RS6000 Add support to print vector register contents as float128
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* PowerPC-related per-inferior data. */
157
158 struct ppc_inferior_data
159 {
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
163 gdb::optional<displaced_step_buffers> disp_step_buf;
164 };
165
166 static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168 /* Get the per-inferior PowerPC data for INF. */
169
170 static ppc_inferior_data *
171 get_ppc_per_inferior (inferior *inf)
172 {
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179 }
180
181 /* To be used by skip_prologue. */
182
183 struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
190 int saved_fpr; /* smallest # of saved fpr */
191 int saved_vr; /* smallest # of saved vr */
192 int saved_ev; /* smallest # of saved ev */
193 int alloca_reg; /* alloca register number (frame ptr) */
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
196 char used_bl; /* true if link register clobbered */
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
199 int vr_offset; /* offset of saved vrs from prev sp */
200 int ev_offset; /* offset of saved evs from prev sp */
201 int lr_offset; /* offset of saved lr */
202 int lr_register; /* register of saved lr, if trustworthy */
203 int cr_offset; /* offset of saved cr */
204 int vrsave_offset; /* offset of saved vrsave register */
205 };
206
207
208 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209 int
210 vsx_register_p (struct gdbarch *gdbarch, int regno)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218 }
219
220 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221 int
222 altivec_register_p (struct gdbarch *gdbarch, int regno)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229 }
230
231
232 /* Return true if REGNO is an SPE register, false otherwise. */
233 int
234 spe_register_p (struct gdbarch *gdbarch, int regno)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
239 if (IS_SPE_PSEUDOREG (tdep, regno))
240 return 1;
241
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260 }
261
262
263 /* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
265 int
266 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
271 && tdep->ppc_fpscr_regnum >= 0);
272 }
273
274 /* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276 int
277 ppc_altivec_support_p (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
282 && tdep->ppc_vrsave_regnum >= 0);
283 }
284
285 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
292 static void
293 set_sim_regno (int *table, int gdb_regno, int sim_regno)
294 {
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299 }
300
301
302 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
305 static void
306 init_sim_regno_table (struct gdbarch *arch)
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
309 int total_regs = gdbarch_num_regs (arch);
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
358 we can treat this more like the other cases. */
359 set_sim_regno (sim_regno,
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
375 #ifdef WITH_PPC_SIM
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390 #endif
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394 }
395
396
397 /* Given a GDB register number REG, return the corresponding SIM
398 register number. */
399 static int
400 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
401 {
402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
403 int sim_regno;
404
405 if (tdep->sim_regno == NULL)
406 init_sim_regno_table (gdbarch);
407
408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415 }
416
417 \f
418
419 /* Register set support functions. */
420
421 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
424 void
425 ppc_supply_reg (struct regcache *regcache, int regnum,
426 const gdb_byte *regs, size_t offset, int regsize)
427 {
428 if (regnum != -1 && offset != -1)
429 {
430 if (regsize > 4)
431 {
432 struct gdbarch *gdbarch = regcache->arch ();
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
438 regcache->raw_supply (regnum, regs + offset);
439 }
440 }
441
442 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
445 void
446 ppc_collect_reg (const struct regcache *regcache, int regnum,
447 gdb_byte *regs, size_t offset, int regsize)
448 {
449 if (regnum != -1 && offset != -1)
450 {
451 if (regsize > 4)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
467 regcache->raw_collect (regnum, regs + offset);
468 }
469 }
470
471 static int
472 ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477 {
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507 }
508
509 static int
510 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513 {
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522 }
523
524 /* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528 void
529 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
536 size_t offset;
537 int regsize;
538
539 if (regnum == -1)
540 {
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
567 return;
568 }
569
570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
572 }
573
574 /* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578 void
579 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581 {
582 struct gdbarch *gdbarch = regcache->arch ();
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
585 size_t offset;
586
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
604 return;
605 }
606
607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
610 }
611
612 /* Collect register REGNUM in the general-purpose register set
613 REGSET from register cache REGCACHE into the buffer specified by
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617 void
618 ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621 {
622 struct gdbarch *gdbarch = regcache->arch ();
623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
626 size_t offset;
627 int regsize;
628
629 if (regnum == -1)
630 {
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
656 return;
657 }
658
659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
661 }
662
663 /* Collect register REGNUM in the floating-point register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672 {
673 struct gdbarch *gdbarch = regcache->arch ();
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
676 size_t offset;
677
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
680
681 tdep = gdbarch_tdep (gdbarch);
682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
683 if (regnum == -1)
684 {
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
695 return;
696 }
697
698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
701 }
702
703 static int
704 insn_changes_sp_or_jumps (unsigned long insn)
705 {
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736 }
737
738 /* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
745 b) Stop scanning if you find a return instruction or reach the
746 end of the function or reach the hard limit for the size of
747 an epilogue.
748 2) scan backward from the point of execution:
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
754
755 static int
756 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn == 0x4e800020)
785 break;
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
797 if (insn_changes_sp_or_jumps (insn))
798 return 0;
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
809 return 0;
810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
811 if (insn_changes_sp_or_jumps (insn))
812 return 1;
813 }
814
815 return 0;
816 }
817
818 /* Implement the stack_frame_destroyed_p gdbarch method. */
819
820 static int
821 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
822 {
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825 }
826
827 /* Get the ith function argument for the current function. */
828 static CORE_ADDR
829 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831 {
832 return get_frame_register_unsigned (frame, 3 + argi);
833 }
834
835 /* Sequence of bytes for breakpoint instruction. */
836
837 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
839
840 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
842
843 /* Instruction masks for displaced stepping. */
844 #define BRANCH_MASK 0xfc000000
845 #define BP_MASK 0xFC0007FE
846 #define B_INSN 0x48000000
847 #define BC_INSN 0x40000000
848 #define BXL_INSN 0x4c000000
849 #define BP_INSN 0x7C000008
850
851 /* Instruction masks used during single-stepping of atomic
852 sequences. */
853 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
854 #define LWARX_INSTRUCTION 0x7c000028
855 #define LDARX_INSTRUCTION 0x7c0000A8
856 #define LBARX_INSTRUCTION 0x7c000068
857 #define LHARX_INSTRUCTION 0x7c0000e8
858 #define LQARX_INSTRUCTION 0x7c000228
859 #define STORE_CONDITIONAL_MASK 0xfc0007ff
860 #define STWCX_INSTRUCTION 0x7c00012d
861 #define STDCX_INSTRUCTION 0x7c0001ad
862 #define STBCX_INSTRUCTION 0x7c00056d
863 #define STHCX_INSTRUCTION 0x7c0005ad
864 #define STQCX_INSTRUCTION 0x7c00016d
865
866 /* Check if insn is one of the Load And Reserve instructions used for atomic
867 sequences. */
868 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
871 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
872 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
873 /* Check if insn is one of the Store Conditional instructions used for atomic
874 sequences. */
875 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
878 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
879 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
880
881 typedef buf_displaced_step_copy_insn_closure
882 ppc_displaced_step_copy_insn_closure;
883
884 /* We can't displaced step atomic sequences. */
885
886 static displaced_step_copy_insn_closure_up
887 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
888 CORE_ADDR from, CORE_ADDR to,
889 struct regcache *regs)
890 {
891 size_t len = gdbarch_max_insn_length (gdbarch);
892 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
893 (new ppc_displaced_step_copy_insn_closure (len));
894 gdb_byte *buf = closure->buf.data ();
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int insn;
897
898 read_memory (from, buf, len);
899
900 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
901
902 /* Assume all atomic sequences start with a Load and Reserve instruction. */
903 if (IS_LOAD_AND_RESERVE_INSN (insn))
904 {
905 displaced_debug_printf ("can't displaced step atomic sequence at %s",
906 paddress (gdbarch, from));
907
908 return NULL;
909 }
910
911 write_memory (to, buf, len);
912
913 displaced_debug_printf ("copy %s->%s: %s",
914 paddress (gdbarch, from), paddress (gdbarch, to),
915 displaced_step_dump_bytes (buf, len).c_str ());;
916
917 /* This is a work around for a problem with g++ 4.8. */
918 return displaced_step_copy_insn_closure_up (closure.release ());
919 }
920
921 /* Fix up the state of registers and memory after having single-stepped
922 a displaced instruction. */
923 static void
924 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
925 struct displaced_step_copy_insn_closure *closure_,
926 CORE_ADDR from, CORE_ADDR to,
927 struct regcache *regs)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 /* Our closure is a copy of the instruction. */
931 ppc_displaced_step_copy_insn_closure *closure
932 = (ppc_displaced_step_copy_insn_closure *) closure_;
933 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
934 PPC_INSN_SIZE, byte_order);
935 ULONGEST opcode = 0;
936 /* Offset for non PC-relative instructions. */
937 LONGEST offset = PPC_INSN_SIZE;
938
939 opcode = insn & BRANCH_MASK;
940
941 displaced_debug_printf ("(ppc) fixup (%s, %s)",
942 paddress (gdbarch, from), paddress (gdbarch, to));
943
944 /* Handle PC-relative branch instructions. */
945 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
946 {
947 ULONGEST current_pc;
948
949 /* Read the current PC value after the instruction has been executed
950 in a displaced location. Calculate the offset to be applied to the
951 original PC value before the displaced stepping. */
952 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
953 &current_pc);
954 offset = current_pc - to;
955
956 if (opcode != BXL_INSN)
957 {
958 /* Check for AA bit indicating whether this is an absolute
959 addressing or PC-relative (1: absolute, 0: relative). */
960 if (!(insn & 0x2))
961 {
962 /* PC-relative addressing is being used in the branch. */
963 displaced_debug_printf ("(ppc) branch instruction: %s",
964 paddress (gdbarch, insn));
965 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
966 paddress (gdbarch, current_pc),
967 paddress (gdbarch, from + offset));
968
969 regcache_cooked_write_unsigned (regs,
970 gdbarch_pc_regnum (gdbarch),
971 from + offset);
972 }
973 }
974 else
975 {
976 /* If we're here, it means we have a branch to LR or CTR. If the
977 branch was taken, the offset is probably greater than 4 (the next
978 instruction), so it's safe to assume that an offset of 4 means we
979 did not take the branch. */
980 if (offset == PPC_INSN_SIZE)
981 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
982 from + PPC_INSN_SIZE);
983 }
984
985 /* Check for LK bit indicating whether we should set the link
986 register to point to the next instruction
987 (1: Set, 0: Don't set). */
988 if (insn & 0x1)
989 {
990 /* Link register needs to be set to the next instruction's PC. */
991 regcache_cooked_write_unsigned (regs,
992 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
993 from + PPC_INSN_SIZE);
994 displaced_debug_printf ("(ppc) adjusted LR to %s",
995 paddress (gdbarch, from + PPC_INSN_SIZE));
996
997 }
998 }
999 /* Check for breakpoints in the inferior. If we've found one, place the PC
1000 right at the breakpoint instruction. */
1001 else if ((insn & BP_MASK) == BP_INSN)
1002 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1003 else
1004 /* Handle any other instructions that do not fit in the categories above. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007 }
1008
1009 /* Implementation of gdbarch_displaced_step_prepare. */
1010
1011 static displaced_step_prepare_status
1012 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1013 CORE_ADDR &displaced_pc)
1014 {
1015 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1016
1017 if (!per_inferior->disp_step_buf.has_value ())
1018 {
1019 /* Figure out where the displaced step buffer is. */
1020 CORE_ADDR disp_step_buf_addr
1021 = displaced_step_at_entry_point (thread->inf->gdbarch);
1022
1023 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1024 }
1025
1026 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1027 }
1028
1029 /* Implementation of gdbarch_displaced_step_finish. */
1030
1031 static displaced_step_finish_status
1032 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1033 gdb_signal sig)
1034 {
1035 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1036
1037 gdb_assert (per_inferior->disp_step_buf.has_value ());
1038
1039 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1040 }
1041
1042 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1043
1044 static void
1045 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1046 {
1047 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1048
1049 if (per_inferior == nullptr
1050 || !per_inferior->disp_step_buf.has_value ())
1051 return;
1052
1053 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1054 }
1055
1056 /* Always use hardware single-stepping to execute the
1057 displaced instruction. */
1058 static bool
1059 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1060 {
1061 return true;
1062 }
1063
1064 /* Checks for an atomic sequence of instructions beginning with a
1065 Load And Reserve instruction and ending with a Store Conditional
1066 instruction. If such a sequence is found, attempt to step through it.
1067 A breakpoint is placed at the end of the sequence. */
1068 std::vector<CORE_ADDR>
1069 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1070 {
1071 struct gdbarch *gdbarch = regcache->arch ();
1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1073 CORE_ADDR pc = regcache_read_pc (regcache);
1074 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1075 CORE_ADDR loc = pc;
1076 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1077 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1078 int insn_count;
1079 int index;
1080 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1081 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1082 int bc_insn_count = 0; /* Conditional branch instruction count. */
1083
1084 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1085 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1086 return {};
1087
1088 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1089 instructions. */
1090 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1091 {
1092 loc += PPC_INSN_SIZE;
1093 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1094
1095 /* Assume that there is at most one conditional branch in the atomic
1096 sequence. If a conditional branch is found, put a breakpoint in
1097 its destination address. */
1098 if ((insn & BRANCH_MASK) == BC_INSN)
1099 {
1100 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1101 int absolute = insn & 2;
1102
1103 if (bc_insn_count >= 1)
1104 return {}; /* More than one conditional branch found, fallback
1105 to the standard single-step code. */
1106
1107 if (absolute)
1108 breaks[1] = immediate;
1109 else
1110 breaks[1] = loc + immediate;
1111
1112 bc_insn_count++;
1113 last_breakpoint++;
1114 }
1115
1116 if (IS_STORE_CONDITIONAL_INSN (insn))
1117 break;
1118 }
1119
1120 /* Assume that the atomic sequence ends with a Store Conditional
1121 instruction. */
1122 if (!IS_STORE_CONDITIONAL_INSN (insn))
1123 return {};
1124
1125 closing_insn = loc;
1126 loc += PPC_INSN_SIZE;
1127
1128 /* Insert a breakpoint right after the end of the atomic sequence. */
1129 breaks[0] = loc;
1130
1131 /* Check for duplicated breakpoints. Check also for a breakpoint
1132 placed (branch instruction's destination) anywhere in sequence. */
1133 if (last_breakpoint
1134 && (breaks[1] == breaks[0]
1135 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1136 last_breakpoint = 0;
1137
1138 std::vector<CORE_ADDR> next_pcs;
1139
1140 for (index = 0; index <= last_breakpoint; index++)
1141 next_pcs.push_back (breaks[index]);
1142
1143 return next_pcs;
1144 }
1145
1146
1147 #define SIGNED_SHORT(x) \
1148 ((sizeof (short) == 2) \
1149 ? ((int)(short)(x)) \
1150 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1151
1152 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1153
1154 /* Limit the number of skipped non-prologue instructions, as the examining
1155 of the prologue is expensive. */
1156 static int max_skip_non_prologue_insns = 10;
1157
1158 /* Return nonzero if the given instruction OP can be part of the prologue
1159 of a function and saves a parameter on the stack. FRAMEP should be
1160 set if one of the previous instructions in the function has set the
1161 Frame Pointer. */
1162
1163 static int
1164 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1165 {
1166 /* Move parameters from argument registers to temporary register. */
1167 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1168 {
1169 /* Rx must be scratch register r0. */
1170 const int rx_regno = (op >> 16) & 31;
1171 /* Ry: Only r3 - r10 are used for parameter passing. */
1172 const int ry_regno = GET_SRC_REG (op);
1173
1174 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1175 {
1176 *r0_contains_arg = 1;
1177 return 1;
1178 }
1179 else
1180 return 0;
1181 }
1182
1183 /* Save a General Purpose Register on stack. */
1184
1185 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1186 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1187 {
1188 /* Rx: Only r3 - r10 are used for parameter passing. */
1189 const int rx_regno = GET_SRC_REG (op);
1190
1191 return (rx_regno >= 3 && rx_regno <= 10);
1192 }
1193
1194 /* Save a General Purpose Register on stack via the Frame Pointer. */
1195
1196 if (framep &&
1197 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1198 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1199 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1200 {
1201 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1202 However, the compiler sometimes uses r0 to hold an argument. */
1203 const int rx_regno = GET_SRC_REG (op);
1204
1205 return ((rx_regno >= 3 && rx_regno <= 10)
1206 || (rx_regno == 0 && *r0_contains_arg));
1207 }
1208
1209 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1210 {
1211 /* Only f2 - f8 are used for parameter passing. */
1212 const int src_regno = GET_SRC_REG (op);
1213
1214 return (src_regno >= 2 && src_regno <= 8);
1215 }
1216
1217 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1218 {
1219 /* Only f2 - f8 are used for parameter passing. */
1220 const int src_regno = GET_SRC_REG (op);
1221
1222 return (src_regno >= 2 && src_regno <= 8);
1223 }
1224
1225 /* Not an insn that saves a parameter on stack. */
1226 return 0;
1227 }
1228
1229 /* Assuming that INSN is a "bl" instruction located at PC, return
1230 nonzero if the destination of the branch is a "blrl" instruction.
1231
1232 This sequence is sometimes found in certain function prologues.
1233 It allows the function to load the LR register with a value that
1234 they can use to access PIC data using PC-relative offsets. */
1235
1236 static int
1237 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1238 {
1239 CORE_ADDR dest;
1240 int immediate;
1241 int absolute;
1242 int dest_insn;
1243
1244 absolute = (int) ((insn >> 1) & 1);
1245 immediate = ((insn & ~3) << 6) >> 6;
1246 if (absolute)
1247 dest = immediate;
1248 else
1249 dest = pc + immediate;
1250
1251 dest_insn = read_memory_integer (dest, 4, byte_order);
1252 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1253 return 1;
1254
1255 return 0;
1256 }
1257
1258 /* Return true if OP is a stw or std instruction with
1259 register operands RS and RA and any immediate offset.
1260
1261 If WITH_UPDATE is true, also return true if OP is
1262 a stwu or stdu instruction with the same operands.
1263
1264 Return false otherwise.
1265 */
1266 static bool
1267 store_insn_p (unsigned long op, unsigned long rs,
1268 unsigned long ra, bool with_update)
1269 {
1270 rs = rs << 21;
1271 ra = ra << 16;
1272
1273 if (/* std RS, SIMM(RA) */
1274 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1275 /* stw RS, SIMM(RA) */
1276 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1277 return true;
1278
1279 if (with_update)
1280 {
1281 if (/* stdu RS, SIMM(RA) */
1282 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1283 /* stwu RS, SIMM(RA) */
1284 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1285 return true;
1286 }
1287
1288 return false;
1289 }
1290
1291 /* Masks for decoding a branch-and-link (bl) instruction.
1292
1293 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1294 The former is anded with the opcode in question; if the result of
1295 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1296 question is a ``bl'' instruction.
1297
1298 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1299 the branch displacement. */
1300
1301 #define BL_MASK 0xfc000001
1302 #define BL_INSTRUCTION 0x48000001
1303 #define BL_DISPLACEMENT_MASK 0x03fffffc
1304
1305 static unsigned long
1306 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1307 {
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1309 gdb_byte buf[4];
1310 unsigned long op;
1311
1312 /* Fetch the instruction and convert it to an integer. */
1313 if (target_read_memory (pc, buf, 4))
1314 return 0;
1315 op = extract_unsigned_integer (buf, 4, byte_order);
1316
1317 return op;
1318 }
1319
1320 /* GCC generates several well-known sequences of instructions at the begining
1321 of each function prologue when compiling with -fstack-check. If one of
1322 such sequences starts at START_PC, then return the address of the
1323 instruction immediately past this sequence. Otherwise, return START_PC. */
1324
1325 static CORE_ADDR
1326 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1327 {
1328 CORE_ADDR pc = start_pc;
1329 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1330
1331 /* First possible sequence: A small number of probes.
1332 stw 0, -<some immediate>(1)
1333 [repeat this instruction any (small) number of times]. */
1334
1335 if ((op & 0xffff0000) == 0x90010000)
1336 {
1337 while ((op & 0xffff0000) == 0x90010000)
1338 {
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 }
1342 return pc;
1343 }
1344
1345 /* Second sequence: A probing loop.
1346 addi 12,1,-<some immediate>
1347 lis 0,-<some immediate>
1348 [possibly ori 0,0,<some immediate>]
1349 add 0,12,0
1350 cmpw 0,12,0
1351 beq 0,<disp>
1352 addi 12,12,-<some immediate>
1353 stw 0,0(12)
1354 b <disp>
1355 [possibly one last probe: stw 0,<some immediate>(12)]. */
1356
1357 while (1)
1358 {
1359 /* addi 12,1,-<some immediate> */
1360 if ((op & 0xffff0000) != 0x39810000)
1361 break;
1362
1363 /* lis 0,-<some immediate> */
1364 pc = pc + 4;
1365 op = rs6000_fetch_instruction (gdbarch, pc);
1366 if ((op & 0xffff0000) != 0x3c000000)
1367 break;
1368
1369 pc = pc + 4;
1370 op = rs6000_fetch_instruction (gdbarch, pc);
1371 /* [possibly ori 0,0,<some immediate>] */
1372 if ((op & 0xffff0000) == 0x60000000)
1373 {
1374 pc = pc + 4;
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 }
1377 /* add 0,12,0 */
1378 if (op != 0x7c0c0214)
1379 break;
1380
1381 /* cmpw 0,12,0 */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if (op != 0x7c0c0000)
1385 break;
1386
1387 /* beq 0,<disp> */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if ((op & 0xff9f0001) != 0x41820000)
1391 break;
1392
1393 /* addi 12,12,-<some immediate> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xffff0000) != 0x398c0000)
1397 break;
1398
1399 /* stw 0,0(12) */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if (op != 0x900c0000)
1403 break;
1404
1405 /* b <disp> */
1406 pc = pc + 4;
1407 op = rs6000_fetch_instruction (gdbarch, pc);
1408 if ((op & 0xfc000001) != 0x48000000)
1409 break;
1410
1411 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1412 pc = pc + 4;
1413 op = rs6000_fetch_instruction (gdbarch, pc);
1414 if ((op & 0xffff0000) == 0x900c0000)
1415 {
1416 pc = pc + 4;
1417 op = rs6000_fetch_instruction (gdbarch, pc);
1418 }
1419
1420 /* We found a valid stack-check sequence, return the new PC. */
1421 return pc;
1422 }
1423
1424 /* Third sequence: No probe; instead, a comparison between the stack size
1425 limit (saved in a run-time global variable) and the current stack
1426 pointer:
1427
1428 addi 0,1,-<some immediate>
1429 lis 12,__gnat_stack_limit@ha
1430 lwz 12,__gnat_stack_limit@l(12)
1431 twllt 0,12
1432
1433 or, with a small variant in the case of a bigger stack frame:
1434 addis 0,1,<some immediate>
1435 addic 0,0,-<some immediate>
1436 lis 12,__gnat_stack_limit@ha
1437 lwz 12,__gnat_stack_limit@l(12)
1438 twllt 0,12
1439 */
1440 while (1)
1441 {
1442 /* addi 0,1,-<some immediate> */
1443 if ((op & 0xffff0000) != 0x38010000)
1444 {
1445 /* small stack frame variant not recognized; try the
1446 big stack frame variant: */
1447
1448 /* addis 0,1,<some immediate> */
1449 if ((op & 0xffff0000) != 0x3c010000)
1450 break;
1451
1452 /* addic 0,0,-<some immediate> */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xffff0000) != 0x30000000)
1456 break;
1457 }
1458
1459 /* lis 12,<some immediate> */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xffff0000) != 0x3d800000)
1463 break;
1464
1465 /* lwz 12,<some immediate>(12) */
1466 pc = pc + 4;
1467 op = rs6000_fetch_instruction (gdbarch, pc);
1468 if ((op & 0xffff0000) != 0x818c0000)
1469 break;
1470
1471 /* twllt 0,12 */
1472 pc = pc + 4;
1473 op = rs6000_fetch_instruction (gdbarch, pc);
1474 if ((op & 0xfffffffe) != 0x7c406008)
1475 break;
1476
1477 /* We found a valid stack-check sequence, return the new PC. */
1478 return pc;
1479 }
1480
1481 /* No stack check code in our prologue, return the start_pc. */
1482 return start_pc;
1483 }
1484
1485 /* return pc value after skipping a function prologue and also return
1486 information about a function frame.
1487
1488 in struct rs6000_framedata fdata:
1489 - frameless is TRUE, if function does not have a frame.
1490 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1491 - offset is the initial size of this stack frame --- the amount by
1492 which we decrement the sp to allocate the frame.
1493 - saved_gpr is the number of the first saved gpr.
1494 - saved_fpr is the number of the first saved fpr.
1495 - saved_vr is the number of the first saved vr.
1496 - saved_ev is the number of the first saved ev.
1497 - alloca_reg is the number of the register used for alloca() handling.
1498 Otherwise -1.
1499 - gpr_offset is the offset of the first saved gpr from the previous frame.
1500 - fpr_offset is the offset of the first saved fpr from the previous frame.
1501 - vr_offset is the offset of the first saved vr from the previous frame.
1502 - ev_offset is the offset of the first saved ev from the previous frame.
