Revise way in which mappings are allocated/searched.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34
35 #include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
36 #include "coff/internal.h" /* for libcoff.h */
37 #include "bfd/libcoff.h" /* for xcoff_data */
38
39 #include "elf-bfd.h"
40
41 #include "ppc-tdep.h"
42
43 /* If the kernel has to deliver a signal, it pushes a sigcontext
44 structure on the stack and then calls the signal handler, passing
45 the address of the sigcontext in an argument register. Usually
46 the signal handler doesn't save this register, so we have to
47 access the sigcontext structure via an offset from the signal handler
48 frame.
49 The following constants were determined by experimentation on AIX 3.2. */
50 #define SIG_FRAME_PC_OFFSET 96
51 #define SIG_FRAME_LR_OFFSET 108
52 #define SIG_FRAME_FP_OFFSET 284
53
54 /* To be used by skip_prologue. */
55
56 struct rs6000_framedata
57 {
58 int offset; /* total size of frame --- the distance
59 by which we decrement sp to allocate
60 the frame */
61 int saved_gpr; /* smallest # of saved gpr */
62 int saved_fpr; /* smallest # of saved fpr */
63 int alloca_reg; /* alloca register number (frame ptr) */
64 char frameless; /* true if frameless functions. */
65 char nosavedpc; /* true if pc not saved. */
66 int gpr_offset; /* offset of saved gprs from prev sp */
67 int fpr_offset; /* offset of saved fprs from prev sp */
68 int lr_offset; /* offset of saved lr */
69 int cr_offset; /* offset of saved cr */
70 };
71
72 /* Description of a single register. */
73
74 struct reg
75 {
76 char *name; /* name of register */
77 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
78 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
79 unsigned char fpr; /* whether register is floating-point */
80 };
81
82 /* Private data that this module attaches to struct gdbarch. */
83
84 struct gdbarch_tdep
85 {
86 int wordsize; /* size in bytes of fixed-point word */
87 int osabi; /* OS / ABI from ELF header */
88 int *regoff; /* byte offsets in register arrays */
89 const struct reg *regs; /* from current variant */
90 };
91
92 /* Return the current architecture's gdbarch_tdep structure. */
93
94 #define TDEP gdbarch_tdep (current_gdbarch)
95
96 /* Breakpoint shadows for the single step instructions will be kept here. */
97
98 static struct sstep_breaks
99 {
100 /* Address, or 0 if this is not in use. */
101 CORE_ADDR address;
102 /* Shadow contents. */
103 char data[4];
104 }
105 stepBreaks[2];
106
107 /* Hook for determining the TOC address when calling functions in the
108 inferior under AIX. The initialization code in rs6000-nat.c sets
109 this hook to point to find_toc_address. */
110
111 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
112
113 /* Hook to set the current architecture when starting a child process.
114 rs6000-nat.c sets this. */
115
116 void (*rs6000_set_host_arch_hook) (int) = NULL;
117
118 /* Static function prototypes */
119
120 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
121 CORE_ADDR safety);
122 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
123 struct rs6000_framedata *);
124 static void frame_get_saved_regs (struct frame_info * fi,
125 struct rs6000_framedata * fdatap);
126 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
127
128 /* Read a LEN-byte address from debugged memory address MEMADDR. */
129
130 static CORE_ADDR
131 read_memory_addr (CORE_ADDR memaddr, int len)
132 {
133 return read_memory_unsigned_integer (memaddr, len);
134 }
135
136 static CORE_ADDR
137 rs6000_skip_prologue (CORE_ADDR pc)
138 {
139 struct rs6000_framedata frame;
140 pc = skip_prologue (pc, 0, &frame);
141 return pc;
142 }
143
144
145 /* Fill in fi->saved_regs */
146
147 struct frame_extra_info
148 {
149 /* Functions calling alloca() change the value of the stack
150 pointer. We need to use initial stack pointer (which is saved in
151 r31 by gcc) in such cases. If a compiler emits traceback table,
152 then we should use the alloca register specified in traceback
153 table. FIXME. */
154 CORE_ADDR initial_sp; /* initial stack pointer. */
155 };
156
157 void
158 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
159 {
160 fi->extra_info = (struct frame_extra_info *)
161 frame_obstack_alloc (sizeof (struct frame_extra_info));
162 fi->extra_info->initial_sp = 0;
163 if (fi->next != (CORE_ADDR) 0
164 && fi->pc < TEXT_SEGMENT_BASE)
165 /* We're in get_prev_frame */
166 /* and this is a special signal frame. */
167 /* (fi->pc will be some low address in the kernel, */
168 /* to which the signal handler returns). */
169 fi->signal_handler_caller = 1;
170 }
171
172 /* Put here the code to store, into a struct frame_saved_regs,
173 the addresses of the saved registers of frame described by FRAME_INFO.
174 This includes special registers such as pc and fp saved in special
175 ways in the stack frame. sp is even more special:
176 the address we return for it IS the sp for the next frame. */
177
178 /* In this implementation for RS/6000, we do *not* save sp. I am
179 not sure if it will be needed. The following function takes care of gpr's
180 and fpr's only. */
181
182 void
183 rs6000_frame_init_saved_regs (struct frame_info *fi)
184 {
185 frame_get_saved_regs (fi, NULL);
186 }
187
188 static CORE_ADDR
189 rs6000_frame_args_address (struct frame_info *fi)
190 {
191 if (fi->extra_info->initial_sp != 0)
192 return fi->extra_info->initial_sp;
193 else
194 return frame_initial_stack_address (fi);
195 }
196
197 /* Immediately after a function call, return the saved pc.
198 Can't go through the frames for this because on some machines
199 the new frame is not set up until the new function executes
200 some instructions. */
201
202 static CORE_ADDR
203 rs6000_saved_pc_after_call (struct frame_info *fi)
204 {
205 return read_register (PPC_LR_REGNUM);
206 }
207
208 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
209
210 static CORE_ADDR
211 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
212 {
213 CORE_ADDR dest;
214 int immediate;
215 int absolute;
216 int ext_op;
217
218 absolute = (int) ((instr >> 1) & 1);
219
220 switch (opcode)
221 {
222 case 18:
223 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
224 if (absolute)
225 dest = immediate;
226 else
227 dest = pc + immediate;
228 break;
229
230 case 16:
231 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
232 if (absolute)
233 dest = immediate;
234 else
235 dest = pc + immediate;
236 break;
237
238 case 19:
239 ext_op = (instr >> 1) & 0x3ff;
240
241 if (ext_op == 16) /* br conditional register */
242 {
243 dest = read_register (PPC_LR_REGNUM) & ~3;
244
245 /* If we are about to return from a signal handler, dest is
246 something like 0x3c90. The current frame is a signal handler
247 caller frame, upon completion of the sigreturn system call
248 execution will return to the saved PC in the frame. */
249 if (dest < TEXT_SEGMENT_BASE)
250 {
251 struct frame_info *fi;
252
253 fi = get_current_frame ();
254 if (fi != NULL)
255 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
256 TDEP->wordsize);
257 }
258 }
259
260 else if (ext_op == 528) /* br cond to count reg */
261 {
262 dest = read_register (PPC_CTR_REGNUM) & ~3;
263
264 /* If we are about to execute a system call, dest is something
265 like 0x22fc or 0x3b00. Upon completion the system call
266 will return to the address in the link register. */
267 if (dest < TEXT_SEGMENT_BASE)
268 dest = read_register (PPC_LR_REGNUM) & ~3;
269 }
270 else
271 return -1;
272 break;
273
274 default:
275 return -1;
276 }
277 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
278 }
279
280
281 /* Sequence of bytes for breakpoint instruction. */
282
283 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
284 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
285
286 static unsigned char *
287 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
288 {
289 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
290 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
291 *bp_size = 4;
292 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
293 return big_breakpoint;
294 else
295 return little_breakpoint;
296 }
297
298
299 /* AIX does not support PT_STEP. Simulate it. */
300
301 void
302 rs6000_software_single_step (enum target_signal signal,
303 int insert_breakpoints_p)
304 {
305 #define INSNLEN(OPCODE) 4
306
307 static char le_breakp[] = LITTLE_BREAKPOINT;
308 static char be_breakp[] = BIG_BREAKPOINT;
309 char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
310 int ii, insn;
311 CORE_ADDR loc;
312 CORE_ADDR breaks[2];
313 int opcode;
314
315 if (insert_breakpoints_p)
316 {
317
318 loc = read_pc ();
319
320 insn = read_memory_integer (loc, 4);
321
322 breaks[0] = loc + INSNLEN (insn);
323 opcode = insn >> 26;
324 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
325
326 /* Don't put two breakpoints on the same address. */
327 if (breaks[1] == breaks[0])
328 breaks[1] = -1;
329
330 stepBreaks[1].address = 0;
331
332 for (ii = 0; ii < 2; ++ii)
333 {
334
335 /* ignore invalid breakpoint. */
336 if (breaks[ii] == -1)
337 continue;
338
339 read_memory (breaks[ii], stepBreaks[ii].data, 4);
340
341 write_memory (breaks[ii], breakp, 4);
342 stepBreaks[ii].address = breaks[ii];
343 }
344
345 }
346 else
347 {
348
349 /* remove step breakpoints. */
350 for (ii = 0; ii < 2; ++ii)
351 if (stepBreaks[ii].address != 0)
352 write_memory
353 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
354
355 }
356 errno = 0; /* FIXME, don't ignore errors! */
357 /* What errors? {read,write}_memory call error(). */
358 }
359
360
361 /* return pc value after skipping a function prologue and also return
362 information about a function frame.
