gdb/continuations: do minor cleanup
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* PowerPC-related per-inferior data. */
157
158 struct ppc_inferior_data
159 {
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
163 gdb::optional<displaced_step_buffers> disp_step_buf;
164 };
165
166 static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168 /* Get the per-inferior PowerPC data for INF. */
169
170 static ppc_inferior_data *
171 get_ppc_per_inferior (inferior *inf)
172 {
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179 }
180
181 /* To be used by skip_prologue. */
182
183 struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
190 int saved_fpr; /* smallest # of saved fpr */
191 int saved_vr; /* smallest # of saved vr */
192 int saved_ev; /* smallest # of saved ev */
193 int alloca_reg; /* alloca register number (frame ptr) */
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
196 char used_bl; /* true if link register clobbered */
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
199 int vr_offset; /* offset of saved vrs from prev sp */
200 int ev_offset; /* offset of saved evs from prev sp */
201 int lr_offset; /* offset of saved lr */
202 int lr_register; /* register of saved lr, if trustworthy */
203 int cr_offset; /* offset of saved cr */
204 int vrsave_offset; /* offset of saved vrsave register */
205 };
206
207
208 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209 int
210 vsx_register_p (struct gdbarch *gdbarch, int regno)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218 }
219
220 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221 int
222 altivec_register_p (struct gdbarch *gdbarch, int regno)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229 }
230
231
232 /* Return true if REGNO is an SPE register, false otherwise. */
233 int
234 spe_register_p (struct gdbarch *gdbarch, int regno)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
239 if (IS_SPE_PSEUDOREG (tdep, regno))
240 return 1;
241
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260 }
261
262
263 /* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
265 int
266 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
271 && tdep->ppc_fpscr_regnum >= 0);
272 }
273
274 /* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276 int
277 ppc_altivec_support_p (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
282 && tdep->ppc_vrsave_regnum >= 0);
283 }
284
285 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
292 static void
293 set_sim_regno (int *table, int gdb_regno, int sim_regno)
294 {
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299 }
300
301
302 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
305 static void
306 init_sim_regno_table (struct gdbarch *arch)
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
309 int total_regs = gdbarch_num_regs (arch);
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
358 we can treat this more like the other cases. */
359 set_sim_regno (sim_regno,
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
375 #ifdef WITH_PPC_SIM
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390 #endif
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394 }
395
396
397 /* Given a GDB register number REG, return the corresponding SIM
398 register number. */
399 static int
400 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
401 {
402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
403 int sim_regno;
404
405 if (tdep->sim_regno == NULL)
406 init_sim_regno_table (gdbarch);
407
408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415 }
416
417 \f
418
419 /* Register set support functions. */
420
421 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
424 void
425 ppc_supply_reg (struct regcache *regcache, int regnum,
426 const gdb_byte *regs, size_t offset, int regsize)
427 {
428 if (regnum != -1 && offset != -1)
429 {
430 if (regsize > 4)
431 {
432 struct gdbarch *gdbarch = regcache->arch ();
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
438 regcache->raw_supply (regnum, regs + offset);
439 }
440 }
441
442 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
445 void
446 ppc_collect_reg (const struct regcache *regcache, int regnum,
447 gdb_byte *regs, size_t offset, int regsize)
448 {
449 if (regnum != -1 && offset != -1)
450 {
451 if (regsize > 4)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
467 regcache->raw_collect (regnum, regs + offset);
468 }
469 }
470
471 static int
472 ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477 {
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507 }
508
509 static int
510 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513 {
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522 }
523
524 /* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528 void
529 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
536 size_t offset;
537 int regsize;
538
539 if (regnum == -1)
540 {
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
567 return;
568 }
569
570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
572 }
573
574 /* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578 void
579 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581 {
582 struct gdbarch *gdbarch = regcache->arch ();
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
585 size_t offset;
586
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
604 return;
605 }
606
607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
610 }
611
612 /* Collect register REGNUM in the general-purpose register set
613 REGSET from register cache REGCACHE into the buffer specified by
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617 void
618 ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621 {
622 struct gdbarch *gdbarch = regcache->arch ();
623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
626 size_t offset;
627 int regsize;
628
629 if (regnum == -1)
630 {
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
656 return;
657 }
658
659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
661 }
662
663 /* Collect register REGNUM in the floating-point register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672 {
673 struct gdbarch *gdbarch = regcache->arch ();
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
676 size_t offset;
677
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
680
681 tdep = gdbarch_tdep (gdbarch);
682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
683 if (regnum == -1)
684 {
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
695 return;
696 }
697
698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
701 }
702
703 static int
704 insn_changes_sp_or_jumps (unsigned long insn)
705 {
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736 }
737
738 /* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
745 b) Stop scanning if you find a return instruction or reach the
746 end of the function or reach the hard limit for the size of
747 an epilogue.
748 2) scan backward from the point of execution:
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
754
755 static int
756 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn == 0x4e800020)
785 break;
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
797 if (insn_changes_sp_or_jumps (insn))
798 return 0;
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
809 return 0;
810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
811 if (insn_changes_sp_or_jumps (insn))
812 return 1;
813 }
814
815 return 0;
816 }
817
818 /* Implement the stack_frame_destroyed_p gdbarch method. */
819
820 static int
821 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
822 {
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825 }
826
827 /* Get the ith function argument for the current function. */
828 static CORE_ADDR
829 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831 {
832 return get_frame_register_unsigned (frame, 3 + argi);
833 }
834
835 /* Sequence of bytes for breakpoint instruction. */
836
837 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
839
840 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
842
843 /* Instruction masks for displaced stepping. */
844 #define OP_MASK 0xfc000000
845 #define BP_MASK 0xFC0007FE
846 #define B_INSN 0x48000000
847 #define BC_INSN 0x40000000
848 #define BXL_INSN 0x4c000000
849 #define BP_INSN 0x7C000008
850
851 /* Instruction masks used during single-stepping of atomic
852 sequences. */
853 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
854 #define LWARX_INSTRUCTION 0x7c000028
855 #define LDARX_INSTRUCTION 0x7c0000A8
856 #define LBARX_INSTRUCTION 0x7c000068
857 #define LHARX_INSTRUCTION 0x7c0000e8
858 #define LQARX_INSTRUCTION 0x7c000228
859 #define STORE_CONDITIONAL_MASK 0xfc0007ff
860 #define STWCX_INSTRUCTION 0x7c00012d
861 #define STDCX_INSTRUCTION 0x7c0001ad
862 #define STBCX_INSTRUCTION 0x7c00056d
863 #define STHCX_INSTRUCTION 0x7c0005ad
864 #define STQCX_INSTRUCTION 0x7c00016d
865
866 /* Instruction masks for single-stepping of addpcis/lnia. */
867 #define ADDPCIS_INSN 0x4c000004
868 #define ADDPCIS_INSN_MASK 0xfc00003e
869 #define ADDPCIS_TARGET_REGISTER 0x03F00000
870 #define ADDPCIS_INSN_REGSHIFT 21
871
872 #define PNOP_MASK 0xfff3ffff
873 #define PNOP_INSN 0x07000000
874 #define R_MASK 0x00100000
875 #define R_ZERO 0x00000000
876
877 /* Check if insn is one of the Load And Reserve instructions used for atomic
878 sequences. */
879 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
880 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
881 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
882 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
883 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
884 /* Check if insn is one of the Store Conditional instructions used for atomic
885 sequences. */
886 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
887 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
888 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
889 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
890 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
891
892 typedef buf_displaced_step_copy_insn_closure
893 ppc_displaced_step_copy_insn_closure;
894
895 /* We can't displaced step atomic sequences. */
896
897 static displaced_step_copy_insn_closure_up
898 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
899 CORE_ADDR from, CORE_ADDR to,
900 struct regcache *regs)
901 {
902 size_t len = gdbarch_max_insn_length (gdbarch);
903 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
904 (new ppc_displaced_step_copy_insn_closure (len));
905 gdb_byte *buf = closure->buf.data ();
906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
907 int insn;
908
909 len = target_read (current_inferior()->top_target(), TARGET_OBJECT_MEMORY, NULL,
910 buf, from, len);
911 if ((ssize_t) len < PPC_INSN_SIZE)
912 memory_error (TARGET_XFER_E_IO, from);
913
914 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
915
916 /* Check for PNOP and for prefixed instructions with R=0. Those
917 instructions are safe to displace. Prefixed instructions with R=1
918 will read/write data to/from locations relative to the current PC.
919 We would not be able to fixup after an instruction has written data
920 into a displaced location, so decline to displace those instructions. */
921 if ((insn & OP_MASK) == 1 << 26)
922 {
923 if (((insn & PNOP_MASK) != PNOP_INSN)
924 && ((insn & R_MASK) != R_ZERO))
925 {
926 displaced_debug_printf ("Not displacing prefixed instruction %08x at %s",
927 insn, paddress (gdbarch, from));
928 return NULL;
929 }
930 }
931 else
932 /* Non-prefixed instructions.. */
933 {
934 /* Set the instruction length to 4 to match the actual instruction
935 length. */
936 len = 4;
937 }
938
939 /* Assume all atomic sequences start with a Load and Reserve instruction. */
940 if (IS_LOAD_AND_RESERVE_INSN (insn))
941 {
942 displaced_debug_printf ("can't displaced step atomic sequence at %s",
943 paddress (gdbarch, from));
944
945 return NULL;
946 }
947
948 write_memory (to, buf, len);
949
950 displaced_debug_printf ("copy %s->%s: %s",
951 paddress (gdbarch, from), paddress (gdbarch, to),
952 displaced_step_dump_bytes (buf, len).c_str ());
953
954 /* This is a work around for a problem with g++ 4.8. */
955 return displaced_step_copy_insn_closure_up (closure.release ());
956 }
957
958 /* Fix up the state of registers and memory after having single-stepped
959 a displaced instruction. */
960 static void
961 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
962 struct displaced_step_copy_insn_closure *closure_,
963 CORE_ADDR from, CORE_ADDR to,
964 struct regcache *regs)
965 {
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 /* Our closure is a copy of the instruction. */
968 ppc_displaced_step_copy_insn_closure *closure
969 = (ppc_displaced_step_copy_insn_closure *) closure_;
970 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
971 PPC_INSN_SIZE, byte_order);
972 ULONGEST opcode;
973 /* Offset for non PC-relative instructions. */
974 LONGEST offset;
975
976 opcode = insn & OP_MASK;
977
978 /* Set offset to 8 if this is an 8-byte (prefixed) instruction. */
979 if ((opcode) == 1 << 26)
980 offset = 2 * PPC_INSN_SIZE;
981 else
982 offset = PPC_INSN_SIZE;
983
984 displaced_debug_printf ("(ppc) fixup (%s, %s)",
985 paddress (gdbarch, from), paddress (gdbarch, to));
986
987 /* Handle the addpcis/lnia instruction. */
988 if ((insn & ADDPCIS_INSN_MASK) == ADDPCIS_INSN)
989 {
990 LONGEST displaced_offset;
991 ULONGEST current_val;
992 /* Measure the displacement. */
993 displaced_offset = from - to;
994 /* Identify the target register that was updated by the instruction. */
995 int regnum = (insn & ADDPCIS_TARGET_REGISTER) >> ADDPCIS_INSN_REGSHIFT;
996 /* Read and update the target value. */
997 regcache_cooked_read_unsigned (regs, regnum , &current_val);
998 displaced_debug_printf ("addpcis target regnum %d was %s now %s",
999 regnum, paddress (gdbarch, current_val),
1000 paddress (gdbarch, current_val
1001 + displaced_offset));
1002 regcache_cooked_write_unsigned (regs, regnum,
1003 current_val + displaced_offset);
1004 /* point the PC back at the non-displaced instruction. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007 }
1008 /* Handle PC-relative branch instructions. */
1009 else if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1010 {
1011 ULONGEST current_pc;
1012
1013 /* Read the current PC value after the instruction has been executed
1014 in a displaced location. Calculate the offset to be applied to the
1015 original PC value before the displaced stepping. */
1016 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1017 &current_pc);
1018 offset = current_pc - to;
1019
1020 if (opcode != BXL_INSN)
1021 {
1022 /* Check for AA bit indicating whether this is an absolute
1023 addressing or PC-relative (1: absolute, 0: relative). */
1024 if (!(insn & 0x2))
1025 {
1026 /* PC-relative addressing is being used in the branch. */
1027 displaced_debug_printf ("(ppc) branch instruction: %s",
1028 paddress (gdbarch, insn));
1029 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
1030 paddress (gdbarch, current_pc),
1031 paddress (gdbarch, from + offset));
1032
1033 regcache_cooked_write_unsigned (regs,
1034 gdbarch_pc_regnum (gdbarch),
1035 from + offset);
1036 }
1037 }
1038 else
1039 {
1040 /* If we're here, it means we have a branch to LR or CTR. If the
1041 branch was taken, the offset is probably greater than 4 (the next
1042 instruction), so it's safe to assume that an offset of 4 means we
1043 did not take the branch. */
1044 if (offset == PPC_INSN_SIZE)
1045 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1046 from + PPC_INSN_SIZE);
1047 }
1048
1049 /* Check for LK bit indicating whether we should set the link
1050 register to point to the next instruction
1051 (1: Set, 0: Don't set). */
1052 if (insn & 0x1)
1053 {
1054 /* Link register needs to be set to the next instruction's PC. */
1055 regcache_cooked_write_unsigned (regs,
1056 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1057 from + PPC_INSN_SIZE);
1058 displaced_debug_printf ("(ppc) adjusted LR to %s",
1059 paddress (gdbarch, from + PPC_INSN_SIZE));
1060
1061 }
1062 }
1063 /* Check for breakpoints in the inferior. If we've found one, place the PC
1064 right at the breakpoint instruction. */
1065 else if ((insn & BP_MASK) == BP_INSN)
1066 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1067 else
1068 /* Handle any other instructions that do not fit in the categories above. */
1069 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1070 from + offset);
1071 }
1072
1073 /* Implementation of gdbarch_displaced_step_prepare. */
1074
1075 static displaced_step_prepare_status
1076 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1077 CORE_ADDR &displaced_pc)
1078 {
1079 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1080
1081 if (!per_inferior->disp_step_buf.has_value ())
1082 {
1083 /* Figure out where the displaced step buffer is. */
1084 CORE_ADDR disp_step_buf_addr
1085 = displaced_step_at_entry_point (thread->inf->gdbarch);
1086
1087 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1088 }
1089
1090 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1091 }
1092
1093 /* Implementation of gdbarch_displaced_step_finish. */
1094
1095 static displaced_step_finish_status
1096 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1097 gdb_signal sig)
1098 {
1099 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1100
1101 gdb_assert (per_inferior->disp_step_buf.has_value ());
1102
1103 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1104 }
1105
1106 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1107
1108 static void
1109 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1110 {
1111 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1112
1113 if (per_inferior == nullptr
1114 || !per_inferior->disp_step_buf.has_value ())
1115 return;
1116
1117 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1118 }
1119
1120 /* Always use hardware single-stepping to execute the
1121 displaced instruction. */
1122 static bool
1123 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1124 {
1125 return true;
1126 }
1127
1128 /* Checks for an atomic sequence of instructions beginning with a
1129 Load And Reserve instruction and ending with a Store Conditional
1130 instruction. If such a sequence is found, attempt to step through it.
1131 A breakpoint is placed at the end of the sequence. */
1132 std::vector<CORE_ADDR>
1133 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1134 {
1135 struct gdbarch *gdbarch = regcache->arch ();
1136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1137 CORE_ADDR pc = regcache_read_pc (regcache);
1138 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1139 CORE_ADDR loc = pc;
1140 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1141 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1142 int insn_count;
1143 int index;
1144 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1145 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1146 int bc_insn_count = 0; /* Conditional branch instruction count. */
1147
1148 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1149 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1150 return {};
1151
1152 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1153 instructions. */
1154 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1155 {
1156 if ((insn & OP_MASK) == 1 << 26)
1157 loc += 2 * PPC_INSN_SIZE;
1158 else
1159 loc += PPC_INSN_SIZE;
1160 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1161
1162 /* Assume that there is at most one conditional branch in the atomic
1163 sequence. If a conditional branch is found, put a breakpoint in
1164 its destination address. */
1165 if ((insn & OP_MASK) == BC_INSN)
1166 {
1167 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1168 int absolute = insn & 2;
1169
1170 if (bc_insn_count >= 1)
1171 return {}; /* More than one conditional branch found, fallback
1172 to the standard single-step code. */
1173
1174 if (absolute)
1175 breaks[1] = immediate;
1176 else
1177 breaks[1] = loc + immediate;
1178
1179 bc_insn_count++;
1180 last_breakpoint++;
1181 }
1182
1183 if (IS_STORE_CONDITIONAL_INSN (insn))
1184 break;
1185 }
1186
1187 /* Assume that the atomic sequence ends with a Store Conditional
1188 instruction. */
1189 if (!IS_STORE_CONDITIONAL_INSN (insn))
1190 return {};
1191
1192 closing_insn = loc;
1193 loc += PPC_INSN_SIZE;
1194
1195 /* Insert a breakpoint right after the end of the atomic sequence. */
1196 breaks[0] = loc;
1197
1198 /* Check for duplicated breakpoints. Check also for a breakpoint
1199 placed (branch instruction's destination) anywhere in sequence. */
1200 if (last_breakpoint
1201 && (breaks[1] == breaks[0]
1202 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1203 last_breakpoint = 0;
1204
1205 std::vector<CORE_ADDR> next_pcs;
1206
1207 for (index = 0; index <= last_breakpoint; index++)
1208 next_pcs.push_back (breaks[index]);
1209
1210 return next_pcs;
1211 }
1212
1213
1214 #define SIGNED_SHORT(x) \
1215 ((sizeof (short) == 2) \
1216 ? ((int)(short)(x)) \
1217 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1218
1219 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1220
1221 /* Limit the number of skipped non-prologue instructions, as the examining
1222 of the prologue is expensive. */
1223 static int max_skip_non_prologue_insns = 10;
1224
1225 /* Return nonzero if the given instruction OP can be part of the prologue
1226 of a function and saves a parameter on the stack. FRAMEP should be
1227 set if one of the previous instructions in the function has set the
1228 Frame Pointer. */
1229
1230 static int
1231 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1232 {
1233 /* Move parameters from argument registers to temporary register. */
1234 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1235 {
1236 /* Rx must be scratch register r0. */
1237 const int rx_regno = (op >> 16) & 31;
1238 /* Ry: Only r3 - r10 are used for parameter passing. */
1239 const int ry_regno = GET_SRC_REG (op);
1240
1241 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1242 {
1243 *r0_contains_arg = 1;
1244 return 1;
1245 }
1246 else
1247 return 0;
1248 }
1249
1250 /* Save a General Purpose Register on stack. */
1251
1252 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1253 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1254 {
1255 /* Rx: Only r3 - r10 are used for parameter passing. */
1256 const int rx_regno = GET_SRC_REG (op);
1257
1258 return (rx_regno >= 3 && rx_regno <= 10);
1259 }
1260
1261 /* Save a General Purpose Register on stack via the Frame Pointer. */
1262
1263 if (framep &&
1264 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1265 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1266 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1267 {
1268 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1269 However, the compiler sometimes uses r0 to hold an argument. */
1270 const int rx_regno = GET_SRC_REG (op);
1271
1272 return ((rx_regno >= 3 && rx_regno <= 10)
1273 || (rx_regno == 0 && *r0_contains_arg));
1274 }
1275
1276 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1277 {
1278 /* Only f2 - f8 are used for parameter passing. */
1279 const int src_regno = GET_SRC_REG (op);
1280
1281 return (src_regno >= 2 && src_regno <= 8);
1282 }
1283
1284 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1285 {
1286 /* Only f2 - f8 are used for parameter passing. */
1287 const int src_regno = GET_SRC_REG (op);
1288
1289 return (src_regno >= 2 && src_regno <= 8);
1290 }
1291
1292 /* Not an insn that saves a parameter on stack. */
1293 return 0;
1294 }
1295
1296 /* Assuming that INSN is a "bl" instruction located at PC, return
1297 nonzero if the destination of the branch is a "blrl" instruction.
1298
1299 This sequence is sometimes found in certain function prologues.
1300 It allows the function to load the LR register with a value that
1301 they can use to access PIC data using PC-relative offsets. */
1302
1303 static int
1304 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1305 {
1306 CORE_ADDR dest;
1307 int immediate;
1308 int absolute;
1309 int dest_insn;
1310
1311 absolute = (int) ((insn >> 1) & 1);
1312 immediate = ((insn & ~3) << 6) >> 6;
1313 if (absolute)
1314 dest = immediate;
1315 else
1316 dest = pc + immediate;
1317
1318 dest_insn = read_memory_integer (dest, 4, byte_order);
1319 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1320 return 1;
1321
1322 return 0;
1323 }
1324
1325 /* Return true if OP is a stw or std instruction with
1326 register operands RS and RA and any immediate offset.
1327
1328 If WITH_UPDATE is true, also return true if OP is
1329 a stwu or stdu instruction with the same operands.
1330
1331 Return false otherwise.
1332 */
1333 static bool
1334 store_insn_p (unsigned long op, unsigned long rs,
1335 unsigned long ra, bool with_update)
1336 {
1337 rs = rs << 21;
1338 ra = ra << 16;
1339
1340 if (/* std RS, SIMM(RA) */
1341 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1342 /* stw RS, SIMM(RA) */
1343 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1344 return true;
1345
1346 if (with_update)
1347 {
1348 if (/* stdu RS, SIMM(RA) */
1349 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1350 /* stwu RS, SIMM(RA) */
1351 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1352 return true;
1353 }
1354
1355 return false;
1356 }
1357
1358 /* Masks for decoding a branch-and-link (bl) instruction.
1359
1360 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1361 The former is anded with the opcode in question; if the result of
1362 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1363 question is a ``bl'' instruction.
1364
1365 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1366 the branch displacement. */
1367
1368 #define BL_MASK 0xfc000001
1369 #define BL_INSTRUCTION 0x48000001
1370 #define BL_DISPLACEMENT_MASK 0x03fffffc
1371
1372 static unsigned long
1373 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1374 {
1375 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1376 gdb_byte buf[4];
1377 unsigned long op;
1378
1379 /* Fetch the instruction and convert it to an integer. */
1380 if (target_read_memory (pc, buf, 4))
1381 return 0;
1382 op = extract_unsigned_integer (buf, 4, byte_order);
1383
1384 return op;
1385 }
1386
1387 /* GCC generates several well-known sequences of instructions at the begining
1388 of each function prologue when compiling with -fstack-check. If one of
1389 such sequences starts at START_PC, then return the address of the
1390 instruction immediately past this sequence. Otherwise, return START_PC. */
1391
1392 static CORE_ADDR
1393 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1394 {
1395 CORE_ADDR pc = start_pc;
1396 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1397
1398 /* First possible sequence: A small number of probes.
1399 stw 0, -<some immediate>(1)
1400 [repeat this instruction any (small) number of times]. */
1401
1402 if ((op & 0xffff0000) == 0x90010000)
1403 {
1404 while ((op & 0xffff0000) == 0x90010000)
1405 {
1406 pc = pc + 4;
1407 op = rs6000_fetch_instruction (gdbarch, pc);
1408 }
1409 return pc;
1410 }
1411
1412 /* Second sequence: A probing loop.
1413 addi 12,1,-<some immediate>
1414 lis 0,-<some immediate>
1415 [possibly ori 0,0,<some immediate>]
1416 add 0,12,0
1417 cmpw 0,12,0
1418 beq 0,<disp>
1419 addi 12,12,-<some immediate>
1420 stw 0,0(12)
1421 b <disp>
1422 [possibly one last probe: stw 0,<some immediate>(12)]. */
1423
1424 while (1)
1425 {
1426 /* addi 12,1,-<some immediate> */
1427 if ((op & 0xffff0000) != 0x39810000)
1428 break;
1429
1430 /* lis 0,-<some immediate> */
1431 pc = pc + 4;
1432 op = rs6000_fetch_instruction (gdbarch, pc);
1433 if ((op & 0xffff0000) != 0x3c000000)
1434 break;
1435
1436 pc = pc + 4;
1437 op = rs6000_fetch_instruction (gdbarch, pc);
1438 /* [possibly ori 0,0,<some immediate>] */
1439 if ((op & 0xffff0000) == 0x60000000)
1440 {
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 }
1444 /* add 0,12,0 */
1445 if (op != 0x7c0c0214)
1446 break;
1447
1448 /* cmpw 0,12,0 */
1449 pc = pc + 4;
1450 op = rs6000_fetch_instruction (gdbarch, pc);
1451 if (op != 0x7c0c0000)
1452 break;
1453
1454 /* beq 0,<disp> */
1455 pc = pc + 4;
1456 op = rs6000_fetch_instruction (gdbarch, pc);
1457 if ((op & 0xff9f0001) != 0x41820000)
1458 break;
1459
1460 /* addi 12,12,-<some immediate> */
1461 pc = pc + 4;
1462 op = rs6000_fetch_instruction (gdbarch, pc);
1463 if ((op & 0xffff0000) != 0x398c0000)
1464 break;
1465
1466 /* stw 0,0(12) */
1467 pc = pc + 4;
1468 op = rs6000_fetch_instruction (gdbarch, pc);
1469 if (op != 0x900c0000)
1470 break;
1471
1472 /* b <disp> */
1473 pc = pc + 4;
1474 op = rs6000_fetch_instruction (gdbarch, pc);
1475 if ((op & 0xfc000001) != 0x48000000)
1476 break;
1477
1478 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1479 pc = pc + 4;
1480 op = rs6000_fetch_instruction (gdbarch, pc);
1481 if ((op & 0xffff0000) == 0x900c0000)
1482 {
1483 pc = pc + 4;
1484 op = rs6000_fetch_instruction (gdbarch, pc);
1485 }
1486
1487 /* We found a valid stack-check sequence, return the new PC. */
1488 return pc;
1489 }
1490
1491 /* Third sequence: No probe; instead, a comparison between the stack size
1492 limit (saved in a run-time global variable) and the current stack
1493 pointer:
1494
1495 addi 0,1,-<some immediate>
1496 lis 12,__gnat_stack_limit@ha
1497 lwz 12,__gnat_stack_limit@l(12)
1498 twllt 0,12
1499
1500 or, with a small variant in the case of a bigger stack frame:
1501 addis 0,1,<some immediate>
1502 addic 0,0,-<some immediate>
1503 lis 12,__gnat_stack_limit@ha
1504 lwz 12,__gnat_stack_limit@l(12)
1505 twllt 0,12
1506 */
1507 while (1)
1508 {
1509 /* addi 0,1,-<some immediate> */
1510 if ((op & 0xffff0000) != 0x38010000)
1511 {
1512 /* small stack frame variant not recognized; try the
1513 big stack frame variant: */
1514
1515 /* addis 0,1,<some immediate> */
1516 if ((op & 0xffff0000) != 0x3c010000)
1517 break;
1518
1519 /* addic 0,0,-<some immediate> */
1520 pc = pc + 4;
1521 op = rs6000_fetch_instruction (gdbarch, pc);
1522 if ((op & 0xffff0000) != 0x30000000)
1523 break;
1524 }
1525
1526 /* lis 12,<some immediate> */
1527 pc = pc + 4;
1528 op = rs6000_fetch_instruction (gdbarch, pc);
1529 if ((op & 0xffff0000) != 0x3d800000)
1530 break;
1531
1532 /* lwz 12,<some immediate>(12) */
1533 pc = pc + 4;
1534 op = rs6000_fetch_instruction (gdbarch, pc);
1535 if ((op & 0xffff0000) != 0x818c0000)
1536 break;
1537
1538 /* twllt 0,12 */
1539 pc = pc + 4;
1540 op = rs6000_fetch_instruction (gdbarch, pc);
1541 if ((op & 0xfffffffe) != 0x7c406008)
1542 break;
1543
1544 /* We found a valid stack-check sequence, return the new PC. */
1545 return pc;
1546 }
1547
1548 /* No stack check code in our prologue, return the start_pc. */
1549 return start_pc;
1550 }
1551
1552 /* return pc value after skipping a function prologue and also return
1553 information about a function frame.