1503 - lr_offset is the offset of the saved lr
1504 - cr_offset is the offset of the saved cr
1505 - vrsave_offset is the offset of the saved vrsave register. */
1506
1507 static CORE_ADDR
1508 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1509 struct rs6000_framedata *fdata)
1510 {
1511 CORE_ADDR orig_pc = pc;
1512 CORE_ADDR last_prologue_pc = pc;
1513 CORE_ADDR li_found_pc = 0;
1514 gdb_byte buf[4];
1515 unsigned long op;
1516 long offset = 0;
1517 long alloca_reg_offset = 0;
1518 long vr_saved_offset = 0;
1519 int lr_reg = -1;
1520 int cr_reg = -1;
1521 int vr_reg = -1;
1522 int ev_reg = -1;
1523 long ev_offset = 0;
1524 int vrsave_reg = -1;
1525 int reg;
1526 int framep = 0;
1527 int minimal_toc_loaded = 0;
1528 int prev_insn_was_prologue_insn = 1;
1529 int num_skip_non_prologue_insns = 0;
1530 int r0_contains_arg = 0;
1531 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1534
1535 memset (fdata, 0, sizeof (struct rs6000_framedata));
1536 fdata->saved_gpr = -1;
1537 fdata->saved_fpr = -1;
1538 fdata->saved_vr = -1;
1539 fdata->saved_ev = -1;
1540 fdata->alloca_reg = -1;
1541 fdata->frameless = 1;
1542 fdata->nosavedpc = 1;
1543 fdata->lr_register = -1;
1544
1545 pc = rs6000_skip_stack_check (gdbarch, pc);
1546 if (pc >= lim_pc)
1547 pc = lim_pc;
1548
1549 for (;; pc += 4)
1550 {
1551 /* Sometimes it isn't clear if an instruction is a prologue
1552 instruction or not. When we encounter one of these ambiguous
1553 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1554 Otherwise, we'll assume that it really is a prologue instruction. */
1555 if (prev_insn_was_prologue_insn)
1556 last_prologue_pc = pc;
1557
1558 /* Stop scanning if we've hit the limit. */
1559 if (pc >= lim_pc)
1560 break;
1561
1562 prev_insn_was_prologue_insn = 1;
1563
1564 /* Fetch the instruction and convert it to an integer. */
1565 if (target_read_memory (pc, buf, 4))
1566 break;
1567 op = extract_unsigned_integer (buf, 4, byte_order);
1568
1569 if ((op & 0xfc1fffff) == 0x7c0802a6)
1570 { /* mflr Rx */
1571 /* Since shared library / PIC code, which needs to get its
1572 address at runtime, can appear to save more than one link
1573 register vis:
1574
1575 *INDENT-OFF*
1576 stwu r1,-304(r1)
1577 mflr r3
1578 bl 0xff570d0 (blrl)
1579 stw r30,296(r1)
1580 mflr r30
1581 stw r31,300(r1)
1582 stw r3,308(r1);
1583 ...
1584 *INDENT-ON*
1585
1586 remember just the first one, but skip over additional
1587 ones. */
1588 if (lr_reg == -1)
1589 lr_reg = (op & 0x03e00000) >> 21;
1590 if (lr_reg == 0)
1591 r0_contains_arg = 0;
1592 continue;
1593 }
1594 else if ((op & 0xfc1fffff) == 0x7c000026)
1595 { /* mfcr Rx */
1596 cr_reg = (op & 0x03e00000) >> 21;
1597 if (cr_reg == 0)
1598 r0_contains_arg = 0;
1599 continue;
1600
1601 }
1602 else if ((op & 0xfc1f0000) == 0xd8010000)
1603 { /* stfd Rx,NUM(r1) */
1604 reg = GET_SRC_REG (op);
1605 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1606 {
1607 fdata->saved_fpr = reg;
1608 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1609 }
1610 continue;
1611
1612 }
1613 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1614 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1615 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1616 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1617 {
1618
1619 reg = GET_SRC_REG (op);
1620 if ((op & 0xfc1f0000) == 0xbc010000)
1621 fdata->gpr_mask |= ~((1U << reg) - 1);
1622 else
1623 fdata->gpr_mask |= 1U << reg;
1624 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1625 {
1626 fdata->saved_gpr = reg;
1627 if ((op & 0xfc1f0003) == 0xf8010000)
1628 op &= ~3UL;
1629 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1630 }
1631 continue;
1632
1633 }
1634 else if ((op & 0xffff0000) == 0x3c4c0000
1635 || (op & 0xffff0000) == 0x3c400000
1636 || (op & 0xffff0000) == 0x38420000)
1637 {
1638 /* . 0: addis 2,12,.TOC.-0b@ha
1639 . addi 2,2,.TOC.-0b@l
1640 or
1641 . lis 2,.TOC.@ha
1642 . addi 2,2,.TOC.@l
1643 used by ELFv2 global entry points to set up r2. */
1644 continue;
1645 }
1646 else if (op == 0x60000000)
1647 {
1648 /* nop */
1649 /* Allow nops in the prologue, but do not consider them to
1650 be part of the prologue unless followed by other prologue
1651 instructions. */
1652 prev_insn_was_prologue_insn = 0;
1653 continue;
1654
1655 }
1656 else if ((op & 0xffff0000) == 0x3c000000)
1657 { /* addis 0,0,NUM, used for >= 32k frames */
1658 fdata->offset = (op & 0x0000ffff) << 16;
1659 fdata->frameless = 0;
1660 r0_contains_arg = 0;
1661 continue;
1662
1663 }
1664 else if ((op & 0xffff0000) == 0x60000000)
1665 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1666 fdata->offset |= (op & 0x0000ffff);
1667 fdata->frameless = 0;
1668 r0_contains_arg = 0;
1669 continue;
1670
1671 }
1672 else if (lr_reg >= 0 &&
1673 ((store_insn_p (op, lr_reg, 1, true)) ||
1674 (framep &&
1675 (store_insn_p (op, lr_reg,
1676 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1677 false)))))
1678 {
1679 if (store_insn_p (op, lr_reg, 1, true))
1680 fdata->lr_offset = offset;
1681 else /* LR save through frame pointer. */
1682 fdata->lr_offset = alloca_reg_offset;
1683
1684 fdata->nosavedpc = 0;
1685 /* Invalidate lr_reg, but don't set it to -1.
1686 That would mean that it had never been set. */
1687 lr_reg = -2;
1688 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1689 (op & 0xfc000000) == 0x90000000) /* stw */
1690 {
1691 /* Does not update r1, so add displacement to lr_offset. */
1692 fdata->lr_offset += SIGNED_SHORT (op);
1693 }
1694 continue;
1695
1696 }
1697 else if (cr_reg >= 0 &&
1698 (store_insn_p (op, cr_reg, 1, true)))
1699 {
1700 fdata->cr_offset = offset;
1701 /* Invalidate cr_reg, but don't set it to -1.
1702 That would mean that it had never been set. */
1703 cr_reg = -2;
1704 if ((op & 0xfc000003) == 0xf8000000 ||
1705 (op & 0xfc000000) == 0x90000000)
1706 {
1707 /* Does not update r1, so add displacement to cr_offset. */
1708 fdata->cr_offset += SIGNED_SHORT (op);
1709 }
1710 continue;
1711
1712 }
1713 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1714 {
1715 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1716 prediction bits. If the LR has already been saved, we can
1717 skip it. */
1718 continue;
1719 }
1720 else if (op == 0x48000005)
1721 { /* bl .+4 used in
1722 -mrelocatable */
1723 fdata->used_bl = 1;
1724 continue;
1725
1726 }
1727 else if (op == 0x48000004)
1728 { /* b .+4 (xlc) */
1729 break;
1730
1731 }
1732 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1733 in V.4 -mminimal-toc */
1734 (op & 0xffff0000) == 0x3bde0000)
1735 { /* addi 30,30,foo@l */
1736 continue;
1737
1738 }
1739 else if ((op & 0xfc000001) == 0x48000001)
1740 { /* bl foo,
1741 to save fprs??? */
1742
1743 fdata->frameless = 0;
1744
1745 /* If the return address has already been saved, we can skip
1746 calls to blrl (for PIC). */
1747 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1748 {
1749 fdata->used_bl = 1;
1750 continue;
1751 }
1752
1753 /* Don't skip over the subroutine call if it is not within
1754 the first three instructions of the prologue and either
1755 we have no line table information or the line info tells
1756 us that the subroutine call is not part of the line
1757 associated with the prologue. */
1758 if ((pc - orig_pc) > 8)
1759 {
1760 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1761 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1762
1763 if ((prologue_sal.line == 0)
1764 || (prologue_sal.line != this_sal.line))
1765 break;
1766 }
1767
1768 op = read_memory_integer (pc + 4, 4, byte_order);
1769
1770 /* At this point, make sure this is not a trampoline
1771 function (a function that simply calls another functions,
1772 and nothing else). If the next is not a nop, this branch
1773 was part of the function prologue. */
1774
1775 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1776 break; /* Don't skip over
1777 this branch. */
1778
1779 fdata->used_bl = 1;
1780 continue;
1781 }
1782 /* update stack pointer */
1783 else if ((op & 0xfc1f0000) == 0x94010000)
1784 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1785 fdata->frameless = 0;
1786 fdata->offset = SIGNED_SHORT (op);
1787 offset = fdata->offset;
1788 continue;
1789 }
1790 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1791 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1792 /* No way to figure out what r1 is going to be. */
1793 fdata->frameless = 0;
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 else if ((op & 0xfc1f0003) == 0xf8010001)
1798 { /* stdu rX,NUM(r1) */
1799 fdata->frameless = 0;
1800 fdata->offset = SIGNED_SHORT (op & ~3UL);
1801 offset = fdata->offset;
1802 continue;
1803 }
1804 else if ((op & 0xffff0000) == 0x38210000)
1805 { /* addi r1,r1,SIMM */
1806 fdata->frameless = 0;
1807 fdata->offset += SIGNED_SHORT (op);
1808 offset = fdata->offset;
1809 continue;
1810 }
1811 /* Load up minimal toc pointer. Do not treat an epilogue restore
1812 of r31 as a minimal TOC load. */
1813 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1814 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1815 && !framep
1816 && !minimal_toc_loaded)
1817 {
1818 minimal_toc_loaded = 1;
1819 continue;
1820
1821 /* move parameters from argument registers to local variable
1822 registers */
1823 }
1824 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1825 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1826 (((op >> 21) & 31) <= 10) &&
1827 ((long) ((op >> 16) & 31)
1828 >= fdata->saved_gpr)) /* Rx: local var reg */
1829 {
1830 continue;
1831
1832 /* store parameters in stack */
1833 }
1834 /* Move parameters from argument registers to temporary register. */
1835 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1836 {
1837 continue;
1838
1839 /* Set up frame pointer */
1840 }
1841 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1842 {
1843 fdata->frameless = 0;
1844 framep = 1;
1845 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1846 alloca_reg_offset = offset;
1847 continue;
1848
1849 /* Another way to set up the frame pointer. */
1850 }
1851 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1852 || op == 0x7c3f0b78)
1853 { /* mr r31, r1 */
1854 fdata->frameless = 0;
1855 framep = 1;
1856 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1857 alloca_reg_offset = offset;
1858 continue;
1859
1860 /* Another way to set up the frame pointer. */
1861 }
1862 else if ((op & 0xfc1fffff) == 0x38010000)
1863 { /* addi rX, r1, 0x0 */
1864 fdata->frameless = 0;
1865 framep = 1;
1866 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1867 + ((op & ~0x38010000) >> 21));
1868 alloca_reg_offset = offset;
1869 continue;
1870 }
1871 /* AltiVec related instructions. */
1872 /* Store the vrsave register (spr 256) in another register for
1873 later manipulation, or load a register into the vrsave
1874 register. 2 instructions are used: mfvrsave and
1875 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1876 and mtspr SPR256, Rn. */
1877 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1878 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1879 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1880 {
1881 vrsave_reg = GET_SRC_REG (op);
1882 continue;
1883 }
1884 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1885 {
1886 continue;
1887 }
1888 /* Store the register where vrsave was saved to onto the stack:
1889 rS is the register where vrsave was stored in a previous
1890 instruction. */
1891 /* 100100 sssss 00001 dddddddd dddddddd */
1892 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1893 {
1894 if (vrsave_reg == GET_SRC_REG (op))
1895 {
1896 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1897 vrsave_reg = -1;
1898 }
1899 continue;
1900 }
1901 /* Compute the new value of vrsave, by modifying the register
1902 where vrsave was saved to. */
1903 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1904 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1905 {
1906 continue;
1907 }
1908 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1909 in a pair of insns to save the vector registers on the
1910 stack. */
1911 /* 001110 00000 00000 iiii iiii iiii iiii */
1912 /* 001110 01110 00000 iiii iiii iiii iiii */
1913 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1914 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1915 {
1916 if ((op & 0xffff0000) == 0x38000000)
1917 r0_contains_arg = 0;
1918 li_found_pc = pc;
1919 vr_saved_offset = SIGNED_SHORT (op);
1920
1921 /* This insn by itself is not part of the prologue, unless
1922 if part of the pair of insns mentioned above. So do not
1923 record this insn as part of the prologue yet. */
1924 prev_insn_was_prologue_insn = 0;
1925 }
1926 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1927 /* 011111 sssss 11111 00000 00111001110 */
1928 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1929 {
1930 if (pc == (li_found_pc + 4))
1931 {
1932 vr_reg = GET_SRC_REG (op);
1933 /* If this is the first vector reg to be saved, or if
1934 it has a lower number than others previously seen,
1935 reupdate the frame info. */
1936 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1937 {
1938 fdata->saved_vr = vr_reg;
1939 fdata->vr_offset = vr_saved_offset + offset;
1940 }
1941 vr_saved_offset = -1;
1942 vr_reg = -1;
1943 li_found_pc = 0;
1944 }
1945 }
1946 /* End AltiVec related instructions. */
1947
1948 /* Start BookE related instructions. */
1949 /* Store gen register S at (r31+uimm).
1950 Any register less than r13 is volatile, so we don't care. */
1951 /* 000100 sssss 11111 iiiii 01100100001 */
1952 else if (arch_info->mach == bfd_mach_ppc_e500
1953 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1954 {
1955 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1956 {
1957 unsigned int imm;
1958 ev_reg = GET_SRC_REG (op);
1959 imm = (op >> 11) & 0x1f;
1960 ev_offset = imm * 8;
1961 /* If this is the first vector reg to be saved, or if
1962 it has a lower number than others previously seen,
1963 reupdate the frame info. */
1964 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1965 {
1966 fdata->saved_ev = ev_reg;
1967 fdata->ev_offset = ev_offset + offset;
1968 }
1969 }
1970 continue;
1971 }
1972 /* Store gen register rS at (r1+rB). */
1973 /* 000100 sssss 00001 bbbbb 01100100000 */
1974 else if (arch_info->mach == bfd_mach_ppc_e500
1975 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1976 {
1977 if (pc == (li_found_pc + 4))
1978 {
1979 ev_reg = GET_SRC_REG (op);
1980 /* If this is the first vector reg to be saved, or if
1981 it has a lower number than others previously seen,
1982 reupdate the frame info. */
1983 /* We know the contents of rB from the previous instruction. */
1984 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1985 {
1986 fdata->saved_ev = ev_reg;
1987 fdata->ev_offset = vr_saved_offset + offset;
1988 }
1989 vr_saved_offset = -1;
1990 ev_reg = -1;
1991 li_found_pc = 0;
1992 }
1993 continue;
1994 }
1995 /* Store gen register r31 at (rA+uimm). */
1996 /* 000100 11111 aaaaa iiiii 01100100001 */
1997 else if (arch_info->mach == bfd_mach_ppc_e500
1998 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1999 {
2000 /* Wwe know that the source register is 31 already, but
2001 it can't hurt to compute it. */
2002 ev_reg = GET_SRC_REG (op);
2003 ev_offset = ((op >> 11) & 0x1f) * 8;
2004 /* If this is the first vector reg to be saved, or if
2005 it has a lower number than others previously seen,
2006 reupdate the frame info. */
2007 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2008 {
2009 fdata->saved_ev = ev_reg;
2010 fdata->ev_offset = ev_offset + offset;
2011 }
2012
2013 continue;
2014 }
2015 /* Store gen register S at (r31+r0).
2016 Store param on stack when offset from SP bigger than 4 bytes. */
2017 /* 000100 sssss 11111 00000 01100100000 */
2018 else if (arch_info->mach == bfd_mach_ppc_e500
2019 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2020 {
2021 if (pc == (li_found_pc + 4))
2022 {
2023 if ((op & 0x03e00000) >= 0x01a00000)
2024 {
2025 ev_reg = GET_SRC_REG (op);
2026 /* If this is the first vector reg to be saved, or if
2027 it has a lower number than others previously seen,
2028 reupdate the frame info. */
2029 /* We know the contents of r0 from the previous
2030 instruction. */
2031 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2032 {
2033 fdata->saved_ev = ev_reg;
2034 fdata->ev_offset = vr_saved_offset + offset;
2035 }
2036 ev_reg = -1;
2037 }
2038 vr_saved_offset = -1;
2039 li_found_pc = 0;
2040 continue;
2041 }
2042 }
2043 /* End BookE related instructions. */
2044
2045 else
2046 {
2047 /* Not a recognized prologue instruction.
2048 Handle optimizer code motions into the prologue by continuing
2049 the search if we have no valid frame yet or if the return
2050 address is not yet saved in the frame. Also skip instructions
2051 if some of the GPRs expected to be saved are not yet saved. */
2052 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2053 && fdata->saved_gpr != -1)
2054 {
2055 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2056
2057 if ((fdata->gpr_mask & all_mask) == all_mask)
2058 break;
2059 }
2060
2061 if (op == 0x4e800020 /* blr */
2062 || op == 0x4e800420) /* bctr */
2063 /* Do not scan past epilogue in frameless functions or
2064 trampolines. */
2065 break;
2066 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2067 /* Never skip branches. */
2068 break;
2069
2070 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2071 /* Do not scan too many insns, scanning insns is expensive with
2072 remote targets. */
2073 break;
2074
2075 /* Continue scanning. */
2076 prev_insn_was_prologue_insn = 0;
2077 continue;
2078 }
2079 }
2080
2081 #if 0
2082 /* I have problems with skipping over __main() that I need to address
2083 * sometime. Previously, I used to use misc_function_vector which
2084 * didn't work as well as I wanted to be. -MGO */
2085
2086 /* If the first thing after skipping a prolog is a branch to a function,
2087 this might be a call to an initializer in main(), introduced by gcc2.
2088 We'd like to skip over it as well. Fortunately, xlc does some extra
2089 work before calling a function right after a prologue, thus we can
2090 single out such gcc2 behaviour. */
2091
2092
2093 if ((op & 0xfc000001) == 0x48000001)
2094 { /* bl foo, an initializer function? */
2095 op = read_memory_integer (pc + 4, 4, byte_order);
2096
2097 if (op == 0x4def7b82)
2098 { /* cror 0xf, 0xf, 0xf (nop) */
2099
2100 /* Check and see if we are in main. If so, skip over this
2101 initializer function as well. */
2102
2103 tmp = find_pc_misc_function (pc);
2104 if (tmp >= 0
2105 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2106 return pc + 8;
2107 }
2108 }
2109 #endif /* 0 */
2110
2111 if (pc == lim_pc && lr_reg >= 0)
2112 fdata->lr_register = lr_reg;
2113
2114 fdata->offset = -fdata->offset;
2115 return last_prologue_pc;
2116 }
2117
2118 static CORE_ADDR
2119 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2120 {
2121 struct rs6000_framedata frame;
2122 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2123
2124 /* See if we can determine the end of the prologue via the symbol table.
2125 If so, then return either PC, or the PC after the prologue, whichever
2126 is greater. */
2127 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2128 {
2129 CORE_ADDR post_prologue_pc
2130 = skip_prologue_using_sal (gdbarch, func_addr);
2131 if (post_prologue_pc != 0)
2132 return std::max (pc, post_prologue_pc);
2133 }
2134
2135 /* Can't determine prologue from the symbol table, need to examine
2136 instructions. */
2137
2138 /* Find an upper limit on the function prologue using the debug
2139 information. If the debug information could not be used to provide
2140 that bound, then use an arbitrary large number as the upper bound. */
2141 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2142 if (limit_pc == 0)
2143 limit_pc = pc + 100; /* Magic. */
2144
2145 /* Do not allow limit_pc to be past the function end, if we know
2146 where that end is... */
2147 if (func_end_addr && limit_pc > func_end_addr)
2148 limit_pc = func_end_addr;
2149
2150 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2151 return pc;
2152 }
2153
2154 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2155 in the prologue of main().
2156
2157 The function below examines the code pointed at by PC and checks to
2158 see if it corresponds to a call to __eabi. If so, it returns the
2159 address of the instruction following that call. Otherwise, it simply
2160 returns PC. */
2161
2162 static CORE_ADDR
2163 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2164 {
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2166 gdb_byte buf[4];
2167 unsigned long op;
2168
2169 if (target_read_memory (pc, buf, 4))
2170 return pc;
2171 op = extract_unsigned_integer (buf, 4, byte_order);
2172
2173 if ((op & BL_MASK) == BL_INSTRUCTION)
2174 {
2175 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2176 CORE_ADDR call_dest = pc + 4 + displ;
2177 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2178
2179 /* We check for ___eabi (three leading underscores) in addition
2180 to __eabi in case the GCC option "-fleading-underscore" was
2181 used to compile the program. */
2182 if (s.minsym != NULL
2183 && s.minsym->linkage_name () != NULL
2184 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2185 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2186 pc += 4;
2187 }
2188 return pc;
2189 }
2190
2191 /* All the ABI's require 16 byte alignment. */
2192 static CORE_ADDR
2193 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2194 {
2195 return (addr & -16);
2196 }
2197
2198 /* Return whether handle_inferior_event() should proceed through code
2199 starting at PC in function NAME when stepping.
2200
2201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2202 handle memory references that are too distant to fit in instructions
2203 generated by the compiler. For example, if 'foo' in the following
2204 instruction:
2205
2206 lwz r9,foo(r2)
2207
2208 is greater than 32767, the linker might replace the lwz with a branch to
2209 somewhere in @FIX1 that does the load in 2 instructions and then branches
2210 back to where execution should continue.
2211
2212 GDB should silently step over @FIX code, just like AIX dbx does.
2213 Unfortunately, the linker uses the "b" instruction for the
2214 branches, meaning that the link register doesn't get set.
2215 Therefore, GDB's usual step_over_function () mechanism won't work.
2216
2217 Instead, use the gdbarch_skip_trampoline_code and
2218 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2219 @FIX code. */
2220
2221 static int
2222 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2223 CORE_ADDR pc, const char *name)
2224 {
2225 return name && startswith (name, "@FIX");
2226 }
2227
2228 /* Skip code that the user doesn't want to see when stepping:
2229
2230 1. Indirect function calls use a piece of trampoline code to do context
2231 switching, i.e. to set the new TOC table. Skip such code if we are on
2232 its first instruction (as when we have single-stepped to here).
2233
2234 2. Skip shared library trampoline code (which is different from
2235 indirect function call trampolines).
2236
2237 3. Skip bigtoc fixup code.
