* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "rs6000-tdep.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
116 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
118 /* Hook to set the current architecture when starting a child process.
119 rs6000-nat.c sets this. */
120
121 void (*rs6000_set_host_arch_hook) (int) = NULL;
122
123 /* Static function prototypes */
124
125 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
126 CORE_ADDR safety);
127 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
128 struct rs6000_framedata *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141
142 /* Return true if REGNO is an SPE register, false otherwise. */
143 int
144 spe_register_p (int regno)
145 {
146 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
147
148 /* Is it a reference to EV0 -- EV31, and do we have those? */
149 if (tdep->ppc_ev0_regnum >= 0
150 && tdep->ppc_ev31_regnum >= 0
151 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
152 return 1;
153
154 /* Is it a reference to one of the raw upper GPR halves? */
155 if (tdep->ppc_ev0_upper_regnum >= 0
156 && tdep->ppc_ev0_upper_regnum <= regno
157 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
158 return 1;
159
160 /* Is it a reference to the 64-bit accumulator, and do we have that? */
161 if (tdep->ppc_acc_regnum >= 0
162 && tdep->ppc_acc_regnum == regno)
163 return 1;
164
165 /* Is it a reference to the SPE floating-point status and control register,
166 and do we have that? */
167 if (tdep->ppc_spefscr_regnum >= 0
168 && tdep->ppc_spefscr_regnum == regno)
169 return 1;
170
171 return 0;
172 }
173
174
175 /* Return non-zero if the architecture described by GDBARCH has
176 floating-point registers (f0 --- f31 and fpscr). */
177 int
178 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 return (tdep->ppc_fp0_regnum >= 0
183 && tdep->ppc_fpscr_regnum >= 0);
184 }
185
186
187 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
188 set it to SIM_REGNO.
189
190 This is a helper function for init_sim_regno_table, constructing
191 the table mapping GDB register numbers to sim register numbers; we
192 initialize every element in that table to -1 before we start
193 filling it in. */
194 static void
195 set_sim_regno (int *table, int gdb_regno, int sim_regno)
196 {
197 /* Make sure we don't try to assign any given GDB register a sim
198 register number more than once. */
199 gdb_assert (table[gdb_regno] == -1);
200 table[gdb_regno] = sim_regno;
201 }
202
203
204 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
205 numbers to simulator register numbers, based on the values placed
206 in the ARCH->tdep->ppc_foo_regnum members. */
207 static void
208 init_sim_regno_table (struct gdbarch *arch)
209 {
210 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
211 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
212 const struct reg *regs = tdep->regs;
213 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
214 int i;
215
216 /* Presume that all registers not explicitly mentioned below are
217 unavailable from the sim. */
218 for (i = 0; i < total_regs; i++)
219 sim_regno[i] = -1;
220
221 /* General-purpose registers. */
222 for (i = 0; i < ppc_num_gprs; i++)
223 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
224
225 /* Floating-point registers. */
226 if (tdep->ppc_fp0_regnum >= 0)
227 for (i = 0; i < ppc_num_fprs; i++)
228 set_sim_regno (sim_regno,
229 tdep->ppc_fp0_regnum + i,
230 sim_ppc_f0_regnum + i);
231 if (tdep->ppc_fpscr_regnum >= 0)
232 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
233
234 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
235 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
236 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
237
238 /* Segment registers. */
239 if (tdep->ppc_sr0_regnum >= 0)
240 for (i = 0; i < ppc_num_srs; i++)
241 set_sim_regno (sim_regno,
242 tdep->ppc_sr0_regnum + i,
243 sim_ppc_sr0_regnum + i);
244
245 /* Altivec registers. */
246 if (tdep->ppc_vr0_regnum >= 0)
247 {
248 for (i = 0; i < ppc_num_vrs; i++)
249 set_sim_regno (sim_regno,
250 tdep->ppc_vr0_regnum + i,
251 sim_ppc_vr0_regnum + i);
252
253 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
254 we can treat this more like the other cases. */
255 set_sim_regno (sim_regno,
256 tdep->ppc_vr0_regnum + ppc_num_vrs,
257 sim_ppc_vscr_regnum);
258 }
259 /* vsave is a special-purpose register, so the code below handles it. */
260
261 /* SPE APU (E500) registers. */
262 if (tdep->ppc_ev0_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_regnum + i,
266 sim_ppc_ev0_regnum + i);
267 if (tdep->ppc_ev0_upper_regnum >= 0)
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno,
270 tdep->ppc_ev0_upper_regnum + i,
271 sim_ppc_rh0_regnum + i);
272 if (tdep->ppc_acc_regnum >= 0)
273 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
274 /* spefscr is a special-purpose register, so the code below handles it. */
275
276 /* Now handle all special-purpose registers. Verify that they
277 haven't mistakenly been assigned numbers by any of the above
278 code). */
279 for (i = 0; i < total_regs; i++)
280 if (regs[i].spr_num >= 0)
281 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
282
283 /* Drop the initialized array into place. */
284 tdep->sim_regno = sim_regno;
285 }
286
287
288 /* Given a GDB register number REG, return the corresponding SIM
289 register number. */
290 static int
291 rs6000_register_sim_regno (int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
294 int sim_regno;
295
296 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
297 sim_regno = tdep->sim_regno[reg];
298
299 if (sim_regno >= 0)
300 return sim_regno;
301 else
302 return LEGACY_SIM_REGNO_IGNORE;
303 }
304
305 \f
306
307 /* Register set support functions. */
308
309 static void
310 ppc_supply_reg (struct regcache *regcache, int regnum,
311 const gdb_byte *regs, size_t offset)
312 {
313 if (regnum != -1 && offset != -1)
314 regcache_raw_supply (regcache, regnum, regs + offset);
315 }
316
317 static void
318 ppc_collect_reg (const struct regcache *regcache, int regnum,
319 gdb_byte *regs, size_t offset)
320 {
321 if (regnum != -1 && offset != -1)
322 regcache_raw_collect (regcache, regnum, regs + offset);
323 }
324
325 /* Supply register REGNUM in the general-purpose register set REGSET
326 from the buffer specified by GREGS and LEN to register cache
327 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
328
329 void
330 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
331 int regnum, const void *gregs, size_t len)
332 {
333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 const struct ppc_reg_offsets *offsets = regset->descr;
336 size_t offset;
337 int i;
338
339 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
340 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
341 i++, offset += 4)
342 {
343 if (regnum == -1 || regnum == i)
344 ppc_supply_reg (regcache, i, gregs, offset);
345 }
346
347 if (regnum == -1 || regnum == PC_REGNUM)
348 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
349 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
350 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
351 gregs, offsets->ps_offset);
352 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
353 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
354 gregs, offsets->cr_offset);
355 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
356 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
357 gregs, offsets->lr_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
360 gregs, offsets->ctr_offset);
361 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
366 }
367
368 /* Supply register REGNUM in the floating-point register set REGSET
369 from the buffer specified by FPREGS and LEN to register cache
370 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
371
372 void
373 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
374 int regnum, const void *fpregs, size_t len)
375 {
376 struct gdbarch *gdbarch = get_regcache_arch (regcache);
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 const struct ppc_reg_offsets *offsets = regset->descr;
379 size_t offset;
380 int i;
381
382 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383
384 offset = offsets->f0_offset;
385 for (i = tdep->ppc_fp0_regnum;
386 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
387 i++, offset += 8)
388 {
389 if (regnum == -1 || regnum == i)
390 ppc_supply_reg (regcache, i, fpregs, offset);
391 }
392
393 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
394 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
395 fpregs, offsets->fpscr_offset);
396 }
397
398 /* Collect register REGNUM in the general-purpose register set
399 REGSET. from register cache REGCACHE into the buffer specified by
400 GREGS and LEN. If REGNUM is -1, do this for all registers in
401 REGSET. */
402
403 void
404 ppc_collect_gregset (const struct regset *regset,
405 const struct regcache *regcache,
406 int regnum, void *gregs, size_t len)
407 {
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410 const struct ppc_reg_offsets *offsets = regset->descr;
411 size_t offset;
412 int i;
413
414 offset = offsets->r0_offset;
415 for (i = tdep->ppc_gp0_regnum;
416 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
417 i++, offset += 4)
418 {
419 if (regnum == -1 || regnum == i)
420 ppc_collect_reg (regcache, i, gregs, offset);
421 }
422
423 if (regnum == -1 || regnum == PC_REGNUM)
424 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
425 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
427 gregs, offsets->ps_offset);
428 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
430 gregs, offsets->cr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
433 gregs, offsets->lr_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
436 gregs, offsets->ctr_offset);
437 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
439 gregs, offsets->xer_offset);
440 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
442 gregs, offsets->mq_offset);
443 }
444
445 /* Collect register REGNUM in the floating-point register set
446 REGSET. from register cache REGCACHE into the buffer specified by
447 FPREGS and LEN. If REGNUM is -1, do this for all registers in
448 REGSET. */
449
450 void
451 ppc_collect_fpregset (const struct regset *regset,
452 const struct regcache *regcache,
453 int regnum, void *fpregs, size_t len)
454 {
455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
457 const struct ppc_reg_offsets *offsets = regset->descr;
458 size_t offset;
459 int i;
460
461 gdb_assert (ppc_floating_point_unit_p (gdbarch));
462
463 offset = offsets->f0_offset;
464 for (i = tdep->ppc_fp0_regnum;
465 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
466 i++, offset += 8)
467 {
468 if (regnum == -1 || regnum == i)
469 ppc_collect_reg (regcache, i, fpregs, offset);
470 }
471
472 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
473 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
474 fpregs, offsets->fpscr_offset);
475 }
476 \f
477
478 /* Read a LEN-byte address from debugged memory address MEMADDR. */
479
480 static CORE_ADDR
481 read_memory_addr (CORE_ADDR memaddr, int len)
482 {
483 return read_memory_unsigned_integer (memaddr, len);
484 }
485
486 static CORE_ADDR
487 rs6000_skip_prologue (CORE_ADDR pc)
488 {
489 struct rs6000_framedata frame;
490 pc = skip_prologue (pc, 0, &frame);
491 return pc;
492 }
493
494 static int
495 insn_changes_sp_or_jumps (unsigned long insn)
496 {
497 int opcode = (insn >> 26) & 0x03f;
498 int sd = (insn >> 21) & 0x01f;
499 int a = (insn >> 16) & 0x01f;
500 int subcode = (insn >> 1) & 0x3ff;
501
502 /* Changes the stack pointer. */
503
504 /* NOTE: There are many ways to change the value of a given register.
505 The ways below are those used when the register is R1, the SP,
506 in a funtion's epilogue. */
507
508 if (opcode == 31 && subcode == 444 && a == 1)
509 return 1; /* mr R1,Rn */
510 if (opcode == 14 && sd == 1)
511 return 1; /* addi R1,Rn,simm */
512 if (opcode == 58 && sd == 1)
513 return 1; /* ld R1,ds(Rn) */
514
515 /* Transfers control. */
516
517 if (opcode == 18)
518 return 1; /* b */
519 if (opcode == 16)
520 return 1; /* bc */
521 if (opcode == 19 && subcode == 16)
522 return 1; /* bclr */
523 if (opcode == 19 && subcode == 528)
524 return 1; /* bcctr */
525
526 return 0;
527 }
528
529 /* Return true if we are in the function's epilogue, i.e. after the
530 instruction that destroyed the function's stack frame.
531
532 1) scan forward from the point of execution:
533 a) If you find an instruction that modifies the stack pointer
534 or transfers control (except a return), execution is not in
535 an epilogue, return.
536 b) Stop scanning if you find a return instruction or reach the
537 end of the function or reach the hard limit for the size of
538 an epilogue.
539 2) scan backward from the point of execution:
540 a) If you find an instruction that modifies the stack pointer,
541 execution *is* in an epilogue, return.