1554
1555 in struct rs6000_framedata fdata:
1556 - frameless is TRUE, if function does not have a frame.
1557 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1558 - offset is the initial size of this stack frame --- the amount by
1559 which we decrement the sp to allocate the frame.
1560 - saved_gpr is the number of the first saved gpr.
1561 - saved_fpr is the number of the first saved fpr.
1562 - saved_vr is the number of the first saved vr.
1563 - saved_ev is the number of the first saved ev.
1564 - alloca_reg is the number of the register used for alloca() handling.
1565 Otherwise -1.
1566 - gpr_offset is the offset of the first saved gpr from the previous frame.
1567 - fpr_offset is the offset of the first saved fpr from the previous frame.
1568 - vr_offset is the offset of the first saved vr from the previous frame.
1569 - ev_offset is the offset of the first saved ev from the previous frame.
1570 - lr_offset is the offset of the saved lr
1571 - cr_offset is the offset of the saved cr
1572 - vrsave_offset is the offset of the saved vrsave register. */
1573
1574 static CORE_ADDR
1575 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1576 struct rs6000_framedata *fdata)
1577 {
1578 CORE_ADDR orig_pc = pc;
1579 CORE_ADDR last_prologue_pc = pc;
1580 CORE_ADDR li_found_pc = 0;
1581 gdb_byte buf[4];
1582 unsigned long op;
1583 long offset = 0;
1584 long alloca_reg_offset = 0;
1585 long vr_saved_offset = 0;
1586 int lr_reg = -1;
1587 int cr_reg = -1;
1588 int vr_reg = -1;
1589 int ev_reg = -1;
1590 long ev_offset = 0;
1591 int vrsave_reg = -1;
1592 int reg;
1593 int framep = 0;
1594 int minimal_toc_loaded = 0;
1595 int prev_insn_was_prologue_insn = 1;
1596 int num_skip_non_prologue_insns = 0;
1597 int r0_contains_arg = 0;
1598 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1601
1602 memset (fdata, 0, sizeof (struct rs6000_framedata));
1603 fdata->saved_gpr = -1;
1604 fdata->saved_fpr = -1;
1605 fdata->saved_vr = -1;
1606 fdata->saved_ev = -1;
1607 fdata->alloca_reg = -1;
1608 fdata->frameless = 1;
1609 fdata->nosavedpc = 1;
1610 fdata->lr_register = -1;
1611
1612 pc = rs6000_skip_stack_check (gdbarch, pc);
1613 if (pc >= lim_pc)
1614 pc = lim_pc;
1615
1616 for (;; pc += 4)
1617 {
1618 /* Sometimes it isn't clear if an instruction is a prologue
1619 instruction or not. When we encounter one of these ambiguous
1620 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1621 Otherwise, we'll assume that it really is a prologue instruction. */
1622 if (prev_insn_was_prologue_insn)
1623 last_prologue_pc = pc;
1624
1625 /* Stop scanning if we've hit the limit. */
1626 if (pc >= lim_pc)
1627 break;
1628
1629 prev_insn_was_prologue_insn = 1;
1630
1631 /* Fetch the instruction and convert it to an integer. */
1632 if (target_read_memory (pc, buf, 4))
1633 break;
1634 op = extract_unsigned_integer (buf, 4, byte_order);
1635
1636 if ((op & 0xfc1fffff) == 0x7c0802a6)
1637 { /* mflr Rx */
1638 /* Since shared library / PIC code, which needs to get its
1639 address at runtime, can appear to save more than one link
1640 register vis:
1641
1642 *INDENT-OFF*
1643 stwu r1,-304(r1)
1644 mflr r3
1645 bl 0xff570d0 (blrl)
1646 stw r30,296(r1)
1647 mflr r30
1648 stw r31,300(r1)
1649 stw r3,308(r1);
1650 ...
1651 *INDENT-ON*
1652
1653 remember just the first one, but skip over additional
1654 ones. */
1655 if (lr_reg == -1)
1656 lr_reg = (op & 0x03e00000) >> 21;
1657 if (lr_reg == 0)
1658 r0_contains_arg = 0;
1659 continue;
1660 }
1661 else if ((op & 0xfc1fffff) == 0x7c000026)
1662 { /* mfcr Rx */
1663 cr_reg = (op & 0x03e00000) >> 21;
1664 if (cr_reg == 0)
1665 r0_contains_arg = 0;
1666 continue;
1667
1668 }
1669 else if ((op & 0xfc1f0000) == 0xd8010000)
1670 { /* stfd Rx,NUM(r1) */
1671 reg = GET_SRC_REG (op);
1672 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1673 {
1674 fdata->saved_fpr = reg;
1675 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1676 }
1677 continue;
1678
1679 }
1680 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1681 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1682 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1683 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1684 {
1685
1686 reg = GET_SRC_REG (op);
1687 if ((op & 0xfc1f0000) == 0xbc010000)
1688 fdata->gpr_mask |= ~((1U << reg) - 1);
1689 else
1690 fdata->gpr_mask |= 1U << reg;
1691 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1692 {
1693 fdata->saved_gpr = reg;
1694 if ((op & 0xfc1f0003) == 0xf8010000)
1695 op &= ~3UL;
1696 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1697 }
1698 continue;
1699
1700 }
1701 else if ((op & 0xffff0000) == 0x3c4c0000
1702 || (op & 0xffff0000) == 0x3c400000
1703 || (op & 0xffff0000) == 0x38420000)
1704 {
1705 /* . 0: addis 2,12,.TOC.-0b@ha
1706 . addi 2,2,.TOC.-0b@l
1707 or
1708 . lis 2,.TOC.@ha
1709 . addi 2,2,.TOC.@l
1710 used by ELFv2 global entry points to set up r2. */
1711 continue;
1712 }
1713 else if (op == 0x60000000)
1714 {
1715 /* nop */
1716 /* Allow nops in the prologue, but do not consider them to
1717 be part of the prologue unless followed by other prologue
1718 instructions. */
1719 prev_insn_was_prologue_insn = 0;
1720 continue;
1721
1722 }
1723 else if ((op & 0xffff0000) == 0x3c000000)
1724 { /* addis 0,0,NUM, used for >= 32k frames */
1725 fdata->offset = (op & 0x0000ffff) << 16;
1726 fdata->frameless = 0;
1727 r0_contains_arg = 0;
1728 continue;
1729
1730 }
1731 else if ((op & 0xffff0000) == 0x60000000)
1732 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1733 fdata->offset |= (op & 0x0000ffff);
1734 fdata->frameless = 0;
1735 r0_contains_arg = 0;
1736 continue;
1737
1738 }
1739 else if (lr_reg >= 0 &&
1740 ((store_insn_p (op, lr_reg, 1, true)) ||
1741 (framep &&
1742 (store_insn_p (op, lr_reg,
1743 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1744 false)))))
1745 {
1746 if (store_insn_p (op, lr_reg, 1, true))
1747 fdata->lr_offset = offset;
1748 else /* LR save through frame pointer. */
1749 fdata->lr_offset = alloca_reg_offset;
1750
1751 fdata->nosavedpc = 0;
1752 /* Invalidate lr_reg, but don't set it to -1.
1753 That would mean that it had never been set. */
1754 lr_reg = -2;
1755 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1756 (op & 0xfc000000) == 0x90000000) /* stw */
1757 {
1758 /* Does not update r1, so add displacement to lr_offset. */
1759 fdata->lr_offset += SIGNED_SHORT (op);
1760 }
1761 continue;
1762
1763 }
1764 else if (cr_reg >= 0 &&
1765 (store_insn_p (op, cr_reg, 1, true)))
1766 {
1767 fdata->cr_offset = offset;
1768 /* Invalidate cr_reg, but don't set it to -1.
1769 That would mean that it had never been set. */
1770 cr_reg = -2;
1771 if ((op & 0xfc000003) == 0xf8000000 ||
1772 (op & 0xfc000000) == 0x90000000)
1773 {
1774 /* Does not update r1, so add displacement to cr_offset. */
1775 fdata->cr_offset += SIGNED_SHORT (op);
1776 }
1777 continue;
1778
1779 }
1780 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1781 {
1782 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1783 prediction bits. If the LR has already been saved, we can
1784 skip it. */
1785 continue;
1786 }
1787 else if (op == 0x48000005)
1788 { /* bl .+4 used in
1789 -mrelocatable */
1790 fdata->used_bl = 1;
1791 continue;
1792
1793 }
1794 else if (op == 0x48000004)
1795 { /* b .+4 (xlc) */
1796 break;
1797
1798 }
1799 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1800 in V.4 -mminimal-toc */
1801 (op & 0xffff0000) == 0x3bde0000)
1802 { /* addi 30,30,foo@l */
1803 continue;
1804
1805 }
1806 else if ((op & 0xfc000001) == 0x48000001)
1807 { /* bl foo,
1808 to save fprs??? */
1809
1810 fdata->frameless = 0;
1811
1812 /* If the return address has already been saved, we can skip
1813 calls to blrl (for PIC). */
1814 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1815 {
1816 fdata->used_bl = 1;
1817 continue;
1818 }
1819
1820 /* Don't skip over the subroutine call if it is not within
1821 the first three instructions of the prologue and either
1822 we have no line table information or the line info tells
1823 us that the subroutine call is not part of the line
1824 associated with the prologue. */
1825 if ((pc - orig_pc) > 8)
1826 {
1827 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1828 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1829
1830 if ((prologue_sal.line == 0)
1831 || (prologue_sal.line != this_sal.line))
1832 break;
1833 }
1834
1835 op = read_memory_integer (pc + 4, 4, byte_order);
1836
1837 /* At this point, make sure this is not a trampoline
1838 function (a function that simply calls another functions,
1839 and nothing else). If the next is not a nop, this branch
1840 was part of the function prologue. */
1841
1842 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1843 break; /* Don't skip over
1844 this branch. */
1845
1846 fdata->used_bl = 1;
1847 continue;
1848 }
1849 /* update stack pointer */
1850 else if ((op & 0xfc1f0000) == 0x94010000)
1851 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1852 fdata->frameless = 0;
1853 fdata->offset = SIGNED_SHORT (op);
1854 offset = fdata->offset;
1855 continue;
1856 }
1857 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1858 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1859 /* No way to figure out what r1 is going to be. */
1860 fdata->frameless = 0;
1861 offset = fdata->offset;
1862 continue;
1863 }
1864 else if ((op & 0xfc1f0003) == 0xf8010001)
1865 { /* stdu rX,NUM(r1) */
1866 fdata->frameless = 0;
1867 fdata->offset = SIGNED_SHORT (op & ~3UL);
1868 offset = fdata->offset;
1869 continue;
1870 }
1871 else if ((op & 0xffff0000) == 0x38210000)
1872 { /* addi r1,r1,SIMM */
1873 fdata->frameless = 0;
1874 fdata->offset += SIGNED_SHORT (op);
1875 offset = fdata->offset;
1876 continue;
1877 }
1878 /* Load up minimal toc pointer. Do not treat an epilogue restore
1879 of r31 as a minimal TOC load. */
1880 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1881 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1882 && !framep
1883 && !minimal_toc_loaded)
1884 {
1885 minimal_toc_loaded = 1;
1886 continue;
1887
1888 /* move parameters from argument registers to local variable
1889 registers */
1890 }
1891 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1892 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1893 (((op >> 21) & 31) <= 10) &&
1894 ((long) ((op >> 16) & 31)
1895 >= fdata->saved_gpr)) /* Rx: local var reg */
1896 {
1897 continue;
1898
1899 /* store parameters in stack */
1900 }
1901 /* Move parameters from argument registers to temporary register. */
1902 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1903 {
1904 continue;
1905
1906 /* Set up frame pointer */
1907 }
1908 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1909 {
1910 fdata->frameless = 0;
1911 framep = 1;
1912 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1913 alloca_reg_offset = offset;
1914 continue;
1915
1916 /* Another way to set up the frame pointer. */
1917 }
1918 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1919 || op == 0x7c3f0b78)
1920 { /* mr r31, r1 */
1921 fdata->frameless = 0;
1922 framep = 1;
1923 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1924 alloca_reg_offset = offset;
1925 continue;
1926
1927 /* Another way to set up the frame pointer. */
1928 }
1929 else if ((op & 0xfc1fffff) == 0x38010000)
1930 { /* addi rX, r1, 0x0 */
1931 fdata->frameless = 0;
1932 framep = 1;
1933 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1934 + ((op & ~0x38010000) >> 21));
1935 alloca_reg_offset = offset;
1936 continue;
1937 }
1938 /* AltiVec related instructions. */
1939 /* Store the vrsave register (spr 256) in another register for
1940 later manipulation, or load a register into the vrsave
1941 register. 2 instructions are used: mfvrsave and
1942 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1943 and mtspr SPR256, Rn. */
1944 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1945 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1946 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1947 {
1948 vrsave_reg = GET_SRC_REG (op);
1949 continue;
1950 }
1951 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1952 {
1953 continue;
1954 }
1955 /* Store the register where vrsave was saved to onto the stack:
1956 rS is the register where vrsave was stored in a previous
1957 instruction. */
1958 /* 100100 sssss 00001 dddddddd dddddddd */
1959 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1960 {
1961 if (vrsave_reg == GET_SRC_REG (op))
1962 {
1963 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1964 vrsave_reg = -1;
1965 }
1966 continue;
1967 }
1968 /* Compute the new value of vrsave, by modifying the register
1969 where vrsave was saved to. */
1970 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1971 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1972 {
1973 continue;
1974 }
1975 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1976 in a pair of insns to save the vector registers on the
1977 stack. */
1978 /* 001110 00000 00000 iiii iiii iiii iiii */
1979 /* 001110 01110 00000 iiii iiii iiii iiii */
1980 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1981 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1982 {
1983 if ((op & 0xffff0000) == 0x38000000)
1984 r0_contains_arg = 0;
1985 li_found_pc = pc;
1986 vr_saved_offset = SIGNED_SHORT (op);
1987
1988 /* This insn by itself is not part of the prologue, unless
1989 if part of the pair of insns mentioned above. So do not
1990 record this insn as part of the prologue yet. */
1991 prev_insn_was_prologue_insn = 0;
1992 }
1993 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1994 /* 011111 sssss 11111 00000 00111001110 */
1995 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1996 {
1997 if (pc == (li_found_pc + 4))
1998 {
1999 vr_reg = GET_SRC_REG (op);
2000 /* If this is the first vector reg to be saved, or if
2001 it has a lower number than others previously seen,
2002 reupdate the frame info. */
2003 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2004 {
2005 fdata->saved_vr = vr_reg;
2006 fdata->vr_offset = vr_saved_offset + offset;
2007 }
2008 vr_saved_offset = -1;
2009 vr_reg = -1;
2010 li_found_pc = 0;
2011 }
2012 }
2013 /* End AltiVec related instructions. */
2014
2015 /* Start BookE related instructions. */
2016 /* Store gen register S at (r31+uimm).
2017 Any register less than r13 is volatile, so we don't care. */
2018 /* 000100 sssss 11111 iiiii 01100100001 */
2019 else if (arch_info->mach == bfd_mach_ppc_e500
2020 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2021 {
2022 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2023 {
2024 unsigned int imm;
2025 ev_reg = GET_SRC_REG (op);
2026 imm = (op >> 11) & 0x1f;
2027 ev_offset = imm * 8;
2028 /* If this is the first vector reg to be saved, or if
2029 it has a lower number than others previously seen,
2030 reupdate the frame info. */
2031 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2032 {
2033 fdata->saved_ev = ev_reg;
2034 fdata->ev_offset = ev_offset + offset;
2035 }
2036 }
2037 continue;
2038 }
2039 /* Store gen register rS at (r1+rB). */
2040 /* 000100 sssss 00001 bbbbb 01100100000 */
2041 else if (arch_info->mach == bfd_mach_ppc_e500
2042 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2043 {
2044 if (pc == (li_found_pc + 4))
2045 {
2046 ev_reg = GET_SRC_REG (op);
2047 /* If this is the first vector reg to be saved, or if
2048 it has a lower number than others previously seen,
2049 reupdate the frame info. */
2050 /* We know the contents of rB from the previous instruction. */
2051 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2052 {
2053 fdata->saved_ev = ev_reg;
2054 fdata->ev_offset = vr_saved_offset + offset;
2055 }
2056 vr_saved_offset = -1;
2057 ev_reg = -1;
2058 li_found_pc = 0;
2059 }
2060 continue;
2061 }
2062 /* Store gen register r31 at (rA+uimm). */
2063 /* 000100 11111 aaaaa iiiii 01100100001 */
2064 else if (arch_info->mach == bfd_mach_ppc_e500
2065 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2066 {
2067 /* Wwe know that the source register is 31 already, but
2068 it can't hurt to compute it. */
2069 ev_reg = GET_SRC_REG (op);
2070 ev_offset = ((op >> 11) & 0x1f) * 8;
2071 /* If this is the first vector reg to be saved, or if
2072 it has a lower number than others previously seen,
2073 reupdate the frame info. */
2074 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2075 {
2076 fdata->saved_ev = ev_reg;
2077 fdata->ev_offset = ev_offset + offset;
2078 }
2079
2080 continue;
2081 }
2082 /* Store gen register S at (r31+r0).
2083 Store param on stack when offset from SP bigger than 4 bytes. */
2084 /* 000100 sssss 11111 00000 01100100000 */
2085 else if (arch_info->mach == bfd_mach_ppc_e500
2086 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2087 {
2088 if (pc == (li_found_pc + 4))
2089 {
2090 if ((op & 0x03e00000) >= 0x01a00000)
2091 {
2092 ev_reg = GET_SRC_REG (op);
2093 /* If this is the first vector reg to be saved, or if
2094 it has a lower number than others previously seen,
2095 reupdate the frame info. */
2096 /* We know the contents of r0 from the previous
2097 instruction. */
2098 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2099 {
2100 fdata->saved_ev = ev_reg;
2101 fdata->ev_offset = vr_saved_offset + offset;
2102 }
2103 ev_reg = -1;
2104 }
2105 vr_saved_offset = -1;
2106 li_found_pc = 0;
2107 continue;
2108 }
2109 }
2110 /* End BookE related instructions. */
2111
2112 else
2113 {
2114 /* Not a recognized prologue instruction.
2115 Handle optimizer code motions into the prologue by continuing
2116 the search if we have no valid frame yet or if the return
2117 address is not yet saved in the frame. Also skip instructions
2118 if some of the GPRs expected to be saved are not yet saved. */
2119 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2120 && fdata->saved_gpr != -1)
2121 {
2122 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2123
2124 if ((fdata->gpr_mask & all_mask) == all_mask)
2125 break;
2126 }
2127
2128 if (op == 0x4e800020 /* blr */
2129 || op == 0x4e800420) /* bctr */
2130 /* Do not scan past epilogue in frameless functions or
2131 trampolines. */
2132 break;
2133 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2134 /* Never skip branches. */
2135 break;
2136
2137 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2138 /* Do not scan too many insns, scanning insns is expensive with
2139 remote targets. */
2140 break;
2141
2142 /* Continue scanning. */
2143 prev_insn_was_prologue_insn = 0;
2144 continue;
2145 }
2146 }
2147
2148 #if 0
2149 /* I have problems with skipping over __main() that I need to address
2150 * sometime. Previously, I used to use misc_function_vector which
2151 * didn't work as well as I wanted to be. -MGO */
2152
2153 /* If the first thing after skipping a prolog is a branch to a function,
2154 this might be a call to an initializer in main(), introduced by gcc2.
2155 We'd like to skip over it as well. Fortunately, xlc does some extra
2156 work before calling a function right after a prologue, thus we can
2157 single out such gcc2 behaviour. */
2158
2159
2160 if ((op & 0xfc000001) == 0x48000001)
2161 { /* bl foo, an initializer function? */
2162 op = read_memory_integer (pc + 4, 4, byte_order);
2163
2164 if (op == 0x4def7b82)
2165 { /* cror 0xf, 0xf, 0xf (nop) */
2166
2167 /* Check and see if we are in main. If so, skip over this
2168 initializer function as well. */
2169
2170 tmp = find_pc_misc_function (pc);
2171 if (tmp >= 0
2172 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2173 return pc + 8;
2174 }
2175 }
2176 #endif /* 0 */
2177
2178 if (pc == lim_pc && lr_reg >= 0)
2179 fdata->lr_register = lr_reg;
2180
2181 fdata->offset = -fdata->offset;
2182 return last_prologue_pc;
2183 }
2184
2185 static CORE_ADDR
2186 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2187 {
2188 struct rs6000_framedata frame;
2189 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2190
2191 /* See if we can determine the end of the prologue via the symbol table.
2192 If so, then return either PC, or the PC after the prologue, whichever
2193 is greater. */
2194 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2195 {
2196 CORE_ADDR post_prologue_pc
2197 = skip_prologue_using_sal (gdbarch, func_addr);
2198 if (post_prologue_pc != 0)
2199 return std::max (pc, post_prologue_pc);
2200 }
2201
2202 /* Can't determine prologue from the symbol table, need to examine
2203 instructions. */
2204
2205 /* Find an upper limit on the function prologue using the debug
2206 information. If the debug information could not be used to provide
2207 that bound, then use an arbitrary large number as the upper bound. */
2208 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2209 if (limit_pc == 0)
2210 limit_pc = pc + 100; /* Magic. */
2211
2212 /* Do not allow limit_pc to be past the function end, if we know
2213 where that end is... */
2214 if (func_end_addr && limit_pc > func_end_addr)
2215 limit_pc = func_end_addr;
2216
2217 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2218 return pc;
2219 }
2220
2221 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2222 in the prologue of main().
2223
2224 The function below examines the code pointed at by PC and checks to
2225 see if it corresponds to a call to __eabi. If so, it returns the
2226 address of the instruction following that call. Otherwise, it simply
2227 returns PC. */
2228
2229 static CORE_ADDR
2230 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2231 {
2232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2233 gdb_byte buf[4];
2234 unsigned long op;
2235
2236 if (target_read_memory (pc, buf, 4))
2237 return pc;
2238 op = extract_unsigned_integer (buf, 4, byte_order);
2239
2240 if ((op & BL_MASK) == BL_INSTRUCTION)
2241 {
2242 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2243 CORE_ADDR call_dest = pc + 4 + displ;
2244 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2245
2246 /* We check for ___eabi (three leading underscores) in addition
2247 to __eabi in case the GCC option "-fleading-underscore" was
2248 used to compile the program. */
2249 if (s.minsym != NULL
2250 && s.minsym->linkage_name () != NULL
2251 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2252 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2253 pc += 4;
2254 }
2255 return pc;
2256 }
2257
2258 /* All the ABI's require 16 byte alignment. */
2259 static CORE_ADDR
2260 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2261 {
2262 return (addr & -16);
2263 }
2264
2265 /* Return whether handle_inferior_event() should proceed through code
2266 starting at PC in function NAME when stepping.
2267
2268 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2269 handle memory references that are too distant to fit in instructions
2270 generated by the compiler. For example, if 'foo' in the following
2271 instruction:
2272
2273 lwz r9,foo(r2)
2274
2275 is greater than 32767, the linker might replace the lwz with a branch to
2276 somewhere in @FIX1 that does the load in 2 instructions and then branches
2277 back to where execution should continue.
2278
2279 GDB should silently step over @FIX code, just like AIX dbx does.
2280 Unfortunately, the linker uses the "b" instruction for the
2281 branches, meaning that the link register doesn't get set.
2282 Therefore, GDB's usual step_over_function () mechanism won't work.
2283
2284 Instead, use the gdbarch_skip_trampoline_code and
2285 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2286 @FIX code. */
2287
2288 static int
2289 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2290 CORE_ADDR pc, const char *name)
2291 {
2292 return name && startswith (name, "@FIX");
2293 }
2294
2295 /* Skip code that the user doesn't want to see when stepping:
2296
2297 1. Indirect function calls use a piece of trampoline code to do context
2298 switching, i.e. to set the new TOC table. Skip such code if we are on
2299 its first instruction (as when we have single-stepped to here).
2300
2301 2. Skip shared library trampoline code (which is different from
2302 indirect function call trampolines).
2303
2304 3. Skip bigtoc fixup code.