2238
2239 Result is desired PC to step until, or NULL if we are not in
2240 code that should be skipped. */
2241
2242 static CORE_ADDR
2243 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2244 {
2245 struct gdbarch *gdbarch = get_frame_arch (frame);
2246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2248 unsigned int ii, op;
2249 int rel;
2250 CORE_ADDR solib_target_pc;
2251 struct bound_minimal_symbol msymbol;
2252
2253 static unsigned trampoline_code[] =
2254 {
2255 0x800b0000, /* l r0,0x0(r11) */
2256 0x90410014, /* st r2,0x14(r1) */
2257 0x7c0903a6, /* mtctr r0 */
2258 0x804b0004, /* l r2,0x4(r11) */
2259 0x816b0008, /* l r11,0x8(r11) */
2260 0x4e800420, /* bctr */
2261 0x4e800020, /* br */
2262 0
2263 };
2264
2265 /* Check for bigtoc fixup code. */
2266 msymbol = lookup_minimal_symbol_by_pc (pc);
2267 if (msymbol.minsym
2268 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2269 msymbol.minsym->linkage_name ()))
2270 {
2271 /* Double-check that the third instruction from PC is relative "b". */
2272 op = read_memory_integer (pc + 8, 4, byte_order);
2273 if ((op & 0xfc000003) == 0x48000000)
2274 {
2275 /* Extract bits 6-29 as a signed 24-bit relative word address and
2276 add it to the containing PC. */
2277 rel = ((int)(op << 6) >> 6);
2278 return pc + 8 + rel;
2279 }
2280 }
2281
2282 /* If pc is in a shared library trampoline, return its target. */
2283 solib_target_pc = find_solib_trampoline_target (frame, pc);
2284 if (solib_target_pc)
2285 return solib_target_pc;
2286
2287 for (ii = 0; trampoline_code[ii]; ++ii)
2288 {
2289 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2290 if (op != trampoline_code[ii])
2291 return 0;
2292 }
2293 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2294 addr. */
2295 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2296 return pc;
2297 }
2298
2299 /* ISA-specific vector types. */
2300
2301 static struct type *
2302 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2303 {
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305
2306 if (!tdep->ppc_builtin_type_vec64)
2307 {
2308 const struct builtin_type *bt = builtin_type (gdbarch);
2309
2310 /* The type we're building is this: */
2311 #if 0
2312 union __gdb_builtin_type_vec64
2313 {
2314 int64_t uint64;
2315 float v2_float[2];
2316 int32_t v2_int32[2];
2317 int16_t v4_int16[4];
2318 int8_t v8_int8[8];
2319 };
2320 #endif
2321
2322 struct type *t;
2323
2324 t = arch_composite_type (gdbarch,
2325 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2326 append_composite_type_field (t, "uint64", bt->builtin_int64);
2327 append_composite_type_field (t, "v2_float",
2328 init_vector_type (bt->builtin_float, 2));
2329 append_composite_type_field (t, "v2_int32",
2330 init_vector_type (bt->builtin_int32, 2));
2331 append_composite_type_field (t, "v4_int16",
2332 init_vector_type (bt->builtin_int16, 4));
2333 append_composite_type_field (t, "v8_int8",
2334 init_vector_type (bt->builtin_int8, 8));
2335
2336 t->set_is_vector (true);
2337 t->set_name ("ppc_builtin_type_vec64");
2338 tdep->ppc_builtin_type_vec64 = t;
2339 }
2340
2341 return tdep->ppc_builtin_type_vec64;
2342 }
2343
2344 /* Vector 128 type. */
2345
2346 static struct type *
2347 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2348 {
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2350
2351 if (!tdep->ppc_builtin_type_vec128)
2352 {
2353 const struct builtin_type *bt = builtin_type (gdbarch);
2354
2355 /* The type we're building is this
2356
2357 type = union __ppc_builtin_type_vec128 {
2358 float128_t float128;
2359 uint128_t uint128;
2360 double v2_double[2];
2361 float v4_float[4];
2362 int32_t v4_int32[4];
2363 int16_t v8_int16[8];
2364 int8_t v16_int8[16];
2365 }
2366 */
2367
2368 /* PPC specific type for IEEE 128-bit float field */
2369 struct type *t_float128
2370 = arch_float_type (gdbarch, 128, "float128_t", floatformats_ia64_quad);
2371
2372 struct type *t;
2373
2374 t = arch_composite_type (gdbarch,
2375 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2376 append_composite_type_field (t, "float128", t_float128);
2377 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2378 append_composite_type_field (t, "v2_double",
2379 init_vector_type (bt->builtin_double, 2));
2380 append_composite_type_field (t, "v4_float",
2381 init_vector_type (bt->builtin_float, 4));
2382 append_composite_type_field (t, "v4_int32",
2383 init_vector_type (bt->builtin_int32, 4));
2384 append_composite_type_field (t, "v8_int16",
2385 init_vector_type (bt->builtin_int16, 8));
2386 append_composite_type_field (t, "v16_int8",
2387 init_vector_type (bt->builtin_int8, 16));
2388
2389 t->set_is_vector (true);
2390 t->set_name ("ppc_builtin_type_vec128");
2391 tdep->ppc_builtin_type_vec128 = t;
2392 }
2393
2394 return tdep->ppc_builtin_type_vec128;
2395 }
2396
2397 /* Return the name of register number REGNO, or the empty string if it
2398 is an anonymous register. */
2399
2400 static const char *
2401 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2402 {
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404
2405 /* The upper half "registers" have names in the XML description,
2406 but we present only the low GPRs and the full 64-bit registers
2407 to the user. */
2408 if (tdep->ppc_ev0_upper_regnum >= 0
2409 && tdep->ppc_ev0_upper_regnum <= regno
2410 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2411 return "";
2412
2413 /* Hide the upper halves of the vs0~vs31 registers. */
2414 if (tdep->ppc_vsr0_regnum >= 0
2415 && tdep->ppc_vsr0_upper_regnum <= regno
2416 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2417 return "";
2418
2419 /* Hide the upper halves of the cvs0~cvs31 registers. */
2420 if (PPC_CVSR0_UPPER_REGNUM <= regno
2421 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2422 return "";
2423
2424 /* Check if the SPE pseudo registers are available. */
2425 if (IS_SPE_PSEUDOREG (tdep, regno))
2426 {
2427 static const char *const spe_regnames[] = {
2428 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2429 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2430 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2431 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2432 };
2433 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2434 }
2435
2436 /* Check if the decimal128 pseudo-registers are available. */
2437 if (IS_DFP_PSEUDOREG (tdep, regno))
2438 {
2439 static const char *const dfp128_regnames[] = {
2440 "dl0", "dl1", "dl2", "dl3",
2441 "dl4", "dl5", "dl6", "dl7",
2442 "dl8", "dl9", "dl10", "dl11",
2443 "dl12", "dl13", "dl14", "dl15"
2444 };
2445 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2446 }
2447
2448 /* Check if this is a vX alias for a raw vrX vector register. */
2449 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2450 {
2451 static const char *const vector_alias_regnames[] = {
2452 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2453 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2454 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2455 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2456 };
2457 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2458 }
2459
2460 /* Check if this is a VSX pseudo-register. */
2461 if (IS_VSX_PSEUDOREG (tdep, regno))
2462 {
2463 static const char *const vsx_regnames[] = {
2464 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2465 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2466 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2467 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2468 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2469 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2470 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2471 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2472 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2473 };
2474 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2475 }
2476
2477 /* Check if the this is a Extended FP pseudo-register. */
2478 if (IS_EFP_PSEUDOREG (tdep, regno))
2479 {
2480 static const char *const efpr_regnames[] = {
2481 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2482 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2483 "f46", "f47", "f48", "f49", "f50", "f51",
2484 "f52", "f53", "f54", "f55", "f56", "f57",
2485 "f58", "f59", "f60", "f61", "f62", "f63"
2486 };
2487 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2488 }
2489
2490 /* Check if this is a Checkpointed DFP pseudo-register. */
2491 if (IS_CDFP_PSEUDOREG (tdep, regno))
2492 {
2493 static const char *const cdfp128_regnames[] = {
2494 "cdl0", "cdl1", "cdl2", "cdl3",
2495 "cdl4", "cdl5", "cdl6", "cdl7",
2496 "cdl8", "cdl9", "cdl10", "cdl11",
2497 "cdl12", "cdl13", "cdl14", "cdl15"
2498 };
2499 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2500 }
2501
2502 /* Check if this is a Checkpointed VSX pseudo-register. */
2503 if (IS_CVSX_PSEUDOREG (tdep, regno))
2504 {
2505 static const char *const cvsx_regnames[] = {
2506 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2507 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2508 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2509 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2510 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2511 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2512 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2513 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2514 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2515 };
2516 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2517 }
2518
2519 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2520 if (IS_CEFP_PSEUDOREG (tdep, regno))
2521 {
2522 static const char *const cefpr_regnames[] = {
2523 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2524 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2525 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2526 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2527 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2528 };
2529 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2530 }
2531
2532 return tdesc_register_name (gdbarch, regno);
2533 }
2534
2535 /* Return the GDB type object for the "standard" data type of data in
2536 register N. */
2537
2538 static struct type *
2539 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2540 {
2541 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2542
2543 /* These are the e500 pseudo-registers. */
2544 if (IS_SPE_PSEUDOREG (tdep, regnum))
2545 return rs6000_builtin_type_vec64 (gdbarch);
2546 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2547 || IS_CDFP_PSEUDOREG (tdep, regnum))
2548 /* PPC decimal128 pseudo-registers. */
2549 return builtin_type (gdbarch)->builtin_declong;
2550 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2551 return gdbarch_register_type (gdbarch,
2552 tdep->ppc_vr0_regnum
2553 + (regnum
2554 - tdep->ppc_v0_alias_regnum));
2555 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2556 || IS_CVSX_PSEUDOREG (tdep, regnum))
2557 /* POWER7 VSX pseudo-registers. */
2558 return rs6000_builtin_type_vec128 (gdbarch);
2559 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2560 || IS_CEFP_PSEUDOREG (tdep, regnum))
2561 /* POWER7 Extended FP pseudo-registers. */
2562 return builtin_type (gdbarch)->builtin_double;
2563 else
2564 internal_error (__FILE__, __LINE__,
2565 _("rs6000_pseudo_register_type: "
2566 "called on unexpected register '%s' (%d)"),
2567 gdbarch_register_name (gdbarch, regnum), regnum);
2568 }
2569
2570 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2571 the vX aliases for the vector registers by always returning false
2572 to avoid duplicated information in "info register vector/all",
2573 since the raw vrX registers will already show in these cases. For
2574 other pseudo-registers we use the default membership function. */
2575
2576 static int
2577 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2578 struct reggroup *group)
2579 {
2580 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2581
2582 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2583 return 0;
2584 else
2585 return default_register_reggroup_p (gdbarch, regnum, group);
2586 }
2587
2588 /* The register format for RS/6000 floating point registers is always
2589 double, we need a conversion if the memory format is float. */
2590
2591 static int
2592 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2593 struct type *type)
2594 {
2595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2596
2597 return (tdep->ppc_fp0_regnum >= 0
2598 && regnum >= tdep->ppc_fp0_regnum
2599 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2600 && type->code () == TYPE_CODE_FLT
2601 && TYPE_LENGTH (type)
2602 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2603 }
2604
2605 static int
2606 rs6000_register_to_value (struct frame_info *frame,
2607 int regnum,
2608 struct type *type,
2609 gdb_byte *to,
2610 int *optimizedp, int *unavailablep)
2611 {
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2614
2615 gdb_assert (type->code () == TYPE_CODE_FLT);
2616
2617 if (!get_frame_register_bytes (frame, regnum, 0,
2618 gdb::make_array_view (from,
2619 register_size (gdbarch,
2620 regnum)),
2621 optimizedp, unavailablep))
2622 return 0;
2623
2624 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2625 to, type);
2626 *optimizedp = *unavailablep = 0;
2627 return 1;
2628 }
2629
2630 static void
2631 rs6000_value_to_register (struct frame_info *frame,
2632 int regnum,
2633 struct type *type,
2634 const gdb_byte *from)
2635 {
2636 struct gdbarch *gdbarch = get_frame_arch (frame);
2637 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2638
2639 gdb_assert (type->code () == TYPE_CODE_FLT);
2640
2641 target_float_convert (from, type,
2642 to, builtin_type (gdbarch)->builtin_double);
2643 put_frame_register (frame, regnum, to);
2644 }
2645
2646 /* The type of a function that moves the value of REG between CACHE
2647 or BUF --- in either direction. */
2648 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2649 int, void *);
2650
2651 /* Move SPE vector register values between a 64-bit buffer and the two
2652 32-bit raw register halves in a regcache. This function handles
2653 both splitting a 64-bit value into two 32-bit halves, and joining
2654 two halves into a whole 64-bit value, depending on the function
2655 passed as the MOVE argument.
2656
2657 EV_REG must be the number of an SPE evN vector register --- a
2658 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2659 64-bit buffer.
2660
2661 Call MOVE once for each 32-bit half of that register, passing
2662 REGCACHE, the number of the raw register corresponding to that
2663 half, and the address of the appropriate half of BUFFER.
2664
2665 For example, passing 'regcache_raw_read' as the MOVE function will
2666 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2667 'regcache_raw_supply' will supply the contents of BUFFER to the
2668 appropriate pair of raw registers in REGCACHE.
2669
2670 You may need to cast away some 'const' qualifiers when passing
2671 MOVE, since this function can't tell at compile-time which of
2672 REGCACHE or BUFFER is acting as the source of the data. If C had
2673 co-variant type qualifiers, ... */
2674
2675 static enum register_status
2676 e500_move_ev_register (move_ev_register_func move,
2677 struct regcache *regcache, int ev_reg, void *buffer)
2678 {
2679 struct gdbarch *arch = regcache->arch ();
2680 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2681 int reg_index;
2682 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2683 enum register_status status;
2684
2685 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2686
2687 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2688
2689 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2690 {
2691 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2692 byte_buffer);
2693 if (status == REG_VALID)
2694 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2695 byte_buffer + 4);
2696 }
2697 else
2698 {
2699 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2700 if (status == REG_VALID)
2701 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2702 byte_buffer + 4);
2703 }
2704
2705 return status;
2706 }
2707
2708 static enum register_status
2709 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2710 {
2711 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2712
2713 return REG_VALID;
2714 }
2715
2716 static enum register_status
2717 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2718 int ev_reg, gdb_byte *buffer)
2719 {
2720 struct gdbarch *arch = regcache->arch ();
2721 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2722 int reg_index;
2723 enum register_status status;
2724
2725 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2726
2727 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2728
2729 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2730 {
2731 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2732 buffer);
2733 if (status == REG_VALID)
2734 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2735 buffer + 4);
2736 }
2737 else
2738 {
2739 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2740 if (status == REG_VALID)
2741 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2742 buffer + 4);
2743 }
2744
2745 return status;
2746
2747 }
2748
2749 static void
2750 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2751 int reg_nr, const gdb_byte *buffer)
2752 {
2753 e500_move_ev_register (do_regcache_raw_write, regcache,
2754 reg_nr, (void *) buffer);
2755 }
2756
2757 /* Read method for DFP pseudo-registers. */
2758 static enum register_status
2759 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2760 int reg_nr, gdb_byte *buffer)
2761 {
2762 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2763 int reg_index, fp0;
2764 enum register_status status;
2765
2766 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2767 {
2768 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2769 fp0 = PPC_F0_REGNUM;
2770 }
2771 else
2772 {
2773 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2774
2775 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2776 fp0 = PPC_CF0_REGNUM;
2777 }
2778
2779 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2780 {
2781 /* Read two FP registers to form a whole dl register. */
2782 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2783 if (status == REG_VALID)
2784 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2785 buffer + 8);
2786 }
2787 else
2788 {
2789 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2790 if (status == REG_VALID)
2791 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2792 }
2793
2794 return status;
2795 }
2796
2797 /* Write method for DFP pseudo-registers. */
2798 static void
2799 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2800 int reg_nr, const gdb_byte *buffer)
2801 {
2802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2803 int reg_index, fp0;
2804
2805 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2806 {
2807 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2808 fp0 = PPC_F0_REGNUM;
2809 }
2810 else
2811 {
2812 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2813
2814 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2815 fp0 = PPC_CF0_REGNUM;
2816 }
2817
2818 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2819 {
2820 /* Write each half of the dl register into a separate
2821 FP register. */
2822 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2823 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2824 }
2825 else
2826 {
2827 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2828 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2829 }
2830 }
2831
2832 /* Read method for the vX aliases for the raw vrX registers. */
2833
2834 static enum register_status
2835 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2836 readable_regcache *regcache, int reg_nr,
2837 gdb_byte *buffer)
2838 {
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2841
2842 return regcache->raw_read (tdep->ppc_vr0_regnum
2843 + (reg_nr - tdep->ppc_v0_alias_regnum),
2844 buffer);
2845 }
2846
2847 /* Write method for the vX aliases for the raw vrX registers. */
2848
2849 static void
2850 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2851 struct regcache *regcache,
2852 int reg_nr, const gdb_byte *buffer)
2853 {
2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2855 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2856
2857 regcache->raw_write (tdep->ppc_vr0_regnum
2858 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2859 }
2860
2861 /* Read method for POWER7 VSX pseudo-registers. */
2862 static enum register_status
2863 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2864 int reg_nr, gdb_byte *buffer)
2865 {
2866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2867 int reg_index, vr0, fp0, vsr0_upper;
2868 enum register_status status;
2869
2870 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2871 {
2872 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2873 vr0 = PPC_VR0_REGNUM;
2874 fp0 = PPC_F0_REGNUM;
2875 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2876 }
2877 else
2878 {
2879 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2880
2881 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2882 vr0 = PPC_CVR0_REGNUM;
2883 fp0 = PPC_CF0_REGNUM;
2884 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2885 }
2886
2887 /* Read the portion that overlaps the VMX registers. */
2888 if (reg_index > 31)
2889 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2890 else
2891 /* Read the portion that overlaps the FPR registers. */
2892 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2893 {
2894 status = regcache->raw_read (fp0 + reg_index, buffer);
2895 if (status == REG_VALID)
2896 status = regcache->raw_read (vsr0_upper + reg_index,
2897 buffer + 8);
2898 }
2899 else
2900 {
2901 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2902 if (status == REG_VALID)
2903 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2904 }
2905
2906 return status;
2907 }
2908
2909 /* Write method for POWER7 VSX pseudo-registers. */
2910 static void
2911 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2912 int reg_nr, const gdb_byte *buffer)
2913 {
2914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2915 int reg_index, vr0, fp0, vsr0_upper;
2916
2917 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2918 {
2919 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2920 vr0 = PPC_VR0_REGNUM;
2921 fp0 = PPC_F0_REGNUM;
2922 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2923 }
2924 else
2925 {
2926 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2927
2928 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2929 vr0 = PPC_CVR0_REGNUM;
2930 fp0 = PPC_CF0_REGNUM;
2931 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2932 }
2933
2934 /* Write the portion that overlaps the VMX registers. */
2935 if (reg_index > 31)
2936 regcache->raw_write (vr0 + reg_index - 32, buffer);
2937 else
2938 /* Write the portion that overlaps the FPR registers. */
2939 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2940 {
2941 regcache->raw_write (fp0 + reg_index, buffer);
2942 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2943 }
2944 else
2945 {
2946 regcache->raw_write (fp0 + reg_index, buffer + 8);
2947 regcache->raw_write (vsr0_upper + reg_index, buffer);
2948 }
2949 }
2950
2951 /* Read method for POWER7 Extended FP pseudo-registers. */
2952 static enum register_status
2953 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2954 int reg_nr, gdb_byte *buffer)
2955 {
2956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2957 int reg_index, vr0;
2958
2959 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2960 {
2961 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2962 vr0 = PPC_VR0_REGNUM;
2963 }
2964 else
2965 {
2966 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2967
2968 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2969 vr0 = PPC_CVR0_REGNUM;
2970 }
2971
2972 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2973
2974 /* Read the portion that overlaps the VMX register. */
2975 return regcache->raw_read_part (vr0 + reg_index, offset,
2976 register_size (gdbarch, reg_nr),
2977 buffer);
2978 }
2979
2980 /* Write method for POWER7 Extended FP pseudo-registers. */
2981 static void
2982 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2983 int reg_nr, const gdb_byte *buffer)
2984 {
2985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2986 int reg_index, vr0;
2987 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2988
2989 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2990 {
2991 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2992 vr0 = PPC_VR0_REGNUM;
2993 }
2994 else
2995 {
2996 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2997
2998 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2999 vr0 = PPC_CVR0_REGNUM;
3000
3001 /* The call to raw_write_part fails silently if the initial read
3002 of the read-update-write sequence returns an invalid status,
3003 so we check this manually and throw an error if needed. */
3004 regcache->raw_update (vr0 + reg_index);
3005 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3006 error (_("Cannot write to the checkpointed EFP register, "
3007 "the corresponding vector register is unavailable."));
3008 }
3009
3010 /* Write the portion that overlaps the VMX register. */
3011 regcache->raw_write_part (vr0 + reg_index, offset,
3012 register_size (gdbarch, reg_nr), buffer);
3013 }
3014
3015 static enum register_status
3016 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3017 readable_regcache *regcache,
3018 int reg_nr, gdb_byte *buffer)
3019 {
3020 struct gdbarch *regcache_arch = regcache->arch ();
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022
3023 gdb_assert (regcache_arch == gdbarch);
3024
3025 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3026 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3027 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3028 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3029 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3030 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3031 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3032 buffer);
3033 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3034 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3035 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3036 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3037 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3038 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3039 else
3040 internal_error (__FILE__, __LINE__,
3041 _("rs6000_pseudo_register_read: "
3042 "called on unexpected register '%s' (%d)"),
3043 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3044 }
3045
3046 static void
3047 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3048 struct regcache *regcache,
3049 int reg_nr, const gdb_byte *buffer)
3050 {
3051 struct gdbarch *regcache_arch = regcache->arch ();
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053
3054 gdb_assert (regcache_arch == gdbarch);
3055
3056 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3057 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3058 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3059 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3060 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3061 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3062 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3063 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3064 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3065 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3066 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3067 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3068 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3069 else
3070 internal_error (__FILE__, __LINE__,
3071 _("rs6000_pseudo_register_write: "
3072 "called on unexpected register '%s' (%d)"),
3073 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3074 }
3075
3076 /* Set the register mask in AX with the registers that form the DFP or
3077 checkpointed DFP pseudo-register REG_NR. */
3078
3079 static void
3080 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3081 struct agent_expr *ax, int reg_nr)
3082 {
3083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3084 int reg_index, fp0;
3085
3086 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3087 {
3088 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3089 fp0 = PPC_F0_REGNUM;
3090 }
3091 else
3092 {
3093 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3094
3095 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3096 fp0 = PPC_CF0_REGNUM;
3097 }
3098
3099 ax_reg_mask (ax, fp0 + 2 * reg_index);
3100 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3101 }
3102
3103 /* Set the register mask in AX with the raw vector register that
3104 corresponds to its REG_NR alias. */
3105
3106 static void
3107 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3108 struct agent_expr *ax, int reg_nr)
3109 {
3110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3111 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3112
3113 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3114 + (reg_nr - tdep->ppc_v0_alias_regnum));
3115 }
3116
3117 /* Set the register mask in AX with the registers that form the VSX or
3118 checkpointed VSX pseudo-register REG_NR. */
3119
3120 static void
3121 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3122 struct agent_expr *ax, int reg_nr)
3123 {
3124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3125 int reg_index, vr0, fp0, vsr0_upper;
3126
3127 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3128 {
3129 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3130 vr0 = PPC_VR0_REGNUM;
3131 fp0 = PPC_F0_REGNUM;
3132 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3133 }
3134 else
3135 {
3136 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3137
3138 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3139 vr0 = PPC_CVR0_REGNUM;
3140 fp0 = PPC_CF0_REGNUM;
3141 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3142 }
3143
3144 if (reg_index > 31)
3145 {
3146 ax_reg_mask (ax, vr0 + reg_index - 32);
3147 }
3148 else
3149 {
3150 ax_reg_mask (ax, fp0 + reg_index);
3151 ax_reg_mask (ax, vsr0_upper + reg_index);
3152 }
3153 }
3154
3155 /* Set the register mask in AX with the register that corresponds to
3156 the EFP or checkpointed EFP pseudo-register REG_NR. */
3157
3158 static void
3159 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3160 struct agent_expr *ax, int reg_nr)
3161 {
3162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3163 int reg_index, vr0;
3164
3165 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3166 {
3167 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3168 vr0 = PPC_VR0_REGNUM;
3169 }
3170 else
3171 {
3172 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3173
3174 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3175 vr0 = PPC_CVR0_REGNUM;
3176 }
3177
3178 ax_reg_mask (ax, vr0 + reg_index);
3179 }
3180
3181 static int
3182 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3183 struct agent_expr *ax, int reg_nr)
3184 {
3185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3186 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3187 {
3188 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3189 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3190 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3191 }
3192 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3193 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3194 {
3195 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3196 }
3197 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3198 {
3199 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3200 }
3201 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3202 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3203 {
3204 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3205 }
3206 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3207 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3208 {
3209 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3210 }
3211 else
3212 internal_error (__FILE__, __LINE__,
3213 _("rs6000_pseudo_register_collect: "
3214 "called on unexpected register '%s' (%d)"),
3215 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3216 return 0;
3217 }
3218
3219
3220 static void
3221 rs6000_gen_return_address (struct gdbarch *gdbarch,
3222 struct agent_expr *ax, struct axs_value *value,
3223 CORE_ADDR scope)
3224 {
3225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3226 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3227 value->kind = axs_lvalue_register;
3228 value->u.reg = tdep->ppc_lr_regnum;
3229 }
3230
3231
3232 /* Convert a DBX STABS register number to a GDB register number. */
3233 static int
3234 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3235 {
3236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3237
3238 if (0 <= num && num <= 31)
3239 return tdep->ppc_gp0_regnum + num;
3240 else if (32 <= num && num <= 63)
3241 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3242 specifies registers the architecture doesn't have? Our
3243 callers don't check the value we return. */
3244 return tdep->ppc_fp0_regnum + (num - 32);
3245 else if (77 <= num && num <= 108)
3246 return tdep->ppc_vr0_regnum + (num - 77);
3247 else if (1200 <= num && num < 1200 + 32)
3248 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3249 else
3250 switch (num)
3251 {
3252 case 64:
3253 return tdep->ppc_mq_regnum;
3254 case 65:
3255 return tdep->ppc_lr_regnum;
3256 case 66:
3257 return tdep->ppc_ctr_regnum;
3258 case 76:
3259 return tdep->ppc_xer_regnum;
3260 case 109:
3261 return tdep->ppc_vrsave_regnum;
3262 case 110:
3263 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3264 case 111:
3265 return tdep->ppc_acc_regnum;
3266 case 112:
3267 return tdep->ppc_spefscr_regnum;
3268 default:
3269 return num;
3270 }
3271 }
3272
3273
3274 /* Convert a Dwarf 2 register number to a GDB register number. */
3275 static int
3276 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3277 {
3278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3279
3280 if (0 <= num && num <= 31)
3281 return tdep->ppc_gp0_regnum + num;
3282 else if (32 <= num && num <= 63)
3283 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3284 specifies registers the architecture doesn't have? Our
3285 callers don't check the value we return. */
3286 return tdep->ppc_fp0_regnum + (num - 32);
3287 else if (1124 <= num && num < 1124 + 32)
3288 return tdep->ppc_vr0_regnum + (num - 1124);
3289 else if (1200 <= num && num < 1200 + 32)
3290 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3291 else
3292 switch (num)
3293 {
3294 case 64:
3295 return tdep->ppc_cr_regnum;
3296 case 67:
3297 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3298 case 99:
3299 return tdep->ppc_acc_regnum;
3300 case 100:
3301 return tdep->ppc_mq_regnum;
3302 case 101:
3303 return tdep->ppc_xer_regnum;
3304 case 108:
3305 return tdep->ppc_lr_regnum;
3306 case 109:
3307 return tdep->ppc_ctr_regnum;
3308 case 356:
3309 return tdep->ppc_vrsave_regnum;
3310 case 612:
3311 return tdep->ppc_spefscr_regnum;
3312 }
3313
3314 /* Unknown DWARF register number. */
3315 return -1;
3316 }
3317
3318 /* Translate a .eh_frame register to DWARF register, or adjust a
3319 .debug_frame register. */
3320
3321 static int
3322 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3323 {
3324 /* GCC releases before 3.4 use GCC internal register numbering in
3325 .debug_frame (and .debug_info, et cetera). The numbering is
3326 different from the standard SysV numbering for everything except
3327 for GPRs and FPRs. We can not detect this problem in most cases
3328 - to get accurate debug info for variables living in lr, ctr, v0,
3329 et cetera, use a newer version of GCC. But we must detect
3330 one important case - lr is in column 65 in .debug_frame output,
3331 instead of 108.
3332
3333 GCC 3.4, and the "hammer" branch, have a related problem. They
3334 record lr register saves in .debug_frame as 108, but still record
3335 the return column as 65. We fix that up too.