542 b) Stop scanning if you reach an instruction that transfers
543 control or the beginning of the function or reach the hard
544 limit for the size of an epilogue. */
545
546 static int
547 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549 bfd_byte insn_buf[PPC_INSN_SIZE];
550 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
551 unsigned long insn;
552 struct frame_info *curfrm;
553
554 /* Find the search limits based on function boundaries and hard limit. */
555
556 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
557 return 0;
558
559 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
560 if (epilogue_start < func_start) epilogue_start = func_start;
561
562 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
563 if (epilogue_end > func_end) epilogue_end = func_end;
564
565 curfrm = get_current_frame ();
566
567 /* Scan forward until next 'blr'. */
568
569 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
570 {
571 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
572 return 0;
573 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
574 if (insn == 0x4e800020)
575 break;
576 if (insn_changes_sp_or_jumps (insn))
577 return 0;
578 }
579
580 /* Scan backward until adjustment to stack pointer (R1). */
581
582 for (scan_pc = pc - PPC_INSN_SIZE;
583 scan_pc >= epilogue_start;
584 scan_pc -= PPC_INSN_SIZE)
585 {
586 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
587 return 0;
588 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
589 if (insn_changes_sp_or_jumps (insn))
590 return 1;
591 }
592
593 return 0;
594 }
595
596
597 /* Fill in fi->saved_regs */
598
599 struct frame_extra_info
600 {
601 /* Functions calling alloca() change the value of the stack
602 pointer. We need to use initial stack pointer (which is saved in
603 r31 by gcc) in such cases. If a compiler emits traceback table,
604 then we should use the alloca register specified in traceback
605 table. FIXME. */
606 CORE_ADDR initial_sp; /* initial stack pointer. */
607 };
608
609 /* Get the ith function argument for the current function. */
610 static CORE_ADDR
611 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
612 struct type *type)
613 {
614 return get_frame_register_unsigned (frame, 3 + argi);
615 }
616
617 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
618
619 static CORE_ADDR
620 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
621 {
622 CORE_ADDR dest;
623 int immediate;
624 int absolute;
625 int ext_op;
626
627 absolute = (int) ((instr >> 1) & 1);
628
629 switch (opcode)
630 {
631 case 18:
632 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
633 if (absolute)
634 dest = immediate;
635 else
636 dest = pc + immediate;
637 break;
638
639 case 16:
640 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
641 if (absolute)
642 dest = immediate;
643 else
644 dest = pc + immediate;
645 break;
646
647 case 19:
648 ext_op = (instr >> 1) & 0x3ff;
649
650 if (ext_op == 16) /* br conditional register */
651 {
652 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
653
654 /* If we are about to return from a signal handler, dest is
655 something like 0x3c90. The current frame is a signal handler
656 caller frame, upon completion of the sigreturn system call
657 execution will return to the saved PC in the frame. */
658 if (dest < TEXT_SEGMENT_BASE)
659 {
660 struct frame_info *fi;
661
662 fi = get_current_frame ();
663 if (fi != NULL)
664 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
665 gdbarch_tdep (current_gdbarch)->wordsize);
666 }
667 }
668
669 else if (ext_op == 528) /* br cond to count reg */
670 {
671 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
672
673 /* If we are about to execute a system call, dest is something
674 like 0x22fc or 0x3b00. Upon completion the system call
675 will return to the address in the link register. */
676 if (dest < TEXT_SEGMENT_BASE)
677 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
678 }
679 else
680 return -1;
681 break;
682
683 default:
684 return -1;
685 }
686 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
687 }
688
689
690 /* Sequence of bytes for breakpoint instruction. */
691
692 const static unsigned char *
693 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
694 {
695 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
696 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
697 *bp_size = 4;
698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
699 return big_breakpoint;
700 else
701 return little_breakpoint;
702 }
703
704
705 /* AIX does not support PT_STEP. Simulate it. */
706
707 void
708 rs6000_software_single_step (enum target_signal signal,
709 int insert_breakpoints_p)
710 {
711 CORE_ADDR dummy;
712 int breakp_sz;
713 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
714 int ii, insn;
715 CORE_ADDR loc;
716 CORE_ADDR breaks[2];
717 int opcode;
718
719 if (insert_breakpoints_p)
720 {
721 loc = read_pc ();
722
723 insn = read_memory_integer (loc, 4);
724
725 breaks[0] = loc + breakp_sz;
726 opcode = insn >> 26;
727 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
728
729 /* Don't put two breakpoints on the same address. */
730 if (breaks[1] == breaks[0])
731 breaks[1] = -1;
732
733 for (ii = 0; ii < 2; ++ii)
734 {
735 /* ignore invalid breakpoint. */
736 if (breaks[ii] == -1)
737 continue;
738 insert_single_step_breakpoint (breaks[ii]);
739 }
740 }
741 else
742 remove_single_step_breakpoints ();
743
744 errno = 0; /* FIXME, don't ignore errors! */
745 /* What errors? {read,write}_memory call error(). */
746 }
747
748
749 /* return pc value after skipping a function prologue and also return
750 information about a function frame.
751
752 in struct rs6000_framedata fdata:
753 - frameless is TRUE, if function does not have a frame.
754 - nosavedpc is TRUE, if function does not save %pc value in its frame.
755 - offset is the initial size of this stack frame --- the amount by
756 which we decrement the sp to allocate the frame.
757 - saved_gpr is the number of the first saved gpr.
758 - saved_fpr is the number of the first saved fpr.
759 - saved_vr is the number of the first saved vr.
760 - saved_ev is the number of the first saved ev.
761 - alloca_reg is the number of the register used for alloca() handling.
762 Otherwise -1.
763 - gpr_offset is the offset of the first saved gpr from the previous frame.
764 - fpr_offset is the offset of the first saved fpr from the previous frame.
765 - vr_offset is the offset of the first saved vr from the previous frame.
766 - ev_offset is the offset of the first saved ev from the previous frame.
767 - lr_offset is the offset of the saved lr
768 - cr_offset is the offset of the saved cr
769 - vrsave_offset is the offset of the saved vrsave register
770 */
771
772 #define SIGNED_SHORT(x) \
773 ((sizeof (short) == 2) \
774 ? ((int)(short)(x)) \
775 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
776
777 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
778
779 /* Limit the number of skipped non-prologue instructions, as the examining
780 of the prologue is expensive. */
781 static int max_skip_non_prologue_insns = 10;
782
783 /* Given PC representing the starting address of a function, and
784 LIM_PC which is the (sloppy) limit to which to scan when looking
785 for a prologue, attempt to further refine this limit by using
786 the line data in the symbol table. If successful, a better guess
787 on where the prologue ends is returned, otherwise the previous
788 value of lim_pc is returned. */
789
790 /* FIXME: cagney/2004-02-14: This function and logic have largely been
791 superseded by skip_prologue_using_sal. */
792
793 static CORE_ADDR
794 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
795 {
796 struct symtab_and_line prologue_sal;
797
798 prologue_sal = find_pc_line (pc, 0);
799 if (prologue_sal.line != 0)
800 {
801 int i;
802 CORE_ADDR addr = prologue_sal.end;
803
804 /* Handle the case in which compiler's optimizer/scheduler
805 has moved instructions into the prologue. We scan ahead
806 in the function looking for address ranges whose corresponding
807 line number is less than or equal to the first one that we
808 found for the function. (It can be less than when the
809 scheduler puts a body instruction before the first prologue
810 instruction.) */
811 for (i = 2 * max_skip_non_prologue_insns;
812 i > 0 && (lim_pc == 0 || addr < lim_pc);
813 i--)
814 {
815 struct symtab_and_line sal;
816
817 sal = find_pc_line (addr, 0);
818 if (sal.line == 0)
819 break;
820 if (sal.line <= prologue_sal.line
821 && sal.symtab == prologue_sal.symtab)
822 {
823 prologue_sal = sal;
824 }
825 addr = sal.end;
826 }
827
828 if (lim_pc == 0 || prologue_sal.end < lim_pc)
829 lim_pc = prologue_sal.end;
830 }
831 return lim_pc;
832 }
833
834 /* Return nonzero if the given instruction OP can be part of the prologue
835 of a function and saves a parameter on the stack. FRAMEP should be
836 set if one of the previous instructions in the function has set the
837 Frame Pointer. */
838
839 static int
840 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
841 {
842 /* Move parameters from argument registers to temporary register. */
843 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
844 {
845 /* Rx must be scratch register r0. */
846 const int rx_regno = (op >> 16) & 31;
847 /* Ry: Only r3 - r10 are used for parameter passing. */
848 const int ry_regno = GET_SRC_REG (op);
849
850 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
851 {
852 *r0_contains_arg = 1;
853 return 1;
854 }
855 else
856 return 0;
857 }
858
859 /* Save a General Purpose Register on stack. */
860
861 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
862 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
863 {
864 /* Rx: Only r3 - r10 are used for parameter passing. */
865 const int rx_regno = GET_SRC_REG (op);
866
867 return (rx_regno >= 3 && rx_regno <= 10);
868 }
869
870 /* Save a General Purpose Register on stack via the Frame Pointer. */
871
872 if (framep &&
873 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
874 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
875 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
876 {
877 /* Rx: Usually, only r3 - r10 are used for parameter passing.
878 However, the compiler sometimes uses r0 to hold an argument. */
879 const int rx_regno = GET_SRC_REG (op);
880
881 return ((rx_regno >= 3 && rx_regno <= 10)
882 || (rx_regno == 0 && *r0_contains_arg));
883 }
884
885 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
886 {
887 /* Only f2 - f8 are used for parameter passing. */
888 const int src_regno = GET_SRC_REG (op);
889
890 return (src_regno >= 2 && src_regno <= 8);
891 }
892
893 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
894 {
895 /* Only f2 - f8 are used for parameter passing. */
896 const int src_regno = GET_SRC_REG (op);
897
898 return (src_regno >= 2 && src_regno <= 8);
899 }
900
901 /* Not an insn that saves a parameter on stack. */
902 return 0;
903 }
904
905 /* Assuming that INSN is a "bl" instruction located at PC, return
906 nonzero if the destination of the branch is a "blrl" instruction.
907
908 This sequence is sometimes found in certain function prologues.
909 It allows the function to load the LR register with a value that
910 they can use to access PIC data using PC-relative offsets. */
911
912 static int
913 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
914 {
915 const int opcode = 18;
916 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
917 int dest_insn;
918
919 if (dest == -1)
920 return 0; /* Should never happen, but just return zero to be safe. */
921
922 dest_insn = read_memory_integer (dest, 4);
923 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
924 return 1;
925
926 return 0;
927 }
928
929 static CORE_ADDR
930 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
931 {
932 CORE_ADDR orig_pc = pc;
933 CORE_ADDR last_prologue_pc = pc;
934 CORE_ADDR li_found_pc = 0;
935 gdb_byte buf[4];
936 unsigned long op;
937 long offset = 0;
938 long vr_saved_offset = 0;
939 int lr_reg = -1;
940 int cr_reg = -1;
941 int vr_reg = -1;
942 int ev_reg = -1;
943 long ev_offset = 0;
944 int vrsave_reg = -1;
945 int reg;
946 int framep = 0;
947 int minimal_toc_loaded = 0;
948 int prev_insn_was_prologue_insn = 1;
949 int num_skip_non_prologue_insns = 0;
950 int r0_contains_arg = 0;
951 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
952 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
953
954 /* Attempt to find the end of the prologue when no limit is specified.
955 Note that refine_prologue_limit() has been written so that it may
956 be used to "refine" the limits of non-zero PC values too, but this
957 is only safe if we 1) trust the line information provided by the
958 compiler and 2) iterate enough to actually find the end of the
959 prologue.
960
961 It may become a good idea at some point (for both performance and
962 accuracy) to unconditionally call refine_prologue_limit(). But,
963 until we can make a clear determination that this is beneficial,
964 we'll play it safe and only use it to obtain a limit when none
965 has been specified. */
966 if (lim_pc == 0)
967 lim_pc = refine_prologue_limit (pc, lim_pc);
968
969 memset (fdata, 0, sizeof (struct rs6000_framedata));
970 fdata->saved_gpr = -1;
971 fdata->saved_fpr = -1;
972 fdata->saved_vr = -1;
973 fdata->saved_ev = -1;
974 fdata->alloca_reg = -1;
975 fdata->frameless = 1;
976 fdata->nosavedpc = 1;
977
978 for (;; pc += 4)
979 {
980 /* Sometimes it isn't clear if an instruction is a prologue
981 instruction or not. When we encounter one of these ambiguous
982 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
983 Otherwise, we'll assume that it really is a prologue instruction. */
984 if (prev_insn_was_prologue_insn)
985 last_prologue_pc = pc;
986
987 /* Stop scanning if we've hit the limit. */
988 if (lim_pc != 0 && pc >= lim_pc)
989 break;
990
991 prev_insn_was_prologue_insn = 1;
992
993 /* Fetch the instruction and convert it to an integer. */
994 if (target_read_memory (pc, buf, 4))
995 break;
996 op = extract_signed_integer (buf, 4);
997
998 if ((op & 0xfc1fffff) == 0x7c0802a6)
999 { /* mflr Rx */
1000 /* Since shared library / PIC code, which needs to get its
1001 address at runtime, can appear to save more than one link
1002 register vis:
1003
1004 *INDENT-OFF*
1005 stwu r1,-304(r1)
1006 mflr r3
1007 bl 0xff570d0 (blrl)
1008 stw r30,296(r1)
1009 mflr r30
1010 stw r31,300(r1)
1011 stw r3,308(r1);
1012 ...
