35da499084dd1c7ebef4e57bff352a022c0b76c6
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
77 };
78
79 /* Description of a single register. */
80
81 struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
89 /* Return the current architecture's gdbarch_tdep structure. */
90
91 #define TDEP gdbarch_tdep (current_gdbarch)
92
93 /* Breakpoint shadows for the single step instructions will be kept here. */
94
95 static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102 stepBreaks[2];
103
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
114
115 /* Static function prototypes */
116
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
124
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
126
127 static CORE_ADDR
128 read_memory_addr (CORE_ADDR memaddr, int len)
129 {
130 return read_memory_unsigned_integer (memaddr, len);
131 }
132
133 static CORE_ADDR
134 rs6000_skip_prologue (CORE_ADDR pc)
135 {
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
138 return pc;
139 }
140
141
142 /* Fill in fi->saved_regs */
143
144 struct frame_extra_info
145 {
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
151 CORE_ADDR initial_sp; /* initial stack pointer. */
152 };
153
154 void
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
156 {
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167 }
168
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
174
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
179 void
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
181 {
182 frame_get_saved_regs (fi, NULL);
183 }
184
185 static CORE_ADDR
186 rs6000_frame_args_address (struct frame_info *fi)
187 {
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192 }
193
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199 static CORE_ADDR
200 rs6000_saved_pc_after_call (struct frame_info *fi)
201 {
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
203 }
204
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207 static CORE_ADDR
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
209 {
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
266 }
267 else
268 return -1;
269 break;
270
271 default:
272 return -1;
273 }
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275 }
276
277
278 /* Sequence of bytes for breakpoint instruction. */
279
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
285 {
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293 }
294
295
296 /* AIX does not support PT_STEP. Simulate it. */
297
298 void
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
301 {
302 #define INSNLEN(OPCODE) 4
303
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
307 int ii, insn;
308 CORE_ADDR loc;
309 CORE_ADDR breaks[2];
310 int opcode;
311
312 if (insert_breakpoints_p)
313 {
314
315 loc = read_pc ();
316
317 insn = read_memory_integer (loc, 4);
318
319 breaks[0] = loc + INSNLEN (insn);
320 opcode = insn >> 26;
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
322
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
325 breaks[1] = -1;
326
327 stepBreaks[1].address = 0;
328
329 for (ii = 0; ii < 2; ++ii)
330 {
331
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
334 continue;
335
336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
337
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
340 }
341
342 }
343 else
344 {
345
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
349 write_memory
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
351
352 }
353 errno = 0; /* FIXME, don't ignore errors! */
354 /* What errors? {read,write}_memory call error(). */
355 }
356
357
358 /* return pc value after skipping a function prologue and also return
359 information about a function frame.
360
361 in struct rs6000_framedata fdata:
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
368 - saved_vr is the number of the first saved vr.
369 - alloca_reg is the number of the register used for alloca() handling.
370 Otherwise -1.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
373 - vr_offset is the offset of the first saved vr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
376 - vrsave_offset is the offset of the saved vrsave register
377 */
378
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
389
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
396 static CORE_ADDR
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398 {
399 struct symtab_and_line prologue_sal;
400
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
403 {
404 int i;
405 CORE_ADDR addr = prologue_sal.end;
406
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
413 instruction.) */
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
416 i--)
417 {
418 struct symtab_and_line sal;
419
420 sal = find_pc_line (addr, 0);
421 if (sal.line == 0)
422 break;
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
425 {
426 prologue_sal = sal;
427 }
428 addr = sal.end;
429 }
430
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
433 }
434 return lim_pc;
435 }
436
437
438 static CORE_ADDR
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
440 {
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 CORE_ADDR li_found_pc = 0;
444 char buf[4];
445 unsigned long op;
446 long offset = 0;
447 long vr_saved_offset = 0;
448 int lr_reg = -1;
449 int cr_reg = -1;
450 int vr_reg = -1;
451 int vrsave_reg = -1;
452 int reg;
453 int framep = 0;
454 int minimal_toc_loaded = 0;
455 int prev_insn_was_prologue_insn = 1;
456 int num_skip_non_prologue_insns = 0;
457
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
463 prologue.
464
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
470 if (lim_pc == 0)
471 lim_pc = refine_prologue_limit (pc, lim_pc);
472
473 memset (fdata, 0, sizeof (struct rs6000_framedata));
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
476 fdata->saved_vr = -1;
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
480
481 for (;; pc += 4)
482 {
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
489
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
492 break;
493
494 prev_insn_was_prologue_insn = 1;
495
496 /* Fetch the instruction and convert it to an integer. */
497 if (target_read_memory (pc, buf, 4))
498 break;
499 op = extract_signed_integer (buf, 4);
500
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
502 { /* mflr Rx */
503 lr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
505
506 }
507 else if ((op & 0xfc1fffff) == 0x7c000026)
508 { /* mfcr Rx */
509 cr_reg = (op & 0x03e00000) | 0x90010000;
510 continue;
511
512 }
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
517 {
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
520 }
521 continue;
522
523 }
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
528 {
529
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
532 {
533 fdata->saved_gpr = reg;
534 if ((op & 0xfc1f0003) == 0xf8010000)
535 op = (op >> 1) << 1;
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
537 }
538 continue;
539
540 }
541 else if ((op & 0xffff0000) == 0x60000000)
542 {
543 /* nop */
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
546 instructions. */
547 prev_insn_was_prologue_insn = 0;
548 continue;
549
550 }
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
553 for >= 32k frames */
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
556 continue;
557
558 }
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
564 continue;
565
566 }
567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
568 { /* st Rx,NUM(r1)
569 where Rx == lr */
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
572 lr_reg = 0;
573 continue;
574
575 }
576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
577 { /* st Rx,NUM(r1)
578 where Rx == cr */
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
580 cr_reg = 0;
581 continue;
582
583 }
584 else if (op == 0x48000005)
585 { /* bl .+4 used in
586 -mrelocatable */
587 continue;
588
589 }
590 else if (op == 0x48000004)
591 { /* b .+4 (xlc) */
592 break;
593
594 }
595 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
596 in V.4 -mminimal-toc */
597 (op & 0xffff0000) == 0x3bde0000)
598 { /* addi 30,30,foo@l */
599 continue;
600
601 }
602 else if ((op & 0xfc000001) == 0x48000001)
603 { /* bl foo,
604 to save fprs??? */
605
606 fdata->frameless = 0;
607 /* Don't skip over the subroutine call if it is not within
608 the first three instructions of the prologue. */
609 if ((pc - orig_pc) > 8)
610 break;
611
612 op = read_memory_integer (pc + 4, 4);
613
614 /* At this point, make sure this is not a trampoline
615 function (a function that simply calls another functions,
616 and nothing else). If the next is not a nop, this branch
617 was part of the function prologue. */
618
619 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
620 break; /* don't skip over
621 this branch */
622 continue;
623
624 /* update stack pointer */
625 }
626 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
627 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
628 {
629 fdata->frameless = 0;
630 if ((op & 0xffff0003) == 0xf8210001)
631 op = (op >> 1) << 1;
632 fdata->offset = SIGNED_SHORT (op);
633 offset = fdata->offset;
634 continue;
635
636 }
637 else if (op == 0x7c21016e)
638 { /* stwux 1,1,0 */
639 fdata->frameless = 0;
640 offset = fdata->offset;
641 continue;
642
643 /* Load up minimal toc pointer */
644 }
645 else if ((op >> 22) == 0x20f
646 && !minimal_toc_loaded)
647 { /* l r31,... or l r30,... */
648 minimal_toc_loaded = 1;
649 continue;
650
651 /* move parameters from argument registers to local variable
652 registers */
653 }
654 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
655 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
656 (((op >> 21) & 31) <= 10) &&
657 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
658 {
659 continue;
660
661 /* store parameters in stack */
662 }
663 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
664 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
665 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
666 {
667 continue;
668
669 /* store parameters in stack via frame pointer */
670 }
671 else if (framep &&
672 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc1f0000))
675 { /* frsp, fp?,NUM(r1) */
676 continue;
677
678 /* Set up frame pointer */
679 }
680 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
681 || op == 0x7c3f0b78)
682 { /* mr r31, r1 */
683 fdata->frameless = 0;
684 framep = 1;
685 fdata->alloca_reg = 31;
686 continue;
687
688 /* Another way to set up the frame pointer. */
689 }
690 else if ((op & 0xfc1fffff) == 0x38010000)
691 { /* addi rX, r1, 0x0 */
692 fdata->frameless = 0;
693 framep = 1;
694 fdata->alloca_reg = (op & ~0x38010000) >> 21;
695 continue;
696 }
697 /* AltiVec related instructions. */
698 /* Store the vrsave register (spr 256) in another register for
699 later manipulation, or load a register into the vrsave
700 register. 2 instructions are used: mfvrsave and
701 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
702 and mtspr SPR256, Rn. */
703 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
704 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
705 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
706 {
707 vrsave_reg = GET_SRC_REG (op);
708 continue;
709 }
710 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
711 {
712 continue;
713 }
714 /* Store the register where vrsave was saved to onto the stack:
715 rS is the register where vrsave was stored in a previous
716 instruction. */
717 /* 100100 sssss 00001 dddddddd dddddddd */
718 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
719 {
720 if (vrsave_reg == GET_SRC_REG (op))
721 {
722 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
723 vrsave_reg = -1;
724 }
725 continue;
726 }
727 /* Compute the new value of vrsave, by modifying the register
728 where vrsave was saved to. */
729 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
730 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
731 {
732 continue;
733 }
734 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
735 in a pair of insns to save the vector registers on the
736 stack. */
737 /* 001110 00000 00000 iiii iiii iiii iiii */
738 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
739 {
740 li_found_pc = pc;
741 vr_saved_offset = SIGNED_SHORT (op);
742 }
743 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
744 /* 011111 sssss 11111 00000 00111001110 */
745 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
746 {
747 if (pc == (li_found_pc + 4))
748 {
749 vr_reg = GET_SRC_REG (op);
750 /* If this is the first vector reg to be saved, or if
751 it has a lower number than others previously seen,
752 reupdate the frame info. */
753 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
754 {
755 fdata->saved_vr = vr_reg;
756 fdata->vr_offset = vr_saved_offset + offset;
757 }
758 vr_saved_offset = -1;
759 vr_reg = -1;
760 li_found_pc = 0;
761 }
762 }
763 /* End AltiVec related instructions. */
764 else
765 {
766 /* Not a recognized prologue instruction.
