(Releasing GDB, Coding): Fix typos.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
77 };
78
79 /* Description of a single register. */
80
81 struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
89 /* Return the current architecture's gdbarch_tdep structure. */
90
91 #define TDEP gdbarch_tdep (current_gdbarch)
92
93 /* Breakpoint shadows for the single step instructions will be kept here. */
94
95 static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102 stepBreaks[2];
103
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
114
115 /* Static function prototypes */
116
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
124
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
126
127 static CORE_ADDR
128 read_memory_addr (CORE_ADDR memaddr, int len)
129 {
130 return read_memory_unsigned_integer (memaddr, len);
131 }
132
133 static CORE_ADDR
134 rs6000_skip_prologue (CORE_ADDR pc)
135 {
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
138 return pc;
139 }
140
141
142 /* Fill in fi->saved_regs */
143
144 struct frame_extra_info
145 {
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
151 CORE_ADDR initial_sp; /* initial stack pointer. */
152 };
153
154 void
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
156 {
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167 }
168
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
174
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
179 void
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
181 {
182 frame_get_saved_regs (fi, NULL);
183 }
184
185 static CORE_ADDR
186 rs6000_frame_args_address (struct frame_info *fi)
187 {
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192 }
193
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199 static CORE_ADDR
200 rs6000_saved_pc_after_call (struct frame_info *fi)
201 {
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
203 }
204
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207 static CORE_ADDR
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
209 {
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
266 }
267 else
268 return -1;
269 break;
270
271 default:
272 return -1;
273 }
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275 }
276
277
278 /* Sequence of bytes for breakpoint instruction. */
279
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
283 const static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
285 {
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293 }
294
295
296 /* AIX does not support PT_STEP. Simulate it. */
297
298 void
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
301 {
302 CORE_ADDR dummy;
303 int breakp_sz;
304 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
305 int ii, insn;
306 CORE_ADDR loc;
307 CORE_ADDR breaks[2];
308 int opcode;
309
310 if (insert_breakpoints_p)
311 {
312
313 loc = read_pc ();
314
315 insn = read_memory_integer (loc, 4);
316
317 breaks[0] = loc + breakp_sz;
318 opcode = insn >> 26;
319 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
320
321 /* Don't put two breakpoints on the same address. */
322 if (breaks[1] == breaks[0])
323 breaks[1] = -1;
324
325 stepBreaks[1].address = 0;
326
327 for (ii = 0; ii < 2; ++ii)
328 {
329
330 /* ignore invalid breakpoint. */
331 if (breaks[ii] == -1)
332 continue;
333 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
334 stepBreaks[ii].address = breaks[ii];
335 }
336
337 }
338 else
339 {
340
341 /* remove step breakpoints. */
342 for (ii = 0; ii < 2; ++ii)
343 if (stepBreaks[ii].address != 0)
344 target_remove_breakpoint (stepBreaks[ii].address,
345 stepBreaks[ii].data);
346 }
347 errno = 0; /* FIXME, don't ignore errors! */
348 /* What errors? {read,write}_memory call error(). */
349 }
350
351
352 /* return pc value after skipping a function prologue and also return
353 information about a function frame.
354
355 in struct rs6000_framedata fdata:
356 - frameless is TRUE, if function does not have a frame.
357 - nosavedpc is TRUE, if function does not save %pc value in its frame.
358 - offset is the initial size of this stack frame --- the amount by
359 which we decrement the sp to allocate the frame.
360 - saved_gpr is the number of the first saved gpr.
361 - saved_fpr is the number of the first saved fpr.
362 - saved_vr is the number of the first saved vr.
363 - alloca_reg is the number of the register used for alloca() handling.
364 Otherwise -1.
365 - gpr_offset is the offset of the first saved gpr from the previous frame.
366 - fpr_offset is the offset of the first saved fpr from the previous frame.
367 - vr_offset is the offset of the first saved vr from the previous frame.
368 - lr_offset is the offset of the saved lr
369 - cr_offset is the offset of the saved cr
370 - vrsave_offset is the offset of the saved vrsave register
371 */
372
373 #define SIGNED_SHORT(x) \
374 ((sizeof (short) == 2) \
375 ? ((int)(short)(x)) \
376 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
377
378 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
379
380 /* Limit the number of skipped non-prologue instructions, as the examining
381 of the prologue is expensive. */
382 static int max_skip_non_prologue_insns = 10;
383
384 /* Given PC representing the starting address of a function, and
385 LIM_PC which is the (sloppy) limit to which to scan when looking
386 for a prologue, attempt to further refine this limit by using
387 the line data in the symbol table. If successful, a better guess
388 on where the prologue ends is returned, otherwise the previous
389 value of lim_pc is returned. */
390 static CORE_ADDR
391 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
392 {
393 struct symtab_and_line prologue_sal;
394
395 prologue_sal = find_pc_line (pc, 0);
396 if (prologue_sal.line != 0)
397 {
398 int i;
399 CORE_ADDR addr = prologue_sal.end;
400
401 /* Handle the case in which compiler's optimizer/scheduler
402 has moved instructions into the prologue. We scan ahead
403 in the function looking for address ranges whose corresponding
404 line number is less than or equal to the first one that we
405 found for the function. (It can be less than when the
406 scheduler puts a body instruction before the first prologue
407 instruction.) */
408 for (i = 2 * max_skip_non_prologue_insns;
409 i > 0 && (lim_pc == 0 || addr < lim_pc);
410 i--)
411 {
412 struct symtab_and_line sal;
413
414 sal = find_pc_line (addr, 0);
415 if (sal.line == 0)
416 break;
417 if (sal.line <= prologue_sal.line
418 && sal.symtab == prologue_sal.symtab)
419 {
420 prologue_sal = sal;
421 }
422 addr = sal.end;
423 }
424
425 if (lim_pc == 0 || prologue_sal.end < lim_pc)
426 lim_pc = prologue_sal.end;
427 }
428 return lim_pc;
429 }
430
431
432 static CORE_ADDR
433 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
434 {
435 CORE_ADDR orig_pc = pc;
436 CORE_ADDR last_prologue_pc = pc;
437 CORE_ADDR li_found_pc = 0;
438 char buf[4];
439 unsigned long op;
440 long offset = 0;
441 long vr_saved_offset = 0;
442 int lr_reg = -1;
443 int cr_reg = -1;
444 int vr_reg = -1;
445 int vrsave_reg = -1;
446 int reg;
447 int framep = 0;
448 int minimal_toc_loaded = 0;
449 int prev_insn_was_prologue_insn = 1;
450 int num_skip_non_prologue_insns = 0;
451
452 /* Attempt to find the end of the prologue when no limit is specified.
453 Note that refine_prologue_limit() has been written so that it may
454 be used to "refine" the limits of non-zero PC values too, but this
455 is only safe if we 1) trust the line information provided by the
456 compiler and 2) iterate enough to actually find the end of the
457 prologue.