2305
2306 Result is desired PC to step until, or NULL if we are not in
2307 code that should be skipped. */
2308
2309 static CORE_ADDR
2310 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2311 {
2312 struct gdbarch *gdbarch = get_frame_arch (frame);
2313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2315 unsigned int ii, op;
2316 int rel;
2317 CORE_ADDR solib_target_pc;
2318 struct bound_minimal_symbol msymbol;
2319
2320 static unsigned trampoline_code[] =
2321 {
2322 0x800b0000, /* l r0,0x0(r11) */
2323 0x90410014, /* st r2,0x14(r1) */
2324 0x7c0903a6, /* mtctr r0 */
2325 0x804b0004, /* l r2,0x4(r11) */
2326 0x816b0008, /* l r11,0x8(r11) */
2327 0x4e800420, /* bctr */
2328 0x4e800020, /* br */
2329 0
2330 };
2331
2332 /* Check for bigtoc fixup code. */
2333 msymbol = lookup_minimal_symbol_by_pc (pc);
2334 if (msymbol.minsym
2335 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2336 msymbol.minsym->linkage_name ()))
2337 {
2338 /* Double-check that the third instruction from PC is relative "b". */
2339 op = read_memory_integer (pc + 8, 4, byte_order);
2340 if ((op & 0xfc000003) == 0x48000000)
2341 {
2342 /* Extract bits 6-29 as a signed 24-bit relative word address and
2343 add it to the containing PC. */
2344 rel = ((int)(op << 6) >> 6);
2345 return pc + 8 + rel;
2346 }
2347 }
2348
2349 /* If pc is in a shared library trampoline, return its target. */
2350 solib_target_pc = find_solib_trampoline_target (frame, pc);
2351 if (solib_target_pc)
2352 return solib_target_pc;
2353
2354 for (ii = 0; trampoline_code[ii]; ++ii)
2355 {
2356 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2357 if (op != trampoline_code[ii])
2358 return 0;
2359 }
2360 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2361 addr. */
2362 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2363 return pc;
2364 }
2365
2366 /* ISA-specific vector types. */
2367
2368 static struct type *
2369 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2370 {
2371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2372
2373 if (!tdep->ppc_builtin_type_vec64)
2374 {
2375 const struct builtin_type *bt = builtin_type (gdbarch);
2376
2377 /* The type we're building is this: */
2378 #if 0
2379 union __gdb_builtin_type_vec64
2380 {
2381 int64_t uint64;
2382 float v2_float[2];
2383 int32_t v2_int32[2];
2384 int16_t v4_int16[4];
2385 int8_t v8_int8[8];
2386 };
2387 #endif
2388
2389 struct type *t;
2390
2391 t = arch_composite_type (gdbarch,
2392 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2393 append_composite_type_field (t, "uint64", bt->builtin_int64);
2394 append_composite_type_field (t, "v2_float",
2395 init_vector_type (bt->builtin_float, 2));
2396 append_composite_type_field (t, "v2_int32",
2397 init_vector_type (bt->builtin_int32, 2));
2398 append_composite_type_field (t, "v4_int16",
2399 init_vector_type (bt->builtin_int16, 4));
2400 append_composite_type_field (t, "v8_int8",
2401 init_vector_type (bt->builtin_int8, 8));
2402
2403 t->set_is_vector (true);
2404 t->set_name ("ppc_builtin_type_vec64");
2405 tdep->ppc_builtin_type_vec64 = t;
2406 }
2407
2408 return tdep->ppc_builtin_type_vec64;
2409 }
2410
2411 /* Vector 128 type. */
2412
2413 static struct type *
2414 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2415 {
2416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2417
2418 if (!tdep->ppc_builtin_type_vec128)
2419 {
2420 const struct builtin_type *bt = builtin_type (gdbarch);
2421
2422 /* The type we're building is this
2423
2424 type = union __ppc_builtin_type_vec128 {
2425 float128_t float128;
2426 uint128_t uint128;
2427 double v2_double[2];
2428 float v4_float[4];
2429 int32_t v4_int32[4];
2430 int16_t v8_int16[8];
2431 int8_t v16_int8[16];
2432 }
2433 */
2434
2435 /* PPC specific type for IEEE 128-bit float field */
2436 struct type *t_float128
2437 = arch_float_type (gdbarch, 128, "float128_t", floatformats_ia64_quad);
2438
2439 struct type *t;
2440
2441 t = arch_composite_type (gdbarch,
2442 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2443 append_composite_type_field (t, "float128", t_float128);
2444 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2445 append_composite_type_field (t, "v2_double",
2446 init_vector_type (bt->builtin_double, 2));
2447 append_composite_type_field (t, "v4_float",
2448 init_vector_type (bt->builtin_float, 4));
2449 append_composite_type_field (t, "v4_int32",
2450 init_vector_type (bt->builtin_int32, 4));
2451 append_composite_type_field (t, "v8_int16",
2452 init_vector_type (bt->builtin_int16, 8));
2453 append_composite_type_field (t, "v16_int8",
2454 init_vector_type (bt->builtin_int8, 16));
2455
2456 t->set_is_vector (true);
2457 t->set_name ("ppc_builtin_type_vec128");
2458 tdep->ppc_builtin_type_vec128 = t;
2459 }
2460
2461 return tdep->ppc_builtin_type_vec128;
2462 }
2463
2464 /* Return the name of register number REGNO, or the empty string if it
2465 is an anonymous register. */
2466
2467 static const char *
2468 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2469 {
2470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2471
2472 /* The upper half "registers" have names in the XML description,
2473 but we present only the low GPRs and the full 64-bit registers
2474 to the user. */
2475 if (tdep->ppc_ev0_upper_regnum >= 0
2476 && tdep->ppc_ev0_upper_regnum <= regno
2477 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2478 return "";
2479
2480 /* Hide the upper halves of the vs0~vs31 registers. */
2481 if (tdep->ppc_vsr0_regnum >= 0
2482 && tdep->ppc_vsr0_upper_regnum <= regno
2483 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2484 return "";
2485
2486 /* Hide the upper halves of the cvs0~cvs31 registers. */
2487 if (PPC_CVSR0_UPPER_REGNUM <= regno
2488 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2489 return "";
2490
2491 /* Check if the SPE pseudo registers are available. */
2492 if (IS_SPE_PSEUDOREG (tdep, regno))
2493 {
2494 static const char *const spe_regnames[] = {
2495 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2496 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2497 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2498 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2499 };
2500 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2501 }
2502
2503 /* Check if the decimal128 pseudo-registers are available. */
2504 if (IS_DFP_PSEUDOREG (tdep, regno))
2505 {
2506 static const char *const dfp128_regnames[] = {
2507 "dl0", "dl1", "dl2", "dl3",
2508 "dl4", "dl5", "dl6", "dl7",
2509 "dl8", "dl9", "dl10", "dl11",
2510 "dl12", "dl13", "dl14", "dl15"
2511 };
2512 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2513 }
2514
2515 /* Check if this is a vX alias for a raw vrX vector register. */
2516 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2517 {
2518 static const char *const vector_alias_regnames[] = {
2519 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2520 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2521 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2522 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2523 };
2524 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2525 }
2526
2527 /* Check if this is a VSX pseudo-register. */
2528 if (IS_VSX_PSEUDOREG (tdep, regno))
2529 {
2530 static const char *const vsx_regnames[] = {
2531 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2532 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2533 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2534 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2535 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2536 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2537 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2538 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2539 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2540 };
2541 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2542 }
2543
2544 /* Check if the this is a Extended FP pseudo-register. */
2545 if (IS_EFP_PSEUDOREG (tdep, regno))
2546 {
2547 static const char *const efpr_regnames[] = {
2548 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2549 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2550 "f46", "f47", "f48", "f49", "f50", "f51",
2551 "f52", "f53", "f54", "f55", "f56", "f57",
2552 "f58", "f59", "f60", "f61", "f62", "f63"
2553 };
2554 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2555 }
2556
2557 /* Check if this is a Checkpointed DFP pseudo-register. */
2558 if (IS_CDFP_PSEUDOREG (tdep, regno))
2559 {
2560 static const char *const cdfp128_regnames[] = {
2561 "cdl0", "cdl1", "cdl2", "cdl3",
2562 "cdl4", "cdl5", "cdl6", "cdl7",
2563 "cdl8", "cdl9", "cdl10", "cdl11",
2564 "cdl12", "cdl13", "cdl14", "cdl15"
2565 };
2566 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2567 }
2568
2569 /* Check if this is a Checkpointed VSX pseudo-register. */
2570 if (IS_CVSX_PSEUDOREG (tdep, regno))
2571 {
2572 static const char *const cvsx_regnames[] = {
2573 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2574 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2575 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2576 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2577 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2578 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2579 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2580 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2581 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2582 };
2583 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2584 }
2585
2586 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2587 if (IS_CEFP_PSEUDOREG (tdep, regno))
2588 {
2589 static const char *const cefpr_regnames[] = {
2590 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2591 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2592 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2593 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2594 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2595 };
2596 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2597 }
2598
2599 return tdesc_register_name (gdbarch, regno);
2600 }
2601
2602 /* Return the GDB type object for the "standard" data type of data in
2603 register N. */
2604
2605 static struct type *
2606 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2607 {
2608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2609
2610 /* These are the e500 pseudo-registers. */
2611 if (IS_SPE_PSEUDOREG (tdep, regnum))
2612 return rs6000_builtin_type_vec64 (gdbarch);
2613 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2614 || IS_CDFP_PSEUDOREG (tdep, regnum))
2615 /* PPC decimal128 pseudo-registers. */
2616 return builtin_type (gdbarch)->builtin_declong;
2617 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2618 return gdbarch_register_type (gdbarch,
2619 tdep->ppc_vr0_regnum
2620 + (regnum
2621 - tdep->ppc_v0_alias_regnum));
2622 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2623 || IS_CVSX_PSEUDOREG (tdep, regnum))
2624 /* POWER7 VSX pseudo-registers. */
2625 return rs6000_builtin_type_vec128 (gdbarch);
2626 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2627 || IS_CEFP_PSEUDOREG (tdep, regnum))
2628 /* POWER7 Extended FP pseudo-registers. */
2629 return builtin_type (gdbarch)->builtin_double;
2630 else
2631 internal_error (__FILE__, __LINE__,
2632 _("rs6000_pseudo_register_type: "
2633 "called on unexpected register '%s' (%d)"),
2634 gdbarch_register_name (gdbarch, regnum), regnum);
2635 }
2636
2637 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2638 the vX aliases for the vector registers by always returning false
2639 to avoid duplicated information in "info register vector/all",
2640 since the raw vrX registers will already show in these cases. For
2641 other pseudo-registers we use the default membership function. */
2642
2643 static int
2644 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2645 struct reggroup *group)
2646 {
2647 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2648
2649 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2650 return 0;
2651 else
2652 return default_register_reggroup_p (gdbarch, regnum, group);
2653 }
2654
2655 /* The register format for RS/6000 floating point registers is always
2656 double, we need a conversion if the memory format is float. */
2657
2658 static int
2659 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2660 struct type *type)
2661 {
2662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2663
2664 return (tdep->ppc_fp0_regnum >= 0
2665 && regnum >= tdep->ppc_fp0_regnum
2666 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2667 && type->code () == TYPE_CODE_FLT
2668 && TYPE_LENGTH (type)
2669 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2670 }
2671
2672 static int
2673 rs6000_register_to_value (struct frame_info *frame,
2674 int regnum,
2675 struct type *type,
2676 gdb_byte *to,
2677 int *optimizedp, int *unavailablep)
2678 {
2679 struct gdbarch *gdbarch = get_frame_arch (frame);
2680 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2681
2682 gdb_assert (type->code () == TYPE_CODE_FLT);
2683
2684 if (!get_frame_register_bytes (frame, regnum, 0,
2685 gdb::make_array_view (from,
2686 register_size (gdbarch,
2687 regnum)),
2688 optimizedp, unavailablep))
2689 return 0;
2690
2691 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2692 to, type);
2693 *optimizedp = *unavailablep = 0;
2694 return 1;
2695 }
2696
2697 static void
2698 rs6000_value_to_register (struct frame_info *frame,
2699 int regnum,
2700 struct type *type,
2701 const gdb_byte *from)
2702 {
2703 struct gdbarch *gdbarch = get_frame_arch (frame);
2704 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2705
2706 gdb_assert (type->code () == TYPE_CODE_FLT);
2707
2708 target_float_convert (from, type,
2709 to, builtin_type (gdbarch)->builtin_double);
2710 put_frame_register (frame, regnum, to);
2711 }
2712
2713 /* The type of a function that moves the value of REG between CACHE
2714 or BUF --- in either direction. */
2715 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2716 int, void *);
2717
2718 /* Move SPE vector register values between a 64-bit buffer and the two
2719 32-bit raw register halves in a regcache. This function handles
2720 both splitting a 64-bit value into two 32-bit halves, and joining
2721 two halves into a whole 64-bit value, depending on the function
2722 passed as the MOVE argument.
2723
2724 EV_REG must be the number of an SPE evN vector register --- a
2725 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2726 64-bit buffer.
2727
2728 Call MOVE once for each 32-bit half of that register, passing
2729 REGCACHE, the number of the raw register corresponding to that
2730 half, and the address of the appropriate half of BUFFER.
2731
2732 For example, passing 'regcache_raw_read' as the MOVE function will
2733 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2734 'regcache_raw_supply' will supply the contents of BUFFER to the
2735 appropriate pair of raw registers in REGCACHE.
2736
2737 You may need to cast away some 'const' qualifiers when passing
2738 MOVE, since this function can't tell at compile-time which of
2739 REGCACHE or BUFFER is acting as the source of the data. If C had
2740 co-variant type qualifiers, ... */
2741
2742 static enum register_status
2743 e500_move_ev_register (move_ev_register_func move,
2744 struct regcache *regcache, int ev_reg, void *buffer)
2745 {
2746 struct gdbarch *arch = regcache->arch ();
2747 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2748 int reg_index;
2749 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2750 enum register_status status;
2751
2752 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2753
2754 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2755
2756 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2757 {
2758 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2759 byte_buffer);
2760 if (status == REG_VALID)
2761 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2762 byte_buffer + 4);
2763 }
2764 else
2765 {
2766 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2767 if (status == REG_VALID)
2768 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2769 byte_buffer + 4);
2770 }
2771
2772 return status;
2773 }
2774
2775 static enum register_status
2776 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2777 {
2778 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2779
2780 return REG_VALID;
2781 }
2782
2783 static enum register_status
2784 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2785 int ev_reg, gdb_byte *buffer)
2786 {
2787 struct gdbarch *arch = regcache->arch ();
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2789 int reg_index;
2790 enum register_status status;
2791
2792 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2793
2794 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2795
2796 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2797 {
2798 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2799 buffer);
2800 if (status == REG_VALID)
2801 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2802 buffer + 4);
2803 }
2804 else
2805 {
2806 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2807 if (status == REG_VALID)
2808 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2809 buffer + 4);
2810 }
2811
2812 return status;
2813
2814 }
2815
2816 static void
2817 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2818 int reg_nr, const gdb_byte *buffer)
2819 {
2820 e500_move_ev_register (do_regcache_raw_write, regcache,
2821 reg_nr, (void *) buffer);
2822 }
2823
2824 /* Read method for DFP pseudo-registers. */
2825 static enum register_status
2826 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2827 int reg_nr, gdb_byte *buffer)
2828 {
2829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2830 int reg_index, fp0;
2831 enum register_status status;
2832
2833 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2834 {
2835 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2836 fp0 = PPC_F0_REGNUM;
2837 }
2838 else
2839 {
2840 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2841
2842 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2843 fp0 = PPC_CF0_REGNUM;
2844 }
2845
2846 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2847 {
2848 /* Read two FP registers to form a whole dl register. */
2849 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2850 if (status == REG_VALID)
2851 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2852 buffer + 8);
2853 }
2854 else
2855 {
2856 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2857 if (status == REG_VALID)
2858 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2859 }
2860
2861 return status;
2862 }
2863
2864 /* Write method for DFP pseudo-registers. */
2865 static void
2866 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2867 int reg_nr, const gdb_byte *buffer)
2868 {
2869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2870 int reg_index, fp0;
2871
2872 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2873 {
2874 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2875 fp0 = PPC_F0_REGNUM;
2876 }
2877 else
2878 {
2879 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2880
2881 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2882 fp0 = PPC_CF0_REGNUM;
2883 }
2884
2885 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2886 {
2887 /* Write each half of the dl register into a separate
2888 FP register. */
2889 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2890 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2891 }
2892 else
2893 {
2894 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2895 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2896 }
2897 }
2898
2899 /* Read method for the vX aliases for the raw vrX registers. */
2900
2901 static enum register_status
2902 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2903 readable_regcache *regcache, int reg_nr,
2904 gdb_byte *buffer)
2905 {
2906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2907 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2908
2909 return regcache->raw_read (tdep->ppc_vr0_regnum
2910 + (reg_nr - tdep->ppc_v0_alias_regnum),
2911 buffer);
2912 }
2913
2914 /* Write method for the vX aliases for the raw vrX registers. */
2915
2916 static void
2917 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2918 struct regcache *regcache,
2919 int reg_nr, const gdb_byte *buffer)
2920 {
2921 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2922 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2923
2924 regcache->raw_write (tdep->ppc_vr0_regnum
2925 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2926 }
2927
2928 /* Read method for POWER7 VSX pseudo-registers. */
2929 static enum register_status
2930 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2931 int reg_nr, gdb_byte *buffer)
2932 {
2933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2934 int reg_index, vr0, fp0, vsr0_upper;
2935 enum register_status status;
2936
2937 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2938 {
2939 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2940 vr0 = PPC_VR0_REGNUM;
2941 fp0 = PPC_F0_REGNUM;
2942 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2943 }
2944 else
2945 {
2946 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2947
2948 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2949 vr0 = PPC_CVR0_REGNUM;
2950 fp0 = PPC_CF0_REGNUM;
2951 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2952 }
2953
2954 /* Read the portion that overlaps the VMX registers. */
2955 if (reg_index > 31)
2956 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2957 else
2958 /* Read the portion that overlaps the FPR registers. */
2959 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2960 {
2961 status = regcache->raw_read (fp0 + reg_index, buffer);
2962 if (status == REG_VALID)
2963 status = regcache->raw_read (vsr0_upper + reg_index,
2964 buffer + 8);
2965 }
2966 else
2967 {
2968 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2969 if (status == REG_VALID)
2970 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2971 }
2972
2973 return status;
2974 }
2975
2976 /* Write method for POWER7 VSX pseudo-registers. */
2977 static void
2978 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2979 int reg_nr, const gdb_byte *buffer)
2980 {
2981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2982 int reg_index, vr0, fp0, vsr0_upper;
2983
2984 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2985 {
2986 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2987 vr0 = PPC_VR0_REGNUM;
2988 fp0 = PPC_F0_REGNUM;
2989 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2990 }
2991 else
2992 {
2993 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2994
2995 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2996 vr0 = PPC_CVR0_REGNUM;
2997 fp0 = PPC_CF0_REGNUM;
2998 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2999 }
3000
3001 /* Write the portion that overlaps the VMX registers. */
3002 if (reg_index > 31)
3003 regcache->raw_write (vr0 + reg_index - 32, buffer);
3004 else
3005 /* Write the portion that overlaps the FPR registers. */
3006 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3007 {
3008 regcache->raw_write (fp0 + reg_index, buffer);
3009 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
3010 }
3011 else
3012 {
3013 regcache->raw_write (fp0 + reg_index, buffer + 8);
3014 regcache->raw_write (vsr0_upper + reg_index, buffer);
3015 }
3016 }
3017
3018 /* Read method for POWER7 Extended FP pseudo-registers. */
3019 static enum register_status
3020 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
3021 int reg_nr, gdb_byte *buffer)
3022 {
3023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3024 int reg_index, vr0;
3025
3026 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3027 {
3028 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3029 vr0 = PPC_VR0_REGNUM;
3030 }
3031 else
3032 {
3033 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3034
3035 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3036 vr0 = PPC_CVR0_REGNUM;
3037 }
3038
3039 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3040
3041 /* Read the portion that overlaps the VMX register. */
3042 return regcache->raw_read_part (vr0 + reg_index, offset,
3043 register_size (gdbarch, reg_nr),
3044 buffer);
3045 }
3046
3047 /* Write method for POWER7 Extended FP pseudo-registers. */
3048 static void
3049 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3050 int reg_nr, const gdb_byte *buffer)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053 int reg_index, vr0;
3054 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3055
3056 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3057 {
3058 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3059 vr0 = PPC_VR0_REGNUM;
3060 }
3061 else
3062 {
3063 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3064
3065 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3066 vr0 = PPC_CVR0_REGNUM;
3067
3068 /* The call to raw_write_part fails silently if the initial read
3069 of the read-update-write sequence returns an invalid status,
3070 so we check this manually and throw an error if needed. */
3071 regcache->raw_update (vr0 + reg_index);
3072 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3073 error (_("Cannot write to the checkpointed EFP register, "
3074 "the corresponding vector register is unavailable."));
3075 }
3076
3077 /* Write the portion that overlaps the VMX register. */
3078 regcache->raw_write_part (vr0 + reg_index, offset,
3079 register_size (gdbarch, reg_nr), buffer);
3080 }
3081
3082 static enum register_status
3083 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3084 readable_regcache *regcache,
3085 int reg_nr, gdb_byte *buffer)
3086 {
3087 struct gdbarch *regcache_arch = regcache->arch ();
3088 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3089
3090 gdb_assert (regcache_arch == gdbarch);
3091
3092 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3093 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3094 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3095 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3096 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3097 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3098 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3099 buffer);
3100 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3101 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3102 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3103 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3104 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3105 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3106 else
3107 internal_error (__FILE__, __LINE__,
3108 _("rs6000_pseudo_register_read: "
3109 "called on unexpected register '%s' (%d)"),
3110 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3111 }
3112
3113 static void
3114 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3115 struct regcache *regcache,
3116 int reg_nr, const gdb_byte *buffer)
3117 {
3118 struct gdbarch *regcache_arch = regcache->arch ();
3119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3120
3121 gdb_assert (regcache_arch == gdbarch);
3122
3123 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3124 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3125 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3126 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3127 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3128 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3129 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3130 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3131 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3132 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3133 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3134 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3135 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3136 else
3137 internal_error (__FILE__, __LINE__,
3138 _("rs6000_pseudo_register_write: "
3139 "called on unexpected register '%s' (%d)"),
3140 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3141 }
3142
3143 /* Set the register mask in AX with the registers that form the DFP or
3144 checkpointed DFP pseudo-register REG_NR. */
3145
3146 static void
3147 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3148 struct agent_expr *ax, int reg_nr)
3149 {
3150 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3151 int reg_index, fp0;
3152
3153 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3154 {
3155 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3156 fp0 = PPC_F0_REGNUM;
3157 }
3158 else
3159 {
3160 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3161
3162 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3163 fp0 = PPC_CF0_REGNUM;
3164 }
3165
3166 ax_reg_mask (ax, fp0 + 2 * reg_index);
3167 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3168 }
3169
3170 /* Set the register mask in AX with the raw vector register that
3171 corresponds to its REG_NR alias. */
3172
3173 static void
3174 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3175 struct agent_expr *ax, int reg_nr)
3176 {
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3179
3180 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3181 + (reg_nr - tdep->ppc_v0_alias_regnum));
3182 }
3183
3184 /* Set the register mask in AX with the registers that form the VSX or
3185 checkpointed VSX pseudo-register REG_NR. */
3186
3187 static void
3188 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3189 struct agent_expr *ax, int reg_nr)
3190 {
3191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3192 int reg_index, vr0, fp0, vsr0_upper;
3193
3194 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3195 {
3196 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3197 vr0 = PPC_VR0_REGNUM;
3198 fp0 = PPC_F0_REGNUM;
3199 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3200 }
3201 else
3202 {
3203 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3204
3205 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3206 vr0 = PPC_CVR0_REGNUM;
3207 fp0 = PPC_CF0_REGNUM;
3208 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3209 }
3210
3211 if (reg_index > 31)
3212 {
3213 ax_reg_mask (ax, vr0 + reg_index - 32);
3214 }
3215 else
3216 {
3217 ax_reg_mask (ax, fp0 + reg_index);
3218 ax_reg_mask (ax, vsr0_upper + reg_index);
3219 }
3220 }
3221
3222 /* Set the register mask in AX with the register that corresponds to
3223 the EFP or checkpointed EFP pseudo-register REG_NR. */
3224
3225 static void
3226 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3227 struct agent_expr *ax, int reg_nr)
3228 {
3229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3230 int reg_index, vr0;
3231
3232 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3233 {
3234 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3235 vr0 = PPC_VR0_REGNUM;
3236 }
3237 else
3238 {
3239 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3240
3241 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3242 vr0 = PPC_CVR0_REGNUM;
3243 }
3244
3245 ax_reg_mask (ax, vr0 + reg_index);
3246 }
3247
3248 static int
3249 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3250 struct agent_expr *ax, int reg_nr)
3251 {
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3253 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3254 {
3255 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3256 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3257 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3258 }
3259 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3260 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3261 {
3262 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3263 }
3264 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3265 {
3266 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3267 }
3268 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3269 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3270 {
3271 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3272 }
3273 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3274 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3275 {
3276 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3277 }
3278 else
3279 internal_error (__FILE__, __LINE__,
3280 _("rs6000_pseudo_register_collect: "
3281 "called on unexpected register '%s' (%d)"),
3282 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3283 return 0;
3284 }
3285
3286
3287 static void
3288 rs6000_gen_return_address (struct gdbarch *gdbarch,
3289 struct agent_expr *ax, struct axs_value *value,
3290 CORE_ADDR scope)
3291 {
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3294 value->kind = axs_lvalue_register;
3295 value->u.reg = tdep->ppc_lr_regnum;
3296 }
3297
3298
3299 /* Convert a DBX STABS register number to a GDB register number. */
3300 static int
3301 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3302 {
3303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3304
3305 if (0 <= num && num <= 31)
3306 return tdep->ppc_gp0_regnum + num;
3307 else if (32 <= num && num <= 63)
3308 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3309 specifies registers the architecture doesn't have? Our
3310 callers don't check the value we return. */
3311 return tdep->ppc_fp0_regnum + (num - 32);
3312 else if (77 <= num && num <= 108)
3313 return tdep->ppc_vr0_regnum + (num - 77);
3314 else if (1200 <= num && num < 1200 + 32)
3315 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3316 else
3317 switch (num)
3318 {
3319 case 64:
3320 return tdep->ppc_mq_regnum;
3321 case 65:
3322 return tdep->ppc_lr_regnum;
3323 case 66:
3324 return tdep->ppc_ctr_regnum;
3325 case 76:
3326 return tdep->ppc_xer_regnum;
3327 case 109:
3328 return tdep->ppc_vrsave_regnum;
3329 case 110:
3330 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3331 case 111:
3332 return tdep->ppc_acc_regnum;
3333 case 112:
3334 return tdep->ppc_spefscr_regnum;
3335 default:
3336 return num;
3337 }
3338 }
3339
3340
3341 /* Convert a Dwarf 2 register number to a GDB register number. */
3342 static int
3343 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3344 {
3345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3346
3347 if (0 <= num && num <= 31)
3348 return tdep->ppc_gp0_regnum + num;
3349 else if (32 <= num && num <= 63)
3350 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3351 specifies registers the architecture doesn't have? Our
3352 callers don't check the value we return. */
3353 return tdep->ppc_fp0_regnum + (num - 32);
3354 else if (1124 <= num && num < 1124 + 32)
3355 return tdep->ppc_vr0_regnum + (num - 1124);
3356 else if (1200 <= num && num < 1200 + 32)
3357 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3358 else
3359 switch (num)
3360 {
3361 case 64:
3362 return tdep->ppc_cr_regnum;
3363 case 67:
3364 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3365 case 99:
3366 return tdep->ppc_acc_regnum;
3367 case 100:
3368 return tdep->ppc_mq_regnum;
3369 case 101:
3370 return tdep->ppc_xer_regnum;
3371 case 108:
3372 return tdep->ppc_lr_regnum;
3373 case 109:
3374 return tdep->ppc_ctr_regnum;
3375 case 356:
3376 return tdep->ppc_vrsave_regnum;
3377 case 612:
3378 return tdep->ppc_spefscr_regnum;
3379 }
3380
3381 /* Unknown DWARF register number. */
3382 return -1;
3383 }
3384
3385 /* Translate a .eh_frame register to DWARF register, or adjust a
3386 .debug_frame register. */
3387
3388 static int
3389 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3390 {
3391 /* GCC releases before 3.4 use GCC internal register numbering in
3392 .debug_frame (and .debug_info, et cetera). The numbering is
3393 different from the standard SysV numbering for everything except
3394 for GPRs and FPRs. We can not detect this problem in most cases
3395 - to get accurate debug info for variables living in lr, ctr, v0,
3396 et cetera, use a newer version of GCC. But we must detect
3397 one important case - lr is in column 65 in .debug_frame output,
3398 instead of 108.