767 Handle optimizer code motions into the prologue by continuing
768 the search if we have no valid frame yet or if the return
769 address is not yet saved in the frame. */
770 if (fdata->frameless == 0
771 && (lr_reg == -1 || fdata->nosavedpc == 0))
772 break;
773
774 if (op == 0x4e800020 /* blr */
775 || op == 0x4e800420) /* bctr */
776 /* Do not scan past epilogue in frameless functions or
777 trampolines. */
778 break;
779 if ((op & 0xf4000000) == 0x40000000) /* bxx */
780 /* Never skip branches. */
781 break;
782
783 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
784 /* Do not scan too many insns, scanning insns is expensive with
785 remote targets. */
786 break;
787
788 /* Continue scanning. */
789 prev_insn_was_prologue_insn = 0;
790 continue;
791 }
792 }
793
794 #if 0
795 /* I have problems with skipping over __main() that I need to address
796 * sometime. Previously, I used to use misc_function_vector which
797 * didn't work as well as I wanted to be. -MGO */
798
799 /* If the first thing after skipping a prolog is a branch to a function,
800 this might be a call to an initializer in main(), introduced by gcc2.
801 We'd like to skip over it as well. Fortunately, xlc does some extra
802 work before calling a function right after a prologue, thus we can
803 single out such gcc2 behaviour. */
804
805
806 if ((op & 0xfc000001) == 0x48000001)
807 { /* bl foo, an initializer function? */
808 op = read_memory_integer (pc + 4, 4);
809
810 if (op == 0x4def7b82)
811 { /* cror 0xf, 0xf, 0xf (nop) */
812
813 /* check and see if we are in main. If so, skip over this initializer
814 function as well. */
815
816 tmp = find_pc_misc_function (pc);
817 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
818 return pc + 8;
819 }
820 }
821 #endif /* 0 */
822
823 fdata->offset = -fdata->offset;
824 return last_prologue_pc;
825 }
826
827
828 /*************************************************************************
829 Support for creating pushing a dummy frame into the stack, and popping
830 frames, etc.
831 *************************************************************************/
832
833
834 /* Pop the innermost frame, go back to the caller. */
835
836 static void
837 rs6000_pop_frame (void)
838 {
839 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
840 struct rs6000_framedata fdata;
841 struct frame_info *frame = get_current_frame ();
842 int ii, wordsize;
843
844 pc = read_pc ();
845 sp = FRAME_FP (frame);
846
847 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
848 {
849 generic_pop_dummy_frame ();
850 flush_cached_frames ();
851 return;
852 }
853
854 /* Make sure that all registers are valid. */
855 read_register_bytes (0, NULL, REGISTER_BYTES);
856
857 /* figure out previous %pc value. If the function is frameless, it is
858 still in the link register, otherwise walk the frames and retrieve the
859 saved %pc value in the previous frame. */
860
861 addr = get_pc_function_start (frame->pc);
862 (void) skip_prologue (addr, frame->pc, &fdata);
863
864 wordsize = TDEP->wordsize;
865 if (fdata.frameless)
866 prev_sp = sp;
867 else
868 prev_sp = read_memory_addr (sp, wordsize);
869 if (fdata.lr_offset == 0)
870 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
871 else
872 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
873
874 /* reset %pc value. */
875 write_register (PC_REGNUM, lr);
876
877 /* reset register values if any was saved earlier. */
878
879 if (fdata.saved_gpr != -1)
880 {
881 addr = prev_sp + fdata.gpr_offset;
882 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
883 {
884 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
885 addr += wordsize;
886 }
887 }
888
889 if (fdata.saved_fpr != -1)
890 {
891 addr = prev_sp + fdata.fpr_offset;
892 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
893 {
894 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
895 addr += 8;
896 }
897 }
898
899 write_register (SP_REGNUM, prev_sp);
900 target_store_registers (-1);
901 flush_cached_frames ();
902 }
903
904 /* Fixup the call sequence of a dummy function, with the real function
905 address. Its arguments will be passed by gdb. */
906
907 static void
908 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
909 int nargs, struct value **args, struct type *type,
910 int gcc_p)
911 {
912 #define TOC_ADDR_OFFSET 20
913 #define TARGET_ADDR_OFFSET 28
914
915 int ii;
916 CORE_ADDR target_addr;
917
918 if (rs6000_find_toc_address_hook != NULL)
919 {
920 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
921 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
922 tocvalue);
923 }
924 }
925
926 /* Pass the arguments in either registers, or in the stack. In RS/6000,
927 the first eight words of the argument list (that might be less than
928 eight parameters if some parameters occupy more than one word) are
929 passed in r3..r10 registers. float and double parameters are
930 passed in fpr's, in addition to that. Rest of the parameters if any
931 are passed in user stack. There might be cases in which half of the
932 parameter is copied into registers, the other half is pushed into
933 stack.
934
935 Stack must be aligned on 64-bit boundaries when synthesizing
936 function calls.
937
938 If the function is returning a structure, then the return address is passed
939 in r3, then the first 7 words of the parameters can be passed in registers,
940 starting from r4. */
941
942 static CORE_ADDR
943 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
944 int struct_return, CORE_ADDR struct_addr)
945 {
946 int ii;
947 int len = 0;
948 int argno; /* current argument number */
949 int argbytes; /* current argument byte */
950 char tmp_buffer[50];
951 int f_argno = 0; /* current floating point argno */
952 int wordsize = TDEP->wordsize;
953
954 struct value *arg = 0;
955 struct type *type;
956
957 CORE_ADDR saved_sp;
958
959 /* The first eight words of ther arguments are passed in registers. Copy
960 them appropriately.
961
962 If the function is returning a `struct', then the first word (which
963 will be passed in r3) is used for struct return address. In that
964 case we should advance one word and start from r4 register to copy
965 parameters. */
966
967 ii = struct_return ? 1 : 0;
968
969 /*
970 effectively indirect call... gcc does...
971
972 return_val example( float, int);
973
974 eabi:
975 float in fp0, int in r3
976 offset of stack on overflow 8/16
977 for varargs, must go by type.