458
459 It may become a good idea at some point (for both performance and
460 accuracy) to unconditionally call refine_prologue_limit(). But,
461 until we can make a clear determination that this is beneficial,
462 we'll play it safe and only use it to obtain a limit when none
463 has been specified. */
464 if (lim_pc == 0)
465 lim_pc = refine_prologue_limit (pc, lim_pc);
466
467 memset (fdata, 0, sizeof (struct rs6000_framedata));
468 fdata->saved_gpr = -1;
469 fdata->saved_fpr = -1;
470 fdata->saved_vr = -1;
471 fdata->alloca_reg = -1;
472 fdata->frameless = 1;
473 fdata->nosavedpc = 1;
474
475 for (;; pc += 4)
476 {
477 /* Sometimes it isn't clear if an instruction is a prologue
478 instruction or not. When we encounter one of these ambiguous
479 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
480 Otherwise, we'll assume that it really is a prologue instruction. */
481 if (prev_insn_was_prologue_insn)
482 last_prologue_pc = pc;
483
484 /* Stop scanning if we've hit the limit. */
485 if (lim_pc != 0 && pc >= lim_pc)
486 break;
487
488 prev_insn_was_prologue_insn = 1;
489
490 /* Fetch the instruction and convert it to an integer. */
491 if (target_read_memory (pc, buf, 4))
492 break;
493 op = extract_signed_integer (buf, 4);
494
495 if ((op & 0xfc1fffff) == 0x7c0802a6)
496 { /* mflr Rx */
497 lr_reg = (op & 0x03e00000) | 0x90010000;
498 continue;
499
500 }
501 else if ((op & 0xfc1fffff) == 0x7c000026)
502 { /* mfcr Rx */
503 cr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
505
506 }
507 else if ((op & 0xfc1f0000) == 0xd8010000)
508 { /* stfd Rx,NUM(r1) */
509 reg = GET_SRC_REG (op);
510 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
511 {
512 fdata->saved_fpr = reg;
513 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
514 }
515 continue;
516
517 }
518 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
519 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
520 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
521 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
522 {
523
524 reg = GET_SRC_REG (op);
525 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
526 {
527 fdata->saved_gpr = reg;
528 if ((op & 0xfc1f0003) == 0xf8010000)
529 op = (op >> 1) << 1;
530 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
531 }
532 continue;
533
534 }
535 else if ((op & 0xffff0000) == 0x60000000)
536 {
537 /* nop */
538 /* Allow nops in the prologue, but do not consider them to
539 be part of the prologue unless followed by other prologue
540 instructions. */
541 prev_insn_was_prologue_insn = 0;
542 continue;
543
544 }
545 else if ((op & 0xffff0000) == 0x3c000000)
546 { /* addis 0,0,NUM, used
547 for >= 32k frames */
548 fdata->offset = (op & 0x0000ffff) << 16;
549 fdata->frameless = 0;
550 continue;
551
552 }
553 else if ((op & 0xffff0000) == 0x60000000)
554 { /* ori 0,0,NUM, 2nd ha
555 lf of >= 32k frames */
556 fdata->offset |= (op & 0x0000ffff);
557 fdata->frameless = 0;
558 continue;
559
560 }
561 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
562 { /* st Rx,NUM(r1)
563 where Rx == lr */
564 fdata->lr_offset = SIGNED_SHORT (op) + offset;
565 fdata->nosavedpc = 0;
566 lr_reg = 0;
567 continue;
568
569 }
570 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
571 { /* st Rx,NUM(r1)
572 where Rx == cr */
573 fdata->cr_offset = SIGNED_SHORT (op) + offset;
574 cr_reg = 0;
575 continue;
576
577 }
578 else if (op == 0x48000005)
579 { /* bl .+4 used in
580 -mrelocatable */
581 continue;
582
583 }
584 else if (op == 0x48000004)
585 { /* b .+4 (xlc) */
586 break;
587
588 }
589 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
590 in V.4 -mminimal-toc */
591 (op & 0xffff0000) == 0x3bde0000)
592 { /* addi 30,30,foo@l */
593 continue;
594
595 }
596 else if ((op & 0xfc000001) == 0x48000001)
597 { /* bl foo,
598 to save fprs??? */
599
600 fdata->frameless = 0;
601 /* Don't skip over the subroutine call if it is not within
602 the first three instructions of the prologue. */
603 if ((pc - orig_pc) > 8)
604 break;
605
606 op = read_memory_integer (pc + 4, 4);
607
608 /* At this point, make sure this is not a trampoline
609 function (a function that simply calls another functions,
610 and nothing else). If the next is not a nop, this branch
611 was part of the function prologue. */
612
613 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
614 break; /* don't skip over
615 this branch */
616 continue;
617
618 /* update stack pointer */
619 }
620 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
621 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
622 {
623 fdata->frameless = 0;
624 if ((op & 0xffff0003) == 0xf8210001)
625 op = (op >> 1) << 1;
626 fdata->offset = SIGNED_SHORT (op);
627 offset = fdata->offset;
628 continue;
629
630 }
631 else if (op == 0x7c21016e)
632 { /* stwux 1,1,0 */
633 fdata->frameless = 0;
634 offset = fdata->offset;
635 continue;
636
637 /* Load up minimal toc pointer */
638 }
639 else if ((op >> 22) == 0x20f
640 && !minimal_toc_loaded)
641 { /* l r31,... or l r30,... */
642 minimal_toc_loaded = 1;
643 continue;
644
645 /* move parameters from argument registers to local variable
646 registers */
647 }
648 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
649 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
650 (((op >> 21) & 31) <= 10) &&
651 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
652 {
653 continue;
654
655 /* store parameters in stack */
656 }
657 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
658 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
659 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
660 {
661 continue;
662
663 /* store parameters in stack via frame pointer */
664 }
665 else if (framep &&
666 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0xfc1f0000))
669 { /* frsp, fp?,NUM(r1) */
670 continue;
671
672 /* Set up frame pointer */
673 }
674 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
675 || op == 0x7c3f0b78)
676 { /* mr r31, r1 */
677 fdata->frameless = 0;
678 framep = 1;
679 fdata->alloca_reg = 31;
680 continue;
681
682 /* Another way to set up the frame pointer. */
683 }
684 else if ((op & 0xfc1fffff) == 0x38010000)
685 { /* addi rX, r1, 0x0 */
686 fdata->frameless = 0;
687 framep = 1;
688 fdata->alloca_reg = (op & ~0x38010000) >> 21;
689 continue;
690 }
691 /* AltiVec related instructions. */
692 /* Store the vrsave register (spr 256) in another register for
693 later manipulation, or load a register into the vrsave
694 register. 2 instructions are used: mfvrsave and
695 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
696 and mtspr SPR256, Rn. */
697 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
698 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
699 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
700 {
701 vrsave_reg = GET_SRC_REG (op);
702 continue;
703 }
704 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
705 {
706 continue;
707 }
708 /* Store the register where vrsave was saved to onto the stack:
709 rS is the register where vrsave was stored in a previous
710 instruction. */
711 /* 100100 sssss 00001 dddddddd dddddddd */
712 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
713 {
714 if (vrsave_reg == GET_SRC_REG (op))
715 {
716 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
717 vrsave_reg = -1;
718 }
719 continue;
720 }
721 /* Compute the new value of vrsave, by modifying the register
722 where vrsave was saved to. */
723 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
724 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
725 {
726 continue;
727 }
728 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
729 in a pair of insns to save the vector registers on the
730 stack. */
731 /* 001110 00000 00000 iiii iiii iiii iiii */
732 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
733 {
734 li_found_pc = pc;
735 vr_saved_offset = SIGNED_SHORT (op);
736 }
737 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
738 /* 011111 sssss 11111 00000 00111001110 */
739 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
740 {
741 if (pc == (li_found_pc + 4))
742 {
743 vr_reg = GET_SRC_REG (op);
744 /* If this is the first vector reg to be saved, or if
745 it has a lower number than others previously seen,
746 reupdate the frame info. */
747 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
748 {
749 fdata->saved_vr = vr_reg;
750 fdata->vr_offset = vr_saved_offset + offset;
751 }
752 vr_saved_offset = -1;
753 vr_reg = -1;
754 li_found_pc = 0;
755 }
756 }
757 /* End AltiVec related instructions. */
758 else
759 {
760 /* Not a recognized prologue instruction.
761 Handle optimizer code motions into the prologue by continuing
762 the search if we have no valid frame yet or if the return
763 address is not yet saved in the frame. */
764 if (fdata->frameless == 0
765 && (lr_reg == -1 || fdata->nosavedpc == 0))
766 break;
767
768 if (op == 0x4e800020 /* blr */
769 || op == 0x4e800420) /* bctr */
770 /* Do not scan past epilogue in frameless functions or
771 trampolines. */
772 break;
773 if ((op & 0xf4000000) == 0x40000000) /* bxx */
774 /* Never skip branches. */
775 break;
776
777 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
778 /* Do not scan too many insns, scanning insns is expensive with
779 remote targets. */
780 break;
781
782 /* Continue scanning. */
783 prev_insn_was_prologue_insn = 0;
784 continue;
785 }
786 }
787
788 #if 0
789 /* I have problems with skipping over __main() that I need to address
790 * sometime. Previously, I used to use misc_function_vector which
791 * didn't work as well as I wanted to be. -MGO */
792
793 /* If the first thing after skipping a prolog is a branch to a function,
794 this might be a call to an initializer in main(), introduced by gcc2.
795 We'd like to skip over it as well. Fortunately, xlc does some extra
796 work before calling a function right after a prologue, thus we can
797 single out such gcc2 behaviour. */
798
799
800 if ((op & 0xfc000001) == 0x48000001)
801 { /* bl foo, an initializer function? */
802 op = read_memory_integer (pc + 4, 4);
803
804 if (op == 0x4def7b82)
805 { /* cror 0xf, 0xf, 0xf (nop) */
806
807 /* check and see if we are in main. If so, skip over this initializer
808 function as well. */
809
810 tmp = find_pc_misc_function (pc);
811 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
812 return pc + 8;
813 }
814 }
815 #endif /* 0 */
816
817 fdata->offset = -fdata->offset;
818 return last_prologue_pc;
819 }
820
821
822 /*************************************************************************
823 Support for creating pushing a dummy frame into the stack, and popping
824 frames, etc.