3399
3400 GCC 3.4, and the "hammer" branch, have a related problem. They
3401 record lr register saves in .debug_frame as 108, but still record
3402 the return column as 65. We fix that up too.
3403
3404 We can do this because 65 is assigned to fpsr, and GCC never
3405 generates debug info referring to it. To add support for
3406 handwritten debug info that restores fpsr, we would need to add a
3407 producer version check to this. */
3408 if (!eh_frame_p)
3409 {
3410 if (num == 65)
3411 return 108;
3412 else
3413 return num;
3414 }
3415
3416 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3417 internal register numbering; translate that to the standard DWARF2
3418 register numbering. */
3419 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3420 return num;
3421 else if (68 <= num && num <= 75) /* cr0-cr8 */
3422 return num - 68 + 86;
3423 else if (77 <= num && num <= 108) /* vr0-vr31 */
3424 return num - 77 + 1124;
3425 else
3426 switch (num)
3427 {
3428 case 64: /* mq */
3429 return 100;
3430 case 65: /* lr */
3431 return 108;
3432 case 66: /* ctr */
3433 return 109;
3434 case 76: /* xer */
3435 return 101;
3436 case 109: /* vrsave */
3437 return 356;
3438 case 110: /* vscr */
3439 return 67;
3440 case 111: /* spe_acc */
3441 return 99;
3442 case 112: /* spefscr */
3443 return 612;
3444 default:
3445 return num;
3446 }
3447 }
3448 \f
3449
3450 /* Handling the various POWER/PowerPC variants. */
3451
3452 /* Information about a particular processor variant. */
3453
3454 struct ppc_variant
3455 {
3456 /* Name of this variant. */
3457 const char *name;
3458
3459 /* English description of the variant. */
3460 const char *description;
3461
3462 /* bfd_arch_info.arch corresponding to variant. */
3463 enum bfd_architecture arch;
3464
3465 /* bfd_arch_info.mach corresponding to variant. */
3466 unsigned long mach;
3467
3468 /* Target description for this variant. */
3469 struct target_desc **tdesc;
3470 };
3471
3472 static struct ppc_variant variants[] =
3473 {
3474 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3475 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3476 {"power", "POWER user-level", bfd_arch_rs6000,
3477 bfd_mach_rs6k, &tdesc_rs6000},
3478 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3479 bfd_mach_ppc_403, &tdesc_powerpc_403},
3480 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3481 bfd_mach_ppc_405, &tdesc_powerpc_405},
3482 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3483 bfd_mach_ppc_601, &tdesc_powerpc_601},
3484 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3485 bfd_mach_ppc_602, &tdesc_powerpc_602},
3486 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3487 bfd_mach_ppc_603, &tdesc_powerpc_603},
3488 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3489 604, &tdesc_powerpc_604},
3490 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3491 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3492 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3493 bfd_mach_ppc_505, &tdesc_powerpc_505},
3494 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3495 bfd_mach_ppc_860, &tdesc_powerpc_860},
3496 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3497 bfd_mach_ppc_750, &tdesc_powerpc_750},
3498 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3499 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3500 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3501 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3502
3503 /* 64-bit */
3504 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3505 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3506 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3507 bfd_mach_ppc_620, &tdesc_powerpc_64},
3508 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3509 bfd_mach_ppc_630, &tdesc_powerpc_64},
3510 {"a35", "PowerPC A35", bfd_arch_powerpc,
3511 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3512 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3513 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3514 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3515 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3516
3517 /* FIXME: I haven't checked the register sets of the following. */
3518 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3519 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3520 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3521 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3522 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3523 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3524
3525 {0, 0, (enum bfd_architecture) 0, 0, 0}
3526 };
3527
3528 /* Return the variant corresponding to architecture ARCH and machine number
3529 MACH. If no such variant exists, return null. */
3530
3531 static const struct ppc_variant *
3532 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3533 {
3534 const struct ppc_variant *v;
3535
3536 for (v = variants; v->name; v++)
3537 if (arch == v->arch && mach == v->mach)
3538 return v;
3539
3540 return NULL;
3541 }
3542
3543 \f
3544
3545 struct rs6000_frame_cache
3546 {
3547 CORE_ADDR base;
3548 CORE_ADDR initial_sp;
3549 trad_frame_saved_reg *saved_regs;
3550
3551 /* Set BASE_P to true if this frame cache is properly initialized.
3552 Otherwise set to false because some registers or memory cannot
3553 collected. */
3554 int base_p;
3555 /* Cache PC for building unavailable frame. */
3556 CORE_ADDR pc;
3557 };
3558
3559 static struct rs6000_frame_cache *
3560 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3561 {
3562 struct rs6000_frame_cache *cache;
3563 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3564 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3565 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3566 struct rs6000_framedata fdata;
3567 int wordsize = tdep->wordsize;
3568 CORE_ADDR func = 0, pc = 0;
3569
3570 if ((*this_cache) != NULL)
3571 return (struct rs6000_frame_cache *) (*this_cache);
3572 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3573 (*this_cache) = cache;
3574 cache->pc = 0;
3575 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3576
3577 try
3578 {
3579 func = get_frame_func (this_frame);
3580 cache->pc = func;
3581 pc = get_frame_pc (this_frame);
3582 skip_prologue (gdbarch, func, pc, &fdata);
3583
3584 /* Figure out the parent's stack pointer. */
3585
3586 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3587 address of the current frame. Things might be easier if the
3588 ->frame pointed to the outer-most address of the frame. In
3589 the mean time, the address of the prev frame is used as the
3590 base address of this frame. */
3591 cache->base = get_frame_register_unsigned
3592 (this_frame, gdbarch_sp_regnum (gdbarch));
3593 }
3594 catch (const gdb_exception_error &ex)
3595 {
3596 if (ex.error != NOT_AVAILABLE_ERROR)
3597 throw;
3598 return (struct rs6000_frame_cache *) (*this_cache);
3599 }
3600
3601 /* If the function appears to be frameless, check a couple of likely
3602 indicators that we have simply failed to find the frame setup.
3603 Two common cases of this are missing symbols (i.e.
3604 get_frame_func returns the wrong address or 0), and assembly
3605 stubs which have a fast exit path but set up a frame on the slow
3606 path.
3607
3608 If the LR appears to return to this function, then presume that
3609 we have an ABI compliant frame that we failed to find. */
3610 if (fdata.frameless && fdata.lr_offset == 0)
3611 {
3612 CORE_ADDR saved_lr;
3613 int make_frame = 0;
3614
3615 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3616 if (func == 0 && saved_lr == pc)
3617 make_frame = 1;
3618 else if (func != 0)
3619 {
3620 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3621 if (func == saved_func)
3622 make_frame = 1;
3623 }
3624
3625 if (make_frame)
3626 {
3627 fdata.frameless = 0;
3628 fdata.lr_offset = tdep->lr_frame_offset;
3629 }
3630 }
3631
3632 if (!fdata.frameless)
3633 {
3634 /* Frameless really means stackless. */
3635 ULONGEST backchain;
3636
3637 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3638 byte_order, &backchain))
3639 cache->base = (CORE_ADDR) backchain;
3640 }
3641
3642 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
3643
3644 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3645 All fpr's from saved_fpr to fp31 are saved. */
3646
3647 if (fdata.saved_fpr >= 0)
3648 {
3649 int i;
3650 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3651
3652 /* If skip_prologue says floating-point registers were saved,
3653 but the current architecture has no floating-point registers,
3654 then that's strange. But we have no indices to even record
3655 the addresses under, so we just ignore it. */
3656 if (ppc_floating_point_unit_p (gdbarch))
3657 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3658 {
3659 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3660 fpr_addr += 8;
3661 }
3662 }
3663
3664 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3665 All gpr's from saved_gpr to gpr31 are saved (except during the
3666 prologue). */
3667
3668 if (fdata.saved_gpr >= 0)
3669 {
3670 int i;
3671 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3672 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3673 {
3674 if (fdata.gpr_mask & (1U << i))
3675 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3676 gpr_addr += wordsize;
3677 }
3678 }
3679
3680 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3681 All vr's from saved_vr to vr31 are saved. */
3682 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3683 {
3684 if (fdata.saved_vr >= 0)
3685 {
3686 int i;
3687 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3688 for (i = fdata.saved_vr; i < 32; i++)
3689 {
3690 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3691 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3692 }
3693 }
3694 }
3695
3696 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3697 All vr's from saved_ev to ev31 are saved. ????? */
3698 if (tdep->ppc_ev0_regnum != -1)
3699 {
3700 if (fdata.saved_ev >= 0)
3701 {
3702 int i;
3703 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3704 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3705
3706 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3707 {
3708 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3709 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3710 + off);
3711 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3712 }
3713 }
3714 }
3715
3716 /* If != 0, fdata.cr_offset is the offset from the frame that
3717 holds the CR. */
3718 if (fdata.cr_offset != 0)
3719 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3720 + fdata.cr_offset);
3721
3722 /* If != 0, fdata.lr_offset is the offset from the frame that
3723 holds the LR. */
3724 if (fdata.lr_offset != 0)
3725 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3726 + fdata.lr_offset);
3727 else if (fdata.lr_register != -1)
3728 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3729 /* The PC is found in the link register. */
3730 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3731 cache->saved_regs[tdep->ppc_lr_regnum];
3732
3733 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3734 holds the VRSAVE. */
3735 if (fdata.vrsave_offset != 0)
3736 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3737 + fdata.vrsave_offset);
3738
3739 if (fdata.alloca_reg < 0)
3740 /* If no alloca register used, then fi->frame is the value of the
3741 %sp for this frame, and it is good enough. */
3742 cache->initial_sp
3743 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3744 else
3745 cache->initial_sp
3746 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3747
3748 cache->base_p = 1;
3749 return cache;
3750 }
3751
3752 static void
3753 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3754 struct frame_id *this_id)
3755 {
3756 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3757 this_cache);
3758
3759 if (!info->base_p)
3760 {
3761 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3762 return;
3763 }
3764
3765 /* This marks the outermost frame. */
3766 if (info->base == 0)
3767 return;
3768
3769 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3770 }
3771
3772 static struct value *
3773 rs6000_frame_prev_register (struct frame_info *this_frame,
3774 void **this_cache, int regnum)
3775 {
3776 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3777 this_cache);
3778 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3779 }
3780
3781 static const struct frame_unwind rs6000_frame_unwind =
3782 {
3783 NORMAL_FRAME,
3784 default_frame_unwind_stop_reason,
3785 rs6000_frame_this_id,
3786 rs6000_frame_prev_register,
3787 NULL,
3788 default_frame_sniffer
3789 };
3790
3791 /* Allocate and initialize a frame cache for an epilogue frame.
3792 SP is restored and prev-PC is stored in LR. */
3793
3794 static struct rs6000_frame_cache *
3795 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3796 {
3797 struct rs6000_frame_cache *cache;
3798 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3799 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3800
3801 if (*this_cache)
3802 return (struct rs6000_frame_cache *) *this_cache;
3803
3804 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3805 (*this_cache) = cache;
3806 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3807
3808 try
3809 {
3810 /* At this point the stack looks as if we just entered the
3811 function, and the return address is stored in LR. */
3812 CORE_ADDR sp, lr;
3813
3814 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3815 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3816
3817 cache->base = sp;
3818 cache->initial_sp = sp;
3819
3820 cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
3821 }
3822 catch (const gdb_exception_error &ex)
3823 {
3824 if (ex.error != NOT_AVAILABLE_ERROR)
3825 throw;
3826 }
3827
3828 return cache;
3829 }
3830
3831 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3832 Return the frame ID of an epilogue frame. */
3833
3834 static void
3835 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3836 void **this_cache, struct frame_id *this_id)
3837 {
3838 CORE_ADDR pc;
3839 struct rs6000_frame_cache *info =
3840 rs6000_epilogue_frame_cache (this_frame, this_cache);
3841
3842 pc = get_frame_func (this_frame);
3843 if (info->base == 0)
3844 (*this_id) = frame_id_build_unavailable_stack (pc);
3845 else
3846 (*this_id) = frame_id_build (info->base, pc);
3847 }
3848
3849 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3850 Return the register value of REGNUM in previous frame. */
3851
3852 static struct value *
3853 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3854 void **this_cache, int regnum)
3855 {
3856 struct rs6000_frame_cache *info =
3857 rs6000_epilogue_frame_cache (this_frame, this_cache);
3858 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3859 }
3860
3861 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3862 Check whether this an epilogue frame. */
3863
3864 static int
3865 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3866 struct frame_info *this_frame,
3867 void **this_prologue_cache)
3868 {
3869 if (frame_relative_level (this_frame) == 0)
3870 return rs6000_in_function_epilogue_frame_p (this_frame,
3871 get_frame_arch (this_frame),
3872 get_frame_pc (this_frame));
3873 else
3874 return 0;
3875 }
3876
3877 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3878 a function without debug information. */
3879
3880 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3881 {
3882 NORMAL_FRAME,
3883 default_frame_unwind_stop_reason,
3884 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3885 NULL,
3886 rs6000_epilogue_frame_sniffer
3887 };
3888 \f
3889
3890 static CORE_ADDR
3891 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3892 {
3893 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3894 this_cache);
3895 return info->initial_sp;
3896 }
3897
3898 static const struct frame_base rs6000_frame_base = {
3899 &rs6000_frame_unwind,
3900 rs6000_frame_base_address,
3901 rs6000_frame_base_address,
3902 rs6000_frame_base_address
3903 };
3904
3905 static const struct frame_base *
3906 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3907 {
3908 return &rs6000_frame_base;
3909 }
3910
3911 /* DWARF-2 frame support. Used to handle the detection of
3912 clobbered registers during function calls. */
3913
3914 static void
3915 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3916 struct dwarf2_frame_state_reg *reg,
3917 struct frame_info *this_frame)
3918 {
3919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3920
3921 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3922 non-volatile registers. We will use the same code for both. */
3923
3924 /* Call-saved GP registers. */
3925 if ((regnum >= tdep->ppc_gp0_regnum + 14
3926 && regnum <= tdep->ppc_gp0_regnum + 31)
3927 || (regnum == tdep->ppc_gp0_regnum + 1))
3928 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3929
3930 /* Call-clobbered GP registers. */
3931 if ((regnum >= tdep->ppc_gp0_regnum + 3
3932 && regnum <= tdep->ppc_gp0_regnum + 12)
3933 || (regnum == tdep->ppc_gp0_regnum))
3934 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3935
3936 /* Deal with FP registers, if supported. */
3937 if (tdep->ppc_fp0_regnum >= 0)
3938 {
3939 /* Call-saved FP registers. */
3940 if ((regnum >= tdep->ppc_fp0_regnum + 14
3941 && regnum <= tdep->ppc_fp0_regnum + 31))
3942 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3943
3944 /* Call-clobbered FP registers. */
3945 if ((regnum >= tdep->ppc_fp0_regnum
3946 && regnum <= tdep->ppc_fp0_regnum + 13))
3947 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3948 }
3949
3950 /* Deal with ALTIVEC registers, if supported. */
3951 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3952 {
3953 /* Call-saved Altivec registers. */
3954 if ((regnum >= tdep->ppc_vr0_regnum + 20
3955 && regnum <= tdep->ppc_vr0_regnum + 31)
3956 || regnum == tdep->ppc_vrsave_regnum)
3957 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3958
3959 /* Call-clobbered Altivec registers. */
3960 if ((regnum >= tdep->ppc_vr0_regnum
3961 && regnum <= tdep->ppc_vr0_regnum + 19))
3962 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3963 }
3964
3965 /* Handle PC register and Stack Pointer correctly. */
3966 if (regnum == gdbarch_pc_regnum (gdbarch))
3967 reg->how = DWARF2_FRAME_REG_RA;
3968 else if (regnum == gdbarch_sp_regnum (gdbarch))
3969 reg->how = DWARF2_FRAME_REG_CFA;
3970 }
3971
3972
3973 /* Return true if a .gnu_attributes section exists in BFD and it
3974 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3975 section exists in BFD and it indicates that SPE extensions are in
3976 use. Check the .gnu.attributes section first, as the binary might be
3977 compiled for SPE, but not actually using SPE instructions. */
3978
3979 static int
3980 bfd_uses_spe_extensions (bfd *abfd)
3981 {
3982 asection *sect;
3983 gdb_byte *contents = NULL;
3984 bfd_size_type size;
3985 gdb_byte *ptr;
3986 int success = 0;
3987
3988 if (!abfd)
3989 return 0;
3990
3991 #ifdef HAVE_ELF
3992 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3993 could be using the SPE vector abi without actually using any spe
3994 bits whatsoever. But it's close enough for now. */
3995 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3996 Tag_GNU_Power_ABI_Vector);
3997 if (vector_abi == 3)
3998 return 1;
3999 #endif
4000
4001 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
4002 if (!sect)
4003 return 0;
4004
4005 size = bfd_section_size (sect);
4006 contents = (gdb_byte *) xmalloc (size);
4007 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
4008 {
4009 xfree (contents);
4010 return 0;
4011 }
4012
4013 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
4014
4015 struct {
4016 uint32 name_len;
4017 uint32 data_len;
4018 uint32 type;
4019 char name[name_len rounded up to 4-byte alignment];
4020 char data[data_len];
4021 };
4022
4023 Technically, there's only supposed to be one such structure in a
4024 given apuinfo section, but the linker is not always vigilant about
4025 merging apuinfo sections from input files. Just go ahead and parse
4026 them all, exiting early when we discover the binary uses SPE
4027 insns.
4028
4029 It's not specified in what endianness the information in this
4030 section is stored. Assume that it's the endianness of the BFD. */
4031 ptr = contents;
4032 while (1)
4033 {
4034 unsigned int name_len;
4035 unsigned int data_len;
4036 unsigned int type;
4037
4038 /* If we can't read the first three fields, we're done. */
4039 if (size < 12)
4040 break;
4041
4042 name_len = bfd_get_32 (abfd, ptr);
4043 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
4044 data_len = bfd_get_32 (abfd, ptr + 4);
4045 type = bfd_get_32 (abfd, ptr + 8);
4046 ptr += 12;
4047
4048 /* The name must be "APUinfo\0". */
4049 if (name_len != 8
4050 && strcmp ((const char *) ptr, "APUinfo") != 0)
4051 break;
4052 ptr += name_len;
4053
4054 /* The type must be 2. */
4055 if (type != 2)
4056 break;
4057
4058 /* The data is stored as a series of uint32. The upper half of
4059 each uint32 indicates the particular APU used and the lower
4060 half indicates the revision of that APU. We just care about
4061 the upper half. */
4062
4063 /* Not 4-byte quantities. */
4064 if (data_len & 3U)
4065 break;
4066
4067 while (data_len)
4068 {
4069 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4070 unsigned int apu = apuinfo >> 16;
4071 ptr += 4;
4072 data_len -= 4;
4073
4074 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4075 either. */
4076 if (apu == 0x100 || apu == 0x101)
4077 {
4078 success = 1;
4079 data_len = 0;
4080 }
4081 }
4082
4083 if (success)
4084 break;
4085 }
4086
4087 xfree (contents);
4088 return success;
4089 }
4090
4091 /* These are macros for parsing instruction fields (I.1.6.28) */
4092
4093 #define PPC_FIELD(value, from, len) \
4094 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4095 #define PPC_SEXT(v, bs) \
4096 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4097 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4098 - ((CORE_ADDR) 1 << ((bs) - 1)))
4099 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4100 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4101 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4102 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4103 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4104 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4105 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4106 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4107 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4108 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4109 | (PPC_FIELD (insn, 16, 5) << 5))
4110 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4111 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4112 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4113 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4114 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4115 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4116 #define PPC_OE(insn) PPC_BIT (insn, 21)
4117 #define PPC_RC(insn) PPC_BIT (insn, 31)
4118 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4119 #define PPC_LK(insn) PPC_BIT (insn, 31)
4120 #define PPC_TX(insn) PPC_BIT (insn, 31)
4121 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4122
4123 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4124 #define PPC_XER_NB(xer) (xer & 0x7f)
4125
4126 /* Record Vector-Scalar Registers.
4127 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4128 Otherwise, it's just a VR register. Record them accordingly. */
4129
4130 static int
4131 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4132 {
4133 if (vsr < 0 || vsr >= 64)
4134 return -1;
4135
4136 if (vsr >= 32)
4137 {
4138 if (tdep->ppc_vr0_regnum >= 0)
4139 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4140 }
4141 else
4142 {
4143 if (tdep->ppc_fp0_regnum >= 0)
4144 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4145 if (tdep->ppc_vsr0_upper_regnum >= 0)
4146 record_full_arch_list_add_reg (regcache,
4147 tdep->ppc_vsr0_upper_regnum + vsr);
4148 }
4149
4150 return 0;
4151 }
4152
4153 /* Parse and record instructions primary opcode-4 at ADDR.