978 power open:
979 float in r3&r4, int in r5
980 offset of stack on overflow different
981 both:
982 return in r3 or f0. If no float, must study how gcc emulates floats;
983 pay attention to arg promotion.
984 User may have to cast\args to handle promotion correctly
985 since gdb won't know if prototype supplied or not.
986 */
987
988 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
989 {
990 int reg_size = REGISTER_RAW_SIZE (ii + 3);
991
992 arg = args[argno];
993 type = check_typedef (VALUE_TYPE (arg));
994 len = TYPE_LENGTH (type);
995
996 if (TYPE_CODE (type) == TYPE_CODE_FLT)
997 {
998
999 /* floating point arguments are passed in fpr's, as well as gpr's.
1000 There are 13 fpr's reserved for passing parameters. At this point
1001 there is no way we would run out of them. */
1002
1003 if (len > 8)
1004 printf_unfiltered (
1005 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1006
1007 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1008 VALUE_CONTENTS (arg),
1009 len);
1010 ++f_argno;
1011 }
1012
1013 if (len > reg_size)
1014 {
1015
1016 /* Argument takes more than one register. */
1017 while (argbytes < len)
1018 {
1019 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1020 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1021 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1022 (len - argbytes) > reg_size
1023 ? reg_size : len - argbytes);
1024 ++ii, argbytes += reg_size;
1025
1026 if (ii >= 8)
1027 goto ran_out_of_registers_for_arguments;
1028 }
1029 argbytes = 0;
1030 --ii;
1031 }
1032 else
1033 { /* Argument can fit in one register. No problem. */
1034 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1035 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1036 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1037 VALUE_CONTENTS (arg), len);
1038 }
1039 ++argno;
1040 }
1041
1042 ran_out_of_registers_for_arguments:
1043
1044 saved_sp = read_sp ();
1045 #ifndef ELF_OBJECT_FORMAT
1046 /* location for 8 parameters are always reserved. */
1047 sp -= wordsize * 8;
1048
1049 /* another six words for back chain, TOC register, link register, etc. */
1050 sp -= wordsize * 6;
1051
1052 /* stack pointer must be quadword aligned */
1053 sp &= -16;
1054 #endif
1055
1056 /* if there are more arguments, allocate space for them in
1057 the stack, then push them starting from the ninth one. */
1058
1059 if ((argno < nargs) || argbytes)
1060 {
1061 int space = 0, jj;
1062
1063 if (argbytes)
1064 {
1065 space += ((len - argbytes + 3) & -4);
1066 jj = argno + 1;
1067 }
1068 else
1069 jj = argno;
1070
1071 for (; jj < nargs; ++jj)
1072 {
1073 struct value *val = args[jj];
1074 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1075 }
1076
1077 /* add location required for the rest of the parameters */
1078 space = (space + 15) & -16;
1079 sp -= space;
1080
1081 /* This is another instance we need to be concerned about securing our
1082 stack space. If we write anything underneath %sp (r1), we might conflict
1083 with the kernel who thinks he is free to use this area. So, update %sp
1084 first before doing anything else. */
1085
1086 write_register (SP_REGNUM, sp);
1087
1088 /* if the last argument copied into the registers didn't fit there
1089 completely, push the rest of it into stack. */
1090
1091 if (argbytes)
1092 {
1093 write_memory (sp + 24 + (ii * 4),
1094 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1095 len - argbytes);
1096 ++argno;
1097 ii += ((len - argbytes + 3) & -4) / 4;
1098 }
1099
1100 /* push the rest of the arguments into stack. */
1101 for (; argno < nargs; ++argno)
1102 {
1103
1104 arg = args[argno];
1105 type = check_typedef (VALUE_TYPE (arg));
1106 len = TYPE_LENGTH (type);
1107
1108
1109 /* float types should be passed in fpr's, as well as in the stack. */
1110 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1111 {
1112
1113 if (len > 8)
1114 printf_unfiltered (
1115 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1116
1117 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1118 VALUE_CONTENTS (arg),
1119 len);
1120 ++f_argno;
1121 }
1122
1123 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1124 ii += ((len + 3) & -4) / 4;
1125 }
1126 }
1127 else
1128 /* Secure stack areas first, before doing anything else. */
1129 write_register (SP_REGNUM, sp);
1130
1131 /* set back chain properly */
1132 store_address (tmp_buffer, 4, saved_sp);
1133 write_memory (sp, tmp_buffer, 4);
1134
1135 target_store_registers (-1);
1136 return sp;
1137 }
1138
1139 /* Function: ppc_push_return_address (pc, sp)
1140 Set up the return address for the inferior function call. */
1141
1142 static CORE_ADDR
1143 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1144 {
1145 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1146 CALL_DUMMY_ADDRESS ());
1147 return sp;
1148 }
1149
1150 /* Extract a function return value of type TYPE from raw register array
1151 REGBUF, and copy that return value into VALBUF in virtual format. */
1152
1153 static void
1154 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1155 {
1156 int offset = 0;
1157
1158 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1159 {
1160
1161 double dd;
1162 float ff;
1163 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1164 We need to truncate the return value into float size (4 byte) if
1165 necessary. */
1166
1167 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1168 memcpy (valbuf,
1169 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1170 TYPE_LENGTH (valtype));
1171 else
1172 { /* float */
1173 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1174 ff = (float) dd;
1175 memcpy (valbuf, &ff, sizeof (float));
1176 }
1177 }
1178 else
1179 {
1180 /* return value is copied starting from r3. */
1181 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1182 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1183 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1184
1185 memcpy (valbuf,
1186 regbuf + REGISTER_BYTE (3) + offset,
1187 TYPE_LENGTH (valtype));
1188 }
1189 }
1190
1191 /* Keep structure return address in this variable.
1192 FIXME: This is a horrid kludge which should not be allowed to continue
1193 living. This only allows a single nested call to a structure-returning
1194 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1195
1196 static CORE_ADDR rs6000_struct_return_address;
1197
1198 /* Return whether handle_inferior_event() should proceed through code
1199 starting at PC in function NAME when stepping.
1200
1201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1202 handle memory references that are too distant to fit in instructions
1203 generated by the compiler. For example, if 'foo' in the following
1204 instruction:
1205
1206 lwz r9,foo(r2)
1207
1208 is greater than 32767, the linker might replace the lwz with a branch to
1209 somewhere in @FIX1 that does the load in 2 instructions and then branches
1210 back to where execution should continue.
1211
1212 GDB should silently step over @FIX code, just like AIX dbx does.
1213 Unfortunately, the linker uses the "b" instruction for the branches,
1214 meaning that the link register doesn't get set. Therefore, GDB's usual
1215 step_over_function() mechanism won't work.
1216
1217 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1218 in handle_inferior_event() to skip past @FIX code. */
1219
1220 int
1221 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1222 {
1223 return name && !strncmp (name, "@FIX", 4);
1224 }
1225
1226 /* Skip code that the user doesn't want to see when stepping:
1227
1228 1. Indirect function calls use a piece of trampoline code to do context
1229 switching, i.e. to set the new TOC table. Skip such code if we are on
1230 its first instruction (as when we have single-stepped to here).
1231
1232 2. Skip shared library trampoline code (which is different from
1233 indirect function call trampolines).
1234
1235 3. Skip bigtoc fixup code.