3336
3337 We can do this because 65 is assigned to fpsr, and GCC never
3338 generates debug info referring to it. To add support for
3339 handwritten debug info that restores fpsr, we would need to add a
3340 producer version check to this. */
3341 if (!eh_frame_p)
3342 {
3343 if (num == 65)
3344 return 108;
3345 else
3346 return num;
3347 }
3348
3349 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3350 internal register numbering; translate that to the standard DWARF2
3351 register numbering. */
3352 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3353 return num;
3354 else if (68 <= num && num <= 75) /* cr0-cr8 */
3355 return num - 68 + 86;
3356 else if (77 <= num && num <= 108) /* vr0-vr31 */
3357 return num - 77 + 1124;
3358 else
3359 switch (num)
3360 {
3361 case 64: /* mq */
3362 return 100;
3363 case 65: /* lr */
3364 return 108;
3365 case 66: /* ctr */
3366 return 109;
3367 case 76: /* xer */
3368 return 101;
3369 case 109: /* vrsave */
3370 return 356;
3371 case 110: /* vscr */
3372 return 67;
3373 case 111: /* spe_acc */
3374 return 99;
3375 case 112: /* spefscr */
3376 return 612;
3377 default:
3378 return num;
3379 }
3380 }
3381 \f
3382
3383 /* Handling the various POWER/PowerPC variants. */
3384
3385 /* Information about a particular processor variant. */
3386
3387 struct ppc_variant
3388 {
3389 /* Name of this variant. */
3390 const char *name;
3391
3392 /* English description of the variant. */
3393 const char *description;
3394
3395 /* bfd_arch_info.arch corresponding to variant. */
3396 enum bfd_architecture arch;
3397
3398 /* bfd_arch_info.mach corresponding to variant. */
3399 unsigned long mach;
3400
3401 /* Target description for this variant. */
3402 struct target_desc **tdesc;
3403 };
3404
3405 static struct ppc_variant variants[] =
3406 {
3407 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3408 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3409 {"power", "POWER user-level", bfd_arch_rs6000,
3410 bfd_mach_rs6k, &tdesc_rs6000},
3411 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3412 bfd_mach_ppc_403, &tdesc_powerpc_403},
3413 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3414 bfd_mach_ppc_405, &tdesc_powerpc_405},
3415 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3416 bfd_mach_ppc_601, &tdesc_powerpc_601},
3417 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3418 bfd_mach_ppc_602, &tdesc_powerpc_602},
3419 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3420 bfd_mach_ppc_603, &tdesc_powerpc_603},
3421 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3422 604, &tdesc_powerpc_604},
3423 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3424 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3425 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3426 bfd_mach_ppc_505, &tdesc_powerpc_505},
3427 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3428 bfd_mach_ppc_860, &tdesc_powerpc_860},
3429 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3430 bfd_mach_ppc_750, &tdesc_powerpc_750},
3431 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3432 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3433 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3434 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3435
3436 /* 64-bit */
3437 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3438 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3439 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3440 bfd_mach_ppc_620, &tdesc_powerpc_64},
3441 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3442 bfd_mach_ppc_630, &tdesc_powerpc_64},
3443 {"a35", "PowerPC A35", bfd_arch_powerpc,
3444 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3445 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3446 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3447 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3448 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3449
3450 /* FIXME: I haven't checked the register sets of the following. */
3451 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3452 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3453 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3454 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3455 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3456 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3457
3458 {0, 0, (enum bfd_architecture) 0, 0, 0}
3459 };
3460
3461 /* Return the variant corresponding to architecture ARCH and machine number
3462 MACH. If no such variant exists, return null. */
3463
3464 static const struct ppc_variant *
3465 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3466 {
3467 const struct ppc_variant *v;
3468
3469 for (v = variants; v->name; v++)
3470 if (arch == v->arch && mach == v->mach)
3471 return v;
3472
3473 return NULL;
3474 }
3475
3476 \f
3477
3478 struct rs6000_frame_cache
3479 {
3480 CORE_ADDR base;
3481 CORE_ADDR initial_sp;
3482 trad_frame_saved_reg *saved_regs;
3483
3484 /* Set BASE_P to true if this frame cache is properly initialized.
3485 Otherwise set to false because some registers or memory cannot
3486 collected. */
3487 int base_p;
3488 /* Cache PC for building unavailable frame. */
3489 CORE_ADDR pc;
3490 };
3491
3492 static struct rs6000_frame_cache *
3493 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3494 {
3495 struct rs6000_frame_cache *cache;
3496 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3499 struct rs6000_framedata fdata;
3500 int wordsize = tdep->wordsize;
3501 CORE_ADDR func = 0, pc = 0;
3502
3503 if ((*this_cache) != NULL)
3504 return (struct rs6000_frame_cache *) (*this_cache);
3505 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3506 (*this_cache) = cache;
3507 cache->pc = 0;
3508 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3509
3510 try
3511 {
3512 func = get_frame_func (this_frame);
3513 cache->pc = func;
3514 pc = get_frame_pc (this_frame);
3515 skip_prologue (gdbarch, func, pc, &fdata);
3516
3517 /* Figure out the parent's stack pointer. */
3518
3519 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3520 address of the current frame. Things might be easier if the
3521 ->frame pointed to the outer-most address of the frame. In
3522 the mean time, the address of the prev frame is used as the
3523 base address of this frame. */
3524 cache->base = get_frame_register_unsigned
3525 (this_frame, gdbarch_sp_regnum (gdbarch));
3526 }
3527 catch (const gdb_exception_error &ex)
3528 {
3529 if (ex.error != NOT_AVAILABLE_ERROR)
3530 throw;
3531 return (struct rs6000_frame_cache *) (*this_cache);
3532 }
3533
3534 /* If the function appears to be frameless, check a couple of likely
3535 indicators that we have simply failed to find the frame setup.
3536 Two common cases of this are missing symbols (i.e.
3537 get_frame_func returns the wrong address or 0), and assembly
3538 stubs which have a fast exit path but set up a frame on the slow
3539 path.
3540
3541 If the LR appears to return to this function, then presume that
3542 we have an ABI compliant frame that we failed to find. */
3543 if (fdata.frameless && fdata.lr_offset == 0)
3544 {
3545 CORE_ADDR saved_lr;
3546 int make_frame = 0;
3547
3548 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3549 if (func == 0 && saved_lr == pc)
3550 make_frame = 1;
3551 else if (func != 0)
3552 {
3553 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3554 if (func == saved_func)
3555 make_frame = 1;
3556 }
3557
3558 if (make_frame)
3559 {
3560 fdata.frameless = 0;
3561 fdata.lr_offset = tdep->lr_frame_offset;
3562 }
3563 }
3564
3565 if (!fdata.frameless)
3566 {
3567 /* Frameless really means stackless. */
3568 ULONGEST backchain;
3569
3570 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3571 byte_order, &backchain))
3572 cache->base = (CORE_ADDR) backchain;
3573 }
3574
3575 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
3576
3577 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3578 All fpr's from saved_fpr to fp31 are saved. */
3579
3580 if (fdata.saved_fpr >= 0)
3581 {
3582 int i;
3583 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3584
3585 /* If skip_prologue says floating-point registers were saved,
3586 but the current architecture has no floating-point registers,
3587 then that's strange. But we have no indices to even record
3588 the addresses under, so we just ignore it. */
3589 if (ppc_floating_point_unit_p (gdbarch))
3590 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3591 {
3592 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3593 fpr_addr += 8;
3594 }
3595 }
3596
3597 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3598 All gpr's from saved_gpr to gpr31 are saved (except during the
3599 prologue). */
3600
3601 if (fdata.saved_gpr >= 0)
3602 {
3603 int i;
3604 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3605 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3606 {
3607 if (fdata.gpr_mask & (1U << i))
3608 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3609 gpr_addr += wordsize;
3610 }
3611 }
3612
3613 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3614 All vr's from saved_vr to vr31 are saved. */
3615 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3616 {
3617 if (fdata.saved_vr >= 0)
3618 {
3619 int i;
3620 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3621 for (i = fdata.saved_vr; i < 32; i++)
3622 {
3623 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3624 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3625 }
3626 }
3627 }
3628
3629 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3630 All vr's from saved_ev to ev31 are saved. ????? */
3631 if (tdep->ppc_ev0_regnum != -1)
3632 {
3633 if (fdata.saved_ev >= 0)
3634 {
3635 int i;
3636 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3637 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3638
3639 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3640 {
3641 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3642 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3643 + off);
3644 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3645 }
3646 }
3647 }
3648
3649 /* If != 0, fdata.cr_offset is the offset from the frame that
3650 holds the CR. */
3651 if (fdata.cr_offset != 0)
3652 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3653 + fdata.cr_offset);
3654
3655 /* If != 0, fdata.lr_offset is the offset from the frame that
3656 holds the LR. */
3657 if (fdata.lr_offset != 0)
3658 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3659 + fdata.lr_offset);
3660 else if (fdata.lr_register != -1)
3661 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3662 /* The PC is found in the link register. */
3663 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3664 cache->saved_regs[tdep->ppc_lr_regnum];
3665
3666 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3667 holds the VRSAVE. */
3668 if (fdata.vrsave_offset != 0)
3669 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3670 + fdata.vrsave_offset);
3671
3672 if (fdata.alloca_reg < 0)
3673 /* If no alloca register used, then fi->frame is the value of the
3674 %sp for this frame, and it is good enough. */
3675 cache->initial_sp
3676 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3677 else
3678 cache->initial_sp
3679 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3680
3681 cache->base_p = 1;
3682 return cache;
3683 }
3684
3685 static void
3686 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3687 struct frame_id *this_id)
3688 {
3689 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3690 this_cache);
3691
3692 if (!info->base_p)
3693 {
3694 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3695 return;
3696 }
3697
3698 /* This marks the outermost frame. */
3699 if (info->base == 0)
3700 return;
3701
3702 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3703 }
3704
3705 static struct value *
3706 rs6000_frame_prev_register (struct frame_info *this_frame,
3707 void **this_cache, int regnum)
3708 {
3709 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3710 this_cache);
3711 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3712 }
3713
3714 static const struct frame_unwind rs6000_frame_unwind =
3715 {
3716 NORMAL_FRAME,
3717 default_frame_unwind_stop_reason,
3718 rs6000_frame_this_id,
3719 rs6000_frame_prev_register,
3720 NULL,
3721 default_frame_sniffer
3722 };
3723
3724 /* Allocate and initialize a frame cache for an epilogue frame.
3725 SP is restored and prev-PC is stored in LR. */
3726
3727 static struct rs6000_frame_cache *
3728 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3729 {
3730 struct rs6000_frame_cache *cache;
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3733
3734 if (*this_cache)
3735 return (struct rs6000_frame_cache *) *this_cache;
3736
3737 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3738 (*this_cache) = cache;
3739 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3740
3741 try
3742 {
3743 /* At this point the stack looks as if we just entered the
3744 function, and the return address is stored in LR. */
3745 CORE_ADDR sp, lr;
3746
3747 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3748 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3749
3750 cache->base = sp;
3751 cache->initial_sp = sp;
3752
3753 cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
3754 }
3755 catch (const gdb_exception_error &ex)
3756 {
3757 if (ex.error != NOT_AVAILABLE_ERROR)
3758 throw;
3759 }
3760
3761 return cache;
3762 }
3763
3764 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3765 Return the frame ID of an epilogue frame. */
3766
3767 static void
3768 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3769 void **this_cache, struct frame_id *this_id)
3770 {
3771 CORE_ADDR pc;
3772 struct rs6000_frame_cache *info =
3773 rs6000_epilogue_frame_cache (this_frame, this_cache);
3774
3775 pc = get_frame_func (this_frame);
3776 if (info->base == 0)
3777 (*this_id) = frame_id_build_unavailable_stack (pc);
3778 else
3779 (*this_id) = frame_id_build (info->base, pc);
3780 }
3781
3782 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3783 Return the register value of REGNUM in previous frame. */
3784
3785 static struct value *
3786 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3787 void **this_cache, int regnum)
3788 {
3789 struct rs6000_frame_cache *info =
3790 rs6000_epilogue_frame_cache (this_frame, this_cache);
3791 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3792 }
3793
3794 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3795 Check whether this an epilogue frame. */
3796
3797 static int
3798 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3799 struct frame_info *this_frame,
3800 void **this_prologue_cache)
3801 {
3802 if (frame_relative_level (this_frame) == 0)
3803 return rs6000_in_function_epilogue_frame_p (this_frame,
3804 get_frame_arch (this_frame),
3805 get_frame_pc (this_frame));
3806 else
3807 return 0;
3808 }
3809
3810 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3811 a function without debug information. */
3812
3813 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3814 {
3815 NORMAL_FRAME,
3816 default_frame_unwind_stop_reason,
3817 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3818 NULL,
3819 rs6000_epilogue_frame_sniffer
3820 };
3821 \f
3822
3823 static CORE_ADDR
3824 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3825 {
3826 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3827 this_cache);
3828 return info->initial_sp;
3829 }
3830
3831 static const struct frame_base rs6000_frame_base = {
3832 &rs6000_frame_unwind,
3833 rs6000_frame_base_address,
3834 rs6000_frame_base_address,
3835 rs6000_frame_base_address
3836 };
3837
3838 static const struct frame_base *
3839 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3840 {
3841 return &rs6000_frame_base;
3842 }
3843
3844 /* DWARF-2 frame support. Used to handle the detection of
3845 clobbered registers during function calls. */
3846
3847 static void
3848 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3849 struct dwarf2_frame_state_reg *reg,
3850 struct frame_info *this_frame)
3851 {
3852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3853
3854 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3855 non-volatile registers. We will use the same code for both. */
3856
3857 /* Call-saved GP registers. */
3858 if ((regnum >= tdep->ppc_gp0_regnum + 14
3859 && regnum <= tdep->ppc_gp0_regnum + 31)
3860 || (regnum == tdep->ppc_gp0_regnum + 1))
3861 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3862
3863 /* Call-clobbered GP registers. */
3864 if ((regnum >= tdep->ppc_gp0_regnum + 3
3865 && regnum <= tdep->ppc_gp0_regnum + 12)
3866 || (regnum == tdep->ppc_gp0_regnum))
3867 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3868
3869 /* Deal with FP registers, if supported. */
3870 if (tdep->ppc_fp0_regnum >= 0)
3871 {
3872 /* Call-saved FP registers. */
3873 if ((regnum >= tdep->ppc_fp0_regnum + 14
3874 && regnum <= tdep->ppc_fp0_regnum + 31))
3875 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3876
3877 /* Call-clobbered FP registers. */
3878 if ((regnum >= tdep->ppc_fp0_regnum
3879 && regnum <= tdep->ppc_fp0_regnum + 13))
3880 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3881 }
3882
3883 /* Deal with ALTIVEC registers, if supported. */
3884 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3885 {
3886 /* Call-saved Altivec registers. */
3887 if ((regnum >= tdep->ppc_vr0_regnum + 20
3888 && regnum <= tdep->ppc_vr0_regnum + 31)
3889 || regnum == tdep->ppc_vrsave_regnum)
3890 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3891
3892 /* Call-clobbered Altivec registers. */
3893 if ((regnum >= tdep->ppc_vr0_regnum
3894 && regnum <= tdep->ppc_vr0_regnum + 19))
3895 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3896 }
3897
3898 /* Handle PC register and Stack Pointer correctly. */
3899 if (regnum == gdbarch_pc_regnum (gdbarch))
3900 reg->how = DWARF2_FRAME_REG_RA;
3901 else if (regnum == gdbarch_sp_regnum (gdbarch))
3902 reg->how = DWARF2_FRAME_REG_CFA;
3903 }
3904
3905
3906 /* Return true if a .gnu_attributes section exists in BFD and it
3907 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3908 section exists in BFD and it indicates that SPE extensions are in
3909 use. Check the .gnu.attributes section first, as the binary might be
3910 compiled for SPE, but not actually using SPE instructions. */
3911
3912 static int
3913 bfd_uses_spe_extensions (bfd *abfd)
3914 {
3915 asection *sect;
3916 gdb_byte *contents = NULL;
3917 bfd_size_type size;
3918 gdb_byte *ptr;
3919 int success = 0;
3920
3921 if (!abfd)
3922 return 0;
3923
3924 #ifdef HAVE_ELF
3925 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3926 could be using the SPE vector abi without actually using any spe
3927 bits whatsoever. But it's close enough for now. */
3928 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3929 Tag_GNU_Power_ABI_Vector);
3930 if (vector_abi == 3)
3931 return 1;
3932 #endif
3933
3934 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3935 if (!sect)
3936 return 0;
3937
3938 size = bfd_section_size (sect);
3939 contents = (gdb_byte *) xmalloc (size);
3940 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3941 {
3942 xfree (contents);
3943 return 0;
3944 }
3945
3946 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3947
3948 struct {
3949 uint32 name_len;
3950 uint32 data_len;
3951 uint32 type;
3952 char name[name_len rounded up to 4-byte alignment];
3953 char data[data_len];
3954 };
3955
3956 Technically, there's only supposed to be one such structure in a
3957 given apuinfo section, but the linker is not always vigilant about
3958 merging apuinfo sections from input files. Just go ahead and parse
3959 them all, exiting early when we discover the binary uses SPE
3960 insns.
3961
3962 It's not specified in what endianness the information in this
3963 section is stored. Assume that it's the endianness of the BFD. */
3964 ptr = contents;
3965 while (1)
3966 {
3967 unsigned int name_len;
3968 unsigned int data_len;
3969 unsigned int type;
3970
3971 /* If we can't read the first three fields, we're done. */
3972 if (size < 12)
3973 break;
3974
3975 name_len = bfd_get_32 (abfd, ptr);
3976 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3977 data_len = bfd_get_32 (abfd, ptr + 4);
3978 type = bfd_get_32 (abfd, ptr + 8);
3979 ptr += 12;
3980
3981 /* The name must be "APUinfo\0". */
3982 if (name_len != 8
3983 && strcmp ((const char *) ptr, "APUinfo") != 0)
3984 break;
3985 ptr += name_len;
3986
3987 /* The type must be 2. */
3988 if (type != 2)
3989 break;
3990
3991 /* The data is stored as a series of uint32. The upper half of
3992 each uint32 indicates the particular APU used and the lower
3993 half indicates the revision of that APU. We just care about
3994 the upper half. */
3995
3996 /* Not 4-byte quantities. */
3997 if (data_len & 3U)
3998 break;
3999
4000 while (data_len)
4001 {
4002 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4003 unsigned int apu = apuinfo >> 16;
4004 ptr += 4;
4005 data_len -= 4;
4006
4007 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4008 either. */
4009 if (apu == 0x100 || apu == 0x101)
4010 {
4011 success = 1;
4012 data_len = 0;
4013 }
4014 }
4015
4016 if (success)
4017 break;
4018 }
4019
4020 xfree (contents);
4021 return success;
4022 }
4023
4024 /* These are macros for parsing instruction fields (I.1.6.28) */
4025
4026 #define PPC_FIELD(value, from, len) \
4027 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4028 #define PPC_SEXT(v, bs) \
4029 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4030 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4031 - ((CORE_ADDR) 1 << ((bs) - 1)))
4032 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4033 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4034 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4035 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4036 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4037 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4038 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4039 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4040 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4041 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4042 | (PPC_FIELD (insn, 16, 5) << 5))
4043 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4044 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4045 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4046 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4047 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4048 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4049 #define PPC_OE(insn) PPC_BIT (insn, 21)
4050 #define PPC_RC(insn) PPC_BIT (insn, 31)
4051 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4052 #define PPC_LK(insn) PPC_BIT (insn, 31)
4053 #define PPC_TX(insn) PPC_BIT (insn, 31)
4054 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4055
4056 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4057 #define PPC_XER_NB(xer) (xer & 0x7f)
4058
4059 /* Record Vector-Scalar Registers.
4060 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4061 Otherwise, it's just a VR register. Record them accordingly. */
4062
4063 static int
4064 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4065 {
4066 if (vsr < 0 || vsr >= 64)
4067 return -1;
4068
4069 if (vsr >= 32)
4070 {
4071 if (tdep->ppc_vr0_regnum >= 0)
4072 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4073 }
4074 else
4075 {
4076 if (tdep->ppc_fp0_regnum >= 0)
4077 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4078 if (tdep->ppc_vsr0_upper_regnum >= 0)
4079 record_full_arch_list_add_reg (regcache,
4080 tdep->ppc_vsr0_upper_regnum + vsr);
4081 }
4082
4083 return 0;
4084 }
4085
4086 /* Parse and record instructions primary opcode-4 at ADDR.