1013 *INDENT-ON*
1014
1015 remember just the first one, but skip over additional
1016 ones. */
1017 if (lr_reg == -1)
1018 lr_reg = (op & 0x03e00000);
1019 if (lr_reg == 0)
1020 r0_contains_arg = 0;
1021 continue;
1022 }
1023 else if ((op & 0xfc1fffff) == 0x7c000026)
1024 { /* mfcr Rx */
1025 cr_reg = (op & 0x03e00000);
1026 if (cr_reg == 0)
1027 r0_contains_arg = 0;
1028 continue;
1029
1030 }
1031 else if ((op & 0xfc1f0000) == 0xd8010000)
1032 { /* stfd Rx,NUM(r1) */
1033 reg = GET_SRC_REG (op);
1034 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1035 {
1036 fdata->saved_fpr = reg;
1037 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1038 }
1039 continue;
1040
1041 }
1042 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1043 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1044 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1045 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1046 {
1047
1048 reg = GET_SRC_REG (op);
1049 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1050 {
1051 fdata->saved_gpr = reg;
1052 if ((op & 0xfc1f0003) == 0xf8010000)
1053 op &= ~3UL;
1054 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1055 }
1056 continue;
1057
1058 }
1059 else if ((op & 0xffff0000) == 0x60000000)
1060 {
1061 /* nop */
1062 /* Allow nops in the prologue, but do not consider them to
1063 be part of the prologue unless followed by other prologue
1064 instructions. */
1065 prev_insn_was_prologue_insn = 0;
1066 continue;
1067
1068 }
1069 else if ((op & 0xffff0000) == 0x3c000000)
1070 { /* addis 0,0,NUM, used
1071 for >= 32k frames */
1072 fdata->offset = (op & 0x0000ffff) << 16;
1073 fdata->frameless = 0;
1074 r0_contains_arg = 0;
1075 continue;
1076
1077 }
1078 else if ((op & 0xffff0000) == 0x60000000)
1079 { /* ori 0,0,NUM, 2nd ha
1080 lf of >= 32k frames */
1081 fdata->offset |= (op & 0x0000ffff);
1082 fdata->frameless = 0;
1083 r0_contains_arg = 0;
1084 continue;
1085
1086 }
1087 else if (lr_reg >= 0 &&
1088 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1089 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1090 /* stw Rx, NUM(r1) */
1091 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1092 /* stwu Rx, NUM(r1) */
1093 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1094 { /* where Rx == lr */
1095 fdata->lr_offset = offset;
1096 fdata->nosavedpc = 0;
1097 /* Invalidate lr_reg, but don't set it to -1.
1098 That would mean that it had never been set. */
1099 lr_reg = -2;
1100 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1101 (op & 0xfc000000) == 0x90000000) /* stw */
1102 {
1103 /* Does not update r1, so add displacement to lr_offset. */
1104 fdata->lr_offset += SIGNED_SHORT (op);
1105 }
1106 continue;
1107
1108 }
1109 else if (cr_reg >= 0 &&
1110 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1111 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1112 /* stw Rx, NUM(r1) */
1113 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1114 /* stwu Rx, NUM(r1) */
1115 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1116 { /* where Rx == cr */
1117 fdata->cr_offset = offset;
1118 /* Invalidate cr_reg, but don't set it to -1.
1119 That would mean that it had never been set. */
1120 cr_reg = -2;
1121 if ((op & 0xfc000003) == 0xf8000000 ||
1122 (op & 0xfc000000) == 0x90000000)
1123 {
1124 /* Does not update r1, so add displacement to cr_offset. */
1125 fdata->cr_offset += SIGNED_SHORT (op);
1126 }
1127 continue;
1128
1129 }
1130 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1131 {
1132 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1133 prediction bits. If the LR has already been saved, we can
1134 skip it. */
1135 continue;
1136 }
1137 else if (op == 0x48000005)
1138 { /* bl .+4 used in
1139 -mrelocatable */
1140 continue;
1141
1142 }
1143 else if (op == 0x48000004)
1144 { /* b .+4 (xlc) */
1145 break;
1146
1147 }
1148 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1149 in V.4 -mminimal-toc */
1150 (op & 0xffff0000) == 0x3bde0000)
1151 { /* addi 30,30,foo@l */
1152 continue;
1153
1154 }
1155 else if ((op & 0xfc000001) == 0x48000001)
1156 { /* bl foo,
1157 to save fprs??? */
1158
1159 fdata->frameless = 0;
1160
1161 /* If the return address has already been saved, we can skip
1162 calls to blrl (for PIC). */
1163 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1164 continue;
1165
1166 /* Don't skip over the subroutine call if it is not within
1167 the first three instructions of the prologue and either
1168 we have no line table information or the line info tells
1169 us that the subroutine call is not part of the line
1170 associated with the prologue. */
1171 if ((pc - orig_pc) > 8)
1172 {
1173 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1174 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1175
1176 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1177 break;
1178 }
1179
1180 op = read_memory_integer (pc + 4, 4);
1181
1182 /* At this point, make sure this is not a trampoline
1183 function (a function that simply calls another functions,
1184 and nothing else). If the next is not a nop, this branch
1185 was part of the function prologue. */
1186
1187 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1188 break; /* don't skip over
1189 this branch */
1190 continue;
1191
1192 }
1193 /* update stack pointer */
1194 else if ((op & 0xfc1f0000) == 0x94010000)
1195 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1196 fdata->frameless = 0;
1197 fdata->offset = SIGNED_SHORT (op);
1198 offset = fdata->offset;
1199 continue;
1200 }
1201 else if ((op & 0xfc1f016a) == 0x7c01016e)
1202 { /* stwux rX,r1,rY */
1203 /* no way to figure out what r1 is going to be */
1204 fdata->frameless = 0;
1205 offset = fdata->offset;
1206 continue;
1207 }
1208 else if ((op & 0xfc1f0003) == 0xf8010001)
1209 { /* stdu rX,NUM(r1) */
1210 fdata->frameless = 0;
1211 fdata->offset = SIGNED_SHORT (op & ~3UL);
1212 offset = fdata->offset;
1213 continue;
1214 }
1215 else if ((op & 0xfc1f016a) == 0x7c01016a)
1216 { /* stdux rX,r1,rY */
1217 /* no way to figure out what r1 is going to be */
1218 fdata->frameless = 0;
1219 offset = fdata->offset;
1220 continue;
1221 }
1222 else if ((op & 0xffff0000) == 0x38210000)
1223 { /* addi r1,r1,SIMM */
1224 fdata->frameless = 0;
1225 fdata->offset += SIGNED_SHORT (op);
1226 offset = fdata->offset;
1227 continue;
1228 }
1229 /* Load up minimal toc pointer */
1230 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1231 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1232 && !minimal_toc_loaded)
1233 {
1234 minimal_toc_loaded = 1;
1235 continue;
1236
1237 /* move parameters from argument registers to local variable
1238 registers */
1239 }
1240 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1241 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1242 (((op >> 21) & 31) <= 10) &&
1243 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1244 {
1245 continue;
1246
1247 /* store parameters in stack */
1248 }
1249 /* Move parameters from argument registers to temporary register. */
1250 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1251 {
1252 continue;
1253
1254 /* Set up frame pointer */
1255 }
1256 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1257 || op == 0x7c3f0b78)
1258 { /* mr r31, r1 */
1259 fdata->frameless = 0;
1260 framep = 1;
1261 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1262 continue;
1263
1264 /* Another way to set up the frame pointer. */
1265 }
1266 else if ((op & 0xfc1fffff) == 0x38010000)
1267 { /* addi rX, r1, 0x0 */
1268 fdata->frameless = 0;
1269 framep = 1;
1270 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1271 + ((op & ~0x38010000) >> 21));
1272 continue;
1273 }
1274 /* AltiVec related instructions. */
1275 /* Store the vrsave register (spr 256) in another register for
1276 later manipulation, or load a register into the vrsave
1277 register. 2 instructions are used: mfvrsave and
1278 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1279 and mtspr SPR256, Rn. */
1280 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1281 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1282 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1283 {
1284 vrsave_reg = GET_SRC_REG (op);
1285 continue;
1286 }
1287 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1288 {
1289 continue;
1290 }
1291 /* Store the register where vrsave was saved to onto the stack:
1292 rS is the register where vrsave was stored in a previous
1293 instruction. */
1294 /* 100100 sssss 00001 dddddddd dddddddd */
1295 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1296 {
1297 if (vrsave_reg == GET_SRC_REG (op))
1298 {
1299 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1300 vrsave_reg = -1;
1301 }
1302 continue;
1303 }
1304 /* Compute the new value of vrsave, by modifying the register
1305 where vrsave was saved to. */
1306 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1307 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1308 {
1309 continue;
1310 }
1311 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1312 in a pair of insns to save the vector registers on the
1313 stack. */
1314 /* 001110 00000 00000 iiii iiii iiii iiii */
1315 /* 001110 01110 00000 iiii iiii iiii iiii */
1316 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1317 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1318 {
1319 if ((op & 0xffff0000) == 0x38000000)
1320 r0_contains_arg = 0;
1321 li_found_pc = pc;
1322 vr_saved_offset = SIGNED_SHORT (op);
1323
1324 /* This insn by itself is not part of the prologue, unless
1325 if part of the pair of insns mentioned above. So do not
1326 record this insn as part of the prologue yet. */
1327 prev_insn_was_prologue_insn = 0;
1328 }
1329 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1330 /* 011111 sssss 11111 00000 00111001110 */
1331 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1332 {
1333 if (pc == (li_found_pc + 4))
1334 {
1335 vr_reg = GET_SRC_REG (op);
1336 /* If this is the first vector reg to be saved, or if
1337 it has a lower number than others previously seen,
1338 reupdate the frame info. */
1339 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1340 {
1341 fdata->saved_vr = vr_reg;
1342 fdata->vr_offset = vr_saved_offset + offset;
1343 }
1344 vr_saved_offset = -1;
1345 vr_reg = -1;
1346 li_found_pc = 0;
1347 }
1348 }
1349 /* End AltiVec related instructions. */
1350
1351 /* Start BookE related instructions. */
1352 /* Store gen register S at (r31+uimm).
1353 Any register less than r13 is volatile, so we don't care. */
1354 /* 000100 sssss 11111 iiiii 01100100001 */
1355 else if (arch_info->mach == bfd_mach_ppc_e500
1356 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1357 {
1358 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1359 {
1360 unsigned int imm;
1361 ev_reg = GET_SRC_REG (op);
1362 imm = (op >> 11) & 0x1f;
1363 ev_offset = imm * 8;
1364 /* If this is the first vector reg to be saved, or if
1365 it has a lower number than others previously seen,
1366 reupdate the frame info. */
1367 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1368 {
1369 fdata->saved_ev = ev_reg;
1370 fdata->ev_offset = ev_offset + offset;
1371 }
1372 }
1373 continue;
1374 }
1375 /* Store gen register rS at (r1+rB). */
1376 /* 000100 sssss 00001 bbbbb 01100100000 */
1377 else if (arch_info->mach == bfd_mach_ppc_e500
1378 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1379 {
1380 if (pc == (li_found_pc + 4))
1381 {
1382 ev_reg = GET_SRC_REG (op);
1383 /* If this is the first vector reg to be saved, or if
1384 it has a lower number than others previously seen,
1385 reupdate the frame info. */
1386 /* We know the contents of rB from the previous instruction. */
1387 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1388 {
1389 fdata->saved_ev = ev_reg;
1390 fdata->ev_offset = vr_saved_offset + offset;
1391 }
1392 vr_saved_offset = -1;
1393 ev_reg = -1;
1394 li_found_pc = 0;
1395 }
1396 continue;
1397 }
1398 /* Store gen register r31 at (rA+uimm). */
1399 /* 000100 11111 aaaaa iiiii 01100100001 */
1400 else if (arch_info->mach == bfd_mach_ppc_e500
1401 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1402 {
1403 /* Wwe know that the source register is 31 already, but
1404 it can't hurt to compute it. */
1405 ev_reg = GET_SRC_REG (op);
1406 ev_offset = ((op >> 11) & 0x1f) * 8;
1407 /* If this is the first vector reg to be saved, or if
1408 it has a lower number than others previously seen,
1409 reupdate the frame info. */
1410 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1411 {
1412 fdata->saved_ev = ev_reg;
1413 fdata->ev_offset = ev_offset + offset;
1414 }
1415
1416 continue;
1417 }
1418 /* Store gen register S at (r31+r0).