1236
1237 Result is desired PC to step until, or NULL if we are not in
1238 code that should be skipped. */
1239
1240 CORE_ADDR
1241 rs6000_skip_trampoline_code (CORE_ADDR pc)
1242 {
1243 register unsigned int ii, op;
1244 int rel;
1245 CORE_ADDR solib_target_pc;
1246 struct minimal_symbol *msymbol;
1247
1248 static unsigned trampoline_code[] =
1249 {
1250 0x800b0000, /* l r0,0x0(r11) */
1251 0x90410014, /* st r2,0x14(r1) */
1252 0x7c0903a6, /* mtctr r0 */
1253 0x804b0004, /* l r2,0x4(r11) */
1254 0x816b0008, /* l r11,0x8(r11) */
1255 0x4e800420, /* bctr */
1256 0x4e800020, /* br */
1257 0
1258 };
1259
1260 /* Check for bigtoc fixup code. */
1261 msymbol = lookup_minimal_symbol_by_pc (pc);
1262 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1263 {
1264 /* Double-check that the third instruction from PC is relative "b". */
1265 op = read_memory_integer (pc + 8, 4);
1266 if ((op & 0xfc000003) == 0x48000000)
1267 {
1268 /* Extract bits 6-29 as a signed 24-bit relative word address and
1269 add it to the containing PC. */
1270 rel = ((int)(op << 6) >> 6);
1271 return pc + 8 + rel;
1272 }
1273 }
1274
1275 /* If pc is in a shared library trampoline, return its target. */
1276 solib_target_pc = find_solib_trampoline_target (pc);
1277 if (solib_target_pc)
1278 return solib_target_pc;
1279
1280 for (ii = 0; trampoline_code[ii]; ++ii)
1281 {
1282 op = read_memory_integer (pc + (ii * 4), 4);
1283 if (op != trampoline_code[ii])
1284 return 0;
1285 }
1286 ii = read_register (11); /* r11 holds destination addr */
1287 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1288 return pc;
1289 }
1290
1291 /* Determines whether the function FI has a frame on the stack or not. */
1292
1293 int
1294 rs6000_frameless_function_invocation (struct frame_info *fi)
1295 {
1296 CORE_ADDR func_start;
1297 struct rs6000_framedata fdata;
1298
1299 /* Don't even think about framelessness except on the innermost frame
1300 or if the function was interrupted by a signal. */
1301 if (fi->next != NULL && !fi->next->signal_handler_caller)
1302 return 0;
1303
1304 func_start = get_pc_function_start (fi->pc);
1305
1306 /* If we failed to find the start of the function, it is a mistake
1307 to inspect the instructions. */
1308
1309 if (!func_start)
1310 {
1311 /* A frame with a zero PC is usually created by dereferencing a NULL
1312 function pointer, normally causing an immediate core dump of the
1313 inferior. Mark function as frameless, as the inferior has no chance
1314 of setting up a stack frame. */
1315 if (fi->pc == 0)
1316 return 1;
1317 else
1318 return 0;
1319 }
1320
1321 (void) skip_prologue (func_start, fi->pc, &fdata);
1322 return fdata.frameless;
1323 }
1324
1325 /* Return the PC saved in a frame */
1326
1327 CORE_ADDR
1328 rs6000_frame_saved_pc (struct frame_info *fi)
1329 {
1330 CORE_ADDR func_start;
1331 struct rs6000_framedata fdata;
1332 int wordsize = TDEP->wordsize;
1333
1334 if (fi->signal_handler_caller)
1335 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1336
1337 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1338 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1339
1340 func_start = get_pc_function_start (fi->pc);
1341
1342 /* If we failed to find the start of the function, it is a mistake
1343 to inspect the instructions. */
1344 if (!func_start)
1345 return 0;
1346
1347 (void) skip_prologue (func_start, fi->pc, &fdata);
1348
1349 if (fdata.lr_offset == 0 && fi->next != NULL)
1350 {
1351 if (fi->next->signal_handler_caller)
1352 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1353 wordsize);
1354 else
1355 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1356 wordsize);
1357 }
1358
1359 if (fdata.lr_offset == 0)
1360 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1361
1362 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1363 }
1364
1365 /* If saved registers of frame FI are not known yet, read and cache them.
1366 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1367 in which case the framedata are read. */
1368
1369 static void
1370 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1371 {
1372 CORE_ADDR frame_addr;
1373 struct rs6000_framedata work_fdata;
1374 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1375 int wordsize = tdep->wordsize;
1376
1377 if (fi->saved_regs)
1378 return;
1379
1380 if (fdatap == NULL)
1381 {
1382 fdatap = &work_fdata;
1383 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1384 }
1385
1386 frame_saved_regs_zalloc (fi);
1387
1388 /* If there were any saved registers, figure out parent's stack
1389 pointer. */
1390 /* The following is true only if the frame doesn't have a call to
1391 alloca(), FIXME. */
1392
1393 if (fdatap->saved_fpr == 0
1394 && fdatap->saved_gpr == 0
1395 && fdatap->saved_vr == 0
1396 && fdatap->lr_offset == 0
1397 && fdatap->cr_offset == 0
1398 && fdatap->vr_offset == 0)
1399 frame_addr = 0;
1400 else if (fi->prev && fi->prev->frame)
1401 frame_addr = fi->prev->frame;
1402 else
1403 frame_addr = read_memory_addr (fi->frame, wordsize);
1404
1405 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1406 All fpr's from saved_fpr to fp31 are saved. */
1407
1408 if (fdatap->saved_fpr >= 0)
1409 {
1410 int i;
1411 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1412 for (i = fdatap->saved_fpr; i < 32; i++)
1413 {
1414 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1415 fpr_addr += 8;
1416 }
1417 }
1418
1419 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1420 All gpr's from saved_gpr to gpr31 are saved. */
1421
1422 if (fdatap->saved_gpr >= 0)
1423 {
1424 int i;
1425 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1426 for (i = fdatap->saved_gpr; i < 32; i++)
1427 {
1428 fi->saved_regs[i] = gpr_addr;
1429 gpr_addr += wordsize;
1430 }
1431 }
1432
1433 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1434 All vr's from saved_vr to vr31 are saved. */
1435 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1436 {
1437 if (fdatap->saved_vr >= 0)
1438 {
1439 int i;
1440 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1441 for (i = fdatap->saved_vr; i < 32; i++)
1442 {
1443 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1444 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1445 }
1446 }
1447 }
1448
1449 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1450 the CR. */
1451 if (fdatap->cr_offset != 0)
1452 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1453
1454 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1455 the LR. */
1456 if (fdatap->lr_offset != 0)
1457 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1458
1459 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1460 the VRSAVE. */
1461 if (fdatap->vrsave_offset != 0)
1462 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1463 }
1464
1465 /* Return the address of a frame. This is the inital %sp value when the frame
1466 was first allocated. For functions calling alloca(), it might be saved in
1467 an alloca register. */
1468
1469 static CORE_ADDR
1470 frame_initial_stack_address (struct frame_info *fi)
1471 {
1472 CORE_ADDR tmpaddr;
1473 struct rs6000_framedata fdata;
1474 struct frame_info *callee_fi;
1475
1476 /* if the initial stack pointer (frame address) of this frame is known,
1477 just return it. */
1478
1479 if (fi->extra_info->initial_sp)
1480 return fi->extra_info->initial_sp;
1481
1482 /* find out if this function is using an alloca register.. */
1483
1484 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1485
1486 /* if saved registers of this frame are not known yet, read and cache them. */
1487
1488 if (!fi->saved_regs)
1489 frame_get_saved_regs (fi, &fdata);
1490
1491 /* If no alloca register used, then fi->frame is the value of the %sp for
1492 this frame, and it is good enough. */
1493
1494 if (fdata.alloca_reg < 0)
1495 {
1496 fi->extra_info->initial_sp = fi->frame;
1497 return fi->extra_info->initial_sp;
1498 }
1499
1500 /* This function has an alloca register. If this is the top-most frame
1501 (with the lowest address), the value in alloca register is good. */
1502
1503 if (!fi->next)
1504 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1505
1506 /* Otherwise, this is a caller frame. Callee has usually already saved
1507 registers, but there are exceptions (such as when the callee
1508 has no parameters). Find the address in which caller's alloca
1509 register is saved. */
1510
1511 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1512 {
1513
1514 if (!callee_fi->saved_regs)
1515 frame_get_saved_regs (callee_fi, NULL);
1516
1517 /* this is the address in which alloca register is saved. */
1518
1519 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1520 if (tmpaddr)
1521 {
1522 fi->extra_info->initial_sp =
1523 read_memory_addr (tmpaddr, TDEP->wordsize);
1524 return fi->extra_info->initial_sp;
1525 }
1526
1527 /* Go look into deeper levels of the frame chain to see if any one of
1528 the callees has saved alloca register. */
1529 }
1530
1531 /* If alloca register was not saved, by the callee (or any of its callees)
1532 then the value in the register is still good. */
1533
1534 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1535 return fi->extra_info->initial_sp;
1536 }
1537
1538 /* Describe the pointer in each stack frame to the previous stack frame
1539 (its caller). */
1540
1541 /* FRAME_CHAIN takes a frame's nominal address
1542 and produces the frame's chain-pointer. */
1543
1544 /* In the case of the RS/6000, the frame's nominal address
1545 is the address of a 4-byte word containing the calling frame's address. */
1546
1547 CORE_ADDR
1548 rs6000_frame_chain (struct frame_info *thisframe)
1549 {
1550 CORE_ADDR fp, fpp, lr;
1551 int wordsize = TDEP->wordsize;
1552
1553 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1554 return thisframe->frame; /* dummy frame same as caller's frame */
1555
1556 if (inside_entry_file (thisframe->pc) ||
1557 thisframe->pc == entry_point_address ())
1558 return 0;
1559
1560 if (thisframe->signal_handler_caller)
1561 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1562 wordsize);
1563 else if (thisframe->next != NULL
1564 && thisframe->next->signal_handler_caller