4087 Return 0 if successful. */
4088
4089 static int
4090 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4091 CORE_ADDR addr, uint32_t insn)
4092 {
4093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4094 int ext = PPC_FIELD (insn, 21, 11);
4095 int vra = PPC_FIELD (insn, 11, 5);
4096
4097 switch (ext & 0x3f)
4098 {
4099 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4100 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4101 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4102 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4103 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4104 /* FALL-THROUGH */
4105 case 42: /* Vector Select */
4106 case 43: /* Vector Permute */
4107 case 59: /* Vector Permute Right-indexed */
4108 case 44: /* Vector Shift Left Double by Octet Immediate */
4109 case 45: /* Vector Permute and Exclusive-OR */
4110 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4111 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4112 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4113 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4114 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4115 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4116 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4117 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4118 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4119 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4120 case 46: /* Vector Multiply-Add Single-Precision */
4121 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4122 record_full_arch_list_add_reg (regcache,
4123 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4124 return 0;
4125
4126 case 48: /* Multiply-Add High Doubleword */
4127 case 49: /* Multiply-Add High Doubleword Unsigned */
4128 case 51: /* Multiply-Add Low Doubleword */
4129 record_full_arch_list_add_reg (regcache,
4130 tdep->ppc_gp0_regnum + PPC_RT (insn));
4131 return 0;
4132 }
4133
4134 switch ((ext & 0x1ff))
4135 {
4136 case 385:
4137 if (vra != 0 /* Decimal Convert To Signed Quadword */
4138 && vra != 2 /* Decimal Convert From Signed Quadword */
4139 && vra != 4 /* Decimal Convert To Zoned */
4140 && vra != 5 /* Decimal Convert To National */
4141 && vra != 6 /* Decimal Convert From Zoned */
4142 && vra != 7 /* Decimal Convert From National */
4143 && vra != 31) /* Decimal Set Sign */
4144 break;
4145 /* Fall through. */
4146 /* 5.16 Decimal Integer Arithmetic Instructions */
4147 case 1: /* Decimal Add Modulo */
4148 case 65: /* Decimal Subtract Modulo */
4149
4150 case 193: /* Decimal Shift */
4151 case 129: /* Decimal Unsigned Shift */
4152 case 449: /* Decimal Shift and Round */
4153
4154 case 257: /* Decimal Truncate */
4155 case 321: /* Decimal Unsigned Truncate */
4156
4157 /* Bit-21 should be set. */
4158 if (!PPC_BIT (insn, 21))
4159 break;
4160
4161 record_full_arch_list_add_reg (regcache,
4162 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4163 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4164 return 0;
4165 }
4166
4167 /* Bit-21 is used for RC */
4168 switch (ext & 0x3ff)
4169 {
4170 case 6: /* Vector Compare Equal To Unsigned Byte */
4171 case 70: /* Vector Compare Equal To Unsigned Halfword */
4172 case 134: /* Vector Compare Equal To Unsigned Word */
4173 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4174 case 774: /* Vector Compare Greater Than Signed Byte */
4175 case 838: /* Vector Compare Greater Than Signed Halfword */
4176 case 902: /* Vector Compare Greater Than Signed Word */
4177 case 967: /* Vector Compare Greater Than Signed Doubleword */
4178 case 518: /* Vector Compare Greater Than Unsigned Byte */
4179 case 646: /* Vector Compare Greater Than Unsigned Word */
4180 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4181 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4182 case 966: /* Vector Compare Bounds Single-Precision */
4183 case 198: /* Vector Compare Equal To Single-Precision */
4184 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4185 case 710: /* Vector Compare Greater Than Single-Precision */
4186 case 7: /* Vector Compare Not Equal Byte */
4187 case 71: /* Vector Compare Not Equal Halfword */
4188 case 135: /* Vector Compare Not Equal Word */
4189 case 263: /* Vector Compare Not Equal or Zero Byte */
4190 case 327: /* Vector Compare Not Equal or Zero Halfword */
4191 case 391: /* Vector Compare Not Equal or Zero Word */
4192 if (PPC_Rc (insn))
4193 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4194 record_full_arch_list_add_reg (regcache,
4195 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4196 return 0;
4197 }
4198
4199 if (ext == 1538)
4200 {
4201 switch (vra)
4202 {
4203 case 0: /* Vector Count Leading Zero Least-Significant Bits
4204 Byte */
4205 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4206 Byte */
4207 record_full_arch_list_add_reg (regcache,
4208 tdep->ppc_gp0_regnum + PPC_RT (insn));
4209 return 0;
4210
4211 case 6: /* Vector Negate Word */
4212 case 7: /* Vector Negate Doubleword */
4213 case 8: /* Vector Parity Byte Word */
4214 case 9: /* Vector Parity Byte Doubleword */
4215 case 10: /* Vector Parity Byte Quadword */
4216 case 16: /* Vector Extend Sign Byte To Word */
4217 case 17: /* Vector Extend Sign Halfword To Word */
4218 case 24: /* Vector Extend Sign Byte To Doubleword */
4219 case 25: /* Vector Extend Sign Halfword To Doubleword */
4220 case 26: /* Vector Extend Sign Word To Doubleword */
4221 case 28: /* Vector Count Trailing Zeros Byte */
4222 case 29: /* Vector Count Trailing Zeros Halfword */
4223 case 30: /* Vector Count Trailing Zeros Word */
4224 case 31: /* Vector Count Trailing Zeros Doubleword */
4225 record_full_arch_list_add_reg (regcache,
4226 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4227 return 0;
4228 }
4229 }
4230
4231 switch (ext)
4232 {
4233 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4234 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4235 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4236 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4237 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4238 case 462: /* Vector Pack Signed Word Signed Saturate */
4239 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4240 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4241 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4242 case 512: /* Vector Add Unsigned Byte Saturate */
4243 case 576: /* Vector Add Unsigned Halfword Saturate */
4244 case 640: /* Vector Add Unsigned Word Saturate */
4245 case 768: /* Vector Add Signed Byte Saturate */
4246 case 832: /* Vector Add Signed Halfword Saturate */
4247 case 896: /* Vector Add Signed Word Saturate */
4248 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4249 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4250 case 1664: /* Vector Subtract Unsigned Word Saturate */
4251 case 1792: /* Vector Subtract Signed Byte Saturate */
4252 case 1856: /* Vector Subtract Signed Halfword Saturate */
4253 case 1920: /* Vector Subtract Signed Word Saturate */
4254
4255 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4256 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4257 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4258 case 1672: /* Vector Sum across Half Signed Word Saturate */
4259 case 1928: /* Vector Sum across Signed Word Saturate */
4260 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4261 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4262 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4263 /* FALL-THROUGH */
4264 case 12: /* Vector Merge High Byte */
4265 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4266 case 76: /* Vector Merge High Halfword */
4267 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4268 case 140: /* Vector Merge High Word */
4269 case 268: /* Vector Merge Low Byte */
4270 case 332: /* Vector Merge Low Halfword */
4271 case 396: /* Vector Merge Low Word */
4272 case 526: /* Vector Unpack High Signed Byte */
4273 case 590: /* Vector Unpack High Signed Halfword */
4274 case 654: /* Vector Unpack Low Signed Byte */
4275 case 718: /* Vector Unpack Low Signed Halfword */
4276 case 782: /* Vector Pack Pixel */
4277 case 846: /* Vector Unpack High Pixel */
4278 case 974: /* Vector Unpack Low Pixel */
4279 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4280 case 1614: /* Vector Unpack High Signed Word */
4281 case 1676: /* Vector Merge Odd Word */
4282 case 1742: /* Vector Unpack Low Signed Word */
4283 case 1932: /* Vector Merge Even Word */
4284 case 524: /* Vector Splat Byte */
4285 case 588: /* Vector Splat Halfword */
4286 case 652: /* Vector Splat Word */
4287 case 780: /* Vector Splat Immediate Signed Byte */
4288 case 844: /* Vector Splat Immediate Signed Halfword */
4289 case 908: /* Vector Splat Immediate Signed Word */
4290 case 452: /* Vector Shift Left */
4291 case 708: /* Vector Shift Right */
4292 case 1036: /* Vector Shift Left by Octet */
4293 case 1100: /* Vector Shift Right by Octet */
4294 case 0: /* Vector Add Unsigned Byte Modulo */
4295 case 64: /* Vector Add Unsigned Halfword Modulo */
4296 case 128: /* Vector Add Unsigned Word Modulo */
4297 case 192: /* Vector Add Unsigned Doubleword Modulo */
4298 case 256: /* Vector Add Unsigned Quadword Modulo */
4299 case 320: /* Vector Add & write Carry Unsigned Quadword */
4300 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4301 case 8: /* Vector Multiply Odd Unsigned Byte */
4302 case 72: /* Vector Multiply Odd Unsigned Halfword */
4303 case 136: /* Vector Multiply Odd Unsigned Word */
4304 case 264: /* Vector Multiply Odd Signed Byte */
4305 case 328: /* Vector Multiply Odd Signed Halfword */
4306 case 392: /* Vector Multiply Odd Signed Word */
4307 case 520: /* Vector Multiply Even Unsigned Byte */
4308 case 584: /* Vector Multiply Even Unsigned Halfword */
4309 case 648: /* Vector Multiply Even Unsigned Word */
4310 case 776: /* Vector Multiply Even Signed Byte */
4311 case 840: /* Vector Multiply Even Signed Halfword */
4312 case 904: /* Vector Multiply Even Signed Word */
4313 case 137: /* Vector Multiply Unsigned Word Modulo */
4314 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4315 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4316 case 1152: /* Vector Subtract Unsigned Word Modulo */
4317 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4318 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4319 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4320 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4321 case 1282: /* Vector Average Signed Byte */
4322 case 1346: /* Vector Average Signed Halfword */
4323 case 1410: /* Vector Average Signed Word */
4324 case 1026: /* Vector Average Unsigned Byte */
4325 case 1090: /* Vector Average Unsigned Halfword */
4326 case 1154: /* Vector Average Unsigned Word */
4327 case 258: /* Vector Maximum Signed Byte */
4328 case 322: /* Vector Maximum Signed Halfword */
4329 case 386: /* Vector Maximum Signed Word */
4330 case 450: /* Vector Maximum Signed Doubleword */
4331 case 2: /* Vector Maximum Unsigned Byte */
4332 case 66: /* Vector Maximum Unsigned Halfword */
4333 case 130: /* Vector Maximum Unsigned Word */
4334 case 194: /* Vector Maximum Unsigned Doubleword */
4335 case 770: /* Vector Minimum Signed Byte */
4336 case 834: /* Vector Minimum Signed Halfword */
4337 case 898: /* Vector Minimum Signed Word */
4338 case 962: /* Vector Minimum Signed Doubleword */
4339 case 514: /* Vector Minimum Unsigned Byte */
4340 case 578: /* Vector Minimum Unsigned Halfword */
4341 case 642: /* Vector Minimum Unsigned Word */
4342 case 706: /* Vector Minimum Unsigned Doubleword */
4343 case 1028: /* Vector Logical AND */
4344 case 1668: /* Vector Logical Equivalent */
4345 case 1092: /* Vector Logical AND with Complement */
4346 case 1412: /* Vector Logical NAND */
4347 case 1348: /* Vector Logical OR with Complement */
4348 case 1156: /* Vector Logical OR */
4349 case 1284: /* Vector Logical NOR */
4350 case 1220: /* Vector Logical XOR */
4351 case 4: /* Vector Rotate Left Byte */
4352 case 132: /* Vector Rotate Left Word VX-form */
4353 case 68: /* Vector Rotate Left Halfword */
4354 case 196: /* Vector Rotate Left Doubleword */
4355 case 260: /* Vector Shift Left Byte */
4356 case 388: /* Vector Shift Left Word */
4357 case 324: /* Vector Shift Left Halfword */
4358 case 1476: /* Vector Shift Left Doubleword */
4359 case 516: /* Vector Shift Right Byte */
4360 case 644: /* Vector Shift Right Word */
4361 case 580: /* Vector Shift Right Halfword */
4362 case 1732: /* Vector Shift Right Doubleword */
4363 case 772: /* Vector Shift Right Algebraic Byte */
4364 case 900: /* Vector Shift Right Algebraic Word */
4365 case 836: /* Vector Shift Right Algebraic Halfword */
4366 case 964: /* Vector Shift Right Algebraic Doubleword */
4367 case 10: /* Vector Add Single-Precision */
4368 case 74: /* Vector Subtract Single-Precision */
4369 case 1034: /* Vector Maximum Single-Precision */
4370 case 1098: /* Vector Minimum Single-Precision */
4371 case 842: /* Vector Convert From Signed Fixed-Point Word */
4372 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4373 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4374 case 522: /* Vector Round to Single-Precision Integer Nearest */
4375 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4376 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4377 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4378 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4379 case 266: /* Vector Reciprocal Estimate Single-Precision */
4380 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4381 case 1288: /* Vector AES Cipher */
4382 case 1289: /* Vector AES Cipher Last */
4383 case 1352: /* Vector AES Inverse Cipher */
4384 case 1353: /* Vector AES Inverse Cipher Last */
4385 case 1480: /* Vector AES SubBytes */
4386 case 1730: /* Vector SHA-512 Sigma Doubleword */
4387 case 1666: /* Vector SHA-256 Sigma Word */
4388 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4389 case 1160: /* Vector Polynomial Multiply-Sum Word */
4390 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4391 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4392 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4393 case 1794: /* Vector Count Leading Zeros Byte */
4394 case 1858: /* Vector Count Leading Zeros Halfword */
4395 case 1922: /* Vector Count Leading Zeros Word */
4396 case 1986: /* Vector Count Leading Zeros Doubleword */
4397 case 1795: /* Vector Population Count Byte */
4398 case 1859: /* Vector Population Count Halfword */
4399 case 1923: /* Vector Population Count Word */
4400 case 1987: /* Vector Population Count Doubleword */
4401 case 1356: /* Vector Bit Permute Quadword */
4402 case 1484: /* Vector Bit Permute Doubleword */
4403 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4404 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4405 Quadword */
4406 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4407 case 65: /* Vector Multiply-by-10 Extended & write Carry
4408 Unsigned Quadword */
4409 case 1027: /* Vector Absolute Difference Unsigned Byte */
4410 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4411 case 1155: /* Vector Absolute Difference Unsigned Word */
4412 case 1796: /* Vector Shift Right Variable */
4413 case 1860: /* Vector Shift Left Variable */
4414 case 133: /* Vector Rotate Left Word then Mask Insert */
4415 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4416 case 389: /* Vector Rotate Left Word then AND with Mask */
4417 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4418 case 525: /* Vector Extract Unsigned Byte */
4419 case 589: /* Vector Extract Unsigned Halfword */
4420 case 653: /* Vector Extract Unsigned Word */
4421 case 717: /* Vector Extract Doubleword */
4422 case 781: /* Vector Insert Byte */
4423 case 845: /* Vector Insert Halfword */
4424 case 909: /* Vector Insert Word */
4425 case 973: /* Vector Insert Doubleword */
4426 record_full_arch_list_add_reg (regcache,
4427 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4428 return 0;
4429
4430 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4431 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4432 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4433 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4434 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4435 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4436 record_full_arch_list_add_reg (regcache,
4437 tdep->ppc_gp0_regnum + PPC_RT (insn));
4438 return 0;
4439
4440 case 1604: /* Move To Vector Status and Control Register */
4441 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4442 return 0;
4443 case 1540: /* Move From Vector Status and Control Register */
4444 record_full_arch_list_add_reg (regcache,
4445 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4446 return 0;
4447 case 833: /* Decimal Copy Sign */
4448 record_full_arch_list_add_reg (regcache,
4449 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4450 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4451 return 0;
4452 }
4453
4454 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4455 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4456 return -1;
4457 }
4458
4459 /* Parse and record instructions of primary opcode-19 at ADDR.
4460 Return 0 if successful. */
4461
4462 static int
4463 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4464 CORE_ADDR addr, uint32_t insn)
4465 {
4466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4467 int ext = PPC_EXTOP (insn);
4468
4469 switch (ext & 0x01f)
4470 {
4471 case 2: /* Add PC Immediate Shifted */
4472 record_full_arch_list_add_reg (regcache,
4473 tdep->ppc_gp0_regnum + PPC_RT (insn));
4474 return 0;
4475 }
4476
4477 switch (ext)
4478 {
4479 case 0: /* Move Condition Register Field */
4480 case 33: /* Condition Register NOR */
4481 case 129: /* Condition Register AND with Complement */
4482 case 193: /* Condition Register XOR */
4483 case 225: /* Condition Register NAND */
4484 case 257: /* Condition Register AND */
4485 case 289: /* Condition Register Equivalent */
4486 case 417: /* Condition Register OR with Complement */
4487 case 449: /* Condition Register OR */
4488 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4489 return 0;
4490
4491 case 16: /* Branch Conditional */
4492 case 560: /* Branch Conditional to Branch Target Address Register */
4493 if ((PPC_BO (insn) & 0x4) == 0)
4494 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4495 /* FALL-THROUGH */
4496 case 528: /* Branch Conditional to Count Register */
4497 if (PPC_LK (insn))
4498 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4499 return 0;
4500
4501 case 150: /* Instruction Synchronize */
4502 /* Do nothing. */
4503 return 0;
4504 }
4505
4506 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4507 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4508 return -1;
4509 }
4510
4511 /* Parse and record instructions of primary opcode-31 at ADDR.
4512 Return 0 if successful. */
4513
4514 static int
4515 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4516 CORE_ADDR addr, uint32_t insn)
4517 {
4518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4519 int ext = PPC_EXTOP (insn);
4520 int tmp, nr, nb, i;
4521 CORE_ADDR at_dcsz, ea = 0;
4522 ULONGEST rb, ra, xer;
4523 int size = 0;
4524
4525 /* These instructions have OE bit. */
4526 switch (ext & 0x1ff)
4527 {
4528 /* These write RT and XER. Update CR if RC is set. */
4529 case 8: /* Subtract from carrying */
4530 case 10: /* Add carrying */
4531 case 136: /* Subtract from extended */
4532 case 138: /* Add extended */
4533 case 200: /* Subtract from zero extended */
4534 case 202: /* Add to zero extended */
4535 case 232: /* Subtract from minus one extended */
4536 case 234: /* Add to minus one extended */
4537 /* CA is always altered, but SO/OV are only altered when OE=1.
4538 In any case, XER is always altered. */
4539 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4540 if (PPC_RC (insn))
4541 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4542 record_full_arch_list_add_reg (regcache,
4543 tdep->ppc_gp0_regnum + PPC_RT (insn));
4544 return 0;
4545
4546 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4547 case 40: /* Subtract from */
4548 case 104: /* Negate */
4549 case 233: /* Multiply low doubleword */
4550 case 235: /* Multiply low word */
4551 case 266: /* Add */
4552 case 393: /* Divide Doubleword Extended Unsigned */
4553 case 395: /* Divide Word Extended Unsigned */
4554 case 425: /* Divide Doubleword Extended */
4555 case 427: /* Divide Word Extended */
4556 case 457: /* Divide Doubleword Unsigned */
4557 case 459: /* Divide Word Unsigned */
4558 case 489: /* Divide Doubleword */
4559 case 491: /* Divide Word */
4560 if (PPC_OE (insn))
4561 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4562 /* FALL-THROUGH */
4563 case 9: /* Multiply High Doubleword Unsigned */
4564 case 11: /* Multiply High Word Unsigned */
4565 case 73: /* Multiply High Doubleword */
4566 case 75: /* Multiply High Word */
4567 if (PPC_RC (insn))
4568 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4569 record_full_arch_list_add_reg (regcache,
4570 tdep->ppc_gp0_regnum + PPC_RT (insn));
4571 return 0;
4572 }
4573
4574 if ((ext & 0x1f) == 15)
4575 {
4576 /* Integer Select. bit[16:20] is used for BC. */
4577 record_full_arch_list_add_reg (regcache,
4578 tdep->ppc_gp0_regnum + PPC_RT (insn));
4579 return 0;
4580 }
4581
4582 if ((ext & 0xff) == 170)
4583 {
4584 /* Add Extended using alternate carry bits */
4585 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4586 record_full_arch_list_add_reg (regcache,
4587 tdep->ppc_gp0_regnum + PPC_RT (insn));
4588 return 0;
4589 }
4590
4591 switch (ext)
4592 {
4593 case 78: /* Determine Leftmost Zero Byte */
4594 if (PPC_RC (insn))
4595 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4596 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4597 record_full_arch_list_add_reg (regcache,
4598 tdep->ppc_gp0_regnum + PPC_RT (insn));
4599 return 0;
4600
4601 /* These only write RT. */
4602 case 19: /* Move from condition register */
4603 /* Move From One Condition Register Field */
4604 case 74: /* Add and Generate Sixes */
4605 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4606 case 302: /* Move From Branch History Rolling Buffer */
4607 case 339: /* Move From Special Purpose Register */
4608 case 371: /* Move From Time Base [Phased-Out] */
4609 case 309: /* Load Doubleword Monitored Indexed */
4610 case 128: /* Set Boolean */
4611 case 755: /* Deliver A Random Number */
4612 record_full_arch_list_add_reg (regcache,
4613 tdep->ppc_gp0_regnum + PPC_RT (insn));
4614 return 0;
4615
4616 /* These only write to RA. */
4617 case 51: /* Move From VSR Doubleword */
4618 case 115: /* Move From VSR Word and Zero */
4619 case 122: /* Population count bytes */
4620 case 378: /* Population count words */
4621 case 506: /* Population count doublewords */
4622 case 154: /* Parity Word */
4623 case 186: /* Parity Doubleword */
4624 case 252: /* Bit Permute Doubleword */
4625 case 282: /* Convert Declets To Binary Coded Decimal */
4626 case 314: /* Convert Binary Coded Decimal To Declets */
4627 case 508: /* Compare bytes */
4628 case 307: /* Move From VSR Lower Doubleword */
4629 record_full_arch_list_add_reg (regcache,
4630 tdep->ppc_gp0_regnum + PPC_RA (insn));
4631 return 0;
4632
4633 /* These write CR and optional RA. */
4634 case 792: /* Shift Right Algebraic Word */
4635 case 794: /* Shift Right Algebraic Doubleword */
4636 case 824: /* Shift Right Algebraic Word Immediate */
4637 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4638 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4639 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4640 record_full_arch_list_add_reg (regcache,
4641 tdep->ppc_gp0_regnum + PPC_RA (insn));
4642 /* FALL-THROUGH */
4643 case 0: /* Compare */
4644 case 32: /* Compare logical */
4645 case 144: /* Move To Condition Register Fields */
4646 /* Move To One Condition Register Field */
4647 case 192: /* Compare Ranged Byte */
4648 case 224: /* Compare Equal Byte */
4649 case 576: /* Move XER to CR Extended */
4650 case 902: /* Paste (should always fail due to single-stepping and
4651 the memory location might not be accessible, so
4652 record only CR) */
4653 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4654 return 0;
4655
4656 /* These write to RT. Update RA if 'update indexed.' */
4657 case 53: /* Load Doubleword with Update Indexed */
4658 case 119: /* Load Byte and Zero with Update Indexed */
4659 case 311: /* Load Halfword and Zero with Update Indexed */
4660 case 55: /* Load Word and Zero with Update Indexed */
4661 case 375: /* Load Halfword Algebraic with Update Indexed */
4662 case 373: /* Load Word Algebraic with Update Indexed */
4663 record_full_arch_list_add_reg (regcache,
4664 tdep->ppc_gp0_regnum + PPC_RA (insn));
4665 /* FALL-THROUGH */
4666 case 21: /* Load Doubleword Indexed */
4667 case 52: /* Load Byte And Reserve Indexed */
4668 case 116: /* Load Halfword And Reserve Indexed */
4669 case 20: /* Load Word And Reserve Indexed */
4670 case 84: /* Load Doubleword And Reserve Indexed */
4671 case 87: /* Load Byte and Zero Indexed */
4672 case 279: /* Load Halfword and Zero Indexed */
4673 case 23: /* Load Word and Zero Indexed */
4674 case 343: /* Load Halfword Algebraic Indexed */
4675 case 341: /* Load Word Algebraic Indexed */
4676 case 790: /* Load Halfword Byte-Reverse Indexed */
4677 case 534: /* Load Word Byte-Reverse Indexed */
4678 case 532: /* Load Doubleword Byte-Reverse Indexed */
4679 case 582: /* Load Word Atomic */
4680 case 614: /* Load Doubleword Atomic */
4681 case 265: /* Modulo Unsigned Doubleword */
4682 case 777: /* Modulo Signed Doubleword */
4683 case 267: /* Modulo Unsigned Word */
4684 case 779: /* Modulo Signed Word */
4685 record_full_arch_list_add_reg (regcache,
4686 tdep->ppc_gp0_regnum + PPC_RT (insn));
4687 return 0;
4688
4689 case 597: /* Load String Word Immediate */
4690 case 533: /* Load String Word Indexed */
4691 if (ext == 597)
4692 {
4693 nr = PPC_NB (insn);
4694 if (nr == 0)
4695 nr = 32;
4696 }
4697 else
4698 {
4699 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4700 nr = PPC_XER_NB (xer);
4701 }
4702
4703 nr = (nr + 3) >> 2;
4704
4705 /* If n=0, the contents of register RT are undefined. */
4706 if (nr == 0)
4707 nr = 1;
4708
4709 for (i = 0; i < nr; i++)
4710 record_full_arch_list_add_reg (regcache,
4711 tdep->ppc_gp0_regnum
4712 + ((PPC_RT (insn) + i) & 0x1f));
4713 return 0;
4714
4715 case 276: /* Load Quadword And Reserve Indexed */
4716 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4717 record_full_arch_list_add_reg (regcache, tmp);
4718 record_full_arch_list_add_reg (regcache, tmp + 1);
4719 return 0;
4720
4721 /* These write VRT. */
4722 case 6: /* Load Vector for Shift Left Indexed */
4723 case 38: /* Load Vector for Shift Right Indexed */
4724 case 7: /* Load Vector Element Byte Indexed */
4725 case 39: /* Load Vector Element Halfword Indexed */
4726 case 71: /* Load Vector Element Word Indexed */
4727 case 103: /* Load Vector Indexed */
4728 case 359: /* Load Vector Indexed LRU */
4729 record_full_arch_list_add_reg (regcache,
4730 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4731 return 0;
4732
4733 /* These write FRT. Update RA if 'update indexed.' */
4734 case 567: /* Load Floating-Point Single with Update Indexed */
4735 case 631: /* Load Floating-Point Double with Update Indexed */
4736 record_full_arch_list_add_reg (regcache,
4737 tdep->ppc_gp0_regnum + PPC_RA (insn));
4738 /* FALL-THROUGH */
4739 case 535: /* Load Floating-Point Single Indexed */
4740 case 599: /* Load Floating-Point Double Indexed */
4741 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4742 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4743 record_full_arch_list_add_reg (regcache,
4744 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4745 return 0;
4746
4747 case 791: /* Load Floating-Point Double Pair Indexed */
4748 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4749 record_full_arch_list_add_reg (regcache, tmp);
4750 record_full_arch_list_add_reg (regcache, tmp + 1);
4751 return 0;
4752
4753 case 179: /* Move To VSR Doubleword */
4754 case 211: /* Move To VSR Word Algebraic */
4755 case 243: /* Move To VSR Word and Zero */
4756 case 588: /* Load VSX Scalar Doubleword Indexed */
4757 case 524: /* Load VSX Scalar Single-Precision Indexed */
4758 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4759 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4760 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4761 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4762 case 780: /* Load VSX Vector Word*4 Indexed */
4763 case 268: /* Load VSX Vector Indexed */
4764 case 364: /* Load VSX Vector Word & Splat Indexed */
4765 case 812: /* Load VSX Vector Halfword*8 Indexed */
4766 case 876: /* Load VSX Vector Byte*16 Indexed */
4767 case 269: /* Load VSX Vector with Length */
4768 case 301: /* Load VSX Vector Left-justified with Length */
4769 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4770 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4771 case 403: /* Move To VSR Word & Splat */
4772 case 435: /* Move To VSR Double Doubleword */
4773 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4774 return 0;
4775
4776 /* These write RA. Update CR if RC is set. */
4777 case 24: /* Shift Left Word */
4778 case 26: /* Count Leading Zeros Word */
4779 case 27: /* Shift Left Doubleword */
4780 case 28: /* AND */
4781 case 58: /* Count Leading Zeros Doubleword */
4782 case 60: /* AND with Complement */
4783 case 124: /* NOR */
4784 case 284: /* Equivalent */
4785 case 316: /* XOR */
4786 case 476: /* NAND */
4787 case 412: /* OR with Complement */
4788 case 444: /* OR */
4789 case 536: /* Shift Right Word */
4790 case 539: /* Shift Right Doubleword */
4791 case 922: /* Extend Sign Halfword */
4792 case 954: /* Extend Sign Byte */
4793 case 986: /* Extend Sign Word */
4794 case 538: /* Count Trailing Zeros Word */
4795 case 570: /* Count Trailing Zeros Doubleword */
4796 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4797 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4798
4799 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4800 && (PPC_RS (insn) == PPC_RA (insn))
4801 && (PPC_RA (insn) == PPC_RB (insn))
4802 && !PPC_RC (insn))
4803 {
4804 /* or Rx,Rx,Rx alters PRI in PPR. */
4805 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4806 return 0;
4807 }
4808
4809 if (PPC_RC (insn))
4810 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4811 record_full_arch_list_add_reg (regcache,
4812 tdep->ppc_gp0_regnum + PPC_RA (insn));
4813 return 0;
4814
4815 /* Store memory. */
4816 case 181: /* Store Doubleword with Update Indexed */
4817 case 183: /* Store Word with Update Indexed */
4818 case 247: /* Store Byte with Update Indexed */
4819 case 439: /* Store Half Word with Update Indexed */
4820 case 695: /* Store Floating-Point Single with Update Indexed */
4821 case 759: /* Store Floating-Point Double with Update Indexed */
4822 record_full_arch_list_add_reg (regcache,
4823 tdep->ppc_gp0_regnum + PPC_RA (insn));
4824 /* FALL-THROUGH */
4825 case 135: /* Store Vector Element Byte Indexed */
4826 case 167: /* Store Vector Element Halfword Indexed */
4827 case 199: /* Store Vector Element Word Indexed */
4828 case 231: /* Store Vector Indexed */
4829 case 487: /* Store Vector Indexed LRU */
4830 case 716: /* Store VSX Scalar Doubleword Indexed */
4831 case 140: /* Store VSX Scalar as Integer Word Indexed */
4832 case 652: /* Store VSX Scalar Single-Precision Indexed */
4833 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4834 case 908: /* Store VSX Vector Word*4 Indexed */
4835 case 149: /* Store Doubleword Indexed */
4836 case 151: /* Store Word Indexed */
4837 case 215: /* Store Byte Indexed */
4838 case 407: /* Store Half Word Indexed */
4839 case 694: /* Store Byte Conditional Indexed */
4840 case 726: /* Store Halfword Conditional Indexed */
4841 case 150: /* Store Word Conditional Indexed */
4842 case 214: /* Store Doubleword Conditional Indexed */
4843 case 182: /* Store Quadword Conditional Indexed */
4844 case 662: /* Store Word Byte-Reverse Indexed */
4845 case 918: /* Store Halfword Byte-Reverse Indexed */
4846 case 660: /* Store Doubleword Byte-Reverse Indexed */
4847 case 663: /* Store Floating-Point Single Indexed */
4848 case 727: /* Store Floating-Point Double Indexed */
4849 case 919: /* Store Floating-Point Double Pair Indexed */
4850 case 983: /* Store Floating-Point as Integer Word Indexed */
4851 case 396: /* Store VSX Vector Indexed */
4852 case 940: /* Store VSX Vector Halfword*8 Indexed */
4853 case 1004: /* Store VSX Vector Byte*16 Indexed */
4854 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4855 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4856 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4857 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4858
4859 ra = 0;
4860 if (PPC_RA (insn) != 0)
4861 regcache_raw_read_unsigned (regcache,
4862 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4863 regcache_raw_read_unsigned (regcache,
4864 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4865 ea = ra + rb;
4866
4867 switch (ext)
4868 {
4869 case 183: /* Store Word with Update Indexed */
4870 case 199: /* Store Vector Element Word Indexed */
4871 case 140: /* Store VSX Scalar as Integer Word Indexed */
4872 case 652: /* Store VSX Scalar Single-Precision Indexed */
4873 case 151: /* Store Word Indexed */
4874 case 150: /* Store Word Conditional Indexed */
4875 case 662: /* Store Word Byte-Reverse Indexed */
4876 case 663: /* Store Floating-Point Single Indexed */
4877 case 695: /* Store Floating-Point Single with Update Indexed */
4878 case 983: /* Store Floating-Point as Integer Word Indexed */
4879 size = 4;
4880 break;
4881 case 247: /* Store Byte with Update Indexed */
4882 case 135: /* Store Vector Element Byte Indexed */
4883 case 215: /* Store Byte Indexed */
4884 case 694: /* Store Byte Conditional Indexed */
4885 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4886 size = 1;
4887 break;
4888 case 439: /* Store Halfword with Update Indexed */
4889 case 167: /* Store Vector Element Halfword Indexed */
4890 case 407: /* Store Halfword Indexed */
4891 case 726: /* Store Halfword Conditional Indexed */
4892 case 918: /* Store Halfword Byte-Reverse Indexed */
4893 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4894 size = 2;
4895 break;
4896 case 181: /* Store Doubleword with Update Indexed */
4897 case 716: /* Store VSX Scalar Doubleword Indexed */
4898 case 149: /* Store Doubleword Indexed */
4899 case 214: /* Store Doubleword Conditional Indexed */
4900 case 660: /* Store Doubleword Byte-Reverse Indexed */
4901 case 727: /* Store Floating-Point Double Indexed */
4902 case 759: /* Store Floating-Point Double with Update Indexed */
4903 size = 8;
4904 break;
4905 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4906 case 908: /* Store VSX Vector Word*4 Indexed */
4907 case 182: /* Store Quadword Conditional Indexed */
4908 case 231: /* Store Vector Indexed */
4909 case 487: /* Store Vector Indexed LRU */
4910 case 919: /* Store Floating-Point Double Pair Indexed */
4911 case 396: /* Store VSX Vector Indexed */
4912 case 940: /* Store VSX Vector Halfword*8 Indexed */
4913 case 1004: /* Store VSX Vector Byte*16 Indexed */
4914 size = 16;
4915 break;
4916 default:
4917 gdb_assert (0);
4918 }
4919
4920 /* Align address for Store Vector instructions. */
4921 switch (ext)
4922 {
4923 case 167: /* Store Vector Element Halfword Indexed */
4924 addr = addr & ~0x1ULL;
4925 break;
4926
4927 case 199: /* Store Vector Element Word Indexed */
4928 addr = addr & ~0x3ULL;
4929 break;
4930
4931 case 231: /* Store Vector Indexed */
4932 case 487: /* Store Vector Indexed LRU */
4933 addr = addr & ~0xfULL;
4934 break;
4935 }
4936
4937 record_full_arch_list_add_mem (addr, size);
4938 return 0;
4939
4940 case 397: /* Store VSX Vector with Length */
4941 case 429: /* Store VSX Vector Left-justified with Length */
4942 ra = 0;
4943 if (PPC_RA (insn) != 0)
4944 regcache_raw_read_unsigned (regcache,
4945 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4946 ea = ra;
4947 regcache_raw_read_unsigned (regcache,
4948 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4949 /* Store up to 16 bytes. */
4950 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4951 if (nb > 0)
4952 record_full_arch_list_add_mem (ea, nb);
4953 return 0;
4954
4955 case 710: /* Store Word Atomic */
4956 case 742: /* Store Doubleword Atomic */
4957 ra = 0;
4958 if (PPC_RA (insn) != 0)
4959 regcache_raw_read_unsigned (regcache,
4960 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4961 ea = ra;
4962 switch (ext)
4963 {
4964 case 710: /* Store Word Atomic */
4965 size = 8;
4966 break;
4967 case 742: /* Store Doubleword Atomic */
4968 size = 16;
4969 break;
4970 default:
4971 gdb_assert (0);
4972 }
4973 record_full_arch_list_add_mem (ea, size);
4974 return 0;
4975
4976 case 725: /* Store String Word Immediate */
4977 ra = 0;
4978 if (PPC_RA (insn) != 0)
4979 regcache_raw_read_unsigned (regcache,
4980 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4981 ea += ra;
4982
4983 nb = PPC_NB (insn);
4984 if (nb == 0)
4985 nb = 32;
4986
4987 record_full_arch_list_add_mem (ea, nb);
4988
4989 return 0;
4990
4991 case 661: /* Store String Word Indexed */
4992 ra = 0;
4993 if (PPC_RA (insn) != 0)
4994 regcache_raw_read_unsigned (regcache,
4995 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4996 ea += ra;
4997
4998 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4999 nb = PPC_XER_NB (xer);
5000
5001 if (nb != 0)
5002 {
5003 regcache_raw_read_unsigned (regcache,
5004 tdep->ppc_gp0_regnum + PPC_RB (insn),
5005 &rb);
5006 ea += rb;
5007 record_full_arch_list_add_mem (ea, nb);
5008 }
5009
5010 return 0;
5011
5012 case 467: /* Move To Special Purpose Register */
5013 switch (PPC_SPR (insn))
5014 {
5015 case 1: /* XER */
5016 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5017 return 0;
5018 case 3: /* DSCR */
5019 if (tdep->ppc_dscr_regnum >= 0)
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5021 return 0;
5022 case 8: /* LR */
5023 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5024 return 0;
5025 case 9: /* CTR */
5026 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5027 return 0;
5028 case 256: /* VRSAVE */
5029 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5030 return 0;
5031 case 815: /* TAR */
5032 if (tdep->ppc_tar_regnum >= 0)
5033 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5034 return 0;
5035 case 896:
5036 case 898: /* PPR */
5037 if (tdep->ppc_ppr_regnum >= 0)
5038 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5039 return 0;
5040 }
5041
5042 goto UNKNOWN_OP;
5043
5044 case 147: /* Move To Split Little Endian */
5045 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5046 return 0;
5047
5048 case 512: /* Move to Condition Register from XER */
5049 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5050 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5051 return 0;
5052
5053 case 4: /* Trap Word */
5054 case 68: /* Trap Doubleword */
5055 case 430: /* Clear BHRB */
5056 case 598: /* Synchronize */
5057 case 62: /* Wait for Interrupt */
5058 case 30: /* Wait */
5059 case 22: /* Instruction Cache Block Touch */
5060 case 854: /* Enforce In-order Execution of I/O */
5061 case 246: /* Data Cache Block Touch for Store */
5062 case 54: /* Data Cache Block Store */
5063 case 86: /* Data Cache Block Flush */
5064 case 278: /* Data Cache Block Touch */
5065 case 758: /* Data Cache Block Allocate */
5066 case 982: /* Instruction Cache Block Invalidate */
5067 case 774: /* Copy */
5068 case 838: /* CP_Abort */
5069 return 0;
5070
5071 case 654: /* Transaction Begin */
5072 case 686: /* Transaction End */
5073 case 750: /* Transaction Suspend or Resume */
5074 case 782: /* Transaction Abort Word Conditional */
5075 case 814: /* Transaction Abort Doubleword Conditional */
5076 case 846: /* Transaction Abort Word Conditional Immediate */
5077 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5078 case 910: /* Transaction Abort */
5079 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5080 /* FALL-THROUGH */
5081 case 718: /* Transaction Check */
5082 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5083 return 0;
5084
5085 case 1014: /* Data Cache Block set to Zero */
5086 if (target_auxv_search (current_inferior ()->top_target (),
5087 AT_DCACHEBSIZE, &at_dcsz) <= 0
5088 || at_dcsz == 0)
5089 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5090
5091 ra = 0;
5092 if (PPC_RA (insn) != 0)
5093 regcache_raw_read_unsigned (regcache,
5094 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5095 regcache_raw_read_unsigned (regcache,
5096 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5097 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5098 record_full_arch_list_add_mem (ea, at_dcsz);
5099 return 0;
5100 }
5101
5102 UNKNOWN_OP:
5103 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5104 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5105 return -1;
5106 }
5107
5108 /* Parse and record instructions of primary opcode-59 at ADDR.