363
364 in struct rs6000_framedata fdata:
365 - frameless is TRUE, if function does not have a frame.
366 - nosavedpc is TRUE, if function does not save %pc value in its frame.
367 - offset is the initial size of this stack frame --- the amount by
368 which we decrement the sp to allocate the frame.
369 - saved_gpr is the number of the first saved gpr.
370 - saved_fpr is the number of the first saved fpr.
371 - alloca_reg is the number of the register used for alloca() handling.
372 Otherwise -1.
373 - gpr_offset is the offset of the first saved gpr from the previous frame.
374 - fpr_offset is the offset of the first saved fpr from the previous frame.
375 - lr_offset is the offset of the saved lr
376 - cr_offset is the offset of the saved cr
377 */
378
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
389
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
396 static CORE_ADDR
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398 {
399 struct symtab_and_line prologue_sal;
400
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
403 {
404 int i;
405 CORE_ADDR addr = prologue_sal.end;
406
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
413 instruction.) */
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
416 i--)
417 {
418 struct symtab_and_line sal;
419
420 sal = find_pc_line (addr, 0);
421 if (sal.line == 0)
422 break;
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
425 {
426 prologue_sal = sal;
427 }
428 addr = sal.end;
429 }
430
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
433 }
434 return lim_pc;
435 }
436
437
438 static CORE_ADDR
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
440 {
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 char buf[4];
444 unsigned long op;
445 long offset = 0;
446 int lr_reg = -1;
447 int cr_reg = -1;
448 int reg;
449 int framep = 0;
450 int minimal_toc_loaded = 0;
451 int prev_insn_was_prologue_insn = 1;
452 int num_skip_non_prologue_insns = 0;
453
454 /* Attempt to find the end of the prologue when no limit is specified.
455 Note that refine_prologue_limit() has been written so that it may
456 be used to "refine" the limits of non-zero PC values too, but this
457 is only safe if we 1) trust the line information provided by the
458 compiler and 2) iterate enough to actually find the end of the
459 prologue.
460
461 It may become a good idea at some point (for both performance and
462 accuracy) to unconditionally call refine_prologue_limit(). But,
463 until we can make a clear determination that this is beneficial,
464 we'll play it safe and only use it to obtain a limit when none
465 has been specified. */
466 if (lim_pc == 0)
467 lim_pc = refine_prologue_limit (pc, lim_pc);
468
469 memset (fdata, 0, sizeof (struct rs6000_framedata));
470 fdata->saved_gpr = -1;
471 fdata->saved_fpr = -1;
472 fdata->alloca_reg = -1;
473 fdata->frameless = 1;
474 fdata->nosavedpc = 1;
475
476 for (;; pc += 4)
477 {
478 /* Sometimes it isn't clear if an instruction is a prologue
479 instruction or not. When we encounter one of these ambiguous
480 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
481 Otherwise, we'll assume that it really is a prologue instruction. */
482 if (prev_insn_was_prologue_insn)
483 last_prologue_pc = pc;
484
485 /* Stop scanning if we've hit the limit. */
486 if (lim_pc != 0 && pc >= lim_pc)
487 break;
488
489 prev_insn_was_prologue_insn = 1;
490
491 /* Fetch the instruction and convert it to an integer. */
492 if (target_read_memory (pc, buf, 4))
493 break;
494 op = extract_signed_integer (buf, 4);
495
496 if ((op & 0xfc1fffff) == 0x7c0802a6)
497 { /* mflr Rx */
498 lr_reg = (op & 0x03e00000) | 0x90010000;
499 continue;
500
501 }
502 else if ((op & 0xfc1fffff) == 0x7c000026)
503 { /* mfcr Rx */
504 cr_reg = (op & 0x03e00000) | 0x90010000;
505 continue;
506
507 }
508 else if ((op & 0xfc1f0000) == 0xd8010000)
509 { /* stfd Rx,NUM(r1) */
510 reg = GET_SRC_REG (op);
511 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
512 {
513 fdata->saved_fpr = reg;
514 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
515 }
516 continue;
517
518 }
519 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
520 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
521 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
522 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
523 {
524
525 reg = GET_SRC_REG (op);
526 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
527 {
528 fdata->saved_gpr = reg;
529 if ((op & 0xfc1f0003) == 0xf8010000)
530 op = (op >> 1) << 1;
531 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
532 }
533 continue;
534
535 }
536 else if ((op & 0xffff0000) == 0x60000000)
537 {
538 /* nop */
539 /* Allow nops in the prologue, but do not consider them to
540 be part of the prologue unless followed by other prologue
541 instructions. */
542 prev_insn_was_prologue_insn = 0;
543 continue;
544
545 }
546 else if ((op & 0xffff0000) == 0x3c000000)
547 { /* addis 0,0,NUM, used
548 for >= 32k frames */
549 fdata->offset = (op & 0x0000ffff) << 16;
550 fdata->frameless = 0;
551 continue;
552
553 }
554 else if ((op & 0xffff0000) == 0x60000000)
555 { /* ori 0,0,NUM, 2nd ha
556 lf of >= 32k frames */
557 fdata->offset |= (op & 0x0000ffff);
558 fdata->frameless = 0;
559 continue;
560
561 }
562 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
563 { /* st Rx,NUM(r1)
564 where Rx == lr */
565 fdata->lr_offset = SIGNED_SHORT (op) + offset;
566 fdata->nosavedpc = 0;
567 lr_reg = 0;
568 continue;
569
570 }
571 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
572 { /* st Rx,NUM(r1)
573 where Rx == cr */
574 fdata->cr_offset = SIGNED_SHORT (op) + offset;
575 cr_reg = 0;
576 continue;
577
578 }
579 else if (op == 0x48000005)
580 { /* bl .+4 used in
581 -mrelocatable */
582 continue;
583
584 }
585 else if (op == 0x48000004)
586 { /* b .+4 (xlc) */
587 break;
588
589 }
590 else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
591 in V.4 -mrelocatable */
592 op == 0x7fc0f214) && /* add r30,r0,r30, used
593 in V.4 -mrelocatable */
594 lr_reg == 0x901e0000)
595 {
596 continue;
597
598 }
599 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
600 in V.4 -mminimal-toc */
601 (op & 0xffff0000) == 0x3bde0000)
602 { /* addi 30,30,foo@l */
603 continue;
604
605 }
606 else if ((op & 0xfc000001) == 0x48000001)
607 { /* bl foo,
608 to save fprs??? */
609
610 fdata->frameless = 0;
611 /* Don't skip over the subroutine call if it is not within the first
612 three instructions of the prologue. */
613 if ((pc - orig_pc) > 8)
614 break;
615
616 op = read_memory_integer (pc + 4, 4);
617
618 /* At this point, make sure this is not a trampoline function
619 (a function that simply calls another functions, and nothing else).