1565 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1566 /* A frameless function interrupted by a signal did not change the
1567 frame pointer. */
1568 fp = FRAME_FP (thisframe);
1569 else
1570 fp = read_memory_addr ((thisframe)->frame, wordsize);
1571
1572 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1573 if (lr == entry_point_address ())
1574 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1575 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1576 return fpp;
1577
1578 return fp;
1579 }
1580
1581 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1582 isn't available with that word size, return 0. */
1583
1584 static int
1585 regsize (const struct reg *reg, int wordsize)
1586 {
1587 return wordsize == 8 ? reg->sz64 : reg->sz32;
1588 }
1589
1590 /* Return the name of register number N, or null if no such register exists
1591 in the current architecture. */
1592
1593 static char *
1594 rs6000_register_name (int n)
1595 {
1596 struct gdbarch_tdep *tdep = TDEP;
1597 const struct reg *reg = tdep->regs + n;
1598
1599 if (!regsize (reg, tdep->wordsize))
1600 return NULL;
1601 return reg->name;
1602 }
1603
1604 /* Index within `registers' of the first byte of the space for
1605 register N. */
1606
1607 static int
1608 rs6000_register_byte (int n)
1609 {
1610 return TDEP->regoff[n];
1611 }
1612
1613 /* Return the number of bytes of storage in the actual machine representation
1614 for register N if that register is available, else return 0. */
1615
1616 static int
1617 rs6000_register_raw_size (int n)
1618 {
1619 struct gdbarch_tdep *tdep = TDEP;
1620 const struct reg *reg = tdep->regs + n;
1621 return regsize (reg, tdep->wordsize);
1622 }
1623
1624 /* Return the GDB type object for the "standard" data type
1625 of data in register N. */
1626
1627 static struct type *
1628 rs6000_register_virtual_type (int n)
1629 {
1630 struct gdbarch_tdep *tdep = TDEP;
1631 const struct reg *reg = tdep->regs + n;
1632
1633 if (reg->fpr)
1634 return builtin_type_double;
1635 else
1636 {
1637 int size = regsize (reg, tdep->wordsize);
1638 switch (size)
1639 {
1640 case 8:
1641 return builtin_type_int64;
1642 break;
1643 case 16:
1644 return builtin_type_vec128;
1645 break;
1646 default:
1647 return builtin_type_int32;
1648 break;
1649 }
1650 }
1651 }
1652
1653 /* For the PowerPC, it appears that the debug info marks float parameters as
1654 floats regardless of whether the function is prototyped, but the actual
1655 values are always passed in as doubles. Tell gdb to always assume that
1656 floats are passed as doubles and then converted in the callee. */
1657
1658 static int
1659 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1660 {
1661 return 1;
1662 }
1663
1664 /* Return whether register N requires conversion when moving from raw format
1665 to virtual format.
1666
1667 The register format for RS/6000 floating point registers is always
1668 double, we need a conversion if the memory format is float. */
1669
1670 static int
1671 rs6000_register_convertible (int n)
1672 {
1673 const struct reg *reg = TDEP->regs + n;
1674 return reg->fpr;
1675 }
1676
1677 /* Convert data from raw format for register N in buffer FROM
1678 to virtual format with type TYPE in buffer TO. */
1679
1680 static void
1681 rs6000_register_convert_to_virtual (int n, struct type *type,
1682 char *from, char *to)
1683 {
1684 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1685 {
1686 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1687 store_floating (to, TYPE_LENGTH (type), val);
1688 }
1689 else
1690 memcpy (to, from, REGISTER_RAW_SIZE (n));
1691 }
1692
1693 /* Convert data from virtual format with type TYPE in buffer FROM
1694 to raw format for register N in buffer TO. */
1695
1696 static void
1697 rs6000_register_convert_to_raw (struct type *type, int n,
1698 char *from, char *to)
1699 {
1700 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1701 {
1702 double val = extract_floating (from, TYPE_LENGTH (type));
1703 store_floating (to, REGISTER_RAW_SIZE (n), val);
1704 }
1705 else
1706 memcpy (to, from, REGISTER_RAW_SIZE (n));
1707 }
1708
1709 int
1710 altivec_register_p (int regno)
1711 {
1712 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1713 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1714 return 0;
1715 else
1716 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1717 }
1718
1719 static void
1720 rs6000_do_altivec_registers (int regnum)
1721 {
1722 int i;
1723 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1724 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1725 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1726
1727 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1728 {
1729 /* If we want just one reg, check that this is the one we want. */
1730 if (regnum != -1 && i != regnum)
1731 continue;
1732
1733 /* If the register name is empty, it is undefined for this
1734 processor, so don't display anything. */
1735 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1736 continue;
1737
1738 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1739 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1740
1741 /* Get the data in raw format. */
1742 if (read_relative_register_raw_bytes (i, raw_buffer))
1743 {
1744 printf_filtered ("*value not available*\n");
1745 continue;
1746 }
1747
1748 /* Convert raw data to virtual format if necessary. */
1749 if (REGISTER_CONVERTIBLE (i))
1750 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1751 raw_buffer, virtual_buffer);
1752 else
1753 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1754
1755 /* Print as integer in hex only. */
1756 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1757 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1758 printf_filtered ("\n");
1759 }
1760 }
1761
1762 static void
1763 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1764 {
1765 int regnum, numregs;
1766 register char *end;
1767
1768 if (!target_has_registers)
1769 error ("The program has no registers now.");
1770 if (selected_frame == NULL)
1771 error ("No selected frame.");
1772
1773 if (!addr_exp)
1774 {
1775 rs6000_do_altivec_registers (-1);
1776 return;
1777 }
1778
1779 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1780 do
1781 {
1782 if (addr_exp[0] == '$')
1783 addr_exp++;
1784 end = addr_exp;
1785 while (*end != '\0' && *end != ' ' && *end != '\t')
1786 ++end;
1787
1788 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1789 if (regnum < 0)
1790 {
1791 regnum = numregs;
1792 if (*addr_exp >= '0' && *addr_exp <= '9')
1793 regnum = atoi (addr_exp); /* Take a number */
1794 if (regnum >= numregs) /* Bad name, or bad number */
1795 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1796 }
1797
1798 rs6000_do_altivec_registers (regnum);
1799
1800 addr_exp = end;
1801 while (*addr_exp == ' ' || *addr_exp == '\t')
1802 ++addr_exp;
1803 }
1804 while (*addr_exp != '\0');
1805 }
1806
1807 static void
1808 rs6000_do_registers_info (int regnum, int fpregs)
1809 {
1810 register int i;
1811 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1812 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1813 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1814
1815 for (i = 0; i < numregs; i++)
1816 {
1817 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1818 if (regnum == -1)
1819 {
1820 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1821 || (altivec_register_p (i) && !fpregs))
1822 continue;
1823 }
1824 else
1825 {
1826 if (i != regnum)
1827 continue;
1828 }
1829
1830 /* If the register name is empty, it is undefined for this
1831 processor, so don't display anything. */
1832 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1833 continue;
1834
1835 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1836 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1837
1838 /* Get the data in raw format. */
1839 if (read_relative_register_raw_bytes (i, raw_buffer))
1840 {
1841 printf_filtered ("*value not available*\n");
1842 continue;
1843 }
1844
1845 /* Convert raw data to virtual format if necessary. */
1846 if (REGISTER_CONVERTIBLE (i))
1847 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1848 raw_buffer, virtual_buffer);
1849 else
1850 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1851
1852 /* If virtual format is floating, print it that way, and in raw hex. */
1853 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1854 {
1855 register int j;
1856
1857 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1858 gdb_stdout, 0, 1, 0, Val_pretty_default);
1859
1860 printf_filtered ("\t(raw 0x");
1861 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1862 {
1863 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1864 : REGISTER_RAW_SIZE (i) - 1 - j;
1865 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1866 }
1867 printf_filtered (")");
1868 }
1869 else
1870 {
1871 /* Print as integer in hex and in decimal. */
1872 if (!altivec_register_p (i))
1873 {
1874 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1875 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1876 printf_filtered ("\t");
1877 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1878 gdb_stdout, 0, 1, 0, Val_pretty_default);
1879 }
1880 else
1881 /* Print as integer in hex only. */
1882 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1883 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1884 }
1885 printf_filtered ("\n");
1886 }
1887 }
1888
1889 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1890 REGNUM. */
1891 static int
1892 rs6000_stab_reg_to_regnum (int num)
1893 {
1894 int regnum;
1895 switch (num)
1896 {
1897 case 64:
1898 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1899 break;
1900 case 65:
1901 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1902 break;
1903 case 66:
1904 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1905 break;
1906 case 76:
1907 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1908 break;
1909 default:
1910 regnum = num;
1911 break;
1912 }
1913 return regnum;
1914 }
1915
1916 /* Store the address of the place in which to copy the structure the
1917 subroutine will return. This is called from call_function.
