfd_xcoff_is_xcoff64 (info.abfd))
3207 wordsize = 8;
3208 else
3209 wordsize = 4;
3210 }
3211 else if (from_elf_exec)
3212 {
3213 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3214 wordsize = 8;
3215 else
3216 wordsize = 4;
3217 }
3218 else
3219 {
3220 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3221 wordsize = info.bfd_arch_info->bits_per_word /
3222 info.bfd_arch_info->bits_per_byte;
3223 else
3224 wordsize = 4;
3225 }
3226
3227 /* Find a candidate among extant architectures. */
3228 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3229 arches != NULL;
3230 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3231 {
3232 /* Word size in the various PowerPC bfd_arch_info structs isn't
3233 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3234 separate word size check. */
3235 tdep = gdbarch_tdep (arches->gdbarch);
3236 if (tdep && tdep->wordsize == wordsize)
3237 return arches->gdbarch;
3238 }
3239
3240 /* None found, create a new architecture from INFO, whose bfd_arch_info
3241 validity depends on the source:
3242 - executable useless
3243 - rs6000_host_arch() good
3244 - core file good
3245 - "set arch" trust blindly
3246 - GDB startup useless but harmless */
3247
3248 if (!from_xcoff_exec)
3249 {
3250 arch = info.bfd_arch_info->arch;
3251 mach = info.bfd_arch_info->mach;
3252 }
3253 else
3254 {
3255 arch = bfd_arch_powerpc;
3256 bfd_default_set_arch_mach (&abfd, arch, 0);
3257 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3258 mach = info.bfd_arch_info->mach;
3259 }
3260 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3261 tdep->wordsize = wordsize;
3262
3263 /* For e500 executables, the apuinfo section is of help here. Such
3264 section contains the identifier and revision number of each
3265 Application-specific Processing Unit that is present on the
3266 chip. The content of the section is determined by the assembler
3267 which looks at each instruction and determines which unit (and
3268 which version of it) can execute it. In our case we just look for
3269 the existance of the section. */
3270
3271 if (info.abfd)
3272 {
3273 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3274 if (sect)
3275 {
3276 arch = info.bfd_arch_info->arch;
3277 mach = bfd_mach_ppc_e500;
3278 bfd_default_set_arch_mach (&abfd, arch, mach);
3279 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3280 }
3281 }
3282
3283 gdbarch = gdbarch_alloc (&info, tdep);
3284
3285 /* Initialize the number of real and pseudo registers in each variant. */
3286 init_variants ();
3287
3288 /* Choose variant. */
3289 v = find_variant_by_arch (arch, mach);
3290 if (!v)
3291 return NULL;
3292
3293 tdep->regs = v->regs;
3294
3295 tdep->ppc_gp0_regnum = 0;
3296 tdep->ppc_toc_regnum = 2;
3297 tdep->ppc_ps_regnum = 65;
3298 tdep->ppc_cr_regnum = 66;
3299 tdep->ppc_lr_regnum = 67;
3300 tdep->ppc_ctr_regnum = 68;
3301 tdep->ppc_xer_regnum = 69;
3302 if (v->mach == bfd_mach_ppc_601)
3303 tdep->ppc_mq_regnum = 124;
3304 else if (arch == bfd_arch_rs6000)
3305 tdep->ppc_mq_regnum = 70;
3306 else
3307 tdep->ppc_mq_regnum = -1;
3308 tdep->ppc_fp0_regnum = 32;
3309 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3310 tdep->ppc_sr0_regnum = 71;
3311 tdep->ppc_vr0_regnum = -1;
3312 tdep->ppc_vrsave_regnum = -1;
3313 tdep->ppc_ev0_upper_regnum = -1;
3314 tdep->ppc_ev0_regnum = -1;
3315 tdep->ppc_ev31_regnum = -1;
3316 tdep->ppc_acc_regnum = -1;
3317 tdep->ppc_spefscr_regnum = -1;
3318
3319 set_gdbarch_pc_regnum (gdbarch, 64);
3320 set_gdbarch_sp_regnum (gdbarch, 1);
3321 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3322 set_gdbarch_fp0_regnum (gdbarch, 32);
3323 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3324 if (sysv_abi && wordsize == 8)
3325 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3326 else if (sysv_abi && wordsize == 4)
3327 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3328 else
3329 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3330
3331 /* Set lr_frame_offset. */
3332 if (wordsize == 8)
3333 tdep->lr_frame_offset = 16;
3334 else if (sysv_abi)
3335 tdep->lr_frame_offset = 4;
3336 else
3337 tdep->lr_frame_offset = 8;
3338
3339 if (v->arch == bfd_arch_rs6000)
3340 tdep->ppc_sr0_regnum = -1;
3341 else if (v->arch == bfd_arch_powerpc)
3342 switch (v->mach)
3343 {
3344 case bfd_mach_ppc:
3345 tdep->ppc_sr0_regnum = -1;
3346 tdep->ppc_vr0_regnum = 71;
3347 tdep->ppc_vrsave_regnum = 104;
3348 break;
3349 case bfd_mach_ppc_7400:
3350 tdep->ppc_vr0_regnum = 119;
3351 tdep->ppc_vrsave_regnum = 152;
3352 break;
3353 case bfd_mach_ppc_e500:
3354 tdep->ppc_toc_regnum = -1;
3355 tdep->ppc_ev0_upper_regnum = 32;
3356 tdep->ppc_ev0_regnum = 73;
3357 tdep->ppc_ev31_regnum = 104;
3358 tdep->ppc_acc_regnum = 71;
3359 tdep->ppc_spefscr_regnum = 72;
3360 tdep->ppc_fp0_regnum = -1;
3361 tdep->ppc_fpscr_regnum = -1;
3362 tdep->ppc_sr0_regnum = -1;
3363 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3364 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3365 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3366 break;
3367
3368 case bfd_mach_ppc64:
3369 case bfd_mach_ppc_620:
3370 case bfd_mach_ppc_630:
3371 case bfd_mach_ppc_a35:
3372 case bfd_mach_ppc_rs64ii:
3373 case bfd_mach_ppc_rs64iii:
3374 /* These processor's register sets don't have segment registers. */
3375 tdep->ppc_sr0_regnum = -1;
3376 break;
3377 }
3378 else
3379 internal_error (__FILE__, __LINE__,
3380 _("rs6000_gdbarch_init: "
3381 "received unexpected BFD 'arch' value"));
3382
3383 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3384