825 *************************************************************************/
826
827
828 /* Pop the innermost frame, go back to the caller. */
829
830 static void
831 rs6000_pop_frame (void)
832 {
833 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
834 struct rs6000_framedata fdata;
835 struct frame_info *frame = get_current_frame ();
836 int ii, wordsize;
837
838 pc = read_pc ();
839 sp = FRAME_FP (frame);
840
841 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
842 {
843 generic_pop_dummy_frame ();
844 flush_cached_frames ();
845 return;
846 }
847
848 /* Make sure that all registers are valid. */
849 read_register_bytes (0, NULL, REGISTER_BYTES);
850
851 /* figure out previous %pc value. If the function is frameless, it is
852 still in the link register, otherwise walk the frames and retrieve the
853 saved %pc value in the previous frame. */
854
855 addr = get_pc_function_start (frame->pc);
856 (void) skip_prologue (addr, frame->pc, &fdata);
857
858 wordsize = TDEP->wordsize;
859 if (fdata.frameless)
860 prev_sp = sp;
861 else
862 prev_sp = read_memory_addr (sp, wordsize);
863 if (fdata.lr_offset == 0)
864 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
865 else
866 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
867
868 /* reset %pc value. */
869 write_register (PC_REGNUM, lr);
870
871 /* reset register values if any was saved earlier. */
872
873 if (fdata.saved_gpr != -1)
874 {
875 addr = prev_sp + fdata.gpr_offset;
876 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
877 {
878 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
879 addr += wordsize;
880 }
881 }
882
883 if (fdata.saved_fpr != -1)
884 {
885 addr = prev_sp + fdata.fpr_offset;
886 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
887 {
888 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
889 addr += 8;
890 }
891 }
892
893 write_register (SP_REGNUM, prev_sp);
894 target_store_registers (-1);
895 flush_cached_frames ();
896 }
897
898 /* Fixup the call sequence of a dummy function, with the real function
899 address. Its arguments will be passed by gdb. */
900
901 static void
902 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
903 int nargs, struct value **args, struct type *type,
904 int gcc_p)
905 {
906 int ii;
907 CORE_ADDR target_addr;
908
909 if (rs6000_find_toc_address_hook != NULL)
910 {
911 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
912 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
913 tocvalue);
914 }
915 }
916
917 /* Pass the arguments in either registers, or in the stack. In RS/6000,
918 the first eight words of the argument list (that might be less than
919 eight parameters if some parameters occupy more than one word) are
920 passed in r3..r10 registers. float and double parameters are
921 passed in fpr's, in addition to that. Rest of the parameters if any
922 are passed in user stack. There might be cases in which half of the
923 parameter is copied into registers, the other half is pushed into
924 stack.
925
926 Stack must be aligned on 64-bit boundaries when synthesizing
927 function calls.
928
929 If the function is returning a structure, then the return address is passed
930 in r3, then the first 7 words of the parameters can be passed in registers,
931 starting from r4. */
932
933 static CORE_ADDR
934 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
935 int struct_return, CORE_ADDR struct_addr)
936 {
937 int ii;
938 int len = 0;
939 int argno; /* current argument number */
940 int argbytes; /* current argument byte */
941 char tmp_buffer[50];
942 int f_argno = 0; /* current floating point argno */
943 int wordsize = TDEP->wordsize;
944
945 struct value *arg = 0;
946 struct type *type;
947
948 CORE_ADDR saved_sp;
949
950 /* The first eight words of ther arguments are passed in registers. Copy
951 them appropriately.
952
953 If the function is returning a `struct', then the first word (which
954 will be passed in r3) is used for struct return address. In that
955 case we should advance one word and start from r4 register to copy
956 parameters. */
957
958 ii = struct_return ? 1 : 0;
959
960 /*
961 effectively indirect call... gcc does...
962
963 return_val example( float, int);
964
965 eabi:
966 float in fp0, int in r3
967 offset of stack on overflow 8/16
968 for varargs, must go by type.
969 power open:
970 float in r3&r4, int in r5
971 offset of stack on overflow different
972 both:
973 return in r3 or f0. If no float, must study how gcc emulates floats;
974 pay attention to arg promotion.
975 User may have to cast\args to handle promotion correctly
976 since gdb won't know if prototype supplied or not.
977 */
978
979 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
980 {
981 int reg_size = REGISTER_RAW_SIZE (ii + 3);
982
983 arg = args[argno];
984 type = check_typedef (VALUE_TYPE (arg));
985 len = TYPE_LENGTH (type);
986
987 if (TYPE_CODE (type) == TYPE_CODE_FLT)
988 {
989
990 /* floating point arguments are passed in fpr's, as well as gpr's.
991 There are 13 fpr's reserved for passing parameters. At this point
992 there is no way we would run out of them. */
993
994 if (len > 8)
995 printf_unfiltered (
996 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
997
998 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
999 VALUE_CONTENTS (arg),
1000 len);
1001 ++f_argno;
1002 }
1003
1004 if (len > reg_size)
1005 {
1006
1007 /* Argument takes more than one register. */
1008 while (argbytes < len)
1009 {
1010 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1011 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1012 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1013 (len - argbytes) > reg_size
1014 ? reg_size : len - argbytes);
1015 ++ii, argbytes += reg_size;
1016
1017 if (ii >= 8)
1018 goto ran_out_of_registers_for_arguments;
1019 }
1020 argbytes = 0;
1021 --ii;
1022 }
1023 else
1024 { /* Argument can fit in one register. No problem. */
1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
1029 }
1030 ++argno;
1031 }
1032
1033 ran_out_of_registers_for_arguments:
1034
1035 saved_sp = read_sp ();
1036
1037 /* location for 8 parameters are always reserved. */
1038 sp -= wordsize * 8;
1039
1040 /* another six words for back chain, TOC register, link register, etc. */
1041 sp -= wordsize * 6;
1042
1043 /* stack pointer must be quadword aligned */
1044 sp &= -16;
1045
1046 /* if there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
1048
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
1052
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
1060
1061 for (; jj < nargs; ++jj)
1062 {
1063 struct value *val = args[jj];
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
1066
1067 /* add location required for the rest of the parameters */
1068 space = (space + 15) & -16;
1069 sp -= space;
1070
1071 /* This is another instance we need to be concerned about securing our
1072 stack space. If we write anything underneath %sp (r1), we might conflict
1073 with the kernel who thinks he is free to use this area. So, update %sp
1074 first before doing anything else. */
1075
1076 write_register (SP_REGNUM, sp);
1077
1078 /* if the last argument copied into the registers didn't fit there
1079 completely, push the rest of it into stack. */
1080
1081 if (argbytes)
1082 {
1083 write_memory (sp + 24 + (ii * 4),
1084 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1085 len - argbytes);
1086 ++argno;
1087 ii += ((len - argbytes + 3) & -4) / 4;
1088 }
1089
1090 /* push the rest of the arguments into stack. */
1091 for (; argno < nargs; ++argno)
1092 {
1093
1094 arg = args[argno];
1095 type = check_typedef (VALUE_TYPE (arg));
1096 len = TYPE_LENGTH (type);
1097
1098
1099 /* float types should be passed in fpr's, as well as in the stack. */
1100 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1101 {
1102
1103 if (len > 8)
1104 printf_unfiltered (
1105 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1106
1107 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1108 VALUE_CONTENTS (arg),
1109 len);
1110 ++f_argno;
1111 }
1112
1113 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1114 ii += ((len + 3) & -4) / 4;
1115 }
1116 }
1117 else
1118 /* Secure stack areas first, before doing anything else. */
1119 write_register (SP_REGNUM, sp);
1120
1121 /* set back chain properly */
1122 store_address (tmp_buffer, 4, saved_sp);
1123 write_memory (sp, tmp_buffer, 4);
1124
1125 target_store_registers (-1);
1126 return sp;
1127 }
1128
1129 /* Function: ppc_push_return_address (pc, sp)
1130 Set up the return address for the inferior function call. */
1131
1132 static CORE_ADDR
1133 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1134 {
1135 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1136 CALL_DUMMY_ADDRESS ());
1137 return sp;
1138 }
1139
1140 /* Extract a function return value of type TYPE from raw register array
1141 REGBUF, and copy that return value into VALBUF in virtual format. */
1142
1143 static void
1144 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1145 {
1146 int offset = 0;
1147
1148 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1149 {
1150
1151 double dd;
1152 float ff;
1153 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1154 We need to truncate the return value into float size (4 byte) if
1155 necessary. */
1156
1157 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1158 memcpy (valbuf,
1159 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1160 TYPE_LENGTH (valtype));
1161 else
1162 { /* float */
1163 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1164 ff = (float) dd;
1165 memcpy (valbuf, &ff, sizeof (float));
1166 }
1167 }
1168 else
1169 {
1170 /* return value is copied starting from r3. */
1171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1172 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1173 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1174
1175 memcpy (valbuf,
1176 regbuf + REGISTER_BYTE (3) + offset,
1177 TYPE_LENGTH (valtype));
1178 }
1179 }
1180
1181 /* Keep structure return address in this variable.
1182 FIXME: This is a horrid kludge which should not be allowed to continue
1183 living. This only allows a single nested call to a structure-returning
1184 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1185
1186 static CORE_ADDR rs6000_struct_return_address;
1187
1188 /* Return whether handle_inferior_event() should proceed through code
1189 starting at PC in function NAME when stepping.
1190
1191 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1192 handle memory references that are too distant to fit in instructions
1193 generated by the compiler. For example, if 'foo' in the following
1194 instruction:
1195
1196 lwz r9,foo(r2)
1197
1198 is greater than 32767, the linker might replace the lwz with a branch to
1199 somewhere in @FIX1 that does the load in 2 instructions and then branches
1200 back to where execution should continue.