1419 Store param on stack when offset from SP bigger than 4 bytes. */
1420 /* 000100 sssss 11111 00000 01100100000 */
1421 else if (arch_info->mach == bfd_mach_ppc_e500
1422 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1423 {
1424 if (pc == (li_found_pc + 4))
1425 {
1426 if ((op & 0x03e00000) >= 0x01a00000)
1427 {
1428 ev_reg = GET_SRC_REG (op);
1429 /* If this is the first vector reg to be saved, or if
1430 it has a lower number than others previously seen,
1431 reupdate the frame info. */
1432 /* We know the contents of r0 from the previous
1433 instruction. */
1434 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1435 {
1436 fdata->saved_ev = ev_reg;
1437 fdata->ev_offset = vr_saved_offset + offset;
1438 }
1439 ev_reg = -1;
1440 }
1441 vr_saved_offset = -1;
1442 li_found_pc = 0;
1443 continue;
1444 }
1445 }
1446 /* End BookE related instructions. */
1447
1448 else
1449 {
1450 /* Not a recognized prologue instruction.
1451 Handle optimizer code motions into the prologue by continuing
1452 the search if we have no valid frame yet or if the return
1453 address is not yet saved in the frame. */
1454 if (fdata->frameless == 0
1455 && (lr_reg == -1 || fdata->nosavedpc == 0))
1456 break;
1457
1458 if (op == 0x4e800020 /* blr */
1459 || op == 0x4e800420) /* bctr */
1460 /* Do not scan past epilogue in frameless functions or
1461 trampolines. */
1462 break;
1463 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1464 /* Never skip branches. */
1465 break;
1466
1467 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1468 /* Do not scan too many insns, scanning insns is expensive with
1469 remote targets. */
1470 break;
1471
1472 /* Continue scanning. */
1473 prev_insn_was_prologue_insn = 0;
1474 continue;
1475 }
1476 }
1477
1478 #if 0
1479 /* I have problems with skipping over __main() that I need to address
1480 * sometime. Previously, I used to use misc_function_vector which
1481 * didn't work as well as I wanted to be. -MGO */
1482
1483 /* If the first thing after skipping a prolog is a branch to a function,
1484 this might be a call to an initializer in main(), introduced by gcc2.
1485 We'd like to skip over it as well. Fortunately, xlc does some extra
1486 work before calling a function right after a prologue, thus we can
1487 single out such gcc2 behaviour. */
1488
1489
1490 if ((op & 0xfc000001) == 0x48000001)
1491 { /* bl foo, an initializer function? */
1492 op = read_memory_integer (pc + 4, 4);
1493
1494 if (op == 0x4def7b82)
1495 { /* cror 0xf, 0xf, 0xf (nop) */
1496
1497 /* Check and see if we are in main. If so, skip over this
1498 initializer function as well. */
1499
1500 tmp = find_pc_misc_function (pc);
1501 if (tmp >= 0
1502 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1503 return pc + 8;
1504 }
1505 }
1506 #endif /* 0 */
1507
1508 fdata->offset = -fdata->offset;
1509 return last_prologue_pc;
1510 }
1511
1512
1513 /*************************************************************************
1514 Support for creating pushing a dummy frame into the stack, and popping
1515 frames, etc.
1516 *************************************************************************/
1517
1518
1519 /* All the ABI's require 16 byte alignment. */
1520 static CORE_ADDR
1521 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1522 {
1523 return (addr & -16);
1524 }
1525
1526 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1527 the first eight words of the argument list (that might be less than
1528 eight parameters if some parameters occupy more than one word) are
1529 passed in r3..r10 registers. float and double parameters are
1530 passed in fpr's, in addition to that. Rest of the parameters if any
1531 are passed in user stack. There might be cases in which half of the
1532 parameter is copied into registers, the other half is pushed into
1533 stack.
1534
1535 Stack must be aligned on 64-bit boundaries when synthesizing
1536 function calls.
1537
1538 If the function is returning a structure, then the return address is passed
1539 in r3, then the first 7 words of the parameters can be passed in registers,
1540 starting from r4. */
1541
1542 static CORE_ADDR
1543 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1544 struct regcache *regcache, CORE_ADDR bp_addr,
1545 int nargs, struct value **args, CORE_ADDR sp,
1546 int struct_return, CORE_ADDR struct_addr)
1547 {
1548 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1549 int ii;
1550 int len = 0;
1551 int argno; /* current argument number */
1552 int argbytes; /* current argument byte */
1553 gdb_byte tmp_buffer[50];
1554 int f_argno = 0; /* current floating point argno */
1555 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1556 CORE_ADDR func_addr = find_function_addr (function, NULL);
1557
1558 struct value *arg = 0;
1559 struct type *type;
1560
1561 CORE_ADDR saved_sp;
1562
1563 /* The calling convention this function implements assumes the
1564 processor has floating-point registers. We shouldn't be using it
1565 on PPC variants that lack them. */
1566 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1567
1568 /* The first eight words of ther arguments are passed in registers.
1569 Copy them appropriately. */
1570 ii = 0;
1571
1572 /* If the function is returning a `struct', then the first word
1573 (which will be passed in r3) is used for struct return address.
1574 In that case we should advance one word and start from r4
1575 register to copy parameters. */
1576 if (struct_return)
1577 {
1578 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1579 struct_addr);
1580 ii++;
1581 }
1582
1583 /*
1584 effectively indirect call... gcc does...
1585
1586 return_val example( float, int);
1587
1588 eabi:
1589 float in fp0, int in r3
1590 offset of stack on overflow 8/16
1591 for varargs, must go by type.
1592 power open:
1593 float in r3&r4, int in r5
1594 offset of stack on overflow different
1595 both:
1596 return in r3 or f0. If no float, must study how gcc emulates floats;
1597 pay attention to arg promotion.
1598 User may have to cast\args to handle promotion correctly
1599 since gdb won't know if prototype supplied or not.
1600 */
1601
1602 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1603 {
1604 int reg_size = register_size (current_gdbarch, ii + 3);
1605
1606 arg = args[argno];
1607 type = check_typedef (value_type (arg));
1608 len = TYPE_LENGTH (type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1611 {
1612
1613 /* Floating point arguments are passed in fpr's, as well as gpr's.
1614 There are 13 fpr's reserved for passing parameters. At this point
1615 there is no way we would run out of them. */
1616
1617 gdb_assert (len <= 8);
1618
1619 regcache_cooked_write (regcache,
1620 tdep->ppc_fp0_regnum + 1 + f_argno,
1621 value_contents (arg));
1622 ++f_argno;
1623 }
1624
1625 if (len > reg_size)
1626 {
1627
1628 /* Argument takes more than one register. */
1629 while (argbytes < len)
1630 {
1631 gdb_byte word[MAX_REGISTER_SIZE];
1632 memset (word, 0, reg_size);
1633 memcpy (word,
1634 ((char *) value_contents (arg)) + argbytes,
1635 (len - argbytes) > reg_size
1636 ? reg_size : len - argbytes);
1637 regcache_cooked_write (regcache,
1638 tdep->ppc_gp0_regnum + 3 + ii,
1639 word);
1640 ++ii, argbytes += reg_size;
1641
1642 if (ii >= 8)
1643 goto ran_out_of_registers_for_arguments;
1644 }
1645 argbytes = 0;
1646 --ii;
1647 }
1648 else
1649 {
1650 /* Argument can fit in one register. No problem. */
1651 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1652 gdb_byte word[MAX_REGISTER_SIZE];
1653
1654 memset (word, 0, reg_size);
1655 memcpy (word, value_contents (arg), len);
1656 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1657 }
1658 ++argno;
1659 }
1660
1661 ran_out_of_registers_for_arguments:
1662
1663 saved_sp = read_sp ();
1664
1665 /* Location for 8 parameters are always reserved. */
1666 sp -= wordsize * 8;
1667
1668 /* Another six words for back chain, TOC register, link register, etc. */
1669 sp -= wordsize * 6;
1670
1671 /* Stack pointer must be quadword aligned. */
1672 sp &= -16;
1673
1674 /* If there are more arguments, allocate space for them in
1675 the stack, then push them starting from the ninth one. */
1676
1677 if ((argno < nargs) || argbytes)
1678 {
1679 int space = 0, jj;
1680
1681 if (argbytes)
1682 {
1683 space += ((len - argbytes + 3) & -4);
1684 jj = argno + 1;
1685 }
1686 else
1687 jj = argno;
1688
1689 for (; jj < nargs; ++jj)
1690 {
1691 struct value *val = args[jj];
1692 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1693 }
1694
1695 /* Add location required for the rest of the parameters. */
1696 space = (space + 15) & -16;
1697 sp -= space;
1698
1699 /* This is another instance we need to be concerned about
1700 securing our stack space. If we write anything underneath %sp
1701 (r1), we might conflict with the kernel who thinks he is free
1702 to use this area. So, update %sp first before doing anything
1703 else. */
1704
1705 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1706
1707 /* If the last argument copied into the registers didn't fit there
1708 completely, push the rest of it into stack. */
1709
1710 if (argbytes)
1711 {
1712 write_memory (sp + 24 + (ii * 4),
1713 value_contents (arg) + argbytes,
1714 len - argbytes);
1715 ++argno;
1716 ii += ((len - argbytes + 3) & -4) / 4;
1717 }
1718
1719 /* Push the rest of the arguments into stack. */
1720 for (; argno < nargs; ++argno)
1721 {
1722
1723 arg = args[argno];
1724 type = check_typedef (value_type (arg));
1725 len = TYPE_LENGTH (type);
1726
1727
1728 /* Float types should be passed in fpr's, as well as in the
1729 stack. */
1730 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1731 {
1732
1733 gdb_assert (len <= 8);
1734
1735 regcache_cooked_write (regcache,
1736 tdep->ppc_fp0_regnum + 1 + f_argno,
1737 value_contents (arg));
1738 ++f_argno;
1739 }
1740
1741 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1742 ii += ((len + 3) & -4) / 4;
1743 }
1744 }
1745
1746 /* Set the stack pointer. According to the ABI, the SP is meant to
1747 be set _before_ the corresponding stack space is used. On AIX,
1748 this even applies when the target has been completely stopped!