5109 Return 0 if successful. */
5110
5111 static int
5112 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5113 CORE_ADDR addr, uint32_t insn)
5114 {
5115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5116 int ext = PPC_EXTOP (insn);
5117
5118 switch (ext & 0x1f)
5119 {
5120 case 18: /* Floating Divide */
5121 case 20: /* Floating Subtract */
5122 case 21: /* Floating Add */
5123 case 22: /* Floating Square Root */
5124 case 24: /* Floating Reciprocal Estimate */
5125 case 25: /* Floating Multiply */
5126 case 26: /* Floating Reciprocal Square Root Estimate */
5127 case 28: /* Floating Multiply-Subtract */
5128 case 29: /* Floating Multiply-Add */
5129 case 30: /* Floating Negative Multiply-Subtract */
5130 case 31: /* Floating Negative Multiply-Add */
5131 record_full_arch_list_add_reg (regcache,
5132 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5133 if (PPC_RC (insn))
5134 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5135 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5136
5137 return 0;
5138 }
5139
5140 switch (ext)
5141 {
5142 case 2: /* DFP Add */
5143 case 3: /* DFP Quantize */
5144 case 34: /* DFP Multiply */
5145 case 35: /* DFP Reround */
5146 case 67: /* DFP Quantize Immediate */
5147 case 99: /* DFP Round To FP Integer With Inexact */
5148 case 227: /* DFP Round To FP Integer Without Inexact */
5149 case 258: /* DFP Convert To DFP Long! */
5150 case 290: /* DFP Convert To Fixed */
5151 case 514: /* DFP Subtract */
5152 case 546: /* DFP Divide */
5153 case 770: /* DFP Round To DFP Short! */
5154 case 802: /* DFP Convert From Fixed */
5155 case 834: /* DFP Encode BCD To DPD */
5156 if (PPC_RC (insn))
5157 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5158 record_full_arch_list_add_reg (regcache,
5159 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5160 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5161 return 0;
5162
5163 case 130: /* DFP Compare Ordered */
5164 case 162: /* DFP Test Exponent */
5165 case 194: /* DFP Test Data Class */
5166 case 226: /* DFP Test Data Group */
5167 case 642: /* DFP Compare Unordered */
5168 case 674: /* DFP Test Significance */
5169 case 675: /* DFP Test Significance Immediate */
5170 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5171 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5172 return 0;
5173
5174 case 66: /* DFP Shift Significand Left Immediate */
5175 case 98: /* DFP Shift Significand Right Immediate */
5176 case 322: /* DFP Decode DPD To BCD */
5177 case 354: /* DFP Extract Biased Exponent */
5178 case 866: /* DFP Insert Biased Exponent */
5179 record_full_arch_list_add_reg (regcache,
5180 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5181 if (PPC_RC (insn))
5182 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5183 return 0;
5184
5185 case 846: /* Floating Convert From Integer Doubleword Single */
5186 case 974: /* Floating Convert From Integer Doubleword Unsigned
5187 Single */
5188 record_full_arch_list_add_reg (regcache,
5189 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5190 if (PPC_RC (insn))
5191 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5192 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5193
5194 return 0;
5195 }
5196
5197 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5198 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5199 return -1;
5200 }
5201
5202 /* Parse and record instructions of primary opcode-60 at ADDR.
5203 Return 0 if successful. */
5204
5205 static int
5206 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5207 CORE_ADDR addr, uint32_t insn)
5208 {
5209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5210 int ext = PPC_EXTOP (insn);
5211
5212 switch (ext >> 2)
5213 {
5214 case 0: /* VSX Scalar Add Single-Precision */
5215 case 32: /* VSX Scalar Add Double-Precision */
5216 case 24: /* VSX Scalar Divide Single-Precision */
5217 case 56: /* VSX Scalar Divide Double-Precision */
5218 case 176: /* VSX Scalar Copy Sign Double-Precision */
5219 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5220 case 41: /* ditto */
5221 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5222 case 9: /* ditto */
5223 case 160: /* VSX Scalar Maximum Double-Precision */
5224 case 168: /* VSX Scalar Minimum Double-Precision */
5225 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5226 case 57: /* ditto */
5227 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5228 case 25: /* ditto */
5229 case 48: /* VSX Scalar Multiply Double-Precision */
5230 case 16: /* VSX Scalar Multiply Single-Precision */
5231 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5232 case 169: /* ditto */
5233 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5234 case 137: /* ditto */
5235 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5236 case 185: /* ditto */
5237 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5238 case 153: /* ditto */
5239 case 40: /* VSX Scalar Subtract Double-Precision */
5240 case 8: /* VSX Scalar Subtract Single-Precision */
5241 case 96: /* VSX Vector Add Double-Precision */
5242 case 64: /* VSX Vector Add Single-Precision */
5243 case 120: /* VSX Vector Divide Double-Precision */
5244 case 88: /* VSX Vector Divide Single-Precision */
5245 case 97: /* VSX Vector Multiply-Add Double-Precision */
5246 case 105: /* ditto */
5247 case 65: /* VSX Vector Multiply-Add Single-Precision */
5248 case 73: /* ditto */
5249 case 224: /* VSX Vector Maximum Double-Precision */
5250 case 192: /* VSX Vector Maximum Single-Precision */
5251 case 232: /* VSX Vector Minimum Double-Precision */
5252 case 200: /* VSX Vector Minimum Single-Precision */
5253 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5254 case 121: /* ditto */
5255 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5256 case 89: /* ditto */
5257 case 112: /* VSX Vector Multiply Double-Precision */
5258 case 80: /* VSX Vector Multiply Single-Precision */
5259 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5260 case 233: /* ditto */
5261 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5262 case 201: /* ditto */
5263 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5264 case 249: /* ditto */
5265 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5266 case 217: /* ditto */
5267 case 104: /* VSX Vector Subtract Double-Precision */
5268 case 72: /* VSX Vector Subtract Single-Precision */
5269 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5270 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5271 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5272 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5273 case 3: /* VSX Scalar Compare Equal Double-Precision */
5274 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5275 case 19: /* VSX Scalar Compare Greater Than or Equal
5276 Double-Precision */
5277 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5278 /* FALL-THROUGH */
5279 case 240: /* VSX Vector Copy Sign Double-Precision */
5280 case 208: /* VSX Vector Copy Sign Single-Precision */
5281 case 130: /* VSX Logical AND */
5282 case 138: /* VSX Logical AND with Complement */
5283 case 186: /* VSX Logical Equivalence */
5284 case 178: /* VSX Logical NAND */
5285 case 170: /* VSX Logical OR with Complement */
5286 case 162: /* VSX Logical NOR */
5287 case 146: /* VSX Logical OR */
5288 case 154: /* VSX Logical XOR */
5289 case 18: /* VSX Merge High Word */
5290 case 50: /* VSX Merge Low Word */
5291 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5292 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5293 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5294 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5295 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5296 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5297 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5298 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5299 case 216: /* VSX Vector Insert Exponent Single-Precision */
5300 case 248: /* VSX Vector Insert Exponent Double-Precision */
5301 case 26: /* VSX Vector Permute */
5302 case 58: /* VSX Vector Permute Right-indexed */
5303 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5304 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5305 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5306 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5307 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5308 return 0;
5309
5310 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5311 case 125: /* VSX Vector Test for software Divide Double-Precision */
5312 case 93: /* VSX Vector Test for software Divide Single-Precision */
5313 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5314 return 0;
5315
5316 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5317 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5318 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5319 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5320 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5321 return 0;
5322 }
5323
5324 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5325 {
5326 case 99: /* VSX Vector Compare Equal To Double-Precision */
5327 case 67: /* VSX Vector Compare Equal To Single-Precision */
5328 case 115: /* VSX Vector Compare Greater Than or
5329 Equal To Double-Precision */
5330 case 83: /* VSX Vector Compare Greater Than or
5331 Equal To Single-Precision */
5332 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5333 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5334 if (PPC_Rc (insn))
5335 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5336 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5337 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5338 return 0;
5339 }
5340
5341 switch (ext >> 1)
5342 {
5343 case 265: /* VSX Scalar round Double-Precision to
5344 Single-Precision and Convert to
5345 Single-Precision format */
5346 case 344: /* VSX Scalar truncate Double-Precision to
5347 Integer and Convert to Signed Integer
5348 Doubleword format with Saturate */
5349 case 88: /* VSX Scalar truncate Double-Precision to
5350 Integer and Convert to Signed Integer Word
5351 Format with Saturate */
5352 case 328: /* VSX Scalar truncate Double-Precision integer
5353 and Convert to Unsigned Integer Doubleword
5354 Format with Saturate */
5355 case 72: /* VSX Scalar truncate Double-Precision to
5356 Integer and Convert to Unsigned Integer Word
5357 Format with Saturate */
5358 case 329: /* VSX Scalar Convert Single-Precision to
5359 Double-Precision format */
5360 case 376: /* VSX Scalar Convert Signed Integer
5361 Doubleword to floating-point format and
5362 Round to Double-Precision format */
5363 case 312: /* VSX Scalar Convert Signed Integer
5364 Doubleword to floating-point format and
5365 round to Single-Precision */
5366 case 360: /* VSX Scalar Convert Unsigned Integer
5367 Doubleword to floating-point format and
5368 Round to Double-Precision format */
5369 case 296: /* VSX Scalar Convert Unsigned Integer
5370 Doubleword to floating-point format and
5371 Round to Single-Precision */
5372 case 73: /* VSX Scalar Round to Double-Precision Integer
5373 Using Round to Nearest Away */
5374 case 107: /* VSX Scalar Round to Double-Precision Integer
5375 Exact using Current rounding mode */
5376 case 121: /* VSX Scalar Round to Double-Precision Integer
5377 Using Round toward -Infinity */
5378 case 105: /* VSX Scalar Round to Double-Precision Integer
5379 Using Round toward +Infinity */
5380 case 89: /* VSX Scalar Round to Double-Precision Integer
5381 Using Round toward Zero */
5382 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5383 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5384 case 281: /* VSX Scalar Round to Single-Precision */
5385 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5386 Double-Precision */
5387 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5388 Single-Precision */
5389 case 75: /* VSX Scalar Square Root Double-Precision */
5390 case 11: /* VSX Scalar Square Root Single-Precision */
5391 case 393: /* VSX Vector round Double-Precision to
5392 Single-Precision and Convert to
5393 Single-Precision format */
5394 case 472: /* VSX Vector truncate Double-Precision to
5395 Integer and Convert to Signed Integer
5396 Doubleword format with Saturate */
5397 case 216: /* VSX Vector truncate Double-Precision to
5398 Integer and Convert to Signed Integer Word
5399 Format with Saturate */
5400 case 456: /* VSX Vector truncate Double-Precision to
5401 Integer and Convert to Unsigned Integer
5402 Doubleword format with Saturate */
5403 case 200: /* VSX Vector truncate Double-Precision to
5404 Integer and Convert to Unsigned Integer Word
5405 Format with Saturate */
5406 case 457: /* VSX Vector Convert Single-Precision to
5407 Double-Precision format */
5408 case 408: /* VSX Vector truncate Single-Precision to
5409 Integer and Convert to Signed Integer
5410 Doubleword format with Saturate */
5411 case 152: /* VSX Vector truncate Single-Precision to
5412 Integer and Convert to Signed Integer Word
5413 Format with Saturate */
5414 case 392: /* VSX Vector truncate Single-Precision to
5415 Integer and Convert to Unsigned Integer
5416 Doubleword format with Saturate */
5417 case 136: /* VSX Vector truncate Single-Precision to
5418 Integer and Convert to Unsigned Integer Word
5419 Format with Saturate */
5420 case 504: /* VSX Vector Convert and round Signed Integer
5421 Doubleword to Double-Precision format */
5422 case 440: /* VSX Vector Convert and round Signed Integer
5423 Doubleword to Single-Precision format */
5424 case 248: /* VSX Vector Convert Signed Integer Word to
5425 Double-Precision format */
5426 case 184: /* VSX Vector Convert and round Signed Integer
5427 Word to Single-Precision format */
5428 case 488: /* VSX Vector Convert and round Unsigned
5429 Integer Doubleword to Double-Precision format */
5430 case 424: /* VSX Vector Convert and round Unsigned
5431 Integer Doubleword to Single-Precision format */
5432 case 232: /* VSX Vector Convert and round Unsigned
5433 Integer Word to Double-Precision format */
5434 case 168: /* VSX Vector Convert and round Unsigned
5435 Integer Word to Single-Precision format */
5436 case 201: /* VSX Vector Round to Double-Precision
5437 Integer using round to Nearest Away */
5438 case 235: /* VSX Vector Round to Double-Precision
5439 Integer Exact using Current rounding mode */
5440 case 249: /* VSX Vector Round to Double-Precision
5441 Integer using round toward -Infinity */
5442 case 233: /* VSX Vector Round to Double-Precision
5443 Integer using round toward +Infinity */
5444 case 217: /* VSX Vector Round to Double-Precision
5445 Integer using round toward Zero */
5446 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5447 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5448 case 137: /* VSX Vector Round to Single-Precision Integer
5449 Using Round to Nearest Away */
5450 case 171: /* VSX Vector Round to Single-Precision Integer
5451 Exact Using Current rounding mode */
5452 case 185: /* VSX Vector Round to Single-Precision Integer
5453 Using Round toward -Infinity */
5454 case 169: /* VSX Vector Round to Single-Precision Integer
5455 Using Round toward +Infinity */
5456 case 153: /* VSX Vector Round to Single-Precision Integer
5457 Using round toward Zero */
5458 case 202: /* VSX Vector Reciprocal Square Root Estimate
5459 Double-Precision */
5460 case 138: /* VSX Vector Reciprocal Square Root Estimate
5461 Single-Precision */
5462 case 203: /* VSX Vector Square Root Double-Precision */
5463 case 139: /* VSX Vector Square Root Single-Precision */
5464 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5465 /* FALL-THROUGH */
5466 case 345: /* VSX Scalar Absolute Value Double-Precision */
5467 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5468 Vector Single-Precision format Non-signalling */
5469 case 331: /* VSX Scalar Convert Single-Precision to
5470 Double-Precision format Non-signalling */
5471 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5472 case 377: /* VSX Scalar Negate Double-Precision */
5473 case 473: /* VSX Vector Absolute Value Double-Precision */
5474 case 409: /* VSX Vector Absolute Value Single-Precision */
5475 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5476 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5477 case 505: /* VSX Vector Negate Double-Precision */
5478 case 441: /* VSX Vector Negate Single-Precision */
5479 case 164: /* VSX Splat Word */
5480 case 165: /* VSX Vector Extract Unsigned Word */
5481 case 181: /* VSX Vector Insert Word */
5482 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5483 return 0;
5484
5485 case 298: /* VSX Scalar Test Data Class Single-Precision */
5486 case 362: /* VSX Scalar Test Data Class Double-Precision */
5487 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5488 /* FALL-THROUGH */
5489 case 106: /* VSX Scalar Test for software Square Root
5490 Double-Precision */
5491 case 234: /* VSX Vector Test for software Square Root
5492 Double-Precision */
5493 case 170: /* VSX Vector Test for software Square Root
5494 Single-Precision */
5495 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5496 return 0;
5497
5498 case 347:
5499 switch (PPC_FIELD (insn, 11, 5))
5500 {
5501 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5502 case 1: /* VSX Scalar Extract Significand Double-Precision */
5503 record_full_arch_list_add_reg (regcache,
5504 tdep->ppc_gp0_regnum + PPC_RT (insn));
5505 return 0;
5506 case 16: /* VSX Scalar Convert Half-Precision format to
5507 Double-Precision format */
5508 case 17: /* VSX Scalar round & Convert Double-Precision format
5509 to Half-Precision format */
5510 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5511 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5512 return 0;
5513 }
5514 break;
5515
5516 case 475:
5517 switch (PPC_FIELD (insn, 11, 5))
5518 {
5519 case 24: /* VSX Vector Convert Half-Precision format to
5520 Single-Precision format */
5521 case 25: /* VSX Vector round and Convert Single-Precision format
5522 to Half-Precision format */
5523 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5524 /* FALL-THROUGH */
5525 case 0: /* VSX Vector Extract Exponent Double-Precision */
5526 case 1: /* VSX Vector Extract Significand Double-Precision */
5527 case 7: /* VSX Vector Byte-Reverse Halfword */
5528 case 8: /* VSX Vector Extract Exponent Single-Precision */
5529 case 9: /* VSX Vector Extract Significand Single-Precision */
5530 case 15: /* VSX Vector Byte-Reverse Word */
5531 case 23: /* VSX Vector Byte-Reverse Doubleword */
5532 case 31: /* VSX Vector Byte-Reverse Quadword */
5533 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5534 return 0;
5535 }
5536 break;
5537 }
5538
5539 switch (ext)
5540 {
5541 case 360: /* VSX Vector Splat Immediate Byte */
5542 if (PPC_FIELD (insn, 11, 2) == 0)
5543 {
5544 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5545 return 0;
5546 }
5547 break;
5548 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5549 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5550 return 0;
5551 }
5552
5553 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5554 {
5555 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5556 return 0;
5557 }
5558
5559 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5560 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5561 return -1;
5562 }
5563
5564 /* Parse and record instructions of primary opcode-61 at ADDR.
5565 Return 0 if successful. */
5566
5567 static int
5568 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5569 CORE_ADDR addr, uint32_t insn)
5570 {
5571 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5572 ULONGEST ea = 0;
5573 int size;
5574
5575 switch (insn & 0x3)
5576 {
5577 case 0: /* Store Floating-Point Double Pair */
5578 case 2: /* Store VSX Scalar Doubleword */
5579 case 3: /* Store VSX Scalar Single */
5580 if (PPC_RA (insn) != 0)
5581 regcache_raw_read_unsigned (regcache,
5582 tdep->ppc_gp0_regnum + PPC_RA (insn),
5583 &ea);
5584 ea += PPC_DS (insn) << 2;
5585 switch (insn & 0x3)
5586 {
5587 case 0: /* Store Floating-Point Double Pair */
5588 size = 16;
5589 break;
5590 case 2: /* Store VSX Scalar Doubleword */
5591 size = 8;
5592 break;
5593 case 3: /* Store VSX Scalar Single */
5594 size = 4;
5595 break;
5596 default:
5597 gdb_assert (0);
5598 }
5599 record_full_arch_list_add_mem (ea, size);
5600 return 0;
5601 }
5602
5603 switch (insn & 0x7)
5604 {
5605 case 1: /* Load VSX Vector */
5606 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5607 return 0;
5608 case 5: /* Store VSX Vector */
5609 if (PPC_RA (insn) != 0)
5610 regcache_raw_read_unsigned (regcache,
5611 tdep->ppc_gp0_regnum + PPC_RA (insn),
5612 &ea);
5613 ea += PPC_DQ (insn) << 4;
5614 record_full_arch_list_add_mem (ea, 16);
5615 return 0;
5616 }
5617
5618 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5619 "at %s.\n", insn, paddress (gdbarch, addr));
5620 return -1;
5621 }
5622
5623 /* Parse and record instructions of primary opcode-63 at ADDR.