1201
1202 GDB should silently step over @FIX code, just like AIX dbx does.
1203 Unfortunately, the linker uses the "b" instruction for the branches,
1204 meaning that the link register doesn't get set. Therefore, GDB's usual
1205 step_over_function() mechanism won't work.
1206
1207 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1208 in handle_inferior_event() to skip past @FIX code. */
1209
1210 int
1211 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1212 {
1213 return name && !strncmp (name, "@FIX", 4);
1214 }
1215
1216 /* Skip code that the user doesn't want to see when stepping:
1217
1218 1. Indirect function calls use a piece of trampoline code to do context
1219 switching, i.e. to set the new TOC table. Skip such code if we are on
1220 its first instruction (as when we have single-stepped to here).
1221
1222 2. Skip shared library trampoline code (which is different from
1223 indirect function call trampolines).
1224
1225 3. Skip bigtoc fixup code.
1226
1227 Result is desired PC to step until, or NULL if we are not in
1228 code that should be skipped. */
1229
1230 CORE_ADDR
1231 rs6000_skip_trampoline_code (CORE_ADDR pc)
1232 {
1233 register unsigned int ii, op;
1234 int rel;
1235 CORE_ADDR solib_target_pc;
1236 struct minimal_symbol *msymbol;
1237
1238 static unsigned trampoline_code[] =
1239 {
1240 0x800b0000, /* l r0,0x0(r11) */
1241 0x90410014, /* st r2,0x14(r1) */
1242 0x7c0903a6, /* mtctr r0 */
1243 0x804b0004, /* l r2,0x4(r11) */
1244 0x816b0008, /* l r11,0x8(r11) */
1245 0x4e800420, /* bctr */
1246 0x4e800020, /* br */
1247 0
1248 };
1249
1250 /* Check for bigtoc fixup code. */
1251 msymbol = lookup_minimal_symbol_by_pc (pc);
1252 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1253 {
1254 /* Double-check that the third instruction from PC is relative "b". */
1255 op = read_memory_integer (pc + 8, 4);
1256 if ((op & 0xfc000003) == 0x48000000)
1257 {
1258 /* Extract bits 6-29 as a signed 24-bit relative word address and
1259 add it to the containing PC. */
1260 rel = ((int)(op << 6) >> 6);
1261 return pc + 8 + rel;
1262 }
1263 }
1264
1265 /* If pc is in a shared library trampoline, return its target. */
1266 solib_target_pc = find_solib_trampoline_target (pc);
1267 if (solib_target_pc)
1268 return solib_target_pc;
1269
1270 for (ii = 0; trampoline_code[ii]; ++ii)
1271 {
1272 op = read_memory_integer (pc + (ii * 4), 4);
1273 if (op != trampoline_code[ii])
1274 return 0;
1275 }
1276 ii = read_register (11); /* r11 holds destination addr */
1277 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1278 return pc;
1279 }
1280
1281 /* Determines whether the function FI has a frame on the stack or not. */
1282
1283 int
1284 rs6000_frameless_function_invocation (struct frame_info *fi)
1285 {
1286 CORE_ADDR func_start;
1287 struct rs6000_framedata fdata;
1288
1289 /* Don't even think about framelessness except on the innermost frame
1290 or if the function was interrupted by a signal. */
1291 if (fi->next != NULL && !fi->next->signal_handler_caller)
1292 return 0;
1293
1294 func_start = get_pc_function_start (fi->pc);
1295
1296 /* If we failed to find the start of the function, it is a mistake
1297 to inspect the instructions. */
1298
1299 if (!func_start)
1300 {
1301 /* A frame with a zero PC is usually created by dereferencing a NULL
1302 function pointer, normally causing an immediate core dump of the
1303 inferior. Mark function as frameless, as the inferior has no chance
1304 of setting up a stack frame. */
1305 if (fi->pc == 0)
1306 return 1;
1307 else
1308 return 0;
1309 }
1310
1311 (void) skip_prologue (func_start, fi->pc, &fdata);
1312 return fdata.frameless;
1313 }
1314
1315 /* Return the PC saved in a frame */
1316
1317 CORE_ADDR
1318 rs6000_frame_saved_pc (struct frame_info *fi)
1319 {
1320 CORE_ADDR func_start;
1321 struct rs6000_framedata fdata;
1322 struct gdbarch_tdep *tdep = TDEP;
1323 int wordsize = tdep->wordsize;
1324
1325 if (fi->signal_handler_caller)
1326 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1327
1328 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1329 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1330
1331 func_start = get_pc_function_start (fi->pc);
1332
1333 /* If we failed to find the start of the function, it is a mistake
1334 to inspect the instructions. */
1335 if (!func_start)
1336 return 0;
1337
1338 (void) skip_prologue (func_start, fi->pc, &fdata);
1339
1340 if (fdata.lr_offset == 0 && fi->next != NULL)
1341 {
1342 if (fi->next->signal_handler_caller)
1343 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1344 wordsize);
1345 else
1346 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1347 wordsize);
1348 }
1349
1350 if (fdata.lr_offset == 0)
1351 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1352
1353 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1354 }
1355
1356 /* If saved registers of frame FI are not known yet, read and cache them.
1357 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1358 in which case the framedata are read. */
1359
1360 static void
1361 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1362 {
1363 CORE_ADDR frame_addr;
1364 struct rs6000_framedata work_fdata;
1365 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1366 int wordsize = tdep->wordsize;
1367
1368 if (fi->saved_regs)
1369 return;
1370
1371 if (fdatap == NULL)
1372 {
1373 fdatap = &work_fdata;
1374 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1375 }
1376
1377 frame_saved_regs_zalloc (fi);
1378
1379 /* If there were any saved registers, figure out parent's stack
1380 pointer. */
1381 /* The following is true only if the frame doesn't have a call to
1382 alloca(), FIXME. */
1383
1384 if (fdatap->saved_fpr == 0
1385 && fdatap->saved_gpr == 0
1386 && fdatap->saved_vr == 0
1387 && fdatap->lr_offset == 0
1388 && fdatap->cr_offset == 0
1389 && fdatap->vr_offset == 0)
1390 frame_addr = 0;
1391 else if (fi->prev && fi->prev->frame)
1392 frame_addr = fi->prev->frame;
1393 else
1394 frame_addr = read_memory_addr (fi->frame, wordsize);
1395
1396 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1397 All fpr's from saved_fpr to fp31 are saved. */
1398
1399 if (fdatap->saved_fpr >= 0)
1400 {
1401 int i;
1402 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1403 for (i = fdatap->saved_fpr; i < 32; i++)
1404 {
1405 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1406 fpr_addr += 8;
1407 }
1408 }
1409
1410 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1411 All gpr's from saved_gpr to gpr31 are saved. */
1412
1413 if (fdatap->saved_gpr >= 0)
1414 {
1415 int i;
1416 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1417 for (i = fdatap->saved_gpr; i < 32; i++)
1418 {
1419 fi->saved_regs[i] = gpr_addr;
1420 gpr_addr += wordsize;
1421 }
1422 }
1423
1424 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1425 All vr's from saved_vr to vr31 are saved. */
1426 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1427 {
1428 if (fdatap->saved_vr >= 0)
1429 {
1430 int i;
1431 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1432 for (i = fdatap->saved_vr; i < 32; i++)
1433 {
1434 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1435 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1436 }
1437 }
1438 }
1439
1440 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1441 the CR. */
1442 if (fdatap->cr_offset != 0)
1443 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1444
1445 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1446 the LR. */
1447 if (fdatap->lr_offset != 0)
1448 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1449
1450 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1451 the VRSAVE. */
1452 if (fdatap->vrsave_offset != 0)
1453 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1454 }
1455
1456 /* Return the address of a frame. This is the inital %sp value when the frame
1457 was first allocated. For functions calling alloca(), it might be saved in
1458 an alloca register. */
1459
1460 static CORE_ADDR
1461 frame_initial_stack_address (struct frame_info *fi)
1462 {
1463 CORE_ADDR tmpaddr;
1464 struct rs6000_framedata fdata;
1465 struct frame_info *callee_fi;
1466
1467 /* if the initial stack pointer (frame address) of this frame is known,
1468 just return it. */
1469
1470 if (fi->extra_info->initial_sp)
1471 return fi->extra_info->initial_sp;
1472
1473 /* find out if this function is using an alloca register.. */
1474
1475 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1476
1477 /* if saved registers of this frame are not known yet, read and cache them. */
1478
1479 if (!fi->saved_regs)
1480 frame_get_saved_regs (fi, &fdata);
1481
1482 /* If no alloca register used, then fi->frame is the value of the %sp for
1483 this frame, and it is good enough. */
1484
1485 if (fdata.alloca_reg < 0)
1486 {
1487 fi->extra_info->initial_sp = fi->frame;
1488 return fi->extra_info->initial_sp;
1489 }
1490
1491 /* There is an alloca register, use its value, in the current frame,
1492 as the initial stack pointer. */
1493 {
1494 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1495 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1496 {
1497 fi->extra_info->initial_sp
1498 = extract_unsigned_integer (tmpbuf,
1499 REGISTER_RAW_SIZE (fdata.alloca_reg));
1500 }
1501 else
1502 /* NOTE: cagney/2002-04-17: At present the only time
1503 frame_register_read will fail is when the register isn't
1504 available. If that does happen, use the frame. */
1505 fi->extra_info->initial_sp = fi->frame;
1506 }
1507 return fi->extra_info->initial_sp;
1508 }
1509
1510 /* Describe the pointer in each stack frame to the previous stack frame
1511 (its caller). */
1512
1513 /* FRAME_CHAIN takes a frame's nominal address
1514 and produces the frame's chain-pointer. */
1515
1516 /* In the case of the RS/6000, the frame's nominal address
1517 is the address of a 4-byte word containing the calling frame's address. */
1518
1519 CORE_ADDR
1520 rs6000_frame_chain (struct frame_info *thisframe)
1521 {
1522 CORE_ADDR fp, fpp, lr;
1523 int wordsize = TDEP->wordsize;
1524
1525 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1526 return thisframe->frame; /* dummy frame same as caller's frame */
1527
1528 if (inside_entry_file (thisframe->pc) ||
1529 thisframe->pc == entry_point_address ())
1530 return 0;
1531
1532 if (thisframe->signal_handler_caller)