1918
1919 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1920 In function return, callee is not responsible of returning this address
1921 back. Since gdb needs to find it, we will store in a designated variable
1922 `rs6000_struct_return_address'. */
1923
1924 static void
1925 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1926 {
1927 write_register (3, addr);
1928 rs6000_struct_return_address = addr;
1929 }
1930
1931 /* Write into appropriate registers a function return value
1932 of type TYPE, given in virtual format. */
1933
1934 static void
1935 rs6000_store_return_value (struct type *type, char *valbuf)
1936 {
1937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1938
1939 /* Floating point values are returned starting from FPR1 and up.
1940 Say a double_double_double type could be returned in
1941 FPR1/FPR2/FPR3 triple. */
1942
1943 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1944 TYPE_LENGTH (type));
1945 else
1946 /* Everything else is returned in GPR3 and up. */
1947 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1948 valbuf, TYPE_LENGTH (type));
1949 }
1950
1951 /* Extract from an array REGBUF containing the (raw) register state
1952 the address in which a function should return its structure value,
1953 as a CORE_ADDR (or an expression that can be used as one). */
1954
1955 static CORE_ADDR
1956 rs6000_extract_struct_value_address (char *regbuf)
1957 {
1958 return rs6000_struct_return_address;
1959 }
1960
1961 /* Return whether PC is in a dummy function call.
1962
1963 FIXME: This just checks for the end of the stack, which is broken
1964 for things like stepping through gcc nested function stubs. */
1965
1966 static int
1967 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1968 {
1969 return sp < pc && pc < fp;
1970 }
1971
1972 /* Hook called when a new child process is started. */
1973
1974 void
1975 rs6000_create_inferior (int pid)
1976 {
1977 if (rs6000_set_host_arch_hook)
1978 rs6000_set_host_arch_hook (pid);
1979 }
1980 \f
1981 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1982
1983 Usually a function pointer's representation is simply the address
1984 of the function. On the RS/6000 however, a function pointer is
1985 represented by a pointer to a TOC entry. This TOC entry contains
1986 three words, the first word is the address of the function, the
1987 second word is the TOC pointer (r2), and the third word is the
1988 static chain value. Throughout GDB it is currently assumed that a
1989 function pointer contains the address of the function, which is not
1990 easy to fix. In addition, the conversion of a function address to
1991 a function pointer would require allocation of a TOC entry in the
1992 inferior's memory space, with all its drawbacks. To be able to
1993 call C++ virtual methods in the inferior (which are called via
1994 function pointers), find_function_addr uses this function to get the
1995 function address from a function pointer. */
1996
1997 /* Return real function address if ADDR (a function pointer) is in the data
1998 space and is therefore a special function pointer. */
1999
2000 CORE_ADDR
2001 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2002 {
2003 struct obj_section *s;
2004
2005 s = find_pc_section (addr);
2006 if (s && s->the_bfd_section->flags & SEC_CODE)
2007 return addr;
2008
2009 /* ADDR is in the data space, so it's a special function pointer. */
2010 return read_memory_addr (addr, TDEP->wordsize);
2011 }
2012 \f
2013
2014 /* Handling the various POWER/PowerPC variants. */
2015
2016
2017 /* The arrays here called registers_MUMBLE hold information about available
2018 registers.
2019
2020 For each family of PPC variants, I've tried to isolate out the
2021 common registers and put them up front, so that as long as you get
2022 the general family right, GDB will correctly identify the registers
2023 common to that family. The common register sets are:
2024
2025 For the 60x family: hid0 hid1 iabr dabr pir
2026
2027 For the 505 and 860 family: eie eid nri
2028
2029 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2030 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2031 pbu1 pbl2 pbu2
2032
2033 Most of these register groups aren't anything formal. I arrived at
2034 them by looking at the registers that occurred in more than one
2035 processor. */
2036
2037 /* Convenience macros for populating register arrays. */
2038
2039 /* Within another macro, convert S to a string. */
2040
2041 #define STR(s) #s
2042
2043 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2044 and 64 bits on 64-bit systems. */
2045 #define R(name) { STR(name), 4, 8, 0 }
2046
2047 /* Return a struct reg defining register NAME that's 32 bits on all
2048 systems. */
2049 #define R4(name) { STR(name), 4, 4, 0 }
2050
2051 /* Return a struct reg defining register NAME that's 64 bits on all
2052 systems. */
2053 #define R8(name) { STR(name), 8, 8, 0 }
2054
2055 /* Return a struct reg defining register NAME that's 128 bits on all
2056 systems. */
2057 #define R16(name) { STR(name), 16, 16, 0 }
2058
2059 /* Return a struct reg defining floating-point register NAME. */
2060 #define F(name) { STR(name), 8, 8, 1 }
2061
2062 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2063 systems and that doesn't exist on 64-bit systems. */
2064 #define R32(name) { STR(name), 4, 0, 0 }
2065
2066 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2067 systems and that doesn't exist on 32-bit systems. */
2068 #define R64(name) { STR(name), 0, 8, 0 }
2069
2070 /* Return a struct reg placeholder for a register that doesn't exist. */
2071 #define R0 { 0, 0, 0, 0 }
2072
2073 /* UISA registers common across all architectures, including POWER. */
2074
2075 #define COMMON_UISA_REGS \
2076 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2077 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2078 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2079 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2080 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2081 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2082 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2083 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2084 /* 64 */ R(pc), R(ps)
2085
2086 /* UISA-level SPRs for PowerPC. */
2087 #define PPC_UISA_SPRS \
2088 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2089
2090 /* Segment registers, for PowerPC. */
2091 #define PPC_SEGMENT_REGS \
2092 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2093 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2094 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2095 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2096
2097 /* OEA SPRs for PowerPC. */
2098 #define PPC_OEA_SPRS \
2099 /* 87 */ R4(pvr), \
2100 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2101 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2102 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2103 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2104 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2105 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2106 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2107 /* 116 */ R4(dec), R(dabr), R4(ear)
2108
2109 /* AltiVec registers */
2110 #define PPC_ALTIVEC_REGS \
2111 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2112 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2113 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2114 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2115 /*151*/R4(vscr), R4(vrsave)
2116
2117 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2118 user-level SPR's. */
2119 static const struct reg registers_power[] =
2120 {
2121 COMMON_UISA_REGS,
2122 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2123 };
2124
2125 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2126 view of the PowerPC. */
2127 static const struct reg registers_powerpc[] =
2128 {
2129 COMMON_UISA_REGS,
2130 PPC_UISA_SPRS,
2131 PPC_ALTIVEC_REGS
2132 };
2133
2134 /* IBM PowerPC 403. */
2135 static const struct reg registers_403[] =
2136 {
2137 COMMON_UISA_REGS,
2138 PPC_UISA_SPRS,
2139 PPC_SEGMENT_REGS,
2140 PPC_OEA_SPRS,
2141 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2142 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2143 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2144 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2145 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2146 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2147 };
2148
2149 /* IBM PowerPC 403GC. */
2150 static const struct reg registers_403GC[] =
2151 {
2152 COMMON_UISA_REGS,
2153 PPC_UISA_SPRS,
2154 PPC_SEGMENT_REGS,
2155 PPC_OEA_SPRS,
2156 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2157 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2158 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2159 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2160 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2161 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2162 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2163 /* 147 */ R(tbhu), R(tblu)
2164 };
2165
2166 /* Motorola PowerPC 505. */
2167 static const struct reg registers_505[] =
2168 {
2169 COMMON_UISA_REGS,
2170 PPC_UISA_SPRS,
2171 PPC_SEGMENT_REGS,
2172 PPC_OEA_SPRS,