5624 Return 0 if successful. */
5625
5626 static int
5627 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5628 CORE_ADDR addr, uint32_t insn)
5629 {
5630 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5631 int ext = PPC_EXTOP (insn);
5632 int tmp;
5633
5634 switch (ext & 0x1f)
5635 {
5636 case 18: /* Floating Divide */
5637 case 20: /* Floating Subtract */
5638 case 21: /* Floating Add */
5639 case 22: /* Floating Square Root */
5640 case 24: /* Floating Reciprocal Estimate */
5641 case 25: /* Floating Multiply */
5642 case 26: /* Floating Reciprocal Square Root Estimate */
5643 case 28: /* Floating Multiply-Subtract */
5644 case 29: /* Floating Multiply-Add */
5645 case 30: /* Floating Negative Multiply-Subtract */
5646 case 31: /* Floating Negative Multiply-Add */
5647 record_full_arch_list_add_reg (regcache,
5648 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5649 if (PPC_RC (insn))
5650 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5651 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5652 return 0;
5653
5654 case 23: /* Floating Select */
5655 record_full_arch_list_add_reg (regcache,
5656 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5657 if (PPC_RC (insn))
5658 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5659 return 0;
5660 }
5661
5662 switch (ext & 0xff)
5663 {
5664 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5665 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5666 Precision */
5667 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5668 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5669 return 0;
5670 }
5671
5672 switch (ext)
5673 {
5674 case 2: /* DFP Add Quad */
5675 case 3: /* DFP Quantize Quad */
5676 case 34: /* DFP Multiply Quad */
5677 case 35: /* DFP Reround Quad */
5678 case 67: /* DFP Quantize Immediate Quad */
5679 case 99: /* DFP Round To FP Integer With Inexact Quad */
5680 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5681 case 258: /* DFP Convert To DFP Extended Quad */
5682 case 514: /* DFP Subtract Quad */
5683 case 546: /* DFP Divide Quad */
5684 case 770: /* DFP Round To DFP Long Quad */
5685 case 802: /* DFP Convert From Fixed Quad */
5686 case 834: /* DFP Encode BCD To DPD Quad */
5687 if (PPC_RC (insn))
5688 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5689 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5690 record_full_arch_list_add_reg (regcache, tmp);
5691 record_full_arch_list_add_reg (regcache, tmp + 1);
5692 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5693 return 0;
5694
5695 case 130: /* DFP Compare Ordered Quad */
5696 case 162: /* DFP Test Exponent Quad */
5697 case 194: /* DFP Test Data Class Quad */
5698 case 226: /* DFP Test Data Group Quad */
5699 case 642: /* DFP Compare Unordered Quad */
5700 case 674: /* DFP Test Significance Quad */
5701 case 675: /* DFP Test Significance Immediate Quad */
5702 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5703 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5704 return 0;
5705
5706 case 66: /* DFP Shift Significand Left Immediate Quad */
5707 case 98: /* DFP Shift Significand Right Immediate Quad */
5708 case 322: /* DFP Decode DPD To BCD Quad */
5709 case 866: /* DFP Insert Biased Exponent Quad */
5710 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5711 record_full_arch_list_add_reg (regcache, tmp);
5712 record_full_arch_list_add_reg (regcache, tmp + 1);
5713 if (PPC_RC (insn))
5714 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5715 return 0;
5716
5717 case 290: /* DFP Convert To Fixed Quad */
5718 record_full_arch_list_add_reg (regcache,
5719 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5720 if (PPC_RC (insn))
5721 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5723 return 0;
5724
5725 case 354: /* DFP Extract Biased Exponent Quad */
5726 record_full_arch_list_add_reg (regcache,
5727 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5728 if (PPC_RC (insn))
5729 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5730 return 0;
5731
5732 case 12: /* Floating Round to Single-Precision */
5733 case 14: /* Floating Convert To Integer Word */
5734 case 15: /* Floating Convert To Integer Word
5735 with round toward Zero */
5736 case 142: /* Floating Convert To Integer Word Unsigned */
5737 case 143: /* Floating Convert To Integer Word Unsigned
5738 with round toward Zero */
5739 case 392: /* Floating Round to Integer Nearest */
5740 case 424: /* Floating Round to Integer Toward Zero */
5741 case 456: /* Floating Round to Integer Plus */
5742 case 488: /* Floating Round to Integer Minus */
5743 case 814: /* Floating Convert To Integer Doubleword */
5744 case 815: /* Floating Convert To Integer Doubleword
5745 with round toward Zero */
5746 case 846: /* Floating Convert From Integer Doubleword */
5747 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5748 case 943: /* Floating Convert To Integer Doubleword Unsigned
5749 with round toward Zero */
5750 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5751 record_full_arch_list_add_reg (regcache,
5752 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5753 if (PPC_RC (insn))
5754 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5755 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5756 return 0;
5757
5758 case 583:
5759 switch (PPC_FIELD (insn, 11, 5))
5760 {
5761 case 1: /* Move From FPSCR & Clear Enables */
5762 case 20: /* Move From FPSCR Control & set DRN */
5763 case 21: /* Move From FPSCR Control & set DRN Immediate */
5764 case 22: /* Move From FPSCR Control & set RN */
5765 case 23: /* Move From FPSCR Control & set RN Immediate */
5766 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5767 /* Fall through. */
5768 case 0: /* Move From FPSCR */
5769 case 24: /* Move From FPSCR Lightweight */
5770 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5771 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5772 record_full_arch_list_add_reg (regcache,
5773 tdep->ppc_fp0_regnum
5774 + PPC_FRT (insn));
5775 return 0;
5776 }
5777 break;
5778
5779 case 8: /* Floating Copy Sign */
5780 case 40: /* Floating Negate */
5781 case 72: /* Floating Move Register */
5782 case 136: /* Floating Negative Absolute Value */
5783 case 264: /* Floating Absolute Value */
5784 record_full_arch_list_add_reg (regcache,
5785 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5786 if (PPC_RC (insn))
5787 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5788 return 0;
5789
5790 case 838: /* Floating Merge Odd Word */
5791 case 966: /* Floating Merge Even Word */
5792 record_full_arch_list_add_reg (regcache,
5793 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5794 return 0;
5795
5796 case 38: /* Move To FPSCR Bit 1 */
5797 case 70: /* Move To FPSCR Bit 0 */
5798 case 134: /* Move To FPSCR Field Immediate */
5799 case 711: /* Move To FPSCR Fields */
5800 if (PPC_RC (insn))
5801 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5802 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5803 return 0;
5804
5805 case 0: /* Floating Compare Unordered */
5806 case 32: /* Floating Compare Ordered */
5807 case 64: /* Move to Condition Register from FPSCR */
5808 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5809 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5810 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5811 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5812 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5813 /* FALL-THROUGH */
5814 case 128: /* Floating Test for software Divide */
5815 case 160: /* Floating Test for software Square Root */
5816 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5817 return 0;
5818
5819 case 4: /* VSX Scalar Add Quad-Precision */
5820 case 36: /* VSX Scalar Multiply Quad-Precision */
5821 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5822 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5823 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5824 case 484: /* VSX Scalar Negative Multiply-Subtract
5825 Quad-Precision */
5826 case 516: /* VSX Scalar Subtract Quad-Precision */
5827 case 548: /* VSX Scalar Divide Quad-Precision */
5828 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5829 /* FALL-THROUGH */
5830 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5831 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5832 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5833 return 0;
5834
5835 case 804:
5836 switch (PPC_FIELD (insn, 11, 5))
5837 {
5838 case 27: /* VSX Scalar Square Root Quad-Precision */
5839 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5840 /* FALL-THROUGH */
5841 case 0: /* VSX Scalar Absolute Quad-Precision */
5842 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5843 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5844 case 16: /* VSX Scalar Negate Quad-Precision */
5845 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5846 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5847 return 0;
5848 }
5849 break;
5850
5851 case 836:
5852 switch (PPC_FIELD (insn, 11, 5))
5853 {
5854 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5855 to Unsigned Word format */
5856 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5857 Quad-Precision format */
5858 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5859 to Signed Word format */
5860 case 10: /* VSX Scalar Convert Signed Doubleword format to
5861 Quad-Precision format */
5862 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5863 to Unsigned Doubleword format */
5864 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5865 Double-Precision format */
5866 case 22: /* VSX Scalar Convert Double-Precision format to
5867 Quad-Precision format */
5868 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5869 to Signed Doubleword format */
5870 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5871 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5872 return 0;
5873 }
5874 }
5875
5876 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5877 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5878 return -1;
5879 }
5880
5881 /* Parse the current instruction and record the values of the registers and
5882 memory that will be changed in current instruction to "record_arch_list".
5883 Return -1 if something wrong. */
5884
5885 int
5886 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5887 CORE_ADDR addr)
5888 {
5889 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5890 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5891 uint32_t insn;
5892 int op6, tmp, i;
5893
5894 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5895 op6 = PPC_OP6 (insn);
5896
5897 switch (op6)
5898 {
5899 case 2: /* Trap Doubleword Immediate */
5900 case 3: /* Trap Word Immediate */
5901 /* Do nothing. */
5902 break;
5903
5904 case 4:
5905 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5906 return -1;
5907 break;
5908
5909 case 17: /* System call */
5910 if (PPC_LEV (insn) != 0)
5911 goto UNKNOWN_OP;
5912
5913 if (tdep->ppc_syscall_record != NULL)
5914 {
5915 if (tdep->ppc_syscall_record (regcache) != 0)
5916 return -1;
5917 }
5918 else
5919 {
5920 printf_unfiltered (_("no syscall record support\n"));
5921 return -1;
5922 }
5923 break;
5924
5925 case 7: /* Multiply Low Immediate */
5926 record_full_arch_list_add_reg (regcache,
5927 tdep->ppc_gp0_regnum + PPC_RT (insn));
5928 break;
5929
5930 case 8: /* Subtract From Immediate Carrying */
5931 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5932 record_full_arch_list_add_reg (regcache,
5933 tdep->ppc_gp0_regnum + PPC_RT (insn));
5934 break;
5935
5936 case 10: /* Compare Logical Immediate */
5937 case 11: /* Compare Immediate */
5938 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5939 break;
5940
5941 case 13: /* Add Immediate Carrying and Record */
5942 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5943 /* FALL-THROUGH */
5944 case 12: /* Add Immediate Carrying */
5945 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5946 /* FALL-THROUGH */
5947 case 14: /* Add Immediate */
5948 case 15: /* Add Immediate Shifted */
5949 record_full_arch_list_add_reg (regcache,
5950 tdep->ppc_gp0_regnum + PPC_RT (insn));
5951 break;
5952
5953 case 16: /* Branch Conditional */
5954 if ((PPC_BO (insn) & 0x4) == 0)
5955 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5956 /* FALL-THROUGH */
5957 case 18: /* Branch */
5958 if (PPC_LK (insn))
5959 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5960 break;
5961
5962 case 19:
5963 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5964 return -1;
5965 break;
5966
5967 case 20: /* Rotate Left Word Immediate then Mask Insert */
5968 case 21: /* Rotate Left Word Immediate then AND with Mask */
5969 case 23: /* Rotate Left Word then AND with Mask */
5970 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5971 /* Rotate Left Doubleword Immediate then Clear Right */
5972 /* Rotate Left Doubleword Immediate then Clear */
5973 /* Rotate Left Doubleword then Clear Left */
5974 /* Rotate Left Doubleword then Clear Right */
5975 /* Rotate Left Doubleword Immediate then Mask Insert */
5976 if (PPC_RC (insn))
5977 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5978 record_full_arch_list_add_reg (regcache,
5979 tdep->ppc_gp0_regnum + PPC_RA (insn));
5980 break;
5981
5982 case 28: /* AND Immediate */
5983 case 29: /* AND Immediate Shifted */
5984 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5985 /* FALL-THROUGH */
5986 case 24: /* OR Immediate */
5987 case 25: /* OR Immediate Shifted */
5988 case 26: /* XOR Immediate */
5989 case 27: /* XOR Immediate Shifted */
5990 record_full_arch_list_add_reg (regcache,
5991 tdep->ppc_gp0_regnum + PPC_RA (insn));
5992 break;
5993
5994 case 31:
5995 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5996 return -1;
5997 break;
5998
5999 case 33: /* Load Word and Zero with Update */
6000 case 35: /* Load Byte and Zero with Update */
6001 case 41: /* Load Halfword and Zero with Update */
6002 case 43: /* Load Halfword Algebraic with Update */
6003 record_full_arch_list_add_reg (regcache,
6004 tdep->ppc_gp0_regnum + PPC_RA (insn));
6005 /* FALL-THROUGH */
6006 case 32: /* Load Word and Zero */
6007 case 34: /* Load Byte and Zero */
6008 case 40: /* Load Halfword and Zero */
6009 case 42: /* Load Halfword Algebraic */
6010 record_full_arch_list_add_reg (regcache,
6011 tdep->ppc_gp0_regnum + PPC_RT (insn));
6012 break;
6013
6014 case 46: /* Load Multiple Word */
6015 for (i = PPC_RT (insn); i < 32; i++)
6016 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6017 break;
6018
6019 case 56: /* Load Quadword */
6020 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6021 record_full_arch_list_add_reg (regcache, tmp);
6022 record_full_arch_list_add_reg (regcache, tmp + 1);
6023 break;
6024
6025 case 49: /* Load Floating-Point Single with Update */
6026 case 51: /* Load Floating-Point Double with Update */
6027 record_full_arch_list_add_reg (regcache,
6028 tdep->ppc_gp0_regnum + PPC_RA (insn));
6029 /* FALL-THROUGH */
6030 case 48: /* Load Floating-Point Single */
6031 case 50: /* Load Floating-Point Double */
6032 record_full_arch_list_add_reg (regcache,
6033 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6034 break;
6035
6036 case 47: /* Store Multiple Word */
6037 {
6038 ULONGEST iaddr = 0;
6039
6040 if (PPC_RA (insn) != 0)
6041 regcache_raw_read_unsigned (regcache,
6042 tdep->ppc_gp0_regnum + PPC_RA (insn),
6043 &iaddr);
6044
6045 iaddr += PPC_D (insn);
6046 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
6047 }
6048 break;
6049
6050 case 37: /* Store Word with Update */
6051 case 39: /* Store Byte with Update */
6052 case 45: /* Store Halfword with Update */
6053 case 53: /* Store Floating-Point Single with Update */
6054 case 55: /* Store Floating-Point Double with Update */
6055 record_full_arch_list_add_reg (regcache,
6056 tdep->ppc_gp0_regnum + PPC_RA (insn));
6057 /* FALL-THROUGH */
6058 case 36: /* Store Word */
6059 case 38: /* Store Byte */
6060 case 44: /* Store Halfword */
6061 case 52: /* Store Floating-Point Single */
6062 case 54: /* Store Floating-Point Double */
6063 {
6064 ULONGEST iaddr = 0;
6065 int size = -1;
6066
6067 if (PPC_RA (insn) != 0)
6068 regcache_raw_read_unsigned (regcache,
6069 tdep->ppc_gp0_regnum + PPC_RA (insn),
6070 &iaddr);
6071 iaddr += PPC_D (insn);
6072
6073 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6074 size = 4;
6075 else if (op6 == 54 || op6 == 55)
6076 size = 8;
6077 else if (op6 == 44 || op6 == 45)
6078 size = 2;
6079 else if (op6 == 38 || op6 == 39)
6080 size = 1;
6081 else
6082 gdb_assert (0);
6083
6084 record_full_arch_list_add_mem (iaddr, size);
6085 }
6086 break;
6087
6088 case 57:
6089 switch (insn & 0x3)
6090 {
6091 case 0: /* Load Floating-Point Double Pair */
6092 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6093 record_full_arch_list_add_reg (regcache, tmp);
6094 record_full_arch_list_add_reg (regcache, tmp + 1);
6095 break;
6096 case 2: /* Load VSX Scalar Doubleword */
6097 case 3: /* Load VSX Scalar Single */
6098 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6099 break;
6100 default:
6101 goto UNKNOWN_OP;
6102 }
6103 break;
6104
6105 case 58: /* Load Doubleword */
6106 /* Load Doubleword with Update */
6107 /* Load Word Algebraic */
6108 if (PPC_FIELD (insn, 30, 2) > 2)
6109 goto UNKNOWN_OP;
6110
6111 record_full_arch_list_add_reg (regcache,
6112 tdep->ppc_gp0_regnum + PPC_RT (insn));
6113 if (PPC_BIT (insn, 31))
6114 record_full_arch_list_add_reg (regcache,
6115 tdep->ppc_gp0_regnum + PPC_RA (insn));
6116 break;
6117
6118 case 59:
6119 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6120 return -1;
6121 break;
6122
6123 case 60:
6124 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6125 return -1;
6126 break;
6127
6128 case 61:
6129 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6130 return -1;
6131 break;
6132
6133 case 62: /* Store Doubleword */
6134 /* Store Doubleword with Update */
6135 /* Store Quadword with Update */
6136 {
6137 ULONGEST iaddr = 0;
6138 int size;
6139 int sub2 = PPC_FIELD (insn, 30, 2);
6140
6141 if (sub2 > 2)
6142 goto UNKNOWN_OP;
6143
6144 if (PPC_RA (insn) != 0)
6145 regcache_raw_read_unsigned (regcache,
6146 tdep->ppc_gp0_regnum + PPC_RA (insn),
6147 &iaddr);
6148
6149 size = (sub2 == 2) ? 16 : 8;
6150
6151 iaddr += PPC_DS (insn) << 2;
6152 record_full_arch_list_add_mem (iaddr, size);
6153
6154 if (op6 == 62 && sub2 == 1)
6155 record_full_arch_list_add_reg (regcache,
6156 tdep->ppc_gp0_regnum +
6157 PPC_RA (insn));
6158
6159 break;
6160 }
6161
6162 case 63:
6163 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6164 return -1;
6165 break;
6166
6167 default:
6168 UNKNOWN_OP:
6169 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6170 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6171 return -1;
6172 }
6173
6174 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6175 return -1;
6176 if (record_full_arch_list_add_end ())
6177 return -1;
6178 return 0;
6179 }
6180
6181 /* Initialize the current architecture based on INFO. If possible, re-use an
6182 architecture from ARCHES, which is a list of architectures already created
6183 during this debugging session.
6184
6185 Called e.g. at program startup, when reading a core file, and when reading
6186 a binary file. */
6187
6188 static struct gdbarch *
6189 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6190 {
6191 struct gdbarch *gdbarch;
6192 struct gdbarch_tdep *tdep;
6193 int wordsize, from_xcoff_exec, from_elf_exec;
6194 enum bfd_architecture arch;
6195 unsigned long mach;
6196 bfd abfd;
6197 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6198 int soft_float;
6199 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6200 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6201 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6202 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6203 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6204 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6205 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6206 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6207 int have_htm_tar = 0;
6208 int tdesc_wordsize = -1;
6209 const struct target_desc *tdesc = info.target_desc;
6210 tdesc_arch_data_up tdesc_data;
6211 int num_pseudoregs = 0;
6212 int cur_reg;
6213
6214 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6215 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6216
6217 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6218 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6219
6220 /* Check word size. If INFO is from a binary file, infer it from
6221 that, else choose a likely default. */
6222 if (from_xcoff_exec)
6223 {
6224 if (bfd_xcoff_is_xcoff64 (info.abfd))
6225 wordsize = 8;
6226 else
6227 wordsize = 4;
6228 }
6229 else if (from_elf_exec)
6230 {
6231 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6232 wordsize = 8;
6233 else
6234 wordsize = 4;
6235 }
6236 else if (tdesc_has_registers (tdesc))
6237 wordsize = -1;
6238 else
6239 {
6240 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6241 wordsize = (info.bfd_arch_info->bits_per_word
6242 / info.bfd_arch_info->bits_per_byte);
6243 else
6244 wordsize = 4;
6245 }
6246
6247 /* Get the architecture and machine from the BFD. */
6248 arch = info.bfd_arch_info->arch;
6249 mach = info.bfd_arch_info->mach;
6250
6251 /* For e500 executables, the apuinfo section is of help here. Such
6252 section contains the identifier and revision number of each
6253 Application-specific Processing Unit that is present on the
6254 chip. The content of the section is determined by the assembler
6255 which looks at each instruction and determines which unit (and
6256 which version of it) can execute it. Grovel through the section
6257 looking for relevant e500 APUs. */
6258
6259 if (bfd_uses_spe_extensions (info.abfd))
6260 {
6261 arch = info.bfd_arch_info->arch;
6262 mach = bfd_mach_ppc_e500;
6263 bfd_default_set_arch_mach (&abfd, arch, mach);
6264 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6265 }
6266
6267 /* Find a default target description which describes our register
6268 layout, if we do not already have one. */
6269 if (! tdesc_has_registers (tdesc))
6270 {
6271 const struct ppc_variant *v;
6272
6273 /* Choose variant. */
6274 v = find_variant_by_arch (arch, mach);
6275 if (!v)
6276 return NULL;
6277
6278 tdesc = *v->tdesc;
6279 }
6280
6281 gdb_assert (tdesc_has_registers (tdesc));
6282
6283 /* Check any target description for validity. */
6284 if (tdesc_has_registers (tdesc))
6285 {
6286 static const char *const gprs[] = {
6287 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6288 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6289 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6290 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6291 };
6292 const struct tdesc_feature *feature;
6293 int i, valid_p;
6294 static const char *const msr_names[] = { "msr", "ps" };
6295 static const char *const cr_names[] = { "cr", "cnd" };
6296 static const char *const ctr_names[] = { "ctr", "cnt" };
6297
6298 feature = tdesc_find_feature (tdesc,
6299 "org.gnu.gdb.power.core");
6300 if (feature == NULL)
6301 return NULL;
6302
6303 tdesc_data = tdesc_data_alloc ();
6304
6305 valid_p = 1;
6306 for (i = 0; i < ppc_num_gprs; i++)
6307 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6308 i, gprs[i]);
6309 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6310 PPC_PC_REGNUM, "pc");
6311 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6312 PPC_LR_REGNUM, "lr");
6313 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6314 PPC_XER_REGNUM, "xer");
6315
6316 /* Allow alternate names for these registers, to accomodate GDB's
6317 historic naming. */
6318 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6319 PPC_MSR_REGNUM, msr_names);
6320 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6321 PPC_CR_REGNUM, cr_names);
6322 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6323 PPC_CTR_REGNUM, ctr_names);
6324
6325 if (!valid_p)
6326 return NULL;
6327
6328 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6329 PPC_MQ_REGNUM, "mq");
6330
6331 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6332 if (wordsize == -1)
6333 wordsize = tdesc_wordsize;
6334
6335 feature = tdesc_find_feature (tdesc,
6336 "org.gnu.gdb.power.fpu");
6337 if (feature != NULL)
6338 {
6339 static const char *const fprs[] = {
6340 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6341 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6342 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6343 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6344 };
6345 valid_p = 1;
6346 for (i = 0; i < ppc_num_fprs; i++)
6347 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6348 PPC_F0_REGNUM + i, fprs[i]);
6349 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6350 PPC_FPSCR_REGNUM, "fpscr");
6351
6352 if (!valid_p)
6353 return NULL;
6354 have_fpu = 1;
6355
6356 /* The fpscr register was expanded in isa 2.05 to 64 bits
6357 along with the addition of the decimal floating point
6358 facility. */
6359 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6360 have_dfp = 1;
6361 }
6362 else
6363 have_fpu = 0;
6364
6365 feature = tdesc_find_feature (tdesc,
6366 "org.gnu.gdb.power.altivec");
6367 if (feature != NULL)
6368 {
6369 static const char *const vector_regs[] = {
6370 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6371 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6372 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6373 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6374 };
6375
6376 valid_p = 1;
6377 for (i = 0; i < ppc_num_gprs; i++)
6378 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6379 PPC_VR0_REGNUM + i,
6380 vector_regs[i]);
6381 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6382 PPC_VSCR_REGNUM, "vscr");
6383 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6384 PPC_VRSAVE_REGNUM, "vrsave");
6385
6386 if (have_spe || !valid_p)
6387 return NULL;
6388 have_altivec = 1;
6389 }
6390 else
6391 have_altivec = 0;
6392
6393 /* Check for POWER7 VSX registers support. */
6394 feature = tdesc_find_feature (tdesc,
6395 "org.gnu.gdb.power.vsx");
6396
6397 if (feature != NULL)
6398 {
6399 static const char *const vsx_regs[] = {
6400 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6401 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6402 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6403 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6404 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6405 "vs30h", "vs31h"
6406 };
6407
6408 valid_p = 1;
6409
6410 for (i = 0; i < ppc_num_vshrs; i++)
6411 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6412 PPC_VSR0_UPPER_REGNUM + i,
6413 vsx_regs[i]);
6414
6415 if (!valid_p || !have_fpu || !have_altivec)
6416 return NULL;
6417
6418 have_vsx = 1;
6419 }
6420 else
6421 have_vsx = 0;
6422
6423 /* On machines supporting the SPE APU, the general-purpose registers
6424 are 64 bits long. There are SIMD vector instructions to treat them
6425 as pairs of floats, but the rest of the instruction set treats them
6426 as 32-bit registers, and only operates on their lower halves.
6427
6428 In the GDB regcache, we treat their high and low halves as separate
6429 registers. The low halves we present as the general-purpose
6430 registers, and then we have pseudo-registers that stitch together
6431 the upper and lower halves and present them as pseudo-registers.