1533 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1534 wordsize);
1535 else if (thisframe->next != NULL
1536 && thisframe->next->signal_handler_caller
1537 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1538 /* A frameless function interrupted by a signal did not change the
1539 frame pointer. */
1540 fp = FRAME_FP (thisframe);
1541 else
1542 fp = read_memory_addr ((thisframe)->frame, wordsize);
1543
1544 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1545 if (lr == entry_point_address ())
1546 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1547 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1548 return fpp;
1549
1550 return fp;
1551 }
1552
1553 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1554 isn't available with that word size, return 0. */
1555
1556 static int
1557 regsize (const struct reg *reg, int wordsize)
1558 {
1559 return wordsize == 8 ? reg->sz64 : reg->sz32;
1560 }
1561
1562 /* Return the name of register number N, or null if no such register exists
1563 in the current architecture. */
1564
1565 static char *
1566 rs6000_register_name (int n)
1567 {
1568 struct gdbarch_tdep *tdep = TDEP;
1569 const struct reg *reg = tdep->regs + n;
1570
1571 if (!regsize (reg, tdep->wordsize))
1572 return NULL;
1573 return reg->name;
1574 }
1575
1576 /* Index within `registers' of the first byte of the space for
1577 register N. */
1578
1579 static int
1580 rs6000_register_byte (int n)
1581 {
1582 return TDEP->regoff[n];
1583 }
1584
1585 /* Return the number of bytes of storage in the actual machine representation
1586 for register N if that register is available, else return 0. */
1587
1588 static int
1589 rs6000_register_raw_size (int n)
1590 {
1591 struct gdbarch_tdep *tdep = TDEP;
1592 const struct reg *reg = tdep->regs + n;
1593 return regsize (reg, tdep->wordsize);
1594 }
1595
1596 /* Return the GDB type object for the "standard" data type
1597 of data in register N. */
1598
1599 static struct type *
1600 rs6000_register_virtual_type (int n)
1601 {
1602 struct gdbarch_tdep *tdep = TDEP;
1603 const struct reg *reg = tdep->regs + n;
1604
1605 if (reg->fpr)
1606 return builtin_type_double;
1607 else
1608 {
1609 int size = regsize (reg, tdep->wordsize);
1610 switch (size)
1611 {
1612 case 8:
1613 return builtin_type_int64;
1614 break;
1615 case 16:
1616 return builtin_type_vec128;
1617 break;
1618 default:
1619 return builtin_type_int32;
1620 break;
1621 }
1622 }
1623 }
1624
1625 /* For the PowerPC, it appears that the debug info marks float parameters as
1626 floats regardless of whether the function is prototyped, but the actual
1627 values are always passed in as doubles. Tell gdb to always assume that
1628 floats are passed as doubles and then converted in the callee. */
1629
1630 static int
1631 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1632 {
1633 return 1;
1634 }
1635
1636 /* Return whether register N requires conversion when moving from raw format
1637 to virtual format.
1638
1639 The register format for RS/6000 floating point registers is always
1640 double, we need a conversion if the memory format is float. */
1641
1642 static int
1643 rs6000_register_convertible (int n)
1644 {
1645 const struct reg *reg = TDEP->regs + n;
1646 return reg->fpr;
1647 }
1648
1649 /* Convert data from raw format for register N in buffer FROM
1650 to virtual format with type TYPE in buffer TO. */
1651
1652 static void
1653 rs6000_register_convert_to_virtual (int n, struct type *type,
1654 char *from, char *to)
1655 {
1656 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1657 {
1658 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1659 store_floating (to, TYPE_LENGTH (type), val);
1660 }
1661 else
1662 memcpy (to, from, REGISTER_RAW_SIZE (n));
1663 }
1664
1665 /* Convert data from virtual format with type TYPE in buffer FROM
1666 to raw format for register N in buffer TO. */
1667
1668 static void
1669 rs6000_register_convert_to_raw (struct type *type, int n,
1670 char *from, char *to)
1671 {
1672 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1673 {
1674 double val = extract_floating (from, TYPE_LENGTH (type));
1675 store_floating (to, REGISTER_RAW_SIZE (n), val);
1676 }
1677 else
1678 memcpy (to, from, REGISTER_RAW_SIZE (n));
1679 }
1680
1681 int
1682 altivec_register_p (int regno)
1683 {
1684 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1685 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1686 return 0;
1687 else
1688 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1689 }
1690
1691 static void
1692 rs6000_do_altivec_registers (int regnum)
1693 {
1694 int i;
1695 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1696 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1697 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1698
1699 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1700 {
1701 /* If we want just one reg, check that this is the one we want. */
1702 if (regnum != -1 && i != regnum)
1703 continue;
1704
1705 /* If the register name is empty, it is undefined for this
1706 processor, so don't display anything. */
1707 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1708 continue;
1709
1710 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1711 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1712
1713 /* Get the data in raw format. */
1714 if (!frame_register_read (selected_frame, i, raw_buffer))
1715 {
1716 printf_filtered ("*value not available*\n");
1717 continue;
1718 }
1719
1720 /* Convert raw data to virtual format if necessary. */
1721 if (REGISTER_CONVERTIBLE (i))
1722 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1723 raw_buffer, virtual_buffer);
1724 else
1725 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1726
1727 /* Print as integer in hex only. */
1728 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1729 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1730 printf_filtered ("\n");
1731 }
1732 }
1733
1734 static void
1735 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1736 {
1737 int regnum, numregs;
1738 register char *end;
1739
1740 if (!target_has_registers)
1741 error ("The program has no registers now.");
1742 if (selected_frame == NULL)
1743 error ("No selected frame.");
1744
1745 if (!addr_exp)
1746 {
1747 rs6000_do_altivec_registers (-1);
1748 return;
1749 }
1750
1751 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1752 do
1753 {
1754 if (addr_exp[0] == '$')
1755 addr_exp++;
1756 end = addr_exp;
1757 while (*end != '\0' && *end != ' ' && *end != '\t')
1758 ++end;
1759
1760 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1761 if (regnum < 0)
1762 {
1763 regnum = numregs;
1764 if (*addr_exp >= '0' && *addr_exp <= '9')
1765 regnum = atoi (addr_exp); /* Take a number */
1766 if (regnum >= numregs) /* Bad name, or bad number */
1767 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1768 }
1769
1770 rs6000_do_altivec_registers (regnum);
1771
1772 addr_exp = end;
1773 while (*addr_exp == ' ' || *addr_exp == '\t')
1774 ++addr_exp;
1775 }
1776 while (*addr_exp != '\0');
1777 }
1778
1779 static void
1780 rs6000_do_registers_info (int regnum, int fpregs)
1781 {
1782 register int i;
1783 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1784 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1785 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1786
1787 for (i = 0; i < numregs; i++)
1788 {
1789 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1790 if (regnum == -1)
1791 {
1792 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1793 || (altivec_register_p (i) && !fpregs))
1794 continue;
1795 }
1796 else
1797 {
1798 if (i != regnum)
1799 continue;
1800 }
1801
1802 /* If the register name is empty, it is undefined for this
1803 processor, so don't display anything. */
1804 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1805 continue;
1806
1807 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1808 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1809
1810 /* Get the data in raw format. */
1811 if (!frame_register_read (selected_frame, i, raw_buffer))
1812 {
1813 printf_filtered ("*value not available*\n");
1814 continue;
1815 }
1816
1817 /* Convert raw data to virtual format if necessary. */
1818 if (REGISTER_CONVERTIBLE (i))
1819 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1820 raw_buffer, virtual_buffer);
1821 else
1822 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1823
1824 /* If virtual format is floating, print it that way, and in raw hex. */
1825 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1826 {
1827 register int j;
1828
1829 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1830 gdb_stdout, 0, 1, 0, Val_pretty_default);
1831
1832 printf_filtered ("\t(raw 0x");
1833 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1834 {
1835 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1836 : REGISTER_RAW_SIZE (i) - 1 - j;
1837 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1838 }
1839 printf_filtered (")");
1840 }
1841 else
1842 {
1843 /* Print as integer in hex and in decimal. */
1844 if (!altivec_register_p (i))
1845 {
1846 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1847 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1848 printf_filtered ("\t");
1849 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1850 gdb_stdout, 0, 1, 0, Val_pretty_default);
1851 }
1852 else
1853 /* Print as integer in hex only. */
1854 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1855 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1856 }
1857 printf_filtered ("\n");
1858 }
1859 }
1860
1861 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1862 REGNUM. */
1863 static int
1864 rs6000_stab_reg_to_regnum (int num)
1865 {
1866 int regnum;
1867 switch (num)
1868 {
1869 case 64:
1870 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1871 break;
1872 case 65:
1873 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1874 break;
1875 case 66:
1876 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1877 break;
1878 case 76:
1879 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1880 break;
1881 default:
1882 regnum = num;
1883 break;
1884 }
1885 return regnum;
1886 }
1887
1888 /* Store the address of the place in which to copy the structure the
1889 subroutine will return. This is called from call_function.