2173 /* 119 */ R(eie), R(eid), R(nri)
2174 };
2175
2176 /* Motorola PowerPC 860 or 850. */
2177 static const struct reg registers_860[] =
2178 {
2179 COMMON_UISA_REGS,
2180 PPC_UISA_SPRS,
2181 PPC_SEGMENT_REGS,
2182 PPC_OEA_SPRS,
2183 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2184 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2185 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2186 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2187 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2188 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2189 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2190 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2191 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2192 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2193 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2194 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2195 };
2196
2197 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2198 for reading and writing RTCU and RTCL. However, how one reads and writes a
2199 register is the stub's problem. */
2200 static const struct reg registers_601[] =
2201 {
2202 COMMON_UISA_REGS,
2203 PPC_UISA_SPRS,
2204 PPC_SEGMENT_REGS,
2205 PPC_OEA_SPRS,
2206 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2207 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2208 };
2209
2210 /* Motorola PowerPC 602. */
2211 static const struct reg registers_602[] =
2212 {
2213 COMMON_UISA_REGS,
2214 PPC_UISA_SPRS,
2215 PPC_SEGMENT_REGS,
2216 PPC_OEA_SPRS,
2217 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2218 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2219 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2220 };
2221
2222 /* Motorola/IBM PowerPC 603 or 603e. */
2223 static const struct reg registers_603[] =
2224 {
2225 COMMON_UISA_REGS,
2226 PPC_UISA_SPRS,
2227 PPC_SEGMENT_REGS,
2228 PPC_OEA_SPRS,
2229 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2230 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2231 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2232 };
2233
2234 /* Motorola PowerPC 604 or 604e. */
2235 static const struct reg registers_604[] =
2236 {
2237 COMMON_UISA_REGS,
2238 PPC_UISA_SPRS,
2239 PPC_SEGMENT_REGS,
2240 PPC_OEA_SPRS,
2241 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2242 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2243 /* 127 */ R(sia), R(sda)
2244 };
2245
2246 /* Motorola/IBM PowerPC 750 or 740. */
2247 static const struct reg registers_750[] =
2248 {
2249 COMMON_UISA_REGS,
2250 PPC_UISA_SPRS,
2251 PPC_SEGMENT_REGS,
2252 PPC_OEA_SPRS,
2253 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2254 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2255 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2256 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2257 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2258 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2259 };
2260
2261
2262 /* Motorola PowerPC 7400. */
2263 static const struct reg registers_7400[] =
2264 {
2265 /* gpr0-gpr31, fpr0-fpr31 */
2266 COMMON_UISA_REGS,
2267 /* ctr, xre, lr, cr */
2268 PPC_UISA_SPRS,
2269 /* sr0-sr15 */
2270 PPC_SEGMENT_REGS,
2271 PPC_OEA_SPRS,
2272 /* vr0-vr31, vrsave, vscr */
2273 PPC_ALTIVEC_REGS
2274 /* FIXME? Add more registers? */
2275 };
2276
2277 /* Information about a particular processor variant. */
2278
2279 struct variant
2280 {
2281 /* Name of this variant. */
2282 char *name;
2283
2284 /* English description of the variant. */
2285 char *description;
2286
2287 /* bfd_arch_info.arch corresponding to variant. */
2288 enum bfd_architecture arch;
2289
2290 /* bfd_arch_info.mach corresponding to variant. */
2291 unsigned long mach;
2292
2293 /* Table of register names; registers[R] is the name of the register
2294 number R. */
2295 int nregs;
2296 const struct reg *regs;
2297 };
2298
2299 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2300
2301
2302 /* Information in this table comes from the following web sites:
2303 IBM: http://www.chips.ibm.com:80/products/embedded/
2304 Motorola: http://www.mot.com/SPS/PowerPC/
2305
2306 I'm sure I've got some of the variant descriptions not quite right.
2307 Please report any inaccuracies you find to GDB's maintainer.
2308
2309 If you add entries to this table, please be sure to allow the new
2310 value as an argument to the --with-cpu flag, in configure.in. */
2311
2312 static const struct variant variants[] =
2313 {
2314 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2315 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2316 {"power", "POWER user-level", bfd_arch_rs6000,
2317 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2318 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2319 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2320 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2321 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2322 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2323 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2324 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2325 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2326 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2327 604, num_registers (registers_604), registers_604},
2328 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2329 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2330 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2331 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2332 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2333 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2334 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2335 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2336 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2337 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2338
2339 /* FIXME: I haven't checked the register sets of the following. */
2340 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2341 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2342 {"a35", "PowerPC A35", bfd_arch_powerpc,
2343 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2344 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2345 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2346 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2347 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2348 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2349 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2350
2351 {0, 0, 0, 0}
2352 };
2353
2354 #undef num_registers
2355
2356 /* Return the variant corresponding to architecture ARCH and machine number
2357 MACH. If no such variant exists, return null. */
2358
2359 static const struct variant *
2360 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2361 {
2362 const struct variant *v;
2363
2364 for (v = variants; v->name; v++)
2365 if (arch == v->arch && mach == v->mach)
2366 return v;
2367
2368 return NULL;
2369 }
2370
2371
2372
2373 \f
2374 static void
2375 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2376 {
2377 int *os_ident_ptr = obj;
2378 const char *name;
2379 unsigned int sectsize;
2380
2381 name = bfd_get_section_name (abfd, sect);
2382 sectsize = bfd_section_size (abfd, sect);
2383 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2384 {
2385 unsigned int name_length, data_length, note_type;
2386 char *note = alloca (sectsize);
2387
2388 bfd_get_section_contents (abfd, sect, note,
2389 (file_ptr) 0, (bfd_size_type) sectsize);
2390
2391 name_length = bfd_h_get_32 (abfd, note);
2392 data_length = bfd_h_get_32 (abfd, note + 4);
2393 note_type = bfd_h_get_32 (abfd, note + 8);
2394
2395 if (name_length == 4 && data_length == 16 && note_type == 1
2396 && strcmp (note + 12, "GNU") == 0)
2397 {
2398 int os_number = bfd_h_get_32 (abfd, note + 16);
2399
2400 /* The case numbers are from abi-tags in glibc */
2401 switch (os_number)
2402 {
2403 case 0 :
2404 *os_ident_ptr = ELFOSABI_LINUX;
2405 break;
2406 case 1 :
2407 *os_ident_ptr = ELFOSABI_HURD;
2408 break;
2409 case 2 :
2410 *os_ident_ptr = ELFOSABI_SOLARIS;
2411 break;
2412 default :
2413 internal_error (__FILE__, __LINE__,
2414 "process_note_abi_sections: unknown OS number %d",
2415 os_number);
2416 break;
2417 }
2418 }
2419 }
2420 }
2421
2422 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2423 executables. If it's not an ELF executable or if the OS/ABI couldn't
2424 be determined, simply return -1. */
2425
2426 static int
2427 get_elfosabi (bfd *abfd)
2428 {
2429 int elfosabi = -1;
2430
2431 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2432 {
2433 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2434
2435 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2436 that we're on a SYSV system. However, GNU/Linux uses a note section
2437 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2438 have to check the note sections too. */
2439 if (elfosabi == 0)
2440 {
2441 bfd_map_over_sections (abfd,
2442 process_note_abi_tag_sections,
2443 &elfosabi);
2444 }
2445 }
2446
2447 return elfosabi;
2448 }
2449
2450 \f
2451
2452 /* Initialize the current architecture based on INFO. If possible, re-use an
2453 architecture from ARCHES, which is a list of architectures already created
2454 during this debugging session.