1749 Not doing this can lead to conflicts with the kernel which thinks
1750 that it still has control over this not-yet-allocated stack
1751 region. */
1752 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1753
1754 /* Set back chain properly. */
1755 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1756 write_memory (sp, tmp_buffer, wordsize);
1757
1758 /* Point the inferior function call's return address at the dummy's
1759 breakpoint. */
1760 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1761
1762 /* Set the TOC register, get the value from the objfile reader
1763 which, in turn, gets it from the VMAP table. */
1764 if (rs6000_find_toc_address_hook != NULL)
1765 {
1766 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1767 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1768 }
1769
1770 target_store_registers (-1);
1771 return sp;
1772 }
1773
1774 static enum return_value_convention
1775 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1776 struct regcache *regcache, gdb_byte *readbuf,
1777 const gdb_byte *writebuf)
1778 {
1779 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1780 gdb_byte buf[8];
1781
1782 /* The calling convention this function implements assumes the
1783 processor has floating-point registers. We shouldn't be using it
1784 on PowerPC variants that lack them. */
1785 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1786
1787 /* AltiVec extension: Functions that declare a vector data type as a
1788 return value place that return value in VR2. */
1789 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1790 && TYPE_LENGTH (valtype) == 16)
1791 {
1792 if (readbuf)
1793 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1794 if (writebuf)
1795 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1796
1797 return RETURN_VALUE_REGISTER_CONVENTION;
1798 }
1799
1800 /* If the called subprogram returns an aggregate, there exists an
1801 implicit first argument, whose value is the address of a caller-
1802 allocated buffer into which the callee is assumed to store its
1803 return value. All explicit parameters are appropriately
1804 relabeled. */
1805 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1806 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1807 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1808 return RETURN_VALUE_STRUCT_CONVENTION;
1809
1810 /* Scalar floating-point values are returned in FPR1 for float or
1811 double, and in FPR1:FPR2 for quadword precision. Fortran
1812 complex*8 and complex*16 are returned in FPR1:FPR2, and
1813 complex*32 is returned in FPR1:FPR4. */
1814 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1815 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1816 {
1817 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1818 gdb_byte regval[8];
1819
1820 /* FIXME: kettenis/2007-01-01: Add support for quadword
1821 precision and complex. */
1822
1823 if (readbuf)
1824 {
1825 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1826 convert_typed_floating (regval, regtype, readbuf, valtype);
1827 }
1828 if (writebuf)
1829 {
1830 convert_typed_floating (writebuf, valtype, regval, regtype);
1831 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1832 }
1833
1834 return RETURN_VALUE_REGISTER_CONVENTION;
1835 }
1836
1837 /* Values of the types int, long, short, pointer, and char (length
1838 is less than or equal to four bytes), as well as bit values of
1839 lengths less than or equal to 32 bits, must be returned right
1840 justified in GPR3 with signed values sign extended and unsigned
1841 values zero extended, as necessary. */
1842 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1843 {
1844 if (readbuf)
1845 {
1846 ULONGEST regval;
1847
1848 /* For reading we don't have to worry about sign extension. */
1849 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1850 &regval);
1851 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1852 }
1853 if (writebuf)
1854 {
1855 /* For writing, use unpack_long since that should handle any
1856 required sign extension. */
1857 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1858 unpack_long (valtype, writebuf));
1859 }
1860
1861 return RETURN_VALUE_REGISTER_CONVENTION;
1862 }
1863
1864 /* Eight-byte non-floating-point scalar values must be returned in
1865 GPR3:GPR4. */
1866
1867 if (TYPE_LENGTH (valtype) == 8)
1868 {
1869 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1870 gdb_assert (tdep->wordsize == 4);
1871
1872 if (readbuf)
1873 {
1874 gdb_byte regval[8];
1875
1876 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1877 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1878 regval + 4);
1879 memcpy (readbuf, regval, 8);
1880 }
1881 if (writebuf)
1882 {
1883 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1884 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1885 writebuf + 4);
1886 }
1887
1888 return RETURN_VALUE_REGISTER_CONVENTION;
1889 }
1890
1891 return RETURN_VALUE_STRUCT_CONVENTION;
1892 }
1893
1894 /* Return whether handle_inferior_event() should proceed through code
1895 starting at PC in function NAME when stepping.
1896
1897 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1898 handle memory references that are too distant to fit in instructions
1899 generated by the compiler. For example, if 'foo' in the following
1900 instruction:
1901
1902 lwz r9,foo(r2)
1903
1904 is greater than 32767, the linker might replace the lwz with a branch to
1905 somewhere in @FIX1 that does the load in 2 instructions and then branches
1906 back to where execution should continue.
1907
1908 GDB should silently step over @FIX code, just like AIX dbx does.
1909 Unfortunately, the linker uses the "b" instruction for the
1910 branches, meaning that the link register doesn't get set.
1911 Therefore, GDB's usual step_over_function () mechanism won't work.
1912
1913 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1914 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1915 @FIX code. */
1916
1917 int
1918 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1919 {
1920 return name && !strncmp (name, "@FIX", 4);
1921 }
1922
1923 /* Skip code that the user doesn't want to see when stepping:
1924
1925 1. Indirect function calls use a piece of trampoline code to do context
1926 switching, i.e. to set the new TOC table. Skip such code if we are on
1927 its first instruction (as when we have single-stepped to here).
1928
1929 2. Skip shared library trampoline code (which is different from
1930 indirect function call trampolines).
1931
1932 3. Skip bigtoc fixup code.
1933
1934 Result is desired PC to step until, or NULL if we are not in
1935 code that should be skipped. */
1936
1937 CORE_ADDR
1938 rs6000_skip_trampoline_code (CORE_ADDR pc)
1939 {
1940 unsigned int ii, op;
1941 int rel;
1942 CORE_ADDR solib_target_pc;
1943 struct minimal_symbol *msymbol;
1944
1945 static unsigned trampoline_code[] =
1946 {
1947 0x800b0000, /* l r0,0x0(r11) */
1948 0x90410014, /* st r2,0x14(r1) */
1949 0x7c0903a6, /* mtctr r0 */
1950 0x804b0004, /* l r2,0x4(r11) */
1951 0x816b0008, /* l r11,0x8(r11) */
1952 0x4e800420, /* bctr */
1953 0x4e800020, /* br */
1954 0
1955 };
1956
1957 /* Check for bigtoc fixup code. */
1958 msymbol = lookup_minimal_symbol_by_pc (pc);
1959 if (msymbol
1960 && rs6000_in_solib_return_trampoline (pc,
1961 DEPRECATED_SYMBOL_NAME (msymbol)))
1962 {
1963 /* Double-check that the third instruction from PC is relative "b". */
1964 op = read_memory_integer (pc + 8, 4);
1965 if ((op & 0xfc000003) == 0x48000000)
1966 {
1967 /* Extract bits 6-29 as a signed 24-bit relative word address and
1968 add it to the containing PC. */
1969 rel = ((int)(op << 6) >> 6);
1970 return pc + 8 + rel;
1971 }
1972 }
1973
1974 /* If pc is in a shared library trampoline, return its target. */
1975 solib_target_pc = find_solib_trampoline_target (pc);
1976 if (solib_target_pc)
1977 return solib_target_pc;
1978
1979 for (ii = 0; trampoline_code[ii]; ++ii)
1980 {
1981 op = read_memory_integer (pc + (ii * 4), 4);
1982 if (op != trampoline_code[ii])
1983 return 0;
1984 }
1985 ii = read_register (11); /* r11 holds destination addr */
1986 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1987 return pc;
1988 }
1989
1990 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1991 isn't available with that word size, return 0. */
1992
1993 static int
1994 regsize (const struct reg *reg, int wordsize)
1995 {
1996 return wordsize == 8 ? reg->sz64 : reg->sz32;
1997 }
1998
1999 /* Return the name of register number N, or null if no such register exists
2000 in the current architecture. */
2001
2002 static const char *
2003 rs6000_register_name (int n)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2006 const struct reg *reg = tdep->regs + n;
2007
2008 if (!regsize (reg, tdep->wordsize))
2009 return NULL;
2010 return reg->name;
2011 }
2012
2013 /* Return the GDB type object for the "standard" data type
2014 of data in register N. */
2015
2016 static struct type *
2017 rs6000_register_type (struct gdbarch *gdbarch, int n)
2018 {
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2020 const struct reg *reg = tdep->regs + n;
2021
2022 if (reg->fpr)
2023 return builtin_type_double;
2024 else
2025 {
2026 int size = regsize (reg, tdep->wordsize);
2027 switch (size)
2028 {
2029 case 0:
2030 return builtin_type_int0;
2031 case 4:
2032 return builtin_type_uint32;
2033 case 8:
2034 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2035 return builtin_type_vec64;
2036 else
2037 return builtin_type_uint64;
2038 break;
2039 case 16:
2040 return builtin_type_vec128;
2041 break;
2042 default:
2043 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2044 n, size);
2045 }
2046 }
2047 }
2048
2049 /* Is REGNUM a member of REGGROUP? */
2050 static int
2051 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2052 struct reggroup *group)
2053 {
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2055 int float_p;
2056 int vector_p;
2057 int general_p;
2058
2059 if (REGISTER_NAME (regnum) == NULL
2060 || *REGISTER_NAME (regnum) == '\0')
2061 return 0;
2062 if (group == all_reggroup)
2063 return 1;
2064
2065 float_p = (regnum == tdep->ppc_fpscr_regnum
2066 || (regnum >= tdep->ppc_fp0_regnum
2067 && regnum < tdep->ppc_fp0_regnum + 32));
2068 if (group == float_reggroup)
2069 return float_p;
2070
2071 vector_p = ((tdep->ppc_vr0_regnum >= 0
2072 && regnum >= tdep->ppc_vr0_regnum
2073 && regnum < tdep->ppc_vr0_regnum + 32)
2074 || (tdep->ppc_ev0_regnum >= 0
2075 && regnum >= tdep->ppc_ev0_regnum
2076 && regnum < tdep->ppc_ev0_regnum + 32)
2077 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2078 || regnum == tdep->ppc_vrsave_regnum
2079 || regnum == tdep->ppc_acc_regnum
2080 || regnum == tdep->ppc_spefscr_regnum);
2081 if (group == vector_reggroup)
2082 return vector_p;
2083
2084 /* Note that PS aka MSR isn't included - it's a system register (and
2085 besides, due to GCC's CFI foobar you do not want to restore
2086 it). */
2087 general_p = ((regnum >= tdep->ppc_gp0_regnum
2088 && regnum < tdep->ppc_gp0_regnum + 32)
2089 || regnum == tdep->ppc_toc_regnum
2090 || regnum == tdep->ppc_cr_regnum
2091 || regnum == tdep->ppc_lr_regnum
2092 || regnum == tdep->ppc_ctr_regnum
2093 || regnum == tdep->ppc_xer_regnum
2094 || regnum == PC_REGNUM);
2095 if (group == general_reggroup)
2096 return general_p;
2097
2098 if (group == save_reggroup || group == restore_reggroup)
2099 return general_p || vector_p || float_p;
2100
2101 return 0;
2102 }
2103
2104 /* The register format for RS/6000 floating point registers is always
2105 double, we need a conversion if the memory format is float. */
2106
2107 static int
2108 rs6000_convert_register_p (int regnum, struct type *type)
2109 {
2110 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2111
2112 return (reg->fpr
2113 && TYPE_CODE (type) == TYPE_CODE_FLT
2114 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2115 }
2116
2117 static void
2118 rs6000_register_to_value (struct frame_info *frame,
2119 int regnum,
2120 struct type *type,
2121 gdb_byte *to)
2122 {
2123 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2124 gdb_byte from[MAX_REGISTER_SIZE];
2125
2126 gdb_assert (reg->fpr);
2127 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2128
2129 get_frame_register (frame, regnum, from);
2130 convert_typed_floating (from, builtin_type_double, to, type);
2131 }
2132
2133 static void
2134 rs6000_value_to_register (struct frame_info *frame,
2135 int regnum,
2136 struct type *type,
2137 const gdb_byte *from)
2138 {
2139 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2140 gdb_byte to[MAX_REGISTER_SIZE];
2141
2142 gdb_assert (reg->fpr);
2143 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2144
2145 convert_typed_floating (from, type, to, builtin_type_double);
2146 put_frame_register (frame, regnum, to);
2147 }
2148
2149 /* Move SPE vector register values between a 64-bit buffer and the two
2150 32-bit raw register halves in a regcache. This function handles
2151 both splitting a 64-bit value into two 32-bit halves, and joining
2152 two halves into a whole 64-bit value, depending on the function
2153 passed as the MOVE argument.
2154
2155 EV_REG must be the number of an SPE evN vector register --- a
2156 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2157 64-bit buffer.
2158
2159 Call MOVE once for each 32-bit half of that register, passing
2160 REGCACHE, the number of the raw register corresponding to that
2161 half, and the address of the appropriate half of BUFFER.
2162
2163 For example, passing 'regcache_raw_read' as the MOVE function will
2164 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2165 'regcache_raw_supply' will supply the contents of BUFFER to the
2166 appropriate pair of raw registers in REGCACHE.