1890
1891 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1892 In function return, callee is not responsible of returning this address
1893 back. Since gdb needs to find it, we will store in a designated variable
1894 `rs6000_struct_return_address'. */
1895
1896 static void
1897 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1898 {
1899 write_register (3, addr);
1900 rs6000_struct_return_address = addr;
1901 }
1902
1903 /* Write into appropriate registers a function return value
1904 of type TYPE, given in virtual format. */
1905
1906 static void
1907 rs6000_store_return_value (struct type *type, char *valbuf)
1908 {
1909 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1910
1911 /* Floating point values are returned starting from FPR1 and up.
1912 Say a double_double_double type could be returned in
1913 FPR1/FPR2/FPR3 triple. */
1914
1915 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1916 TYPE_LENGTH (type));
1917 else
1918 /* Everything else is returned in GPR3 and up. */
1919 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1920 valbuf, TYPE_LENGTH (type));
1921 }
1922
1923 /* Extract from an array REGBUF containing the (raw) register state
1924 the address in which a function should return its structure value,
1925 as a CORE_ADDR (or an expression that can be used as one). */
1926
1927 static CORE_ADDR
1928 rs6000_extract_struct_value_address (char *regbuf)
1929 {
1930 return rs6000_struct_return_address;
1931 }
1932
1933 /* Return whether PC is in a dummy function call.
1934
1935 FIXME: This just checks for the end of the stack, which is broken
1936 for things like stepping through gcc nested function stubs. */
1937
1938 static int
1939 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1940 {
1941 return sp < pc && pc < fp;
1942 }
1943
1944 /* Hook called when a new child process is started. */
1945
1946 void
1947 rs6000_create_inferior (int pid)
1948 {
1949 if (rs6000_set_host_arch_hook)
1950 rs6000_set_host_arch_hook (pid);
1951 }
1952 \f
1953 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1954
1955 Usually a function pointer's representation is simply the address
1956 of the function. On the RS/6000 however, a function pointer is
1957 represented by a pointer to a TOC entry. This TOC entry contains
1958 three words, the first word is the address of the function, the
1959 second word is the TOC pointer (r2), and the third word is the
1960 static chain value. Throughout GDB it is currently assumed that a
1961 function pointer contains the address of the function, which is not
1962 easy to fix. In addition, the conversion of a function address to
1963 a function pointer would require allocation of a TOC entry in the
1964 inferior's memory space, with all its drawbacks. To be able to
1965 call C++ virtual methods in the inferior (which are called via
1966 function pointers), find_function_addr uses this function to get the
1967 function address from a function pointer. */
1968
1969 /* Return real function address if ADDR (a function pointer) is in the data
1970 space and is therefore a special function pointer. */
1971
1972 CORE_ADDR
1973 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1974 {
1975 struct obj_section *s;
1976
1977 s = find_pc_section (addr);
1978 if (s && s->the_bfd_section->flags & SEC_CODE)
1979 return addr;
1980
1981 /* ADDR is in the data space, so it's a special function pointer. */
1982 return read_memory_addr (addr, TDEP->wordsize);
1983 }
1984 \f
1985
1986 /* Handling the various POWER/PowerPC variants. */
1987
1988
1989 /* The arrays here called registers_MUMBLE hold information about available
1990 registers.
1991
1992 For each family of PPC variants, I've tried to isolate out the
1993 common registers and put them up front, so that as long as you get
1994 the general family right, GDB will correctly identify the registers
1995 common to that family. The common register sets are:
1996
1997 For the 60x family: hid0 hid1 iabr dabr pir
1998
1999 For the 505 and 860 family: eie eid nri
2000
2001 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2002 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2003 pbu1 pbl2 pbu2
2004
2005 Most of these register groups aren't anything formal. I arrived at
2006 them by looking at the registers that occurred in more than one
2007 processor. */
2008
2009 /* Convenience macros for populating register arrays. */
2010
2011 /* Within another macro, convert S to a string. */
2012
2013 #define STR(s) #s
2014
2015 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2016 and 64 bits on 64-bit systems. */
2017 #define R(name) { STR(name), 4, 8, 0 }
2018
2019 /* Return a struct reg defining register NAME that's 32 bits on all
2020 systems. */
2021 #define R4(name) { STR(name), 4, 4, 0 }
2022
2023 /* Return a struct reg defining register NAME that's 64 bits on all
2024 systems. */
2025 #define R8(name) { STR(name), 8, 8, 0 }
2026
2027 /* Return a struct reg defining register NAME that's 128 bits on all
2028 systems. */
2029 #define R16(name) { STR(name), 16, 16, 0 }
2030
2031 /* Return a struct reg defining floating-point register NAME. */
2032 #define F(name) { STR(name), 8, 8, 1 }
2033
2034 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2035 systems and that doesn't exist on 64-bit systems. */
2036 #define R32(name) { STR(name), 4, 0, 0 }
2037
2038 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2039 systems and that doesn't exist on 32-bit systems. */
2040 #define R64(name) { STR(name), 0, 8, 0 }
2041
2042 /* Return a struct reg placeholder for a register that doesn't exist. */
2043 #define R0 { 0, 0, 0, 0 }
2044
2045 /* UISA registers common across all architectures, including POWER. */
2046
2047 #define COMMON_UISA_REGS \
2048 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2049 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2050 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2051 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2052 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2053 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2054 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2055 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2056 /* 64 */ R(pc), R(ps)
2057
2058 #define COMMON_UISA_NOFP_REGS \
2059 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2060 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2061 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2062 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2063 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2064 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2065 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2066 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2067 /* 64 */ R(pc), R(ps)
2068
2069 /* UISA-level SPRs for PowerPC. */
2070 #define PPC_UISA_SPRS \
2071 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2072
2073 /* Segment registers, for PowerPC. */
2074 #define PPC_SEGMENT_REGS \
2075 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2076 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2077 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2078 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2079
2080 /* OEA SPRs for PowerPC. */
2081 #define PPC_OEA_SPRS \
2082 /* 87 */ R4(pvr), \
2083 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2084 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2085 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2086 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2087 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2088 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2089 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2090 /* 116 */ R4(dec), R(dabr), R4(ear)
2091
2092 /* AltiVec registers */
2093 #define PPC_ALTIVEC_REGS \
2094 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2095 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2096 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2097 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2098 /*151*/R4(vscr), R4(vrsave)
2099
2100 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2101 user-level SPR's. */
2102 static const struct reg registers_power[] =
2103 {
2104 COMMON_UISA_REGS,
2105 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2106 /* 71 */ R4(fpscr)
2107 };
2108
2109 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2110 view of the PowerPC. */
2111 static const struct reg registers_powerpc[] =
2112 {
2113 COMMON_UISA_REGS,
2114 PPC_UISA_SPRS,
2115 PPC_ALTIVEC_REGS
2116 };
2117
2118 /* PowerPC UISA - a PPC processor as viewed by user-level
2119 code, but without floating point registers. */
2120 static const struct reg registers_powerpc_nofp[] =
2121 {
2122 COMMON_UISA_NOFP_REGS,
2123 PPC_UISA_SPRS
2124 };
2125
2126 /* IBM PowerPC 403. */
2127 static const struct reg registers_403[] =
2128 {
2129 COMMON_UISA_REGS,
2130 PPC_UISA_SPRS,
2131 PPC_SEGMENT_REGS,
2132 PPC_OEA_SPRS,
2133 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2134 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2135 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2136 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2137 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2138 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2139 };
2140
2141 /* IBM PowerPC 403GC. */
2142 static const struct reg registers_403GC[] =
2143 {
2144 COMMON_UISA_REGS,
2145 PPC_UISA_SPRS,
2146 PPC_SEGMENT_REGS,
2147 PPC_OEA_SPRS,
2148 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2149 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2150 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2151 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2152 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2153 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2154 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2155 /* 147 */ R(tbhu), R(tblu)
2156 };
2157
2158 /* Motorola PowerPC 505. */
2159 static const struct reg registers_505[] =