4154 Return 0 if successful. */
4155
4156 static int
4157 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4158 CORE_ADDR addr, uint32_t insn)
4159 {
4160 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4161 int ext = PPC_FIELD (insn, 21, 11);
4162 int vra = PPC_FIELD (insn, 11, 5);
4163
4164 switch (ext & 0x3f)
4165 {
4166 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4167 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4168 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4169 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4170 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4171 /* FALL-THROUGH */
4172 case 42: /* Vector Select */
4173 case 43: /* Vector Permute */
4174 case 59: /* Vector Permute Right-indexed */
4175 case 44: /* Vector Shift Left Double by Octet Immediate */
4176 case 45: /* Vector Permute and Exclusive-OR */
4177 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4178 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4179 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4180 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4181 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4182 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4183 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4184 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4185 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4186 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4187 case 46: /* Vector Multiply-Add Single-Precision */
4188 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4189 record_full_arch_list_add_reg (regcache,
4190 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4191 return 0;
4192
4193 case 48: /* Multiply-Add High Doubleword */
4194 case 49: /* Multiply-Add High Doubleword Unsigned */
4195 case 51: /* Multiply-Add Low Doubleword */
4196 record_full_arch_list_add_reg (regcache,
4197 tdep->ppc_gp0_regnum + PPC_RT (insn));
4198 return 0;
4199 }
4200
4201 switch ((ext & 0x1ff))
4202 {
4203 case 385:
4204 if (vra != 0 /* Decimal Convert To Signed Quadword */
4205 && vra != 2 /* Decimal Convert From Signed Quadword */
4206 && vra != 4 /* Decimal Convert To Zoned */
4207 && vra != 5 /* Decimal Convert To National */
4208 && vra != 6 /* Decimal Convert From Zoned */
4209 && vra != 7 /* Decimal Convert From National */
4210 && vra != 31) /* Decimal Set Sign */
4211 break;
4212 /* Fall through. */
4213 /* 5.16 Decimal Integer Arithmetic Instructions */
4214 case 1: /* Decimal Add Modulo */
4215 case 65: /* Decimal Subtract Modulo */
4216
4217 case 193: /* Decimal Shift */
4218 case 129: /* Decimal Unsigned Shift */
4219 case 449: /* Decimal Shift and Round */
4220
4221 case 257: /* Decimal Truncate */
4222 case 321: /* Decimal Unsigned Truncate */
4223
4224 /* Bit-21 should be set. */
4225 if (!PPC_BIT (insn, 21))
4226 break;
4227
4228 record_full_arch_list_add_reg (regcache,
4229 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4230 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4231 return 0;
4232 }
4233
4234 /* Bit-21 is used for RC */
4235 switch (ext & 0x3ff)
4236 {
4237 case 6: /* Vector Compare Equal To Unsigned Byte */
4238 case 70: /* Vector Compare Equal To Unsigned Halfword */
4239 case 134: /* Vector Compare Equal To Unsigned Word */
4240 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4241 case 774: /* Vector Compare Greater Than Signed Byte */
4242 case 838: /* Vector Compare Greater Than Signed Halfword */
4243 case 902: /* Vector Compare Greater Than Signed Word */
4244 case 967: /* Vector Compare Greater Than Signed Doubleword */
4245 case 518: /* Vector Compare Greater Than Unsigned Byte */
4246 case 646: /* Vector Compare Greater Than Unsigned Word */
4247 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4248 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4249 case 966: /* Vector Compare Bounds Single-Precision */
4250 case 198: /* Vector Compare Equal To Single-Precision */
4251 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4252 case 710: /* Vector Compare Greater Than Single-Precision */
4253 case 7: /* Vector Compare Not Equal Byte */
4254 case 71: /* Vector Compare Not Equal Halfword */
4255 case 135: /* Vector Compare Not Equal Word */
4256 case 263: /* Vector Compare Not Equal or Zero Byte */
4257 case 327: /* Vector Compare Not Equal or Zero Halfword */
4258 case 391: /* Vector Compare Not Equal or Zero Word */
4259 if (PPC_Rc (insn))
4260 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4261 record_full_arch_list_add_reg (regcache,
4262 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4263 return 0;
4264 }
4265
4266 if (ext == 1538)
4267 {
4268 switch (vra)
4269 {
4270 case 0: /* Vector Count Leading Zero Least-Significant Bits
4271 Byte */
4272 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4273 Byte */
4274 record_full_arch_list_add_reg (regcache,
4275 tdep->ppc_gp0_regnum + PPC_RT (insn));
4276 return 0;
4277
4278 case 6: /* Vector Negate Word */
4279 case 7: /* Vector Negate Doubleword */
4280 case 8: /* Vector Parity Byte Word */
4281 case 9: /* Vector Parity Byte Doubleword */
4282 case 10: /* Vector Parity Byte Quadword */
4283 case 16: /* Vector Extend Sign Byte To Word */
4284 case 17: /* Vector Extend Sign Halfword To Word */
4285 case 24: /* Vector Extend Sign Byte To Doubleword */
4286 case 25: /* Vector Extend Sign Halfword To Doubleword */
4287 case 26: /* Vector Extend Sign Word To Doubleword */
4288 case 28: /* Vector Count Trailing Zeros Byte */
4289 case 29: /* Vector Count Trailing Zeros Halfword */
4290 case 30: /* Vector Count Trailing Zeros Word */
4291 case 31: /* Vector Count Trailing Zeros Doubleword */
4292 record_full_arch_list_add_reg (regcache,
4293 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4294 return 0;
4295 }
4296 }
4297
4298 switch (ext)
4299 {
4300 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4301 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4302 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4303 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4304 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4305 case 462: /* Vector Pack Signed Word Signed Saturate */
4306 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4307 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4308 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4309 case 512: /* Vector Add Unsigned Byte Saturate */
4310 case 576: /* Vector Add Unsigned Halfword Saturate */
4311 case 640: /* Vector Add Unsigned Word Saturate */
4312 case 768: /* Vector Add Signed Byte Saturate */
4313 case 832: /* Vector Add Signed Halfword Saturate */
4314 case 896: /* Vector Add Signed Word Saturate */
4315 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4316 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4317 case 1664: /* Vector Subtract Unsigned Word Saturate */
4318 case 1792: /* Vector Subtract Signed Byte Saturate */
4319 case 1856: /* Vector Subtract Signed Halfword Saturate */
4320 case 1920: /* Vector Subtract Signed Word Saturate */
4321
4322 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4323 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4324 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4325 case 1672: /* Vector Sum across Half Signed Word Saturate */
4326 case 1928: /* Vector Sum across Signed Word Saturate */
4327 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4328 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4329 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4330 /* FALL-THROUGH */
4331 case 12: /* Vector Merge High Byte */
4332 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4333 case 76: /* Vector Merge High Halfword */
4334 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4335 case 140: /* Vector Merge High Word */
4336 case 268: /* Vector Merge Low Byte */
4337 case 332: /* Vector Merge Low Halfword */
4338 case 396: /* Vector Merge Low Word */
4339 case 526: /* Vector Unpack High Signed Byte */
4340 case 590: /* Vector Unpack High Signed Halfword */
4341 case 654: /* Vector Unpack Low Signed Byte */
4342 case 718: /* Vector Unpack Low Signed Halfword */
4343 case 782: /* Vector Pack Pixel */
4344 case 846: /* Vector Unpack High Pixel */
4345 case 974: /* Vector Unpack Low Pixel */
4346 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4347 case 1614: /* Vector Unpack High Signed Word */
4348 case 1676: /* Vector Merge Odd Word */
4349 case 1742: /* Vector Unpack Low Signed Word */
4350 case 1932: /* Vector Merge Even Word */
4351 case 524: /* Vector Splat Byte */
4352 case 588: /* Vector Splat Halfword */
4353 case 652: /* Vector Splat Word */
4354 case 780: /* Vector Splat Immediate Signed Byte */
4355 case 844: /* Vector Splat Immediate Signed Halfword */
4356 case 908: /* Vector Splat Immediate Signed Word */
4357 case 452: /* Vector Shift Left */
4358 case 708: /* Vector Shift Right */
4359 case 1036: /* Vector Shift Left by Octet */
4360 case 1100: /* Vector Shift Right by Octet */
4361 case 0: /* Vector Add Unsigned Byte Modulo */
4362 case 64: /* Vector Add Unsigned Halfword Modulo */
4363 case 128: /* Vector Add Unsigned Word Modulo */
4364 case 192: /* Vector Add Unsigned Doubleword Modulo */
4365 case 256: /* Vector Add Unsigned Quadword Modulo */
4366 case 320: /* Vector Add & write Carry Unsigned Quadword */
4367 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4368 case 8: /* Vector Multiply Odd Unsigned Byte */
4369 case 72: /* Vector Multiply Odd Unsigned Halfword */
4370 case 136: /* Vector Multiply Odd Unsigned Word */
4371 case 264: /* Vector Multiply Odd Signed Byte */
4372 case 328: /* Vector Multiply Odd Signed Halfword */
4373 case 392: /* Vector Multiply Odd Signed Word */
4374 case 520: /* Vector Multiply Even Unsigned Byte */
4375 case 584: /* Vector Multiply Even Unsigned Halfword */
4376 case 648: /* Vector Multiply Even Unsigned Word */
4377 case 776: /* Vector Multiply Even Signed Byte */
4378 case 840: /* Vector Multiply Even Signed Halfword */
4379 case 904: /* Vector Multiply Even Signed Word */
4380 case 137: /* Vector Multiply Unsigned Word Modulo */
4381 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4382 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4383 case 1152: /* Vector Subtract Unsigned Word Modulo */
4384 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4385 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4386 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4387 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4388 case 1282: /* Vector Average Signed Byte */
4389 case 1346: /* Vector Average Signed Halfword */
4390 case 1410: /* Vector Average Signed Word */
4391 case 1026: /* Vector Average Unsigned Byte */
4392 case 1090: /* Vector Average Unsigned Halfword */
4393 case 1154: /* Vector Average Unsigned Word */
4394 case 258: /* Vector Maximum Signed Byte */
4395 case 322: /* Vector Maximum Signed Halfword */
4396 case 386: /* Vector Maximum Signed Word */
4397 case 450: /* Vector Maximum Signed Doubleword */
4398 case 2: /* Vector Maximum Unsigned Byte */
4399 case 66: /* Vector Maximum Unsigned Halfword */
4400 case 130: /* Vector Maximum Unsigned Word */
4401 case 194: /* Vector Maximum Unsigned Doubleword */
4402 case 770: /* Vector Minimum Signed Byte */
4403 case 834: /* Vector Minimum Signed Halfword */
4404 case 898: /* Vector Minimum Signed Word */
4405 case 962: /* Vector Minimum Signed Doubleword */
4406 case 514: /* Vector Minimum Unsigned Byte */
4407 case 578: /* Vector Minimum Unsigned Halfword */
4408 case 642: /* Vector Minimum Unsigned Word */
4409 case 706: /* Vector Minimum Unsigned Doubleword */
4410 case 1028: /* Vector Logical AND */
4411 case 1668: /* Vector Logical Equivalent */
4412 case 1092: /* Vector Logical AND with Complement */
4413 case 1412: /* Vector Logical NAND */
4414 case 1348: /* Vector Logical OR with Complement */
4415 case 1156: /* Vector Logical OR */
4416 case 1284: /* Vector Logical NOR */
4417 case 1220: /* Vector Logical XOR */
4418 case 4: /* Vector Rotate Left Byte */
4419 case 132: /* Vector Rotate Left Word VX-form */
4420 case 68: /* Vector Rotate Left Halfword */
4421 case 196: /* Vector Rotate Left Doubleword */
4422 case 260: /* Vector Shift Left Byte */
4423 case 388: /* Vector Shift Left Word */
4424 case 324: /* Vector Shift Left Halfword */
4425 case 1476: /* Vector Shift Left Doubleword */
4426 case 516: /* Vector Shift Right Byte */
4427 case 644: /* Vector Shift Right Word */
4428 case 580: /* Vector Shift Right Halfword */
4429 case 1732: /* Vector Shift Right Doubleword */
4430 case 772: /* Vector Shift Right Algebraic Byte */
4431 case 900: /* Vector Shift Right Algebraic Word */
4432 case 836: /* Vector Shift Right Algebraic Halfword */
4433 case 964: /* Vector Shift Right Algebraic Doubleword */
4434 case 10: /* Vector Add Single-Precision */
4435 case 74: /* Vector Subtract Single-Precision */
4436 case 1034: /* Vector Maximum Single-Precision */
4437 case 1098: /* Vector Minimum Single-Precision */
4438 case 842: /* Vector Convert From Signed Fixed-Point Word */
4439 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4440 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4441 case 522: /* Vector Round to Single-Precision Integer Nearest */
4442 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4443 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4444 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4445 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4446 case 266: /* Vector Reciprocal Estimate Single-Precision */
4447 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4448 case 1288: /* Vector AES Cipher */
4449 case 1289: /* Vector AES Cipher Last */
4450 case 1352: /* Vector AES Inverse Cipher */
4451 case 1353: /* Vector AES Inverse Cipher Last */
4452 case 1480: /* Vector AES SubBytes */
4453 case 1730: /* Vector SHA-512 Sigma Doubleword */
4454 case 1666: /* Vector SHA-256 Sigma Word */
4455 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4456 case 1160: /* Vector Polynomial Multiply-Sum Word */
4457 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4458 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4459 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4460 case 1794: /* Vector Count Leading Zeros Byte */
4461 case 1858: /* Vector Count Leading Zeros Halfword */
4462 case 1922: /* Vector Count Leading Zeros Word */
4463 case 1986: /* Vector Count Leading Zeros Doubleword */
4464 case 1795: /* Vector Population Count Byte */
4465 case 1859: /* Vector Population Count Halfword */
4466 case 1923: /* Vector Population Count Word */
4467 case 1987: /* Vector Population Count Doubleword */
4468 case 1356: /* Vector Bit Permute Quadword */
4469 case 1484: /* Vector Bit Permute Doubleword */
4470 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4471 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4472 Quadword */
4473 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4474 case 65: /* Vector Multiply-by-10 Extended & write Carry
4475 Unsigned Quadword */
4476 case 1027: /* Vector Absolute Difference Unsigned Byte */
4477 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4478 case 1155: /* Vector Absolute Difference Unsigned Word */
4479 case 1796: /* Vector Shift Right Variable */
4480 case 1860: /* Vector Shift Left Variable */
4481 case 133: /* Vector Rotate Left Word then Mask Insert */
4482 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4483 case 389: /* Vector Rotate Left Word then AND with Mask */
4484 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4485 case 525: /* Vector Extract Unsigned Byte */
4486 case 589: /* Vector Extract Unsigned Halfword */
4487 case 653: /* Vector Extract Unsigned Word */
4488 case 717: /* Vector Extract Doubleword */
4489 case 781: /* Vector Insert Byte */
4490 case 845: /* Vector Insert Halfword */
4491 case 909: /* Vector Insert Word */
4492 case 973: /* Vector Insert Doubleword */
4493 record_full_arch_list_add_reg (regcache,
4494 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4495 return 0;
4496
4497 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4498 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4499 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4500 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4501 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4502 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4503 record_full_arch_list_add_reg (regcache,
4504 tdep->ppc_gp0_regnum + PPC_RT (insn));
4505 return 0;
4506
4507 case 1604: /* Move To Vector Status and Control Register */
4508 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4509 return 0;
4510 case 1540: /* Move From Vector Status and Control Register */
4511 record_full_arch_list_add_reg (regcache,
4512 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4513 return 0;
4514 case 833: /* Decimal Copy Sign */
4515 record_full_arch_list_add_reg (regcache,
4516 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4517 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4518 return 0;
4519 }
4520
4521 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4522 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4523 return -1;
4524 }
4525
4526 /* Parse and record instructions of primary opcode-19 at ADDR.
4527 Return 0 if successful. */
4528
4529 static int
4530 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4531 CORE_ADDR addr, uint32_t insn)
4532 {
4533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4534 int ext = PPC_EXTOP (insn);
4535
4536 switch (ext & 0x01f)
4537 {
4538 case 2: /* Add PC Immediate Shifted */
4539 record_full_arch_list_add_reg (regcache,
4540 tdep->ppc_gp0_regnum + PPC_RT (insn));
4541 return 0;
4542 }
4543
4544 switch (ext)
4545 {
4546 case 0: /* Move Condition Register Field */
4547 case 33: /* Condition Register NOR */
4548 case 129: /* Condition Register AND with Complement */
4549 case 193: /* Condition Register XOR */
4550 case 225: /* Condition Register NAND */
4551 case 257: /* Condition Register AND */
4552 case 289: /* Condition Register Equivalent */
4553 case 417: /* Condition Register OR with Complement */
4554 case 449: /* Condition Register OR */
4555 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4556 return 0;
4557
4558 case 16: /* Branch Conditional */
4559 case 560: /* Branch Conditional to Branch Target Address Register */
4560 if ((PPC_BO (insn) & 0x4) == 0)
4561 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4562 /* FALL-THROUGH */
4563 case 528: /* Branch Conditional to Count Register */
4564 if (PPC_LK (insn))
4565 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4566 return 0;
4567
4568 case 150: /* Instruction Synchronize */
4569 /* Do nothing. */
4570 return 0;
4571 }
4572
4573 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4574 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4575 return -1;
4576 }
4577
4578 /* Parse and record instructions of primary opcode-31 at ADDR.
4579 Return 0 if successful. */
4580
4581 static int
4582 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4583 CORE_ADDR addr, uint32_t insn)
4584 {
4585 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4586 int ext = PPC_EXTOP (insn);
4587 int tmp, nr, nb, i;
4588 CORE_ADDR at_dcsz, ea = 0;
4589 ULONGEST rb, ra, xer;
4590 int size = 0;
4591
4592 /* These instructions have OE bit. */
4593 switch (ext & 0x1ff)
4594 {
4595 /* These write RT and XER. Update CR if RC is set. */
4596 case 8: /* Subtract from carrying */
4597 case 10: /* Add carrying */
4598 case 136: /* Subtract from extended */
4599 case 138: /* Add extended */
4600 case 200: /* Subtract from zero extended */
4601 case 202: /* Add to zero extended */
4602 case 232: /* Subtract from minus one extended */
4603 case 234: /* Add to minus one extended */
4604 /* CA is always altered, but SO/OV are only altered when OE=1.
4605 In any case, XER is always altered. */
4606 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4607 if (PPC_RC (insn))
4608 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4609 record_full_arch_list_add_reg (regcache,
4610 tdep->ppc_gp0_regnum + PPC_RT (insn));
4611 return 0;
4612
4613 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4614 case 40: /* Subtract from */
4615 case 104: /* Negate */
4616 case 233: /* Multiply low doubleword */
4617 case 235: /* Multiply low word */
4618 case 266: /* Add */
4619 case 393: /* Divide Doubleword Extended Unsigned */
4620 case 395: /* Divide Word Extended Unsigned */
4621 case 425: /* Divide Doubleword Extended */
4622 case 427: /* Divide Word Extended */
4623 case 457: /* Divide Doubleword Unsigned */
4624 case 459: /* Divide Word Unsigned */
4625 case 489: /* Divide Doubleword */
4626 case 491: /* Divide Word */
4627 if (PPC_OE (insn))
4628 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4629 /* FALL-THROUGH */
4630 case 9: /* Multiply High Doubleword Unsigned */
4631 case 11: /* Multiply High Word Unsigned */
4632 case 73: /* Multiply High Doubleword */
4633 case 75: /* Multiply High Word */
4634 if (PPC_RC (insn))
4635 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4636 record_full_arch_list_add_reg (regcache,
4637 tdep->ppc_gp0_regnum + PPC_RT (insn));
4638 return 0;
4639 }
4640
4641 if ((ext & 0x1f) == 15)
4642 {
4643 /* Integer Select. bit[16:20] is used for BC. */
4644 record_full_arch_list_add_reg (regcache,
4645 tdep->ppc_gp0_regnum + PPC_RT (insn));
4646 return 0;
4647 }
4648
4649 if ((ext & 0xff) == 170)
4650 {
4651 /* Add Extended using alternate carry bits */
4652 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4653 record_full_arch_list_add_reg (regcache,
4654 tdep->ppc_gp0_regnum + PPC_RT (insn));
4655 return 0;
4656 }
4657
4658 switch (ext)
4659 {
4660 case 78: /* Determine Leftmost Zero Byte */
4661 if (PPC_RC (insn))
4662 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4663 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4664 record_full_arch_list_add_reg (regcache,
4665 tdep->ppc_gp0_regnum + PPC_RT (insn));
4666 return 0;
4667
4668 /* These only write RT. */
4669 case 19: /* Move from condition register */
4670 /* Move From One Condition Register Field */
4671 case 74: /* Add and Generate Sixes */
4672 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4673 case 302: /* Move From Branch History Rolling Buffer */
4674 case 339: /* Move From Special Purpose Register */
4675 case 371: /* Move From Time Base [Phased-Out] */
4676 case 309: /* Load Doubleword Monitored Indexed */
4677 case 128: /* Set Boolean */
4678 case 755: /* Deliver A Random Number */
4679 record_full_arch_list_add_reg (regcache,
4680 tdep->ppc_gp0_regnum + PPC_RT (insn));
4681 return 0;
4682
4683 /* These only write to RA. */
4684 case 51: /* Move From VSR Doubleword */
4685 case 115: /* Move From VSR Word and Zero */
4686 case 122: /* Population count bytes */
4687 case 378: /* Population count words */
4688 case 506: /* Population count doublewords */
4689 case 154: /* Parity Word */
4690 case 186: /* Parity Doubleword */
4691 case 252: /* Bit Permute Doubleword */
4692 case 282: /* Convert Declets To Binary Coded Decimal */
4693 case 314: /* Convert Binary Coded Decimal To Declets */
4694 case 508: /* Compare bytes */
4695 case 307: /* Move From VSR Lower Doubleword */
4696 record_full_arch_list_add_reg (regcache,
4697 tdep->ppc_gp0_regnum + PPC_RA (insn));
4698 return 0;
4699
4700 /* These write CR and optional RA. */
4701 case 792: /* Shift Right Algebraic Word */
4702 case 794: /* Shift Right Algebraic Doubleword */
4703 case 824: /* Shift Right Algebraic Word Immediate */
4704 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4705 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4706 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4707 record_full_arch_list_add_reg (regcache,
4708 tdep->ppc_gp0_regnum + PPC_RA (insn));
4709 /* FALL-THROUGH */
4710 case 0: /* Compare */
4711 case 32: /* Compare logical */
4712 case 144: /* Move To Condition Register Fields */
4713 /* Move To One Condition Register Field */
4714 case 192: /* Compare Ranged Byte */
4715 case 224: /* Compare Equal Byte */
4716 case 576: /* Move XER to CR Extended */
4717 case 902: /* Paste (should always fail due to single-stepping and
4718 the memory location might not be accessible, so
4719 record only CR) */
4720 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4721 return 0;
4722
4723 /* These write to RT. Update RA if 'update indexed.' */
4724 case 53: /* Load Doubleword with Update Indexed */
4725 case 119: /* Load Byte and Zero with Update Indexed */
4726 case 311: /* Load Halfword and Zero with Update Indexed */
4727 case 55: /* Load Word and Zero with Update Indexed */
4728 case 375: /* Load Halfword Algebraic with Update Indexed */
4729 case 373: /* Load Word Algebraic with Update Indexed */
4730 record_full_arch_list_add_reg (regcache,
4731 tdep->ppc_gp0_regnum + PPC_RA (insn));
4732 /* FALL-THROUGH */
4733 case 21: /* Load Doubleword Indexed */
4734 case 52: /* Load Byte And Reserve Indexed */
4735 case 116: /* Load Halfword And Reserve Indexed */
4736 case 20: /* Load Word And Reserve Indexed */
4737 case 84: /* Load Doubleword And Reserve Indexed */
4738 case 87: /* Load Byte and Zero Indexed */
4739 case 279: /* Load Halfword and Zero Indexed */
4740 case 23: /* Load Word and Zero Indexed */
4741 case 343: /* Load Halfword Algebraic Indexed */
4742 case 341: /* Load Word Algebraic Indexed */
4743 case 790: /* Load Halfword Byte-Reverse Indexed */
4744 case 534: /* Load Word Byte-Reverse Indexed */
4745 case 532: /* Load Doubleword Byte-Reverse Indexed */
4746 case 582: /* Load Word Atomic */
4747 case 614: /* Load Doubleword Atomic */
4748 case 265: /* Modulo Unsigned Doubleword */
4749 case 777: /* Modulo Signed Doubleword */
4750 case 267: /* Modulo Unsigned Word */
4751 case 779: /* Modulo Signed Word */
4752 record_full_arch_list_add_reg (regcache,
4753 tdep->ppc_gp0_regnum + PPC_RT (insn));
4754 return 0;
4755
4756 case 597: /* Load String Word Immediate */
4757 case 533: /* Load String Word Indexed */
4758 if (ext == 597)
4759 {
4760 nr = PPC_NB (insn);
4761 if (nr == 0)
4762 nr = 32;
4763 }
4764 else
4765 {
4766 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4767 nr = PPC_XER_NB (xer);
4768 }
4769
4770 nr = (nr + 3) >> 2;
4771
4772 /* If n=0, the contents of register RT are undefined. */
4773 if (nr == 0)
4774 nr = 1;
4775
4776 for (i = 0; i < nr; i++)
4777 record_full_arch_list_add_reg (regcache,
4778 tdep->ppc_gp0_regnum
4779 + ((PPC_RT (insn) + i) & 0x1f));
4780 return 0;
4781
4782 case 276: /* Load Quadword And Reserve Indexed */
4783 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4784 record_full_arch_list_add_reg (regcache, tmp);
4785 record_full_arch_list_add_reg (regcache, tmp + 1);
4786 return 0;
4787
4788 /* These write VRT. */
4789 case 6: /* Load Vector for Shift Left Indexed */
4790 case 38: /* Load Vector for Shift Right Indexed */
4791 case 7: /* Load Vector Element Byte Indexed */
4792 case 39: /* Load Vector Element Halfword Indexed */
4793 case 71: /* Load Vector Element Word Indexed */
4794 case 103: /* Load Vector Indexed */
4795 case 359: /* Load Vector Indexed LRU */
4796 record_full_arch_list_add_reg (regcache,
4797 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4798 return 0;
4799
4800 /* These write FRT. Update RA if 'update indexed.' */
4801 case 567: /* Load Floating-Point Single with Update Indexed */
4802 case 631: /* Load Floating-Point Double with Update Indexed */
4803 record_full_arch_list_add_reg (regcache,
4804 tdep->ppc_gp0_regnum + PPC_RA (insn));
4805 /* FALL-THROUGH */
4806 case 535: /* Load Floating-Point Single Indexed */
4807 case 599: /* Load Floating-Point Double Indexed */
4808 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4809 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4810 record_full_arch_list_add_reg (regcache,
4811 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4812 return 0;
4813
4814 case 791: /* Load Floating-Point Double Pair Indexed */
4815 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4816 record_full_arch_list_add_reg (regcache, tmp);
4817 record_full_arch_list_add_reg (regcache, tmp + 1);
4818 return 0;
4819
4820 case 179: /* Move To VSR Doubleword */
4821 case 211: /* Move To VSR Word Algebraic */
4822 case 243: /* Move To VSR Word and Zero */
4823 case 588: /* Load VSX Scalar Doubleword Indexed */
4824 case 524: /* Load VSX Scalar Single-Precision Indexed */
4825 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4826 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4827 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4828 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4829 case 780: /* Load VSX Vector Word*4 Indexed */
4830 case 268: /* Load VSX Vector Indexed */
4831 case 364: /* Load VSX Vector Word & Splat Indexed */
4832 case 812: /* Load VSX Vector Halfword*8 Indexed */
4833 case 876: /* Load VSX Vector Byte*16 Indexed */
4834 case 269: /* Load VSX Vector with Length */
4835 case 301: /* Load VSX Vector Left-justified with Length */
4836 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4837 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4838 case 403: /* Move To VSR Word & Splat */
4839 case 435: /* Move To VSR Double Doubleword */
4840 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4841 return 0;
4842
4843 /* These write RA. Update CR if RC is set. */
4844 case 24: /* Shift Left Word */
4845 case 26: /* Count Leading Zeros Word */
4846 case 27: /* Shift Left Doubleword */
4847 case 28: /* AND */
4848 case 58: /* Count Leading Zeros Doubleword */
4849 case 60: /* AND with Complement */
4850 case 124: /* NOR */
4851 case 284: /* Equivalent */
4852 case 316: /* XOR */
4853 case 476: /* NAND */
4854 case 412: /* OR with Complement */
4855 case 444: /* OR */
4856 case 536: /* Shift Right Word */
4857 case 539: /* Shift Right Doubleword */
4858 case 922: /* Extend Sign Halfword */
4859 case 954: /* Extend Sign Byte */
4860 case 986: /* Extend Sign Word */
4861 case 538: /* Count Trailing Zeros Word */
4862 case 570: /* Count Trailing Zeros Doubleword */
4863 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4864 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4865
4866 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4867 && (PPC_RS (insn) == PPC_RA (insn))