620 If the next is not a nop, this branch was part of the function
621 prologue. */
622
623 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
624 break; /* don't skip over
625 this branch */
626 continue;
627
628 /* update stack pointer */
629 }
630 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
631 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
632 {
633 fdata->frameless = 0;
634 if ((op & 0xffff0003) == 0xf8210001)
635 op = (op >> 1) << 1;
636 fdata->offset = SIGNED_SHORT (op);
637 offset = fdata->offset;
638 continue;
639
640 }
641 else if (op == 0x7c21016e)
642 { /* stwux 1,1,0 */
643 fdata->frameless = 0;
644 offset = fdata->offset;
645 continue;
646
647 /* Load up minimal toc pointer */
648 }
649 else if ((op >> 22) == 0x20f
650 && !minimal_toc_loaded)
651 { /* l r31,... or l r30,... */
652 minimal_toc_loaded = 1;
653 continue;
654
655 /* move parameters from argument registers to local variable
656 registers */
657 }
658 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
659 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
660 (((op >> 21) & 31) <= 10) &&
661 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
662 {
663 continue;
664
665 /* store parameters in stack */
666 }
667 else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
668 (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
669 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
670 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
671 {
672 continue;
673
674 /* store parameters in stack via frame pointer */
675 }
676 else if (framep &&
677 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
679 (op & 0xfc1f0000) == 0xfc1f0000))
680 { /* frsp, fp?,NUM(r1) */
681 continue;
682
683 /* Set up frame pointer */
684 }
685 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
686 || op == 0x7c3f0b78)
687 { /* mr r31, r1 */
688 fdata->frameless = 0;
689 framep = 1;
690 fdata->alloca_reg = 31;
691 continue;
692
693 /* Another way to set up the frame pointer. */
694 }
695 else if ((op & 0xfc1fffff) == 0x38010000)
696 { /* addi rX, r1, 0x0 */
697 fdata->frameless = 0;
698 framep = 1;
699 fdata->alloca_reg = (op & ~0x38010000) >> 21;
700 continue;
701
702 }
703 else
704 {
705 /* Not a recognized prologue instruction.
706 Handle optimizer code motions into the prologue by continuing
707 the search if we have no valid frame yet or if the return
708 address is not yet saved in the frame. */
709 if (fdata->frameless == 0
710 && (lr_reg == -1 || fdata->nosavedpc == 0))
711 break;
712
713 if (op == 0x4e800020 /* blr */
714 || op == 0x4e800420) /* bctr */
715 /* Do not scan past epilogue in frameless functions or
716 trampolines. */
717 break;
718 if ((op & 0xf4000000) == 0x40000000) /* bxx */
719 /* Never skip branches. */
720 break;
721
722 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
723 /* Do not scan too many insns, scanning insns is expensive with
724 remote targets. */
725 break;
726
727 /* Continue scanning. */
728 prev_insn_was_prologue_insn = 0;
729 continue;
730 }
731 }
732
733 #if 0
734 /* I have problems with skipping over __main() that I need to address
735 * sometime. Previously, I used to use misc_function_vector which
736 * didn't work as well as I wanted to be. -MGO */
737
738 /* If the first thing after skipping a prolog is a branch to a function,
739 this might be a call to an initializer in main(), introduced by gcc2.
740 We'd like to skip over it as well. Fortunately, xlc does some extra
741 work before calling a function right after a prologue, thus we can
742 single out such gcc2 behaviour. */
743
744
745 if ((op & 0xfc000001) == 0x48000001)
746 { /* bl foo, an initializer function? */
747 op = read_memory_integer (pc + 4, 4);
748
749 if (op == 0x4def7b82)
750 { /* cror 0xf, 0xf, 0xf (nop) */
751
752 /* check and see if we are in main. If so, skip over this initializer
753 function as well. */
754
755 tmp = find_pc_misc_function (pc);
756 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
757 return pc + 8;
758 }
759 }
760 #endif /* 0 */
761
762 fdata->offset = -fdata->offset;
763 return last_prologue_pc;
764 }
765
766
767 /*************************************************************************
768 Support for creating pushing a dummy frame into the stack, and popping
769 frames, etc.
770 *************************************************************************/
771
772
773 /* Pop the innermost frame, go back to the caller. */
774
775 static void
776 rs6000_pop_frame (void)
777 {
778 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
779 struct rs6000_framedata fdata;
780 struct frame_info *frame = get_current_frame ();
781 int ii, wordsize;
782
783 pc = read_pc ();
784 sp = FRAME_FP (frame);
785
786 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
787 {
788 generic_pop_dummy_frame ();
789 flush_cached_frames ();
790 return;
791 }
792
793 /* Make sure that all registers are valid. */
794 read_register_bytes (0, NULL, REGISTER_BYTES);
795
796 /* figure out previous %pc value. If the function is frameless, it is
797 still in the link register, otherwise walk the frames and retrieve the
798 saved %pc value in the previous frame. */
799
800 addr = get_pc_function_start (frame->pc);
801 (void) skip_prologue (addr, frame->pc, &fdata);
802
803 wordsize = TDEP->wordsize;
804 if (fdata.frameless)
805 prev_sp = sp;
806 else
807 prev_sp = read_memory_addr (sp, wordsize);
808 if (fdata.lr_offset == 0)
809 lr = read_register (PPC_LR_REGNUM);
810 else
811 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
812
813 /* reset %pc value. */
814 write_register (PC_REGNUM, lr);
815
816 /* reset register values if any was saved earlier. */
817
818 if (fdata.saved_gpr != -1)
819 {
820 addr = prev_sp + fdata.gpr_offset;
821 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
822 {
823 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
824 addr += wordsize;
825 }
826 }
827
828 if (fdata.saved_fpr != -1)
829 {
830 addr = prev_sp + fdata.fpr_offset;
831 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
832 {
833 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
834 addr += 8;
835 }
836 }
837
838 write_register (SP_REGNUM, prev_sp);
839 target_store_registers (-1);
840 flush_cached_frames ();
841 }
842
843 /* Fixup the call sequence of a dummy function, with the real function
844 address. Its arguments will be passed by gdb. */
845
846 static void
847 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
848 int nargs, value_ptr *args, struct type *type,
849 int gcc_p)
850 {
851 #define TOC_ADDR_OFFSET 20
852 #define TARGET_ADDR_OFFSET 28
853
854 int ii;
855 CORE_ADDR target_addr;
856
857 if (rs6000_find_toc_address_hook != NULL)
858 {
859 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
860 write_register (PPC_TOC_REGNUM, tocvalue);
861 }
862 }
863
864 /* Pass the arguments in either registers, or in the stack. In RS/6000,
865 the first eight words of the argument list (that might be less than
866 eight parameters if some parameters occupy more than one word) are
867 passed in r3..r10 registers. float and double parameters are
868 passed in fpr's, in addition to that. Rest of the parameters if any
869 are passed in user stack. There might be cases in which half of the
870 parameter is copied into registers, the other half is pushed into
871 stack.
872
873 Stack must be aligned on 64-bit boundaries when synthesizing
874 function calls.
875
876 If the function is returning a structure, then the return address is passed
877 in r3, then the first 7 words of the parameters can be passed in registers,
878 starting from r4. */
879
880 static CORE_ADDR
881 rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
882 int struct_return, CORE_ADDR struct_addr)
883 {
884 int ii;
885 int len = 0;
886 int argno; /* current argument number */
887 int argbytes; /* current argument byte */
888 char tmp_buffer[50];
889 int f_argno = 0; /* current floating point argno */
890 int wordsize = TDEP->wordsize;
891
892 value_ptr arg = 0;
893 struct type *type;
894
895 CORE_ADDR saved_sp;
896
897 /* The first eight words of ther arguments are passed in registers. Copy
898 them appropriately.