2167
2168 You may need to cast away some 'const' qualifiers when passing
2169 MOVE, since this function can't tell at compile-time which of
2170 REGCACHE or BUFFER is acting as the source of the data. If C had
2171 co-variant type qualifiers, ... */
2172 static void
2173 e500_move_ev_register (void (*move) (struct regcache *regcache,
2174 int regnum, gdb_byte *buf),
2175 struct regcache *regcache, int ev_reg,
2176 gdb_byte *buffer)
2177 {
2178 struct gdbarch *arch = get_regcache_arch (regcache);
2179 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2180 int reg_index;
2181 gdb_byte *byte_buffer = buffer;
2182
2183 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2184 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2185
2186 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2187
2188 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2189 {
2190 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2191 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2192 }
2193 else
2194 {
2195 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2196 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2197 }
2198 }
2199
2200 static void
2201 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2202 int reg_nr, gdb_byte *buffer)
2203 {
2204 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2206
2207 gdb_assert (regcache_arch == gdbarch);
2208
2209 if (tdep->ppc_ev0_regnum <= reg_nr
2210 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2211 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2212 else
2213 internal_error (__FILE__, __LINE__,
2214 _("e500_pseudo_register_read: "
2215 "called on unexpected register '%s' (%d)"),
2216 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2217 }
2218
2219 static void
2220 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2221 int reg_nr, const gdb_byte *buffer)
2222 {
2223 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2225
2226 gdb_assert (regcache_arch == gdbarch);
2227
2228 if (tdep->ppc_ev0_regnum <= reg_nr
2229 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2230 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2231 regcache_raw_write,
2232 regcache, reg_nr, (gdb_byte *) buffer);
2233 else
2234 internal_error (__FILE__, __LINE__,
2235 _("e500_pseudo_register_read: "
2236 "called on unexpected register '%s' (%d)"),
2237 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2238 }
2239
2240 /* The E500 needs a custom reggroup function: it has anonymous raw
2241 registers, and default_register_reggroup_p assumes that anonymous
2242 registers are not members of any reggroup. */
2243 static int
2244 e500_register_reggroup_p (struct gdbarch *gdbarch,
2245 int regnum,
2246 struct reggroup *group)
2247 {
2248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2249
2250 /* The save and restore register groups need to include the
2251 upper-half registers, even though they're anonymous. */
2252 if ((group == save_reggroup
2253 || group == restore_reggroup)
2254 && (tdep->ppc_ev0_upper_regnum <= regnum
2255 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2256 return 1;
2257
2258 /* In all other regards, the default reggroup definition is fine. */
2259 return default_register_reggroup_p (gdbarch, regnum, group);
2260 }
2261
2262 /* Convert a DBX STABS register number to a GDB register number. */
2263 static int
2264 rs6000_stab_reg_to_regnum (int num)
2265 {
2266 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2267
2268 if (0 <= num && num <= 31)
2269 return tdep->ppc_gp0_regnum + num;
2270 else if (32 <= num && num <= 63)
2271 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2272 specifies registers the architecture doesn't have? Our
2273 callers don't check the value we return. */
2274 return tdep->ppc_fp0_regnum + (num - 32);
2275 else if (77 <= num && num <= 108)
2276 return tdep->ppc_vr0_regnum + (num - 77);
2277 else if (1200 <= num && num < 1200 + 32)
2278 return tdep->ppc_ev0_regnum + (num - 1200);
2279 else
2280 switch (num)
2281 {
2282 case 64:
2283 return tdep->ppc_mq_regnum;
2284 case 65:
2285 return tdep->ppc_lr_regnum;
2286 case 66:
2287 return tdep->ppc_ctr_regnum;
2288 case 76:
2289 return tdep->ppc_xer_regnum;
2290 case 109:
2291 return tdep->ppc_vrsave_regnum;
2292 case 110:
2293 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2294 case 111:
2295 return tdep->ppc_acc_regnum;
2296 case 112:
2297 return tdep->ppc_spefscr_regnum;
2298 default:
2299 return num;
2300 }
2301 }
2302
2303
2304 /* Convert a Dwarf 2 register number to a GDB register number. */
2305 static int
2306 rs6000_dwarf2_reg_to_regnum (int num)
2307 {
2308 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2309
2310 if (0 <= num && num <= 31)
2311 return tdep->ppc_gp0_regnum + num;
2312 else if (32 <= num && num <= 63)
2313 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2314 specifies registers the architecture doesn't have? Our
2315 callers don't check the value we return. */
2316 return tdep->ppc_fp0_regnum + (num - 32);
2317 else if (1124 <= num && num < 1124 + 32)
2318 return tdep->ppc_vr0_regnum + (num - 1124);
2319 else if (1200 <= num && num < 1200 + 32)
2320 return tdep->ppc_ev0_regnum + (num - 1200);
2321 else
2322 switch (num)
2323 {
2324 case 67:
2325 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2326 case 99:
2327 return tdep->ppc_acc_regnum;
2328 case 100:
2329 return tdep->ppc_mq_regnum;
2330 case 101:
2331 return tdep->ppc_xer_regnum;
2332 case 108:
2333 return tdep->ppc_lr_regnum;
2334 case 109:
2335 return tdep->ppc_ctr_regnum;
2336 case 356:
2337 return tdep->ppc_vrsave_regnum;
2338 case 612:
2339 return tdep->ppc_spefscr_regnum;
2340 default:
2341 return num;
2342 }
2343 }
2344
2345 /* Hook called when a new child process is started. */
2346
2347 void
2348 rs6000_create_inferior (int pid)
2349 {
2350 if (rs6000_set_host_arch_hook)
2351 rs6000_set_host_arch_hook (pid);
2352 }
2353 \f
2354 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2355
2356 Usually a function pointer's representation is simply the address
2357 of the function. On the RS/6000 however, a function pointer is
2358 represented by a pointer to an OPD entry. This OPD entry contains
2359 three words, the first word is the address of the function, the
2360 second word is the TOC pointer (r2), and the third word is the
2361 static chain value. Throughout GDB it is currently assumed that a
2362 function pointer contains the address of the function, which is not
2363 easy to fix. In addition, the conversion of a function address to
2364 a function pointer would require allocation of an OPD entry in the
2365 inferior's memory space, with all its drawbacks. To be able to
2366 call C++ virtual methods in the inferior (which are called via
2367 function pointers), find_function_addr uses this function to get the
2368 function address from a function pointer. */
2369
2370 /* Return real function address if ADDR (a function pointer) is in the data
2371 space and is therefore a special function pointer. */
2372
2373 static CORE_ADDR
2374 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2375 CORE_ADDR addr,
2376 struct target_ops *targ)
2377 {
2378 struct obj_section *s;
2379
2380 s = find_pc_section (addr);
2381 if (s && s->the_bfd_section->flags & SEC_CODE)
2382 return addr;
2383
2384 /* ADDR is in the data space, so it's a special function pointer. */
2385 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2386 }
2387 \f
2388
2389 /* Handling the various POWER/PowerPC variants. */
2390
2391
2392 /* The arrays here called registers_MUMBLE hold information about available
2393 registers.
2394
2395 For each family of PPC variants, I've tried to isolate out the
2396 common registers and put them up front, so that as long as you get
2397 the general family right, GDB will correctly identify the registers
2398 common to that family. The common register sets are:
2399
2400 For the 60x family: hid0 hid1 iabr dabr pir
2401
2402 For the 505 and 860 family: eie eid nri
2403
2404 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2405 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2406 pbu1 pbl2 pbu2
2407
2408 Most of these register groups aren't anything formal. I arrived at
2409 them by looking at the registers that occurred in more than one
2410 processor.
2411
2412 Note: kevinb/2002-04-30: Support for the fpscr register was added
2413 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2414 for Power. For PowerPC, slot 70 was unused and was already in the
2415 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2416 slot 70 was being used for "mq", so the next available slot (71)
2417 was chosen. It would have been nice to be able to make the
2418 register numbers the same across processor cores, but this wasn't
2419 possible without either 1) renumbering some registers for some
2420 processors or 2) assigning fpscr to a really high slot that's
2421 larger than any current register number. Doing (1) is bad because
2422 existing stubs would break. Doing (2) is undesirable because it
2423 would introduce a really large gap between fpscr and the rest of
2424 the registers for most processors. */
2425
2426 /* Convenience macros for populating register arrays. */
2427
2428 /* Within another macro, convert S to a string. */
2429
2430 #define STR(s) #s
2431
2432 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2433 and 64 bits on 64-bit systems. */
2434 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2435
2436 /* Return a struct reg defining register NAME that's 32 bits on all
2437 systems. */
2438 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2439
2440 /* Return a struct reg defining register NAME that's 64 bits on all
2441 systems. */
2442 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2443
2444 /* Return a struct reg defining register NAME that's 128 bits on all
2445 systems. */
2446 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2447
2448 /* Return a struct reg defining floating-point register NAME. */
2449 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2450
2451 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2452 long on all systems. */
2453 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2454
2455 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2456 systems and that doesn't exist on 64-bit systems. */
2457 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2458
2459 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2460 systems and that doesn't exist on 32-bit systems. */
2461 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2462
2463 /* Return a struct reg placeholder for a register that doesn't exist. */
2464 #define R0 { 0, 0, 0, 0, 0, -1 }
2465
2466 /* Return a struct reg defining an anonymous raw register that's 32
2467 bits on all systems. */
2468 #define A4 { 0, 4, 4, 0, 0, -1 }
2469
2470 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2471 32-bit systems and 64 bits on 64-bit systems. */
2472 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2473
2474 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2475 all systems. */
2476 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2477
2478 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2479 all systems, and whose SPR number is NUMBER. */
2480 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2481
2482 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2483 64-bit systems and that doesn't exist on 32-bit systems. */
2484 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2485
2486 /* UISA registers common across all architectures, including POWER. */
2487
2488 #define COMMON_UISA_REGS \
2489 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2490 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2491 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2492 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2493 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2494 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2495 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2496 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2497 /* 64 */ R(pc), R(ps)
2498
2499 /* UISA-level SPRs for PowerPC. */
2500 #define PPC_UISA_SPRS \
2501 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2502
2503 /* UISA-level SPRs for PowerPC without floating point support. */
2504 #define PPC_UISA_NOFP_SPRS \
2505 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2506
2507 /* Segment registers, for PowerPC. */
2508 #define PPC_SEGMENT_REGS \
2509 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2510 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2511 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2512 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2513
2514 /* OEA SPRs for PowerPC. */
2515 #define PPC_OEA_SPRS \
2516 /* 87 */ S4(pvr), \
2517 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2518 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2519 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2520 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2521 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2522 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2523 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2524 /* 116 */ S4(dec), S(dabr), S4(ear)
2525
2526 /* AltiVec registers. */
2527 #define PPC_ALTIVEC_REGS \
2528 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2529 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2530 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2531 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2532 /*151*/R4(vscr), R4(vrsave)
2533
2534
2535 /* On machines supporting the SPE APU, the general-purpose registers
2536 are 64 bits long. There are SIMD vector instructions to treat them
2537 as pairs of floats, but the rest of the instruction set treats them
2538 as 32-bit registers, and only operates on their lower halves.
2539
2540 In the GDB regcache, we treat their high and low halves as separate
2541 registers. The low halves we present as the general-purpose
2542 registers, and then we have pseudo-registers that stitch together
2543 the upper and lower halves and present them as pseudo-registers. */
2544
2545 /* SPE GPR lower halves --- raw registers. */
2546 #define PPC_SPE_GP_REGS \
2547 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2548 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2549 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2550 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2551
2552 /* SPE GPR upper halves --- anonymous raw registers. */
2553 #define PPC_SPE_UPPER_GP_REGS \
2554 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2555 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2556 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2557 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2558
2559 /* SPE GPR vector registers --- pseudo registers based on underlying
2560 gprs and the anonymous upper half raw registers. */
2561 #define PPC_EV_PSEUDO_REGS \
2562 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2563 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2564 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2565 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2566
2567 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2568 user-level SPR's. */
2569 static const struct reg registers_power[] =
2570 {
2571 COMMON_UISA_REGS,
2572 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2573 /* 71 */ R4(fpscr)
2574 };
2575
2576 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2577 view of the PowerPC. */
2578 static const struct reg registers_powerpc[] =
2579 {
2580 COMMON_UISA_REGS,
2581 PPC_UISA_SPRS,
2582 PPC_ALTIVEC_REGS
2583 };
2584
2585 /* IBM PowerPC 403.
2586
2587 Some notes about the "tcr" special-purpose register:
2588 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2589 403's programmable interval timer, fixed interval timer, and
2590 watchdog timer.
2591 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2592 watchdog timer, and nothing else.
2593
2594 Some of the fields are similar between the two, but they're not
2595 compatible with each other. Since the two variants have different
2596 registers, with different numbers, but the same name, we can't
2597 splice the register name to get the SPR number. */
2598 static const struct reg registers_403[] =
2599 {
2600 COMMON_UISA_REGS,
2601 PPC_UISA_SPRS,
2602 PPC_SEGMENT_REGS,
2603 PPC_OEA_SPRS,
2604 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2605 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2606 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2607 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2608 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2609 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2610 };
2611
2612 /* IBM PowerPC 403GC.