4868 && (PPC_RA (insn) == PPC_RB (insn))
4869 && !PPC_RC (insn))
4870 {
4871 /* or Rx,Rx,Rx alters PRI in PPR. */
4872 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4873 return 0;
4874 }
4875
4876 if (PPC_RC (insn))
4877 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4878 record_full_arch_list_add_reg (regcache,
4879 tdep->ppc_gp0_regnum + PPC_RA (insn));
4880 return 0;
4881
4882 /* Store memory. */
4883 case 181: /* Store Doubleword with Update Indexed */
4884 case 183: /* Store Word with Update Indexed */
4885 case 247: /* Store Byte with Update Indexed */
4886 case 439: /* Store Half Word with Update Indexed */
4887 case 695: /* Store Floating-Point Single with Update Indexed */
4888 case 759: /* Store Floating-Point Double with Update Indexed */
4889 record_full_arch_list_add_reg (regcache,
4890 tdep->ppc_gp0_regnum + PPC_RA (insn));
4891 /* FALL-THROUGH */
4892 case 135: /* Store Vector Element Byte Indexed */
4893 case 167: /* Store Vector Element Halfword Indexed */
4894 case 199: /* Store Vector Element Word Indexed */
4895 case 231: /* Store Vector Indexed */
4896 case 487: /* Store Vector Indexed LRU */
4897 case 716: /* Store VSX Scalar Doubleword Indexed */
4898 case 140: /* Store VSX Scalar as Integer Word Indexed */
4899 case 652: /* Store VSX Scalar Single-Precision Indexed */
4900 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4901 case 908: /* Store VSX Vector Word*4 Indexed */
4902 case 149: /* Store Doubleword Indexed */
4903 case 151: /* Store Word Indexed */
4904 case 215: /* Store Byte Indexed */
4905 case 407: /* Store Half Word Indexed */
4906 case 694: /* Store Byte Conditional Indexed */
4907 case 726: /* Store Halfword Conditional Indexed */
4908 case 150: /* Store Word Conditional Indexed */
4909 case 214: /* Store Doubleword Conditional Indexed */
4910 case 182: /* Store Quadword Conditional Indexed */
4911 case 662: /* Store Word Byte-Reverse Indexed */
4912 case 918: /* Store Halfword Byte-Reverse Indexed */
4913 case 660: /* Store Doubleword Byte-Reverse Indexed */
4914 case 663: /* Store Floating-Point Single Indexed */
4915 case 727: /* Store Floating-Point Double Indexed */
4916 case 919: /* Store Floating-Point Double Pair Indexed */
4917 case 983: /* Store Floating-Point as Integer Word Indexed */
4918 case 396: /* Store VSX Vector Indexed */
4919 case 940: /* Store VSX Vector Halfword*8 Indexed */
4920 case 1004: /* Store VSX Vector Byte*16 Indexed */
4921 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4922 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4923 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4924 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4925
4926 ra = 0;
4927 if (PPC_RA (insn) != 0)
4928 regcache_raw_read_unsigned (regcache,
4929 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4930 regcache_raw_read_unsigned (regcache,
4931 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4932 ea = ra + rb;
4933
4934 switch (ext)
4935 {
4936 case 183: /* Store Word with Update Indexed */
4937 case 199: /* Store Vector Element Word Indexed */
4938 case 140: /* Store VSX Scalar as Integer Word Indexed */
4939 case 652: /* Store VSX Scalar Single-Precision Indexed */
4940 case 151: /* Store Word Indexed */
4941 case 150: /* Store Word Conditional Indexed */
4942 case 662: /* Store Word Byte-Reverse Indexed */
4943 case 663: /* Store Floating-Point Single Indexed */
4944 case 695: /* Store Floating-Point Single with Update Indexed */
4945 case 983: /* Store Floating-Point as Integer Word Indexed */
4946 size = 4;
4947 break;
4948 case 247: /* Store Byte with Update Indexed */
4949 case 135: /* Store Vector Element Byte Indexed */
4950 case 215: /* Store Byte Indexed */
4951 case 694: /* Store Byte Conditional Indexed */
4952 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4953 size = 1;
4954 break;
4955 case 439: /* Store Halfword with Update Indexed */
4956 case 167: /* Store Vector Element Halfword Indexed */
4957 case 407: /* Store Halfword Indexed */
4958 case 726: /* Store Halfword Conditional Indexed */
4959 case 918: /* Store Halfword Byte-Reverse Indexed */
4960 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4961 size = 2;
4962 break;
4963 case 181: /* Store Doubleword with Update Indexed */
4964 case 716: /* Store VSX Scalar Doubleword Indexed */
4965 case 149: /* Store Doubleword Indexed */
4966 case 214: /* Store Doubleword Conditional Indexed */
4967 case 660: /* Store Doubleword Byte-Reverse Indexed */
4968 case 727: /* Store Floating-Point Double Indexed */
4969 case 759: /* Store Floating-Point Double with Update Indexed */
4970 size = 8;
4971 break;
4972 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4973 case 908: /* Store VSX Vector Word*4 Indexed */
4974 case 182: /* Store Quadword Conditional Indexed */
4975 case 231: /* Store Vector Indexed */
4976 case 487: /* Store Vector Indexed LRU */
4977 case 919: /* Store Floating-Point Double Pair Indexed */
4978 case 396: /* Store VSX Vector Indexed */
4979 case 940: /* Store VSX Vector Halfword*8 Indexed */
4980 case 1004: /* Store VSX Vector Byte*16 Indexed */
4981 size = 16;
4982 break;
4983 default:
4984 gdb_assert (0);
4985 }
4986
4987 /* Align address for Store Vector instructions. */
4988 switch (ext)
4989 {
4990 case 167: /* Store Vector Element Halfword Indexed */
4991 addr = addr & ~0x1ULL;
4992 break;
4993
4994 case 199: /* Store Vector Element Word Indexed */
4995 addr = addr & ~0x3ULL;
4996 break;
4997
4998 case 231: /* Store Vector Indexed */
4999 case 487: /* Store Vector Indexed LRU */
5000 addr = addr & ~0xfULL;
5001 break;
5002 }
5003
5004 record_full_arch_list_add_mem (addr, size);
5005 return 0;
5006
5007 case 397: /* Store VSX Vector with Length */
5008 case 429: /* Store VSX Vector Left-justified with Length */
5009 ra = 0;
5010 if (PPC_RA (insn) != 0)
5011 regcache_raw_read_unsigned (regcache,
5012 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5013 ea = ra;
5014 regcache_raw_read_unsigned (regcache,
5015 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5016 /* Store up to 16 bytes. */
5017 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
5018 if (nb > 0)
5019 record_full_arch_list_add_mem (ea, nb);
5020 return 0;
5021
5022 case 710: /* Store Word Atomic */
5023 case 742: /* Store Doubleword Atomic */
5024 ra = 0;
5025 if (PPC_RA (insn) != 0)
5026 regcache_raw_read_unsigned (regcache,
5027 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5028 ea = ra;
5029 switch (ext)
5030 {
5031 case 710: /* Store Word Atomic */
5032 size = 8;
5033 break;
5034 case 742: /* Store Doubleword Atomic */
5035 size = 16;
5036 break;
5037 default:
5038 gdb_assert (0);
5039 }
5040 record_full_arch_list_add_mem (ea, size);
5041 return 0;
5042
5043 case 725: /* Store String Word Immediate */
5044 ra = 0;
5045 if (PPC_RA (insn) != 0)
5046 regcache_raw_read_unsigned (regcache,
5047 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5048 ea += ra;
5049
5050 nb = PPC_NB (insn);
5051 if (nb == 0)
5052 nb = 32;
5053
5054 record_full_arch_list_add_mem (ea, nb);
5055
5056 return 0;
5057
5058 case 661: /* Store String Word Indexed */
5059 ra = 0;
5060 if (PPC_RA (insn) != 0)
5061 regcache_raw_read_unsigned (regcache,
5062 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5063 ea += ra;
5064
5065 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5066 nb = PPC_XER_NB (xer);
5067
5068 if (nb != 0)
5069 {
5070 regcache_raw_read_unsigned (regcache,
5071 tdep->ppc_gp0_regnum + PPC_RB (insn),
5072 &rb);
5073 ea += rb;
5074 record_full_arch_list_add_mem (ea, nb);
5075 }
5076
5077 return 0;
5078
5079 case 467: /* Move To Special Purpose Register */
5080 switch (PPC_SPR (insn))
5081 {
5082 case 1: /* XER */
5083 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5084 return 0;
5085 case 3: /* DSCR */
5086 if (tdep->ppc_dscr_regnum >= 0)
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5088 return 0;
5089 case 8: /* LR */
5090 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5091 return 0;
5092 case 9: /* CTR */
5093 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5094 return 0;
5095 case 256: /* VRSAVE */
5096 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5097 return 0;
5098 case 815: /* TAR */
5099 if (tdep->ppc_tar_regnum >= 0)
5100 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5101 return 0;
5102 case 896:
5103 case 898: /* PPR */
5104 if (tdep->ppc_ppr_regnum >= 0)
5105 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5106 return 0;
5107 }
5108
5109 goto UNKNOWN_OP;
5110
5111 case 147: /* Move To Split Little Endian */
5112 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5113 return 0;
5114
5115 case 512: /* Move to Condition Register from XER */
5116 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5117 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5118 return 0;
5119
5120 case 4: /* Trap Word */
5121 case 68: /* Trap Doubleword */
5122 case 430: /* Clear BHRB */
5123 case 598: /* Synchronize */
5124 case 62: /* Wait for Interrupt */
5125 case 30: /* Wait */
5126 case 22: /* Instruction Cache Block Touch */
5127 case 854: /* Enforce In-order Execution of I/O */
5128 case 246: /* Data Cache Block Touch for Store */
5129 case 54: /* Data Cache Block Store */
5130 case 86: /* Data Cache Block Flush */
5131 case 278: /* Data Cache Block Touch */
5132 case 758: /* Data Cache Block Allocate */
5133 case 982: /* Instruction Cache Block Invalidate */
5134 case 774: /* Copy */
5135 case 838: /* CP_Abort */
5136 return 0;
5137
5138 case 654: /* Transaction Begin */
5139 case 686: /* Transaction End */
5140 case 750: /* Transaction Suspend or Resume */
5141 case 782: /* Transaction Abort Word Conditional */
5142 case 814: /* Transaction Abort Doubleword Conditional */
5143 case 846: /* Transaction Abort Word Conditional Immediate */
5144 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5145 case 910: /* Transaction Abort */
5146 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5147 /* FALL-THROUGH */
5148 case 718: /* Transaction Check */
5149 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5150 return 0;
5151
5152 case 1014: /* Data Cache Block set to Zero */
5153 if (target_auxv_search (current_inferior ()->top_target (),
5154 AT_DCACHEBSIZE, &at_dcsz) <= 0
5155 || at_dcsz == 0)
5156 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5157
5158 ra = 0;
5159 if (PPC_RA (insn) != 0)
5160 regcache_raw_read_unsigned (regcache,
5161 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5162 regcache_raw_read_unsigned (regcache,
5163 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5164 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5165 record_full_arch_list_add_mem (ea, at_dcsz);
5166 return 0;
5167 }
5168
5169 UNKNOWN_OP:
5170 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5171 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5172 return -1;
5173 }
5174
5175 /* Parse and record instructions of primary opcode-59 at ADDR.
5176 Return 0 if successful. */
5177
5178 static int
5179 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5180 CORE_ADDR addr, uint32_t insn)
5181 {
5182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5183 int ext = PPC_EXTOP (insn);
5184
5185 switch (ext & 0x1f)
5186 {
5187 case 18: /* Floating Divide */
5188 case 20: /* Floating Subtract */
5189 case 21: /* Floating Add */
5190 case 22: /* Floating Square Root */
5191 case 24: /* Floating Reciprocal Estimate */
5192 case 25: /* Floating Multiply */
5193 case 26: /* Floating Reciprocal Square Root Estimate */
5194 case 28: /* Floating Multiply-Subtract */
5195 case 29: /* Floating Multiply-Add */
5196 case 30: /* Floating Negative Multiply-Subtract */
5197 case 31: /* Floating Negative Multiply-Add */
5198 record_full_arch_list_add_reg (regcache,
5199 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5200 if (PPC_RC (insn))
5201 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5202 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5203
5204 return 0;
5205 }
5206
5207 switch (ext)
5208 {
5209 case 2: /* DFP Add */
5210 case 3: /* DFP Quantize */
5211 case 34: /* DFP Multiply */
5212 case 35: /* DFP Reround */
5213 case 67: /* DFP Quantize Immediate */
5214 case 99: /* DFP Round To FP Integer With Inexact */
5215 case 227: /* DFP Round To FP Integer Without Inexact */
5216 case 258: /* DFP Convert To DFP Long! */
5217 case 290: /* DFP Convert To Fixed */
5218 case 514: /* DFP Subtract */
5219 case 546: /* DFP Divide */
5220 case 770: /* DFP Round To DFP Short! */
5221 case 802: /* DFP Convert From Fixed */
5222 case 834: /* DFP Encode BCD To DPD */
5223 if (PPC_RC (insn))
5224 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5225 record_full_arch_list_add_reg (regcache,
5226 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5227 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5228 return 0;
5229
5230 case 130: /* DFP Compare Ordered */
5231 case 162: /* DFP Test Exponent */
5232 case 194: /* DFP Test Data Class */
5233 case 226: /* DFP Test Data Group */
5234 case 642: /* DFP Compare Unordered */
5235 case 674: /* DFP Test Significance */
5236 case 675: /* DFP Test Significance Immediate */
5237 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5238 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5239 return 0;
5240
5241 case 66: /* DFP Shift Significand Left Immediate */
5242 case 98: /* DFP Shift Significand Right Immediate */
5243 case 322: /* DFP Decode DPD To BCD */
5244 case 354: /* DFP Extract Biased Exponent */
5245 case 866: /* DFP Insert Biased Exponent */
5246 record_full_arch_list_add_reg (regcache,
5247 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5248 if (PPC_RC (insn))
5249 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5250 return 0;
5251
5252 case 846: /* Floating Convert From Integer Doubleword Single */
5253 case 974: /* Floating Convert From Integer Doubleword Unsigned
5254 Single */
5255 record_full_arch_list_add_reg (regcache,
5256 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5257 if (PPC_RC (insn))
5258 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5259 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5260
5261 return 0;
5262 }
5263
5264 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5265 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5266 return -1;
5267 }
5268
5269 /* Parse and record instructions of primary opcode-60 at ADDR.
5270 Return 0 if successful. */
5271
5272 static int
5273 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5274 CORE_ADDR addr, uint32_t insn)
5275 {
5276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5277 int ext = PPC_EXTOP (insn);
5278
5279 switch (ext >> 2)
5280 {
5281 case 0: /* VSX Scalar Add Single-Precision */
5282 case 32: /* VSX Scalar Add Double-Precision */
5283 case 24: /* VSX Scalar Divide Single-Precision */
5284 case 56: /* VSX Scalar Divide Double-Precision */
5285 case 176: /* VSX Scalar Copy Sign Double-Precision */
5286 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5287 case 41: /* ditto */
5288 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5289 case 9: /* ditto */
5290 case 160: /* VSX Scalar Maximum Double-Precision */
5291 case 168: /* VSX Scalar Minimum Double-Precision */
5292 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5293 case 57: /* ditto */
5294 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5295 case 25: /* ditto */
5296 case 48: /* VSX Scalar Multiply Double-Precision */
5297 case 16: /* VSX Scalar Multiply Single-Precision */
5298 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5299 case 169: /* ditto */
5300 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5301 case 137: /* ditto */
5302 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5303 case 185: /* ditto */
5304 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5305 case 153: /* ditto */
5306 case 40: /* VSX Scalar Subtract Double-Precision */
5307 case 8: /* VSX Scalar Subtract Single-Precision */
5308 case 96: /* VSX Vector Add Double-Precision */
5309 case 64: /* VSX Vector Add Single-Precision */
5310 case 120: /* VSX Vector Divide Double-Precision */
5311 case 88: /* VSX Vector Divide Single-Precision */
5312 case 97: /* VSX Vector Multiply-Add Double-Precision */
5313 case 105: /* ditto */
5314 case 65: /* VSX Vector Multiply-Add Single-Precision */
5315 case 73: /* ditto */
5316 case 224: /* VSX Vector Maximum Double-Precision */
5317 case 192: /* VSX Vector Maximum Single-Precision */
5318 case 232: /* VSX Vector Minimum Double-Precision */
5319 case 200: /* VSX Vector Minimum Single-Precision */
5320 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5321 case 121: /* ditto */
5322 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5323 case 89: /* ditto */
5324 case 112: /* VSX Vector Multiply Double-Precision */
5325 case 80: /* VSX Vector Multiply Single-Precision */
5326 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5327 case 233: /* ditto */
5328 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5329 case 201: /* ditto */
5330 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5331 case 249: /* ditto */
5332 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5333 case 217: /* ditto */
5334 case 104: /* VSX Vector Subtract Double-Precision */
5335 case 72: /* VSX Vector Subtract Single-Precision */
5336 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5337 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5338 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5339 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5340 case 3: /* VSX Scalar Compare Equal Double-Precision */
5341 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5342 case 19: /* VSX Scalar Compare Greater Than or Equal
5343 Double-Precision */
5344 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5345 /* FALL-THROUGH */
5346 case 240: /* VSX Vector Copy Sign Double-Precision */
5347 case 208: /* VSX Vector Copy Sign Single-Precision */
5348 case 130: /* VSX Logical AND */
5349 case 138: /* VSX Logical AND with Complement */
5350 case 186: /* VSX Logical Equivalence */
5351 case 178: /* VSX Logical NAND */
5352 case 170: /* VSX Logical OR with Complement */
5353 case 162: /* VSX Logical NOR */
5354 case 146: /* VSX Logical OR */
5355 case 154: /* VSX Logical XOR */
5356 case 18: /* VSX Merge High Word */
5357 case 50: /* VSX Merge Low Word */
5358 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5359 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5360 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5361 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5362 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5363 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5364 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5365 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5366 case 216: /* VSX Vector Insert Exponent Single-Precision */
5367 case 248: /* VSX Vector Insert Exponent Double-Precision */
5368 case 26: /* VSX Vector Permute */
5369 case 58: /* VSX Vector Permute Right-indexed */
5370 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5371 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5372 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5373 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5374 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5375 return 0;
5376
5377 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5378 case 125: /* VSX Vector Test for software Divide Double-Precision */
5379 case 93: /* VSX Vector Test for software Divide Single-Precision */
5380 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5381 return 0;
5382
5383 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5384 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5385 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5386 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5387 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5388 return 0;
5389 }
5390
5391 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5392 {
5393 case 99: /* VSX Vector Compare Equal To Double-Precision */
5394 case 67: /* VSX Vector Compare Equal To Single-Precision */
5395 case 115: /* VSX Vector Compare Greater Than or
5396 Equal To Double-Precision */
5397 case 83: /* VSX Vector Compare Greater Than or
5398 Equal To Single-Precision */
5399 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5400 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5401 if (PPC_Rc (insn))
5402 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5403 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5404 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5405 return 0;
5406 }
5407
5408 switch (ext >> 1)
5409 {
5410 case 265: /* VSX Scalar round Double-Precision to
5411 Single-Precision and Convert to
5412 Single-Precision format */
5413 case 344: /* VSX Scalar truncate Double-Precision to
5414 Integer and Convert to Signed Integer
5415 Doubleword format with Saturate */
5416 case 88: /* VSX Scalar truncate Double-Precision to
5417 Integer and Convert to Signed Integer Word
5418 Format with Saturate */
5419 case 328: /* VSX Scalar truncate Double-Precision integer
5420 and Convert to Unsigned Integer Doubleword
5421 Format with Saturate */
5422 case 72: /* VSX Scalar truncate Double-Precision to
5423 Integer and Convert to Unsigned Integer Word
5424 Format with Saturate */
5425 case 329: /* VSX Scalar Convert Single-Precision to
5426 Double-Precision format */
5427 case 376: /* VSX Scalar Convert Signed Integer
5428 Doubleword to floating-point format and
5429 Round to Double-Precision format */
5430 case 312: /* VSX Scalar Convert Signed Integer
5431 Doubleword to floating-point format and
5432 round to Single-Precision */
5433 case 360: /* VSX Scalar Convert Unsigned Integer
5434 Doubleword to floating-point format and
5435 Round to Double-Precision format */
5436 case 296: /* VSX Scalar Convert Unsigned Integer
5437 Doubleword to floating-point format and
5438 Round to Single-Precision */
5439 case 73: /* VSX Scalar Round to Double-Precision Integer
5440 Using Round to Nearest Away */
5441 case 107: /* VSX Scalar Round to Double-Precision Integer
5442 Exact using Current rounding mode */
5443 case 121: /* VSX Scalar Round to Double-Precision Integer
5444 Using Round toward -Infinity */
5445 case 105: /* VSX Scalar Round to Double-Precision Integer
5446 Using Round toward +Infinity */
5447 case 89: /* VSX Scalar Round to Double-Precision Integer
5448 Using Round toward Zero */
5449 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5450 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5451 case 281: /* VSX Scalar Round to Single-Precision */
5452 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5453 Double-Precision */
5454 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5455 Single-Precision */
5456 case 75: /* VSX Scalar Square Root Double-Precision */
5457 case 11: /* VSX Scalar Square Root Single-Precision */
5458 case 393: /* VSX Vector round Double-Precision to
5459 Single-Precision and Convert to
5460 Single-Precision format */
5461 case 472: /* VSX Vector truncate Double-Precision to
5462 Integer and Convert to Signed Integer
5463 Doubleword format with Saturate */
5464 case 216: /* VSX Vector truncate Double-Precision to
5465 Integer and Convert to Signed Integer Word
5466 Format with Saturate */
5467 case 456: /* VSX Vector truncate Double-Precision to
5468 Integer and Convert to Unsigned Integer
5469 Doubleword format with Saturate */
5470 case 200: /* VSX Vector truncate Double-Precision to
5471 Integer and Convert to Unsigned Integer Word
5472 Format with Saturate */
5473 case 457: /* VSX Vector Convert Single-Precision to
5474 Double-Precision format */
5475 case 408: /* VSX Vector truncate Single-Precision to
5476 Integer and Convert to Signed Integer
5477 Doubleword format with Saturate */
5478 case 152: /* VSX Vector truncate Single-Precision to
5479 Integer and Convert to Signed Integer Word
5480 Format with Saturate */
5481 case 392: /* VSX Vector truncate Single-Precision to
5482 Integer and Convert to Unsigned Integer
5483 Doubleword format with Saturate */
5484 case 136: /* VSX Vector truncate Single-Precision to
5485 Integer and Convert to Unsigned Integer Word
5486 Format with Saturate */
5487 case 504: /* VSX Vector Convert and round Signed Integer
5488 Doubleword to Double-Precision format */
5489 case 440: /* VSX Vector Convert and round Signed Integer
5490 Doubleword to Single-Precision format */
5491 case 248: /* VSX Vector Convert Signed Integer Word to
5492 Double-Precision format */
5493 case 184: /* VSX Vector Convert and round Signed Integer
5494 Word to Single-Precision format */
5495 case 488: /* VSX Vector Convert and round Unsigned
5496 Integer Doubleword to Double-Precision format */
5497 case 424: /* VSX Vector Convert and round Unsigned
5498 Integer Doubleword to Single-Precision format */
5499 case 232: /* VSX Vector Convert and round Unsigned
5500 Integer Word to Double-Precision format */
5501 case 168: /* VSX Vector Convert and round Unsigned
5502 Integer Word to Single-Precision format */
5503 case 201: /* VSX Vector Round to Double-Precision
5504 Integer using round to Nearest Away */
5505 case 235: /* VSX Vector Round to Double-Precision
5506 Integer Exact using Current rounding mode */
5507 case 249: /* VSX Vector Round to Double-Precision
5508 Integer using round toward -Infinity */
5509 case 233: /* VSX Vector Round to Double-Precision
5510 Integer using round toward +Infinity */
5511 case 217: /* VSX Vector Round to Double-Precision
5512 Integer using round toward Zero */
5513 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5514 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5515 case 137: /* VSX Vector Round to Single-Precision Integer
5516 Using Round to Nearest Away */
5517 case 171: /* VSX Vector Round to Single-Precision Integer
5518 Exact Using Current rounding mode */
5519 case 185: /* VSX Vector Round to Single-Precision Integer
5520 Using Round toward -Infinity */
5521 case 169: /* VSX Vector Round to Single-Precision Integer
5522 Using Round toward +Infinity */
5523 case 153: /* VSX Vector Round to Single-Precision Integer
5524 Using round toward Zero */
5525 case 202: /* VSX Vector Reciprocal Square Root Estimate
5526 Double-Precision */
5527 case 138: /* VSX Vector Reciprocal Square Root Estimate
5528 Single-Precision */
5529 case 203: /* VSX Vector Square Root Double-Precision */
5530 case 139: /* VSX Vector Square Root Single-Precision */
5531 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5532 /* FALL-THROUGH */
5533 case 345: /* VSX Scalar Absolute Value Double-Precision */
5534 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5535 Vector Single-Precision format Non-signalling */
5536 case 331: /* VSX Scalar Convert Single-Precision to
5537 Double-Precision format Non-signalling */
5538 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5539 case 377: /* VSX Scalar Negate Double-Precision */
5540 case 473: /* VSX Vector Absolute Value Double-Precision */
5541 case 409: /* VSX Vector Absolute Value Single-Precision */
5542 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5543 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5544 case 505: /* VSX Vector Negate Double-Precision */
5545 case 441: /* VSX Vector Negate Single-Precision */
5546 case 164: /* VSX Splat Word */
5547 case 165: /* VSX Vector Extract Unsigned Word */
5548 case 181: /* VSX Vector Insert Word */
5549 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5550 return 0;
5551
5552 case 298: /* VSX Scalar Test Data Class Single-Precision */
5553 case 362: /* VSX Scalar Test Data Class Double-Precision */
5554 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5555 /* FALL-THROUGH */
5556 case 106: /* VSX Scalar Test for software Square Root
5557 Double-Precision */
5558 case 234: /* VSX Vector Test for software Square Root
5559 Double-Precision */
5560 case 170: /* VSX Vector Test for software Square Root
5561 Single-Precision */
5562 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5563 return 0;
5564
5565 case 347:
5566 switch (PPC_FIELD (insn, 11, 5))
5567 {
5568 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5569 case 1: /* VSX Scalar Extract Significand Double-Precision */
5570 record_full_arch_list_add_reg (regcache,
5571 tdep->ppc_gp0_regnum + PPC_RT (insn));
5572 return 0;
5573 case 16: /* VSX Scalar Convert Half-Precision format to
5574 Double-Precision format */
5575 case 17: /* VSX Scalar round & Convert Double-Precision format
5576 to Half-Precision format */
5577 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5578 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5579 return 0;
5580 }
5581 break;
5582
5583 case 475:
5584 switch (PPC_FIELD (insn, 11, 5))
5585 {
5586 case 24: /* VSX Vector Convert Half-Precision format to
5587 Single-Precision format */
5588 case 25: /* VSX Vector round and Convert Single-Precision format
5589 to Half-Precision format */
5590 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5591 /* FALL-THROUGH */
5592 case 0: /* VSX Vector Extract Exponent Double-Precision */
5593 case 1: /* VSX Vector Extract Significand Double-Precision */
5594 case 7: /* VSX Vector Byte-Reverse Halfword */
5595 case 8: /* VSX Vector Extract Exponent Single-Precision */
5596 case 9: /* VSX Vector Extract Significand Single-Precision */
5597 case 15: /* VSX Vector Byte-Reverse Word */
5598 case 23: /* VSX Vector Byte-Reverse Doubleword */
5599 case 31: /* VSX Vector Byte-Reverse Quadword */
5600 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5601 return 0;
5602 }
5603 break;
5604 }
5605
5606 switch (ext)
5607 {
5608 case 360: /* VSX Vector Splat Immediate Byte */
5609 if (PPC_FIELD (insn, 11, 2) == 0)
5610 {
5611 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5612 return 0;
5613 }
5614 break;
5615 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5616 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5617 return 0;
5618 }
5619
5620 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5621 {
5622 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5623 return 0;
5624 }
5625
5626 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5627 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5628 return -1;
5629 }
5630
5631 /* Parse and record instructions of primary opcode-61 at ADDR.