899
900 If the function is returning a `struct', then the first word (which
901 will be passed in r3) is used for struct return address. In that
902 case we should advance one word and start from r4 register to copy
903 parameters. */
904
905 ii = struct_return ? 1 : 0;
906
907 /*
908 effectively indirect call... gcc does...
909
910 return_val example( float, int);
911
912 eabi:
913 float in fp0, int in r3
914 offset of stack on overflow 8/16
915 for varargs, must go by type.
916 power open:
917 float in r3&r4, int in r5
918 offset of stack on overflow different
919 both:
920 return in r3 or f0. If no float, must study how gcc emulates floats;
921 pay attention to arg promotion.
922 User may have to cast\args to handle promotion correctly
923 since gdb won't know if prototype supplied or not.
924 */
925
926 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
927 {
928 int reg_size = REGISTER_RAW_SIZE (ii + 3);
929
930 arg = args[argno];
931 type = check_typedef (VALUE_TYPE (arg));
932 len = TYPE_LENGTH (type);
933
934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
935 {
936
937 /* floating point arguments are passed in fpr's, as well as gpr's.
938 There are 13 fpr's reserved for passing parameters. At this point
939 there is no way we would run out of them. */
940
941 if (len > 8)
942 printf_unfiltered (
943 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
944
945 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
946 VALUE_CONTENTS (arg),
947 len);
948 ++f_argno;
949 }
950
951 if (len > reg_size)
952 {
953
954 /* Argument takes more than one register. */
955 while (argbytes < len)
956 {
957 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
958 memcpy (&registers[REGISTER_BYTE (ii + 3)],
959 ((char *) VALUE_CONTENTS (arg)) + argbytes,
960 (len - argbytes) > reg_size
961 ? reg_size : len - argbytes);
962 ++ii, argbytes += reg_size;
963
964 if (ii >= 8)
965 goto ran_out_of_registers_for_arguments;
966 }
967 argbytes = 0;
968 --ii;
969 }
970 else
971 { /* Argument can fit in one register. No problem. */
972 int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
973 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
974 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
975 VALUE_CONTENTS (arg), len);
976 }
977 ++argno;
978 }
979
980 ran_out_of_registers_for_arguments:
981
982 saved_sp = read_sp ();
983 #ifndef ELF_OBJECT_FORMAT
984 /* location for 8 parameters are always reserved. */
985 sp -= wordsize * 8;
986
987 /* another six words for back chain, TOC register, link register, etc. */
988 sp -= wordsize * 6;
989
990 /* stack pointer must be quadword aligned */
991 sp &= -16;
992 #endif
993
994 /* if there are more arguments, allocate space for them in
995 the stack, then push them starting from the ninth one. */
996
997 if ((argno < nargs) || argbytes)
998 {
999 int space = 0, jj;
1000
1001 if (argbytes)
1002 {
1003 space += ((len - argbytes + 3) & -4);
1004 jj = argno + 1;
1005 }
1006 else
1007 jj = argno;
1008
1009 for (; jj < nargs; ++jj)
1010 {
1011 value_ptr val = args[jj];
1012 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1013 }
1014
1015 /* add location required for the rest of the parameters */
1016 space = (space + 15) & -16;
1017 sp -= space;
1018
1019 /* This is another instance we need to be concerned about securing our
1020 stack space. If we write anything underneath %sp (r1), we might conflict
1021 with the kernel who thinks he is free to use this area. So, update %sp
1022 first before doing anything else. */
1023
1024 write_register (SP_REGNUM, sp);
1025
1026 /* if the last argument copied into the registers didn't fit there
1027 completely, push the rest of it into stack. */
1028
1029 if (argbytes)
1030 {
1031 write_memory (sp + 24 + (ii * 4),
1032 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1033 len - argbytes);
1034 ++argno;
1035 ii += ((len - argbytes + 3) & -4) / 4;
1036 }
1037
1038 /* push the rest of the arguments into stack. */
1039 for (; argno < nargs; ++argno)
1040 {
1041
1042 arg = args[argno];
1043 type = check_typedef (VALUE_TYPE (arg));
1044 len = TYPE_LENGTH (type);
1045
1046
1047 /* float types should be passed in fpr's, as well as in the stack. */
1048 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1049 {
1050
1051 if (len > 8)
1052 printf_unfiltered (
1053 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1054
1055 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1056 VALUE_CONTENTS (arg),
1057 len);
1058 ++f_argno;
1059 }
1060
1061 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1062 ii += ((len + 3) & -4) / 4;
1063 }
1064 }
1065 else
1066 /* Secure stack areas first, before doing anything else. */
1067 write_register (SP_REGNUM, sp);
1068
1069 /* set back chain properly */
1070 store_address (tmp_buffer, 4, saved_sp);
1071 write_memory (sp, tmp_buffer, 4);
1072
1073 target_store_registers (-1);
1074 return sp;
1075 }
1076
1077 /* Function: ppc_push_return_address (pc, sp)
1078 Set up the return address for the inferior function call. */
1079
1080 static CORE_ADDR
1081 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1082 {
1083 write_register (PPC_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1084 return sp;
1085 }
1086
1087 /* Extract a function return value of type TYPE from raw register array
1088 REGBUF, and copy that return value into VALBUF in virtual format. */
1089
1090 static void
1091 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1092 {
1093 int offset = 0;
1094
1095 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1096 {
1097
1098 double dd;
1099 float ff;
1100 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1101 We need to truncate the return value into float size (4 byte) if
1102 necessary. */
1103
1104 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1105 memcpy (valbuf,
1106 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1107 TYPE_LENGTH (valtype));
1108 else
1109 { /* float */
1110 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1111 ff = (float) dd;
1112 memcpy (valbuf, &ff, sizeof (float));
1113 }
1114 }
1115 else
1116 {
1117 /* return value is copied starting from r3. */
1118 if (TARGET_BYTE_ORDER == BIG_ENDIAN
1119 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1120 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1121
1122 memcpy (valbuf,
1123 regbuf + REGISTER_BYTE (3) + offset,
1124 TYPE_LENGTH (valtype));
1125 }
1126 }
1127
1128 /* Keep structure return address in this variable.
1129 FIXME: This is a horrid kludge which should not be allowed to continue
1130 living. This only allows a single nested call to a structure-returning
1131 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1132
1133 static CORE_ADDR rs6000_struct_return_address;
1134
1135 /* Indirect function calls use a piece of trampoline code to do context
1136 switching, i.e. to set the new TOC table. Skip such code if we are on
1137 its first instruction (as when we have single-stepped to here).
1138 Also skip shared library trampoline code (which is different from
1139 indirect function call trampolines).