2613 See the comments about 'tcr' for the 403, above. */
2614 static const struct reg registers_403GC[] =
2615 {
2616 COMMON_UISA_REGS,
2617 PPC_UISA_SPRS,
2618 PPC_SEGMENT_REGS,
2619 PPC_OEA_SPRS,
2620 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2621 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2622 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2623 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2624 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2625 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2626 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2627 /* 147 */ S(tbhu), S(tblu)
2628 };
2629
2630 /* Motorola PowerPC 505. */
2631 static const struct reg registers_505[] =
2632 {
2633 COMMON_UISA_REGS,
2634 PPC_UISA_SPRS,
2635 PPC_SEGMENT_REGS,
2636 PPC_OEA_SPRS,
2637 /* 119 */ S(eie), S(eid), S(nri)
2638 };
2639
2640 /* Motorola PowerPC 860 or 850. */
2641 static const struct reg registers_860[] =
2642 {
2643 COMMON_UISA_REGS,
2644 PPC_UISA_SPRS,
2645 PPC_SEGMENT_REGS,
2646 PPC_OEA_SPRS,
2647 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2648 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2649 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2650 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2651 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2652 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2653 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2654 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2655 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2656 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2657 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2658 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2659 };
2660
2661 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2662 for reading and writing RTCU and RTCL. However, how one reads and writes a
2663 register is the stub's problem. */
2664 static const struct reg registers_601[] =
2665 {
2666 COMMON_UISA_REGS,
2667 PPC_UISA_SPRS,
2668 PPC_SEGMENT_REGS,
2669 PPC_OEA_SPRS,
2670 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2671 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2672 };
2673
2674 /* Motorola PowerPC 602.
2675 See the notes under the 403 about 'tcr'. */
2676 static const struct reg registers_602[] =
2677 {
2678 COMMON_UISA_REGS,
2679 PPC_UISA_SPRS,
2680 PPC_SEGMENT_REGS,
2681 PPC_OEA_SPRS,
2682 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2683 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2684 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2685 };
2686
2687 /* Motorola/IBM PowerPC 603 or 603e. */
2688 static const struct reg registers_603[] =
2689 {
2690 COMMON_UISA_REGS,
2691 PPC_UISA_SPRS,
2692 PPC_SEGMENT_REGS,
2693 PPC_OEA_SPRS,
2694 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2695 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2696 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2697 };
2698
2699 /* Motorola PowerPC 604 or 604e. */
2700 static const struct reg registers_604[] =
2701 {
2702 COMMON_UISA_REGS,
2703 PPC_UISA_SPRS,
2704 PPC_SEGMENT_REGS,
2705 PPC_OEA_SPRS,
2706 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2707 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2708 /* 127 */ S(sia), S(sda)
2709 };
2710
2711 /* Motorola/IBM PowerPC 750 or 740. */
2712 static const struct reg registers_750[] =
2713 {
2714 COMMON_UISA_REGS,
2715 PPC_UISA_SPRS,
2716 PPC_SEGMENT_REGS,
2717 PPC_OEA_SPRS,
2718 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2719 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2720 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2721 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2722 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2723 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2724 };
2725
2726
2727 /* Motorola PowerPC 7400. */
2728 static const struct reg registers_7400[] =
2729 {
2730 /* gpr0-gpr31, fpr0-fpr31 */
2731 COMMON_UISA_REGS,
2732 /* cr, lr, ctr, xer, fpscr */
2733 PPC_UISA_SPRS,
2734 /* sr0-sr15 */
2735 PPC_SEGMENT_REGS,
2736 PPC_OEA_SPRS,
2737 /* vr0-vr31, vrsave, vscr */
2738 PPC_ALTIVEC_REGS
2739 /* FIXME? Add more registers? */
2740 };
2741
2742 /* Motorola e500. */
2743 static const struct reg registers_e500[] =
2744 {
2745 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2746 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2747 /* 64 .. 65 */ R(pc), R(ps),
2748 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2749 /* 71 .. 72 */ R8(acc), S4(spefscr),
2750 /* NOTE: Add new registers here the end of the raw register
2751 list and just before the first pseudo register. */
2752 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2753 };
2754
2755 /* Information about a particular processor variant. */
2756
2757 struct variant
2758 {
2759 /* Name of this variant. */
2760 char *name;
2761
2762 /* English description of the variant. */
2763 char *description;
2764
2765 /* bfd_arch_info.arch corresponding to variant. */
2766 enum bfd_architecture arch;
2767
2768 /* bfd_arch_info.mach corresponding to variant. */
2769 unsigned long mach;
2770
2771 /* Number of real registers. */
2772 int nregs;
2773
2774 /* Number of pseudo registers. */
2775 int npregs;
2776
2777 /* Number of total registers (the sum of nregs and npregs). */
2778 int num_tot_regs;
2779
2780 /* Table of register names; registers[R] is the name of the register
2781 number R. */
2782 const struct reg *regs;
2783 };
2784
2785 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2786
2787 static int
2788 num_registers (const struct reg *reg_list, int num_tot_regs)
2789 {
2790 int i;
2791 int nregs = 0;
2792
2793 for (i = 0; i < num_tot_regs; i++)
2794 if (!reg_list[i].pseudo)
2795 nregs++;
2796
2797 return nregs;
2798 }
2799
2800 static int
2801 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2802 {
2803 int i;
2804 int npregs = 0;
2805
2806 for (i = 0; i < num_tot_regs; i++)
2807 if (reg_list[i].pseudo)
2808 npregs ++;
2809
2810 return npregs;
2811 }
2812
2813 /* Information in this table comes from the following web sites:
2814 IBM: http://www.chips.ibm.com:80/products/embedded/
2815 Motorola: http://www.mot.com/SPS/PowerPC/
2816
2817 I'm sure I've got some of the variant descriptions not quite right.
2818 Please report any inaccuracies you find to GDB's maintainer.
2819
2820 If you add entries to this table, please be sure to allow the new
2821 value as an argument to the --with-cpu flag, in configure.in. */
2822
2823 static struct variant variants[] =
2824 {
2825
2826 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2827 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2828 registers_powerpc},
2829 {"power", "POWER user-level", bfd_arch_rs6000,
2830 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2831 registers_power},
2832 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2833 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2834 registers_403},
2835 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2836 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2837 registers_601},
2838 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2839 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2840 registers_602},
2841 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2842 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2843 registers_603},
2844 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2845 604, -1, -1, tot_num_registers (registers_604),
2846 registers_604},
2847 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2848 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2849 registers_403GC},
2850 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2851 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2852 registers_505},
2853 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2854 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2855 registers_860},
2856 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2857 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2858 registers_750},
2859 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2860 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2861 registers_7400},
2862 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2863 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2864 registers_e500},
2865
2866 /* 64-bit */
2867 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2868 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2869 registers_powerpc},
2870 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2871 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2872 registers_powerpc},
2873 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2874 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2875 registers_powerpc},
2876 {"a35", "PowerPC A35", bfd_arch_powerpc,
2877 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2878 registers_powerpc},
2879 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2880 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2881 registers_powerpc},
2882 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2883 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2884 registers_powerpc},
2885
2886 /* FIXME: I haven't checked the register sets of the following. */
2887 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2888 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2889 registers_power},
2890 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2891 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2892 registers_power},
2893 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2894 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2895 registers_power},
2896
2897 {0, 0, 0, 0, 0, 0, 0, 0}
2898 };
2899
2900 /* Initialize the number of registers and pseudo registers in each variant. */
2901
2902 static void
2903 init_variants (void)
2904 {
2905 struct variant *v;
2906
2907 for (v = variants; v->name; v++)
2908 {
2909 if (v->nregs == -1)
2910 v->nregs = num_registers (v->regs, v->num_tot_regs);
2911 if (v->npregs == -1)
2912 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2913 }
2914 }
2915
2916 /* Return the variant corresponding to architecture ARCH and machine number
2917 MACH. If no such variant exists, return null. */
2918
2919 static const struct variant *
2920 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2921 {
2922 const struct variant *v;
2923
2924 for (v = variants; v->name; v++)
2925 if (arch == v->arch && mach == v->mach)
2926 return v;
2927
2928 return NULL;
2929 }
2930
2931 static int
2932 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2933 {
2934 if (!info->disassembler_options)
2935 info->disassembler_options = "any";
2936
2937 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2938 return print_insn_big_powerpc (memaddr, info);
2939 else
2940 return print_insn_little_powerpc (memaddr, info);
2941 }
2942 \f
2943 static CORE_ADDR
2944 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2945 {
2946 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2947 }
2948
2949 static struct frame_id
2950 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2951 {
2952 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2953 SP_REGNUM),
2954 frame_pc_unwind (next_frame));
2955 }
2956
2957 struct rs6000_frame_cache
2958 {
2959 CORE_ADDR base;
2960 CORE_ADDR initial_sp;
2961 struct trad_frame_saved_reg *saved_regs;
2962 };
2963
2964 static struct rs6000_frame_cache *
2965 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2966 {
2967 struct rs6000_frame_cache *cache;
2968 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2970 struct rs6000_framedata fdata;
2971 int wordsize = tdep->wordsize;
2972 CORE_ADDR func, pc;
2973
2974 if ((*this_cache) != NULL)
2975 return (*this_cache);
2976 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2977 (*this_cache) = cache;
2978 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2979
2980 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2981 pc = frame_pc_unwind (next_frame);
2982 skip_prologue (func, pc, &fdata);
2983
2984 /* Figure out the parent's stack pointer. */
2985
2986 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2987 address of the current frame. Things might be easier if the
2988 ->frame pointed to the outer-most address of the frame. In
2989 the mean time, the address of the prev frame is used as the
2990 base address of this frame. */
2991 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2992
2993 /* If the function appears to be frameless, check a couple of likely
2994 indicators that we have simply failed to find the frame setup.
2995 Two common cases of this are missing symbols (i.e.
2996 frame_func_unwind returns the wrong address or 0), and assembly
2997 stubs which have a fast exit path but set up a frame on the slow
2998 path.
2999
3000 If the LR appears to return to this function, then presume that
3001 we have an ABI compliant frame that we failed to find. */
3002 if (fdata.frameless && fdata.lr_offset == 0)
3003 {
3004 CORE_ADDR saved_lr;
3005 int make_frame = 0;
3006
3007 saved_lr = frame_unwind_register_unsigned (next_frame,
3008 tdep->ppc_lr_regnum);
3009 if (func == 0 && saved_lr == pc)
3010 make_frame = 1;
3011 else if (func != 0)
3012 {
3013 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3014 if (func == saved_func)
3015 make_frame = 1;
3016 }
3017
3018 if (make_frame)
3019 {
3020 fdata.frameless = 0;
3021 fdata.lr_offset = wordsize;
3022 }
3023 }
3024
3025 if (!fdata.frameless)
3026 /* Frameless really means stackless. */
3027 cache->base = read_memory_addr (cache->base, wordsize);
3028
3029 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3030
3031 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3032 All fpr's from saved_fpr to fp31 are saved. */
3033
3034 if (fdata.saved_fpr >= 0)
3035 {
3036 int i;
3037 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3038
3039 /* If skip_prologue says floating-point registers were saved,
3040 but the current architecture has no floating-point registers,
3041 then that's strange. But we have no indices to even record
3042 the addresses under, so we just ignore it. */
3043 if (ppc_floating_point_unit_p (gdbarch))
3044 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3045 {
3046 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3047 fpr_addr += 8;
3048 }
3049 }
3050
3051 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3052 All gpr's from saved_gpr to gpr31 are saved. */
3053
3054 if (fdata.saved_gpr >= 0)
3055 {
3056 int i;
3057 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3058 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3059 {
3060 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3061 gpr_addr += wordsize;
3062 }
3063 }
3064
3065 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3066 All vr's from saved_vr to vr31 are saved. */
3067 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3068 {
3069 if (fdata.saved_vr >= 0)
3070 {
3071 int i;
3072 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3073 for (i = fdata.saved_vr; i < 32; i++)
3074 {
3075 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3076 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3077 }
3078 }
3079 }
3080
3081 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3082 All vr's from saved_ev to ev31 are saved. ????? */
3083 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3084 {
3085 if (fdata.saved_ev >= 0)
3086 {
3087 int i;
3088 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3089 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3090 {
3091 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3092 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3093 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3094 }
3095 }
3096 }
3097
3098 /* If != 0, fdata.cr_offset is the offset from the frame that
3099 holds the CR. */
3100 if (fdata.cr_offset != 0)
3101 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3102
3103 /* If != 0, fdata.lr_offset is the offset from the frame that
3104 holds the LR. */
3105 if (fdata.lr_offset != 0)
3106 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3107 /* The PC is found in the link register. */
3108 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3109
3110 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3111 holds the VRSAVE. */
3112 if (fdata.vrsave_offset != 0)
3113 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3114
3115 if (fdata.alloca_reg < 0)
3116 /* If no alloca register used, then fi->frame is the value of the
3117 %sp for this frame, and it is good enough. */
3118 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3119 else
3120 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3121 fdata.alloca_reg);
3122
3123 return cache;
3124 }
3125
3126 static void
3127 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3128 struct frame_id *this_id)
3129 {
3130 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3131 this_cache);
3132 (*this_id) = frame_id_build (info->base,
3133 frame_func_unwind (next_frame, NORMAL_FRAME));
3134 }
3135
3136 static void
3137 rs6000_frame_prev_register (struct frame_info *next_frame,
3138 void **this_cache,
3139 int regnum, int *optimizedp,
3140 enum lval_type *lvalp, CORE_ADDR *addrp,
3141 int *realnump, gdb_byte *valuep)
3142 {
3143 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3144 this_cache);
3145 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3146 optimizedp, lvalp, addrp, realnump, valuep);
3147 }
3148
3149 static const struct frame_unwind rs6000_frame_unwind =
3150 {
3151 NORMAL_FRAME,
3152 rs6000_frame_this_id,
3153 rs6000_frame_prev_register
3154 };
3155
3156 static const struct frame_unwind *
3157 rs6000_frame_sniffer (struct frame_info *next_frame)
3158 {
3159 return &rs6000_frame_unwind;
3160 }
3161
3162 \f
3163
3164 static CORE_ADDR
3165 rs6000_frame_base_address (struct frame_info *next_frame,
3166 void **this_cache)
3167 {
3168 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3169 this_cache);
3170 return info->initial_sp;
3171 }
3172
3173 static const struct frame_base rs6000_frame_base = {
3174 &rs6000_frame_unwind,
3175 rs6000_frame_base_address,
3176 rs6000_frame_base_address,
3177 rs6000_frame_base_address
3178 };
3179
3180 static const struct frame_base *
3181 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3182 {
3183 return &rs6000_frame_base;
3184 }
3185
3186 /* Initialize the current architecture based on INFO. If possible, re-use an
3187 architecture from ARCHES, which is a list of architectures already created
3188 during this debugging session.