5632 Return 0 if successful. */
5633
5634 static int
5635 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5636 CORE_ADDR addr, uint32_t insn)
5637 {
5638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5639 ULONGEST ea = 0;
5640 int size;
5641
5642 switch (insn & 0x3)
5643 {
5644 case 0: /* Store Floating-Point Double Pair */
5645 case 2: /* Store VSX Scalar Doubleword */
5646 case 3: /* Store VSX Scalar Single */
5647 if (PPC_RA (insn) != 0)
5648 regcache_raw_read_unsigned (regcache,
5649 tdep->ppc_gp0_regnum + PPC_RA (insn),
5650 &ea);
5651 ea += PPC_DS (insn) << 2;
5652 switch (insn & 0x3)
5653 {
5654 case 0: /* Store Floating-Point Double Pair */
5655 size = 16;
5656 break;
5657 case 2: /* Store VSX Scalar Doubleword */
5658 size = 8;
5659 break;
5660 case 3: /* Store VSX Scalar Single */
5661 size = 4;
5662 break;
5663 default:
5664 gdb_assert (0);
5665 }
5666 record_full_arch_list_add_mem (ea, size);
5667 return 0;
5668 }
5669
5670 switch (insn & 0x7)
5671 {
5672 case 1: /* Load VSX Vector */
5673 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5674 return 0;
5675 case 5: /* Store VSX Vector */
5676 if (PPC_RA (insn) != 0)
5677 regcache_raw_read_unsigned (regcache,
5678 tdep->ppc_gp0_regnum + PPC_RA (insn),
5679 &ea);
5680 ea += PPC_DQ (insn) << 4;
5681 record_full_arch_list_add_mem (ea, 16);
5682 return 0;
5683 }
5684
5685 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5686 "at %s.\n", insn, paddress (gdbarch, addr));
5687 return -1;
5688 }
5689
5690 /* Parse and record instructions of primary opcode-63 at ADDR.
5691 Return 0 if successful. */
5692
5693 static int
5694 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5695 CORE_ADDR addr, uint32_t insn)
5696 {
5697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5698 int ext = PPC_EXTOP (insn);
5699 int tmp;
5700
5701 switch (ext & 0x1f)
5702 {
5703 case 18: /* Floating Divide */
5704 case 20: /* Floating Subtract */
5705 case 21: /* Floating Add */
5706 case 22: /* Floating Square Root */
5707 case 24: /* Floating Reciprocal Estimate */
5708 case 25: /* Floating Multiply */
5709 case 26: /* Floating Reciprocal Square Root Estimate */
5710 case 28: /* Floating Multiply-Subtract */
5711 case 29: /* Floating Multiply-Add */
5712 case 30: /* Floating Negative Multiply-Subtract */
5713 case 31: /* Floating Negative Multiply-Add */
5714 record_full_arch_list_add_reg (regcache,
5715 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5716 if (PPC_RC (insn))
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5718 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5719 return 0;
5720
5721 case 23: /* Floating Select */
5722 record_full_arch_list_add_reg (regcache,
5723 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5724 if (PPC_RC (insn))
5725 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5726 return 0;
5727 }
5728
5729 switch (ext & 0xff)
5730 {
5731 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5732 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5733 Precision */
5734 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5735 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5736 return 0;
5737 }
5738
5739 switch (ext)
5740 {
5741 case 2: /* DFP Add Quad */
5742 case 3: /* DFP Quantize Quad */
5743 case 34: /* DFP Multiply Quad */
5744 case 35: /* DFP Reround Quad */
5745 case 67: /* DFP Quantize Immediate Quad */
5746 case 99: /* DFP Round To FP Integer With Inexact Quad */
5747 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5748 case 258: /* DFP Convert To DFP Extended Quad */
5749 case 514: /* DFP Subtract Quad */
5750 case 546: /* DFP Divide Quad */
5751 case 770: /* DFP Round To DFP Long Quad */
5752 case 802: /* DFP Convert From Fixed Quad */
5753 case 834: /* DFP Encode BCD To DPD Quad */
5754 if (PPC_RC (insn))
5755 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5756 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5757 record_full_arch_list_add_reg (regcache, tmp);
5758 record_full_arch_list_add_reg (regcache, tmp + 1);
5759 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5760 return 0;
5761
5762 case 130: /* DFP Compare Ordered Quad */
5763 case 162: /* DFP Test Exponent Quad */
5764 case 194: /* DFP Test Data Class Quad */
5765 case 226: /* DFP Test Data Group Quad */
5766 case 642: /* DFP Compare Unordered Quad */
5767 case 674: /* DFP Test Significance Quad */
5768 case 675: /* DFP Test Significance Immediate Quad */
5769 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5770 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5771 return 0;
5772
5773 case 66: /* DFP Shift Significand Left Immediate Quad */
5774 case 98: /* DFP Shift Significand Right Immediate Quad */
5775 case 322: /* DFP Decode DPD To BCD Quad */
5776 case 866: /* DFP Insert Biased Exponent Quad */
5777 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5778 record_full_arch_list_add_reg (regcache, tmp);
5779 record_full_arch_list_add_reg (regcache, tmp + 1);
5780 if (PPC_RC (insn))
5781 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5782 return 0;
5783
5784 case 290: /* DFP Convert To Fixed Quad */
5785 record_full_arch_list_add_reg (regcache,
5786 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5787 if (PPC_RC (insn))
5788 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5789 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5790 return 0;
5791
5792 case 354: /* DFP Extract Biased Exponent Quad */
5793 record_full_arch_list_add_reg (regcache,
5794 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5795 if (PPC_RC (insn))
5796 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5797 return 0;
5798
5799 case 12: /* Floating Round to Single-Precision */
5800 case 14: /* Floating Convert To Integer Word */
5801 case 15: /* Floating Convert To Integer Word
5802 with round toward Zero */
5803 case 142: /* Floating Convert To Integer Word Unsigned */
5804 case 143: /* Floating Convert To Integer Word Unsigned
5805 with round toward Zero */
5806 case 392: /* Floating Round to Integer Nearest */
5807 case 424: /* Floating Round to Integer Toward Zero */
5808 case 456: /* Floating Round to Integer Plus */
5809 case 488: /* Floating Round to Integer Minus */
5810 case 814: /* Floating Convert To Integer Doubleword */
5811 case 815: /* Floating Convert To Integer Doubleword
5812 with round toward Zero */
5813 case 846: /* Floating Convert From Integer Doubleword */
5814 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5815 case 943: /* Floating Convert To Integer Doubleword Unsigned
5816 with round toward Zero */
5817 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5818 record_full_arch_list_add_reg (regcache,
5819 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5820 if (PPC_RC (insn))
5821 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5822 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5823 return 0;
5824
5825 case 583:
5826 switch (PPC_FIELD (insn, 11, 5))
5827 {
5828 case 1: /* Move From FPSCR & Clear Enables */
5829 case 20: /* Move From FPSCR Control & set DRN */
5830 case 21: /* Move From FPSCR Control & set DRN Immediate */
5831 case 22: /* Move From FPSCR Control & set RN */
5832 case 23: /* Move From FPSCR Control & set RN Immediate */
5833 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5834 /* Fall through. */
5835 case 0: /* Move From FPSCR */
5836 case 24: /* Move From FPSCR Lightweight */
5837 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5838 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5839 record_full_arch_list_add_reg (regcache,
5840 tdep->ppc_fp0_regnum
5841 + PPC_FRT (insn));
5842 return 0;
5843 }
5844 break;
5845
5846 case 8: /* Floating Copy Sign */
5847 case 40: /* Floating Negate */
5848 case 72: /* Floating Move Register */
5849 case 136: /* Floating Negative Absolute Value */
5850 case 264: /* Floating Absolute Value */
5851 record_full_arch_list_add_reg (regcache,
5852 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5853 if (PPC_RC (insn))
5854 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5855 return 0;
5856
5857 case 838: /* Floating Merge Odd Word */
5858 case 966: /* Floating Merge Even Word */
5859 record_full_arch_list_add_reg (regcache,
5860 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5861 return 0;
5862
5863 case 38: /* Move To FPSCR Bit 1 */
5864 case 70: /* Move To FPSCR Bit 0 */
5865 case 134: /* Move To FPSCR Field Immediate */
5866 case 711: /* Move To FPSCR Fields */
5867 if (PPC_RC (insn))
5868 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5869 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5870 return 0;
5871
5872 case 0: /* Floating Compare Unordered */
5873 case 32: /* Floating Compare Ordered */
5874 case 64: /* Move to Condition Register from FPSCR */
5875 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5876 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5877 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5878 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5879 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5880 /* FALL-THROUGH */
5881 case 128: /* Floating Test for software Divide */
5882 case 160: /* Floating Test for software Square Root */
5883 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5884 return 0;
5885
5886 case 4: /* VSX Scalar Add Quad-Precision */
5887 case 36: /* VSX Scalar Multiply Quad-Precision */
5888 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5889 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5890 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5891 case 484: /* VSX Scalar Negative Multiply-Subtract
5892 Quad-Precision */
5893 case 516: /* VSX Scalar Subtract Quad-Precision */
5894 case 548: /* VSX Scalar Divide Quad-Precision */
5895 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5896 /* FALL-THROUGH */
5897 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5898 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5899 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5900 return 0;
5901
5902 case 804:
5903 switch (PPC_FIELD (insn, 11, 5))
5904 {
5905 case 27: /* VSX Scalar Square Root Quad-Precision */
5906 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5907 /* FALL-THROUGH */
5908 case 0: /* VSX Scalar Absolute Quad-Precision */
5909 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5910 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5911 case 16: /* VSX Scalar Negate Quad-Precision */
5912 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5913 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5914 return 0;
5915 }
5916 break;
5917
5918 case 836:
5919 switch (PPC_FIELD (insn, 11, 5))
5920 {
5921 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5922 to Unsigned Word format */
5923 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5924 Quad-Precision format */
5925 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5926 to Signed Word format */
5927 case 10: /* VSX Scalar Convert Signed Doubleword format to
5928 Quad-Precision format */
5929 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5930 to Unsigned Doubleword format */
5931 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5932 Double-Precision format */
5933 case 22: /* VSX Scalar Convert Double-Precision format to
5934 Quad-Precision format */
5935 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5936 to Signed Doubleword format */
5937 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5938 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5939 return 0;
5940 }
5941 }
5942
5943 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5944 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5945 return -1;
5946 }
5947
5948 /* Parse the current instruction and record the values of the registers and
5949 memory that will be changed in current instruction to "record_arch_list".
5950 Return -1 if something wrong. */
5951
5952 int
5953 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5954 CORE_ADDR addr)
5955 {
5956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5958 uint32_t insn;
5959 int op6, tmp, i;
5960
5961 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5962 op6 = PPC_OP6 (insn);
5963
5964 switch (op6)
5965 {
5966 case 2: /* Trap Doubleword Immediate */
5967 case 3: /* Trap Word Immediate */
5968 /* Do nothing. */
5969 break;
5970
5971 case 4:
5972 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5973 return -1;
5974 break;
5975
5976 case 17: /* System call */
5977 if (PPC_LEV (insn) != 0)
5978 goto UNKNOWN_OP;
5979
5980 if (tdep->ppc_syscall_record != NULL)
5981 {
5982 if (tdep->ppc_syscall_record (regcache) != 0)
5983 return -1;
5984 }
5985 else
5986 {
5987 printf_unfiltered (_("no syscall record support\n"));
5988 return -1;
5989 }
5990 break;
5991
5992 case 7: /* Multiply Low Immediate */
5993 record_full_arch_list_add_reg (regcache,
5994 tdep->ppc_gp0_regnum + PPC_RT (insn));
5995 break;
5996
5997 case 8: /* Subtract From Immediate Carrying */
5998 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5999 record_full_arch_list_add_reg (regcache,
6000 tdep->ppc_gp0_regnum + PPC_RT (insn));
6001 break;
6002
6003 case 10: /* Compare Logical Immediate */
6004 case 11: /* Compare Immediate */
6005 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6006 break;
6007
6008 case 13: /* Add Immediate Carrying and Record */
6009 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6010 /* FALL-THROUGH */
6011 case 12: /* Add Immediate Carrying */
6012 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
6013 /* FALL-THROUGH */
6014 case 14: /* Add Immediate */
6015 case 15: /* Add Immediate Shifted */
6016 record_full_arch_list_add_reg (regcache,
6017 tdep->ppc_gp0_regnum + PPC_RT (insn));
6018 break;
6019
6020 case 16: /* Branch Conditional */
6021 if ((PPC_BO (insn) & 0x4) == 0)
6022 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
6023 /* FALL-THROUGH */
6024 case 18: /* Branch */
6025 if (PPC_LK (insn))
6026 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
6027 break;
6028
6029 case 19:
6030 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
6031 return -1;
6032 break;
6033
6034 case 20: /* Rotate Left Word Immediate then Mask Insert */
6035 case 21: /* Rotate Left Word Immediate then AND with Mask */
6036 case 23: /* Rotate Left Word then AND with Mask */
6037 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
6038 /* Rotate Left Doubleword Immediate then Clear Right */
6039 /* Rotate Left Doubleword Immediate then Clear */
6040 /* Rotate Left Doubleword then Clear Left */
6041 /* Rotate Left Doubleword then Clear Right */
6042 /* Rotate Left Doubleword Immediate then Mask Insert */
6043 if (PPC_RC (insn))
6044 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6045 record_full_arch_list_add_reg (regcache,
6046 tdep->ppc_gp0_regnum + PPC_RA (insn));
6047 break;
6048
6049 case 28: /* AND Immediate */
6050 case 29: /* AND Immediate Shifted */
6051 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6052 /* FALL-THROUGH */
6053 case 24: /* OR Immediate */
6054 case 25: /* OR Immediate Shifted */
6055 case 26: /* XOR Immediate */
6056 case 27: /* XOR Immediate Shifted */
6057 record_full_arch_list_add_reg (regcache,
6058 tdep->ppc_gp0_regnum + PPC_RA (insn));
6059 break;
6060
6061 case 31:
6062 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
6063 return -1;
6064 break;
6065
6066 case 33: /* Load Word and Zero with Update */
6067 case 35: /* Load Byte and Zero with Update */
6068 case 41: /* Load Halfword and Zero with Update */
6069 case 43: /* Load Halfword Algebraic with Update */
6070 record_full_arch_list_add_reg (regcache,
6071 tdep->ppc_gp0_regnum + PPC_RA (insn));
6072 /* FALL-THROUGH */
6073 case 32: /* Load Word and Zero */
6074 case 34: /* Load Byte and Zero */
6075 case 40: /* Load Halfword and Zero */
6076 case 42: /* Load Halfword Algebraic */
6077 record_full_arch_list_add_reg (regcache,
6078 tdep->ppc_gp0_regnum + PPC_RT (insn));
6079 break;
6080
6081 case 46: /* Load Multiple Word */
6082 for (i = PPC_RT (insn); i < 32; i++)
6083 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6084 break;
6085
6086 case 56: /* Load Quadword */
6087 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6088 record_full_arch_list_add_reg (regcache, tmp);
6089 record_full_arch_list_add_reg (regcache, tmp + 1);
6090 break;
6091
6092 case 49: /* Load Floating-Point Single with Update */
6093 case 51: /* Load Floating-Point Double with Update */
6094 record_full_arch_list_add_reg (regcache,
6095 tdep->ppc_gp0_regnum + PPC_RA (insn));
6096 /* FALL-THROUGH */
6097 case 48: /* Load Floating-Point Single */
6098 case 50: /* Load Floating-Point Double */
6099 record_full_arch_list_add_reg (regcache,
6100 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6101 break;
6102
6103 case 47: /* Store Multiple Word */
6104 {
6105 ULONGEST iaddr = 0;
6106
6107 if (PPC_RA (insn) != 0)
6108 regcache_raw_read_unsigned (regcache,
6109 tdep->ppc_gp0_regnum + PPC_RA (insn),
6110 &iaddr);
6111
6112 iaddr += PPC_D (insn);
6113 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
6114 }
6115 break;
6116
6117 case 37: /* Store Word with Update */
6118 case 39: /* Store Byte with Update */
6119 case 45: /* Store Halfword with Update */
6120 case 53: /* Store Floating-Point Single with Update */
6121 case 55: /* Store Floating-Point Double with Update */
6122 record_full_arch_list_add_reg (regcache,
6123 tdep->ppc_gp0_regnum + PPC_RA (insn));
6124 /* FALL-THROUGH */
6125 case 36: /* Store Word */
6126 case 38: /* Store Byte */
6127 case 44: /* Store Halfword */
6128 case 52: /* Store Floating-Point Single */
6129 case 54: /* Store Floating-Point Double */
6130 {
6131 ULONGEST iaddr = 0;
6132 int size = -1;
6133
6134 if (PPC_RA (insn) != 0)
6135 regcache_raw_read_unsigned (regcache,
6136 tdep->ppc_gp0_regnum + PPC_RA (insn),
6137 &iaddr);
6138 iaddr += PPC_D (insn);
6139
6140 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6141 size = 4;
6142 else if (op6 == 54 || op6 == 55)
6143 size = 8;
6144 else if (op6 == 44 || op6 == 45)
6145 size = 2;
6146 else if (op6 == 38 || op6 == 39)
6147 size = 1;
6148 else
6149 gdb_assert (0);
6150
6151 record_full_arch_list_add_mem (iaddr, size);
6152 }
6153 break;
6154
6155 case 57:
6156 switch (insn & 0x3)
6157 {
6158 case 0: /* Load Floating-Point Double Pair */
6159 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6160 record_full_arch_list_add_reg (regcache, tmp);
6161 record_full_arch_list_add_reg (regcache, tmp + 1);
6162 break;
6163 case 2: /* Load VSX Scalar Doubleword */
6164 case 3: /* Load VSX Scalar Single */
6165 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6166 break;
6167 default:
6168 goto UNKNOWN_OP;
6169 }
6170 break;
6171
6172 case 58: /* Load Doubleword */
6173 /* Load Doubleword with Update */
6174 /* Load Word Algebraic */
6175 if (PPC_FIELD (insn, 30, 2) > 2)
6176 goto UNKNOWN_OP;
6177
6178 record_full_arch_list_add_reg (regcache,
6179 tdep->ppc_gp0_regnum + PPC_RT (insn));
6180 if (PPC_BIT (insn, 31))
6181 record_full_arch_list_add_reg (regcache,
6182 tdep->ppc_gp0_regnum + PPC_RA (insn));
6183 break;
6184
6185 case 59:
6186 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6187 return -1;
6188 break;
6189
6190 case 60:
6191 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6192 return -1;
6193 break;
6194
6195 case 61:
6196 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6197 return -1;
6198 break;
6199
6200 case 62: /* Store Doubleword */
6201 /* Store Doubleword with Update */
6202 /* Store Quadword with Update */
6203 {
6204 ULONGEST iaddr = 0;
6205 int size;
6206 int sub2 = PPC_FIELD (insn, 30, 2);
6207
6208 if (sub2 > 2)
6209 goto UNKNOWN_OP;
6210
6211 if (PPC_RA (insn) != 0)
6212 regcache_raw_read_unsigned (regcache,
6213 tdep->ppc_gp0_regnum + PPC_RA (insn),
6214 &iaddr);
6215
6216 size = (sub2 == 2) ? 16 : 8;
6217
6218 iaddr += PPC_DS (insn) << 2;
6219 record_full_arch_list_add_mem (iaddr, size);
6220
6221 if (op6 == 62 && sub2 == 1)
6222 record_full_arch_list_add_reg (regcache,
6223 tdep->ppc_gp0_regnum +
6224 PPC_RA (insn));
6225
6226 break;
6227 }
6228
6229 case 63:
6230 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6231 return -1;
6232 break;
6233
6234 default:
6235 UNKNOWN_OP:
6236 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6237 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6238 return -1;
6239 }
6240
6241 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6242 return -1;
6243 if (record_full_arch_list_add_end ())
6244 return -1;
6245 return 0;
6246 }
6247
6248 /* Initialize the current architecture based on INFO. If possible, re-use an
6249 architecture from ARCHES, which is a list of architectures already created
6250 during this debugging session.
6251
6252 Called e.g. at program startup, when reading a core file, and when reading
6253 a binary file. */
6254
6255 static struct gdbarch *
6256 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6257 {
6258 struct gdbarch *gdbarch;
6259 struct gdbarch_tdep *tdep;
6260 int wordsize, from_xcoff_exec, from_elf_exec;
6261 enum bfd_architecture arch;
6262 unsigned long mach;
6263 bfd abfd;
6264 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6265 int soft_float;
6266 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6267 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6268 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6269 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6270 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6271 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6272 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6273 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6274 int have_htm_tar = 0;
6275 int tdesc_wordsize = -1;
6276 const struct target_desc *tdesc = info.target_desc;
6277 tdesc_arch_data_up tdesc_data;
6278 int num_pseudoregs = 0;
6279 int cur_reg;
6280
6281 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6282 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6283
6284 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6285 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6286
6287 /* Check word size. If INFO is from a binary file, infer it from
6288 that, else choose a likely default. */
6289 if (from_xcoff_exec)
6290 {
6291 if (bfd_xcoff_is_xcoff64 (info.abfd))
6292 wordsize = 8;
6293 else
6294 wordsize = 4;
6295 }
6296 else if (from_elf_exec)
6297 {
6298 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6299 wordsize = 8;
6300 else
6301 wordsize = 4;
6302 }
6303 else if (tdesc_has_registers (tdesc))
6304 wordsize = -1;
6305 else
6306 {
6307 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6308 wordsize = (info.bfd_arch_info->bits_per_word
6309 / info.bfd_arch_info->bits_per_byte);
6310 else
6311 wordsize = 4;
6312 }
6313
6314 /* Get the architecture and machine from the BFD. */
6315 arch = info.bfd_arch_info->arch;
6316 mach = info.bfd_arch_info->mach;
6317
6318 /* For e500 executables, the apuinfo section is of help here. Such
6319 section contains the identifier and revision number of each
6320 Application-specific Processing Unit that is present on the
6321 chip. The content of the section is determined by the assembler
6322 which looks at each instruction and determines which unit (and
6323 which version of it) can execute it. Grovel through the section
6324 looking for relevant e500 APUs. */
6325
6326 if (bfd_uses_spe_extensions (info.abfd))
6327 {
6328 arch = info.bfd_arch_info->arch;
6329 mach = bfd_mach_ppc_e500;
6330 bfd_default_set_arch_mach (&abfd, arch, mach);
6331 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6332 }
6333
6334 /* Find a default target description which describes our register
6335 layout, if we do not already have one. */
6336 if (! tdesc_has_registers (tdesc))
6337 {
6338 const struct ppc_variant *v;
6339
6340 /* Choose variant. */
6341 v = find_variant_by_arch (arch, mach);
6342 if (!v)
6343 return NULL;
6344
6345 tdesc = *v->tdesc;
6346 }
6347
6348 gdb_assert (tdesc_has_registers (tdesc));
6349
6350 /* Check any target description for validity. */
6351 if (tdesc_has_registers (tdesc))
6352 {
6353 static const char *const gprs[] = {
6354 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6355 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6356 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6357 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6358 };
6359 const struct tdesc_feature *feature;
6360 int i, valid_p;
6361 static const char *const msr_names[] = { "msr", "ps" };
6362 static const char *const cr_names[] = { "cr", "cnd" };
6363 static const char *const ctr_names[] = { "ctr", "cnt" };
6364
6365 feature = tdesc_find_feature (tdesc,
6366 "org.gnu.gdb.power.core");
6367 if (feature == NULL)
6368 return NULL;
6369
6370 tdesc_data = tdesc_data_alloc ();
6371
6372 valid_p = 1;
6373 for (i = 0; i < ppc_num_gprs; i++)
6374 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6375 i, gprs[i]);
6376 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6377 PPC_PC_REGNUM, "pc");
6378 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6379 PPC_LR_REGNUM, "lr");
6380 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6381 PPC_XER_REGNUM, "xer");
6382
6383 /* Allow alternate names for these registers, to accomodate GDB's
6384 historic naming. */
6385 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6386 PPC_MSR_REGNUM, msr_names);
6387 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6388 PPC_CR_REGNUM, cr_names);
6389 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6390 PPC_CTR_REGNUM, ctr_names);
6391
6392 if (!valid_p)
6393 return NULL;
6394
6395 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6396 PPC_MQ_REGNUM, "mq");
6397
6398 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6399 if (wordsize == -1)
6400 wordsize = tdesc_wordsize;
6401
6402 feature = tdesc_find_feature (tdesc,
6403 "org.gnu.gdb.power.fpu");
6404 if (feature != NULL)
6405 {
6406 static const char *const fprs[] = {
6407 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6408 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6409 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6410 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6411 };
6412 valid_p = 1;
6413 for (i = 0; i < ppc_num_fprs; i++)
6414 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6415 PPC_F0_REGNUM + i, fprs[i]);
6416 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6417 PPC_FPSCR_REGNUM, "fpscr");
6418
6419 if (!valid_p)
6420 return NULL;
6421 have_fpu = 1;
6422
6423 /* The fpscr register was expanded in isa 2.05 to 64 bits
6424 along with the addition of the decimal floating point
6425 facility. */
6426 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6427 have_dfp = 1;
6428 }
6429 else
6430 have_fpu = 0;
6431
6432 feature = tdesc_find_feature (tdesc,
6433 "org.gnu.gdb.power.altivec");
6434 if (feature != NULL)
6435 {
6436 static const char *const vector_regs[] = {
6437 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6438 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6439 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6440 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6441 };
6442
6443 valid_p = 1;
6444 for (i = 0; i < ppc_num_gprs; i++)
6445 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6446 PPC_VR0_REGNUM + i,
6447 vector_regs[i]);
6448 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6449 PPC_VSCR_REGNUM, "vscr");
6450 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6451 PPC_VRSAVE_REGNUM, "vrsave");
6452
6453 if (have_spe || !valid_p)
6454 return NULL;
6455 have_altivec = 1;
6456 }
6457 else
6458 have_altivec = 0;
6459
6460 /* Check for POWER7 VSX registers support. */
6461 feature = tdesc_find_feature (tdesc,
6462 "org.gnu.gdb.power.vsx");
6463
6464 if (feature != NULL)
6465 {
6466 static const char *const vsx_regs[] = {
6467 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6468 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6469 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6470 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6471 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6472 "vs30h", "vs31h"
6473 };
6474
6475 valid_p = 1;
6476
6477 for (i = 0; i < ppc_num_vshrs; i++)
6478 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6479 PPC_VSR0_UPPER_REGNUM + i,
6480 vsx_regs[i]);
6481
6482 if (!valid_p || !have_fpu || !have_altivec)
6483 return NULL;
6484
6485 have_vsx = 1;
6486 }
6487 else
6488 have_vsx = 0;
6489
6490 /* On machines supporting the SPE APU, the general-purpose registers
6491 are 64 bits long. There are SIMD vector instructions to treat them
6492 as pairs of floats, but the rest of the instruction set treats them
6493 as 32-bit registers, and only operates on their lower halves.
6494
6495 In the GDB regcache, we treat their high and low halves as separate
6496 registers. The low halves we present as the general-purpose
6497 registers, and then we have pseudo-registers that stitch together
6498 the upper and lower halves and present them as pseudo-registers.