1140 Result is desired PC to step until, or NULL if we are not in
1141 trampoline code. */
1142
1143 CORE_ADDR
1144 rs6000_skip_trampoline_code (CORE_ADDR pc)
1145 {
1146 register unsigned int ii, op;
1147 CORE_ADDR solib_target_pc;
1148
1149 static unsigned trampoline_code[] =
1150 {
1151 0x800b0000, /* l r0,0x0(r11) */
1152 0x90410014, /* st r2,0x14(r1) */
1153 0x7c0903a6, /* mtctr r0 */
1154 0x804b0004, /* l r2,0x4(r11) */
1155 0x816b0008, /* l r11,0x8(r11) */
1156 0x4e800420, /* bctr */
1157 0x4e800020, /* br */
1158 0
1159 };
1160
1161 /* If pc is in a shared library trampoline, return its target. */
1162 solib_target_pc = find_solib_trampoline_target (pc);
1163 if (solib_target_pc)
1164 return solib_target_pc;
1165
1166 for (ii = 0; trampoline_code[ii]; ++ii)
1167 {
1168 op = read_memory_integer (pc + (ii * 4), 4);
1169 if (op != trampoline_code[ii])
1170 return 0;
1171 }
1172 ii = read_register (11); /* r11 holds destination addr */
1173 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1174 return pc;
1175 }
1176
1177 /* Determines whether the function FI has a frame on the stack or not. */
1178
1179 int
1180 rs6000_frameless_function_invocation (struct frame_info *fi)
1181 {
1182 CORE_ADDR func_start;
1183 struct rs6000_framedata fdata;
1184
1185 /* Don't even think about framelessness except on the innermost frame
1186 or if the function was interrupted by a signal. */
1187 if (fi->next != NULL && !fi->next->signal_handler_caller)
1188 return 0;
1189
1190 func_start = get_pc_function_start (fi->pc);
1191
1192 /* If we failed to find the start of the function, it is a mistake
1193 to inspect the instructions. */
1194
1195 if (!func_start)
1196 {
1197 /* A frame with a zero PC is usually created by dereferencing a NULL
1198 function pointer, normally causing an immediate core dump of the
1199 inferior. Mark function as frameless, as the inferior has no chance
1200 of setting up a stack frame. */
1201 if (fi->pc == 0)
1202 return 1;
1203 else
1204 return 0;
1205 }
1206
1207 (void) skip_prologue (func_start, fi->pc, &fdata);
1208 return fdata.frameless;
1209 }
1210
1211 /* Return the PC saved in a frame */
1212
1213 CORE_ADDR
1214 rs6000_frame_saved_pc (struct frame_info *fi)
1215 {
1216 CORE_ADDR func_start;
1217 struct rs6000_framedata fdata;
1218 int wordsize = TDEP->wordsize;
1219
1220 if (fi->signal_handler_caller)
1221 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1222
1223 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1224 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1225
1226 func_start = get_pc_function_start (fi->pc);
1227
1228 /* If we failed to find the start of the function, it is a mistake
1229 to inspect the instructions. */
1230 if (!func_start)
1231 return 0;
1232
1233 (void) skip_prologue (func_start, fi->pc, &fdata);
1234
1235 if (fdata.lr_offset == 0 && fi->next != NULL)
1236 {
1237 if (fi->next->signal_handler_caller)
1238 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1239 wordsize);
1240 else
1241 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1242 wordsize);
1243 }
1244
1245 if (fdata.lr_offset == 0)
1246 return read_register (PPC_LR_REGNUM);
1247
1248 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1249 }
1250
1251 /* If saved registers of frame FI are not known yet, read and cache them.
1252 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1253 in which case the framedata are read. */
1254
1255 static void
1256 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1257 {
1258 CORE_ADDR frame_addr;
1259 struct rs6000_framedata work_fdata;
1260 int wordsize = TDEP->wordsize;
1261
1262 if (fi->saved_regs)
1263 return;
1264
1265 if (fdatap == NULL)
1266 {
1267 fdatap = &work_fdata;
1268 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1269 }
1270
1271 frame_saved_regs_zalloc (fi);
1272
1273 /* If there were any saved registers, figure out parent's stack
1274 pointer. */
1275 /* The following is true only if the frame doesn't have a call to
1276 alloca(), FIXME. */
1277
1278 if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
1279 && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
1280 frame_addr = 0;
1281 else if (fi->prev && fi->prev->frame)
1282 frame_addr = fi->prev->frame;
1283 else
1284 frame_addr = read_memory_addr (fi->frame, wordsize);
1285
1286 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1287 All fpr's from saved_fpr to fp31 are saved. */
1288
1289 if (fdatap->saved_fpr >= 0)
1290 {
1291 int i;
1292 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1293 for (i = fdatap->saved_fpr; i < 32; i++)
1294 {
1295 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1296 fpr_addr += 8;
1297 }
1298 }
1299
1300 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1301 All gpr's from saved_gpr to gpr31 are saved. */
1302
1303 if (fdatap->saved_gpr >= 0)
1304 {
1305 int i;
1306 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1307 for (i = fdatap->saved_gpr; i < 32; i++)
1308 {
1309 fi->saved_regs[i] = gpr_addr;
1310 gpr_addr += wordsize;
1311 }
1312 }
1313
1314 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1315 the CR. */
1316 if (fdatap->cr_offset != 0)
1317 fi->saved_regs[PPC_CR_REGNUM] = frame_addr + fdatap->cr_offset;
1318
1319 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1320 the LR. */
1321 if (fdatap->lr_offset != 0)
1322 fi->saved_regs[PPC_LR_REGNUM] = frame_addr + fdatap->lr_offset;
1323 }
1324
1325 /* Return the address of a frame. This is the inital %sp value when the frame
1326 was first allocated. For functions calling alloca(), it might be saved in
1327 an alloca register. */
1328
1329 static CORE_ADDR
1330 frame_initial_stack_address (struct frame_info *fi)
1331 {
1332 CORE_ADDR tmpaddr;
1333 struct rs6000_framedata fdata;
1334 struct frame_info *callee_fi;
1335
1336 /* if the initial stack pointer (frame address) of this frame is known,
1337 just return it. */
1338
1339 if (fi->extra_info->initial_sp)
1340 return fi->extra_info->initial_sp;
1341
1342 /* find out if this function is using an alloca register.. */
1343
1344 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1345
1346 /* if saved registers of this frame are not known yet, read and cache them. */
1347
1348 if (!fi->saved_regs)
1349 frame_get_saved_regs (fi, &fdata);
1350
1351 /* If no alloca register used, then fi->frame is the value of the %sp for
1352 this frame, and it is good enough. */
1353
1354 if (fdata.alloca_reg < 0)
1355 {
1356 fi->extra_info->initial_sp = fi->frame;
1357 return fi->extra_info->initial_sp;
1358 }
1359
1360 /* This function has an alloca register. If this is the top-most frame
1361 (with the lowest address), the value in alloca register is good. */
1362
1363 if (!fi->next)
1364 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1365
1366 /* Otherwise, this is a caller frame. Callee has usually already saved
1367 registers, but there are exceptions (such as when the callee
1368 has no parameters). Find the address in which caller's alloca
1369 register is saved. */
1370
1371 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1372 {
1373
1374 if (!callee_fi->saved_regs)
1375 frame_get_saved_regs (callee_fi, NULL);
1376
1377 /* this is the address in which alloca register is saved. */
1378
1379 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1380 if (tmpaddr)
1381 {
1382 fi->extra_info->initial_sp =
1383 read_memory_addr (tmpaddr, TDEP->wordsize);
1384 return fi->extra_info->initial_sp;
1385 }
1386
1387 /* Go look into deeper levels of the frame chain to see if any one of
1388 the callees has saved alloca register. */
1389 }
1390
1391 /* If alloca register was not saved, by the callee (or any of its callees)
1392 then the value in the register is still good. */
1393
1394 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1395 return fi->extra_info->initial_sp;
1396 }
1397
1398 /* Describe the pointer in each stack frame to the previous stack frame
1399 (its caller). */
1400
1401 /* FRAME_CHAIN takes a frame's nominal address
1402 and produces the frame's chain-pointer. */
1403
1404 /* In the case of the RS/6000, the frame's nominal address
1405 is the address of a 4-byte word containing the calling frame's address. */
1406
1407 CORE_ADDR
1408 rs6000_frame_chain (struct frame_info *thisframe)
1409 {
1410 CORE_ADDR fp, fpp, lr;
1411 int wordsize = TDEP->wordsize;
1412
1413 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1414 return thisframe->frame; /* dummy frame same as caller's frame */
1415
1416 if (inside_entry_file (thisframe->pc) ||
1417 thisframe->pc == entry_point_address ())
1418 return 0;
1419
1420 if (thisframe->signal_handler_caller)
1421 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1422 wordsize);
1423 else if (thisframe->next != NULL
1424 && thisframe->next->signal_handler_caller
1425 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1426 /* A frameless function interrupted by a signal did not change the
1427 frame pointer. */
1428 fp = FRAME_FP (thisframe);
1429 else
1430 fp = read_memory_addr ((thisframe)->frame, wordsize);
1431
1432 lr = read_register (PPC_LR_REGNUM);
1433 if (lr == entry_point_address ())
1434 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1435 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1436 return fpp;
1437
1438 return fp;
1439 }
1440
1441 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1442 isn't available with that word size, return 0. */
1443
1444 static int
1445 regsize (const struct reg *reg, int wordsize)
1446 {
1447 return wordsize == 8 ? reg->sz64 : reg->sz32;
1448 }
1449
1450 /* Return the name of register number N, or null if no such register exists
1451 in the current architecture. */
1452
1453 static char *
1454 rs6000_register_name (int n)
1455 {
1456 struct gdbarch_tdep *tdep = TDEP;
1457 const struct reg *reg = tdep->regs + n;
1458
1459 if (!regsize (reg, tdep->wordsize))
1460 return NULL;
1461 return reg->name;
1462 }
1463
1464 /* Index within `registers' of the first byte of the space for
1465 register N. */
1466
1467 static int
1468 rs6000_register_byte (int n)
1469 {
1470 return TDEP->regoff[n];
1471 }
1472
1473 /* Return the number of bytes of storage in the actual machine representation
1474 for register N if that register is available, else return 0. */
1475
1476 static int
1477 rs6000_register_raw_size (int n)
1478 {
1479 struct gdbarch_tdep *tdep = TDEP;
1480 const struct reg *reg = tdep->regs + n;
1481 return regsize (reg, tdep->wordsize);
1482 }
1483
1484 /* Number of bytes of storage in the program's representation
1485 for register N. */
1486
1487 static int
1488 rs6000_register_virtual_size (int n)
1489 {
1490 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
1491 }
1492
1493 /* Return the GDB type object for the "standard" data type
1494 of data in register N. */
1495
1496 static struct type *
1497 rs6000_register_virtual_type (int n)
1498 {
1499 struct gdbarch_tdep *tdep = TDEP;
1500 const struct reg *reg = tdep->regs + n;
1501
1502 return reg->fpr ? builtin_type_double :
1503 regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
1504 builtin_type_int32;
1505 }
1506
1507 /* For the PowerPC, it appears that the debug info marks float parameters as
1508 floats regardless of whether the function is prototyped, but the actual
1509 values are always passed in as doubles. Tell gdb to always assume that
1510 floats are passed as doubles and then converted in the callee. */
1511
1512 static int
1513 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1514 {
1515 return 1;
1516 }
1517
1518 /* Return whether register N requires conversion when moving from raw format
1519 to virtual format.