6432
6433 Thus, the target description is expected to supply the upper
6434 halves separately. */
6435
6436 feature = tdesc_find_feature (tdesc,
6437 "org.gnu.gdb.power.spe");
6438 if (feature != NULL)
6439 {
6440 static const char *const upper_spe[] = {
6441 "ev0h", "ev1h", "ev2h", "ev3h",
6442 "ev4h", "ev5h", "ev6h", "ev7h",
6443 "ev8h", "ev9h", "ev10h", "ev11h",
6444 "ev12h", "ev13h", "ev14h", "ev15h",
6445 "ev16h", "ev17h", "ev18h", "ev19h",
6446 "ev20h", "ev21h", "ev22h", "ev23h",
6447 "ev24h", "ev25h", "ev26h", "ev27h",
6448 "ev28h", "ev29h", "ev30h", "ev31h"
6449 };
6450
6451 valid_p = 1;
6452 for (i = 0; i < ppc_num_gprs; i++)
6453 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6454 PPC_SPE_UPPER_GP0_REGNUM + i,
6455 upper_spe[i]);
6456 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6457 PPC_SPE_ACC_REGNUM, "acc");
6458 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6459 PPC_SPE_FSCR_REGNUM, "spefscr");
6460
6461 if (have_mq || have_fpu || !valid_p)
6462 return NULL;
6463 have_spe = 1;
6464 }
6465 else
6466 have_spe = 0;
6467
6468 /* Program Priority Register. */
6469 feature = tdesc_find_feature (tdesc,
6470 "org.gnu.gdb.power.ppr");
6471 if (feature != NULL)
6472 {
6473 valid_p = 1;
6474 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6475 PPC_PPR_REGNUM, "ppr");
6476
6477 if (!valid_p)
6478 return NULL;
6479 have_ppr = 1;
6480 }
6481 else
6482 have_ppr = 0;
6483
6484 /* Data Stream Control Register. */
6485 feature = tdesc_find_feature (tdesc,
6486 "org.gnu.gdb.power.dscr");
6487 if (feature != NULL)
6488 {
6489 valid_p = 1;
6490 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6491 PPC_DSCR_REGNUM, "dscr");
6492
6493 if (!valid_p)
6494 return NULL;
6495 have_dscr = 1;
6496 }
6497 else
6498 have_dscr = 0;
6499
6500 /* Target Address Register. */
6501 feature = tdesc_find_feature (tdesc,
6502 "org.gnu.gdb.power.tar");
6503 if (feature != NULL)
6504 {
6505 valid_p = 1;
6506 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6507 PPC_TAR_REGNUM, "tar");
6508
6509 if (!valid_p)
6510 return NULL;
6511 have_tar = 1;
6512 }
6513 else
6514 have_tar = 0;
6515
6516 /* Event-based Branching Registers. */
6517 feature = tdesc_find_feature (tdesc,
6518 "org.gnu.gdb.power.ebb");
6519 if (feature != NULL)
6520 {
6521 static const char *const ebb_regs[] = {
6522 "bescr", "ebbhr", "ebbrr"
6523 };
6524
6525 valid_p = 1;
6526 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6527 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6528 PPC_BESCR_REGNUM + i,
6529 ebb_regs[i]);
6530 if (!valid_p)
6531 return NULL;
6532 have_ebb = 1;
6533 }
6534 else
6535 have_ebb = 0;
6536
6537 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6538 by Linux. */
6539 feature = tdesc_find_feature (tdesc,
6540 "org.gnu.gdb.power.linux.pmu");
6541 if (feature != NULL)
6542 {
6543 valid_p = 1;
6544
6545 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6546 PPC_MMCR0_REGNUM,
6547 "mmcr0");
6548 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6549 PPC_MMCR2_REGNUM,
6550 "mmcr2");
6551 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6552 PPC_SIAR_REGNUM,
6553 "siar");
6554 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6555 PPC_SDAR_REGNUM,
6556 "sdar");
6557 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6558 PPC_SIER_REGNUM,
6559 "sier");
6560
6561 if (!valid_p)
6562 return NULL;
6563 have_pmu = 1;
6564 }
6565 else
6566 have_pmu = 0;
6567
6568 /* Hardware Transactional Memory Registers. */
6569 feature = tdesc_find_feature (tdesc,
6570 "org.gnu.gdb.power.htm.spr");
6571 if (feature != NULL)
6572 {
6573 static const char *const tm_spr_regs[] = {
6574 "tfhar", "texasr", "tfiar"
6575 };
6576
6577 valid_p = 1;
6578 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6579 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6580 PPC_TFHAR_REGNUM + i,
6581 tm_spr_regs[i]);
6582 if (!valid_p)
6583 return NULL;
6584
6585 have_htm_spr = 1;
6586 }
6587 else
6588 have_htm_spr = 0;
6589
6590 feature = tdesc_find_feature (tdesc,
6591 "org.gnu.gdb.power.htm.core");
6592 if (feature != NULL)
6593 {
6594 static const char *const cgprs[] = {
6595 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6596 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6597 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6598 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6599 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6600 };
6601
6602 valid_p = 1;
6603
6604 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6605 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6606 PPC_CR0_REGNUM + i,
6607 cgprs[i]);
6608 if (!valid_p)
6609 return NULL;
6610
6611 have_htm_core = 1;
6612 }
6613 else
6614 have_htm_core = 0;
6615
6616 feature = tdesc_find_feature (tdesc,
6617 "org.gnu.gdb.power.htm.fpu");
6618 if (feature != NULL)
6619 {
6620 valid_p = 1;
6621
6622 static const char *const cfprs[] = {
6623 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6624 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6625 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6626 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6627 "cf30", "cf31", "cfpscr"
6628 };
6629
6630 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6631 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6632 PPC_CF0_REGNUM + i,
6633 cfprs[i]);
6634
6635 if (!valid_p)
6636 return NULL;
6637 have_htm_fpu = 1;
6638 }
6639 else
6640 have_htm_fpu = 0;
6641
6642 feature = tdesc_find_feature (tdesc,
6643 "org.gnu.gdb.power.htm.altivec");
6644 if (feature != NULL)
6645 {
6646 valid_p = 1;
6647
6648 static const char *const cvmx[] = {
6649 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6650 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6651 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6652 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6653 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6654 "cvrsave"
6655 };
6656
6657 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6658 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6659 PPC_CVR0_REGNUM + i,
6660 cvmx[i]);
6661
6662 if (!valid_p)
6663 return NULL;
6664 have_htm_altivec = 1;
6665 }
6666 else
6667 have_htm_altivec = 0;
6668
6669 feature = tdesc_find_feature (tdesc,
6670 "org.gnu.gdb.power.htm.vsx");
6671 if (feature != NULL)
6672 {
6673 valid_p = 1;
6674
6675 static const char *const cvsx[] = {
6676 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6677 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6678 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6679 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6680 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6681 "cvs30h", "cvs31h"
6682 };
6683
6684 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6685 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6686 (PPC_CVSR0_UPPER_REGNUM
6687 + i),
6688 cvsx[i]);
6689
6690 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6691 return NULL;
6692 have_htm_vsx = 1;
6693 }
6694 else
6695 have_htm_vsx = 0;
6696
6697 feature = tdesc_find_feature (tdesc,
6698 "org.gnu.gdb.power.htm.ppr");
6699 if (feature != NULL)
6700 {
6701 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6702 PPC_CPPR_REGNUM, "cppr");
6703
6704 if (!valid_p)
6705 return NULL;
6706 have_htm_ppr = 1;
6707 }
6708 else
6709 have_htm_ppr = 0;
6710
6711 feature = tdesc_find_feature (tdesc,
6712 "org.gnu.gdb.power.htm.dscr");
6713 if (feature != NULL)
6714 {
6715 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6716 PPC_CDSCR_REGNUM, "cdscr");
6717
6718 if (!valid_p)
6719 return NULL;
6720 have_htm_dscr = 1;
6721 }
6722 else
6723 have_htm_dscr = 0;
6724
6725 feature = tdesc_find_feature (tdesc,
6726 "org.gnu.gdb.power.htm.tar");
6727 if (feature != NULL)
6728 {
6729 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6730 PPC_CTAR_REGNUM, "ctar");
6731
6732 if (!valid_p)
6733 return NULL;
6734 have_htm_tar = 1;
6735 }
6736 else
6737 have_htm_tar = 0;
6738 }
6739
6740 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6741 complain for a 32-bit binary on a 64-bit target; we do not yet
6742 support that. For instance, the 32-bit ABI routines expect
6743 32-bit GPRs.
6744
6745 As long as there isn't an explicit target description, we'll
6746 choose one based on the BFD architecture and get a word size
6747 matching the binary (probably powerpc:common or
6748 powerpc:common64). So there is only trouble if a 64-bit target
6749 supplies a 64-bit description while debugging a 32-bit
6750 binary. */
6751 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6752 return NULL;
6753
6754 #ifdef HAVE_ELF
6755 if (from_elf_exec)
6756 {
6757 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6758 {
6759 case 1:
6760 elf_abi = POWERPC_ELF_V1;
6761 break;
6762 case 2:
6763 elf_abi = POWERPC_ELF_V2;
6764 break;
6765 default:
6766 break;
6767 }
6768 }
6769
6770 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6771 {
6772 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6773 Tag_GNU_Power_ABI_FP) & 3)
6774 {
6775 case 1:
6776 soft_float_flag = AUTO_BOOLEAN_FALSE;
6777 break;
6778 case 2:
6779 soft_float_flag = AUTO_BOOLEAN_TRUE;
6780 break;
6781 default:
6782 break;
6783 }
6784 }
6785
6786 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6787 {
6788 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6789 Tag_GNU_Power_ABI_FP) >> 2)
6790 {
6791 case 1:
6792 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6793 break;
6794 case 3:
6795 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6796 break;
6797 default:
6798 break;
6799 }
6800 }
6801
6802 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6803 {
6804 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6805 Tag_GNU_Power_ABI_Vector))
6806 {
6807 case 1:
6808 vector_abi = POWERPC_VEC_GENERIC;
6809 break;
6810 case 2:
6811 vector_abi = POWERPC_VEC_ALTIVEC;
6812 break;
6813 case 3:
6814 vector_abi = POWERPC_VEC_SPE;
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820 #endif
6821
6822 /* At this point, the only supported ELF-based 64-bit little-endian
6823 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6824 default. All other supported ELF-based operating systems use the
6825 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6826 e.g. because we run a legacy binary, or have attached to a process
6827 and have not found any associated binary file, set the default
6828 according to this heuristic. */
6829 if (elf_abi == POWERPC_ELF_AUTO)
6830 {
6831 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6832 elf_abi = POWERPC_ELF_V2;
6833 else
6834 elf_abi = POWERPC_ELF_V1;
6835 }
6836
6837 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6838 soft_float = 1;
6839 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6840 soft_float = 0;
6841 else
6842 soft_float = !have_fpu;
6843
6844 /* If we have a hard float binary or setting but no floating point
6845 registers, downgrade to soft float anyway. We're still somewhat
6846 useful in this scenario. */
6847 if (!soft_float && !have_fpu)
6848 soft_float = 1;
6849
6850 /* Similarly for vector registers. */
6851 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6852 vector_abi = POWERPC_VEC_GENERIC;
6853
6854 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6855 vector_abi = POWERPC_VEC_GENERIC;
6856
6857 if (vector_abi == POWERPC_VEC_AUTO)
6858 {
6859 if (have_altivec)
6860 vector_abi = POWERPC_VEC_ALTIVEC;
6861 else if (have_spe)
6862 vector_abi = POWERPC_VEC_SPE;
6863 else
6864 vector_abi = POWERPC_VEC_GENERIC;
6865 }
6866
6867 /* Do not limit the vector ABI based on available hardware, since we
6868 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6869
6870 /* Find a candidate among extant architectures. */
6871 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6872 arches != NULL;
6873 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6874 {
6875 /* Word size in the various PowerPC bfd_arch_info structs isn't
6876 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6877 separate word size check. */
6878 tdep = gdbarch_tdep (arches->gdbarch);
6879 if (tdep && tdep->elf_abi != elf_abi)
6880 continue;
6881 if (tdep && tdep->soft_float != soft_float)
6882 continue;
6883 if (tdep && tdep->long_double_abi != long_double_abi)
6884 continue;
6885 if (tdep && tdep->vector_abi != vector_abi)
6886 continue;
6887 if (tdep && tdep->wordsize == wordsize)
6888 return arches->gdbarch;
6889 }
6890
6891 /* None found, create a new architecture from INFO, whose bfd_arch_info
6892 validity depends on the source:
6893 - executable useless
6894 - rs6000_host_arch() good
6895 - core file good
6896 - "set arch" trust blindly
6897 - GDB startup useless but harmless */
6898
6899 tdep = XCNEW (struct gdbarch_tdep);
6900 tdep->wordsize = wordsize;
6901 tdep->elf_abi = elf_abi;
6902 tdep->soft_float = soft_float;
6903 tdep->long_double_abi = long_double_abi;
6904 tdep->vector_abi = vector_abi;
6905
6906 gdbarch = gdbarch_alloc (&info, tdep);
6907
6908 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6909 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6910 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6911 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6912 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6913 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6914 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6915 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6916
6917 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6918 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6919 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6920 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6921 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6922 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6923 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6924 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6925 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6926 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6927 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6928 tdep->have_ebb = have_ebb;
6929
6930 /* If additional pmu registers are added, care must be taken when
6931 setting new fields in the tdep below, to maintain compatibility
6932 with features that only provide some of the registers. Currently
6933 gdb access to the pmu registers is only supported in linux, and
6934 linux only provides a subset of the pmu registers defined in the
6935 architecture. */
6936
6937 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6938 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6939 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6940 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6941 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6942
6943 tdep->have_htm_spr = have_htm_spr;
6944 tdep->have_htm_core = have_htm_core;
6945 tdep->have_htm_fpu = have_htm_fpu;
6946 tdep->have_htm_altivec = have_htm_altivec;
6947 tdep->have_htm_vsx = have_htm_vsx;
6948 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6949 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6950 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6951
6952 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6953 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6954 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6955 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6956
6957 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6958 GDB traditionally called it "ps", though, so let GDB add an
6959 alias. */
6960 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6961
6962 if (wordsize == 8)
6963 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6964 else
6965 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6966
6967 /* Set lr_frame_offset. */
6968 if (wordsize == 8)
6969 tdep->lr_frame_offset = 16;
6970 else
6971 tdep->lr_frame_offset = 4;
6972
6973 if (have_spe || have_dfp || have_altivec
6974 || have_vsx || have_htm_fpu || have_htm_vsx)
6975 {
6976 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6977 set_gdbarch_pseudo_register_write (gdbarch,
6978 rs6000_pseudo_register_write);
6979 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6980 rs6000_ax_pseudo_register_collect);
6981 }
6982
6983 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6984
6985 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6986
6987 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6988
6989 if (have_spe)
6990 num_pseudoregs += 32;
6991 if (have_dfp)
6992 num_pseudoregs += 16;
6993 if (have_altivec)
6994 num_pseudoregs += 32;
6995 if (have_vsx)
6996 /* Include both VSX and Extended FP registers. */
6997 num_pseudoregs += 96;
6998 if (have_htm_fpu)
6999 num_pseudoregs += 16;
7000 /* Include both checkpointed VSX and EFP registers. */
7001 if (have_htm_vsx)
7002 num_pseudoregs += 64 + 32;
7003
7004 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7005
7006 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7007 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7008 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7009 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7010 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7011 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7012 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7013 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7014 set_gdbarch_char_signed (gdbarch, 0);
7015
7016 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7017 if (wordsize == 8)
7018 /* PPC64 SYSV. */
7019 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7020
7021 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7022 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7023 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7024
7025 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7027
7028 if (wordsize == 4)
7029 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7030 else if (wordsize == 8)
7031 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7032
7033 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7034 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7035 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7036
7037 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7038
7039 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7040 rs6000_breakpoint::kind_from_pc);
7041 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7042 rs6000_breakpoint::bp_from_kind);
7043
7044 /* The value of symbols of type N_SO and N_FUN maybe null when
7045 it shouldn't be. */
7046 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7047
7048 /* Handles single stepping of atomic sequences. */
7049 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7050
7051 /* Not sure on this. FIXMEmgo */
7052 set_gdbarch_frame_args_skip (gdbarch, 8);
7053
7054 /* Helpers for function argument information. */
7055 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7056
7057 /* Trampoline. */
7058 set_gdbarch_in_solib_return_trampoline
7059 (gdbarch, rs6000_in_solib_return_trampoline);
7060 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7061
7062 /* Hook in the DWARF CFI frame unwinder. */
7063 dwarf2_append_unwinders (gdbarch);
7064 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7065
7066 /* Frame handling. */
7067 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7068
7069 /* Setup displaced stepping. */
7070 set_gdbarch_displaced_step_copy_insn (gdbarch,
7071 ppc_displaced_step_copy_insn);
7072 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7073 ppc_displaced_step_hw_singlestep);
7074 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7075 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7076 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7077 set_gdbarch_displaced_step_restore_all_in_ptid
7078 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
7079
7080 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7081
7082 /* Hook in ABI-specific overrides, if they have been registered. */
7083 info.target_desc = tdesc;
7084 info.tdesc_data = tdesc_data.get ();
7085 gdbarch_init_osabi (info, gdbarch);
7086
7087 switch (info.osabi)
7088 {
7089 case GDB_OSABI_LINUX:
7090 case GDB_OSABI_NETBSD:
7091 case GDB_OSABI_UNKNOWN:
7092 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7093 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7094 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7095 break;
7096 default:
7097 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7098
7099 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7100 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7101 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7102 }
7103
7104 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7105 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7106 rs6000_pseudo_register_reggroup_p);
7107 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7108
7109 /* Override the normal target description method to make the SPE upper
7110 halves anonymous. */
7111 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7112
7113 /* Choose register numbers for all supported pseudo-registers. */
7114 tdep->ppc_ev0_regnum = -1;
7115 tdep->ppc_dl0_regnum = -1;
7116 tdep->ppc_v0_alias_regnum = -1;
7117 tdep->ppc_vsr0_regnum = -1;
7118 tdep->ppc_efpr0_regnum = -1;
7119 tdep->ppc_cdl0_regnum = -1;
7120 tdep->ppc_cvsr0_regnum = -1;
7121 tdep->ppc_cefpr0_regnum = -1;
7122
7123 cur_reg = gdbarch_num_regs (gdbarch);
7124
7125 if (have_spe)
7126 {
7127 tdep->ppc_ev0_regnum = cur_reg;
7128 cur_reg += 32;
7129 }
7130 if (have_dfp)
7131 {
7132 tdep->ppc_dl0_regnum = cur_reg;
7133 cur_reg += 16;
7134 }
7135 if (have_altivec)
7136 {
7137 tdep->ppc_v0_alias_regnum = cur_reg;
7138 cur_reg += 32;
7139 }
7140 if (have_vsx)
7141 {
7142 tdep->ppc_vsr0_regnum = cur_reg;
7143 cur_reg += 64;
7144 tdep->ppc_efpr0_regnum = cur_reg;
7145 cur_reg += 32;
7146 }
7147 if (have_htm_fpu)
7148 {
7149 tdep->ppc_cdl0_regnum = cur_reg;
7150 cur_reg += 16;
7151 }
7152 if (have_htm_vsx)
7153 {
7154 tdep->ppc_cvsr0_regnum = cur_reg;
7155 cur_reg += 64;
7156 tdep->ppc_cefpr0_regnum = cur_reg;
7157 cur_reg += 32;
7158 }
7159
7160 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7161
7162 /* Register the ravenscar_arch_ops. */
7163 if (mach == bfd_mach_ppc_e500)
7164 register_e500_ravenscar_ops (gdbarch);
7165 else
7166 register_ppc_ravenscar_ops (gdbarch);
7167
7168 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7169 set_gdbarch_valid_disassembler_options (gdbarch,
7170 disassembler_options_powerpc ());
7171
7172 return gdbarch;
7173 }
7174
7175 static void
7176 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7177 {
7178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7179
7180 if (tdep == NULL)
7181 return;
7182
7183 /* FIXME: Dump gdbarch_tdep. */
7184 }
7185
7186 static void
7187 powerpc_set_soft_float (const char *args, int from_tty,
7188 struct cmd_list_element *c)
7189 {
7190 struct gdbarch_info info;
7191
7192 /* Update the architecture. */
7193 gdbarch_info_init (&info);
7194 if (!gdbarch_update_p (info))
7195 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7196 }
7197
7198 static void
7199 powerpc_set_vector_abi (const char *args, int from_tty,
7200 struct cmd_list_element *c)
7201 {
7202 struct gdbarch_info info;
7203 int vector_abi;
7204
7205 for (vector_abi = POWERPC_VEC_AUTO;
7206 vector_abi != POWERPC_VEC_LAST;
7207 vector_abi++)
7208 if (strcmp (powerpc_vector_abi_string,
7209 powerpc_vector_strings[vector_abi]) == 0)
7210 {
7211 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7212 break;
7213 }
7214
7215 if (vector_abi == POWERPC_VEC_LAST)
7216 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7217 powerpc_vector_abi_string);
7218
7219 /* Update the architecture. */
7220 gdbarch_info_init (&info);
7221 if (!gdbarch_update_p (info))
7222 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7223 }
7224
7225 /* Show the current setting of the exact watchpoints flag. */
7226
7227 static void
7228 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7229 struct cmd_list_element *c,
7230 const char *value)
7231 {
7232 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7233 }
7234
7235 /* Read a PPC instruction from memory. */
7236
7237 static unsigned int
7238 read_insn (struct frame_info *frame, CORE_ADDR pc)
7239 {
7240 struct gdbarch *gdbarch = get_frame_arch (frame);
7241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7242
7243 return read_memory_unsigned_integer (pc, 4, byte_order);
7244 }
7245
7246 /* Return non-zero if the instructions at PC match the series
7247 described in PATTERN, or zero otherwise. PATTERN is an array of
7248 'struct ppc_insn_pattern' objects, terminated by an entry whose
7249 mask is zero.
7250
7251 When the match is successful, fill INSNS[i] with what PATTERN[i]
7252 matched. If PATTERN[i] is optional, and the instruction wasn't
7253 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7254 INSNS should have as many elements as PATTERN, minus the terminator.
7255 Note that, if PATTERN contains optional instructions which aren't
7256 present in memory, then INSNS will have holes, so INSNS[i] isn't
7257 necessarily the i'th instruction in memory. */
7258
7259 int
7260 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7261 const struct ppc_insn_pattern *pattern,
7262 unsigned int *insns)
7263 {
7264 int i;
7265 unsigned int insn;
7266
7267 for (i = 0, insn = 0; pattern[i].mask; i++)
7268 {
7269 if (insn == 0)
7270 insn = read_insn (frame, pc);
7271 insns[i] = 0;
7272 if ((insn & pattern[i].mask) == pattern[i].data)
7273 {
7274 insns[i] = insn;
7275 pc += 4;
7276 insn = 0;
7277 }
7278 else if (!pattern[i].optional)
7279 return 0;
7280 }
7281
7282 return 1;
7283 }
7284
7285 /* Return the 'd' field of the d-form instruction INSN, properly
7286 sign-extended. */
7287
7288 CORE_ADDR
7289 ppc_insn_d_field (unsigned int insn)
7290 {
7291 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7292 }
7293
7294 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7295 zero bits concatenated at the right, and properly
7296 sign-extended. */
7297
7298 CORE_ADDR
7299 ppc_insn_ds_field (unsigned int insn)
7300 {
7301 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7302 }
7303
7304 /* Initialization code. */
7305
7306 void _initialize_rs6000_tdep ();
7307 void
7308 _initialize_rs6000_tdep ()
7309 {
7310 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7311 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7312
7313 /* Initialize the standard target descriptions. */
7314 initialize_tdesc_powerpc_32 ();
7315 initialize_tdesc_powerpc_altivec32 ();
7316 initialize_tdesc_powerpc_vsx32 ();
7317 initialize_tdesc_powerpc_403 ();
7318 initialize_tdesc_powerpc_403gc ();
7319 initialize_tdesc_powerpc_405 ();
7320 initialize_tdesc_powerpc_505 ();
7321 initialize_tdesc_powerpc_601 ();
7322 initialize_tdesc_powerpc_602 ();
7323 initialize_tdesc_powerpc_603 ();
7324 initialize_tdesc_powerpc_604 ();
7325 initialize_tdesc_powerpc_64 ();
7326 initialize_tdesc_powerpc_altivec64 ();
7327 initialize_tdesc_powerpc_vsx64 ();
7328 initialize_tdesc_powerpc_7400 ();
7329 initialize_tdesc_powerpc_750 ();
7330 initialize_tdesc_powerpc_860 ();
7331 initialize_tdesc_powerpc_e500 ();
7332 initialize_tdesc_rs6000 ();
7333
7334 /* Add root prefix command for all "set powerpc"/"show powerpc"
7335 commands. */
7336 add_basic_prefix_cmd ("powerpc", no_class,
7337 _("Various PowerPC-specific commands."),
7338 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7339
7340 add_show_prefix_cmd ("powerpc", no_class,
7341 _("Various PowerPC-specific commands."),
7342 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7343
7344 /* Add a command to allow the user to force the ABI. */
7345 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7346 &powerpc_soft_float_global,
7347 _("Set whether to use a soft-float ABI."),
7348 _("Show whether to use a soft-float ABI."),
7349 NULL,
7350 powerpc_set_soft_float, NULL,
7351 &setpowerpccmdlist, &showpowerpccmdlist);
7352
7353 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7354 &powerpc_vector_abi_string,
7355 _("Set the vector ABI."),
7356 _("Show the vector ABI."),
7357 NULL, powerpc_set_vector_abi, NULL,
7358 &setpowerpccmdlist, &showpowerpccmdlist);
7359
7360 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7361 &target_exact_watchpoints,
7362 _("\
7363 Set whether to use just one debug register for watchpoints on scalars."),
7364 _("\
7365 Show whether to use just one debug register for watchpoints on scalars."),
7366 _("\
7367 If true, GDB will use only one debug register when watching a variable of\n\
7368 scalar type, thus assuming that the variable is accessed through the address\n\
7369 of its first byte."),
7370 NULL, show_powerpc_exact_watchpoints,
7371 &setpowerpccmdlist, &showpowerpccmdlist);
7372 }
This page took 0.213951 seconds and 4 git commands to generate.