6499
6500 Thus, the target description is expected to supply the upper
6501 halves separately. */
6502
6503 feature = tdesc_find_feature (tdesc,
6504 "org.gnu.gdb.power.spe");
6505 if (feature != NULL)
6506 {
6507 static const char *const upper_spe[] = {
6508 "ev0h", "ev1h", "ev2h", "ev3h",
6509 "ev4h", "ev5h", "ev6h", "ev7h",
6510 "ev8h", "ev9h", "ev10h", "ev11h",
6511 "ev12h", "ev13h", "ev14h", "ev15h",
6512 "ev16h", "ev17h", "ev18h", "ev19h",
6513 "ev20h", "ev21h", "ev22h", "ev23h",
6514 "ev24h", "ev25h", "ev26h", "ev27h",
6515 "ev28h", "ev29h", "ev30h", "ev31h"
6516 };
6517
6518 valid_p = 1;
6519 for (i = 0; i < ppc_num_gprs; i++)
6520 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6521 PPC_SPE_UPPER_GP0_REGNUM + i,
6522 upper_spe[i]);
6523 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6524 PPC_SPE_ACC_REGNUM, "acc");
6525 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6526 PPC_SPE_FSCR_REGNUM, "spefscr");
6527
6528 if (have_mq || have_fpu || !valid_p)
6529 return NULL;
6530 have_spe = 1;
6531 }
6532 else
6533 have_spe = 0;
6534
6535 /* Program Priority Register. */
6536 feature = tdesc_find_feature (tdesc,
6537 "org.gnu.gdb.power.ppr");
6538 if (feature != NULL)
6539 {
6540 valid_p = 1;
6541 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6542 PPC_PPR_REGNUM, "ppr");
6543
6544 if (!valid_p)
6545 return NULL;
6546 have_ppr = 1;
6547 }
6548 else
6549 have_ppr = 0;
6550
6551 /* Data Stream Control Register. */
6552 feature = tdesc_find_feature (tdesc,
6553 "org.gnu.gdb.power.dscr");
6554 if (feature != NULL)
6555 {
6556 valid_p = 1;
6557 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6558 PPC_DSCR_REGNUM, "dscr");
6559
6560 if (!valid_p)
6561 return NULL;
6562 have_dscr = 1;
6563 }
6564 else
6565 have_dscr = 0;
6566
6567 /* Target Address Register. */
6568 feature = tdesc_find_feature (tdesc,
6569 "org.gnu.gdb.power.tar");
6570 if (feature != NULL)
6571 {
6572 valid_p = 1;
6573 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6574 PPC_TAR_REGNUM, "tar");
6575
6576 if (!valid_p)
6577 return NULL;
6578 have_tar = 1;
6579 }
6580 else
6581 have_tar = 0;
6582
6583 /* Event-based Branching Registers. */
6584 feature = tdesc_find_feature (tdesc,
6585 "org.gnu.gdb.power.ebb");
6586 if (feature != NULL)
6587 {
6588 static const char *const ebb_regs[] = {
6589 "bescr", "ebbhr", "ebbrr"
6590 };
6591
6592 valid_p = 1;
6593 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6594 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6595 PPC_BESCR_REGNUM + i,
6596 ebb_regs[i]);
6597 if (!valid_p)
6598 return NULL;
6599 have_ebb = 1;
6600 }
6601 else
6602 have_ebb = 0;
6603
6604 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6605 by Linux. */
6606 feature = tdesc_find_feature (tdesc,
6607 "org.gnu.gdb.power.linux.pmu");
6608 if (feature != NULL)
6609 {
6610 valid_p = 1;
6611
6612 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6613 PPC_MMCR0_REGNUM,
6614 "mmcr0");
6615 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6616 PPC_MMCR2_REGNUM,
6617 "mmcr2");
6618 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6619 PPC_SIAR_REGNUM,
6620 "siar");
6621 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6622 PPC_SDAR_REGNUM,
6623 "sdar");
6624 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6625 PPC_SIER_REGNUM,
6626 "sier");
6627
6628 if (!valid_p)
6629 return NULL;
6630 have_pmu = 1;
6631 }
6632 else
6633 have_pmu = 0;
6634
6635 /* Hardware Transactional Memory Registers. */
6636 feature = tdesc_find_feature (tdesc,
6637 "org.gnu.gdb.power.htm.spr");
6638 if (feature != NULL)
6639 {
6640 static const char *const tm_spr_regs[] = {
6641 "tfhar", "texasr", "tfiar"
6642 };
6643
6644 valid_p = 1;
6645 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6646 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6647 PPC_TFHAR_REGNUM + i,
6648 tm_spr_regs[i]);
6649 if (!valid_p)
6650 return NULL;
6651
6652 have_htm_spr = 1;
6653 }
6654 else
6655 have_htm_spr = 0;
6656
6657 feature = tdesc_find_feature (tdesc,
6658 "org.gnu.gdb.power.htm.core");
6659 if (feature != NULL)
6660 {
6661 static const char *const cgprs[] = {
6662 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6663 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6664 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6665 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6666 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6667 };
6668
6669 valid_p = 1;
6670
6671 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6672 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6673 PPC_CR0_REGNUM + i,
6674 cgprs[i]);
6675 if (!valid_p)
6676 return NULL;
6677
6678 have_htm_core = 1;
6679 }
6680 else
6681 have_htm_core = 0;
6682
6683 feature = tdesc_find_feature (tdesc,
6684 "org.gnu.gdb.power.htm.fpu");
6685 if (feature != NULL)
6686 {
6687 valid_p = 1;
6688
6689 static const char *const cfprs[] = {
6690 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6691 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6692 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6693 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6694 "cf30", "cf31", "cfpscr"
6695 };
6696
6697 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6698 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6699 PPC_CF0_REGNUM + i,
6700 cfprs[i]);
6701
6702 if (!valid_p)
6703 return NULL;
6704 have_htm_fpu = 1;
6705 }
6706 else
6707 have_htm_fpu = 0;
6708
6709 feature = tdesc_find_feature (tdesc,
6710 "org.gnu.gdb.power.htm.altivec");
6711 if (feature != NULL)
6712 {
6713 valid_p = 1;
6714
6715 static const char *const cvmx[] = {
6716 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6717 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6718 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6719 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6720 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6721 "cvrsave"
6722 };
6723
6724 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6725 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6726 PPC_CVR0_REGNUM + i,
6727 cvmx[i]);
6728
6729 if (!valid_p)
6730 return NULL;
6731 have_htm_altivec = 1;
6732 }
6733 else
6734 have_htm_altivec = 0;
6735
6736 feature = tdesc_find_feature (tdesc,
6737 "org.gnu.gdb.power.htm.vsx");
6738 if (feature != NULL)
6739 {
6740 valid_p = 1;
6741
6742 static const char *const cvsx[] = {
6743 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6744 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6745 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6746 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6747 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6748 "cvs30h", "cvs31h"
6749 };
6750
6751 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6752 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6753 (PPC_CVSR0_UPPER_REGNUM
6754 + i),
6755 cvsx[i]);
6756
6757 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6758 return NULL;
6759 have_htm_vsx = 1;
6760 }
6761 else
6762 have_htm_vsx = 0;
6763
6764 feature = tdesc_find_feature (tdesc,
6765 "org.gnu.gdb.power.htm.ppr");
6766 if (feature != NULL)
6767 {
6768 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6769 PPC_CPPR_REGNUM, "cppr");
6770
6771 if (!valid_p)
6772 return NULL;
6773 have_htm_ppr = 1;
6774 }
6775 else
6776 have_htm_ppr = 0;
6777
6778 feature = tdesc_find_feature (tdesc,
6779 "org.gnu.gdb.power.htm.dscr");
6780 if (feature != NULL)
6781 {
6782 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6783 PPC_CDSCR_REGNUM, "cdscr");
6784
6785 if (!valid_p)
6786 return NULL;
6787 have_htm_dscr = 1;
6788 }
6789 else
6790 have_htm_dscr = 0;
6791
6792 feature = tdesc_find_feature (tdesc,
6793 "org.gnu.gdb.power.htm.tar");
6794 if (feature != NULL)
6795 {
6796 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6797 PPC_CTAR_REGNUM, "ctar");
6798
6799 if (!valid_p)
6800 return NULL;
6801 have_htm_tar = 1;
6802 }
6803 else
6804 have_htm_tar = 0;
6805 }
6806
6807 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6808 complain for a 32-bit binary on a 64-bit target; we do not yet
6809 support that. For instance, the 32-bit ABI routines expect
6810 32-bit GPRs.
6811
6812 As long as there isn't an explicit target description, we'll
6813 choose one based on the BFD architecture and get a word size
6814 matching the binary (probably powerpc:common or
6815 powerpc:common64). So there is only trouble if a 64-bit target
6816 supplies a 64-bit description while debugging a 32-bit
6817 binary. */
6818 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6819 return NULL;
6820
6821 #ifdef HAVE_ELF
6822 if (from_elf_exec)
6823 {
6824 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6825 {
6826 case 1:
6827 elf_abi = POWERPC_ELF_V1;
6828 break;
6829 case 2:
6830 elf_abi = POWERPC_ELF_V2;
6831 break;
6832 default:
6833 break;
6834 }
6835 }
6836
6837 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6838 {
6839 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6840 Tag_GNU_Power_ABI_FP) & 3)
6841 {
6842 case 1:
6843 soft_float_flag = AUTO_BOOLEAN_FALSE;
6844 break;
6845 case 2:
6846 soft_float_flag = AUTO_BOOLEAN_TRUE;
6847 break;
6848 default:
6849 break;
6850 }
6851 }
6852
6853 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6854 {
6855 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6856 Tag_GNU_Power_ABI_FP) >> 2)
6857 {
6858 case 1:
6859 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6860 break;
6861 case 3:
6862 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6863 break;
6864 default:
6865 break;
6866 }
6867 }
6868
6869 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6870 {
6871 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6872 Tag_GNU_Power_ABI_Vector))
6873 {
6874 case 1:
6875 vector_abi = POWERPC_VEC_GENERIC;
6876 break;
6877 case 2:
6878 vector_abi = POWERPC_VEC_ALTIVEC;
6879 break;
6880 case 3:
6881 vector_abi = POWERPC_VEC_SPE;
6882 break;
6883 default:
6884 break;
6885 }
6886 }
6887 #endif
6888
6889 /* At this point, the only supported ELF-based 64-bit little-endian
6890 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6891 default. All other supported ELF-based operating systems use the
6892 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6893 e.g. because we run a legacy binary, or have attached to a process
6894 and have not found any associated binary file, set the default
6895 according to this heuristic. */
6896 if (elf_abi == POWERPC_ELF_AUTO)
6897 {
6898 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6899 elf_abi = POWERPC_ELF_V2;
6900 else
6901 elf_abi = POWERPC_ELF_V1;
6902 }
6903
6904 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6905 soft_float = 1;
6906 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6907 soft_float = 0;
6908 else
6909 soft_float = !have_fpu;
6910
6911 /* If we have a hard float binary or setting but no floating point
6912 registers, downgrade to soft float anyway. We're still somewhat
6913 useful in this scenario. */
6914 if (!soft_float && !have_fpu)
6915 soft_float = 1;
6916
6917 /* Similarly for vector registers. */
6918 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6919 vector_abi = POWERPC_VEC_GENERIC;
6920
6921 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6922 vector_abi = POWERPC_VEC_GENERIC;
6923
6924 if (vector_abi == POWERPC_VEC_AUTO)
6925 {
6926 if (have_altivec)
6927 vector_abi = POWERPC_VEC_ALTIVEC;
6928 else if (have_spe)
6929 vector_abi = POWERPC_VEC_SPE;
6930 else
6931 vector_abi = POWERPC_VEC_GENERIC;
6932 }
6933
6934 /* Do not limit the vector ABI based on available hardware, since we
6935 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6936
6937 /* Find a candidate among extant architectures. */
6938 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6939 arches != NULL;
6940 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6941 {
6942 /* Word size in the various PowerPC bfd_arch_info structs isn't
6943 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6944 separate word size check. */
6945 tdep = gdbarch_tdep (arches->gdbarch);
6946 if (tdep && tdep->elf_abi != elf_abi)
6947 continue;
6948 if (tdep && tdep->soft_float != soft_float)
6949 continue;
6950 if (tdep && tdep->long_double_abi != long_double_abi)
6951 continue;
6952 if (tdep && tdep->vector_abi != vector_abi)
6953 continue;
6954 if (tdep && tdep->wordsize == wordsize)
6955 return arches->gdbarch;
6956 }
6957
6958 /* None found, create a new architecture from INFO, whose bfd_arch_info
6959 validity depends on the source:
6960 - executable useless
6961 - rs6000_host_arch() good
6962 - core file good
6963 - "set arch" trust blindly
6964 - GDB startup useless but harmless */
6965
6966 tdep = XCNEW (struct gdbarch_tdep);
6967 tdep->wordsize = wordsize;
6968 tdep->elf_abi = elf_abi;
6969 tdep->soft_float = soft_float;
6970 tdep->long_double_abi = long_double_abi;
6971 tdep->vector_abi = vector_abi;
6972
6973 gdbarch = gdbarch_alloc (&info, tdep);
6974
6975 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6976 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6977 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6978 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6979 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6980 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6981 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6982 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6983
6984 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6985 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6986 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6987 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6988 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6989 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6990 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6991 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6992 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6993 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6994 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6995 tdep->have_ebb = have_ebb;
6996
6997 /* If additional pmu registers are added, care must be taken when
6998 setting new fields in the tdep below, to maintain compatibility
6999 with features that only provide some of the registers. Currently
7000 gdb access to the pmu registers is only supported in linux, and
7001 linux only provides a subset of the pmu registers defined in the
7002 architecture. */
7003
7004 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
7005 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
7006 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
7007 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
7008 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7009
7010 tdep->have_htm_spr = have_htm_spr;
7011 tdep->have_htm_core = have_htm_core;
7012 tdep->have_htm_fpu = have_htm_fpu;
7013 tdep->have_htm_altivec = have_htm_altivec;
7014 tdep->have_htm_vsx = have_htm_vsx;
7015 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
7016 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
7017 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
7018
7019 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
7020 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7021 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
7022 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7023
7024 /* The XML specification for PowerPC sensibly calls the MSR "msr".
7025 GDB traditionally called it "ps", though, so let GDB add an
7026 alias. */
7027 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
7028
7029 if (wordsize == 8)
7030 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
7031 else
7032 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
7033
7034 /* Set lr_frame_offset. */
7035 if (wordsize == 8)
7036 tdep->lr_frame_offset = 16;
7037 else
7038 tdep->lr_frame_offset = 4;
7039
7040 if (have_spe || have_dfp || have_altivec
7041 || have_vsx || have_htm_fpu || have_htm_vsx)
7042 {
7043 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
7044 set_gdbarch_pseudo_register_write (gdbarch,
7045 rs6000_pseudo_register_write);
7046 set_gdbarch_ax_pseudo_register_collect (gdbarch,
7047 rs6000_ax_pseudo_register_collect);
7048 }
7049
7050 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
7051
7052 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
7053
7054 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
7055
7056 if (have_spe)
7057 num_pseudoregs += 32;
7058 if (have_dfp)
7059 num_pseudoregs += 16;
7060 if (have_altivec)
7061 num_pseudoregs += 32;
7062 if (have_vsx)
7063 /* Include both VSX and Extended FP registers. */
7064 num_pseudoregs += 96;
7065 if (have_htm_fpu)
7066 num_pseudoregs += 16;
7067 /* Include both checkpointed VSX and EFP registers. */
7068 if (have_htm_vsx)
7069 num_pseudoregs += 64 + 32;
7070
7071 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7072
7073 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7074 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7075 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7076 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7077 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7078 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7079 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7080 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7081 set_gdbarch_char_signed (gdbarch, 0);
7082
7083 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7084 if (wordsize == 8)
7085 /* PPC64 SYSV. */
7086 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7087
7088 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7089 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7090 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7091
7092 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7093 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7094
7095 if (wordsize == 4)
7096 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7097 else if (wordsize == 8)
7098 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7099
7100 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7101 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7102 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7103
7104 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7105
7106 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7107 rs6000_breakpoint::kind_from_pc);
7108 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7109 rs6000_breakpoint::bp_from_kind);
7110
7111 /* The value of symbols of type N_SO and N_FUN maybe null when
7112 it shouldn't be. */
7113 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7114
7115 /* Handles single stepping of atomic sequences. */
7116 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7117
7118 /* Not sure on this. FIXMEmgo */
7119 set_gdbarch_frame_args_skip (gdbarch, 8);
7120
7121 /* Helpers for function argument information. */
7122 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7123
7124 /* Trampoline. */
7125 set_gdbarch_in_solib_return_trampoline
7126 (gdbarch, rs6000_in_solib_return_trampoline);
7127 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7128
7129 /* Hook in the DWARF CFI frame unwinder. */
7130 dwarf2_append_unwinders (gdbarch);
7131 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7132
7133 /* Frame handling. */
7134 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7135
7136 /* Setup displaced stepping. */
7137 set_gdbarch_displaced_step_copy_insn (gdbarch,
7138 ppc_displaced_step_copy_insn);
7139 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7140 ppc_displaced_step_hw_singlestep);
7141 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7142 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7143 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7144 set_gdbarch_displaced_step_restore_all_in_ptid
7145 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
7146
7147 set_gdbarch_max_insn_length (gdbarch, 2 * PPC_INSN_SIZE);
7148
7149 /* Hook in ABI-specific overrides, if they have been registered. */
7150 info.target_desc = tdesc;
7151 info.tdesc_data = tdesc_data.get ();
7152 gdbarch_init_osabi (info, gdbarch);
7153
7154 switch (info.osabi)
7155 {
7156 case GDB_OSABI_LINUX:
7157 case GDB_OSABI_NETBSD:
7158 case GDB_OSABI_UNKNOWN:
7159 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7160 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7161 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7162 break;
7163 default:
7164 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7165
7166 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7167 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7168 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7169 }
7170
7171 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7172 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7173 rs6000_pseudo_register_reggroup_p);
7174 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7175
7176 /* Override the normal target description method to make the SPE upper
7177 halves anonymous. */
7178 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7179
7180 /* Choose register numbers for all supported pseudo-registers. */
7181 tdep->ppc_ev0_regnum = -1;
7182 tdep->ppc_dl0_regnum = -1;
7183 tdep->ppc_v0_alias_regnum = -1;
7184 tdep->ppc_vsr0_regnum = -1;
7185 tdep->ppc_efpr0_regnum = -1;
7186 tdep->ppc_cdl0_regnum = -1;
7187 tdep->ppc_cvsr0_regnum = -1;
7188 tdep->ppc_cefpr0_regnum = -1;
7189
7190 cur_reg = gdbarch_num_regs (gdbarch);
7191
7192 if (have_spe)
7193 {
7194 tdep->ppc_ev0_regnum = cur_reg;
7195 cur_reg += 32;
7196 }
7197 if (have_dfp)
7198 {
7199 tdep->ppc_dl0_regnum = cur_reg;
7200 cur_reg += 16;
7201 }
7202 if (have_altivec)
7203 {
7204 tdep->ppc_v0_alias_regnum = cur_reg;
7205 cur_reg += 32;
7206 }
7207 if (have_vsx)
7208 {
7209 tdep->ppc_vsr0_regnum = cur_reg;
7210 cur_reg += 64;
7211 tdep->ppc_efpr0_regnum = cur_reg;
7212 cur_reg += 32;
7213 }
7214 if (have_htm_fpu)
7215 {
7216 tdep->ppc_cdl0_regnum = cur_reg;
7217 cur_reg += 16;
7218 }
7219 if (have_htm_vsx)
7220 {
7221 tdep->ppc_cvsr0_regnum = cur_reg;
7222 cur_reg += 64;
7223 tdep->ppc_cefpr0_regnum = cur_reg;
7224 cur_reg += 32;
7225 }
7226
7227 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7228
7229 /* Register the ravenscar_arch_ops. */
7230 if (mach == bfd_mach_ppc_e500)
7231 register_e500_ravenscar_ops (gdbarch);
7232 else
7233 register_ppc_ravenscar_ops (gdbarch);
7234
7235 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7236 set_gdbarch_valid_disassembler_options (gdbarch,
7237 disassembler_options_powerpc ());
7238
7239 return gdbarch;
7240 }
7241
7242 static void
7243 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7244 {
7245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7246
7247 if (tdep == NULL)
7248 return;
7249
7250 /* FIXME: Dump gdbarch_tdep. */
7251 }
7252
7253 static void
7254 powerpc_set_soft_float (const char *args, int from_tty,
7255 struct cmd_list_element *c)
7256 {
7257 struct gdbarch_info info;
7258
7259 /* Update the architecture. */
7260 gdbarch_info_init (&info);
7261 if (!gdbarch_update_p (info))
7262 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7263 }
7264
7265 static void
7266 powerpc_set_vector_abi (const char *args, int from_tty,
7267 struct cmd_list_element *c)
7268 {
7269 struct gdbarch_info info;
7270 int vector_abi;
7271
7272 for (vector_abi = POWERPC_VEC_AUTO;
7273 vector_abi != POWERPC_VEC_LAST;
7274 vector_abi++)
7275 if (strcmp (powerpc_vector_abi_string,
7276 powerpc_vector_strings[vector_abi]) == 0)
7277 {
7278 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7279 break;
7280 }
7281
7282 if (vector_abi == POWERPC_VEC_LAST)
7283 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7284 powerpc_vector_abi_string);
7285
7286 /* Update the architecture. */
7287 gdbarch_info_init (&info);
7288 if (!gdbarch_update_p (info))
7289 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7290 }
7291
7292 /* Show the current setting of the exact watchpoints flag. */
7293
7294 static void
7295 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7296 struct cmd_list_element *c,
7297 const char *value)
7298 {
7299 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7300 }
7301
7302 /* Read a PPC instruction from memory. */
7303
7304 static unsigned int
7305 read_insn (struct frame_info *frame, CORE_ADDR pc)
7306 {
7307 struct gdbarch *gdbarch = get_frame_arch (frame);
7308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7309
7310 return read_memory_unsigned_integer (pc, 4, byte_order);
7311 }
7312
7313 /* Return non-zero if the instructions at PC match the series
7314 described in PATTERN, or zero otherwise. PATTERN is an array of
7315 'struct ppc_insn_pattern' objects, terminated by an entry whose
7316 mask is zero.
7317
7318 When the match is successful, fill INSNS[i] with what PATTERN[i]
7319 matched. If PATTERN[i] is optional, and the instruction wasn't
7320 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7321 INSNS should have as many elements as PATTERN, minus the terminator.
7322 Note that, if PATTERN contains optional instructions which aren't
7323 present in memory, then INSNS will have holes, so INSNS[i] isn't
7324 necessarily the i'th instruction in memory. */
7325
7326 int
7327 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7328 const struct ppc_insn_pattern *pattern,
7329 unsigned int *insns)
7330 {
7331 int i;
7332 unsigned int insn;
7333
7334 for (i = 0, insn = 0; pattern[i].mask; i++)
7335 {
7336 if (insn == 0)
7337 insn = read_insn (frame, pc);
7338 insns[i] = 0;
7339 if ((insn & pattern[i].mask) == pattern[i].data)
7340 {
7341 insns[i] = insn;
7342 pc += 4;
7343 insn = 0;
7344 }
7345 else if (!pattern[i].optional)
7346 return 0;
7347 }
7348
7349 return 1;
7350 }
7351
7352 /* Return the 'd' field of the d-form instruction INSN, properly
7353 sign-extended. */
7354
7355 CORE_ADDR
7356 ppc_insn_d_field (unsigned int insn)
7357 {
7358 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7359 }
7360
7361 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7362 zero bits concatenated at the right, and properly
7363 sign-extended. */
7364
7365 CORE_ADDR
7366 ppc_insn_ds_field (unsigned int insn)
7367 {
7368 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7369 }
7370
7371 /* Initialization code. */
7372
7373 void _initialize_rs6000_tdep ();
7374 void
7375 _initialize_rs6000_tdep ()
7376 {
7377 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7378 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7379
7380 /* Initialize the standard target descriptions. */
7381 initialize_tdesc_powerpc_32 ();
7382 initialize_tdesc_powerpc_altivec32 ();
7383 initialize_tdesc_powerpc_vsx32 ();
7384 initialize_tdesc_powerpc_403 ();
7385 initialize_tdesc_powerpc_403gc ();
7386 initialize_tdesc_powerpc_405 ();
7387 initialize_tdesc_powerpc_505 ();
7388 initialize_tdesc_powerpc_601 ();
7389 initialize_tdesc_powerpc_602 ();
7390 initialize_tdesc_powerpc_603 ();
7391 initialize_tdesc_powerpc_604 ();
7392 initialize_tdesc_powerpc_64 ();
7393 initialize_tdesc_powerpc_altivec64 ();
7394 initialize_tdesc_powerpc_vsx64 ();
7395 initialize_tdesc_powerpc_7400 ();
7396 initialize_tdesc_powerpc_750 ();
7397 initialize_tdesc_powerpc_860 ();
7398 initialize_tdesc_powerpc_e500 ();
7399 initialize_tdesc_rs6000 ();
7400
7401 /* Add root prefix command for all "set powerpc"/"show powerpc"
7402 commands. */
7403 add_basic_prefix_cmd ("powerpc", no_class,
7404 _("Various PowerPC-specific commands."),
7405 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7406
7407 add_show_prefix_cmd ("powerpc", no_class,
7408 _("Various PowerPC-specific commands."),
7409 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7410
7411 /* Add a command to allow the user to force the ABI. */
7412 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7413 &powerpc_soft_float_global,
7414 _("Set whether to use a soft-float ABI."),
7415 _("Show whether to use a soft-float ABI."),
7416 NULL,
7417 powerpc_set_soft_float, NULL,
7418 &setpowerpccmdlist, &showpowerpccmdlist);
7419
7420 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7421 &powerpc_vector_abi_string,
7422 _("Set the vector ABI."),
7423 _("Show the vector ABI."),
7424 NULL, powerpc_set_vector_abi, NULL,
7425 &setpowerpccmdlist, &showpowerpccmdlist);
7426
7427 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7428 &target_exact_watchpoints,
7429 _("\
7430 Set whether to use just one debug register for watchpoints on scalars."),
7431 _("\
7432 Show whether to use just one debug register for watchpoints on scalars."),
7433 _("\
7434 If true, GDB will use only one debug register when watching a variable of\n\
7435 scalar type, thus assuming that the variable is accessed through the address\n\
7436 of its first byte."),
7437 NULL, show_powerpc_exact_watchpoints,
7438 &setpowerpccmdlist, &showpowerpccmdlist);
7439 }
This page took 0.187129 seconds and 4 git commands to generate.