1520
1521 The register format for RS/6000 floating point registers is always
1522 double, we need a conversion if the memory format is float. */
1523
1524 static int
1525 rs6000_register_convertible (int n)
1526 {
1527 const struct reg *reg = TDEP->regs + n;
1528 return reg->fpr;
1529 }
1530
1531 /* Convert data from raw format for register N in buffer FROM
1532 to virtual format with type TYPE in buffer TO. */
1533
1534 static void
1535 rs6000_register_convert_to_virtual (int n, struct type *type,
1536 char *from, char *to)
1537 {
1538 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1539 {
1540 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1541 store_floating (to, TYPE_LENGTH (type), val);
1542 }
1543 else
1544 memcpy (to, from, REGISTER_RAW_SIZE (n));
1545 }
1546
1547 /* Convert data from virtual format with type TYPE in buffer FROM
1548 to raw format for register N in buffer TO. */
1549
1550 static void
1551 rs6000_register_convert_to_raw (struct type *type, int n,
1552 char *from, char *to)
1553 {
1554 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1555 {
1556 double val = extract_floating (from, TYPE_LENGTH (type));
1557 store_floating (to, REGISTER_RAW_SIZE (n), val);
1558 }
1559 else
1560 memcpy (to, from, REGISTER_RAW_SIZE (n));
1561 }
1562
1563 /* Store the address of the place in which to copy the structure the
1564 subroutine will return. This is called from call_function.
1565
1566 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1567 In function return, callee is not responsible of returning this address
1568 back. Since gdb needs to find it, we will store in a designated variable
1569 `rs6000_struct_return_address'. */
1570
1571 static void
1572 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1573 {
1574 write_register (3, addr);
1575 rs6000_struct_return_address = addr;
1576 }
1577
1578 /* Write into appropriate registers a function return value
1579 of type TYPE, given in virtual format. */
1580
1581 static void
1582 rs6000_store_return_value (struct type *type, char *valbuf)
1583 {
1584 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1585
1586 /* Floating point values are returned starting from FPR1 and up.
1587 Say a double_double_double type could be returned in
1588 FPR1/FPR2/FPR3 triple. */
1589
1590 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1591 TYPE_LENGTH (type));
1592 else
1593 /* Everything else is returned in GPR3 and up. */
1594 write_register_bytes (REGISTER_BYTE (PPC_GP0_REGNUM + 3), valbuf,
1595 TYPE_LENGTH (type));
1596 }
1597
1598 /* Extract from an array REGBUF containing the (raw) register state
1599 the address in which a function should return its structure value,
1600 as a CORE_ADDR (or an expression that can be used as one). */
1601
1602 static CORE_ADDR
1603 rs6000_extract_struct_value_address (char *regbuf)
1604 {
1605 return rs6000_struct_return_address;
1606 }
1607
1608 /* Return whether PC is in a dummy function call.
1609
1610 FIXME: This just checks for the end of the stack, which is broken
1611 for things like stepping through gcc nested function stubs. */
1612
1613 static int
1614 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1615 {
1616 return sp < pc && pc < fp;
1617 }
1618
1619 /* Hook called when a new child process is started. */
1620
1621 void
1622 rs6000_create_inferior (int pid)
1623 {
1624 if (rs6000_set_host_arch_hook)
1625 rs6000_set_host_arch_hook (pid);
1626 }
1627 \f
1628 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1629
1630 Usually a function pointer's representation is simply the address
1631 of the function. On the RS/6000 however, a function pointer is
1632 represented by a pointer to a TOC entry. This TOC entry contains
1633 three words, the first word is the address of the function, the
1634 second word is the TOC pointer (r2), and the third word is the
1635 static chain value. Throughout GDB it is currently assumed that a
1636 function pointer contains the address of the function, which is not
1637 easy to fix. In addition, the conversion of a function address to
1638 a function pointer would require allocation of a TOC entry in the
1639 inferior's memory space, with all its drawbacks. To be able to
1640 call C++ virtual methods in the inferior (which are called via
1641 function pointers), find_function_addr uses this function to get the
1642 function address from a function pointer. */
1643
1644 /* Return real function address if ADDR (a function pointer) is in the data
1645 space and is therefore a special function pointer. */
1646
1647 CORE_ADDR
1648 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1649 {
1650 struct obj_section *s;
1651
1652 s = find_pc_section (addr);
1653 if (s && s->the_bfd_section->flags & SEC_CODE)
1654 return addr;
1655
1656 /* ADDR is in the data space, so it's a special function pointer. */
1657 return read_memory_addr (addr, TDEP->wordsize);
1658 }
1659 \f
1660
1661 /* Handling the various POWER/PowerPC variants. */
1662
1663
1664 /* The arrays here called registers_MUMBLE hold information about available
1665 registers.