2160 {
2161 COMMON_UISA_REGS,
2162 PPC_UISA_SPRS,
2163 PPC_SEGMENT_REGS,
2164 PPC_OEA_SPRS,
2165 /* 119 */ R(eie), R(eid), R(nri)
2166 };
2167
2168 /* Motorola PowerPC 860 or 850. */
2169 static const struct reg registers_860[] =
2170 {
2171 COMMON_UISA_REGS,
2172 PPC_UISA_SPRS,
2173 PPC_SEGMENT_REGS,
2174 PPC_OEA_SPRS,
2175 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2176 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2177 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2178 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2179 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2180 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2181 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2182 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2183 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2184 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2185 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2186 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2187 };
2188
2189 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2190 for reading and writing RTCU and RTCL. However, how one reads and writes a
2191 register is the stub's problem. */
2192 static const struct reg registers_601[] =
2193 {
2194 COMMON_UISA_REGS,
2195 PPC_UISA_SPRS,
2196 PPC_SEGMENT_REGS,
2197 PPC_OEA_SPRS,
2198 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2199 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2200 };
2201
2202 /* Motorola PowerPC 602. */
2203 static const struct reg registers_602[] =
2204 {
2205 COMMON_UISA_REGS,
2206 PPC_UISA_SPRS,
2207 PPC_SEGMENT_REGS,
2208 PPC_OEA_SPRS,
2209 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2210 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2211 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2212 };
2213
2214 /* Motorola/IBM PowerPC 603 or 603e. */
2215 static const struct reg registers_603[] =
2216 {
2217 COMMON_UISA_REGS,
2218 PPC_UISA_SPRS,
2219 PPC_SEGMENT_REGS,
2220 PPC_OEA_SPRS,
2221 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2222 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2223 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2224 };
2225
2226 /* Motorola PowerPC 604 or 604e. */
2227 static const struct reg registers_604[] =
2228 {
2229 COMMON_UISA_REGS,
2230 PPC_UISA_SPRS,
2231 PPC_SEGMENT_REGS,
2232 PPC_OEA_SPRS,
2233 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2234 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2235 /* 127 */ R(sia), R(sda)
2236 };
2237
2238 /* Motorola/IBM PowerPC 750 or 740. */
2239 static const struct reg registers_750[] =
2240 {
2241 COMMON_UISA_REGS,
2242 PPC_UISA_SPRS,
2243 PPC_SEGMENT_REGS,
2244 PPC_OEA_SPRS,
2245 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2246 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2247 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2248 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2249 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2250 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2251 };
2252
2253
2254 /* Motorola PowerPC 7400. */
2255 static const struct reg registers_7400[] =
2256 {
2257 /* gpr0-gpr31, fpr0-fpr31 */
2258 COMMON_UISA_REGS,
2259 /* ctr, xre, lr, cr */
2260 PPC_UISA_SPRS,
2261 /* sr0-sr15 */
2262 PPC_SEGMENT_REGS,
2263 PPC_OEA_SPRS,
2264 /* vr0-vr31, vrsave, vscr */
2265 PPC_ALTIVEC_REGS
2266 /* FIXME? Add more registers? */
2267 };
2268
2269 /* Information about a particular processor variant. */
2270
2271 struct variant
2272 {
2273 /* Name of this variant. */
2274 char *name;
2275
2276 /* English description of the variant. */
2277 char *description;
2278
2279 /* bfd_arch_info.arch corresponding to variant. */
2280 enum bfd_architecture arch;
2281
2282 /* bfd_arch_info.mach corresponding to variant. */
2283 unsigned long mach;
2284
2285 /* Table of register names; registers[R] is the name of the register
2286 number R. */
2287 int nregs;
2288 const struct reg *regs;
2289 };
2290
2291 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2292
2293
2294 /* Information in this table comes from the following web sites:
2295 IBM: http://www.chips.ibm.com:80/products/embedded/
2296 Motorola: http://www.mot.com/SPS/PowerPC/
2297
2298 I'm sure I've got some of the variant descriptions not quite right.
2299 Please report any inaccuracies you find to GDB's maintainer.
2300
2301 If you add entries to this table, please be sure to allow the new
2302 value as an argument to the --with-cpu flag, in configure.in. */
2303
2304 static const struct variant variants[] =
2305 {
2306 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2307 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2308 {"power", "POWER user-level", bfd_arch_rs6000,
2309 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2310 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2311 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2312 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2313 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2314 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2315 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2316 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2317 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2318 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2319 604, num_registers (registers_604), registers_604},
2320 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2321 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2322 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2323 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2324 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2325 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2326 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2327 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2328 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2329 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2330
2331 /* 64-bit */
2332 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2333 bfd_mach_ppc64, num_registers (registers_powerpc), registers_powerpc},
2334 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2335 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2336 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2337 bfd_mach_ppc_630, num_registers (registers_powerpc), registers_powerpc},
2338 {"a35", "PowerPC A35", bfd_arch_powerpc,
2339 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2340 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2341 bfd_mach_ppc_rs64ii, num_registers (registers_powerpc), registers_powerpc},
2342 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2343 bfd_mach_ppc_rs64iii, num_registers (registers_powerpc), registers_powerpc},
2344
2345 /* FIXME: I haven't checked the register sets of the following. */
2346 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2347 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2348 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2349 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2350 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2351 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2352
2353 {0, 0, 0, 0}
2354 };
2355
2356 #undef num_registers
2357
2358 /* Return the variant corresponding to architecture ARCH and machine number
2359 MACH. If no such variant exists, return null. */
2360
2361 static const struct variant *
2362 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2363 {
2364 const struct variant *v;
2365
2366 for (v = variants; v->name; v++)
2367 if (arch == v->arch && mach == v->mach)
2368 return v;
2369
2370 return NULL;
2371 }
2372
2373
2374
2375 \f
2376 static void
2377 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2378 {
2379 int *os_ident_ptr = obj;
2380 const char *name;
2381 unsigned int sectsize;
2382
2383 name = bfd_get_section_name (abfd, sect);
2384 sectsize = bfd_section_size (abfd, sect);
2385 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2386 {
2387 unsigned int name_length, data_length, note_type;
2388 char *note = alloca (sectsize);
2389
2390 bfd_get_section_contents (abfd, sect, note,
2391 (file_ptr) 0, (bfd_size_type) sectsize);
2392
2393 name_length = bfd_h_get_32 (abfd, note);
2394 data_length = bfd_h_get_32 (abfd, note + 4);
2395 note_type = bfd_h_get_32 (abfd, note + 8);
2396
2397 if (name_length == 4 && data_length == 16 && note_type == 1
2398 && strcmp (note + 12, "GNU") == 0)
2399 {
2400 int os_number = bfd_h_get_32 (abfd, note + 16);
2401
2402 /* The case numbers are from abi-tags in glibc */
2403 switch (os_number)
2404 {
2405 case 0 :
2406 *os_ident_ptr = ELFOSABI_LINUX;
2407 break;
2408 case 1 :
2409 *os_ident_ptr = ELFOSABI_HURD;
2410 break;
2411 case 2 :
2412 *os_ident_ptr = ELFOSABI_SOLARIS;
2413 break;
2414 default :
2415 internal_error (__FILE__, __LINE__,
2416 "process_note_abi_sections: unknown OS number %d",
2417 os_number);
2418 break;
2419 }
2420 }
2421 }
2422 }
2423
2424 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2425 executables. If it's not an ELF executable or if the OS/ABI couldn't
2426 be determined, simply return -1. */
2427
2428 static int
2429 get_elfosabi (bfd *abfd)
2430 {
2431 int elfosabi = -1;
2432
2433 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2434 {
2435 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2436
2437 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2438 that we're on a SYSV system. However, GNU/Linux uses a note section
2439 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2440 have to check the note sections too. */
2441 if (elfosabi == 0)
2442 {
2443 bfd_map_over_sections (abfd,
2444 process_note_abi_tag_sections,
2445 &elfosabi);
2446 }
2447 }
2448
2449 return elfosabi;
2450 }
2451
2452 \f
2453
2454 /* Initialize the current architecture based on INFO. If possible, re-use an
2455 architecture from ARCHES, which is a list of architectures already created
2456 during this debugging session.