3189
3190 Called e.g. at program startup, when reading a core file, and when reading
3191 a binary file. */
3192
3193 static struct gdbarch *
3194 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3195 {
3196 struct gdbarch *gdbarch;
3197 struct gdbarch_tdep *tdep;
3198 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3199 struct reg *regs;
3200 const struct variant *v;
3201 enum bfd_architecture arch;
3202 unsigned long mach;
3203 bfd abfd;
3204 int sysv_abi;
3205 asection *sect;
3206
3207 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3208 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3209
3210 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3211 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3212
3213 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3214
3215 /* Check word size. If INFO is from a binary file, infer it from
3216 that, else choose a likely default. */
3217 if (from_xcoff_exec)
3218 {
3219 if (bfd_xcoff_is_xcoff64 (info.abfd))
3220 wordsize = 8;
3221 else
3222 wordsize = 4;
3223 }
3224 else if (from_elf_exec)
3225 {
3226 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3227 wordsize = 8;
3228 else
3229 wordsize = 4;
3230 }
3231 else
3232 {
3233 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3234 wordsize = info.bfd_arch_info->bits_per_word /
3235 info.bfd_arch_info->bits_per_byte;
3236 else
3237 wordsize = 4;
3238 }
3239
3240 /* Find a candidate among extant architectures. */
3241 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3242 arches != NULL;
3243 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3244 {
3245 /* Word size in the various PowerPC bfd_arch_info structs isn't
3246 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3247 separate word size check. */
3248 tdep = gdbarch_tdep (arches->gdbarch);
3249 if (tdep && tdep->wordsize == wordsize)
3250 return arches->gdbarch;
3251 }
3252
3253 /* None found, create a new architecture from INFO, whose bfd_arch_info
3254 validity depends on the source:
3255 - executable useless
3256 - rs6000_host_arch() good
3257 - core file good
3258 - "set arch" trust blindly
3259 - GDB startup useless but harmless */
3260
3261 if (!from_xcoff_exec)
3262 {
3263 arch = info.bfd_arch_info->arch;
3264 mach = info.bfd_arch_info->mach;
3265 }
3266 else
3267 {
3268 arch = bfd_arch_powerpc;
3269 bfd_default_set_arch_mach (&abfd, arch, 0);
3270 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3271 mach = info.bfd_arch_info->mach;
3272 }
3273 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3274 tdep->wordsize = wordsize;
3275
3276 /* For e500 executables, the apuinfo section is of help here. Such
3277 section contains the identifier and revision number of each
3278 Application-specific Processing Unit that is present on the
3279 chip. The content of the section is determined by the assembler
3280 which looks at each instruction and determines which unit (and
3281 which version of it) can execute it. In our case we just look for
3282 the existance of the section. */
3283
3284 if (info.abfd)
3285 {
3286 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3287 if (sect)
3288 {
3289 arch = info.bfd_arch_info->arch;
3290 mach = bfd_mach_ppc_e500;
3291 bfd_default_set_arch_mach (&abfd, arch, mach);
3292 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3293 }
3294 }
3295
3296 gdbarch = gdbarch_alloc (&info, tdep);
3297
3298 /* Initialize the number of real and pseudo registers in each variant. */
3299 init_variants ();
3300
3301 /* Choose variant. */
3302 v = find_variant_by_arch (arch, mach);
3303 if (!v)
3304 return NULL;
3305
3306 tdep->regs = v->regs;
3307
3308 tdep->ppc_gp0_regnum = 0;
3309 tdep->ppc_toc_regnum = 2;
3310 tdep->ppc_ps_regnum = 65;
3311 tdep->ppc_cr_regnum = 66;
3312 tdep->ppc_lr_regnum = 67;
3313 tdep->ppc_ctr_regnum = 68;
3314 tdep->ppc_xer_regnum = 69;
3315 if (v->mach == bfd_mach_ppc_601)
3316 tdep->ppc_mq_regnum = 124;
3317 else if (arch == bfd_arch_rs6000)
3318 tdep->ppc_mq_regnum = 70;
3319 else
3320 tdep->ppc_mq_regnum = -1;
3321 tdep->ppc_fp0_regnum = 32;
3322 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3323 tdep->ppc_sr0_regnum = 71;
3324 tdep->ppc_vr0_regnum = -1;
3325 tdep->ppc_vrsave_regnum = -1;
3326 tdep->ppc_ev0_upper_regnum = -1;
3327 tdep->ppc_ev0_regnum = -1;
3328 tdep->ppc_ev31_regnum = -1;
3329 tdep->ppc_acc_regnum = -1;
3330 tdep->ppc_spefscr_regnum = -1;
3331
3332 set_gdbarch_pc_regnum (gdbarch, 64);
3333 set_gdbarch_sp_regnum (gdbarch, 1);
3334 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3335 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3336 if (sysv_abi && wordsize == 8)
3337 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3338 else if (sysv_abi && wordsize == 4)
3339 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3340 else
3341 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3342
3343 /* Set lr_frame_offset. */
3344 if (wordsize == 8)
3345 tdep->lr_frame_offset = 16;
3346 else if (sysv_abi)
3347 tdep->lr_frame_offset = 4;
3348 else
3349 tdep->lr_frame_offset = 8;
3350
3351 if (v->arch == bfd_arch_rs6000)
3352 tdep->ppc_sr0_regnum = -1;
3353 else if (v->arch == bfd_arch_powerpc)
3354 switch (v->mach)
3355 {
3356 case bfd_mach_ppc:
3357 tdep->ppc_sr0_regnum = -1;
3358 tdep->ppc_vr0_regnum = 71;
3359 tdep->ppc_vrsave_regnum = 104;
3360 break;
3361 case bfd_mach_ppc_7400:
3362 tdep->ppc_vr0_regnum = 119;
3363 tdep->ppc_vrsave_regnum = 152;
3364 break;
3365 case bfd_mach_ppc_e500:
3366 tdep->ppc_toc_regnum = -1;
3367 tdep->ppc_ev0_upper_regnum = 32;
3368 tdep->ppc_ev0_regnum = 73;
3369 tdep->ppc_ev31_regnum = 104;
3370 tdep->ppc_acc_regnum = 71;
3371 tdep->ppc_spefscr_regnum = 72;
3372 tdep->ppc_fp0_regnum = -1;
3373 tdep->ppc_fpscr_regnum = -1;
3374 tdep->ppc_sr0_regnum = -1;
3375 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3376 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3377 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3378 break;
3379
3380 case bfd_mach_ppc64:
3381 case bfd_mach_ppc_620:
3382 case bfd_mach_ppc_630:
3383 case bfd_mach_ppc_a35:
3384 case bfd_mach_ppc_rs64ii:
3385 case bfd_mach_ppc_rs64iii:
3386 /* These processor's register sets don't have segment registers. */
3387 tdep->ppc_sr0_regnum = -1;
3388 break;
3389 }
3390 else
3391 internal_error (__FILE__, __LINE__,
3392 _("rs6000_gdbarch_init: "
3393 "received unexpected BFD 'arch' value"));
3394
3395 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3396
3397 /* Sanity check on registers. */
3398 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3399
3400 /* Select instruction printer. */
3401 if (arch == bfd_arch_rs6000)
3402 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3403 else
3404 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3405
3406 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3407
3408 set_gdbarch_num_regs (gdbarch, v->nregs);
3409 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3410 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3411 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3412 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3413
3414 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3415 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3416 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3417 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3418 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3419 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3420 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3421 if (sysv_abi)
3422 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3423 else
3424 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3425 set_gdbarch_char_signed (gdbarch, 0);
3426
3427 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3428 if (sysv_abi && wordsize == 8)
3429 /* PPC64 SYSV. */
3430 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3431 else if (!sysv_abi && wordsize == 4)
3432 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3433 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3434 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3435 224. */
3436 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3437
3438 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3439 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3440 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3441
3442 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3443 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3444
3445 if (sysv_abi && wordsize == 4)
3446 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3447 else if (sysv_abi && wordsize == 8)
3448 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3449 else
3450 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3451
3452 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3453 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3454
3455 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3456 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3457
3458 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3459 for the descriptor and ".FN" for the entry-point -- a user
3460 specifying "break FN" will unexpectedly end up with a breakpoint
3461 on the descriptor and not the function. This architecture method
3462 transforms any breakpoints on descriptors into breakpoints on the
3463 corresponding entry point. */
3464 if (sysv_abi && wordsize == 8)
3465 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3466
3467 /* Not sure on this. FIXMEmgo */
3468 set_gdbarch_frame_args_skip (gdbarch, 8);
3469
3470 if (!sysv_abi)
3471 {
3472 /* Handle RS/6000 function pointers (which are really function
3473 descriptors). */
3474 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3475 rs6000_convert_from_func_ptr_addr);
3476 }
3477
3478 /* Helpers for function argument information. */
3479 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3480
3481 /* Hook in ABI-specific overrides, if they have been registered. */
3482 gdbarch_init_osabi (info, gdbarch);
3483
3484 switch (info.osabi)
3485 {
3486 case GDB_OSABI_LINUX:
3487 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3488 have altivec registers. If not, ptrace will fail the first time it's
3489 called to access one and will not be called again. This wart will
3490 be removed when Daniel Jacobowitz's proposal for autodetecting target
3491 registers is implemented. */
3492 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3493 {
3494 tdep->ppc_vr0_regnum = 71;
3495 tdep->ppc_vrsave_regnum = 104;
3496 }
3497 /* Fall Thru */
3498 case GDB_OSABI_NETBSD_AOUT:
3499 case GDB_OSABI_NETBSD_ELF:
3500 case GDB_OSABI_UNKNOWN:
3501 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3502 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3503 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3504 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3505 break;
3506 default:
3507 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3508
3509 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3510 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3511 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3512 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3513 }
3514
3515 init_sim_regno_table (gdbarch);
3516
3517 return gdbarch;
3518 }
3519
3520 static void
3521 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3522 {
3523 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3524
3525 if (tdep == NULL)
3526 return;
3527
3528 /* FIXME: Dump gdbarch_tdep. */
3529 }
3530
3531 /* Initialization code. */
3532
3533 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3534
3535 void
3536 _initialize_rs6000_tdep (void)
3537 {
3538 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3539 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3540 }
This page took 0.124148 seconds and 4 git commands to generate.