1666
1667 For each family of PPC variants, I've tried to isolate out the
1668 common registers and put them up front, so that as long as you get
1669 the general family right, GDB will correctly identify the registers
1670 common to that family. The common register sets are:
1671
1672 For the 60x family: hid0 hid1 iabr dabr pir
1673
1674 For the 505 and 860 family: eie eid nri
1675
1676 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1677 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1678 pbu1 pbl2 pbu2
1679
1680 Most of these register groups aren't anything formal. I arrived at
1681 them by looking at the registers that occurred in more than one
1682 processor. */
1683
1684 /* Convenience macros for populating register arrays. */
1685
1686 /* Within another macro, convert S to a string. */
1687
1688 #define STR(s) #s
1689
1690 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1691 and 64 bits on 64-bit systems. */
1692 #define R(name) { STR(name), 4, 8, 0 }
1693
1694 /* Return a struct reg defining register NAME that's 32 bits on all
1695 systems. */
1696 #define R4(name) { STR(name), 4, 4, 0 }
1697
1698 /* Return a struct reg defining register NAME that's 64 bits on all
1699 systems. */
1700 #define R8(name) { STR(name), 8, 8, 0 }
1701
1702 /* Return a struct reg defining floating-point register NAME. */
1703 #define F(name) { STR(name), 8, 8, 1 }
1704
1705 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1706 systems and that doesn't exist on 64-bit systems. */
1707 #define R32(name) { STR(name), 4, 0, 0 }
1708
1709 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1710 systems and that doesn't exist on 32-bit systems. */
1711 #define R64(name) { STR(name), 0, 8, 0 }
1712
1713 /* Return a struct reg placeholder for a register that doesn't exist. */
1714 #define R0 { 0, 0, 0, 0 }
1715
1716 /* UISA registers common across all architectures, including POWER. */
1717
1718 #define COMMON_UISA_REGS \
1719 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1720 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1721 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1722 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1723 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1724 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1725 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1726 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1727 /* 64 */ R(pc), R(ps)
1728
1729 /* UISA-level SPRs for PowerPC. */
1730 #define PPC_UISA_SPRS \
1731 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
1732
1733 /* Segment registers, for PowerPC. */
1734 #define PPC_SEGMENT_REGS \
1735 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1736 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1737 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1738 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1739
1740 /* OEA SPRs for PowerPC. */
1741 #define PPC_OEA_SPRS \
1742 /* 87 */ R4(pvr), \
1743 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1744 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1745 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1746 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1747 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1748 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1749 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1750 /* 116 */ R4(dec), R(dabr), R4(ear)
1751
1752 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
1753 user-level SPR's. */
1754 static const struct reg registers_power[] =
1755 {
1756 COMMON_UISA_REGS,
1757 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
1758 };
1759
1760 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
1761 view of the PowerPC. */
1762 static const struct reg registers_powerpc[] =
1763 {
1764 COMMON_UISA_REGS,
1765 PPC_UISA_SPRS
1766 };
1767
1768 /* IBM PowerPC 403. */
1769 static const struct reg registers_403[] =
1770 {
1771 COMMON_UISA_REGS,
1772 PPC_UISA_SPRS,
1773 PPC_SEGMENT_REGS,
1774 PPC_OEA_SPRS,
1775 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1776 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1777 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1778 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1779 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1780 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
1781 };
1782
1783 /* IBM PowerPC 403GC. */
1784 static const struct reg registers_403GC[] =
1785 {
1786 COMMON_UISA_REGS,
1787 PPC_UISA_SPRS,
1788 PPC_SEGMENT_REGS,
1789 PPC_OEA_SPRS,
1790 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1791 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1792 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1793 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1794 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1795 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
1796 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
1797 /* 147 */ R(tbhu), R(tblu)
1798 };
1799
1800 /* Motorola PowerPC 505. */
1801 static const struct reg registers_505[] =
1802 {
1803 COMMON_UISA_REGS,
1804 PPC_UISA_SPRS,
1805 PPC_SEGMENT_REGS,
1806 PPC_OEA_SPRS,
1807 /* 119 */ R(eie), R(eid), R(nri)
1808 };
1809
1810 /* Motorola PowerPC 860 or 850. */
1811 static const struct reg registers_860[] =
1812 {
1813 COMMON_UISA_REGS,
1814 PPC_UISA_SPRS,
1815 PPC_SEGMENT_REGS,
1816 PPC_OEA_SPRS,
1817 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
1818 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
1819 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
1820 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
1821 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
1822 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
1823 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
1824 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
1825 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
1826 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
1827 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
1828 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
1829 };
1830
1831 /* Motorola PowerPC 601. Note that the 601 has different register numbers
1832 for reading and writing RTCU and RTCL. However, how one reads and writes a
1833 register is the stub's problem. */
1834 static const struct reg registers_601[] =
1835 {
1836 COMMON_UISA_REGS,
1837 PPC_UISA_SPRS,
1838 PPC_SEGMENT_REGS,
1839 PPC_OEA_SPRS,
1840 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1841 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
1842 };
1843
1844 /* Motorola PowerPC 602. */
1845 static const struct reg registers_602[] =
1846 {
1847 COMMON_UISA_REGS,
1848 PPC_UISA_SPRS,
1849 PPC_SEGMENT_REGS,
1850 PPC_OEA_SPRS,
1851 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
1852 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
1853 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
1854 };
1855
1856 /* Motorola/IBM PowerPC 603 or 603e. */
1857 static const struct reg registers_603[] =
1858 {
1859 COMMON_UISA_REGS,
1860 PPC_UISA_SPRS,
1861 PPC_SEGMENT_REGS,
1862 PPC_OEA_SPRS,
1863 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
1864 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
1865 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
1866 };
1867
1868 /* Motorola PowerPC 604 or 604e. */
1869 static const struct reg registers_604[] =
1870 {
1871 COMMON_UISA_REGS,
1872 PPC_UISA_SPRS,
1873 PPC_SEGMENT_REGS,
1874 PPC_OEA_SPRS,
1875 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1876 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
1877 /* 127 */ R(sia), R(sda)
1878 };
1879
1880 /* Motorola/IBM PowerPC 750 or 740. */
1881 static const struct reg registers_750[] =
1882 {
1883 COMMON_UISA_REGS,
1884 PPC_UISA_SPRS,
1885 PPC_SEGMENT_REGS,
1886 PPC_OEA_SPRS,
1887 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
1888 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
1889 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
1890 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
1891 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
1892 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
1893 };
1894
1895
1896 /* Information about a particular processor variant. */
1897
1898 struct variant
1899 {
1900 /* Name of this variant. */
1901 char *name;
1902
1903 /* English description of the variant. */
1904 char *description;
1905
1906 /* bfd_arch_info.arch corresponding to variant. */
1907 enum bfd_architecture arch;
1908
1909 /* bfd_arch_info.mach corresponding to variant. */
1910 unsigned long mach;
1911
1912 /* Table of register names; registers[R] is the name of the register
1913 number R. */
1914 int nregs;
1915 const struct reg *regs;
1916 };
1917
1918 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
1919
1920
1921 /* Information in this table comes from the following web sites:
1922 IBM: http://www.chips.ibm.com:80/products/embedded/
1923 Motorola: http://www.mot.com/SPS/PowerPC/
1924
1925 I'm sure I've got some of the variant descriptions not quite right.
1926 Please report any inaccuracies you find to GDB's maintainer.
1927
1928 If you add entries to this table, please be sure to allow the new
1929 value as an argument to the --with-cpu flag, in configure.in. */
1930
1931 static const struct variant variants[] =
1932 {
1933 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
1934 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
1935 {"power", "POWER user-level", bfd_arch_rs6000,
1936 bfd_mach_rs6k, num_registers (registers_power), registers_power},
1937 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
1938 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
1939 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
1940 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
1941 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
1942 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
1943 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
1944 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
1945 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
1946 604, num_registers (registers_604), registers_604},
1947 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
1948 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
1949 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
1950 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
1951 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
1952 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
1953 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
1954 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
1955
1956 /* FIXME: I haven't checked the register sets of the following. */
1957 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
1958 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
1959 {"a35", "PowerPC A35", bfd_arch_powerpc,
1960 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
1961 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
1962 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
1963 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
1964 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
1965 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
1966 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
1967
1968 {0, 0, 0, 0}
1969 };
1970
1971 #undef num_registers
1972
1973 /* Look up the variant named NAME in the `variants' table. Return a
1974 pointer to the struct variant, or null if we couldn't find it. */
1975
1976 static const struct variant *
1977 find_variant_by_name (char *name)
1978 {
1979 const struct variant *v;
1980
1981 for (v = variants; v->name; v++)
1982 if (!strcmp (name, v->name))
1983 return v;
1984
1985 return NULL;
1986 }
1987
1988 /* Return the variant corresponding to architecture ARCH and machine number
1989 MACH. If no such variant exists, return null. */
1990
1991 static const struct variant *
1992 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
1993 {
1994 const struct variant *v;
1995
1996 for (v = variants; v->name; v++)
1997 if (arch == v->arch && mach == v->mach)
1998 return v;
1999
2000 return NULL;
2001 }
2002
2003
2004
2005 \f
2006 static void
2007 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2008 {
2009 int *os_ident_ptr = obj;
2010 const char *name;
2011 unsigned int sectsize;
2012
2013 name = bfd_get_section_name (abfd, sect);
2014 sectsize = bfd_section_size (abfd, sect);
2015 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2016 {
2017 unsigned int name_length, data_length, note_type;
2018 char *note = alloca (sectsize);
2019
2020 bfd_get_section_contents (abfd, sect, note,
2021 (file_ptr) 0, (bfd_size_type) sectsize);
2022
2023 name_length = bfd_h_get_32 (abfd, note);
2024 data_length = bfd_h_get_32 (abfd, note + 4);
2025 note_type = bfd_h_get_32 (abfd, note + 8);
2026
2027 if (name_length == 4 && data_length == 16 && note_type == 1
2028 && strcmp (note + 12, "GNU") == 0)
2029 {
2030 int os_number = bfd_h_get_32 (abfd, note + 16);
2031
2032 /* The case numbers are from abi-tags in glibc */
2033 switch (os_number)
2034 {
2035 case 0 :
2036 *os_ident_ptr = ELFOSABI_LINUX;
2037 break;
2038 case 1 :
2039 *os_ident_ptr = ELFOSABI_HURD;
2040 break;
2041 case 2 :
2042 *os_ident_ptr = ELFOSABI_SOLARIS;
2043 break;
2044 default :
2045 internal_error (__FILE__, __LINE__,
2046 "process_note_abi_sections: unknown OS number %d",
2047 os_number);
2048 break;
2049 }
2050 }
2051 }
2052 }
2053
2054 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2055 executables. If it's not an ELF executable or if the OS/ABI couldn't
2056 be determined, simply return -1. */
2057
2058 static int
2059 get_elfosabi (bfd *abfd)
2060 {
2061 int elfosabi = -1;
2062
2063 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2064 {
2065 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2066
2067 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2068 that we're on a SYSV system. However, GNU/Linux uses a note section
2069 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2070 have to check the note sections too. */
2071 if (elfosabi == 0)
2072 {
2073 bfd_map_over_sections (abfd,
2074 process_note_abi_tag_sections,
2075 &elfosabi);
2076 }
2077 }
2078
2079 return elfosabi;
2080 }
2081
2082 \f
2083
2084 /* Initialize the current architecture based on INFO. If possible, re-use an
2085 architecture from ARCHES, which is a list of architectures already created
2086 during this debugging session.
2087
2088 Called e.g. at program startup, when reading a core file, and when reading
2089 a binary file. */
2090
2091 static struct gdbarch *
2092 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2093 {
2094 struct gdbarch *gdbarch;
2095 struct gdbarch_tdep *tdep;
2096 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2097 struct reg *regs;
2098 const struct variant *v;
2099 enum bfd_architecture arch;
2100 unsigned long mach;
2101 bfd abfd;
2102 int osabi, sysv_abi;
2103
2104 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2105 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2106
2107 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2108 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2109
2110 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2111
2112 osabi = get_elfosabi (info.abfd);
2113
2114 /* Check word size. If INFO is from a binary file, infer it from that,
2115 else use the previously-inferred size. */
2116 if (from_xcoff_exec)
2117 {
2118 if (xcoff_data (info.abfd)->xcoff64)
2119 wordsize = 8;
2120 else
2121 wordsize = 4;
2122 }
2123 else if (from_elf_exec)
2124 {
2125 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2126 wordsize = 8;
2127 else
2128 wordsize = 4;
2129 }
2130 else
2131 {
2132 tdep = TDEP;
2133 if (tdep)
2134 wordsize = tdep->wordsize;
2135 else
2136 wordsize = 4;
2137 }
2138
2139 /* Find a candidate among extant architectures. */
2140 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2141 arches != NULL;
2142 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2143 {
2144 /* Word size in the various PowerPC bfd_arch_info structs isn't
2145 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2146 separate word size check. */
2147 tdep = gdbarch_tdep (arches->gdbarch);
2148 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2149 return arches->gdbarch;
2150 }
2151
2152 /* None found, create a new architecture from INFO, whose bfd_arch_info
2153 validity depends on the source:
2154 - executable useless
2155 - rs6000_host_arch() good
2156 - core file good
2157 - "set arch" trust blindly
2158 - GDB startup useless but harmless */
2159
2160 if (!from_xcoff_exec)
2161 {
2162 arch = info.bfd_architecture;
2163 mach = info.bfd_arch_info->mach;
2164 }
2165 else
2166 {
2167 arch = bfd_arch_powerpc;
2168 mach = 0;
2169 bfd_default_set_arch_mach (&abfd, arch, mach);
2170 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2171 }
2172 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2173 tdep->wordsize = wordsize;
2174 tdep->osabi = osabi;
2175 gdbarch = gdbarch_alloc (&info, tdep);
2176 power = arch == bfd_arch_rs6000;
2177
2178 /* Select instruction printer. */
2179 tm_print_insn = arch == power ? print_insn_rs6000 :
2180 info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
2181 print_insn_little_powerpc;
2182
2183 /* Choose variant. */
2184 v = find_variant_by_arch (arch, mach);
2185 if (!v)
2186 v = find_variant_by_name (power ? "power" : "powerpc");
2187 tdep->regs = v->regs;
2188
2189 /* Calculate byte offsets in raw register array. */
2190 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2191 for (i = off = 0; i < v->nregs; i++)
2192 {
2193 tdep->regoff[i] = off;
2194 off += regsize (v->regs + i, wordsize);
2195 }
2196
2197 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2198 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2199 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2200 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2201 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2202 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2203
2204 set_gdbarch_num_regs (gdbarch, v->nregs);
2205 set_gdbarch_sp_regnum (gdbarch, 1);
2206 set_gdbarch_fp_regnum (gdbarch, 1);
2207 set_gdbarch_pc_regnum (gdbarch, 64);
2208 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2209 set_gdbarch_register_size (gdbarch, wordsize);
2210 set_gdbarch_register_bytes (gdbarch, off);
2211 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2212 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2213 set_gdbarch_max_register_raw_size (gdbarch, 8);
2214 set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
2215 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2216 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2217
2218 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2219 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2220 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2221 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2222 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2223 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2224 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2225 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2226
2227 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2228 set_gdbarch_call_dummy_length (gdbarch, 0);
2229 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2230 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2231 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2232 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2233 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2234 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2235 set_gdbarch_call_dummy_p (gdbarch, 1);
2236 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2237 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2238 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2239 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2240 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2241 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2242 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2243 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2244
2245 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2246 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2247 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2248
2249 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2250
2251 if (sysv_abi)
2252 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2253 else
2254 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2255
2256 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2257 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2258 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2259 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
2260
2261 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2262
2263 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2264 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2265 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2266 set_gdbarch_function_start_offset (gdbarch, 0);
2267 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2268
2269 /* Not sure on this. FIXMEmgo */
2270 set_gdbarch_frame_args_skip (gdbarch, 8);
2271
2272 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2273 if (osabi == ELFOSABI_LINUX)
2274 {
2275 set_gdbarch_frameless_function_invocation (gdbarch,
2276 ppc_linux_frameless_function_invocation);
2277 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2278 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2279
2280 set_gdbarch_frame_init_saved_regs (gdbarch,
2281 ppc_linux_frame_init_saved_regs);
2282 set_gdbarch_init_extra_frame_info (gdbarch,
2283 ppc_linux_init_extra_frame_info);
2284
2285 set_gdbarch_memory_remove_breakpoint (gdbarch,
2286 ppc_linux_memory_remove_breakpoint);
2287 }
2288 else
2289 {
2290 set_gdbarch_frameless_function_invocation (gdbarch,
2291 rs6000_frameless_function_invocation);
2292 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2293 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2294
2295 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2296 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2297
2298 /* Handle RS/6000 function pointers. */
2299 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2300 rs6000_convert_from_func_ptr_addr);
2301 }
2302 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2303 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2304 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2305
2306 /* We can't tell how many args there are
2307 now that the C compiler delays popping them. */
2308 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2309
2310 return gdbarch;
2311 }
2312
2313 /* Initialization code. */
2314
2315 void
2316 _initialize_rs6000_tdep (void)
2317 {
2318 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2319 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2320 }
This page took 0.111258 seconds and 4 git commands to generate.