2457
2458 Called e.g. at program startup, when reading a core file, and when reading
2459 a binary file. */
2460
2461 static struct gdbarch *
2462 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2463 {
2464 struct gdbarch *gdbarch;
2465 struct gdbarch_tdep *tdep;
2466 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2467 struct reg *regs;
2468 const struct variant *v;
2469 enum bfd_architecture arch;
2470 unsigned long mach;
2471 bfd abfd;
2472 int osabi, sysv_abi;
2473 gdbarch_print_insn_ftype *print_insn;
2474
2475 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2476 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2477
2478 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2479 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2480
2481 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2482
2483 osabi = get_elfosabi (info.abfd);
2484
2485 /* Check word size. If INFO is from a binary file, infer it from
2486 that, else choose a likely default. */
2487 if (from_xcoff_exec)
2488 {
2489 if (xcoff_data (info.abfd)->xcoff64)
2490 wordsize = 8;
2491 else
2492 wordsize = 4;
2493 }
2494 else if (from_elf_exec)
2495 {
2496 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2497 wordsize = 8;
2498 else
2499 wordsize = 4;
2500 }
2501 else
2502 {
2503 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2504 wordsize = info.bfd_arch_info->bits_per_word /
2505 info.bfd_arch_info->bits_per_byte;
2506 else
2507 wordsize = 4;
2508 }
2509
2510 /* Find a candidate among extant architectures. */
2511 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2512 arches != NULL;
2513 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2514 {
2515 /* Word size in the various PowerPC bfd_arch_info structs isn't
2516 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2517 separate word size check. */
2518 tdep = gdbarch_tdep (arches->gdbarch);
2519 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2520 return arches->gdbarch;
2521 }
2522
2523 /* None found, create a new architecture from INFO, whose bfd_arch_info
2524 validity depends on the source:
2525 - executable useless
2526 - rs6000_host_arch() good
2527 - core file good
2528 - "set arch" trust blindly
2529 - GDB startup useless but harmless */
2530
2531 if (!from_xcoff_exec)
2532 {
2533 arch = info.bfd_arch_info->arch;
2534 mach = info.bfd_arch_info->mach;
2535 }
2536 else
2537 {
2538 arch = bfd_arch_powerpc;
2539 mach = 0;
2540 bfd_default_set_arch_mach (&abfd, arch, mach);
2541 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2542 }
2543 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2544 tdep->wordsize = wordsize;
2545 tdep->osabi = osabi;
2546 gdbarch = gdbarch_alloc (&info, tdep);
2547 power = arch == bfd_arch_rs6000;
2548
2549 /* Choose variant. */
2550 v = find_variant_by_arch (arch, mach);
2551 if (!v)
2552 return NULL;
2553
2554 tdep->regs = v->regs;
2555
2556 tdep->ppc_gp0_regnum = 0;
2557 tdep->ppc_gplast_regnum = 31;
2558 tdep->ppc_toc_regnum = 2;
2559 tdep->ppc_ps_regnum = 65;
2560 tdep->ppc_cr_regnum = 66;
2561 tdep->ppc_lr_regnum = 67;
2562 tdep->ppc_ctr_regnum = 68;
2563 tdep->ppc_xer_regnum = 69;
2564 if (v->mach == bfd_mach_ppc_601)
2565 tdep->ppc_mq_regnum = 124;
2566 else if (power)
2567 tdep->ppc_mq_regnum = 70;
2568 else
2569 tdep->ppc_mq_regnum = -1;
2570 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2571
2572 if (v->arch == bfd_arch_powerpc)
2573 switch (v->mach)
2574 {
2575 case bfd_mach_ppc:
2576 tdep->ppc_vr0_regnum = 71;
2577 tdep->ppc_vrsave_regnum = 104;
2578 break;
2579 case bfd_mach_ppc_7400:
2580 tdep->ppc_vr0_regnum = 119;
2581 tdep->ppc_vrsave_regnum = 153;
2582 break;
2583 default:
2584 tdep->ppc_vr0_regnum = -1;
2585 tdep->ppc_vrsave_regnum = -1;
2586 break;
2587 }
2588
2589 /* Set lr_frame_offset. */
2590 if (wordsize == 8)
2591 tdep->lr_frame_offset = 16;
2592 else if (sysv_abi)
2593 tdep->lr_frame_offset = 4;
2594 else
2595 tdep->lr_frame_offset = 8;
2596
2597 /* Calculate byte offsets in raw register array. */
2598 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2599 for (i = off = 0; i < v->nregs; i++)
2600 {
2601 tdep->regoff[i] = off;
2602 off += regsize (v->regs + i, wordsize);
2603 }
2604
2605 /* Select instruction printer. */
2606 if (arch == power)
2607 print_insn = print_insn_rs6000;
2608 else if (info.byte_order == BFD_ENDIAN_BIG)
2609 print_insn = print_insn_big_powerpc;
2610 else
2611 print_insn = print_insn_little_powerpc;
2612 set_gdbarch_print_insn (gdbarch, print_insn);
2613
2614 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2615 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2616 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2617 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2618 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2619
2620 set_gdbarch_num_regs (gdbarch, v->nregs);
2621 set_gdbarch_sp_regnum (gdbarch, 1);
2622 set_gdbarch_fp_regnum (gdbarch, 1);
2623 set_gdbarch_pc_regnum (gdbarch, 64);
2624 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2625 set_gdbarch_register_size (gdbarch, wordsize);
2626 set_gdbarch_register_bytes (gdbarch, off);
2627 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2628 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2629 set_gdbarch_max_register_raw_size (gdbarch, 16);
2630 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2631 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2632 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2633 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2634
2635 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2636 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2637 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2638 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2639 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2640 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2641 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2642 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2643 set_gdbarch_char_signed (gdbarch, 0);
2644
2645 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2646 set_gdbarch_call_dummy_length (gdbarch, 0);
2647 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2648 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2649 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2650 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2651 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2652 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2653 set_gdbarch_call_dummy_p (gdbarch, 1);
2654 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2655 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2656 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2657 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2658 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2659 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2660 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2661 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2662
2663 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2664 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2665 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2666 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2667
2668 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2669
2670 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2671 is correct for the SysV ABI when the wordsize is 8, but I'm also
2672 fairly certain that ppc_sysv_abi_push_arguments() will give even
2673 worse results since it only works for 32-bit code. So, for the moment,
2674 we're better off calling rs6000_push_arguments() since it works for
2675 64-bit code. At some point in the future, this matter needs to be
2676 revisited. */
2677 if (sysv_abi && wordsize == 4)
2678 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2679 else
2680 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2681
2682 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2683 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2684 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2685 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2686
2687 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2688 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2689 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2690 set_gdbarch_function_start_offset (gdbarch, 0);
2691 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2692
2693 /* Not sure on this. FIXMEmgo */
2694 set_gdbarch_frame_args_skip (gdbarch, 8);
2695
2696 /* Until November 2001, gcc was not complying to the SYSV ABI for
2697 returning structures less than or equal to 8 bytes in size. It was
2698 returning everything in memory. When this was corrected, it wasn't
2699 fixed for native platforms. */
2700 if (sysv_abi)
2701 {
2702 if (osabi == ELFOSABI_LINUX
2703 || osabi == ELFOSABI_NETBSD
2704 || osabi == ELFOSABI_FREEBSD)
2705 set_gdbarch_use_struct_convention (gdbarch,
2706 generic_use_struct_convention);
2707 else
2708 set_gdbarch_use_struct_convention (gdbarch,
2709 ppc_sysv_abi_use_struct_convention);
2710 }
2711 else
2712 {
2713 set_gdbarch_use_struct_convention (gdbarch,
2714 generic_use_struct_convention);
2715 }
2716
2717 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2718 /* Note: kevinb/2002-04-12: See note above regarding *_push_arguments().
2719 The same remarks hold for the methods below. */
2720 if (osabi == ELFOSABI_LINUX && wordsize == 4)
2721 {
2722 set_gdbarch_frameless_function_invocation (gdbarch,
2723 ppc_linux_frameless_function_invocation);
2724 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2725 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2726
2727 set_gdbarch_frame_init_saved_regs (gdbarch,
2728 ppc_linux_frame_init_saved_regs);
2729 set_gdbarch_init_extra_frame_info (gdbarch,
2730 ppc_linux_init_extra_frame_info);
2731
2732 set_gdbarch_memory_remove_breakpoint (gdbarch,
2733 ppc_linux_memory_remove_breakpoint);
2734 set_solib_svr4_fetch_link_map_offsets
2735 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2736 }
2737 else
2738 {
2739 set_gdbarch_frameless_function_invocation (gdbarch,
2740 rs6000_frameless_function_invocation);
2741 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2742 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2743
2744 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2745 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2746
2747 /* Handle RS/6000 function pointers. */
2748 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2749 rs6000_convert_from_func_ptr_addr);
2750 }
2751 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2752 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2753 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2754
2755 /* We can't tell how many args there are
2756 now that the C compiler delays popping them. */
2757 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2758
2759 return gdbarch;
2760 }
2761
2762 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2763
2764 static void
2765 rs6000_info_powerpc_command (char *args, int from_tty)
2766 {
2767 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2768 }
2769
2770 /* Initialization code. */
2771
2772 void
2773 _initialize_rs6000_tdep (void)
2774 {
2775 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2776 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2777
2778 /* Add root prefix command for "info powerpc" commands */
2779 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2780 "Various POWERPC info specific commands.",
2781 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2782
2783 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2784 "Display the contents of the AltiVec registers.",
2785 &info_powerpc_cmdlist);
2786
2787 }
This page took 0.091628 seconds and 4 git commands to generate.