2455
2456 Called e.g. at program startup, when reading a core file, and when reading
2457 a binary file. */
2458
2459 static struct gdbarch *
2460 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2461 {
2462 struct gdbarch *gdbarch;
2463 struct gdbarch_tdep *tdep;
2464 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2465 struct reg *regs;
2466 const struct variant *v;
2467 enum bfd_architecture arch;
2468 unsigned long mach;
2469 bfd abfd;
2470 int osabi, sysv_abi;
2471
2472 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2473 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2474
2475 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2476 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2477
2478 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2479
2480 osabi = get_elfosabi (info.abfd);
2481
2482 /* Check word size. If INFO is from a binary file, infer it from
2483 that, else choose a likely default. */
2484 if (from_xcoff_exec)
2485 {
2486 if (xcoff_data (info.abfd)->xcoff64)
2487 wordsize = 8;
2488 else
2489 wordsize = 4;
2490 }
2491 else if (from_elf_exec)
2492 {
2493 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2494 wordsize = 8;
2495 else
2496 wordsize = 4;
2497 }
2498 else
2499 {
2500 wordsize = 4;
2501 }
2502
2503 /* Find a candidate among extant architectures. */
2504 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2505 arches != NULL;
2506 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2507 {
2508 /* Word size in the various PowerPC bfd_arch_info structs isn't
2509 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2510 separate word size check. */
2511 tdep = gdbarch_tdep (arches->gdbarch);
2512 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2513 return arches->gdbarch;
2514 }
2515
2516 /* None found, create a new architecture from INFO, whose bfd_arch_info
2517 validity depends on the source:
2518 - executable useless
2519 - rs6000_host_arch() good
2520 - core file good
2521 - "set arch" trust blindly
2522 - GDB startup useless but harmless */
2523
2524 if (!from_xcoff_exec)
2525 {
2526 arch = info.bfd_arch_info->arch;
2527 mach = info.bfd_arch_info->mach;
2528 }
2529 else
2530 {
2531 arch = bfd_arch_powerpc;
2532 mach = 0;
2533 bfd_default_set_arch_mach (&abfd, arch, mach);
2534 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2535 }
2536 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2537 tdep->wordsize = wordsize;
2538 tdep->osabi = osabi;
2539 gdbarch = gdbarch_alloc (&info, tdep);
2540 power = arch == bfd_arch_rs6000;
2541
2542 /* Select instruction printer. */
2543 tm_print_insn = arch == power ? print_insn_rs6000 :
2544 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2545 print_insn_little_powerpc;
2546
2547 /* Choose variant. */
2548 v = find_variant_by_arch (arch, mach);
2549 if (!v)
2550 return NULL;
2551
2552 tdep->regs = v->regs;
2553
2554 tdep->ppc_gp0_regnum = 0;
2555 tdep->ppc_gplast_regnum = 31;
2556 tdep->ppc_toc_regnum = 2;
2557 tdep->ppc_ps_regnum = 65;
2558 tdep->ppc_cr_regnum = 66;
2559 tdep->ppc_lr_regnum = 67;
2560 tdep->ppc_ctr_regnum = 68;
2561 tdep->ppc_xer_regnum = 69;
2562 if (v->mach == bfd_mach_ppc_601)
2563 tdep->ppc_mq_regnum = 124;
2564 else
2565 tdep->ppc_mq_regnum = 70;
2566
2567 if (v->arch == bfd_arch_powerpc)
2568 switch (v->mach)
2569 {
2570 case bfd_mach_ppc:
2571 tdep->ppc_vr0_regnum = 71;
2572 tdep->ppc_vrsave_regnum = 104;
2573 break;
2574 case bfd_mach_ppc_7400:
2575 tdep->ppc_vr0_regnum = 119;
2576 tdep->ppc_vrsave_regnum = 153;
2577 break;
2578 default:
2579 tdep->ppc_vr0_regnum = -1;
2580 tdep->ppc_vrsave_regnum = -1;
2581 break;
2582 }
2583
2584 /* Calculate byte offsets in raw register array. */
2585 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2586 for (i = off = 0; i < v->nregs; i++)
2587 {
2588 tdep->regoff[i] = off;
2589 off += regsize (v->regs + i, wordsize);
2590 }
2591
2592 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2593 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2594 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2595 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2596 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2597
2598 set_gdbarch_num_regs (gdbarch, v->nregs);
2599 set_gdbarch_sp_regnum (gdbarch, 1);
2600 set_gdbarch_fp_regnum (gdbarch, 1);
2601 set_gdbarch_pc_regnum (gdbarch, 64);
2602 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2603 set_gdbarch_register_size (gdbarch, wordsize);
2604 set_gdbarch_register_bytes (gdbarch, off);
2605 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2606 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2607 set_gdbarch_max_register_raw_size (gdbarch, 16);
2608 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2609 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2610 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2611 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2612
2613 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2614 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2615 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2616 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2617 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2618 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2619 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2620 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2621 set_gdbarch_char_signed (gdbarch, 0);
2622
2623 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2624 set_gdbarch_call_dummy_length (gdbarch, 0);
2625 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2626 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2627 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2628 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2629 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2630 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2631 set_gdbarch_call_dummy_p (gdbarch, 1);
2632 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2633 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2634 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2635 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2636 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2637 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2638 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2639 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2640
2641 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2642 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2643 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2644 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2645
2646 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2647
2648 if (sysv_abi)
2649 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2650 else
2651 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2652
2653 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2654 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2655 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2656 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2657
2658 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2659 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2660 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2661 set_gdbarch_function_start_offset (gdbarch, 0);
2662 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2663
2664 /* Not sure on this. FIXMEmgo */
2665 set_gdbarch_frame_args_skip (gdbarch, 8);
2666
2667 /* Until November 2001, gcc was not complying to the SYSV ABI for
2668 returning structures less than or equal to 8 bytes in size. It was
2669 returning everything in memory. When this was corrected, it wasn't
2670 fixed for native platforms. */
2671 if (sysv_abi)
2672 {
2673 if (osabi == ELFOSABI_LINUX
2674 || osabi == ELFOSABI_NETBSD
2675 || osabi == ELFOSABI_FREEBSD)
2676 set_gdbarch_use_struct_convention (gdbarch,
2677 generic_use_struct_convention);
2678 else
2679 set_gdbarch_use_struct_convention (gdbarch,
2680 ppc_sysv_abi_use_struct_convention);
2681 }
2682 else
2683 {
2684 set_gdbarch_use_struct_convention (gdbarch,
2685 generic_use_struct_convention);
2686 }
2687
2688 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2689 if (osabi == ELFOSABI_LINUX)
2690 {
2691 set_gdbarch_frameless_function_invocation (gdbarch,
2692 ppc_linux_frameless_function_invocation);
2693 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2694 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2695
2696 set_gdbarch_frame_init_saved_regs (gdbarch,
2697 ppc_linux_frame_init_saved_regs);
2698 set_gdbarch_init_extra_frame_info (gdbarch,
2699 ppc_linux_init_extra_frame_info);
2700
2701 set_gdbarch_memory_remove_breakpoint (gdbarch,
2702 ppc_linux_memory_remove_breakpoint);
2703 set_solib_svr4_fetch_link_map_offsets
2704 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2705 }
2706 else
2707 {
2708 set_gdbarch_frameless_function_invocation (gdbarch,
2709 rs6000_frameless_function_invocation);
2710 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2711 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712
2713 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2714 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2715
2716 /* Handle RS/6000 function pointers. */
2717 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2718 rs6000_convert_from_func_ptr_addr);
2719 }
2720 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2721 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2722 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2723
2724 /* We can't tell how many args there are
2725 now that the C compiler delays popping them. */
2726 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2727
2728 return gdbarch;
2729 }
2730
2731 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2732
2733 static void
2734 rs6000_info_powerpc_command (char *args, int from_tty)
2735 {
2736 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2737 }
2738
2739 /* Initialization code. */
2740
2741 void
2742 _initialize_rs6000_tdep (void)
2743 {
2744 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2745 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2746
2747 /* Add root prefix command for "info powerpc" commands */
2748 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2749 "Various POWERPC info specific commands.",
2750 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2751
2752 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2753 "Display the contents of the AltiVec registers.",
2754 &info_powerpc_cmdlist);
2755
2756 }
This page took 0.087165 seconds and 4 git commands to generate.