3385 /* Sanity check on registers. */
3386 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3387
3388 /* Select instruction printer. */
3389 if (arch == bfd_arch_rs6000)
3390 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3391 else
3392 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3393
3394 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3395
3396 set_gdbarch_num_regs (gdbarch, v->nregs);
3397 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3398 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3399 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3400 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3401
3402 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3403 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3404 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3405 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3406 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3407 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3408 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3409 if (sysv_abi)
3410 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3411 else
3412 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3413 set_gdbarch_char_signed (gdbarch, 0);
3414
3415 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3416 if (sysv_abi && wordsize == 8)
3417 /* PPC64 SYSV. */
3418 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3419 else if (!sysv_abi && wordsize == 4)
3420 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3421 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3422 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3423 224. */
3424 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3425
3426 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3427 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3428 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3429
3430 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3431 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3432
3433 if (sysv_abi && wordsize == 4)
3434 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3435 else if (sysv_abi && wordsize == 8)
3436 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3437 else
3438 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3439
3440 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3441 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3442
3443 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3444 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3445
3446 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3447 for the descriptor and ".FN" for the entry-point -- a user
3448 specifying "break FN" will unexpectedly end up with a breakpoint
3449 on the descriptor and not the function. This architecture method
3450 transforms any breakpoints on descriptors into breakpoints on the
3451 corresponding entry point. */
3452 if (sysv_abi && wordsize == 8)
3453 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3454
3455 /* Not sure on this. FIXMEmgo */
3456 set_gdbarch_frame_args_skip (gdbarch, 8);
3457
3458 if (!sysv_abi)
3459 {
3460 /* Handle RS/6000 function pointers (which are really function
3461 descriptors). */
3462 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3463 rs6000_convert_from_func_ptr_addr);
3464 }
3465
3466 /* Helpers for function argument information. */
3467 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3468
3469 /* Trampoline. */
3470 set_gdbarch_in_solib_return_trampoline
3471 (gdbarch, rs6000_in_solib_return_trampoline);
3472 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3473
3474 /* Hook in ABI-specific overrides, if they have been registered. */
3475 gdbarch_init_osabi (info, gdbarch);
3476
3477 switch (info.osabi)
3478 {
3479 case GDB_OSABI_LINUX:
3480 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3481 have altivec registers. If not, ptrace will fail the first time it's
3482 called to access one and will not be called again. This wart will
3483 be removed when Daniel Jacobowitz's proposal for autodetecting target
3484 registers is implemented. */
3485 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3486 {
3487 tdep->ppc_vr0_regnum = 71;
3488 tdep->ppc_vrsave_regnum = 104;
3489 }
3490 /* Fall Thru */
3491 case GDB_OSABI_NETBSD_AOUT:
3492 case GDB_OSABI_NETBSD_ELF:
3493 case GDB_OSABI_UNKNOWN:
3494 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3495 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3496 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3497 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3498 break;
3499 default:
3500 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3501
3502 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3503 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3504 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3505 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3506 }
3507
3508 init_sim_regno_table (gdbarch);
3509
3510 return gdbarch;
3511 }
3512
3513 static void
3514 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3515 {
3516 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3517
3518 if (tdep == NULL)
3519 return;
3520
3521 /* FIXME: Dump gdbarch_tdep. */
3522 }
3523
3524 /* Initialization code. */
3525
3526 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3527
3528 void
3529 _initialize_rs6000_tdep (void)
3530 {
3531 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3532 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3533 }
This page took 0.11948 seconds and 4 git commands to generate.